
, -·-.-.:,

0-
.., ..
,.·

•

-~;.. __ --- --· ' • _-:::;n -~~

'•'

~ ,'

. -- ----~ . '""~ • ~;Jiiiliiii W'"··· '" ·- - --=~ ~- - _,_ __

Copyri&ht o 1985 by UniSoft S)'Bjetns

All ri&llls resotlled. No part of this pUblication -·1!9 :.,o •..•• ,o
duced • .$l0red in a retrieval system, translated, tratlscdhed or
transmitted in any form or bY ony means mariualt elettronic,
cdeetoo..:mas,netic, optical,. or otherwise, without e-x:Pfitit Written
J)etmission 'from UniSoft Systems.

ThisJuido w"" edited and enhanood by Mary Annl'inMrty of
U niSott llyatetns.

0

CONTENTS

r,
Chapter I C INTERFACE NOTES '-
Chapter 2 C COMPILER

Chapter 3 C LANGUAGE

Chapter 4 C LIBRARIES

Chapter 5 OBJECT AND MATH LIBRARIES

Chapter 6 ASSEMBLER

Chapter 7 COMMON LINK EDITOR - LD

Chapter 8 COMMON OBJECT FORMAT FILE - COFF

Chapter 9 FORTRAN 77

Chapter 10 RATFOR

Chapter 11 THE EFL PROGRAMMING LANGUAGE r Chapter 12 C PROGRAM CHECKER - LINT
_

Chapter 13 SYMBOLIC DEBUGGER - SOB

r
'

·--../
' '

_-.,
!

PREFACE

PREFACE

This guide describes the 68000 C programming language sup·
ported by the UniPlus+® Operating System, the assembler,
linker, common object file format (COFF), debugging programs
and the FORTRAN, RATFOR and EFL programming
languages.

It is assumed that those using this guide have at least two years
of specialized training in computer·related fields and should
prove especially useful to those using the UniPius+ Operating
System for system development.

This guide contains 13 chapters:

Chapter 1. C INTERFACE NOTES
This chapter describes the way in which the
U niSoft 68000 C programming language
represents data in storage and how that data is
passed between functions.

Chapter 2. C COMPILER
This chapter describes the use and options of the
UniSoft Systems 68000 C compiler, cc.

Chapter 3. C LANGUAGE
This chapter provides a summary of the gram­
mar and rules of the C programming language
which was used to write most of the UNJXn1

operating system.

Chapter 4. C LIBRARIES
This chapter describes the functions and declara­
tions that support the C Language and how to
use these functions.

Chapter 5. OBJECT AND MATH LIBRARIES
This chapter describes the Object file and Math
libraries that are supported by the UniPius+

-i-

PREFACE

Operating System.

Chapter 6. MOTOROLA 68000 ASSEMBLER
This chapter describes the machine language of
the System V, Release 2 UniPlus+ Operating
System.

Chapter 7. COMMON LINK EDITOR
This chapter (LD) describes the options and
usage of the U niPlus+ Operating System link
editor.

Chapter 8. COMMON OBJECT FILE FORMAT
This chapter (COFF) describes the object file
format produced by both the C and FORTRAN
compilers in UniPlus+ System V, Release 2.

Chapter 9. FORTRAN 77
This chapter describes the compiler and run-time
system for Fortran 77 as implemented on the
UniPlus+ Operating System.

Chapter 10. RATFOR
This chapter describes the ratfor(l) preprocessor
which allows the user to write FORTRAN pro­
grams in a fashion similar to the C programming
language.

Chapter II. THE EFL PROGRAMMING LANGUAGE
This chapter describes a clean, general purpose
computer language intended to encourage port­
able programming. Although the name EFL ori­
ginally stood for "Extended Fortran Language"
and EFL programs can be translated into
efficient Fortran code, the EFL programmer can
take advantage of the ubiquity and portability of
Fortran (and the software and libraries written in
that language), without suffering from Fortran's
failings.

Chapter 12. LINT
This chapter describes a program that attempts
to detect compile-time bugs and non-portable

-11-

PREFACE

features in C programs.

Chapter 13. SYMBOLIC DEBUGGER
This chapter (SDB) describes the symbolic
debugger sdb(l) for UniPlus+ Operating System
object files.

Throughout this document, any reference of the form
nameUM), name(7), or name(8) refers to entries in the
UniPJus+- Administrator Manual.

Any reference of the form name(N) where N is a number l
through 6, possibly followed by a letter, refers to entry name in
section N of the UniPlus+- User Manual.

-iii-

Chapter 1: C INTERFACE NOTES

C' CONTENTS

I. Introduction . . . I

2. Data Representations 2

3. Parameter Passing in C 4

4. Setting Up the Stack 6

5. Allocation of Local Variables and Registers 7

6. Returning from a Function or Subroutine 9

7. System Calls . 10

8. Optimizations 10

9. Use of Register Variables ll

(1 10. Miscellaneous Notes 12

\.._..'

- i -

.._/ --

-' j

_) j
j
I

j

j

I

CINTERFACE

Chapter 1

C INTERFACE NOTES

1. Introduction

This chapter describes the way in which the UniSoft<l!' 68000 C
programming language represents data in storage and passes
data between functions. Also described are the environment of
and calling mechanism for a function.

The information in this chapter is intended for programmers
who must have detailed knowledge of the interface mechanisms
in order to match C code with the assembler. It is also
intended for those who wish to write new system or mathemati­
cal functions.

When a C program is compiled and assembled, the program is
split into three parts:

1. .text The executable code of the program. The
compiler/assembler combination produces this.

2 .. data The initialized data area. This contains literal con-
stants, character strings, and so on. The
compiler/assembler combination produces this.

3 .. bss The uninitialized data areas. The loader generates
and clears this area to zero at load time. This is a
feature of the system and can be relied upon.

During execution of a program, the stack area contains indeter­
minate data. In other words, its previous contents (if any) can­

(. not be relied upon.

'-

1-1

CINTERFACE

2. Data Representations

In general, all data elements of whatever size are stored such
that their least significant bit is in the highest addressed byte
and their most significant bit is in the lowest addressed byte.
The list below describes the representation of data.

char

short

long

Boat

double

pointers

1-2

Values of type char occupy 8 bits.
Such values can be aligned on any
byte boundary.

Values of type short occupy 16 bits.
Values of type short are aligned on
word 06-bit) address boundaries.

Values of type long occupy 32 bits. A
long value is the same as an int value
in 68000 C. Values of this type are
aligned on word 06-bit) boundaries.

Values of type jfoat occupy 32 bits.
All float values are automatically con­
verted to type double for computation
purposes - except when testing for
zero or non-zero. Values of this type
are aligned on word 06-bit) boun­
daries. A float value consists of a
sign bit, followed by an 8-bit biased
exponent, followed by a 23-bit
mantissa.

Values of type double occupy 64 bits.
Values of this type are aligned on
word (16-bit) boundaries. A double
value consists of a sign bit, followed
by an 11-bit biased exponent, fol­
lowed by a 52-bit mantissa.

All pointers are represented as long
(32-bit) values. Pointers are aligned
on word 06-bit) boundaries.

r

r
' '-

arrays

CINTERFACE

The base address of an array value is
always aligned on a word 06·bit)
address boundary.

Elements of an array are stored con­
tiguously, one after the other. Ele­
ments of multi-dimensional arrays are
stored in row-major order. That is,
the last dimension of an array varies
the fastest.

When a multi-dimensional array is
declared~ it is possible to omit the size
specification for the last dimension.
In such a case, what is allocated is
actually an array of pointers to the
elements of the last dimension.

structures and unions Within structures and unions, it is
possible to obtain unfilled holes of
size char. This is due to the compiler
rounding addresses up to 16-bit boun­
daries to accommodate word-aligned
elements.

struct {
int x·

' char y;
short z;

l;

This situation can best be demon­
strated by an example. Consider the
following structure:

I• This is a 32-bit element •I
I• Takes up a single byte •I
I• Aligned to a 16-bit boundary •I

The total number of bytes declared
above is seven: four for the int, one
for the char, and two for the short.

In reality, the "z" field which is a
short will be aligned on a 16-bit boun­
dary by the C compiler. In this case,

1-3

CINTERFACE

struct {
int
char
char
short

l;

x·
' y;

the compiler inserts a hole after the
char element "y", to align the short
element "z". The net effect of these
machinations is a structure that
behaves like this:

I• This is a 32-bit element •I
I• Takes up a single byte •I

dummy; I• Fills the structure •I
z·
' I• Aligned to a 16-bit boundary •I

The C compiler never reorders any
parts of a structure.

Similar considerations apply to arrays
of structures or unions. Each element
of an array (other than an array of
char) begins on a 16-bit boundary.

For a detailed treatment of data storage, consult The C Pro­
gramming Language by Kernighan and Ritchie.

3. Parameter Passing in C

The C programming language is unique in that it really has only
functions. The effect of a subroutine is achieved simply by
having a function which does not return a value. The function
type should be "void."

Another unique feature of C is that parameters to functions are
always passed by value. The C programming language has no
concept of declaring parameters to be passed by reference, as in
languages such as Pascal. In order to pass a parameter by refer-

'
)

ence in a C program, the programmer must explicitly pass the --'
address of the parameter. The called function must be aware

1-4

' '--- .

CINTERFACE

that it is recetvmg an address instead of a value, and the
appropriate code must be present to handle that case.

When a function is called, its parameters (if any) are evaluated
and are then pushed onto the stack in reverse order. AU
parameters are pushed onto the stack as 32·bit longs. If a
parameter is shorter than 32 bits, it is ·expanded to a 32-bit
value with sign-extension, if necessary. The calling procedure
is responsible for popping the parameters off the stack.

Consider a C function call like this:

ferry (charon, 7, &styx, 1<<10);

After evaluation, but just before the call, the stack looks like
this:

%sp --+ value of variable 'charon'

7

address of variable 'styx'

1024
... previous stack contents ...

Functions are called by issuing either a "bsr" instruction or a
"jsr" instruction, depending upon whether the callee is within a
16-bit addressing range or not, and whether the C optimizer
was used. The "bsr" or "jsr" instruction pushes the return
address upon the stack, and then branches to the indicated
function. After the call, on entry to the function, the stack
looks like this:

1-5

CINTERFACE

%sp - Return address

value of variable 'charon'

7

address of variable 'styx'

1024
... previous stack contents ...

In each function, register %a6 is used as a stack frame base.
The stack location referenced by %a6 contains the return
address.

4. Setting Up the Stack

Upon entry into the function, the prolog code is executed. The
prolog code allocates enough space on the stack for the local
variables, plus enough space to save any registers that this
function uses. The prolog code then ensures that there is
enough stack space available for executing the function. If
there is not enough space, the system grows the stack to allot
more space. The prolog code for the 68000 looks like this:

lea.l F%1·256(%sp),%a0
cmp.l %aO,splimit%
bhi.b L%12
jsr spgrow%

L7.12:

link %fp,&F%1
moveml &M%l,S%1(%fp)

The first section of the above code is a stack test, and the
second section is the "normal prolog code." The prolog code
for the 68010 does NOT contain a stack test section, but con-
sists only of a normal prolog code identical to that of the 68000. --..__/

1-6

CINTERFACE

The "F%1" constant is the size of the stack frame for the local
variables, plus four bytes for each register variable.

For the 68000, the current lower bound for the stack is com·
pared against the current function's requirements (plus a safety
factor of 256 bytes) and if the available stack is not sufficient,
calls spgrow% to grow the stack.

Finally, the "M%1" constant is a mask to determine which
registers need to be saved on the stack for this particular func­
tion. This is, of course, dependent on the register variables
that the programmer declared for that particular routine.

S. Allocation of Local Variables and Registers

A total of ten registers are available for register variables. Six
of these are the 68000 data (%d) registers, and four are the
68000 address (%a) registers. The available %a registers are
%a2 through %aS. The available %d registers are %d2 through
%d7.

Functions that return integers return their results in one of the
data registers, whereas functions that return pointers return
their result in an address register. In C, if a function is not
declared in advance, it is assumed to return an integer. Unless
the compiler is told otherwise, it will expect a funcition to
return a value in a data register. If a function (such as malloc)
returns a pointer, it MUST be declared, or the generated code
will be wrong. Use the lint program to find places where func­
tions have not been declared.

NOTE: The following instructions are NOT available in the
current release of the assembler:

clr.w
clr.l

%a0
%a0

Use the following instructions instead:

1-7

CINTERFACE

mov.w &O,%a0
mov.l &O,%a0

Any variable declared as a pointer variable is always allocated to
an address register. Non-pointer variables are assigned to data
registers. Register variables are allocated to registers in the
order in which they are declared in the C source program, start­
ing at the low end (%a2 or %d2) of the appropriate type of
register.

If there are more register variables of either kind than there are
registers to accommodate them, the remaining variables are
allocated on the stack as local variables, just as if the register
attribute had never been given in the declaration.

Upon completion of the pro log code, the stack then looks like
this:

1-8

C INTERFACE

...

Register Save Area

%sp - ...

...
Local Variables

...

%a6 - Old %a6

Return Address

value of variable 'charon'

7

address of variable 'styx'

1024
... previous stack contents ...

6. Returning from a Function or Subroutine

Upon reaching a "return" statement, either explicit or implicit,
the function executes the epilog code. If the function has a
return value, generated from a

return (expression);

statement, the value of the expression (which is synonymous
with the value of the function) is placed in register %dO or %a0
for pointer functions. The epilog code is then executed to
effect a return from the function. The epilog code for both the
68000 and the 68010 looks like this:

1-9

CINTERFACE

moveml
unlk
rts

S%1(%fp),&M%1
%fp

The "moveml" instruction restores any registers which were
saved during the prolog. The stack frame base pointer in %fp is
then put back to the point where %fp once again points to the
return address. The function is then exited via the "rts"
instruction, which pops the stack to the state it was in prior to
the original call, and then returns to the function that called it.

7. System Calls

The C compiler generates code for system calls in the following
way:

• The system call number is placed in register %dO.

• A "TRAP #0" instruction is executed.

Parameters are passed on the user stack in the C calling con­
vention. On return from the system call, errors are signaled by
the carry flag being set. The C interface to the system calls typ­
ically returns a -1 on error as the carry flag cannot be tested
from C.

8, Optimizations

This section describes some of the ways in which the program­
mer can optimize the use of the C language.

The C compiler can be run to optimize the code it generates,
making that code both compact and fast. Using a C command
line as follows:

cc -0 file

generates optimized code. The option for optimized code

1-10

CINTERFACE

generation is an upper-case "0".

C If a C program contains a "do" loop of the form:

register short x~

c

X = 10;
do {

statement
} while (--x !-= -1);

Such a loop is optimized to use the "dbra" instruction, result­
ing in faster execution.

The optimizer may work incorrectly near C code that includes a
structure assignment. As a result, semantically correct C code
will function incorrectly. The example below illustrates C code
that the optimizer "breaks."

struct st { long i, j } ;
mainO
{

static struct st temp;
struct st •p;
temp = •p;
p = &temp;

9. Use of Register Variables

The decision as to whether to declare a variable in a register
depends on the number of times that variable is referenced in
the function. If a variable is used more than twice in a func­
tion, it can be declared as a register variable. If a variable is
used less than twice in a function, it is not useful to declare it
as a register variable because the amount of time spent saving
and restoring that register is more than the time saved in using
a register instead of a location on the stack.

1-11

C INTERFACE

10. Miscellaneous Notes

The object files that the assembler and linker create use the
Common Object File Format (COFF). See the chapter in the
UniP/ust Programming Guide entitled "COFF - THE COM·
MON OBJECT FILE FORMAT."

The C compiler will accept multiply-defined external variables
as long as no more than one of the definitions includes an ini­
tialization.

The floating point emulation package is automatically invoked
when the program is linked with the C library (libc.a).

The C compiler supports floating and double variables by mak­
ing calls to a library of emulation routines. Although floating
point data values are represented in IEEE standard floating
point format, the emulation routines DO NOT implement the
IEEE exception handling routines.

1-12

Chapter 2: THE UNIPLUS+ C COMPILER

CONTENTS

1. Introduction I

2. Use Of The Compiler . 1
2.1 Options 2

RECOGNIZED AND EXECUTED BY
cc • • • . 2
RECOGNIZED BY cc AND PASSED TO
ld • • • • • • • • • • • • • 4
RECOGNIZED BY cc AND PASSED TO
cpp • 5

- i -

.r-,

C COMPILER

Chapter 2

THE UNIPLUS+ C COMPILER

1. Introduction

This chapter describe the UniPius+ Oper~ting System's C com­
piler, cc, and the C programming language that the compiler
translates.

The C language is implemented for high-level programming
and contains many control and structuring facilities that greatly
simplify the task of algorithm construction. The C compiler
prepares C programs which will ultimately be translated into
object files by the assembler, as. The link editor, ld, collects
and merges object files into executable load modules. Each of
these tools preserves all symbolic information necessary for
meaningful symbolic testing at C-language source level.

----.- ' The current manual page for the C compiler can be obtained
with the command:

c

man cc

2. Use Of The Compiler

To use the compiler, first create a file (typically by using the
UniPtus+® Operating System text editor) containing C source
code. The last two characters (or exren/ion), of the file name
MUST be .c, for example, "JileJ.c."

cc options file.c

to invoke the compiler on the C source file fiie.c with the
options selected. The compilation process creates an absolute
binary file named a.out that reflects the contents of fiie.c and
any referenced library routines. The resulting binary file, a.out,
can then be executed on the target system.

Z-1

C COMPILER

Options can control the steps in the compilation process. If no
controlling options are used, and only one file is named, cc
automatically calls the assembler, as, and the link editor, ld, to
produce the executable file, a.out. If more than one file is ._./
named in a command,

cc file i.e jile2.c fileJ.c

then the output will be placed on files filel.o, jile2.o, and fiieJ.o.
These files can then be linked and executed using the ld com­
mand.

The cc compiler also accepts input file names with the last two
characters .s. The .s extension signifies a source file in assem­
bly language. The cc compiler passes this type of file directly to
as, which assembles the file and places the output in a fite of
the same "base" name but with a .o extension (i.e., "file.s"--+
''file.o'').

The program cc is based on a portable C compiler and translates
C source files into assembly code. Whenever the command cc
is used, the standard C preprocessor (which resides on the file
/lib/cpp) is called. The preprocessor performs file inclusion
and macro substitution. The preprocessor is always invoked by
cc and need not be called directly by the programmer. Then,
unless the appropriate flags are set, cc calls the assembler and
the link editor to produce an executable file.

2.1 Options

All options recognized by the cc command are listed below:

RECOGNIZED AND EXECUTED BY cc

OPTION ARGUMENT

-c none

2·2

DESCRIPTION

Suppress the link-editing phase
of compilation and force an

,r-,
'
~

,-
'

-g

-p

-t

-8

-E

-0

none

none

[pOI 2all

string

none

none

C COMPILER

object file to be produced even
if only one file is compiled.

Produce symbolic debugging
information.

Reserved for invoking a
profiler.

Find only the designated
preprocessor (p), compiler (0
and 1), optimizer (2), assem­
bler (a) and link editor (/)
passes whose names are con­
structed with the string argu­
ment to the -8 option. In the
absence of a -8 option and its
argument, string is taken to be
/lib/n. The value of -t "" is
equivalent to -tp012.

Construct path names for sub­
stitute preprocessor, compiler,
and link editor passes by con­
catenating string with the
suffixes cpp, cO (or ccom or
comp), cl, c2 (or optlm), as
and ld. If string is empty it is
taken tube /lib/o.

Same as the - P option except
output is directed to the stan­
dard output.

Invoke an object code optim­
izer.

2-3

C COMPILER

-P none

-R none

-T none

-v none

-w c,argl{,arg2 .. .1

-X none

-# none

Suppress compilation and load·
ing; i.e., invoke only the
preprocessor and leave out the
output on corresponding files
suffixed .i.

Have assembler remove its
input file when done.

Truncate identifier names to 8
significant characters.

Print the version of the assem­
bler that is invoked.

Pass the argument(s) argl to c,
where c is one of (p012all,
indicating preprocessor (p),
compiler first pass (0), compiler
second pass (1), optimizer (2),
assembler (a) or link editor (I),
respectively.

Ignored by UniPlus+ for 68000.

Special debug option which
echoes the names and argu­
ments of subprocesses which
would have started without
actually executing the program.

RECOGNIZED BY cc AND PASSED TO Id

OPTION ARGUMENT

-1 X

2-4

DESCRIPTION

Same as -I in ld (1). Search a
library libx.a, where x is up to
seven characters. A library is

r',

(~

-o outfi/e

-s none

-L dir

C COMPILER

searched when its name is
encountered, so the placement
of a -1 is significant. By
default, libraries are located in
LIBDIR. If you plan to use the
- L option, that option MUST
PRECEDE -I on the command
line.

Same as - o in ld (1). Produce
an output object file called
outfi/e. The name of the
default object file is a.out.

Same as - s in ld (1). Strip line
number entries and symbol
table information from the out­
put of object file.

Same as - L in ldU). Change
the algorithm of searching for
libx.a to look in dir before look­
ing in LIBDIR. This option is
effective only if it precedes the
-1 option on the command
line.

RECOGNIZED BY cc AND PASSED TO cpp

OPTION ARGUMENT

-C none

DESCRIPTION

Same as -C in cpp(l). All
comments, except those found
on cpp directive lines are
passed along. The default is
that ALL comments are
stripped out.

2-5

C COMPILER

-D ident=def Same as - D in cpp(t). Define
the external symbol ident and
give it the value def (if
specified). If no def is given,
ident is defined as 1.

-1 dir Change the algorithm that
searches for #include files
whose names do not begin with
I to look in the named dir
before looking in the directories
on the standard list. Thus,
#include files whose names are
enclosed in "" (i.e., #include
"include file") are searched for
first in the directory of the file
being compiled, then in direc­
tories named by the -I
options, and last in directories
on the standard list. For
#include files whose names are ~
enclosed in < > (i.e., #include
<include file>), the directory
of the file argument is not
searched.

-u name Remove any initial definition of
name, where name is a reserved
symbol that is predefined by
the particular preprocessor.

By using appropriate options, compilation can be terminated
early to produce one of several intermediate translations such
as:

(-c option) This option produces relocatable object files.

It is often desirable to use this option to save

2-6

r
'---·.

(
' -

C COMPILER

relocatable files so that changes to one file do
not then require that the others be recompiled.
A separate call to cc with the relocatable files
(indicated by a .c extention, as in fiie.c), but
without the -c option, creates the linked exe­
cutable a.out file. A relocatable object file
created under the - c option has the same root
as the relocatable object file, but the extention
is .o instead of .c.

(-s option) This option produces assembly source expan­
sions for C code.

(- P option) This option produces the output of the prepro­
cessor. When used, the compilation process
stops after preprocessing. Output from the
preprocessor is left in an outfile with an exten­
sion .i, for example, ji/e.i. These output files
can be subsequently processed by cc but only
if their file name is changed to a name ending
in ".c".

Except for those produced by the preprocessor, intermediate
files may be saved and resubmitted to the cc command, with
other files or libraries included as necessary.

The - W option provides the mechanism to specify options for
each step that is normally invoked from the cc command line.
These steps are:

1. preprocessing,

2. the first pass of the compiler,

3. the second pass of the compiler,

4. optimization,

s. assembly, and

6. link editing.

2-7

C COMPILER

At this time, only assembler and link editor options can be
used with the - W option. The most common example of the
- W option is

-WI,- VS,n

which passes the -vs n option to the link editor (ld(t)). In
the following example:

-Wa, -option

the compiler will pass the -option to the assembler.

The -0 option decreases the size and increases the execution
speed of programs by moving, merging, and deleting code.
However, line numbers used for symbolic debugging may be
transposed when the optimizer is used.

The -g option produces information for a symbolic debugger.
(For more information see the chapter entitled "SOB - A
SYMBOLIC DEBUGGER" in this manual.) -~

For more information on any of the options which are passed
by cc(t) to either the preprocessor cpp(l) or the link editor
Id(l), see the appropriate manual page in the UniPlust User
Manual

2-8

c

c

c

Chapter 3: THE C LANGUAGE

CONTENTS

1. Lexical Conventions
1.1 Comments • •
1.2 Identifiers (Names)
1.3 Keywords . . .
1.4 Constants . • .

1.4.1 Integer Constants
1.4.2 Explicit Long Constants
1.4.3 Character Constants
1.4.4 Floating Constants
1.4.5 Enumeration Constants

1.5 Strings . . . • . .
1.6 Hardware Characteristics

2. Syntax Notation .

3. Names
3.1 Storage Class
3.2 Type • • .

4. Objects and Lvalues

5. Conversions . . .
5.1 Characters and Integers
5.2 Float and Double
5.3 Floating and Integral
5.4 Pointers and Integers
5.5 Unsigned • • • •
5.6 Arithmetic Conversions

6. Expressions
6.1 Primary Expressions
6.2 Unary Operators . .
6.3 Multiplicative Operators
6.4 Additive Operators
6.5 Shift Operators.

- i -

I
I
I
2
2
2
3
3
4
4
4
4

5

5
6
6

8

8
8
9
9
9
9

10

10
11
14
16
17
18

6.6 Relational Operators
6.7 Equality Operators
6.8 Bitwise AND Operator
6.9 Bitwise Exclusive OR Operator
6.10 Bitwise Inclusive OR Operator
6.11 Logical AND Operator
6.12 Logical OR Operator
6.13 Conditional Operator
6.14 Assignment Operators
6.15 Comma Operator

7. Declarations
7.1 Storage Class Specifiers
7.2 Type Specifiers
7.3 Declarators . . . •

7 .3.1 Meaning of Declarators
7.4 Structure and Union Declarations
7.5 Enumeration Declarations .
7.6 Initialization
7.7 Type Names
7.8 Typedef . .

8. Statements
8.1 Expression Statement
8.2 Compound Statement or Block
8.3 Conditional Statement
8.4 While Statement
8.5 Do Statement . .
8.6 For Statement . .
8.7 Switch Statement
8.8 Break Statement .
8.9 Continue Statement
8.10 Return Statement
8.11 Goto Statement .
8.12 Labeled Statement
8.13 Null Statement

9. External Definitions
9.1 External Function Definitions
9.2 External Data Definitions . .

- ii -

19
19
20
20
20
20
21
21
22
23

23
24
25
26
26
29
33
34
37
38

39
39
39
40
40
41
41
42
43
43
43
44
44
44

45
45
46

10. Scope Rules 47
10.1 Lexical Scope . . 47

r 10.2 Scope of Externals 48

.. 11. Compiler Control Lines 49
11.1 Token Replacement 49
11.2 File Inclusion . . 51
1!.3 Conditional Compilation 51
11.4 Line Control . 53

12. Implicit Declarations 53

!3. Types Revisited . . 54
!3.1 Structures and Unions 54
13.2 Functions 55
!3.3 Arrays, Pointers and Subscripting 56
13.4 Explicit Pointer Conversions 57

14. Constant Expressions . . 58

15. Portability Considerations 59

r· 16. Syntax Summary 60
16.1 Expressions 61
16.2 Declarations 63
16.3 Statements . 65
16.4 External Definitions 66
16.5 Preprocessor 67

LIST OF FIGURES

Figure 3.1. 68000 Hardware Characteristics 5

- iii -

- j

- j
'

j
'

j
'

j
- j

I
.

j

j

j

j

Chapter 3

THE C LANGUAGE

1. Lexical Conventions

There are six classes of tokens:

1. identifiers

2. keywords

3. constants

4. strings

5. operators

6. other separators

Blanks, tabs, new-lines, and comments (collectively, "white
space," as described below) are ignored except as they serve to
separate tokens. Some white space is required to separate oth­
erwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given
character, the next token is taken to include the longest string
of characters which could possibly constitute a token.

1.1 CoMments

The characters /• introduce a comment which terminates with
the characters •/.

I• COMMENTS I• DO NOT •I NEST •I

1.2 Identifiers (Names)

An identifier is a sequence of letters and digits. The first char­
acter MUST be a letter. The underscore (_) counts as a letter.
Uppercase and lowercase letters are different. Although there

3-1

C LANGUAGE

is no limit on the length of a name, only initial characters are
significant: at least eight characters of a non-external name, and
perhaps fewer for external names. Moreover, some implemen­
tations may collapse case distinctions for external names. For
the 68000:

68000 7 characters, 2 cases

1.3 Keywords

The following identifiers are reserved for use as keywords and
may not be used otherwise:

auto do fo• return typedef
break double go to short union
case else if sizeof unsigned
char en urn int static while
continue external long struct
default float register switch

Some implementations also reserve the words fortran and asm.

1.4 Constants

There are several kinds of constants, each of which has a type.
The introduction to types is given in the section entitled
"Names." Hardware characteristics that affect sizes are sum­
marized in the subsection "Hardware Characteristics" under
the general heading "Lexical Conventions."

1.4.1 Integer Constants

An integer constant consisting of a sequence of digits is taken
to be octal if it begins with a zero. An octal constant consists
of the digits 0 through 7 only. A sequence of digits preceded
by Ox or OX is taken to be a hexadecimal integer. The hexade­
cimal digits include a through f (or A through F) with values
10 through 15. Otherwise, the integer constant is taken to be
decimal. A decimal constant whose value exceeds the largest _-
signed machine integer is taken to be long. An octal or hex

3-2

c

C LANGUAGE

constant which exceeds the largest unsigned machine integer is
likewise taken to be long. Otherwise, integer constants are Int.

1.4.2 Explicit Long Constants

A decimal, octal, or hexadecimal integer constant, immediately
followed by I (letter ell) or L, is a long constant. As discussed
below, on some machines integer and long values may be con­
sidered identical.

1.4.3 Character Constants

A character constant is a character enclosed in single quotes, as
in ·x·.

The value of a character constant is the numerical value of the
character in the machine's character set.

Certain nongraphic characters, the single quote (') and the
backslash (\), may be represented according to the following
table of escape sequences:

new-line
horizontal tab
vertical tab
backspace
carriage return
form feed
backslash
single quote
bit pattern

NL (LF)
HT
VT
BS
CR
FF
I

In
It
lv
lb
I<
If
II
I'

10! 0-7][0-71 I0[0-7][0-7]

The escape \0(0-7](0-7] consists of the backslash followed by
1, 2, or 3 octal digits (0 through 7) which are taken to specify
the value of the desired character. A special case of this con­
struction is \0 (NOT followed by a digit), which indicates the
character NULL. If the character following a backslash is not
one of those specified, the behavior is undefined. A new-line
character is illegal in a character constant. The type of a

3-3

C LANGUAGE

character constant is int.

1.4.4 Floating Constants

A floating constant consists of an integer part, a decimal point,
a fraction part, an e or E, and an optionally signed integer
exponent. The integer and fraction parts both consist of a
sequence of digits. Either the integer part OR the fraction part
may be missing - but NOT BOTH. Either the decimal point
OR the e and exponent may be missing - but NOT BOTH.
Every floating constant has type double.

1.4.5 Enumeration Constants

Names declared as enumerators have type int. For more infor­
mation see the section entitled "Structure, Union and
Enumeration Declarations."

1.5 Strings

A string is a sequence of characters surrounded by double
quotes, as in "string". A string has type "array of char" and
storage class static and is initialized with the given characters.
The compiler places a NULL byte (\0) at the end of each string
so that programs which scan the string can find its end. In a
string, the double quote character (") must be preceded by a\;
in addition, the same escapes as described for character con­
stants may be used.

A \ and the immediately following new-line are ignored. All
strings, even when written identically, are distinct.

1.6 Hardware Characteristics

The following figures summarize certain hardware properties for
the 68000.

3-4

C LANGUAGE

68000
(ASCII)

char
int
short
long
float
double
float range
double range

8 bits
32
16
32
32
64
+ 10±38 ± 10±307

Figure 3.1. 68000 Hardware Characteristics

2. Syntax Notation

Syntactic categories are indicated by ITALIC type, commands in
BOLD type and other literal words and characters in ROMAN
type. Alternative categories are listed on separate lines. An
optional terminal or nonterminal symbol is indicated by the
subscript "opt," so that

{ expressionopt }

indicates an optional expression enclosed in braces.

3. Names

The C language bases the interpretation of an identifier upon
two attributes of the identifier:

1. storage class The storage class determines the location
and lifetime of the storage associated with an
identifier.

2. type the type determines the meaning of the
values found in the identifier's storage.

3-5

C LANGUAGE

3.1 Storage Class

There are four declarable storage classes:

I. Automatic Automatic variables are local to each invocation
of a block and are discarded upon exit from the
block.

2. Static

2. External

2. Register

3.2 Type

Static variables are local to a block but retain
their values upon reentry to a block even after
control has left the block.

External variables exist and retain their values
throughout the execution of the entire program
and may be used for communication between
functions, even separately compiled functions.

Register variables are (if possible) stored in the
fast registers of the machine; like automatic
variables, they are local to each block and
disappear on exit from the block.

The C language supports several fundamental types of objects.
Objects declared as characters (char) are large enough to store
any member of the implementation's character set. If a
genuine character from that character set is stored in a char
variable, its value is equivalent to the integer code for that
character. Other quantities may be stored into character vari·
abies, but the implementation is machine dependent. In partie·
ular, char may be signed or unsigned by default.

Up to three sizes of integer, declared 3short int, int, and long
int, are available. Longer integers provide no less storage than
shorter ones, but the implementation may make either short
integers or long integers, or both, equivalent to plain integers.
"Plain" integers have the natural size suggested by the host
machine architecture. The other sizes are provided to meet
special needs.

3-6

('

C LANGUAGE

The properties of enum types are identical to those of some
integer types. The implementation may use the range of values
to determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arith·
metic modulo 211 where n is the number of bits in the represen·
tation.

Single-precision floating point (float) and double precision float­
ing point (double) may be synonymous in some implementa­
tions.

Because objects of the foregoing types can usefully be inter­
preted as numbers, they will be referred to as arithmetic types.
Char, int of all sizes whether unsigned or not, and enum will
collectively be called integral types. The float and double types
will collectively be called floating types.

,_ Besides the fundamental arithmetic types, there is a conceptu­
ally infinite class of derived types constructed from the funda­
mental types in the following ways:

• Arrays of objects of most types

• Functions which return objects of a given type

• Pointers to objects of a given type

• Structures containing a sequence of objects of various
types

• Unions capable of containing any one of several
objects of various types.

In general these methods of constructing objects can be applied
recursively.

3-7

C LANGUAGE

4. Objects and Lvalues

An object is a manipulatable region of storage. An /value is an
expression referring to an object. An obvious example of an
!value expression is an identifier. There are operators which
yield !values: for example, if E is an expression of pointer type,
then • E is an !value expression referring to the object to which
E points. The name "/value" comes from the assignment
expression El = El in which the left operand El must be an
!value expression. The discussion of each operator below indi­
cates whether it expects !value operands and whether it yields
an lvalue.

5. Conversions

A number of operators may, depending on their operands,
cause conversion of the value of an operand from one type to
another. This part explains the result to be expected from such
conversions. The conversions demanded by most ordinary
operators are summarized later in this section under the sub­
heading "Arithmetic Conversions." The summary will be sup­
plemented as required by the discussion of each operator.

5.1 Characters and Integers

A character or a short integer may be used wherever an integer
may be used. In all cases the value is converted to an integer.
Conversion of a shorter integer to a longer preserves sign.
Whether or not sign-extension occurs for characters is machine
dependent, but it is guaranteed that a member of the standard
character set is non-negative.

On machines that treat characters as signed, the characters of
the ASCII set are all non-negative. However, a character con­
stant specified with an octal escape suffers sign extension and
may appear negative; for example, '\377' has the value -1.

When a longer integer is converted to a shorter integer or to a
cbar it is truncated on the left. Excess bits are simply

3-8

C LANGUAGE

discarded.

(5.2 Float and Double

All floating arithmetic in C is carried out in double precision.
Whenever a float appears in an expression it is lengthened to
double by zero padding its fraction. When a double must be
converted to float, for example by an assignment, the double is
rounded before truncation to float length. This result is
undefined if it cannot be represented as a float.

5.3 Floating and Integral

Conversions of floating values to integral type are rather
machine dependent. In particular, the direction of truncation
of negative numbers varies. The result is undefined if it will
not fit in the space provided.

Conversions of integral values to floating type are well behaved.
Some loss of accuracy occurs if the destination lacks sufficient
bits.

5.4 Pointers and Integers

An expression of integral type may be added to or subtracted
from a pointer. In such a case, the first is converted as
specified in the discussion of the addition operator. Two
pointers to objects of the same type may be subtracted. in this
case, the result is converted to an integer as specified in the dis­
cussion of the subtraction operator.

5.5 Unsigned

Whenever an unsigned integer and a plain integer are com­
bined, the plain integer is converted to unsigned and the result
is unsigned. The value is the least unsigned integer congruent
to the signed integer (modulo 2wonlsize}. In a 2's complement
representation, this conversion is conceptual, and there is no
actual change in the bit pattern.

3-9

C LANGUAGE

When an unsigned short integer is converted to long, the value
of the result is the same numerically as that of the unsigned
integer. Thus the conversion amounts to padding with zeros on
the left.

5.6 Arithmetic Conversions

A great many operators cause conversions and yield result types
in a similar way. From now on in this document this pattern
will be called the "usual arithmetic conversions."

1. First, any operands of type char or short are converted to
int, and any operands of type unsigned char or unsigned
short are converted to unsigned int.

2. Then, if either operand is double, the other is converted
to double and that is the type of the result.

3. Otherwise, if either operand is unsigned long, the other is
converted to unsigned long and that is the type of the
result.

4. Otherwise, if either operand is long, the other is con·
verted to long and that is the type of the result.

5. Otherwise, if one operand is long, and the other is
unsigned int, they are both converted to unsigned long
and that is the type of the result.

6. Otherwise, if either operand is unsigned the other is con·
verted to unsigned and that is the type of the result.

7. Otherwise, both operands must be lnt, and that is the
type of the result.

6, Expressions

The precedence of expression operators is the same as the
order of the major subsections of this section, highest pre·
cedence first. Thus, for example, the expressions referred to as
the operands of + are those expressions defined under the sec·
tions "Primary Expressions," "Unary Operators," and "Multi·
plicative Operators." Within each subpart, the operators have

3-10

c

c

r

C LANGUAGE

the same precedence. Left- or right-associativity is specified in
each subsection for the operators discussed therein. The pre­
cedence and associativity of all the expression operators are
summarized in the grammar of .. Syntax Summary."

Otherwise, the order of evaluation of expressions is undefined.
In particular, the compiler considers itself free to compute
subexpressions in the order it believes most efficient even if the
subexpressions involve side effects. The order in which subex­
pression evaluation takes place is unspecified. Expressions
involving a commutative and associative operator(.,+,&, I,~)
may be rearranged arbitrarily even in the presence of
parentheses; to force a particular order of evaluation, an explicit
temporary must be used.

The handling of overflow and divide check in expression
evaluation is undefined. Most existing implementations of C
ignore integer overflows; treatment of division by 0 and all
floating-point exceptions varies between machines and is usu­
ally adjustable by a library function.

6.1 Primary Expressions

Primary expressions involving . , - >, subscripting, and func­
tion calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression
primary-expression
primary-expression
primary-expression

[expression]
(expression-lisfopt)
• identifier
- > identifier

3-11

C LANGUAGE

expression·list:
expression
expression·list expression

An identifier is a primary expression provided it has been suit·
ably declared as discussed below. Its type is specified by its
declaration. If the type of the identifier is "array of ... , " then
the value of the identifier expression is a pointer to the first
object in the array, and the type of the expression is "pointer to
... ". Moreover, an array identifier is not an !value expression.
Likewise, an identifier which is declared "function returning
... ,"when used except in the function-name position of a call,
is converted to "pointer to function returning ... ".

A constant is a primary expression. Its type may be int, long,
or double depending on its form. Character constants have
type int and floating constants have type double.

A string is a primary expression. Its type is originally "array of
char," but following the same rule given above for identifiers,
this is modified to "pointer to char" and the result is a pointer
to the first character in the string. (There is an exception in
certain initializers; see ''Initialization'' under ''Declarations.'')

A parenthesized expression is a primary expression whose type
and value are identical to those of the unadorned expression.
The presence of parentheses does not affect whether the
expression is an !value.

A primary expression followed by an expression in square
brackets is a primary expression. The intuitive meaning is that
of a subscript. Usually, the primary expression has type
"pointer to ... ", the subscript expression is int, and the type of
the result is " ... ". The expression EliEZI is identical (by
definition) to *((El)+(EZ)). All the clues needed to under­
stand this notation are contained in this subpart together with

3-12

c

(

C LANGUAGE

the discussions in "Unary Operators" and "Additive Opera­
tors" on identifiers, • and+, respectively. The implications are
summarized under "Arrays, Pointers, and Subscripting" under
"Types Revisited."

A function call is a primary expression followed by parentheses
containing a possibly empty, comma-separated list of expres­
sions which constitute the actual arguments to the function.
The primary expression must be of type "function returning
... ,''and the result of the function call is of type '' ... ''. As
indicated below, a hitherto unseen identifier followed immedi­
ately by a left parenthesis is contextually declared to represent a
function returning an integer; thus in the most common case,
integer-valued functions need not be declared.

Any actual arguments of type float are converted to double
before the call. Any of type char or short are converted to int.
Array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does
not compare the types of actual arguments with those of formal
arguments. If conversion is needed, use a cast; see "Unary
Operators" and "Type Names" under "Declarations."

In preparing for the call to a function, a copy is made of each
actual parameter. Thus, all argument passing inC is strictly by
value. A function may change the values of its formal parame­
ters, but these changes cannot affect the values of the actual
parameters. It is possible to pass a pointer on the understand­
ing that the function may change the value of the object to
which the pointer points. An array name is a pointer expres­
sion. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ. Recursive
calls to any function are permitted.

--- A primary expression followed by a dot followed by an
identifier is an expression. The first expression must be a

3-13

C LANGUAGE

structure or a union, and the identifier must name a member of
the structure or union. The value is the named member of the
structure or union, and it is an !value if the first expression is
an !value.

A primary expression followed by an arrow (built from - and
>) followed by an identifier is an expression. The first expres­
sion must be a pointer to a structure or a union and the
identifier must name a member of that structure or union. The
result is an !value referring to the named member of the struc­
ture or union to which the pointer expression points. Thus the
expression El->MOS is the same as (.. El).MOS. Structures
and unions are discussed in "Structure, Union, and Enumera­
tion Declarations" under "Declarations."

6.2 Unary Operators

Expressions with unary operators group right to left.

unary-expression:
"' expression
& /value
- expression
! expression

expression
++!value
--/value
/value++
/value--
(type-name) expression
sizeof expression
sizeof (type-name)

The unary "' operator means indirection; the expression must be
a pointer, and the result is an !value referring to the object to
which the expression points. If the type of the expression is
"pointer to ... , " the type of the result is " ... ".

3-14

r
'

C LANGUAGE

The result of the unary & operator is a pointer to the object
referred to by the lvalue. If the type of the lvalue is " ... ".
the type of the result is "pointer to ... ".

The result of the unary - operator is the negative of its
operand. The usual arithmetic conversions are performed. The
negative of an unsigned quantity is compUted by subtracting its
value from 2" where n is the number of bits in the correspond­
ing signed type.

There is no unary + operator.

The result of the logical negation operator ! is one if the value
of its operand is zero, zero if the value of its operand is
nonzero. The type of the result is Int. It is applicable to any
arithmetic type or to pointers.

The - operator yields the one's complement of its operand.
The usual arithmetic conversions are performed. The type of
the operand must be integral.

The object referred to by the !value operand of prefix ++ is
incremented. The value is the new value of the operand but is
not an lvalue. The expression ++x is equivalent to x=x+l.
See the discussions "Additive Operators" and "Assignment
Operators" for information on conversions.

The !value operand of prefix -- is decremented analogously to
the prefix ++ operator.

When postfix ++ is applied to an !value, the result is the value
of the object referred to by the !value. After the result is
noted, the object is incremented in the same manner as for the
prefix ++ operator. The type of the result is the same as the
type of the lvalue expression.

3-15

C LANGUAGE

When postfix -- is applied to an !value, the result is the value
of the object referred to by the !value. After the result is
noted, the object is decremented in the manner as for the
prefix -- operator. The type of the result is the same as the
type of the !value expression.

An expression preceded by the parenthesized name of a data
type causes conversion of the value of the expression to the
named type. This construction is called a cast. Type names are
described in "Type Names" under "Declarations."

The sizeof operator yields the size in bytes of its operand. (A
byte is undefined by the language except in terms of the value
of sizeof. However, in all existing implementations, a byte is
the space required to hold a char.) When applied to an array,
the result is the total number of bytes in the array. The size is
determined from the declarations of the objects in the expres­
sion. This expression is semantically an unsigned constant and
may be used anywhere a constant is required. Its major use is
in communication with routines like storage allocators and 110
systems.

The sizeof operator may also be applied to a parenthesized type
name. In that case it yields the size in bytes of an object of the
indicated type.

The construction sizeof(type) is taken to be a unit, so the
expression sizeof(type)- 2 is the same as (sizeof(type))- 2.

6.3 Multiplicative Operators

The multiplicative operators "'• /, and % group left to right.
The usual arithmetic conversions are performed.

3-16

multiplicative expression.·
expression * expression
expression I expression
expression % expression

C LANGUAGE

The binary • operator indicates multiplication. The • operator
is associative, and expressions with several multiplications at
the same level may be rearranged by the compiler. The binary
I operator indicates division.

The binary % operator yields the remainder from the division
of the first expression by the second. The operands must be
integral.

When positive integers are divided, truncation is toward 0; but
the form of truncation is machine~dependent if either operand
is negative. On all machines covered by this manual, the

r,--... remainder has the same sign as the dividend. It is always true
, that (a/b)•b + a%b is equal to a (if b is not 0).

6.4 Additive Operators

The additive operators + and - group left to right. The usual
arithmetic conversions are performed. There are some addi­
tional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A
pointer to an object in an array and a value of any integral type
may be added. The latter is in all cases converted to an address
offset by multiplying it by the length of the object to which the
pointer points. The result is a pointer of the same type as the
original pointer which points to another object in the same
array, appropriately offset from the original object. Thus if Pis

3-17

C LANGUAGE

a pointer to an object in an array, the expression P+l is a
pointer to the next object in the array. No further type combi·
nations are allowed for pointers.

The + operator is associative, and expressions with several
additions at the same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands.
The usual arithmetic conversions are performed. Additionally,
a value of any integral type may be subtracted from a pointer,
and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the
result is converted (by division by the length of the object) to
an int representing the number of objects separating the
pointed-to objects. This conversion will in general give unex­
pected results unless the pointers point to objects in the same
array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object length.

6.5 Shift Operators

The shift operators < < and > > group left to right. Both per­
form the usual arithmetic conversions on their operands, each
of which must be integral. Then the right operand is converted
to int; the type of the result is that of the left operand. The
result is undefined if the right operand is negative or greater
than or equal to the length of the object in bits.

shijt-expression:
expression < < expression
expression > > expression

The value of El < < E2 is El (interpreted as a bit pattern)
left-shifted E2 bits. Vacated bits are 0 filled. The value of
El > > E2 is El right-shifted E2 bit positions. The right shift is
guaranteed to be logical (0 fill) if El is unsigned; otherwise, it

3-18

may be arithmetic.

6.6 Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression < = expression
expression > = expression

C LANGUAGE

The operators< (less than), > (greater than), < = (less than
or equal to), and > = (greater than or equal to) all yield 0 if
the specified relation is false and 1 if it is true. The type of the
result is int. The usual arithmetic conversions are performed.
Two pointers may be compared, and the result depends on the
relative locations in the address space of the pointed-to objects.
Pointer comparison is portable only when the pointers point to

.f objects in the same array.

6. 7 Equality Operators

equality-expression:
expression = = expression
expression ! = expression

The = = (equal to) and the ! = (not equal to) operators are
exactly analogous to the relational operators except for their
lower precedence. (Thus a<b = = c<d is 1 whenever a<b
and c<d have the same truth value).

A pointer may be compared to an integer only if the integer is
the constant 0. A pointer to which 0 has been assigned is
guaranteed not to point to any object and will appear to be
equal to 0. In conventional usage, such a pointer is considered
to be null.

3-19

C LANGUAGE

6,8 Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may
be rearranged. The usual arithmetic conversions are per­
formed. The result is the bitwise AND function of the
operands. The operator applies only to integral operands.

6.9 Bitwise Exclusive OR Operator

exclusive-or-expression:
expression expression

The • operator is associative, and expressions involving • may
be rearranged. The usual arithmetic conversions are per­
formed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral operands.

6.10 Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

The I operator is associative, and expressions involving I may
be rearranged. The usual arithmetic conversions are per·
formed; the result is the bitwise inclusive OR function of its
operands. The operator applies only to integral operands.

6.11 Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its
operands evaluate to nonzero, 0 otherwise. Unlike &, &&
guarantees left to right evaluation; moreover, the second

3-ZO

i/"'

'
_,

C LANGUAGE

operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have
one of the fundamental types or be a pointer. The result is
always int.

6.12 Logical OR Operator

logical·or·expression:
expression II expression

The II operator groups left to right. It returns 1 if either of its
operands evaluates to nonzero, 0 otherwise. Unlike I, II
guarantees left to right evaluation; moreover, the ~cond
operand is not evaluated if the value of the first operand is
nonzero.

The operands need not have the same type, but each must have
one of the fundamental types or be a pointer. The result is
always int.

6.13 Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression
is evaluated; and if it is nonzero, the result is the value of the
second expression, otherwise that of third expression. If possi­
ble, the usual arithmetic conversions are performed to bring the
second and third expressions to a common type. If both are
structures or unions of the same type, the result has the type of
the structure or union. If both pointers are of the same type,
the result has the common type. Otherwise, one must be a
pointer and the other the constant 0, and the result has the type
of the pointer. Only one of the second and third expressions is
evaluated.

3-21

C LANGUAGE

6.14 Assignment Operators

There are a number of assignment operators, all of which group
right to left. All require an lvalue as their left operand, and the
type of an assignment expression is that of its left operand.
The value is the value stored in the left operand after the
assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment -expression:
/value -= expression
/value + = expression
fvalue - = expression
/value ,. = expression
/value I= expression
lvalue % = expression
/value > > = expression
/value < < = expression
fvalue & = expression
fvalue ~ = expression
fvalue I = expression

In the simple assignment with =, the value of the expression
replaces that of the object referred to by the !value. If both
operands have arithmetic type, the right operand is converted
to the type of the left preparatory to the assignment. Second,
both operands may be structures or unions of the same type.
Finally, if the left operand is a pointer, the right operand must
in general be a pointer of the same type. However, the con­
stant 0 may be assigned to a pointer; it is guaranteed that this
value will produce a null pointer distinguishable from a pointer
to any object.

The behavior of an expression of the form El op - E2 may be
inferred by taking it as equivalent to El = El op (E2)~ how­
ever, El is evaluated only once. In += and - =, the left
operand may be a pointer; in which case, the (integral) right
operand is converted as explained in "Additive Operators." All

3-22

C LANGUAGE

right operands and all nonpointer left operands must have arith­
metic type.

6.15 Comma Operator

comma-expression:
expression expression

A pair of expressions separated by a comma is evaluated left to
right, and the value of the left expression is discarded. The
type and value of the result are the type and value of the right
operand. This operator groups left to right. In contexts where
comma is given a special meaning, e.g., in lists of actual argu­
ments to functions (see "Primary Expressions") and lists of
initializers (see "Initialization" under "Declarations"), the
comma operator as described in this subpart can only appear in
parentheses. For example,

f(a, h=J, t+2), c)

has three arguments, the second of which has the value 5.

7. Declarations

Declarations are used to specify the interpretation which C
gives to each identifier. They do not necessarily reserve storage
associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-/ist0pt ;

The declarators in the declarator-list contain the identifiers
being declared. The decl-specifiers consist of a sequence of
type and storage class specifiers.

dec/-specifiers:
type-specifier dec/-specifiers0pt
sc-specifier dec/-specifiers0pt

3-23

C LANGUAGE

The list must be self·consistent in a way described below.

7.1 Storage Class Specifiers

The sc-specifiers are:

auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a
"storage class specifier" only for syntactic convenience. See
"Typeder• for more information. The meanings of the v~rious
storage classes were discussed in "Names."

The auto, static, and registe-r declarations also serve as
definitions in that they cause an appropriate amount of storage
to be reserved. In the extern case, there must be an external
definition (see "External Definitions") for the given identifiers
somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration,
together with a hint to the compiler that the variables declared
will be heavily used. Only the first few such declarations in
each function are effective. Moreover, only variables of certain
types will be stored in registers. One other restriction applies to
register variables: the address-of operator & cannot be applied
to them. Smaller, faster programs can be expected if register
declarations are used appropriately, but future improvements in
code generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the
sc-specifier is missing from a declaration, it is taken to be auto
inside a function, extern outside. Exception: FUNCTIONS
ARE NEVER AUTOMATIC.

3-24

7.2 Type Specifiers

The type-specifiers are

type-specifier:
struct -or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
lot
long
unsigned
float
double

C LANGUAGE

At most one of the words long or short may be specified in
conjunction with int; the meaning is the same as if int were not
mentioned. The word long may be specified in conjunction
with float; the meaning is the same as double. The word
unsigned may be specified alone. or in conjunction with lot or
any of its short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declara­
tion. In particular, adjectival use of long, short, or unsigned is
not permitted with typedef names. If the type-specifier is miss­
ing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are dis­
cussed in "Structure, Union, and Enumeration Declarations."

(Declaratiohs with typedef names are discussed in "Typedef."

3-25

C LANGUAGE

7.3 Declarators

The declarator-list appearing in a
comma-separated sequence of declarators,
have an initializer.

declarator-list:
init-declarator
init-dec/arator , declarator-list

init-dec/arator:
declarator initializer opt

declaration is a
each of which may

Initializers are discussed in "Initialization." The specifiers in
the declaration indicate the type and storage class of the objects
to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)

"" declarator
declarator 0
declarator [constant-expression0pt 1

The grouping is the same as in expressions.

7 .3.1 Meaning of Declarators

Each declarator is taken to be an assertion that when a con­
struction of the same form as the declarator appears in an
expression, it yields an object of the indicated type and storage
class.

Each declarator contains exactly one identifier - it is this
identifier that is declared. If an unadorned identifier appears as
a declarator, then it has the type indicated by the specifier head­
ing the declaration.

3-26

C LANGUAGE

A declarator in parentheses is identical to the unadorned
declarator, but the binding of complex declarators may be r- altered by parentheses. See the examples below.

Now imagine a declaration

TDI

where T is a type-specifier Oike int, etc.) and Dl is a declara­
tor. Suppose this declaration makes the identifier have type
" ... T," where the " ... " is empty if Dt is just a plain
identifier (so that the type of x in "int x" is just int). Then if
Dl has the form

•D

the type of the contained identifier is " ... pointer to T."

If Dl has the form

DO

then the contained identifier has the type " ... function return­
ingT."

If Dl has the form

Dlconstant-expressionl

or

Dl I

then the contained identifier has type " ... array of T." In the
first case, the constant expression is an expression whose value
is determinable at compile time, whose type is int, and whose
value is positive. (Constant expressions are defined precisely in

3-Z7

C LANGUAGE

"Constant Expressions.") When several "array or•
specifications are adjacent, a multidimensional array is created;
the constant expressions which specify the bounds of the arrays
may be missing only for the first member of the sequence.
This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first
constant expression may also be omitted when the declarator is
followed by initialization. In this case the size is calculated
from the number of initial elements supplied.

An array may be constructed from one of the basic types, from
a pointer, from a structure or union, or from another array (to
generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually
permitted. The restrictions are as follows: functions may not
return arrays or functions although they may return pointers;
there are no arrays of functions although there may be arrays of
pointers to functions. Likewise, a structure or union may not
contain a function; but it may contain a pointer to a function.

As an example, the declaration

int i, *ip, f{), *fip(), (*pfi)O;

declares:

int
*ip
ro
•fip()
(•pfi) ()

an integer i
a pointer to an integer,
a function returning an integer,
a function returning a pointer to an integer
a pointer to a function which returns an integer

It is especially useful to compare the last two. The binding of
•fipO is *(fip()). The declaration suggests, and the same con­
struction in an expression requires, the calling of a function fip.
Using indirection through the (pointer) result to yield an

3-28

C LANGUAGE

integer. In the declarator (•pfi) 0, the extra parentheses are
necessary, as they are also in an expression, to indicate that
indirection through a pointer to a function yields a function,
which is then called - it returns an integer.

As another example,

float fal171, •afpl171;

declares an array of float numbers and an array of pointers to
float numbers. Finally,

static int x3dl31151171;

declares a static 3-dimensional array of integers, with rank
3x5x7. In complete detail, x3d is an array of three items.
Each item is an array of five arrays. Each of the latter arrays is
an array of seven integers. Any of the expressions x3d, x3d Iii,

(x3d(illj), xJd[iJijllkl may reasonably appear in an expres­
sion. The first three have type "array" and the last has type
Int.

r
'

7.4 Structure and Union Declarations

A structure is an object consisting of a sequence of named
members. Each member may have any type. A union is an
object which may, at a given time, contain any one of several
members. Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

3-29

C LANGUAGE

The struct·decl-list is a sequence of declarations for the
members of the structure or union:

struct-decl-list:
struct-declaration
struct-dec/aration struct-dec/-/ist

struct-declaration:
type-specifier struct-declarator-list ;

struct-decla ra tor-list:
struct-dec/arator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a
member of a structure or union. A structure member may also
consist of a specified number of bits. Such a member is also
called a field; its length, a non-negative constant expression, is
set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which
increase as the declarations are read left to right. Each nonfield
member of a structure begins on an addressing boundary
appropriate to its type; therefore. there may be unnamed holes
in a structure. Field members are packed into machine
integers; they do not straddle words. A field which does not fit
into the space remaining in a word is put into the next word.
No field may be wider than a word.

A struct-declarator with no declarator, only a colon and a width,
indicates an unnamed field useful for padding to conform to
externally-imposed layouts. As a special case, a field with a
width of 0 specifies alignment of the next field at an implemen­
tation dependant boundary.

3-30

c

C LANGUAGE

The language does not restrict the types of things that are
declared as fields, but implementations are not required to sup­
port any but integer fields. Moreover, even int fields may be
considered to be unsigned.

It is strongly recommended that fields be declared as unsigned.
In all implementations, there are no arrilys of fields, and the
address-of operator &: may not be applied to them, so that there
are no pointers to fields.

A union may be thought of as a structure all of whose
members begin at offset 0 and whose size is sufficient to con­
tain any of its members. At most, one of the members can be
stored in a union at any time.

A structure or union specifier of the second form, that is, one
of

struct identifier { struct-dec/-Jist }
union identifier { struct-dec/-Jist }

declares the identifier to be the structure tag (or union tag) of
the structure specified by the list. A subsequent declaration
may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self·referential structures.
Structure tags also permit the long part of the declaration to be
given once and used several times. It is illegal to declare a
structure or union which contains an instance of itself, but a
structure or union may contain a pointer to an instance of

/.-.. itself.

3-31

CLANGUAGE

The third form of a structure or union specifier may be used
prior to a declaration which gives the complete specification of
the structure or union in situations in which the size of the
structure or union is unnecessary. The size is unnecessary in
two situations:

1. when a pointer to a structure or union is being declared,
and

2. when a typedef name is declared to be a synonym for a
structure or union. This, for example, allows the declara­
tion of a pair of structures which contain pointers to each
other.

The names of members and tags do not conflict with each .other
or with ordinary variables. A particular name may not be used
twice in the same structure, but the same name may be used in
several different structures in the same scope.

A simple but important example of a structure declaration is
the following binary tree structure:

struct tnode
I

I;

char tword(201;
lot count;
struct tnode •left;
struct tnode •ria;ht;

which contains an array of 20 characters, an integer, and two
pointers to similar structures. Once this declaration has been
given, the declaration

struct tnode s, •sp;

declares s to be a structure of the given sort and sp to be a
pointer to a structure of the given sort. With these

3-32

r

~~·

r
I
~

C LANGUAGE

declarations, the expression

sp- >count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right- >tword(OI

refers to the first character of the tword member of the right
subtree of s.

7 .S Enumeration Declarations

Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier - constant-expression

The identifiers in an enum-list are declared as constants and
may appear wherever constants are required. If no enumerators
with = appear, then the values of the corresponding constants
begin at 0 and increase by 1 as the declaration is read from left
to right. An enumerator with = gives the associated identifier
the value indicated; subsequent identifiers continue the progres­
sion from the assigned value.

3-33

C LANGUAGE

The names of enumerators in the same scope must all be dis­
tinct from each other and from those of ordinary variables.

The role of the identifier in the enum-specitier is entirely analo­
gous to that of the structure tag in a struct-specifier; it names a
particular enumeration. For example,

enum color {chartreuse, burgundy, claret= 20, winedark};

enum color ncp, col;

col = claret;
cp = &col;

if (ncp = = burgundy) •••

makes color the enumeration-tag of a type describing various
colors, and then declares cp as a pointer to an object of that
type, and col as an object of that type. The possible values are
drawn from the set {0,1,20,21}.

7.6 Initialization

A declarator may specify an initial value for the identifier being
declared. The initializer is preceded by - and consists of an
expression or a list of values nested in braces.

3-34

initializer:
= expression
- { initia/izer-list }

{ initia/izer-list

initia/izer-list:
expression
initializer-list • iniUalizer-list
{ initia/izer-/ist }
{ initia/izer-list , }

c

CLANGUAGE

All the expressions in an initializer for a static or external vari­
able must be constant expressions, which are described in
"Constant Expressions," or expressions which reduce to the
address of a previously declared variable, possibly offset by a
constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants and pre­
viously declared variables and functions.

Static and external variables that are not initialized are
guaranteed to start off as zero. Automatic and register variables
that are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of
arithmetic type), it consists of a single expression, perhaps in
braces. The initial value of the object is taken from the expres­
sion; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or
array). the initializer consists of a brace-enclosed,
comma-separated list of initializers for the members of the
aggregate written in increasing subscript or member order. If
the aggregate contains subaggregates, this rule applies recur­
sively to the members of the aggregate. If there are fewer ini­
tializers in the list than there are members of the aggregate,
then the aggregate is padded with zeros. It is not permitted to
initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins
with a left brace, then the succeeding comma-separated list of
initializers initializes the members of the aggregate; it is errone­
ous for there to be more initializers than members. If, how­
ever, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to
initialize the next member of the aggregate of which the
current aggregate is a part.

3-35

CLANGUAGE

A final abbreviation allows a char array to be initialized by a
string. In this case successive characters of the string initialize
the members of the array.

For example,

lnt xll - { I, 3, 5 };

declares and initializes x as a one-dimensional array which has
three members, since no size was specified and there are three
initializers.

Boat yl41131 -
{

{ I, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

} ;

is a completely-bracketed initialization: 1, 3, and 5 initialize the
first row of the array y(OJ, IUIDlely y(OJIOI, y(OIIll, and
y(OI(21. Likewise, the next two lines initialize y(l) and y(2).
The initializer ends early and therefore y(J) is initialized with
0. Precisely, the same effect could have been achieved by

Boat y)4113l -
{

1, 3, s, 2, 4, '· 3, s, 7
} ;

The initializer for y begins with a left brace but that for y(OJ
does not; therefore, three elements from the list are used.
Likewise, the next three are taken successively for ylll and
yl21. Also,

3-36

r

I
'

(~

C LANGUAGE

Boat yl41131 =
{

{ I), { Z), { 3), { 4)
);

initializes the first column of y (regarded as a two-dimensional
array) and leaves the rest 0.

Finally,

char msg I I = "Syntax error on line %s\n";

shows a character array whose members are initialized with a
string.

7.7 Type Names

In two contexts (to specify type conversions explicitly by means
of a cast and as an argument of sizeof), it is desired to supply
the name of a data type. This is accomplished using a "type
name," which in essence is a declaration for an object of that
type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
• abstract-declarator
tract-declarator 0
abstract-declarator [constant-expression0pt]

To avoid ambiguity, in the construction

(abstract-declarator)

3-37

C LANGUAGE

the abstract-declarator is required to be nonempty. Under this
restriction, it is possible to identify uniquely the location in the
abstract-declarator where the identifier would appear if the con­
struction were a declarator in a declaration. The named type is
then the same as the type of the hypothetical identifier. For
example,

lnt

int •
int •131

int (•)(31

lnt •0

int (•) ()

int (•13()()

is type integer

is type pointer to integer

is type array of three pointers to integers

is type pointer to an array of three integers

is type function returning pointer to integer

is type pointer to function returning an integer

is type array of three pointers to functions
returning an integer

7.8 Typedef

Declarations whose "storage class" is typedef do not define
storage but instead define identifiers which can be used later as
if they were type keywords naming fundamental or derived
types.

typedef·name:
identifier

Within the scope of a declaration involving typedef, each
identifier appearing as part of any declarator therein becomes
syntactically equivalent to the type keyword naming the type
associated with the identifier in the way described in "Meaning
of Declarators." For example, after

typedef lnt MILES, •KLICKSP;
typedef struct { double re, im; } complex;

3-38

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, •zp;

C LANGUAGE

are all legal declarations; the type of distance is int; that of
metricp is pointer to int; that of .z is the specified structure
complex and that of zp is pointer to such a structure.

The typedef does not introduce brand-new types, only
synonyms for types which could be specified in another way.
Thus in the example above distance is considered to have
exactly the same type as any other int object.

8. Statements

Except as indicated, statements are executed in sequence.

(8.1 Expression Statement

'-,_

Most statements are expression statements, which have the
form

expressiotr,

Usually expression statements are assignments or function calls.

8.2 Compound Statement or Block

So that several statements can be used where one is expected,
the compound statement (also, and equivalently, called
"block") is provided:

compound-statement:
{ declaration-list0pt statement-list0pt }

3-39

CLANGUAGE

declaration·list:
declaration
declaration dec/aration·list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously
declared, the outer declaration is pushed down for the duration
of the block, after which it resumes its force.

Any initializations of auto or re~~:lster variables are performed
each time the block is entered at the top. It is currently possi­
ble (but a bad practice) to transfer into a block; in that case the
initializations are not performed. Initializations of static vari­
ables are performed only once when the program begins execu­
tion. Inside a block, extern declarations do not reserve storage
so initialization is not permitted.

8.3 Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated. If it is nonzero, the
first substatement is executed. In the second case, the second
substatement is executed if the expression is 0. The "else"
ambiguity is resolved by connecting an else with the last
encountered else-less If.

8.4 While Statement

The while statement has the form

while (expression) statement

3-40

r

CLANGUAGE

The substatement is executed repeatedly so long as the value of
the expression remains nonzero. The test takes place before
each execution of the statement.

8.5 Do Statement

The do statement has the form

do statement while { expression) ;

The substatement is executed repeatedly until the value of the
expression becomes 0. The test takes place after each execu­
tion of the statement.

8.6 For Statement

The for statement has the form:

for (exp-lopt ; exp-2opt ; exp-30pt) statement

(Except for the behavior of continue, this statement is
~-· equivalent to

exp-1;
while { exp-2)
{

statement
exp-3 ;

Thus the first expression specifies initialization for the loop; the
second specifies a test, made before each iteration, such that
the loop is exited when the expression becomes 0. The third
expression often specifies an incrementing that is performed
after each iteration.

Any or all of the expressions may be dropped. A missing exp-2
makes the implied while clause equivalent to wblle(l). Other
missing expressions are simply dropped from the expansion

3-41

C LANGUAGE

above.

8. 7 Switch Statement

The switch statement causes control to be transferred to one of
several statements depending on the value of an expression. It
has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expres­
sion, but the result must be int. The statement is typically
compound. Any statement within the statement may be labeled
with one or more case prefixes as follows:

case constant·expression :

where the constant expression must be int. No two of the case
constants in the same switch may have the same value. Con­
stant expressions are precisely defined in .. Constant Expres­
sions."

There may also be at most one statement prefix of the form

default:

When the switch statement is executed, its expression is
evaluated and compared with each case constant. If one of the
case constants is equal to the value of the expression, control is
passed to the statement following the matched case prefix. If
no case constant matches the expression and if there is a
default prefix, control passes to the prefixed statement. If no
case matches and if there is no default, then none of the state­
ments in the switch are executed.

The prefixes case and default do not alter the flow of control,
which continues unimpeded across such prefixes. To exit from
a switch, see "Break Statement."

3-42

I

CLANGUAGE

Usually, the statement that is the subject of a switch is com~
pound. Declarations may appear at the head of this statement,
but initializations of automatic or register variables are
ineffective.

8.8 Break Statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or
switch statement. Control passes to the statement following
the terminated statement.

8.9 Continue Statement

The statement

continue;

---· causes control to pass to the loop-continuation portion of the
smallest enclosing while, do, or for statement; that is to the
end of the loop. More precisely, in each of the statements

while (. ..)
{

oontinue

do
{

continue
while (. ..);

for <. ••)
{

continue

a continue is equivalent to goto continue. (Following the con­
tinue is a null statement, see "Null Statement.")

8.10 Return Statement

A function returns to its caller by means of the return state­
ment which has one of the forms:

3-43

C LANGUAGE

return;
return expression ;

In the first case, the returned value is undefined. In the second
case, the value of the expression is returned to the caller of the
function. If required, the expression is converted, as if by
assignment, to the type of function in which it appears. Flow­
ing off the end of a function is equivalent to a return with no
returned value. The expression may be parenthesized.

8.11 Goto Statement

Control may be transferred unconditionally by means of the
statement

goto identifier ;

The identifier must be a label (see "Labeled Statement")
located in the current function.

8.12 Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier.

which serve to declare the identifier as a label. The only use of
a label is as a target of a aoto. The scope of a label is the
current function, excluding any subblocks in which the same
identifier has been redeclared. See "Scope Rules."

8.13 Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a
compound statement or to supply a null body to a looping

3-44

C LANGUAGE

statement such as while.

9. External Definitions

A C program consists of a sequence of exteroal definitions. An
external definition declares an identifier to have storage class
extern (by default) or perhaps static, and a specified type. The
type-specifier (see "Type Specifiers" in "Declarations") may
also be empty, in which case the type is taken to be int. The
scope of external definitions persists to the end of the file in
which they are declared just as the effect of declarations persists
to the end of a block. The syntax of external definitions is the
same as that of all declarations except that only at this level
may the code for functions be given.

9.1 External Function Definitions

Function definitions have the form

function-definition:
,,.--.. decl-specifiers0pt junction-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are
extern or static. (See "Scope of Externals" in "Scope Rules"
for the distinction between them.) A function declarator is
similar to a declarator for a "func.tion returning ... " except
that it lists the formal parameters of the function being defined.

jilnction-declarator:
declarator (parameter-list0pt)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form:

jilnction-hody:
declaration-list0pt compound-statement

3-45

CLANGUAGE

The identifiers in the parameter list, and only those identifiers,
may be declared in the declaration list. Any identifiers whose
type is not given are taken to be Int. The only storage class
which may be specified is register; if it is specified, the
corresponding actual parameter will be copied, if possible, into
a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)

{
int a, b, e;

int m;

m-(a>b)?a:b;
retum((m > c) ? m : c);

Here int is the type-specifier; max (a, b, c) is the
function-declarator; int a, b, c; is the declaration-list for the
formal parameters; { ... } is the block giving the code for the
statement.

The C program converts all float actual parameters to double,
so formal parameters declared Boat have their declaration
adjusted to read double. All char and short formal parameter
declarations are similarly adjusted to read int. Also, since a
reference to an array in any context (in particular as an actual
parameter) is taken to mean a pointer to the first element of
the array, declarations of formal parameters declared "array of

, dj d d" . " . . . are a uste to rea pomter to

9.2 External Data Definitions

An external data definition has the form

3-46

data-definition:
declaration

CLANGUAGE

The storage class of such data may be extern (which is the
default} or static but not auto or register.

10. Scope Rules

A C program need not all be compiled at the same time. The
source text of the program may be kept in several files, and
precompiled routines may be loaded from libraries. Communi­
cation among the functions of a program may be carried out
both through explicit calls and through manipulation of external
data.

Therefore, there are two kinds of scopes to consider:

I. lexical scope - is essentially the region of a program dur­
ing which it may be used without drawing "undefined
identifier" diagnostics.

2. scope of externals - the scope associated with external
identifiers, which is characterized by the rule that refer­
ences to the same external identifier are references to the
same object.

10.1 Lexical Scope

The lexical scope of identifiers declared in external definitions
persists from the definition through the end of the source file
in which they appear. The lexical scope of identifiers which are
formal parameters persists through the function with which
they are associated. The lexical scope of identifiers declared at
the head of a block persists until the end of the block. The lex~
ical scope of labels is the whole of the function in which they
appear.

In all cases, however, if an identifier is explicitly declared at the
head of a block, including the block constituting a function, any

3-47

CLANGUAGE

declaration of that identifier outside the block is suspended
until the end of the block.

Remember also (see "Structure, Union, and Enumeration
Declarations" in "Declarations'~) that tags, identifiers associ­
ated with ordinary variables, and identities associated with
structure and union members form three di~oint classes which
do not conflict. Members and tags follow the same scope rules
as other identifiers. The enum constants are in the same class
as ordinary variables and follow the same scope rules. The
typed.ef names are in the same class as ordinary identifiers.
They may be redeclared in inner blocks, but an explicit type
must be given in the inner declaration:

typedef Boat distance;

auto int distance;

The int must be present in the second declaration, or it would
be taken to be a declaration with no declarators and type dis­
tance.

10.2 Scope of Externals

If a function refers to an identifier declared to be extern, then
somewhere among the files or libraries constituting the com­
plete program there must be at least one external definition for
the identifier. All functions in a given program which refer to
the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition
are compatible with those specified by each function which
references the data.

It is illegal to explicitly initialize any external identifier more
than once in the set of files and libraries comprising a multi-file
program. It is legal to have more than one data definition for

3-48

·~·

r

C LANGUAGE

any external non-function identifier; explicit use of extern does
not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class
takes on an additional meaning. In these environments, the
explicit appearance of the extern keyword in external data
declarations of identities without initialization indicates that the
storage for the identifiers is allocated elsewhere, either in this
file or another file. It is required that there be exactly one
definition of each external identifier (without extern) in the set
of files and libraries comprising a mult-file program.

Identifiers declared static at the top level in external definitions
are not visible in other files. Functions may be declared static.

11. Compiler Control Lines

The C compiler contains a preprocessor capable of macro sub­
stitution, conditional compilation~ and inclusion of named files.
Lines beginning with # communicate with this preprocessor.
There may be any number of blanks and horizontal tabs
between the # and the directive. These lines have syntax
independent of the rest of the language; they may appear any­
where and have effect which lasts (independent of scope) until
the end of the source program file.

11.1 Token Replacement

A compiler-control line of the form

#define identifier token-stringopt

causes the preprocessor to replace subsequent instances of the
identifier with the given string of tokens. Semicolons in or at
the end of the token-string are part of that string. A line of the
form

#define identifier(identifier, ...)token-stringopt

3-49

CLANGUAGE

where there is no space between the first identifier and the (, is
a macro definition with arguments. There may be zero or more
formal parameters. Subsequent instances of the first identifier
followed by a (, a sequence of tokens delimited by commas,
and a) are replaced by the token string in the definition. Each
occurrence of an identifier mentioned in the formal parameter
list of the definition is replaced by the corresponding token
string from the call. The actual arguments in the call are token
strings separated by commas; however, commas in quoted
strings or protected by parentheses do not separate arguments.
The number of formal and actual parameters must be the same.
Strings and character constants in the token-string are scanned
for formal parameters, but strings and character constants in
the rest of the program are not scanned for defined identifiers
to replacement.

In both forms the replacement string is rescanned for more
defined identifiers. In both forms a long definition may be con­
tinued on another line by writing \ at the end of the line to be
continued.

This facility is most valuable for definition of "manifest con­
stants," as in

#define TABSIZE 100

int table(TABSIZEI;

A control line of the form

#undef identifier

causes the identifier's preprocessor definition (if any) to be for­
gotten.

If a #defined identifier is the subject of a subsequent #define
with no intervening #undef, then the two token-strings are

3-50

CLANGUAGE

compared textually. If the two token·strings are not identical
(all white space is considered as equivalent), then the identifier r is considered to be redefined.

r

11.2 File Inclusion

A compiler control line of the form

#include n filename"

causes the replacement of that line by the entire contents of the
file filename. The named file is searched for first in the direc­
tory of the file containing the #include, and then in a sequence
of specified or standard places. Alternatively, a control line of
the form

#include <filename>

searches only the specified or standard places and not the direc­
tory of the #include. (How the places are specified is not part
of the language.)

#includes may be nested.

11.3 Conditional Compilation

A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to
nonzero. (Constant expressions are discussed in "Constant
Expressions;" the following additional restrictions apply here:
the constant expression may not contain sizeof casts, or an
enumeration constant.)

(' A restricted constant expression may also contain the additional
\.____ unary expression

3-51

C LANGUAGE

defined identifier
or
defined (identifier

which evaluates to one if the identifier is currently defined in
the preprocessor and zero if it is not.

All currently defined identifiers in restricted-constant­
expressions are replaced by their token-strings (except those
identifiers modified by defined) just as in normal text. The res­
tricted constant expression will be evaluated only after all
expressions have finished. During this evaluation, all
undefined (to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the prepro­
cessor; i.e., whether it has been the subject of a #define control
line. It is equivalent to #ifdef(identifiei). A control line of the
form

#ifndef identifier

checks whether the identifier is currently undefined in the
preprocessor. It is equivalent to #lf!deflned(identljien.

All three forms are followed by an arbitrary number of lines,
possibly containing a control line

#else

and then by a control line

#endif

3-52

CLANGUAGE

If the checked condition is true, then any lines between #else
and #endif are ignored. If the checked condition is false, then
any lines between the test and a #else or, lacking a #else, the
#endif are ignored.

These constructions may be nested.

11.4 Line Control

For the benefit of other preprocessors which generate C pro­
grams, a line of the form

#line constant "filename'

causes the compiler to believe, for purposes of error diagnos­
tics, that the line number of the next source line is given by
the constant and the current input file is named by "filename'.
If "filenam~· is absent, the remembered file name does not
change.

12. Implicit Declarations

It is not always necessary to specify both the storage class and
the type of identifiers in a declaration. The storage class is sup­
plied by the context in external definitions and in declarations
of formal parameters and structure members. In a declaration
inside a function, if a storage class but no type is given, the
identifier is assumed to be int; if a type but no storage class is
indicated, the identifier is assumed to be auto. An exception to
the latter rule is made for functions because auto functions do
not exist. If the type of an identifier is «function returning
... , " it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already
declared is contextually declared to be "function returning
Int."

3-53

C LANGUAGE

13. Types Revisited

This part summarizes the operations which can be performed
on objects of certain types.

13.1 Structures and Unions

Structures and unions may be assigned, passed as arguments to
functions, and returned by functions. Other plausible opera­
tors, such as equality comparison and structure casts, are not
implemented.

In a reference to a structure or union member, the name on
the right of the - > or the • must specify a member of the
aggregate named or pointed to by the expression on the left. In
general, a member of a union may not be inspected unless the
value of the union has been assigned using that same member.
However, one special guarantee is made by the language in
order to simplify the use of unions: if a union contains several
structures that share a common initial sequence and if the
union currently contains one of these structures, it is permitted
to inspect the common initial part of any of the contained
structures. For example, the following is a legal fragment:

3-54

union
[

struct
[

int
o;

struct
[

int
lot

ni;
struct
[

lot
Boat

} of;
} u;

u.nf.type -FLOAT;
u.nf.ftoatnode = 3.14;

if (u.o.type = = FLOAT)

type;

type;
intnode;

type;
ftoatnode;

••• sin(u.nf.floatnode)

13.2 Functions

C LANGUAGE

There are only two things that can be done with a function -
call it or take its address. If the name of a function appears in
an expression not in the function-name position of a call, a
pointer to the function is generated. Thus, to pass one func­
tion to another, one might say

lnt fO;

g(f);

3-55

C LANGUAGE

Then the definition of g might read

g(funcp)
int (•funcp)();

Notice that f must be declared explicitly in the calling routine
since its appearance in g(f) was not followed by (.

13.3 Arrays, Pointers and Subscripting

Every time an identifier of array type appears in an expression,
it is converted into a pointer to the first member of the array.
Because of this conversion, arrays are not lvalues. By
definition, the subscript operator I I is interpreted in such a
way that EliEll is identical to •((El)+(E2)). Because of the
conversion rules which apply to +, if El is an array and El an
integer, then El(Ell refers to the E2-th member of El. There­
fore, despite its asymmetric appearance, subscripting is a corn­
mutative operation.

A consistent rule is followed in the case of multidimensional
arrays. If E is an n-dimensional array of rank ixjx ... xk, then E
appearing in an expression is converted to a pointer to an
{n-1)-dirnensional array with rank jx ... xk. If the • operator,
either explicitly or implicitly as a result of subscripting, is
applied to this pointer, the result is the pointed-to
{n-1)-dimensional array, which itself is immediately converted
into a pointer.

For example, consider

lot xi311S);

3-56

CLANGUAGE

Here x is a 3x5 array of integers. When x appears in an
expression, it is converted to a pointer to (the first of three)
5-membered arrays of integers. In the expression x Iii, which
is equivalent to • (x+i), x is first converted to a pointer as
described~ then i is converted to the type of x, which involves
multiplying i by the length the object to which the pointer
points, namely 5-integer objects. The results are added and
indirection applied to yield an array (of five integers) which in
turn is converted to a pointer to the first of the integers. If
there is another subscript, the same argument applies again;
this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest)
and the first subscript in the declaration helps determine the
amount of storage consumed by an array. Arrays play no other
part in subscript calculations.

13.4 Explicit Pointer Conversions

(Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by
means of an explicit type-conversion operator, see "Unary
Operators" under "Expressions" and "Type Names" under
"Declarations."

A pointer may be converted to a.ny of the integral types large
enough to hold it. Whether an int or long is required is
machine dependent. The mapping function is also machine
dependent but is intended to be unsurprising to those who
know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a
pointer. The mapping always carries an integer converted from
a pointer back to the same pointer but is otherwise machine
dependent.

3-57

C LANGUAGE

A pointer to one type may be converted to a pointer to another
type. The resulting pointer may cause addressing exceptions
upon use if the subject pointer does not refer to an object suit­
ably aligned in storage. It is guaranteed that a pointer to an
object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size
{in bytes) of an object to allocate, and return a char pointer; it
might be used in this way.

extern char •allocO;
double •dp;

dp = (double •) alloc(sizeof(double));
•do = 22.0 I 7 .0;

The alloc must ensure (in a machine-dependent way) that its
return value is suitable for conversion to a pointer to double;
then the use of the function is portable.

On the 68000, pointers are 32-bits long and measure bytes.
The char's have no alignment requirements~ everything else
must have an even address.

14. Constant Expressions

In several places C requires expressions that evaluate to a con­
stant:

• after case

• as array bounds, and

• in initializers.

In the first two cases, the expression can involve only integer
constants, character constants, casts to integral types, enumera­
tion constants, and sizeof expressions, possibly connected by

3-58

r-· ,

the binary operators

+-•/%&1

CLANGUAGE

<< >> == != < > <= >= && II

or by the unary operators

or by the ternary operator

? :

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant
expressions as discussed above, one can also use floating con­
stants and arbitrary casts and can also apply the unary & opera­
tor to external or static objects and to external or static arrays
subscripted with a constant expression. The unary & can also
be applied implicitly by appearance of unsubscripted arrays and
functions. The basic rule is that initializers must evaluate
either to a constant or to the address of a previously declared
external or static object plus or minus a constant.

15. Portability Considerations

Certain parts of C are inherently machine dependent. The fol­
lowing list of potential trouble spots is not meant to be
all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of
floating point arithmetic and integer division have proven in
practice to be not much of a problem. Other facets of the
hardware are reflected in differing implementations. Some of
these, particularly sign extension (converting a negative charac­
ter into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched.

3-59

C LANGUAGE

Most of the others are only minor problems.

The number of register variables that can actually be placed in
registers varies from machine to machine as does the set of
valid types. Nonetheless, the compilers all do things properly
for their own machine; excess or invalid register declarations
are ignored.

Some difficulties arise only when dubious coding practices are
used. It is exceedingly unwise to write programs that depend
on any of these properties.

The order of evaluation of function arguments is not specified
by the language. The order in which side effects take place is
also unspecified.

Since character constants are really objects of type lot, mul­
ticharacter character constants may be permitted. The specific
implementation is very machine dependent because the order in
which characters are assigned to a word varies from one
machine to another.

Fields are assigned to words and characters to integers right to
left on some machines and left to right on other machines.
These differences are invisible to isolated programs that do not
indulge in type punning (e.g., by converting an int pointer to a
char pointer and inspecting the pointed-to storage) but must be
accounted for when conforming to externally-imposed storage
layouts.

16. Syntax Summary

This summary of C syntax is intended more for aiding

3-60

CLANGUAGE

comprehension than as an exact statement of the language.

(16.1 Expressions

The basic expressions are:

expression:
primary

primary:

• expression
& /value

- expression
I expression

expression
++ /value
-- /value
/value ++
/value --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
/value asgnop expression
expression , expression

identifier
constant
string
(expression)
primary (expression-list0pt)
primary [expression 1
primary • identifier
primary - > identifier

3-61

C LANGUAGE

/value:
identifier
primary [expression 1
/value , identifier
primary - > identifier
"' expression
(/value)

The primary~expression operators

0 II . ->

have highest priority and group left to right.
The unary operators

• & - ! - ++ -- sizeof (type-name)

have priority below the primary operators but higher than any
binary operator and group right to left. Binary operators group
left to right; they have priority decreasing as indicated below.

binop:
•
+
>>
<

&

I
&&
II

I %

<<
> <~ >~

!-

The conditional operator groups right to left.

Assignrrtent operators all have the same priority and all group
right to left.

3-62

CLANGUAGE

asgnop:

+= mi= •= /= %= >>= <<= &=

The comma operator has the lowest priority and groups left to
right.

16.2 Declarations

declaration:
dec/-specifiers init-declarator-list0pt ;

decl-specifiers:
type-specifier dec/-specjfiers0pt
sc-specifier decl-specijiers0pt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef-name
enum-specjfier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
lnt
lone
unsigned
Boat
double

3-63

CLANGUAGE

3-64

enum-specifier:
eoum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier - constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initia/izer opt

declarator:
identifier
(declarator)
" declarator
declarator 0
declarator [constant-expression0pt 1

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-dec/-Jist }
struet identifier
union { struct-dec/-list)
union identifier { struct-decl-list }
union identifier

struct-deci-Jist;
struct -declaration
struct-declaration struct-decl-/ist

struct-declaration:
type-specifier struct-declarator-Jlst ;

CLANGUAGE

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator

initializer:

declarator : constant-expression
: constant-expression

expression
{ initializer-list }
{ initia/izer-list ,

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
• abstract-declarator
abstract-declarator 0
abstract-declarator [constant-expression0pt 1

typedef-name:
identifier

16.3 Statements

compound-statement:
{ dec/aration-list0pt statement-list0pt }

3-65

C LANGUAGE

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exPoptiexP0p1;exp0p1J statement
switch (expression) statement
case constant-expression statement
default : statement
break ;
continue ;
return ;
return expression
goto identifier ;
identifier : statement
. .

16.4 External Definitions

program:
external-definition
external-definition program

external-definition:
}Unction-definition
data-definWon

3-66

r

C LANGUAGE

junction-definition:
decl-specifier opt function-declarator junction-body

junction-declarator:
declarator (parameter-/ist0pt)

parameter-list:
identifier
identifier , parameter-list

jUnction-body:
declaratlon-list0pt compound-statement

data-definition:
extern declaration ;
static declaration ;

16.5 Preprocessor

#define identifier token-string0pt
#define identifier(identifier, •••) token-string0pt
#undef identifier
#Include "filename"
#include <filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant "filename"

3-67

- j

- j

- j

J

j

j

j

j

j

j

j

Chapter 4: C LIBRARIES

~ CONTENTS

c

c

1. Introduction 1

2. Including Functions 2

3. Including Declarations 2

4. The C Library . . .
4.1 Input/Output Control

4.1.1 File Access Functions
4.1.2 File Status Functions
4.1.3 Input Functions • .
4.1.4 Output Functions
4.1.5 Miscellaneous Functions

4.2 String Manipulation Functions
4.3 Character Manipulation • • •

4.3.1 Character Testing Functions
4.3.2 Character Translation Functions

4.4 Time Functions . . • .
4.5 Miscellaneous Functions

4.5.1 Numerical Conversion
4.5.2 DES Algorithm Access
4.5.3 Group File Access
4.5.4 Password File Access
4.5.5 Parameter Access
4.5.6 Hash Table Management
4.5.7 Binary Tree Management
4.5.8 Table Management . .
4.5.9 Memory Allocation . .
4.5.10 Pseudorandom Number

Generation • • • . .
4.5.11 Signal Handling Functions
4.5.12 Miscellaneous • • . . .

- i -

3
3
5
6
6
7
8
9

10
11
12
12
13
14
15
15
16
17
18
18
19
20

21
22
22

- j

- j

~ j

J

j

j

j

j

j

j

j

C LIBRARIES

Chapter 4

C LIBRARIES

1. Introduction

This chapter describes the UNIX Operating System C library.
A library is a collection of related functions and/ or declarations
that simplify programming effort by linking what is needed,
allowing use of locally produced functions, etc. All of the func­
tions described in this chapter are also described in Section 3 of
the UniP/u~ User Manual. Most of the declarations described
in this chpater are also described in Section 5 of the UniPJus+
User Manual. The three main libraries on the UNIX system
are:

C library

Object file

Math library

This is the basic library for C language pro­
grams. The C library is composed of func­
tions and declarations used for file access,
string testing and manipulation, character
testing and manipulation, memory allocation,
and other functions. This library is described
later in this chapter.

This library provides functions for the access
and manipulation of object files. This library
is described in the next chapter.

This library provides exponential, bessel
functions, logarithmic, hyperbolic, and tri·
gonometric functions. This library is
described in the next chapter.

Some libraries consist of two portions - functions and declara·
tions. In some cases, the user must request that the functions
(and/or declarations) of a specific library be included in a pro­
gram being compiled. In other cases, the functions (and/or
declarations) are included automatically.

4-1

C LIBRARIES

2. Including Functions

When a program is being compiled, the compiler will automati·
cally search the C language library to locate and include func·
tions that are used in the program. This is the case only for the
C library and no other library. In order for the compiler to
locate and include functions from other libraries, the user must
specify these libraries on the command line for the compiler.
For example, when using functions of the math library, the
user must request that the math library be searched by includ·
ing the argument -lm on the command line:

cc file.c -lm

The argument -1m must come after all files that reference
functions in the math library in order for the link editor to
know which functions to include in the a. out file.

This method should be used for all functions that are not part
of the C language library.

3. Including Declarations

Some functions require a set of declarations in order to operate
properly. A set of declarations is stored in a file under the
/usrlinclude directory. These files are referred to as header files.
In order to include a certain header file, the user must specify
this near the top of the file containing the program:

#include < file.h>

where file.h is the name of the header file. Since the header
files define the type of the functions and various preprocessor
constants, they must be included BEFORE invoking the func·
tions they declare.

The remainder of this chapter descrbes the functions and
header files of the C Library. The description of the library
begins with the actions required by the user to include the

4-2

r

C LIBRARIES

functions and/ or header files in a program being compiled (if
any). Following the description of the actions required is infor­
mation in three-column format:

function referenee(N) Brief description.

The functions are grouped by type and the reference refers to
section "N" in the UniP/ust User Manual. Following this, if
applicable, are descriptions of the header files associated with
these functions.

4. The C Library

The C library consists of several types of functions. All the
functions of the C library are loaded automatically by the com­
piler. Various declarations must sometimes be included by the
user. The functions of the C library are divided into the fol­
lowing types:

•
•

Input/output control

String manipulation

• Character manipulation

• Time functions

• Miscellaneous functions.

4.1 Input/Output Control

These functions of the C library are automatically included as
needed during the compiling of a C language program. No
command line request is needed.

The header file required by the input/output functions should
be included near the beginning of each file that references an
input or output function:

#include < stdio.h>

4-3

C LIBRARIES

The input/output functions are grouped into the following
categories:

• File access

• File status

• Input

• Output

• Miscellaneous .

4-4

C LIBRARIES

4.1.1 File Access Functions

r
FUNCTION REFERENCE BRIEF DESCRIPTION

fclose fclose(3S) Close an open stream.

fdopen fopen(3S) Associate stream with
an open (2) ed file.

fileno ferror(3S) File descriptor associated
with an open stream.

fopen fopen(3S) Open a file with
specified permissions and
return a pointer to a
stream which is used
in subsequent

('
references to the file.

freopen fopen(3S) Substitute named file
in place of open
stream.

fseek fseek(JS) Reposition the file
pointer.

pclose popen(3S) Close a stream opened
by popen.

popen popen(JS) Create pipe as a stream
between calling process
and command.

r'
rewind fseek(3S) Reposition file

pointer at beginning
of file.

4-5

C LIBRARIES

setbuf setbuf<3S)

vsetbuf setbuf(3S)

4.1.2 File Status Functions

Assign buffering to
stream.

Similar to setbnf, but
allowing finer control.

FUNCTION REFERENCE BRIEF DESCRIPTION

clearerr ferror(3S) Reset error condition on
stream.

feof ferror(3S) Test for "end of file"
{EOF) on stream.

ferror ferror(3S) Test for error condition
on stream.

ftell fseek(3S) Return current position
in the file.

4.1.3 Input Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

fgetc getc(3S) True function for getc
(3S).

fgets gets(3S) Read string from stream.

tread fread(3S) General buffered read
from stream.

fscanf scanf(JS) Formatted read from
stream.

4-6

C LIBRARIES

getc getc(3S) Read character from

r stream.

', get char getc(3S) Read character from -
standard input.

gets gets(3S) Read string from standard input.

getw getc(JS) Read word from stream.

scanf scanf(3S) Read using format from
standard input.

sscanf scanf(3S) Formatted from
string.

ungetc ungetc(3S) Put back one character on
stream.

("·
4.1.4 Output Functions '

FUNCTION REFERENCE BRIEF DESCRIPTION

fftush fclose(JS) Write all currently buffered
characters from stream.

fprintf prlntf(JS) Formatted write to
stream.

fputc putc(JS) True function for putc
(JS),

fputs puts(JS) Write string to stream.

(fwrite fread(JS) General buffered write to
stream.

4-7

C LIBRARIES

printf printf(3S)

putc putc(3S)

putchar putc(JS)

puts puts(3S)

putw putc<JS)

sprintf printf{3S)

vfprintf vprint(3C)

vprintf vprint(3C)

vsprlntf vprintf(3C}

4.1.5 Miscellaneous Functions

Print using format to
standard output.

Write character to
standard output.

Write character to
standard output.

Write string to
standard output.

Write word to stream.

Formatted write to
string.

Print using format to
stream by varargs (5)
argument list.

Print using format to
standard output by
nrargs(S) argument list.

Print using format to
stream string by
nrargs (5) argument list.

FUNCTION REFERENCE BRIEF DESCRIPTION

ctermid ctermid(3S) Return file name for
controlling terminal.

cuserid cuserid(JS) Return login name for

4-8

r

r

r

system system(3S)

tempnam tmpnam(3S)

tmpnam tmpnam(3S)

tmpfile tmpfile(3S)

C LIBRARIES

owner of current process.

Execute shell command.

Create temporary file
name using directory and
prefix.

Create temporary file
name.

Create temporary file.

4.2 String Manipulation Functions

These functions are used to locate characters within a string or
to copy, concatenate, or compare strings. These functions are
automatically located and loaded during the compiling of a C
language program. No command line request is needed since
these functions are part of the C library. The string manipula­
tion functions are declared in a header file that should be
included near the beginning of each file that uses any of these
functions:

#Include < string.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

strcat string(3C) Concatenate two strings.

strcbr string(3C) Search string for
character.

strcmp strlng(JC) Compares two strings.

strcpy string(3C) Copy string.

strcspn string(3C) Length of initial string

4-9

C LIBRARIES

strleo string(3C)

stmcat string(3C)

strncmp string(3C)

strncpy string(3C)

strpbrk string(3C)

strrchr string(3C)

strspn string(3C)

strtok string(3C)

4.3 Character Manipulation

not containing set of
characters.

Length of string.

Concatenate two strings
with a maximum length.

Compares two strings
with a maximum length.

Copy string over string
with a maximum length.

Search string for any
set of characters.

Search string backwards
for character.

Length of initial string
containing set of
characters.

Search string for token
separated by any of a
set of characters.

The following functions and declarations are used for testing
and translating ASCII characters. These functions are located
and loaded automatically during the compiling of a C language
program. No command line request is needed since these func­
tions are part of the C library.

The declarations associated with these functions should be
included near the beginning of the file being compiled:

4-10

C LIBRARIES

#include < ctype.h>

I
4.3.1 Character Testing Functions ' -
These functions can be used to identify characters as uppercase
or lowercase letters, digits, punctuation, etc.

FUNCTION REFERENCE BRIEF DESCRIPTION

isalnum ctype(3C) Is character
alphanumeric?

isalpha ctype(JC) Is character alphabetic?

Is ascii ctype(JC) Is integer ASCII
character?

I iscntrl ctype(3C) Is character a control
character?

is digit ctype(JC) Is character a digit?

isgrapb ctype(JC) Is character a printable
character?

islower ctype(JC) Is character a
lowercase letter?

isprint ctype(JC) Is character a printing
character including
space?

ispunct ctype(JC) Is character a

(punctuation character?

Is space ctype(3C) Is character a white
space character?

4-11

C LIBRARIES

is upper

isxdigit

ctype(3C)

ctype(3C)

Is character an uppercase
letter?

Is character a hex digit?

4.3.2 Character Translation Functions

These functions provide translation of uppercase to lowercase,
lowercase to uppercase, and integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv(JC) Convert integer to
ASCII character.

tolower conv(3C) Convert character to
lowercase.

toupper conv(3C)

4,4 Time Functions

Convert character to
uppercase.

These functions are used for accessing and reformatting the
system's idea of the current date and time. These functions are
located and loaded automatically during the compiling of a C
language program. No command line request is needed since
these functions are part of the C library.

The header file associated with these functions should be
included near the beginning of any file using the time func­
tions.

#include < time.h>

These functions (except tzset) convert a time such as returned
by time(2)

4-12

r

r
'

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

asctime ctime(3C)

ctime ctime(JC)

gmtime ctlme(3C)

localtime ctlme(3C)

tzset ctime(JC)

4.5 Miscellaneous Functions

Return string
representation
of date and time.

Return string
representation of
date and time, given
integer form.

Return Greenwich
Mean Time.

Return local time.

Set time zone field
from environment
variable.

These functions support a wide variety of operations:

• Numerical Conversion

• DES Algorithm Access

• Group File Access

• Password File Access

• Parameter Access

• Hash Table Management

• Binary Tree Management

• Table Management

• Memory Allocation

4-13

C LIBRARIES

• Pseudorandom Number Generation
These functions are automatically located and included in a pro­
gram being compiled. No command line request is needed
since these functions are part of the C library.

Some of these functions require declarations to be included.
These are described following the descriptions of the functions.

4.5.1 Numerical Conversion

The following functions perform numerical conversion.

FUNCTION REFERENCE BRIEF DESCRIPTION

a641 a641(3C) Convert string to
base 64 ASCII.

at of atof(3C) Convert string to
floating.

atoi atof{JC) Convert string to
integer.

atol atof(JC) Convert string to long.

frexp frexp(3C) Split floating into
mantissa and exponent.

13tol 13tol(3C) Convert 3-byte integer
to long.

ltol3 13toHJC) Convert long to 3-byte
integer.

4-14

r
-

(

C LIBRARIES

ldexp frexp(3C) Combine mantissa and
exponent.

164a a641(3C) Convert base 64 ASCII
to string.

modf frexp(3C) Split mantissa into
integer and fraction.

4.5.2 DES Algorithm Access

The following functions allow access to the Data Encryption
Standard (DES) algorithm used on the UNIX operating system.
The DES algorithm is implemented with variations to frustrate
use of hardware implementations of the DES for key search.

FUNCTION REFERENCE BRIEF DESCRIPTION

crypt crypt(3C) Encode string.

encrypt crypt(3C) Encode/ decode string of
Os and Is.

setkey crypt(3C) Initialize for subsequent
use of encrypt.

4.5.3 Group File Access

The following functions are used to obtain entries from the
group file. Declarations for these functions must be included in
the program being compiled with the line:

#include < grp.h>

4-15

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

endgrent getgrent (3C) Close group file being
processed.

getgrent getgrent (3C) Get next group file
entry.

getgrgid getgrent (3C) Return next group with
matching gid.

getgrnam getgrent (3C) Return next group with
matching name.

setgrent getgrent(3C) Rewind group file being
processed.

fgetgrent getgrent(3C) Get next group file entry
from a specified file.

4.5.4 Password File Access

These functions are used to search and access information
stored in the password file (/etdpasswd). Some functions
require declarations that can be included in the program being
compiled by adding the line:

#include < pwd.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endpwent getpwent (3C) Close password file
being processed.

4-16

~

r

~

(

C LIBRARIES

getpw getpw(3C) Search password file
for uid.

getpwent getpwent(JC) Get next password file
entry.

getpwnam getpwent (3C) Return next entry with
matching name.

getpwuid getpwent (3C) Return next entry with
matching uid.

putpwent putpwent(3C) Write entry on stream.

setpwent getpwent(JC) Rewind password file
being accessed.

fgetpwent getpwent (3C) Get next password file
entry from a specified
file.

4.5.5 Parameter Access

The following functions provide access to several different types
of parameters. None require any declarations.

FUNCTION REFERENCE BRIEF DESCRIPTION

getopt getopt(3C) Get next option from
option list.

getcwd getcwd (3C) Return string
representation of
current working directory.

4-17

C LIBRARIES

getenv getenv(3C)

get pass get pass (3C)

putenv putem (3C)

4.5.6 Hash Table Management

Return string value
associated with
environment variable.

Read string from terminal
without echoing.

Change or add value
of an environment
variable.

The following functions are used to manage hash search tables.
The header file associated with these functions should be
included in the program being compiled. This is accomplished
by including the line:

#include < search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

bcreate hsearch(3C) Create hash table.

hdestroy hsearch (3C) Destroy hash table.

hsearch hsearch(3C) Search hash table for
entry.

4.5. 7 Binary Tree Management

The following functions are used to manage a binary tree. The
header file associated with these functions should be included
near the beginning of any file using the search functions:

#include < search.h>

4-I8

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

(tdelete tsearch (3C) Deletes nodes from
binary tree.

tfind tsearch (3C) Find element in
binary tree.

tsearcb tsearch (3C) Look for and add
element to binary
tree.

twalk tsearch (3C) Walk binary tree.

4.5.8 Table Management

The following functions are used to manage a table. Since
none of these functions allocate storage, sufficient memory
must be allocated before using these functions. The header file

--- associated with these functions should be included near the I
beginning of any file using the search functions:

#include < search.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

bsearch bsearcb (3C) Search table using
binary search.

I search I search (3C) Look for and add
element in binary
tree.

Uind I search (3C) Find element in

/'""'
library tree.

I

-

4-19

C LIBRARIES

qsort qsort(3C)

4.5.9 Memory Allocation

Sort table using
quick-sort algorithm.

The following functions provide a means by which memory can
be dynamically allocated or freed.

FUNCTION REFERENCE BRIEF DESCRIPTION

calloc malloc(3C) Allocate zeroed storage.

free malloc(3C) Free previously allocated
storage.

malloc malloc(3C) Allocate storage.

realloc malloc(JC) Change size of allocated
storage.

The following is another set of memory allocation functions
available.

FUNCTION REFERENCE BRIEF DESCRIPTION

calloc malloc(3X) Allocate zeroed storage.

free malloc(JX) Free previously allocated
storage.

malloc malloc(3X) Allocate storage.

mallopt malloc(3X) Control allocation
algorithm.

4-20

r

. r-'

-

mallinfo malloc(3X)

realoc malloc(JX)

C LIBRARIES

Space usage.

Change size of
allocated storage.

4.5.10 Pseudorandom Number Generation

The following functions are used to generate pseudorandom
numbers. The functions that end with 48 are a family of inter­
faces to a pseudorandom number generator based upon the
linear congruent algorithm and 48-bit integer arithmetic. The
rand and srand functions provide an .interface to a multiplica­
tive congruential random number generator with period of 232.

FUNCTION REFERENCE BRIEF DESCRIPTION

drand48 drand48(3C) Random double over
the interval [0 to 1).

lcong48 drand48 (3C) Set parameters for
drand48, lrand48,
and mrand48.

lrand48 drand48(3C) Random long over the
interval [0 to 231}.

mrand48 drand48 (JC) Random long over the
interval [-231 to 231).

rand rand(JC) Random integer over the
interval [0 to 32767).

seed48 drand48(3C) Seed the generator for
drand48, lrand48, and
mrand48 .

4-21

C LIBRARIES

srand

srand48

rand(3C)

drand48(3C)

Seed the generator
for rand.

Seed the generator for
drand48, lrand48, and
mrand48 using a long.

4.5.11 Signal Handling Functions

The functions gsignal and ssignal implement a software facility
similar to slgnal(2) in the UniPius+- User Manual This facility
enables users to indicate the disposition of error conditions and
allows users to handle signals for their own purposes. The
declarations associated with these functions should be included
near the beginning of any file using the signal handling func­
tions:

#include < signal.h>

These declarations define ASCII names for the I 5 software sig­
nals.

FUNCTION REFERENCE BRIEF DESCRIPTION

gsignal ssignal (JC) Send a software signal.

ssignal ssignal(3C) Arrange for handling
of software signals.

4.5.12 Miscellaneous

The following functions do not fall into any previously
described category.

4-22

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

(abort abort(3C) Cause an lOT signal
to be sent to the
process.

abs abs(JC) Return the absolute
integer value.

ecvt ecvt(3C) Convert double to
string.

fcvt ecvtOC) Convert double to
string using Fortran
Format.

gcvt ecvt(3C) Convert double to
string using Fortran

(F or E format.

~· I sa tty ttyname(3C) Test whether integer
file descriptor is
associated with a
terminal.

mktemp mktemp(3C) Create file name
using template.

monitor monitor(3C) Cause process to record
a histogram of program
counter location.

swab swab(JC) Swap and copy bytes.

(~

4-23

C LIBRARIES

ttyname

4-24

ttyname(3C) Return pathname of
terminal associated with
integer file descriptor.

Chapter 5: OBJECT AND MATH LIBRARIES

r CONTENTS
~··

L Introduction I

2. Object File Library I
2.1 Common Object File Interface Macros

(ldfcn.hl 5

3. Math Library 6
3.1 Trigonometric Functions 6
3.2 Bessel Functions 7
3.3 Hyperbolic Functions . 7
3.4 Miscellaneous Functions 7

- j

- j

I

j

j

j

I

OBJECT AND MATH LIBRARIES

Chapter 5

.f'""' OBJECT AND MATH LIBRARIES

l. Introduction

This chapter describes the UniPlus+® Object and Math
Libraries. A library is a collection of related functions and/or
declarations that simplify programming effort. All of the func­
tions described are also described in Section 3 of the UniP/us+­
User Manual Most of the declarations described in this chapter
can be found in Section 5 of the UniPlust User Manual.

The three main libraries of the U niPius+ Operating System are:

C library

Object file

Math library

This is the basic library for C language pro­
grams. The C library is composed of func­
tions and declarations used for file access,
string testing and manipulation, character
testing and manipulation, memory allocation,
and other functions. This library is described
in the chapter entitled "THE C LIBRARY,"
in the UniP/us+- Programming Guide.

This library provides functions for the access
and manipulation of object files. This library
is described later in this chapter.

This library provides exponential, bessel
functions, logarithmic, hyperbolic, and tri­
gonometric functions. This library is
described in more detail later in this chapter.

2. Object File Library

The object file library provides functions for the access and
manipulation of object files. Some functions locate portions of
an object file such as the symbol table, the file header, sections,
and line number entries associated with a function. Other

5-l

OBJECT AND MATH LIBRARIES

functions read these types of entries into memory. For a
description of the format of an object file, see the chapter enti­
tled "COFF - COMMON OBJECT FILE FORMAT" in the
UniPius+- Programming Guide.

The object file library functions reside in /usr/lib/libld.a and may
be located and loaded at compile time if the following
command-line request is given:

cc file -nd

This command causes the link editor to search the object file
library. The argument -nd must appear AFTER all files that
reference functions in libld.a.

In addition, various header files must be included:

#include < stdio.h>
#include < a.out.h>
#include < ldjCn.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

Ida close ldclose (3X) Close object file being
processed.

Ida bread ldahread(3X) Read archive header.

Ida open ldopen(JX) Open object file for
reading.

ldclose Ide lose (3X) Close object file being
processed.

ldfhread ldfhread (3X) Read file header of
object file being
processed.

5-2

OBJECT AND MATH LIBRARIES

ldgetname ldgetname(JX) Retrieve the name of

r an object file symbol
table entry.

ldlinit Idiread (JX) Prepare object file for
reading line number
entries via ldlitem.

ldlitem ldlread(3X) Read line number entry
from object file after
ldlinit.

ldlread ldlread(3X) Read line number entry
from object file.

ldlseek ldlseek (JX) Seeks to the line number
entries of the object
file being processed.

/"'
ldnlseek ldlseek(JX) Seeks to the line number

entries of the object file
being processed given
the name of a section.

ldnrseek ldrseek (3X) Seeks to the relocation
entries of the object file
being processed given
the name of a section.

ldnshread ldshread (3X) Read section header of
the named section of the
object file being
processed.

r ldnsseek Ids seek (3X) Seeks to the section of
the object file being
processed given the
name of a section.

S-3

OBJECT AND MATH LIBRARIES

ldohseek ldohseek(JX) Seeks to the optional
file header of the object
file being processed.

I do pen ldopen(JX) Open object file for
reading.

ldrseek ldrseek (3X) Seeks to the relocation
entries of the object file
being processed.

ldsbread Ids bread (3X) Read section header of
an object file being
processed.

ldsseek ldsseek (3X) Seeks to the section of
the object file being
processed.

ldtbindex ldtbindex(3X) Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

ldtbread ldtbread (3X) Reads a specific
symbol table entry
of the object file
being processed.

ldtbseek Idtbseek (3X) Seeks to the symbol
table of the object file
being processed.

sgetl sputi(JX) Access long integer data
in a machine independant
format.

5-4

sputl

OBJECT AND MATH LIBRARIES

sputi(3X) Translate a long integer
into a machine
independant format.

2.1 Common Object File Interface Macros (ldfcn.h)

The interface between the calling program and the object file
access routines is based on the defined type "LDFILE," which
is defined in the header file lrifcn.h (see ldfcn(4)). The primary
purpose of this structure is to provide uniform access to both
simple object files and to object files that are members of an
archive file.

The function ldopen(JX) allocates and initializes the LDFILE
structure and returns a pointer to that structure to the calling
program. The fields of the LDFILE structure may be accessed
individually through the following macros:

1. the type macro returns the magic number of the file,
which is used to distinguish between archive files
and simple object files.

2. The IOPTR macro returns the file pointer which
was opened by ldopen (3X) and is used by the
input/output functions of the C library.

3. The OFFSET macro returns the file address of the
beginning of the object file. This value is non-zero
only if the object file is a member of the archive file.

4. The HEADER macro accesses the file header struc­
ture of the object file.

Additional macros are provided io access an object file. These
macros parallel the input/output functions in the C library; each
macro translates a reference to an LDFILE structure into a
reference to its file descriptor field. The available macros are
described in ldfcn(4) in the UniPlust User Manual.

5-5

OBJECT AND MATH LIBRARIES

3. ~ath Library

The math library consists of functions and a header file. The
functions may be located and loaded during compile-time if a
request is made on the command line:

« file -/m

This command will cause the link editor to search the math
library. In addition to the request to load the functions, the
header file of the math library should be included near the
beginning of the (first) file being compiled:

#include < math.h>

These functions are grouped into the following categories:

• Trigonometric functions

• Bessel functions

• Hyperbolic functions

• Miscellaneous functions.

3.1 Trigonometric Functions

These functions are used to compute angles On radian meas­
ure), sines, cosines, and tangents. All of these values are
expressed in double precision.

FUNCTION REFERENCE BRIEF DESCRIPTION

acos trig(3M) Return arc cosine.

a sin trig(JM) Return arc sine.

a tan trig(3M) Return arc tangent.

atan2 trig(JM) Return arc tangent of

S-6

OBJECT AND MATH LIBRARIES

a ratio.

cos trig (3M) Return cosine.

sin trig(3M) Return sine.

tan trig(JM) Return tangent.

3.2 Bessel Functions

These functions calculate bessel functions of the first and
second kinds of several orders for real values. The bessel func­
tions are jO, jl, jn, yO, yl, and yo. The functions are located
in section bessel(3M).

3.3 Hyperbolic Functions

These functions are used to compute the hyperbolic sine,
cosine, and tangent for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION

cosh slnh(JM) Return hyperbolic cosine.

sinh sinh(3M) Return hyperbolic sine.

tanh sinh(3M) Return hyperbolic tangent.

3.4 Miscellaneous Functions

These functions cover a wide variety of operations, such as
natural logarithm, exponential, and absolute value. In addition,
several are provided to truncate the integer portion of double
precision numbers.

S-7

OBJECT AND MATH LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

cell floor(3M) Returns the smallest
integer not less than a
given value.

exp exp(JM) Returns the exponential
function of a given value.

fabs ftoor(3M) Returns the absolute value
of a given value.

floor floor(3M) Returns the largest integer
not greater than a given
value.

fmod floor(3M) Returns the remainder
produced by the division of
two given values.

gamma gamma(3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

by pot hypot(JM) Return the square root
of the sum of the squares
of two numbers.

log exp(JM) Returns the natural
logarithm of a given
value.

loglO exp(3M) Returns the logarithm base
ten of a given value.

matherr matherr(JM) Error-handling function.

5-8

pow exp(3M)

sqrt exp(JM)

OBJECT AND MATH LIBRARIES

Returns the result of a
given value raised to
another given value.

Returns the square root
of a given value.

In addition, various header files must be included. This is
accomplished by including the line:

#include < stdio.h>
#include < a.out.h>
#include < ldfcn.h>

5-9

~ j

- j

·- j

I .

j

j

j

j

j

j

j

Chapter 6: ASSEMBLER

CONTENTS

I. Introduction

2. Warnings
2.1 Compare and Subtract
2.2 Opcode Overloading .

3. General Programming Information
3.1 Privilege States .
3.2 Data Organization
3.3 Status Register .
3.4 Data Types . .
3.5 Error Detection

4. Usage
4.1 Options

5. Syntax • •
5.1 Comments
5.2 Identifiers
5.3 Register Identifiers
5.4 Constants

5.4.1 Numerical Constants
5.4.2 Character Constants

5.5 Segments
5.6 Location Counters and Labels
5.7 Types . .
5.8 Expressions . . .

6. Addressing
6.1 Addressing Modes

7. Stacks and Queues
7 .I System Stack
7.2 UserStacks .
7.3 Queues

8. Pseudo-Operations

- i -

I
I
2

3
3
3
7
7
7

8
9

10
II
II
12
14
14
14
15
16
17
17

19
20

23
23
24
24

25

8.1 Data Initialization . . .
8.2 Symbol Definition . . .
8.3 Location Counter Control
8.4 Symbolic Debugging
8.5 "file" and "In"
8.6 Symbol Attribute .
8.7 Switch Table

9. Span-Dependent Optimization

10. Machine Instructions . . .

LIST OF FIGURES

Figure 6.1. Programmer's Model

Figure 6.2. Effective Address Modes

Figure 6.3. Assembler Span-Dependent
Optimizations . • • . •

- ii -

25
27
27
28
28
29
30

31

34

6

22

33

I
\
'----

·~·

ASSEMBLER

Chapter 6

MOTOROLA 68000 ASSEMBLER

1. Introduction

This is a reference manual for the UniPlus+® System assembler
for the Motorola 68000.

Programmers familiar with the M68000 should be able to pro­
gram in the assembler by referring to this manual, but this is
not a manual for the processor itself. Details about the effects
of instructions, meanings of status register bits, handling of
interrupts, and many other issues are not dealt with in detail in
this document. This manual should be used in conjunction
with the M68000 16-bit Microprocessor User's Manual.•

2. Warnings

A few important warnings should be emphasized at the outset.

For the most part there is a direct correspondence between as
notation used here and the notation used in M68000 16-bit
Microprocessor User's Manual. However the following excep­
tions could lead the unsuspecting user to write incorrect code.

2.1 Compare and Subtract

The order of the operands in compare, cmp, instructions fol­
lows one convention in the M68000 16-bit Microprocessor
User's Manual, and the OPPOSITE convention in the
UniPlus+ as.

(• M68000 16-BIT MICROPROCESSOR User's Manual, Third Edition;
Englewood Cliffs, N.J.: Prentice-Hall, 1982.

6-1

ASSEMBLER

Using the convention in the M68000 16-bit Microprocessor
User's Manual, one might write

CMP.W
BLE

DS,DJ
IS LESS

Is 03 less than 05 ?
Branch if Jess.

Using the as convention, one would write

cmp.w
ble

%d3,%d5
is_less

Is d3 less than d5 ?
Branch if less.

The UniPius+ as follows the convention used by other assem­
blers supported in the UNJX1'1 System (both the 3820$ 1 \1 and
the VAX I~~ follow this convention). This convention makes for
straightforward reading of compare-and-branch instruction
sequences. However it does lead to the following peculiarity:

If a cmp instruction is replaced by a sub instruction, the
effect on the condition codes will be entirely different.

This peculiarity may be especially confusing to programmers
who are used to thinking of a comparison as a subtraction
whose result is not stored.

2.2 Opcode Overloading

Another issue that users must be aware of arises from the
M68000's use of several different instructions to do more or
less the same thing.

For example, the M68000 16-bit Microprocessor User's
Manual lists the instructions SUB, SUBA, SUBI and SUBQ,
which all have the effect of subtracting their source operand
from their destination operand. as provides the convenience of
allowing all these operations to be specified by a single assem­
bly instruction sub. On the basis of the operands given to the
sub instruction, the as assembler selects the appropriate
M68000 operation code.

6-2

ASSEMBLER

It is important to remember that, even though sub can be used,
it could leave the misleading impression that all forms of the .r SUB operation are semantically identical - however, they are
NOT.

(
',

The careful reader of the M68000 16-bit Microprocessor User's
Manual will notice that while SUB, SUBI, and SUBQ all
affect the condition codes in a consistent way, SUBA DOES
NOT affect the condition codes at all. Consequently, the as
user must be aware that when the destination of a sub instruc­
tion is an address register (which causes the sub to be mapped
into the operation code for SURA), the condition codes will
NOT be affected .

.J. General Programming Information

3.1 Privilege States

Instructions may be executed in either of two distinct modes or
Privilege States:

1. User This mode is reserved for the execution of
most application programs.

2. Supervisor This mode is reserved for use by the operating
system and other system software~ To execute
some instructions, called "Privileged Instruc­
tions," the processor MUST be in supervisor
mode.

3.2 Data Organization

All of the M68000 registers, both data and address registers,
are 32-bits wide. In the data registers, the low order 8 bits are
used by byte operands, the low order 16 bits accomodate word
operands and the entire register is used when the operand is a
long word. The 0 bit is the "least significant bit" Osb): while
bit 31 is the "most significant bit" (msb).

6-3

ASSEMBLER

Byte·sized operations may not be performed on address regis­
ters. When the source operand is an address register, either the
low order word or the entire register may be used, depending
on the operation size. However, regardless of the operation,
when an address register is the destination operand, the entire
32 bits are affected. In fact, the other operand(s) are extended
BEFORE the operation to satisfy this requirement.

Bytes may be addressed individually by addressing the high
order byte on an even address. The low order byte has an odd
address one count higher than the word address.

Words and and long words must be addressed on even boun­
daries. To access the second word of data stored as a long word
at address x, the address of the second word would be x+2.
Naturally, x must be even.

If a byte is "pulled" from or "pushed" onto a stack, only the
high byte is affected; the lower byte remains unchanged.

The Programmer's Model, Figure 6.1, is common to all imple­
mentations of the M68000, and illustrates the following:

• 16 32-bit registers (%d0-%d7, %a0-%a7).

6-4

8 data registers (%d0-%d7) which may be used
for byte (8-bit), word 06-bit) and long word
02-bit) operations.

7 address registers (%a0-%a6) and the Stack
Pointer (Y..a7 or sp). The %a7 register may be
the User Stack Pointer (u5p) or the Supervisor
Stack Pointer (ssp), depending on the status of
the "S" bit in the Status Register (sr).

Address registers may be used for word and
long word operations ONLY.

•

ASSEMBLER

ANY register may be used as an index register.

32-bit Program Counter (pc)

• 8-bit Condition Code Register (ccr)

The ccr is found in the low 8-bits of the Status Register.
Only the low order byte of the sr is accessible in user
mode. The high order byte of the sr is considered the
"system byte" and the processor must be in supervisor
mode to access the high order bits.

6-5

ASSEMBLER

31 16 15 8 7 0

%dO

'l-\odl

%d2

%dJ

%d4
•l{,d5

%d6

'lohd7

31 16 15 0

%a0

%al

'll•a2
'llta3

%a4

%a5

%a6

31 16 15 0

%a7 (sp)

15 8 7 [)

CC< "
Figure 6.1. Programmer's Model

6-6

ASSEMBLER

3.3 Status Register

The Status Register holds the following information:

• 8 levels of interrupt mask are available through the
possible combinations of bits 8-10. The interrupt
mask, then, is in the "system byte" and only acces­
sible in supervisor mode.

• The condition codes:

(V) overflow
(Z) zero
(N) negative
(C) carry
(E) extend

• Trace mode status bit (bit 15)

• Supervisor mode status bit (bit 13)

3.4 Data Types

There are five basic data types supported by the 68000:

I. Bits

2. BCD digits (4 bits)

3. Bytes (8 bits)

4. Words (16 bits)

5. Long Words (32 bits)

Memory addresses, status word data, etc. are provided for in
the instruction set.

3.5 Error Detection

Several hardware traps, provided to indicate abnormal internal
conditions, also detect the following error conditions:

• Word access with odd address

6-7

ASSEMBLER

• Illegal instructions

• Unimplemented instructions

• Illegal memory access (bus error)

• Divide by zero

• Overflow condition code (See the M68000 16-blt
Microprocessor User's Manual regarding the TRAP
instruction)

• Register out of bounds (See the M68000 16-bit
Microprocessor User's Manual regarding the CHK
instruction)

• Spurious interrupt

Sixteen software trap instructions are also provided to help
detect errors in application programs.

The "Trace mode" provides instruction-by-instruction tracing
of a program being debugged by causing a trap to occur after
each instruction is executed. The microprocessor must be in
the supervisor state to enter trace mode.

The supervisor state is especially useful in that it provides a
high degree of protection by restricting the privilege to alter
selected areas of memory. This is an especially important pro­
tection when an external memory management unit is being
used.

4. Usage

The following UNIX System commands invoke the assembler:

6-8

asS.O I -o objfile I I -v I I -1 I inputfile

(or

ASSEMBLER

as I -o objfile I I -n I I -m I I -R I I -V I inputfile

or

Jjas I -o objfile I I -n I I -m I I -R I I -V I inputfile

The asS.O command produces a.out format object files, the as
command produces "COFF" (Common Object File Format)
object files and the ljas command is a special version of the as
command that produces "long jump" instructions rather than
(short) branch instructions.

If the -o option is given, the following string will be used as
the output file name. If no such specification had been made,
the output will be left in a file whose name was formed either
by appending a .o suffix to the end of the input file name, or by
replacing the input file's present suffix with the .o suffix.

input: as file.s (or as5.0 file.s or ljas file.s)
output: file.o

input:
output:

4.1 Options

as file (or as5.0 file or ljas file)
file.o

The options have the following significance:

-I This option to asS.O produces an assembly listing on a file
whose name is formed by adding a .lst suffix to the object
file name specified with the - o option. If the -I option
is specified, but the -o is not, the assembly listing is
placed on a.lst.

-m This option for as and ljas requests that the m4 macro
pre-processor be run on the input to the assembler.

6-9

ASSEMBLER

Remember, if using this pre-processor, be careful not use
any of the m4 keywords as variable names, function
names or labels in your input file because the m4 pre­
processor is unable to determine which are assembler
symbols and which are real m4 macros.

-n This option for as and ljas requests that long/short
address optimization be turned off. By default, address
optimization takes place.

- o This option for all three assembler commands requests
that the following string be used as the name of the object
file. If this option is not specified for the asS.O command,
the object file will be placed on a file called a.out5.0.

-v This option for the as5.0 command requests the interpre­
tation of the 680 I 0 mnemonics.

- R This option, for the as and ljas commands, requests that
the input 'file be removed (unlinked) after assembly is
completed. This option is off by default.

- V This option, for the as and ljas commands, requests that
the version number of the assembler being run be written
on standard error output.

5. Syntax

Typical as assembly code looks like these:

6-10

Clear a block of memory at location %a3

text 2
mov.w

loop: clr.l
dbf

init2:

&const,%dl
(%a3)+
%dl,loop # go back for const

repetitions

clr.l count; clr.l credit; clr.l debit;

('
'

ASSEMBLER

These general points about the example should be noted:

• An identifier occurring at the beginning of a line and fol­
lowed by a colon (:) is a label. One or more labels may
precede any assembly language instruction or pseudo­
operation.

• A line of assembly code need not include an instruction.
It may consist of a comment alone (introduced by#), a
label alone (terminated by :) , or it may be entirely blank.

• It is good practice to use tabs to align assembly language
operations and their operands into columns, but this is
not a requirement of the assembler. An opcode may
appear at the beginning of the line, if desired, and spaces
may precede a label. A single blank or tab suffices to
separate an opcode from its operands. Additional blanks
and tabs are ignored by the assembler.

• It is permissible to write several instructions on one line
by separating them by semicolons. The semicolon is syn­
tactically equivalent to a newline. A semicolon inside a
comment is ignored.

5.1 Comments

Comments are introduced by the character # and continue to
the end of the line. Comments may appear anywhere and are
completely disregarded by the assembler.

5.2 Identifiers

An identifier is a string of characters taken from the following
set

a-z A-Z % 0-9

The first character of an identifier must be a letter (upper or
lowercase) or an underscore. Upper and lowercase letters are
distinguished. For example:

con35 and CONJS

6-11

ASSEMBLER

are two distinct identifiers.

There is NO LIMIT on the length of an identifier.

The value of an identifier is established by the set "pseudo­
operation" or by using the identifier as a label.

The character - has special significance to the assembler. A -
used alone, as an identifie,, means "the cuHent location." A­
used as the first character in an identifier becomes a "." in the
symbol table. This allows symbols such as .eos and .Ofake to
make it into the symbol table, as required by the COFF (Com­
mon Object File Format). (See the chapter on COFF in the
UniPlus+ Programming Guide.)

5,3 Register Identifiers

A register identifier is an identifier preceded by the character
"%" and represents one of the available registers. This
identifier is used for both data registers and address registers.

The predefined register identifiers recognized by the assembler
are:

6-12

ASSEMBLER

M68000 REGISTERS

\\dO %a0 fp ~frame pointer)
1/odl %a I sp (system stack pointer)
%d2 %a2 ssp (supervisor stack pointer)
%d3 %a3 usp (user stack pointed
%d4 %a4 sr (status register)
%d5 %aS ccr (condition code register)
%d6 %a6 pc (program counter)
%d7 %a7

M68010 ONLY

vb• vector base register
(Accessed by the movec instruction)

sfc alternate function code register
(Accessed by the movec instruction)

dfc alternate function code destiniation register
(Accessed by the movec instruction)

NOTE: The address register %a6 is equivalent to fp, the
frame pointer. The address register %a7 is equivalent
to sp the System Stack Pointer, which in turn can be
either ssp (the Supervisor Stack Pointer) or usp (the
User Stack Pointer), depending upon the processor
"Privilege State."

Use of both %a7 and sp, or %a6 and fp, in the same
program may result in confusion.

6-13

ASSEMBLER

5.4 Constants

as deals only with integer constants. They may be entered in
decimal, octal, or hexadecimal, or they may be entered as char­
acter constants. Internally, as treats all constants as 32-bit
binary two's complement quantities.

5.4.1 Numerical Constants

A decimal constant is a string of digits beginning with a non­
zero digit.

An octal constant is a string of digits beginning with zero.

A hexadecimal constant consists of the characters Ox or OX fol­
lowed by a string of characters from the set 0-9, a-f, and A-F.
In hexadecimal constants, upper and lowercase letters are not
distinguished.

Binary numbers consist of a % followed by a binary number.

If the number following is an "immediate," it will be preceded
by an ampersand ("& "). In the old syntax, this was indicated
by the hash symbol ("#").

BINARY
DECIMAL
OCTAL
HEXIDECIMAL

%0010100I 1010
666
01232
Ox29A

5.4.2 Character Constants

An ordinary character constant consists of a single-quote n
followed by an arbitrary ASCII character other than \. The
value of the constant is equal to the ASCII code for that arbi­
trary ASCII character.

Special meanings of characters are overridden when used in
character constants. for example, if '# is used, the # is not

6-14

ASSEMBLER

treated as a comment indicator.

A special character consists of'\ followed by another character.
All the special character constants, and examples of ordinary
character constants, are listed here:

CONSTANT ASCII VALUE MEANIN<i

'lb Ox08 Backspace
'It Ox09 Horizontal Tab
'In OxOa Newline (Line Feed)

'I• OxOb Vertical Tab
'If OxOc Form Feed
'I• OxOd Carriage Return
'II Ox5c Backslash (\) .. Ox27 Single-Quote
'0 Ox30 Zero
'A Ox41 Capital A . Ox61 Lower Case A a

5.5 Segments

A program in as assembly language may be broken into seg­
ments known as text, data, and bss segments. The convention
regarding the use of these segments is to place instructions in
text segments, initialized data in data segments, and uninitial­
ized data in bss segments. However, the assembler DOES
NOT enforce this convention. For example, the assembler per­
mits intermixing of instructions and data in a text segment.

Primarily to simplify compiler code generation, the assembler
permits up to four separate text segments and four separate
data segments named 0, I, 2, and 3. The assembly language
program may switch freely between them by using assembler
pseudo-operations. When generating the object file, the

6-15

ASSEMBLER

assembler concatenates the text segments to generate a single
text segment, and the data segments to generate a single data
segment. Thus, the object file contains only one text segment
and only one data segment.

Since there is never more than one bss segment, this segment
maps directly into the object file.

Because the assembler keeps everything from a given segment
together when generating the object file, the order in which
information appears in the object file may not be the same as in
the assembly language file. For example, if the data for a pro­
gram consisted of

data I #segment l
word Oxllll
data 0 #segment 0
long Oxffffffff
data I #segment I
byte Ox2222

then equivalent object code would be generated by

data 0
long Oxffffffff
word Oxllll
word Ox2222

5.6 Location Counters and Labels

The assembler maintains separate location counters for the bss
segment and for each of the text and data segments. The loca­
tion counter for a given segment is incremented by one for
each byte generated in that segment.

The location counters allow values to, be assigned to labels.
When an identifier is used as a label in the assembly language
input, the current value of the current location counter is
assigned to the identifier. The assembler also keeps track of
which segment the label appeared in. Thus, the identifier

6-16

(
'

ASSEMBLER

represents a memory location relative to the beginning of a par­
ticular segment.

5.7 Types

Identifiers and expressions may have values of different types.

• In the simplest case, an expression (or identifier) may
have an absolute value, such as 29, -5000, or 262143.

• An expression, or identifier, may have a value relative to
the start of a particular segment. Such a value is known
as a relocatable value. The memory location represented
by such an expression cannot be known at assembly time,
but the relative values, that is the difference between the
start of a particular segment and the location of the
expression or identifier, can be known if they refer to the
same segment.

•
Identifiers that appear as labels have relocatable values.

If an identifier is never assigned a value, it is assumed to
be an undefined external. Such identifiers may be used
with the expectation that their values will be defined in
another program, and therefore are known at load time.
However, the relative values of undefined externals can­
not be known.

5.8 Expressions

All constants are absolute expressions.

An identifier may be thought of as an expression having the
identifier's type.

Expressions may be built up from lesser expressions using the
/_..... operators + - "' and I according to the following type rules:

• An absolute expression + another absolute expres­
sion results in an absolute expression.

6-17

ASSEMBLER

• Either an absolute expression+ a relocatable expres­
sion OR A relocatable expression + an absolute
expression will result in a relocatable expression.

• Either an absolute expression + an undefined exter­
nal expression OR an undefined external expression
+ an absolute expression will result in an undefined
external expression.

• An absolute expression - an absolute expression
will result in an absolute expression.

• A relocatable expression - a relocatable expression
will result in an relocatable expression.

• An undefined external expression - an absolute
expression will result in an undefined external
expression.

• If two relocatable expressions are relative to the
same segment, then:

A relocatable expression - a relocatable expression
will result in an absolute expression.

However, use of this construction is dangerous,
especially when dealing with identifiers from text
segments. The problem is that the assembler will
determine the value of the expression BEFORE it
has resolved all questions about span-dependent
optimizations. Use this feature at your own risk!

• An absolute expression .. an absolute expression will
result in an absolute expression.

• An absolute expression I an absolute expression will
result in an absolute expression.

• The complement of an absolute expression is an
absolute expression.

The unary minus operator (-} takes the highest precedence;
the next highest precedence is given to .. and I, and lowest

6-18

('

precedence is given to + and the binary
be used to coerce the order of evaluation.

ASSEMBLER

Parentheses may

If the result of a division is a positive non-integer, it will be
truncated toward zero. If the result is a negative non-integer,
the direction of truncation cannot be guaranteed.

6. Addressing

The first word of an instruction, the "operation word," pro­
vides the name and size of the function to be performed. The
remaining words specify the operands.

Operand locations may be expressed in one of the following
ways:

• Register Specification

• Effective Address

0 Implicit Reference

Most instructions specify the location of an operand using the
Effective Address.

The Effective Address is composed of two 3-bit fields

1. the mode field, which selects the address mode for
the instruction, and

2. the register field, which contains the number of a
register.

The Effective Address modes are grouped into three catagories:

1. Register direct, (Data register direct, and Address register
direct)

2. Memory addressing, (Address register indirect, address
register indirect with postincrement, address register
indirect with predecrement, address register indirect with

6-19

ASSEMBLER

displacement, address register indirect with index)

3. Special (Absolute short address, absolute long address, pro­
gram counter with displacement, program counter with
index, immediate data)

Implicit references are sometimes made to the program
counter, system stack pointer, supervisor stack pointer, user
stack pointer or the status register. The implicit references are
clearly indicated in the instructions to which they apply. See
Figure 6.4 for a complete list of the instructions available.

In addressing memory, there are two classes of reference:

1. Program references, which refer to the memory location of
a program; and

2. Data references, which refer to the memory location of
data.

ALL operand writes, and most reads, are to data space.

6.1 Addressing Modes

Although the addresses used in absolute addressing modes
must eventually be filled in with constants, that can be done by
the loader, there is no need for the assembler to be able to
compute them. Therefore, the Absolute Long addressing mode
is commonly used for accessing undefined external addresses.

Figure 6.2 summarizes the as syntax for M68000 addressing
modes. The following abbreviations are used in this figure:

%an Address register, where n specifies the register number.

d Displacement.

%dn Data register, where n specifies the register number.

pc Program Counter

6-20

r

r

ASSEMBLER

%r n Any register, address or data, where n specifies the
register number.

%rl Any register, address or data, used as an index.

6-21

ASSEMBLER

Notation Notation Effective
for UnlPius+ for UniPius-+ Address
Version 5.0 Version 5.2 Mode

Dn %dn Data Register Direct
An %an Address Register Direct
(An) (%an) Address Register Indirect
An@+ (%an)+ Address Register Indirect

with Postincrement
An@ (%an) Address Register Indirect

with Predecrement
An@(d) d(%a n) Address Register Indirect

with Displacement
(d is a signed 16-bit absolute displacement)

An@(d,Ri.W) d(%a n,%ri.w) Address Register Indirect
An@ (d,Ri.L) d(%a n,%rl.l) with Index

(d signifies s signed 8-bit absolute displacement)
xxx.W XXX Absolute Short Address
(xxx is an expression yielding a signed 16-bit memory address)
xxx.L XXX Absolute Long Address

(xxx is an expression yielding a 32-bit memory address)
PC@(d) d(%pc) Program Counter with

Displacement
(dis a signed 16-bit absolute displacement)

PC@(d,Ri.W) d(%pc,%rn.w) Program Counter with
PC@ (d,Ri.Ll d(%pc,%rn.l) lndex

(d signifies a signed 8-bit absolute displacement)

#xxx &xxx Immediate Data
(xxx signifies an absolute constant expression)

Figure 6.2. Effective Address Modes

6-ZZ

ASSEMBLER

7, Stacks and Queues

The address register indirect postincrement and predecrement
addressing modes provide the 68000 with stack and queue data
structures. "A stack is a last-in-first-out (LIFO) list, a queue is
a first-in-first-out (FIFO) list."•

Many instructions use the system stack implicitly. The pro­
grammer may create user stacks and queues by using the
appropriate addressing modes.

7.1 System Stack

The system stack pointer (sp or %a7) may be either the super­
visor stack pointer (ssp) or the user stack pointer (usp),
depending on the state of the "S" bit (bit 15) of the status
register. If the S bit indicates supervisor state is set to 1, the
ssp is the active system stack pointer and the usp cannot be
addressed as an address register. If the S bit is 0, the usp is the

(active system stack pointer and the ssp cannot be addressed.

Since the stack is filled from high to low, to "push" an item on
the stack, use the -(Ssp) address mode. To "pull" an item
from the stack, use the (sp)+ address mode.

When a subroutine call is made, the program counter is saved
on the active system stack, and it is restored when the return
from subroutine call is made. When exception processing
occurs, both the program counter and the status register are
saved on the supervisor stack .

• 1\161«100 16-bit 1\licroproce~sor u~er·s 1\lanual. page 22.

6-23

ASSEMBLER

7.2 User Stacks

User stacks may be filled either from high memory to low
memory, or from low memory to high memory. The address
register indirect with postincrement and predecrement address­
ing modes are used to create and manipulate these stacks. The
following are some important points regarding these modes:

• When using predecrement, remember that the register is
decremented BEFORE its contents is used as the stack
pointer.

• When using postincrement remember that the register is
incremented AFTER its contents is used as the stack
pointer.

• When mixing byte data with word and long word data, be
careful to use bytes in pairs to assure even word boun­
daries. Remember, trying to address an odd word boun­
dary will cause exception processing to occur.

• When implementing a stack from high memory to low
memory, use the following:

-(%ax) to "push" data onto the stack
(%ax) to "pull" data off of the stack

• When implementing a stack from low memory to hihg
memory, use the following:

(0Jhax) to "push " data onto the stack
- (0Jhax) to "pull" data off of the stack

7.3 Queues

The address register indirect with postincrement or predecre­
ment addressing modes are used to create and manipulate user
queues. User queues can be created to grow from high
memory to low memory or from low memory to high memory,
just by the correct manipulation of these addressing modes.
Two address registers are used as pointers for the queue func­
tions put and get.

6-24

ASSEMBLER

To establish a queue from low to high memory, use the address
r indirect with postincrement addressing mode.

If the queue is to be implemented as a circular buffer, the
address register should be checked BEFORE the get or put is
performed. If necessary, adjust the address register by subtract­
ing the buffer length (in bytes).

Queue growth from high to low memory is implemented with
the address indirect with predecrement addressing mode. If the
queue is to be implemented as a circular buffer, the address
register should be checked AFTER the get or put is performed.
If necessary, adjust the address register by adding the buffer
length On bytes).

8. Pseudo-Operations

(__., 8.1 Data Initialization

byte abs, abs, ...

short abs, abs, ...

One or more arguments, separated by
commas, may be given. The values of
the arguments are computed to produce
successive bytes in the assembly output.

One or more arguments, separated by
commas, may be given. The values of
the arguments are computed to produce
successive 16-bit words in the assembly
output.

long expr, expr, ... One or more arguments, separated by
commas, may be given. Each expression
may be absolute, relocatable, or
undefined external. A 32-bit quantity is
generated for each such argument (for
relocatable or undefined external expres­
sions, the value may not be filled in until
load time).

Alternatively, the arguments may be bit-

6-25

ASSEMBLER

field expressions. A bit-field expression
has the form:

n value

where both n and value denote absolute
expressions. The quantity n represents a
field width~ the low-order n bits of value
become the contents of the bit-field. Suc­
cessive bit-fields fill up 32-bit long quanti­
ties starting with the high-order part. If
the sum of the lengths of the bit-fields is
less than 32 bits, the assembler creates a
32-bit long with zeroes filling out the
low-order bits. For example,

long4:-l, 16:0x7f, 12:0, 5000

and

long4:-l, 16:0x7f, 5000

are equivalent to

long0xf007fl)00, 5000

Bit-fields may not span pairs of 32-bit
longs. Thus,

long24:0xa, 24:0xb, 24:0xc

yields the same thing as

longOxOOOOOaOO, OxOOOOObOO, OxOOOOOcOO

space abs The value of abs is computed, and the
resultant number of bytes of zero data is
generated. For example,

6-26

space6

is equivalent to

byteO,O,O,O,O,O

ASSEMBLER

8.2 Symbol Definition

r set identifier, expr

comm identifier, abs

lcomm identifier, abs

global identifier

The value of identifier is set equal to
expr, whkh may be absolute or relocat­
able.

The named identifier is to be assigned
to a common area of size abs bytes. If
identifier is not defined by another
program, the loader will allocate space
for it.

The type of identifier becomes
undefined external.

The named identifier is assigned to a
local common of size abs bytes. This
results in allocation of space in the bss
segment.

The type of identifier becomes relocat­
able.

This causes identifier to be externally
visible. If identifier is defined in the
current program, then declaring it glo­
bal allows the loader to resolve refer­
ences to identifier in other programs.

If identifier is not defined in the
current program, the assembler expects
an external resolution; in this case,
therefore, identifier is global by
default.

8.3 Location Counter Control

(_,.---. data abs The argument, if present, must evaluate to 0, l, 2,
or 3; this shows the number of the data segment
into which assembly is to be directed. If no argu­
ment is present, assembly is directed into data seg­
ment 0.

6-27

ASSEMBLER

text abs The argument, if present, must evaluate to 0, I, 2,
or 3; this shows the number of the text segment into
which assembly is to be directed. If no argument is
present, assembly is directed into text segment 0.

Before the first data or text operation is encoun­
tered, assembly is by default directed into text seg­
ment 0.

org I!Xf'l" The current location counter is set to expr. Expr
must represent a value in the current segment, and
must not be less than the current location counter.

even The current location counter is rounded up to the
next even value.

8.4 Symbolic Debugging

The assembler allows for symbolic debugging information to be
placed into the object code file with special pseudo-operations.
The information typically includes line numbers and informa­
tion about C language symbols, such as their type and storage
class. The Motorola 68000 C compiler generates symbolic
debugging information when the -g option is used. Assembler
programmers may also include such information in source files.

8.5 "file" and "In"

The file pseudo-operation passes the name of the source file
into the object file symbol table. It has the form

file filename

where filename consists of one to 14 characters.

The In pseudo-operation makes a line number table entry in
the object file. That is, it associates a line number with a
memory location. Usually the memory location is the current
location in text. The format is

In line [,value]

6-28

(
!

ASSEMBLER

where line is the line number. The optional value is the
address in text, data, or bss to associate with the line number.
The default when value is omitted (which is usually the case) is
the current location in text.

8.6 Symbol Attribute

The basic symbolic testing pseudo-operations are def and endef.
These operations enclose other pseudo-operations that assign
attributes to a symbol and must be paired.

defname
. # Attribute
. # Assigning
. # Operations

endef

NOTE: def DOES NOT define the symbol, although it does
create a symbol table entry. Because an undefined
symbol is treated as external, a symbol that appears in

(a def, but never acquires a value, will eventually
result in an error at link edit time.

NOTE: To allow the assembler to calculate the sizes of func­
tions for other tools, each def/endef pair that defines
a function name must be matched by a def/endef pair
after the function in which a storage class of -1 is
assigned.

The paragraphs below describe the attribute-assigning opera­
tions. Keep in mind that all these operations apply to symbol
name that appeared in the opening def pseudo-operation.

val expr

sci expr

Assigns the value expr to name. The
type of the expression expr determines
with which section name is associated.
If value is-, the current location in the
text section is u~d.

Declares a storage class for name. The
expression expr must yield an ABSO­
LUTE value that corresponds to the C

6-29

ASSEMBLER

compiler's internal representation of
storage class. The special value -1
designates the physical end of a func-
t~n. -

type expr Declares the C language type of name.
The expression expr must yield an
ABSOLUTE value that corresponds to
the C compiler's internal representa­
tion of a basic or derived type.

tag str Associates name with the structure,
enumeration, or union named str that
must have already been declared with a
def/endef pair.

line e.qJr Provides the line number of name,
where name is a block symbol. The
expression expr should yield an ABSO­
LUTE value that represents a line
number.

size expr Gives a size for name. The expression
expr must yield an ABSOLUTE value.
When name is a structure or an array
with a predetermined extent, expr
gives the size in bytes. For bit fields,
the size is in bits.

dim cxprl, expr2, ... Indicates that name is an array. Each
of the expressions must yield an
ABSOLUTE value that provides the
corresponding array dimensions.

8. 7 Switch Table

The MC68000 C compiler generates a compact set of instruc­
tions for the C language switch construct, of which an example
is shown below.

6·30

sub.l&l,%d0
cmp.l%d0,&4
bhiL%21
add.w%d0,%d0
mov.wl0(%pc,%dO.w) ,%dO
jmp6(%pc,%d0.w)
swbeg&S

L%22:
shortL%15-L%22
shortL%21-L%22
shortL%16-L%22
short L%21-L%22
shortL%17-L%22

ASSEMBLER

The special swbeg pseudo-operation communicates to the
assembler that the lines following it contain rei-rei subtractions.
Remember that ordinarily such subtractions are risky because
of span-dependent optimization. Here, however, the assembler
makes special allowances for the subtraction because the com­
piler guarantees that both symbols will be defined in the current
assembler file, and that one of the symbols is a fixed distance
away from the current location.

The swbeg pseudo-operation takes an argument that looks like
an immediate operand. The argument is the number of lines
that follow swbeg and that contain switch table entries. Swbeg
inserts two words into text. The first is the ILLEGAL instruc­
tion code. The second is the number of table entries that fol­
low. The Motorola 68000 disassembler needs the ILLEGAL
ihstruction as a hint that what follows is a switch table. Other­
wise it would get confused when it tried to decode the table
entries (differences between two symbols) as instructions.

9, Span-Dependent Optimization

The assembler makes certain choices about the object code it
generates based on the distance between an instruction and its
operand(s). Choosing the smallest, fastest form is called span­
dependent optimization. Span-dependent optimization occurs

6-31

ASSEMBLER

most obviously in the choice of object code for branches and
jumps. It also occurs when an operand may be represented by
the program counter relative address mode instead of an abso­
lute 2-word (long) address.

The span-dependent optimization capability is normally
enabled; the - n command line flag disables it. When this
capability is disabled, the assembler makes worst-case assump­
tions about the types of object code that must be generated.

The compiler generates branch instructions without a specific
offset size. When the optimizer is used, it identifies branches
that could be represented by the short form and it changes the
operation accordingly. The assembler chooses only between
long and very-long representation for branches.

Branch instructions, (e.g., bra, bsr, bgt, etc.), can have either a
byte or a word pc-relative address operand. A byte-size
specification should be used only when the user is sure that the
address intended can be represented in the byte allowed. The
assembler will take one of these instructions with a byte size
specification and generate the byte form of the instruction
without asking questions.

Although the largest offset specification allowed is a word, large
programs could conceivably have need for a branch to a loca­
tion not reachable by a word displacement. Therefore,
equivalent long forms of these instructions might be needed.
When the assembler encounters a branch instruction without a
size specification, or with a word size specification, it tries to
choose between the long and very long forms of the instruc­
tion. If the operand can be represented in a word, then the
word form of the instruction will be geperated. Otherwise the
very-long form will be generated. For unconditional branches,
(e.g., br, bra and bsr), the very-long form is just the equivalent
jump (jmp and jsr) with an absolute address operand (instead
of pc-relative).

6-32

ASSEMBLER

For conditional branches, the equivalent very-long form is a
conditional branch around a jump, where the conditional test
has been reversed.

Figure 6.1 summarizes span-dependent optimizations. The
assembler chooses only between the long form and very-long
form, while the optimizer chooses between the short and long
forms for branches (but not bsr).

INSTRUCTION SHORT LONG VERY
FORM FORM LONG

FORM

br, bra, bsr byte offset word offset jmp or jsr
with abso-
lute long
address

conditional byte offset word offset short condi-
branch tiona!

branch with
reversed
condition
around jmp
with abso-
lute long
address

jmp, jsr - pc-relative absolute
address long address

lea.l, pea.l - pc-relative absolute
address long address

Figure 6.3. Assembler Span-Dependent Optimizations

6-33

ASSEMBLER

10. Machine Instructions

Figure 6.4 shows how MC68000 instructions should be written
to be understood correctly by the as assembler. In addition to
the abbreviations previously described for Figure 6.2 "Effective
Address Modes," the following abbreviations are used in the
following figure:

CC In the contexts bn·, dbn· and sec, the letters n·
represent any of the following condition code designations
(except that F and T may not be used in the b('C instruc­
tion):

cc carry clear LS low or same
cs carry set LT less than
EQ equal MI minus
F false NE not equal

GE greater or equal PL plus

GT greater than T true
HI high vc overflow clear
LE less or equal vs overflow set

ccr Condition Code Register {the low 8 bits of the Status
register)

EA Effective Address

sr Status Register.

ssp Supervisor Stack Pointer.

usp User Stack Pointer.

6-34

c

c

c

Chapter 7: LD - LINK EDITOR

CONTENTS

I. Introduction . • • . .
1.1 Host and Target . .
1.2 Memory Configuration
1.3 Section .
1.4 Addresses
1.5 Binding .
1.6 Regions •
1.7 Object File

2. Using the Link Editor
2.1 Op'tions . . .

3. Link Editor Command Language
3.1 Expressions . . . • •
3.2 Assignment Statements
3.3 Specifying a Memory Configuration
3.4 Region Directives
3.5 Section Definition Directives . .

3.5.1 File Specifications . . • •
3.5.2 Load a Section at a Specified

1
2
2
3
3
3
4
5

7
9

14
14
15
17
19
20
21

Address • • • • • • • 22
3.5.3 Aligning an Output Section . 23
3.5.4 Grouping Sections Together 24
3.5.5 Creating Holes Within Output

Sections 26
3.5.6 Creating and Defining Symbols at Link-Edit

Time • . • 28
3.5.7 Allocating a Section Into Named

Memory • • • • • • • • 30
3.5.8 Initialized Section Holes or .bss

Sections • •
3.6 Transfer Vectors
3. 7 Subsystem Loading . . .

4. Notes and Special Considerations

- i -

31
32
36

43

4.1 Changing the Entry Point . . 43
4.2 Use of Archive Libraries . . 44
4.3 Dealing With Holes in Physical

Memory 48
4.4 Allocation Algorithm 49 -
4.5 Incremental Link Editing 50
4.6 Space Limitations 51
4.7 DSECT, COPY, and NOLOAD

Sections 52
4.8 Output File Blocking 53
4.9 Nonrelocatable Input Files 55
4.10 The PATCH List . 56
4.11 The - ild Option . 57

5. Error Messages 58
5.1 Corrupt Input Files 58
5.2 Errors During Output 59
5.3 Internal Errors 59
5.4 Allocation Errors . . 60
5.5 Misuse of Link Editor Directives 61
5.6 Misuse of Expressions . . . 63
5.7 Misuse of Options 64 -
5.8 Transfer Vector Error Messages 64
5.9 Space Restraints 65
5.10 Miscellaneous Errors 66

6. Syntax Diagram for Input Directives 69

LIST OF FIGURES

Figure 7.1. Symbols and Functions of
Operators 15

(
'

'---'

r

LINK EDITOR

Chapter 7

LD

THE COMMON LINK EDITOR

1. Introduction

The link editor (see ld(l), in the UniPlu~+ flo User Manual)
creates executable object files by combining object files, per­
forming relocation, and resolving external references. The ld
also processes symbolic debugging information. The inputs to
ld are relocatable object files produced either by the compiler
[cc(l)], the assembler [as(l)], or by a previous ld run. The ld
combines these object files to form either a relocatable or an
absolute (i.e., executable) object file.

The ld also supports a command language that allows users to
control the ld process with great flexibility and precision.
Although the link edit process is controlled in detail through
use of this language (described later), most users do not
require this degree of flexibility, and the manual page in the
UniP/w,+ User Manual is sufficient instruction in the use of this
command.

The command language (described later) supports the ability to

• Specify the memory configuration of the machine

• Combine object file sections in particular fashions

• Cause the files to be bound to specific addresses or
within specific portions of memory

• Define or redefine global symbols at link edit time.

There are several concepts and definitions with which you
should familiarize yourself before proceeding further.

7-1

LINK EDITOR

1.1 Host and Target

In a cross-compilation system, the host machine is the machine
on which the link editor is running, and the target machine is
the machine on which the output object file will run. For
instance, the bl6 link editor will run on the PDPH'-11/70,
VAX~~~ or 3820$'1~1 machines, but the object file will run only
on the target machine for the bl6 - the Intel 8086.

On a native UNIXHI system, the host and the target are the
same. That is, the link editor on a VAX or PDP-11/70 pro­
duces an object file that is executable on that machine.

1.2 Memory Configuration

The virtual memory of the target machine is, for purposes of
allocation, partitioned into conjigured and unconjigurecl memory.
The default condition is to treat all memory as configured. It is
common with microprocessor applications, however, to have
different types of memory at different addresses. For example,
an application might have 3K of PROM (Programmable Read­
Only Memory) beginning at address 0, and 8K of RAM
(Read-Only Memory) starting at 20K. Addresses in the range
3K to 20K-l are then NOT configured. Unconfigured memory
is treated as reserved or unusable by the ld.

NOTHING CAN EVER BE LINKED INTO UNCONFIG­
URED MEMORY.

Thus, specifying a certain memory range to be unconfigured is
one way of marking the addresses in that range as illegal or
nonexistent with respect to the linking process. Memory

PDP and VAX are trademarks of Digital Equipment Corporation.
UNIX and 38205 arc trademarks of AT&T Bell Laboratories.
UniPlus+ is a registered trademark of UniSoft Corporation.

7-2

LINK EDITOR

configurations other than the default must be explicitly
specified.

Unless otherwise specified, all discussion in this document of
memory, addresses, etc. are with respect to the configured sec­
tions of the address space.

1.3 Section

A section of an object file is the smallest unit of relocation and
must be a contiguous block of memory. A section is identified
by a starting address and a size. Information describing all the
sections in a file is stored. in section headers at the start of the
file. Sections from input files are combined to form output sec­
tions that contain executable text, data, or a mixture of both.
Although there may be holes or gaps between input sections
and between output sections, storage is allocated conliJ(uous/y
within each output section and may not overlap a hole in
memory.

1.4 Addresses

The physical address of a section or symbol is the relative offset
from address zero of the address space. The physical address
of an object is not necessarily the location at which it is placed
when the process is executed. For example, on a system with
paging, the address is with respect to address zero of the virtual
space, and the system performs another address translation.

l.S Binding

It is often necessary to have a section begin at a specific,
predefined address in the address space. The process of speci­
fying this starting address is called binding, and the section in
question is said to be bound to or bound at the required address.
While binding is most commonly relevant to output sections, it
is also possible to bind global symbols with an assignment state­
ment in the ld command language.

7-3

LINK EDITOR

1.6 Regions

Regions are currently used only in the link editor for the intel
8086 - the bl6 instantiation of the common link editor. A
region refers to a range of memory that begins with a virtual --~
address of zero. On the Intel 8086, an address really has two
components, a base as indicated by a segment register and a
16·bit o.t!Set. For any memory reference, the contents of one of
the four segment registers is added to the o.USer to form an
address. Segment registers are set to the base address of a
region, and all references in the text are resolved with respect
to the 1•irtua/ address.

For example, in the simplest case of a single region where
everything is loaded between 0 and 64k, the virtual addresses
of all symbols are the same as their physical addresses, and
both the text and data segment registers are set to the region
origin. If, on the other hand, an application has 50k of data
and 20k of text, they can form two regions, one at address 0
and the other at 20k. If a global symbol, gsymbol, was defined
at address 20k+2, and a C program contained the statement:

a = gsymbo/

where a is an automatic variable, the virtual address of K~:vmbol
would be 2. The link editor always allows an arbitrary number
of regions. Relocation is performed only with one region, the
code must modify the segment registers. This is done automat~
ically if the program uses a transfer vector for function linkage.
If a transfer vector is not used, segment registers must be set
explicitly by the user before doing any inter~region transfers.

There are three restrictions on regions:

1. The first is that they must begin at an address aligned to a
16~byte boundary; that is, the low four bits of the address
MUST be 0. For example, 0, 16, 32, etc. are valid region
origins.

7-4

This is because the 20~bit physical address is stored in a
segment BEFORE adding in the offset. For example, if a

LINK EDITOR

region begins at Oxl2000, the segment register will con·
tain Ox1200.

(' 2. The second restriction is that regions may not exceed 64k
in size, or else there can be no direct references to ~·

r

r
' -

addresses beyond 64k into the region.

3. The third restriction is that the physical memory assigned
to user-specified regions may not overlap.

1. 7 Object File

Object files are produced both by the assembler (typically as a
result of calling the compiler) and by the ld. The ld accepts
relocatable object files as input and produces an output object
file that may or may not be relocatable. Under certain special
circumstances, the input object files given to the ld can also be
absolute files.

Files produced from the compHer/assembler always contain
three sections:

•

•

.text
The .text section contains the instruction text (for
example, executable instructions) .
. data
The .data section contains initialized data variables.

• .bss
The .bss section contains uninitialized data vari­
ables.

For example, if a C program contained the following global
(i.e., not inside a function) declarations:

tnt I - 100;
char abc:llOOI;

and the following assignment:

abclil - 0;

then compiled code from the C assignment is stored in .text.

7-5

LINK EDITOR

The variable i is located in .data, and abc is located in .bss.

There is an exception to the rule however - both initialized
and uninitialized statics are allocated into the .data section. ---
(The value of an uninitialized static in a .data section is zero.)

7-6

·.
~·

LINK EDITOR

2. Using the Link Editor

To use the link editor, give the following command:

ld [options] filename I filename2 ...

Files passed to the ld must be object files, archive libraries con­
taining object files, or text source files containing ld directives.
The ld uses the magic number (in the first two bytes of the file)
to determine which type of file is encountered. If the ld does
not recognize the magic number, it assumes the file is a text
file containing ld directives and attempts to parse it.

Input object files and archive libraries of object files are linked
toE:ether to form an output object file. If there are no
unresolved references, this file is executable on the target
machine. An input file containing directives is referred to as an
Uile in this document. Object files have the form name.o

,~ throughout the examples in this chapter. The names of actual
,_____ input object files need not follow this convention.

If you merely want to link the object files filel.o and file2.o, the
following command is sufficient:

ld filel.o file2.o

No directives to the ld are needed. If no errors are encoun­
tered during the link edit, the output is left on the default file
a.out. The sections of the input files are combined in order.
That is, if filel.o and file2.o each contain the standard sections
.text, .data, and .bss, the output object file also contains these
three sections. The output .text section is a concatenation of
.text from filel.o and .text from file2.o. The .data and .bss sec­
tions are formed similarly. The output .text section is then
bound at address OXOOOOOO. The output .data and .bss sec­
tions are link edited together into contiguous addresses (the
particular address depending on the particular processor).

1-1

LINK EDITOR

Instead of entering the names of files to be link edited (as well
as ld options on the ld command line), this information can be
placed into an ifile, and just the ifile passed to ld. For example,
if you are going to frequently link the object files filel.o, file2.o
and file3.o with the same options f1 and f2, enter the command

ld -}1 -jl filel.o file2.o file3.o

each time it is necessary to invoke ld. Alternatively, an ifile
containing the statements:

-j1
-j2

filel.o
file2.o
file3.o

could be created. Then the use the folloiwing command:

ld !file

Note that it is perfectly permissible to specify some of the
object files to be link edited in the ifile and others on the com­
mand line - as well as some options in the ifile and others on
the command line. Input object files are link edited in the
order they are encountered, whether this occurs on the com·
mand line or in an ifile. As an example, if a command line
were

ld filel.o ifile file2.o

and the ifile contained

file3.o
file4.o

then the order of link editing would be:

1. filel.o

2. file3.o

3. file4.o,

7-8

LINK EDITOR

4. file2.o.
Note from this example that an ifile is read and processed ,r immediately upon being encountered in the command line.

r
'

2.1 Options

Options may be interspersed with file names both on the com­
mand line and in an ifile. The ordering of options is not
significant, except for the l and L options for specifying
libraries. The I option is a shorthand notation for specifying an
archive library, and an archive library is just a collection of
object files. Thus, as is the case with any object file, libraries
are searched as they are encountered. The L specifies an alter­
native directory for searching for libraries. Therefore, to be
effective, a - L option MUST appear before any -I options.

All options for ld must be preceded by a hyphen (-) whether
in the ifile or on the ld command line. Options that have an
argument (except for the -I and - L options) are separated
from the argument by white space (blanks or tabs). The fol­
lowing options (in alphabetical order) are supported, though
not all options are available on each processor.

-a

-e ss

-f bb

7·9

Produces an absolute, excutable file. Messages are
issued when undefined symbols are found, and
several special symbols are defined. Unless overrid­
den by the -r option, relocation information is
stripped from the output file. If neither -r or -a
is specified, the -a is assumed.

Defines the primary entry point of the output file to
be the symbol given by the argument ss. See
"Changing the Entry Point" under the Section
heading "Notes and Special Considerations" for a
discussion of how the option is used.

Sets the default fill value. The argument bb is a 2-
byte constant. This value is used to fill holes
formed within output sections. Also, it is used to
initialize input .bss sections when they are combined
with other non-.bss input sections. If the -f

LINK EDITOR

-h nn

-I

-lid

-lx

-m

-o nn

-p Ill/

7-10

option is not used, the default fill value is zero for
all sections except the .tv section, whose default fill
value is OxFFFF.

Set the size of the optional header in the output file
to be nn bytes. The argument nn is an integer con­
stant. If the - h option is not used, the optional
header will be 0 length. Any part of the option!
header not assigned a value (as a result of using the
-p or -X options) will be cleared to 0.

Generate separate I and D spaces, allowing 64k of
instructions and 64k of data, each in a separate
region. The default is· to have only one address
space or region. If there are REGIONS directives in
the ifile, they will override the setting of the - i
option. This option is valid only for those instantia­
tions of the link editor that allow regions (i.e. bl6),
all other versions ignore it.

Generate the sections reserved for use by the incre­
mental link editor. This option invokes both -r
and -a options.

Specifies an archive library file as ld input. The
argument is a character string (less than 10 charac­
ters) immediately following the -1 without any
intervening white space. As an example, -I c refers
to Jibe. a, -I C to libC.a, etc. The given archive
library must contain valid object files as its
members.

Produces a map or listing of the input/output sec­
tions (including holes) on the standard output.

Name the output object file. The argument m1 is the
name of the UNIX system file to be used as the out­
put file. The default output object file name is
a.our. The option m1 can be a full or partial UNIX
path name.

Generates a patch list. This list is generated in the
optional header field of the output file, following

LINK EDITOR

-r

-s

-t

anything built as a result of the - e, - h or -X
options. If the optional argument 1m is used, only
nn bytes of physical memory will be allocated for
patch sections. This conserves memory usage while
retaining the ability to later increase patch sections
to the size specified in the relevant SECTIONS
directive.

Retains relocation entries in the output object file.
Relocation entries must be saved if the output file is
to be used as an input file in a subsequent ld call. If
the -r option is used, unresolved references do not
prevent the creation of an output object file.

Strips line number entries and symbol table informa­
tion from the output object file. Relocation entries
(-r option) are meaningless without the symbol
table, hence use of -s precludes the use of -r. All
symbols are stripped, including global and undefined
symbols.

Disables checking that all instances of a multiply
defined symbol are the same size.

-tv Use the transfer vector linkage convention. When

-u sym

-tv is specified, all input object files must have
been compiled/assembled using the -tv option.
This option is valid only for the instantiations of the
common link editor that allow transfer vectors.
(i.e., 3bld, bl6ld, x86ld and mc681d).

Introduces an unresolved external symbol into the
output file's symbol table. The argument sym is the
name of the symbol. This is useful for linking
entirely from a library, since initially the symbol
table is empty and an unresolved reference is
needed to force the linking of an initial routine from
the library.

-x Does not preserve any local {non-global) symbols in
the output symbol table; enter external and static
symbols only. This option saves some space in the

7-11

LINK EDITOR

-z

-8 nn

-F

-H

-Ldir

output file.

Do not place anything in address zero. This is used
to catch references through null pointers. This
option is overridden if any section or memory direc­
tives are used.

Generates "pad" output sections. The length of
each section will be ""bytes.

Perform alignment necessary for demand paging.
Sections will be aligned on stricter boundaries in the
address space. Sections will be blocked in the out­
put file so that they begin on file system block boun­
daries. Also the magic number 0413 will be stored
in the UNIX header.

Changes the type of all global symbols to static.
This option can be used to hide symbols since static
symbols have different accessing rules from global
symbols.

Changes the algorithm for searching for libraries to
look in dir before looking in the default location.
This option is for ld libraries as the -I option is for
compiler #include files. The -L option is useful for
finding libraries that are not in the standard library
directory. To be useful, this option MUST appear
before the -1 option.

-M Prints a warning message for all external variables
that are multiply defined.

- N Places the data section immediately following the
text section in memory and stores the magic number
0407 in the header. This prevents the text from
being shared (the default).

-S Requests a silent ld run. All error messages result­
ing from errors that do not !~mediately stop the ld
run are suppressed.

-V Prints, on the standard error output a version id
identifying the ld being run.

7-12

LINK EDITOR

-VS num Takes num as a decimal version number identifying
the a.out file that is produced. The version stamp is
stored in the system header. This option is NOT
directly recognized by the compiler (cc), so you
have to use the - W option to pass the version
number to the link editor. For example:

-WI,-VSnum

7-13

LINK EDITOR

3. Link Editor Command Language

3.1 Expressions

Expressions may contain global symbols, constants, and most of
the basic C language operators (see the last section of this
document entitled "Syntax Diagram for Input Directives").
Constants are as in C with a number recognized as decimal
unless preceded with 0 for octal or Ox for hexadecimal.

ALL NUMBERS ARE TREATED AS LONG INTS.

Symbol names may contain uppercase or lowercase letters,
digits, and the underscore ("_"). Symbols within an expres­
sion have the value of the address of the symbol ONLY. The
ld does not do symbol table lookup to find the contents of a
symbol, the dimensionality of an array, structure elements
declared in a C program, etc.

The ld uses a lex-generated input scanner to identify symbols,
numbers, operators, etc. The current scanner design makes the
following names reserved and unavailable as symbol names or
section names:

ALIGN DSECT MEMORY PHY SECTIONS
ASSIGN GROUP NOLO AD RANGE SPARE
BLOCK LENGTH ORIGIN REGION TV

align group length origin spare
assign I 0 phy
block len org range

The operators that are supported, in order of precedence from
high to low, are shown in Figure 7.1:

7-14

LINK EDITOR

SYMBOL

! - -(UNARY Minus)

• I %

+ (BINARY Minus)

>> <<
!- > < < >

&
I
&&
II

+ - ·- I

Figure 7.1. Symbols and Functions of Operators

The above operators have the same meaning as in the C
language. Operators on the same tine have the same pre­
cedence.

3.2 Assignment Statements

External symbols may be defined and assigned addresses via the
assignment statement. The syntax of the assignment statement
is

symbol = expression;

or

symbol op= expression;

where op is one of the operators+,-, "'• or/.

Assignment statements MUST be terminated by a semicolon.

7-15

LINK EDITOR

All assignment statements (with the exception of the one case
described in the following paragraph) are evaluated after alloca­
tion has been performed. This occurs after all input-file­
defined symbols are appropriately relocated but before the
actual relocation of the text and data itself. Therefore, if an
assignment statement expression contains any symbol name,
the address used for that symbol in the evaluation of the
expression reflects the symbol address in the output object .file.
References within text and data (to symbols given a value
through an assignment statement) access this latest assigned
value. Assignment statements are processed in the same order
in which they are input to ld.

Assignment statements are normally placed outside the scope of
section-definition directive (see "Section Definition Directive"
under "Link Editor Command Language"). However, there
exists a special symbol, called • , that can occur only within a
section-definition directive. This symbol refers to the current
address of the ld's location counter. Thus, assignment expres­
sions involving . are evaluated during the allocation phase ofld.
Assigning a value to the • symbol within a section-definition
directive increments/resets !d's location counter and can create
holes within the section, as described in "Section Definition
Directives". Assigning the value of the • symbol to a conven­
tional symbol permits the final allocated address (of a particular
point within the link edit run) to be saved.

Align is provided as a shorthand notation to allow alignment of
a symbol to an n-byte boundary within an output section, where
n is a power of 2. For example, the expression

align(n)

is equivalent to

(. + n - I) &-(n - I)

Link editor expressions may have either an absolute or a relo­
catable value. When the ld creates a symbol through an

7-16

LINK EDITOR

assignment statement, the symbol's value takes on that type of
expression. That type depends on the following rules:

• An expression with a single relocatable symbol (and
zero or more constants or absolute symbols) is relo­
catable. The value is in relation to the section of
the referenced symbol.

• All other expressions have absolute values.

3.3 Specifying a Memory Configuration

MEMORY directives are used to specify

l. The total size of the virtual space of the target machine.

2. The configured and unconfigured areas of the virtual
space.

If no directives are supplied, the ld assumes that all memory is
configured. The size of the default memory is dependent upon
the target machine.

By means of MEMORY directives, an arbitrary name of up to
eight characters is assigned to a virtual address range. Output
sections can then be forced to be bound to virtual addresses
within specifically named memory areas. Memory names may
contain uppercase or lowercase letters, digits, and the special
characters "$," "." or "-". Names of memory ranges are
used by ld only and are not carried in the output file symbol
table or headers.

When MEMORY directives are used, all virtual memory not
described in a MEMORY directive is considered to be
unconfigured. Unconfigured memory is not used in the !d's
allocation process, and hence nothing, can be link edited,
bound, or assigned to any address within· unconfigured memory.

As an option on the MEMORY directive, artributes may be
associated with a named memory area. This restricts the

7-17

LINK EDITOR

memory areas (with specific attributes) to which an output sec·
tion can be bound. The attributes assigned to output sections
in this manner are recorded in the appropriate section headers
in the output file to allow for possible error checking in the
future. For example, putting a text section into writable
memory is one potential error condition. Currently, error
checking of this type is not implemented.

The attributes currently accepted are

1. R: readable memory.

2. W :writable memory.

3. X : executable, i.e. instructions may reside in this
memory.

4. I : initializable, i.e. stack areas are typically not initialized.

Other attributes may be added in the future if necessary. If no
attributes are specified on a MEMORY directive or if no
MEMORY directives are supplied, memory areas assume the
attributes of W, R, I, and X.

The syntax of the MEMORY directive is

MEMORY
{

namel (attr) origin nl, length - n2
name2 (attr) origin nl, length - n4
etc.

The keyword origin (or org or o) must precede the origin of a
memory range, and length (or len or I) must precede the
length as shown in the above prototype. The origin operand
refers to the virtual address of the memory range. Origin and
length are entered as long integer constants in either decimal,
octal, or hexadecimal (standard C syntax). Origin and length
specifications, as well as individual MEMORY directives, may

7-18

('
'

·-·

r

LINK EDITOR

be separated by white space or a comma.

By specifying MEMORY directives, the ld can be told that
memory is configured in some manner other than the default.
For example, if it is necessary to prevent anything from being
linked to the first OxlOOOO words of memory, a MEMORY
directive can accomplish this.

MEMORY
I

valid org

3.4 Region Directives

OxiOOOO, len OxFEOOOO

Region specifications are used when more than one address
space or region is to be defined. The syntax of this directive is
very similar to memory configuration specifications. An arbi­
trary name may be assigned to a region, and this name will only
be used if a section is to be loaded into the region. Origin and
length specifications are exactly like those on the MEMORY
directive. Attributes may not be assigned to a region, since the
region takes the physical attributes of the physical memory of
the region. In addition to the origin and length specification, an
optional virtual address may be assigned to the beginning of a
region. The physical memory within a user's regions may not
overlap, but the virtual spaces of regions may have to overlap
in some cases. The virtual address is given by assigning a value
to ''. '', much like changing the location counter in a section.

The syntax is:

7-19

REGIONS
I

name I
name2

origin
origin

nl, length
n3, length

n2
n4, . = n5

LINK EDITOR

For example, if initialized data is stored in ROM and then
copied into RAM during execution, the beginning of ROM
should have the same virtual address as the place in RAM to
which the copy is being made. lf that virtual address is Ox3000 ~­

and the physical address of the ROM is Ox9000, then the vir-
tual zero of the region is at physical address Ox6000 through
Ox8FFF could not be used normally. Note that the virtual zero
of a region should always correspond to a physical address that
is divisible by 16, otherwise the region is not valid region for
the 8086.

REGIONS
{

r: o
}

Ox9000, 1 Ox2000, . Ox3000

If a transfer vector is not being used, one region is assumed
unless REGIONS specification are given or the - i option is
used. If a transfer vector is used, the link editor combines
.data and .bss into a single region and creates a region for
every other output section. Because each text section can
validly be a region and the .data and .bss sections MUST be in
the same region, users are strongly discouraged from using
REGIONS with a transfer vector. The REGIONS specification
overrides the default behavior, and the user assumes full
responsibility for placing sections in the appropriate places. The
-i option is meaningless for transfer vectors.

3.5 Section Definition Directives

The purpose of the SECTIONS directive is to describe how
input sections are to be combined, to direct where to place out­
put sections (both in relation to each other and to the entire
virtual memory space), and to permit the renaming of output
sections.

In the default case where no SECTIONS directives are given,
all input sections of the same name appear in an output section

7-20

---·

(
'

LINK EDITOR

of that name. For example, if a number of object files from
the compiler are linked, each containing the three sections
.text, .data and .bss. The output object file also contains three
sections, .text, .data and .bss. If two object files are linked
(one that contains sections sl and s2 and the other containing
sections s3 and s4), the output object file contains the four sec­
tions sl, s2, s3, and s4. The order of these sections would
depend on the order in which the link editor sees the input
files.

The basic syntax of the SECTIONS directive is

SECTIONS
{

etc.
}

secnamel
{

file_ specifications,
assignment_statements

secname2 :
{

file_ specifications,
assignment_ statements

The various types of section definition directives are discussed
in the remainder of this section.

3.5.1 File Specifications

Within a section definition, the files and sections of files to be
included in the output section are listed in the order in which
they are to appear in the output section. Sections from an
input file are specified by

filename (secname)

or

7·21

LINK EDITOR

filename (secnam 1 secnam2 . . .)

Sections of an input file are separated either by white space or
commas as are the file specifications themselves.

If a file name appears with no sections listed, then all sections
from the file are linked into the current output section. For
example,

SECTIONS
I

outsecl:
I

filel.o {secl)
file2.o
file3.o (secl, sec2)

The order in which the input sections appears in the output sec­
tion outsecl is given by

1. Section sect from file filel.o

2. All sections from file2.o, in the order they appear in the
file

3. Section secl from file file3.o, and then section sec2 from
file file3.o

If there are any additional input files that contained input sec­
tions also named outsecl, these sections are linked following
the last section named in the definition of outsecl. If there are
any other input sections in fileLo or file3.o, they will be placed
in output sections with the same names as the input sections.

3.5.2 Load a Section at a Sp«ified Address

Bonding of an output section to a specific virtual address is
accomplished by an ld option as shown on the following

7-22

LINK EDITOR

SECTIONS directive example:

(' SECTIONS
, I

r

outsec addr:
I

etc.

The addr is the bonding address expressed as a C constant. If
outsec does not fit at addr (perhaps because of holes in the
memory configuration or because outsec is too large to fit
without overlapping some other output section), ld issues an
appropriate error message.

So long as output sections do not overlap and there is enough
space, they can be bound anywhere in configured memory.
The SECTIONS directives defining output sections need not be
given to ld in any particular order.

The ld does not ensure that each section's size consists of an
even number of bytes or that each section starts on an even
byte boundary. The assembler ensures that the size (in bytes)
of a section is evenly divisible by 4. The ld directives can be
used to force a section to start on an odd byte boundary
although this is not recommended. If a section starts on an odd
byte boundary, the section's contents are either accessed
incorrectly or are not ~xecuted properly. When a user specifies
an odd byte boundary, the ld issues a warning message.

3.5.3 Aligning an Output Section

It is possible to request that an output section be bound to a
virtual address that falls on an n-byte boundary, where n is a
power of 2. The ALIGN option of the SECTIONS directive
performs this function, so that the option

7-23

LINK EDITOR

ALIGN(n)

is equivalent to specifying a bonding address of

(. + n - I) &-(n - I)

For example

SECTIONS
I

outsec ALIGN(Ox20000)
I

}
etc.

The output section outsec is not bound to any given address
but is linked to some virtual address that is a multiple of
Ox20000 (e.g., at address OxO. Ox20000, Ox40000, Ox60000,
etc.).

3.5.4 Grouping Sections Together

The default allocation algorithm for ld is:

1. Links all input .text sections together into one output sec­
tion. This output section is called .text and is bound to
an address of OxO.

2. Links all input .data sections together into one output
section. This output section is called .data and is bound
to an address aligned to a machine dependent constant.

3. Links all input .bss sections together into one output sec­
tion. This output section is called .bss and is allocated so
as to immediately follow the output section .dat•. Note
that the output section .bss is not given any particular
address alignment.

Specifying any SECTIONS directives results in this default allo­
cation not being performed.

7-24

LINK EDITOR

The default allocation of ld is equivalent to supplying the fol­
lowing directive:

SECTIONS
I

.text : I }
GROUP ALIGN(align_value)
I

.data : { }

.bss : { }

where align_ value is a machine dependent constant. The
GROUP command ensures that the two output sections, .data
and .bss, are allocated (e.g., grouped) together. Bonding or
alignment information is supplied only for the group and not
for the output sections contained within the group. The sec­
tions making up the group are allocated in the order listed in
the directive.

If .text, .data and .bss are to be placed in the same segment,
the following SECTIONS directive is used:

SECTIONS
{

GROUP
{

.text { }

.data : { }

.bss :{}

Note that there are still three output sections (.text, .data, and
.bss), but now they are allocated into consecutive virtual
memory.

This entire group of output sections could be bound to a start­
ing address or aligned simply by adding a field to the GROUP

7-25

LINK EDITOR

directive. To bind to OxCOOOO, use

GROUP OxCOOOO :

To align to OxlOOOO, use

GROUP ALIGN(Ox!OOOO) : I

With this addition, first the output section .text is bound at
OxCOOOO (or is aligned to OxlOOOO); then the remaining
members of the group are allocated in order of their appearance
into the next available memory locations.

When the GROUP directive is not used, each output section is
treated as an independent entity:

SECTIONS
I

.text : I l

.data ALIGN(Ox20000) I }

.bss : I l

The .text section starts at virtual address OxO and the .data sec­
tion at a virtual address aligned to Ox20000. The .bss section
follows immediately after the .text section IF THERE IS
ENOUGH SPACE. If there is not, it follows the .data section.

The order in which output sections are defined to the ld CAN­
NOT be used to force a certain allocation order in the output
file.

3.5.5 Creating Holes Within Output Sections

The special symbol dot (". ") appears only within section
definitions and assignment statements. When it appears on the
left side of an assignment statement, • causes the ld's location
counter to be incremented or reset and a hole left in the output
section.

7-26

r
----·

r

LINK EDITOR

Holes built into output sections in this manner take up physical
space in the output file and are initialized using a fill character
(either the default fill character (OxOO) or a supplied fill charac­
ter). See the definition of the -f option in "Using the Link
Editor" and the discussion of filling holes in "Initialized Sec­
tion Holes or .bss Sections" under "Link Editor Command
Language."

Consider the following section definition:

outsec:
- {

. +- OxlOOO;
fl.o <.text)
. +- OxlOO;
f2.o <.text)

align (4);
f3.o <.text)

The effect of this command is as follows:

1. A OxlOOO byte hole, filled with the default fill character, is
left at the beginning of the section. Input file ft.o<.text)
is linked after this hole.

2. The text of input file f2.o begins at OxiOO bytes following
the end of fl.o(&.text).

3. The text of f3.o is linked to start at the next full word
boundary following the text of f2.o with respect to the
beginning of outsec.

For the purposes of allocating and aligning addresses within an
output secrion, the Id treats the output section as if it began at
address zero. As a result, if, in the above example, outsec ulti­
mately is linked to start at an odd address, then the part of
outsec built from f3.oCtext) also starts at an odd address-even
though f3.oCtext) is aligned to a full word boundary. This is

7-27

LINK EDITOR

prevented by specifying an alignment factor for the entire out­
put section.

outsec ALIGN(4) : {

It should be noted that the assembler, as, always pads the sec­
tions it generates to a full word length making explicit align­
ment specifications unnecessary. This also holds true for the
compiler.

Expressions that decrement "." are illegal. For example, sub­
tracting a value from the location counter is not allowed since
overwrites are not allowed. The most common operators in
expressions that assign a value to " " are "+ =" and
"align.''

3.5.6 Creating and Defining Symbols at Link-Edit
Time

The assignment instruction of the ld can be used to give sym­
bols a value that is link-edit dependent. Typically, there are
three types of assignments:

1. Use of "." to adjust ld's location counter during alloca­
tion

2. Use of "." to assign an allocation-dependent value to a
symbol

3. Assigning an allocation-independent value to a symbol.

The first case has already been discussed in the previous sec­
tion.

The second case provides a means to assign addresses (known
only after allocation) to symbols. For example

7-28

I~

LINK EDITOR

SECTIONS
[

outscl: [...)
outsc2:
[

filel.o (sl)
s2 start ~ .
file2.o (s2l
s2_end - I·

'

The symbol s2 start is defined to be the address of file2.o(s2),
and s2_end is the address of the last byte of file2.o(s2).

Consider the following example:

SECTIONS
[

outscl:
[

filel.o (.data)
mark - .;
. +- 4;
file2.o (.data)

In this example, the symbol mark is created and is equal to the
address of the first byte beyond the end of filel.o's .data sec­
tion. Four bytes are reserved for a future run-time initializa­
tion of the symbol mark. The type of the symbol is a long
integer (32 bits).

Assignment instructions involving • must appear within SEC­
TIONS definitions since they are evaluated during allocation.
Assignment instructions that do not involve . can appear within
SECTIONS definitions but typically do not. Such instructions
are evaluated AFTER allocation is complete. Reassignment of

7-29

LINK EDITOR

a defined symbol to a different address is dangerous. For
example, if a symbol within .data is defined, initialized and
referenced within a set of object files being link-edited, the
symbol table entry for that symbol is changed to reflect the
new, reassigned physical address. However, the associated ini­
tialized data is not moved to the new address. The ld issues
warning messages for each defined symbol that is being
redefined within an ifile. However, assignments of absolute
values to new symbols are safe because there are no references
or initialized data associated with the symbol.

3.5.7 Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere)
within a specific named memory (as previously specified on a
MEMORY directive). (The > notation is borrowed from the
UNIX system concept of redirected output.)

For example:

MEMORY
I

meml:
mem2 (RW):
mem3 (RW):
meml:

SECTIONS
I

o=OxOOOOOO
o=Ox020000
o=Ox070000

o=Ox120000

outsecl:
outsec2:

fl.o(.data)
f2.o(.data)

> meml
> mem3

l=OxlOOOO
l=Ox40000
I~Ox40000

I~Ox04000

This directs ld to place outsecl anywhere within the memory
area named meml (i.e., somewhere within the address range
OxO~OxFFFF or Oxl20000~0x123FF). The outsec::l is to be
placed somewhere in the address range Ox70000-0xAFFFF.

7-30

LINK EDITOR

3.5.8 Initialized Section Holes or .bss Sections

When boles are created within a section (as in the example in
"Link Editor Command Language"), the ld normally puts out
bytes of zero as fill. By default, .bss sections are not initialized
at all; that is, no initialized data is generated for any .bss sec­
tion by the assembler, nor supplied by the link editor, not even
zeros.

Initialization options can be used in a SECTIONS directive to
set such holes or output .bss sections to an arbitrary 2-byte pat­
tern.

SUCH INITIALIZATION OPTIONS APPLY ONLY TO .bss
SECTIONS OR "HOLES".

As an example, an application might want an uninitialized data
table to be initialized to a constant value without recompiling
the .o file or a bole in the text area to be filled with a transfer
to an error routine.

Either specific areas within an output section or the entire out­
put section may be specified as being initialized. However,
since no text is generated for an uninitialized .bss section, if
part of such a section is initialized, then the entire section is
initialized. In other words, if a .bss section is to be combined
with a .text or .data section (both of which are initialized) or if
part of an output .bss section is to be initialized, then one of
the following will hold:

I. Explicit initialization options must be used to initialize all
.bss sections in the output section.

The ld will use the default fill value to initialize all .bss
sections in the output section.

Consider the following ld ifile:

7-31

LINK EDITOR

SECTIONS
I

secl:
I

fl.o
. =+ Ox200;
f2.o (.text)

} ~ OxDFFF
sec2:
I

sec3:
I

n.o (.bss)
f2.o (.bss)

f3.o Cbss)

} ~ OxFFFF
sec4: { f4.o (. bss)

Oxl234

In the example above, the Ox200 byte hole in section sect is
filled with the value OxDFFF. In section sec2, fl.o(.bss) is ini­
tialized to the default fill value of OxOO, and f2.oCbss) is initial­
ized to Oxl234. All .bss sections within sec3 as well as all
holes are initialized to OxFFFF. Section sec4 is not initialized;
that is, no data is written to the object file for this section.

3.6 Transfer Vectors

A tranifer vector is an ordered list of entries similar to an array
of pointers or a jump table. Each entry contains the physical
address of an external or static identifier. The address is one
word in length, and the address is right-justified within the
word. The entire transfer vector is a zero·oriented, one·
dimensional array of "long int''. The first slot in the transfer
vector (slot 0) cannot be used because of a conflict with the
null pointer, whose value is zero.

7-32

LINK EDITOR

In any C source file compiled using the cc compiler, with the
-tv option, all function references are "indirect." Calling a
function funxO is accomplished by an indirect reference
through the transfer vector entry containing the actual address
offunxO.

Assembler source files can also employ transfer vector linkage,
by using the -tv option as invocation AND through the use of
the indirect assembler language call. The appropriate macros
should be used for this purpose. Assembler source can also
generate tv references to identifiers other than functions.

The ld defines the transfer vector to be a separate output sec­
tion, called .tv. Unlike other output sections, the contents of
the transfer vector output section are supplied entirely by ld, as
a result of the link-edit process and certain user commands.
The transfer vector is generated by ld ONLY when the -s

~ option has been (explicitly or implicitly) selected.

Each defined function is assigned a transfer vector slot, and the
address of the function is written into that slot in the .tv output
section. A transfer vector entry is assigned a value in one of
two ways:

t. By the user:

2.

Through the use of the ASSIGN field of the TV directive,
specific functions can be assigned to specific transfer vec­
tor slots.

By ld:

Any identifier referenced through transfer vector linkage
will, if the identifier has no tv slot, be assigned the next
available slot in the transfer vector.•

The ld assigns tv slots to identifiers on a "first seen, first
assigned" basis. These two features of tv slot assignment,

7-33

LINK EDITOR

coupled with the general properties of transfer vectors, makes
field update and function replacement applications possible.

Attributes of the transfer vector (also called the .tv section)
may be specified using a TV directive of the form:

TV bond-addr
{

where:

bond-addr

SPARE

LENGTH

RANGE

7-34

SPARE = nbr-slots
LENGTH = nbr-slots
RANGE(first-slot, last-slot)
ASSIGN (

fcnl slotl
fcn2 slot2

fcnj slotj
)

fi.ll-fcn

The virtual address of the start of the .tv sec­
tion. If supplied, the 38200 instantiation of the
link editor requires this to be Ox760000.

the number of tv slots to be allocated over and
above those actually assigned by the current ld
run. The default value for SPARE is 0.

The total number of tv slots to be allocated in
the transfer vector. It defaults to the number
actually assigned by the current ld run.

The indices of the first and last slot that ld can
use when it assigns transfer vector slots to
identifiers. "first-slot" defaults to 0, while
"last-slot" defaults to the LENGTH value (if
specified) or to the largest tv slot index given in
an ASSIGN directive.

LINK EDITOR

ASSIGN The tv slot index to be assigned to a particular
identifier.

fill-fen The identifief, the value of which is to be writ­
ten into tv entries which are allocated but not
otherwise assigned. The default value written to
such tv slots is OxFFFF. Specifying a fill-fen
name allows the user to cause automatic branch­
ing to, for example, an error handling routine,
should an invalid transfer vector reference occur.
However, this option functions properly ONLY
if the fill function is defined within the subsys­
tem that is being linked, because only then is
the fill function's address known by ld.

All parts of the TV directive (including the TV directive itself)
are optional. Multiple TV directives can be used, in which case
the final description of the output .tv section is a union of all
supplied information. When TV directives are used, there are
some restrictions.

• If the SPARE field is specified, then neither
LENGTH, RANGE nor ASSIGN fields may be
used.

• The LENGTH and RANGE fields can appear at
most ONCE, and the LENGTH field, if supplied,
must be specified BEFORE the RANGE field.

• Multiple ASSIGN fields may be used. The assign­
ments within the ASSIGN need not be ordered by
slot number or function name.

• The tv slot indices appearing in the RANGE field
must satisfy:

0 <- first-slot < = last-slot < == total-length <- Ox80

•

7-35

The slot indices appearing in the ASSIGN field
MUST satisfy:

0 < = slot < = total-length < = Ox8000

LINK EDITOR

• Any function that is ASSIGNed a slot within the
range specified by the RANGE field (or its default
values) MUST be defined. in the current link edit.

• Any function that is ASSIGNed a slot outside the
range specified by the RANGE field (or its default
values) MUST NOT be defined in the current link
edit.

The SPARE and LENGTH fields are provided as a means of
controlling the total number of slots allocated in the transfer
vector. The RANGE field permits a transfer vector to be parti­
tioned into disjoint ranges. Each range can then be used for a
specific purpose (e.g., subsystem, set of functions, application,
etc.). The ASSIGN field permits the user to override the
default allocation algorithm used for tv slot assignment. The tv
section can thus be "mapped" in advance and in such a way as
to carry over from one ld run to the next.

3.7 Subsystem Loading

The following section is applicable ONLY to instantiations of
the link editor that use transfer vectors such as bl6ld or
mc68ld. Even though Jbld uses transfer vectors, this section
should be read with caution by a Jbld user, as the terms subsys­
tem and application as used here conflict with the DMERT
usage, and as a process must be contained in one process file to
run under DMERT. Nevertheless, this section should be read
for a better understanding of the capabilities of transfer vectors.

Subsystem loading is an alternative to performing a single link­
edit on the entire application. The application is divided into
subsystems, each of which can be link-edited independently of
the other parts of the application. When the final subsystem
link-edits are completed, as subsystem specific tfile, which we
will call SIFILE, and a common (lilt', which we will call
CIFILE, are sent to the link editor as input. All link-edits
within a subsystem loading environment must be performed
using transfer vector linkage.

7-36

(

'

(~

LINK EDITOR

A subsystem ilile, SIFILE, specifies the areas of physical
memory reserved for each subsystem's .text, .data and .bss
sections, and reserves a range of transfer vector slots with the
RANGE directive.

The system (file, CIFILE, specifies the total length of the sys­
tem transfer vector with a LENGTH directive. The CIFILE
contains the address assignments to all global .data and .bss
symbols referenced accross subsystems, and transfer vector slot
assignments to all functions referenced across the subsystems.

In the following example of subsystem loading ifi/es, assume
that there are only two subsystems in the application - subsys­
tem A and subsystem B.

The SIFILE for subsystem A is as follows:

7-37

TV
[

RANGE(l,200)
)
MEMORY
[

mtext
mdata
rnbss

)
SECTIONS
[

SSAtext:
[

o OxOIOOO, I
o Ox40000, I
o - OxSOOOO, I

Al.o Ctext)
A2.o Ctext)

} > mtext
.data : [) > rndata
.bss : [) > rnbss

Ox4000
Ox2000
OxiOOO

LINK EDITOR

The SIFILE for subsystem 8 is:

TV
{

RANGE(201,600)
)
MEMORY
{

mtext
mdata
mbss

)
SECTIONS
{

SSBtext:
{

: o = Ox6000, 1 = Ox8000
: o """ Ox42000, 1 Ox8000
: o = Ox51000, 1 = Ox4000

Bl.o <.text)
B2.o (.text)
83.o <.text}

} > mtext
.data : {) > mdata
.bss : {) > bss

For this example, the common (file, CIFILE, is:

7-38

r
·. -·

LINK EDITOR

TV
I

Aglobal

LENGTH - Ox8000
ASSIGN (

Afuncl - I
Afunc2 10
Afunc3 100

)
ASSIGN (

Bfuncl 201
Bfunc2 203
Bfunc3 - 600

)

- Ox80000;
Bglobal = Ox80002~

Subsystem A contains a total of 200 transfer vector slots. Sub­
system A's SIFILE sets the allotment for the transfer vectors.
Subsystem B has 400 slots assigned to it.

The maximum number of available system transfer vector slots
(Ox8000) is allocated within CIFILE. In this example, subsys­
tem A assigns three of its functions to specific slots within its
transfer vector slot range. The three subsystem A functions are
assigned slots because subsystem B references only these three
functions in subsystem A. Similarly, subsystem A references
three subsystem B functions. These functions are assigned
transfer vector slots within subsystem B's range.

The global, non-function symbols Aglobal and Bglobal are
assigned absolute physical addresses in the CIFILE. This is
necessary because subsystem A references Bglobal, and subsys­
tem B references Aglobal. Aglobal is defined in subsystem A,
and Bglobal is defined in subsystem B. Generally, global .data
and .bss symbols which are shared across subsystems are taken
from each subsystem and placed in a separate subsystem, which
we will call gdata. The addresses assigned to Aglobal and

7-39

LINK EDITOR

Bglobal must be the same addresses that the link editor
assigned to them during normal allocation, that is, during the
link-edit of gdata. If the addresses assigned are different than
those assigned during allocation of gdata, the references to
these symbols would be incorrect. For example, if Aglobal was
assigned the address Ox80004 when gdata was built but was
linked at the address in the CIFILE, the references to Aglobal
in subsystem 8 would be incorrect. This results from the fact
that subsystem 8 references to Aglobal are resolved with the
CIFILE.

The CIFILE forms the interface between subsystems A and B.
Through the CIFILE, the link editor is aware of the addresses
of the global symbols that are not defined within the objects
and archives owned by a subsystem. The CIFILE allows each
subsystem to be linked separately.

The function that is not referenced by any subsystem, except
the subsystem where it is defined, does not need a transfer vec­
tor slot assignment in the CIFILE. Similarly, nonfunction sym­
bols that are not referenced, except by the subsystem owning
them, do not need to be placed in the gdata subsystem, where
non-function global symbol assignments are generated.

To link subsystem A, use the following command:

ld -tv CIFILE SIFILEA -o SSA.out

The link editor issues error messages for errors that occur in
the subsystem loading SIFILE and CIFILE. In the example
with subsystems A and B, assume that the transfer vector slot
assignment Afimcl = 1 is changed to Ajimcl = 201. The
link editor would issue the following error message:

ld SIFILEA : fatal :
Defined symbol Afuncl assigned a tvslot outside

7-40

r

r

LINK EDITOR

As specified in subsystem A's SIFILE, SIFILEA, the transfer
vector slot range for subsystem A is RANGE(l,200). Since
slot 201 is obviously outside this range, the error message will
be printed. Functions that are defined within a subsystem can
be assigned transfer vector slots only within the defining
subsystem's range.

NOTE: The error message occurs whenever a function is
moved from one subsystem to another without a
CIFILE update.

For another example of a link editor error message, assume
that 390 of the 400 reserved transfer vector slots are already
used by functions defined within subsystem B. Three of these
functions are referenced by subsystem A. The link editor
requires that the number of slots equal or exceed the number
of defined functions within a subsystem to produce a successful
final link. Assume that 20 new functions are added to subsys­
tem 8 without an update of the RANGE directive in SIFILEB.
The link editor would then issue the following error message:

ld : SIFILEB fatal : tv range allows 400 entries : 410 needed

If the RANGE directive in the SIFILE for subsystem B,
SIFILEB, is changed from RANGE(201,600) to
RANGE(20l,610), then the new functions could be success­
fully added to subsystem B.

For a further example, assume that the line B}imc2 = 203 is
removed from the CIFILE. Then the link editor, assuming that
subsystem A actually references the function Bfunc2 in the file
A2.o, would issue the following message, after an attempt to
link subsystems A was initiated:

Umle./ined symbol Bjimc2
First rejl!renced in .file A 2. 0

For an example of a different type of error, assume that A.fimd
is incorrectly entered into the CIFILE as Ajimc4. In addition,

7-41

LINK EDITOR

assume that AjiaK4 is referenced but not defined in subsystem
A. In this case, A./imc4 is not defined in subsystem 8 either. If
an attempt is made to link subsystem A, the link editor will
issue the following error message:

ld SIFILEA fatal :
Undefined symbol Afunc4 assigned a tvslot within

Another common error message issued by the link editor per·
tains to an inability to allocate sections. Error messages of this
type indicate that certain parts of the input objects and archives
cannot fit into areas specified in a particular SFILE.

For example, assume that the .text size of A l.o is Ox3000 and
that the .text size of A2.o is OxlEOO. Then the total space
needed for subsystem A's text in the output file is Ox4EOO.
However, as seen in SIFILEA, the .text from Al.o and the
.text from A2.o is put into the mtext area, whose size is only
Ox4000. In this case, the link editor would print the following
error message:

ld : SIFILEA : Can't allocate section .text in owner mtext

In order to solve this problem, the line:

mtext : o = OxOIOOO, I = Ox4000

would have to be changed to;

mtext : o = OxOIOOO, 1 = Ox4EOO

or the size of the .text in the input files would have to be
reduced so that the .text section would fit.

7-42

LINK EDITOR

4. Notes and Special Considerations

4.1 Changing the Entry Point

When ld is given the -X option, a UNIX system a.out header
is written to the output file. The a.out header contains a field
for the (primary) entry point of the file. This field is set using
one of the following rules (listed in the order they are applied):

1. The value of the symbol specified wit~'!_ the -e option, if
present, is used.

2. The value of the symbol _start, if present, is used.

3. The value of the symbol main, if present, is used.

4. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out
r--· header field through the -e option or by using an assignment
I instruction in an (file of the form

start - expression;

Use of the -e option will force the -X option to be set
automatically. Assigning a value to the symbol _start or having
a symbol by this name already defined in an input file DOES
NOT force the -X option to be set, and hence it must be
explicitly supplied if the entry point is to be output.

If the ld is called through cc(l), a startup routine is automati­
cally linked in. Then, when the program is executed, the rou­
tine exit(l) is called after the main routine finishes to close file
descriptors and do other cleanup. The user must therefore be
careful when calling the ld directly or when changing the entry
point. The user must supply the startup routine or make sure
that the program always calls exit rather than falling through
the end. Otherwise, the program will dump core.

7-43

LINK EDITOR

4.2 Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete
object file typically consisting of the standard three sections:

t. .text

2. .data

3. .bss
Archive libraries are created through the use of the UNIX sys­
tem ar command from object files generated by running the cc
or as compilers.

Each library member has a magic number. For object tiles,
there are two magic numbers:

1. one for object files generated with the -tv option, and

2. one for the object files generated without the -tv option.

The link editor enforces a policy that all input object files must
have the same magic number. Any object file that fails this test
is not processed and generates a fatal ld error. This policy,
however, has an important exception:

MEMBERS OF ARCHIVE LIBRARIES WITH THE WRONG
MAGIC NUMBER ARE SILENTLY SKIPPED

It is not considered an error, and no message is generated.

This permits an archive library to contain both tv and non-tv
versions of its members, and to have the same library used as
input to both tv and non-tv link edits. In each instance,
members with the "other" magic number are ignored.

An archive library is always processed using selective inclusion:
Only those members that resolve existing undefined-symbol
references are taken from the library for link editing.

7-44

, __ .

LINK EDITOR

Libraries can be placed both inside and outside section
definitions. In both cases, a member of a library is included for
linking whenever

I. There exists a reference to a symbol defined in that
member.

2. The reference is found by the ld prior to the actual scan­
ning of the library.

3. The member has the correct magic number.

When a library member is included by searching the library
INSIDE A SECTIONS directive, all input sections from the
member are included in the output section being defined.

When a library member is included by searching the library
OUTSIDE OF A SECTIONS directive, all input sections from
the member are included into the output section with the same
name. That is, the . text section of the member goes into the
output section named .text, the .data section of the member
into .data, the .bss section of the member into .bss, etc. If
necessary, new output sections are defined to provide a place to
put the input sections. Note, however, that

1. Specific members of a library cannot be referenced expli­
citly in an ifile.

1. The default rules for the placement of members and sec­
tions cannot be overridden when they apply to archive
library members.

The -1 option is a shorthand notation for specifying an input
file coming from a predefined set of directories and having a
predefined name. By convention, such files are archive
libraries. However, they need not be so. Furthermore, archive
libraries can be specified without using the -1 option by simply
giving the (full or relative) UNIX system file path.

7-45

LINK EDITOR

The ordering of archive libraries is important since for a
member to be extracted from the library it MUST satisfy a
reference that is KNOWN TO BE UNRESOLVED AT THE
TIME THE LIBRARY IS SEARCHED. Archive libraries can
be specified more than once. They are searched every time
they are encountered. Archive files have a symbol table at the
beginning of the archive. The ld will cycle through this symbol
table until it has determined that it cannot resolve any more
references from that library.

There are currently two different archive formats in use:

1. one is a random access library in use on 3820S and VAX
machines running UNIX system 5.0

2. the other is the old format library that must be searched
linearly.

The old format library is in use on the PDP 11170 and all
machines running a pre-5.0 UNIX system. The link editor will
make one search through a library in the old format, but will --
continue to search through a library in the new format until it
has determined that it can resolve no more references from
that library. Due to the different searching algorithms used,
programs that are link edited on machines with different
archive formats, and that are otherwise the same, may include
files from libraries in a different order.

Be careful when using archive libraries in a subsystem loading
environment. For a member of an archive, that is, an object
file, to be included in a subsystem final load file, there must be
a reference (within the subsystem being linked) to a symbol
defined in that object file. The - u option can be used to create
unresolved references that will force the loading of archive
members.

Consider the following example:

7-46

("
' -

~· I

LINK EDITOR

1.

2.

3.

4.

s.
6.

The input files filel.o and file2.o each contain a reference
to the external function FCN.

Input fi.lel.o contains a reference to symbol ABC.

Input file2.o contains a reference to symbol XYZ.

Library liba.a, member 0, contains a definition of XYZ.

Library libc.a, member 0, contains a definition of ABC.

Both libraries have a member 1 that defines FCN.

If the ld command were entered as

ld filel.o -Ia file2.o -lc

then the FCN references are satisfied by liba.a, member 1,
ABC is obtained from libc.a, member 0, and XYZ remains
undefined (since the library liba.a is searched before file2.o is
specified). If the ld command were entered as

ld filel.o file2.o -Ia -lc

then the FCN references is satisfied by liba.a, member 1, ABC
is obtained from libc.a, member 0, and XYZ is obtained from
liba.a, member 0. If the ld command were entered as

ld filel.o file2.o -lc -Ia

then the FCN references is satisfied by libc.a, member 1, ABC
is obtained from libc.a, member 0, and XYZ is obtained from
liba.a, member 0.

The -u option is used to force the linking of library members
when the link edit run does not contain an actual external

(~ reference to the members. For example,

ld -u routl -Ia

7-47

LINK EDITOR

creates an undefined symbol called routl in the ld's global sym­
bol table. If any member of library liba.a defines this symbol, it
(and perhaps other members as well) is extracted. Without the
-u option, there would have been no trigger to cause ld to
search the archive library.

4.3 Dealing With Holes in Physical Memory

When memory configurations are defined such that
unconfigured areas exist in the virtual memory, each application
or user must assume the responsibility of forming output sec­
tions that will fit into memory. For example, assume that
memory is configured as follows:

MEMORY
{

mernl: 0 OxOOOOO - Ox02000
mem2: 0 Ox40000 - Ox05000
mern3: 0- Ox20000 - OxlOOOO

Let the files fl.o, f2.o, ... fn.o each contain the standard three
sections .text, .data, and .bss, and suppose the combined .text
section is Oxl2000 bytes. There is no configured area of
memory in which this section can be placed. Appropriate direc­
tives must be supplied to break up the .text output section so
ld may do allocation. For example,

7-48

r
'

LINK EDITOR

SECTIONS
{

txtl:
{

I
txt2:
{

etc.

fl.o (.text)
f2.o Ctext)
f3.o Ltext)

f4.o (.text)
f5.o <.text)
f6.o {.text}

4.4 Allocation Algorithm

An output section is formed either as a result of a SECTIONS
directive or by combining input sections of the same name. An
output section can have zero or more input sections comprising
it. After the composition of an output section is determined, it
must then be allocated into configured virtual memory. The ld
uses an algorithm that attempts to minimize fragmentation of
memory, and hence increases the possibility that a link edit run
will be able to allocate all output sections within the specified
virtual memory configuration. The algorithm proceeds as fol­
lows:

1. Any output sections for which explicit bonding addresses
were specified are allocated.

2. Any output sections to be included in a specific named
memory are allocated. In both this and the succeeding
step, each output section is placed into the first available
space within the (named) memory with any alignment
taken into consideration.

3. Output sections not handled by one of the above steps are
allocated.

7-49

LINK EDITOR

If all memory is contiguous and configured (the default case),
and no SECTIONS directives are given, then output sections
are allocated in the order they appear to the ld, normally .text,
.data, .bss. Otherwise, output sections are allocated in the
order they were defined or made known to the ld into the first
available space they fit.

4.5 Incremental Link Editing

As previously mentioned, the output of the ld can be used as
an input file to subsequent ld runs PROVIDING THAT THE
RELOCATION INFORMATION IS RETAINED (-r option).
Large applications may find it desirable to partition their C pro­
grams into subsystems, link each subsystem independently,
and then link edit the entire application. For example,

7-50

Step 1:
ld -r -o outfilel ifilel

I• ifilel •/
SECTIONS
I

ssl:
I

fl.o
f2.o

fn.o

LINK EDITOR

Step 2:
ld -r -o outfile2 ifile2

I• ifile2 •/
SECTIONS
[

ss2:
[

Step 3:

gl.o
g2.o

gn.o

ld -a -m -o final.out outfilel outfile2

By judiciously forming subsystems, applications may achieve a
form of incremental link editing whereby it is necessary to
relink only a portion of the total link edit when a few programs
are recompiled.

To apply this technique, there are two simple rules:

1. Intermediate link edits should contain only SECTIONS
declarations and be concerned only with the formation of
output sections from input files and input sections. No
binding of output sections should be done in these runs.

l. All allocation and memory directives, as well as any
assignment statements, are included only in the final ld
call.

4.6 Space Limitations

Global and external symbols are kept in a symbol table in order
to resolve references across input files. On the PDP-11170,
space is limited, so the link editor uses a Software Demand
Paging scheme to store the symbols. When the number of glo­
bal symbols is less than 600, the entire symbol table resides in

7·51

LINK EDITOR

memory. When the number exceeds 600, however, the symbol
table is paged to a file and users will notice a degradation in
performance. Structure tag names, structure elements,
automatic and static variables do not appear in the symbol table
and their number has minimal affect on ld performance.

The link editor will also be built as two processes on the PDP-
11/70 due to space limitations. On all other machines the link
editor is one process.

4.7 DSECT. COPY, and NOLOAD Sections

Sections may be given a type in a section definition as shown in
the following example:

SECTIONS
I

name! Ox200000 (DSECT)
name2 Ox400000 (COPY)
name3 Ox600000 (NOLOAD)

filel.o
file2.o
file3.o

The DSECT option creates what is called a "dummy section." A
"dummy section" has the following properties:

1. It does not participate in the memory allocation for output
sections. As a result, it takes up no memory and does not
show up in the memory map (the -m option) generated
by the ld.

2. It may overlay other output sections and even
unconfigured memory. DSECTs may overlay other
DSECTs.

3. The global symbols defined within the dummy section are
relocated normally. That is, they appear in the output
file's symbol table with the same value they would have
had if the DSECT were actually loaded at its virtual
address. DSECT -defined symbols may be referenced by
other input sections. Undefined external symbols found
within a DSECT cause specified archive libraries to be

7-52

LINK EDITOR

searched and any members which define such symbols are
link edited normally (i.e., not in the DSECT or as a
DSECT).

'-......- 4. None of the section contents, relocation information, or
line number information associated with the section is
written to the output file.

r
'

In the above example, none of the sections from fi.Iel.o are
allocated, but all symbols are relocated as though the sections
were link edited at the specified address. Other sections could
refer to any of the global symbols and they are resolved
correctly.

A "copy section" created by the COPY option is similar to a
"dummy section." The only difference between a "copy section"
and a •• dummy section" is that the contents of a copy section
and all associated information is written to the output file.

A section with the type of NOLOAD differs in only one respect
from a normal output section:

l. its text and/or data is not written to the output file.

A NOLOAD section is allocated virtual space, appears in the
memory map, etc.

4.8 Output File Blocking

There are two options which can be used to affect the "physical
file offsets" of the information written to the output file by ld:

l. The BLOCK option permits any output section to be
aligned in the output fiel at a specified n-byte boundary.

(2. The - B option causes "padding sections" to be gen-
, erated in the output file.

7-53

LINK EDITOR

Both features were provided explicitly for the use of ldp, which
constructs pfiles for DMERT. The output sections of a pfile
have certain requirements in terms of physical file offsets which
can be met by using these two ld options.

The BLOCK option, which can be applied to any output section
or GROUP directive, is used to direct ld to align a section at a
specified byte offset IN THE OUTPUT FILE. It has no effect
on the address at which the section is allocated nor on any part
of the link edit process. It is used purely to adjust the physical
position of the section in the output file.

SECTIONS
I

.text BLOCK(Ox200) : I I

.data ALIGN(Ox20000) BLOCK(Ox200) I I

With this SECTIONS directive, ld assures that each section,
.text and .data, is physically written at a file offset which is a
multiple of Ox200 (e.g., at an offset of 0, Ox200, Ox400, ... , etc.
in the file).

The - B option will cause ld to generate special sections in the
output file. These sections, called .. padding sections," take no
part in the link edit process. They are supplied to force a cer­
tain type of physical file offset alignment of the non-"padding
sections."

A "padding section" is an output section consisting of x bytes
of zero (where xis supplied by the -B option). It has no phy­
sical address associated with it. A "padding section" will be
output by ld after every non-••padding section" which meets
either of the following two conditions:

1. It is of zero length.

2. It is comprised entirely of uninitialized .bss sections.

7-54

r
'

LINK EDITOR

Unlike conventional .bss sections, the zero bytes making up a
"padding section" are actually written to the output file.

"Padding sections" are ignored by ld if found in any input file.

4.9 Nonrelocatable Input Files

If a file produced by the ld is intended to be used in a subse­
quent ld run, the first ld run has the -r option set. This
preserves relocation information and permits the sections of the
file to be relocated by the subsequent ld run.

When the ld detects an input file (that does not have relocation
or symbol table information), a warning message is given.
Such information can be removed by the ld (see the -a and -s
options in the part "Using the Link Editor") or by the strip(l)
program. However,

(~ THE LINK EDIT RUN CONTINUES USING THE NON­
'-'-" RELOCATABLE INPUT FILE.

For such a link edit to be successful (i.e., to actually and
correctly link edit all input files, relocate all symbols, resolve
unresolved references, etc.), two conditions on the nonrelocat­
able input files must be met:

1. Each input file must have no unresolved external refer­
ences.

2. Each input file must be bound to the exact same virtual
address as it was bound to in the ld run that created it.

Note that if these two conditions are not met for all nonrelocat­
able input files, no error messages are issued. Because of this
fact, extreme care must be taken when supplying such input
files to the ld.

7-55

LINK EDITOR

4.10 The PATCH List

The ld option -p indicates that a "PATCH list" is to be built
in the optional header field of the output file. The "'PATCH
list" is a C data structure which looks like this:

struct plist
I

long blk_cnt
union pentry
I

struct
I

long
long

/•number of blocks•/

blk_addr; bblock address•/
blk_size; /•size of block•/

unsigned short
char

blk_scnum; /•section•/
blk_type; /•type of block•/

char
typeOI;

struct
I

long
long

blk_pad; /•padding•/
/•FREEE or OLD FCN•/

unsigned short
char

blk_addr;
blk_ndx;
blk_scnum;
blk_type;
blk_size;

/•DECF•/

/•block address""r--­
/•fcn tv index•/

/•section•/
/•type of block"'/
/•size of block•/

);

char
) type02;

block[!];

#define PLIST
#define PENTR Y
#define PLSIZE
#define PESIZE

struct plist
unio-n pentry
sizeof(PLIST)
sizeof(PENTR Y)

If given the - p option, ld will serch for all output sections
whose name is of the form .pateh nn, where nn is a two-digit
decimal integer. For each such output section, one pentry
structure will be built.

,r-
---·

LINK EDITOR

The "PATCH list" is put at the end of the optional header
field in the output file.

If necessary, so as to prevent any overlapping with the -X and
- h options, the size of the optional header will be increased by
the amount of space required by the "PATCH list."

The "PATCH list" is currently built only by Jbldp as part of its
pfile construction. This list is used to perform incremental field
update and function replacement.

4.11 The - ild Option

When the - i ld option is used, the link editor will create a pair
of dummy sections, DSECTs, for each unallocated, configured
area of memory. These dummy sections will have unique
names in the form of .i_l_dnn where nn is a two digit decimal
integer in the range from 00 to 99, therefore at most 50 pairs
of these sections will be created by the link editor. These sec­
tions identify the boundaries of the unused memory space.
These sections are similar to .bss sections in that they do not
contain any text or initialized data. The link editor also creates
a dummy section named ".history." These sections are later
used by the incremental link editor.

7-57

LINK EDITOR

5. Error Messages

5.1 Corrupt Input Files

The following error messages indicate that the input file is cor­
rupt, nonexistent, or unreadable. The user should check that
the file is in the correct directory with the correct permissions.
If the object file is corrupt, try recompiling or reassembling it.

7-58

• Can't open name

• Can't read archive header from archive name

• Can't read file header of archive name

• Can't read 1st word of file name

• Can't seek to the beginning of file name

• Fail to read file header of name

• Fail to read lnno of section sect of file name

• Fail to read magic number of file name

• Fail to read section headers of file name

• Fail to read section headers of library name member
number

• Fail to read symbol table of file name

• Fail to read symbol table when searching libraries

• Fail to read the aux entry of file name

• Fail to read the field to be relocated

• Fail to seek to symbol table of file name

• Fail to seek to symbol table when searching libraries

• Fail to seek to the end of library name member
number

• Fail to skip aux entries when searching libraries

LINK EDITOR

• Fail to skip the mem of struct of name

• Illegal relocation type

• No reloc entry found for symbol

• Reloc entries out of order in section sed of file
name

• Seek to name section sect failed

• Seek to name section sect lnno failed

• Seek to name section sect reloc entries failed

• Seek to relocation entries for section sect in file
name failed.

5.2 Errors During Output

These errors occur because the ld cannot write to the output
file. This usually indicates that the file system is out of space.

• Cannot complete output file name. Write error.

• Fail to copy the rest of section num of file name

• Fail to copy the bytes that need no reloc of section
num of file

• name l/0 error on output file name.

5.3 Internal Errors

These messages indicate that something is wrong with the ld
internally. There is probably nothing the user can do except get
help.

7-59

• Attempt to free nonallocated memory

• Attempt to reinitialize the SDP aux space

•
•

Attempt to reinitialize the SDP slot space

Default allocation did not put .data and .bss into the
same region

LINK EDITOR

• Failed to close SDP symbol space

• Failure dumping an AIDFNxxx data structure

• Failure in closing SOP aux space

• Failure to initialize the SOP aux space

• Failure to initialize the SOP slot space

• Internal error: audit_groups, address mismatch

• Internal error: audit_group, finds a node failure

• Internal error: fail to seek to the member of name

• Internal error: in allocate lists, list confusion (num
num)

• Internal error: invalid aux table id

• Internal error: invalid symbol table id

• Internal error: negative aux table ld

• Internal error: negative symbol table id

• Internal error: no symtab entry for DOT

• Internal error: split_scns, size of sect exceeds its
new displacement.

5.4 Allocation Errors

These error messages appear during the allocation phase of the
link edit. They generally appear if a section or group does not
fit at a certain address or if the given MEMORY or SECTION
directives in some way conflict. If you are using an ifile, check
that MEMORY and SECTION directives allow enough room
for the sections to ensure that nothing overlaps and that noth­
ing is being placed in unconfigured memory. For more infor­
mation, see "Link Editor Command Language" and "Notes
and Special Considerations."

7-60

• Bond address address for sect is not in configured
memory

LINK EDITOR

• Bond address address for sect overlays previously
allocated section sect at address

• Can't allocate output section sect, of size num

• Can't allocate section sect into owner mem

• Default allocation failed: name is too large

• GROUP containing section sect is too big

• Memory types namel and name2 overlap

• Output section sect not allocated into a region

• Sect at address overlays previously allocated section
sect at address

• Sect, bonded at address, won't fit into configured
memory

• Sect enters unconfigured memory at address

• Section sect in file name is too big .

5.5 Misuse of Link Editor Directives

These errors arise from the misuse of an input directive. Please
review the appropriate section in the manual.

• Adding name(sect} to multiple output sections.

The input section is mentioned twice in the SECTION direc­
tive.

• Bad attribute value in MEMORY directive: c.

An attribute must be one of R, W, X, or I.

• Bad flag value in SECTIONS directive, option.

Only the -I option is allowed inside of a SECTIONS directive

• Bad fill value.

7-61

LINK EDITOR

The fill value must be a 2-byte constant.

• Bonding excludes alignment.

The section will be bound at the given address regardless of the
alignment of that address.

• Cannot align a section within a group

• Cannot bond a section within a group

• Cannot specify an owner for sections within a group.

The entire group is treated as one unit, so the group may be
aligned or bound to an address, but the sections making up the
group may not be handled individually.

• DSECT sect can't be given an owner

• DSECT sect can't be linked to an attribute.

Since dummy sections do not participate in the memory alloca­
tion, it is meaningless for a dummy section to be given an
owner or an attribute.

• Region commands not allowed

The UniPius+ link editor does not accept the REGION com­
mands.

• Section sect not built.

The most likely cause of this is a syntax error in the SEC­
TIONS directive.

• Semicolon required after expression

• Statement ignored.

Caused by a syntax error in an expression.

7-62

LINK EDITOR

• Usage of unimplemented syntax.

1,.,-.- 5.6 Misuse of Expressions

These errors arise from the misuse of an input expression.
Please review the appropriate section in the manual.

• Absolute symbol name being redefined.

An absolute symbol may not be redefined.

• ALIGN illegal in this context.

Alignment of a symbol may only be done within a SECTIONS
directive.

• Attempt to decrement DOT

• Illegal assignment of physical address to DOT.

• Illegal operator in expression

• Misuse of DOT symbol in assignment instruction .

The DOT symbol (.) cannot be used in assignment statements
that are outside SECTIONS directives.

• Symbol name is undefined.

All symbols referenced in an assignment statement must be
defined.

• Symbol name from file name being redefined.

A defined symbol may not be redefined in an assignment state­
ment.

• Undefined symbol in expression .

7-63

LINK EDITOR

S. 7 Misuse of Options

These errors arise from the misuse of options. Please review
the appropriate section of the manual.

• Both -rand-s flags are set. -s flag turned off.

Further relocation requires a symbol table.

• Can't find library libx.a

• - L path too long (string)

• -o file name too large (> 128 char), truncated to
(string)

• Too many -L options, seven allowed.

Some options require white space before the argument, some
do not; see "Using the Link Editor." Including extra white
space or not including the required white space is the most
likely cause of the following messages.

• option flag does not specify a number

• option is an invalid flag

• -e flag does not specify a legal symbol name name

• -f flag does not specify a 2-byte number

• No directory given with -L

• -o flag does not specify a valid file name: string

• the -1 flag (specifying a default library) is not sup­
ported

• -u flag does not specify a legal symbol name: name.

5.8 Transfer Vector Error Messages

• ASSIGN slot num exceeds total TV size of num

• Attempt to assign tv slot to illegal symbol

7-64

(
'

,r--

---·

LINK EDITOR

• Defined symbol assigned a tv slot outside tv range

• Illegal ASSIGN slot number (0)

• Illegal multiple LENGTH fields in the TV directive

• Illegal multiple RANGE fields in the TV directive

• Illegal RANGE syntax

• Non-tv file name in transfer vector run

• RANGE num exceeds total TV size of num

• Supplied tv origin (num) does not equal the hard­
wired tv origin (Ox760000). Jbld only.

• Transfer vector file name in non-tv run

• tv fill symbol does not exist

• tv range allows numl entries; num2 needed

• tv reference to non-tv symbol, addr address, index
num, file name

• Two tv slot assignments for function name, slotl
and slot2

• Undefined symbol assigned a tv slot within tv range

5.9 Space Restraints

The following error messages may occur if the ld attempts to
allocate more space than is available. The user should attempt
to decrease the amount of space used by the ld. This may be
accomplished by making the ifile less complicated or by using
the -r option to create intermediate files.

• Fail to allocate num bytes for slotvec table

• Internal error: aux table overflow

• Internal error: symbol table o'lerflow

• Memory allocation failure on nom-byte 'calloc' call

• Memory allocation failure on realloc call

7-65

LINK EDITOR

• Run is too large and complex.

5.10 Miscellaneous Errors

These errors occur for many reasons. Refer to the error mes­
sage for an indication of where to look in the manual.

7-66

• Archive symbol table is empty in archive name,
execute 'ar ts name' to restore archive symbol table .

On systems with a random access archive capability,
the link editor requires that all archives have a sym­
bol table. This symbol table may have been removed
by strip.

• Can't create intermediate ld file name

• Can't open internal file name

These two messages are possible only when the link
editor is two processes. This would indicate that the
temp directory (usually /tmp or /usr/tmp) is out of
space, or that the link editor does not have permis­
sion to write in it.

• Cannot create output file name .

The user may not have write perm1ss1on in the
directory where the output file is to be written.

• Failure to load pass 2 of ld

This can only occur when the link editor is built as
two processes (i.e., on the PDP 11170). The most
likely cause is that the second process is not where
the first one thinks it is.

• File name has a section name which is a reserved ld
identifier: .tv

• File name has no relocation information.

See "Notes and Special Considerations."

r
'

(~

LINK EDITOR

7-67

• File name is of unknown type, magic number =
num

• lfile nesting limit exceeded with file name .

Ifiles may be nested 16 deep.

• Library name, member has no relocation informa­
tion.

• Multiply defined symbol sym, in name has more
than one size

A multiply defined symbol may not have been
defined in the same manner in all files.

• name(sect) not found

•

An input section specified in a SECTIONS directive
was not found in the input file.

Section sect starts on an odd byte boundary!

This will happen only if the user specifically binds a
section at an odd boundary.

• Sections .text, .data or .bss not found; Optional
header may be useless.

• The UNIX system a.out header uses values found in
the .text, .data and .bss section headers.

• Line nbr entry (num num) found for nonrelocatable
symbol:

•

Section sect, file name

This is generally caused by an interaction of yacdl)
and cc(l).

See the part "Notes and Special Considerations."

Undefined symbol sym first referenced in file name .

LINK EDITOR

7-68

Unless the -r option is used, the ld requires that all
referenced symbols are defined.

• Unexpected EOF (End Of File).

Syntax error in the ifile.

LINK EDITOR

6. Syntax Diagram for Input Directives

The following tables contain a syntax diagram for input direc­
tives.

7-69

LINK EDITOR

dJrectives -> expanded directives

<file> -> I <cmd> }
<cmd> -> <memory>

-> <sections>
-> <assignment>
-> <filename>
-> <flags>

<memory -> MEMORY { <memory_spec>
{ [,] <memory_spec> }}

<memory_spec> -> <name> [<attributes>] :
<origin_spec> [,] <length_spec>

<attributes> -> (IRIWIXII})
< origin_spec> -> <origin> - <long>
< lenth_spec> -> <length> - <long>
<origin> -> ORIGIN I o I org I origin
<length> -> LENGTH I I lien I length

<sections> -> SECTIONS II <sec_or_l!roup> }} -"

<sec_or_group> -> <section> I <group> I <library>
<group> -> GROUP <group options> : {

<section_list>} [<mem_spec>J

<section _list> -> <section> { [,] <section> }

<section> -> <name> <sec_options> : {
<statement_list> }
(<fill>] [<mem_spec>]

<group_ options> -> {<addr>] [<align option>]

7-70

LINK EDITOR

(
directives -> expanded directives

<sec_ options> -> [<addr>] [<align option>]
[< block_option> J [< type_option>]

<addr> -> <long>
<align_ option> -> <align> (<long>)
<align> -> ALIGN I align
< block_option> -> <block> (<long>)
<block> -> BLOCK I block
< type_option> -> (DSECTJ I (NOLOAD) I (COPY)
<fill> -> - <long>
<mem_spec> -> ><name>

-> > <attributes>
<statement> -> <file name> [(<name list>)]

[<fill> 1 <library> <assignment>

r < name_list> -> <name> { [,] <name> }
<library> -> -l<name>

<assignment> -> <!side> <assign_op> <expr> <end>
<!side> -> <name> I.
<assign_op> -> =1+=1-=1*=1/=
<end> -> ; I '
<expr> -> <expr> <binary_op> <expr>

-> <term>
< binary_op> -> • 1/1%

-> +I-
-> >> I<<

-> -- 1!-1>1<1<-1>=
-> &
-> I
-> && r -> II

' -

7-71

LINK EDITOR

directives -> expanded directives

<term> -> <long>
-> <name>
-> <align> (<term>)
-> (<expr)
-> <unary_op> <term>

<unary_op> -> ! 1-
<flags> -> -e<wht_space> <name>

-> -f<wht_space> <long>
-> - b<wht_space> <long>
-> -I<name>
-> -m
-> -o< wht_space> <filename>
-> -r
-> -s
-> -t
-> -u<wht_space> <name>
-> -z
-> -H
-> -F
-> - L< pathname>
-> -M
-> -N
-> -s
-> -v
-> - VS<wht_space> <long>
-> -a
-> -x

7-72

LINK EDITOR

(" directives -> expanded directives

'

<name> -> Any valid symbol name
<long> -> Any valid long integer constant
<wht_space> -> Blanks, tabs, and newlines

<filename> -> Any valid UNIX operating system
filename. This may include a
full or partial pathname.

<pathname> -> Any valid UNIX operating system
pathname (full or partial)

---·

7-73

c

c

Chapter 8: COFF

CONTENTS

I. Introduction • • • • • .

2. Definitions and Conventions

3. File Header
3.1 Magic Numbers
3.2 Flags
3.3 File Header Declaration

4. Optional Header Information
4.1 Standard UNIX System a.out Header
4.2 Optional Header Declaration

5. Section Headers • •
5.1 Flags . . •
5.2 Section Header Declaration .
5.3 .bss Section Header

6. Sections

7. Relocation Information
7.1 Relocation Entry Declaration

8. Line Numbers
8.1 Line Number Declaration

9. Symbol Table
9.1 Special Symbols
9.2 Inner Blocks
9.3 Symbols and Functions
9.4 Symbol Table Entries

9.4.1 Symbol Names
9.4.2 Storage Classes
9.4.3 Storage Classes for Special

Symbols . . , •
Symbol Value Field .
Section Number Field

- i -

I

4

5
7
9
ll

ll
12
14

15
17
19
19

20

21
23

23
24

25
27
28
30
31
32
34

36
37
39

9.4.6 Section Numbers and Storage
Classes • 40

9.4.7 Type Entry 41
9.4.8 Type Entries and Storage

Classes • • 44
9.4.9 Structure for Symbol Table

Entries . . • 46
9.5 Auxiliary Table Entries 47

9.5.1 File Names • 50
9.5.2 Sections • . . 50
9.5.3 Tag Names . . 51
9.5.4 End of Structures 51
9.5.5 Functions 52
9.5.6 Arrays . • • • 53
9.5.7 Beginning of Blocks and

Functions . . • . . 54
9.5.8 End of Blocks and Functions 55
9.5.9 Names Related to Structures, Unions, and

Enumerations • . . . 55
9.5.10 Auxiliary Entry Declaration 56

10. String Table . • 58

11. Access Routines • 58

LIST OF FIGURES

Figure 8.1. Object File Format

Figure 8.2. File Header Contents

Figure 8.3. Magic Numbers .
Figure 8.4. File Header Flags

Figure 8.5. File Header Declaration

Figure 8.6. Optional Header Contents

Figure 8. 7. UNIX Magic Numbers

- ii -

3

6

8

10

11

12

13

Figure 8.8. Aouthdr Declaration 14

Figure 8.9. Section Header Contents 16
(Figure 8.10.
<

Section Header Flags . 18

Figure 8.11. Section Header Declaration 19

Figure 8.12. Relocation Section Contents . 21

Figure 8.13. VAX and M68000 Relocation
Types 22

Figure 8.14. Relocation Entry Declaration 23

Figure 8.15. Line Number Grouping 24

Figure 8.16. Line Number Entry Declaration 25

Figure 8.17. COFF Global Symbol Table . 26

Figure 8.18. Special Symbols in the Symbol
Table 27

Figure 8.19. Special Symbols 29
(Figure 8.20. Nested Blocks 29

Figure 8.21. Example of the Symbol Table 30

Figure 8.22. Symbols for Functions 30

Figure 8.23. The Special Symbol .target 31

Figure 8.24. Symbol Table Entry Format 32

Figure 8.25. Name Field 33

Figure 8.26. Storage Classes 35

Figure 8.27. Storage Class by Special Symbols 37

Figure 8.28. Restricted Storage Classes 37

Figure 8.29. Storage Class and Value 38

r-- Figure 8.30. Section Number . . . 39

Figure 8.31. Section Number and Storage
Class 41

- iii -

Figure 8.32. Fundamental Types

Figure 8.33. Derived Types

Figure 8.34. Type Entries by Storage Class (1 of
2) • • • • • • • • • •

Figure 8.35. Type Entries by Storage Class (2 of
2) • • • • • • • • • •

Figure 8.36. Symbol Table Entry Declaration

Figure 8.37. Auxiliary Symbol Table Entries

Figure 8.38. Format for Auxiliary Table
Entries

Figure 8.39. Tag Names Table Entries .

Figure 8.40. Table Entries for End of
Structures

Figure 8.41. Table Entries for Functions

Figure 8.42. Table Entries for Arrays .

Figure 8.43. Format for Beginning of Block and
Function •

Figure 8.44. End of Block and Function
Entries • • • • • • •

Figure 8.45. Entries for Structures, Unions and
Numerations •

Figure 8.46. Auxiliary Symbol Table Entry

Figure 8.47. String Table

- iv -

42

43

45

46

47

49

50

51

52

53

54

54

55

56

58

58

,~

Chapter 8

COFF-

COFF

THE COMMON OBJECT FILE FORMAT

1. Introduction

This Chapter describes the Common Object File Format
(COFF). COFF is the output file produced on some UNIXTM
systems by the assembler (as) and the link editor (ld). Since
this format is used on several processors and operating systems,
including the UniPlus+® Operating System, the word common is
both descriptive and widely recognized.

The COFF is flexible enough to meet the demands of most jobs
and even simple enough to be easily incorporated into existing

(' projects. The following are some of COFF's key features:

• Applications may add system-dependent information
to the object file without causing access utilities to
become obsolete.

• Space is provided for symbolic information used by
de buggers and other applications

• Users may make some modifications in the object
file construction at compile time.

The object file supports user-defined sections and contains
extensive information for symbolic software testing. An object
file contains

UNIX is a trademark of AT&T Bell Laboratories. r UniSoft and UniPlus+ are registered trademarks of UniSoft Corporation.

8-1

COFF

• A file header

• Optional header information

• A table of section headers

• Data corresponding to the section header

• Relocation information

• Line numbers

• A symbol table

• A string table .

Figure 11.1 below shows the overall structure:

8-2

r

COFF

FILE HEADER

Optional Information
(UNIX System a.out header)

...
Section 1 Header

...
Section n Header

Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Section 1
...

Relocation Info for Section n
Line Numbers for Section 1

...
Line Numbers for Section n

SYMBOL TABLE

STRING TABLE

Figure 8.1. Object File Format

The last four sections (relocation, line numbers, symbol table,
and the string table) may be missing if the program is linked
with the -s option of the link editor (ld) or if the relocation
(line number) information, symbol table, and string table are
removed by the strip command.

8-3

COFF

The line number information does not appear unless the pro­
gram is compiled with the compiler's (cc) -g option. Also, if
there are no unresolved external references after linking, the
relocation information is no longer needed and is absent. The
string table is also absent if the source file does not contain any
symbols with names longer than eight characters. An object file
that contains no errors or unresolved references can be exe­
cuted.

2. Definitions and Conventions

Section A section is the smallest portion of an
object file that is relocated and treated as
one separate and distinct entity. In the
default case, there are three sections
named .text, .data, and .bss. Additional
sections accommodate multiple text or data
segments, shared data segments, or
user-specified sections. However, the
UniPlus+ Operating System loads only the
.text, and .data memory when the file is
executed. The kernel clears the .bss sec­
tion.

Physical Address This is the physical location in memory
where a section is loaded.

Virtual Address This is the offset of a section with respect
to the beginning of its segment or region.
All relocatable references in a section
assume that section occupies the virtual
address at execution time.

8-4

COFF

3. File Header

The file header contains the 20 bytes of information shown in
the following table. The last 2 bytes are flags used by ld and
object file utilities. For more explicit information regarding the
C language structure for the file header, see filehdr(4) in the
UniPJust User Manual, Sections 2-6.

8-5

COFF

BYTES DECLARATION NAME DESCRIPTION

0-1 unsigned short f_magic Magic number
as defined by
the symbol
MAGIC in the
file a.out.h.

2-3 unsigned short f_nscns Number of sec~
tion headers
(equals the
number of sec-
tions)

4-7 long int f_timdat Time and date
stamp indicat-
ing when the
file was created
relative to the
number of
elapsed seconds
since 00:00:00
GMT, January
I, 1970.

8-11 long int f_symptr File pointer
containing the
starting address
of the symbol
table

12-15 long int f_nsyms Number of
entries in the
symbol table

16-17 unsigned short f_opthdr Number of
bytes in the
optional header

18-19 unsigned short f flags Flags

Figure 8.2. File Header Contents

8-6

COFF

The size of optional header information (f_optbdr) is used by
all referencing programs that seek to the beginning of the sec­
tion header table. This enables the same utility programs to
work correctly on files originally targeted for different systems.
On a VAX system, the optional header is 28 bytes.

3.1 Magic Numbers

The "magic number" specifies the machine on which the object
file is executable. The following is a table of the currently
defined magic numbers.

8-7

COFF

MNEMONIC MAGIC SYSTEM
NUMBER

MC68MAGIC 0520 M68000
U370WRMAGIC 0530 IBM 370 (writ-

able text seg-
ments)

U370ROMAGIC 0535 IBM 370
(read-only shar-
able text seg-
ments)

NJB MAGIC 0550 381M 20S com-
puters only.

FRO MAGIC 0560 W£HI.J2 (for-
ward byte ord-
ering)

RBOMAGIC 0565 WE-32 (reverse
byte ordering)

VAXROMAGIC 0575 VAXT~'-Lll/750

and
VAX-!1780
(writable text
segments)

VAXWRMAGIC 0570 VAX-ll/750
and
VAX-ll/780
(read-only shar-
able segments)

Figure 8.3. Magic Numbers

VAX is a trademark of Digital Equipment Corporation.
JB and WE are trademarks of AT&T Bell laborato'ies.

8-8

I
\

COFF

3.2 Flags

The last 2 bytes of the file header are flags that describe the
type of the object file. The UNIX version of COFF has no use
for some of these, but they are included here for commonality.
The currently defined flags are given in the following table:

8·9

COFF

MNEMONIC FLAG MEANING

F_RELFLG 00001 Relocation information stripped
from the file

F_EXEC 00002 File is executable (i.e. no
unresolved external references)

F LNNO 00004 Line numbers stripped from file
F LSYMS 00010 Local symbols stripped from file
F MINMAL 00020 Not used by UNIX
F UPDATE 00040 Not used by UNIX
F_SWABD 00100 This file has had its bytes

swabbed (i.e. the bytes of symbol
table name entries have been
reversed.)

F_ARI6WR 00200 Created on an AR16WR•
machine, (PDP™-11/70).

F_AR32WR 00400 Created on ao AR32WRn
machine, (VAX-11/780).

F AR32W 01000 Created on an AR32Wu•
machine, (M68000).

F PATCH 02000 Not used by UNIX

Figure 8.4. File Header Flags

PDP is a trademark of Digital Equipment Corporation.
• AR16WR defines the machine architecture (AR) as 16 bits per word (16),
right-to-left byte order with the least significant byte first (WR).
u AR.l2WR defines the machine architecture (AR) as 32 bits per word (32),
right-to-left byte order with the least significant byte first (WR) .
... AR32W defines the machine architecture (AR) as 32 bits per word (32),
left-to,-rigbt·byte order witb the most significant byte first (W).

8-10

,..--,
I

COFF

3.3 File Header Declaration

The C structure declaration for the file header is given in the
following table. This declaration may be found in the header
file fl.Iehdr.h. See fl.lehdr(4) in the UniPfugf- User Manual, Sec­
tions 2-6.

struct filehdr {

unsigned short f_magic; I• magic number •/

unsigned short f_nscns; I• number of section •I
long f_timdat; I• time and data stamp •/

long f_symptr; I• file pointer to
symbol table •/

long f-nsyms; I• number entries in the
symbol table •/

unsigned short f_opthdr; I• size of
optional header•/

unsigned short f_flags; I• flags •/

};

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

Figure 8.5. File Header Declaration

4. Optional Header Information

The template for optional information varies among different
systems that use COFF. Applications place ALL
system-dependent information into this record. This allows
different operating systems access to information that only that
operating system uses without forcing all COFF files to save
space for that information. General utility programs (for exam­
ple, the symbol table access library functions), can be made to
work properly on any common object file by using the "size of
optional header information" in bytes 16-17 of the file header
f_opthdr.

8-11

COFF

4.1 Standard UNIX System a.out Header

By default, files produced by the link editor (ld) ALWAYS
have a standard UNIX System a.out header in the optional
header field. The VAX version of the optional header is 28
bytes. The fields of the optional header are described in the
following figure:

BYTES DECLARATION NAME DESCRIPTION

0-1 short magic Magic number
2-3 short vstamp Version stamp
4-7 long int tsize Size of text in

bytes
8-ll long int dsize Size of initialized

data in bytes
12-15 long int bsize Size of uninitial-

ized data in bytes
16-19 long int entry Entry point
20-23 long int text_ start Base address of

text
24-27 long int data_start Base address of

data

Figure 8.6. Optional Header Contents

The magic number in the optional header supplies operating
system dependent information about the object file. Whereas,
the magic number in the file header specifies the machine on
which the object file runs. The magic number in the optional
header supplies information telling the operating system on that
machine how that file should be executed. The magic numbers
recognized by the UniPlus+ operating system are given in the
following table:

8-12

COFF

VALUE MEANING

0407 The text segment is not write-protected or
sharable; the data segment is contiguous
with the text segment.

0410 The data segment starts at the next seg-
ment following the text segment and the
text segment is write protected.

Figure 8.7. UNIX Magic Numbers

The magic number for the UNIX Operating System is a
machine-dependent constant that can be found in the header
file a out h. See the manual page for a.out(4) in the UniP/ust
User Manual, Sections 2-6.

8-13

COFF

4.2 Optional Header Declaration

The C language structure declaration currently used for the
UniPius+ system a.out file header is given in the following
table. This declaration may be found in the header file
aouthdr.h.

8-14

typedef struct aouthdr {

short magic;

short vstamp;

long tsize;

long dsize;

long bsize;

long entry;

I• magic number "''

I• version stamp .. ,

I• text size in bytes, padded
to full word boundary •/

I• initialized data size *I

I• uninitialized data size •/

I• entry point •I

long text_start; /• base of text for this file •/

long data_start f* base of data for this file •/

AOUTHDR;

Figure 8.8. Aouthdr Declaration

COFF

5. Section Headers

Every object file has a table of section headers to specify the
layout of data within the file. Every section in an object file
also has its own header. The section header table consists of
one entry for every section in the file. Each entry contains the
following information about the section:

8-15

COFF

BYTES DECLARATION NAME DESCRIPTION

0-7 char s_name 8-char null
padded section
name

8-11 long int s_paddr Physical
address of sec-
tion

12-15 long int s_vaddr Virtual
address of sec-
tion

16-19 long int s_size Section size in
bytes

20-23 long int s_scnptr File pointer to
raw data

24-27 long int s_relptr File pointer to
relocation
entries

28-31 long int s_Jnnoptr File pointer
to line number
entries

32-33 unsigned short s_nreloc Number of
relocation
entries

34-35 unsigned short s_nlnno Number of
line number
entries

36-39 long int s flags Flags

Figure 8.9. Section Header Contents

8-16

I
'

I
' , __ .

COFF

The size of a section is always padded to a multiple of 4 bytes.

File pointers are byte offsets that can be used to locate the start
of data, relocation, or line number entries for the section.
They can be readily used with the UniPlus+ Operating System
function fseek (3S).

5.1 Flags

The lower 4 bits of the flag field indicate a section type.

8-17

COFF

MNEMONIC FLAG MEANING

STYP_REG OxOO Regular section (allo-
cated, relocated,
loaded)

STYP_DSECT OxOl Dummy section (not
allocated, relocated, not
loaded)

STYP _NOLO AD Ox02 Noload section (allo-
cated, relocated, not
loaded)

STYP_GROUP Ox04 Grouped section
(formed from input
sections)

STYP_PAD Ox08 Padding section (not
allocated, not relocated,
loaded)

STYP_COPY OxlO Copy section (for a
decision function used
in updating fields; not
allocated, not relocated,
loaded, relocation and
line number entries
processed normally)

STYP TEXT Ox20 Section contains exe-
cutable text ONLY

STYP DATA Ox40 Section contains initial-
ized data ONLY

STYP BSS Ox80 Section contains only
uninitialized data

Figure 8.10. Section Header Flags

8-18

r

~

!

COFF

5.2 Section Header Declaration

The C structure declaration for the section headers is described
in the following figure. This declaration may be found in the
header file scnhdr.h. (See scnhdr(4) in the UniPlus+ User
Manual, Sections 2-6 for more information.)

struct scnhdr {

char s_name[81; I' section name "I

long s_paddr; I' physical address "/

long s_vaddr; I' virtual address "I

long s_size; I' section size "/

long s_scnptr; I' file pointer to
section raw data "I

long s_relptr; I' file pointer to
relocation */

long s_lnnoptr; I* file pointer to
line number "/

unsigned short s_nreloc~ I' number of
relocation entries */

unsigned short s_nlnno; I' number of
line number entries */

long s_flags; ,. flags */

};

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

Figure 8,11, Section Header Declaration

5.3 .bss Section Header

The one deviation from the normal rule in the section header
table is the entry for uninitialized data in a .bss section. A .bss
section has a size, symbols that refer to it and symbols that are

8-19

COFF

defined in it. At the same time, a .bss section has no reloca­
tion entries, no line number entries, and no data. Therefore, a
.bss section has an entry in the section header table but occu­
pies no space elsewhere in the file. In this case, the number of
relocation and line number entries, as well as all file pointers in
a .bss section header, are zero.

6. Sections

Section headers are followed by the appropriate number of
bytes of text or data. The raw data for each section begins on a
full word boundary in the file.

Files produced by the cc compiler and the as assembler always
contain three sections, called .text, .data, and .bss. The .text
section contains the instruction text (i.e., executable code); the
.data section contains initialized data variables; and the .bss
section contains uninitialized data variables.

The link editor SECTIONS directives (see the chapter on "LD
- THE COMMON LINK EDITOR" in the UniPlus+ Program­
ming Guide.} allows users to:

• describe how input sections are to be combined;

• direct the placement of output sections; and

• rename output sections.

If no SECTIONS directives are given, each input section
appears in an output section of the same name. For example,
if a number of object files from the compiler are linked
together (each containing the three sections .text, .data, and
.bss}, the output object file also contains the same three sec­
tions.

8-20

r

-I

COFF

7. Relocation Information

Object files have one relocation entry for each relocatable refer·
ence in the text or data. The relocation information consists of
entries with the following 10 byte format

BYTES DECLARATION NAME DESCRIPTION

0-3 long int r_vaddr (Virtual)
address of
reference

4-7 long int r_symndx symbol table
index

8-9 unsigned short r type Relocation type

Figure 8.12. Relocation Section Contents

The first 4 bytes of the entry are the virtual address of the text
or data to which this entry applies. The next field is the index,
counted from 0, of the symbol table entry that is being refer­
enced. The type field indicates the type of relocation to be
applied.

As the link editor reads each input section and performs reloca­
tion, the relocation entries are read. They direct how refer­
ences found within the input section are treated.

The currently recognized relocation types are given in the fol­
lowing table:

8-21

COFF

MNEMONIC FLAG MEANING

R_ABS 0 Reference is absolute; no
relocation is necessary.
The entry will be ignored.

R_RELBYTE 017 Direct 8-bit reference to
the symbol's virtual
address.

R_RELWORD 020 Direct 16-bit reference to
the symbol's virtual
address.

R_RELLONG 021 Direct 32-bit reference to
the symbol's virtual
address. (a VAX reloca-
tion type)

R_PCRBYTE 022 A "PC-relative" 8-bit
reference to the symbol's
virtual address.

R_PCRWORD 023 A "PC-relative" 16-bit
reference to the symbol's
virtual address.

R_PCRLONG 024 A "PC-re/ative" 32-bit
reference to the symbol's
virtual address.

Figure 8.13. VAX and M68000 Relocation Types

8-22

COFF

On VAX processors, relocation of a symbol index of -1 indi­
cates that the amount by which the section is being relocated is
added to the relocatable address. In other words, the relative
difference between the current segment's start address and the
program's load address is added to the relocatable address.

The as automatically generates relocation entries which are
then used by the link editor. The link editor uses this informa­
tion to resolve external references in the file.

7 .l Relocation Entry Declaration

The structure declaration for relocation entries is given in the
following table. This declaration may be found in the header
file reloc.h.

struct reloc {

long r_ vaddr; I• reference virtual address •I

long r_symndx; I• index into symbol table .. ,

unsigned short r_type; I* relocation type *I
};

#define RELOC struct reloc
#define RELSZ 10

Figure 8.14. Relocation Entry Declaration

8. Line Numbers

When invoked with the -g option, the UniPlus+ system com·
pilers (cc, n7) generate an entry in the object file for every C
language source line where a breakpoint can be inserted. You
can then reference line numbers when using a software
debugger like sdb. All line numbers in a section are grouped

8-23

COFF

by function.

symbol index 0
physical address line number
physical address line number

...
symbol index 0

physical address line number
physical address line number

Figure 8.15. Line Number Grouping

The first entry in a function grouping has line number 0 and
has, in place of the physical address, an index into the symbol
table for the entry containing the function name. Subsequent
entries have actual line numbers and addresses of the text
corresponding to the line numbers. The line number entries
appear in increasing order of address.

8.1 Line Number Declaration

The following is the structure declaration currently used for line
number entries.

8-24

COFF

struct lineno {

union {
long l_symndx;r symbol table index

of function name */

long l_paddr; r physical address
of line number *I

) l_addr;
unsigned short l_lnno; r line number "'/

);

#define LINENO
#define LINESZ

struct lineno
6

Figure 8.16. Line Number Entry Declaration

9. Symbol Table

Because of symbolic debugging requirements, the order of sym­
bols in the symbol table is very important. Symbols appear in

8-25

COFF

the following sequence:

file name 1

function 1
local symbols
for function 1

function 2
local symbols
for function 2

.
statics

.
file name 2
function 1

local symbols
for function 1

.
statics

.
defined global

symbols
undefined global

symbols

Figure 8.17. COFF Global Symbol Table

The word statics means symbols defined in the C language
storage class static outside any function. The symbol table con­
sists of at least one fixed-length entry per symbol with some
symbols followed by auxiliary entries of the same size. The
entry for each symbol is a structure that holds the name {null­
padded), the structure value, the type, and other information.

8-26

COFF

9.1 Special Symbols

The symbol table contains some special symbols that are gen­
erated by the « compiler, the as assembler, and other tools.

SYMBOL MEANING

.file file name

.text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

.target pointer to the structure or
union returned by a function

• .xfake dummy tag name for struc-
ture, union, or enumeran

.eos end of members of structure,
union, or enumeration

_ etext,etext next available address after
the end of the output section
.text

_edata,edata next available address after
the end of the output section
.data

_end,end next available address after
the end of the output section
.bss

Figure 8.18. Special Symbols in the Symbol Table

8-27

COFF

Six of these special symbols occur in pairs. The .bb and .eb
symbols indicate the boundaries of inner blocks. A .bf and .ef
pair brackets each function; and a . .xfake and .eos pair names
and defines the limit of structures, unions, and enumerations
that were not named. The .eos symbol also appears after
named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the
cc compiler invents a name to be used in the symbol table.
The name chosen for the symbol table is . .xfake, where xis an
integer. If there are three unnamed structures, unions, or
enumerations in the source, their tag names are .Ofake, .lfake,
and .2fake.

Each of the special symbols has different information stored in
the symbol table entry as well as the auxiliary entry.

9.2 Inner Blocks

The C language defines a block as a compound statement that
begins and ends with braces ({ and }) . An inner block is a
block that occurs within a function (which is also a block), such
as if, while or switch.

For each inner block that has local symbols defined, a special
symbol .bb is put in the symbol table immediately before the
first local symbol of that block. Also a special symbol, .eb is
put in the symbol table immediately after the last local symbol
of that block. The following table shows this sequence:

8-28

r-
1

.bb
local symbols
for that block

.eb

Figure 8.19. Special Symbols

COFF

Because inner blocks can be nested by several levels, the
.bb-.eb pairs and associated symbols may also be nested. See
the following table.

inti;
char c;

long a;

int x;

long i;

!*block l *I

I* block 2 "I

I* block 3 '"I

I* block 3 *I
r block 2 *I
I* block 4 *I

I* block 4 "'/
I* block 1 "'/

Figure 8.20. Nested Blocks

The symbol table would then look like the following:

8-Z9

COFF

.bb for block 1
local symbols for block 1:

i
c

.bb for block 2
local symbols for block 2:

a
.bb for block 3

local symbols for block 3:
X

.eb for block 3

.eb for block 2

.bb for block 4
local symbols for block 4:

i
.eb for block 4
.eb for block 1

Figure 8.21. Example of the Symbol Table

9.3 Symbols and Functions

For each function, a special symbol .bf is put between the func­
tion name and the first local symbol of the function in the sym­
bol table. Also, a special symbol .ef is put immediately after
the last local symbol of the function in the symbol table. The
sequence is shown in the following table:

8-30

function name
.bf

local symbol
.ef

Figure 8.22. Symbols for Functions

----·

COFF

If the return value of the function is a structure or union, a
special symbol .target is put between the function name and
the .bf. The sequence is shown in the following table:

function name
.target

.bf
local symbols

.ef

Figure 8.23. The Special Symbol .target

The cc compiler invents .target to store the function-returned
structure or union. The symbol .target is an automatic variable
~ith pointer type. Its value field in the symbol is always 0.

9.4 Symbol Table Entries

All symbols, regardless of storage class and type, have the same
format for their entries in the symbol table. The symbol table
entries each contain the 18 bytes of information. The meaning
of each of the fields in the symbol table entry is described in
the following table:

It should be noted that indices for symbol table entries begin at
zero and count upward. Each auxiliary entry also counts as one

8-31

COFF

symbol.

BYTES DECLARATION NAME DESCRIPTION

0-7 char name 8 character -
null-padded
name of either
a pointer or
symbol.

8-11 long int n_value Symbol value;
storage class
dependent

12-13 short n_scnum Section
number of
symbol

14-15 unsigned short n_type Basic and
derived type
specification

16 char n_sclass Storage class
of symbol

17 char n_numaux Number of
auxiliary
entries.

Fi~~:ure 8.24. Symbol Table Entry Format

9.4.1 Symbol Names

The first 8 bytes in the symbol table entry are a union of a
character array and two longs. If the symbol name is eight
characters or less, the (null-padded) symbol name is stored
there. If the symbol name is longer than eight characters, then
the entire symbol name is stored in the string table. In this
case, the 8 bytes contain two long integers, the first is zero, and
the second is the offset (relative to the beginning of the string
table} of the name in the string table. Since there can be no

8-JZ

COFF

symbols with a null name, the zeroes on the first 4 bytes serve
to distinguish a symbol table entry with an offset from one with
a name in the first 8 bytes as shown in the following table.

The name of a symbol is currently limited to 8 characters,
longer names are truncated by the cc compiler, Some special
symbols are generated by the compiler and link editor, as dis­
cussed under the subheading "Special Symbols." The names
of special symbols alwas start with a dot, such as .file, .Sfake
and .bb.

BYTES DECLARATION NAME DESCRIPTION

0-7 char n_name 8-character
null-padded
symbol name

0-3 long n_zeroes zero in this
field indicates
the name is in
the string table

4-7 long n_otfset offset of the
name in the
string table

Figure 8.25. Name Field

Some special symbols are generated by the cc compiler and ld
link editor as discussed under the subheading "Special Sym­
bols." The VAX tt compiler prepends an underscore("_") to
all the user defined symbols it generates; the M68000 DOES
NOT pre pend an underscore. The M68000 prepends a "." to

(such symbol names (i.e., .Sfake).

8-33

COFF

9.4.2 Storage Classes

The storage class field has one of the values described in the
following table. These "defines" may be found in the header
file storclass.h.

8-34

COFF

MNEMONIC VALUE STORAGE CLASS

C EFCN I physical end of a function
C NULL 0
C_AUTO I automatic variable
C EXT 2 external symbol
C STAT 3 static
C REG 4 register variable
C EXTDEF 5 external definition
C LABEL 6 label
C ULABEL 7 undefined label
CMOS 8 member of structure
C ARG 9 function argument
C STRTAG 10 structure tag

C MOU 11 member of union
C UNTAG 12 union tag

C TPDEF 13 type definition
C USTATIC 14 uninitialized static
C ENTAG 15 enumeration tag
C_MOE 16 member of enumeration
C_REGPARM 17 register parameter
C FIELD 18 bit field
C_BLOCK 100 beginning and end of block
C_FCN 101 beginning and end of function
C_EOS 102 end of structure
C FILE 103 file name
CLINE 104 used only by utility programs
C_ALIAS 105 duplicated tag used only with

the UNIX cprs utility
C_HIDDEN 106 like static, used to avoid name

conflicts

Figure 8.26. Storage Classes

8-35

COFF

All of these storage classes except for C_ALIAS and
C_HIDDEN are generated by the cc compiler or as assembler.
These storage classes are not used by any UniPlus+ system
tools. The UNIX cprs (compress) utility generates the
C_ALIAS mnemonic. This utility removes duplicated struc­
ture, union and enumeration definitions and puts ALIAS
entries in their places.

There are some "dummy" storage classes defined in the header
file which are only used internally by the cc compiler and the as
assembler. These storage classes are:

• C_EFCN

• C_EXTDEF

• C_ULABEL

• C_USTATIC

• C_LINE

9.4.3 Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes
listed in the following table:

8-36

,f'

COFF

SPECIAL SYMBOL STORAGE CLASS

.file C_FILE

.bb C BLOCK

.eb C_BLOCK

.bf C FCN

.ef C FCN

.target C AUTO

. .:dake C STRTAG, C UNTAG, C ENTAG

.eos C EOS

.text C_STAT

.data C_STAT

.bss C_STAT

Figure 8.27. Storage Class by Special Symbols

Some storage classes are only used for certain special symbols.

STORAGE CLASS SPECIAL SYMBOL

C BLOCK .bb, .eb
C FCN .bf, .ef
C EOS .eos
C FILE .file

Figure 8.28. Restricted Storage Classes

9.4.4 Symbol Value Field

The meaning of the value of a symbol depends on its storage
class. This relationship is summarized in the following table:

8·37

COFF

STORAGE CLASS MEANING

C AUTO stack offset in bytes
C EXT relocatable address
C STAT relocatable address
C REG register number
C LABEL relocatable address
CMOS offset in bytes
C ARG stack offset in bytes
C STRTAG 0
C MOU offset
C UNTAG 0
C TPDEF 0
C ENTAG 0
C MOE enumeration value
C REGPARM register number
C FIELD bit displacement
C BLOCK relocatable address
C FCN relocatable address
C EOS size
C FILE (see text below)
C_ALIAS tag index

used by UNIX cprs utility

C_HIDDEN relocatable address
used by UNIX cprs utility

Figure 8.29. Storage Class and Value

If a symbol is the last symbol in the object file and has storage
class C _FILE (.file symbol), the value of that symbol equals
the symbol table entry index of the first global symbol. That is,
the .file entries form a 1-way linked list in the symbol table. If
there are no more .file entries in the symbol table, the value of

8-38

(~

COFF

the symbol is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of
that symbol. When the section is relocated by the link editor,
the value of these symbols changes.

9.4.5 Section Number Field

Section numbers are listed in the following figure:

MNEMONIC SECTION NUMBER MEANING

N_DEBUG -2 special symbolic
debugging sym-
bol

NABS -I absolute symbol
N_UNDEF 0 undefined

external symbol
N_SCNUM 1-077767 section number

where symbol
was defined

Figure 8.30. Section Number

A special section number (-2) marks symbolic debugging sym­
bols, including structure/union/enumeration tag names,
typedefs, and the name of the file. A section number of -1
indicates that the symbol has a value but is not relocatable.
Examples of absolute-valued symbols include automatic and
register variables, function arguments, and .eos symbols. The
.text, .data, and .bss symbols default to section numbers 1, 2,
and 3, respectively.

With one exception, a section number of 0 indicates a relocat­
able external symbol that is not defined in the current file. The

8-39

COFF

one exception is a multiply defined external symbol (i.e., FOR­
TRAN common or an uninitialized variable defined external to
a function in C). In the symbol table of each file where the
symbol is defined, the section number of the symbol is 0 and
the value of the symbol is a positive number giving the size of
the symbol. When the files are combined, the link editor com­
bines all the input symbols into one symbol with the section
number of the .bss section. The maximum size of all the input
symbols with the same name is used to allocate space for the
symbol and the value becomes the address of the symbol. This
is the only case where a symbol has a section number of 0 and
a non-zero value.

9.4.6 Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to cer­
tain section numbers. They are summarized in the following

8-40

(
'

(~

COFF

table:

STORAGE CLASS SECTION NUMBER

C_AUTO N_ABS

C_EXT N_ABS, N_UNDEF, N_SCNUM

C STAT N_SCNUM

C_REG NABS

C_LABEL N UNDEF, N SCNUM

C_MOS NABS

C_ARG NABS

C_STRTAG N DEBUG

C_MOU NABS

C_UNTAG N_DEBUG

C TPDEF N_DEBUG

C ENTAG N_DEBUG

C MOE N_ABS

C REGPARM N_ABS
C FIELD N_ABS

C_BLOCK N_SCNUM

C_FCN N SCNUM
C_EOS NABS
C_FILE N DEBUG

C_ALIAS N DEBUG

Figure 8.31. Section Number and Storage Class

9.4. 7 Type Entry

The type field in the symbol table entry contains information
about the basic and derived type for the symbol. This informa­
tion is generated by the tt. The VAX and M68000 cc com­
pilers generate this information ONLY if the -g option is used.
Each symbol has exactly one basic or fundamental type but can

8·41

COFF

have more than one derived type. The format of the 16-bit
type entry is

1 ct6 1 ct5 ct4 d3 ct2 ct1 I trp 1

Bits 0 through 3, called typ, indicate one of the fundamental
types given in the following table:

MNEMONIC VALUE TYPE

T NULL 0 type not assigned
T CHAR 2 character
T SHORT 3 short integer
TINT 4 integer
T LONG 5 long integer
T FLOAT 6 floating point
T DOUBLE 7 double word
T STRUCT 8 structure
T UNION 9 union
T ENUM 10 enumeration
T MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T_USHORT 13 unsigned short
T_UINT 14 unsigned integer
T_ULONG 15 unsigned long

Figure 8.32. Fundamental Types

Bits 4 through 15 are arranged as six 2-bit fields marked dl
through d6. These d fields represent levels of the derived types

8-42

COFF

given in the following table.

MNEMONIC VALUE TYPE

DT NON 0 no derived type
DT PTR I pointer
DT FCN 2 function
DT_ARY 3 array

Figure 8.33. Derived Types

The following examples demonstrate the interpretation of the
symbol table entry representing type.

char •funcO;

r- Here func is the name of a function that returns a pointer to a
'--· character. The fundamental type of func is 2 (character), the

dl field is 2 (function), and the d2 field is 1 (pointer). There­
fore, the type word in the symbol table for rune contains the
hexadecimal number Ox62, which is interpreted to mean "a
function that returns a pointer to a character."

short •tabptr[IO] [25] [3];

Here tabptr is a 3-dimensional array of pointers to short
integers. The fundamental type of tabptr is 3 (short integer);
the dl, d2, and d3 fields each contains a 3 (array), and the d4
field is 1 (pointer). Therefore, the type entry in the symbol
table contains the hexadecimal number Ox7f3 indicating "a 3-
dimensional array of pointers to short integers."

8-43

COFF

9.4.8 Type Entries and Storage Classes

Following are the type entries that are legal for each storage
class:

8-44

r

COFF

----------"d" ENTRY---------- "typ"
STORAGE ENTRY

CLASS F?• A?• P?• BASIC
TYPE

C_AUTO no yes yes Any
except
T_MOE

C_EXT yes yes yes Any
except
T MOE

C_STAT yes yes yes Any
except
T MOE

C_REG no no yes Any
except
T MOE

C LABEL no no no T NULL

C_MOS no yes yes Any
except
T MOE

C_ARG yes no yes Any
except
T MOE

C_STRTAG no no no T STRUCT
C_MOU no yes yes Any

except
T MOE

C UNTAG no no no T UNION

C_TPDEF no yes yes Any
except
T MOE

C ENTAG no no no T ENUM

• F? = Function?; • A? - Array? • P? = Pointer?

Figure 8.34. Type Entries by Storage Class (1 of 2)

8-45

COFF

----------"d" ENTRY---------- "typ"
STORAGE ENTRY

CLASS F?~ A?• P?• BASIC
TYPE

C MOE no no no T_MOE

C_REGPARM no no yes Any
except
T MOE

C_FIELD no no no T_ENUM,
T_UCHAR,
T_USHORT,
T_UNIT,
T ULONG

C BLOCK no no no T NULL

C FCN no no no T NULL

C EOS no no no T NULL

C FILE no no no T NULL

C_ALIAS no no no T_STRUCT,
T_UNION,
T ENUM

• F? = Function?; • A? = Array? • P? = Pointer?

Figure 8.35. Type Entries by Storage Class (2 of 2)

Conditions for the d entries apply to dl through d6, except that
it is impossible to have two consecutive derived types of func­
tion.

Although function arguments can be declared as arrays, they
are changed to pointers by default. Therefore, no function
argument can have array as its first derived type.

9.4.9 Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry
is given in the following table. This declaration may be found

8-46

in the header file syms.h.

struct syment {

union {

COFF

char n name[SYMNMLEN]; !* symbol name*/

struct (

long _n_zeroes; I* symbol name */

long _ n _offset; I* location in
string table *I

l n n· --'
char _n_nptr[2];

l n· - '
long n_ value;

/"' allows
overlaying */

I* value of symbol *I

short n_scnum; t• section number */

unsigned short n_type; r type and derived .,

I* storage class */ char n _ sclass;

char n_numaux; r number of aux entries */

};

#define n_name _n._n_name
#define n_zeroes _n._n_n._n_zeroes
#define n offset _n._n_n._n_offset
#define n=nptr _n._n_nptr[l]

#define SYMNMLEN 8
#define SYMESZ 18 I* size of symbol table entry *I

Figure 8.36. Symbol Table Entry Declaration

/.--., 9.5 Auxiliary Table Entries

Currently. there is at most one auxiliary entry per symbol. The
auxiliary table entry contains the same number of bytes as the

8-47

COFF

symbol table entry. However, unlike symbol table entries, the
format of an auxiliary table entry of a symbol depends on its
type and storage class. The following table lists auxiliary table
entry formats by type and storage class.

8-48

COFF

TYPE ENTRY AUX.

r
'

STORAGE ENTRY
NAME CLASS dZ typ FORMAT

.file C FILE DT NON T NULL file name

.text, C~STAT DT_NON T_NULL section

.data,

.bss
tagname C_STRTAG DT_NON T_NULL tag name

C_UNTAG
C ENTAG

.eos C_EOS DT_NON T_NULL end of
structure

fcname C_EXT DT_FCN Any function
C_STAT except

T MOE

arrname C_AUTO DT_ARY Any array
C_STAT except
C_MOS T_MOE

(~ C_MOU
C TPDEF

.bb C_BLOCK DT_NON T_NULL begin·
ning of
block

.eb C_BLOCK DT_NON T_NULL end of
block

.bf .ef C_FCN DT_NON T_NULL begin-
ning and
end of
function

name C_STAT DT_PTR T_STRUCT name
related to C_MOS DT_ARR T_UNION, related to
structure C_MOU DT NON T ENUM structure
union, C_TPDEF

union,
enumera- enumera-

(~ tion tion
'

Figure 8.37. Auxiliary Symbol Table Entries

8-49

COFF

In the preceding table, tagname means any symbol name
including the special symbol . .xfake, and fcname and arrname
represent any symbol name.

Any symbol that satisfies more than one condition should have
a union format in its auxiliary entry. Symbols that do not
satisfy any of the above conditions should NOT have any auxi­
liary entry.

9.5.1 File Names

Each of the auxiliary table entries for a file name contains a
14-character file name in bytes 0 through 13. The remaining
bytes are 0, regardless of the size of the entry.

9.5.2 Sections

The auxiliary table entries for sections have the format as
shown in the following table:

BYTES DECLARATION NAME DESCRIPTION

0-3 long int x_scnlen section
length

4-6 unsigned short x_nreloc number of
relocation
entries

6-7 unsigned short x_nlinno number of
line numbers

8-17 dummy unused (filled
with zeroes)

Figure 8.38. Format for Auxiliary Table Entries

8-50

COFF

9.5.3 Tag Names

The auxiliary table entries for tag names have the format
shown in the following table:

BYTES DECLARATION NAME DESCRIPTION

0-5 - dummy unused (filled
with zeros)

6-7 unsigned short x_size size of strucrt,
union,and
enumeration

8-11 dummy unused (filled
with zeroes)

12-15 long int x_endndx index of next
entry beyond
this structure,
union, or
enumeration

16-17 dummy unused (filled
with zeroes)

Figure 8.39. Tag Names Table Entries

9.5.4 End of Structures

The auxiliary table entries for the end of structures have the
format shown in the following table:

8-51

COFF

BYTES DECLARATION NAME DESCRIPTION

0-3 long int x_tagndx tag index
4-5 dummy unused (filled

with zeroes)
6-7 unsigned short x_size size of struct,

union, or
enumeration

8-17 dummy unused (filled
with zeroes)

Figure 8.40. Table Entries for End of Structures

9.5.5 Functions

The auxiliary table entries for functions have the format shown

8-52

~­
(

COFF

in the following table:

BYTES DECLARATION NAME DESCRIPTION

0-3 long int x_tagndx tag index
4-7 long int x_fsize size of func-

tion On bytes)
8-11 long int x_lnnoptr file pointer to

line number
12-15 long int x endndx index of next

entry beyond
this function

16-17 unsigned short x_tvndx index of the
function's
address in the
transfer vector
table (not used
by UNIX
Operating Sys-
tern.)

Figure 8.41. Table Entries for Functions

9.5.6 Arrays

The auxiliary table entries for arrays have the format shown in

8-53

COFF

the following table:

BYTES DECLARATION NAME DESCRIPTION

0-3 long int x tagndx tag index
4-5 unsigned short x_lnno line number of

declaration
6-7 unsigned short x size size of array
8-9 unsigned short x dimen[OJ first dimension

10-11 unsigned short x dimenUJ second dimension
12-13 unsigned short x dimen[2) third dimension
14-15 unsigned short X dimen[JJ fourth dimension

16-17 dummy unused (filled
with zeroes)

Figure 8.42. Table Entries for Arrays

9.5. 7 Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and func­
tions have the format shown in the following table:

BYTES DECLARATION NAME DESCRIPTION

0-3 dummy unused (filled
with zeroes)

4-5 unsigned short x lnno C-source line
number

6-11 dummy unused (filled
with zeroes)

12-15 long int x_endndx index of next
entry past this
block

16-17 dummy unused (filled
with zeroes)

Figure 8.43. Format for Beginning of Block and Function

8-54

COFF

9.5.8 End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions
have the format shown in the following table:

BYTES DECLARATION NAME DESCRIPTION

0-3 - dummy used (filled
with zeroes)

4-5 unsigned short x lnno C-source line
number

6-17 dummy unused (filled
with zeroes)

Figure 8.44. End of Block and Function Entries

9.5.9 Names Related to Structures, Unions, and
Enumerations

The auxiliary table entries for structure, union, and enumera­
tions symbols have the format shown in the following table:

BYTES DECLARATION NAME DESCRIPTION

0-3 long int x tagndx tag index
4-5 dummy unused (filled

with zeroes)

6-7 unsigned short x_size size of the
structure,
union or
numeration

8-17 dummy unused (filled
with zeroes)

Figure 8.45. Entries for Structures, Unions and Numerations

8-55

COFF

Names defined by typedef may or may not have auxiliary table
entries. For example,

typedef struct people STUDENT;

struct people {
char name[20];
long id;
);

typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the
symbol table but symbol STUDENT will not.

9.5.10 Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol
table entry is given in the following table. This declaration may
be found in the header file syrns.h.

8-56

,.---.
I

/'"""
I

union auxent

struct
long x_tagndx;
union {

struct
unsignedshort x_lnno;
unsignedshort x_size;

x_lnsz;
long x_fsize;

x mise;
uniOn {

struct
long x_lnnoptr;
long x endndx;

} x fen; -
struCt (

COFF

unsignedshort x dimen[DNUM];
} x_ary; -

x_fcnary;
unsignedshort x_tvndx;

} x sym;
strllct {

char x fname[FILNMLEN];
} x file; -
stni~t {

long x_scnlen;
unsignedshort x_nreloc;
unsignedshort x_nlinno;

x_scn;
struct {

} x_tv;

long x_tvfill;
unsignedshort x _ tvlen;
unsignedshort x_tvran[2];

#defineFILNMLEN 14
#defineDNUM 4

8-57

COFF

#defineAUXENT
#defineAUXESZ

union auxent
18

Figure 8.46. Auxiliary Symbol Table Entry

10. String Table

Symbol table names longer than eight characters are stored con­
tiguously in the string table with each symbol name delimited
by a null byte. The first four bytes of the string table are the
size of the string table in bytes; offsets into the string table
therefore are greater than or equal to four.

For example, given a file containing two symbols with names
longer then eight characters, long_ name_} and another_ one, the
string table has the format shown in the following table:

28

'I' 'o' 'n' 'g'

' ' 'n' 'a' 'm'
'e' ' ' 'I' '\0'
'a' 'n' 'o' 't'
'h' 'e' 'r' ' '
'o' 'n' 'e' '\0'

Figure 8.47. String Table

NOTE: The index of long_name_l in the string table is 4 and
the index of another_ one is 16.

11. Access Routines

Supplied with every standard UniPius+ system release is a set
of access routines that are used for reading the various parts of
a common object file. Although the calling program must know

8-58

----·

COFF

the detailed structure of the parts of the object file it processes,
the routines effectively insulate the calling program from the
knowledge of the overall structure of the object file. In this
way, you can concern yourself with the section you are
interested in without knowing all the object file details.

The access routines can be divided into four categories:

1. Functions that open or close an object file.

2. Functions that read header or symbol table informa­
tion.

3. Functions that position an object file at the start of a
particular section of the object file.

4. A function that returns the symbol table index for a
particular symbol.

These routines can be found in the library libld.a and are
listed, along with a summary of what is available, in the
UniP/ust User Manual, Sections 2-6, under ldfcn (4}.

8-59

- j
j
j
j

j

- j

j
j
j
j
j
j

j
j
j

j

j
j
j

j
j
j

, __ .

Chapter 9: FORTRAN 77

CONTENTS

1. Introduction

2. Usage •
2.1 UNIX System Commands
2.2 The fl7 Command

2.2.1 Options

3. Language Extensions
3.1 Double Complex Data Type
3.2 Internal Files
3.3 Implicit Undefined Statement
3.4 Recursion • • . . • .
3.5 Automatic Storage
3.6 Variable Length Input Lines
3.7 Upper Case/Lower Case
3.8 Include Statement
3.9 Binary Initialization Constants
3.10 Character Strings . . .
3.11 Hollerith • • • • .
3.12 Equivalence Statements
3.13 One-Trip DO Loops . .
3.14 Commas in Formatted Input
3.15 Short Integers • • . . .
3.16 Additional Intrinsic Functions

4. Violations of the Standard . . • •
4.1 Double Precision Alignment •
4.2 Dummy Procedure Arguments
4.3 T and TL Formats

5. Interprocedure Interface
5.1 Procedure Names
5.2 Data Representations
5.3 Return Values
5.4 Argument Lists

- i -

1

1
1
2
3

4
5
5
5
6
6
6
7
7
7
8
9
9
9
9

10
10

14
14
15
15

16
16
16
17
18

6. File Formats • • • . .
6.1 File Structure . . . • • . . •
6.2 Preconnected Files and File Positions

. ii -

19
20
21

r
1. Introduction

Chapter 9

FORTRAN 77

FORTRAN 77

This chapter describes the FORTRAN 77 compiler and run­
time system as implemented on the UniPlus+® system.

Also described are the interfaces between procedures and the
file formats assumed by the 1/0 system. (For more informa­
tion on the 1/0 system see the chapters entitled "UNIX1 M

Implementation" and "UNIX 110" in the UniP/u~ Administra­
tor Manual).

2. Usage

(--. 2.1 UNIX System Commands

A UniPius+ System FORTRAN 77 user should be familiar with
the following commands:

fl7 Usage: f77 (options) files
This command invokes the UniPlus+ System FOR­
TRAN 77 compiler.

ratfor Usage: ratfor (options) (files)
This command invokes the Ratfor preprocessor.

eft Usage: eft loptionsllfilesl

a sa

This command compiles a program written in Extended
Fortran Language (EFL) into FORTRAN 77.

Usage: asa (files)
This command interprets the output of FORTRAN pro­
grams that utilize ASA carriage control characters.

fsplit Usage: fsplit options files
This command splits the named file(s) into separate
files, with one procedure per file.

9-1

FORTRAN 77

2.2 The f77 Command

The command to run the compiler is

n7 options file

The UniPlus+ FORTRAN compiler accepts several types of
arguments:

1. Arguments whose names end with ".f" are taken to be
Fortran 77 source programs; they are compiled, and each
object program is left on the file in the current directory
whose name is that of the source with a ".o" substituted
for the ".f" suffix.

2. Arguments whose names end with ".r" or ".e" are taken
to be Ratfor or EFL source programs, respectively.

3. Arguments whose names end with ".c" or ".s" are taken
to be C or assembly source programs and are compiled or
assembled, producing a ".o" file.

The f77(1) command is a general purpose command for com­
piling and loading FORTRAN and FORTRAN-related files into
an executable module.

If EFL (compiler) and Ratfor (preprocessor) source files are
given as arguments to the f77 command, they will be translated
into FORTRAN before being presented to this FORTRAN
compiler.

The f77 command invokes the C compiler to translate C source
files and invokes the assembler to translate assembler source
files.

Object files will be link edited unles the -c option is used.

NOTE:

9-2

The f77(1) and cc(l)
different link editing

commands
sequences.

have slightly
FORTRAN

FORTRAN 77

programs need two extra libraries - /ibl77.a and
libF77.a- and an additional startup routine.

The following file name suffixes are understood:

.f FORTRAN source file

.e EFL source file

.r Ratfor source file

.c C language source file

.s Assembler source file

. o Object file .

2.2.1 Options

The following options have the same meaning as in cc(l). (See
Id(l) for load-time options.)

-c Suppress loading and produce ".o" files for each
source file.

-g Have the compiler produce additional symbol table
information for sdb(l). Also pass the -lg flag to
ld(l).

-w Suppress all warning messages. If the option is
-w66, only Fortran 66 compatibility warnings are
suppressed.

- p Prepare object files for profiling, see prof(l).

-0 Invoke an object-code optimizer.

- S Compile the named programs, and leave the
assembler-language output on corresponding files
with a ".s" suffix. (No ".o" is created.) .

. ~· -o output Name the final output file output instead of
"a.out" (default).

9-3

FORTRAN 77

The following options are peculiar to f77:

-onetrip Compile DO loops that are performed at least once
if reached. (Fortran 77 DO loops are not per­
formed at all if the upper limit is smaller than the
lower limit.)

-u Make the default type of a variable "undefined"
rather than using the default Fortran rules.

-C Compile code to check that subscripts are within
declared array bounds.

- F Apply EFL and Ratfor preprocessor to relevant
files, put the result in the file with the suffix
changed to ".f''. but do not compile.

-m Apply the M4 preprocessor to each ".r" or ".e"
file before transforming it with the Ratfor or EFL
preprocessor.

-EX

-R X

Use the string x as an EFL option in processing
".e" files.

Use the string x as a Ratfor option in processing
".r" files.

Other arguments are taken to be either loader option argu­
ments, F77-compatible object programs (typically produced by
an earlier run), or libraries of F77-compatible routines. These
programs, together with the results of any compilations
specified, are loaded (in the order given) to produce an execut­
able program with name "a.out" (default).

3. Language Extensions

FORTRAN 77 includes almost all of FORTRAN 66 as a subset.
The most important additions are a character string data type,
file-oriented input/output statements, and random access 1/0.
Also, the language has been cleaned up considerably.

9-4

FORTRAN 77

In addition to implementing the language specified in the FOR­
TRAN 77 American National Standard, this compiler imple­
ments a few extensions. Most are useful additions to the
language. The remainder are extensions to make it easier to
communicate with C language procedures or to permit compila­
tion of old (1966 Standard FORTRAN) programs.

3.1 Double Complex Data Type

The data type double complex is added. Each datum is
represented by a pair of double-precision real variables. A dou­
ble complex version of every complex built-in function is pro­
vided.

3.2 Internal Files

The FORTRAN 77 American National Standard introduces
internal files (memory arrays) but restricts their use to format­
ted sequential 1/0 statements. This 1/0 system also permits
internal files to be used in direct and unformatted reads and
writes.

3.3 Implicit Undefined Statement

FORTRAN has a rule that the type of a variable that does not
appear in a type statement is integer if its first letter is i, j, k, I,
m or n. Otherwise, it is real. FORTRAN 77 has an implicit
statement for overriding this rule. An additional type state­
ment, undefined, is permitted. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the com­
piler will issue a diagnostic for each variable that is used but
does not appear in a type statement. Specifying the -u com­
piler option is equivalent to beginning each procedure with this

(" statement.

9-5

FORTRAN 77

3.4 Recursion

Procedures may call themselves directly or through a chain of
other procedures.

3.5 Automatic Storage

Two new keywords recognized are static and automatic. These
keywords may appear in implicit statements or as "types" in
type statements. Local variables are static by default; there is
exactly one copy of the datum, and its value is retained
between calls. There is one copy of each variable declared
automatic for each invocation of the procedure. Automatic
variables may not appear in equivalence, data, or save state­
ments.

3.6 Variable Length Input Lines

The FORTRAN 77 American National Standard expects input
to the compiler to be in a 72-column format, (except in com­
ment lines):

• the first five characters are the statement number,

• the next is the continuation character,

• and the next 66 are the body of the line.

• If there are fewer than 72 characters on a line, the
compiler pads it with blanks.

• characters after the first 72 are ignored.

In order to make it easier to type FORTRAN programs, this
compiler also accepts input in variable length lines.

9-6

• An ampersand (&) in the first position of a line indi·
cates a continuation line; the remaining characters
form the body of the line.

• A tab character in one of the first six positions of a
line signals the end of the statement number and
continuation part of the line; the remaining charac­
ters form the body of the line.

FORTRAN 77

• A tab anywhere EXCEPT in one of the first six posi­
tions on the line, is treated as another kind of blank
by the compiler.

3. 7 Upper Case/Lower Case

In the FORTRAN 77 Standard, there are only 26 letters
because FORTRAN is a one-case language, and the new com­
piler expects lowercase input.

By default, the compiler converts all uppercase characters to
lowercase except those inside character constants. If the - U
compiler option is specified, uppercase letters are NOT
transformed. In this mode, it is possible to specify external
names with uppercase letters in them and to have distinct vari­
ables differing only in case.

Regardless of the setting of the compiler's - U option, key­
words will be recognized ONLY if they appear in lowercase.

3.8 Include Statement

The statement

include "stuff''

is replaced by the contents of the file stuff "Includes" may be
nested to a reasonable depth, currently ten.

3.9 Binary Initialization Constants

A logical, real or integer variable may be initialized in a data
statement by a binary constant, denoted by a letter followed by
a quoted string. If the letter is b, the string is binary, and only
zeroes and ones are permitted. If the letter is o, the string is
octal with digits zero through seven. If the letter is z or x, the
string is hexadecimal with digits zero through nine, a through f
Thus, the statements

9-7

FORTRAN 77

integer a(3)
data a/b'l010',o'12',z'8'/

initialize all three elements of a to ten.

3.10 Character Strings

For compatibility with C language usage, the following
backslash escapes are recognijzed:

\n New-line

\t Tab

\b Backspace

\f Form feed

\0 Null

\' Apostrophe (doesi not terminate a string)

\ ~ Quotation mark (~oes not terminate a string)
'

\\ \
\x Where x is any other character.

'

FORTRAN 77 only has orle quoting character - the apos­
trophe ('}. This compiler a,nd I/0 system recognize both the
apostrophe and the double quote e). If a string begins with
one variety of quote mark, (he other may be embedded within
it without using the repeated:quote or backslash escapes.

Every unequivalenced scalar. local character variable and every
character string constant is aligned on an integer word boun­
dary. Each character string constant appearing outside a data
statement is followed by a null character to ease communication
with C language routines.

9-8

FORTRAN 77

3.11 Hollerith

FORTRAN 77 does not have the old Hollerith (nb) notation
though the new Standard recommends implementing the old
Hollerith feature in order to improve compatibility with old pro~
grams. In this compiler, Hollerith data may be used in place of
character string constants and may also be used to initialize non
character variables in data statements.

3.12 Equivalence Statements

This compiler permits single subscripts in equivalence state­
ments under the interpretation that all missing subscripts are
equal to 1. A warning message is printed for each such incom­
plete subscript.

3.13 One-Trip DO Loops

The FORTRAN 77 American National Standard requires that
the range of a do loop NOT be performed if the initial value is

.r'- already past the limit value. For example:

do 10 i = 2, l

The 1966 Standard stated that the effect of such a statement
was undefined, but it was common practice that the range of a
do loop would be performed at least once.

In order to accommodate old programs though they are in vio­
lation of the 1977 Standard, the -onetrip compiler option
causes loops whose initial value is greater than or equal to the
limit value to be performed once.

3.14 Commas in Formatted Input

The 110 system attempts to be more lenient than the FOR-
i'' TRAN 77 American National Standard when it seems

worthwhile. When doing a formatted read of non-character
variables, commas may be used as value separators in the input
record overriding the field lengths given in the format state­
ment. Thus, the format

9·9

FORTRAN 77

(ilO, f20.l0, i4)

will read the record

-345,.05e-3,12

correctly.

3.15 Short Integers

On machines that support half word integers, the compiler
accepts declarations of type thteger•2. (Ordinary integers fol­
low the FORTRAN rules aboUt occupying the same space as a
REAL variable; they are assu¢ed to be of C language type long
int; half word integers are o~ C language type short int.) An
expression involving only ob~ects of type integer•l is of that
type. Generic functions return short or long integers depending
on the actual types of their arguments. If a procedure is com­
piled using the - 12 flag, all Small integer constants will be of
type integer•l. If the precision of an integer-valued intrinsic
function is not determined by the generic function rules, one
will be chosen that returns :the prevailing length (integer*2
when the -12 command Oa~ is in effect). When the -12
option is in effect, all quantities of type logical will be short.
Note that these short integer lind logical quantities do not obey
the standard rules for storage association.

3.16 Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in
the FORTRAN 77 Standard. In addition, there are functions
for performing bitwise Boolean operations (or, and, xor, and
not) and for accessing the command arguments (getarg and
iargc).

The following lists the FORTRAN intrinsic function library
plus some additional functions. These functions are automati­
cally available to the FORTRAN programmer and require no
special invocation of the compiler. The asterisk (,.) beside

9-10

r
'

FORTRAN 77

some of the commands indicate they are not part of standard
F77. In parenthesis beside each function description listed
below is the location for the command in the UniP/ust User
Manual These functions are as follows:

abort•
abs
aoos
aimag

aint
alog
aloglO
amaxO
a maxi
aminO
aminl
amod
and•
anint
as in
a tan
atan2
cabs
coos
cexp
char
clog
em pix
conjg
cos
cosh
csin
csqrt
dabs
dacos
dasin
datan

Terminate program (ABORT(3F))
Absolute value (MAX(3F)
Arccosine (ACOS(3F))
Imaginary part of complex argument
(AIMAG(3F))
Integer part (AINT(3F))
Natural logarithm (LOG(3F))
Common logarithm (ALOG10(3F))
Maximum value (MAX(3F))
Maximum value (MAX(3F))
Minimum value (MIN(3F))
Minimum value (MIN(3F))
MOD(3F))
Bitwise boolean (BOOL(3F))
Nearest integer (ROUND(3F))
Arcsine (ASIN(3F))
Arctangent (ATAN(3F))
Arctangent (A TAN2 (3F))
Complex absolute value (ABS(3F))
Complex cosine (COS(3F))
Complex exponential (EXP(3F))
Explicit type conversion (FTYPE(3F))
Complex natural logarithm (LOG(3F))
Explicit type conversion (FTYPE(3F))
Complex conjugate (CONJG(3F))
Cosine (COS(3F))
Hyperbolic cosine (COSH(3F))
Complex sine (SlN(3P))
Complex square root (SQRT(3F))
Absolute value (ABS(3F))
Arccosine (ACOS(3F))
Arcsine (ASIN(3F))
Arctangent (ATAN(3F))

9-11

FORTRAN 77

datan2

dble
dcmplx•
dconjg•
dcos
dcosh
ddim
dexp
dim
dimag•

dint
dlog
dloglO
dmaxl
dminl
dmod
dnint
dprod
dsign
dsin
dsinh
dsqrt
dtan
dtanb
exp
float
getarg•

labs
large

ichar
idim
I dint
idnint

9-12

Double prectston arctangent
(ATAN2(JF))
Explicit type conversion (FTYPE(3F))
Explicit type conversion (FTYPE(3F))
Complex conjugate (CONJG(3F))
Cosine (DCOS(JF))
Hyperbolic cosine {COSH(3F))
Positive difference (DIM (3F))
Exponential (EXP(3F))
Positive difference (DIM(3F))
Imaginary part of complex argument
((AIMAG(JF))
Integer part (AINT(3F))
Natural logarithm (LOG(3F))
Common logarithm (LOG10(3F))
Maximum value (MAX (3F))
Minimum value (MIN(3F))
Remaindering (DMOD(3F))
Nearest integer (ROUND(3F))
Double precision product (DPROD(3F))
Transfer of sign (SIGN(3F))
Sine (SIN(JF))
Hyperbolic sine (SINH(3F))
Square root (SQRT(3F))
Tangent (TAN(JF))
Hyperbolic tangent (TANH(3F))
Exponential (EXP(3F))
Explicit type conversion (FfYPE(3F))
Return command-line argument
(GETARG (JF))
Return environment variable
(GETENV(JF))
Absolute value (ABS(3F))
Return number of arguments
(IARGC(JF))
Explicit type conversion (FTYPE(3F))
Positive difference (DIM(3F))
Explicit type conversion (FTYPE(3F))
Nearest integer (ROUND(3F))

I
'

ifix
index

lot
irand•
islgn
len
lge
lgt
lie
lit
log
ioglO
lshift•
max
maxO
maxl
mclock•

min
minO
mlnl
mod
oint
not*
or•
rand•
real
rshift"'
sign
signal*

sin
sinh
sngl
sqrt
srand"'
system•
tan

FORTRAN 77

Explicit type conversion (FfYPE(3F))
Return location of substring
(INDEX(3F))
Explicit type conversion (FfYPE(3F))
Random number generator
Transfer of sign (SIGN(3F))
Return location of string (LEN{3F))
String comparison (STRCMP(3F))
String comparison (STRCMP(3F)}
String comparison (STRCMP{3F))
String comparison (STRCMP(3F))
Natural logarithm (LOG (3F))
Common logarithm (LOG10(3F))
Bitwise boolean (BOOL(3F))
Maximum value (MAX(3F))
Maximum value (MAX(3F))
Maximum value (MAX(3F))
Return FORTRAN time accounting
(MCLOCK(3F))
Minimum value (MIN(3F))
Minimum value (MIN(3F))
Minimum value (MIN (3F))
Remaindering (MOD(3F))
Nearest integer (BOOL(3F))
Bitwise boolean (BOOL(3F))
Bitwise boolean (BOOL(3F))
Random number generator (RAND (3F))
Explicit type conversion (FTYPE(3F))
Bitwise boolean (BOOL (3F))
Transfer of sign (SIGN(3F))
Specify action on receipt of system signal
(SIGNAL(JF))
Sine (SINE(3F))
Hyperbolic sine (SINH (3F))
Explicit type conversion (FTYPE(3F))
Square root (SQRT(3F))
Random number generator (RAND(3F))
Issue a shell command (SYSTEM (3F))
Tangent (TAN(JF))

9-13

FORTRAN 77

tanh Hyperbolic tangent (TANH(3F))
xor• Bitwise boolean (BOOL(3F))
zabs• Complex absolute value (ABS(3F)).

For more information on the FORTRAN intrinsic function
commands, see the UniPlus+- User Manual.

4. Violations of the Standard

The following paragraphs describe only three known ways in
which the UNIX system implementation of FORTRAN 77
violates the new American National Standard.

1. Double Precision Alignment

2. Dummy Procedure Arguments

3. T and TL Formats

4.1 Double Precision Alignment

The FORTRAN 77 American National Standard permits com·
moo or equivalence statements to force a double precision
quantity onto an odd word boundary.

For example:

real a(4)
double precision b,c
equivalence (a(l),b), (a(4),c)

Some machines require that double precision quantities be on
double word boundaries; other machines run inefficiently if this
alignment rule is not observed. It is possible to tell which
equivalenced and common variables suffer from a forced odd
alignment, but EVERY double-precision argument MUST be
assumed on a bad boundary.

To load a double-precision quantity on some machines, it is
necessary to use two separate operations.

9-14

----·

I.

z.

FORTRAN 77

The first operation is to move the upper and lower halves
into the halves of an aligned "temporary".

The second operation is to load that double· precision tem­
porary.

In order to store such a result, it is necessary to perform the
above two operations in reverse order.

All double-precision real and complex quantities MUST fall on
even word boundaries on machines with corresponding
hardware requirements or if the source code must issue a diag­
nostic if a violation of the odd-boundary rule occurs.

4.2 Dummy Procedure Arguments

If any argument of a procedure is of type "character," ALL
dummy procedure arguments of that procedure must be declared
in an external statement.

This requirement arises as a subtle corollary of the way we
represent character string arguments. A warning is printed if a
dummy procedure is not declared external. However, the same
code is correct (in this regard) if there are no character argu­
ments.

4.3 T and TL Formats

The implementation of the t (absolute tab) and tl (leftward
tab) format codes is defective. These codes allow rereading or
rewriting part of a record which has already been processed.

This compiler's implementation uses "seeks." Therefore, if the
standard output unit is not one which allows seeks, such as a

(.---.. terminal, the program is in error.

A benefit of the implementation chosen is that there is no
upper limit on the length of a record nor is it necessary to

9-15

FORTRAN 77

predeclare any record lengths except where specifically required
by FORTRAN or the operating system.

5. Interprocedure Interface

The following sections are included to provide information
necessary for writing C language procedures which call or are
called by FORTRAN procedures. Specifically, it is important to
understand the conventions with regard to the following:

1. Procedure Names

2. Data Representation

3. Return Values

4. Argument Lists

5.1 Procedure Names

On UNIX systems, the name of a common block for a FOR­
TRAN procedure has an underscore appended to it by the com­
piler to distinguish it from a C language procedure or external
variable with the same user-assigned name.

FORTRAN library procedure names have embedded under­
scores to avoid clashes with user-assigned subroutine names.

5.2 Data Representations

The following is a table of corresponding FORTRAN and C
language declarations:

9-16

r

FORTRAN 77

FORTRAN C Language

integ;er•2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct { float r, i; } x;
double complex x struct {double dr, di; } x;
character"'6 x char x[6];

By the rules of FORTRAN, Integer, logical, and real data
occupy the same amount of memory.

5.3 Return Values

A function of type integer, logical, real, or double precision
declared as a C language function returns the corresponding
type.

A complex or double complex function is equivalent to a C
language routine with an additional initial argument that points
to the place where the return value is to be stored. Thus, the
following:

complex function f(...)

is equivalent to

struct { float r, i; } temp;
f (&temp, ...)

A character-valued function is equivalent to a C language rou­
tine with two extra initial arguments -

1. a data address, and

9-17

FORTRAN 77

2. a length.

Thus,

character-••15 function g(...)

is equivalent to

char result(];
long int length;
g_ (result, length, . . .)

and could be invoked in C language by

char chars[lS];

g (chars, ISL, .);

Subroutines are invoked as if they were .. integer-valued }'unc­
tions" whose value specifies which alternate return to use.
Alternate return arguments, or statement labels, are NOT passed
to the function but are used to do an indexed branch in the cal­
ling procedure. If the subroutine has no entry points with alter­
nate return arguments, the returned value is undefined.

Thus, the statement

call nret(•l, •2, •3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

5.4 Argument Lists

All FORTRAN arguments are passed by address.

9-18

FORTRAN 77

For every argument that is of type character or that is a
dummy procedure, an argument giving the length of the value
is passed. The string lengths are long int quantities passed by
value.

The order of arguments is then:

1. Extra arguments for complex and character functions

2. Address for each datum or function

3. A long int for each character or procedure argument

Thus, the call in

external f
character~~'7 s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

int fO;
char s{7];
long int b[J];

sam_(f, &b[l], s, OL, 7L);

IF Note that the first element of a C language array always
has subscript 0, but FORTRAN arrays begin at 1 by
default.

IF FORTRAN arrays are stored in column-major order. C
language arrays are stored in row-major order.

(6. File Formats

9-19

FORTRAN 77

6.1 File Structure

FORTRAN requires four kinds of external files:

1. sequential formatted

2. sequential unformatted,

3. direct formatted and

4. direct unformatted.

On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

FORTRAN l/0 is based on "records." When a direct file is
opened in a FORTRAN program, the record length of the
records must be given~ and this is used by the FORTRAN 1/0
system to make the file look as if it is made up of records of
the given length. In the special case that the record length is
given as 1, the files are not considered to be divided into
records but are treated as ordinary files on the UNIX system
(byte-addressable byte strings). A read or write request on
such a file keeps consuming bytes until satisfied rather than
being restricted to a single record.

The peculiar requirements on sequential unformatted files
make it unlikely that they will ever be read or written by any
means except FORTRAN I/0 statements. Each record is pre­
ceded and followed by an integer containing the record's length
in bytes.

The FORTRAN l/0 system breaks sequential formatted files
into records while reading by using each new-line as a record
separator. The result of reading off the end of a record is
undefined according to the FORTRAN 77 American National
Standard. The 1/0 system is permissive and treats the record
as being extended by blanks. On output, the I/0 system will
write a new-line at the end of each record. It is also possible
for programs to write new-lines for themselves. This is an

9-20

----·

FORTRAN 77

error, but the only effect will be that the single record the user
thought was written will be treated as more than one record
when being read or backspaced over.

6.2 Preconnected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts.
Unit 5 is connected to the standard input, unit 6 is connected
to the standard output, and unit 0 is connected to the standard
error unit. All are connected for sequential formatted 1/0.

All the other units are also preconnected when execution
begins. Unit n is connected to a file named fort. n. These files
need not exist nor will they be created unless their units are
used without first executing an open. The default connection is
for sequential formatted 1/0.

The FORTRAN 77 Standard does not specify where a file
(· which has been explicitly opened for sequential 1/0 is initially

positioned. In fact, the 110 system attempts to position the file
at the end. A write will append to the file and a read will result
in an "end-of-file" indication. To position a file to its begin­
ning, use a rewind statement. The preconnected units 0, 5,
and 6 are positioned as they come from the parent process.

9-21

Chapter 10: RATFOR

r CONTENTS
'-·

I. Introduction 1

2. Usage 2

3. Statements . 3
3.1 "if-else" 4
3.2 Nested "ir' 5
3.3 "switch" 6
3.4 "do" 7
3.5 "break" and "next" 8
3.6 "while" . . . 8
3.7 "for" 9
3.8 "repeat-until" 11
3.9 ''return'' 11
3.10 "define" 12

r 3.11 ''include'' 13
~·

3.12 Free-Form Input 13
3.13 Translations 14

4. Warnings 16

5. Example RATFOR Conversion 17

r

- i -

r

1. Introduction

Chapter 10

RATFOR

RATFOR

This chapter describes the RATFOR preprocessor (ratfor<t)).
It is assumed that the user is familiar with the current imple­
mentation of FORTRAN 77 on the UniPlus+ system.

The RATFOR language allows users to write FORTRAN pro­
grams in a fashion similar to C language. The RATFOR pro­
gram is implemented as a preprocessor that translates this
"simplified" language into FORTRAN. The facilities provided
by RATFOR are:

• Statement grouping

• If-else and switch for decision making

• while, for, do, and repeat-until for looping

• break and next for controlling loop exits

• Free form input such as multiple statements/lines and
automatic continuation

• Simple comment convention

• Translation of > , > =, etc., into .gt., .ge., etc .

• return statement for functions

• define statement for symbolic parameters

• include statement for including source files .

10-1

RATFOR

2. Usage

The RATFOR program takes either a list of file names or the
standard input and writes FORTRAN on the standard output.
Options include -6x, which uses x as a continuation character
in column 6 (the UniPius+ system uses & in column 1), and
-C, which causes RATFOR comments to be copied into the
generated FORTRAN.

The program rc(lM) provides an interface to the RATFOR(l)
command. This command is similar to cc(l). Thus:

rc options files

compiles the files specified by files. Files with names ending in
.r are RATFOR source; other files are assumed to be for the
loader. The options -C and -6x described above are recog­
nized, as are

-c Compile only; don't load

-f Save intermediate FORTRAN .ffiles

-r RATFOR only; implies -c and -f

-2 Use big FORTRAN compiler (for large programs)

- U Flag undeclared variables (not universally available).

Other options are passed on to the loader.

10-2

RATFOR

3. Statements

The RATFOR language provides a statement grouping facility.
A group of statements can be treated as a unit by enclosing
them in the braces { and } . For example, the RATFOR code

If (x > 100)
{call error("x>lOO"); err- 1; return}

will be translated by the RATFOR preprocessor into FOR­
TRAN equivalent to

10

if (x .le. 100) goto 10
call error(Shx>lOO)
err= 1
return

,,--... which should simplify programming effort. By using { and) , a
group of statements can be used instead of a single statement.

Also note in the previous RATFOR example that the character
> was used instead of .GT. in the if statement. The RAT­
FOR preprocessor translates this C language type operator to
the appropriate FORTRAN operator. More on relationship
operators later.

In addition, many FORTRAN compilers permit character
strings in quotes (like "x> JO(J'). But others, like ANSI FOR­
TRAN 66, do not. RATFOR converts it into the right number
of Hs.

The RATFOR language is free form. Statements may appear
anywhere on a line, and several may appear on one line if they
are separated by semicolons. The previous example could also
be written as

10-3

RATFOR

if (x > 100) {
call error("x > 100")
err ""' 1
return

which shows grouped statements spread over several lines. In
this case, no semicolon is needed at the end of each line
because RA TFOR assumes there is one statement per line
unless told otherwise.

Of course, if the statement that follows the if is a single state­
ment, no braces are needed.

3.1 "if-else"

The RATFOR language provides an else statement. The syntax
of the if-else construction is:

if (/ega/ FORTRAN condition)
RATFOR statement

else
RATFOR statement

where the else part is optional. The legal FORTRAN condition
is anything that can legally go into a FORTRAN Logical IF
statement. The RATFOR preprocessor does not check this
clause since it does not know enough FORTRAN to know what
is permitted. The RATFOR statement is any RATFOR or FOR~
TRAN statement or any collection of them in braces. For
example:

if(a<~b)

{ sw = 0; write(l, 6) a, b }
else

{ sw = 1; write(l, 6) b, a }

is a valid RATFOR if·else construction. This writes out the
smaller of a and b, then the larger, and sets sw appropriately.

10-4

(

RATFOR

As before, if the statement following an if or an else is a single
statement, no braces are needed.

3.2 Nested "if'

The statement that follows an if or an else can be any RAT­
FOR statement including another if or else statement. In gen­
eral, the structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in RATFOR. (The
RATFOR language also provides a switch statement which
could be used instead, under certain conditions.) The last else
handles the "default" condition. If there is no default action,
this final else can be omitted. Thus, only the actions associated
with the valid condition are performed. For example:

If (x < 0)
X = 0

else if (x > 100)
X = 100

will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code.
In RATFOR when there are more if statements than else
statements, else statements are associated with the closest pre~
vious if statement that currently does not have an associated
else statement. For example:

If (x > 0)
If (y > 0)
write(6,1) x, y
else
write(6,2) y

10-S

RATFOR

is interpreted by the RATFOR preprocessor as

;r (x > 0) {
if (y > 0)

write(6, I) X, y
else

write(6, 2) y

in which the braces are assumed. If the other association is
desired it must be written as

if (x > 0) {
if (y > 0)

write(6, 1) x, y

else
write(6, 2) y

with the braces specified.

3.3 "switch"

The switch statement provides a way to express multiway
branches which branch on the value of some integer-valued
expression. The syntax is

switch (expression)
case expr 1 :
statements
case expr2, exprJ :
statements

default:
statements

where each case is followed by an integer expression (or
several integer expressions separated by commas). The switch
expression is compared to each case expr until a match is found.

10-6

RATFOR

Then the statements following that case are executed. If no
cases match expression, then the statements following default
are executed. The default section of a switch is optional.

When the statements associated with a case are executed, the
entire switch is exited immediately. This is different from C
language.

3.4 "do"

The do statement in RATFOR is quite similar to the DO state­
ment in FORTRAN except that it uses no statement number
(braces are used to mark the end of the do instead of a state­
ment number). The syntax of the RATFOR do statement is

do legal-FORTRAN-DO-text {
RATFOR statements

The legal-FORTRAN-DO-text must be something that can
legally be used in a FORTRAN DO statement. Thus if a local
version of FORTRAN allows DO limits to be expressions
(which is not currently permitted in ANSI FORTRAN 66),
they can be used in a RATFOR do statement. The RATFOR
statemeflls are enclosed in braces; but as with the if, a single
statement need not have braces around it. For example, the
following code sets an array to zero:

do i = 1, n
x(i) = 0.0

and the code

do i • l, n
do j = 1, n

m(i, j) = 0

r· sets the entire array m to zero.

10-7

RATFOR

3.5 Hbreak" and "next"

The RATFOR break and next statements provide a means for
leaving a loop early and one for beginning the next iteration.
The break causes an immediate exit from the do; in effect, it is
a branch to the statement after the do. The next is a branch to
the bottom of the loop, so it causes the next iteration to be
done. For example, this code skips over negative values in an
array

do i = 1, n {
If (x(i) < 0.0)

next
wocess positive element

The break and next statements will also work in the other
RATFOR looping constructions and will be discussed with each
looping construction.

The break and next can be followed by an integer to indicate
breaking or iterating that level of enclosing loop. For example:

break 2

exits from two levels of enclosing loops, and

break 1

is equivalent to break. The

next 2

iterates the second enclosing loop.

3.6 "while"

The RA TFOR language provides a while statement. The syn­
tax of the while statement is

10-8

while (legal-FORTRAN-condition)
RATFOR statement

RATFOR

As with the if, "legal-FORTRAN-condition" is something that
can go into a FORTRAN Logical IF, and RATFOR statement
is a single statement which may be multiple statements
enclosed in braces.

For example, suppose nextcb is a function which returns the
next input character both as a function value and in its argu­
ment. Then a while loop to find the first nonblank character
could be

while (nextchOch) - .. iblank)

where a semicolon by itself is a null statement (which is neces­
sary here to mark the end of the while). If the semicolon were
not present, the while would control the next statement. When
the loop is exited, ich contains the first non blank.

3. 7 "for"

The for statement is another RATFOR loop. A for statement
allows explicit initialization and increment steps as part of the
statement.

The syntax of the for statement is

for (init ; condition ; increment)
RATFOR statement

where init is any single FORTRAN statement which is exe­
cuted once before the loop begins. The increment is any single
FORTRAN statement that is executed at the end of each pass
through the loop before the test. The condition is again any­
thing that is legal in a FORTRAN Logical IF. Any of init,
condition, and increment may be omitted although the

10-9

RATFOR

semicolons must always be present. A nonexistent condition is
treated as always true, so

for (;;)

is an infinite loop.

For example, a FORTRAN DO loop could be written as

for (i = 1; i < = n; i = i + l) ...

which is equivalent to

i = 1
while (i < = n)

i - i + 1

The initialization and increment of i have been moved into the
for statement.

The RATFOR for, do, and while versions have the advantage
that they will be done zero times if n is less than 1. In addi­
tion, the break and next statements work in a for loop.

The increment in a for need not be an arithmetic progression.
The program

sum ""' 0.0
for (i - first; i > 0; i - ptr(i))

sum • sum + value(i)

steps through a list (stored in an integer array ptr) until a zero
pointer is found while adding up elements from a parallel array
of values. Notice that the code also works correctly if the list is
empty.

10-10

RATFOR

3.8 "repeat·until"

There are times when a test needs to be performed at the bot­
tom of a loop after one pass through. This facility is provided
by the repeat-until statement. The syntax for the repeat-until
statement is

repeat
RATFOR statement

until (legal-FORTRAN-condition)

where RATFOR-statement is done once, then the condition is
evaluated. If it is true, the loop is exited; if it is false, another
pass is made.

The until part is optional, so a repeat by itself is an infinite
loop. A repeat-until loop can be exited by the use of a stop,
return, or break statement or an implicit stop such as running
out of input with a READ statement.

As stated before, a break statement causes an immediate exit
from the enclosing repeat-until loop. A next statement will
cause a skip to the bottom of a repeat·until loop (i.e., to the
until part).

3.9 "return"

The standard FORTRAN mechanism for returning a value
from a routine uses the name of the routine as a variable. This
variable can be assigned a value. The last value stored in it is
the value returned by the function. For example. in a FOR­
TRAN routine named equal, the statements

equal = 0
return

--~ cause equal to return zero.

10-11

RATFOR

The RATFOR language provides a return statement similar to
the C language return statement. In order to return a value
from any routine, the return statement has the syntax

return (expression)

where expression is the value to be returned.

If there is no parenthesized expression after return, no value is
returned.

3.10 "define"

The RATFOR language provides a define statement similar to
the C language version. Any string of alphanumeric characters
can be defined as a name. Whenever that name occurs in the
input (delimited by nonalphanurnerics), it is replaced by the
rest of the definition line. (Comments and trailing white spaces
are stripped off.) A defined name can be arbitrarily long and
must begin with a letter.

Usually the define statement is used for symbolic parameters.
The syntax of the define statement is

define name value

where name is a symbolic name that represents the quantity of
value. For example:

deftne ROWS 100
deftne COLS SO
dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS) ...

causes the preprocessor to replace the name ROWS with the
value 100 and the name COLS with the value 50. Alternately,
definitions may be written as

10-12

-, __

RATFOR

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format(Shhello)

3.13 Translations

Text enclosed in matching single or double quotes is converted
to nH... but is otherwise unaltered (except for formatting - .it
may get split across card boundaries during the reformatting
process). Within quoted strings, the backslash (\) serves as an
escape character; i.e., the next character is taken literally. This
provides a way to get quotes and the backslash itself into
quoted strings. For example:

"\\ \ '"

is a string containing a backslash and an apostrophe (\'). (This
is not the standard convention of doubled quotes, but it is
easier to use and more· general.)

Any line that begins with the character ·% is left absolutely
unaltered except for stripping off the % and moving the line
one position to the left. This is useful for inserting control
cards and other things that should not be preprocessed {like an
existing FORTRAN program). Use % only for ordinary state­
ments not for the condition parts of if, while, etc., or the out­
put may come out in an unexpected place.

RATFOR

-- is translated to .eq.

!= is translated to .ne.

> is translated to .gt.

>- is translated to .ge.

< is translated to .It.

<- is translated to .le.

& is translated to .and.

I is translated to .or.

! is translated to .not.

In addition, the following translations are provided for input
devices with restricted character sets:

I is translated to I

I is translated to)

$(is translated to I

$) is translated to)

10·15

RATFOR

4. Warnings

The RATFOR preprocessor catches certain syntax errors (such
as missing braces), else statements without if statements, and
most errors involving missing parentheses in statements.

All other errors are reported by the FORTRAN compiler.
Unfortunately, the FORTRAN compiler prints messages in
terms of generated FORTRAN code and not in terms of the
RATFOR code. This makes it difficult to locate RATFOR
statements that contain errors.

The keywords are deserved. Using if, else, while, etc., as vari·
able names will cause considerable problems. Likewise, spaces
within keywords and use of the Arithmetic IF will cause prob­
lems.

The FORTRAN nH convention is not recognized by RATFOR.
Use quotes instead.

10-16

'·--

RATFOR

5. Example RATFOR Conversion

As an example of how to use the RATFOR program, the fol­
lowing program prog.r (where the .r indicates a RATFOR
source program), is written in the RATFOR language:

ICNT~O

10 WRITE(6,3!)
31 FORMAT("INPUT FIRST NUMBER")

READ(5,32) A
32 FORMAT(F10.2)

WRITE(6,33)
33 FORMAT("INPUT SECOND NUMBER")

READ(5,34) B
34 FORMAT(Fl0.2)

IF(A<B)
WRITE(6,36) A,B

ELSE WRITE(6,37)A,B
36 FORMAT(Fl0.2," < ",Fl0.2)
37 FORMAT(Fl0.2," > ~ ",Fl0.2)

ICNT-ICNT+l
IF(ICNT.EQ.S)

GOTO 100
GOTO 10

100 END

The command

RATFOR prog.r > prog.f

causes the FORTRAN translation program prog.f to be pro­
duced. (The RATFOR program prog.r remains intact.) The
FORTRAN program prog.f follows:

10-17

RAT FOR

lO
31

32

33

34

23000

23001
36
37

23002

100

icnt=O
write(6,31)
format("INPUT FIRST NUMBER")
read(5,32) a
format(f10.2)
write(6,33)
format("INPUT SECOND NUMBER")
read (5 ,34) b
format(f10.2)
if(.not.(a.lt.b))goto 23000
write(6,36) a,b
goto 23001
continue
write(6,37)a,b
continue
format(fl0.2," < ",f10.2)
format(fl0.2," >- ",f10.2)
icnt=icnt+ 1
if(not. Ocnt.eq.S))goto 23002
goto 100
continue
goto 10
end

The FORTRAN program prog.f is compiled using the com­
mand

f77 prog.f

An object program file prog.o and a final output file a.out are
produced. Since the output file a.out is an executable file, the
command

a.out

causes the program to run.

The RATFOR program prog.r can also be translated and com­
piled with the single command

10-18

RATFOR

rn prog.r

where the .r indicates a RATFOR source program. An object
file prog.o and a final output file a.out are produced.

10-19

Chapter 11: EFL PROGRAMMING LANGUAGE

r CONTENTS
~

I. Introduction

2. Conventions 2

3. Lexical Form 2
3.1 Character Set 2

3.1.1 White Space 3
3.2 Tokens 3
3.3 Lines 3

3.3.1 Continuation 3
3.4 Multiple Statements on a Line 4
3.5 Comments 4
3.6 Include Files . 4

3.6.1 Identifiers 5
3.6.2 Strings 5

r 3.6.3 Integer Constants 6
3.6.4 Floating Point Constants 6

~

3.6.5 Punctuation 6
3.6.6 Operators 7

3.7 Macros 7

4. Program Form 8
4.1 Files 8
4.2 Procedures 8
4.3 Blocks . . 8
4.4 Statements 9
4.5 Labels . . 10

5. Data Types and Variables 10
5.1 Basic Types 10
5.2 Constants . . . II
5.3 Variables . . . 12

c 5.3.1 Storage Class 12
5.3.2 Scope of Names 12
5.3.3 Precision 12

5.4 Arrays • 13

- i -

5.5 Structures . 13

6. Expressions 14
6.1 Primaries . 14

6.1.1 Constants 14
6.1.2 Variables 15
6.1.3 Array Elements 15
6.1.4 Structure Members 15
6.1.5 Procedure Invocations 15
6.1.6 Input/Output Expressions 16
6.1. 7 Coercions 16
6.1.8 Sizes . . . 17

6.2 Parentheses . . 18
6.3 Unary Operators 18
6.4 Arithmetic 18

6.4.1 Logical . . 18
6.5 Binary Operators 19

6.5.1 Arithmetic . 19
6.5.2 Logical . . 20

6.6 Relational Operators 21
6.7 Assignment Operators 21
6.8 Dynamic Structures 22
6.9 Repetition Operator 22
6.10 Constant Expressions 22

7. Declarations . . 23
7.1 Syntax 23
7.2 Attributes . . . 23

7.2.1 Basic Types 23
7.2.2 Arrays 24
7.2.3 Structures 25
7.2.4 Precision 25
7.2.5 Common 25
7.2.6 External • 26

7.3 Variable List • 26
7.4 The Initial Statement 26

8. Executable Statements 27
8.1 Expression Statements 27

8.1.1 Subroutine Call 27
8.1.2 Assignment Statements 28

- ii -

8.2 Blocks 28
8.3 Test Statements . 28

8.3.1 If Statement 29
(8.3.2 If-Else 29
' - 8.3.3 Select Statement 30

8.4 Loops 31
8.4.1 While Statement 31
8.4.2 For Statement . 31
8.4.3 Repeat Statement 32
8.4.4 Repeat ... Until Statement 32
8.4.5 Do Loop 33

8.5 Branch Statements . 34
8.5.1 Goto Statement 34
8.5.2 Break Statement 35
8.5.3 Next Statement 35
8.5.4 Return . . 36

8.6 Input/Output Statements 36
8.6.1 Input/Output Units . 36
8.6.2 Binary Input/Output 37

,---. 8.6.3 Formatted Input/Output 37
8.6.4 lolists 38
8.6.5 Formats 38
8.6.6 Manipulation Statements 39

9. Procedures 39
9.1 Procedures Statement . 39
9.2 End Statement . . . 40
9.3 Argument Association 40
9.4 Execution and Return Values 41
9.5 Known Functions 41

9.5.1 Minimum and Maximum
Functions . . . 41

9.5.2 Absolute Value 41
9.5.3 Elementary Functions . 42
9.5.4 Other Generic Functions 42

(
10. Atavisms 42

10.1 Escape Lines . . . 42
·- 10.2 Call Statement . . 43

10.3 Obsolete Keywords 43

- iii -

10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12

Numeric Labels . .
Implicit Declarations
Computed Goto
Goto Statement . .
Dot Names
Complex Constants
Function Values
Equivalence • . .
Minimum and Maximum Functions

11. Compiler Options
11.1 Default Options
11.2 Input Language Options . .
11.3 Input/Output Error Handling
11.4 Continuation Conventions
11.5 Default Formats
11.6 Alignments and Sizes • .
11.7 Default Input/Output Units
11.8 Miscellaneous Output Control

Options

12. Examples •
12.1 File Copying . • .
12.2 Matrix Multiplication
12.3 Searching a Linked List
12.4 Walking a Tree

13. Portability , . • . . • .
13.1 Primitives • . . .

13.1.1 Character String Copying
13.1.2 Character String Comparisons

14. Differences Between Ratfor and EFL

15. Compiler •
15.1 Current Version
15.2 Diagnostics
15.3 Quality of FORTRAN Produced

16. Constraints on EFL
16.1 External Names . .
16.2 Procedure Interface

- iv -

43
43
44
44
44
45
45
45
46

46
47
47
47
47
47
48
48

48

49
49
49
50
51

54
55
55
55

55

56
56
57
57

59
59
59

16.3 Pointers
16.4 Recursion
16.5 Storage Allocation

- v -

60
60
60

~··

r

Chapter 11

EFL -

A PROGRAMMING LANGUAGE

1. Introduction

EFL

EFL is a clean, general purpose computer language intended to
encourage portable programming. It has a uniform and read­
able syntax and good data and control flow structuring.

EFL programs can be translated into efficient FORTRAN code,
so the EFL programmer can take advantage of the ubiquity of
FORTRAN, the valuable libraries of software written in that
language, and the portability that comes with the use of a
standardized language, without suffering from FORTRAN's
many failings as a language. However, in spite of the fact that
the name EFL originally stood for "Extended FORTRAN
Language." The EFL compiler is much more than a simple
preprocessor. The compiler attempts to diagnose all syntax
errors, provide readable FORTRAN output, and to avoid a
number of niggling FORTRAN restrictions.

EFL is especially useful for numeric programs, and permits the
programmer to express complicated ideas in a comprehensible
way, while permitting access to the power of the FORTRAN
environment.

This is not a tutorial, but a general description and reference
manual for the EFL Programming Language. The reader
should have a fair degree of familiarity with some procedural
language. There will be occasional references to Ratfor and to
FORTRAN, but these may be ignored if the reader is unfami­
liar with those languages.

11-1

EFL

2. Conventions

In examples and syntax specifications, boldface type is used to
indicate literal words and punctuation, such as the EFL key­
words if, else, while or do. Words in italic type indicate an
item in a category, such as an expression or, as in the following
example:

define name definition

the italic font was used to indicate that the name in the define
statement was not to be typed literally, but would be replaced
with a name chosen by the programmer as appropriate to the
definition being written in the program.

A construct surrounded by double brackets represents a list of
one or more of those items, separated by commas. Thus, the
notation

I item I
could refer to any of the following:

item
item, item
item, item, item

3. Lexical Form

3.1 Character Set

The following characters are legal in an EFL program:

/euers abcdefgbijklm
nopqrstuvwxyz

digits 0123456789
while space blank tab
quotes ' .
sharp #
continuation
braces [)
parentheses ()

11-2

other +
= < > &

EFL

• I
I s

Even though all of the examples herein are printed in lower
case, letter case (upper or lower) is ignored except within
strings. Thus, "a" and "A" are treated as the same character.
An exclamation mark ("!") may be used in place of a tilde
(''-") as the logical unary operator "complement." Square
brackets ("[" and "]") may be used in place of braces ("{"
and"}") for punctuation.

3.1.1 White Space

Outside of a character string or comment, any sequence of one
or more spaces or tab characters acts as a single space and ter­
minates a ''token.''

3.2 Tokens

,f A program is made up of a sequence of tokens. Each token is
a sequence of characters. A blank terminates any token other
than a quoted string. End of line also terminates a token unless
explicit continuation is signaled by an underscore.

3.3 Lines

EFL is a line-oriented language. Except in special cases where
a continuation is made explicit by use of an underscore ("_"),
the end of a line marks the end of a "token" and the end of a
statement.

The trailing portion of a line may be used for a comment.
Diagnostic messages are labeled with the line number of the file
on which they are detected.

r,-. 3.3.1 Continuation

Lines may be continued explicitly by using the underscore
("_") character. If the last character of a line (after com­
ments and trailing white space have been stripped) is an

11-3

EFL

underscore, the end of a line and the initial blanks on the next
line are ignored. Underscores are ignored in other contexts
(except inside of quoted strings). Thus

I 000 000
000

equals 109.

There are also rules for continuing lines automatically: the end
of line is ignored whenever it is obvious that the statement is
not complete. To be specific, a statement is continued if the
last token on a line is an operator, comma, left brace, or left
parenthesis. A statement is NOT continued if unbalanced
braces or parentheses exist. Some compound statements are
also continued automatically - these points are noted in the
sections on executable statements.

3.4 Multiple Statements on a Line

A semicolon terminates the current statement. Thus, it is pos­
sible to write more than one statement on a line. A line con­
sisting only of a semicolon, or a semicolon following a semi­
colon, forms a null statement.

3.5 Comments

A comment may appear at the end of any line. It is introduced
by a sharp (#} character, and continues to the end of the line.
The sharp and succeeding characters on the line are discarded.
A blank line is also a comment. Comments have no effect on
execution.

NOTE: A sharp inside of a quoted string does NOT mark a
comment.

3.6 Include Files

It is possible to insert the contents of a file at a point in the
source text, by referencing it in a line like

11·4

,--.

(~

EFL

include joe

No statement or comment may follow an include on a line. In
effect, the include line is replaced by the lines in the named
file, but diagnostics refer to the line number in the included
file. Includes may be nested at least ten deep.

3.6.1 Identifiers

An identifier is a letter or a letter followed by letters or digits.
The following is a list of the reserved words that have special
meaning in EFL. They will be discussed later.

array exit precision
automatic external procedure
break false read
call field readbin
case for real
character function repeat
common oo return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal troe
double lengtbof until
doubleprecision logical value
else long while
end next write
equivalence option wrltebln

The use of these words is discussed below. These words may
not be used for any other purpose.

3.6.2 Strings

A character string is a sequence of characters surrounded by
quotation marks. If the string is bounded by single-quote

11-5

EFL

marks ('), it may contain double quote marks ("). and vice
versa. A quoted string may not be broken across a line boun·
dary.

'hello there'
~ain't misbehavin"'

3.6.3 Integer Constants

An integer constant is a sequence of one or more digits.

0
57
123456

3.6.4 Floating Point Constants

A floating point constant contains a dot and/or an exponent
field. An exponent field is a letter d or e followed by an option­
ally signed integer constant. If I and J are integer constants and
E is an exponent field, then a floating constant has one of the
following forms:

.I
I.
I. I
IE
I.E
.IE
I.JE

3.6.5 Punctuation

Certain characters are used to group or separate objects in the
language. These are:

11-6

parentheses ()
braces { }
comma
semicolon
colon
end-of-line

EFL

The end-of-line is a token (statement separator) when the line
is neither blank nor continued.

3.6.6 Operators
The EFL operators are written as sequences of one or more
non-alphanumeric characters.

+ • I ..
< <~ > >~

&& II &
+~ 1- ·-
&&~ II~ &~ I~

-> 0 $

A dot (". ") is an operator when it qualifies a structure element
name, but not when it acts as a decimal point in a numeric con­

.r- stant. There is a special mode (see "Atavisms") in which
some of the operators may be represented by a string consisting
of a dot, an identifier, and a dot (e.g., .It.).

3.7 Macros

EFL has a simple macro substitution facility. An identifier may
be defined to be equal to a string of tokens; whenever that
name appears as a token in the program, the string replaces it.
A macro name is given a value in a define statement like

define couf/1 n + -= 1

Any time the name count appears in the program, it is replaced
by the statement

n+-1

A define statement must appear alone on a line; the form is

define name rest·of·line

11-7

EFL

Trailing comments are part of the string.

4. Program Form

4.1 Files

A .file is a sequence of lines. A file is compiled as a single unit.
It may contain one or more procedures. Declarations and
options that appear outside of a procedure affect the succeeding
procedures on that file.

4.2 Procedures

Procedures are the largest grouping of statements in EFL. Each
procedure has a name by which it is invoked. (The first pro­
cedure invoked during execution, known as the main pro­
cedure, has the null name.)

4.3 Blocks

Statements may be formed into groups inside of a procedure.
To describe the scope of names, it is convenient to introduce
the ideas of block and of nesting level. The beginning of a pro­
gram file is at nesting level zero. Any options, macro
definitions, or variable declarations are also at level zero. The
text immediately following a procedure statement is at level 1.
After the declarations, a left brace marks the beginning of a
new block and increases the nesting level by I; a right brace
drops the level by l. Braces inside declarations do not mark
blocks. See "Blocks" under "Executable Statements" for
further information on blocks.

An end statement marks the end of the procedure, level 1, and
the return to level 0. A name (variable or macro) that is
defined at level K is defined throughout that block and in all
deeper nested levels in which that name is not redefined or

11-8

/'
'

/'
'

, ___ _

EFL

redeclared. Thus, a procedure might look like the following:

block 0
procedure george
real x
X - 2

if(x > 2)
{ # new block
integer x # a different variable
dox-1,7

write(,x)

} # end of block
end # end of procedure, return to block 0

4.4 Statements

A statement is terminated by end of line or by a semicolon.
Statements are of the following types:

option
include
define

procedure
end

declarative
executable

The option statement is described in "Compiler Options."
The include, define, and end statements have been described
above; they may not be followed by another statement on a
line. Each procedure begins with a procedure statement and
finishes with an end statement. Declarations describe types and
values of variables and procedures. Executable statements
cause specific actions to be taken. A block is an example of an
executable statement; it is made up of declarative and execut­
able statements.

11-9

EFL

4.5 Labels

An executable statement may have a label which may be used
in a branch statement. A label is an identifier followed by a
colon, as error: in the following:

read(, x)
if(x < 3) goto error

error: fatal("bad input")

5. Data Types and Variables

EFL supports a small number of basic (scalar) types. The pro­
grammer may define objects made up of variables of basic type;
other aggregates may then be defined in terms of previously
defined aggregates.

5.1 Basic Types

The basic types are

logical

Integer

field(m:n)

real

complex

long real

11·10

A logical quantity may take on the two values
true and jQ/se.

An integer may take on any whole number
value in a machine-dependent range.

A .field quantity is an integer restricted to a par­
ticular closed interval ([m:n]).

A real quantity is a floating point approxima·
tion to a real or rational number. Real quanti·
ties are represented as single precision floating
point numbers.

A complex quantity is an approximation to a
complex number, and is represented as a pair
of reals.

A long real is a more precise approximation to a
rational. Long reals are double precision float·
ing point numbers.

r

EFL

long complex A long complex quantity is an approximation to
a complex number, and is represented as a pair
of long reals.

character(n) A character quantity is a fixed-length string of
n characters.

5.2 Constants

There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally
preceded by a plus or minus sign, as in

:---· 17
-94
+6
0

A long real {"double precision") constant is a floating point
constant containing an exponent field that begins with the letter
d. A real ("single precision") constant is any other floating
point constant. A real or long real constant may be preceded
by a plus or minus sign. The following are valid real constants:

17.3
-.4
7.9e-6 (
14e9 (

7.9 x w-6)
1.4 x lQIO)

(_... The following are valid long real constants

7.9d-6 (~ 7.9 X JQ-6)
5d3

11-11

EFL

A character constant is a quoted string.

5.3 Variables

A variable is a quantity with a name and a location. At any
particular time the variable may also have a value. A variable
is said to be undefined before it is initialized or assigned its first
value.

Each variable has certain attributes:

1. Storage Class

2. Scope

3. Precision

5.3.1 Storage Class

A variable's storage class is the association of its name and its
location. A storage class can either be transitory or permanent.

• Transitory association is achieved when arguments
are passed to procedures.

• Other associations are considered permanent or
static.

5.3.2 Scope of Names

The scope of a variable may be either global or local.

1. The names of common areas are global, and global vari­
ables may be used anywhere in the program.

2. All other names are considered local to the block in which
they are declared.

5.3.3 Precision

Floating point variables are either of normal or long precision.
Normal precision is 32 bits; long precision is 64 bits. This attri­
bute may be stated independently of the basic type.

11-12

EFL

5.4 Arrays

It is possible to declare rectangular arrays (of any dimension) of
values of the same type. The index set is always a cross­
product of intervals of integers. The tower and upper bounds
of the intervals must be constants for arrays that are local or
common. A formal argument array may have intervals that are
of length equal to one of the other formal arguments. An ele­
ment of an array is denoted by the array name followed by a
parenthesized comma-separated list of integer values, each of
which must lie within the corresponding interval. The intervals
may include negative numbers. Entire arrays may be passed as
procedure arguments or in input/output lists, or they may be
initialized; all other array references must be to individual ele­
ments.

S.S Structures

It is possible to define new types which are made up of ele·
ments of other types. The compound object is known as a
structure; its constituents are called members of the structure.
The structure may be given a name, which acts as a type name
in the remaining statements within the scope of its declaration.
The elements of a structure may be of any type (including pre­
viously defined structures), or they may be arrays of such
objects. Entire structures may be passed to procedures or be
used in input/output lists; individual elements of structures
may be referenced. The uses of structures will be detailed
below. The following structure might represent a symbol table:

struct tableentry
[

character(8) name
integer hashvalue
integer numberofelements
field(O:l) initialized, used, set
field(O:IO) type

11-13

EFL

6. Expressions

Expressions are syntactic forms that yield a value. An expres­
sion may have any of the following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

In the following table of operators, all operators on a line have
equal precedence and have higher precedence than operators on
later lines. The meanings of these operators are described in
the sections "Unary Operators" and "Binary Operators."

-> ..
• I unary+ ++
+
< <~ > >=

" "" I II
$ - +-

Examples of expressions are

a<b && b<c
-(a + sin(x)) I {5+cos(x)) .. 2

6.1 Primaries

&- 1- &&- 11-

Primaries are the basic elements of expressions. They include
constants, variables, array elements, structure members, pro­
cedure invocations, inpuVoutput expressions, coercions, and
sizes.

6.1.1 Constants
Constants are described in the section "Constants" under
"Data Types and Variables."

11-14

EFL

6.1.2 Variables

Scalar variable names are primaries. They may appear on the
left or the right side of an assignment. Unqualified names of
aggregates (structures or arrays) may appear only as procedure
arguments and in input/output lists.

6.1.3 Array Elements

An element of an array is denoted by the array name followed
by a parenthesized list of subscripts, one integer value for each
declared dimension:

a(S)
b(6, -3,4)

6.1.4 Structure Members

A structure name followed by a dot followed by the name of a
member of that structure constitutes a reference to that ele­
ment. If that element is itself a structure, the reference may be
further qualified.

a.b
x0).y(4).z(5)

6.1.5 Procedure Invocations

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-], ... , expression-n)

The procedurename is either the name of a variable declared
external or it is the name of a function known to the EFL
compiler (see "Known Functions" under "Procedures"), or it
is the actual name of a procedure, as it appears in a procedure
statement. If a procedurename is declared external and is an
argument of the current procedure, it is associated with the pro­
cedure name passed as actual argument; otherwise it is the
actual name of a procedure. Each expression in the above is

11-15

EFL

called an actual argument. Examples of procedure invocations
are

f(x)

workO
g(x, y+3, 'xx')

When one of these procedure invocations is to be performed,
each of the actual argument expressions is first evaluated. The
types, precisions, and bounds of actual and formal arguments
should agree. If an actual argument is a variable name, array
element, or structure member, the called procedure is permit·
ted to use the corresponding formal argument as the left side of
an assignment or in an input list~ otherwise it may only use the
value. After the formal and actual arguments are associated,
control is passed to the first executable statement of the pro­
cedure. When a return statement is executed in that pro­
cedure, or when control reaches the end statement of that pro·
cedure, the function value is made available as the value of the
procedure invocation. The type of the value is determined by
the attributes of the procedurename that are declared or implied
in the calling procedure, which must agree with the attributes
declared for the function in its procedure. In the special case of
a generic function, the type of the result is also affected by the
type of the argument. See "Procedures."

6.1.6 Input/Output Expressions

The EFL input/output syntactic forms may be used as integer
primaries that have a non-zero value if an error occurs during
the input or output.

6.1. 7 Coercions

An expression of one precision or type may be coerced, that is,
converted to another by an expression of the form

attributes (expression)

At present, the only attributes permitted are precision and basic
types. Attributes are separated by white space.

11-16

EFL

An arithmetic value of one type may be coerced to any other
arithmetic type. A character expression of one length may be
coerced to a character expression of another length. Logical
expressions may NOT be coerced to a nonlogical type.

As a special case, a quantity of complex or long complex type
may be constructed from two integer or real quantities by pass­
ing two expressions (separated by a comma) in the coercion.
Examples and equivalent values are

integer(5.3) - 5
long reai(S) - 5.0d0
complex(5,3) ""' 5+3i

Most conversions are done implicitly, since most binary opera­
tors permit operands of different arithmetic types. Explicit
coercions are of most use when it is necessary to convert the
type of an actual argument to match that of the corresponding

(formal parameter in a procedure calL

r

6.1.8 Sizes

There is a notation which yields the amount of memory
required to store a datum or an item of specified type:

sizeof (lejiside)
slzeof (attributes)

In the first case, te.liside can denote a variable, array, array ele­
ment, or structure member. The value of sizeof is an integer,
which gives the size in arbitrary units. If the size is needed in
terms of the size of some specific unit, this can be computed by
division:

sizeof(x) I sizeof(integer)

yields the size of the variable x in integer words.

11-17

EFL

The distance between consecutive elements of an array may not
equal sizeof because certain data types require final padding on
some machines. The lengthof operator gives this larger value,
again in arbitrary units. The syntax is

lengthof (te.tiside)
lengthof (auributes)

6.2 Parentheses

An expression surrounded by parentheses is itself an expres·
sian. A parenthesized expression must be evaluated before an
expression of which it is a part is evaluated.

6.3 Unary Operators

All of the unary operators in EFL are prefix operators. The
result of a unary operator has the same type as its operand.

6.4 Arithmetic

Unary + has no effect. A unary - yields the negative of its
operand.

The prefix operator + + adds one to its operand. The prefix
operator -- subtracts one from its operand. The value of
either expression is the result of the addition or subtraction.
For these two operators, the operand must be a scalar, array
element, or structure member of arithmetic type. As a side
effect, the operand value is changed.

6.4.1 Logical

The only logical unary operator is complement (~). This opera·
tor is defined by the equations

11-18

true = false
- false = true

r

r

EFL

6.5 Binary Operators

Most EFL operators have two operands, separated by the opera­
tor. Because the character set must be limited, some of the
operators are denoted by strings of two or three special charac­
ters. All binary operators except exponentiation are left associ­
ative.

6.5.1 Arithmetic

The binary arithmetic operators are

+ addition
subtraction

• multiplication
I division .. exponentiation

Exponentiation is right associative: a••b ... c - a••(b•*c)
a(II-"J, The operations have the conventional meanings:

8 + 2 - 10,
8 - 2 - 6,
8• 2 - 16,
8/2 - 4,
8 •• 2 = 82 = 64.

The type of the result of a binary operation A op B is deter­
mined by the types of its operands:

Type of B

Type of A i r I r c I c

I i r I r c I c
r r r I r c I c

1 r I r I r I r I c I c
c c c lc c I c

1c lc I c I c I c I c

11-19

EFL

i = integer
lr=long

r = real
real lc=

c - complex
long complex

If the type of an operand differs from the type of the result, the
calculation is done as if the operand were first coerced to the
type of the result. If both operands are integers, the result is of
type integer, and is computed exactly. (Quotients are truncated
toward zero, so 8/3 = 2.)

6.5.2 Logical

The two binary logical operations in EFL, and and or, are
defined by the truth tables:

A B A andB A or 8
false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the
order of evaluation is specified. The expression

a && b

is evaluated by first evaluating a; if it is false then the expres·
sian is false and b is not evaluated; otherwise, the expression
has the value of b. The expression

a II b

is evaluated by first evaluating a; if it is true then the expres­
sion is true and b is not evaluated; otherwise, the expression
has the value of b. The other forms of the operators (&: for
and and I for or) do not imply an order of evaluation. With the
latter operators, the compiler may speed up the code by
evaluating the operands in any order.

11-20

EFL

6.6 Relational Operators

There are six relations between arithmetic quantities. These
operators are not associative.

EFL Operator Meaning

< < less than
<- " less than or equal to -- ~ equal to
-- "' not equal to
> > greater than
>~ ;. greater than or equal

Since the complex numbers are not ordered, the only relational
operators that may take complex operands are-- and-=. The
character collating sequence is not defined.

6. 7 Assignment Operators

All of the assignment operators are right associative. The sim­
ple form of assignment is

basic-/eft-side = expression

A basic-/eft-side is a scalar variable name, array element, or
structure member of basic type. This statement computes the
expression on the right side, and stores that value {possibly
after coercing the value to the type of the left side) in the loca­
tion named by the left side. The value of the assignment
expression is the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each
binary arithmetic and logical operator. In each case, a op - b
is equivalent to a = a op b. (The operator and equal sign must
not be separated by blanks.) Thus, n+=2 adds 2 ton. The
location of the left side is evaluated only once.

11·21

EFL

6.8 Dynamic Structures

EFL does not have an address (pointer, reference) type. How­
ever, there is a notation for dynamic structures,

lejlside - > srructurename

This expression is a structure with the shape implied by struc­
turename but starting at the location of /ejiside. In effect, this
overlays the structure template at the specified location. The
fejfside must be a variable, array, array element, or structure
member. The type of the leftside must be one of the types in
the structure declaration. An element of such a structure is
denoted in the usual way using the dot operator. Thus,

place(i) - > st.nth

refers to the nth member of the st structure starting at the i-th
element of the array place.

6.9 Repetition Operator

Inside of a list, an element of the form

integer·constant·expression $ constant·expression

is equivalent to the appearance of the expression a number of
times equal to the first expression. Thus,

(3, 3$4, 5)

is equivalent to

(3, 4, 4, 4, 5)

6.10 Constant Expressions

If an expression is built up out of operators (other than funcM
tions) and constants, the value of the expression is a constant,
and may be used anywhere a constant is required.

11-22

(
'

EFL

7. Declarations

Declarations statement describe the meaning, shape, and size of
named objects in the EFL language.

7.1 Syntax

A declaration statement is made up of attributes and variables.
Declaration statements are of two forms:

attributes variabfe·list
attributes { declarations }

In the first case, each name in the variable-list has the specified
attributes. In the second, each name in the declarations also
has the specified attributes. A variable name may appear in
more than one variable list, so long as the attributes are not
contradictory. Each name of a nonargument variable may be
accompanied by an initial value specification. The declarations
inside the braces are one or more declaration statements.
Examples of declarations are

integer k=2

long real b(7 ,3)

common(cname)
{
integer i
long real array(5,0:3) x, y
character(7) ch
}

7.2 Attributes

7.2.1 Basic Types

The following are basic types in declarations

11-23

EFL

logical
integer
fleld(m:n)
character(k)
real
complex

In the above, the quantities k, m, and n denote integer constant
expressions with the properties k > 0 and n > m.

7 .2.2 Arrays

The dimensionality may be declared by an array attribute

Each of the b; may either be a single integer expression or a
pair of integer expressions separated by a colon. The pair of
expressions form a lower and an upper bound; the single
expression is an upper bound with an implied lower bound of 1.
The number of dimensions is equal to n, the number of
bounds. All of the integer expressions must be constants. An
exception is permitted only if all of the variables associated with
an array declarator are formal arguments of the procedure; in
this case, each bound must have the property that upper -
lower + I is equal to a formal argument of the procedure.
{The compiler has limited ability to simplify expressions, but it
will recognize important cases such as (O:n -1).) The upper
bound for the last dimension {b,1) may be marked by an aster·
isk ("') if the size of the array is not known. The following
are legal array attributes:

11-24

array(5)
array(5, 1:5. -3:0)
array(5, "')
array(O:m-/, m)

EFL

7 .2.3 Structures

A structure declaration is of the form

struct structname { declaration statements }

The structname is optional; if it is present, it acts as if it were
the name of a type in the rest of its scope. Each name that
appears inside the declarations is a member of the structure, and
has a special meaning when used to qualify any variable
declared with the structure type. A name may appear as a
member of any number of structures, and may also be the
name of an ordinary variable, since a structure member name is
used only in contexts where the parent type is known. The fol­
lowing are valid structure attributes

struct xx
{
integer a, b
real x(S)
I

struct { xx z(J); character(S) y }

The last line defines a structure containing an array of three xxs
and a character string.

7 .2.4 Precision

Variables of floating point (real or complex) type may be
declared to be long to ensure they have higher precision than
ordinary floating point variables. The default precision is short.

7 .2.5 Common

Certain objects called common areas have external scope, and
may be referenced by any procedure that has a declaration for

(the name using a

common (commonareaname)

11-25

EFL

attribute. All of the variables declared with a particular com­
mon attribute are in the same block; the order in which they
are declared is significant. Declarations for the same block in
differing procedures must have the variables in the same order -/
and with the same types, precision, and shapes, though not
necessarily with the same names.

7 .2.6 External

If a name is used as the procedure name in a procedure invoca­
tion, it is implicitly declared to have the external attribute. If a
procedure name is to be passed as an argument, it is necessary
to declare it in a statement of the form

external I name D

If a name has the external attribute and it is a formal argument
of the procedure, then it is associated with a procedure
identifier passed as an actual argument at each call. If the name
is not a formal argument, then that name is the actual name of
a procedure, as it appears in the corresponding procedure state­
ment.

7.3 Variable List

The elements of a variable list in a declaration consist of a
name, an optional dimension specification, and an optional ini­
tial value specification. The name follows the usual rules. The
dimension specification is the same form and meaning as the
parenthesized Jist in an array attribute. The initial value
specification is an equal sign (=) followed by a constant
expression. If the name is an array, the right side of the equal
sign may be a parenthesized list of constant expressions, or
repeated elements or lists; the total number of elements in the
list must not exceed the number of elements of the array,
which are filled in column-major order.

7.4 The Initial Statement

An initial value may also be specified for a simple variable,
array, array element, or member of a structure using a

11-26

statement of the form

initial (var = val I

EFL

The var may be a variable name, array element specification, or
member of structure. The right side follows the same rules as
for an initial value specification in other declaration statements.

8. Executable Statements

Every useful EFL program contains executable statements, oth­
erwise it would not do anything and would not need to be run.
Statements are frequently made up of other statements. Blocks
are the most obvious case, but many other forms contain state­
ments as constituents.

To increase the legibility of EFL programs, some of the state­
ment forms can be broken without an explicit continuation. A
square (o) in the syntax represents a point where the end of a
line will be ignored.

8.1 Expression Statements

8.1.1 Subroutine Call

A procedure invocation that returns no value is known as a
subroutine call. Such an invocation is a statement. Examples
are

work(in, out)
run()

Input/output statements (see "Input/Output Statements"
under "Executable Statements") resemble procedure invoca­
tions but do not yield a value. If an error occurs the program

,! stops.

11-27

EFL

8.1.2 Assignment Statements

An expression that is a simple assignment(=) or a compound
assignment (+ = etc.) is a statement:

a = b
a = sin(x)/6
X *= y

8.2 Blocks

A block is a compound statement that acts as a single state­
ment. A block begins with a left brace, optionally followed by
declarations, optionally followed by executable statements, fol­
lowed by a right brace. A block may be used anywhere a state­
ment is permitted. A block is not an expression and does not
have a value. An example of a block is

integer i # this variable is unknown
outside the braces

big - 0
do i = l,n

if(big < a (i) J
big = a(i)

8.3 Test Statements

A test statemellf permits execution of another statement or
group of statements based on the outcome of a conditional
expression.

There are several forms of test statements:

1. if statements

2. if-else statements

3. select statements

11-28

EFL

8.3.1 If Statement

(The simplest of the test statements is the if statement, of form

if (logical·expression) 0 statement

First, the logical expression is evaluated; if it is true, then the
statement is executed. Otherwise statement will be skipped.

8.3.2 If-Else

A more general statement is of the form

if (logicaf·expression) 0 statement-! D
else 0 statement-]

Just as with the "if" statement, the logical expression is
evaluated and if the expression is true then statement-! is exe­
cuted, otherwise, statement-2 is executed. Either of the conse­
quent statements may itself be an if-else so a completely nested
test sequence is possible:

lf(x<y)
if(a<b)

k - I
else

k - 2
else

if(a<b)
m I

else
m 2

An else applies to the nearest preceding if which is not already
followed by an else.

(A more common use of the ~·it-else" test statement is the
sequential test:

11-29

EFL

if(x==l)
k ~ I

else if(x- = 3
k - 2

else
k - 3

x==S)

There may be any number of else if statements in an "if-else"
statement to test for several conditions, although if more than
2 else lfs are needed, a select statement is often used instead.

8.3.3 Select Statement

Much like the switch statement in the C shell or case state­
ments in many programming languages, a select statement is
used to direct the branching of a program based on the result of
a conditional or arithmetic expression. A select statement has
the general form:

select(expression) 0 block

Inside the block two special types of labels are recognized. A
prefix of the form

case I constant I :

marks the statement to which control is passed if the expression
in the select has a value equal to one of the case constants. If
the expression equals none of these constants, but there is a
label default inside the select, a branch is taken to that point;
otherwise the statement following the right brace is executed.

Once execution begins at a case or default label, it continues
until the next case or default is encountered.

11-30

r

select(x)
{
case 1:

k - 1
case 3,5:

k ~ 2
default:

k ~ 3

8.4 Loops

EFL

The loop constructs, (while, for, repeat, repeat-until and do),
provide an efficient way to repeat an operation or series of
operations. Termination of a loop is generally initiated by the
failure of a logical or iterative test statement. Although the
while loop is the simplest construct, and consequently the most
frequently used, each construct has its own strengths to be
exploited in a given application.

8.4.1 While Statement

This construct has the form

while (logicaf·expression) D statement

First, the logical-expression is evaluated; if it is true, statement is
executed, and the logical-expression is evaluated again. If
logical-expression is false, statement is not executed and program
execution continues at the next statement.

8.4.2 For Statement

The for statement is a more elaborate looping construct. It has
the form

for (initial-statement , 0 fogical-rxpression ,
D iteration-statement) D body-statement

Except for the behavior of the next statement (see "Branch
Statement" under "Executable Statements"), this construct is

11-31

EFL

equivalent to

initia f. statement
while (loxica/-expression)

I
bod_v-statement
it era t ion-statement
}

This form is useful for general arithmetic iterations, and for
various pointer-type operations. The sum of the integers from
I to 100 can be computed by the fragment

II = ()
for(i = /, i < = 100, i += I)

fl + = i

Alternatively, the computation could be done by the single
statement

for({n=O; i=l}, i< =100, (n+=i; ++i))

Note that the body of the for loop is a null statement in this
case. An example of following a linked list will be given later.

8.4.3 Repeat Statement

The statement

repeat 0 statemenl

executes the statement, then does it again, without any termi­
nation test. Obviously, a test inside the statement is needed to
stop the loop.

8.4.4 Repeat .•• Until Statement

The while loop performs a test before each iteration. The
statement

11-32

EFL

repeat D statement D until (logical·expression)

executes the statement, then evaluates the logical expression; if
the loKical expression is true the loop is complete; otherwise,
control returns to the statement. Thus, the body is always exe­
cuted at least once. The until refers to the nearest preceding
repeat that has not been paired with an until. In practice, this
appears to be the least frequently used looping construct.

8.4.5 Do Loop

The simple arithmetic progression is a very common one in
numerical applications. EFL has a special loop form for ranging
over an ascending arithmetic sequence

do variable = expression-/, expression-], expression-3
statement

The variable is first given the value expression-/. The statement
is executed, then expression-] is added to the variable. The
loop is repeated until the variable exceeds expression-]. If
expression-] and the preceding comma are omitted, the incre­
ment is taken to be I. The loop above is equivalent to

t2 = expression-]
t3 = expression-]
for{ variable =expression-/, variable< =t2, variable+ =r])

statemenl

(The compiler translates EFL do statements into FORTRAN
DO statements, which are usually compiled into excellent
code.) The do variable may not be changed inside of the loop,
and expression-/ must not exceed expression-]. The sum of the
first hundred positive integers could be computed by

II = 0
.r__. do i = 1, 100

II += i

11·33

EFL

8.5 Branch Statements

It is not considered good programming practice to use branch
statements if a loop construct can be used instead. However, if
you must use a branch statement, EFL provides a few for your
convenience.

8.5.1 Goto Statement

The most general, and most dangerous, branching statement is
the simple unconditional

goto label

After executing this statement, the next statement performed is
the one following the given label. Inside of a select the case
labels of that block may be used as labels, as in the following
example:

select(k)

case I:
error(7)

case 2:
k - 2
go to case 4

case 3:
k - 5
goto case 4

case 4:
fixup(k)
goto default

default:
prmsg("ouch")

If two select statements are nested, the case labels of the outer
select are NOT accessible from the inner one.

11-34

EFL

8.5.2 Break Statement

A safer statement is one which transfers control to the state·
ment following the current select or loop form. A statement of
this sort is almost always needed in a repeat loop:

repeat
{
do a computation
if(finished)
break
I

More general forms permit controlling a branch out of more
than one construct. For example:

break 3

transfers control to the statement following the third loop
and/ or select surrounding the statement.

It is possible to specify the type of construct to which control is
to be transferred, i.e. for, while, repeat, do, or select. For
example:

break while

breaks out of the first surrounding while statement. Either of
the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

8.5.3 Next Statement

The next statement causes the first surrounding loop statement
to go on to the next iteration: the next operation performed is
the test of a while, the iteration-statement of a for, the body of a

11-35

EFL

repeat, the test of a repeat ... until, or the increment of a do.
Elaborations similar to those for break are available:

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

8.5.4 Return

The last statement of a procedure is followed by a return of
control to the caller. If it is desired to effect such a return from
any other point in the procedure, a

return

statement may be executed. Inside a function procedure, the
function value is specified as an argument of the statement:

return (expression)

8.6 Input/Output Statements

EFL has two input statements (read and readbin), two output
statements (write and writebin), and three control statements
(endfile, rewind, and backspace). These forms may be used
either as a primary with a integer value or as a statement. If an
exception occurs when one of these forms is used as a state­
ment, the result is undefined but will probably be treated as a
fatal error. If they are used in a context where they return a
value, they return zero if no exception occurs. For the input
forms, a negative value indicates end-of-file and a positive
value an error. The input/output part of EFL very strongly
reflects the facilities of FORTRAN.

8.6.1 Input/Output Units

Each 1/0 statement refers to a "unit," identified by a small
positive integer. Two special units are defined by EFL, the
standard input unit and the standard output unit. These particular

11-36

--I

~

I

EFL

units are assumed if no unit is specified in an 1/0 transmission
statement.

The data on the unit are organized into records. These records
may be read or written in a fixed sequence, and each transmis­
sion moves an integral number of records. Transmission
proceeds from the first record until the end of.file.

8.6.2 Binary Input/Output

The readbin and wrltebin statements transmit data in a
machine-dependent but swift manner. The statements are of
the form

writebin(unit , binary-output-list)
readbin(unit , binary-input-list)

Each statement moves one unformatted record between storage
and the device. The unit is an integer expression. A binary­
output-list is an iolist (see below) without any format specifiers.
A binary-inpuf.list is an iolist without format specifiers in which
each of the expressions is a variable name, array element, or
structure member.

8.6.3 Formatted Input/Output

The read and write statements transmit data in the form of
lines of characters. Each statement moves one or more records
(lines). Numbers are translated into decimal notation. The
exact form of the lines is determined by format specifications,
whether provided explicitly in the statement or implicitly. The
syntax of the statements is

write(unit , formatted-output-list)
read(unit , formatted-input-list)

The lists are of the same form as for binary 1/0, except that
the lists may include format specifications. If the unit is omit­
ted, the standard input or output unit is used.

11-37

EFL

8.6.4 Iolists

An iolist specifies a set of values to be written or a set of vari­
ables into which values are to be read. An io/ist is a list of one
or more ioexpressions of the form

expression
{ iolisr }
do-spec(fication { iolist }

For formatted 1/0, an ioexpression may also have the forms

ioexpression : jOrmat-spec(/ier
: }Ormat-spec(fier

A do-spec(fication looks just like a do statement, and has a simi­
lar effect: the values in the braces are transmitted repeatedly
until the do execution is complete.

8.6.5 Formats

The following are permissible jOrmat-spec(/iers. The quantities
w, d, and k must be integer constant expressions.

i(w) integer with w digits

f(w,d)

e(w,d)

l(w)

c

c(Kl

s(k)

11-38

floating point number of w characters, d of them to
the right of the decimal point.

floating point number of w characters, d of them to
the right of the decimal point, with the exponent field
marked with the letter e

logical field of width w characters, the first of which is
t or f (the rest are blank on output, ignored on input)
standing for true and false respectively

character string of width equal to the length of the
datum

character string of width w

skip k lines

EFL

x(k) skip k spaces

use the characters inside the string as a FORTRAN
format

If no format is specified for an item in a formatted input/output
statement, a default form is chosen.

If an item in a list is an array name, then the entire array is
transmitted as a sequence of elements, each with its own for­
mat. The elements are transmitted in column-major order, the
same order used for array initializ.ations.

8.6.6 Manipulation Statements

The three input/output statements

backspace(unit)
rewind(unit)
endfile(unil)

,f look like ordinary procedure calls, but may be used either as
statements or as integer expressions which yield non-zero if an
error is detected. backspace causes the specified unit to back
up, so that the next read will re-read the previous record, and
the next write will over-write it. rewind moves the device to
its beginning, so that the next input statement will read the first
record. endfile causes the file to be marked so that the record
most recently written will be the last record on the file, and any
attempt to read past is an error.

9. Procedures

Procedures are the basic unit of an EFL program, and provide
the means of segmenting a program into separately compilable
and named parts.

9.1 Procedures Statement

Each procedure begins with a statement of one of the forms

11-39

EFL

procedure
auriblltes procedure pron•durename
auribwes procedure procedurename ()
arrribll/es procedure procedurename (I name])

The first case specifies the main procedure, where execution
begins. In the two other cases, the auribwes may specify preci­
sion and type, or they may be omitted entirely. The precision
and type of the procedure may be declared in an ordinary
declaration statement. If no type is declared, then the pro­
cedure is called a subrowine and no value may be returned for
it. Otherwise, the procedure is a function and a value of the
declared type is returned for each call. Each name inside the
parentheses in the last form above is called a ./imna/ ai"KIImenl of
the procedure.

9.2 End Statement

Each procedure terminates with a statement

end

9.3 Argument Association

When a procedure is invoked, the actual arguments are
evaluated. If an actual argument is the name of a variable, an
array element, or a structure member, that entity becomes
associated with the formal argument, and the procedure may
reference the values in the object, and assign to it. Otherwise,
the value of the actual is associated with the formal argument,
but the procedure may not attempt to change the value of that
formal argument.

If the value of one of the arguments is changed in the pro­
cedure, it is not permitted that the corresponding actual argu­
ment be associated with another formal argument or with a
common element that is referenced in the procedure.

11-40

EFL

9.4 Execution and Return Values

After actual and formal arguments have been associated, con­
trol passes to the first executable statement of the procedure.
Control returns to the invoker either when the end statement
of the procedure is reached or when a return statement is exe­
cuted. If the procedure is a function (has a declared type), and
a return(value) is executed, the value is coerced to the correct
type and precision and returned.

9.5 Known Functions

A number of functions are known to EFL, and need not be
declared. The compiler knows the types of these functions.
Some of them are xeneric; i.e., they name a family of functions
that differ in the types of their arguments and return values.
The compiler chooses which element of the set to invoke based
upon the attributes of the actual arguments.

9.5.1 Minimum and Maximum Functions

The generic functions are min and max. The min calls return
the value of their smallest argument; the max calls return the
value of their largest argument. These are the only functions
that may take different numbers of arguments in different calls.
If any of the arguments are long real then the result is long
real. Otherwise, if any of the arguments are real then the
result is real; otherwise all the arguments and the result must
be Integer. Examples are

min(5, x, -3.20)
max(i, z)

9.5.2 Absolute Value

The abs function is a generic function that returns the magni~
tude of its argument. For integer and real arguments the type

.r- of the result is identical to the type of the argument; for com~
plex arguments the type of the result is the real of the same
precision.

11-41

EFL

9.5.3 Elementary Functions

The following generic functions take arguments of real, long
real, or complex type and return a result of the same type:

sin
cos
exp
log
log10
sqrt

In addition, the
real arguments:

sine function
cosine function
exponential function (ex).
natural (base e) logarithm
common (base 10) logarithm
square root function (@sqrt x@).

following functions accept only real or long

a tan
atan2

atan(x) = fait t x
atan2(x,y) = ratr.i x~v

9.5.4 Other Generic Functions

The sign function takes two arguments of identical type. The
mod function yields the remainder of its first argument when
divided by its second.

sign(x,y) = sgn(v)lxl.
mod(x,y)

These functions accept integer and real arguments.

10. Atavisms

The following constructs are included to ease the conversion of
old FORTRAN or Ratfor programs toEFL.

10.1 Escape Lines

In order to make use of nonstandard features of the local FOR­
TRAN compiler, it is occasionally necessary to pass a particular
line through to the EFL compiler output. Such a line is called
an escape line and must begin with a percent sign ("%").
Escape lines are copied through to the output without change,

11-42

EFL

except that the percent sign is removed. Inside of a procedure,
each escape line is treated as an executable statement. If a
sequence of lines constitute a continued FORTRAN statement,
they should be enclosed in braces.

10.2 Call Statement

A subroutine call may be preceded by the keyword call.

call joe
call work(17)

10.3 Obsolete Keywords

The following keywords are recognized as synonyms of EFL
keywords:

FORTRAN EFL

double precision long real
function procedure
subroutine procedure (untyped)

10.4 Numeric Labels

Standard statement labels are identifiers. A numeric (positive
integer constant) label is also permitted; the colon is optional
following a numeric label.

10.5 Implicit Declarations

If a name is used but does not appear in a declaration, the EFL
compiler gives a warning and assumes a declaration for it. If it
is used in the context of a procedure invocation, it is assumed
to be a procedure' name; otherwise it is assumed to be a local
variable defined at nesting level 1 in the current procedure.
The assumed type is determined by the first letter of the name.
The association of letters and types may be given in an implicit
statement, with syntax

implicit (letter-list) type

11-43

EFL

where a kller-lisr is a list of individual letters or ranges (pair of
letters separated by a minus sign). If no implicit statement
appears, the following rules are assumed:

implicit (a-h, o-z) real
implicit (i-n) integer

10.6 Computed Goto

FORTRAN contains an indexed multi-way branch; this facility
may be used in EFL by the computed goto:

goto (I label I), expression

The expression must be of type integer and be positive but be
no larger than the number of labels in the list. Control is
passed to the statement marked by the label whose position in
the list is equal to the expression.

10.7 Goto Statement

In unconditional and computed goto statements, it is permissi­
ble to separate the go and to words, as in

go to xyz

10.8 Dot Names

FORTRAN uses a restricted character set, and represents cer­
tain operators by multi-character sequences. There is an
option, dots=on (see "Compiler Options"), which forces the
compiler to recognize the forms in the second column below:

< .lt.
<~ .le.
> .gt.
>~ .ge .

• eq •
• ne .

& • and.
I .or •
&& . andand.

11-44

II

true
fri~lse

.oror .

. not .

. true.

.false.

EFL

In this mode, no structure element may be named It, le, etc.
The readable forms in the left column are always recognized.

10.9 Complex Constants

A complex constant may be written as a parenthesized list of
real quantities, such as

The preferred notation is by a type coercion,

complex0.5, 3.0)

(10.10 Function Values

The preferred way to return a value from a function in EFL is
the return (value) construct. However, the name of the func­
tion acts as a variable to which values may be assigned; an ordi­
nary return statement returns the last value assigned to that
name as the function value.

10.11 Equivalence

A statement of the form

declares that each of the vi starts at the same memory location.
Each of the vi may be a variable name, array element name, or

(.---. structure member.

11-45

EFL

10.12 Minimum and Maximum Functions

There are a number of non-generic functions in this category,
which differ in the required types of the arguments and the
type of the return value. They may also have variable numbers
of arguments, but all the arguments must have the same type.

FUNCTION ARGUMENT TYPE RESULT TYPE

aminO integer real
aminl real real
minO integer integer
minl real integer
dminl long real long real
amaxO integer real
amaxl real real
maxO integer integer
maxi real integer
dmaxl long real long real

11. Compiler Options

A number of options can be used to control the output and to
tailor it for various compilers and systems. The defaults chosen
are conservative, but it is sometimes necessary to change the
output to match peculiarities of the target environment.

Options are set with statements of the form

option I opt I

where each opt is of one of the forms

option name
optionname - optionva/ue

The optionva/ue is either a constant (numeric or string) or a
name associated with that option. The two names yes and no
apply to a number of options.

11-46

c

EFL

11.1 Default Options

Each option has a default setting. It is possible to change the
whole set of defaults to those appropriate for a particular
environment by using the system option. At present, the only
valid values are system=unix and system=gcos.

11.2 Input Language Options

The dots option determines whether the compiler recognizes
.It. and similar forms. The default setting is no.

11.3 Input/Output Error Handling

The ioerror option can be given three values: none means that
none of the 1/0 statements may be used in expressions, since
there is no way to detect errors. The implementation of the
ibm form uses ERR= and END= clauses. The implementa­
tion of the fortran77 form uses lOST AT= clauses.

(""" 11.4 Continuation Conventions

By default, continued FORTRAN statements are indicated by a
character in column 6 (Standard FORTRAN). The option
continue=columnl puts an ampersand (&) in the first column
of the continued lines instead.

11.5 Default Formats

If no format is specified for a datum in an iolist for a read or
write statement, a default is provided. The default formats can
be changed by setting certain options

OPTION TYPE

iformat integer
rformat real
dformat long real
zformat complex
zdformat long complex
lformat logical

The associated value must be a FORTRAN format, such as

11-47

EFL

option rformat=f22.6

11.6 Alignments and Sizes

In order to implement character variables, structures, and the
slzeof and lengthof operators, it is necessary to know how
much space various FORTRAN data types require, and what
boundary alignment properties they demand. The relevant
options are

FORTRAN SIZE ALIGNMENT
TYPE OPTION OPTION

integer isize ialign
real rsize ralign
long real dsize dalign
complex zsize zalign
logical !size I align

The sizes are given in terms of an arbitrary unit; the alignment
is given in the same units. The option charperint gives the
number of characters per integer variable.

11.7 Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard
input and output units. The default values are ftnin=S and
ftnout=6.

11.8 Miscellaneous Output Control Options

Each FORTRAN procedure generated by the compiler will be
preceded by the value of the procheader option.

No Hollerith strings will be passed as subroutine arguments if
holllncall =no is specified.

11-48

'-

EFL

No Hollerith strings will be passed as subroutine arguments if
hollinc_ll =no is specified.

The FORTRAN statement numbers normally start at 1 and
increase by I. It is possible to change the increment value by
using the deltastno option.

12. Examples

In order to show the flavor or programming in EFL, we present ·
a few examples. They are short, but show some of the con·
venience of the language.

12.1 File Copying

The following short program copies the standard input to the
standard output, provided that the input is a formatted file con­
taining lines no longer than a hundred characters.

procedure # main program
characterOOO) line

while(read(, line) 0)
write(, line)

end

Since read returns zero until the end of file (or a read error),
this program keeps reading and writing until the input is
exhausted.

12.2 Matrix Multiplication

The following procedure multiplies the m x n matrix a by the 11

x p matrix b to give the m x p matrix c. The calculation obeys
the formula c1; = :E alt.. ht.._r

11-49

EFL

procedure matmul(a, b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)

do i = l,m
do j = l,p

{

end

c(ij) = 0
do k = l,n

c(ij) + = a(i,k) • b(kj)

12.3 Searching a Linked List

Assume we have a list of pairs of numbers (x, y). The list is
stored as a linked list sorted in ascending order of x values.
The following procedure searches this list for a particular value
of x and returns the corresponding y value.

11-50

~

I

define LAST 0
define NOTFOUND -I

integer procedure val Wst, first, x)

list is an array of structures.
Each structure contains a thread index value,
an x, and a y value.

struct
{
integer nextindex
integer x, y
l list(•)

integer first, p, arg

for(p = first , p-=LAST && list(p).x<=x ,
p = list(p).nextindex)
iWist(p).x == x)

return(list(p).y)

return(NOTFOUND)
end

EFL

The search is a single for loop that begins with the head of the
list and examines items until either the list is exhausted
(p= =LAST) or until it is known that the specified value is not
on the list (list(p).x > x). The two tests in the conjunction
must be performed in the specified order to avoid using an
invalid subscript in the list(p) reference. Therefore, the &&
operator is used. The next element in the chain is found by
the iteration statement p =list (p) .nextindex.

12.4 Walking a Tr ..

As an example of a more complicated problem, let us imagine
we have an expression tree stored in a common area, and that
we want to print out an infix form of the tree. Each node is
either a leaf (containing a numeric value) or it is a binary
operator, pointing to a left and a right descendant. In a recur­
sive language, such a tree walk would be implemented by the

11·51

EFL

following simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain
an explicit stack to keep track of the current state of the com­
putation. The following procedure calls a procedure outch to
print a single character and a procedure outval to print a value.

11-SZ

EFL

procedure walk (first) # print an expression tree

r integer first # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

I
character (I) op
integer leftp, rightp
real val
} treeOOO) # array of structures

struct
I
integer nextstate
integer nodep
} stackframe(IOO)

define NODE
define STACK

tree(currentnode)
stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

initialize stack with root mode
stackdepth = 1
STACK.nextstate = DOWN
ST ACK.nodep = first

11-53

EFL

while(stackdepth > 0)

end

(
currentnode = STACK.nodep
select(STACK.nextstate)

(
case DOWN:

if(NODE.op = = " ") # a leaf
(
outval(NODE. val
stackdepth - = 1
I

else { # a binary operator node
outch("(")
ST ACK.nextstate = LEFT
stackdepth + = 1
ST ACK.nextstate DOWN
ST ACK.nodep = NODE.leftp
I

case LEFT:
outch(NODE.op)
STACK.nextstate = RIGHT
stackdepth + = 1
STACK.nextstate = DOWN
ST ACK.nodep = NODE.rightp

case RIGHT:
outch(")")
stackdepth - = 1

13. Portability

One of the major goals of the EFL language is to make it easy
to write portable programs. The output of the EFL compiler is
intended to be acceptable to any Standard FORTRAN compiler
(unless the "fortran77" option is specified).

11-54

.r

EFL

13.1 Primitives

Certain EFL operations cannot be implemented in portable
FORTRAN, so a few machine-dependent procedures must be
provided in each environment.

13.1.1 Character String Copying

The subroutine eftasc is called to copy one character string to
another. If the target string is shorter than the source, the final
characters are not copied. If the target string is longer, its end
is padded with blanks. The calling sequence is

subroutine eflasc<a, Ia, b, lb)
integer a(..), Ia, b(•), lb

and it must copy the first lb characters from b to the first Ia
characters of a.

13.1.2 Character String Comparisons

The function eflcmc is invoked to determine the order of two
character strings. The declaration is

integer function eflcmc<a, Ia, b, !b)
integer a(*), Ia, b(*), lb

The function returns a negative value if the string a of length
Ia precedes the string b of length lb. It returns zero if the
strings are equal, and a positive value otherwise. If the strings
are of differing length, the comparison is carried out as if the
end of the shorter string were padded with blanks.

14. Differences Between Ratfor and EFL

There are a number of differences between Ratfor and EFL,
since EFL is a defined language while Ratfor is the union of the
special control structures and the lar.guage accepted by the
underlying FORTRAN compiler. Ratfor running over Standard
FORTRAN is almost a subset of EFL. Most of the features
described in the "Atavisms" are present to ease the conversion

11-55

EFL

of Ratfor programs to EFL.

There are a few incompatibilities:

1. The syntax of the for statement is slightly different
in the two languages. The three clauses are
separated by semicolons in Ratfor, but by commas
in EFL. The initial and iteration statements may be
compound statements in EFL because of this
change.

2. The input/output syntax is quite different in the two
languages, and there is no FORMAT statement in
EFL.

3. There are no ASSIGN or assigned GOTO statements
in EFL.

The major linguistic additions are:

• character data

• factored declaration syntax

• block structure

• assignment and sequential test operators

• generic functions

• data structures

EFL permits more general forms for expressions, and provides
a more uniform syntax. For example, EFL does not have the
restrictions on subscript or DO expressions forms as do FOR­
TRAN and Ratfor.

15. Compiler

15.1 Current Version

The current version of the EFL compiler is a two-pass transla­
tor written in portable C. It implements all of the features of

11-56

EFL

the language described above except for long complex
numbers.

15.2 Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line
and file name (if known) on which the error was detected.
Warnings are given for variables that are used but not explicitly
declared.

15.3 Quality of FORTRAN Produced

The FORTRAN produced by EFL is quite clean and readable.
To the extent possible, the variable names that appear in the
EFL program are used in the FORTRAN code. The bodies of
loops and test constructs are indented. Statement numbers are
consecutive. Few unneeded GOTO and CONTINUE state­
ments are used. It is considered a compiler bug if incorrect
FORTRAN is produced (except for escaped lines). The follow­
ing is the FORTRAN procedure produced by the EFL compiler
for the matrix multiplication example (See "Examples.")

subroutine matmuHa, b, c, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3 i = I, m

do 2 j = I, p
c(i, j) = 0
do I k = 1, n

c(i, j) = c(i, j) +a(i, k)*b(k, j)
I continue
2 continue
3 continue

end

11-57

EFL

11-58

The following is the procedure for the tree walk:

subroutine walk(first)
integer first
common /nodes/ tree
integer tree(4, 100)
real tree I (4, 100)
integer staame(2, 100), stapth, curode
integer canst 1 (I)
equivalence (treeO,l), treel(l,l))
data constl0)/4h I

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = I
staameO, stapth) = 1
staame(2, stapth) = first
if (stapth .le. 0) goto 9

curode = staame(2, stapth)
goto 7

2 if (treeO, curode) .ne. canst! (l)) go to 3

c a leaf
call outval(treel (4, curode))

stapth = stapth-1
goto 4

3 call outchOhO
c a binary operator node

staame(l, stapth) 2
stapth = stapth + I
staame (I, stapth) I
staame(2, stapth) = tree(2, curode)

4 goto 8
5 call outch(treeO, curode))

staame (I, stapth) = 3
stapth = stapth + 1
staame(l, stapth)
staame(2, stapth) = treeO, curode)

6

7

goto 8
call outch (1 h))
stapth = stapth-1
goto 8
if (staameO. stapth) .eq. 3) goto 6
if (staameO. stapth) .eq. 2) goto 5
if (staameO. stapth) .eq. l) goto 2

8 continue
goto 1

9 continue
end

16. Constraints on EFL

EFL

Although FORTRAN can be used to simulate any finite compu­
tation, there are realistic limits on the generality of a language
that can be translated into FORTRAN. The design of EFL was
constrained by the implementation strategy. Certain of the res­
trictions are petty (six character external names), but others are
sweeping (lack of pointer variables). The following paragraphs
describe the major limitations imposed by FORTRAN.

16.1 External Names

External names (procedure and COMMON block names) must
be no longer than six characters in FORTRAN. Further, an
external name is global to the entire program. Therefore, EFL
can support block structure within a procedure, but it can have
only one level of external name if the EFL procedures are to be
compilable separately, as are FORTRAN procedures.

16.2 Procedure Interface

The FORTRAN standards, in effect, permit arguments to be
passed between FORTRAN procedures either by reference or
by copy-in/copy-out. This indeterminacy of specification shows
through into EFL. A program that depends on the method of
argument transmission is illegal in either language.

11-59

EFL

There are no procedure-valued variables in FORTRAN. That
is, a procedure name may ONLY be passed as an argument or
be invoked - it cannot be stored.

16.3 Pointers

The most grievous problem with FORTRAN is its lack of a
pointer-like data type. The implementation of the compiler
would have been far easier, and the language itself simplified
considerably, if certain cases could have been handled by
pointers. There are several ways of "simulating" pointers by
using subscripts, but this raises problems of external variables
and initialization.

16.4 Recursion

FORTRAN procedures are not recursive, so it was not practical
to permit EFL procedures to be recursive. As in the case of
pointers, recursion may be simulated in EFL, but not without
considerable effort.

16.5 Storage Allocation

The definition of FORTRAN does not specify the lifetime of
variables. It would be possible but cumbersome to implement
stack or heap storage disciplines by using COMMON blocks.

11-60

Chapter 12: LINT

(CONTENTS·

-
I. Introduction I

1.1 Usage I
1.2 Options 2

2. Types of Messages 5
2.1 Unused Variables and Functions 5
2.2 Set/Used Information 7
2.3 Flow of Control 7
2.4 Function Values 8
2.5 Type Checking 10
2.6 Type Casts • . 11
2.7 Nonportable Character Use 12
2.8 Assignments of "longs•• to "ints" 12
2.9 Strange Constructions 13

r 2.10 Old Syntax • 14
2.11 Pointer Alignment 15

'- 2.12 Multiple Uses and Side Effects 16

c

~ i -

Chapter 12

LINT-

A C PROGRAM CHECKER

1. Introduction

LINT

The C program checker, lint, can be used to detect bugs,
obscurities, inconsistencies and portability of C programs. It is
generally stricter than the C compiler, which accepts construc­
tions without complaint that lint considers wasteful or error­
prone. The lint program is also much stricter with regard to
the C language type rules. Also, lint accepts multiple files and
library specifications and checks them for consistency.

In addition to the many thorough checking mechanisms them­
selves, lint offers the facility of suppressing them if they are
not necessary for a given application.

1.1 Usage

The lint command has the form:

lint [options] files ... library-descriptors ...

• options are optional flags to control lint checking
and messages

• "files" are the files to be checked by lint. Natur­
ally, files containing C language programs must end
with a .c suffix since this is mandatory for both lint
and the C compiler.

• library-descriptors are the names of libraries to be
used in checking the program.

The lint library files are processed almost exactly like ordinary
source files. The only difference is that functions which are
defined on a library file, but are not used on a source file, do

12-1

LINT

NOT result in messages.

The lint program does not simulate a full library search algo­
rithm and will print messages if the source files contain a
redefinition of a library routine.

1.2 Options

When more than one option is used, they should be combined
into a single argument, such as, - ab or - xha.

The options that are currently supported by the lint program
are:

-a

-b

Use this option to suppress messages concerning
the assignment of "long" values to variables
which are not "long." This option is often useful
as there are a number of legitimate reasons for
assigning "longs" to "ints."

Use this option to suppress messages concerning
"break" statements which are unreachable. For
example, programs generated by yacc and espe­
cially lex may have hundreds of unreachable break
statements. If the C compiler optimizer were
used, these unreached statements would be of lit­
tle importance, but the resulting messages would
clutter up the lint output. In this case, the -b
option is especially useful.

- c This option is no longer available.

- h Use this option only to suppress the use of
"heuristics." Heuristics is used by default to
check for wasteful or error-prone constructions
and to detect bugs. For example, by default lint
prints messages about variables which 8re declared
in inner blocks in a way that conflicts with their
use in outer blocks. Though this construction is
considered "legal," it remains bad programming
style, and frequently a bug.

12-2

r
'

-ly

LINT

Use this option to specify libraries you wish
included and checked by lint. The source code is
tested for compatibility with these libraries. This
is done by accessing library description files whose
names are constructed from the library arguments.
These files MUST all begin with the comment:

I• LINTLIBRARY •/

This comment must then be followed by a series
of dummy function definitions. The critical parts
of these definitions are:

• the declaration of the function return
type,

• whether the dummy function returns a
value, and

• the number and types of arguments to
the function.

The VARARGS and ARGSUSED comments can
be used to specify features of the library func­
tions.

- n Use this option to suppress checking for compati­
bility with either the standard or the portable lint
library. In effect, this option supresses ALL
library checking.

-0 name Use this option to create a lint library from input
files named llib-lname.ln.

-p

-u

Use this option to check a program's portability to
other dialects of C language. This option checks a
file containing descriptions of standard library rou­
tines which are expected to be portable.

Use this option to suppress messages concerning
function and external variables which are either
used and not defined or defined and not used.

12-3

LINT

-v

The comment:

I• VARARGS •/

can be used to suppress messages about variable
number of arguments in calls to a function. The
comment should be added before the function
definition. In some cases, it is desirable to check
the first several arguments and leave the later
arguments unchecked. This can be done with a
digit giving the number of arguments which
should be checked. For example:

I• VARARGS2 •I

will cause ONLY the first two arguments to be
checked.

When lint is applied to some but not all files out
of a collection which are to be loaded together,
information about unused or undefined variables
is more distracting than helpful. In this case,
many of the functions and variables defined may
not be used. Conversely, many functions and
variables defined elsewhere may be used. The -u
option is especially useful to suppress the spurious
messages which might otherwise appear.

Use this option to suppress messages concerning
unused function arguments. To suppress such
messages for one function only, place the follow­
ing comment in the program before that function:

I• ARGSUSED •/

-x Use this option to suppress messages concerning
variables referred to by external declarations but
never used.

By default, lint checks the programs it is given against a stan­
dard library file which contains descriptions of the programs
which are normally loaded when a C language program is run.

12-4

LINT

When the - p option is used, another file is checked containing
descriptions of the standard library routines which are expected
to be portable across various machines. The - n option can be
used to suppress all library checking.

2. Types of Messages

The following paragraphs describe the major categories of mes·
sages printed by lint.

2.1 Unused Variables and Functions

As sets of programs evolve and develop, previously used vari­
ables and arguments to functions may become unused. It is
not uncommon for external variables or even entire functions
to become unnecessary and yet not be removed from the
source. These types of errors rarely cause working programs to
fail, but are a source of inefficiency and make programs harder
to understand and change. Also, information about such
unused variables and functions can occasionally serve to dis­
cover bugs.

The lint program prints messages about variables and functions
which are defined but not otherwise mentioned.

It is possible to suppress messages regarding variables which are
declared through explicit extern statements but are never refer­
enced. The statement:

extern double sin 0;

will evoke no comment if sin is never used, providing the -x
option is used. (Note: this agrees with the semantics of the C
compiler.)

In some cases, these unused external declarations might be of
some interest, in which case you can use lint without the - x
option.

12-5

LINT

Certain styles of programming require many functions to be
written with similar interfaces. Frequently, some of the argu­
ments may be unused in many of the calls. The -v option is
available to suppress the printing of messages about unused
arguments.

When -v is in effect, no messages are produced about unused
arguments including for those arguments which are unused and
also declared as register arguments. This can be considered an
active (and preventable) waste of the register resources of the
machine.

Messages about unused arguments can be suppressed for one
function by adding the comment:

I• ARGSUSED •/

to the program before the function. This has the effect of the
- v option for only one function. Also, the comment:

I• VARARGS •/

can be used to suppress messages about variable number of
arguments in calls to a function. The comment should be
added before the function definition. In some cases, it is desir­
able to check the first several arguments and leave the later
arguments unchecked. This can be done with a digit giving the
number of arguments which should be checked. For example:

/ .. V ARARGS2 •I

will cause ONLY the first two arguments to be checked.

There is one case where information about unused or
undefined variables is more distracting than helpful:

when lint is applied to some but not all files out of a collection
which are to be loaded together.

12-6

LINT

In this case, many of the functions and variables defined may
not be used. Conversely, many functions and variables defined
elsewhere may be used. The -u option may be used to
suppress the spurious messages which might otherwise appear.

2.2 Set/Used Information

The lint program attempts to detect cases where a variable is
used before it is set. The lint program detects local variables
(automatic and register storage classes) whose first use appears
earlier than the first assignment to the variable. It assumes that
taking the address of a variable constitutes a "use," since the
actual use may occur at any later time, in a data-dependent
fashion.

The restriction to the physical appearance of variables in the file
makes the algorithm very simple and quick to implement since
the true flow of control need not be discovered. It does mean
that lint can print messages about some programs which are
legal, but these programs would probably be considered bad on
stylistic grounds. Because static and external variables are ini­
tialized to zero, no meaningful information can be discovered
about their uses. The lint program does deal with initialized
automatic variables.

The set/used information also permits recognition of those
local variables which are set and never used. These form a fre­
quent source of inefficiencies and may also be symptomatic of
bugs.

2.3 Flow of Control

The lint program attempts to detect unreachable portions of the
programs which it processes. It will print messages about unla­
beled statements immediately following goto, break, continue
or return statements. An attempt is made to detect loops
which can never be left at the bottom and to recognize the spe­
cial cases while (I) and for(;;) as infinite loops.

12-7

LINT

The lint program also prints messages about loops which can­
not be entered at the top. Some valid programs may have such
loops which are considered to be bad style at best and bugs at
worst.

The lint program has no way of detecting functions which are
called and never returned. Thus, a call to exit may cause an
unreachable code which lint does NOT detect. The most seri­
ous effects of this are in the determination of returned function
values (see the section on "Function Values"). If a particular
place in the program cannot be reached but it is not apparent to
lint, the comment

I• NOTREACHED •/

can be added at the appropriate place. This comment will
inform llnt that a portion of the program cannot be reached.

The lint program will not print a message about unreachable
break statements if given the - b option. Programs generated
by yacc and especially lex may have hundreds of unreachable
break statements. The -0 option in the C compiler will often
eliminate the resulting object code inefficiency. Thus, these
unreached statements are of little importance. There is typi­
cally nothing the user can do about them, and the resulting
messages would clutter up the lint output. If these messages
are desired, lint can be invoked without the - b option.

2.4 Function Values

Sometimes functions return values that are never used. Some­
times programs incorrectly use function "values" that have
never been returned. The lint program addresses this problem
in a number of ways.

Locally, within a function definition, the appearance of both

return (expr) ;

12-8

LINT

and

(return;

is cause for alarm. The lint program will give the message:

function name contains return(e) and return

The most serious difficulty with this is detecting when a func­
tion return is "implied" when the control flow of a program
reaches the end of the function. For example:

f (a) I
if (a) return (3);
g 0;

In this example, if the result of "a" is false, /will call g and
then return with no defined return value. This will trigger a
message from lint. If g, like exit, never returns, the message
will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered
by this feature.

On a global scale, lint detects cases where a function returns a
value that is sometimes or never used. When the value is
never used, it may constitute an inefficiency in the function
definition. When the value is sometimes unused, it may
represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious prob-

,/""' tern.
'

12-9

LINT

2.5 Type Checking

The lint program enforces the type checking rules of C
language more strictly than the compilers do. The additional
checking is in four major areas:

• Across certain binary operators and implied assign-
ments

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations.

There are a number of operators which have an implied balanc­
ing between types of the operands. The assignment, condi­
tional (? :) , and relational operators have this property. The
argument of a return statement and expressions used in initiali­
zation suffer similar conversions. In these operations, char,
short, int, long, unsigned, float and double types may be
freely intermixed.

The types of pointers MUST agree exactly except that arrays of
x's can, of course, be intermixed with pointers to x's.

The type checking rules also require that, in structure refer­
ences, the left operand of the - > be a pointer to structure,
the left operand of the . be a structure, and the right operand
of these operators be a member of the structure implied by the
left operand. S.imilar checking is done for references to unions.

Strict rules apply to function argument and return value match­
ing. The types ftoat and double may be freely matched, as may
the types char, short, int and unsigned. Also, pointers can be
matched with the associated arrays. Aside from this, all actual
arguments must agree in type with their declared counterparts.

12-10

r

LINT

With enumerations, checks are made that enumeration vari­
ables or members are not mixed with other types or other
enumerations and that the only operations applied are ... , ini­
tialization, --, ! = and function arguments and return values.

If it is desired to turn off strict type checking for an expression,
the comment

I• NOSTRICT "/

should be added to the program immediately before the expres­
sion. This comment will prevent strict type checking for only
the next line in the program.

2.6 Type Casts

The type cast feature in C language was introduced largely as an
aid to producing more portable programs. Consider the assign­
ment

p = 1 ;

where p is a character pointer. The lint program will print a
message as a result of detecting this. Consider the assignment

p = (char oc)l ;

in which a cast has been used to convert the integer to a char·
acter pointer. The programmer obviously had a strong motiva·
tion for doing this and has clearly signaled his intentions. It
seems harsh for lint to continue to print messages about this.
On the other hand, if this code is moved to another machine,
such code should be looked at carefully. The -c flag controls
the printing of comments about casts. When -c is in effect,
casts are treated as though they were assignments subject to
messages. Otherwise, all legal casts a;·e passed without com·
ment - no matter how strange the type mixing seems to be.

12-11

LINT

2.7 Nonportable Character Use

On some systems, characters are signed quantities with a range
from -128 to 127. On other C language implementations,
characters take on only positive values. Thus, lint will print
messages about certain comparisons and assignments as being
illegal or nonportable. For example:

char c;

if((c = getcharO) < 0) ...

will work on one machine but will fail on machines where char·
acters always take on positive values. The real solution is to
declare c as an integer since getchar is actually returning integer
values. In any case, lint will print the message "nonportable
character comparison.''

A similar issue arises with bit fields. When assignments of con­
stant values are made to bit fields, the field may be too small to
hold the value. This is especially true because on some
machines bit fields are considered as signed quantities. While it
may seem logical to consider that a two-bit field declared of
type int cannot hold the value 3, the problem disappears if the
bit field is declared to have type unsigned

2.8 Assignments of "longs" to "ints"

Bugs may arise from the assignment of long to an int, which
will truncate the contents. This may happen in programs which
have been incompletely converted to use typedefs. When a
typedef variable is changed from int to long, the program can
stop working because some intermediate results may be
assigned to ints, which are truncated. Since there are a number
of legitimate reasons for assigning longs to ints, the detection
of these assignments is disabled by the -a option. However, if
using the - p option to detect possible portability problems,
lint may print the message, "warning: conversion from long
may lose accuracy," in spite of the use of the -a option.

12-12

LINT

2.9 Strange Constructions

Several perfectly legal, but somewhat strange, constructions are
detected by lint. The messages hopefully encourage better
code quality, clearer style, and may even point out bugs. The
- h option is used to suppress the majority of these checks.

For example:

•p++ ;

the • does nothing. This provokes the message "null effect"
from lint. For example:

unsigned x;
if(x<O) ...

results in a test that will never succeed. For another example:

/__. if(x>O)

(~

is equivalent to

if(x!= 0)

which may NOT be the intended action. The lint program will
print the message "degenerate unsigned comparison" in these
cases. If a program contains something similar to

if(l!~O) ...

lint will print the message "constant in conditional context"
since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator pre­
cedence. Bugs which arise from misunderstandings about the
precedence of operators can be accentuated by spacing and for­
matting, making such bugs extremely hard to find. For exam­
ple:

12-13

LINT

if(x&077 ~~ 0) ...

o•
x<<2 + 40

probably do NOT do what was intended. The best solution is
to parenthesize such expressions, and lint encourages this by
an appropriate message.

When the - h option has not been used, lint prints messages
about variables which are redeclared in inner blocks in a way
that conflicts with their use in outer blocks. Although this is
considered "legal," it remains bad style, usually unnecessary
and frequently a bug.

2.10 Old Syntax

Several forms of older syntax are now illegal. These fall into
two classes -

1. assignment operators and

2. initialization.

The older forms of assignment operators (e.g., - +, ... -, ...)
could cause ambiguous expressions. For example:

a =-1;

could be taken as either

a=- 1;

o•
a= -1

12-14

(
'

-. __

LINT

The situation is especially perplexing if this kind of ambiguity
arises as the result of a macro substitution. The newer and pre·
ferred operators (e.g., + =, --, .. .) have no such ambigui­
ties. To encourage the abandonment of the older forms, lint
prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language
allowed

int xi;

to initialize x to 1. This also caused syntactic difficulties. For
example:

intx(-1);

looks somewhat like the beginning of a function definition:

int x (y) { , ..

and the compiler must read past x in order to determine the
correct meaning. Again, the problem is even more perplexing
when the initializer involves a macro. The current syntax
places an equals sign between the variable and the initializer.
For example:

intx=-1;

This is free of any possible syntactic ambiguity.

2.11 Pointer Alignment

Certain pointer assignments may be reasonable on some
machines and illegal on others due entirely to alignment restric­
tions. The lint program tries to detect cases where pointers are
assigned to other pointers and such alignment problems might
arise. The message "possible pointer alignment problem"
results from this situation.

12-15

LINT

2.12 Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate
subexpressions may be highly machine dependent. For exam­
ple, on machines Oik.e the PDP-11) in which the stack runs
backwards, function arguments will probably be best evaluated
from right to left. On machines with a stack running forward,
left to right seems most attractive. Function calls embedded as
arguments of other functions may or may not be treated simi­
larly to ordinary arguments. Similar issues arise with other
operators which have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C language on a particular
machine not be unduly compromised, the C language leaves
the order of evaluation of complicated expressions up to the
local compiler. In fact, the various C compilers have consider­
able differences in the order in which they will evaluate compli­
cated expressions. In particular, if any variable is changed by a
side effect and also used elsewhere in the same expression, the
result is explicitly undefined.

The lint program checks for the important special case where a
simple scalar variable is affected. For example:

alii ~ b[i+ +];

will cause lint to print the message "warning: i evaluation order
undefined" in order to call attention to this condition.

12·16

c

c

Chapter 13: SDB

CONTENTS

1. Introduction

2. Usage . • • • .
2.1 Printing a Stack Trace
2.2 Examining Variables .

3. Display and Manipulation .
3.1 Displaying the Source File
3.2 Changing the Source File or Function
3.3 Changing the Current Line in the Source

File • • • • • • • • • •

4. A Controlled Testing Environment .
4.1 Setting and Deleting Breakpoints
4.2 Running the Program
4.3 Calling Functions • • • •

S. Machine Language Debugging
5.1 Displaying Machine Language

Statements • • . •
5.2 Manipulating Registers
5.3 Other Commands . •

LIST OF FIGURES

Figure 13.1. Input File Used for SDB Example

Figure 13.2. Example of SOB Usage • • . .

. i -

I

I
5
6

9
10
10

11

11
12
13
15

15

16
16
17

4

5

r
'

Chapter 13

SDB-

SYMBOLIC DEBUGGING PROGRAM

1. Introduction

SDB

This chapter describes the symbolic debugger sdb(l) as imple­
mented for C language and Fortran 77 programs on the
UniPius+® Operating System. The sdb program is useful both
for examining core images of aborted programs and for provid­
ing an environment in which execution of a program can be
monitored and controlled.

The sdb program allows interaction with a debugged program at
the source language level. When debugging a core image from
an aborted program, sdb reports which line in the source pro­
gram caused the error and allows all variables to be accessed
symbolically and to be displayed in the correct format.

Breakpoints may be placed at selected statements or the pro­
gram may be single stepped on a line-by-line basis. To facili­
tate specification of lines in the program without a source list­
ing, sdb provides a mechanism for examining the source text.
Procedures may be called directly from the debugger. This
feature is useful both for testing individual procedures and for
calling user-provided routines which provided formatted prin­
tout of structured data.

z. Usage

In order to use sdb to its full capabilities, it is necessary to
compile the source program with the - g option. This causes
the compiler to generate additional information about the vari­
ables and statements of the compiled program. When the -g
option has been specified, sdb can be used to obtain a trace of
the called functions at the time of the abort and interactively

13-l

SDB

display the values of variables.

A typical sequence of shell commands for debugging a core
image is

$ cc - g prgm.c - o prgm
$ prgm
Bus error - core dumped
$ sdb prgm
main:25: x[i] = 0;
•

The program prgm was compiled with the - g option and then
executed. An error occurred which caused a core dump. The
sdb program is then invoked to examine the core dump to
determine the cause of the error. It reports that the bus error
occurred in function main at line 25 (line numbers are always
relative to the beginning of the file) and outputs the source text
of the offending line. The sdb program then prompts the user
with an "' indicating that it awaits a command.

It is useful to know that sdb has a notion of current function
and current line. In this example, they are initially set to
"main" and "25", respectively.

In the above example, sdb was called with one argument,
prgm. In general, sdb takes three arguments on the command
line:

13-2

1. The first argument is the name of the executable file
to be debugged; it defaults to a.out when not
specified. Even with the new COFF format, the
executable file will be named a.out. However, sdb
will not work on old a.out format files. Only COFF
files may be used with sdb.

2. The second argument is the name of the core file,
defaulting to core;

3. The third
containing
debugged.

SOB

argument is the name of the directory
the source of the program being

The sdb program currently requires all source to reside in a sin­
gle directory. The default is the working directory. In the
example, the second and third arguments defaulted to the
correct values, so only the first was specified.

It is possible that the error occurred in a function which was
not compiled with the - g option. In this case, sdb prints the
function name and the address at which the error occurred.
The current line and function are set to the first executable line
in main. The sdb program will print an error message if main
was not compiled with the - g option, but debugging can con­
tinue for those routines compiled with the -g option.

The following is a typical example of sdb usage. The first
display, Figure 13.1, is the source file used to create the output
file used to illustrate the use of sdb. The second figure, Figure
13.2, is an illustration of a session with sdb. Commands in
bold are to be input explicitly; responses from sdb and com­
ments are in roman for clarity.

13-3

SDB

13-4

$ cat testdiv2.c
main(argc, argv, envp)
char ''""argv, nenvp; {

inti;
i = div2(-l);
printf(" -1/2 - %d\n", i);

div2(i) {

}

int j;
j=i>>l;
return(j);

$ cc -g testdtv2.c
$ a.out
-112- -1

Figure 13.1. Input File Used for SDB Example

$ sdb
No core image

•rctiv2
7: div2(i) {

•z
7: div2(i) {
8: intj;
9: j = i>>l;
10: return (j);
11: }

•div2:b
div2:9 b

•r

#Warning message from sdb

Search for function "div2"
It starts on line 7

Print the next few lines

Place breakpoint at beginning of "div2"
sdb echoes proc name and line number

#Run the function
a.out # sdb echoes command line executed
Breakpoint at # Executions stops just before line 9
div2:9: j = i>>l;

•t # Print trace of subroutine calls
div2(i= -1) [testdiv2.c:9]
main(argc = 1 ,argv =Ox7fffff50,envp- Ox7ftlff58) ltestdiv2.c:4]

•1/ #Print i

SDB

-I

•s # Single step
div2:10: return(j);# Execution stops before line 10

#Print j

Delete the breakpoint •9d
*div2U)/ # Try running "div2" with different arguments
0

•div2(-2)/
-I

•div2{-3)/
-2

••
Figure 13.2. Example of SOB Usage

{ 2.1 Printing a Stack Trace

It is often useful to obtain a listing of the function calls which
led to the error. This is obtained with the t command. For
example:

•t
sub(x=2,y=3) [prgm.c:25]
inter(i= 16012) [prgm.c:96]
main (argc = 1 ,argv=Ox7fffff54,envp= Ox7fffff5c) (prgm.c: 15]

This indicates that the error occurred within the function sub at
line 25 in file prgm.c. The sub function was called with the
arguments x=2 and y=3 from inter at line 96. The inter
function was called from main at line 15. The main function is
always called by the shell with three arguments often referred

(to as argc, argv, and envp. Note that argv and envp are
pointers, so their values are printed in hexadecimal.

13-5

SDB

2.2 Examining Variables

The sdb program can be used to display variables in the stopped
program. Variables are displayed by typing their name followed
by a slash, so

•errOag/

causes sdb to display the value of variable errflag. Unless oth·
erwise specified, variables are assumed to be either local to or
accessible from the current function. To specify a different
function, use the form

•sub:i/

to display variable i in function sub. F77 users can specify a
common block variable in the same manner.

The sdb program supports a limited form of pattern matching
for variable and function names. The symbol • is used to
match any sequence of characters of a variable name and ? to
match any single character. Consider the following commands

•x .. /
•sub:y?/
••I

The first prints the values of all variables beginning with x, the
second prints the values of all two letter variables in function
sub beginning with y, and the last prints all variables. In the
first and last examples, only variables accessible from the
current function are printed. The command

displays the variables for each function en the call stack.

The sdb program normally displays the variable in a format
determined by its type as declared in the source program. To

13-6

SDB

request a different format, a specifier is placed after the slash.
The specifier consists of an optional length specification fol­
lowed by the format. The length specifiers are:

b

h

I

One byte

Two bytes (half word)

Four bytes (long word).

The lengths are effective only with the formats d, o, x, and u.
If no length is specified, the word length of the host machine is
used. A numeric length specifier may be used for the s or a
commands. These commands normally print characters until
either a null is reached or 128 characters are printed. The
number specifies how many characters should be printed.

There are a number of format specifiers available:

a Print characters starting at the variable's address
until a null is reached.

c Character.

d Decimal.

f 32-bit single-precision floating point.

1 64-bit double-precision floating point.

i Interpret as a machine-language instruction.

o Octal.

p Pointer to function.

s Assume variable is a string pointer and print charac­
ters starting at the address pointed to by the variable
until a null is reached.

u Decimal unsigned.

x Hexadecimal.

13-7

SDB

For example, the variable i can be displayed with

.. lfx

which prints out the value of i in hexadecimal.

The sdb program also knows about structures, arrays, and
pointers so that all of the following commands work.

•arrayl21131/
•sym.id/
•psym- >usage/
•xsym(20).p- >usage/

The only restriction is that array subscripts must be numbers.
Depending on your machine, accessing arrays may be limited to
l·dimensional arrays. Note that as a special case:

•psym->/d

displays the location pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute
addresses. The command

•1024/

displays location 1024 in decimal. As in C language, numbers
may also be specified in octal or hexadecimal so the above com­
mand is equivalent to both

•02000/

and

It is possible to mix numbers and variables so that

13-8

(

'

SDB

•IOOO.x/

refers to an element of a structure starting at address 1000, and

.. 1000->x/

refers to an element of a structure whose address is at 1000.
For commands of the type •lOOO.x/ and •1000->x/, the sdb
program uses the structure template of the last structured refer­
enced.

The address of a variable is printed with the =, so

displays the address of i. Another feature whose usefulness
will become apparent later is the command

~ •./

which redisplays the last variable typed.

3. Display and Manipulation

The sdb program has been designed to make it easy to debug a
program without constant reference to a current source listing.
Facilities are provided which perform context searches within
the source files of the program being debugged and to display
selected portions of the source files. The commands are similar
to those of the UniPius+ system text editor ed(l). Like the
editor, sdb has a notion of current file and line within the file.

The sdb program also knows how the lines of a file are parti­
tioned into functions, so it also has a notion of current func­
tion. As noted in other parts of this document, the current
function is used by a number of sdb commands.

13-9

SOB

3.1 Displaying the Source File

Four commands exist for displaying lines in the source file.
They are useful for perusing the source program and for deter­
mining the context of the current line. The commands are:

p Prints the current line.

w Window; prints a window of ten lines around the current
line .

.z Prints ten lines starting at the current line. Advances the
current line by ten.

CTRL-d Scrolls; prints the next ten lines and advances the
current line by ten. This command is used to cleanly
display long segments of the program.

When a line from a file is printed, it is preceded by its line
number. This not only gives an indication of its relative posi­
tion in the file but is also used as input by some sdb com­
mands.

3.2 Changing the Source File or Function

The e command is used to change the current source file.
Either of the following forms:

•e function
•e file.c

may be used. The first causes the file containing the named
function to become the current file, and the current line
becomes the first line of the function. The other form causes
the named file to become current. In this case, the current line
is set to the first line of the named file. Finally, an e command
with no argument causes the current function and file named to
be printed.

13-10

r'
'

SDB

3.3 Changing the Current Line in the Source File

The z and CTRL-D commands have a side effect of changing
the current line in the source file. The following paragraphs
describe other commands that change the current line.

There are two commands for searching for instances of regular
expressions in source files. They are

•/regular expression/
*?regular expression?

The first command searches forward through the file for a line
containing a string that matches the regular expression and the
second searches backwards. The trailing I and ? may be omit­
ted from these commands. Regular expression matching is
identical to that ofed(l).

The + and - commands may be used to move the current line
forwards or backwards by a specified number of lines. Typing a
new-line advances the current line by one, and typing a number
causes that line to become the current line in the file. These
commands may be combined with the display commands so
that

•+15z

advances the current line by 15 and then prints ten lines.

4. A Controlled Testing Environment

One very useful feature of sdb is breakpoint debugging. After
entering sdb, certain lines in the source program may be
specified to be breakpoints. The program is then started with a
sdb command. Execution of the program proceeds as normal
until it is about to execute one of the lines at which a break·
point has been set. The program stops and sdb reports the
breakpoint where the program stopped. Now, sdb commands
may be used to display the trace of function calls and the values

13-11

SOB

of variables. If the user is satisfied the program is working
correctly to this point, some breakpoints can be deleted and
others set; then program execution may be continued from the
point where it stopped.

A useful alternative to setting breakpoints is single stepping.
The sdb program can be requested to execute the next line of
the program and then stop. This feature is especially useful for
testing new programs, so they can be verified on a statement­
by-statement basis.

If an attempt is made to single step through a function which
has not been compiled with the -g option, execution proceeds
until a statement in a function compiled with the -g option is
reached. It is also possible to have the program execute one
machine level instruction at a time. This is particularly useful
when the program has not been compiled with the -g option.

4.1 Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains
executable code. The command format is:

•12b
•proc:12b
•proc:b
•b

The first form sets a breakpoint at line 12 in the current file.
The line numbers are relative to the beginning of the file as
printed by the source file display commands. The second form
sets a breakpoint at line 12 of function proc, and the third sets
a breakpoint at the first line of proc. The last sets a breakpoint
at the current line.

Breakpoints are deleted similarly with the commands

13-12

(
'

•12d
•proc:l2d
•proc:d

SDB

In addition, if the command d is given alone, the breakpoints
are deleted interactively. Each breakpoint location is printed,
and a line is read from the user. If the line begins with a y or
d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a 8
command, and the D command deletes all breakpoints. It is
sometimes desirable to have sdb automatically perform a
sequence of commands at a breakpoint and then have execution
continue. This is achieved with another form of the b comw
man d.

*12b t;x/

causes both a trace back and the value of x to be printed each
time execution gets to line 12. The a command is a variation
of the above command. There are two forms:

•proc:a
•proc:12a

The first prints the function name and its arguments each time
it is called, and the second prints the source line each time it is
about to be executed. For both forms of the a command, exe­
cution continues after the function name or source line is
printed.

4.2 Running the Program

The r command is used to begin program execution. It restarts
the program as if it were invoked from the shell. The com­
mand

*t args

13-13

SDB

runs the program with the given arguments as if they had been
typed on the shell command line. If no arguments are
specified, then the arguments from the last execution of the
program are used. To run a program with no arguments, use
the R command.

After the program is started, execution continues until a break­
point is encountered, a signal such as INTERRUPT or QUIT
occurs, or the program terminates. In all cases after an
appropriate message is printed, control returns to sdb.

The c command may be used to continue execution of a
stopped program. A line number may be specified, as in:

"'PfOC:t2c

This places a temporary breakpoint at the named line. The
breakpoint is deleted when the c command finishes. There is
also a c command which continues but passes the signal which
stopped the program back to the program. This is useful for
testing user-written signal handlers. Execution may be contin­
ued at a specified line with the g command. For example:

•17 g

continues at line 17 of the current function. A use for this
command is to avoid executing a section of code which is
known to be bad. The user should not attempt to continue
execution in a function different than that of the breakpoint.

The s command is used to run the program for a single line. It
is useful for slowly executing the program to examine its
behavior in detail. An important alternative is the S command.
This command is like the s command but does not stop within
called functions. It is often used when one is confident that the
called function works correctly but is interested in testing the
calling routine.

13-14

·•
·~

SDB

The i command is used to run the program one machine level
instruction at a time while ignoring the signal which stopped
the program. Its uses are similar to the s command. There is
also an I command which causes the program to execute one
machine level instruction at a time, but also passes the signal
which stopped the program back to the program.

4.3 Calling Functions

It is possible to call any of the functions of the program from
sdb. This feature is useful both for testing individual functions
with different arguments and for calling a function which prints
structured data in a nice way. There are two ways to call a
function:

•proc(argl, arg2, ...)
•prodargl, argl, .. .)/m

The first simply executes the function. The second is intended
for calling functions (it executes the function and prints the
value that it returns). The value is printed in decimal unless
some other format is specified by m. Arguments to functions
may be integer, character or string constants, or values of vari­
ables which are accessible from the current function.

An unfortunate bug in the current implementation is that if a
function is called when the program is not stopped at a break­
point (such as when a core image is being debugged) all vari­
ables are initialized before the function is started. This makes
it impossible to use a function which formats data from a
dump.

5. Machine Language Debugging

The_ sdb program has facilities for examining programs at the
machine language level. It is possible to print the machine
language statements associated with a line in the source and to
place breakpoints at arbitrary addresses. The sdb program can
also be used to display or modify the contents of the machine
registers.

13-15

SDB

5.1 Displaying Machine Language Statements

To display the machine language statements associated with line
"25" in function "main," use the command

•main:25?

The ? command is identical to the I command except that it
displays from text space. The default format for printing text
space is the i format which interprets the machine language
instruction. The CTRL-d command may be used to print the
next ten instructions.

Absolute addresses may be specified instead of line numbers by
appending a : to them so that

•Ox1024:?

displays the contents of address Ox1024 in text space. Note
that the command

•Ox1024?

displays the instruction corresponding to line Ox1024 in the
current function. It is also possible to set or delete a break­
point by specifying its absolute address;

•Ox1024:b

sets a breakpoint at address Ox1024.

5.2 Manipulating Registers

The x command prints the values of all the registers. Also,
individual registers may be named instead of variables by
appending a % to their name so that

•r3Y.

13-16

SDB

displays the value of register r3.

5.3 Other Commands

To exit sdb, use the q command.

The ! command is identical to that in ed(l) and is used to
have the shell execute a command.

It is possible to change the values of variables when the pro·
gram is stopped at a breakpoint. This is done with the com­
mand

•variable!value

which sets the variable to the given value. The value may be a
number, character constant, register, or the name of another
variable. If the variable is of type float or double, the value can

r also be a floating-point constant.

13-17

r

r

Colophon

Composed at UniSoft Systems Inc.
on the UniPius+ Operating System
Designed by the Documentation Department
Printed in Times Roman on Sequoia Matt

