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PREFACE 

PREFACE 

This guide describes the 68000 C programming language sup· 
ported by the UniPlus+® Operating System, the assembler, 
linker, common object file format (COFF), debugging programs 
and the FORTRAN, RATFOR and EFL programming 
languages. 

It is assumed that those using this guide have at least two years 
of specialized training in computer·related fields and should 
prove especially useful to those using the UniPius+ Operating 
System for system development. 

This guide contains 13 chapters: 

Chapter 1. C INTERFACE NOTES 
This chapter describes the way in which the 
U niSoft 68000 C programming language 
represents data in storage and how that data is 
passed between functions. 

Chapter 2. C COMPILER 
This chapter describes the use and options of the 
UniSoft Systems 68000 C compiler, cc. 

Chapter 3. C LANGUAGE 
This chapter provides a summary of the gram­
mar and rules of the C programming language 
which was used to write most of the UNJXn1 

operating system. 

Chapter 4. C LIBRARIES 
This chapter describes the functions and declara­
tions that support the C Language and how to 
use these functions. 

Chapter 5. OBJECT AND MATH LIBRARIES 
This chapter describes the Object file and Math 
libraries that are supported by the UniPius+ 
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Operating System. 

Chapter 6. MOTOROLA 68000 ASSEMBLER 
This chapter describes the machine language of 
the System V, Release 2 UniPlus+ Operating 
System. 

Chapter 7. COMMON LINK EDITOR 
This chapter (LD) describes the options and 
usage of the U niPlus+ Operating System link 
editor. 

Chapter 8. COMMON OBJECT FILE FORMAT 
This chapter (COFF) describes the object file 
format produced by both the C and FORTRAN 
compilers in UniPlus+ System V, Release 2. 

Chapter 9. FORTRAN 77 
This chapter describes the compiler and run-time 
system for Fortran 77 as implemented on the 
UniPlus+ Operating System. 

Chapter 10. RATFOR 
This chapter describes the ratfor(l) preprocessor 
which allows the user to write FORTRAN pro­
grams in a fashion similar to the C programming 
language. 

Chapter II. THE EFL PROGRAMMING LANGUAGE 
This chapter describes a clean, general purpose 
computer language intended to encourage port­
able programming. Although the name EFL ori­
ginally stood for "Extended Fortran Language" 
and EFL programs can be translated into 
efficient Fortran code, the EFL programmer can 
take advantage of the ubiquity and portability of 
Fortran (and the software and libraries written in 
that language), without suffering from Fortran's 
failings. 

Chapter 12. LINT 
This chapter describes a program that attempts 
to detect compile-time bugs and non-portable 
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features in C programs. 

Chapter 13. SYMBOLIC DEBUGGER 
This chapter (SDB) describes the symbolic 
debugger sdb(l) for UniPlus+ Operating System 
object files. 

Throughout this document, any reference of the form 
nameUM), name(7), or name(8) refers to entries in the 
UniPJus+- Administrator Manual. 

Any reference of the form name(N) where N is a number l 
through 6, possibly followed by a letter, refers to entry name in 
section N of the UniPlus+- User Manual. 
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Chapter 1 

C INTERFACE NOTES 

1. Introduction 

This chapter describes the way in which the UniSoft<l!' 68000 C 
programming language represents data in storage and passes 
data between functions. Also described are the environment of 
and calling mechanism for a function. 

The information in this chapter is intended for programmers 
who must have detailed knowledge of the interface mechanisms 
in order to match C code with the assembler. It is also 
intended for those who wish to write new system or mathemati­
cal functions. 

When a C program is compiled and assembled, the program is 
split into three parts: 

1. .text The executable code of the program. The 
compiler/assembler combination produces this. 

2 .. data The initialized data area. This contains literal con-
stants, character strings, and so on. The 
compiler/assembler combination produces this. 

3 .. bss The uninitialized data areas. The loader generates 
and clears this area to zero at load time. This is a 
feature of the system and can be relied upon. 

During execution of a program, the stack area contains indeter­
minate data. In other words, its previous contents (if any) can­

(. not be relied upon. 

'-
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2. Data Representations 

In general, all data elements of whatever size are stored such 
that their least significant bit is in the highest addressed byte 
and their most significant bit is in the lowest addressed byte. 
The list below describes the representation of data. 

char 

short 

long 

Boat 

double 

pointers 

1-2 

Values of type char occupy 8 bits. 
Such values can be aligned on any 
byte boundary. 

Values of type short occupy 16 bits. 
Values of type short are aligned on 
word 06-bit) address boundaries. 

Values of type long occupy 32 bits. A 
long value is the same as an int value 
in 68000 C. Values of this type are 
aligned on word 06-bit) boundaries. 

Values of type jfoat occupy 32 bits. 
All float values are automatically con­
verted to type double for computation 
purposes - except when testing for 
zero or non-zero. Values of this type 
are aligned on word 06-bit) boun­
daries. A float value consists of a 
sign bit, followed by an 8-bit biased 
exponent, followed by a 23-bit 
mantissa. 

Values of type double occupy 64 bits. 
Values of this type are aligned on 
word (16-bit) boundaries. A double 
value consists of a sign bit, followed 
by an 11-bit biased exponent, fol­
lowed by a 52-bit mantissa. 

All pointers are represented as long 
(32-bit) values. Pointers are aligned 
on word 06-bit) boundaries. 



r 

r 
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arrays 
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The base address of an array value is 
always aligned on a word 06·bit) 
address boundary. 

Elements of an array are stored con­
tiguously, one after the other. Ele­
ments of multi-dimensional arrays are 
stored in row-major order. That is, 
the last dimension of an array varies 
the fastest. 

When a multi-dimensional array is 
declared~ it is possible to omit the size 
specification for the last dimension. 
In such a case, what is allocated is 
actually an array of pointers to the 
elements of the last dimension. 

structures and unions Within structures and unions, it is 
possible to obtain unfilled holes of 
size char. This is due to the compiler 
rounding addresses up to 16-bit boun­
daries to accommodate word-aligned 
elements. 

struct { 
int x· 

' char y; 
short z; 

l; 

This situation can best be demon­
strated by an example. Consider the 
following structure: 

I• This is a 32-bit element •I 
I• Takes up a single byte •I 
I• Aligned to a 16-bit boundary •I 

The total number of bytes declared 
above is seven: four for the int, one 
for the char, and two for the short. 

In reality, the "z" field which is a 
short will be aligned on a 16-bit boun­
dary by the C compiler. In this case, 
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struct { 
int 
char 
char 
short 

l; 

x· 
' y; 

the compiler inserts a hole after the 
char element "y", to align the short 
element "z". The net effect of these 
machinations is a structure that 
behaves like this: 

I• This is a 32-bit element •I 
I• Takes up a single byte •I 

dummy; I• Fills the structure •I 
z· 
' I• Aligned to a 16-bit boundary •I 

The C compiler never reorders any 
parts of a structure. 

Similar considerations apply to arrays 
of structures or unions. Each element 
of an array (other than an array of 
char) begins on a 16-bit boundary. 

For a detailed treatment of data storage, consult The C Pro­
gramming Language by Kernighan and Ritchie. 

3. Parameter Passing in C 

The C programming language is unique in that it really has only 
functions. The effect of a subroutine is achieved simply by 
having a function which does not return a value. The function 
type should be "void." 

Another unique feature of C is that parameters to functions are 
always passed by value. The C programming language has no 
concept of declaring parameters to be passed by reference, as in 
languages such as Pascal. In order to pass a parameter by refer-

' 
) 

ence in a C program, the programmer must explicitly pass the --' 
address of the parameter. The called function must be aware 
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that it is recetvmg an address instead of a value, and the 
appropriate code must be present to handle that case. 

When a function is called, its parameters (if any) are evaluated 
and are then pushed onto the stack in reverse order. AU 
parameters are pushed onto the stack as 32·bit longs. If a 
parameter is shorter than 32 bits, it is ·expanded to a 32-bit 
value with sign-extension, if necessary. The calling procedure 
is responsible for popping the parameters off the stack. 

Consider a C function call like this: 

ferry (charon, 7, &styx, 1<<10); 

After evaluation, but just before the call, the stack looks like 
this: 

%sp --+ value of variable 'charon' 

7 

address of variable 'styx' 

1024 
... previous stack contents ... 

Functions are called by issuing either a "bsr" instruction or a 
"jsr" instruction, depending upon whether the callee is within a 
16-bit addressing range or not, and whether the C optimizer 
was used. The "bsr" or "jsr" instruction pushes the return 
address upon the stack, and then branches to the indicated 
function. After the call, on entry to the function, the stack 
looks like this: 
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%sp - Return address 

value of variable 'charon' 

7 

address of variable 'styx' 

1024 
... previous stack contents ... 

In each function, register %a6 is used as a stack frame base. 
The stack location referenced by %a6 contains the return 
address. 

4. Setting Up the Stack 

Upon entry into the function, the prolog code is executed. The 
prolog code allocates enough space on the stack for the local 
variables, plus enough space to save any registers that this 
function uses. The prolog code then ensures that there is 
enough stack space available for executing the function. If 
there is not enough space, the system grows the stack to allot 
more space. The prolog code for the 68000 looks like this: 

lea.l F%1·256(%sp),%a0 
cmp.l %aO,splimit% 
bhi.b L%12 
jsr spgrow% 

L7.12: 

link %fp,&F%1 
moveml &M%l,S%1(%fp) 

The first section of the above code is a stack test, and the 
second section is the "normal prolog code." The prolog code 
for the 68010 does NOT contain a stack test section, but con-
sists only of a normal prolog code identical to that of the 68000. --..__/ 
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The "F%1" constant is the size of the stack frame for the local 
variables, plus four bytes for each register variable. 

For the 68000, the current lower bound for the stack is com· 
pared against the current function's requirements (plus a safety 
factor of 256 bytes) and if the available stack is not sufficient, 
calls spgrow% to grow the stack. 

Finally, the "M%1" constant is a mask to determine which 
registers need to be saved on the stack for this particular func­
tion. This is, of course, dependent on the register variables 
that the programmer declared for that particular routine. 

S. Allocation of Local Variables and Registers 

A total of ten registers are available for register variables. Six 
of these are the 68000 data (%d) registers, and four are the 
68000 address (%a) registers. The available %a registers are 
%a2 through %aS. The available %d registers are %d2 through 
%d7. 

Functions that return integers return their results in one of the 
data registers, whereas functions that return pointers return 
their result in an address register. In C, if a function is not 
declared in advance, it is assumed to return an integer. Unless 
the compiler is told otherwise, it will expect a funcition to 
return a value in a data register. If a function (such as malloc) 
returns a pointer, it MUST be declared, or the generated code 
will be wrong. Use the lint program to find places where func­
tions have not been declared. 

NOTE: The following instructions are NOT available in the 
current release of the assembler: 

clr.w 
clr.l 

%a0 
%a0 

Use the following instructions instead: 
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mov.w &O,%a0 
mov.l &O,%a0 

Any variable declared as a pointer variable is always allocated to 
an address register. Non-pointer variables are assigned to data 
registers. Register variables are allocated to registers in the 
order in which they are declared in the C source program, start­
ing at the low end (%a2 or %d2) of the appropriate type of 
register. 

If there are more register variables of either kind than there are 
registers to accommodate them, the remaining variables are 
allocated on the stack as local variables, just as if the register 
attribute had never been given in the declaration. 

Upon completion of the pro log code, the stack then looks like 
this: 
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... 

Register Save Area 

%sp - ... 

... 
Local Variables 

... 

%a6 - Old %a6 

Return Address 

value of variable 'charon' 

7 

address of variable 'styx' 

1024 
... previous stack contents ... 

6. Returning from a Function or Subroutine 

Upon reaching a "return" statement, either explicit or implicit, 
the function executes the epilog code. If the function has a 
return value, generated from a 

return (expression); 

statement, the value of the expression (which is synonymous 
with the value of the function) is placed in register %dO or %a0 
for pointer functions. The epilog code is then executed to 
effect a return from the function. The epilog code for both the 
68000 and the 68010 looks like this: 
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moveml 
unlk 
rts 

S%1(%fp),&M%1 
%fp 

The "moveml" instruction restores any registers which were 
saved during the prolog. The stack frame base pointer in %fp is 
then put back to the point where %fp once again points to the 
return address. The function is then exited via the "rts" 
instruction, which pops the stack to the state it was in prior to 
the original call, and then returns to the function that called it. 

7. System Calls 

The C compiler generates code for system calls in the following 
way: 

• The system call number is placed in register %dO. 

• A "TRAP #0" instruction is executed. 

Parameters are passed on the user stack in the C calling con­
vention. On return from the system call, errors are signaled by 
the carry flag being set. The C interface to the system calls typ­
ically returns a -1 on error as the carry flag cannot be tested 
from C. 

8, Optimizations 

This section describes some of the ways in which the program­
mer can optimize the use of the C language. 

The C compiler can be run to optimize the code it generates, 
making that code both compact and fast. Using a C command 
line as follows: 

cc -0 file 

generates optimized code. The option for optimized code 
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generation is an upper-case "0". 

C If a C program contains a "do" loop of the form: 

register short x~ 

c 

X = 10; 
do { 

statement 
} while (--x !-= -1); 

Such a loop is optimized to use the "dbra" instruction, result­
ing in faster execution. 

The optimizer may work incorrectly near C code that includes a 
structure assignment. As a result, semantically correct C code 
will function incorrectly. The example below illustrates C code 
that the optimizer "breaks." 

struct st { long i, j } ; 
mainO 
{ 

static struct st temp; 
struct st •p; 
temp = •p; 
p = &temp; 

9. Use of Register Variables 

The decision as to whether to declare a variable in a register 
depends on the number of times that variable is referenced in 
the function. If a variable is used more than twice in a func­
tion, it can be declared as a register variable. If a variable is 
used less than twice in a function, it is not useful to declare it 
as a register variable because the amount of time spent saving 
and restoring that register is more than the time saved in using 
a register instead of a location on the stack. 
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10. Miscellaneous Notes 

The object files that the assembler and linker create use the 
Common Object File Format (COFF). See the chapter in the 
UniP/ust Programming Guide entitled "COFF - THE COM· 
MON OBJECT FILE FORMAT." 

The C compiler will accept multiply-defined external variables 
as long as no more than one of the definitions includes an ini­
tialization. 

The floating point emulation package is automatically invoked 
when the program is linked with the C library (libc.a). 

The C compiler supports floating and double variables by mak­
ing calls to a library of emulation routines. Although floating 
point data values are represented in IEEE standard floating 
point format, the emulation routines DO NOT implement the 
IEEE exception handling routines. 

1-12 



Chapter 2: THE UNIPLUS+ C COMPILER 

CONTENTS 

1. Introduction . . . . I 

2. Use Of The Compiler . 1 
2.1 Options . . . . 2 

RECOGNIZED AND EXECUTED BY 
cc • • . . . . . . . . • . 2 
RECOGNIZED BY cc AND PASSED TO 
ld • • • • • • • • • • • • • 4 
RECOGNIZED BY cc AND PASSED TO 
cpp . . . . • . . . . . . . . 5 

- i -





.r-, 

C COMPILER 

Chapter 2 

THE UNIPLUS+ C COMPILER 

1. Introduction 

This chapter describe the UniPius+ Oper~ting System's C com­
piler, cc, and the C programming language that the compiler 
translates. 

The C language is implemented for high-level programming 
and contains many control and structuring facilities that greatly 
simplify the task of algorithm construction. The C compiler 
prepares C programs which will ultimately be translated into 
object files by the assembler, as. The link editor, ld, collects 
and merges object files into executable load modules. Each of 
these tools preserves all symbolic information necessary for 
meaningful symbolic testing at C-language source level. 

----.- ' The current manual page for the C compiler can be obtained 
with the command: 

c 

man cc 

2. Use Of The Compiler 

To use the compiler, first create a file (typically by using the 
UniPtus+® Operating System text editor) containing C source 
code. The last two characters (or exren/ion), of the file name 
MUST be .c, for example, "JileJ.c." 

cc options file.c 

to invoke the compiler on the C source file fiie.c with the 
options selected. The compilation process creates an absolute 
binary file named a.out that reflects the contents of fiie.c and 
any referenced library routines. The resulting binary file, a.out, 
can then be executed on the target system. 

Z-1 
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Options can control the steps in the compilation process. If no 
controlling options are used, and only one file is named, cc 
automatically calls the assembler, as, and the link editor, ld, to 
produce the executable file, a.out. If more than one file is ._./ 
named in a command, 

cc file i.e jile2.c fileJ.c 

then the output will be placed on files filel.o, jile2.o, and fiieJ.o. 
These files can then be linked and executed using the ld com­
mand. 

The cc compiler also accepts input file names with the last two 
characters .s. The .s extension signifies a source file in assem­
bly language. The cc compiler passes this type of file directly to 
as, which assembles the file and places the output in a fite of 
the same "base" name but with a .o extension (i.e., "file.s"--+ 
''file.o''). 

The program cc is based on a portable C compiler and translates 
C source files into assembly code. Whenever the command cc 
is used, the standard C preprocessor (which resides on the file 
/lib/cpp) is called. The preprocessor performs file inclusion 
and macro substitution. The preprocessor is always invoked by 
cc and need not be called directly by the programmer. Then, 
unless the appropriate flags are set, cc calls the assembler and 
the link editor to produce an executable file. 

2.1 Options 

All options recognized by the cc command are listed below: 

RECOGNIZED AND EXECUTED BY cc 

OPTION ARGUMENT 

-c none 

2·2 

DESCRIPTION 

Suppress the link-editing phase 
of compilation and force an 
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-g 

-p 

-t 

-8 

-E 

-0 

none 

none 

[pOI 2all 

string 

none 

none 
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object file to be produced even 
if only one file is compiled. 

Produce symbolic debugging 
information. 

Reserved for invoking a 
profiler. 

Find only the designated 
preprocessor (p), compiler ( 0 
and 1), optimizer ( 2), assem­
bler (a) and link editor (/) 
passes whose names are con­
structed with the string argu­
ment to the -8 option. In the 
absence of a -8 option and its 
argument, string is taken to be 
/lib/n. The value of -t "" is 
equivalent to -tp012. 

Construct path names for sub­
stitute preprocessor, compiler, 
and link editor passes by con­
catenating string with the 
suffixes cpp, cO (or ccom or 
comp), cl, c2 (or optlm), as 
and ld. If string is empty it is 
taken tube /lib/o. 

Same as the - P option except 
output is directed to the stan­
dard output. 

Invoke an object code optim­
izer. 
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-P none 

-R none 

-T none 

-v none 

-w c,argl{,arg2 .. .1 

-X none 

-# none 

Suppress compilation and load· 
ing; i.e., invoke only the 
preprocessor and leave out the 
output on corresponding files 
suffixed .i. 

Have assembler remove its 
input file when done. 

Truncate identifier names to 8 
significant characters. 

Print the version of the assem­
bler that is invoked. 

Pass the argument(s) argl to c, 
where c is one of (p012all, 
indicating preprocessor (p), 
compiler first pass (0), compiler 
second pass (1), optimizer (2), 
assembler (a) or link editor (I), 
respectively. 

Ignored by UniPlus+ for 68000. 

Special debug option which 
echoes the names and argu­
ments of subprocesses which 
would have started without 
actually executing the program. 

RECOGNIZED BY cc AND PASSED TO Id 

OPTION ARGUMENT 

-1 X 

2-4 

DESCRIPTION 

Same as -I in ld (1). Search a 
library libx.a, where x is up to 
seven characters. A library is 



r', 

(~ 

-o outfi/e 

-s none 

-L dir 
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searched when its name is 
encountered, so the placement 
of a -1 is significant. By 
default, libraries are located in 
LIBDIR. If you plan to use the 
- L option, that option MUST 
PRECEDE -I on the command 
line. 

Same as - o in ld (1). Produce 
an output object file called 
outfi/e. The name of the 
default object file is a.out. 

Same as - s in ld (1). Strip line 
number entries and symbol 
table information from the out­
put of object file. 

Same as - L in ldU). Change 
the algorithm of searching for 
libx.a to look in dir before look­
ing in LIBDIR. This option is 
effective only if it precedes the 
-1 option on the command 
line. 

RECOGNIZED BY cc AND PASSED TO cpp 

OPTION ARGUMENT 

-C none 

DESCRIPTION 

Same as -C in cpp(l). All 
comments, except those found 
on cpp directive lines are 
passed along. The default is 
that ALL comments are 
stripped out. 
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-D ident=def Same as - D in cpp(t). Define 
the external symbol ident and 
give it the value def (if 
specified). If no def is given, 
ident is defined as 1. 

-1 dir Change the algorithm that 
searches for #include files 
whose names do not begin with 
I to look in the named dir 
before looking in the directories 
on the standard list. Thus, 
#include files whose names are 
enclosed in "" (i.e., #include 
"include file") are searched for 
first in the directory of the file 
being compiled, then in direc­
tories named by the -I 
options, and last in directories 
on the standard list. For 
#include files whose names are ~ 
enclosed in < > (i.e., #include 
<include file>), the directory 
of the file argument is not 
searched. 

-u name Remove any initial definition of 
name, where name is a reserved 
symbol that is predefined by 
the particular preprocessor. 

By using appropriate options, compilation can be terminated 
early to produce one of several intermediate translations such 
as: 

( -c option) This option produces relocatable object files. 

It is often desirable to use this option to save 
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relocatable files so that changes to one file do 
not then require that the others be recompiled. 
A separate call to cc with the relocatable files 
(indicated by a .c extention, as in fiie.c), but 
without the -c option, creates the linked exe­
cutable a.out file. A relocatable object file 
created under the - c option has the same root 
as the relocatable object file, but the extention 
is .o instead of .c. 

( -s option) This option produces assembly source expan­
sions for C code. 

(- P option) This option produces the output of the prepro­
cessor. When used, the compilation process 
stops after preprocessing. Output from the 
preprocessor is left in an outfile with an exten­
sion .i, for example, ji/e.i. These output files 
can be subsequently processed by cc but only 
if their file name is changed to a name ending 
in ".c". 

Except for those produced by the preprocessor, intermediate 
files may be saved and resubmitted to the cc command, with 
other files or libraries included as necessary. 

The - W option provides the mechanism to specify options for 
each step that is normally invoked from the cc command line. 
These steps are: 

1. preprocessing, 

2. the first pass of the compiler, 

3. the second pass of the compiler, 

4. optimization, 

s. assembly, and 

6. link editing. 
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At this time, only assembler and link editor options can be 
used with the - W option. The most common example of the 
- W option is 

-WI,- VS,n 

which passes the -vs n option to the link editor (ld(t)). In 
the following example: 

-Wa, -option 

the compiler will pass the -option to the assembler. 

The -0 option decreases the size and increases the execution 
speed of programs by moving, merging, and deleting code. 
However, line numbers used for symbolic debugging may be 
transposed when the optimizer is used. 

The -g option produces information for a symbolic debugger. 
(For more information see the chapter entitled "SOB - A 
SYMBOLIC DEBUGGER" in this manual.) -~ 

For more information on any of the options which are passed 
by cc(t) to either the preprocessor cpp(l) or the link editor 
Id(l), see the appropriate manual page in the UniPlust User 
Manual 
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Chapter 3 

THE C LANGUAGE 

1. Lexical Conventions 

There are six classes of tokens: 

1. identifiers 

2. keywords 

3. constants 

4. strings 

5. operators 

6. other separators 

Blanks, tabs, new-lines, and comments (collectively, "white 
space," as described below) are ignored except as they serve to 
separate tokens. Some white space is required to separate oth­
erwise adjacent identifiers, keywords, and constants. 

If the input stream has been parsed into tokens up to a given 
character, the next token is taken to include the longest string 
of characters which could possibly constitute a token. 

1.1 CoMments 

The characters /• introduce a comment which terminates with 
the characters •/. 

I• COMMENTS I• DO NOT •I NEST •I 

1.2 Identifiers (Names) 

An identifier is a sequence of letters and digits. The first char­
acter MUST be a letter. The underscore (_) counts as a letter. 
Uppercase and lowercase letters are different. Although there 
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is no limit on the length of a name, only initial characters are 
significant: at least eight characters of a non-external name, and 
perhaps fewer for external names. Moreover, some implemen­
tations may collapse case distinctions for external names. For 
the 68000: 

68000 7 characters, 2 cases 

1.3 Keywords 

The following identifiers are reserved for use as keywords and 
may not be used otherwise: 

auto do fo• return typedef 
break double go to short union 
case else if sizeof unsigned 
char en urn int static while 
continue external long struct 
default float register switch 

Some implementations also reserve the words fortran and asm. 

1.4 Constants 

There are several kinds of constants, each of which has a type. 
The introduction to types is given in the section entitled 
"Names." Hardware characteristics that affect sizes are sum­
marized in the subsection "Hardware Characteristics" under 
the general heading "Lexical Conventions." 

1.4.1 Integer Constants 

An integer constant consisting of a sequence of digits is taken 
to be octal if it begins with a zero. An octal constant consists 
of the digits 0 through 7 only. A sequence of digits preceded 
by Ox or OX is taken to be a hexadecimal integer. The hexade­
cimal digits include a through f (or A through F) with values 
10 through 15. Otherwise, the integer constant is taken to be 
decimal. A decimal constant whose value exceeds the largest _-
signed machine integer is taken to be long. An octal or hex 
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constant which exceeds the largest unsigned machine integer is 
likewise taken to be long. Otherwise, integer constants are Int. 

1.4.2 Explicit Long Constants 

A decimal, octal, or hexadecimal integer constant, immediately 
followed by I (letter ell) or L, is a long constant. As discussed 
below, on some machines integer and long values may be con­
sidered identical. 

1.4.3 Character Constants 

A character constant is a character enclosed in single quotes, as 
in ·x·. 

The value of a character constant is the numerical value of the 
character in the machine's character set. 

Certain nongraphic characters, the single quote (') and the 
backslash (\), may be represented according to the following 
table of escape sequences: 

new-line 
horizontal tab 
vertical tab 
backspace 
carriage return 
form feed 
backslash 
single quote 
bit pattern 

NL (LF) 
HT 
VT 
BS 
CR 
FF 
I 

In 
It 
lv 
lb 
I< 
If 
II 
I' 

10! 0-7][0-71 I0[0-7][0-7] 

The escape \0(0-7](0-7] consists of the backslash followed by 
1, 2, or 3 octal digits (0 through 7) which are taken to specify 
the value of the desired character. A special case of this con­
struction is \0 (NOT followed by a digit), which indicates the 
character NULL. If the character following a backslash is not 
one of those specified, the behavior is undefined. A new-line 
character is illegal in a character constant. The type of a 
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character constant is int. 

1.4.4 Floating Constants 

A floating constant consists of an integer part, a decimal point, 
a fraction part, an e or E, and an optionally signed integer 
exponent. The integer and fraction parts both consist of a 
sequence of digits. Either the integer part OR the fraction part 
may be missing - but NOT BOTH. Either the decimal point 
OR the e and exponent may be missing - but NOT BOTH. 
Every floating constant has type double. 

1.4.5 Enumeration Constants 

Names declared as enumerators have type int. For more infor­
mation see the section entitled "Structure, Union and 
Enumeration Declarations." 

1.5 Strings 

A string is a sequence of characters surrounded by double 
quotes, as in "string". A string has type "array of char" and 
storage class static and is initialized with the given characters. 
The compiler places a NULL byte (\0) at the end of each string 
so that programs which scan the string can find its end. In a 
string, the double quote character (") must be preceded by a\; 
in addition, the same escapes as described for character con­
stants may be used. 

A \ and the immediately following new-line are ignored. All 
strings, even when written identically, are distinct. 

1.6 Hardware Characteristics 

The following figures summarize certain hardware properties for 
the 68000. 
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68000 
(ASCII) 

char 
int 
short 
long 
float 
double 
float range 
double range 

8 bits 
32 
16 
32 
32 
64 
+ 10±38 ± 10±307 

Figure 3.1. 68000 Hardware Characteristics 

2. Syntax Notation 

Syntactic categories are indicated by ITALIC type, commands in 
BOLD type and other literal words and characters in ROMAN 
type. Alternative categories are listed on separate lines. An 
optional terminal or nonterminal symbol is indicated by the 
subscript "opt," so that 

{ expressionopt } 

indicates an optional expression enclosed in braces. 

3. Names 

The C language bases the interpretation of an identifier upon 
two attributes of the identifier: 

1. storage class The storage class determines the location 
and lifetime of the storage associated with an 
identifier. 

2. type the type determines the meaning of the 
values found in the identifier's storage. 
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3.1 Storage Class 

There are four declarable storage classes: 

I. Automatic Automatic variables are local to each invocation 
of a block and are discarded upon exit from the 
block. 

2. Static 

2. External 

2. Register 

3.2 Type 

Static variables are local to a block but retain 
their values upon reentry to a block even after 
control has left the block. 

External variables exist and retain their values 
throughout the execution of the entire program 
and may be used for communication between 
functions, even separately compiled functions. 

Register variables are (if possible) stored in the 
fast registers of the machine; like automatic 
variables, they are local to each block and 
disappear on exit from the block. 

The C language supports several fundamental types of objects. 
Objects declared as characters (char) are large enough to store 
any member of the implementation's character set. If a 
genuine character from that character set is stored in a char 
variable, its value is equivalent to the integer code for that 
character. Other quantities may be stored into character vari· 
abies, but the implementation is machine dependent. In partie· 
ular, char may be signed or unsigned by default. 

Up to three sizes of integer, declared 3short int, int, and long 
int, are available. Longer integers provide no less storage than 
shorter ones, but the implementation may make either short 
integers or long integers, or both, equivalent to plain integers. 
"Plain" integers have the natural size suggested by the host 
machine architecture. The other sizes are provided to meet 
special needs. 
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The properties of enum types are identical to those of some 
integer types. The implementation may use the range of values 
to determine how to allot storage. 

Unsigned integers, declared unsigned, obey the laws of arith· 
metic modulo 211 where n is the number of bits in the represen· 
tation. 

Single-precision floating point (float) and double precision float­
ing point (double) may be synonymous in some implementa­
tions. 

Because objects of the foregoing types can usefully be inter­
preted as numbers, they will be referred to as arithmetic types. 
Char, int of all sizes whether unsigned or not, and enum will 
collectively be called integral types. The float and double types 
will collectively be called floating types. 

,_ Besides the fundamental arithmetic types, there is a conceptu­
ally infinite class of derived types constructed from the funda­
mental types in the following ways: 

• Arrays of objects of most types 

• Functions which return objects of a given type 

• Pointers to objects of a given type 

• Structures containing a sequence of objects of various 
types 

• Unions capable of containing any one of several 
objects of various types. 

In general these methods of constructing objects can be applied 
recursively. 
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4. Objects and Lvalues 

An object is a manipulatable region of storage. An /value is an 
expression referring to an object. An obvious example of an 
!value expression is an identifier. There are operators which 
yield !values: for example, if E is an expression of pointer type, 
then • E is an !value expression referring to the object to which 
E points. The name "/value" comes from the assignment 
expression El = El in which the left operand El must be an 
!value expression. The discussion of each operator below indi­
cates whether it expects !value operands and whether it yields 
an lvalue. 

5. Conversions 

A number of operators may, depending on their operands, 
cause conversion of the value of an operand from one type to 
another. This part explains the result to be expected from such 
conversions. The conversions demanded by most ordinary 
operators are summarized later in this section under the sub­
heading "Arithmetic Conversions." The summary will be sup­
plemented as required by the discussion of each operator. 

5.1 Characters and Integers 

A character or a short integer may be used wherever an integer 
may be used. In all cases the value is converted to an integer. 
Conversion of a shorter integer to a longer preserves sign. 
Whether or not sign-extension occurs for characters is machine 
dependent, but it is guaranteed that a member of the standard 
character set is non-negative. 

On machines that treat characters as signed, the characters of 
the ASCII set are all non-negative. However, a character con­
stant specified with an octal escape suffers sign extension and 
may appear negative; for example, '\377' has the value -1. 

When a longer integer is converted to a shorter integer or to a 
cbar it is truncated on the left. Excess bits are simply 
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discarded. 

( 5.2 Float and Double 

All floating arithmetic in C is carried out in double precision. 
Whenever a float appears in an expression it is lengthened to 
double by zero padding its fraction. When a double must be 
converted to float, for example by an assignment, the double is 
rounded before truncation to float length. This result is 
undefined if it cannot be represented as a float. 

5.3 Floating and Integral 

Conversions of floating values to integral type are rather 
machine dependent. In particular, the direction of truncation 
of negative numbers varies. The result is undefined if it will 
not fit in the space provided. 

Conversions of integral values to floating type are well behaved. 
Some loss of accuracy occurs if the destination lacks sufficient 
bits. 

5.4 Pointers and Integers 

An expression of integral type may be added to or subtracted 
from a pointer. In such a case, the first is converted as 
specified in the discussion of the addition operator. Two 
pointers to objects of the same type may be subtracted. in this 
case, the result is converted to an integer as specified in the dis­
cussion of the subtraction operator. 

5.5 Unsigned 

Whenever an unsigned integer and a plain integer are com­
bined, the plain integer is converted to unsigned and the result 
is unsigned. The value is the least unsigned integer congruent 
to the signed integer (modulo 2wonlsize}. In a 2's complement 
representation, this conversion is conceptual, and there is no 
actual change in the bit pattern. 
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When an unsigned short integer is converted to long, the value 
of the result is the same numerically as that of the unsigned 
integer. Thus the conversion amounts to padding with zeros on 
the left. 

5.6 Arithmetic Conversions 

A great many operators cause conversions and yield result types 
in a similar way. From now on in this document this pattern 
will be called the "usual arithmetic conversions." 

1. First, any operands of type char or short are converted to 
int, and any operands of type unsigned char or unsigned 
short are converted to unsigned int. 

2. Then, if either operand is double, the other is converted 
to double and that is the type of the result. 

3. Otherwise, if either operand is unsigned long, the other is 
converted to unsigned long and that is the type of the 
result. 

4. Otherwise, if either operand is long, the other is con· 
verted to long and that is the type of the result. 

5. Otherwise, if one operand is long, and the other is 
unsigned int, they are both converted to unsigned long 
and that is the type of the result. 

6. Otherwise, if either operand is unsigned the other is con· 
verted to unsigned and that is the type of the result. 

7. Otherwise, both operands must be lnt, and that is the 
type of the result. 

6, Expressions 

The precedence of expression operators is the same as the 
order of the major subsections of this section, highest pre· 
cedence first. Thus, for example, the expressions referred to as 
the operands of + are those expressions defined under the sec· 
tions "Primary Expressions," "Unary Operators," and "Multi· 
plicative Operators." Within each subpart, the operators have 
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the same precedence. Left- or right-associativity is specified in 
each subsection for the operators discussed therein. The pre­
cedence and associativity of all the expression operators are 
summarized in the grammar of .. Syntax Summary." 

Otherwise, the order of evaluation of expressions is undefined. 
In particular, the compiler considers itself free to compute 
subexpressions in the order it believes most efficient even if the 
subexpressions involve side effects. The order in which subex­
pression evaluation takes place is unspecified. Expressions 
involving a commutative and associative operator(.,+,&, I,~) 
may be rearranged arbitrarily even in the presence of 
parentheses; to force a particular order of evaluation, an explicit 
temporary must be used. 

The handling of overflow and divide check in expression 
evaluation is undefined. Most existing implementations of C 
ignore integer overflows; treatment of division by 0 and all 
floating-point exceptions varies between machines and is usu­
ally adjustable by a library function. 

6.1 Primary Expressions 

Primary expressions involving . , - >, subscripting, and func­
tion calls group left to right. 

primary-expression: 
identifier 
constant 
string 
( expression ) 
primary-expression 
primary-expression 
primary-expression 
primary-expression 

[ expression ] 
( expression-lisfopt ) 
• identifier 
- > identifier 
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expression·list: 
expression 
expression·list expression 

An identifier is a primary expression provided it has been suit· 
ably declared as discussed below. Its type is specified by its 
declaration. If the type of the identifier is "array of ... , " then 
the value of the identifier expression is a pointer to the first 
object in the array, and the type of the expression is "pointer to 
... ". Moreover, an array identifier is not an !value expression. 
Likewise, an identifier which is declared "function returning 
... ,"when used except in the function-name position of a call, 
is converted to "pointer to function returning ... ". 

A constant is a primary expression. Its type may be int, long, 
or double depending on its form. Character constants have 
type int and floating constants have type double. 

A string is a primary expression. Its type is originally "array of 
char," but following the same rule given above for identifiers, 
this is modified to "pointer to char" and the result is a pointer 
to the first character in the string. (There is an exception in 
certain initializers; see ''Initialization'' under ''Declarations.'') 

A parenthesized expression is a primary expression whose type 
and value are identical to those of the unadorned expression. 
The presence of parentheses does not affect whether the 
expression is an !value. 

A primary expression followed by an expression in square 
brackets is a primary expression. The intuitive meaning is that 
of a subscript. Usually, the primary expression has type 
"pointer to ... ", the subscript expression is int, and the type of 
the result is " ... ". The expression EliEZI is identical (by 
definition) to *((El)+(EZ)). All the clues needed to under­
stand this notation are contained in this subpart together with 

3-12 



c 

( 

C LANGUAGE 

the discussions in "Unary Operators" and "Additive Opera­
tors" on identifiers, • and+, respectively. The implications are 
summarized under "Arrays, Pointers, and Subscripting" under 
"Types Revisited." 

A function call is a primary expression followed by parentheses 
containing a possibly empty, comma-separated list of expres­
sions which constitute the actual arguments to the function. 
The primary expression must be of type "function returning 
... ,''and the result of the function call is of type '' ... ''. As 
indicated below, a hitherto unseen identifier followed immedi­
ately by a left parenthesis is contextually declared to represent a 
function returning an integer; thus in the most common case, 
integer-valued functions need not be declared. 

Any actual arguments of type float are converted to double 
before the call. Any of type char or short are converted to int. 
Array names are converted to pointers. No other conversions 
are performed automatically; in particular, the compiler does 
not compare the types of actual arguments with those of formal 
arguments. If conversion is needed, use a cast; see "Unary 
Operators" and "Type Names" under "Declarations." 

In preparing for the call to a function, a copy is made of each 
actual parameter. Thus, all argument passing inC is strictly by 
value. A function may change the values of its formal parame­
ters, but these changes cannot affect the values of the actual 
parameters. It is possible to pass a pointer on the understand­
ing that the function may change the value of the object to 
which the pointer points. An array name is a pointer expres­
sion. The order of evaluation of arguments is undefined by the 
language; take note that the various compilers differ. Recursive 
calls to any function are permitted. 

--- A primary expression followed by a dot followed by an 
identifier is an expression. The first expression must be a 
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structure or a union, and the identifier must name a member of 
the structure or union. The value is the named member of the 
structure or union, and it is an !value if the first expression is 
an !value. 

A primary expression followed by an arrow (built from - and 
>) followed by an identifier is an expression. The first expres­
sion must be a pointer to a structure or a union and the 
identifier must name a member of that structure or union. The 
result is an !value referring to the named member of the struc­
ture or union to which the pointer expression points. Thus the 
expression El->MOS is the same as ( .. El).MOS. Structures 
and unions are discussed in "Structure, Union, and Enumera­
tion Declarations" under "Declarations." 

6.2 Unary Operators 

Expressions with unary operators group right to left. 

unary-expression: 
"' expression 
& /value 
- expression 
! expression 

expression 
++!value 
--/value 
/value++ 
/value--
( type-name ) expression 
sizeof expression 
sizeof ( type-name ) 

The unary "' operator means indirection; the expression must be 
a pointer, and the result is an !value referring to the object to 
which the expression points. If the type of the expression is 
"pointer to ... , " the type of the result is " ... ". 
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The result of the unary & operator is a pointer to the object 
referred to by the lvalue. If the type of the lvalue is " ... ". 
the type of the result is "pointer to ... ". 

The result of the unary - operator is the negative of its 
operand. The usual arithmetic conversions are performed. The 
negative of an unsigned quantity is compUted by subtracting its 
value from 2" where n is the number of bits in the correspond­
ing signed type. 

There is no unary + operator. 

The result of the logical negation operator ! is one if the value 
of its operand is zero, zero if the value of its operand is 
nonzero. The type of the result is Int. It is applicable to any 
arithmetic type or to pointers. 

The - operator yields the one's complement of its operand. 
The usual arithmetic conversions are performed. The type of 
the operand must be integral. 

The object referred to by the !value operand of prefix ++ is 
incremented. The value is the new value of the operand but is 
not an lvalue. The expression ++x is equivalent to x=x+l. 
See the discussions "Additive Operators" and "Assignment 
Operators" for information on conversions. 

The !value operand of prefix -- is decremented analogously to 
the prefix ++ operator. 

When postfix ++ is applied to an !value, the result is the value 
of the object referred to by the !value. After the result is 
noted, the object is incremented in the same manner as for the 
prefix ++ operator. The type of the result is the same as the 
type of the lvalue expression. 
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When postfix -- is applied to an !value, the result is the value 
of the object referred to by the !value. After the result is 
noted, the object is decremented in the manner as for the 
prefix -- operator. The type of the result is the same as the 
type of the !value expression. 

An expression preceded by the parenthesized name of a data 
type causes conversion of the value of the expression to the 
named type. This construction is called a cast. Type names are 
described in "Type Names" under "Declarations." 

The sizeof operator yields the size in bytes of its operand. (A 
byte is undefined by the language except in terms of the value 
of sizeof. However, in all existing implementations, a byte is 
the space required to hold a char.) When applied to an array, 
the result is the total number of bytes in the array. The size is 
determined from the declarations of the objects in the expres­
sion. This expression is semantically an unsigned constant and 
may be used anywhere a constant is required. Its major use is 
in communication with routines like storage allocators and 110 
systems. 

The sizeof operator may also be applied to a parenthesized type 
name. In that case it yields the size in bytes of an object of the 
indicated type. 

The construction sizeof( type) is taken to be a unit, so the 
expression sizeof( type)- 2 is the same as (sizeof( type))- 2. 

6.3 Multiplicative Operators 

The multiplicative operators "'• /, and % group left to right. 
The usual arithmetic conversions are performed. 
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The binary • operator indicates multiplication. The • operator 
is associative, and expressions with several multiplications at 
the same level may be rearranged by the compiler. The binary 
I operator indicates division. 

The binary % operator yields the remainder from the division 
of the first expression by the second. The operands must be 
integral. 

When positive integers are divided, truncation is toward 0; but 
the form of truncation is machine~dependent if either operand 
is negative. On all machines covered by this manual, the 

r,--... remainder has the same sign as the dividend. It is always true 
, that (a/b)•b + a%b is equal to a (if b is not 0). 

6.4 Additive Operators 

The additive operators + and - group left to right. The usual 
arithmetic conversions are performed. There are some addi­
tional type possibilities for each operator. 

additive-expression: 
expression + expression 
expression - expression 

The result of the + operator is the sum of the operands. A 
pointer to an object in an array and a value of any integral type 
may be added. The latter is in all cases converted to an address 
offset by multiplying it by the length of the object to which the 
pointer points. The result is a pointer of the same type as the 
original pointer which points to another object in the same 
array, appropriately offset from the original object. Thus if Pis 
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a pointer to an object in an array, the expression P+l is a 
pointer to the next object in the array. No further type combi· 
nations are allowed for pointers. 

The + operator is associative, and expressions with several 
additions at the same level may be rearranged by the compiler. 

The result of the - operator is the difference of the operands. 
The usual arithmetic conversions are performed. Additionally, 
a value of any integral type may be subtracted from a pointer, 
and then the same conversions for addition apply. 

If two pointers to objects of the same type are subtracted, the 
result is converted (by division by the length of the object) to 
an int representing the number of objects separating the 
pointed-to objects. This conversion will in general give unex­
pected results unless the pointers point to objects in the same 
array, since pointers, even to objects of the same type, do not 
necessarily differ by a multiple of the object length. 

6.5 Shift Operators 

The shift operators < < and > > group left to right. Both per­
form the usual arithmetic conversions on their operands, each 
of which must be integral. Then the right operand is converted 
to int; the type of the result is that of the left operand. The 
result is undefined if the right operand is negative or greater 
than or equal to the length of the object in bits. 

shijt-expression: 
expression < < expression 
expression > > expression 

The value of El < < E2 is El (interpreted as a bit pattern) 
left-shifted E2 bits. Vacated bits are 0 filled. The value of 
El > > E2 is El right-shifted E2 bit positions. The right shift is 
guaranteed to be logical (0 fill) if El is unsigned; otherwise, it 
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may be arithmetic. 

6.6 Relational Operators 

The relational operators group left to right. 

relational-expression: 
expression < expression 
expression > expression 
expression < = expression 
expression > = expression 

C LANGUAGE 

The operators< (less than), > (greater than), < = (less than 
or equal to), and > = (greater than or equal to) all yield 0 if 
the specified relation is false and 1 if it is true. The type of the 
result is int. The usual arithmetic conversions are performed. 
Two pointers may be compared, and the result depends on the 
relative locations in the address space of the pointed-to objects. 
Pointer comparison is portable only when the pointers point to 

.f objects in the same array. 

6. 7 Equality Operators 

equality-expression: 
expression = = expression 
expression ! = expression 

The = = (equal to) and the ! = (not equal to) operators are 
exactly analogous to the relational operators except for their 
lower precedence. (Thus a<b = = c<d is 1 whenever a<b 
and c<d have the same truth value). 

A pointer may be compared to an integer only if the integer is 
the constant 0. A pointer to which 0 has been assigned is 
guaranteed not to point to any object and will appear to be 
equal to 0. In conventional usage, such a pointer is considered 
to be null. 
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6,8 Bitwise AND Operator 

and-expression: 
expression & expression 

The & operator is associative, and expressions involving & may 
be rearranged. The usual arithmetic conversions are per­
formed. The result is the bitwise AND function of the 
operands. The operator applies only to integral operands. 

6.9 Bitwise Exclusive OR Operator 

exclusive-or-expression: 
expression expression 

The • operator is associative, and expressions involving • may 
be rearranged. The usual arithmetic conversions are per­
formed; the result is the bitwise exclusive OR function of the 
operands. The operator applies only to integral operands. 

6.10 Bitwise Inclusive OR Operator 

inclusive-or-expression: 
expression I expression 

The I operator is associative, and expressions involving I may 
be rearranged. The usual arithmetic conversions are per· 
formed; the result is the bitwise inclusive OR function of its 
operands. The operator applies only to integral operands. 

6.11 Logical AND Operator 

logical-and-expression: 
expression && expression 

The && operator groups left to right. It returns 1 if both its 
operands evaluate to nonzero, 0 otherwise. Unlike &, && 
guarantees left to right evaluation; moreover, the second 
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operand is not evaluated if the first operand is 0. 

The operands need not have the same type, but each must have 
one of the fundamental types or be a pointer. The result is 
always int. 

6.12 Logical OR Operator 

logical·or·expression: 
expression II expression 

The II operator groups left to right. It returns 1 if either of its 
operands evaluates to nonzero, 0 otherwise. Unlike I, II 
guarantees left to right evaluation; moreover, the ~cond 
operand is not evaluated if the value of the first operand is 
nonzero. 

The operands need not have the same type, but each must have 
one of the fundamental types or be a pointer. The result is 
always int. 

6.13 Conditional Operator 

conditional-expression: 
expression ? expression : expression 

Conditional expressions group right to left. The first expression 
is evaluated; and if it is nonzero, the result is the value of the 
second expression, otherwise that of third expression. If possi­
ble, the usual arithmetic conversions are performed to bring the 
second and third expressions to a common type. If both are 
structures or unions of the same type, the result has the type of 
the structure or union. If both pointers are of the same type, 
the result has the common type. Otherwise, one must be a 
pointer and the other the constant 0, and the result has the type 
of the pointer. Only one of the second and third expressions is 
evaluated. 
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6.14 Assignment Operators 

There are a number of assignment operators, all of which group 
right to left. All require an lvalue as their left operand, and the 
type of an assignment expression is that of its left operand. 
The value is the value stored in the left operand after the 
assignment has taken place. The two parts of a compound 
assignment operator are separate tokens. 

assignment -expression: 
/value -= expression 
/value + = expression 
fvalue - = expression 
/value ,. = expression 
/value I= expression 
lvalue % = expression 
/value > > = expression 
/value < < = expression 
fvalue & = expression 
fvalue ~ = expression 
fvalue I = expression 

In the simple assignment with =, the value of the expression 
replaces that of the object referred to by the !value. If both 
operands have arithmetic type, the right operand is converted 
to the type of the left preparatory to the assignment. Second, 
both operands may be structures or unions of the same type. 
Finally, if the left operand is a pointer, the right operand must 
in general be a pointer of the same type. However, the con­
stant 0 may be assigned to a pointer; it is guaranteed that this 
value will produce a null pointer distinguishable from a pointer 
to any object. 

The behavior of an expression of the form El op - E2 may be 
inferred by taking it as equivalent to El = El op (E2)~ how­
ever, El is evaluated only once. In += and - =, the left 
operand may be a pointer; in which case, the (integral) right 
operand is converted as explained in "Additive Operators." All 
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right operands and all nonpointer left operands must have arith­
metic type. 

6.15 Comma Operator 

comma-expression: 
expression expression 

A pair of expressions separated by a comma is evaluated left to 
right, and the value of the left expression is discarded. The 
type and value of the result are the type and value of the right 
operand. This operator groups left to right. In contexts where 
comma is given a special meaning, e.g., in lists of actual argu­
ments to functions (see "Primary Expressions") and lists of 
initializers (see "Initialization" under "Declarations"), the 
comma operator as described in this subpart can only appear in 
parentheses. For example, 

f(a, h=J, t+2), c) 

has three arguments, the second of which has the value 5. 

7. Declarations 

Declarations are used to specify the interpretation which C 
gives to each identifier. They do not necessarily reserve storage 
associated with the identifier. Declarations have the form 

declaration: 
decl-specifiers declarator-/ist0pt ; 

The declarators in the declarator-list contain the identifiers 
being declared. The decl-specifiers consist of a sequence of 
type and storage class specifiers. 

dec/-specifiers: 
type-specifier dec/-specifiers0pt 
sc-specifier dec/-specifiers0pt 
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The list must be self·consistent in a way described below. 

7.1 Storage Class Specifiers 

The sc-specifiers are: 

auto 
static 
extern 
register 
typedef 

The typedef specifier does not reserve storage and is called a 
"storage class specifier" only for syntactic convenience. See 
"Typeder• for more information. The meanings of the v~rious 
storage classes were discussed in "Names." 

The auto, static, and registe-r declarations also serve as 
definitions in that they cause an appropriate amount of storage 
to be reserved. In the extern case, there must be an external 
definition (see "External Definitions") for the given identifiers 
somewhere outside the function in which they are declared. 

A register declaration is best thought of as an auto declaration, 
together with a hint to the compiler that the variables declared 
will be heavily used. Only the first few such declarations in 
each function are effective. Moreover, only variables of certain 
types will be stored in registers. One other restriction applies to 
register variables: the address-of operator & cannot be applied 
to them. Smaller, faster programs can be expected if register 
declarations are used appropriately, but future improvements in 
code generation may render them unnecessary. 

At most, one sc-specifier may be given in a declaration. If the 
sc-specifier is missing from a declaration, it is taken to be auto 
inside a function, extern outside. Exception: FUNCTIONS 
ARE NEVER AUTOMATIC. 
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7.2 Type Specifiers 

The type-specifiers are 

type-specifier: 
struct -or-union-specifier 
typedef-name 
enum-specifier 

basic-type-specifier: 
basic-type 
basic-type basic-type-specifiers 

basic-type: 
char 
short 
lot 
long 
unsigned 
float 
double 
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At most one of the words long or short may be specified in 
conjunction with int; the meaning is the same as if int were not 
mentioned. The word long may be specified in conjunction 
with float; the meaning is the same as double. The word 
unsigned may be specified alone. or in conjunction with lot or 
any of its short or long varieties, or with char. 

Otherwise, at most on type-specifier may be given in a declara­
tion. In particular, adjectival use of long, short, or unsigned is 
not permitted with typedef names. If the type-specifier is miss­
ing from a declaration, it is taken to be int. 

Specifiers for structures, unions, and enumerations are dis­
cussed in "Structure, Union, and Enumeration Declarations." 

( Declaratiohs with typedef names are discussed in "Typedef." 
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7.3 Declarators 

The declarator-list appearing in a 
comma-separated sequence of declarators, 
have an initializer. 

declarator-list: 
init-declarator 
init-dec/arator , declarator-list 

init-dec/arator: 
declarator initializer opt 

declaration is a 
each of which may 

Initializers are discussed in "Initialization." The specifiers in 
the declaration indicate the type and storage class of the objects 
to which the declarators refer. Declarators have the syntax: 

declarator: 
identifier 
( declarator ) 

"" declarator 
declarator 0 
declarator [ constant-expression0pt 1 

The grouping is the same as in expressions. 

7 .3.1 Meaning of Declarators 

Each declarator is taken to be an assertion that when a con­
struction of the same form as the declarator appears in an 
expression, it yields an object of the indicated type and storage 
class. 

Each declarator contains exactly one identifier - it is this 
identifier that is declared. If an unadorned identifier appears as 
a declarator, then it has the type indicated by the specifier head­
ing the declaration. 
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A declarator in parentheses is identical to the unadorned 
declarator, but the binding of complex declarators may be r- altered by parentheses. See the examples below. 

Now imagine a declaration 

TDI 

where T is a type-specifier Oike int, etc.) and Dl is a declara­
tor. Suppose this declaration makes the identifier have type 
" ... T," where the " ... " is empty if Dt is just a plain 
identifier (so that the type of x in "int x" is just int). Then if 
Dl has the form 

•D 

the type of the contained identifier is " ... pointer to T." 

If Dl has the form 

DO 

then the contained identifier has the type " ... function return­
ingT." 

If Dl has the form 

Dlconstant-expressionl 

or 

Dl I 

then the contained identifier has type " ... array of T." In the 
first case, the constant expression is an expression whose value 
is determinable at compile time, whose type is int, and whose 
value is positive. (Constant expressions are defined precisely in 
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"Constant Expressions.") When several "array or• 
specifications are adjacent, a multidimensional array is created; 
the constant expressions which specify the bounds of the arrays 
may be missing only for the first member of the sequence. 
This elision is useful when the array is external and the actual 
definition, which allocates storage, is given elsewhere. The first 
constant expression may also be omitted when the declarator is 
followed by initialization. In this case the size is calculated 
from the number of initial elements supplied. 

An array may be constructed from one of the basic types, from 
a pointer, from a structure or union, or from another array (to 
generate a multidimensional array). 

Not all the possibilities allowed by the syntax above are actually 
permitted. The restrictions are as follows: functions may not 
return arrays or functions although they may return pointers; 
there are no arrays of functions although there may be arrays of 
pointers to functions. Likewise, a structure or union may not 
contain a function; but it may contain a pointer to a function. 

As an example, the declaration 

int i, *ip, f{), *fip(), (*pfi)O; 

declares: 

int 
*ip 
ro 
•fip() 
(•pfi) () 

an integer i 
a pointer to an integer, 
a function returning an integer, 
a function returning a pointer to an integer 
a pointer to a function which returns an integer 

It is especially useful to compare the last two. The binding of 
•fipO is *(fip()). The declaration suggests, and the same con­
struction in an expression requires, the calling of a function fip. 
Using indirection through the (pointer) result to yield an 
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integer. In the declarator (•pfi) 0, the extra parentheses are 
necessary, as they are also in an expression, to indicate that 
indirection through a pointer to a function yields a function, 
which is then called - it returns an integer. 

As another example, 

float fal171, •afpl171; 

declares an array of float numbers and an array of pointers to 
float numbers. Finally, 

static int x3dl31151171; 

declares a static 3-dimensional array of integers, with rank 
3x5x7. In complete detail, x3d is an array of three items. 
Each item is an array of five arrays. Each of the latter arrays is 
an array of seven integers. Any of the expressions x3d, x3d Iii, 

( x3d(illj), xJd[iJijllkl may reasonably appear in an expres­
sion. The first three have type "array" and the last has type 
Int. 

r 
' 

7.4 Structure and Union Declarations 

A structure is an object consisting of a sequence of named 
members. Each member may have any type. A union is an 
object which may, at a given time, contain any one of several 
members. Structure and union specifiers have the same form. 

struct-or-union-specifier: 
struct-or-union { struct-decl-list } 
struct-or-union identifier { struct-decl-list } 
struct-or-union identifier 

struct-or-union: 
struct 
union 
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The struct·decl-list is a sequence of declarations for the 
members of the structure or union: 

struct-decl-list: 
struct-declaration 
struct-dec/aration struct-dec/-/ist 

struct-declaration: 
type-specifier struct-declarator-list ; 

struct-decla ra tor-list: 
struct-dec/arator 
struct-declarator , struct-declarator-list 

In the usual case, a struct-declarator is just a declarator for a 
member of a structure or union. A structure member may also 
consist of a specified number of bits. Such a member is also 
called a field; its length, a non-negative constant expression, is 
set off from the field name by a colon. 

struct-declarator: 
declarator 
declarator : constant-expression 
: constant-expression 

Within a structure, the objects declared have addresses which 
increase as the declarations are read left to right. Each nonfield 
member of a structure begins on an addressing boundary 
appropriate to its type; therefore. there may be unnamed holes 
in a structure. Field members are packed into machine 
integers; they do not straddle words. A field which does not fit 
into the space remaining in a word is put into the next word. 
No field may be wider than a word. 

A struct-declarator with no declarator, only a colon and a width, 
indicates an unnamed field useful for padding to conform to 
externally-imposed layouts. As a special case, a field with a 
width of 0 specifies alignment of the next field at an implemen­
tation dependant boundary. 
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The language does not restrict the types of things that are 
declared as fields, but implementations are not required to sup­
port any but integer fields. Moreover, even int fields may be 
considered to be unsigned. 

It is strongly recommended that fields be declared as unsigned. 
In all implementations, there are no arrilys of fields, and the 
address-of operator &: may not be applied to them, so that there 
are no pointers to fields. 

A union may be thought of as a structure all of whose 
members begin at offset 0 and whose size is sufficient to con­
tain any of its members. At most, one of the members can be 
stored in a union at any time. 

A structure or union specifier of the second form, that is, one 
of 

struct identifier { struct-dec/-Jist } 
union identifier { struct-dec/-Jist } 

declares the identifier to be the structure tag (or union tag) of 
the structure specified by the list. A subsequent declaration 
may then use the third form of specifier, one of 

struct identifier 
union identifier 

Structure tags allow definition of self·referential structures. 
Structure tags also permit the long part of the declaration to be 
given once and used several times. It is illegal to declare a 
structure or union which contains an instance of itself, but a 
structure or union may contain a pointer to an instance of 

/.-.. itself. 
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The third form of a structure or union specifier may be used 
prior to a declaration which gives the complete specification of 
the structure or union in situations in which the size of the 
structure or union is unnecessary. The size is unnecessary in 
two situations: 

1. when a pointer to a structure or union is being declared, 
and 

2. when a typedef name is declared to be a synonym for a 
structure or union. This, for example, allows the declara­
tion of a pair of structures which contain pointers to each 
other. 

The names of members and tags do not conflict with each .other 
or with ordinary variables. A particular name may not be used 
twice in the same structure, but the same name may be used in 
several different structures in the same scope. 

A simple but important example of a structure declaration is 
the following binary tree structure: 

struct tnode 
I 

I; 

char tword(201; 
lot count; 
struct tnode •left; 
struct tnode •ria;ht; 

which contains an array of 20 characters, an integer, and two 
pointers to similar structures. Once this declaration has been 
given, the declaration 

struct tnode s, •sp; 

declares s to be a structure of the given sort and sp to be a 
pointer to a structure of the given sort. With these 
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declarations, the expression 

sp- >count 

refers to the count field of the structure to which sp points; 

s.left 

refers to the left subtree pointer of the structure s; and 

s.right- >tword(OI 

refers to the first character of the tword member of the right 
subtree of s. 

7 .S Enumeration Declarations 

Enumeration variables and constants have integral type. 

enum-specifier: 
enum { enum-list } 
enum identifier { enum-list } 
enum identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier - constant-expression 

The identifiers in an enum-list are declared as constants and 
may appear wherever constants are required. If no enumerators 
with = appear, then the values of the corresponding constants 
begin at 0 and increase by 1 as the declaration is read from left 
to right. An enumerator with = gives the associated identifier 
the value indicated; subsequent identifiers continue the progres­
sion from the assigned value. 
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The names of enumerators in the same scope must all be dis­
tinct from each other and from those of ordinary variables. 

The role of the identifier in the enum-specitier is entirely analo­
gous to that of the structure tag in a struct-specifier; it names a 
particular enumeration. For example, 

enum color {chartreuse, burgundy, claret= 20, winedark}; 

enum color ncp, col; 

col = claret; 
cp = &col; 

if (ncp = = burgundy) ••• 

makes color the enumeration-tag of a type describing various 
colors, and then declares cp as a pointer to an object of that 
type, and col as an object of that type. The possible values are 
drawn from the set {0,1,20,21}. 

7.6 Initialization 

A declarator may specify an initial value for the identifier being 
declared. The initializer is preceded by - and consists of an 
expression or a list of values nested in braces. 
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All the expressions in an initializer for a static or external vari­
able must be constant expressions, which are described in 
"Constant Expressions," or expressions which reduce to the 
address of a previously declared variable, possibly offset by a 
constant expression. Automatic or register variables may be 
initialized by arbitrary expressions involving constants and pre­
viously declared variables and functions. 

Static and external variables that are not initialized are 
guaranteed to start off as zero. Automatic and register variables 
that are not initialized are guaranteed to start off as garbage. 

When an initializer applies to a scalar (a pointer or an object of 
arithmetic type), it consists of a single expression, perhaps in 
braces. The initial value of the object is taken from the expres­
sion; the same conversions as for assignment are performed. 

When the declared variable is an aggregate (a structure or 
array). the initializer consists of a brace-enclosed, 
comma-separated list of initializers for the members of the 
aggregate written in increasing subscript or member order. If 
the aggregate contains subaggregates, this rule applies recur­
sively to the members of the aggregate. If there are fewer ini­
tializers in the list than there are members of the aggregate, 
then the aggregate is padded with zeros. It is not permitted to 
initialize unions or automatic aggregates. 

Braces may in some cases be omitted. If the initializer begins 
with a left brace, then the succeeding comma-separated list of 
initializers initializes the members of the aggregate; it is errone­
ous for there to be more initializers than members. If, how­
ever, the initializer does not begin with a left brace, then only 
enough elements from the list are taken to account for the 
members of the aggregate; any remaining members are left to 
initialize the next member of the aggregate of which the 
current aggregate is a part. 
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A final abbreviation allows a char array to be initialized by a 
string. In this case successive characters of the string initialize 
the members of the array. 

For example, 

lnt xll - { I, 3, 5 }; 

declares and initializes x as a one-dimensional array which has 
three members, since no size was specified and there are three 
initializers. 

Boat yl41131 -
{ 

{ I, 3, 5 }, 
{ 2, 4, 6 }, 
{ 3, 5, 7 }, 

} ; 

is a completely-bracketed initialization: 1, 3, and 5 initialize the 
first row of the array y(OJ, IUIDlely y(OJIOI, y(OIIll, and 
y(OI(21. Likewise, the next two lines initialize y(l) and y(2). 
The initializer ends early and therefore y(J) is initialized with 
0. Precisely, the same effect could have been achieved by 

Boat y)4113l -
{ 

1, 3, s, 2, 4, '· 3, s, 7 
} ; 

The initializer for y begins with a left brace but that for y(OJ 
does not; therefore, three elements from the list are used. 
Likewise, the next three are taken successively for ylll and 
yl21. Also, 
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Boat yl41131 = 
{ 

{ I ), { Z ), { 3 ), { 4 ) 
); 

initializes the first column of y (regarded as a two-dimensional 
array) and leaves the rest 0. 

Finally, 

char msg I I = "Syntax error on line %s\n"; 

shows a character array whose members are initialized with a 
string. 

7.7 Type Names 

In two contexts (to specify type conversions explicitly by means 
of a cast and as an argument of sizeof), it is desired to supply 
the name of a data type. This is accomplished using a "type 
name," which in essence is a declaration for an object of that 
type which omits the name of the object. 

type-name: 
type-specifier abstract-declarator 

abstract-declarator: 
empty 
( abstract-declarator ) 
• abstract-declarator 
tract-declarator 0 
abstract-declarator [ constant-expression0pt ] 

To avoid ambiguity, in the construction 

( abstract-declarator ) 
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the abstract-declarator is required to be nonempty. Under this 
restriction, it is possible to identify uniquely the location in the 
abstract-declarator where the identifier would appear if the con­
struction were a declarator in a declaration. The named type is 
then the same as the type of the hypothetical identifier. For 
example, 

lnt 

int • 
int •131 

int (•)(31 

lnt •0 

int (•) () 

int (•13()() 

is type integer 

is type pointer to integer 

is type array of three pointers to integers 

is type pointer to an array of three integers 

is type function returning pointer to integer 

is type pointer to function returning an integer 

is type array of three pointers to functions 
returning an integer 

7.8 Typedef 

Declarations whose "storage class" is typedef do not define 
storage but instead define identifiers which can be used later as 
if they were type keywords naming fundamental or derived 
types. 

typedef·name: 
identifier 

Within the scope of a declaration involving typedef, each 
identifier appearing as part of any declarator therein becomes 
syntactically equivalent to the type keyword naming the type 
associated with the identifier in the way described in "Meaning 
of Declarators." For example, after 

typedef lnt MILES, •KLICKSP; 
typedef struct { double re, im; } complex; 
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MILES distance; 
extern KLICKSP metricp; 
complex z, •zp; 
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are all legal declarations; the type of distance is int; that of 
metricp is pointer to int; that of .z is the specified structure 
complex and that of zp is pointer to such a structure. 

The typedef does not introduce brand-new types, only 
synonyms for types which could be specified in another way. 
Thus in the example above distance is considered to have 
exactly the same type as any other int object. 

8. Statements 

Except as indicated, statements are executed in sequence. 

( 8.1 Expression Statement 

'-,_ 

Most statements are expression statements, which have the 
form 

expressiotr, 

Usually expression statements are assignments or function calls. 

8.2 Compound Statement or Block 

So that several statements can be used where one is expected, 
the compound statement (also, and equivalently, called 
"block") is provided: 

compound-statement: 
{ declaration-list0pt statement-list0pt } 
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declaration·list: 
declaration 
declaration dec/aration·list 

statement-list: 
statement 
statement statement-list 

If any of the identifiers in the declaration-list were previously 
declared, the outer declaration is pushed down for the duration 
of the block, after which it resumes its force. 

Any initializations of auto or re~~:lster variables are performed 
each time the block is entered at the top. It is currently possi­
ble (but a bad practice) to transfer into a block; in that case the 
initializations are not performed. Initializations of static vari­
ables are performed only once when the program begins execu­
tion. Inside a block, extern declarations do not reserve storage 
so initialization is not permitted. 

8.3 Conditional Statement 

The two forms of the conditional statement are 

if ( expression ) statement 
if ( expression ) statement else statement 

In both cases, the expression is evaluated. If it is nonzero, the 
first substatement is executed. In the second case, the second 
substatement is executed if the expression is 0. The "else" 
ambiguity is resolved by connecting an else with the last 
encountered else-less If. 

8.4 While Statement 

The while statement has the form 

while ( expression ) statement 
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The substatement is executed repeatedly so long as the value of 
the expression remains nonzero. The test takes place before 
each execution of the statement. 

8.5 Do Statement 

The do statement has the form 

do statement while { expression ) ; 

The substatement is executed repeatedly until the value of the 
expression becomes 0. The test takes place after each execu­
tion of the statement. 

8.6 For Statement 

The for statement has the form: 

for ( exp-lopt ; exp-2opt ; exp-30pt ) statement 

( Except for the behavior of continue, this statement is 
~-· equivalent to 

exp-1; 
while { exp-2 ) 
{ 

statement 
exp-3 ; 

Thus the first expression specifies initialization for the loop; the 
second specifies a test, made before each iteration, such that 
the loop is exited when the expression becomes 0. The third 
expression often specifies an incrementing that is performed 
after each iteration. 

Any or all of the expressions may be dropped. A missing exp-2 
makes the implied while clause equivalent to wblle(l). Other 
missing expressions are simply dropped from the expansion 
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above. 

8. 7 Switch Statement 

The switch statement causes control to be transferred to one of 
several statements depending on the value of an expression. It 
has the form 

switch ( expression ) statement 

The usual arithmetic conversion is performed on the expres­
sion, but the result must be int. The statement is typically 
compound. Any statement within the statement may be labeled 
with one or more case prefixes as follows: 

case constant·expression : 

where the constant expression must be int. No two of the case 
constants in the same switch may have the same value. Con­
stant expressions are precisely defined in .. Constant Expres­
sions." 

There may also be at most one statement prefix of the form 

default: 

When the switch statement is executed, its expression is 
evaluated and compared with each case constant. If one of the 
case constants is equal to the value of the expression, control is 
passed to the statement following the matched case prefix. If 
no case constant matches the expression and if there is a 
default prefix, control passes to the prefixed statement. If no 
case matches and if there is no default, then none of the state­
ments in the switch are executed. 

The prefixes case and default do not alter the flow of control, 
which continues unimpeded across such prefixes. To exit from 
a switch, see "Break Statement." 
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Usually, the statement that is the subject of a switch is com~ 
pound. Declarations may appear at the head of this statement, 
but initializations of automatic or register variables are 
ineffective. 

8.8 Break Statement 

The statement 

break; 

causes termination of the smallest enclosing while, do, for, or 
switch statement. Control passes to the statement following 
the terminated statement. 

8.9 Continue Statement 

The statement 

continue; 

---· causes control to pass to the loop-continuation portion of the 
smallest enclosing while, do, or for statement; that is to the 
end of the loop. More precisely, in each of the statements 

while (. .. ) 
{ 

oontinue 

do 
{ 

continue 
while (. .. ); 

for <. •• ) 
{ 

continue 

a continue is equivalent to goto continue. (Following the con­
tinue is a null statement, see "Null Statement.") 

8.10 Return Statement 

A function returns to its caller by means of the return state­
ment which has one of the forms: 
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return; 
return expression ; 

In the first case, the returned value is undefined. In the second 
case, the value of the expression is returned to the caller of the 
function. If required, the expression is converted, as if by 
assignment, to the type of function in which it appears. Flow­
ing off the end of a function is equivalent to a return with no 
returned value. The expression may be parenthesized. 

8.11 Goto Statement 

Control may be transferred unconditionally by means of the 
statement 

goto identifier ; 

The identifier must be a label (see "Labeled Statement") 
located in the current function. 

8.12 Labeled Statement 

Any statement may be preceded by label prefixes of the form 

identifier. 

which serve to declare the identifier as a label. The only use of 
a label is as a target of a aoto. The scope of a label is the 
current function, excluding any subblocks in which the same 
identifier has been redeclared. See "Scope Rules." 

8.13 Null Statement 

The null statement has the form 

A null statement is useful to carry a label just before the } of a 
compound statement or to supply a null body to a looping 
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statement such as while. 

9. External Definitions 

A C program consists of a sequence of exteroal definitions. An 
external definition declares an identifier to have storage class 
extern (by default) or perhaps static, and a specified type. The 
type-specifier (see "Type Specifiers" in "Declarations") may 
also be empty, in which case the type is taken to be int. The 
scope of external definitions persists to the end of the file in 
which they are declared just as the effect of declarations persists 
to the end of a block. The syntax of external definitions is the 
same as that of all declarations except that only at this level 
may the code for functions be given. 

9.1 External Function Definitions 

Function definitions have the form 

function-definition: 
,,.--.. decl-specifiers0pt junction-declarator function-body 

The only sc-specifiers allowed among the decl-specifiers are 
extern or static. (See "Scope of Externals" in "Scope Rules" 
for the distinction between them.) A function declarator is 
similar to a declarator for a "func.tion returning ... " except 
that it lists the formal parameters of the function being defined. 

jilnction-declarator: 
declarator ( parameter-list0pt ) 

parameter-list: 
identifier 
identifier , parameter-list 

The function-body has the form: 

jilnction-hody: 
declaration-list0pt compound-statement 
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The identifiers in the parameter list, and only those identifiers, 
may be declared in the declaration list. Any identifiers whose 
type is not given are taken to be Int. The only storage class 
which may be specified is register; if it is specified, the 
corresponding actual parameter will be copied, if possible, into 
a register at the outset of the function. 

A simple example of a complete function definition is 

int max(a, b, c) 

{ 
int a, b, e; 

int m; 

m-(a>b)?a:b; 
retum((m > c) ? m : c); 

Here int is the type-specifier; max (a, b, c) is the 
function-declarator; int a, b, c; is the declaration-list for the 
formal parameters; { ... } is the block giving the code for the 
statement. 

The C program converts all float actual parameters to double, 
so formal parameters declared Boat have their declaration 
adjusted to read double. All char and short formal parameter 
declarations are similarly adjusted to read int. Also, since a 
reference to an array in any context (in particular as an actual 
parameter) is taken to mean a pointer to the first element of 
the array, declarations of formal parameters declared "array of 

, dj d d" . " . . . are a uste to rea pomter to .... 

9.2 External Data Definitions 

An external data definition has the form 
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The storage class of such data may be extern (which is the 
default} or static but not auto or register. 

10. Scope Rules 

A C program need not all be compiled at the same time. The 
source text of the program may be kept in several files, and 
precompiled routines may be loaded from libraries. Communi­
cation among the functions of a program may be carried out 
both through explicit calls and through manipulation of external 
data. 

Therefore, there are two kinds of scopes to consider: 

I. lexical scope - is essentially the region of a program dur­
ing which it may be used without drawing "undefined 
identifier" diagnostics. 

2. scope of externals - the scope associated with external 
identifiers, which is characterized by the rule that refer­
ences to the same external identifier are references to the 
same object. 

10.1 Lexical Scope 

The lexical scope of identifiers declared in external definitions 
persists from the definition through the end of the source file 
in which they appear. The lexical scope of identifiers which are 
formal parameters persists through the function with which 
they are associated. The lexical scope of identifiers declared at 
the head of a block persists until the end of the block. The lex~ 
ical scope of labels is the whole of the function in which they 
appear. 

In all cases, however, if an identifier is explicitly declared at the 
head of a block, including the block constituting a function, any 
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declaration of that identifier outside the block is suspended 
until the end of the block. 

Remember also (see "Structure, Union, and Enumeration 
Declarations" in "Declarations'~) that tags, identifiers associ­
ated with ordinary variables, and identities associated with 
structure and union members form three di~oint classes which 
do not conflict. Members and tags follow the same scope rules 
as other identifiers. The enum constants are in the same class 
as ordinary variables and follow the same scope rules. The 
typed.ef names are in the same class as ordinary identifiers. 
They may be redeclared in inner blocks, but an explicit type 
must be given in the inner declaration: 

typedef Boat distance; 

auto int distance; 

The int must be present in the second declaration, or it would 
be taken to be a declaration with no declarators and type dis­
tance. 

10.2 Scope of Externals 

If a function refers to an identifier declared to be extern, then 
somewhere among the files or libraries constituting the com­
plete program there must be at least one external definition for 
the identifier. All functions in a given program which refer to 
the same external identifier refer to the same object, so care 
must be taken that the type and size specified in the definition 
are compatible with those specified by each function which 
references the data. 

It is illegal to explicitly initialize any external identifier more 
than once in the set of files and libraries comprising a multi-file 
program. It is legal to have more than one data definition for 
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any external non-function identifier; explicit use of extern does 
not change the meaning of an external declaration. 

In restricted environments, the use of the extern storage class 
takes on an additional meaning. In these environments, the 
explicit appearance of the extern keyword in external data 
declarations of identities without initialization indicates that the 
storage for the identifiers is allocated elsewhere, either in this 
file or another file. It is required that there be exactly one 
definition of each external identifier (without extern) in the set 
of files and libraries comprising a mult-file program. 

Identifiers declared static at the top level in external definitions 
are not visible in other files. Functions may be declared static. 

11. Compiler Control Lines 

The C compiler contains a preprocessor capable of macro sub­
stitution, conditional compilation~ and inclusion of named files. 
Lines beginning with # communicate with this preprocessor. 
There may be any number of blanks and horizontal tabs 
between the # and the directive. These lines have syntax 
independent of the rest of the language; they may appear any­
where and have effect which lasts (independent of scope) until 
the end of the source program file. 

11.1 Token Replacement 

A compiler-control line of the form 

#define identifier token-stringopt 

causes the preprocessor to replace subsequent instances of the 
identifier with the given string of tokens. Semicolons in or at 
the end of the token-string are part of that string. A line of the 
form 

#define identifier(identifier, ... )token-stringopt 
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where there is no space between the first identifier and the (, is 
a macro definition with arguments. There may be zero or more 
formal parameters. Subsequent instances of the first identifier 
followed by a (, a sequence of tokens delimited by commas, 
and a ) are replaced by the token string in the definition. Each 
occurrence of an identifier mentioned in the formal parameter 
list of the definition is replaced by the corresponding token 
string from the call. The actual arguments in the call are token 
strings separated by commas; however, commas in quoted 
strings or protected by parentheses do not separate arguments. 
The number of formal and actual parameters must be the same. 
Strings and character constants in the token-string are scanned 
for formal parameters, but strings and character constants in 
the rest of the program are not scanned for defined identifiers 
to replacement. 

In both forms the replacement string is rescanned for more 
defined identifiers. In both forms a long definition may be con­
tinued on another line by writing \ at the end of the line to be 
continued. 

This facility is most valuable for definition of "manifest con­
stants," as in 

#define TABSIZE 100 

int table(TABSIZEI; 

A control line of the form 

#undef identifier 

causes the identifier's preprocessor definition (if any) to be for­
gotten. 

If a #defined identifier is the subject of a subsequent #define 
with no intervening #undef, then the two token-strings are 
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compared textually. If the two token·strings are not identical 
(all white space is considered as equivalent), then the identifier r is considered to be redefined. 

r 

11.2 File Inclusion 

A compiler control line of the form 

#include n filename" 

causes the replacement of that line by the entire contents of the 
file filename. The named file is searched for first in the direc­
tory of the file containing the #include, and then in a sequence 
of specified or standard places. Alternatively, a control line of 
the form 

#include <filename> 

searches only the specified or standard places and not the direc­
tory of the #include. (How the places are specified is not part 
of the language.) 

#includes may be nested. 

11.3 Conditional Compilation 

A compiler control line of the form 

#if restricted-constant-expression 

checks whether the restricted-constant expression evaluates to 
nonzero. (Constant expressions are discussed in "Constant 
Expressions;" the following additional restrictions apply here: 
the constant expression may not contain sizeof casts, or an 
enumeration constant.) 

(' A restricted constant expression may also contain the additional 
\.____ unary expression 
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defined identifier 
or 
defined ( identifier 

which evaluates to one if the identifier is currently defined in 
the preprocessor and zero if it is not. 

All currently defined identifiers in restricted-constant­
expressions are replaced by their token-strings (except those 
identifiers modified by defined) just as in normal text. The res­
tricted constant expression will be evaluated only after all 
expressions have finished. During this evaluation, all 
undefined (to the procedure) identifiers evaluate to zero. 

A control line of the form 

#ifdef identifier 

checks whether the identifier is currently defined in the prepro­
cessor; i.e., whether it has been the subject of a #define control 
line. It is equivalent to #ifdef(identifiei). A control line of the 
form 

#ifndef identifier 

checks whether the identifier is currently undefined in the 
preprocessor. It is equivalent to #lf!deflned(identljien. 

All three forms are followed by an arbitrary number of lines, 
possibly containing a control line 

#else 

and then by a control line 

#endif 
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If the checked condition is true, then any lines between #else 
and #endif are ignored. If the checked condition is false, then 
any lines between the test and a #else or, lacking a #else, the 
#endif are ignored. 

These constructions may be nested. 

11.4 Line Control 

For the benefit of other preprocessors which generate C pro­
grams, a line of the form 

#line constant "filename' 

causes the compiler to believe, for purposes of error diagnos­
tics, that the line number of the next source line is given by 
the constant and the current input file is named by "filename'. 
If "filenam~· is absent, the remembered file name does not 
change. 

12. Implicit Declarations 

It is not always necessary to specify both the storage class and 
the type of identifiers in a declaration. The storage class is sup­
plied by the context in external definitions and in declarations 
of formal parameters and structure members. In a declaration 
inside a function, if a storage class but no type is given, the 
identifier is assumed to be int; if a type but no storage class is 
indicated, the identifier is assumed to be auto. An exception to 
the latter rule is made for functions because auto functions do 
not exist. If the type of an identifier is «function returning 
... , " it is implicitly declared to be extern. 

In an expression, an identifier followed by ( and not already 
declared is contextually declared to be "function returning 
Int." 
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13. Types Revisited 

This part summarizes the operations which can be performed 
on objects of certain types. 

13.1 Structures and Unions 

Structures and unions may be assigned, passed as arguments to 
functions, and returned by functions. Other plausible opera­
tors, such as equality comparison and structure casts, are not 
implemented. 

In a reference to a structure or union member, the name on 
the right of the - > or the • must specify a member of the 
aggregate named or pointed to by the expression on the left. In 
general, a member of a union may not be inspected unless the 
value of the union has been assigned using that same member. 
However, one special guarantee is made by the language in 
order to simplify the use of unions: if a union contains several 
structures that share a common initial sequence and if the 
union currently contains one of these structures, it is permitted 
to inspect the common initial part of any of the contained 
structures. For example, the following is a legal fragment: 
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union 
[ 

struct 
[ 

int 
o; 

struct 
[ 

int 
lot 

ni; 
struct 
[ 

lot 
Boat 

} of; 
} u; 

u.nf.type -FLOAT; 
u.nf.ftoatnode = 3.14; 

if (u.o.type = = FLOAT) 

type; 

type; 
intnode; 

type; 
ftoatnode; 

••• sin(u.nf.floatnode) 

13.2 Functions 

C LANGUAGE 

There are only two things that can be done with a function -
call it or take its address. If the name of a function appears in 
an expression not in the function-name position of a call, a 
pointer to the function is generated. Thus, to pass one func­
tion to another, one might say 

lnt fO; 

g(f); 
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Then the definition of g might read 

g(funcp) 
int (•funcp)(); 

Notice that f must be declared explicitly in the calling routine 
since its appearance in g(f) was not followed by (. 

13.3 Arrays, Pointers and Subscripting 

Every time an identifier of array type appears in an expression, 
it is converted into a pointer to the first member of the array. 
Because of this conversion, arrays are not lvalues. By 
definition, the subscript operator I I is interpreted in such a 
way that EliEll is identical to •((El)+(E2)). Because of the 
conversion rules which apply to +, if El is an array and El an 
integer, then El(Ell refers to the E2-th member of El. There­
fore, despite its asymmetric appearance, subscripting is a corn­
mutative operation. 

A consistent rule is followed in the case of multidimensional 
arrays. If E is an n-dimensional array of rank ixjx ... xk, then E 
appearing in an expression is converted to a pointer to an 
{n-1)-dirnensional array with rank jx ... xk. If the • operator, 
either explicitly or implicitly as a result of subscripting, is 
applied to this pointer, the result is the pointed-to 
{n-1)-dimensional array, which itself is immediately converted 
into a pointer. 

For example, consider 

lot xi311S); 
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Here x is a 3x5 array of integers. When x appears in an 
expression, it is converted to a pointer to (the first of three) 
5-membered arrays of integers. In the expression x Iii, which 
is equivalent to • (x+i), x is first converted to a pointer as 
described~ then i is converted to the type of x, which involves 
multiplying i by the length the object to which the pointer 
points, namely 5-integer objects. The results are added and 
indirection applied to yield an array (of five integers) which in 
turn is converted to a pointer to the first of the integers. If 
there is another subscript, the same argument applies again; 
this time the result is an integer. 

Arrays in C are stored row-wise (last subscript varies fastest) 
and the first subscript in the declaration helps determine the 
amount of storage consumed by an array. Arrays play no other 
part in subscript calculations. 

13.4 Explicit Pointer Conversions 

( Certain conversions involving pointers are permitted but have 
implementation-dependent aspects. They are all specified by 
means of an explicit type-conversion operator, see "Unary 
Operators" under "Expressions" and "Type Names" under 
"Declarations." 

A pointer may be converted to a.ny of the integral types large 
enough to hold it. Whether an int or long is required is 
machine dependent. The mapping function is also machine 
dependent but is intended to be unsurprising to those who 
know the addressing structure of the machine. Details for 
some particular machines are given below. 

An object of integral type may be explicitly converted to a 
pointer. The mapping always carries an integer converted from 
a pointer back to the same pointer but is otherwise machine 
dependent. 
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A pointer to one type may be converted to a pointer to another 
type. The resulting pointer may cause addressing exceptions 
upon use if the subject pointer does not refer to an object suit­
ably aligned in storage. It is guaranteed that a pointer to an 
object of a given size may be converted to a pointer to an 
object of a smaller size and back again without change. 

For example, a storage-allocation routine might accept a size 
{in bytes) of an object to allocate, and return a char pointer; it 
might be used in this way. 

extern char •allocO; 
double •dp; 

dp = (double •) alloc(sizeof(double)); 
•do = 22.0 I 7 .0; 

The alloc must ensure (in a machine-dependent way) that its 
return value is suitable for conversion to a pointer to double; 
then the use of the function is portable. 

On the 68000, pointers are 32-bits long and measure bytes. 
The char's have no alignment requirements~ everything else 
must have an even address. 

14. Constant Expressions 

In several places C requires expressions that evaluate to a con­
stant: 

• after case 

• as array bounds, and 

• in initializers. 

In the first two cases, the expression can involve only integer 
constants, character constants, casts to integral types, enumera­
tion constants, and sizeof expressions, possibly connected by 
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<< >> == != < > <= >= && II 

or by the unary operators 

or by the ternary operator 

? : 

Parentheses can be used for grouping but not for function calls. 

More latitude is permitted for initializers; besides constant 
expressions as discussed above, one can also use floating con­
stants and arbitrary casts and can also apply the unary & opera­
tor to external or static objects and to external or static arrays 
subscripted with a constant expression. The unary & can also 
be applied implicitly by appearance of unsubscripted arrays and 
functions. The basic rule is that initializers must evaluate 
either to a constant or to the address of a previously declared 
external or static object plus or minus a constant. 

15. Portability Considerations 

Certain parts of C are inherently machine dependent. The fol­
lowing list of potential trouble spots is not meant to be 
all-inclusive but to point out the main ones. 

Purely hardware issues like word size and the properties of 
floating point arithmetic and integer division have proven in 
practice to be not much of a problem. Other facets of the 
hardware are reflected in differing implementations. Some of 
these, particularly sign extension (converting a negative charac­
ter into a negative integer) and the order in which bytes are 
placed in a word, are nuisances that must be carefully watched. 
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Most of the others are only minor problems. 

The number of register variables that can actually be placed in 
registers varies from machine to machine as does the set of 
valid types. Nonetheless, the compilers all do things properly 
for their own machine; excess or invalid register declarations 
are ignored. 

Some difficulties arise only when dubious coding practices are 
used. It is exceedingly unwise to write programs that depend 
on any of these properties. 

The order of evaluation of function arguments is not specified 
by the language. The order in which side effects take place is 
also unspecified. 

Since character constants are really objects of type lot, mul­
ticharacter character constants may be permitted. The specific 
implementation is very machine dependent because the order in 
which characters are assigned to a word varies from one 
machine to another. 

Fields are assigned to words and characters to integers right to 
left on some machines and left to right on other machines. 
These differences are invisible to isolated programs that do not 
indulge in type punning (e.g., by converting an int pointer to a 
char pointer and inspecting the pointed-to storage) but must be 
accounted for when conforming to externally-imposed storage 
layouts. 

16. Syntax Summary 

This summary of C syntax is intended more for aiding 
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comprehension than as an exact statement of the language. 

( 16.1 Expressions 

The basic expressions are: 

expression: 
primary 

primary: 

• expression 
& /value 

- expression 
I expression 

expression 
++ /value 
-- /value 
/value ++ 
/value --
sizeof expression 
sizeof (type-name) 
( type-name ) expression 
expression binop expression 
expression ? expression : expression 
/value asgnop expression 
expression , expression 

identifier 
constant 
string 
( expression ) 
primary ( expression-list0pt ) 
primary [ expression 1 
primary • identifier 
primary - > identifier 
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/value: 
identifier 
primary [ expression 1 
/value , identifier 
primary - > identifier 
"' expression 
( /value ) 

The primary~expression operators 

0 II . -> 

have highest priority and group left to right. 
The unary operators 

• & - ! - ++ -- sizeof ( type-name ) 

have priority below the primary operators but higher than any 
binary operator and group right to left. Binary operators group 
left to right; they have priority decreasing as indicated below. 

binop: 
• 
+ 
>> 
< 

& 

I 
&& 
II 

I % 

<< 
> <~ >~ 

!-

The conditional operator groups right to left. 

Assignrrtent operators all have the same priority and all group 
right to left. 
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asgnop: 

+= mi= •= /= %= >>= <<= &= 

The comma operator has the lowest priority and groups left to 
right. 

16.2 Declarations 

declaration: 
dec/-specifiers init-declarator-list0pt ; 

decl-specifiers: 
type-specifier dec/-specjfiers0pt 
sc-specifier decl-specijiers0pt 

sc-specifier: 
auto 
static 
extern 
register 
typedef 

type-specifier: 
struct-or-union-specifier 
typedef-name 
enum-specjfier 

basic-type-specifier: 
basic-type 
basic-type basic-type-specifiers 

basic-type: 
char 
short 
lnt 
lone 
unsigned 
Boat 
double 
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enum-specifier: 
eoum { enum-list } 
enum identifier { enum-list } 
enum identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier - constant-expression 

init-declarator-list: 
init-declarator 
init-declarator , init-declarator-list 

init-declarator: 
declarator initia/izer opt 

declarator: 
identifier 
( declarator ) 
" declarator 
declarator 0 
declarator [ constant-expression0pt 1 

struct-or-union-specifier: 
struct { struct-decl-list } 
struct identifier { struct-dec/-Jist } 
struet identifier 
union { struct-dec/-list ) 
union identifier { struct-decl-list } 
union identifier 

struct-deci-Jist; 
struct -declaration 
struct-declaration struct-decl-/ist 

struct-declaration: 
type-specifier struct-declarator-Jlst ; 
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struct-declarator-list: 
struct-declarator 
struct-declarator , struct-declarator-list 

struct-declarator: 
declarator 

initializer: 

declarator : constant-expression 
: constant-expression 

expression 
{ initializer-list } 
{ initia/izer-list , 

initializer-list: 
expression 
initializer-list , initializer-list 
{ initializer-list } 
{ initializer-list , } 

type-name: 
type-specifier abstract-declarator 

abstract-declarator: 
empty 
( abstract-declarator ) 
• abstract-declarator 
abstract-declarator 0 
abstract-declarator [ constant-expression0pt 1 

typedef-name: 
identifier 

16.3 Statements 

compound-statement: 
{ dec/aration-list0pt statement-list0pt } 
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declaration-list: 
declaration 
declaration declaration-list 

statement-list: 
statement 
statement statement-list 

statement: 
compound-statement 
expression ; 
if ( expression ) statement 
if ( expression ) statement else statement 
while ( expression ) statement 
do statement while ( expression ) ; 
for (exPoptiexP0p1;exp0p1J statement 
switch ( expression ) statement 
case constant-expression statement 
default : statement 
break ; 
continue ; 
return ; 
return expression 
goto identifier ; 
identifier : statement 
. . 

16.4 External Definitions 

program: 
external-definition 
external-definition program 

external-definition: 
}Unction-definition 
data-definWon 
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junction-definition: 
decl-specifier opt function-declarator junction-body 

junction-declarator: 
declarator ( parameter-/ist0pt ) 

parameter-list: 
identifier 
identifier , parameter-list 

jUnction-body: 
declaratlon-list0pt compound-statement 

data-definition: 
extern declaration ; 
static declaration ; 

16.5 Preprocessor 

#define identifier token-string0pt 
#define identifier( identifier, ••• ) token-string0pt 
#undef identifier 
#Include "filename" 
#include <filename> 
#if restricted-constant-expression 
#ifdef identifier 
#ifndef identifier 
#else 
#endif 
#line constant "filename" 
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Chapter 4 

C LIBRARIES 

1. Introduction 

This chapter describes the UNIX Operating System C library. 
A library is a collection of related functions and/ or declarations 
that simplify programming effort by linking what is needed, 
allowing use of locally produced functions, etc. All of the func­
tions described in this chapter are also described in Section 3 of 
the UniP/u~ User Manual. Most of the declarations described 
in this chpater are also described in Section 5 of the UniPJus+ 
User Manual. The three main libraries on the UNIX system 
are: 

C library 

Object file 

Math library 

This is the basic library for C language pro­
grams. The C library is composed of func­
tions and declarations used for file access, 
string testing and manipulation, character 
testing and manipulation, memory allocation, 
and other functions. This library is described 
later in this chapter. 

This library provides functions for the access 
and manipulation of object files. This library 
is described in the next chapter. 

This library provides exponential, bessel 
functions, logarithmic, hyperbolic, and tri· 
gonometric functions. This library is 
described in the next chapter. 

Some libraries consist of two portions - functions and declara· 
tions. In some cases, the user must request that the functions 
(and/or declarations) of a specific library be included in a pro­
gram being compiled. In other cases, the functions (and/or 
declarations) are included automatically. 
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2. Including Functions 

When a program is being compiled, the compiler will automati· 
cally search the C language library to locate and include func· 
tions that are used in the program. This is the case only for the 
C library and no other library. In order for the compiler to 
locate and include functions from other libraries, the user must 
specify these libraries on the command line for the compiler. 
For example, when using functions of the math library, the 
user must request that the math library be searched by includ· 
ing the argument -lm on the command line: 

cc file.c -lm 

The argument -1m must come after all files that reference 
functions in the math library in order for the link editor to 
know which functions to include in the a. out file. 

This method should be used for all functions that are not part 
of the C language library. 

3. Including Declarations 

Some functions require a set of declarations in order to operate 
properly. A set of declarations is stored in a file under the 
/usrlinclude directory. These files are referred to as header files. 
In order to include a certain header file, the user must specify 
this near the top of the file containing the program: 

#include < file.h> 

where file.h is the name of the header file. Since the header 
files define the type of the functions and various preprocessor 
constants, they must be included BEFORE invoking the func· 
tions they declare. 

The remainder of this chapter descrbes the functions and 
header files of the C Library. The description of the library 
begins with the actions required by the user to include the 
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functions and/ or header files in a program being compiled (if 
any). Following the description of the actions required is infor­
mation in three-column format: 

function referenee(N) Brief description. 

The functions are grouped by type and the reference refers to 
section "N" in the UniP/ust User Manual. Following this, if 
applicable, are descriptions of the header files associated with 
these functions. 

4. The C Library 

The C library consists of several types of functions. All the 
functions of the C library are loaded automatically by the com­
piler. Various declarations must sometimes be included by the 
user. The functions of the C library are divided into the fol­
lowing types: 

• 
• 

Input/output control 

String manipulation 

• Character manipulation 

• Time functions 

• Miscellaneous functions. 

4.1 Input/Output Control 

These functions of the C library are automatically included as 
needed during the compiling of a C language program. No 
command line request is needed. 

The header file required by the input/output functions should 
be included near the beginning of each file that references an 
input or output function: 

#include < stdio.h> 
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The input/output functions are grouped into the following 
categories: 

• File access 

• File status 

• Input 

• Output 

• Miscellaneous . 
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4.1.1 File Access Functions 

r 
FUNCTION REFERENCE BRIEF DESCRIPTION 

fclose fclose(3S) Close an open stream. 

fdopen fopen(3S) Associate stream with 
an open (2) ed file. 

fileno ferror(3S) File descriptor associated 
with an open stream. 

fopen fopen(3S) Open a file with 
specified permissions and 
return a pointer to a 
stream which is used 
in subsequent 

(' 
references to the file. 

freopen fopen(3S) Substitute named file 
in place of open 
stream. 

fseek fseek(JS) Reposition the file 
pointer. 

pclose popen(3S) Close a stream opened 
by popen. 

popen popen(JS) Create pipe as a stream 
between calling process 
and command. 

r' 
rewind fseek(3S) Reposition file 

pointer at beginning 
of file. 

4-5 



C LIBRARIES 

setbuf setbuf<3S) 

vsetbuf setbuf(3S) 

4.1.2 File Status Functions 

Assign buffering to 
stream. 

Similar to setbnf, but 
allowing finer control. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

clearerr ferror(3S) Reset error condition on 
stream. 

feof ferror(3S) Test for "end of file" 
{EOF) on stream. 

ferror ferror(3S) Test for error condition 
on stream. 

ftell fseek(3S) Return current position 
in the file. 

4.1.3 Input Functions 

FUNCTION REFERENCE BRIEF DESCRIPTION 

fgetc getc(3S) True function for getc 
(3S). 

fgets gets(3S) Read string from stream. 

tread fread(3S) General buffered read 
from stream. 

fscanf scanf(JS) Formatted read from 
stream. 
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getc getc(3S) Read character from 

r stream. 

', get char getc(3S) Read character from -
standard input. 

gets gets(3S) Read string from standard input. 

getw getc(JS) Read word from stream. 

scanf scanf(3S) Read using format from 
standard input. 

sscanf scanf(3S) Formatted from 
string. 

ungetc ungetc(3S) Put back one character on 
stream. 

("· 
4.1.4 Output Functions ' 

FUNCTION REFERENCE BRIEF DESCRIPTION 

fftush fclose(JS) Write all currently buffered 
characters from stream. 

fprintf prlntf(JS) Formatted write to 
stream. 

fputc putc(JS) True function for putc 
(JS), 

fputs puts(JS) Write string to stream. 

( fwrite fread(JS) General buffered write to 
stream. 
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printf printf(3S) 

putc putc(3S) 

putchar putc(JS) 

puts puts(3S) 

putw putc<JS) 

sprintf printf{3S) 

vfprintf vprint(3C) 

vprintf vprint(3C) 

vsprlntf vprintf(3C} 

4.1.5 Miscellaneous Functions 

Print using format to 
standard output. 

Write character to 
standard output. 

Write character to 
standard output. 

Write string to 
standard output. 

Write word to stream. 

Formatted write to 
string. 

Print using format to 
stream by varargs (5) 
argument list. 

Print using format to 
standard output by 
nrargs(S) argument list. 

Print using format to 
stream string by 
nrargs (5) argument list. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

ctermid ctermid(3S) Return file name for 
controlling terminal. 

cuserid cuserid(JS) Return login name for 
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system system(3S) 

tempnam tmpnam(3S) 

tmpnam tmpnam(3S) 

tmpfile tmpfile(3S) 

C LIBRARIES 

owner of current process. 

Execute shell command. 

Create temporary file 
name using directory and 
prefix. 

Create temporary file 
name. 

Create temporary file. 

4.2 String Manipulation Functions 

These functions are used to locate characters within a string or 
to copy, concatenate, or compare strings. These functions are 
automatically located and loaded during the compiling of a C 
language program. No command line request is needed since 
these functions are part of the C library. The string manipula­
tion functions are declared in a header file that should be 
included near the beginning of each file that uses any of these 
functions: 

#Include < string.h> 

FUNCTION REFERENCE BRIEF DESCRIPTION 

strcat string(3C) Concatenate two strings. 

strcbr string(3C) Search string for 
character. 

strcmp strlng(JC) Compares two strings. 

strcpy string(3C) Copy string. 

strcspn string(3C) Length of initial string 
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strleo string(3C) 

stmcat string(3C) 

strncmp string(3C) 

strncpy string(3C) 

strpbrk string(3C) 

strrchr string(3C) 

strspn string(3C) 

strtok string(3C) 

4.3 Character Manipulation 

not containing set of 
characters. 

Length of string. 

Concatenate two strings 
with a maximum length. 

Compares two strings 
with a maximum length. 

Copy string over string 
with a maximum length. 

Search string for any 
set of characters. 

Search string backwards 
for character. 

Length of initial string 
containing set of 
characters. 

Search string for token 
separated by any of a 
set of characters. 

The following functions and declarations are used for testing 
and translating ASCII characters. These functions are located 
and loaded automatically during the compiling of a C language 
program. No command line request is needed since these func­
tions are part of the C library. 

The declarations associated with these functions should be 
included near the beginning of the file being compiled: 
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#include < ctype.h> 

I 
4.3.1 Character Testing Functions ' -
These functions can be used to identify characters as uppercase 
or lowercase letters, digits, punctuation, etc. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

isalnum ctype(3C) Is character 
alphanumeric? 

isalpha ctype(JC) Is character alphabetic? 

Is ascii ctype(JC) Is integer ASCII 
character? 

I iscntrl ctype(3C) Is character a control 
character? 

is digit ctype(JC) Is character a digit? 

isgrapb ctype(JC) Is character a printable 
character? 

islower ctype(JC) Is character a 
lowercase letter? 

isprint ctype(JC) Is character a printing 
character including 
space? 

ispunct ctype(JC) Is character a 

( punctuation character? 

Is space ctype(3C) Is character a white 
space character? 
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is upper 

isxdigit 

ctype(3C) 

ctype(3C) 

Is character an uppercase 
letter? 

Is character a hex digit? 

4.3.2 Character Translation Functions 

These functions provide translation of uppercase to lowercase, 
lowercase to uppercase, and integer to ASCII. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

toascii conv(JC) Convert integer to 
ASCII character. 

tolower conv(3C) Convert character to 
lowercase. 

toupper conv(3C) 

4,4 Time Functions 

Convert character to 
uppercase. 

These functions are used for accessing and reformatting the 
system's idea of the current date and time. These functions are 
located and loaded automatically during the compiling of a C 
language program. No command line request is needed since 
these functions are part of the C library. 

The header file associated with these functions should be 
included near the beginning of any file using the time func­
tions. 

#include < time.h> 

These functions (except tzset) convert a time such as returned 
by time(2) 
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FUNCTION REFERENCE BRIEF DESCRIPTION 

asctime ctime(3C) 

ctime ctime(JC) 

gmtime ctlme(3C) 

localtime ctlme(3C) 

tzset ctime(JC) 

4.5 Miscellaneous Functions 

Return string 
representation 
of date and time. 

Return string 
representation of 
date and time, given 
integer form. 

Return Greenwich 
Mean Time. 

Return local time. 

Set time zone field 
from environment 
variable. 

These functions support a wide variety of operations: 

• Numerical Conversion 

• DES Algorithm Access 

• Group File Access 

• Password File Access 

• Parameter Access 

• Hash Table Management 

• Binary Tree Management 

• Table Management 

• Memory Allocation 
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• Pseudorandom Number Generation 
These functions are automatically located and included in a pro­
gram being compiled. No command line request is needed 
since these functions are part of the C library. 

Some of these functions require declarations to be included. 
These are described following the descriptions of the functions. 

4.5.1 Numerical Conversion 

The following functions perform numerical conversion. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

a641 a641(3C) Convert string to 
base 64 ASCII. 

at of atof(3C) Convert string to 
floating. 

atoi atof{JC) Convert string to 
integer. 

atol atof(JC) Convert string to long. 

frexp frexp(3C) Split floating into 
mantissa and exponent. 

13tol 13tol(3C) Convert 3-byte integer 
to long. 

ltol3 13toHJC) Convert long to 3-byte 
integer. 
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ldexp frexp(3C) Combine mantissa and 
exponent. 

164a a641(3C) Convert base 64 ASCII 
to string. 

modf frexp(3C) Split mantissa into 
integer and fraction. 

4.5.2 DES Algorithm Access 

The following functions allow access to the Data Encryption 
Standard (DES) algorithm used on the UNIX operating system. 
The DES algorithm is implemented with variations to frustrate 
use of hardware implementations of the DES for key search. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

crypt crypt(3C) Encode string. 

encrypt crypt(3C) Encode/ decode string of 
Os and Is. 

setkey crypt(3C) Initialize for subsequent 
use of encrypt. 

4.5.3 Group File Access 

The following functions are used to obtain entries from the 
group file. Declarations for these functions must be included in 
the program being compiled with the line: 

#include < grp.h> 

4-15 



C LIBRARIES 

FUNCTION REFERENCE BRIEF DESCRIPTION 

endgrent getgrent (3C) Close group file being 
processed. 

getgrent getgrent (3C) Get next group file 
entry. 

getgrgid getgrent (3C) Return next group with 
matching gid. 

getgrnam getgrent (3C) Return next group with 
matching name. 

setgrent getgrent(3C) Rewind group file being 
processed. 

fgetgrent getgrent(3C) Get next group file entry 
from a specified file. 

4.5.4 Password File Access 

These functions are used to search and access information 
stored in the password file (/etdpasswd). Some functions 
require declarations that can be included in the program being 
compiled by adding the line: 

#include < pwd.h> 

FUNCTION REFERENCE BRIEF DESCRIPTION 

endpwent getpwent (3C) Close password file 
being processed. 
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getpw getpw(3C) Search password file 
for uid. 

getpwent getpwent(JC) Get next password file 
entry. 

getpwnam getpwent (3C) Return next entry with 
matching name. 

getpwuid getpwent (3C) Return next entry with 
matching uid. 

putpwent putpwent(3C) Write entry on stream. 

setpwent getpwent(JC) Rewind password file 
being accessed. 

fgetpwent getpwent (3C) Get next password file 
entry from a specified 
file. 

4.5.5 Parameter Access 

The following functions provide access to several different types 
of parameters. None require any declarations. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

getopt getopt(3C) Get next option from 
option list. 

getcwd getcwd (3C) Return string 
representation of 
current working directory. 
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getenv getenv(3C) 

get pass get pass (3C) 

putenv putem (3C) 

4.5.6 Hash Table Management 

Return string value 
associated with 
environment variable. 

Read string from terminal 
without echoing. 

Change or add value 
of an environment 
variable. 

The following functions are used to manage hash search tables. 
The header file associated with these functions should be 
included in the program being compiled. This is accomplished 
by including the line: 

#include < search.h> 

near the beginning of any file using the search functions. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

bcreate hsearch(3C) Create hash table. 

hdestroy hsearch (3C) Destroy hash table. 

hsearch hsearch(3C) Search hash table for 
entry. 

4.5. 7 Binary Tree Management 

The following functions are used to manage a binary tree. The 
header file associated with these functions should be included 
near the beginning of any file using the search functions: 

#include < search.h> 
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FUNCTION REFERENCE BRIEF DESCRIPTION 

( tdelete tsearch (3C) Deletes nodes from 
binary tree. 

tfind tsearch (3C) Find element in 
binary tree. 

tsearcb tsearch (3C) Look for and add 
element to binary 
tree. 

twalk tsearch (3C) Walk binary tree. 

4.5.8 Table Management 

The following functions are used to manage a table. Since 
none of these functions allocate storage, sufficient memory 
must be allocated before using these functions. The header file 

--- associated with these functions should be included near the I 
beginning of any file using the search functions: 

#include < search.h> 

FUNCTION REFERENCE BRIEF DESCRIPTION 

bsearch bsearcb (3C) Search table using 
binary search. 

I search I search (3C) Look for and add 
element in binary 
tree. 

Uind I search (3C) Find element in 

/'""' 
library tree. 

I 

-
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qsort qsort(3C) 

4.5.9 Memory Allocation 

Sort table using 
quick-sort algorithm. 

The following functions provide a means by which memory can 
be dynamically allocated or freed. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

calloc malloc(3C) Allocate zeroed storage. 

free malloc(3C) Free previously allocated 
storage. 

malloc malloc(3C) Allocate storage. 

realloc malloc(JC) Change size of allocated 
storage. 

The following is another set of memory allocation functions 
available. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

calloc malloc(3X) Allocate zeroed storage. 

free malloc(JX) Free previously allocated 
storage. 

malloc malloc(3X) Allocate storage. 

mallopt malloc(3X) Control allocation 
algorithm. 
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mallinfo malloc(3X) 

realoc malloc(JX) 
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Space usage. 

Change size of 
allocated storage. 

4.5.10 Pseudorandom Number Generation 

The following functions are used to generate pseudorandom 
numbers. The functions that end with 48 are a family of inter­
faces to a pseudorandom number generator based upon the 
linear congruent algorithm and 48-bit integer arithmetic. The 
rand and srand functions provide an .interface to a multiplica­
tive congruential random number generator with period of 232. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

drand48 drand48(3C) Random double over 
the interval [0 to 1). 

lcong48 drand48 (3C) Set parameters for 
drand48, lrand48, 
and mrand48. 

lrand48 drand48(3C) Random long over the 
interval [0 to 231}. 

mrand48 drand48 (JC) Random long over the 
interval [-231 to 231 ). 

rand rand(JC) Random integer over the 
interval [0 to 32767). 

seed48 drand48(3C) Seed the generator for 
drand48, lrand48, and 
mrand48 . 
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srand 

srand48 

rand(3C) 

drand48(3C) 

Seed the generator 
for rand. 

Seed the generator for 
drand48, lrand48, and 
mrand48 using a long. 

4.5.11 Signal Handling Functions 

The functions gsignal and ssignal implement a software facility 
similar to slgnal(2) in the UniPius+- User Manual This facility 
enables users to indicate the disposition of error conditions and 
allows users to handle signals for their own purposes. The 
declarations associated with these functions should be included 
near the beginning of any file using the signal handling func­
tions: 

#include < signal.h> 

These declarations define ASCII names for the I 5 software sig­
nals. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

gsignal ssignal (JC) Send a software signal. 

ssignal ssignal(3C) Arrange for handling 
of software signals. 

4.5.12 Miscellaneous 

The following functions do not fall into any previously 
described category. 
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FUNCTION REFERENCE BRIEF DESCRIPTION 

( abort abort(3C) Cause an lOT signal 
to be sent to the 
process. 

abs abs(JC) Return the absolute 
integer value. 

ecvt ecvt(3C) Convert double to 
string. 

fcvt ecvtOC) Convert double to 
string using Fortran 
Format. 

gcvt ecvt(3C) Convert double to 
string using Fortran 

( F or E format. 

~· I sa tty ttyname(3C) Test whether integer 
file descriptor is 
associated with a 
terminal. 

mktemp mktemp(3C) Create file name 
using template. 

monitor monitor(3C) Cause process to record 
a histogram of program 
counter location. 

swab swab(JC) Swap and copy bytes. 

(~ 
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ttyname 
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Chapter 5 

.f'""' OBJECT AND MATH LIBRARIES 

l. Introduction 

This chapter describes the UniPlus+® Object and Math 
Libraries. A library is a collection of related functions and/or 
declarations that simplify programming effort. All of the func­
tions described are also described in Section 3 of the UniP/us+­
User Manual Most of the declarations described in this chapter 
can be found in Section 5 of the UniPlust User Manual. 

The three main libraries of the U niPius+ Operating System are: 

C library 

Object file 

Math library 

This is the basic library for C language pro­
grams. The C library is composed of func­
tions and declarations used for file access, 
string testing and manipulation, character 
testing and manipulation, memory allocation, 
and other functions. This library is described 
in the chapter entitled "THE C LIBRARY," 
in the UniP/us+- Programming Guide. 

This library provides functions for the access 
and manipulation of object files. This library 
is described later in this chapter. 

This library provides exponential, bessel 
functions, logarithmic, hyperbolic, and tri­
gonometric functions. This library is 
described in more detail later in this chapter. 

2. Object File Library 

The object file library provides functions for the access and 
manipulation of object files. Some functions locate portions of 
an object file such as the symbol table, the file header, sections, 
and line number entries associated with a function. Other 
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functions read these types of entries into memory. For a 
description of the format of an object file, see the chapter enti­
tled "COFF - COMMON OBJECT FILE FORMAT" in the 
UniPius+- Programming Guide. 

The object file library functions reside in /usr/lib/libld.a and may 
be located and loaded at compile time if the following 
command-line request is given: 

cc file -nd 

This command causes the link editor to search the object file 
library. The argument -nd must appear AFTER all files that 
reference functions in libld.a. 

In addition, various header files must be included: 

#include < stdio.h> 
#include < a.out.h> 
#include < ldjCn.h> 

FUNCTION REFERENCE BRIEF DESCRIPTION 

Ida close ldclose (3X) Close object file being 
processed. 

Ida bread ldahread(3X) Read archive header. 

Ida open ldopen(JX) Open object file for 
reading. 

ldclose Ide lose (3X) Close object file being 
processed. 

ldfhread ldfhread (3X) Read file header of 
object file being 
processed. 
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ldgetname ldgetname(JX) Retrieve the name of 

r an object file symbol 
table entry. 

ldlinit Idiread (JX) Prepare object file for 
reading line number 
entries via ldlitem. 

ldlitem ldlread(3X) Read line number entry 
from object file after 
ldlinit. 

ldlread ldlread(3X) Read line number entry 
from object file. 

ldlseek ldlseek (JX) Seeks to the line number 
entries of the object 
file being processed. 

/"' 
ldnlseek ldlseek(JX) Seeks to the line number 

entries of the object file 
being processed given 
the name of a section. 

ldnrseek ldrseek (3X) Seeks to the relocation 
entries of the object file 
being processed given 
the name of a section. 

ldnshread ldshread (3X) Read section header of 
the named section of the 
object file being 
processed. 

r ldnsseek Ids seek (3X) Seeks to the section of 
the object file being 
processed given the 
name of a section. 
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ldohseek ldohseek(JX) Seeks to the optional 
file header of the object 
file being processed. 

I do pen ldopen(JX) Open object file for 
reading. 

ldrseek ldrseek (3X) Seeks to the relocation 
entries of the object file 
being processed. 

ldsbread Ids bread (3X) Read section header of 
an object file being 
processed. 

ldsseek ldsseek (3X) Seeks to the section of 
the object file being 
processed. 

ldtbindex ldtbindex(3X) Returns the long index 
of the symbol table entry 
at the current position of 
the object file being 
processed. 

ldtbread ldtbread (3X) Reads a specific 
symbol table entry 
of the object file 
being processed. 

ldtbseek Idtbseek (3X) Seeks to the symbol 
table of the object file 
being processed. 

sgetl sputi(JX) Access long integer data 
in a machine independant 
format. 
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sputi(3X) Translate a long integer 
into a machine 
independant format. 

2.1 Common Object File Interface Macros (ldfcn.h) 

The interface between the calling program and the object file 
access routines is based on the defined type "LDFILE," which 
is defined in the header file lrifcn.h (see ldfcn(4)). The primary 
purpose of this structure is to provide uniform access to both 
simple object files and to object files that are members of an 
archive file. 

The function ldopen(JX) allocates and initializes the LDFILE 
structure and returns a pointer to that structure to the calling 
program. The fields of the LDFILE structure may be accessed 
individually through the following macros: 

1. the type macro returns the magic number of the file, 
which is used to distinguish between archive files 
and simple object files. 

2. The IOPTR macro returns the file pointer which 
was opened by ldopen (3X) and is used by the 
input/output functions of the C library. 

3. The OFFSET macro returns the file address of the 
beginning of the object file. This value is non-zero 
only if the object file is a member of the archive file. 

4. The HEADER macro accesses the file header struc­
ture of the object file. 

Additional macros are provided io access an object file. These 
macros parallel the input/output functions in the C library; each 
macro translates a reference to an LDFILE structure into a 
reference to its file descriptor field. The available macros are 
described in ldfcn(4) in the UniPlust User Manual. 
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3. ~ath Library 

The math library consists of functions and a header file. The 
functions may be located and loaded during compile-time if a 
request is made on the command line: 

« file -/m 

This command will cause the link editor to search the math 
library. In addition to the request to load the functions, the 
header file of the math library should be included near the 
beginning of the (first) file being compiled: 

#include < math.h> 

These functions are grouped into the following categories: 

• Trigonometric functions 

• Bessel functions 

• Hyperbolic functions 

• Miscellaneous functions. 

3.1 Trigonometric Functions 

These functions are used to compute angles On radian meas­
ure), sines, cosines, and tangents. All of these values are 
expressed in double precision. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

acos trig(3M) Return arc cosine. 

a sin trig(JM) Return arc sine. 

a tan trig(3M) Return arc tangent. 

atan2 trig(JM) Return arc tangent of 
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a ratio. 

cos trig (3M) Return cosine. 

sin trig(3M) Return sine. 

tan trig(JM) Return tangent. 

3.2 Bessel Functions 

These functions calculate bessel functions of the first and 
second kinds of several orders for real values. The bessel func­
tions are jO, jl, jn, yO, yl, and yo. The functions are located 
in section bessel(3M). 

3.3 Hyperbolic Functions 

These functions are used to compute the hyperbolic sine, 
cosine, and tangent for real values. 

FUNCTION REFERENCE BRIEF DESCRIPTION 

cosh slnh(JM) Return hyperbolic cosine. 

sinh sinh(3M) Return hyperbolic sine. 

tanh sinh(3M) Return hyperbolic tangent. 

3.4 Miscellaneous Functions 

These functions cover a wide variety of operations, such as 
natural logarithm, exponential, and absolute value. In addition, 
several are provided to truncate the integer portion of double 
precision numbers. 
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FUNCTION REFERENCE BRIEF DESCRIPTION 

cell floor(3M) Returns the smallest 
integer not less than a 
given value. 

exp exp(JM) Returns the exponential 
function of a given value. 

fabs ftoor(3M) Returns the absolute value 
of a given value. 

floor floor(3M) Returns the largest integer 
not greater than a given 
value. 

fmod floor(3M) Returns the remainder 
produced by the division of 
two given values. 

gamma gamma(3M) Returns the natural log of 
the absolute value of the 
result of applying the 
gamma function to a 
given value. 

by pot hypot(JM) Return the square root 
of the sum of the squares 
of two numbers. 

log exp(JM) Returns the natural 
logarithm of a given 
value. 

loglO exp(3M) Returns the logarithm base 
ten of a given value. 

matherr matherr(JM) Error-handling function. 
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Returns the result of a 
given value raised to 
another given value. 

Returns the square root 
of a given value. 

In addition, various header files must be included. This is 
accomplished by including the line: 

#include < stdio.h> 
#include < a.out.h> 
#include < ldfcn.h> 
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Chapter 6 

MOTOROLA 68000 ASSEMBLER 

1. Introduction 

This is a reference manual for the UniPlus+® System assembler 
for the Motorola 68000. 

Programmers familiar with the M68000 should be able to pro­
gram in the assembler by referring to this manual, but this is 
not a manual for the processor itself. Details about the effects 
of instructions, meanings of status register bits, handling of 
interrupts, and many other issues are not dealt with in detail in 
this document. This manual should be used in conjunction 
with the M68000 16-bit Microprocessor User's Manual.• 

2. Warnings 

A few important warnings should be emphasized at the outset. 

For the most part there is a direct correspondence between as 
notation used here and the notation used in M68000 16-bit 
Microprocessor User's Manual. However the following excep­
tions could lead the unsuspecting user to write incorrect code. 

2.1 Compare and Subtract 

The order of the operands in compare, cmp, instructions fol­
lows one convention in the M68000 16-bit Microprocessor 
User's Manual, and the OPPOSITE convention in the 
UniPlus+ as. 

( • M68000 16-BIT MICROPROCESSOR User's Manual, Third Edition; 
Englewood Cliffs, N.J.: Prentice-Hall, 1982. 
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Using the convention in the M68000 16-bit Microprocessor 
User's Manual, one might write 

CMP.W 
BLE 

DS,DJ 
IS LESS 

Is 03 less than 05 ? 
Branch if Jess. 

Using the as convention, one would write 

cmp.w 
ble 

%d3,%d5 
is_less 

# Is d3 less than d5 ? 
# Branch if less. 

The UniPius+ as follows the convention used by other assem­
blers supported in the UNJX1'1 System (both the 3820$ 1 \1 and 
the VAX I~~ follow this convention). This convention makes for 
straightforward reading of compare-and-branch instruction 
sequences. However it does lead to the following peculiarity: 

If a cmp instruction is replaced by a sub instruction, the 
effect on the condition codes will be entirely different. 

This peculiarity may be especially confusing to programmers 
who are used to thinking of a comparison as a subtraction 
whose result is not stored. 

2.2 Opcode Overloading 

Another issue that users must be aware of arises from the 
M68000's use of several different instructions to do more or 
less the same thing. 

For example, the M68000 16-bit Microprocessor User's 
Manual lists the instructions SUB, SUBA, SUBI and SUBQ, 
which all have the effect of subtracting their source operand 
from their destination operand. as provides the convenience of 
allowing all these operations to be specified by a single assem­
bly instruction sub. On the basis of the operands given to the 
sub instruction, the as assembler selects the appropriate 
M68000 operation code. 
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It is important to remember that, even though sub can be used, 
it could leave the misleading impression that all forms of the .r SUB operation are semantically identical - however, they are 
NOT. 

( 
', 

The careful reader of the M68000 16-bit Microprocessor User's 
Manual will notice that while SUB, SUBI, and SUBQ all 
affect the condition codes in a consistent way, SUBA DOES 
NOT affect the condition codes at all. Consequently, the as 
user must be aware that when the destination of a sub instruc­
tion is an address register (which causes the sub to be mapped 
into the operation code for SURA), the condition codes will 
NOT be affected . 

.J. General Programming Information 

3.1 Privilege States 

Instructions may be executed in either of two distinct modes or 
Privilege States: 

1. User This mode is reserved for the execution of 
most application programs. 

2. Supervisor This mode is reserved for use by the operating 
system and other system software~ To execute 
some instructions, called "Privileged Instruc­
tions," the processor MUST be in supervisor 
mode. 

3.2 Data Organization 

All of the M68000 registers, both data and address registers, 
are 32-bits wide. In the data registers, the low order 8 bits are 
used by byte operands, the low order 16 bits accomodate word 
operands and the entire register is used when the operand is a 
long word. The 0 bit is the "least significant bit" Osb): while 
bit 31 is the "most significant bit" (msb). 
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Byte·sized operations may not be performed on address regis­
ters. When the source operand is an address register, either the 
low order word or the entire register may be used, depending 
on the operation size. However, regardless of the operation, 
when an address register is the destination operand, the entire 
32 bits are affected. In fact, the other operand(s) are extended 
BEFORE the operation to satisfy this requirement. 

Bytes may be addressed individually by addressing the high 
order byte on an even address. The low order byte has an odd 
address one count higher than the word address. 

Words and and long words must be addressed on even boun­
daries. To access the second word of data stored as a long word 
at address x, the address of the second word would be x+2. 
Naturally, x must be even. 

If a byte is "pulled" from or "pushed" onto a stack, only the 
high byte is affected; the lower byte remains unchanged. 

The Programmer's Model, Figure 6.1, is common to all imple­
mentations of the M68000, and illustrates the following: 

• 16 32-bit registers (%d0-%d7, %a0-%a7). 

6-4 

8 data registers (%d0-%d7) which may be used 
for byte (8-bit), word 06-bit) and long word 
02-bit) operations. 

7 address registers (%a0-%a6) and the Stack 
Pointer (Y..a7 or sp). The %a7 register may be 
the User Stack Pointer (u5p) or the Supervisor 
Stack Pointer (ssp), depending on the status of 
the "S" bit in the Status Register (sr). 

Address registers may be used for word and 
long word operations ONLY. 
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ANY register may be used as an index register. 

32-bit Program Counter (pc) 

• 8-bit Condition Code Register (ccr) 

The ccr is found in the low 8-bits of the Status Register. 
Only the low order byte of the sr is accessible in user 
mode. The high order byte of the sr is considered the 
"system byte" and the processor must be in supervisor 
mode to access the high order bits. 
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31 16 15 8 7 0 
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Figure 6.1. Programmer's Model 
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3.3 Status Register 

The Status Register holds the following information: 

• 8 levels of interrupt mask are available through the 
possible combinations of bits 8-10. The interrupt 
mask, then, is in the "system byte" and only acces­
sible in supervisor mode. 

• The condition codes: 

(V) overflow 
(Z) zero 
(N) negative 
(C) carry 
(E) extend 

• Trace mode status bit (bit 15) 

• Supervisor mode status bit (bit 13) 

3.4 Data Types 

There are five basic data types supported by the 68000: 

I. Bits 

2. BCD digits (4 bits) 

3. Bytes (8 bits) 

4. Words (16 bits) 

5. Long Words (32 bits) 

Memory addresses, status word data, etc. are provided for in 
the instruction set. 

3.5 Error Detection 

Several hardware traps, provided to indicate abnormal internal 
conditions, also detect the following error conditions: 

• Word access with odd address 
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• Illegal instructions 

• Unimplemented instructions 

• Illegal memory access (bus error) 

• Divide by zero 

• Overflow condition code (See the M68000 16-blt 
Microprocessor User's Manual regarding the TRAP 
instruction) 

• Register out of bounds (See the M68000 16-bit 
Microprocessor User's Manual regarding the CHK 
instruction) 

• Spurious interrupt 

Sixteen software trap instructions are also provided to help 
detect errors in application programs. 

The "Trace mode" provides instruction-by-instruction tracing 
of a program being debugged by causing a trap to occur after 
each instruction is executed. The microprocessor must be in 
the supervisor state to enter trace mode. 

The supervisor state is especially useful in that it provides a 
high degree of protection by restricting the privilege to alter 
selected areas of memory. This is an especially important pro­
tection when an external memory management unit is being 
used. 

4. Usage 

The following UNIX System commands invoke the assembler: 

6-8 



asS.O I -o objfile I I -v I I -1 I inputfile 

( or 

ASSEMBLER 

as I -o objfile I I -n I I -m I I -R I I -V I inputfile 

or 

Jjas I -o objfile I I -n I I -m I I -R I I -V I inputfile 

The asS.O command produces a.out format object files, the as 
command produces "COFF" (Common Object File Format) 
object files and the ljas command is a special version of the as 
command that produces "long jump" instructions rather than 
(short) branch instructions. 

If the -o option is given, the following string will be used as 
the output file name. If no such specification had been made, 
the output will be left in a file whose name was formed either 
by appending a .o suffix to the end of the input file name, or by 
replacing the input file's present suffix with the .o suffix. 

input: as file.s (or as5.0 file.s or ljas file.s) 
output: file.o 

input: 
output: 

4.1 Options 

as file (or as5.0 file or ljas file) 
file.o 

The options have the following significance: 

-I This option to asS.O produces an assembly listing on a file 
whose name is formed by adding a .lst suffix to the object 
file name specified with the - o option. If the -I option 
is specified, but the -o is not, the assembly listing is 
placed on a.lst. 

-m This option for as and ljas requests that the m4 macro 
pre-processor be run on the input to the assembler. 

6-9 



ASSEMBLER 

Remember, if using this pre-processor, be careful not use 
any of the m4 keywords as variable names, function 
names or labels in your input file because the m4 pre­
processor is unable to determine which are assembler 
symbols and which are real m4 macros. 

-n This option for as and ljas requests that long/short 
address optimization be turned off. By default, address 
optimization takes place. 

- o This option for all three assembler commands requests 
that the following string be used as the name of the object 
file. If this option is not specified for the asS.O command, 
the object file will be placed on a file called a.out5.0. 

-v This option for the as5.0 command requests the interpre­
tation of the 680 I 0 mnemonics. 

- R This option, for the as and ljas commands, requests that 
the input 'file be removed (unlinked) after assembly is 
completed. This option is off by default. 

- V This option, for the as and ljas commands, requests that 
the version number of the assembler being run be written 
on standard error output. 

5. Syntax 

Typical as assembly code looks like these: 

6-10 

# Clear a block of memory at location %a3 

text 2 
mov.w 

loop: clr.l 
dbf 

init2: 

&const,%dl 
(%a3)+ 
%dl,loop # go back for const 

# repetitions 

clr.l count; clr.l credit; clr.l debit; 
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These general points about the example should be noted: 

• An identifier occurring at the beginning of a line and fol­
lowed by a colon (:) is a label. One or more labels may 
precede any assembly language instruction or pseudo­
operation. 

• A line of assembly code need not include an instruction. 
It may consist of a comment alone (introduced by#), a 
label alone (terminated by :) , or it may be entirely blank. 

• It is good practice to use tabs to align assembly language 
operations and their operands into columns, but this is 
not a requirement of the assembler. An opcode may 
appear at the beginning of the line, if desired, and spaces 
may precede a label. A single blank or tab suffices to 
separate an opcode from its operands. Additional blanks 
and tabs are ignored by the assembler. 

• It is permissible to write several instructions on one line 
by separating them by semicolons. The semicolon is syn­
tactically equivalent to a newline. A semicolon inside a 
comment is ignored. 

5.1 Comments 

Comments are introduced by the character # and continue to 
the end of the line. Comments may appear anywhere and are 
completely disregarded by the assembler. 

5.2 Identifiers 

An identifier is a string of characters taken from the following 
set 

a-z A-Z % 0-9 

The first character of an identifier must be a letter (upper or 
lowercase) or an underscore. Upper and lowercase letters are 
distinguished. For example: 

con35 and CONJS 
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are two distinct identifiers. 

There is NO LIMIT on the length of an identifier. 

The value of an identifier is established by the set "pseudo­
operation" or by using the identifier as a label. 

The character - has special significance to the assembler. A -
used alone, as an identifie,, means "the cuHent location." A­
used as the first character in an identifier becomes a "." in the 
symbol table. This allows symbols such as .eos and .Ofake to 
make it into the symbol table, as required by the COFF (Com­
mon Object File Format). (See the chapter on COFF in the 
UniPlus+ Programming Guide.) 

5,3 Register Identifiers 

A register identifier is an identifier preceded by the character 
"%" and represents one of the available registers. This 
identifier is used for both data registers and address registers. 

The predefined register identifiers recognized by the assembler 
are: 
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M68000 REGISTERS 

\\dO %a0 fp ~frame pointer) 
1/odl %a I sp (system stack pointer) 
%d2 %a2 ssp (supervisor stack pointer) 
%d3 %a3 usp (user stack pointed 
%d4 %a4 sr (status register) 
%d5 %aS ccr (condition code register) 
%d6 %a6 pc (program counter) 
%d7 %a7 

M68010 ONLY 

vb• vector base register 
(Accessed by the movec instruction) 

sfc alternate function code register 
(Accessed by the movec instruction) 

dfc alternate function code destiniation register 
(Accessed by the movec instruction) 

NOTE: The address register %a6 is equivalent to fp, the 
frame pointer. The address register %a7 is equivalent 
to sp the System Stack Pointer, which in turn can be 
either ssp (the Supervisor Stack Pointer) or usp (the 
User Stack Pointer), depending upon the processor 
"Privilege State." 

Use of both %a7 and sp, or %a6 and fp, in the same 
program may result in confusion. 
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5.4 Constants 

as deals only with integer constants. They may be entered in 
decimal, octal, or hexadecimal, or they may be entered as char­
acter constants. Internally, as treats all constants as 32-bit 
binary two's complement quantities. 

5.4.1 Numerical Constants 

A decimal constant is a string of digits beginning with a non­
zero digit. 

An octal constant is a string of digits beginning with zero. 

A hexadecimal constant consists of the characters Ox or OX fol­
lowed by a string of characters from the set 0-9, a-f, and A-F. 
In hexadecimal constants, upper and lowercase letters are not 
distinguished. 

Binary numbers consist of a % followed by a binary number. 

If the number following is an "immediate," it will be preceded 
by an ampersand ("& "). In the old syntax, this was indicated 
by the hash symbol ("#"). 

BINARY 
DECIMAL 
OCTAL 
HEXIDECIMAL 

%0010100I 1010 
666 
01232 
Ox29A 

5.4.2 Character Constants 

An ordinary character constant consists of a single-quote n 
followed by an arbitrary ASCII character other than \. The 
value of the constant is equal to the ASCII code for that arbi­
trary ASCII character. 

Special meanings of characters are overridden when used in 
character constants. for example, if '# is used, the # is not 
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treated as a comment indicator. 

A special character consists of'\ followed by another character. 
All the special character constants, and examples of ordinary 
character constants, are listed here: 

CONSTANT ASCII VALUE MEANIN<i 

'lb Ox08 Backspace 
'It Ox09 Horizontal Tab 
'In OxOa Newline (Line Feed) 

'I• OxOb Vertical Tab 
'If OxOc Form Feed 
'I• OxOd Carriage Return 
'II Ox5c Backslash (\) .. Ox27 Single-Quote 
'0 Ox30 Zero 
'A Ox41 Capital A . Ox61 Lower Case A a 

5.5 Segments 

A program in as assembly language may be broken into seg­
ments known as text, data, and bss segments. The convention 
regarding the use of these segments is to place instructions in 
text segments, initialized data in data segments, and uninitial­
ized data in bss segments. However, the assembler DOES 
NOT enforce this convention. For example, the assembler per­
mits intermixing of instructions and data in a text segment. 

Primarily to simplify compiler code generation, the assembler 
permits up to four separate text segments and four separate 
data segments named 0, I, 2, and 3. The assembly language 
program may switch freely between them by using assembler 
pseudo-operations. When generating the object file, the 
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assembler concatenates the text segments to generate a single 
text segment, and the data segments to generate a single data 
segment. Thus, the object file contains only one text segment 
and only one data segment. 

Since there is never more than one bss segment, this segment 
maps directly into the object file. 

Because the assembler keeps everything from a given segment 
together when generating the object file, the order in which 
information appears in the object file may not be the same as in 
the assembly language file. For example, if the data for a pro­
gram consisted of 

data I #segment l 
word Oxllll 
data 0 #segment 0 
long Oxffffffff 
data I #segment I 
byte Ox2222 

then equivalent object code would be generated by 

data 0 
long Oxffffffff 
word Oxllll 
word Ox2222 

5.6 Location Counters and Labels 

The assembler maintains separate location counters for the bss 
segment and for each of the text and data segments. The loca­
tion counter for a given segment is incremented by one for 
each byte generated in that segment. 

The location counters allow values to, be assigned to labels. 
When an identifier is used as a label in the assembly language 
input, the current value of the current location counter is 
assigned to the identifier. The assembler also keeps track of 
which segment the label appeared in. Thus, the identifier 
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represents a memory location relative to the beginning of a par­
ticular segment. 

5.7 Types 

Identifiers and expressions may have values of different types. 

• In the simplest case, an expression (or identifier) may 
have an absolute value, such as 29, -5000, or 262143. 

• An expression, or identifier, may have a value relative to 
the start of a particular segment. Such a value is known 
as a relocatable value. The memory location represented 
by such an expression cannot be known at assembly time, 
but the relative values, that is the difference between the 
start of a particular segment and the location of the 
expression or identifier, can be known if they refer to the 
same segment. 

• 
Identifiers that appear as labels have relocatable values. 

If an identifier is never assigned a value, it is assumed to 
be an undefined external. Such identifiers may be used 
with the expectation that their values will be defined in 
another program, and therefore are known at load time. 
However, the relative values of undefined externals can­
not be known. 

5.8 Expressions 

All constants are absolute expressions. 

An identifier may be thought of as an expression having the 
identifier's type. 

Expressions may be built up from lesser expressions using the 
/_..... operators + - "' and I according to the following type rules: 

• An absolute expression + another absolute expres­
sion results in an absolute expression. 
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• Either an absolute expression+ a relocatable expres­
sion OR A relocatable expression + an absolute 
expression will result in a relocatable expression. 

• Either an absolute expression + an undefined exter­
nal expression OR an undefined external expression 
+ an absolute expression will result in an undefined 
external expression. 

• An absolute expression - an absolute expression 
will result in an absolute expression. 

• A relocatable expression - a relocatable expression 
will result in an relocatable expression. 

• An undefined external expression - an absolute 
expression will result in an undefined external 
expression. 

• If two relocatable expressions are relative to the 
same segment, then: 

A relocatable expression - a relocatable expression 
will result in an absolute expression. 

However, use of this construction is dangerous, 
especially when dealing with identifiers from text 
segments. The problem is that the assembler will 
determine the value of the expression BEFORE it 
has resolved all questions about span-dependent 
optimizations. Use this feature at your own risk! 

• An absolute expression .. an absolute expression will 
result in an absolute expression. 

• An absolute expression I an absolute expression will 
result in an absolute expression. 

• The complement of an absolute expression is an 
absolute expression. 

The unary minus operator (-} takes the highest precedence; 
the next highest precedence is given to .. and I, and lowest 
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Parentheses may 

If the result of a division is a positive non-integer, it will be 
truncated toward zero. If the result is a negative non-integer, 
the direction of truncation cannot be guaranteed. 

6. Addressing 

The first word of an instruction, the "operation word," pro­
vides the name and size of the function to be performed. The 
remaining words specify the operands. 

Operand locations may be expressed in one of the following 
ways: 

• Register Specification 

• Effective Address 

0 Implicit Reference 

Most instructions specify the location of an operand using the 
Effective Address. 

The Effective Address is composed of two 3-bit fields 

1. the mode field, which selects the address mode for 
the instruction, and 

2. the register field, which contains the number of a 
register. 

The Effective Address modes are grouped into three catagories: 

1. Register direct, (Data register direct, and Address register 
direct) 

2. Memory addressing, (Address register indirect, address 
register indirect with postincrement, address register 
indirect with predecrement, address register indirect with 
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displacement, address register indirect with index) 

3. Special (Absolute short address, absolute long address, pro­
gram counter with displacement, program counter with 
index, immediate data) 

Implicit references are sometimes made to the program 
counter, system stack pointer, supervisor stack pointer, user 
stack pointer or the status register. The implicit references are 
clearly indicated in the instructions to which they apply. See 
Figure 6.4 for a complete list of the instructions available. 

In addressing memory, there are two classes of reference: 

1. Program references, which refer to the memory location of 
a program; and 

2. Data references, which refer to the memory location of 
data. 

ALL operand writes, and most reads, are to data space. 

6.1 Addressing Modes 

Although the addresses used in absolute addressing modes 
must eventually be filled in with constants, that can be done by 
the loader, there is no need for the assembler to be able to 
compute them. Therefore, the Absolute Long addressing mode 
is commonly used for accessing undefined external addresses. 

Figure 6.2 summarizes the as syntax for M68000 addressing 
modes. The following abbreviations are used in this figure: 

%an Address register, where n specifies the register number. 

d Displacement. 

%dn Data register, where n specifies the register number. 

pc Program Counter 
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%r n Any register, address or data, where n specifies the 
register number. 

%rl Any register, address or data, used as an index. 
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Notation Notation Effective 
for UnlPius+ for UniPius-+ Address 
Version 5.0 Version 5.2 Mode 

Dn %dn Data Register Direct 
An %an Address Register Direct 
(An) (%an) Address Register Indirect 
An@+ (%an)+ Address Register Indirect 

with Postincrement 
An@ (%an) Address Register Indirect 

with Predecrement 
An@(d) d(%a n) Address Register Indirect 

with Displacement 
(d is a signed 16-bit absolute displacement) 

An@(d,Ri.W) d(%a n,%ri.w) Address Register Indirect 
An@ (d,Ri.L) d(%a n,%rl.l) with Index 

(d signifies s signed 8-bit absolute displacement) 
xxx.W XXX Absolute Short Address 
(xxx is an expression yielding a signed 16-bit memory address) 
xxx.L XXX Absolute Long Address 

(xxx is an expression yielding a 32-bit memory address) 
PC@(d) d(%pc) Program Counter with 

Displacement 
(dis a signed 16-bit absolute displacement) 

PC@(d,Ri.W) d(%pc,%rn.w) Program Counter with 
PC@ (d,Ri.Ll d(%pc,%rn.l) lndex 

(d signifies a signed 8-bit absolute displacement) 

#xxx &xxx Immediate Data 
(xxx signifies an absolute constant expression) 

Figure 6.2. Effective Address Modes 
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7, Stacks and Queues 

The address register indirect postincrement and predecrement 
addressing modes provide the 68000 with stack and queue data 
structures. "A stack is a last-in-first-out (LIFO) list, a queue is 
a first-in-first-out (FIFO) list."• 

Many instructions use the system stack implicitly. The pro­
grammer may create user stacks and queues by using the 
appropriate addressing modes. 

7.1 System Stack 

The system stack pointer (sp or %a7) may be either the super­
visor stack pointer (ssp) or the user stack pointer (usp), 
depending on the state of the "S" bit (bit 15) of the status 
register. If the S bit indicates supervisor state is set to 1, the 
ssp is the active system stack pointer and the usp cannot be 
addressed as an address register. If the S bit is 0, the usp is the 

( active system stack pointer and the ssp cannot be addressed. 

Since the stack is filled from high to low, to "push" an item on 
the stack, use the -(Ssp) address mode. To "pull" an item 
from the stack, use the (sp)+ address mode. 

When a subroutine call is made, the program counter is saved 
on the active system stack, and it is restored when the return 
from subroutine call is made. When exception processing 
occurs, both the program counter and the status register are 
saved on the supervisor stack . 

• 1\161«100 16-bit 1\licroproce~sor u~er·s 1\lanual. page 22. 
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7.2 User Stacks 

User stacks may be filled either from high memory to low 
memory, or from low memory to high memory. The address 
register indirect with postincrement and predecrement address­
ing modes are used to create and manipulate these stacks. The 
following are some important points regarding these modes: 

• When using predecrement, remember that the register is 
decremented BEFORE its contents is used as the stack 
pointer. 

• When using postincrement remember that the register is 
incremented AFTER its contents is used as the stack 
pointer. 

• When mixing byte data with word and long word data, be 
careful to use bytes in pairs to assure even word boun­
daries. Remember, trying to address an odd word boun­
dary will cause exception processing to occur. 

• When implementing a stack from high memory to low 
memory, use the following: 

-(%ax) to "push" data onto the stack 
(%ax) to "pull" data off of the stack 

• When implementing a stack from low memory to hihg 
memory, use the following: 

( 0Jhax) to "push " data onto the stack 
- ( 0Jhax) to "pull" data off of the stack 

7.3 Queues 

The address register indirect with postincrement or predecre­
ment addressing modes are used to create and manipulate user 
queues. User queues can be created to grow from high 
memory to low memory or from low memory to high memory, 
just by the correct manipulation of these addressing modes. 
Two address registers are used as pointers for the queue func­
tions put and get. 
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To establish a queue from low to high memory, use the address 
r indirect with postincrement addressing mode. 

If the queue is to be implemented as a circular buffer, the 
address register should be checked BEFORE the get or put is 
performed. If necessary, adjust the address register by subtract­
ing the buffer length (in bytes). 

Queue growth from high to low memory is implemented with 
the address indirect with predecrement addressing mode. If the 
queue is to be implemented as a circular buffer, the address 
register should be checked AFTER the get or put is performed. 
If necessary, adjust the address register by adding the buffer 
length On bytes). 

8. Pseudo-Operations 

(__., 8.1 Data Initialization 

byte abs, abs, ... 

short abs, abs, ... 

One or more arguments, separated by 
commas, may be given. The values of 
the arguments are computed to produce 
successive bytes in the assembly output. 

One or more arguments, separated by 
commas, may be given. The values of 
the arguments are computed to produce 
successive 16-bit words in the assembly 
output. 

long expr, expr, ... One or more arguments, separated by 
commas, may be given. Each expression 
may be absolute, relocatable, or 
undefined external. A 32-bit quantity is 
generated for each such argument (for 
relocatable or undefined external expres­
sions, the value may not be filled in until 
load time). 

Alternatively, the arguments may be bit-
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field expressions. A bit-field expression 
has the form: 

n value 

where both n and value denote absolute 
expressions. The quantity n represents a 
field width~ the low-order n bits of value 
become the contents of the bit-field. Suc­
cessive bit-fields fill up 32-bit long quanti­
ties starting with the high-order part. If 
the sum of the lengths of the bit-fields is 
less than 32 bits, the assembler creates a 
32-bit long with zeroes filling out the 
low-order bits. For example, 

long4:-l, 16:0x7f, 12:0, 5000 

and 

long4:-l, 16:0x7f, 5000 

are equivalent to 

long0xf007fl)00, 5000 

Bit-fields may not span pairs of 32-bit 
longs. Thus, 

long24:0xa, 24:0xb, 24:0xc 

yields the same thing as 

longOxOOOOOaOO, OxOOOOObOO, OxOOOOOcOO 

space abs The value of abs is computed, and the 
resultant number of bytes of zero data is 
generated. For example, 
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8.2 Symbol Definition 

r set identifier, expr 

comm identifier, abs 

lcomm identifier, abs 

global identifier 

The value of identifier is set equal to 
expr, whkh may be absolute or relocat­
able. 

The named identifier is to be assigned 
to a common area of size abs bytes. If 
identifier is not defined by another 
program, the loader will allocate space 
for it. 

The type of identifier becomes 
undefined external. 

The named identifier is assigned to a 
local common of size abs bytes. This 
results in allocation of space in the bss 
segment. 

The type of identifier becomes relocat­
able. 

This causes identifier to be externally 
visible. If identifier is defined in the 
current program, then declaring it glo­
bal allows the loader to resolve refer­
ences to identifier in other programs. 

If identifier is not defined in the 
current program, the assembler expects 
an external resolution; in this case, 
therefore, identifier is global by 
default. 

8.3 Location Counter Control 

(_,.---. data abs The argument, if present, must evaluate to 0, l, 2, 
or 3; this shows the number of the data segment 
into which assembly is to be directed. If no argu­
ment is present, assembly is directed into data seg­
ment 0. 
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text abs The argument, if present, must evaluate to 0, I, 2, 
or 3; this shows the number of the text segment into 
which assembly is to be directed. If no argument is 
present, assembly is directed into text segment 0. 

Before the first data or text operation is encoun­
tered, assembly is by default directed into text seg­
ment 0. 

org I!Xf'l" The current location counter is set to expr. Expr 
must represent a value in the current segment, and 
must not be less than the current location counter. 

even The current location counter is rounded up to the 
next even value. 

8.4 Symbolic Debugging 

The assembler allows for symbolic debugging information to be 
placed into the object code file with special pseudo-operations. 
The information typically includes line numbers and informa­
tion about C language symbols, such as their type and storage 
class. The Motorola 68000 C compiler generates symbolic 
debugging information when the -g option is used. Assembler 
programmers may also include such information in source files. 

8.5 "file" and "In" 

The file pseudo-operation passes the name of the source file 
into the object file symbol table. It has the form 

file filename 

where filename consists of one to 14 characters. 

The In pseudo-operation makes a line number table entry in 
the object file. That is, it associates a line number with a 
memory location. Usually the memory location is the current 
location in text. The format is 

In line [,value] 
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where line is the line number. The optional value is the 
address in text, data, or bss to associate with the line number. 
The default when value is omitted (which is usually the case) is 
the current location in text. 

8.6 Symbol Attribute 

The basic symbolic testing pseudo-operations are def and endef. 
These operations enclose other pseudo-operations that assign 
attributes to a symbol and must be paired. 

defname 
. # Attribute 
. # Assigning 
. # Operations 

endef 

NOTE: def DOES NOT define the symbol, although it does 
create a symbol table entry. Because an undefined 
symbol is treated as external, a symbol that appears in 

( a def, but never acquires a value, will eventually 
result in an error at link edit time. 

NOTE: To allow the assembler to calculate the sizes of func­
tions for other tools, each def/endef pair that defines 
a function name must be matched by a def/endef pair 
after the function in which a storage class of -1 is 
assigned. 

The paragraphs below describe the attribute-assigning opera­
tions. Keep in mind that all these operations apply to symbol 
name that appeared in the opening def pseudo-operation. 

val expr 

sci expr 

Assigns the value expr to name. The 
type of the expression expr determines 
with which section name is associated. 
If value is-, the current location in the 
text section is u~d. 

Declares a storage class for name. The 
expression expr must yield an ABSO­
LUTE value that corresponds to the C 
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compiler's internal representation of 
storage class. The special value -1 
designates the physical end of a func-
t~n. -

type expr Declares the C language type of name. 
The expression expr must yield an 
ABSOLUTE value that corresponds to 
the C compiler's internal representa­
tion of a basic or derived type. 

tag str Associates name with the structure, 
enumeration, or union named str that 
must have already been declared with a 
def/endef pair. 

line e.qJr Provides the line number of name, 
where name is a block symbol. The 
expression expr should yield an ABSO­
LUTE value that represents a line 
number. 

size expr Gives a size for name. The expression 
expr must yield an ABSOLUTE value. 
When name is a structure or an array 
with a predetermined extent, expr 
gives the size in bytes. For bit fields, 
the size is in bits. 

dim cxprl, expr2, ... Indicates that name is an array. Each 
of the expressions must yield an 
ABSOLUTE value that provides the 
corresponding array dimensions. 

8. 7 Switch Table 

The MC68000 C compiler generates a compact set of instruc­
tions for the C language switch construct, of which an example 
is shown below. 
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sub.l&l,%d0 
cmp.l%d0,&4 
bhiL%21 
add.w%d0,%d0 
mov.wl0(%pc,%dO.w) ,%dO 
jmp6(%pc,%d0.w) 
swbeg&S 

L%22: 
shortL%15-L%22 
shortL%21-L%22 
shortL%16-L%22 
short L%21-L%22 
shortL%17-L%22 

ASSEMBLER 

The special swbeg pseudo-operation communicates to the 
assembler that the lines following it contain rei-rei subtractions. 
Remember that ordinarily such subtractions are risky because 
of span-dependent optimization. Here, however, the assembler 
makes special allowances for the subtraction because the com­
piler guarantees that both symbols will be defined in the current 
assembler file, and that one of the symbols is a fixed distance 
away from the current location. 

The swbeg pseudo-operation takes an argument that looks like 
an immediate operand. The argument is the number of lines 
that follow swbeg and that contain switch table entries. Swbeg 
inserts two words into text. The first is the ILLEGAL instruc­
tion code. The second is the number of table entries that fol­
low. The Motorola 68000 disassembler needs the ILLEGAL 
ihstruction as a hint that what follows is a switch table. Other­
wise it would get confused when it tried to decode the table 
entries (differences between two symbols) as instructions. 

9, Span-Dependent Optimization 

The assembler makes certain choices about the object code it 
generates based on the distance between an instruction and its 
operand(s). Choosing the smallest, fastest form is called span­
dependent optimization. Span-dependent optimization occurs 
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most obviously in the choice of object code for branches and 
jumps. It also occurs when an operand may be represented by 
the program counter relative address mode instead of an abso­
lute 2-word (long) address. 

The span-dependent optimization capability is normally 
enabled; the - n command line flag disables it. When this 
capability is disabled, the assembler makes worst-case assump­
tions about the types of object code that must be generated. 

The compiler generates branch instructions without a specific 
offset size. When the optimizer is used, it identifies branches 
that could be represented by the short form and it changes the 
operation accordingly. The assembler chooses only between 
long and very-long representation for branches. 

Branch instructions, (e.g., bra, bsr, bgt, etc.), can have either a 
byte or a word pc-relative address operand. A byte-size 
specification should be used only when the user is sure that the 
address intended can be represented in the byte allowed. The 
assembler will take one of these instructions with a byte size 
specification and generate the byte form of the instruction 
without asking questions. 

Although the largest offset specification allowed is a word, large 
programs could conceivably have need for a branch to a loca­
tion not reachable by a word displacement. Therefore, 
equivalent long forms of these instructions might be needed. 
When the assembler encounters a branch instruction without a 
size specification, or with a word size specification, it tries to 
choose between the long and very long forms of the instruc­
tion. If the operand can be represented in a word, then the 
word form of the instruction will be geperated. Otherwise the 
very-long form will be generated. For unconditional branches, 
(e.g., br, bra and bsr), the very-long form is just the equivalent 
jump (jmp and jsr) with an absolute address operand (instead 
of pc-relative). 
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For conditional branches, the equivalent very-long form is a 
conditional branch around a jump, where the conditional test 
has been reversed. 

Figure 6.1 summarizes span-dependent optimizations. The 
assembler chooses only between the long form and very-long 
form, while the optimizer chooses between the short and long 
forms for branches (but not bsr). 

INSTRUCTION SHORT LONG VERY 
FORM FORM LONG 

FORM 

br, bra, bsr byte offset word offset jmp or jsr 
with abso-
lute long 
address 

conditional byte offset word offset short condi-
branch tiona! 

branch with 
reversed 
condition 
around jmp 
with abso-
lute long 
address 

jmp, jsr - pc-relative absolute 
address long address 

lea.l, pea.l - pc-relative absolute 
address long address 

Figure 6.3. Assembler Span-Dependent Optimizations 

6-33 



ASSEMBLER 

10. Machine Instructions 

Figure 6.4 shows how MC68000 instructions should be written 
to be understood correctly by the as assembler. In addition to 
the abbreviations previously described for Figure 6.2 "Effective 
Address Modes," the following abbreviations are used in the 
following figure: 

CC In the contexts bn·, dbn· and sec, the letters n· 
represent any of the following condition code designations 
(except that F and T may not be used in the b('C instruc­
tion): 

cc carry clear LS low or same 
cs carry set LT less than 
EQ equal MI minus 
F false NE not equal 

GE greater or equal PL plus 

GT greater than T true 
HI high vc overflow clear 
LE less or equal vs overflow set 

ccr Condition Code Register {the low 8 bits of the Status 
register) 

EA Effective Address 

sr Status Register. 

ssp Supervisor Stack Pointer. 

usp User Stack Pointer. 
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Chapter 7 

LD 

THE COMMON LINK EDITOR 

1. Introduction 

The link editor (see ld(l), in the UniPlu~+ flo User Manual) 
creates executable object files by combining object files, per­
forming relocation, and resolving external references. The ld 
also processes symbolic debugging information. The inputs to 
ld are relocatable object files produced either by the compiler 
[cc(l)], the assembler [as(l)], or by a previous ld run. The ld 
combines these object files to form either a relocatable or an 
absolute (i.e., executable) object file. 

The ld also supports a command language that allows users to 
control the ld process with great flexibility and precision. 
Although the link edit process is controlled in detail through 
use of this language (described later), most users do not 
require this degree of flexibility, and the manual page in the 
UniP/w,+ User Manual is sufficient instruction in the use of this 
command. 

The command language (described later) supports the ability to 

• Specify the memory configuration of the machine 

• Combine object file sections in particular fashions 

• Cause the files to be bound to specific addresses or 
within specific portions of memory 

• Define or redefine global symbols at link edit time. 

There are several concepts and definitions with which you 
should familiarize yourself before proceeding further. 
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1.1 Host and Target 

In a cross-compilation system, the host machine is the machine 
on which the link editor is running, and the target machine is 
the machine on which the output object file will run. For 
instance, the bl6 link editor will run on the PDPH'-11/70, 
VAX~~~ or 3820$'1~1 machines, but the object file will run only 
on the target machine for the bl6 - the Intel 8086. 

On a native UNIXHI system, the host and the target are the 
same. That is, the link editor on a VAX or PDP-11/70 pro­
duces an object file that is executable on that machine. 

1.2 Memory Configuration 

The virtual memory of the target machine is, for purposes of 
allocation, partitioned into conjigured and unconjigurecl memory. 
The default condition is to treat all memory as configured. It is 
common with microprocessor applications, however, to have 
different types of memory at different addresses. For example, 
an application might have 3K of PROM (Programmable Read­
Only Memory) beginning at address 0, and 8K of RAM 
(Read-Only Memory) starting at 20K. Addresses in the range 
3K to 20K-l are then NOT configured. Unconfigured memory 
is treated as reserved or unusable by the ld. 

NOTHING CAN EVER BE LINKED INTO UNCONFIG­
URED MEMORY. 

Thus, specifying a certain memory range to be unconfigured is 
one way of marking the addresses in that range as illegal or 
nonexistent with respect to the linking process. Memory 

PDP and VAX are trademarks of Digital Equipment Corporation. 
UNIX and 38205 arc trademarks of AT&T Bell Laboratories. 
UniPlus+ is a registered trademark of UniSoft Corporation. 
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configurations other than the default must be explicitly 
specified. 

Unless otherwise specified, all discussion in this document of 
memory, addresses, etc. are with respect to the configured sec­
tions of the address space. 

1.3 Section 

A section of an object file is the smallest unit of relocation and 
must be a contiguous block of memory. A section is identified 
by a starting address and a size. Information describing all the 
sections in a file is stored. in section headers at the start of the 
file. Sections from input files are combined to form output sec­
tions that contain executable text, data, or a mixture of both. 
Although there may be holes or gaps between input sections 
and between output sections, storage is allocated conliJ(uous/y 
within each output section and may not overlap a hole in 
memory. 

1.4 Addresses 

The physical address of a section or symbol is the relative offset 
from address zero of the address space. The physical address 
of an object is not necessarily the location at which it is placed 
when the process is executed. For example, on a system with 
paging, the address is with respect to address zero of the virtual 
space, and the system performs another address translation. 

l.S Binding 

It is often necessary to have a section begin at a specific, 
predefined address in the address space. The process of speci­
fying this starting address is called binding, and the section in 
question is said to be bound to or bound at the required address. 
While binding is most commonly relevant to output sections, it 
is also possible to bind global symbols with an assignment state­
ment in the ld command language. 
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1.6 Regions 

Regions are currently used only in the link editor for the intel 
8086 - the bl6 instantiation of the common link editor. A 
region refers to a range of memory that begins with a virtual --~ 
address of zero. On the Intel 8086, an address really has two 
components, a base as indicated by a segment register and a 
16·bit o.t!Set. For any memory reference, the contents of one of 
the four segment registers is added to the o.USer to form an 
address. Segment registers are set to the base address of a 
region, and all references in the text are resolved with respect 
to the 1•irtua/ address. 

For example, in the simplest case of a single region where 
everything is loaded between 0 and 64k, the virtual addresses 
of all symbols are the same as their physical addresses, and 
both the text and data segment registers are set to the region 
origin. If, on the other hand, an application has 50k of data 
and 20k of text, they can form two regions, one at address 0 
and the other at 20k. If a global symbol, gsymbol, was defined 
at address 20k+2, and a C program contained the statement: 

a = gsymbo/ 

where a is an automatic variable, the virtual address of K~:vmbol 
would be 2. The link editor always allows an arbitrary number 
of regions. Relocation is performed only with one region, the 
code must modify the segment registers. This is done automat~ 
ically if the program uses a transfer vector for function linkage. 
If a transfer vector is not used, segment registers must be set 
explicitly by the user before doing any inter~region transfers. 

There are three restrictions on regions: 

1. The first is that they must begin at an address aligned to a 
16~byte boundary; that is, the low four bits of the address 
MUST be 0. For example, 0, 16, 32, etc. are valid region 
origins. 
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region begins at Oxl2000, the segment register will con· 
tain Ox1200. 

(' 2. The second restriction is that regions may not exceed 64k 
in size, or else there can be no direct references to ~· 

r 

r 
' -

addresses beyond 64k into the region. 

3. The third restriction is that the physical memory assigned 
to user-specified regions may not overlap. 

1. 7 Object File 

Object files are produced both by the assembler (typically as a 
result of calling the compiler) and by the ld. The ld accepts 
relocatable object files as input and produces an output object 
file that may or may not be relocatable. Under certain special 
circumstances, the input object files given to the ld can also be 
absolute files. 

Files produced from the compHer/assembler always contain 
three sections: 

• 

• 

.text 
The .text section contains the instruction text (for 
example, executable instructions) . 
. data 
The .data section contains initialized data variables. 

• .bss 
The .bss section contains uninitialized data vari­
ables. 

For example, if a C program contained the following global 
(i.e., not inside a function) declarations: 

tnt I - 100; 
char abc:llOOI; 

and the following assignment: 

abclil - 0; 

then compiled code from the C assignment is stored in .text. 
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The variable i is located in .data, and abc is located in .bss. 

There is an exception to the rule however - both initialized 
and uninitialized statics are allocated into the .data section. ---
(The value of an uninitialized static in a .data section is zero.) 
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2. Using the Link Editor 

To use the link editor, give the following command: 

ld [options] filename I filename2 ... 

Files passed to the ld must be object files, archive libraries con­
taining object files, or text source files containing ld directives. 
The ld uses the magic number (in the first two bytes of the file) 
to determine which type of file is encountered. If the ld does 
not recognize the magic number, it assumes the file is a text 
file containing ld directives and attempts to parse it. 

Input object files and archive libraries of object files are linked 
toE:ether to form an output object file. If there are no 
unresolved references, this file is executable on the target 
machine. An input file containing directives is referred to as an 
Uile in this document. Object files have the form name.o 

,~ throughout the examples in this chapter. The names of actual 
,_____ input object files need not follow this convention. 

If you merely want to link the object files filel.o and file2.o, the 
following command is sufficient: 

ld filel.o file2.o 

No directives to the ld are needed. If no errors are encoun­
tered during the link edit, the output is left on the default file 
a.out. The sections of the input files are combined in order. 
That is, if filel.o and file2.o each contain the standard sections 
.text, .data, and .bss, the output object file also contains these 
three sections. The output .text section is a concatenation of 
.text from filel.o and .text from file2.o. The .data and .bss sec­
tions are formed similarly. The output .text section is then 
bound at address OXOOOOOO. The output .data and .bss sec­
tions are link edited together into contiguous addresses (the 
particular address depending on the particular processor). 
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Instead of entering the names of files to be link edited (as well 
as ld options on the ld command line), this information can be 
placed into an ifile, and just the ifile passed to ld. For example, 
if you are going to frequently link the object files filel.o, file2.o 
and file3.o with the same options f1 and f2, enter the command 

ld -}1 -jl filel.o file2.o file3.o 

each time it is necessary to invoke ld. Alternatively, an ifile 
containing the statements: 

-j1 
-j2 

filel.o 
file2.o 
file3.o 

could be created. Then the use the folloiwing command: 

ld !file 

Note that it is perfectly permissible to specify some of the 
object files to be link edited in the ifile and others on the com­
mand line - as well as some options in the ifile and others on 
the command line. Input object files are link edited in the 
order they are encountered, whether this occurs on the com· 
mand line or in an ifile. As an example, if a command line 
were 

ld filel.o ifile file2.o 

and the ifile contained 

file3.o 
file4.o 

then the order of link editing would be: 

1. filel.o 

2. file3.o 

3. file4.o, 
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4. file2.o. 
Note from this example that an ifile is read and processed ,r immediately upon being encountered in the command line. 

r 
' 

2.1 Options 

Options may be interspersed with file names both on the com­
mand line and in an ifile. The ordering of options is not 
significant, except for the l and L options for specifying 
libraries. The I option is a shorthand notation for specifying an 
archive library, and an archive library is just a collection of 
object files. Thus, as is the case with any object file, libraries 
are searched as they are encountered. The L specifies an alter­
native directory for searching for libraries. Therefore, to be 
effective, a - L option MUST appear before any -I options. 

All options for ld must be preceded by a hyphen (-) whether 
in the ifile or on the ld command line. Options that have an 
argument (except for the -I and - L options) are separated 
from the argument by white space (blanks or tabs). The fol­
lowing options (in alphabetical order) are supported, though 
not all options are available on each processor. 

-a 

-e ss 

-f bb 

7·9 

Produces an absolute, excutable file. Messages are 
issued when undefined symbols are found, and 
several special symbols are defined. Unless overrid­
den by the -r option, relocation information is 
stripped from the output file. If neither -r or -a 
is specified, the -a is assumed. 

Defines the primary entry point of the output file to 
be the symbol given by the argument ss. See 
"Changing the Entry Point" under the Section 
heading "Notes and Special Considerations" for a 
discussion of how the option is used. 

Sets the default fill value. The argument bb is a 2-
byte constant. This value is used to fill holes 
formed within output sections. Also, it is used to 
initialize input .bss sections when they are combined 
with other non-.bss input sections. If the -f 
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-h nn 

-I 

-lid 

-lx 

-m 

-o nn 

-p Ill/ 
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option is not used, the default fill value is zero for 
all sections except the .tv section, whose default fill 
value is OxFFFF. 

Set the size of the optional header in the output file 
to be nn bytes. The argument nn is an integer con­
stant. If the - h option is not used, the optional 
header will be 0 length. Any part of the option! 
header not assigned a value (as a result of using the 
-p or -X options) will be cleared to 0. 

Generate separate I and D spaces, allowing 64k of 
instructions and 64k of data, each in a separate 
region. The default is· to have only one address 
space or region. If there are REGIONS directives in 
the ifile, they will override the setting of the - i 
option. This option is valid only for those instantia­
tions of the link editor that allow regions (i.e. bl6), 
all other versions ignore it. 

Generate the sections reserved for use by the incre­
mental link editor. This option invokes both -r 
and -a options. 

Specifies an archive library file as ld input. The 
argument is a character string (less than 10 charac­
ters) immediately following the -1 without any 
intervening white space. As an example, -I c refers 
to Jibe. a, -I C to libC.a, etc. The given archive 
library must contain valid object files as its 
members. 

Produces a map or listing of the input/output sec­
tions (including holes) on the standard output. 

Name the output object file. The argument m1 is the 
name of the UNIX system file to be used as the out­
put file. The default output object file name is 
a.our. The option m1 can be a full or partial UNIX 
path name. 

Generates a patch list. This list is generated in the 
optional header field of the output file, following 
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-r 

-s 

-t 

anything built as a result of the - e, - h or -X 
options. If the optional argument 1m is used, only 
nn bytes of physical memory will be allocated for 
patch sections. This conserves memory usage while 
retaining the ability to later increase patch sections 
to the size specified in the relevant SECTIONS 
directive. 

Retains relocation entries in the output object file. 
Relocation entries must be saved if the output file is 
to be used as an input file in a subsequent ld call. If 
the -r option is used, unresolved references do not 
prevent the creation of an output object file. 

Strips line number entries and symbol table informa­
tion from the output object file. Relocation entries 
(-r option) are meaningless without the symbol 
table, hence use of -s precludes the use of -r. All 
symbols are stripped, including global and undefined 
symbols. 

Disables checking that all instances of a multiply 
defined symbol are the same size. 

-tv Use the transfer vector linkage convention. When 

-u sym 

-tv is specified, all input object files must have 
been compiled/assembled using the -tv option. 
This option is valid only for the instantiations of the 
common link editor that allow transfer vectors. 
(i.e., 3bld, bl6ld, x86ld and mc681d). 

Introduces an unresolved external symbol into the 
output file's symbol table. The argument sym is the 
name of the symbol. This is useful for linking 
entirely from a library, since initially the symbol 
table is empty and an unresolved reference is 
needed to force the linking of an initial routine from 
the library. 

-x Does not preserve any local {non-global) symbols in 
the output symbol table; enter external and static 
symbols only. This option saves some space in the 
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-z 

-8 nn 

-F 

-H 

-Ldir 

output file. 

Do not place anything in address zero. This is used 
to catch references through null pointers. This 
option is overridden if any section or memory direc­
tives are used. 

Generates "pad" output sections. The length of 
each section will be ""bytes. 

Perform alignment necessary for demand paging. 
Sections will be aligned on stricter boundaries in the 
address space. Sections will be blocked in the out­
put file so that they begin on file system block boun­
daries. Also the magic number 0413 will be stored 
in the UNIX header. 

Changes the type of all global symbols to static. 
This option can be used to hide symbols since static 
symbols have different accessing rules from global 
symbols. 

Changes the algorithm for searching for libraries to 
look in dir before looking in the default location. 
This option is for ld libraries as the -I option is for 
compiler #include files. The -L option is useful for 
finding libraries that are not in the standard library 
directory. To be useful, this option MUST appear 
before the -1 option. 

-M Prints a warning message for all external variables 
that are multiply defined. 

- N Places the data section immediately following the 
text section in memory and stores the magic number 
0407 in the header. This prevents the text from 
being shared (the default). 

-S Requests a silent ld run. All error messages result­
ing from errors that do not !~mediately stop the ld 
run are suppressed. 

-V Prints, on the standard error output a version id 
identifying the ld being run. 
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-VS num Takes num as a decimal version number identifying 
the a.out file that is produced. The version stamp is 
stored in the system header. This option is NOT 
directly recognized by the compiler (cc), so you 
have to use the - W option to pass the version 
number to the link editor. For example: 

-WI,-VSnum 
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3. Link Editor Command Language 

3.1 Expressions 

Expressions may contain global symbols, constants, and most of 
the basic C language operators (see the last section of this 
document entitled "Syntax Diagram for Input Directives"). 
Constants are as in C with a number recognized as decimal 
unless preceded with 0 for octal or Ox for hexadecimal. 

ALL NUMBERS ARE TREATED AS LONG INTS. 

Symbol names may contain uppercase or lowercase letters, 
digits, and the underscore ("_"). Symbols within an expres­
sion have the value of the address of the symbol ONLY. The 
ld does not do symbol table lookup to find the contents of a 
symbol, the dimensionality of an array, structure elements 
declared in a C program, etc. 

The ld uses a lex-generated input scanner to identify symbols, 
numbers, operators, etc. The current scanner design makes the 
following names reserved and unavailable as symbol names or 
section names: 

ALIGN DSECT MEMORY PHY SECTIONS 
ASSIGN GROUP NOLO AD RANGE SPARE 
BLOCK LENGTH ORIGIN REGION TV 

align group length origin spare 
assign I 0 phy 
block len org range 

The operators that are supported, in order of precedence from 
high to low, are shown in Figure 7.1: 
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SYMBOL 

! - -(UNARY Minus) 

• I % 

+ (BINARY Minus) 

>> << 
!- > < < > 

& 
I 
&& 
II 

+ - ·- I 

Figure 7.1. Symbols and Functions of Operators 

The above operators have the same meaning as in the C 
language. Operators on the same tine have the same pre­
cedence. 

3.2 Assignment Statements 

External symbols may be defined and assigned addresses via the 
assignment statement. The syntax of the assignment statement 
is 

symbol = expression; 

or 

symbol op= expression; 

where op is one of the operators+,-, "'• or/. 

Assignment statements MUST be terminated by a semicolon. 
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All assignment statements (with the exception of the one case 
described in the following paragraph) are evaluated after alloca­
tion has been performed. This occurs after all input-file­
defined symbols are appropriately relocated but before the 
actual relocation of the text and data itself. Therefore, if an 
assignment statement expression contains any symbol name, 
the address used for that symbol in the evaluation of the 
expression reflects the symbol address in the output object .file. 
References within text and data (to symbols given a value 
through an assignment statement) access this latest assigned 
value. Assignment statements are processed in the same order 
in which they are input to ld. 

Assignment statements are normally placed outside the scope of 
section-definition directive (see "Section Definition Directive" 
under "Link Editor Command Language"). However, there 
exists a special symbol, called • , that can occur only within a 
section-definition directive. This symbol refers to the current 
address of the ld's location counter. Thus, assignment expres­
sions involving . are evaluated during the allocation phase ofld. 
Assigning a value to the • symbol within a section-definition 
directive increments/resets !d's location counter and can create 
holes within the section, as described in "Section Definition 
Directives". Assigning the value of the • symbol to a conven­
tional symbol permits the final allocated address (of a particular 
point within the link edit run) to be saved. 

Align is provided as a shorthand notation to allow alignment of 
a symbol to an n-byte boundary within an output section, where 
n is a power of 2. For example, the expression 

align(n) 

is equivalent to 

(. + n - I) &-(n - I) 

Link editor expressions may have either an absolute or a relo­
catable value. When the ld creates a symbol through an 
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assignment statement, the symbol's value takes on that type of 
expression. That type depends on the following rules: 

• An expression with a single relocatable symbol (and 
zero or more constants or absolute symbols) is relo­
catable. The value is in relation to the section of 
the referenced symbol. 

• All other expressions have absolute values. 

3.3 Specifying a Memory Configuration 

MEMORY directives are used to specify 

l. The total size of the virtual space of the target machine. 

2. The configured and unconfigured areas of the virtual 
space. 

If no directives are supplied, the ld assumes that all memory is 
configured. The size of the default memory is dependent upon 
the target machine. 

By means of MEMORY directives, an arbitrary name of up to 
eight characters is assigned to a virtual address range. Output 
sections can then be forced to be bound to virtual addresses 
within specifically named memory areas. Memory names may 
contain uppercase or lowercase letters, digits, and the special 
characters "$," "." or "-". Names of memory ranges are 
used by ld only and are not carried in the output file symbol 
table or headers. 

When MEMORY directives are used, all virtual memory not 
described in a MEMORY directive is considered to be 
unconfigured. Unconfigured memory is not used in the !d's 
allocation process, and hence nothing, can be link edited, 
bound, or assigned to any address within· unconfigured memory. 

As an option on the MEMORY directive, artributes may be 
associated with a named memory area. This restricts the 
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memory areas (with specific attributes) to which an output sec· 
tion can be bound. The attributes assigned to output sections 
in this manner are recorded in the appropriate section headers 
in the output file to allow for possible error checking in the 
future. For example, putting a text section into writable 
memory is one potential error condition. Currently, error 
checking of this type is not implemented. 

The attributes currently accepted are 

1. R: readable memory. 

2. W :writable memory. 

3. X : executable, i.e. instructions may reside in this 
memory. 

4. I : initializable, i.e. stack areas are typically not initialized. 

Other attributes may be added in the future if necessary. If no 
attributes are specified on a MEMORY directive or if no 
MEMORY directives are supplied, memory areas assume the 
attributes of W, R, I, and X. 

The syntax of the MEMORY directive is 

MEMORY 
{ 

namel (attr) origin nl, length - n2 
name2 (attr) origin nl, length - n4 
etc. 

The keyword origin (or org or o) must precede the origin of a 
memory range, and length (or len or I) must precede the 
length as shown in the above prototype. The origin operand 
refers to the virtual address of the memory range. Origin and 
length are entered as long integer constants in either decimal, 
octal, or hexadecimal (standard C syntax). Origin and length 
specifications, as well as individual MEMORY directives, may 
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be separated by white space or a comma. 

By specifying MEMORY directives, the ld can be told that 
memory is configured in some manner other than the default. 
For example, if it is necessary to prevent anything from being 
linked to the first OxlOOOO words of memory, a MEMORY 
directive can accomplish this. 

MEMORY 
I 

valid org 

3.4 Region Directives 

OxiOOOO, len OxFEOOOO 

Region specifications are used when more than one address 
space or region is to be defined. The syntax of this directive is 
very similar to memory configuration specifications. An arbi­
trary name may be assigned to a region, and this name will only 
be used if a section is to be loaded into the region. Origin and 
length specifications are exactly like those on the MEMORY 
directive. Attributes may not be assigned to a region, since the 
region takes the physical attributes of the physical memory of 
the region. In addition to the origin and length specification, an 
optional virtual address may be assigned to the beginning of a 
region. The physical memory within a user's regions may not 
overlap, but the virtual spaces of regions may have to overlap 
in some cases. The virtual address is given by assigning a value 
to ''. '', much like changing the location counter in a section. 

The syntax is: 
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For example, if initialized data is stored in ROM and then 
copied into RAM during execution, the beginning of ROM 
should have the same virtual address as the place in RAM to 
which the copy is being made. lf that virtual address is Ox3000 ~­

and the physical address of the ROM is Ox9000, then the vir-
tual zero of the region is at physical address Ox6000 through 
Ox8FFF could not be used normally. Note that the virtual zero 
of a region should always correspond to a physical address that 
is divisible by 16, otherwise the region is not valid region for 
the 8086. 

REGIONS 
{ 

r: o 
} 

Ox9000, 1 Ox2000, . Ox3000 

If a transfer vector is not being used, one region is assumed 
unless REGIONS specification are given or the - i option is 
used. If a transfer vector is used, the link editor combines 
.data and .bss into a single region and creates a region for 
every other output section. Because each text section can 
validly be a region and the .data and .bss sections MUST be in 
the same region, users are strongly discouraged from using 
REGIONS with a transfer vector. The REGIONS specification 
overrides the default behavior, and the user assumes full 
responsibility for placing sections in the appropriate places. The 
-i option is meaningless for transfer vectors. 

3.5 Section Definition Directives 

The purpose of the SECTIONS directive is to describe how 
input sections are to be combined, to direct where to place out­
put sections (both in relation to each other and to the entire 
virtual memory space), and to permit the renaming of output 
sections. 

In the default case where no SECTIONS directives are given, 
all input sections of the same name appear in an output section 
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of that name. For example, if a number of object files from 
the compiler are linked, each containing the three sections 
.text, .data and .bss. The output object file also contains three 
sections, .text, .data and .bss. If two object files are linked 
(one that contains sections sl and s2 and the other containing 
sections s3 and s4), the output object file contains the four sec­
tions sl, s2, s3, and s4. The order of these sections would 
depend on the order in which the link editor sees the input 
files. 

The basic syntax of the SECTIONS directive is 

SECTIONS 
{ 

etc. 
} 

secnamel 
{ 

file_ specifications, 
assignment_statements 

secname2 : 
{ 

file_ specifications, 
assignment_ statements 

The various types of section definition directives are discussed 
in the remainder of this section. 

3.5.1 File Specifications 

Within a section definition, the files and sections of files to be 
included in the output section are listed in the order in which 
they are to appear in the output section. Sections from an 
input file are specified by 

filename ( secname ) 

or 
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filename ( secnam 1 secnam2 . . . ) 

Sections of an input file are separated either by white space or 
commas as are the file specifications themselves. 

If a file name appears with no sections listed, then all sections 
from the file are linked into the current output section. For 
example, 

SECTIONS 
I 

outsecl: 
I 

filel.o {secl) 
file2.o 
file3.o (secl, sec2) 

The order in which the input sections appears in the output sec­
tion outsecl is given by 

1. Section sect from file filel.o 

2. All sections from file2.o, in the order they appear in the 
file 

3. Section secl from file file3.o, and then section sec2 from 
file file3.o 

If there are any additional input files that contained input sec­
tions also named outsecl, these sections are linked following 
the last section named in the definition of outsecl. If there are 
any other input sections in fileLo or file3.o, they will be placed 
in output sections with the same names as the input sections. 

3.5.2 Load a Section at a Sp«ified Address 

Bonding of an output section to a specific virtual address is 
accomplished by an ld option as shown on the following 
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SECTIONS directive example: 

(' SECTIONS 
, I 

r 

outsec addr: 
I 

etc. 

The addr is the bonding address expressed as a C constant. If 
outsec does not fit at addr (perhaps because of holes in the 
memory configuration or because outsec is too large to fit 
without overlapping some other output section), ld issues an 
appropriate error message. 

So long as output sections do not overlap and there is enough 
space, they can be bound anywhere in configured memory. 
The SECTIONS directives defining output sections need not be 
given to ld in any particular order. 

The ld does not ensure that each section's size consists of an 
even number of bytes or that each section starts on an even 
byte boundary. The assembler ensures that the size (in bytes) 
of a section is evenly divisible by 4. The ld directives can be 
used to force a section to start on an odd byte boundary 
although this is not recommended. If a section starts on an odd 
byte boundary, the section's contents are either accessed 
incorrectly or are not ~xecuted properly. When a user specifies 
an odd byte boundary, the ld issues a warning message. 

3.5.3 Aligning an Output Section 

It is possible to request that an output section be bound to a 
virtual address that falls on an n-byte boundary, where n is a 
power of 2. The ALIGN option of the SECTIONS directive 
performs this function, so that the option 
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ALIGN(n) 

is equivalent to specifying a bonding address of 

( . + n - I) &-(n - I) 

For example 

SECTIONS 
I 

outsec ALIGN(Ox20000) 
I 

} 
etc. 

The output section outsec is not bound to any given address 
but is linked to some virtual address that is a multiple of 
Ox20000 (e.g., at address OxO. Ox20000, Ox40000, Ox60000, 
etc.). 

3.5.4 Grouping Sections Together 

The default allocation algorithm for ld is: 

1. Links all input .text sections together into one output sec­
tion. This output section is called .text and is bound to 
an address of OxO. 

2. Links all input .data sections together into one output 
section. This output section is called .data and is bound 
to an address aligned to a machine dependent constant. 

3. Links all input .bss sections together into one output sec­
tion. This output section is called .bss and is allocated so 
as to immediately follow the output section .dat•. Note 
that the output section .bss is not given any particular 
address alignment. 

Specifying any SECTIONS directives results in this default allo­
cation not being performed. 
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The default allocation of ld is equivalent to supplying the fol­
lowing directive: 

SECTIONS 
I 

.text : I } 
GROUP ALIGN( align_value ) 
I 

.data : { } 

.bss : { } 

where align_ value is a machine dependent constant. The 
GROUP command ensures that the two output sections, .data 
and .bss, are allocated (e.g., grouped) together. Bonding or 
alignment information is supplied only for the group and not 
for the output sections contained within the group. The sec­
tions making up the group are allocated in the order listed in 
the directive. 

If .text, .data and .bss are to be placed in the same segment, 
the following SECTIONS directive is used: 

SECTIONS 
{ 

GROUP 
{ 

.text { } 

.data : { } 

.bss :{} 

Note that there are still three output sections (.text, .data, and 
.bss), but now they are allocated into consecutive virtual 
memory. 

This entire group of output sections could be bound to a start­
ing address or aligned simply by adding a field to the GROUP 
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directive. To bind to OxCOOOO, use 

GROUP OxCOOOO : 

To align to OxlOOOO, use 

GROUP ALIGN(Ox!OOOO) : I 

With this addition, first the output section .text is bound at 
OxCOOOO (or is aligned to OxlOOOO); then the remaining 
members of the group are allocated in order of their appearance 
into the next available memory locations. 

When the GROUP directive is not used, each output section is 
treated as an independent entity: 

SECTIONS 
I 

.text : I l 

.data ALIGN(Ox20000) I } 

.bss : I l 

The .text section starts at virtual address OxO and the .data sec­
tion at a virtual address aligned to Ox20000. The .bss section 
follows immediately after the .text section IF THERE IS 
ENOUGH SPACE. If there is not, it follows the .data section. 

The order in which output sections are defined to the ld CAN­
NOT be used to force a certain allocation order in the output 
file. 

3.5.5 Creating Holes Within Output Sections 

The special symbol dot (". ") appears only within section 
definitions and assignment statements. When it appears on the 
left side of an assignment statement, • causes the ld's location 
counter to be incremented or reset and a hole left in the output 
section. 
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Holes built into output sections in this manner take up physical 
space in the output file and are initialized using a fill character 
(either the default fill character (OxOO) or a supplied fill charac­
ter). See the definition of the -f option in "Using the Link 
Editor" and the discussion of filling holes in "Initialized Sec­
tion Holes or .bss Sections" under "Link Editor Command 
Language." 

Consider the following section definition: 

outsec: 
- { 

. +- OxlOOO; 
fl.o <.text) 
. +- OxlOO; 
f2.o <.text) 

align (4); 
f3.o <.text) 

The effect of this command is as follows: 

1. A OxlOOO byte hole, filled with the default fill character, is 
left at the beginning of the section. Input file ft.o<.text) 
is linked after this hole. 

2. The text of input file f2.o begins at OxiOO bytes following 
the end of fl.o(&.text). 

3. The text of f3.o is linked to start at the next full word 
boundary following the text of f2.o with respect to the 
beginning of outsec. 

For the purposes of allocating and aligning addresses within an 
output secrion, the Id treats the output section as if it began at 
address zero. As a result, if, in the above example, outsec ulti­
mately is linked to start at an odd address, then the part of 
outsec built from f3.oCtext) also starts at an odd address-even 
though f3.oCtext) is aligned to a full word boundary. This is 
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prevented by specifying an alignment factor for the entire out­
put section. 

outsec ALIGN(4) : { 

It should be noted that the assembler, as, always pads the sec­
tions it generates to a full word length making explicit align­
ment specifications unnecessary. This also holds true for the 
compiler. 

Expressions that decrement "." are illegal. For example, sub­
tracting a value from the location counter is not allowed since 
overwrites are not allowed. The most common operators in 
expressions that assign a value to " " are "+ =" and 
"align.'' 

3.5.6 Creating and Defining Symbols at Link-Edit 
Time 

The assignment instruction of the ld can be used to give sym­
bols a value that is link-edit dependent. Typically, there are 
three types of assignments: 

1. Use of "." to adjust ld's location counter during alloca­
tion 

2. Use of "." to assign an allocation-dependent value to a 
symbol 

3. Assigning an allocation-independent value to a symbol. 

The first case has already been discussed in the previous sec­
tion. 

The second case provides a means to assign addresses (known 
only after allocation) to symbols. For example 
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SECTIONS 
[ 

outscl: [ ... ) 
outsc2: 
[ 

filel.o (sl) 
s2 start ~ . 
file2.o (s2l 
s2_end - I· 

' 

The symbol s2 start is defined to be the address of file2.o(s2), 
and s2_end is the address of the last byte of file2.o(s2). 

Consider the following example: 

SECTIONS 
[ 

outscl: 
[ 

filel.o (.data) 
mark - .; 
. +- 4; 
file2.o (.data) 

In this example, the symbol mark is created and is equal to the 
address of the first byte beyond the end of filel.o's .data sec­
tion. Four bytes are reserved for a future run-time initializa­
tion of the symbol mark. The type of the symbol is a long 
integer (32 bits). 

Assignment instructions involving • must appear within SEC­
TIONS definitions since they are evaluated during allocation. 
Assignment instructions that do not involve . can appear within 
SECTIONS definitions but typically do not. Such instructions 
are evaluated AFTER allocation is complete. Reassignment of 
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a defined symbol to a different address is dangerous. For 
example, if a symbol within .data is defined, initialized and 
referenced within a set of object files being link-edited, the 
symbol table entry for that symbol is changed to reflect the 
new, reassigned physical address. However, the associated ini­
tialized data is not moved to the new address. The ld issues 
warning messages for each defined symbol that is being 
redefined within an ifile. However, assignments of absolute 
values to new symbols are safe because there are no references 
or initialized data associated with the symbol. 

3.5.7 Allocating a Section Into Named Memory 

It is possible to specify that a section be linked (somewhere) 
within a specific named memory (as previously specified on a 
MEMORY directive). (The > notation is borrowed from the 
UNIX system concept of redirected output.) 

For example: 

MEMORY 
I 

meml: 
mem2 (RW): 
mem3 (RW): 
meml: 

SECTIONS 
I 

o=OxOOOOOO 
o=Ox020000 
o=Ox070000 

o=Ox120000 

outsecl: 
outsec2: 

fl.o(.data) 
f2.o(.data) 

> meml 
> mem3 

l=OxlOOOO 
l=Ox40000 
I~Ox40000 

I~Ox04000 

This directs ld to place outsecl anywhere within the memory 
area named meml (i.e., somewhere within the address range 
OxO~OxFFFF or Oxl20000~0x123FF). The outsec::l is to be 
placed somewhere in the address range Ox70000-0xAFFFF. 
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3.5.8 Initialized Section Holes or .bss Sections 

When boles are created within a section (as in the example in 
"Link Editor Command Language"), the ld normally puts out 
bytes of zero as fill. By default, .bss sections are not initialized 
at all; that is, no initialized data is generated for any .bss sec­
tion by the assembler, nor supplied by the link editor, not even 
zeros. 

Initialization options can be used in a SECTIONS directive to 
set such holes or output .bss sections to an arbitrary 2-byte pat­
tern. 

SUCH INITIALIZATION OPTIONS APPLY ONLY TO .bss 
SECTIONS OR "HOLES". 

As an example, an application might want an uninitialized data 
table to be initialized to a constant value without recompiling 
the .o file or a bole in the text area to be filled with a transfer 
to an error routine. 

Either specific areas within an output section or the entire out­
put section may be specified as being initialized. However, 
since no text is generated for an uninitialized .bss section, if 
part of such a section is initialized, then the entire section is 
initialized. In other words, if a .bss section is to be combined 
with a .text or .data section (both of which are initialized) or if 
part of an output .bss section is to be initialized, then one of 
the following will hold: 

I. Explicit initialization options must be used to initialize all 
.bss sections in the output section. 

The ld will use the default fill value to initialize all .bss 
sections in the output section. 

Consider the following ld ifile: 
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SECTIONS 
I 

secl: 
I 

fl.o 
. =+ Ox200; 
f2.o (.text) 

} ~ OxDFFF 
sec2: 
I 

sec3: 
I 

n.o (.bss) 
f2.o (.bss) 

f3.o Cbss) 

} ~ OxFFFF 
sec4: { f4.o (. bss) 

Oxl234 

In the example above, the Ox200 byte hole in section sect is 
filled with the value OxDFFF. In section sec2, fl.o(.bss) is ini­
tialized to the default fill value of OxOO, and f2.oCbss) is initial­
ized to Oxl234. All .bss sections within sec3 as well as all 
holes are initialized to OxFFFF. Section sec4 is not initialized; 
that is, no data is written to the object file for this section. 

3.6 Transfer Vectors 

A tranifer vector is an ordered list of entries similar to an array 
of pointers or a jump table. Each entry contains the physical 
address of an external or static identifier. The address is one 
word in length, and the address is right-justified within the 
word. The entire transfer vector is a zero·oriented, one· 
dimensional array of "long int''. The first slot in the transfer 
vector (slot 0) cannot be used because of a conflict with the 
null pointer, whose value is zero. 
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In any C source file compiled using the cc compiler, with the 
-tv option, all function references are "indirect." Calling a 
function funxO is accomplished by an indirect reference 
through the transfer vector entry containing the actual address 
offunxO. 

Assembler source files can also employ transfer vector linkage, 
by using the -tv option as invocation AND through the use of 
the indirect assembler language call. The appropriate macros 
should be used for this purpose. Assembler source can also 
generate tv references to identifiers other than functions. 

The ld defines the transfer vector to be a separate output sec­
tion, called .tv. Unlike other output sections, the contents of 
the transfer vector output section are supplied entirely by ld, as 
a result of the link-edit process and certain user commands. 
The transfer vector is generated by ld ONLY when the -s 

~ option has been (explicitly or implicitly) selected. 

Each defined function is assigned a transfer vector slot, and the 
address of the function is written into that slot in the .tv output 
section. A transfer vector entry is assigned a value in one of 
two ways: 

t. By the user: 

2. 

Through the use of the ASSIGN field of the TV directive, 
specific functions can be assigned to specific transfer vec­
tor slots. 

By ld: 

Any identifier referenced through transfer vector linkage 
will, if the identifier has no tv slot, be assigned the next 
available slot in the transfer vector.• 

The ld assigns tv slots to identifiers on a "first seen, first 
assigned" basis. These two features of tv slot assignment, 
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coupled with the general properties of transfer vectors, makes 
field update and function replacement applications possible. 

Attributes of the transfer vector (also called the .tv section) 
may be specified using a TV directive of the form: 

TV bond-addr 
{ 

where: 

bond-addr 

SPARE 

LENGTH 

RANGE 
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SPARE = nbr-slots 
LENGTH = nbr-slots 
RANGE(first-slot, last-slot) 
ASSIGN ( 

fcnl slotl 
fcn2 slot2 

fcnj slotj 
) 

fi.ll-fcn 

The virtual address of the start of the .tv sec­
tion. If supplied, the 38200 instantiation of the 
link editor requires this to be Ox760000. 

the number of tv slots to be allocated over and 
above those actually assigned by the current ld 
run. The default value for SPARE is 0. 

The total number of tv slots to be allocated in 
the transfer vector. It defaults to the number 
actually assigned by the current ld run. 

The indices of the first and last slot that ld can 
use when it assigns transfer vector slots to 
identifiers. "first-slot" defaults to 0, while 
"last-slot" defaults to the LENGTH value (if 
specified) or to the largest tv slot index given in 
an ASSIGN directive. 
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ASSIGN The tv slot index to be assigned to a particular 
identifier. 

fill-fen The identifief, the value of which is to be writ­
ten into tv entries which are allocated but not 
otherwise assigned. The default value written to 
such tv slots is OxFFFF. Specifying a fill-fen 
name allows the user to cause automatic branch­
ing to, for example, an error handling routine, 
should an invalid transfer vector reference occur. 
However, this option functions properly ONLY 
if the fill function is defined within the subsys­
tem that is being linked, because only then is 
the fill function's address known by ld. 

All parts of the TV directive (including the TV directive itself) 
are optional. Multiple TV directives can be used, in which case 
the final description of the output .tv section is a union of all 
supplied information. When TV directives are used, there are 
some restrictions. 

• If the SPARE field is specified, then neither 
LENGTH, RANGE nor ASSIGN fields may be 
used. 

• The LENGTH and RANGE fields can appear at 
most ONCE, and the LENGTH field, if supplied, 
must be specified BEFORE the RANGE field. 

• Multiple ASSIGN fields may be used. The assign­
ments within the ASSIGN need not be ordered by 
slot number or function name. 

• The tv slot indices appearing in the RANGE field 
must satisfy: 

0 <- first-slot < = last-slot < == total-length <- Ox80 

• 
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• Any function that is ASSIGNed a slot within the 
range specified by the RANGE field (or its default 
values) MUST be defined. in the current link edit. 

• Any function that is ASSIGNed a slot outside the 
range specified by the RANGE field (or its default 
values) MUST NOT be defined in the current link 
edit. 

The SPARE and LENGTH fields are provided as a means of 
controlling the total number of slots allocated in the transfer 
vector. The RANGE field permits a transfer vector to be parti­
tioned into disjoint ranges. Each range can then be used for a 
specific purpose (e.g., subsystem, set of functions, application, 
etc.). The ASSIGN field permits the user to override the 
default allocation algorithm used for tv slot assignment. The tv 
section can thus be "mapped" in advance and in such a way as 
to carry over from one ld run to the next. 

3.7 Subsystem Loading 

The following section is applicable ONLY to instantiations of 
the link editor that use transfer vectors such as bl6ld or 
mc68ld. Even though Jbld uses transfer vectors, this section 
should be read with caution by a Jbld user, as the terms subsys­
tem and application as used here conflict with the DMERT 
usage, and as a process must be contained in one process file to 
run under DMERT. Nevertheless, this section should be read 
for a better understanding of the capabilities of transfer vectors. 

Subsystem loading is an alternative to performing a single link­
edit on the entire application. The application is divided into 
subsystems, each of which can be link-edited independently of 
the other parts of the application. When the final subsystem 
link-edits are completed, as subsystem specific tfile, which we 
will call SIFILE, and a common (lilt', which we will call 
CIFILE, are sent to the link editor as input. All link-edits 
within a subsystem loading environment must be performed 
using transfer vector linkage. 
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A subsystem ilile, SIFILE, specifies the areas of physical 
memory reserved for each subsystem's .text, .data and .bss 
sections, and reserves a range of transfer vector slots with the 
RANGE directive. 

The system (file, CIFILE, specifies the total length of the sys­
tem transfer vector with a LENGTH directive. The CIFILE 
contains the address assignments to all global .data and .bss 
symbols referenced accross subsystems, and transfer vector slot 
assignments to all functions referenced across the subsystems. 

In the following example of subsystem loading ifi/es, assume 
that there are only two subsystems in the application - subsys­
tem A and subsystem B. 

The SIFILE for subsystem A is as follows: 
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TV 
[ 

RANGE(l,200) 
) 
MEMORY 
[ 

mtext 
mdata 
rnbss 

) 
SECTIONS 
[ 

SSAtext: 
[ 

o OxOIOOO, I 
o Ox40000, I 
o - OxSOOOO, I 

Al.o Ctext) 
A2.o Ctext) 

} > mtext 
.data : [ ) > rndata 
.bss : [ ) > rnbss 

Ox4000 
Ox2000 
OxiOOO 
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The SIFILE for subsystem 8 is: 

TV 
{ 

RANGE(201,600) 
) 
MEMORY 
{ 

mtext 
mdata 
mbss 

) 
SECTIONS 
{ 

SSBtext: 
{ 

: o = Ox6000, 1 = Ox8000 
: o """ Ox42000, 1 Ox8000 
: o = Ox51000, 1 = Ox4000 

Bl.o <.text) 
B2.o (.text) 
83.o <.text} 

} > mtext 
.data : { ) > mdata 
.bss : { ) > bss 

For this example, the common (file, CIFILE, is: 
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TV 
I 

Aglobal 

LENGTH - Ox8000 
ASSIGN ( 

Afuncl - I 
Afunc2 10 
Afunc3 100 

) 
ASSIGN ( 

Bfuncl 201 
Bfunc2 203 
Bfunc3 - 600 

) 

- Ox80000; 
Bglobal = Ox80002~ 

Subsystem A contains a total of 200 transfer vector slots. Sub­
system A's SIFILE sets the allotment for the transfer vectors. 
Subsystem B has 400 slots assigned to it. 

The maximum number of available system transfer vector slots 
(Ox8000) is allocated within CIFILE. In this example, subsys­
tem A assigns three of its functions to specific slots within its 
transfer vector slot range. The three subsystem A functions are 
assigned slots because subsystem B references only these three 
functions in subsystem A. Similarly, subsystem A references 
three subsystem B functions. These functions are assigned 
transfer vector slots within subsystem B's range. 

The global, non-function symbols Aglobal and Bglobal are 
assigned absolute physical addresses in the CIFILE. This is 
necessary because subsystem A references Bglobal, and subsys­
tem B references Aglobal. Aglobal is defined in subsystem A, 
and Bglobal is defined in subsystem B. Generally, global .data 
and .bss symbols which are shared across subsystems are taken 
from each subsystem and placed in a separate subsystem, which 
we will call gdata. The addresses assigned to Aglobal and 
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Bglobal must be the same addresses that the link editor 
assigned to them during normal allocation, that is, during the 
link-edit of gdata. If the addresses assigned are different than 
those assigned during allocation of gdata, the references to 
these symbols would be incorrect. For example, if Aglobal was 
assigned the address Ox80004 when gdata was built but was 
linked at the address in the CIFILE, the references to Aglobal 
in subsystem 8 would be incorrect. This results from the fact 
that subsystem 8 references to Aglobal are resolved with the 
CIFILE. 

The CIFILE forms the interface between subsystems A and B. 
Through the CIFILE, the link editor is aware of the addresses 
of the global symbols that are not defined within the objects 
and archives owned by a subsystem. The CIFILE allows each 
subsystem to be linked separately. 

The function that is not referenced by any subsystem, except 
the subsystem where it is defined, does not need a transfer vec­
tor slot assignment in the CIFILE. Similarly, nonfunction sym­
bols that are not referenced, except by the subsystem owning 
them, do not need to be placed in the gdata subsystem, where 
non-function global symbol assignments are generated. 

To link subsystem A, use the following command: 

ld -tv CIFILE SIFILEA -o SSA.out 

The link editor issues error messages for errors that occur in 
the subsystem loading SIFILE and CIFILE. In the example 
with subsystems A and B, assume that the transfer vector slot 
assignment Afimcl = 1 is changed to Ajimcl = 201. The 
link editor would issue the following error message: 

ld SIFILEA : fatal : 
Defined symbol Afuncl assigned a tvslot outside 
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As specified in subsystem A's SIFILE, SIFILEA, the transfer 
vector slot range for subsystem A is RANGE(l,200). Since 
slot 201 is obviously outside this range, the error message will 
be printed. Functions that are defined within a subsystem can 
be assigned transfer vector slots only within the defining 
subsystem's range. 

NOTE: The error message occurs whenever a function is 
moved from one subsystem to another without a 
CIFILE update. 

For another example of a link editor error message, assume 
that 390 of the 400 reserved transfer vector slots are already 
used by functions defined within subsystem B. Three of these 
functions are referenced by subsystem A. The link editor 
requires that the number of slots equal or exceed the number 
of defined functions within a subsystem to produce a successful 
final link. Assume that 20 new functions are added to subsys­
tem 8 without an update of the RANGE directive in SIFILEB. 
The link editor would then issue the following error message: 

ld : SIFILEB fatal : tv range allows 400 entries : 410 needed 

If the RANGE directive in the SIFILE for subsystem B, 
SIFILEB, is changed from RANGE(201,600) to 
RANGE(20l,610), then the new functions could be success­
fully added to subsystem B. 

For a further example, assume that the line B}imc2 = 203 is 
removed from the CIFILE. Then the link editor, assuming that 
subsystem A actually references the function Bfunc2 in the file 
A2.o, would issue the following message, after an attempt to 
link subsystems A was initiated: 

Umle./ined symbol Bjimc2 
First rejl!renced in .file A 2. 0 

For an example of a different type of error, assume that A.fimd 
is incorrectly entered into the CIFILE as Ajimc4. In addition, 
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assume that AjiaK4 is referenced but not defined in subsystem 
A. In this case, A./imc4 is not defined in subsystem 8 either. If 
an attempt is made to link subsystem A, the link editor will 
issue the following error message: 

ld SIFILEA fatal : 
Undefined symbol Afunc4 assigned a tvslot within 

Another common error message issued by the link editor per· 
tains to an inability to allocate sections. Error messages of this 
type indicate that certain parts of the input objects and archives 
cannot fit into areas specified in a particular SFILE. 

For example, assume that the .text size of A l.o is Ox3000 and 
that the .text size of A2.o is OxlEOO. Then the total space 
needed for subsystem A's text in the output file is Ox4EOO. 
However, as seen in SIFILEA, the .text from Al.o and the 
.text from A2.o is put into the mtext area, whose size is only 
Ox4000. In this case, the link editor would print the following 
error message: 

ld : SIFILEA : Can't allocate section .text in owner mtext 

In order to solve this problem, the line: 

mtext : o = OxOIOOO, I = Ox4000 

would have to be changed to; 

mtext : o = OxOIOOO, 1 = Ox4EOO 

or the size of the .text in the input files would have to be 
reduced so that the .text section would fit. 
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4. Notes and Special Considerations 

4.1 Changing the Entry Point 

When ld is given the -X option, a UNIX system a.out header 
is written to the output file. The a.out header contains a field 
for the (primary) entry point of the file. This field is set using 
one of the following rules (listed in the order they are applied): 

1. The value of the symbol specified wit~'!_ the -e option, if 
present, is used. 

2. The value of the symbol _start, if present, is used. 

3. The value of the symbol main, if present, is used. 

4. The value zero is used. 

Thus, an explicit entry point can be assigned to this a.out 
r--· header field through the -e option or by using an assignment 
I instruction in an (file of the form 

start - expression; 

Use of the -e option will force the -X option to be set 
automatically. Assigning a value to the symbol _start or having 
a symbol by this name already defined in an input file DOES 
NOT force the -X option to be set, and hence it must be 
explicitly supplied if the entry point is to be output. 

If the ld is called through cc(l), a startup routine is automati­
cally linked in. Then, when the program is executed, the rou­
tine exit(l) is called after the main routine finishes to close file 
descriptors and do other cleanup. The user must therefore be 
careful when calling the ld directly or when changing the entry 
point. The user must supply the startup routine or make sure 
that the program always calls exit rather than falling through 
the end. Otherwise, the program will dump core. 
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4.2 Use of Archive Libraries 

Each member of an archive library (e.g., libc.a) is a complete 
object file typically consisting of the standard three sections: 

t. .text 

2. .data 

3. .bss 
Archive libraries are created through the use of the UNIX sys­
tem ar command from object files generated by running the cc 
or as compilers. 

Each library member has a magic number. For object tiles, 
there are two magic numbers: 

1. one for object files generated with the -tv option, and 

2. one for the object files generated without the -tv option. 

The link editor enforces a policy that all input object files must 
have the same magic number. Any object file that fails this test 
is not processed and generates a fatal ld error. This policy, 
however, has an important exception: 

MEMBERS OF ARCHIVE LIBRARIES WITH THE WRONG 
MAGIC NUMBER ARE SILENTLY SKIPPED 

It is not considered an error, and no message is generated. 

This permits an archive library to contain both tv and non-tv 
versions of its members, and to have the same library used as 
input to both tv and non-tv link edits. In each instance, 
members with the "other" magic number are ignored. 

An archive library is always processed using selective inclusion: 
Only those members that resolve existing undefined-symbol 
references are taken from the library for link editing. 
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Libraries can be placed both inside and outside section 
definitions. In both cases, a member of a library is included for 
linking whenever 

I. There exists a reference to a symbol defined in that 
member. 

2. The reference is found by the ld prior to the actual scan­
ning of the library. 

3. The member has the correct magic number. 

When a library member is included by searching the library 
INSIDE A SECTIONS directive, all input sections from the 
member are included in the output section being defined. 

When a library member is included by searching the library 
OUTSIDE OF A SECTIONS directive, all input sections from 
the member are included into the output section with the same 
name. That is, the . text section of the member goes into the 
output section named .text, the .data section of the member 
into .data, the .bss section of the member into .bss, etc. If 
necessary, new output sections are defined to provide a place to 
put the input sections. Note, however, that 

1. Specific members of a library cannot be referenced expli­
citly in an ifile. 

1. The default rules for the placement of members and sec­
tions cannot be overridden when they apply to archive 
library members. 

The -1 option is a shorthand notation for specifying an input 
file coming from a predefined set of directories and having a 
predefined name. By convention, such files are archive 
libraries. However, they need not be so. Furthermore, archive 
libraries can be specified without using the -1 option by simply 
giving the (full or relative) UNIX system file path. 
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The ordering of archive libraries is important since for a 
member to be extracted from the library it MUST satisfy a 
reference that is KNOWN TO BE UNRESOLVED AT THE 
TIME THE LIBRARY IS SEARCHED. Archive libraries can 
be specified more than once. They are searched every time 
they are encountered. Archive files have a symbol table at the 
beginning of the archive. The ld will cycle through this symbol 
table until it has determined that it cannot resolve any more 
references from that library. 

There are currently two different archive formats in use: 

1. one is a random access library in use on 3820S and VAX 
machines running UNIX system 5.0 

2. the other is the old format library that must be searched 
linearly. 

The old format library is in use on the PDP 11170 and all 
machines running a pre-5.0 UNIX system. The link editor will 
make one search through a library in the old format, but will --
continue to search through a library in the new format until it 
has determined that it can resolve no more references from 
that library. Due to the different searching algorithms used, 
programs that are link edited on machines with different 
archive formats, and that are otherwise the same, may include 
files from libraries in a different order. 

Be careful when using archive libraries in a subsystem loading 
environment. For a member of an archive, that is, an object 
file, to be included in a subsystem final load file, there must be 
a reference (within the subsystem being linked) to a symbol 
defined in that object file. The - u option can be used to create 
unresolved references that will force the loading of archive 
members. 

Consider the following example: 
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1. 

2. 

3. 

4. 

s. 
6. 

The input files filel.o and file2.o each contain a reference 
to the external function FCN. 

Input fi.lel.o contains a reference to symbol ABC. 

Input file2.o contains a reference to symbol XYZ. 

Library liba.a, member 0, contains a definition of XYZ. 

Library libc.a, member 0, contains a definition of ABC. 

Both libraries have a member 1 that defines FCN. 

If the ld command were entered as 

ld filel.o -Ia file2.o -lc 

then the FCN references are satisfied by liba.a, member 1, 
ABC is obtained from libc.a, member 0, and XYZ remains 
undefined (since the library liba.a is searched before file2.o is 
specified). If the ld command were entered as 

ld filel.o file2.o -Ia -lc 

then the FCN references is satisfied by liba.a, member 1, ABC 
is obtained from libc.a, member 0, and XYZ is obtained from 
liba.a, member 0. If the ld command were entered as 

ld filel.o file2.o -lc -Ia 

then the FCN references is satisfied by libc.a, member 1, ABC 
is obtained from libc.a, member 0, and XYZ is obtained from 
liba.a, member 0. 

The -u option is used to force the linking of library members 
when the link edit run does not contain an actual external 

(~ reference to the members. For example, 

ld -u routl -Ia 
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creates an undefined symbol called routl in the ld's global sym­
bol table. If any member of library liba.a defines this symbol, it 
(and perhaps other members as well) is extracted. Without the 
-u option, there would have been no trigger to cause ld to 
search the archive library. 

4.3 Dealing With Holes in Physical Memory 

When memory configurations are defined such that 
unconfigured areas exist in the virtual memory, each application 
or user must assume the responsibility of forming output sec­
tions that will fit into memory. For example, assume that 
memory is configured as follows: 

MEMORY 
{ 

mernl: 0 OxOOOOO - Ox02000 
mem2: 0 Ox40000 - Ox05000 
mern3: 0- Ox20000 - OxlOOOO 

Let the files fl.o, f2.o, ... fn.o each contain the standard three 
sections .text, .data, and .bss, and suppose the combined .text 
section is Oxl2000 bytes. There is no configured area of 
memory in which this section can be placed. Appropriate direc­
tives must be supplied to break up the .text output section so 
ld may do allocation. For example, 
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SECTIONS 
{ 

txtl: 
{ 

I 
txt2: 
{ 

etc. 

fl.o (.text) 
f2.o Ctext) 
f3.o Ltext) 

f4.o (.text) 
f5.o <.text) 
f6.o {.text} 

4.4 Allocation Algorithm 

An output section is formed either as a result of a SECTIONS 
directive or by combining input sections of the same name. An 
output section can have zero or more input sections comprising 
it. After the composition of an output section is determined, it 
must then be allocated into configured virtual memory. The ld 
uses an algorithm that attempts to minimize fragmentation of 
memory, and hence increases the possibility that a link edit run 
will be able to allocate all output sections within the specified 
virtual memory configuration. The algorithm proceeds as fol­
lows: 

1. Any output sections for which explicit bonding addresses 
were specified are allocated. 

2. Any output sections to be included in a specific named 
memory are allocated. In both this and the succeeding 
step, each output section is placed into the first available 
space within the (named) memory with any alignment 
taken into consideration. 

3. Output sections not handled by one of the above steps are 
allocated. 
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If all memory is contiguous and configured (the default case), 
and no SECTIONS directives are given, then output sections 
are allocated in the order they appear to the ld, normally .text, 
.data, .bss. Otherwise, output sections are allocated in the 
order they were defined or made known to the ld into the first 
available space they fit. 

4.5 Incremental Link Editing 

As previously mentioned, the output of the ld can be used as 
an input file to subsequent ld runs PROVIDING THAT THE 
RELOCATION INFORMATION IS RETAINED (-r option). 
Large applications may find it desirable to partition their C pro­
grams into subsystems, link each subsystem independently, 
and then link edit the entire application. For example, 
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Step 1: 
ld -r -o outfilel ifilel 

I• ifilel •/ 
SECTIONS 
I 

ssl: 
I 

fl.o 
f2.o 

fn.o 
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Step 2: 
ld -r -o outfile2 ifile2 

I• ifile2 •/ 
SECTIONS 
[ 

ss2: 
[ 

Step 3: 

gl.o 
g2.o 

gn.o 

ld -a -m -o final.out outfilel outfile2 

By judiciously forming subsystems, applications may achieve a 
form of incremental link editing whereby it is necessary to 
relink only a portion of the total link edit when a few programs 
are recompiled. 

To apply this technique, there are two simple rules: 

1. Intermediate link edits should contain only SECTIONS 
declarations and be concerned only with the formation of 
output sections from input files and input sections. No 
binding of output sections should be done in these runs. 

l. All allocation and memory directives, as well as any 
assignment statements, are included only in the final ld 
call. 

4.6 Space Limitations 

Global and external symbols are kept in a symbol table in order 
to resolve references across input files. On the PDP-11170, 
space is limited, so the link editor uses a Software Demand 
Paging scheme to store the symbols. When the number of glo­
bal symbols is less than 600, the entire symbol table resides in 
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memory. When the number exceeds 600, however, the symbol 
table is paged to a file and users will notice a degradation in 
performance. Structure tag names, structure elements, 
automatic and static variables do not appear in the symbol table 
and their number has minimal affect on ld performance. 

The link editor will also be built as two processes on the PDP-
11/70 due to space limitations. On all other machines the link 
editor is one process. 

4.7 DSECT. COPY, and NOLOAD Sections 

Sections may be given a type in a section definition as shown in 
the following example: 

SECTIONS 
I 

name! Ox200000 (DSECT) 
name2 Ox400000 (COPY) 
name3 Ox600000 (NOLOAD) 

filel.o 
file2.o 
file3.o 

The DSECT option creates what is called a "dummy section." A 
"dummy section" has the following properties: 

1. It does not participate in the memory allocation for output 
sections. As a result, it takes up no memory and does not 
show up in the memory map (the -m option) generated 
by the ld. 

2. It may overlay other output sections and even 
unconfigured memory. DSECTs may overlay other 
DSECTs. 

3. The global symbols defined within the dummy section are 
relocated normally. That is, they appear in the output 
file's symbol table with the same value they would have 
had if the DSECT were actually loaded at its virtual 
address. DSECT -defined symbols may be referenced by 
other input sections. Undefined external symbols found 
within a DSECT cause specified archive libraries to be 
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searched and any members which define such symbols are 
link edited normally (i.e., not in the DSECT or as a 
DSECT). 

'-......- 4. None of the section contents, relocation information, or 
line number information associated with the section is 
written to the output file. 

r 
' 

In the above example, none of the sections from fi.Iel.o are 
allocated, but all symbols are relocated as though the sections 
were link edited at the specified address. Other sections could 
refer to any of the global symbols and they are resolved 
correctly. 

A "copy section" created by the COPY option is similar to a 
"dummy section." The only difference between a "copy section" 
and a •• dummy section" is that the contents of a copy section 
and all associated information is written to the output file. 

A section with the type of NOLOAD differs in only one respect 
from a normal output section: 

l. its text and/or data is not written to the output file. 

A NOLOAD section is allocated virtual space, appears in the 
memory map, etc. 

4.8 Output File Blocking 

There are two options which can be used to affect the "physical 
file offsets" of the information written to the output file by ld: 

l. The BLOCK option permits any output section to be 
aligned in the output fiel at a specified n-byte boundary. 

( 2. The - B option causes "padding sections" to be gen-
, erated in the output file. 
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Both features were provided explicitly for the use of ldp, which 
constructs pfiles for DMERT. The output sections of a pfile 
have certain requirements in terms of physical file offsets which 
can be met by using these two ld options. 

The BLOCK option, which can be applied to any output section 
or GROUP directive, is used to direct ld to align a section at a 
specified byte offset IN THE OUTPUT FILE. It has no effect 
on the address at which the section is allocated nor on any part 
of the link edit process. It is used purely to adjust the physical 
position of the section in the output file. 

SECTIONS 
I 

.text BLOCK(Ox200) : I I 

.data ALIGN(Ox20000) BLOCK(Ox200) I I 

With this SECTIONS directive, ld assures that each section, 
.text and .data, is physically written at a file offset which is a 
multiple of Ox200 (e.g., at an offset of 0, Ox200, Ox400, ... , etc. 
in the file). 

The - B option will cause ld to generate special sections in the 
output file. These sections, called .. padding sections," take no 
part in the link edit process. They are supplied to force a cer­
tain type of physical file offset alignment of the non-"padding 
sections." 

A "padding section" is an output section consisting of x bytes 
of zero (where xis supplied by the -B option). It has no phy­
sical address associated with it. A "padding section" will be 
output by ld after every non-••padding section" which meets 
either of the following two conditions: 

1. It is of zero length. 

2. It is comprised entirely of uninitialized .bss sections. 
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Unlike conventional .bss sections, the zero bytes making up a 
"padding section" are actually written to the output file. 

"Padding sections" are ignored by ld if found in any input file. 

4.9 Nonrelocatable Input Files 

If a file produced by the ld is intended to be used in a subse­
quent ld run, the first ld run has the -r option set. This 
preserves relocation information and permits the sections of the 
file to be relocated by the subsequent ld run. 

When the ld detects an input file (that does not have relocation 
or symbol table information), a warning message is given. 
Such information can be removed by the ld (see the -a and -s 
options in the part "Using the Link Editor") or by the strip(l) 
program. However, 

(~ THE LINK EDIT RUN CONTINUES USING THE NON­
'-'-" RELOCATABLE INPUT FILE. 

For such a link edit to be successful (i.e., to actually and 
correctly link edit all input files, relocate all symbols, resolve 
unresolved references, etc.), two conditions on the nonrelocat­
able input files must be met: 

1. Each input file must have no unresolved external refer­
ences. 

2. Each input file must be bound to the exact same virtual 
address as it was bound to in the ld run that created it. 

Note that if these two conditions are not met for all nonrelocat­
able input files, no error messages are issued. Because of this 
fact, extreme care must be taken when supplying such input 
files to the ld. 
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4.10 The PATCH List 

The ld option -p indicates that a "PATCH list" is to be built 
in the optional header field of the output file. The "'PATCH 
list" is a C data structure which looks like this: 

struct plist 
I 

long blk_cnt 
union pentry 
I 

struct 
I 

long 
long 

/•number of blocks•/ 

blk_addr; bblock address•/ 
blk_size; /•size of block•/ 

unsigned short 
char 

blk_scnum; /•section•/ 
blk_type; /•type of block•/ 

char 
typeOI; 

struct 
I 

long 
long 

blk_pad; /•padding•/ 
/•FREEE or OLD FCN•/ 

unsigned short 
char 

blk_addr; 
blk_ndx; 
blk_scnum; 
blk_type; 
blk_size; 

/•DECF•/ 

/•block address""r--­
/•fcn tv index•/ 

/•section•/ 
/•type of block"'/ 
/•size of block•/ 

); 

char 
) type02; 

block[!]; 

#define PLIST 
#define PENTR Y 
#define PLSIZE 
#define PESIZE 

struct plist 
unio-n pentry 
sizeof(PLIST) 
sizeof(PENTR Y) 

If given the - p option, ld will serch for all output sections 
whose name is of the form .pateh nn, where nn is a two-digit 
decimal integer. For each such output section, one pentry 
structure will be built. 
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The "PATCH list" is put at the end of the optional header 
field in the output file. 

If necessary, so as to prevent any overlapping with the -X and 
- h options, the size of the optional header will be increased by 
the amount of space required by the "PATCH list." 

The "PATCH list" is currently built only by Jbldp as part of its 
pfile construction. This list is used to perform incremental field 
update and function replacement. 

4.11 The - ild Option 

When the - i ld option is used, the link editor will create a pair 
of dummy sections, DSECTs, for each unallocated, configured 
area of memory. These dummy sections will have unique 
names in the form of .i_l_dnn where nn is a two digit decimal 
integer in the range from 00 to 99, therefore at most 50 pairs 
of these sections will be created by the link editor. These sec­
tions identify the boundaries of the unused memory space. 
These sections are similar to .bss sections in that they do not 
contain any text or initialized data. The link editor also creates 
a dummy section named ".history." These sections are later 
used by the incremental link editor. 
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5. Error Messages 

5.1 Corrupt Input Files 

The following error messages indicate that the input file is cor­
rupt, nonexistent, or unreadable. The user should check that 
the file is in the correct directory with the correct permissions. 
If the object file is corrupt, try recompiling or reassembling it. 
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• Can't open name 

• Can't read archive header from archive name 

• Can't read file header of archive name 

• Can't read 1st word of file name 

• Can't seek to the beginning of file name 

• Fail to read file header of name 

• Fail to read lnno of section sect of file name 

• Fail to read magic number of file name 

• Fail to read section headers of file name 

• Fail to read section headers of library name member 
number 

• Fail to read symbol table of file name 

• Fail to read symbol table when searching libraries 

• Fail to read the aux entry of file name 

• Fail to read the field to be relocated 

• Fail to seek to symbol table of file name 

• Fail to seek to symbol table when searching libraries 

• Fail to seek to the end of library name member 
number 

• Fail to skip aux entries when searching libraries 
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• Fail to skip the mem of struct of name 

• Illegal relocation type 

• No reloc entry found for symbol 

• Reloc entries out of order in section sed of file 
name 

• Seek to name section sect failed 

• Seek to name section sect lnno failed 

• Seek to name section sect reloc entries failed 

• Seek to relocation entries for section sect in file 
name failed. 

5.2 Errors During Output 

These errors occur because the ld cannot write to the output 
file. This usually indicates that the file system is out of space. 

• Cannot complete output file name. Write error. 

• Fail to copy the rest of section num of file name 

• Fail to copy the bytes that need no reloc of section 
num of file 

• name l/0 error on output file name. 

5.3 Internal Errors 

These messages indicate that something is wrong with the ld 
internally. There is probably nothing the user can do except get 
help. 
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• Attempt to free nonallocated memory 

• Attempt to reinitialize the SDP aux space 

• 
• 

Attempt to reinitialize the SDP slot space 

Default allocation did not put .data and .bss into the 
same region 
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• Failed to close SDP symbol space 

• Failure dumping an AIDFNxxx data structure 

• Failure in closing SOP aux space 

• Failure to initialize the SOP aux space 

• Failure to initialize the SOP slot space 

• Internal error: audit_groups, address mismatch 

• Internal error: audit_group, finds a node failure 

• Internal error: fail to seek to the member of name 

• Internal error: in allocate lists, list confusion (num 
num) 

• Internal error: invalid aux table id 

• Internal error: invalid symbol table id 

• Internal error: negative aux table ld 

• Internal error: negative symbol table id 

• Internal error: no symtab entry for DOT 

• Internal error: split_scns, size of sect exceeds its 
new displacement. 

5.4 Allocation Errors 

These error messages appear during the allocation phase of the 
link edit. They generally appear if a section or group does not 
fit at a certain address or if the given MEMORY or SECTION 
directives in some way conflict. If you are using an ifile, check 
that MEMORY and SECTION directives allow enough room 
for the sections to ensure that nothing overlaps and that noth­
ing is being placed in unconfigured memory. For more infor­
mation, see "Link Editor Command Language" and "Notes 
and Special Considerations." 
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• Bond address address for sect is not in configured 
memory 
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• Bond address address for sect overlays previously 
allocated section sect at address 

• Can't allocate output section sect, of size num 

• Can't allocate section sect into owner mem 

• Default allocation failed: name is too large 

• GROUP containing section sect is too big 

• Memory types namel and name2 overlap 

• Output section sect not allocated into a region 

• Sect at address overlays previously allocated section 
sect at address 

• Sect, bonded at address, won't fit into configured 
memory 

• Sect enters unconfigured memory at address 

• Section sect in file name is too big . 

5.5 Misuse of Link Editor Directives 

These errors arise from the misuse of an input directive. Please 
review the appropriate section in the manual. 

• Adding name(sect} to multiple output sections. 

The input section is mentioned twice in the SECTION direc­
tive. 

• Bad attribute value in MEMORY directive: c. 

An attribute must be one of R, W, X, or I. 

• Bad flag value in SECTIONS directive, option. 

Only the -I option is allowed inside of a SECTIONS directive 

• Bad fill value. 
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The fill value must be a 2-byte constant. 

• Bonding excludes alignment. 

The section will be bound at the given address regardless of the 
alignment of that address. 

• Cannot align a section within a group 

• Cannot bond a section within a group 

• Cannot specify an owner for sections within a group. 

The entire group is treated as one unit, so the group may be 
aligned or bound to an address, but the sections making up the 
group may not be handled individually. 

• DSECT sect can't be given an owner 

• DSECT sect can't be linked to an attribute. 

Since dummy sections do not participate in the memory alloca­
tion, it is meaningless for a dummy section to be given an 
owner or an attribute. 

• Region commands not allowed 

The UniPius+ link editor does not accept the REGION com­
mands. 

• Section sect not built. 

The most likely cause of this is a syntax error in the SEC­
TIONS directive. 

• Semicolon required after expression 

• Statement ignored. 

Caused by a syntax error in an expression. 
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• Usage of unimplemented syntax. 

1,.,-.- 5.6 Misuse of Expressions 

These errors arise from the misuse of an input expression. 
Please review the appropriate section in the manual. 

• Absolute symbol name being redefined. 

An absolute symbol may not be redefined. 

• ALIGN illegal in this context. 

Alignment of a symbol may only be done within a SECTIONS 
directive. 

• Attempt to decrement DOT 

• Illegal assignment of physical address to DOT. 

• Illegal operator in expression 

• Misuse of DOT symbol in assignment instruction . 

The DOT symbol (.) cannot be used in assignment statements 
that are outside SECTIONS directives. 

• Symbol name is undefined. 

All symbols referenced in an assignment statement must be 
defined. 

• Symbol name from file name being redefined. 

A defined symbol may not be redefined in an assignment state­
ment. 

• Undefined symbol in expression . 
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S. 7 Misuse of Options 

These errors arise from the misuse of options. Please review 
the appropriate section of the manual. 

• Both -rand-s flags are set. -s flag turned off. 

Further relocation requires a symbol table. 

• Can't find library libx.a 

• - L path too long (string) 

• -o file name too large (> 128 char), truncated to 
(string) 

• Too many -L options, seven allowed. 

Some options require white space before the argument, some 
do not; see "Using the Link Editor." Including extra white 
space or not including the required white space is the most 
likely cause of the following messages. 

• option flag does not specify a number 

• option is an invalid flag 

• -e flag does not specify a legal symbol name name 

• -f flag does not specify a 2-byte number 

• No directory given with -L 

• -o flag does not specify a valid file name: string 

• the -1 flag (specifying a default library) is not sup­
ported 

• -u flag does not specify a legal symbol name: name. 

5.8 Transfer Vector Error Messages 

• ASSIGN slot num exceeds total TV size of num 

• Attempt to assign tv slot to illegal symbol 
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• Defined symbol assigned a tv slot outside tv range 

• Illegal ASSIGN slot number (0) 

• Illegal multiple LENGTH fields in the TV directive 

• Illegal multiple RANGE fields in the TV directive 

• Illegal RANGE syntax 

• Non-tv file name in transfer vector run 

• RANGE num exceeds total TV size of num 

• Supplied tv origin (num) does not equal the hard­
wired tv origin (Ox760000). Jbld only. 

• Transfer vector file name in non-tv run 

• tv fill symbol does not exist 

• tv range allows numl entries; num2 needed 

• tv reference to non-tv symbol, addr address, index 
num, file name 

• Two tv slot assignments for function name, slotl 
and slot2 

• Undefined symbol assigned a tv slot within tv range 

5.9 Space Restraints 

The following error messages may occur if the ld attempts to 
allocate more space than is available. The user should attempt 
to decrease the amount of space used by the ld. This may be 
accomplished by making the ifile less complicated or by using 
the -r option to create intermediate files. 

• Fail to allocate num bytes for slotvec table 

• Internal error: aux table overflow 

• Internal error: symbol table o'lerflow 

• Memory allocation failure on nom-byte 'calloc' call 

• Memory allocation failure on realloc call 
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• Run is too large and complex. 

5.10 Miscellaneous Errors 

These errors occur for many reasons. Refer to the error mes­
sage for an indication of where to look in the manual. 
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• Archive symbol table is empty in archive name, 
execute 'ar ts name' to restore archive symbol table . 

On systems with a random access archive capability, 
the link editor requires that all archives have a sym­
bol table. This symbol table may have been removed 
by strip. 

• Can't create intermediate ld file name 

• Can't open internal file name 

These two messages are possible only when the link 
editor is two processes. This would indicate that the 
temp directory (usually /tmp or /usr/tmp) is out of 
space, or that the link editor does not have permis­
sion to write in it. 

• Cannot create output file name . 

The user may not have write perm1ss1on in the 
directory where the output file is to be written. 

• Failure to load pass 2 of ld 

This can only occur when the link editor is built as 
two processes (i.e., on the PDP 11170). The most 
likely cause is that the second process is not where 
the first one thinks it is. 

• File name has a section name which is a reserved ld 
identifier: .tv 

• File name has no relocation information. 

See "Notes and Special Considerations." 
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• File name is of unknown type, magic number = 
num 

• lfile nesting limit exceeded with file name . 

Ifiles may be nested 16 deep. 

• Library name, member has no relocation informa­
tion. 

• Multiply defined symbol sym, in name has more 
than one size 

A multiply defined symbol may not have been 
defined in the same manner in all files. 

• name(sect) not found 

• 

An input section specified in a SECTIONS directive 
was not found in the input file. 

Section sect starts on an odd byte boundary! 

This will happen only if the user specifically binds a 
section at an odd boundary. 

• Sections .text, .data or .bss not found; Optional 
header may be useless. 

• The UNIX system a.out header uses values found in 
the .text, .data and .bss section headers. 

• Line nbr entry (num num) found for nonrelocatable 
symbol: 

• 

Section sect, file name 

This is generally caused by an interaction of yacdl) 
and cc(l). 

See the part "Notes and Special Considerations." 

Undefined symbol sym first referenced in file name . 
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Unless the -r option is used, the ld requires that all 
referenced symbols are defined. 

• Unexpected EOF (End Of File). 

Syntax error in the ifile. 
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6. Syntax Diagram for Input Directives 

The following tables contain a syntax diagram for input direc­
tives. 
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dJrectives -> expanded directives 

<file> -> I <cmd> } 
<cmd> -> <memory> 

-> <sections> 
-> <assignment> 
-> <filename> 
-> <flags> 

<memory -> MEMORY { <memory_spec> 
{ [,] <memory_spec> }} 

<memory_spec> -> <name> [<attributes> ] : 
<origin_spec> [,] <length_spec> 

<attributes> -> (IRIWIXII}) 
< origin_spec> -> <origin> - <long> 
< lenth_spec> -> <length> - <long> 
<origin> -> ORIGIN I o I org I origin 
<length> -> LENGTH I I lien I length 

<sections> -> SECTIONS II <sec_or_l!roup> }} -" 

<sec_or_group> -> <section> I <group> I <library> 
<group> -> GROUP <group options> : { 

<section_list>} [<mem_spec>J 

<section _list> -> <section> { [,] <section> } 

<section> -> <name> <sec_options> : { 
<statement_list> } 
(<fill>] [<mem_spec>] 

<group_ options> -> {<addr>] [<align option>] 
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( 
directives -> expanded directives 

<sec_ options> -> [<addr>] [<align option>] 
[ < block_option> J [ < type_option>] 

<addr> -> <long> 
<align_ option> -> <align> (<long> ) 
<align> -> ALIGN I align 
< block_option> -> <block> (<long>) 
<block> -> BLOCK I block 
< type_option> -> (DSECTJ I (NOLOAD) I (COPY) 
<fill> -> - <long> 
<mem_spec> -> ><name> 

-> > <attributes> 
<statement> -> <file name> [ ( <name list> ) ] 

[<fill> 1 <library> <assignment> 

r < name_list> -> <name> { [,] <name> } 
<library> -> -l<name> 

<assignment> -> <!side> <assign_op> <expr> <end> 
<!side> -> <name> I. 
<assign_op> -> =1+=1-=1*=1/= 
<end> -> ; I ' 
<expr> -> <expr> <binary_op> <expr> 

-> <term> 
< binary_op> -> • 1/1% 

-> +I-
-> >> I<< 

-> -- 1!-1>1<1<-1>= 
-> & 
-> I 
-> && r -> II 

' -
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directives -> expanded directives 

<term> -> <long> 
-> <name> 
-> <align> (<term>) 
-> (<expr) 
-> <unary_op> <term> 

<unary_op> -> ! 1-
<flags> -> -e<wht_space> <name> 

-> -f<wht_space> <long> 
-> - b<wht_space> <long> 
-> -I<name> 
-> -m 
-> -o< wht_space> <filename> 
-> -r 
-> -s 
-> -t 
-> -u<wht_space> <name> 
-> -z 
-> -H 
-> -F 
-> - L< pathname> 
-> -M 
-> -N 
-> -s 
-> -v 
-> - VS<wht_space> <long> 
-> -a 
-> -x 
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(" directives -> expanded directives 

' 

<name> -> Any valid symbol name 
<long> -> Any valid long integer constant 
<wht_space> -> Blanks, tabs, and newlines 

<filename> -> Any valid UNIX operating system 
filename. This may include a 
full or partial pathname. 

<pathname> -> Any valid UNIX operating system 
pathname (full or partial) 

---· 
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Chapter 8 

COFF-

COFF 

THE COMMON OBJECT FILE FORMAT 

1. Introduction 

This Chapter describes the Common Object File Format 
(COFF). COFF is the output file produced on some UNIXTM 
systems by the assembler (as) and the link editor (ld). Since 
this format is used on several processors and operating systems, 
including the UniPlus+® Operating System, the word common is 
both descriptive and widely recognized. 

The COFF is flexible enough to meet the demands of most jobs 
and even simple enough to be easily incorporated into existing 

(' projects. The following are some of COFF's key features: 

• Applications may add system-dependent information 
to the object file without causing access utilities to 
become obsolete. 

• Space is provided for symbolic information used by 
de buggers and other applications 

• Users may make some modifications in the object 
file construction at compile time. 

The object file supports user-defined sections and contains 
extensive information for symbolic software testing. An object 
file contains 

UNIX is a trademark of AT&T Bell Laboratories. r UniSoft and UniPlus+ are registered trademarks of UniSoft Corporation. 
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• A file header 

• Optional header information 

• A table of section headers 

• Data corresponding to the section header 

• Relocation information 

• Line numbers 

• A symbol table 

• A string table . 

Figure 11.1 below shows the overall structure: 
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FILE HEADER 

Optional Information 
(UNIX System a.out header) 

... 
Section 1 Header 

... 
Section n Header 

Raw Data for Section 1 

... 
Raw Data for Section n 

Relocation Info for Section 1 
... 

Relocation Info for Section n 
Line Numbers for Section 1 

... 
Line Numbers for Section n 

SYMBOL TABLE 

STRING TABLE 

Figure 8.1. Object File Format 

The last four sections (relocation, line numbers, symbol table, 
and the string table) may be missing if the program is linked 
with the -s option of the link editor (ld) or if the relocation 
(line number) information, symbol table, and string table are 
removed by the strip command. 
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The line number information does not appear unless the pro­
gram is compiled with the compiler's (cc) -g option. Also, if 
there are no unresolved external references after linking, the 
relocation information is no longer needed and is absent. The 
string table is also absent if the source file does not contain any 
symbols with names longer than eight characters. An object file 
that contains no errors or unresolved references can be exe­
cuted. 

2. Definitions and Conventions 

Section A section is the smallest portion of an 
object file that is relocated and treated as 
one separate and distinct entity. In the 
default case, there are three sections 
named .text, .data, and .bss. Additional 
sections accommodate multiple text or data 
segments, shared data segments, or 
user-specified sections. However, the 
UniPlus+ Operating System loads only the 
.text, and .data memory when the file is 
executed. The kernel clears the .bss sec­
tion. 

Physical Address This is the physical location in memory 
where a section is loaded. 

Virtual Address This is the offset of a section with respect 
to the beginning of its segment or region. 
All relocatable references in a section 
assume that section occupies the virtual 
address at execution time. 
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3. File Header 

The file header contains the 20 bytes of information shown in 
the following table. The last 2 bytes are flags used by ld and 
object file utilities. For more explicit information regarding the 
C language structure for the file header, see filehdr(4) in the 
UniPJust User Manual, Sections 2-6. 
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BYTES DECLARATION NAME DESCRIPTION 

0-1 unsigned short f_magic Magic number 
as defined by 
the symbol 
MAGIC in the 
file a.out.h. 

2-3 unsigned short f_nscns Number of sec~ 
tion headers 
(equals the 
number of sec-
tions) 

4-7 long int f_timdat Time and date 
stamp indicat-
ing when the 
file was created 
relative to the 
number of 
elapsed seconds 
since 00:00:00 
GMT, January 
I, 1970. 

8-11 long int f_symptr File pointer 
containing the 
starting address 
of the symbol 
table 

12-15 long int f_nsyms Number of 
entries in the 
symbol table 

16-17 unsigned short f_opthdr Number of 
bytes in the 
optional header 

18-19 unsigned short f flags Flags 

Figure 8.2. File Header Contents 
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The size of optional header information (f_optbdr) is used by 
all referencing programs that seek to the beginning of the sec­
tion header table. This enables the same utility programs to 
work correctly on files originally targeted for different systems. 
On a VAX system, the optional header is 28 bytes. 

3.1 Magic Numbers 

The "magic number" specifies the machine on which the object 
file is executable. The following is a table of the currently 
defined magic numbers. 
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MNEMONIC MAGIC SYSTEM 
NUMBER 

MC68MAGIC 0520 M68000 
U370WRMAGIC 0530 IBM 370 (writ-

able text seg-
ments) 

U370ROMAGIC 0535 IBM 370 
(read-only shar-
able text seg-
ments) 

NJB MAGIC 0550 381M 20S com-
puters only. 

FRO MAGIC 0560 W£HI.J2 (for-
ward byte ord-
ering) 

RBOMAGIC 0565 WE-32 (reverse 
byte ordering) 

VAXROMAGIC 0575 VAXT~'-Lll/750 

and 
VAX-!1780 
(writable text 
segments) 

VAXWRMAGIC 0570 VAX-ll/750 
and 
VAX-ll/780 
(read-only shar-
able segments) 

Figure 8.3. Magic Numbers 

VAX is a trademark of Digital Equipment Corporation. 
JB and WE are trademarks of AT&T Bell laborato'ies. 
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3.2 Flags 

The last 2 bytes of the file header are flags that describe the 
type of the object file. The UNIX version of COFF has no use 
for some of these, but they are included here for commonality. 
The currently defined flags are given in the following table: 
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MNEMONIC FLAG MEANING 

F_RELFLG 00001 Relocation information stripped 
from the file 

F_EXEC 00002 File is executable (i.e. no 
unresolved external references) 

F LNNO 00004 Line numbers stripped from file 
F LSYMS 00010 Local symbols stripped from file 
F MINMAL 00020 Not used by UNIX 
F UPDATE 00040 Not used by UNIX 
F_SWABD 00100 This file has had its bytes 

swabbed (i.e. the bytes of symbol 
table name entries have been 
reversed.) 

F_ARI6WR 00200 Created on an AR16WR• 
machine, (PDP™-11/70). 

F_AR32WR 00400 Created on ao AR32WRn 
machine, (VAX-11/780). 

F AR32W 01000 Created on an AR32Wu• 
machine, (M68000). 

F PATCH 02000 Not used by UNIX 

Figure 8.4. File Header Flags 

PDP is a trademark of Digital Equipment Corporation. 
• AR16WR defines the machine architecture (AR) as 16 bits per word (16), 
right-to-left byte order with the least significant byte first (WR). 
u AR.l2WR defines the machine architecture (AR) as 32 bits per word (32), 
right-to-left byte order with the least significant byte first (WR) . 
... AR32W defines the machine architecture (AR) as 32 bits per word (32), 
left-to,-rigbt·byte order witb the most significant byte first (W). 
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3.3 File Header Declaration 

The C structure declaration for the file header is given in the 
following table. This declaration may be found in the header 
file fl.Iehdr.h. See fl.lehdr(4) in the UniPfugf- User Manual, Sec­
tions 2-6. 

struct filehdr { 

unsigned short f_magic; I• magic number •/ 

unsigned short f_nscns; I• number of section •I 
long f_timdat; I• time and data stamp •/ 

long f_symptr; I• file pointer to 
symbol table •/ 

long f-nsyms; I• number entries in the 
symbol table •/ 

unsigned short f_opthdr; I• size of 
optional header•/ 

unsigned short f_flags; I• flags •/ 

}; 

#define FILHDR struct filehdr 
#define FILHSZ sizeof(FILHDR) 

Figure 8.5. File Header Declaration 

4. Optional Header Information 

The template for optional information varies among different 
systems that use COFF. Applications place ALL 
system-dependent information into this record. This allows 
different operating systems access to information that only that 
operating system uses without forcing all COFF files to save 
space for that information. General utility programs (for exam­
ple, the symbol table access library functions), can be made to 
work properly on any common object file by using the "size of 
optional header information" in bytes 16-17 of the file header 
f_opthdr. 
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4.1 Standard UNIX System a.out Header 

By default, files produced by the link editor (ld) ALWAYS 
have a standard UNIX System a.out header in the optional 
header field. The VAX version of the optional header is 28 
bytes. The fields of the optional header are described in the 
following figure: 

BYTES DECLARATION NAME DESCRIPTION 

0-1 short magic Magic number 
2-3 short vstamp Version stamp 
4-7 long int tsize Size of text in 

bytes 
8-ll long int dsize Size of initialized 

data in bytes 
12-15 long int bsize Size of uninitial-

ized data in bytes 
16-19 long int entry Entry point 
20-23 long int text_ start Base address of 

text 
24-27 long int data_start Base address of 

data 

Figure 8.6. Optional Header Contents 

The magic number in the optional header supplies operating 
system dependent information about the object file. Whereas, 
the magic number in the file header specifies the machine on 
which the object file runs. The magic number in the optional 
header supplies information telling the operating system on that 
machine how that file should be executed. The magic numbers 
recognized by the UniPlus+ operating system are given in the 
following table: 
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VALUE MEANING 

0407 The text segment is not write-protected or 
sharable; the data segment is contiguous 
with the text segment. 

0410 The data segment starts at the next seg-
ment following the text segment and the 
text segment is write protected. 

Figure 8.7. UNIX Magic Numbers 

The magic number for the UNIX Operating System is a 
machine-dependent constant that can be found in the header 
file a out h. See the manual page for a.out(4) in the UniP/ust 
User Manual, Sections 2-6. 
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4.2 Optional Header Declaration 

The C language structure declaration currently used for the 
UniPius+ system a.out file header is given in the following 
table. This declaration may be found in the header file 
aouthdr.h. 

8-14 

typedef struct aouthdr { 

short magic; 

short vstamp; 

long tsize; 

long dsize; 

long bsize; 

long entry; 

I• magic number "'' 

I• version stamp .. , 

I• text size in bytes, padded 
to full word boundary •/ 

I• initialized data size *I 

I• uninitialized data size •/ 

I• entry point •I 

long text_start; /• base of text for this file •/ 

long data_start f* base of data for this file •/ 

AOUTHDR; 

Figure 8.8. Aouthdr Declaration 
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5. Section Headers 

Every object file has a table of section headers to specify the 
layout of data within the file. Every section in an object file 
also has its own header. The section header table consists of 
one entry for every section in the file. Each entry contains the 
following information about the section: 
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BYTES DECLARATION NAME DESCRIPTION 

0-7 char s_name 8-char null 
padded section 
name 

8-11 long int s_paddr Physical 
address of sec-
tion 

12-15 long int s_vaddr Virtual 
address of sec-
tion 

16-19 long int s_size Section size in 
bytes 

20-23 long int s_scnptr File pointer to 
raw data 

24-27 long int s_relptr File pointer to 
relocation 
entries 

28-31 long int s_Jnnoptr File pointer 
to line number 
entries 

32-33 unsigned short s_nreloc Number of 
relocation 
entries 

34-35 unsigned short s_nlnno Number of 
line number 
entries 

36-39 long int s flags Flags 

Figure 8.9. Section Header Contents 
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The size of a section is always padded to a multiple of 4 bytes. 

File pointers are byte offsets that can be used to locate the start 
of data, relocation, or line number entries for the section. 
They can be readily used with the UniPlus+ Operating System 
function fseek (3S). 

5.1 Flags 

The lower 4 bits of the flag field indicate a section type. 
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MNEMONIC FLAG MEANING 

STYP_REG OxOO Regular section (allo-
cated, relocated, 
loaded) 

STYP_DSECT OxOl Dummy section (not 
allocated, relocated, not 
loaded) 

STYP _NOLO AD Ox02 Noload section (allo-
cated, relocated, not 
loaded) 

STYP_GROUP Ox04 Grouped section 
(formed from input 
sections) 

STYP_PAD Ox08 Padding section (not 
allocated, not relocated, 
loaded) 

STYP_COPY OxlO Copy section (for a 
decision function used 
in updating fields; not 
allocated, not relocated, 
loaded, relocation and 
line number entries 
processed normally) 

STYP TEXT Ox20 Section contains exe-
cutable text ONLY 

STYP DATA Ox40 Section contains initial-
ized data ONLY 

STYP BSS Ox80 Section contains only 
uninitialized data 

Figure 8.10. Section Header Flags 
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5.2 Section Header Declaration 

The C structure declaration for the section headers is described 
in the following figure. This declaration may be found in the 
header file scnhdr.h. (See scnhdr(4) in the UniPlus+ User 
Manual, Sections 2-6 for more information.) 

struct scnhdr { 

char s_name[81; I' section name "I 

long s_paddr; I' physical address "/ 

long s_vaddr; I' virtual address "I 

long s_size; I' section size "/ 

long s_scnptr; I' file pointer to 
section raw data "I 

long s_relptr; I' file pointer to 
relocation */ 

long s_lnnoptr; I* file pointer to 
line number "/ 

unsigned short s_nreloc~ I' number of 
relocation entries */ 

unsigned short s_nlnno; I' number of 
line number entries */ 

long s_flags; ,. flags */ 

}; 

#define SCNHDR struct scnhdr 
#define SCNHSZ sizeof(SCNHDR) 

Figure 8,11, Section Header Declaration 

5.3 .bss Section Header 

The one deviation from the normal rule in the section header 
table is the entry for uninitialized data in a .bss section. A .bss 
section has a size, symbols that refer to it and symbols that are 
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defined in it. At the same time, a .bss section has no reloca­
tion entries, no line number entries, and no data. Therefore, a 
.bss section has an entry in the section header table but occu­
pies no space elsewhere in the file. In this case, the number of 
relocation and line number entries, as well as all file pointers in 
a .bss section header, are zero. 

6. Sections 

Section headers are followed by the appropriate number of 
bytes of text or data. The raw data for each section begins on a 
full word boundary in the file. 

Files produced by the cc compiler and the as assembler always 
contain three sections, called .text, .data, and .bss. The .text 
section contains the instruction text (i.e., executable code); the 
.data section contains initialized data variables; and the .bss 
section contains uninitialized data variables. 

The link editor SECTIONS directives (see the chapter on "LD 
- THE COMMON LINK EDITOR" in the UniPlus+ Program­
ming Guide.} allows users to: 

• describe how input sections are to be combined; 

• direct the placement of output sections; and 

• rename output sections. 

If no SECTIONS directives are given, each input section 
appears in an output section of the same name. For example, 
if a number of object files from the compiler are linked 
together (each containing the three sections .text, .data, and 
.bss}, the output object file also contains the same three sec­
tions. 
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7. Relocation Information 

Object files have one relocation entry for each relocatable refer· 
ence in the text or data. The relocation information consists of 
entries with the following 10 byte format 

BYTES DECLARATION NAME DESCRIPTION 

0-3 long int r_vaddr (Virtual) 
address of 
reference 

4-7 long int r_symndx symbol table 
index 

8-9 unsigned short r type Relocation type 

Figure 8.12. Relocation Section Contents 

The first 4 bytes of the entry are the virtual address of the text 
or data to which this entry applies. The next field is the index, 
counted from 0, of the symbol table entry that is being refer­
enced. The type field indicates the type of relocation to be 
applied. 

As the link editor reads each input section and performs reloca­
tion, the relocation entries are read. They direct how refer­
ences found within the input section are treated. 

The currently recognized relocation types are given in the fol­
lowing table: 
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MNEMONIC FLAG MEANING 

R_ABS 0 Reference is absolute; no 
relocation is necessary. 
The entry will be ignored. 

R_RELBYTE 017 Direct 8-bit reference to 
the symbol's virtual 
address. 

R_RELWORD 020 Direct 16-bit reference to 
the symbol's virtual 
address. 

R_RELLONG 021 Direct 32-bit reference to 
the symbol's virtual 
address. (a VAX reloca-
tion type) 

R_PCRBYTE 022 A "PC-relative" 8-bit 
reference to the symbol's 
virtual address. 

R_PCRWORD 023 A "PC-relative" 16-bit 
reference to the symbol's 
virtual address. 

R_PCRLONG 024 A "PC-re/ative" 32-bit 
reference to the symbol's 
virtual address. 

Figure 8.13. VAX and M68000 Relocation Types 
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On VAX processors, relocation of a symbol index of -1 indi­
cates that the amount by which the section is being relocated is 
added to the relocatable address. In other words, the relative 
difference between the current segment's start address and the 
program's load address is added to the relocatable address. 

The as automatically generates relocation entries which are 
then used by the link editor. The link editor uses this informa­
tion to resolve external references in the file. 

7 .l Relocation Entry Declaration 

The structure declaration for relocation entries is given in the 
following table. This declaration may be found in the header 
file reloc.h. 

struct reloc { 

long r_ vaddr; I• reference virtual address •I 

long r_symndx; I• index into symbol table .. , 

unsigned short r_type; I* relocation type *I 
}; 

#define RELOC struct reloc 
#define RELSZ 10 

Figure 8.14. Relocation Entry Declaration 

8. Line Numbers 

When invoked with the -g option, the UniPlus+ system com· 
pilers (cc, n7) generate an entry in the object file for every C 
language source line where a breakpoint can be inserted. You 
can then reference line numbers when using a software 
debugger like sdb. All line numbers in a section are grouped 
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by function. 

symbol index 0 
physical address line number 
physical address line number 

... 
symbol index 0 

physical address line number 
physical address line number 

Figure 8.15. Line Number Grouping 

The first entry in a function grouping has line number 0 and 
has, in place of the physical address, an index into the symbol 
table for the entry containing the function name. Subsequent 
entries have actual line numbers and addresses of the text 
corresponding to the line numbers. The line number entries 
appear in increasing order of address. 

8.1 Line Number Declaration 

The following is the structure declaration currently used for line 
number entries. 
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struct lineno { 

union { 
long l_symndx;r symbol table index 

of function name */ 

long l_paddr; r physical address 
of line number *I 

) l_addr; 
unsigned short l_lnno; r line number "'/ 

); 

#define LINENO 
#define LINESZ 

struct lineno 
6 

Figure 8.16. Line Number Entry Declaration 

9. Symbol Table 

Because of symbolic debugging requirements, the order of sym­
bols in the symbol table is very important. Symbols appear in 
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the following sequence: 

file name 1 

function 1 
local symbols 
for function 1 

function 2 
local symbols 
for function 2 

. 
statics 

. 
file name 2 
function 1 

local symbols 
for function 1 

. 
statics 

. 
defined global 

symbols 
undefined global 

symbols 

Figure 8.17. COFF Global Symbol Table 

The word statics means symbols defined in the C language 
storage class static outside any function. The symbol table con­
sists of at least one fixed-length entry per symbol with some 
symbols followed by auxiliary entries of the same size. The 
entry for each symbol is a structure that holds the name {null­
padded), the structure value, the type, and other information. 
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9.1 Special Symbols 

The symbol table contains some special symbols that are gen­
erated by the « compiler, the as assembler, and other tools. 

SYMBOL MEANING 

.file file name 

.text address of .text section 

.data address of .data section 

.bss address of .bss section 

.bb address of start of inner block 

.eb address of end of inner block 

.bf address of start of function 

.ef address of end of function 

.target pointer to the structure or 
union returned by a function 

• .xfake dummy tag name for struc-
ture, union, or enumeran 

.eos end of members of structure, 
union, or enumeration 

_ etext,etext next available address after 
the end of the output section 
.text 

_edata,edata next available address after 
the end of the output section 
.data 

_end,end next available address after 
the end of the output section 
.bss 

Figure 8.18. Special Symbols in the Symbol Table 
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Six of these special symbols occur in pairs. The .bb and .eb 
symbols indicate the boundaries of inner blocks. A .bf and .ef 
pair brackets each function; and a . .xfake and .eos pair names 
and defines the limit of structures, unions, and enumerations 
that were not named. The .eos symbol also appears after 
named structures, unions, and enumerations. 

When a structure, union, or enumeration has no tag name, the 
cc compiler invents a name to be used in the symbol table. 
The name chosen for the symbol table is . .xfake, where xis an 
integer. If there are three unnamed structures, unions, or 
enumerations in the source, their tag names are .Ofake, .lfake, 
and .2fake. 

Each of the special symbols has different information stored in 
the symbol table entry as well as the auxiliary entry. 

9.2 Inner Blocks 

The C language defines a block as a compound statement that 
begins and ends with braces ( { and } ) . An inner block is a 
block that occurs within a function (which is also a block), such 
as if, while or switch. 

For each inner block that has local symbols defined, a special 
symbol .bb is put in the symbol table immediately before the 
first local symbol of that block. Also a special symbol, .eb is 
put in the symbol table immediately after the last local symbol 
of that block. The following table shows this sequence: 

8-28 



r-
1 

.bb 
local symbols 
for that block 

.eb 

Figure 8.19. Special Symbols 
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Because inner blocks can be nested by several levels, the 
.bb-.eb pairs and associated symbols may also be nested. See 
the following table. 

inti; 
char c; 

long a; 

int x; 

long i; 

!*block l *I 

I* block 2 "I 

I* block 3 '"I 

I* block 3 *I 
r block 2 *I 
I* block 4 *I 

I* block 4 "'/ 
I* block 1 "'/ 

Figure 8.20. Nested Blocks 

The symbol table would then look like the following: 
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.bb for block 1 
local symbols for block 1: 

i 
c 

.bb for block 2 
local symbols for block 2: 

a 
.bb for block 3 

local symbols for block 3: 
X 

.eb for block 3 

.eb for block 2 

.bb for block 4 
local symbols for block 4: 

i 
.eb for block 4 
.eb for block 1 

Figure 8.21. Example of the Symbol Table 

9.3 Symbols and Functions 

For each function, a special symbol .bf is put between the func­
tion name and the first local symbol of the function in the sym­
bol table. Also, a special symbol .ef is put immediately after 
the last local symbol of the function in the symbol table. The 
sequence is shown in the following table: 
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function name 
.bf 

local symbol 
.ef 

Figure 8.22. Symbols for Functions 
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If the return value of the function is a structure or union, a 
special symbol .target is put between the function name and 
the .bf. The sequence is shown in the following table: 

function name 
.target 

.bf 
local symbols 

.ef 

Figure 8.23. The Special Symbol .target 

The cc compiler invents .target to store the function-returned 
structure or union. The symbol .target is an automatic variable 
~ith pointer type. Its value field in the symbol is always 0. 

9.4 Symbol Table Entries 

All symbols, regardless of storage class and type, have the same 
format for their entries in the symbol table. The symbol table 
entries each contain the 18 bytes of information. The meaning 
of each of the fields in the symbol table entry is described in 
the following table: 

It should be noted that indices for symbol table entries begin at 
zero and count upward. Each auxiliary entry also counts as one 
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symbol. 

BYTES DECLARATION NAME DESCRIPTION 

0-7 char name 8 character -
null-padded 
name of either 
a pointer or 
symbol. 

8-11 long int n_value Symbol value; 
storage class 
dependent 

12-13 short n_scnum Section 
number of 
symbol 

14-15 unsigned short n_type Basic and 
derived type 
specification 

16 char n_sclass Storage class 
of symbol 

17 char n_numaux Number of 
auxiliary 
entries. 

Fi~~:ure 8.24. Symbol Table Entry Format 

9.4.1 Symbol Names 

The first 8 bytes in the symbol table entry are a union of a 
character array and two longs. If the symbol name is eight 
characters or less, the (null-padded) symbol name is stored 
there. If the symbol name is longer than eight characters, then 
the entire symbol name is stored in the string table. In this 
case, the 8 bytes contain two long integers, the first is zero, and 
the second is the offset (relative to the beginning of the string 
table} of the name in the string table. Since there can be no 

8-JZ 



COFF 

symbols with a null name, the zeroes on the first 4 bytes serve 
to distinguish a symbol table entry with an offset from one with 
a name in the first 8 bytes as shown in the following table. 

The name of a symbol is currently limited to 8 characters, 
longer names are truncated by the cc compiler, Some special 
symbols are generated by the compiler and link editor, as dis­
cussed under the subheading "Special Symbols." The names 
of special symbols alwas start with a dot, such as .file, .Sfake 
and .bb. 

BYTES DECLARATION NAME DESCRIPTION 

0-7 char n_name 8-character 
null-padded 
symbol name 

0-3 long n_zeroes zero in this 
field indicates 
the name is in 
the string table 

4-7 long n_otfset offset of the 
name in the 
string table 

Figure 8.25. Name Field 

Some special symbols are generated by the cc compiler and ld 
link editor as discussed under the subheading "Special Sym­
bols." The VAX tt compiler prepends an underscore("_") to 
all the user defined symbols it generates; the M68000 DOES 
NOT pre pend an underscore. The M68000 prepends a "." to 

( such symbol names (i.e., .Sfake). 

8-33 



COFF 

9.4.2 Storage Classes 

The storage class field has one of the values described in the 
following table. These "defines" may be found in the header 
file storclass.h. 

8-34 



COFF 

MNEMONIC VALUE STORAGE CLASS 

C EFCN I physical end of a function 
C NULL 0 
C_AUTO I automatic variable 
C EXT 2 external symbol 
C STAT 3 static 
C REG 4 register variable 
C EXTDEF 5 external definition 
C LABEL 6 label 
C ULABEL 7 undefined label 
CMOS 8 member of structure 
C ARG 9 function argument 
C STRTAG 10 structure tag 

C MOU 11 member of union 
C UNTAG 12 union tag 

C TPDEF 13 type definition 
C USTATIC 14 uninitialized static 
C ENTAG 15 enumeration tag 
C_MOE 16 member of enumeration 
C_REGPARM 17 register parameter 
C FIELD 18 bit field 
C_BLOCK 100 beginning and end of block 
C_FCN 101 beginning and end of function 
C_EOS 102 end of structure 
C FILE 103 file name 
CLINE 104 used only by utility programs 
C_ALIAS 105 duplicated tag used only with 

the UNIX cprs utility 
C_HIDDEN 106 like static, used to avoid name 

conflicts 

Figure 8.26. Storage Classes 
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All of these storage classes except for C_ALIAS and 
C_HIDDEN are generated by the cc compiler or as assembler. 
These storage classes are not used by any UniPlus+ system 
tools. The UNIX cprs (compress) utility generates the 
C_ALIAS mnemonic. This utility removes duplicated struc­
ture, union and enumeration definitions and puts ALIAS 
entries in their places. 

There are some "dummy" storage classes defined in the header 
file which are only used internally by the cc compiler and the as 
assembler. These storage classes are: 

• C_EFCN 

• C_EXTDEF 

• C_ULABEL 

• C_USTATIC 

• C_LINE 

9.4.3 Storage Classes for Special Symbols 

Some special symbols are restricted to certain storage classes 
listed in the following table: 
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SPECIAL SYMBOL STORAGE CLASS 

.file C_FILE 

.bb C BLOCK 

.eb C_BLOCK 

.bf C FCN 

.ef C FCN 

.target C AUTO 

. .:dake C STRTAG, C UNTAG, C ENTAG 

.eos C EOS 

.text C_STAT 

.data C_STAT 

.bss C_STAT 

Figure 8.27. Storage Class by Special Symbols 

Some storage classes are only used for certain special symbols. 

STORAGE CLASS SPECIAL SYMBOL 

C BLOCK .bb, .eb 
C FCN .bf, .ef 
C EOS .eos 
C FILE .file 

Figure 8.28. Restricted Storage Classes 

9.4.4 Symbol Value Field 

The meaning of the value of a symbol depends on its storage 
class. This relationship is summarized in the following table: 
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STORAGE CLASS MEANING 

C AUTO stack offset in bytes 
C EXT relocatable address 
C STAT relocatable address 
C REG register number 
C LABEL relocatable address 
CMOS offset in bytes 
C ARG stack offset in bytes 
C STRTAG 0 
C MOU offset 
C UNTAG 0 
C TPDEF 0 
C ENTAG 0 
C MOE enumeration value 
C REGPARM register number 
C FIELD bit displacement 
C BLOCK relocatable address 
C FCN relocatable address 
C EOS size 
C FILE (see text below) 
C_ALIAS tag index 

used by UNIX cprs utility 

C_HIDDEN relocatable address 
used by UNIX cprs utility 

Figure 8.29. Storage Class and Value 

If a symbol is the last symbol in the object file and has storage 
class C _FILE (.file symbol), the value of that symbol equals 
the symbol table entry index of the first global symbol. That is, 
the .file entries form a 1-way linked list in the symbol table. If 
there are no more .file entries in the symbol table, the value of 
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the symbol is the index of the first global symbol. 

Relocatable symbols have a value equal to the virtual address of 
that symbol. When the section is relocated by the link editor, 
the value of these symbols changes. 

9.4.5 Section Number Field 

Section numbers are listed in the following figure: 

MNEMONIC SECTION NUMBER MEANING 

N_DEBUG -2 special symbolic 
debugging sym-
bol 

NABS -I absolute symbol 
N_UNDEF 0 undefined 

external symbol 
N_SCNUM 1-077767 section number 

where symbol 
was defined 

Figure 8.30. Section Number 

A special section number (-2) marks symbolic debugging sym­
bols, including structure/union/enumeration tag names, 
typedefs, and the name of the file. A section number of -1 
indicates that the symbol has a value but is not relocatable. 
Examples of absolute-valued symbols include automatic and 
register variables, function arguments, and .eos symbols. The 
.text, .data, and .bss symbols default to section numbers 1, 2, 
and 3, respectively. 

With one exception, a section number of 0 indicates a relocat­
able external symbol that is not defined in the current file. The 
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one exception is a multiply defined external symbol (i.e., FOR­
TRAN common or an uninitialized variable defined external to 
a function in C). In the symbol table of each file where the 
symbol is defined, the section number of the symbol is 0 and 
the value of the symbol is a positive number giving the size of 
the symbol. When the files are combined, the link editor com­
bines all the input symbols into one symbol with the section 
number of the .bss section. The maximum size of all the input 
symbols with the same name is used to allocate space for the 
symbol and the value becomes the address of the symbol. This 
is the only case where a symbol has a section number of 0 and 
a non-zero value. 

9.4.6 Section Numbers and Storage Classes 

Symbols having certain storage classes are also restricted to cer­
tain section numbers. They are summarized in the following 
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table: 

STORAGE CLASS SECTION NUMBER 

C_AUTO N_ABS 

C_EXT N_ABS, N_UNDEF, N_SCNUM 

C STAT N_SCNUM 

C_REG NABS 

C_LABEL N UNDEF, N SCNUM 

C_MOS NABS 

C_ARG NABS 

C_STRTAG N DEBUG 

C_MOU NABS 

C_UNTAG N_DEBUG 

C TPDEF N_DEBUG 

C ENTAG N_DEBUG 

C MOE N_ABS 

C REGPARM N_ABS 
C FIELD N_ABS 

C_BLOCK N_SCNUM 

C_FCN N SCNUM 
C_EOS NABS 
C_FILE N DEBUG 

C_ALIAS N DEBUG 

Figure 8.31. Section Number and Storage Class 

9.4. 7 Type Entry 

The type field in the symbol table entry contains information 
about the basic and derived type for the symbol. This informa­
tion is generated by the tt. The VAX and M68000 cc com­
pilers generate this information ONLY if the -g option is used. 
Each symbol has exactly one basic or fundamental type but can 
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have more than one derived type. The format of the 16-bit 
type entry is 

1 ct6 1 ct5 ct4 d3 ct2 ct1 I trp 1 

Bits 0 through 3, called typ, indicate one of the fundamental 
types given in the following table: 

MNEMONIC VALUE TYPE 

T NULL 0 type not assigned 
T CHAR 2 character 
T SHORT 3 short integer 
TINT 4 integer 
T LONG 5 long integer 
T FLOAT 6 floating point 
T DOUBLE 7 double word 
T STRUCT 8 structure 
T UNION 9 union 
T ENUM 10 enumeration 
T MOE 11 member of enumeration 
T_UCHAR 12 unsigned character 
T_USHORT 13 unsigned short 
T_UINT 14 unsigned integer 
T_ULONG 15 unsigned long 

Figure 8.32. Fundamental Types 

Bits 4 through 15 are arranged as six 2-bit fields marked dl 
through d6. These d fields represent levels of the derived types 
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given in the following table. 

MNEMONIC VALUE TYPE 

DT NON 0 no derived type 
DT PTR I pointer 
DT FCN 2 function 
DT_ARY 3 array 

Figure 8.33. Derived Types 

The following examples demonstrate the interpretation of the 
symbol table entry representing type. 

char •funcO; 

r- Here func is the name of a function that returns a pointer to a 
'--· character. The fundamental type of func is 2 (character), the 

dl field is 2 (function), and the d2 field is 1 (pointer). There­
fore, the type word in the symbol table for rune contains the 
hexadecimal number Ox62, which is interpreted to mean "a 
function that returns a pointer to a character." 

short •tabptr[IO] [25] [3]; 

Here tabptr is a 3-dimensional array of pointers to short 
integers. The fundamental type of tabptr is 3 (short integer); 
the dl, d2, and d3 fields each contains a 3 (array), and the d4 
field is 1 (pointer). Therefore, the type entry in the symbol 
table contains the hexadecimal number Ox7f3 indicating "a 3-
dimensional array of pointers to short integers." 
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9.4.8 Type Entries and Storage Classes 

Following are the type entries that are legal for each storage 
class: 
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----------"d" ENTRY---------- "typ" 
STORAGE ENTRY 

CLASS F?• A?• P?• BASIC 
TYPE 

C_AUTO no yes yes Any 
except 
T_MOE 

C_EXT yes yes yes Any 
except 
T MOE 

C_STAT yes yes yes Any 
except 
T MOE 

C_REG no no yes Any 
except 
T MOE 

C LABEL no no no T NULL 

C_MOS no yes yes Any 
except 
T MOE 

C_ARG yes no yes Any 
except 
T MOE 

C_STRTAG no no no T STRUCT 
C_MOU no yes yes Any 

except 
T MOE 

C UNTAG no no no T UNION 

C_TPDEF no yes yes Any 
except 
T MOE 

C ENTAG no no no T ENUM 

• F? = Function?; • A? - Array? • P? = Pointer? 

Figure 8.34. Type Entries by Storage Class (1 of 2) 
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----------"d" ENTRY---------- "typ" 
STORAGE ENTRY 

CLASS F?~ A?• P?• BASIC 
TYPE 

C MOE no no no T_MOE 

C_REGPARM no no yes Any 
except 
T MOE 

C_FIELD no no no T_ENUM, 
T_UCHAR, 
T_USHORT, 
T_UNIT, 
T ULONG 

C BLOCK no no no T NULL 

C FCN no no no T NULL 

C EOS no no no T NULL 

C FILE no no no T NULL 

C_ALIAS no no no T_STRUCT, 
T_UNION, 
T ENUM 

• F? = Function?; • A? = Array? • P? = Pointer? 

Figure 8.35. Type Entries by Storage Class (2 of 2) 

Conditions for the d entries apply to dl through d6, except that 
it is impossible to have two consecutive derived types of func­
tion. 

Although function arguments can be declared as arrays, they 
are changed to pointers by default. Therefore, no function 
argument can have array as its first derived type. 

9.4.9 Structure for Symbol Table Entries 

The C language structure declaration for the symbol table entry 
is given in the following table. This declaration may be found 
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struct syment { 

union { 

COFF 

char n name[SYMNMLEN]; !* symbol name*/ 

struct ( 

long _n_zeroes; I* symbol name */ 

long _ n _offset; I* location in 
string table *I 

l n n· --' 
char _n_nptr[2]; 

l n· - ' 
long n_ value; 

/"' allows 
overlaying */ 

I* value of symbol *I 

short n_scnum; t• section number */ 

unsigned short n_type; r type and derived ., 

I* storage class */ char n _ sclass; 

char n_numaux; r number of aux entries */ 

}; 

#define n_name _n._n_name 
#define n_zeroes _n._n_n._n_zeroes 
#define n offset _n._n_n._n_offset 
#define n=nptr _n._n_nptr[l] 

#define SYMNMLEN 8 
#define SYMESZ 18 I* size of symbol table entry *I 

Figure 8.36. Symbol Table Entry Declaration 

/.--., 9.5 Auxiliary Table Entries 

Currently. there is at most one auxiliary entry per symbol. The 
auxiliary table entry contains the same number of bytes as the 
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symbol table entry. However, unlike symbol table entries, the 
format of an auxiliary table entry of a symbol depends on its 
type and storage class. The following table lists auxiliary table 
entry formats by type and storage class. 
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TYPE ENTRY AUX. 

r 
' 

STORAGE ENTRY 
NAME CLASS dZ typ FORMAT 

.file C FILE DT NON T NULL file name 

.text, C~STAT DT_NON T_NULL section 

.data, 

.bss 
tagname C_STRTAG DT_NON T_NULL tag name 

C_UNTAG 
C ENTAG 

.eos C_EOS DT_NON T_NULL end of 
structure 

fcname C_EXT DT_FCN Any function 
C_STAT except 

T MOE 

arrname C_AUTO DT_ARY Any array 
C_STAT except 
C_MOS T_MOE 

(~ C_MOU 
C TPDEF 

.bb C_BLOCK DT_NON T_NULL begin· 
ning of 
block 

.eb C_BLOCK DT_NON T_NULL end of 
block 

.bf .ef C_FCN DT_NON T_NULL begin-
ning and 
end of 
function 

name C_STAT DT_PTR T_STRUCT name 
related to C_MOS DT_ARR T_UNION, related to 
structure C_MOU DT NON T ENUM structure 
union, C_TPDEF 

union, 
enumera- enumera-

(~ tion tion 
' 

Figure 8.37. Auxiliary Symbol Table Entries 
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In the preceding table, tagname means any symbol name 
including the special symbol . .xfake, and fcname and arrname 
represent any symbol name. 

Any symbol that satisfies more than one condition should have 
a union format in its auxiliary entry. Symbols that do not 
satisfy any of the above conditions should NOT have any auxi­
liary entry. 

9.5.1 File Names 

Each of the auxiliary table entries for a file name contains a 
14-character file name in bytes 0 through 13. The remaining 
bytes are 0, regardless of the size of the entry. 

9.5.2 Sections 

The auxiliary table entries for sections have the format as 
shown in the following table: 

BYTES DECLARATION NAME DESCRIPTION 

0-3 long int x_scnlen section 
length 

4-6 unsigned short x_nreloc number of 
relocation 
entries 

6-7 unsigned short x_nlinno number of 
line numbers 

8-17 dummy unused (filled 
with zeroes) 

Figure 8.38. Format for Auxiliary Table Entries 
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9.5.3 Tag Names 

The auxiliary table entries for tag names have the format 
shown in the following table: 

BYTES DECLARATION NAME DESCRIPTION 

0-5 - dummy unused (filled 
with zeros) 

6-7 unsigned short x_size size of strucrt, 
union,and 
enumeration 

8-11 dummy unused (filled 
with zeroes) 

12-15 long int x_endndx index of next 
entry beyond 
this structure, 
union, or 
enumeration 

16-17 dummy unused (filled 
with zeroes) 

Figure 8.39. Tag Names Table Entries 

9.5.4 End of Structures 

The auxiliary table entries for the end of structures have the 
format shown in the following table: 
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BYTES DECLARATION NAME DESCRIPTION 

0-3 long int x_tagndx tag index 
4-5 dummy unused (filled 

with zeroes) 
6-7 unsigned short x_size size of struct, 

union, or 
enumeration 

8-17 dummy unused (filled 
with zeroes) 

Figure 8.40. Table Entries for End of Structures 

9.5.5 Functions 

The auxiliary table entries for functions have the format shown 
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in the following table: 

BYTES DECLARATION NAME DESCRIPTION 

0-3 long int x_tagndx tag index 
4-7 long int x_fsize size of func-

tion On bytes) 
8-11 long int x_lnnoptr file pointer to 

line number 
12-15 long int x endndx index of next 

entry beyond 
this function 

16-17 unsigned short x_tvndx index of the 
function's 
address in the 
transfer vector 
table (not used 
by UNIX 
Operating Sys-
tern.) 

Figure 8.41. Table Entries for Functions 

9.5.6 Arrays 

The auxiliary table entries for arrays have the format shown in 
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the following table: 

BYTES DECLARATION NAME DESCRIPTION 

0-3 long int x tagndx tag index 
4-5 unsigned short x_lnno line number of 

declaration 
6-7 unsigned short x size size of array 
8-9 unsigned short x dimen[OJ first dimension 

10-11 unsigned short x dimenUJ second dimension 
12-13 unsigned short x dimen[2) third dimension 
14-15 unsigned short X dimen[JJ fourth dimension 

16-17 dummy unused (filled 
with zeroes) 

Figure 8.42. Table Entries for Arrays 

9.5. 7 Beginning of Blocks and Functions 

The auxiliary table entries for the beginning of blocks and func­
tions have the format shown in the following table: 

BYTES DECLARATION NAME DESCRIPTION 

0-3 dummy unused (filled 
with zeroes) 

4-5 unsigned short x lnno C-source line 
number 

6-11 dummy unused (filled 
with zeroes) 

12-15 long int x_endndx index of next 
entry past this 
block 

16-17 dummy unused (filled 
with zeroes) 

Figure 8.43. Format for Beginning of Block and Function 
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9.5.8 End of Blocks and Functions 

The auxiliary table entries for the end of blocks and functions 
have the format shown in the following table: 

BYTES DECLARATION NAME DESCRIPTION 

0-3 - dummy used (filled 
with zeroes) 

4-5 unsigned short x lnno C-source line 
number 

6-17 dummy unused (filled 
with zeroes) 

Figure 8.44. End of Block and Function Entries 

9.5.9 Names Related to Structures, Unions, and 
Enumerations 

The auxiliary table entries for structure, union, and enumera­
tions symbols have the format shown in the following table: 

BYTES DECLARATION NAME DESCRIPTION 

0-3 long int x tagndx tag index 
4-5 dummy unused (filled 

with zeroes) 

6-7 unsigned short x_size size of the 
structure, 
union or 
numeration 

8-17 dummy unused (filled 
with zeroes) 

Figure 8.45. Entries for Structures, Unions and Numerations 

8-55 



COFF 

Names defined by typedef may or may not have auxiliary table 
entries. For example, 

typedef struct people STUDENT; 

struct people { 
char name[20]; 
long id; 
); 

typedef struct people EMPLOYEE; 

The symbol EMPLOYEE has an auxiliary table entry in the 
symbol table but symbol STUDENT will not. 

9.5.10 Auxiliary Entry Declaration 

The C language structure declaration for an auxiliary symbol 
table entry is given in the following table. This declaration may 
be found in the header file syrns.h. 
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union auxent 

struct 
long x_tagndx; 
union { 

struct 
unsignedshort x_lnno; 
unsignedshort x_size; 

x_lnsz; 
long x_fsize; 

x mise; 
uniOn { 

struct 
long x_lnnoptr; 
long x endndx; 

} x fen; -
struCt ( 

COFF 

unsignedshort x dimen[DNUM]; 
} x_ary; -

x_fcnary; 
unsignedshort x_tvndx; 

} x sym; 
strllct { 

char x fname[FILNMLEN]; 
} x file; -
stni~t { 

long x_scnlen; 
unsignedshort x_nreloc; 
unsignedshort x_nlinno; 

x_scn; 
struct { 

} x_tv; 

long x_tvfill; 
unsignedshort x _ tvlen; 
unsignedshort x_tvran[2]; 

#defineFILNMLEN 14 
#defineDNUM 4 
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#defineAUXENT 
#defineAUXESZ 

union auxent 
18 

Figure 8.46. Auxiliary Symbol Table Entry 

10. String Table 

Symbol table names longer than eight characters are stored con­
tiguously in the string table with each symbol name delimited 
by a null byte. The first four bytes of the string table are the 
size of the string table in bytes; offsets into the string table 
therefore are greater than or equal to four. 

For example, given a file containing two symbols with names 
longer then eight characters, long_ name_} and another_ one, the 
string table has the format shown in the following table: 

28 

'I' 'o' 'n' 'g' 

' ' 'n' 'a' 'm' 
'e' ' ' 'I' '\0' 
'a' 'n' 'o' 't' 
'h' 'e' 'r' ' ' 
'o' 'n' 'e' '\0' 

Figure 8.47. String Table 

NOTE: The index of long_name_l in the string table is 4 and 
the index of another_ one is 16. 

11. Access Routines 

Supplied with every standard UniPius+ system release is a set 
of access routines that are used for reading the various parts of 
a common object file. Although the calling program must know 
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the detailed structure of the parts of the object file it processes, 
the routines effectively insulate the calling program from the 
knowledge of the overall structure of the object file. In this 
way, you can concern yourself with the section you are 
interested in without knowing all the object file details. 

The access routines can be divided into four categories: 

1. Functions that open or close an object file. 

2. Functions that read header or symbol table informa­
tion. 

3. Functions that position an object file at the start of a 
particular section of the object file. 

4. A function that returns the symbol table index for a 
particular symbol. 

These routines can be found in the library libld.a and are 
listed, along with a summary of what is available, in the 
UniP/ust User Manual, Sections 2-6, under ldfcn (4}. 
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1. Introduction 

Chapter 9 

FORTRAN 77 

FORTRAN 77 

This chapter describes the FORTRAN 77 compiler and run­
time system as implemented on the UniPlus+® system. 

Also described are the interfaces between procedures and the 
file formats assumed by the 1/0 system. (For more informa­
tion on the 1/0 system see the chapters entitled "UNIX1 M 

Implementation" and "UNIX 110" in the UniP/u~ Administra­
tor Manual). 

2. Usage 

(--. 2.1 UNIX System Commands 

A UniPius+ System FORTRAN 77 user should be familiar with 
the following commands: 

fl7 Usage: f77 (options) files 
This command invokes the UniPlus+ System FOR­
TRAN 77 compiler. 

ratfor Usage: ratfor (options) (files) 
This command invokes the Ratfor preprocessor. 

eft Usage: eft loptionsllfilesl 

a sa 

This command compiles a program written in Extended 
Fortran Language (EFL) into FORTRAN 77. 

Usage: asa (files) 
This command interprets the output of FORTRAN pro­
grams that utilize ASA carriage control characters. 

fsplit Usage: fsplit options files 
This command splits the named file(s) into separate 
files, with one procedure per file. 
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2.2 The f77 Command 

The command to run the compiler is 

n7 options file 

The UniPlus+ FORTRAN compiler accepts several types of 
arguments: 

1. Arguments whose names end with ".f" are taken to be 
Fortran 77 source programs; they are compiled, and each 
object program is left on the file in the current directory 
whose name is that of the source with a ".o" substituted 
for the ".f" suffix. 

2. Arguments whose names end with ".r" or ".e" are taken 
to be Ratfor or EFL source programs, respectively. 

3. Arguments whose names end with ".c" or ".s" are taken 
to be C or assembly source programs and are compiled or 
assembled, producing a ".o" file. 

The f77(1) command is a general purpose command for com­
piling and loading FORTRAN and FORTRAN-related files into 
an executable module. 

If EFL (compiler) and Ratfor (preprocessor) source files are 
given as arguments to the f77 command, they will be translated 
into FORTRAN before being presented to this FORTRAN 
compiler. 

The f77 command invokes the C compiler to translate C source 
files and invokes the assembler to translate assembler source 
files. 

Object files will be link edited unles the -c option is used. 

NOTE: 
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programs need two extra libraries - /ibl77.a and 
libF77.a- and an additional startup routine. 

The following file name suffixes are understood: 

.f FORTRAN source file 

.e EFL source file 

.r Ratfor source file 

.c C language source file 

.s Assembler source file 

. o Object file . 

2.2.1 Options 

The following options have the same meaning as in cc(l). (See 
Id(l) for load-time options.) 

-c Suppress loading and produce ".o" files for each 
source file. 

-g Have the compiler produce additional symbol table 
information for sdb(l). Also pass the -lg flag to 
ld(l). 

-w Suppress all warning messages. If the option is 
-w66, only Fortran 66 compatibility warnings are 
suppressed. 

- p Prepare object files for profiling, see prof(l). 

-0 Invoke an object-code optimizer. 

- S Compile the named programs, and leave the 
assembler-language output on corresponding files 
with a ".s" suffix. (No ".o" is created.) . 

. ~· -o output Name the final output file output instead of 
"a.out" (default). 
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The following options are peculiar to f77: 

-onetrip Compile DO loops that are performed at least once 
if reached. (Fortran 77 DO loops are not per­
formed at all if the upper limit is smaller than the 
lower limit.) 

-u Make the default type of a variable "undefined" 
rather than using the default Fortran rules. 

-C Compile code to check that subscripts are within 
declared array bounds. 

- F Apply EFL and Ratfor preprocessor to relevant 
files, put the result in the file with the suffix 
changed to ".f''. but do not compile. 

-m Apply the M4 preprocessor to each ".r" or ".e" 
file before transforming it with the Ratfor or EFL 
preprocessor. 

-EX 

-R X 

Use the string x as an EFL option in processing 
".e" files. 

Use the string x as a Ratfor option in processing 
".r" files. 

Other arguments are taken to be either loader option argu­
ments, F77-compatible object programs (typically produced by 
an earlier run), or libraries of F77-compatible routines. These 
programs, together with the results of any compilations 
specified, are loaded (in the order given) to produce an execut­
able program with name "a.out" (default). 

3. Language Extensions 

FORTRAN 77 includes almost all of FORTRAN 66 as a subset. 
The most important additions are a character string data type, 
file-oriented input/output statements, and random access 1/0. 
Also, the language has been cleaned up considerably. 
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In addition to implementing the language specified in the FOR­
TRAN 77 American National Standard, this compiler imple­
ments a few extensions. Most are useful additions to the 
language. The remainder are extensions to make it easier to 
communicate with C language procedures or to permit compila­
tion of old (1966 Standard FORTRAN) programs. 

3.1 Double Complex Data Type 

The data type double complex is added. Each datum is 
represented by a pair of double-precision real variables. A dou­
ble complex version of every complex built-in function is pro­
vided. 

3.2 Internal Files 

The FORTRAN 77 American National Standard introduces 
internal files (memory arrays) but restricts their use to format­
ted sequential 1/0 statements. This 1/0 system also permits 
internal files to be used in direct and unformatted reads and 
writes. 

3.3 Implicit Undefined Statement 

FORTRAN has a rule that the type of a variable that does not 
appear in a type statement is integer if its first letter is i, j, k, I, 
m or n. Otherwise, it is real. FORTRAN 77 has an implicit 
statement for overriding this rule. An additional type state­
ment, undefined, is permitted. The statement 

implicit undefined(a-z) 

turns off the automatic data typing mechanism, and the com­
piler will issue a diagnostic for each variable that is used but 
does not appear in a type statement. Specifying the -u com­
piler option is equivalent to beginning each procedure with this 

(" statement. 
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3.4 Recursion 

Procedures may call themselves directly or through a chain of 
other procedures. 

3.5 Automatic Storage 

Two new keywords recognized are static and automatic. These 
keywords may appear in implicit statements or as "types" in 
type statements. Local variables are static by default; there is 
exactly one copy of the datum, and its value is retained 
between calls. There is one copy of each variable declared 
automatic for each invocation of the procedure. Automatic 
variables may not appear in equivalence, data, or save state­
ments. 

3.6 Variable Length Input Lines 

The FORTRAN 77 American National Standard expects input 
to the compiler to be in a 72-column format, (except in com­
ment lines): 

• the first five characters are the statement number, 

• the next is the continuation character, 

• and the next 66 are the body of the line. 

• If there are fewer than 72 characters on a line, the 
compiler pads it with blanks. 

• characters after the first 72 are ignored. 

In order to make it easier to type FORTRAN programs, this 
compiler also accepts input in variable length lines. 
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• A tab anywhere EXCEPT in one of the first six posi­
tions on the line, is treated as another kind of blank 
by the compiler. 

3. 7 Upper Case/Lower Case 

In the FORTRAN 77 Standard, there are only 26 letters 
because FORTRAN is a one-case language, and the new com­
piler expects lowercase input. 

By default, the compiler converts all uppercase characters to 
lowercase except those inside character constants. If the - U 
compiler option is specified, uppercase letters are NOT 
transformed. In this mode, it is possible to specify external 
names with uppercase letters in them and to have distinct vari­
ables differing only in case. 

Regardless of the setting of the compiler's - U option, key­
words will be recognized ONLY if they appear in lowercase. 

3.8 Include Statement 

The statement 

include "stuff'' 

is replaced by the contents of the file stuff "Includes" may be 
nested to a reasonable depth, currently ten. 

3.9 Binary Initialization Constants 

A logical, real or integer variable may be initialized in a data 
statement by a binary constant, denoted by a letter followed by 
a quoted string. If the letter is b, the string is binary, and only 
zeroes and ones are permitted. If the letter is o, the string is 
octal with digits zero through seven. If the letter is z or x, the 
string is hexadecimal with digits zero through nine, a through f 
Thus, the statements 
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integer a(3) 
data a/b'l010',o'12',z'8'/ 

initialize all three elements of a to ten. 

3.10 Character Strings 

For compatibility with C language usage, the following 
backslash escapes are recognijzed: 

\n New-line 

\t Tab 

\b Backspace 

\f Form feed 

\0 Null 

\' Apostrophe (doesi not terminate a string) 

\ ~ Quotation mark (~oes not terminate a string) 
' 

\\ \ 
\x Where x is any other character. 

' 

FORTRAN 77 only has orle quoting character - the apos­
trophe ('}. This compiler a,nd I/0 system recognize both the 
apostrophe and the double quote e). If a string begins with 
one variety of quote mark, (he other may be embedded within 
it without using the repeated:quote or backslash escapes. 

Every unequivalenced scalar. local character variable and every 
character string constant is aligned on an integer word boun­
dary. Each character string constant appearing outside a data 
statement is followed by a null character to ease communication 
with C language routines. 
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3.11 Hollerith 

FORTRAN 77 does not have the old Hollerith (nb) notation 
though the new Standard recommends implementing the old 
Hollerith feature in order to improve compatibility with old pro~ 
grams. In this compiler, Hollerith data may be used in place of 
character string constants and may also be used to initialize non 
character variables in data statements. 

3.12 Equivalence Statements 

This compiler permits single subscripts in equivalence state­
ments under the interpretation that all missing subscripts are 
equal to 1. A warning message is printed for each such incom­
plete subscript. 

3.13 One-Trip DO Loops 

The FORTRAN 77 American National Standard requires that 
the range of a do loop NOT be performed if the initial value is 

.r'- already past the limit value. For example: 

do 10 i = 2, l 

The 1966 Standard stated that the effect of such a statement 
was undefined, but it was common practice that the range of a 
do loop would be performed at least once. 

In order to accommodate old programs though they are in vio­
lation of the 1977 Standard, the -onetrip compiler option 
causes loops whose initial value is greater than or equal to the 
limit value to be performed once. 

3.14 Commas in Formatted Input 

The 110 system attempts to be more lenient than the FOR-
i'' TRAN 77 American National Standard when it seems 

worthwhile. When doing a formatted read of non-character 
variables, commas may be used as value separators in the input 
record overriding the field lengths given in the format state­
ment. Thus, the format 
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(ilO, f20.l0, i4) 

will read the record 

-345,.05e-3,12 

correctly. 

3.15 Short Integers 

On machines that support half word integers, the compiler 
accepts declarations of type thteger•2. (Ordinary integers fol­
low the FORTRAN rules aboUt occupying the same space as a 
REAL variable; they are assu¢ed to be of C language type long 
int; half word integers are o~ C language type short int.) An 
expression involving only ob~ects of type integer•l is of that 
type. Generic functions return short or long integers depending 
on the actual types of their arguments. If a procedure is com­
piled using the - 12 flag, all Small integer constants will be of 
type integer•l. If the precision of an integer-valued intrinsic 
function is not determined by the generic function rules, one 
will be chosen that returns :the prevailing length (integer*2 
when the -12 command Oa~ is in effect). When the -12 
option is in effect, all quantities of type logical will be short. 
Note that these short integer lind logical quantities do not obey 
the standard rules for storage association. 

3.16 Additional Intrinsic Functions 

This compiler supports all of the intrinsic functions specified in 
the FORTRAN 77 Standard. In addition, there are functions 
for performing bitwise Boolean operations (or, and, xor, and 
not) and for accessing the command arguments (getarg and 
iargc). 

The following lists the FORTRAN intrinsic function library 
plus some additional functions. These functions are automati­
cally available to the FORTRAN programmer and require no 
special invocation of the compiler. The asterisk (,.) beside 
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some of the commands indicate they are not part of standard 
F77. In parenthesis beside each function description listed 
below is the location for the command in the UniP/ust User 
Manual These functions are as follows: 

abort• 
abs 
aoos 
aimag 

aint 
alog 
aloglO 
amaxO 
a maxi 
aminO 
aminl 
amod 
and• 
anint 
as in 
a tan 
atan2 
cabs 
coos 
cexp 
char 
clog 
em pix 
conjg 
cos 
cosh 
csin 
csqrt 
dabs 
dacos 
dasin 
datan 

Terminate program (ABORT(3F)) 
Absolute value (MAX(3F) 
Arccosine (ACOS(3F)) 
Imaginary part of complex argument 
(AIMAG(3F)) 
Integer part (AINT(3F)) 
Natural logarithm (LOG(3F)) 
Common logarithm (ALOG10(3F)) 
Maximum value (MAX(3F)) 
Maximum value (MAX(3F)) 
Minimum value (MIN(3F)) 
Minimum value (MIN(3F)) 
MOD(3F)) 
Bitwise boolean (BOOL(3F)) 
Nearest integer (ROUND(3F)) 
Arcsine (ASIN(3F)) 
Arctangent (ATAN(3F)) 
Arctangent (A TAN2 (3F)) 
Complex absolute value (ABS(3F)) 
Complex cosine (COS(3F)) 
Complex exponential (EXP(3F)) 
Explicit type conversion (FTYPE(3F)) 
Complex natural logarithm (LOG(3F)) 
Explicit type conversion (FTYPE(3F)) 
Complex conjugate (CONJG(3F)) 
Cosine (COS(3F)) 
Hyperbolic cosine (COSH(3F)) 
Complex sine (SlN(3P)) 
Complex square root (SQRT(3F)) 
Absolute value (ABS(3F)) 
Arccosine (ACOS(3F)) 
Arcsine (ASIN(3F)) 
Arctangent (ATAN(3F)) 
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datan2 

dble 
dcmplx• 
dconjg• 
dcos 
dcosh 
ddim 
dexp 
dim 
dimag• 

dint 
dlog 
dloglO 
dmaxl 
dminl 
dmod 
dnint 
dprod 
dsign 
dsin 
dsinh 
dsqrt 
dtan 
dtanb 
exp 
float 
getarg• 

labs 
large 

ichar 
idim 
I dint 
idnint 
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Double prectston arctangent 
(ATAN2(JF)) 
Explicit type conversion (FTYPE(3F)) 
Explicit type conversion (FTYPE(3F)) 
Complex conjugate (CONJG(3F)) 
Cosine (DCOS(JF)) 
Hyperbolic cosine {COSH(3F)) 
Positive difference (DIM (3F)) 
Exponential (EXP(3F)) 
Positive difference (DIM(3F)) 
Imaginary part of complex argument 
((AIMAG(JF)) 
Integer part (AINT(3F)) 
Natural logarithm (LOG(3F)) 
Common logarithm (LOG10(3F)) 
Maximum value (MAX (3F)) 
Minimum value (MIN(3F)) 
Remaindering (DMOD(3F)) 
Nearest integer (ROUND(3F)) 
Double precision product (DPROD(3F)) 
Transfer of sign (SIGN(3F)) 
Sine (SIN(JF)) 
Hyperbolic sine (SINH(3F)) 
Square root (SQRT(3F)) 
Tangent (TAN(JF)) 
Hyperbolic tangent (TANH(3F)) 
Exponential (EXP(3F)) 
Explicit type conversion (FfYPE(3F)) 
Return command-line argument 
(GETARG (JF)) 
Return environment variable 
(GETENV(JF)) 
Absolute value (ABS(3F)) 
Return number of arguments 
(IARGC(JF)) 
Explicit type conversion (FTYPE(3F)) 
Positive difference (DIM(3F)) 
Explicit type conversion (FTYPE(3F)) 
Nearest integer (ROUND(3F)) 
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ifix 
index 

lot 
irand• 
islgn 
len 
lge 
lgt 
lie 
lit 
log 
ioglO 
lshift• 
max 
maxO 
maxl 
mclock• 

min 
minO 
mlnl 
mod 
oint 
not* 
or• 
rand• 
real 
rshift"' 
sign 
signal* 

sin 
sinh 
sngl 
sqrt 
srand"' 
system• 
tan 

FORTRAN 77 

Explicit type conversion (FfYPE(3F)) 
Return location of substring 
(INDEX(3F)) 
Explicit type conversion (FfYPE(3F)) 
Random number generator 
Transfer of sign (SIGN(3F)) 
Return location of string (LEN{3F)) 
String comparison (STRCMP(3F)) 
String comparison (STRCMP(3F)} 
String comparison (STRCMP{3F)) 
String comparison (STRCMP(3F)) 
Natural logarithm (LOG (3F)) 
Common logarithm (LOG10(3F)) 
Bitwise boolean (BOOL(3F)) 
Maximum value (MAX(3F)) 
Maximum value (MAX(3F)) 
Maximum value (MAX(3F)) 
Return FORTRAN time accounting 
(MCLOCK(3F)) 
Minimum value (MIN(3F)) 
Minimum value (MIN(3F)) 
Minimum value (MIN (3F)) 
Remaindering (MOD(3F)) 
Nearest integer (BOOL(3F)) 
Bitwise boolean (BOOL(3F)) 
Bitwise boolean (BOOL(3F)) 
Random number generator (RAND (3F)) 
Explicit type conversion (FTYPE(3F)) 
Bitwise boolean (BOOL (3F)) 
Transfer of sign (SIGN(3F)) 
Specify action on receipt of system signal 
(SIGNAL(JF)) 
Sine (SINE(3F)) 
Hyperbolic sine (SINH (3F)) 
Explicit type conversion (FTYPE(3F)) 
Square root (SQRT(3F)) 
Random number generator (RAND(3F)) 
Issue a shell command (SYSTEM (3F)) 
Tangent (TAN(JF)) 
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tanh Hyperbolic tangent (TANH(3F)) 
xor• Bitwise boolean (BOOL(3F)) 
zabs• Complex absolute value (ABS(3F)). 

For more information on the FORTRAN intrinsic function 
commands, see the UniPlus+- User Manual. 

4. Violations of the Standard 

The following paragraphs describe only three known ways in 
which the UNIX system implementation of FORTRAN 77 
violates the new American National Standard. 

1. Double Precision Alignment 

2. Dummy Procedure Arguments 

3. T and TL Formats 

4.1 Double Precision Alignment 

The FORTRAN 77 American National Standard permits com· 
moo or equivalence statements to force a double precision 
quantity onto an odd word boundary. 

For example: 

real a(4) 
double precision b,c 
equivalence (a(l),b), (a(4),c) 

Some machines require that double precision quantities be on 
double word boundaries; other machines run inefficiently if this 
alignment rule is not observed. It is possible to tell which 
equivalenced and common variables suffer from a forced odd 
alignment, but EVERY double-precision argument MUST be 
assumed on a bad boundary. 

To load a double-precision quantity on some machines, it is 
necessary to use two separate operations. 
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The first operation is to move the upper and lower halves 
into the halves of an aligned "temporary". 

The second operation is to load that double· precision tem­
porary. 

In order to store such a result, it is necessary to perform the 
above two operations in reverse order. 

All double-precision real and complex quantities MUST fall on 
even word boundaries on machines with corresponding 
hardware requirements or if the source code must issue a diag­
nostic if a violation of the odd-boundary rule occurs. 

4.2 Dummy Procedure Arguments 

If any argument of a procedure is of type "character," ALL 
dummy procedure arguments of that procedure must be declared 
in an external statement. 

This requirement arises as a subtle corollary of the way we 
represent character string arguments. A warning is printed if a 
dummy procedure is not declared external. However, the same 
code is correct (in this regard) if there are no character argu­
ments. 

4.3 T and TL Formats 

The implementation of the t (absolute tab) and tl (leftward 
tab) format codes is defective. These codes allow rereading or 
rewriting part of a record which has already been processed. 

This compiler's implementation uses "seeks." Therefore, if the 
standard output unit is not one which allows seeks, such as a 

(.---.. terminal, the program is in error. 

A benefit of the implementation chosen is that there is no 
upper limit on the length of a record nor is it necessary to 
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predeclare any record lengths except where specifically required 
by FORTRAN or the operating system. 

5. Interprocedure Interface 

The following sections are included to provide information 
necessary for writing C language procedures which call or are 
called by FORTRAN procedures. Specifically, it is important to 
understand the conventions with regard to the following: 

1. Procedure Names 

2. Data Representation 

3. Return Values 

4. Argument Lists 

5.1 Procedure Names 

On UNIX systems, the name of a common block for a FOR­
TRAN procedure has an underscore appended to it by the com­
piler to distinguish it from a C language procedure or external 
variable with the same user-assigned name. 

FORTRAN library procedure names have embedded under­
scores to avoid clashes with user-assigned subroutine names. 

5.2 Data Representations 

The following is a table of corresponding FORTRAN and C 
language declarations: 
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FORTRAN C Language 

integ;er•2 x short int x; 
integer x long int x; 
logical x long int x; 
real x float x; 
double precision x double x; 
complex x struct { float r, i; } x; 
double complex x struct {double dr, di; } x; 
character"'6 x char x[6]; 

By the rules of FORTRAN, Integer, logical, and real data 
occupy the same amount of memory. 

5.3 Return Values 

A function of type integer, logical, real, or double precision 
declared as a C language function returns the corresponding 
type. 

A complex or double complex function is equivalent to a C 
language routine with an additional initial argument that points 
to the place where the return value is to be stored. Thus, the 
following: 

complex function f( ... ) 

is equivalent to 

struct { float r, i; } temp; 
f (&temp, ... ) 

A character-valued function is equivalent to a C language rou­
tine with two extra initial arguments -

1. a data address, and 
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2. a length. 

Thus, 

character-••15 function g( ... ) 

is equivalent to 

char result( ]; 
long int length; 
g_ (result, length, . . .) 

and could be invoked in C language by 

char chars[lS]; 

g (chars, ISL, . ); 

Subroutines are invoked as if they were .. integer-valued }'unc­
tions" whose value specifies which alternate return to use. 
Alternate return arguments, or statement labels, are NOT passed 
to the function but are used to do an indexed branch in the cal­
ling procedure. If the subroutine has no entry points with alter­
nate return arguments, the returned value is undefined. 

Thus, the statement 

call nret(•l, •2, •3) 

is treated exactly as if it were the computed goto 

goto (1, 2, 3), nret( ) 

5.4 Argument Lists 

All FORTRAN arguments are passed by address. 
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For every argument that is of type character or that is a 
dummy procedure, an argument giving the length of the value 
is passed. The string lengths are long int quantities passed by 
value. 

The order of arguments is then: 

1. Extra arguments for complex and character functions 

2. Address for each datum or function 

3. A long int for each character or procedure argument 

Thus, the call in 

external f 
character~~'7 s 
integer b(3) 

call sam(f, b(2), s) 

is equivalent to that in 

int fO; 
char s{7]; 
long int b[J]; 

sam_(f, &b[l], s, OL, 7L); 

IF Note that the first element of a C language array always 
has subscript 0, but FORTRAN arrays begin at 1 by 
default. 

IF FORTRAN arrays are stored in column-major order. C 
language arrays are stored in row-major order. 

( 6. File Formats 
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6.1 File Structure 

FORTRAN requires four kinds of external files: 

1. sequential formatted 

2. sequential unformatted, 

3. direct formatted and 

4. direct unformatted. 

On UNIX systems, these are all implemented as ordinary files 
which are assumed to have the proper internal structure. 

FORTRAN l/0 is based on "records." When a direct file is 
opened in a FORTRAN program, the record length of the 
records must be given~ and this is used by the FORTRAN 1/0 
system to make the file look as if it is made up of records of 
the given length. In the special case that the record length is 
given as 1, the files are not considered to be divided into 
records but are treated as ordinary files on the UNIX system 
(byte-addressable byte strings). A read or write request on 
such a file keeps consuming bytes until satisfied rather than 
being restricted to a single record. 

The peculiar requirements on sequential unformatted files 
make it unlikely that they will ever be read or written by any 
means except FORTRAN I/0 statements. Each record is pre­
ceded and followed by an integer containing the record's length 
in bytes. 

The FORTRAN l/0 system breaks sequential formatted files 
into records while reading by using each new-line as a record 
separator. The result of reading off the end of a record is 
undefined according to the FORTRAN 77 American National 
Standard. The 1/0 system is permissive and treats the record 
as being extended by blanks. On output, the I/0 system will 
write a new-line at the end of each record. It is also possible 
for programs to write new-lines for themselves. This is an 
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error, but the only effect will be that the single record the user 
thought was written will be treated as more than one record 
when being read or backspaced over. 

6.2 Preconnected Files and File Positions 

Units 5, 6, and 0 are preconnected when the program starts. 
Unit 5 is connected to the standard input, unit 6 is connected 
to the standard output, and unit 0 is connected to the standard 
error unit. All are connected for sequential formatted 1/0. 

All the other units are also preconnected when execution 
begins. Unit n is connected to a file named fort. n. These files 
need not exist nor will they be created unless their units are 
used without first executing an open. The default connection is 
for sequential formatted 1/0. 

The FORTRAN 77 Standard does not specify where a file 
(· which has been explicitly opened for sequential 1/0 is initially 

positioned. In fact, the 110 system attempts to position the file 
at the end. A write will append to the file and a read will result 
in an "end-of-file" indication. To position a file to its begin­
ning, use a rewind statement. The preconnected units 0, 5, 
and 6 are positioned as they come from the parent process. 
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1. Introduction 

Chapter 10 

RATFOR 

RATFOR 

This chapter describes the RATFOR preprocessor (ratfor<t)). 
It is assumed that the user is familiar with the current imple­
mentation of FORTRAN 77 on the UniPlus+ system. 

The RATFOR language allows users to write FORTRAN pro­
grams in a fashion similar to C language. The RATFOR pro­
gram is implemented as a preprocessor that translates this 
"simplified" language into FORTRAN. The facilities provided 
by RATFOR are: 

• Statement grouping 

• If-else and switch for decision making 

• while, for, do, and repeat-until for looping 

• break and next for controlling loop exits 

• Free form input such as multiple statements/lines and 
automatic continuation 

• Simple comment convention 

• Translation of > , > =, etc., into .gt., .ge., etc . 

• return statement for functions 

• define statement for symbolic parameters 

• include statement for including source files . 
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2. Usage 

The RATFOR program takes either a list of file names or the 
standard input and writes FORTRAN on the standard output. 
Options include -6x, which uses x as a continuation character 
in column 6 (the UniPius+ system uses & in column 1), and 
-C, which causes RATFOR comments to be copied into the 
generated FORTRAN. 

The program rc(lM) provides an interface to the RATFOR(l) 
command. This command is similar to cc(l). Thus: 

rc options files 

compiles the files specified by files. Files with names ending in 
.r are RATFOR source; other files are assumed to be for the 
loader. The options -C and -6x described above are recog­
nized, as are 

-c Compile only; don't load 

-f Save intermediate FORTRAN .ffiles 

-r RATFOR only; implies -c and -f 

-2 Use big FORTRAN compiler (for large programs) 

- U Flag undeclared variables (not universally available). 

Other options are passed on to the loader. 
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3. Statements 

The RATFOR language provides a statement grouping facility. 
A group of statements can be treated as a unit by enclosing 
them in the braces { and } . For example, the RATFOR code 

If (x > 100) 
{call error("x>lOO"); err- 1; return} 

will be translated by the RATFOR preprocessor into FOR­
TRAN equivalent to 

10 

if (x .le. 100) goto 10 
call error(Shx>lOO) 
err= 1 
return 

,,--... which should simplify programming effort. By using { and ) , a 
group of statements can be used instead of a single statement. 

Also note in the previous RATFOR example that the character 
> was used instead of .GT. in the if statement. The RAT­
FOR preprocessor translates this C language type operator to 
the appropriate FORTRAN operator. More on relationship 
operators later. 

In addition, many FORTRAN compilers permit character 
strings in quotes (like "x> JO(J'). But others, like ANSI FOR­
TRAN 66, do not. RATFOR converts it into the right number 
of Hs. 

The RATFOR language is free form. Statements may appear 
anywhere on a line, and several may appear on one line if they 
are separated by semicolons. The previous example could also 
be written as 
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if (x > 100) { 
call error("x > 100") 
err ""' 1 
return 

which shows grouped statements spread over several lines. In 
this case, no semicolon is needed at the end of each line 
because RA TFOR assumes there is one statement per line 
unless told otherwise. 

Of course, if the statement that follows the if is a single state­
ment, no braces are needed. 

3.1 "if-else" 

The RATFOR language provides an else statement. The syntax 
of the if-else construction is: 

if (/ega/ FORTRAN condition) 
RATFOR statement 

else 
RATFOR statement 

where the else part is optional. The legal FORTRAN condition 
is anything that can legally go into a FORTRAN Logical IF 
statement. The RATFOR preprocessor does not check this 
clause since it does not know enough FORTRAN to know what 
is permitted. The RATFOR statement is any RATFOR or FOR~ 
TRAN statement or any collection of them in braces. For 
example: 

if(a<~b) 

{ sw = 0; write(l, 6) a, b } 
else 

{ sw = 1; write(l, 6) b, a } 

is a valid RATFOR if·else construction. This writes out the 
smaller of a and b, then the larger, and sets sw appropriately. 
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As before, if the statement following an if or an else is a single 
statement, no braces are needed. 

3.2 Nested "if' 

The statement that follows an if or an else can be any RAT­
FOR statement including another if or else statement. In gen­
eral, the structure 

if (condition) action 
else if (condition) action 
else action 

provides a way to write a multibranch in RATFOR. (The 
RATFOR language also provides a switch statement which 
could be used instead, under certain conditions.) The last else 
handles the "default" condition. If there is no default action, 
this final else can be omitted. Thus, only the actions associated 
with the valid condition are performed. For example: 

If (x < 0) 
X = 0 

else if (x > 100) 
X = 100 

will ensure that x is not less than 0 and not greater than 100. 

Nested if and else statements could result in ambiguous code. 
In RATFOR when there are more if statements than else 
statements, else statements are associated with the closest pre~ 
vious if statement that currently does not have an associated 
else statement. For example: 

If (x > 0) 
If (y > 0) 
write(6,1) x, y 
else 
write(6,2) y 
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is interpreted by the RATFOR preprocessor as 

;r (x > 0) { 
if (y > 0) 

write(6, I) X, y 
else 

write(6, 2) y 

in which the braces are assumed. If the other association is 
desired it must be written as 

if (x > 0) { 
if (y > 0) 

write(6, 1) x, y 

else 
write(6, 2) y 

with the braces specified. 

3.3 "switch" 

The switch statement provides a way to express multiway 
branches which branch on the value of some integer-valued 
expression. The syntax is 

switch (expression) 
case expr 1 : 
statements 
case expr2, exprJ : 
statements 

default: 
statements 

where each case is followed by an integer expression (or 
several integer expressions separated by commas). The switch 
expression is compared to each case expr until a match is found. 
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Then the statements following that case are executed. If no 
cases match expression, then the statements following default 
are executed. The default section of a switch is optional. 

When the statements associated with a case are executed, the 
entire switch is exited immediately. This is different from C 
language. 

3.4 "do" 

The do statement in RATFOR is quite similar to the DO state­
ment in FORTRAN except that it uses no statement number 
(braces are used to mark the end of the do instead of a state­
ment number). The syntax of the RATFOR do statement is 

do legal-FORTRAN-DO-text { 
RATFOR statements 

The legal-FORTRAN-DO-text must be something that can 
legally be used in a FORTRAN DO statement. Thus if a local 
version of FORTRAN allows DO limits to be expressions 
(which is not currently permitted in ANSI FORTRAN 66), 
they can be used in a RATFOR do statement. The RATFOR 
statemeflls are enclosed in braces; but as with the if, a single 
statement need not have braces around it. For example, the 
following code sets an array to zero: 

do i = 1, n 
x(i) = 0.0 

and the code 

do i • l, n 
do j = 1, n 

m(i, j) = 0 

r· sets the entire array m to zero. 
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3.5 Hbreak" and "next" 

The RATFOR break and next statements provide a means for 
leaving a loop early and one for beginning the next iteration. 
The break causes an immediate exit from the do; in effect, it is 
a branch to the statement after the do. The next is a branch to 
the bottom of the loop, so it causes the next iteration to be 
done. For example, this code skips over negative values in an 
array 

do i = 1, n { 
If (x(i) < 0.0) 

next 
wocess positive element 

The break and next statements will also work in the other 
RATFOR looping constructions and will be discussed with each 
looping construction. 

The break and next can be followed by an integer to indicate 
breaking or iterating that level of enclosing loop. For example: 

break 2 

exits from two levels of enclosing loops, and 

break 1 

is equivalent to break. The 

next 2 

iterates the second enclosing loop. 

3.6 "while" 

The RA TFOR language provides a while statement. The syn­
tax of the while statement is 
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RATFOR 

As with the if, "legal-FORTRAN-condition" is something that 
can go into a FORTRAN Logical IF, and RATFOR statement 
is a single statement which may be multiple statements 
enclosed in braces. 

For example, suppose nextcb is a function which returns the 
next input character both as a function value and in its argu­
ment. Then a while loop to find the first nonblank character 
could be 

while (nextchOch) - .. iblank) 

where a semicolon by itself is a null statement (which is neces­
sary here to mark the end of the while). If the semicolon were 
not present, the while would control the next statement. When 
the loop is exited, ich contains the first non blank. 

3. 7 "for" 

The for statement is another RATFOR loop. A for statement 
allows explicit initialization and increment steps as part of the 
statement. 

The syntax of the for statement is 

for ( init ; condition ; increment ) 
RATFOR statement 

where init is any single FORTRAN statement which is exe­
cuted once before the loop begins. The increment is any single 
FORTRAN statement that is executed at the end of each pass 
through the loop before the test. The condition is again any­
thing that is legal in a FORTRAN Logical IF. Any of init, 
condition, and increment may be omitted although the 
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semicolons must always be present. A nonexistent condition is 
treated as always true, so 

for (;;) 

is an infinite loop. 

For example, a FORTRAN DO loop could be written as 

for (i = 1; i < = n; i = i + l) ... 

which is equivalent to 

i = 1 
while (i < = n) 

i - i + 1 

The initialization and increment of i have been moved into the 
for statement. 

The RATFOR for, do, and while versions have the advantage 
that they will be done zero times if n is less than 1. In addi­
tion, the break and next statements work in a for loop. 

The increment in a for need not be an arithmetic progression. 
The program 

sum ""' 0.0 
for (i - first; i > 0; i - ptr(i)) 

sum • sum + value(i) 

steps through a list (stored in an integer array ptr) until a zero 
pointer is found while adding up elements from a parallel array 
of values. Notice that the code also works correctly if the list is 
empty. 
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3.8 "repeat·until" 

There are times when a test needs to be performed at the bot­
tom of a loop after one pass through. This facility is provided 
by the repeat-until statement. The syntax for the repeat-until 
statement is 

repeat 
RATFOR statement 

until (legal-FORTRAN-condition ) 

where RATFOR-statement is done once, then the condition is 
evaluated. If it is true, the loop is exited; if it is false, another 
pass is made. 

The until part is optional, so a repeat by itself is an infinite 
loop. A repeat-until loop can be exited by the use of a stop, 
return, or break statement or an implicit stop such as running 
out of input with a READ statement. 

As stated before, a break statement causes an immediate exit 
from the enclosing repeat-until loop. A next statement will 
cause a skip to the bottom of a repeat·until loop (i.e., to the 
until part). 

3.9 "return" 

The standard FORTRAN mechanism for returning a value 
from a routine uses the name of the routine as a variable. This 
variable can be assigned a value. The last value stored in it is 
the value returned by the function. For example. in a FOR­
TRAN routine named equal, the statements 

equal = 0 
return 

--~ cause equal to return zero. 
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The RATFOR language provides a return statement similar to 
the C language return statement. In order to return a value 
from any routine, the return statement has the syntax 

return ( expression ) 

where expression is the value to be returned. 

If there is no parenthesized expression after return, no value is 
returned. 

3.10 "define" 

The RATFOR language provides a define statement similar to 
the C language version. Any string of alphanumeric characters 
can be defined as a name. Whenever that name occurs in the 
input (delimited by nonalphanurnerics), it is replaced by the 
rest of the definition line. (Comments and trailing white spaces 
are stripped off.) A defined name can be arbitrarily long and 
must begin with a letter. 

Usually the define statement is used for symbolic parameters. 
The syntax of the define statement is 

define name value 

where name is a symbolic name that represents the quantity of 
value. For example: 

deftne ROWS 100 
deftne COLS SO 
dimension a(ROWS), b(ROWS, COLS) 

if (i > ROWS I j > COLS) ... 

causes the preprocessor to replace the name ROWS with the 
value 100 and the name COLS with the value 50. Alternately, 
definitions may be written as 
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write(6, 100); 100 format("hello") 

is converted into 

write(6, 100) 
100 format(Shhello) 

3.13 Translations 

Text enclosed in matching single or double quotes is converted 
to nH... but is otherwise unaltered (except for formatting - .it 
may get split across card boundaries during the reformatting 
process). Within quoted strings, the backslash (\) serves as an 
escape character; i.e., the next character is taken literally. This 
provides a way to get quotes and the backslash itself into 
quoted strings. For example: 

"\\ \ '" 

is a string containing a backslash and an apostrophe (\'). (This 
is not the standard convention of doubled quotes, but it is 
easier to use and more· general.) 

Any line that begins with the character ·% is left absolutely 
unaltered except for stripping off the % and moving the line 
one position to the left. This is useful for inserting control 
cards and other things that should not be preprocessed {like an 
existing FORTRAN program). Use % only for ordinary state­
ments not for the condition parts of if, while, etc., or the out­
put may come out in an unexpected place. 
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-- is translated to .eq. 

!= is translated to .ne. 

> is translated to .gt. 

>- is translated to .ge. 

< is translated to .It. 

<- is translated to .le. 

& is translated to .and. 

I is translated to .or. 

! is translated to .not. 

In addition, the following translations are provided for input 
devices with restricted character sets: 

I is translated to I 

I is translated to ) 

$( is translated to I 

$) is translated to ) 
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4. Warnings 

The RATFOR preprocessor catches certain syntax errors (such 
as missing braces), else statements without if statements, and 
most errors involving missing parentheses in statements. 

All other errors are reported by the FORTRAN compiler. 
Unfortunately, the FORTRAN compiler prints messages in 
terms of generated FORTRAN code and not in terms of the 
RATFOR code. This makes it difficult to locate RATFOR 
statements that contain errors. 

The keywords are deserved. Using if, else, while, etc., as vari· 
able names will cause considerable problems. Likewise, spaces 
within keywords and use of the Arithmetic IF will cause prob­
lems. 

The FORTRAN nH convention is not recognized by RATFOR. 
Use quotes instead. 
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5. Example RATFOR Conversion 

As an example of how to use the RATFOR program, the fol­
lowing program prog.r (where the .r indicates a RATFOR 
source program), is written in the RATFOR language: 

ICNT~O 

10 WRITE(6,3!) 
31 FORMAT("INPUT FIRST NUMBER") 

READ(5,32) A 
32 FORMAT(F10.2) 

WRITE(6,33) 
33 FORMAT("INPUT SECOND NUMBER") 

READ(5,34) B 
34 FORMAT(Fl0.2) 

IF(A<B) 
WRITE(6,36) A,B 

ELSE WRITE(6,37)A,B 
36 FORMAT(Fl0.2," < ",Fl0.2) 
37 FORMAT(Fl0.2," > ~ ",Fl0.2) 

ICNT-ICNT+l 
IF(ICNT.EQ.S) 

GOTO 100 
GOTO 10 

100 END 

The command 

RATFOR prog.r > prog.f 

causes the FORTRAN translation program prog.f to be pro­
duced. (The RATFOR program prog.r remains intact.) The 
FORTRAN program prog.f follows: 
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lO 
31 

32 

33 

34 

23000 

23001 
36 
37 

23002 

100 

icnt=O 
write(6,31) 
format("INPUT FIRST NUMBER") 
read(5,32) a 
format(f10.2) 
write(6,33) 
format("INPUT SECOND NUMBER") 
read (5 ,34) b 
format(f10.2) 
if(.not.(a.lt.b))goto 23000 
write(6,36) a,b 
goto 23001 
continue 
write(6,37)a,b 
continue 
format(fl0.2," < ",f10.2) 
format(fl0.2," >- ",f10.2) 
icnt=icnt+ 1 
if( not. Ocnt.eq.S))goto 23002 
goto 100 
continue 
goto 10 
end 

The FORTRAN program prog.f is compiled using the com­
mand 

f77 prog.f 

An object program file prog.o and a final output file a.out are 
produced. Since the output file a.out is an executable file, the 
command 

a.out 

causes the program to run. 

The RATFOR program prog.r can also be translated and com­
piled with the single command 
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rn prog.r 

where the .r indicates a RATFOR source program. An object 
file prog.o and a final output file a.out are produced. 
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Chapter 11 

EFL -

A PROGRAMMING LANGUAGE 

1. Introduction 

EFL 

EFL is a clean, general purpose computer language intended to 
encourage portable programming. It has a uniform and read­
able syntax and good data and control flow structuring. 

EFL programs can be translated into efficient FORTRAN code, 
so the EFL programmer can take advantage of the ubiquity of 
FORTRAN, the valuable libraries of software written in that 
language, and the portability that comes with the use of a 
standardized language, without suffering from FORTRAN's 
many failings as a language. However, in spite of the fact that 
the name EFL originally stood for "Extended FORTRAN 
Language." The EFL compiler is much more than a simple 
preprocessor. The compiler attempts to diagnose all syntax 
errors, provide readable FORTRAN output, and to avoid a 
number of niggling FORTRAN restrictions. 

EFL is especially useful for numeric programs, and permits the 
programmer to express complicated ideas in a comprehensible 
way, while permitting access to the power of the FORTRAN 
environment. 

This is not a tutorial, but a general description and reference 
manual for the EFL Programming Language. The reader 
should have a fair degree of familiarity with some procedural 
language. There will be occasional references to Ratfor and to 
FORTRAN, but these may be ignored if the reader is unfami­
liar with those languages. 
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2. Conventions 

In examples and syntax specifications, boldface type is used to 
indicate literal words and punctuation, such as the EFL key­
words if, else, while or do. Words in italic type indicate an 
item in a category, such as an expression or, as in the following 
example: 

define name definition 

the italic font was used to indicate that the name in the define 
statement was not to be typed literally, but would be replaced 
with a name chosen by the programmer as appropriate to the 
definition being written in the program. 

A construct surrounded by double brackets represents a list of 
one or more of those items, separated by commas. Thus, the 
notation 

I item I 
could refer to any of the following: 

item 
item, item 
item, item, item 

3. Lexical Form 

3.1 Character Set 

The following characters are legal in an EFL program: 

/euers abcdefgbijklm 
nopqrstuvwxyz 

digits 0123456789 
while space blank tab 
quotes ' . 
sharp # 
continuation 
braces [ ) 
parentheses ( ) 
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• I 
I s 

Even though all of the examples herein are printed in lower 
case, letter case (upper or lower) is ignored except within 
strings. Thus, "a" and "A" are treated as the same character. 
An exclamation mark ("!") may be used in place of a tilde 
(''-") as the logical unary operator "complement." Square 
brackets ("[" and "]") may be used in place of braces ("{" 
and"}") for punctuation. 

3.1.1 White Space 

Outside of a character string or comment, any sequence of one 
or more spaces or tab characters acts as a single space and ter­
minates a ''token.'' 

3.2 Tokens 

,f A program is made up of a sequence of tokens. Each token is 
a sequence of characters. A blank terminates any token other 
than a quoted string. End of line also terminates a token unless 
explicit continuation is signaled by an underscore. 

3.3 Lines 

EFL is a line-oriented language. Except in special cases where 
a continuation is made explicit by use of an underscore ("_"), 
the end of a line marks the end of a "token" and the end of a 
statement. 

The trailing portion of a line may be used for a comment. 
Diagnostic messages are labeled with the line number of the file 
on which they are detected. 

r,-. 3.3.1 Continuation 

Lines may be continued explicitly by using the underscore 
("_") character. If the last character of a line (after com­
ments and trailing white space have been stripped) is an 
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underscore, the end of a line and the initial blanks on the next 
line are ignored. Underscores are ignored in other contexts 
(except inside of quoted strings). Thus 

I 000 000 
000 

equals 109. 

There are also rules for continuing lines automatically: the end 
of line is ignored whenever it is obvious that the statement is 
not complete. To be specific, a statement is continued if the 
last token on a line is an operator, comma, left brace, or left 
parenthesis. A statement is NOT continued if unbalanced 
braces or parentheses exist. Some compound statements are 
also continued automatically - these points are noted in the 
sections on executable statements. 

3.4 Multiple Statements on a Line 

A semicolon terminates the current statement. Thus, it is pos­
sible to write more than one statement on a line. A line con­
sisting only of a semicolon, or a semicolon following a semi­
colon, forms a null statement. 

3.5 Comments 

A comment may appear at the end of any line. It is introduced 
by a sharp (#} character, and continues to the end of the line. 
The sharp and succeeding characters on the line are discarded. 
A blank line is also a comment. Comments have no effect on 
execution. 

NOTE: A sharp inside of a quoted string does NOT mark a 
comment. 

3.6 Include Files 

It is possible to insert the contents of a file at a point in the 
source text, by referencing it in a line like 
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include joe 

No statement or comment may follow an include on a line. In 
effect, the include line is replaced by the lines in the named 
file, but diagnostics refer to the line number in the included 
file. Includes may be nested at least ten deep. 

3.6.1 Identifiers 

An identifier is a letter or a letter followed by letters or digits. 
The following is a list of the reserved words that have special 
meaning in EFL. They will be discussed later. 

array exit precision 
automatic external procedure 
break false read 
call field readbin 
case for real 
character function repeat 
common oo return 
complex goto select 
continue if short 
debug implicit sizeof 
default include static 
define initial struct 
dimension integer subroutine 
do internal troe 
double lengtbof until 
doubleprecision logical value 
else long while 
end next write 
equivalence option wrltebln 

The use of these words is discussed below. These words may 
not be used for any other purpose. 

3.6.2 Strings 

A character string is a sequence of characters surrounded by 
quotation marks. If the string is bounded by single-quote 
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marks ( ' ), it may contain double quote marks ( " ). and vice 
versa. A quoted string may not be broken across a line boun· 
dary. 

'hello there' 
~ain't misbehavin"' 

3.6.3 Integer Constants 

An integer constant is a sequence of one or more digits. 

0 
57 
123456 

3.6.4 Floating Point Constants 

A floating point constant contains a dot and/or an exponent 
field. An exponent field is a letter d or e followed by an option­
ally signed integer constant. If I and J are integer constants and 
E is an exponent field, then a floating constant has one of the 
following forms: 

.I 
I. 
I. I 
IE 
I.E 
.IE 
I.JE 

3.6.5 Punctuation 

Certain characters are used to group or separate objects in the 
language. These are: 
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The end-of-line is a token (statement separator) when the line 
is neither blank nor continued. 

3.6.6 Operators 
The EFL operators are written as sequences of one or more 
non-alphanumeric characters. 

+ • I .. 
< <~ > >~ 

&& II & 
+~ 1- ·-
&&~ II~ &~ I~ 

-> 0 $ 

A dot (". ") is an operator when it qualifies a structure element 
name, but not when it acts as a decimal point in a numeric con­

.r- stant. There is a special mode (see "Atavisms") in which 
some of the operators may be represented by a string consisting 
of a dot, an identifier, and a dot (e.g., .It. ). 

3.7 Macros 

EFL has a simple macro substitution facility. An identifier may 
be defined to be equal to a string of tokens; whenever that 
name appears as a token in the program, the string replaces it. 
A macro name is given a value in a define statement like 

define couf/1 n + -= 1 

Any time the name count appears in the program, it is replaced 
by the statement 

n+-1 

A define statement must appear alone on a line; the form is 

define name rest·of·line 
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Trailing comments are part of the string. 

4. Program Form 

4.1 Files 

A .file is a sequence of lines. A file is compiled as a single unit. 
It may contain one or more procedures. Declarations and 
options that appear outside of a procedure affect the succeeding 
procedures on that file. 

4.2 Procedures 

Procedures are the largest grouping of statements in EFL. Each 
procedure has a name by which it is invoked. (The first pro­
cedure invoked during execution, known as the main pro­
cedure, has the null name.) 

4.3 Blocks 

Statements may be formed into groups inside of a procedure. 
To describe the scope of names, it is convenient to introduce 
the ideas of block and of nesting level. The beginning of a pro­
gram file is at nesting level zero. Any options, macro 
definitions, or variable declarations are also at level zero. The 
text immediately following a procedure statement is at level 1. 
After the declarations, a left brace marks the beginning of a 
new block and increases the nesting level by I; a right brace 
drops the level by l. Braces inside declarations do not mark 
blocks. See "Blocks" under "Executable Statements" for 
further information on blocks. 

An end statement marks the end of the procedure, level 1, and 
the return to level 0. A name (variable or macro) that is 
defined at level K is defined throughout that block and in all 
deeper nested levels in which that name is not redefined or 
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redeclared. Thus, a procedure might look like the following: 

# block 0 
procedure george 
real x 
X - 2 

if(x > 2) 
{ # new block 
integer x # a different variable 
dox-1,7 

write(,x) 

} # end of block 
end # end of procedure, return to block 0 

4.4 Statements 

A statement is terminated by end of line or by a semicolon. 
Statements are of the following types: 

option 
include 
define 

procedure 
end 

declarative 
executable 

The option statement is described in "Compiler Options." 
The include, define, and end statements have been described 
above; they may not be followed by another statement on a 
line. Each procedure begins with a procedure statement and 
finishes with an end statement. Declarations describe types and 
values of variables and procedures. Executable statements 
cause specific actions to be taken. A block is an example of an 
executable statement; it is made up of declarative and execut­
able statements. 
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4.5 Labels 

An executable statement may have a label which may be used 
in a branch statement. A label is an identifier followed by a 
colon, as error: in the following: 

read(, x) 
if(x < 3) goto error 

error: fatal("bad input") 

5. Data Types and Variables 

EFL supports a small number of basic (scalar) types. The pro­
grammer may define objects made up of variables of basic type; 
other aggregates may then be defined in terms of previously 
defined aggregates. 

5.1 Basic Types 

The basic types are 

logical 

Integer 

field(m:n) 

real 

complex 

long real 
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A logical quantity may take on the two values 
true and jQ/se. 

An integer may take on any whole number 
value in a machine-dependent range. 

A .field quantity is an integer restricted to a par­
ticular closed interval ( [ m:n]). 

A real quantity is a floating point approxima· 
tion to a real or rational number. Real quanti· 
ties are represented as single precision floating 
point numbers. 

A complex quantity is an approximation to a 
complex number, and is represented as a pair 
of reals. 

A long real is a more precise approximation to a 
rational. Long reals are double precision float· 
ing point numbers. 
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long complex A long complex quantity is an approximation to 
a complex number, and is represented as a pair 
of long reals. 

character(n) A character quantity is a fixed-length string of 
n characters. 

5.2 Constants 

There is a notation for a constant of each basic type. 

A logical may take on the two values 

true 
false 

An integer or field constant is a fixed point constant, optionally 
preceded by a plus or minus sign, as in 

:---· 17 
-94 
+6 
0 

A long real {"double precision") constant is a floating point 
constant containing an exponent field that begins with the letter 
d. A real ("single precision") constant is any other floating 
point constant. A real or long real constant may be preceded 
by a plus or minus sign. The following are valid real constants: 

17.3 
-.4 
7.9e-6 ( 
14e9 ( 

7.9 x w-6) 
1.4 x lQIO) 

(_... The following are valid long real constants 

7.9d-6 ( ~ 7.9 X JQ-6) 
5d3 
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A character constant is a quoted string. 

5.3 Variables 

A variable is a quantity with a name and a location. At any 
particular time the variable may also have a value. A variable 
is said to be undefined before it is initialized or assigned its first 
value. 

Each variable has certain attributes: 

1. Storage Class 

2. Scope 

3. Precision 

5.3.1 Storage Class 

A variable's storage class is the association of its name and its 
location. A storage class can either be transitory or permanent. 

• Transitory association is achieved when arguments 
are passed to procedures. 

• Other associations are considered permanent or 
static. 

5.3.2 Scope of Names 

The scope of a variable may be either global or local. 

1. The names of common areas are global, and global vari­
ables may be used anywhere in the program. 

2. All other names are considered local to the block in which 
they are declared. 

5.3.3 Precision 

Floating point variables are either of normal or long precision. 
Normal precision is 32 bits; long precision is 64 bits. This attri­
bute may be stated independently of the basic type. 
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5.4 Arrays 

It is possible to declare rectangular arrays (of any dimension) of 
values of the same type. The index set is always a cross­
product of intervals of integers. The tower and upper bounds 
of the intervals must be constants for arrays that are local or 
common. A formal argument array may have intervals that are 
of length equal to one of the other formal arguments. An ele­
ment of an array is denoted by the array name followed by a 
parenthesized comma-separated list of integer values, each of 
which must lie within the corresponding interval. The intervals 
may include negative numbers. Entire arrays may be passed as 
procedure arguments or in input/output lists, or they may be 
initialized; all other array references must be to individual ele­
ments. 

S.S Structures 

It is possible to define new types which are made up of ele· 
ments of other types. The compound object is known as a 
structure; its constituents are called members of the structure. 
The structure may be given a name, which acts as a type name 
in the remaining statements within the scope of its declaration. 
The elements of a structure may be of any type (including pre­
viously defined structures), or they may be arrays of such 
objects. Entire structures may be passed to procedures or be 
used in input/output lists; individual elements of structures 
may be referenced. The uses of structures will be detailed 
below. The following structure might represent a symbol table: 

struct tableentry 
[ 

character(8) name 
integer hashvalue 
integer numberofelements 
field(O:l) initialized, used, set 
field(O:IO) type 
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6. Expressions 

Expressions are syntactic forms that yield a value. An expres­
sion may have any of the following forms, recursively applied: 

primary 
( expression ) 
unary-operator expression 
expression binary-operator expression 

In the following table of operators, all operators on a line have 
equal precedence and have higher precedence than operators on 
later lines. The meanings of these operators are described in 
the sections "Unary Operators" and "Binary Operators." 

-> .. 
• I unary+ ++ 
+ 
< <~ > >= 

" "" I II 
$ - +-

Examples of expressions are 

a<b && b<c 
-(a + sin(x)) I {5+cos(x)) .. 2 

6.1 Primaries 

&- 1- &&- 11-

Primaries are the basic elements of expressions. They include 
constants, variables, array elements, structure members, pro­
cedure invocations, inpuVoutput expressions, coercions, and 
sizes. 

6.1.1 Constants 
Constants are described in the section "Constants" under 
"Data Types and Variables." 
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6.1.2 Variables 

Scalar variable names are primaries. They may appear on the 
left or the right side of an assignment. Unqualified names of 
aggregates (structures or arrays) may appear only as procedure 
arguments and in input/output lists. 

6.1.3 Array Elements 

An element of an array is denoted by the array name followed 
by a parenthesized list of subscripts, one integer value for each 
declared dimension: 

a(S) 
b(6, -3,4) 

6.1.4 Structure Members 

A structure name followed by a dot followed by the name of a 
member of that structure constitutes a reference to that ele­
ment. If that element is itself a structure, the reference may be 
further qualified. 

a.b 
x0).y(4).z(5) 

6.1.5 Procedure Invocations 

A procedure is invoked by an expression of one of the forms 

procedurename ( ) 
procedurename ( expression) 
procedurename ( expression-], ... , expression-n) 

The procedurename is either the name of a variable declared 
external or it is the name of a function known to the EFL 
compiler (see "Known Functions" under "Procedures"), or it 
is the actual name of a procedure, as it appears in a procedure 
statement. If a procedurename is declared external and is an 
argument of the current procedure, it is associated with the pro­
cedure name passed as actual argument; otherwise it is the 
actual name of a procedure. Each expression in the above is 
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called an actual argument. Examples of procedure invocations 
are 

f(x) 

workO 
g(x, y+3, 'xx') 

When one of these procedure invocations is to be performed, 
each of the actual argument expressions is first evaluated. The 
types, precisions, and bounds of actual and formal arguments 
should agree. If an actual argument is a variable name, array 
element, or structure member, the called procedure is permit· 
ted to use the corresponding formal argument as the left side of 
an assignment or in an input list~ otherwise it may only use the 
value. After the formal and actual arguments are associated, 
control is passed to the first executable statement of the pro­
cedure. When a return statement is executed in that pro­
cedure, or when control reaches the end statement of that pro· 
cedure, the function value is made available as the value of the 
procedure invocation. The type of the value is determined by 
the attributes of the procedurename that are declared or implied 
in the calling procedure, which must agree with the attributes 
declared for the function in its procedure. In the special case of 
a generic function, the type of the result is also affected by the 
type of the argument. See "Procedures." 

6.1.6 Input/Output Expressions 

The EFL input/output syntactic forms may be used as integer 
primaries that have a non-zero value if an error occurs during 
the input or output. 

6.1. 7 Coercions 

An expression of one precision or type may be coerced, that is, 
converted to another by an expression of the form 

attributes ( expression ) 

At present, the only attributes permitted are precision and basic 
types. Attributes are separated by white space. 
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An arithmetic value of one type may be coerced to any other 
arithmetic type. A character expression of one length may be 
coerced to a character expression of another length. Logical 
expressions may NOT be coerced to a nonlogical type. 

As a special case, a quantity of complex or long complex type 
may be constructed from two integer or real quantities by pass­
ing two expressions (separated by a comma) in the coercion. 
Examples and equivalent values are 

integer(5.3) - 5 
long reai(S) - 5.0d0 
complex(5,3) ""' 5+3i 

Most conversions are done implicitly, since most binary opera­
tors permit operands of different arithmetic types. Explicit 
coercions are of most use when it is necessary to convert the 
type of an actual argument to match that of the corresponding 

( formal parameter in a procedure calL 

r 

6.1.8 Sizes 

There is a notation which yields the amount of memory 
required to store a datum or an item of specified type: 

sizeof ( lejiside ) 
slzeof ( attributes ) 

In the first case, te.liside can denote a variable, array, array ele­
ment, or structure member. The value of sizeof is an integer, 
which gives the size in arbitrary units. If the size is needed in 
terms of the size of some specific unit, this can be computed by 
division: 

sizeof(x) I sizeof(integer) 

yields the size of the variable x in integer words. 
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The distance between consecutive elements of an array may not 
equal sizeof because certain data types require final padding on 
some machines. The lengthof operator gives this larger value, 
again in arbitrary units. The syntax is 

lengthof ( te.tiside ) 
lengthof ( auributes ) 

6.2 Parentheses 

An expression surrounded by parentheses is itself an expres· 
sian. A parenthesized expression must be evaluated before an 
expression of which it is a part is evaluated. 

6.3 Unary Operators 

All of the unary operators in EFL are prefix operators. The 
result of a unary operator has the same type as its operand. 

6.4 Arithmetic 

Unary + has no effect. A unary - yields the negative of its 
operand. 

The prefix operator + + adds one to its operand. The prefix 
operator -- subtracts one from its operand. The value of 
either expression is the result of the addition or subtraction. 
For these two operators, the operand must be a scalar, array 
element, or structure member of arithmetic type. As a side 
effect, the operand value is changed. 

6.4.1 Logical 

The only logical unary operator is complement (~). This opera· 
tor is defined by the equations 
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6.5 Binary Operators 

Most EFL operators have two operands, separated by the opera­
tor. Because the character set must be limited, some of the 
operators are denoted by strings of two or three special charac­
ters. All binary operators except exponentiation are left associ­
ative. 

6.5.1 Arithmetic 

The binary arithmetic operators are 

+ addition 
subtraction 

• multiplication 
I division .. exponentiation 

Exponentiation is right associative: a••b ... c - a••(b•*c) 
a(II-"J, The operations have the conventional meanings: 

8 + 2 - 10, 
8 - 2 - 6, 
8• 2 - 16, 
8/2 - 4, 
8 •• 2 = 82 = 64. 

The type of the result of a binary operation A op B is deter­
mined by the types of its operands: 

Type of B 

Type of A i r I r c I c 

I i r I r c I c 
r r r I r c I c 

1 r I r I r I r I c I c 
c c c lc c I c 

1c lc I c I c I c I c 
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i = integer 
lr=long 

r = real 
real lc= 

c - complex 
long complex 

If the type of an operand differs from the type of the result, the 
calculation is done as if the operand were first coerced to the 
type of the result. If both operands are integers, the result is of 
type integer, and is computed exactly. (Quotients are truncated 
toward zero, so 8/3 = 2.) 

6.5.2 Logical 

The two binary logical operations in EFL, and and or, are 
defined by the truth tables: 

A B A andB A or 8 
false false false false 
false true false true 
true false false true 
true true true true 

Each of these operators comes in two forms. In one form, the 
order of evaluation is specified. The expression 

a && b 

is evaluated by first evaluating a; if it is false then the expres· 
sian is false and b is not evaluated; otherwise, the expression 
has the value of b. The expression 

a II b 

is evaluated by first evaluating a; if it is true then the expres­
sion is true and b is not evaluated; otherwise, the expression 
has the value of b. The other forms of the operators (&: for 
and and I for or) do not imply an order of evaluation. With the 
latter operators, the compiler may speed up the code by 
evaluating the operands in any order. 
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6.6 Relational Operators 

There are six relations between arithmetic quantities. These 
operators are not associative. 

EFL Operator Meaning 

< < less than 
<- " less than or equal to -- ~ equal to 
-- "' not equal to 
> > greater than 
>~ ;. greater than or equal 

Since the complex numbers are not ordered, the only relational 
operators that may take complex operands are-- and-=. The 
character collating sequence is not defined. 

6. 7 Assignment Operators 

All of the assignment operators are right associative. The sim­
ple form of assignment is 

basic-/eft-side = expression 

A basic-/eft-side is a scalar variable name, array element, or 
structure member of basic type. This statement computes the 
expression on the right side, and stores that value {possibly 
after coercing the value to the type of the left side) in the loca­
tion named by the left side. The value of the assignment 
expression is the value assigned to the left side after coercion. 

There is also an assignment operator corresponding to each 
binary arithmetic and logical operator. In each case, a op - b 
is equivalent to a = a op b. (The operator and equal sign must 
not be separated by blanks.) Thus, n+=2 adds 2 ton. The 
location of the left side is evaluated only once. 
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6.8 Dynamic Structures 

EFL does not have an address (pointer, reference) type. How­
ever, there is a notation for dynamic structures, 

lejlside - > srructurename 

This expression is a structure with the shape implied by struc­
turename but starting at the location of /ejiside. In effect, this 
overlays the structure template at the specified location. The 
fejfside must be a variable, array, array element, or structure 
member. The type of the leftside must be one of the types in 
the structure declaration. An element of such a structure is 
denoted in the usual way using the dot operator. Thus, 

place( i) - > st.nth 

refers to the nth member of the st structure starting at the i-th 
element of the array place. 

6.9 Repetition Operator 

Inside of a list, an element of the form 

integer·constant·expression $ constant·expression 

is equivalent to the appearance of the expression a number of 
times equal to the first expression. Thus, 

(3, 3$4, 5) 

is equivalent to 

(3, 4, 4, 4, 5) 

6.10 Constant Expressions 

If an expression is built up out of operators (other than funcM 
tions) and constants, the value of the expression is a constant, 
and may be used anywhere a constant is required. 
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7. Declarations 

Declarations statement describe the meaning, shape, and size of 
named objects in the EFL language. 

7.1 Syntax 

A declaration statement is made up of attributes and variables. 
Declaration statements are of two forms: 

attributes variabfe·list 
attributes { declarations } 

In the first case, each name in the variable-list has the specified 
attributes. In the second, each name in the declarations also 
has the specified attributes. A variable name may appear in 
more than one variable list, so long as the attributes are not 
contradictory. Each name of a nonargument variable may be 
accompanied by an initial value specification. The declarations 
inside the braces are one or more declaration statements. 
Examples of declarations are 

integer k=2 

long real b(7 ,3) 

common(cname) 
{ 
integer i 
long real array(5,0:3) x, y 
character(7) ch 
} 

7.2 Attributes 

7.2.1 Basic Types 

The following are basic types in declarations 
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logical 
integer 
fleld(m:n) 
character(k) 
real 
complex 

In the above, the quantities k, m, and n denote integer constant 
expressions with the properties k > 0 and n > m. 

7 .2.2 Arrays 

The dimensionality may be declared by an array attribute 

Each of the b; may either be a single integer expression or a 
pair of integer expressions separated by a colon. The pair of 
expressions form a lower and an upper bound; the single 
expression is an upper bound with an implied lower bound of 1. 
The number of dimensions is equal to n, the number of 
bounds. All of the integer expressions must be constants. An 
exception is permitted only if all of the variables associated with 
an array declarator are formal arguments of the procedure; in 
this case, each bound must have the property that upper -
lower + I is equal to a formal argument of the procedure. 
{The compiler has limited ability to simplify expressions, but it 
will recognize important cases such as (O:n -1).) The upper 
bound for the last dimension {b,1 ) may be marked by an aster· 
isk ( "' ) if the size of the array is not known. The following 
are legal array attributes: 
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7 .2.3 Structures 

A structure declaration is of the form 

struct structname { declaration statements } 

The structname is optional; if it is present, it acts as if it were 
the name of a type in the rest of its scope. Each name that 
appears inside the declarations is a member of the structure, and 
has a special meaning when used to qualify any variable 
declared with the structure type. A name may appear as a 
member of any number of structures, and may also be the 
name of an ordinary variable, since a structure member name is 
used only in contexts where the parent type is known. The fol­
lowing are valid structure attributes 

struct xx 
{ 
integer a, b 
real x(S) 
I 

struct { xx z(J); character(S) y } 

The last line defines a structure containing an array of three xxs 
and a character string. 

7 .2.4 Precision 

Variables of floating point (real or complex) type may be 
declared to be long to ensure they have higher precision than 
ordinary floating point variables. The default precision is short. 

7 .2.5 Common 

Certain objects called common areas have external scope, and 
may be referenced by any procedure that has a declaration for 

( the name using a 

common ( commonareaname ) 
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attribute. All of the variables declared with a particular com­
mon attribute are in the same block; the order in which they 
are declared is significant. Declarations for the same block in 
differing procedures must have the variables in the same order -/ 
and with the same types, precision, and shapes, though not 
necessarily with the same names. 

7 .2.6 External 

If a name is used as the procedure name in a procedure invoca­
tion, it is implicitly declared to have the external attribute. If a 
procedure name is to be passed as an argument, it is necessary 
to declare it in a statement of the form 

external I name D 

If a name has the external attribute and it is a formal argument 
of the procedure, then it is associated with a procedure 
identifier passed as an actual argument at each call. If the name 
is not a formal argument, then that name is the actual name of 
a procedure, as it appears in the corresponding procedure state­
ment. 

7.3 Variable List 

The elements of a variable list in a declaration consist of a 
name, an optional dimension specification, and an optional ini­
tial value specification. The name follows the usual rules. The 
dimension specification is the same form and meaning as the 
parenthesized Jist in an array attribute. The initial value 
specification is an equal sign ( =) followed by a constant 
expression. If the name is an array, the right side of the equal 
sign may be a parenthesized list of constant expressions, or 
repeated elements or lists; the total number of elements in the 
list must not exceed the number of elements of the array, 
which are filled in column-major order. 

7.4 The Initial Statement 

An initial value may also be specified for a simple variable, 
array, array element, or member of a structure using a 
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The var may be a variable name, array element specification, or 
member of structure. The right side follows the same rules as 
for an initial value specification in other declaration statements. 

8. Executable Statements 

Every useful EFL program contains executable statements, oth­
erwise it would not do anything and would not need to be run. 
Statements are frequently made up of other statements. Blocks 
are the most obvious case, but many other forms contain state­
ments as constituents. 

To increase the legibility of EFL programs, some of the state­
ment forms can be broken without an explicit continuation. A 
square (o) in the syntax represents a point where the end of a 
line will be ignored. 

8.1 Expression Statements 

8.1.1 Subroutine Call 

A procedure invocation that returns no value is known as a 
subroutine call. Such an invocation is a statement. Examples 
are 

work(in, out) 
run() 

Input/output statements (see "Input/Output Statements" 
under "Executable Statements") resemble procedure invoca­
tions but do not yield a value. If an error occurs the program 

,! stops. 
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8.1.2 Assignment Statements 

An expression that is a simple assignment(=) or a compound 
assignment ( + = etc.) is a statement: 

a = b 
a = sin(x)/6 
X *= y 

8.2 Blocks 

A block is a compound statement that acts as a single state­
ment. A block begins with a left brace, optionally followed by 
declarations, optionally followed by executable statements, fol­
lowed by a right brace. A block may be used anywhere a state­
ment is permitted. A block is not an expression and does not 
have a value. An example of a block is 

integer i # this variable is unknown 
# outside the braces 

big - 0 
do i = l,n 

if(big < a (i) J 
big = a(i) 

8.3 Test Statements 

A test statemellf permits execution of another statement or 
group of statements based on the outcome of a conditional 
expression. 

There are several forms of test statements: 

1. if statements 

2. if-else statements 

3. select statements 
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8.3.1 If Statement 

( The simplest of the test statements is the if statement, of form 

if ( logical·expression ) 0 statement 

First, the logical expression is evaluated; if it is true, then the 
statement is executed. Otherwise statement will be skipped. 

8.3.2 If-Else 

A more general statement is of the form 

if ( logicaf·expression ) 0 statement-! D 
else 0 statement-] 

Just as with the "if" statement, the logical expression is 
evaluated and if the expression is true then statement-! is exe­
cuted, otherwise, statement-2 is executed. Either of the conse­
quent statements may itself be an if-else so a completely nested 
test sequence is possible: 

lf(x<y) 
if(a<b) 

k - I 
else 

k - 2 
else 

if(a<b) 
m I 

else 
m 2 

An else applies to the nearest preceding if which is not already 
followed by an else. 

( A more common use of the ~·it-else" test statement is the 
sequential test: 
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if(x==l) 
k ~ I 

else if(x- = 3 
k - 2 

else 
k - 3 

x==S) 

There may be any number of else if statements in an "if-else" 
statement to test for several conditions, although if more than 
2 else lfs are needed, a select statement is often used instead. 

8.3.3 Select Statement 

Much like the switch statement in the C shell or case state­
ments in many programming languages, a select statement is 
used to direct the branching of a program based on the result of 
a conditional or arithmetic expression. A select statement has 
the general form: 

select( expression ) 0 block 

Inside the block two special types of labels are recognized. A 
prefix of the form 

case I constant I : 

marks the statement to which control is passed if the expression 
in the select has a value equal to one of the case constants. If 
the expression equals none of these constants, but there is a 
label default inside the select, a branch is taken to that point; 
otherwise the statement following the right brace is executed. 

Once execution begins at a case or default label, it continues 
until the next case or default is encountered. 
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select( x) 
{ 
case 1: 

k - 1 
case 3,5: 

k ~ 2 
default: 

k ~ 3 

8.4 Loops 

EFL 

The loop constructs, (while, for, repeat, repeat-until and do), 
provide an efficient way to repeat an operation or series of 
operations. Termination of a loop is generally initiated by the 
failure of a logical or iterative test statement. Although the 
while loop is the simplest construct, and consequently the most 
frequently used, each construct has its own strengths to be 
exploited in a given application. 

8.4.1 While Statement 

This construct has the form 

while ( logicaf·expression ) D statement 

First, the logical-expression is evaluated; if it is true, statement is 
executed, and the logical-expression is evaluated again. If 
logical-expression is false, statement is not executed and program 
execution continues at the next statement. 

8.4.2 For Statement 

The for statement is a more elaborate looping construct. It has 
the form 

for ( initial-statement , 0 fogical-rxpression , 
D iteration-statement ) D body-statement 

Except for the behavior of the next statement (see "Branch 
Statement" under "Executable Statements"), this construct is 
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equivalent to 

initia f. statement 
while ( loxica/-expression ) 

I 
bod_v-statement 
it era t ion-statement 
} 

This form is useful for general arithmetic iterations, and for 
various pointer-type operations. The sum of the integers from 
I to 100 can be computed by the fragment 

II = () 
for(i = /, i < = 100, i += I) 

fl + = i 

Alternatively, the computation could be done by the single 
statement 

for({n=O; i=l}, i< =100, (n+=i; ++i)) 

Note that the body of the for loop is a null statement in this 
case. An example of following a linked list will be given later. 

8.4.3 Repeat Statement 

The statement 

repeat 0 statemenl 

executes the statement, then does it again, without any termi­
nation test. Obviously, a test inside the statement is needed to 
stop the loop. 

8.4.4 Repeat .•• Until Statement 

The while loop performs a test before each iteration. The 
statement 
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repeat D statement D until ( logical·expression ) 

executes the statement, then evaluates the logical expression; if 
the loKical expression is true the loop is complete; otherwise, 
control returns to the statement. Thus, the body is always exe­
cuted at least once. The until refers to the nearest preceding 
repeat that has not been paired with an until. In practice, this 
appears to be the least frequently used looping construct. 

8.4.5 Do Loop 

The simple arithmetic progression is a very common one in 
numerical applications. EFL has a special loop form for ranging 
over an ascending arithmetic sequence 

do variable = expression-/, expression-], expression-3 
statement 

The variable is first given the value expression-/. The statement 
is executed, then expression-] is added to the variable. The 
loop is repeated until the variable exceeds expression-]. If 
expression-] and the preceding comma are omitted, the incre­
ment is taken to be I. The loop above is equivalent to 

t2 = expression-] 
t3 = expression-] 
for{ variable =expression-/, variable< =t2, variable+ =r]) 

statemenl 

(The compiler translates EFL do statements into FORTRAN 
DO statements, which are usually compiled into excellent 
code.) The do variable may not be changed inside of the loop, 
and expression-/ must not exceed expression-]. The sum of the 
first hundred positive integers could be computed by 

II = 0 
.r__. do i = 1, 100 

II += i 
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8.5 Branch Statements 

It is not considered good programming practice to use branch 
statements if a loop construct can be used instead. However, if 
you must use a branch statement, EFL provides a few for your 
convenience. 

8.5.1 Goto Statement 

The most general, and most dangerous, branching statement is 
the simple unconditional 

goto label 

After executing this statement, the next statement performed is 
the one following the given label. Inside of a select the case 
labels of that block may be used as labels, as in the following 
example: 

select(k) 

case I: 
error(7) 

case 2: 
k - 2 
go to case 4 

case 3: 
k - 5 
goto case 4 

case 4: 
fixup(k) 
goto default 

default: 
prmsg("ouch") 

If two select statements are nested, the case labels of the outer 
select are NOT accessible from the inner one. 
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8.5.2 Break Statement 

A safer statement is one which transfers control to the state· 
ment following the current select or loop form. A statement of 
this sort is almost always needed in a repeat loop: 

repeat 
{ 
do a computation 
if( finished) 
break 
I 

More general forms permit controlling a branch out of more 
than one construct. For example: 

break 3 

transfers control to the statement following the third loop 
and/ or select surrounding the statement. 

It is possible to specify the type of construct to which control is 
to be transferred, i.e. for, while, repeat, do, or select. For 
example: 

break while 

breaks out of the first surrounding while statement. Either of 
the statements 

break 3 for 
break for 3 

will transfer to the statement after the third enclosing for loop. 

8.5.3 Next Statement 

The next statement causes the first surrounding loop statement 
to go on to the next iteration: the next operation performed is 
the test of a while, the iteration-statement of a for, the body of a 

11-35 



EFL 

repeat, the test of a repeat ... until, or the increment of a do. 
Elaborations similar to those for break are available: 

next 
next 3 
next 3 for 
next for 3 

A next statement ignores select statements. 

8.5.4 Return 

The last statement of a procedure is followed by a return of 
control to the caller. If it is desired to effect such a return from 
any other point in the procedure, a 

return 

statement may be executed. Inside a function procedure, the 
function value is specified as an argument of the statement: 

return ( expression ) 

8.6 Input/Output Statements 

EFL has two input statements (read and readbin), two output 
statements (write and writebin), and three control statements 
(endfile, rewind, and backspace). These forms may be used 
either as a primary with a integer value or as a statement. If an 
exception occurs when one of these forms is used as a state­
ment, the result is undefined but will probably be treated as a 
fatal error. If they are used in a context where they return a 
value, they return zero if no exception occurs. For the input 
forms, a negative value indicates end-of-file and a positive 
value an error. The input/output part of EFL very strongly 
reflects the facilities of FORTRAN. 

8.6.1 Input/Output Units 

Each 1/0 statement refers to a "unit," identified by a small 
positive integer. Two special units are defined by EFL, the 
standard input unit and the standard output unit. These particular 
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units are assumed if no unit is specified in an 1/0 transmission 
statement. 

The data on the unit are organized into records. These records 
may be read or written in a fixed sequence, and each transmis­
sion moves an integral number of records. Transmission 
proceeds from the first record until the end of.file. 

8.6.2 Binary Input/Output 

The readbin and wrltebin statements transmit data in a 
machine-dependent but swift manner. The statements are of 
the form 

writebin( unit , binary-output-list) 
readbin( unit , binary-input-list) 

Each statement moves one unformatted record between storage 
and the device. The unit is an integer expression. A binary­
output-list is an iolist (see below) without any format specifiers. 
A binary-inpuf.list is an iolist without format specifiers in which 
each of the expressions is a variable name, array element, or 
structure member. 

8.6.3 Formatted Input/Output 

The read and write statements transmit data in the form of 
lines of characters. Each statement moves one or more records 
(lines). Numbers are translated into decimal notation. The 
exact form of the lines is determined by format specifications, 
whether provided explicitly in the statement or implicitly. The 
syntax of the statements is 

write( unit , formatted-output-list ) 
read( unit , formatted-input-list ) 

The lists are of the same form as for binary 1/0, except that 
the lists may include format specifications. If the unit is omit­
ted, the standard input or output unit is used. 
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8.6.4 Iolists 

An iolist specifies a set of values to be written or a set of vari­
ables into which values are to be read. An io/ist is a list of one 
or more ioexpressions of the form 

expression 
{ iolisr } 
do-spec(fication { iolist } 

For formatted 1/0, an ioexpression may also have the forms 

ioexpression : jOrmat-spec(/ier 
: }Ormat-spec(fier 

A do-spec(fication looks just like a do statement, and has a simi­
lar effect: the values in the braces are transmitted repeatedly 
until the do execution is complete. 

8.6.5 Formats 

The following are permissible jOrmat-spec(/iers. The quantities 
w, d, and k must be integer constant expressions. 

i( w) integer with w digits 

f( w,d) 

e( w,d) 

l(w) 

c 

c(Kl 

s(k) 
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floating point number of w characters, d of them to 
the right of the decimal point. 

floating point number of w characters, d of them to 
the right of the decimal point, with the exponent field 
marked with the letter e 

logical field of width w characters, the first of which is 
t or f (the rest are blank on output, ignored on input) 
standing for true and false respectively 

character string of width equal to the length of the 
datum 

character string of width w 

skip k lines 
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x(k) skip k spaces 

use the characters inside the string as a FORTRAN 
format 

If no format is specified for an item in a formatted input/output 
statement, a default form is chosen. 

If an item in a list is an array name, then the entire array is 
transmitted as a sequence of elements, each with its own for­
mat. The elements are transmitted in column-major order, the 
same order used for array initializ.ations. 

8.6.6 Manipulation Statements 

The three input/output statements 

backspace( unit) 
rewind(unit) 
endfile(unil) 

,f look like ordinary procedure calls, but may be used either as 
statements or as integer expressions which yield non-zero if an 
error is detected. backspace causes the specified unit to back 
up, so that the next read will re-read the previous record, and 
the next write will over-write it. rewind moves the device to 
its beginning, so that the next input statement will read the first 
record. endfile causes the file to be marked so that the record 
most recently written will be the last record on the file, and any 
attempt to read past is an error. 

9. Procedures 

Procedures are the basic unit of an EFL program, and provide 
the means of segmenting a program into separately compilable 
and named parts. 

9.1 Procedures Statement 

Each procedure begins with a statement of one of the forms 
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procedure 
auriblltes procedure pron•durename 
auribwes procedure procedurename ( ) 
arrribll/es procedure procedurename ( I name ] ) 

The first case specifies the main procedure, where execution 
begins. In the two other cases, the auribwes may specify preci­
sion and type, or they may be omitted entirely. The precision 
and type of the procedure may be declared in an ordinary 
declaration statement. If no type is declared, then the pro­
cedure is called a subrowine and no value may be returned for 
it. Otherwise, the procedure is a function and a value of the 
declared type is returned for each call. Each name inside the 
parentheses in the last form above is called a ./imna/ ai"KIImenl of 
the procedure. 

9.2 End Statement 

Each procedure terminates with a statement 

end 

9.3 Argument Association 

When a procedure is invoked, the actual arguments are 
evaluated. If an actual argument is the name of a variable, an 
array element, or a structure member, that entity becomes 
associated with the formal argument, and the procedure may 
reference the values in the object, and assign to it. Otherwise, 
the value of the actual is associated with the formal argument, 
but the procedure may not attempt to change the value of that 
formal argument. 

If the value of one of the arguments is changed in the pro­
cedure, it is not permitted that the corresponding actual argu­
ment be associated with another formal argument or with a 
common element that is referenced in the procedure. 
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9.4 Execution and Return Values 

After actual and formal arguments have been associated, con­
trol passes to the first executable statement of the procedure. 
Control returns to the invoker either when the end statement 
of the procedure is reached or when a return statement is exe­
cuted. If the procedure is a function (has a declared type), and 
a return( value) is executed, the value is coerced to the correct 
type and precision and returned. 

9.5 Known Functions 

A number of functions are known to EFL, and need not be 
declared. The compiler knows the types of these functions. 
Some of them are xeneric; i.e., they name a family of functions 
that differ in the types of their arguments and return values. 
The compiler chooses which element of the set to invoke based 
upon the attributes of the actual arguments. 

9.5.1 Minimum and Maximum Functions 

The generic functions are min and max. The min calls return 
the value of their smallest argument; the max calls return the 
value of their largest argument. These are the only functions 
that may take different numbers of arguments in different calls. 
If any of the arguments are long real then the result is long 
real. Otherwise, if any of the arguments are real then the 
result is real; otherwise all the arguments and the result must 
be Integer. Examples are 

min(5, x, -3.20) 
max(i, z) 

9.5.2 Absolute Value 

The abs function is a generic function that returns the magni~ 
tude of its argument. For integer and real arguments the type 

.r- of the result is identical to the type of the argument; for com~ 
plex arguments the type of the result is the real of the same 
precision. 
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9.5.3 Elementary Functions 

The following generic functions take arguments of real, long 
real, or complex type and return a result of the same type: 

sin 
cos 
exp 
log 
log10 
sqrt 

In addition, the 
real arguments: 

sine function 
cosine function 
exponential function (ex). 
natural (base e) logarithm 
common (base 10) logarithm 
square root function ( @sqrt x@ ). 

following functions accept only real or long 

a tan 
atan2 

atan(x) = fait t x 
atan2(x,y) = ratr.i x~v 

9.5.4 Other Generic Functions 

The sign function takes two arguments of identical type. The 
mod function yields the remainder of its first argument when 
divided by its second. 

sign(x,y) = sgn(v)lxl. 
mod(x,y) 

These functions accept integer and real arguments. 

10. Atavisms 

The following constructs are included to ease the conversion of 
old FORTRAN or Ratfor programs toEFL. 

10.1 Escape Lines 

In order to make use of nonstandard features of the local FOR­
TRAN compiler, it is occasionally necessary to pass a particular 
line through to the EFL compiler output. Such a line is called 
an escape line and must begin with a percent sign ("%"). 
Escape lines are copied through to the output without change, 
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except that the percent sign is removed. Inside of a procedure, 
each escape line is treated as an executable statement. If a 
sequence of lines constitute a continued FORTRAN statement, 
they should be enclosed in braces. 

10.2 Call Statement 

A subroutine call may be preceded by the keyword call. 

call joe 
call work(17) 

10.3 Obsolete Keywords 

The following keywords are recognized as synonyms of EFL 
keywords: 

FORTRAN EFL 

double precision long real 
function procedure 
subroutine procedure (untyped) 

10.4 Numeric Labels 

Standard statement labels are identifiers. A numeric (positive 
integer constant) label is also permitted; the colon is optional 
following a numeric label. 

10.5 Implicit Declarations 

If a name is used but does not appear in a declaration, the EFL 
compiler gives a warning and assumes a declaration for it. If it 
is used in the context of a procedure invocation, it is assumed 
to be a procedure' name; otherwise it is assumed to be a local 
variable defined at nesting level 1 in the current procedure. 
The assumed type is determined by the first letter of the name. 
The association of letters and types may be given in an implicit 
statement, with syntax 

implicit ( letter-list ) type 
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where a kller-lisr is a list of individual letters or ranges (pair of 
letters separated by a minus sign). If no implicit statement 
appears, the following rules are assumed: 

implicit (a-h, o-z) real 
implicit (i-n) integer 

10.6 Computed Goto 

FORTRAN contains an indexed multi-way branch; this facility 
may be used in EFL by the computed goto: 

goto ( I label I ), expression 

The expression must be of type integer and be positive but be 
no larger than the number of labels in the list. Control is 
passed to the statement marked by the label whose position in 
the list is equal to the expression. 

10.7 Goto Statement 

In unconditional and computed goto statements, it is permissi­
ble to separate the go and to words, as in 

go to xyz 

10.8 Dot Names 

FORTRAN uses a restricted character set, and represents cer­
tain operators by multi-character sequences. There is an 
option, dots=on (see "Compiler Options"), which forces the 
compiler to recognize the forms in the second column below: 

< .lt. 
<~ .le. 
> .gt. 
>~ .ge . 

• eq • 
• ne . 

& • and. 
I .or • 
&& . andand. 
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true 
fri~lse 

.oror . 

. not . 

. true. 

.false. 

EFL 

In this mode, no structure element may be named It, le, etc. 
The readable forms in the left column are always recognized. 

10.9 Complex Constants 

A complex constant may be written as a parenthesized list of 
real quantities, such as 

The preferred notation is by a type coercion, 

complex0.5, 3.0) 

( 10.10 Function Values 

The preferred way to return a value from a function in EFL is 
the return (value) construct. However, the name of the func­
tion acts as a variable to which values may be assigned; an ordi­
nary return statement returns the last value assigned to that 
name as the function value. 

10.11 Equivalence 

A statement of the form 

declares that each of the vi starts at the same memory location. 
Each of the vi may be a variable name, array element name, or 

(.---. structure member. 
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10.12 Minimum and Maximum Functions 

There are a number of non-generic functions in this category, 
which differ in the required types of the arguments and the 
type of the return value. They may also have variable numbers 
of arguments, but all the arguments must have the same type. 

FUNCTION ARGUMENT TYPE RESULT TYPE 

aminO integer real 
aminl real real 
minO integer integer 
minl real integer 
dminl long real long real 
amaxO integer real 
amaxl real real 
maxO integer integer 
maxi real integer 
dmaxl long real long real 

11. Compiler Options 

A number of options can be used to control the output and to 
tailor it for various compilers and systems. The defaults chosen 
are conservative, but it is sometimes necessary to change the 
output to match peculiarities of the target environment. 

Options are set with statements of the form 

option I opt I 

where each opt is of one of the forms 

option name 
optionname - optionva/ue 

The optionva/ue is either a constant (numeric or string) or a 
name associated with that option. The two names yes and no 
apply to a number of options. 
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11.1 Default Options 

Each option has a default setting. It is possible to change the 
whole set of defaults to those appropriate for a particular 
environment by using the system option. At present, the only 
valid values are system=unix and system=gcos. 

11.2 Input Language Options 

The dots option determines whether the compiler recognizes 
.It. and similar forms. The default setting is no. 

11.3 Input/Output Error Handling 

The ioerror option can be given three values: none means that 
none of the 1/0 statements may be used in expressions, since 
there is no way to detect errors. The implementation of the 
ibm form uses ERR= and END= clauses. The implementa­
tion of the fortran77 form uses lOST AT= clauses. 

(""" 11.4 Continuation Conventions 

By default, continued FORTRAN statements are indicated by a 
character in column 6 (Standard FORTRAN). The option 
continue=columnl puts an ampersand (&) in the first column 
of the continued lines instead. 

11.5 Default Formats 

If no format is specified for a datum in an iolist for a read or 
write statement, a default is provided. The default formats can 
be changed by setting certain options 

OPTION TYPE 

iformat integer 
rformat real 
dformat long real 
zformat complex 
zdformat long complex 
lformat logical 

The associated value must be a FORTRAN format, such as 
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option rformat=f22.6 

11.6 Alignments and Sizes 

In order to implement character variables, structures, and the 
slzeof and lengthof operators, it is necessary to know how 
much space various FORTRAN data types require, and what 
boundary alignment properties they demand. The relevant 
options are 

FORTRAN SIZE ALIGNMENT 
TYPE OPTION OPTION 

integer isize ialign 
real rsize ralign 
long real dsize dalign 
complex zsize zalign 
logical !size I align 

The sizes are given in terms of an arbitrary unit; the alignment 
is given in the same units. The option charperint gives the 
number of characters per integer variable. 

11.7 Default Input/Output Units 

The options ftnin and ftnout are the numbers of the standard 
input and output units. The default values are ftnin=S and 
ftnout=6. 

11.8 Miscellaneous Output Control Options 

Each FORTRAN procedure generated by the compiler will be 
preceded by the value of the procheader option. 

No Hollerith strings will be passed as subroutine arguments if 
holllncall =no is specified. 
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No Hollerith strings will be passed as subroutine arguments if 
hollinc_ll =no is specified. 

The FORTRAN statement numbers normally start at 1 and 
increase by I. It is possible to change the increment value by 
using the deltastno option. 

12. Examples 

In order to show the flavor or programming in EFL, we present · 
a few examples. They are short, but show some of the con· 
venience of the language. 

12.1 File Copying 

The following short program copies the standard input to the 
standard output, provided that the input is a formatted file con­
taining lines no longer than a hundred characters. 

procedure # main program 
characterOOO) line 

while( read( , line) 0 ) 
write( , line) 

end 

Since read returns zero until the end of file (or a read error), 
this program keeps reading and writing until the input is 
exhausted. 

12.2 Matrix Multiplication 

The following procedure multiplies the m x n matrix a by the 11 

x p matrix b to give the m x p matrix c. The calculation obeys 
the formula c1; = :E alt.. ht.._r 
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procedure matmul(a, b,c, m,n,p) 
integer i, j, k, m, n, p 
long real a(m,n), b(n,p), c(m,p) 

do i = l,m 
do j = l,p 

{ 

end 

c(ij) = 0 
do k = l,n 

c(ij) + = a(i,k) • b(kj) 

12.3 Searching a Linked List 

Assume we have a list of pairs of numbers (x, y). The list is 
stored as a linked list sorted in ascending order of x values. 
The following procedure searches this list for a particular value 
of x and returns the corresponding y value. 
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define LAST 0 
define NOTFOUND -I 

integer procedure val Wst, first, x) 

# list is an array of structures. 
# Each structure contains a thread index value, 
# an x, and a y value. 

struct 
{ 
integer nextindex 
integer x, y 
l list(•) 

integer first, p, arg 

for(p = first , p-=LAST && list(p).x<=x , 
p = list(p).nextindex) 
iWist(p).x == x) 

return( list(p).y ) 

return(NOTFOUND) 
end 

EFL 

The search is a single for loop that begins with the head of the 
list and examines items until either the list is exhausted 
(p= =LAST) or until it is known that the specified value is not 
on the list (list(p).x > x). The two tests in the conjunction 
must be performed in the specified order to avoid using an 
invalid subscript in the list(p) reference. Therefore, the && 
operator is used. The next element in the chain is found by 
the iteration statement p =list (p) .nextindex. 

12.4 Walking a Tr .. 

As an example of a more complicated problem, let us imagine 
we have an expression tree stored in a common area, and that 
we want to print out an infix form of the tree. Each node is 
either a leaf (containing a numeric value) or it is a binary 
operator, pointing to a left and a right descendant. In a recur­
sive language, such a tree walk would be implemented by the 
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following simple pseudocode: 

if this node is a leaf 
print its value 

otherwise 
print a left parenthesis 
print the left node 
print the operator 
print the right node 
print a right parenthesis 

In a nonrecursive language like EFL, it is necessary to maintain 
an explicit stack to keep track of the current state of the com­
putation. The following procedure calls a procedure outch to 
print a single character and a procedure outval to print a value. 
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procedure walk (first) # print an expression tree 

r integer first # index of root node 
integer currentnode 
integer stackdepth 
common(nodes) struct 

I 
character (I) op 
integer leftp, rightp 
real val 
} treeOOO) # array of structures 

struct 
I 
integer nextstate 
integer nodep 
} stackframe(IOO) 

define NODE 
define STACK 

tree(currentnode) 
stackframe(stackdepth) 

# nextstate values 
define DOWN 1 
define LEFT 2 
define RIGHT 3 

# initialize stack with root mode 
stackdepth = 1 
STACK.nextstate = DOWN 
ST ACK.nodep = first 
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while( stackdepth > 0 ) 

end 

( 
currentnode = STACK.nodep 
select(STACK.nextstate) 

( 
case DOWN: 

if(NODE.op = = " ") # a leaf 
( 
outval( NODE. val 
stackdepth - = 1 
I 

else { # a binary operator node 
outch( "(" ) 
ST ACK.nextstate = LEFT 
stackdepth + = 1 
ST ACK.nextstate DOWN 
ST ACK.nodep = NODE.leftp 
I 

case LEFT: 
outch( NODE.op ) 
STACK.nextstate = RIGHT 
stackdepth + = 1 
STACK.nextstate = DOWN 
ST ACK.nodep = NODE.rightp 

case RIGHT: 
outch( ")" ) 
stackdepth - = 1 

13. Portability 

One of the major goals of the EFL language is to make it easy 
to write portable programs. The output of the EFL compiler is 
intended to be acceptable to any Standard FORTRAN compiler 
(unless the "fortran77" option is specified). 
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13.1 Primitives 

Certain EFL operations cannot be implemented in portable 
FORTRAN, so a few machine-dependent procedures must be 
provided in each environment. 

13.1.1 Character String Copying 

The subroutine eftasc is called to copy one character string to 
another. If the target string is shorter than the source, the final 
characters are not copied. If the target string is longer, its end 
is padded with blanks. The calling sequence is 

subroutine eflasc<a, Ia, b, lb) 
integer a( .. ), Ia, b(•), lb 

and it must copy the first lb characters from b to the first Ia 
characters of a. 

13.1.2 Character String Comparisons 

The function eflcmc is invoked to determine the order of two 
character strings. The declaration is 

integer function eflcmc<a, Ia, b, !b) 
integer a(*), Ia, b(*), lb 

The function returns a negative value if the string a of length 
Ia precedes the string b of length lb. It returns zero if the 
strings are equal, and a positive value otherwise. If the strings 
are of differing length, the comparison is carried out as if the 
end of the shorter string were padded with blanks. 

14. Differences Between Ratfor and EFL 

There are a number of differences between Ratfor and EFL, 
since EFL is a defined language while Ratfor is the union of the 
special control structures and the lar.guage accepted by the 
underlying FORTRAN compiler. Ratfor running over Standard 
FORTRAN is almost a subset of EFL. Most of the features 
described in the "Atavisms" are present to ease the conversion 
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of Ratfor programs to EFL. 

There are a few incompatibilities: 

1. The syntax of the for statement is slightly different 
in the two languages. The three clauses are 
separated by semicolons in Ratfor, but by commas 
in EFL. The initial and iteration statements may be 
compound statements in EFL because of this 
change. 

2. The input/output syntax is quite different in the two 
languages, and there is no FORMAT statement in 
EFL. 

3. There are no ASSIGN or assigned GOTO statements 
in EFL. 

The major linguistic additions are: 

• character data 

• factored declaration syntax 

• block structure 

• assignment and sequential test operators 

• generic functions 

• data structures 

EFL permits more general forms for expressions, and provides 
a more uniform syntax. For example, EFL does not have the 
restrictions on subscript or DO expressions forms as do FOR­
TRAN and Ratfor. 

15. Compiler 

15.1 Current Version 

The current version of the EFL compiler is a two-pass transla­
tor written in portable C. It implements all of the features of 
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the language described above except for long complex 
numbers. 

15.2 Diagnostics 

The EFL compiler diagnoses all syntax errors. It gives the line 
and file name (if known) on which the error was detected. 
Warnings are given for variables that are used but not explicitly 
declared. 

15.3 Quality of FORTRAN Produced 

The FORTRAN produced by EFL is quite clean and readable. 
To the extent possible, the variable names that appear in the 
EFL program are used in the FORTRAN code. The bodies of 
loops and test constructs are indented. Statement numbers are 
consecutive. Few unneeded GOTO and CONTINUE state­
ments are used. It is considered a compiler bug if incorrect 
FORTRAN is produced (except for escaped lines). The follow­
ing is the FORTRAN procedure produced by the EFL compiler 
for the matrix multiplication example (See "Examples.") 

subroutine matmuHa, b, c, m, n, p) 
integer m, n, p 
double precision a(m, n), b(n, p), c(m, p) 
integer i, j, k 
do 3 i = I, m 

do 2 j = I, p 
c(i, j) = 0 
do I k = 1, n 

c(i, j) = c(i, j) +a(i, k)*b(k, j) 
I continue 
2 continue 
3 continue 

end 
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The following is the procedure for the tree walk: 

subroutine walk(first) 
integer first 
common /nodes/ tree 
integer tree(4, 100) 
real tree I (4, 100) 
integer staame(2, 100), stapth, curode 
integer canst 1 (I) 
equivalence (treeO,l), treel(l,l)) 
data constl0)/4h I 

c print out an expression tree 
c index of root node 
c array of structures 
c nextstate values 
c initialize stack with root node 

stapth = I 
staameO, stapth) = 1 
staame(2, stapth) = first 
if (stapth .le. 0) goto 9 

curode = staame(2, stapth) 
goto 7 

2 if (treeO, curode) .ne. canst! (l)) go to 3 

c a leaf 
call outval(treel (4, curode)) 

stapth = stapth-1 
goto 4 

3 call outchOhO 
c a binary operator node 

staame(l, stapth) 2 
stapth = stapth + I 
staame (I, stapth) I 
staame(2, stapth) = tree(2, curode) 

4 goto 8 
5 call outch(treeO, curode)) 

staame (I, stapth) = 3 
stapth = stapth + 1 
staame(l, stapth) 
staame(2, stapth) = treeO, curode) 



6 

7 

goto 8 
call outch (1 h)) 
stapth = stapth-1 
goto 8 
if (staameO. stapth) .eq. 3) goto 6 
if (staameO. stapth) .eq. 2) goto 5 
if (staameO. stapth) .eq. l) goto 2 

8 continue 
goto 1 

9 continue 
end 

16. Constraints on EFL 

EFL 

Although FORTRAN can be used to simulate any finite compu­
tation, there are realistic limits on the generality of a language 
that can be translated into FORTRAN. The design of EFL was 
constrained by the implementation strategy. Certain of the res­
trictions are petty (six character external names), but others are 
sweeping (lack of pointer variables). The following paragraphs 
describe the major limitations imposed by FORTRAN. 

16.1 External Names 

External names (procedure and COMMON block names) must 
be no longer than six characters in FORTRAN. Further, an 
external name is global to the entire program. Therefore, EFL 
can support block structure within a procedure, but it can have 
only one level of external name if the EFL procedures are to be 
compilable separately, as are FORTRAN procedures. 

16.2 Procedure Interface 

The FORTRAN standards, in effect, permit arguments to be 
passed between FORTRAN procedures either by reference or 
by copy-in/copy-out. This indeterminacy of specification shows 
through into EFL. A program that depends on the method of 
argument transmission is illegal in either language. 
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There are no procedure-valued variables in FORTRAN. That 
is, a procedure name may ONLY be passed as an argument or 
be invoked - it cannot be stored. 

16.3 Pointers 

The most grievous problem with FORTRAN is its lack of a 
pointer-like data type. The implementation of the compiler 
would have been far easier, and the language itself simplified 
considerably, if certain cases could have been handled by 
pointers. There are several ways of "simulating" pointers by 
using subscripts, but this raises problems of external variables 
and initialization. 

16.4 Recursion 

FORTRAN procedures are not recursive, so it was not practical 
to permit EFL procedures to be recursive. As in the case of 
pointers, recursion may be simulated in EFL, but not without 
considerable effort. 

16.5 Storage Allocation 

The definition of FORTRAN does not specify the lifetime of 
variables. It would be possible but cumbersome to implement 
stack or heap storage disciplines by using COMMON blocks. 
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Chapter 12 

LINT-

A C PROGRAM CHECKER 

1. Introduction 

LINT 

The C program checker, lint, can be used to detect bugs, 
obscurities, inconsistencies and portability of C programs. It is 
generally stricter than the C compiler, which accepts construc­
tions without complaint that lint considers wasteful or error­
prone. The lint program is also much stricter with regard to 
the C language type rules. Also, lint accepts multiple files and 
library specifications and checks them for consistency. 

In addition to the many thorough checking mechanisms them­
selves, lint offers the facility of suppressing them if they are 
not necessary for a given application. 

1.1 Usage 

The lint command has the form: 

lint [options] files ... library-descriptors ... 

• options are optional flags to control lint checking 
and messages 

• "files" are the files to be checked by lint. Natur­
ally, files containing C language programs must end 
with a .c suffix since this is mandatory for both lint 
and the C compiler. 

• library-descriptors are the names of libraries to be 
used in checking the program. 

The lint library files are processed almost exactly like ordinary 
source files. The only difference is that functions which are 
defined on a library file, but are not used on a source file, do 
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NOT result in messages. 

The lint program does not simulate a full library search algo­
rithm and will print messages if the source files contain a 
redefinition of a library routine. 

1.2 Options 

When more than one option is used, they should be combined 
into a single argument, such as, - ab or - xha. 

The options that are currently supported by the lint program 
are: 

-a 

-b 

Use this option to suppress messages concerning 
the assignment of "long" values to variables 
which are not "long." This option is often useful 
as there are a number of legitimate reasons for 
assigning "longs" to "ints." 

Use this option to suppress messages concerning 
"break" statements which are unreachable. For 
example, programs generated by yacc and espe­
cially lex may have hundreds of unreachable break 
statements. If the C compiler optimizer were 
used, these unreached statements would be of lit­
tle importance, but the resulting messages would 
clutter up the lint output. In this case, the -b 
option is especially useful. 

- c This option is no longer available. 

- h Use this option only to suppress the use of 
"heuristics." Heuristics is used by default to 
check for wasteful or error-prone constructions 
and to detect bugs. For example, by default lint 
prints messages about variables which 8re declared 
in inner blocks in a way that conflicts with their 
use in outer blocks. Though this construction is 
considered "legal," it remains bad programming 
style, and frequently a bug. 
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Use this option to specify libraries you wish 
included and checked by lint. The source code is 
tested for compatibility with these libraries. This 
is done by accessing library description files whose 
names are constructed from the library arguments. 
These files MUST all begin with the comment: 

I• LINTLIBRARY •/ 

This comment must then be followed by a series 
of dummy function definitions. The critical parts 
of these definitions are: 

• the declaration of the function return 
type, 

• whether the dummy function returns a 
value, and 

• the number and types of arguments to 
the function. 

The VARARGS and ARGSUSED comments can 
be used to specify features of the library func­
tions. 

- n Use this option to suppress checking for compati­
bility with either the standard or the portable lint 
library. In effect, this option supresses ALL 
library checking. 

-0 name Use this option to create a lint library from input 
files named llib-lname.ln. 

-p 

-u 

Use this option to check a program's portability to 
other dialects of C language. This option checks a 
file containing descriptions of standard library rou­
tines which are expected to be portable. 

Use this option to suppress messages concerning 
function and external variables which are either 
used and not defined or defined and not used. 
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-v 

The comment: 

I• VARARGS •/ 

can be used to suppress messages about variable 
number of arguments in calls to a function. The 
comment should be added before the function 
definition. In some cases, it is desirable to check 
the first several arguments and leave the later 
arguments unchecked. This can be done with a 
digit giving the number of arguments which 
should be checked. For example: 

I• VARARGS2 •I 

will cause ONLY the first two arguments to be 
checked. 

When lint is applied to some but not all files out 
of a collection which are to be loaded together, 
information about unused or undefined variables 
is more distracting than helpful. In this case, 
many of the functions and variables defined may 
not be used. Conversely, many functions and 
variables defined elsewhere may be used. The -u 
option is especially useful to suppress the spurious 
messages which might otherwise appear. 

Use this option to suppress messages concerning 
unused function arguments. To suppress such 
messages for one function only, place the follow­
ing comment in the program before that function: 

I• ARGSUSED •/ 

-x Use this option to suppress messages concerning 
variables referred to by external declarations but 
never used. 

By default, lint checks the programs it is given against a stan­
dard library file which contains descriptions of the programs 
which are normally loaded when a C language program is run. 
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When the - p option is used, another file is checked containing 
descriptions of the standard library routines which are expected 
to be portable across various machines. The - n option can be 
used to suppress all library checking. 

2. Types of Messages 

The following paragraphs describe the major categories of mes· 
sages printed by lint. 

2.1 Unused Variables and Functions 

As sets of programs evolve and develop, previously used vari­
ables and arguments to functions may become unused. It is 
not uncommon for external variables or even entire functions 
to become unnecessary and yet not be removed from the 
source. These types of errors rarely cause working programs to 
fail, but are a source of inefficiency and make programs harder 
to understand and change. Also, information about such 
unused variables and functions can occasionally serve to dis­
cover bugs. 

The lint program prints messages about variables and functions 
which are defined but not otherwise mentioned. 

It is possible to suppress messages regarding variables which are 
declared through explicit extern statements but are never refer­
enced. The statement: 

extern double sin 0; 

will evoke no comment if sin is never used, providing the -x 
option is used. (Note: this agrees with the semantics of the C 
compiler.) 

In some cases, these unused external declarations might be of 
some interest, in which case you can use lint without the - x 
option. 
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Certain styles of programming require many functions to be 
written with similar interfaces. Frequently, some of the argu­
ments may be unused in many of the calls. The -v option is 
available to suppress the printing of messages about unused 
arguments. 

When -v is in effect, no messages are produced about unused 
arguments including for those arguments which are unused and 
also declared as register arguments. This can be considered an 
active (and preventable) waste of the register resources of the 
machine. 

Messages about unused arguments can be suppressed for one 
function by adding the comment: 

I• ARGSUSED •/ 

to the program before the function. This has the effect of the 
- v option for only one function. Also, the comment: 

I• VARARGS •/ 

can be used to suppress messages about variable number of 
arguments in calls to a function. The comment should be 
added before the function definition. In some cases, it is desir­
able to check the first several arguments and leave the later 
arguments unchecked. This can be done with a digit giving the 
number of arguments which should be checked. For example: 

/ .. V ARARGS2 •I 

will cause ONLY the first two arguments to be checked. 

There is one case where information about unused or 
undefined variables is more distracting than helpful: 

when lint is applied to some but not all files out of a collection 
which are to be loaded together. 
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In this case, many of the functions and variables defined may 
not be used. Conversely, many functions and variables defined 
elsewhere may be used. The -u option may be used to 
suppress the spurious messages which might otherwise appear. 

2.2 Set/Used Information 

The lint program attempts to detect cases where a variable is 
used before it is set. The lint program detects local variables 
(automatic and register storage classes) whose first use appears 
earlier than the first assignment to the variable. It assumes that 
taking the address of a variable constitutes a "use," since the 
actual use may occur at any later time, in a data-dependent 
fashion. 

The restriction to the physical appearance of variables in the file 
makes the algorithm very simple and quick to implement since 
the true flow of control need not be discovered. It does mean 
that lint can print messages about some programs which are 
legal, but these programs would probably be considered bad on 
stylistic grounds. Because static and external variables are ini­
tialized to zero, no meaningful information can be discovered 
about their uses. The lint program does deal with initialized 
automatic variables. 

The set/used information also permits recognition of those 
local variables which are set and never used. These form a fre­
quent source of inefficiencies and may also be symptomatic of 
bugs. 

2.3 Flow of Control 

The lint program attempts to detect unreachable portions of the 
programs which it processes. It will print messages about unla­
beled statements immediately following goto, break, continue 
or return statements. An attempt is made to detect loops 
which can never be left at the bottom and to recognize the spe­
cial cases while (I) and for(;;) as infinite loops. 
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The lint program also prints messages about loops which can­
not be entered at the top. Some valid programs may have such 
loops which are considered to be bad style at best and bugs at 
worst. 

The lint program has no way of detecting functions which are 
called and never returned. Thus, a call to exit may cause an 
unreachable code which lint does NOT detect. The most seri­
ous effects of this are in the determination of returned function 
values (see the section on "Function Values"). If a particular 
place in the program cannot be reached but it is not apparent to 
lint, the comment 

I• NOTREACHED •/ 

can be added at the appropriate place. This comment will 
inform llnt that a portion of the program cannot be reached. 

The lint program will not print a message about unreachable 
break statements if given the - b option. Programs generated 
by yacc and especially lex may have hundreds of unreachable 
break statements. The -0 option in the C compiler will often 
eliminate the resulting object code inefficiency. Thus, these 
unreached statements are of little importance. There is typi­
cally nothing the user can do about them, and the resulting 
messages would clutter up the lint output. If these messages 
are desired, lint can be invoked without the - b option. 

2.4 Function Values 

Sometimes functions return values that are never used. Some­
times programs incorrectly use function "values" that have 
never been returned. The lint program addresses this problem 
in a number of ways. 

Locally, within a function definition, the appearance of both 

return ( expr ) ; 
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and 

( return; 

is cause for alarm. The lint program will give the message: 

function name contains return(e) and return 

The most serious difficulty with this is detecting when a func­
tion return is "implied" when the control flow of a program 
reaches the end of the function. For example: 

f ( a ) I 
if ( a ) return ( 3 ); 
g 0; 

In this example, if the result of "a" is false, /will call g and 
then return with no defined return value. This will trigger a 
message from lint. If g, like exit, never returns, the message 
will still be produced when in fact nothing is wrong. 

In practice, some potentially serious bugs have been discovered 
by this feature. 

On a global scale, lint detects cases where a function returns a 
value that is sometimes or never used. When the value is 
never used, it may constitute an inefficiency in the function 
definition. When the value is sometimes unused, it may 
represent bad style (e.g., not testing for error conditions). 

The dual problem, using a function value when the function 
does not return one, is also detected. This is a serious prob-

,/""' tern. 
' 
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2.5 Type Checking 

The lint program enforces the type checking rules of C 
language more strictly than the compilers do. The additional 
checking is in four major areas: 

• Across certain binary operators and implied assign-
ments 

• At the structure selection operators 

• Between the definition and uses of functions 

• In the use of enumerations. 

There are a number of operators which have an implied balanc­
ing between types of the operands. The assignment, condi­
tional ( ? : ) , and relational operators have this property. The 
argument of a return statement and expressions used in initiali­
zation suffer similar conversions. In these operations, char, 
short, int, long, unsigned, float and double types may be 
freely intermixed. 

The types of pointers MUST agree exactly except that arrays of 
x's can, of course, be intermixed with pointers to x's. 

The type checking rules also require that, in structure refer­
ences, the left operand of the - > be a pointer to structure, 
the left operand of the . be a structure, and the right operand 
of these operators be a member of the structure implied by the 
left operand. S.imilar checking is done for references to unions. 

Strict rules apply to function argument and return value match­
ing. The types ftoat and double may be freely matched, as may 
the types char, short, int and unsigned. Also, pointers can be 
matched with the associated arrays. Aside from this, all actual 
arguments must agree in type with their declared counterparts. 
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With enumerations, checks are made that enumeration vari­
ables or members are not mixed with other types or other 
enumerations and that the only operations applied are ... , ini­
tialization, --, ! = and function arguments and return values. 

If it is desired to turn off strict type checking for an expression, 
the comment 

I• NOSTRICT "/ 

should be added to the program immediately before the expres­
sion. This comment will prevent strict type checking for only 
the next line in the program. 

2.6 Type Casts 

The type cast feature in C language was introduced largely as an 
aid to producing more portable programs. Consider the assign­
ment 

p = 1 ; 

where p is a character pointer. The lint program will print a 
message as a result of detecting this. Consider the assignment 

p = (char oc)l ; 

in which a cast has been used to convert the integer to a char· 
acter pointer. The programmer obviously had a strong motiva· 
tion for doing this and has clearly signaled his intentions. It 
seems harsh for lint to continue to print messages about this. 
On the other hand, if this code is moved to another machine, 
such code should be looked at carefully. The -c flag controls 
the printing of comments about casts. When -c is in effect, 
casts are treated as though they were assignments subject to 
messages. Otherwise, all legal casts a;·e passed without com· 
ment - no matter how strange the type mixing seems to be. 
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2.7 Nonportable Character Use 

On some systems, characters are signed quantities with a range 
from -128 to 127. On other C language implementations, 
characters take on only positive values. Thus, lint will print 
messages about certain comparisons and assignments as being 
illegal or nonportable. For example: 

char c; 

if( (c = getcharO) < 0 ) ... 

will work on one machine but will fail on machines where char· 
acters always take on positive values. The real solution is to 
declare c as an integer since getchar is actually returning integer 
values. In any case, lint will print the message "nonportable 
character comparison.'' 

A similar issue arises with bit fields. When assignments of con­
stant values are made to bit fields, the field may be too small to 
hold the value. This is especially true because on some 
machines bit fields are considered as signed quantities. While it 
may seem logical to consider that a two-bit field declared of 
type int cannot hold the value 3, the problem disappears if the 
bit field is declared to have type unsigned 

2.8 Assignments of "longs" to "ints" 

Bugs may arise from the assignment of long to an int, which 
will truncate the contents. This may happen in programs which 
have been incompletely converted to use typedefs. When a 
typedef variable is changed from int to long, the program can 
stop working because some intermediate results may be 
assigned to ints, which are truncated. Since there are a number 
of legitimate reasons for assigning longs to ints, the detection 
of these assignments is disabled by the -a option. However, if 
using the - p option to detect possible portability problems, 
lint may print the message, "warning: conversion from long 
may lose accuracy," in spite of the use of the -a option. 
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2.9 Strange Constructions 

Several perfectly legal, but somewhat strange, constructions are 
detected by lint. The messages hopefully encourage better 
code quality, clearer style, and may even point out bugs. The 
- h option is used to suppress the majority of these checks. 

For example: 

•p++ ; 

the • does nothing. This provokes the message "null effect" 
from lint. For example: 

unsigned x; 
if(x<O) ... 

results in a test that will never succeed. For another example: 

/__. if(x>O) 

(~ 

is equivalent to 

if(x!= 0) 

which may NOT be the intended action. The lint program will 
print the message "degenerate unsigned comparison" in these 
cases. If a program contains something similar to 

if(l!~O) ... 

lint will print the message "constant in conditional context" 
since the comparison of 1 with 0 gives a constant result. 

Another construction detected by lint involves operator pre­
cedence. Bugs which arise from misunderstandings about the 
precedence of operators can be accentuated by spacing and for­
matting, making such bugs extremely hard to find. For exam­
ple: 
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if( x&077 ~~ 0) ... 

o• 
x<<2 + 40 

probably do NOT do what was intended. The best solution is 
to parenthesize such expressions, and lint encourages this by 
an appropriate message. 

When the - h option has not been used, lint prints messages 
about variables which are redeclared in inner blocks in a way 
that conflicts with their use in outer blocks. Although this is 
considered "legal," it remains bad style, usually unnecessary 
and frequently a bug. 

2.10 Old Syntax 

Several forms of older syntax are now illegal. These fall into 
two classes -

1. assignment operators and 

2. initialization. 

The older forms of assignment operators (e.g., - +, ... -, ... ) 
could cause ambiguous expressions. For example: 

a =-1; 

could be taken as either 

a=- 1; 

o• 
a= -1 
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The situation is especially perplexing if this kind of ambiguity 
arises as the result of a macro substitution. The newer and pre· 
ferred operators (e.g., + =, --, .. .) have no such ambigui­
ties. To encourage the abandonment of the older forms, lint 
prints messages about these old-fashioned operators. 

A similar issue arises with initialization. The older language 
allowed 

int xi; 

to initialize x to 1. This also caused syntactic difficulties. For 
example: 

intx(-1); 

looks somewhat like the beginning of a function definition: 

int x ( y ) { , .. 

and the compiler must read past x in order to determine the 
correct meaning. Again, the problem is even more perplexing 
when the initializer involves a macro. The current syntax 
places an equals sign between the variable and the initializer. 
For example: 

intx=-1; 

This is free of any possible syntactic ambiguity. 

2.11 Pointer Alignment 

Certain pointer assignments may be reasonable on some 
machines and illegal on others due entirely to alignment restric­
tions. The lint program tries to detect cases where pointers are 
assigned to other pointers and such alignment problems might 
arise. The message "possible pointer alignment problem" 
results from this situation. 
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2.12 Multiple Uses and Side Effects 

In complicated expressions, the best order in which to evaluate 
subexpressions may be highly machine dependent. For exam­
ple, on machines Oik.e the PDP-11) in which the stack runs 
backwards, function arguments will probably be best evaluated 
from right to left. On machines with a stack running forward, 
left to right seems most attractive. Function calls embedded as 
arguments of other functions may or may not be treated simi­
larly to ordinary arguments. Similar issues arise with other 
operators which have side effects, such as the assignment 
operators and the increment and decrement operators. 

In order that the efficiency of C language on a particular 
machine not be unduly compromised, the C language leaves 
the order of evaluation of complicated expressions up to the 
local compiler. In fact, the various C compilers have consider­
able differences in the order in which they will evaluate compli­
cated expressions. In particular, if any variable is changed by a 
side effect and also used elsewhere in the same expression, the 
result is explicitly undefined. 

The lint program checks for the important special case where a 
simple scalar variable is affected. For example: 

alii ~ b[i+ + ]; 

will cause lint to print the message "warning: i evaluation order 
undefined" in order to call attention to this condition. 
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SDB-

SYMBOLIC DEBUGGING PROGRAM 

1. Introduction 

SDB 

This chapter describes the symbolic debugger sdb(l) as imple­
mented for C language and Fortran 77 programs on the 
UniPius+® Operating System. The sdb program is useful both 
for examining core images of aborted programs and for provid­
ing an environment in which execution of a program can be 
monitored and controlled. 

The sdb program allows interaction with a debugged program at 
the source language level. When debugging a core image from 
an aborted program, sdb reports which line in the source pro­
gram caused the error and allows all variables to be accessed 
symbolically and to be displayed in the correct format. 

Breakpoints may be placed at selected statements or the pro­
gram may be single stepped on a line-by-line basis. To facili­
tate specification of lines in the program without a source list­
ing, sdb provides a mechanism for examining the source text. 
Procedures may be called directly from the debugger. This 
feature is useful both for testing individual procedures and for 
calling user-provided routines which provided formatted prin­
tout of structured data. 

z. Usage 

In order to use sdb to its full capabilities, it is necessary to 
compile the source program with the - g option. This causes 
the compiler to generate additional information about the vari­
ables and statements of the compiled program. When the -g 
option has been specified, sdb can be used to obtain a trace of 
the called functions at the time of the abort and interactively 
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display the values of variables. 

A typical sequence of shell commands for debugging a core 
image is 

$ cc - g prgm.c - o prgm 
$ prgm 
Bus error - core dumped 
$ sdb prgm 
main:25: x[i] = 0; 
• 

The program prgm was compiled with the - g option and then 
executed. An error occurred which caused a core dump. The 
sdb program is then invoked to examine the core dump to 
determine the cause of the error. It reports that the bus error 
occurred in function main at line 25 (line numbers are always 
relative to the beginning of the file) and outputs the source text 
of the offending line. The sdb program then prompts the user 
with an "' indicating that it awaits a command. 

It is useful to know that sdb has a notion of current function 
and current line. In this example, they are initially set to 
"main" and "25", respectively. 

In the above example, sdb was called with one argument, 
prgm. In general, sdb takes three arguments on the command 
line: 

13-2 

1. The first argument is the name of the executable file 
to be debugged; it defaults to a.out when not 
specified. Even with the new COFF format, the 
executable file will be named a.out. However, sdb 
will not work on old a.out format files. Only COFF 
files may be used with sdb. 

2. The second argument is the name of the core file, 
defaulting to core; 



3. The third 
containing 
debugged. 

SOB 

argument is the name of the directory 
the source of the program being 

The sdb program currently requires all source to reside in a sin­
gle directory. The default is the working directory. In the 
example, the second and third arguments defaulted to the 
correct values, so only the first was specified. 

It is possible that the error occurred in a function which was 
not compiled with the - g option. In this case, sdb prints the 
function name and the address at which the error occurred. 
The current line and function are set to the first executable line 
in main. The sdb program will print an error message if main 
was not compiled with the - g option, but debugging can con­
tinue for those routines compiled with the -g option. 

The following is a typical example of sdb usage. The first 
display, Figure 13.1, is the source file used to create the output 
file used to illustrate the use of sdb. The second figure, Figure 
13.2, is an illustration of a session with sdb. Commands in 
bold are to be input explicitly; responses from sdb and com­
ments are in roman for clarity. 
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$ cat testdiv2.c 
main(argc, argv, envp) 
char ''""argv, nenvp; { 

inti; 
i = div2( -l); 
printf(" -1/2 - %d\n", i); 

div2(i) { 

} 

int j; 
j=i>>l; 
return(j); 

$ cc -g testdtv2.c 
$ a.out 
-112- -1 

Figure 13.1. Input File Used for SDB Example 

$ sdb 
No core image 

•rctiv2 
7: div2(i) { 

•z 
7: div2(i) { 
8: intj; 
9: j = i>>l; 
10: return (j); 
11: } 

•div2:b 
div2:9 b 

•r 

#Warning message from sdb 

# Search for function "div2" 
# It starts on line 7 

# Print the next few lines 

# Place breakpoint at beginning of "div2" 
# sdb echoes proc name and line number 

#Run the function 
a.out # sdb echoes command line executed 
Breakpoint at # Executions stops just before line 9 
div2:9: j = i>>l; 

•t # Print trace of subroutine calls 
div2(i= -1) [testdiv2.c:9] 
main(argc = 1 ,argv =Ox7fffff50,envp- Ox7ftlff58) ltestdiv2.c:4] 

•1/ #Print i 
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-I 

•s # Single step 
div2:10: return(j);# Execution stops before line 10 

#Print j 

# Delete the breakpoint •9d 
*div2U)/ # Try running "div2" with different arguments 
0 

•div2(-2)/ 
-I 

•div2{-3)/ 
-2 

•• 
Figure 13.2. Example of SOB Usage 

{ 2.1 Printing a Stack Trace 

It is often useful to obtain a listing of the function calls which 
led to the error. This is obtained with the t command. For 
example: 

•t 
sub(x=2,y=3) [prgm.c:25] 
inter(i= 16012) [prgm.c:96] 
main (argc = 1 ,argv=Ox7fffff54,envp= Ox7fffff5c) (prgm.c: 15] 

This indicates that the error occurred within the function sub at 
line 25 in file prgm.c. The sub function was called with the 
arguments x=2 and y=3 from inter at line 96. The inter 
function was called from main at line 15. The main function is 
always called by the shell with three arguments often referred 

( to as argc, argv, and envp. Note that argv and envp are 
pointers, so their values are printed in hexadecimal. 
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2.2 Examining Variables 

The sdb program can be used to display variables in the stopped 
program. Variables are displayed by typing their name followed 
by a slash, so 

•errOag/ 

causes sdb to display the value of variable errflag. Unless oth· 
erwise specified, variables are assumed to be either local to or 
accessible from the current function. To specify a different 
function, use the form 

•sub:i/ 

to display variable i in function sub. F77 users can specify a 
common block variable in the same manner. 

The sdb program supports a limited form of pattern matching 
for variable and function names. The symbol • is used to 
match any sequence of characters of a variable name and ? to 
match any single character. Consider the following commands 

•x .. / 
•sub:y?/ 
••I 

The first prints the values of all variables beginning with x, the 
second prints the values of all two letter variables in function 
sub beginning with y, and the last prints all variables. In the 
first and last examples, only variables accessible from the 
current function are printed. The command 

displays the variables for each function en the call stack. 

The sdb program normally displays the variable in a format 
determined by its type as declared in the source program. To 
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request a different format, a specifier is placed after the slash. 
The specifier consists of an optional length specification fol­
lowed by the format. The length specifiers are: 

b 

h 

I 

One byte 

Two bytes (half word) 

Four bytes (long word). 

The lengths are effective only with the formats d, o, x, and u. 
If no length is specified, the word length of the host machine is 
used. A numeric length specifier may be used for the s or a 
commands. These commands normally print characters until 
either a null is reached or 128 characters are printed. The 
number specifies how many characters should be printed. 

There are a number of format specifiers available: 

a Print characters starting at the variable's address 
until a null is reached. 

c Character. 

d Decimal. 

f 32-bit single-precision floating point. 

1 64-bit double-precision floating point. 

i Interpret as a machine-language instruction. 

o Octal. 

p Pointer to function. 

s Assume variable is a string pointer and print charac­
ters starting at the address pointed to by the variable 
until a null is reached. 

u Decimal unsigned. 

x Hexadecimal. 
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For example, the variable i can be displayed with 

.. lfx 

which prints out the value of i in hexadecimal. 

The sdb program also knows about structures, arrays, and 
pointers so that all of the following commands work. 

•arrayl21131/ 
•sym.id/ 
•psym- >usage/ 
•xsym(20).p- >usage/ 

The only restriction is that array subscripts must be numbers. 
Depending on your machine, accessing arrays may be limited to 
l·dimensional arrays. Note that as a special case: 

•psym->/d 

displays the location pointed to by psym in decimal. 

Core locations can also be displayed by specifying their absolute 
addresses. The command 

•1024/ 

displays location 1024 in decimal. As in C language, numbers 
may also be specified in octal or hexadecimal so the above com­
mand is equivalent to both 

•02000/ 

and 

It is possible to mix numbers and variables so that 
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•IOOO.x/ 

refers to an element of a structure starting at address 1000, and 

.. 1000->x/ 

refers to an element of a structure whose address is at 1000. 
For commands of the type •lOOO.x/ and •1000->x/, the sdb 
program uses the structure template of the last structured refer­
enced. 

The address of a variable is printed with the =, so 

displays the address of i. Another feature whose usefulness 
will become apparent later is the command 

~ •./ 

which redisplays the last variable typed. 

3. Display and Manipulation 

The sdb program has been designed to make it easy to debug a 
program without constant reference to a current source listing. 
Facilities are provided which perform context searches within 
the source files of the program being debugged and to display 
selected portions of the source files. The commands are similar 
to those of the UniPius+ system text editor ed(l). Like the 
editor, sdb has a notion of current file and line within the file. 

The sdb program also knows how the lines of a file are parti­
tioned into functions, so it also has a notion of current func­
tion. As noted in other parts of this document, the current 
function is used by a number of sdb commands. 
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3.1 Displaying the Source File 

Four commands exist for displaying lines in the source file. 
They are useful for perusing the source program and for deter­
mining the context of the current line. The commands are: 

p Prints the current line. 

w Window; prints a window of ten lines around the current 
line . 

.z Prints ten lines starting at the current line. Advances the 
current line by ten. 

CTRL-d Scrolls; prints the next ten lines and advances the 
current line by ten. This command is used to cleanly 
display long segments of the program. 

When a line from a file is printed, it is preceded by its line 
number. This not only gives an indication of its relative posi­
tion in the file but is also used as input by some sdb com­
mands. 

3.2 Changing the Source File or Function 

The e command is used to change the current source file. 
Either of the following forms: 

•e function 
•e file.c 

may be used. The first causes the file containing the named 
function to become the current file, and the current line 
becomes the first line of the function. The other form causes 
the named file to become current. In this case, the current line 
is set to the first line of the named file. Finally, an e command 
with no argument causes the current function and file named to 
be printed. 
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3.3 Changing the Current Line in the Source File 

The z and CTRL-D commands have a side effect of changing 
the current line in the source file. The following paragraphs 
describe other commands that change the current line. 

There are two commands for searching for instances of regular 
expressions in source files. They are 

•/regular expression/ 
*?regular expression? 

The first command searches forward through the file for a line 
containing a string that matches the regular expression and the 
second searches backwards. The trailing I and ? may be omit­
ted from these commands. Regular expression matching is 
identical to that ofed(l). 

The + and - commands may be used to move the current line 
forwards or backwards by a specified number of lines. Typing a 
new-line advances the current line by one, and typing a number 
causes that line to become the current line in the file. These 
commands may be combined with the display commands so 
that 

•+15z 

advances the current line by 15 and then prints ten lines. 

4. A Controlled Testing Environment 

One very useful feature of sdb is breakpoint debugging. After 
entering sdb, certain lines in the source program may be 
specified to be breakpoints. The program is then started with a 
sdb command. Execution of the program proceeds as normal 
until it is about to execute one of the lines at which a break· 
point has been set. The program stops and sdb reports the 
breakpoint where the program stopped. Now, sdb commands 
may be used to display the trace of function calls and the values 
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of variables. If the user is satisfied the program is working 
correctly to this point, some breakpoints can be deleted and 
others set; then program execution may be continued from the 
point where it stopped. 

A useful alternative to setting breakpoints is single stepping. 
The sdb program can be requested to execute the next line of 
the program and then stop. This feature is especially useful for 
testing new programs, so they can be verified on a statement­
by-statement basis. 

If an attempt is made to single step through a function which 
has not been compiled with the -g option, execution proceeds 
until a statement in a function compiled with the -g option is 
reached. It is also possible to have the program execute one 
machine level instruction at a time. This is particularly useful 
when the program has not been compiled with the -g option. 

4.1 Setting and Deleting Breakpoints 

Breakpoints can be set at any line in a function which contains 
executable code. The command format is: 

•12b 
•proc:12b 
•proc:b 
•b 

The first form sets a breakpoint at line 12 in the current file. 
The line numbers are relative to the beginning of the file as 
printed by the source file display commands. The second form 
sets a breakpoint at line 12 of function proc, and the third sets 
a breakpoint at the first line of proc. The last sets a breakpoint 
at the current line. 

Breakpoints are deleted similarly with the commands 
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•12d 
•proc:l2d 
•proc:d 

SDB 

In addition, if the command d is given alone, the breakpoints 
are deleted interactively. Each breakpoint location is printed, 
and a line is read from the user. If the line begins with a y or 
d, the breakpoint is deleted. 

A list of the current breakpoints is printed in response to a 8 
command, and the D command deletes all breakpoints. It is 
sometimes desirable to have sdb automatically perform a 
sequence of commands at a breakpoint and then have execution 
continue. This is achieved with another form of the b comw 
man d. 

*12b t;x/ 

causes both a trace back and the value of x to be printed each 
time execution gets to line 12. The a command is a variation 
of the above command. There are two forms: 

•proc:a 
•proc:12a 

The first prints the function name and its arguments each time 
it is called, and the second prints the source line each time it is 
about to be executed. For both forms of the a command, exe­
cution continues after the function name or source line is 
printed. 

4.2 Running the Program 

The r command is used to begin program execution. It restarts 
the program as if it were invoked from the shell. The com­
mand 

*t args 
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runs the program with the given arguments as if they had been 
typed on the shell command line. If no arguments are 
specified, then the arguments from the last execution of the 
program are used. To run a program with no arguments, use 
the R command. 

After the program is started, execution continues until a break­
point is encountered, a signal such as INTERRUPT or QUIT 
occurs, or the program terminates. In all cases after an 
appropriate message is printed, control returns to sdb. 

The c command may be used to continue execution of a 
stopped program. A line number may be specified, as in: 

"'PfOC:t2c 

This places a temporary breakpoint at the named line. The 
breakpoint is deleted when the c command finishes. There is 
also a c command which continues but passes the signal which 
stopped the program back to the program. This is useful for 
testing user-written signal handlers. Execution may be contin­
ued at a specified line with the g command. For example: 

•17 g 

continues at line 17 of the current function. A use for this 
command is to avoid executing a section of code which is 
known to be bad. The user should not attempt to continue 
execution in a function different than that of the breakpoint. 

The s command is used to run the program for a single line. It 
is useful for slowly executing the program to examine its 
behavior in detail. An important alternative is the S command. 
This command is like the s command but does not stop within 
called functions. It is often used when one is confident that the 
called function works correctly but is interested in testing the 
calling routine. 

13-14 



·• 
·~ 

SDB 

The i command is used to run the program one machine level 
instruction at a time while ignoring the signal which stopped 
the program. Its uses are similar to the s command. There is 
also an I command which causes the program to execute one 
machine level instruction at a time, but also passes the signal 
which stopped the program back to the program. 

4.3 Calling Functions 

It is possible to call any of the functions of the program from 
sdb. This feature is useful both for testing individual functions 
with different arguments and for calling a function which prints 
structured data in a nice way. There are two ways to call a 
function: 

•proc(argl, arg2, ... ) 
•prodargl, argl, .. .)/m 

The first simply executes the function. The second is intended 
for calling functions (it executes the function and prints the 
value that it returns). The value is printed in decimal unless 
some other format is specified by m. Arguments to functions 
may be integer, character or string constants, or values of vari­
ables which are accessible from the current function. 

An unfortunate bug in the current implementation is that if a 
function is called when the program is not stopped at a break­
point (such as when a core image is being debugged) all vari­
ables are initialized before the function is started. This makes 
it impossible to use a function which formats data from a 
dump. 

5. Machine Language Debugging 

The_ sdb program has facilities for examining programs at the 
machine language level. It is possible to print the machine 
language statements associated with a line in the source and to 
place breakpoints at arbitrary addresses. The sdb program can 
also be used to display or modify the contents of the machine 
registers. 
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5.1 Displaying Machine Language Statements 

To display the machine language statements associated with line 
"25" in function "main," use the command 

•main:25? 

The ? command is identical to the I command except that it 
displays from text space. The default format for printing text 
space is the i format which interprets the machine language 
instruction. The CTRL-d command may be used to print the 
next ten instructions. 

Absolute addresses may be specified instead of line numbers by 
appending a : to them so that 

•Ox1024:? 

displays the contents of address Ox1024 in text space. Note 
that the command 

•Ox1024? 

displays the instruction corresponding to line Ox1024 in the 
current function. It is also possible to set or delete a break­
point by specifying its absolute address; 

•Ox1024:b 

sets a breakpoint at address Ox1024. 

5.2 Manipulating Registers 

The x command prints the values of all the registers. Also, 
individual registers may be named instead of variables by 
appending a % to their name so that 

•r3Y. 
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displays the value of register r3. 

5.3 Other Commands 

To exit sdb, use the q command. 

The ! command is identical to that in ed(l) and is used to 
have the shell execute a command. 

It is possible to change the values of variables when the pro· 
gram is stopped at a breakpoint. This is done with the com­
mand 

•variable!value 

which sets the variable to the given value. The value may be a 
number, character constant, register, or the name of another 
variable. If the variable is of type float or double, the value can 

r also be a floating-point constant. 
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