

COPYRIGHT

Copyright © 1985 by UniSoft Systemis. Portions of this miaterial have
‘been. previously copyrighted by AT&T Bell Laboratoriess, Western
Electric Company, and Regents of the University of California. Hold-

ers of a UNIX and UniPlus™ software license are permitted to copy this
document, or any portion of it, as necessary for licensed use of the.

software, p:’*dvideid' this copyright notice and statement of ‘permission
are included.

DISCLAIMER

While UniSoft Systems haz endeavored to exercise care in .the
preparation of thils guide, it nevertheless makes no warrantles of any

kind with regard to the documentation eontained herein, inclading no

warranty of merchantability or fitness for a particular purpose. In no
event shall UniSoft be lable for incidental or consequential damages
in conmection with or arising out of the furnishing, performance, or
use of any of this documentation.

TRADEMARKS

UNIX is a tmdcma;‘k of AT&T Bell Laboratories. UniPlus™ and UniSoft
are rogistered trademarks of UniSoft Systems.

Adapted to UniPlus* by Heather Allen of UniSoft Systems.

O

INTRODUCTION
INTRODUCTION

This manual describes the features of Systemn V UniPlus™, a UNIX
operating system. All commands, features, and facilities described in
this manual are available on UniPlus™.

This manual is divided into two volumes containing a total of six sec-
tions, some divided into subsections.

1. Commands and Application Programs:
1. General-Purpose Commands.
1C. Communications Commands.
1G. Graphics Commands.

IN. Networking Commands.

2. System Calls.
2N. Networking Calls.

3. Subroutines:
3C. C and Assembler Library Routines.
3JF. FORTRAN Library Routines.
3M. Mathematical Library Routines.
3N. Networking Routines.

38. Standard I/0 Library Routines.
3X. Miscellaneous Rountines.

4, File Formats.
4N. Networking Formats.

5. Miscellaneous Facilities.
5F. Protocol Family.
5P. Protocol Descriptions.

6. Games.

Section 1 (Commands and Application Programs) describes programs
invoked directly by the user or by command language procedures, as
opposed to subroutines, which are called by the user’s programs. Com-
mands generally reside in the directory /binm (for bimary programs).
Some programs also reside in /usr/bin, to save space in /bin. These
directories are searched automatically. Subsection 1C contains com-
munication programs such as cu, send, wucp, etc.

Section 2 (Spstem Calls) describes the entries into the UNIX System
kernel, including the C language interface.

INTRODUCTION

Section 3 (Swbroutines) describes the available subroutines. Their
binary versions reside in various system libraries in the directories flib
and fusr/lib. See intro(3) for descriptions of these libraries and the
files in which they are stored.

Sectlon 4 (File Formats) documents the structure of particular kinds of
files. Excluded are files used by only one command (for example, the
assembler’s intermediate files). In general, the C language struct
declarations corresponding to these formats can be found in the direc-
tories /usr/include and /usr/include/sys.

Section § (Miscellaneous Facilities) contains descriptions of character
sets, macro packages, etc.

Section 6 (Games) describes the games and educational programs that
reside in the directory /usr/games.

Each section consists of several entries, each a page or so long. The
name of the entry appears in the upper corners of its pages. Entries
within each section are alphabetized, except the introduction that begins
each section. The page numbers of each entry start at 1. Some entries
may describe several routines, commands, etc. In such cases, the entry
appears only once, alphabetized under its ““major’’ name.

All entries are based on a common format, not all of whose parts
always appear:

NAME gives the name(s) and a brief description of the entry.

SYNOPSIS summarizes the use of the program. A few conven-
tions are used, particularly in Section 1 {Commands):

Boldface strings are typed just as they appear.

ftalic strings usually represent substitutable argument proto-
types (such as filename) which you are expected to substitute
for the actual name. When an argument prototype is given as
“name’” or ‘“file’’, it always refers to a fife name.

INTRODUCTION

Square brackets] around an argument prototype indicate that
the argument is optional.

Ellipses ... show that the previous argument protoitype may
be repeated.

A final convention is used by the commands themselves. An
argument beginning with a minus —, plus +, or equal sign = is
often taken to a flag argument, even if it appears in a position
where a file name could appear. Therefore, it is unwise to
have files whose names begin with —, +, or =,

DESCRIPTION discusses the program.

EXAMPLE(S) gives example(s) of usage.

FILES gives the file names that are built into the program.
SEE ALSO gives pointers to related information.

DIAGNOSTICS discusses the diagnostic indications that may be
produced. Self-explanatory messages are not listed.

WARNINGS points out potential pitfalls.

BUGS gives known bugs and sometimes deficiencies. Occasionally,
the suggested fix is also described.

At the front of each volume there is a a table of contents and a per-
muted index. The permuted index lists the commands by the informa-
tion in the NAME part of each entry in the User and Administrator
Manual. The permuted index contains three columns. The center
column is an alphabetic list of keywords. The last column is the entry
that the keyword in the center column refers to. This entry is followed
by the appropriate section number in parentheses. The first column
contains the remaining information from the NAME part that either
precedes or follows the keyword.

INTRODUCTION

For example, to look for a text editor, scan the center column for the
word "editor.” There are several index lines containing an “editor refer-
ence, i.e.:

ed, red: text Y HTSY S, ed(1}
files. 1d; link editor for common object 1a(1)

You can then turn to the entries listed in the last column, ed(1) and
id(1), to find information on the editor.

On most systems, all entries are available on-line via the man(1) com-
mand.

TABLE OF CONTENTS
2. System Calls

intfre intreduction to system calls and error numbers
accept e e e e e e . « . accept a connection on a socket
HBOCESS + + s o o o » o = = = =« « s o « » . determine accessibility of a file
| BOCE + 4 « 4 o o o s s+ s s« s+ « « + »enable or disable process accounting
- alarm e e e e e e e set a process’s alarm clock
bind, e e e e e e e e e e . . . bind a name to a socket
brk e e e e e change data segment space allocation
chdir e e e e e e « + « + « Change working directory
chmod. 4+ s 4 o+« - .change mode of file
chown ., « « « + v « .change owner and group of a file
chroot e h h v n e e e e e e .+ » « change root directory
close + . . v L e e e e e e e s « s s v 4 4« . . .close a file descriptor
connect + « s+ s s « - . . initiate a connection on a socket
creal 4 . 4 s + + - - - .cCreate a new file or rewrite an existing one
BREC « & & & u n m e e e . e e e e e e e e e e e e e . execute a file
exit w4 e e e e e e e e . .+ « « . t@rminate process
featl. « v . . 4 0 o .. e b e e e e e e . file control
fork « o v v i e e e e e e e e e e ey s create a new process
gethostid « « « + « + . .« getfset unique identifier of current host
gethostname « v+ v« 4+ . . « + « . gelfset name of current host
gelpeername v+ v x w s =« . .get name of connected peer
getpid « + + + . get process, process group, and parent process IDs
geisockname C e e e e e e e e . . + » get socket name
getsockopt v v 4 e e e e . + .+ get and set options on sockets
o getuid get real user, effective user, real group, and effective group IDs
| iocth e e e e e e e s+« + 4+« . .control device
e kilsenda signal to a process or a group of processes
link e e e e e e s o s o4 a s 4 link toa file
listen e e e e e e e e listen for connections on a socket
locking . . .« provide exclusive file regions for reading or writing
Iseek e e e e e e e e e e . move read/write file pointer
mkned00 make a directory, or a special or ordinary file
mount e e e e e e e e e e e . + « » mount a file system
msgetl . . . 00000 . +« « » » . . message control operations
msgget D, . . . BEt message queue
MSEOP « + v 4 v v v o o o o o = = + 4+ 4+ 4« 4« « . Message operations
nice © 4+« s s s s« . .change priority of a process
open C e e e e e e e e e e e open for reading or writing
PAUSE & 4 v v 4 e 4 e e e w e « + + « « . . suspend process until signal
phys + + « «+ v & 4 v . . « » . »allow a process to access physical addresses
pipe C e e e e s e e e e e e e . create an interprocess channel
plock . ¢« v o0 s e . « lock process, text, or data in memory
profil . ., e vy e e . execution time profile
plrace W h e e e e e e e e e s e e s s s process trace
read e e e e e e e s 4 s 4 s 4 4 e s« . .read from file
reboot C e e v e m e e e e e e . reboot the system
e recy e e e e e e e e e e receive a message from a socket
. select « « L oL a0l « « « » » . synchronous ifo multiplexing
- semetl v « « s « « « +» . semaphore control operations
1= 1~ . get set of semaphores
SEMOP ¢+ + « & o « a5 2 = 4 o+ v v s+« + « v+ . .semaphore operations
send C e e e r e e e e e e e send a message from a socket
SEIPEIP « + o 4 4+ 4w x o e e e, + + o+« « 58t process group 1D

Table of Contents

setregid - -o . - . . setreal and effective group ID
setrenid e e e e e e e e . set real and effective user IDVs
setwid e e e e e e .+ » set user and group 1Dg
shmetl + + s+ « + + « « Shared memory control operations
shmget. 0 L 0 v o0 n e e e s e get shared memory segment
shmop. e e e e e e . . shared memory operations

shutdown « « « « ¢ ¢ » .shut down part of a full-duplex connection
signalspeciywhattodo upon receipt of a signal

socket create an endpoint for communication
- - 1 get file status
o v e s s s 4 s« o Seltime
SYNC . . . - . . e s 4 4 4 e s s s e s e a s s v =« «update super-block
HME & & 0 v v s s s s v s s s s s s s s s e get time
fimMes ¢ . i e e e e e e e e get process and child process times
ulimit s s e e e e e e w s e o« getand set user limits
UMASK . ¢ ¢ ¢ s 4 s v n s s e s a s m o oa s set and get file creation mask
umount t v e e e v+ e e+« «unmount a file system
UNBME . .« 4 o s o o v &+ = = = & = 2 o » get name of current UNIX system
unlink - . . . - - ¢ & . 0 s e e e e e . « .« . Temove directory entry
ustat e e s e r s e s s e e« s e« « «getfile system statistics
utime . . 4« - - 4 e e s e e e . set file access and modification times
UVEF & v v o v m e ox s returns system-specific confipuration information
wait . . « v « « v v s « « « « + . wait for child process to stop or terminate
waitd e e e e e e e wait for child process to stop or terminate

3. Subroutines
IMTO « + « 4 4 4 4 v v v o « « » .+ inroduction to subroutines and libraries

abdl , convert between fong integer and base-64 ASCII string
ghort h e e s e e s e s e generate an [OT fault
BDOTL & o o & ¢ + 4 = o« 2 « & = &+ # 4 1 = v = terminate Fortran program
1 + + o Fretorn integer absolute value
abs e e s e e e e e Fortran absolute value
BOOS & « o « 2 4 4 4 4 4 s a o oa s . . Fortran arccosine intrinsic function
AMAL « v s v = = v o o 2 2 = = Fortran imaginary part of complex argument
gint « + s+ s+ s« « « » . Fortran integer part intrinsic function
BSIM . v v e e b s v s e s e e e e e e Fortran arcsine intrinsic function
ASSETL o o + v 2 = *+ & + = = = = « = « + « » » « »verify program assertion
atam « « + » « « o Fortran arctangent intrinsic function
Aatan2 . . . 4 v e e e v e e ek om s Fortran arctangeni intrinsic function
atof &+ 4 4 4 s e e e e e e convert ASCI] string to floating-point number
bessel e e rh e s e e e e e e . . Bessel functions
) ¢ v ¢ + s« o block transfer data
bool « 4« « « « » +» « Fortran bitwise boolean functions
bsearch . . . & « v v 4 4o v o b e e e e e e . binary search a sorted table
bstring . . . - -+ -« + + « « « + . bit and byte siring operations
byteorderconvert values between host and network byte ordet
Clock « 4 ¢ s 4 s w s e e e e e « v v 21« » « «report CPU time used
COMIE v » = » = + « = = &« . « « Fortran complex conjugate intrinsic function
conv D e e e e e e e v« = 4« s s« « o tranglate characters
COS s o o o s o v = » « = « « = « « « « » + Fortran cosine intrinsic function
cosh w + « « « « » o Fortran hyperbolic cosine intrinsic function
o 7 + s+ + + + »generate DES encryption
cltermid L0 e e e e e e e e e generate filename for terminal
ClME . v ¢ o o ¢ & = = o + = = = = = » . . convert date and time to string
CIYPE &+ v » v+ = 2 v = =« e i e e e e e e e e classify characters
CUrses e « + » » CRT sereen handling and optimization packape

-7

()

Table of Contents

cuserid e e e e e e . + . get character login name of the user
dial00 establish an out-going terminal line connection
dim+« . positive difference intrinsic functions
directory e e s v« » « « « o Nexible length directory operations
dprod e e e e double precision product intrinsic function
drandd8 . . ., generate uniformly distributed pseudo-random numbers
dup Ve e e e b e e e e e e + .« duplicate a descriptor
dUPZ . . L s s e e e e s e e e e e e duplicate a descriptor
BCVE v v e v e e e e e s + + » + + .convert floating-point number to string
end . . v v v e h e e e e e e e e e e e « + » . last focations in program
eff ., ., ...+ 4.crror function and complementary error function
(377 J Ve e e e e e e Fortran exponential intrinsic function
EBXP - &« 4 s ow e e exponential, logarithm, power, square root functions
folose « « v v v v v v v e e e e s o v+ + . «close or flush a stream
FEITOT « v v v 6 ¢ o b b o b 4 n e w e + + « . Siream status inqiries
floor floor, ceiling, remainder, absolute value functions
foPen . « v« o v v v 4 4 e e e e e e e e e e e e e open a stream
freaed Ve e e e e e e e e s + « »+ . binary input/output
frexp « . + + v & 4 o o0 oL L manipulate parts of floating-point numbers
fseek . . . & v ¢ i 4 e e e e e reposition a file pointer in a stream
fiw Ch e e e e e e e e . . walk a file tree
ftype . . + + « + + + 4 « « = = « = .« . . «explicit Fortran type conversion
gamma . . . - . . f e s e e e e e e e e . . log gamma function
BELAFZ . & & v v v s s e e e w e o return Fortran command-line argument
gete s v v 4 s+ s s« « » . getcharacter or word from a stream
getewd . . - - » get pathname of current working directory
getdtablesize« 4 - - - » s+ . . gEet descriptor table size
getenv . . .+ - 4 . . oa .o « « « « « . return value for environment name
BEIENV & & ¢ o o o 4 4« s = s e e e . return Fortran environment variasble
geigrent + + « « + .« Obtain group file entry from a group file
gethostent . + « « - - s v o+ s o« o+« - et network host entry
getlogin 0. h s e e e e e + + « + » « get login name
gelnetent Vo e e e e e e e e s get network entry
ZOIOPL o v v v 4 e e e e e e s . . get option letter from argument vector
BELPASS . . = 4 4 e v v h v e e e e e e e e + + « » rgad a password
getprotoent . . - - e e e s e e e e get protocol entry
BEIPW & . . v v h s s e e s e e e e e s v+ .+ . get name from UID
getpwent Ve e e e e e e s get password file entry
= + + . get a string from a stream
getservent e e e e e e e v+« o« gEL SEIViCe entry
BEIME . . . v r e e e e e e e e e e e s access utmp file entry
hsearch « « v v o v o i a0 s . » manage hash search tables
hypot. . . « . . « « « . . e e e e e Euclidean distance function
BAIEC « v v v v h i e e e e e e e s c e et e e e e e e
index v v s 4 s 4 s s = « . -return location of Fortran subsiring
imet .+ ... e e e + » . . Internet address manipulation rontines
NSqUe . + v v v o o v v e n e . insert/rTemove element from a queue
killpg - . . v e e e s s s« = o« «3end signal to a process group
3tol & & v v 6 4 o 2 v w . convert between 3-byte integers and long integers
Idahread read the archive header of a member of an archive file
Idclose e s s+ 4 s v+ 44 =« «close a common object file
Idfhread . . + + « ¢« v v v . . read the file header of a common object file

Idgetname+ .+retrieve symbol name for object file
Idlread . . . manipulate line number entries of a common object file function
Idiseek , ., . seek to line number entries of a section of a common object file
Idohseek« seek to the aptional file header of a common object file
ldopen « + « . Open a common object file for reading

.3

Table of Contents

ldrseek, seek to relocation entries of a section of a common object file
Idshread . . . read an indexed/named section header of a common object file
Idsseek seek to an indexed/ named section of a common object file
Idtbindex . compute the index of a symbol table entry of a common object file
Idtbread read an indexed symbol table entry of a common object file
Idthseek,seek to the symbol table of a common object file

len 0 i d i e v v+ » » « o eturn length of Fortran siring
lockf . v . v o e e e e e e e e e e e s record locking on files
log. .« v« v v+« 4+ s+« . .Fortran natural logarithm intrinsic function
loglD Fortran common logarithm intrinsic function
logname « ¢ & v v 4 4 e f e e e e e return login name of user
Isearch . . . « « ¢+ « v + v 4« s ¢ v = » « &« =« « . linear search and update
mailoc 00000 v =+« « « » » main memory allocator
malloc s s e e e e e e e e fast main memory allocator
matherr . . + 4 « « o« v + + = o« s s » « + + + » «2rror-handling function
T . . Fortran maximum-value functions

mcelock+4+ .+ 4.retarn Fortran time accounting
MEMOIY + & . o o = s s = « a2 v + s » 4 ¢ o+ + o . Memory operations

M . o v v s e e e s e e e . . . Fortran minimum-value functions
MKIEMP . . . « « + + « + «+ s « s s« » + + « « +» « make a unique filename
mod Fortran remaindering intrinsic functions
MONIOT .+ & & & & & v v v e s h e e e e e e e e prepare execution profile
nlist «+ &+ « « v « s ¢ s s s v 4 s s s s e s« . Eelentries from name list
PELEMOL & & 4 v & 4 f h e e m e e m e e e e e e e s system error messages
plot e e e e e e e e e e graphics interface subroutines
POPENL + + + « « « o » » » « + + o« & » » + . initiate pipe to/from a process
printf i L e e e e e e e e e print formatted output

PUIC . . & . . = « 4 « 4 » « » « « « « . put character or word on a stream
PUIBY . . & & v v v + + « + » » » » »change or add value to environment

putpwent c -t e e e e e e e e write password file eniry
PULS « « « « & + + 4 o s 5 5 4 « « & s« o o » » +» . Dulastring on a stream
QSOTE « 4 v v v 4 4 4 v n s e s s s e mwn e e aaa e guicker sort
rand s e e e simple random-number generator
rand . + + « « + + « s+ + » » » » Fortran uniform random-number generator
remd routines for returning a stream to a remote command
FAAY . . . 4 i 4 b e e v s i u v e s s e s v s s s s« s o read from file
FEECINIPD o & « v v v ¢ & s =+ « = o @ compile and execute a regular expression
FEXEC « v v 4 s s 4 x ok ox s s a s . return stream to a remote commangd
round . . . < 4 s s s 4 4 s s+ v o o « « Fortran nearest integer functions
geanf 0 0 a . e e e e e e e e . convert formatted input
setbuf+ -+ i v v s+« s+ .assign buffering to a stream
SEHIMP & « + v v v o s o 1 4 s s s 8 s v v o nm e non-local goto
17« Fortran transfer-of-sign intrinsic function

signalspecify Fortran action on receipt of a system signal
Bil. ¢ + + « o 4+ ¢« s e s s s v+ o+ . . -Fortran sing intrinsic function
ginh + + < ¢ ¢ v 0 o v 0 0 0. Fortran hyperbolic sine intrinsic function
sinh i 4 e e e e s 4 a4 44 4 s s s s » o hyperbolic functions
SIEBP . - + 4 4 v v v v v v 4 e e o s o+« «suspend execution for interval
sputlaccess long integer data in a machine independent fashion

-1 | 3 A « + « « « « Fortran square root intrinsic function
SSIENAl v h v s e e e e n e e e e e e e e software signals
1 | sl.andard buffered input/output package
stdipcstandard interprocess communication package
BICCIMIP + « « « + s o v v s = = = « & . string comparision inirinsic functions
SINEg . .+ .+ . - e h e e ‘4 s 4 4 e e s s v+« «String operations
strtod« .+ . . .« . .convert siting to double-precision number
11 7) . + « . Convert string to integer

Table of Contents

swab., 4t e s s i i i i d 4 e e e e e a s s s «5wWap bytes
S¥SteM . . + =+« . &+« . .i8Sue a shell command from Fortran
SYSIEM . v . . - . . v s e w s = s ox s 4 o« s« - i35u¢ 2 shell command

1771 N e e e e . » Fortran tangent intrinsic function
tanhFortran hyperbolic tangent intrinsic function
termeap . - ... - « « . terminal independent operation routines

tmpfile - . i e v b s v h s s s v 4w« s . . create a temporary file
IMPRAM . - . . + « o & = « = « « . + «Create a name for a temporary file
tHE v« - & s s 4 e e n e s 4 s e = s . o« . . trigonometric functions
tsearch - .+ « s 4 s v =+« -+« . manage binary search trees
MYRAME & « + 4+ o « « s 4 o « o » = » s = o+ » ,find name of a terminal
tiyslotfind the slotin the utmp file of the current user
UNZBIC . = + « 4 4 4 o s = = = = » . » push character back into input stream
wprintf print formatted output of a varargs argument list
vpriiéfprint formatted output of a varargs argument list
WIIE « & & o 4t s v s s s e i s e r s a e e s s e+ = .write on a file
WEEY & & 4 4 v v v s s s e b b s rox s a s s s e e« « . Write on a file

4. File Formats

infro .« - - . . s i s v e e s v v v s« . . introduction to file formats
aoutcommon assembler and link editor output
aoutdd+ v+ o .« w .« «assembler and link editor output
A0CL. « « « « 4« 4 s s v = = 4 4 « s+ v+ - Der-process accounting file format
aitblkalternate block information for bad block handling
aouthdraouthdr.h - a.out header for common object files
AF . v v v v s s s s s s s s s o=+ s+ common archive file formai
50 & 4« v .t v v 4 s v u v e = e oo . .archive (library) file format
checklist+ listoffile systems processed by fsck
COFE & 4 4 o o = + o = s s v v s = s = s o+« »Format of core image file
CPIO « « 4 = o 4 v o 4 4 8 = 4 e e e et e e e format of cpio archive
dir . . . & L i v s s s e 4 i s s s s s s s s format of directories
errfile . . ., . .. 00 e e oo s e s s . - . . errOr-log file format
filehdr+« .+file header for common object files
£5 &« v v b v e e e s s e i i e e e e e v . format of system volume
fspec . . .« ¢ 0 o . i e e e e format specification in text files
gettydefsspeed and terminal settings used by getty
11 4 e 16 I 1

hosts . . + . . & &« v ¢ 4 v v 2 o - . « s « a « « « . host pame data base
imittab s s i e e e e e script for the init process
mode . . & v . 4 st s s i i i e e s s e s s s s, format of an inode
BBSUE . & 4 b i h i e e e e e e e, « « + v« . issue identification file

Idfcn + « « v = 4w s v v v = 4« =+ « + . cOmmon object file access routines
linenum . ., ..,line number entries in a common object file

MASIET & v 4 & f v w4 4 e e e e e . + » master device information table
mottab . - - . . s e e e e s e e e e e .. mounted file system table
networks 0. .. 0. .., .+ » network name data base
passwd . . -- - ... et e e e e e . . password file
Plot & & . & . s s s s s s e s s v s s wowow s o« » «Eraphics interface
pach . . v L L e e e e e e « « « « . file format for card images
profileo ... « + . . Setting up an environment at login time
prOtocols . L . . L . . e e e e e e e . « « protocol name data base
relocrelocation information for a common object file
scesfile , L. .0 4 s s s e o+ .+ »format of SCCS file
senhdr . . .,, . .section header for a common object file
SEIVICES v = + & v « o o 2 « & 0 x x o s « + . .+ - . SeIvice name data base
SYMS « v v 4 v n = = 8 0. « « « . common object file symbol table format

-5

Table of Contents

BTM & 4 4 4« c s s s o o v v 1 r » v o« o [ormatof compiled term file.

terminfo 0 0 s e e e e e e terminal czpability data base
HMYLYPE + & v v ¢ 4 4 = v o s s e oa oo data base of terminal types by port
UIMP v ¢ ¢ 2 = & & & v v s v o4 a w s « + « . atmp and wtmp entry formats

5. Miscellaneous Facilities

7 ¢+ T introduction to miscellany
111+ Address Resolution Protocol
T~ T « « + « « + » map of ASCII character set
BOVITOM . + « « 4 « 4 « + o ¢ s s 4 v v « » s » =+ « «USer environment
egnchar special character definitions for eqn and negn
femd - v 4 s s a s s s s e s s s s s filecontrol options
greek . .+« v v v 4+« « » .« praphics for the extended TTY-37 type-box
7T ¢+« + o+« o Internet protocol family
intro s 4 s o s s s s v s = . introduction to networking facilities
e . Internet Protocol
L . . software loopback network interface
man+ .« + + « . . macros for formatting entries in this manual
math . .« + & + v ¢ ¢ & s 2 = & = o = = & =« math functions and constants
117 | JRPOPEU . the MM macro package for formatting documents
mosdthe OSDD adapter macto package for formatting documents
mptx . « » & - 4 the macro package for formatting a permuted index
mva iroff macro package for typeseiting view graphs and slides
Prof & v v v 4 v v e e e e e e e « + « .+« o o profile within a function
My - - - ... t 4 et s e e s s u e v v e+ s« «pseudo terminal driver
FEEEXP +« « + + « + » » + » «regular expression compile and match routines
SAL & v+ 4 s s s a s e s e o oa + + « . data returned by stat system call
{151 S v+ ¢+ s+ s+« « Internet Transmission Control Protocol
eIl &+ o & & s s 5 v » v = = @ = 2 = w0 conventional names for terminals
TEFMICAD & » = « « « » = = e« ¢ 2 s s+ s 1+ «terminal capability daia base
IYPES v « v v v = = = e s s s s s e s s v+ » - primitive system data types
AP - . . . ke s e e s e e s e e s Internet User Datagram Protocol
valoes . . v v 4 h ks s e e e e e e machine-dependent values
VAFATZS o+ + = = - - - v e et s 4 s n « o «handle variable argument list
6. Games
IO . « v v v s o o s s = = o = = o« « s+ 4« « « . introduction to games
adventure e e i e et e e e e e an exploration game
aliens e e e s e e e s The alien invaders attack the earth
arithmetic . . . + + « & & & & & &« &+« . . . provide drill in number facts
autorgbots v =« +« « « «» « Escape from the automatic robots
back W i e e e e e the game of backgammon
Bod - . o s L e e e e e e e e e e e . . . convert to antique media
5 i 4 s s « ¢ s s« « «the game of black jack
chase. e e e e e e Try to escape the killer robots
CIAPS - = « v o o v v » v = = = = = = e s« s s s s a « «the game of craps
cribbage v s+ s« s+ s+ » . the card game cribbage
fish e s e e e e e e e e e . play “*Go Fish™
fortune « » » » - - «print a random, hopefuily interesting, adage
hangman - e e b 4 s e s s e e guess the word
life . . . o v v v o v . Gt e e e e e e e e play the game of life
maze . . « « « « « e e e e e e e v e s s s » « «@enerate a maze
MOO « & v v s 4« ¢ = o = 5 = = t « s s s s v = v » . » «guUessing game
number . . ., v & s s« « «convert Arabic nemerals to English
GUIZ + + = + & 4« - e e e s e e e e s .+ » . . test your knowledge
TAIM « 2 & v 4 4 s a e s e e s v + « « « « « animated raindrops display

Table of Contents

robots i e e e v v .. . «Bscape from the robots

trek C e e e e e e e e e e « « « . trekkie game
t . v v v s s e e e e e e e e . e e b v s u s w » s . tic-tac-toe
twinkle . . ., « s e+ v v s vy ., twinkle stars on the screen
worm e e e e e e e e . Play the growing worm game
WOTINS o o o o 4 4 v 2 & x = &« . « . « &Nimate worms on a display terminal
WUMP « &+ 2 2+ o « « s s« s v v v ,the game of hunt-the-wumpus

)

aeodn)

COMMANDS

handle special functions of DASI 300 erminal

3005 (See 300(1LD

handle special functions of DAS] 300s terminal

4014(1)
45041)

paginator for the Tektronix 4014 terminal
handle special functions of the DASI 450 terminal

_exit (See exit(2}}

terminate process

translate characters

_telower (See cone(3CH
_teupper (See conv(iC)H)

translate characters

a.ent(d)

....common assembler and link editor output

20Ut 00} oo assembler and link editor ouput (System V a.out forman only)

a641(3C)

convert between long integer and base-64 ASCI string

abort (3C)

abort (3F)

generate an 10T fault
terminate Fortran program

abs (3C)

abs (3F)

return integer absolute value
........ Fortran absolute valte

aceept (1M)

..... allow LP requests

accept (2N}

access(2)

accept a connection on a socket
determine accessibility of a file

acct{lM)

scct(2)

overview of accounting
nable or disable process accounting

acct(€)

per-process accounting file format

acctems(1M)

comenand summary from per-process accounting records

acctcom (1)

.search and print process accounting file(s)

acctcon{iM)

sccteonl (See accteon{ IMD
aecteon (See accicon{ IM)}

connect-lime accounting
«connect-lime accounting
........ connect-1ime accounting

mectdisk (See aeer{IMD.....ooiiimmcsns i s miscellaneous accounting command

acctdusy (See accr(IMD

miscelta accounting command

acctmerg (EM)
sccton {See acet{iAM)D

merge or add total accounting files
tniscellaneous accounting command

acctpre(1M)

process accouniing

acctprel {See accipre(IMD

acctpre2 {See accipre(IMD

process accounting
process accounting

scctsh (1M)

acctwtmp (See aocr(IM)) ...

acos (See trig(GM))

..... shell procedures for accounting
...................................... miscellaneous accoenting command
...... trigonometric function

nees (3F)

...Fortran arccosine intrinsic function

admin{i)

...... create and administer SCCS files

-1-

COMMANDS

sdventure(§)

an exploration game

almag (3F)

Fortran imaginary part of complex argument

2int{3F)

Fortran integer part inlrinsic function

alarm(2)

aliases(7N)

set a process's alarm clock
aliases file for delivermail

aliens{6}

the alien invaders attack the earth

alog (Ser log(2F))

Fortran natural Jogarithm intrinsic function

alogl® (Sec Jop HHIED
altbik (4

Fortran commaon logarithm intrinsic function

smax0 (See max(IF)

alternate block information for- bad block handling
Fortran maximum-value function

smax} {Scve max(3F)

Fortran maximum-value function

amin® (Sec min(3F})

Fortran minimum-value function

aminl (See min(IF)

Fortran minimum-value function

amoll (Scv wmod (3F))

and {See bool(3IF))

Fortran remaindering inirinsic function
Fortran bitwise boolean function

amint (See round{IFD

Fortran nearest integer function

Protocol

common assembler

aouthdr(4) a.0ut header for common object files
ar{1} archive and library maintainer for portable archives
arid) common archive file formal
ar5.0(1) archive and library maintainer {System V a.out format only)
ar5.0(4) archive (library) file format {System V a.oul format only)
arithmetic($) provide drill in number facts
xrp(SP) Address Resol

as(1)

as5,0(1)assembler (Sysiem V a.out format only)
asal(l) interprel ASA carriage conirol characlers
ascli($) map of ASCII cheracter set

asctime (See climef3C)

asin {See rig{IM)

converl date and time to string

trigonometric function

2sin{3F)

Foriran arcsine intrinsic function

assert{3X}

verify program assertion

at(l)

execule commands at a later lime

atan {See tip(3MD)

trigonometric function

atan{3F)

atanl {See rig(2MD

Fortran arctapngent intrinsic function
trige tric function

atan2 (3F)

Fortran arctangent intrinsic function

atof(3C)

convert ASCH string 1o floating-point number

stel (See sirtolG3CH

convert string to inieger

atol (Ser strrol(3CH

convert string to integer

-2-

COMMANDS

the game of backgammon

make posters

print large banner on printer

deliver portions of path names

antorobots (6) escape from the automatic robots
AWK e s pattern scanning and processing language
back (6)

badblk (1M) program to set or updale bad block information
banner{l)

banner?{1)

b ame (1)

batch (Ser ar{i)) .. execute commands at 8 later time
be{1) arbitrary-precision arithmetic language
bed (6}

convert to anligue media

beheckre (See brelIM)
bemp {See bswring(IN
beopy {See bstring (IND

..5¥5tem initialization shell script

byle string operation

byte string operation

beopy (1M) interactive block copy
hdifi(1} big diff
bessel (3M) Bessel functions
Ms(1) big file scanner
bind {ZN) bind a name to a sockel
bj{6) the game of black jack
be(3C) block transfer data

Bt512 (See Hit(3C)

block transfer data

bool (3F)

hoot (B)

Fortran bitwise boolean functions
startup procedures

bre{1M)
brk(2)

system initialization shell script
change data segment space allocation

bs(1)

a compiler/interpreter for modest-sized programs

bsearch (3C)

binary search a soriled table

bstring (3N}

bit and byte string operations

byteorder (IN) ...

bzero (See bstring(3IND

....convert values between host and network byte order

byte string operation

cabs (See abs{3F))

Fortran absolule value

cal{l) ..

..... print calendar

calendar(1)

reminder service

calloc {See malloc{ICH
calloe (See matioc(3XD

...... main memuory alocator

fast main memory allocatot

cancel (See (p{i))..

cancel requests to an LP fine printer

cat(1)

concatenate and print files

ch(1)

.[C program beautifier

ccl(l)

C compiler

.3-

COMMANDS

ec5.0(1)

C compiler {System V a.out format only)

cees (See cos(IFD

Fortran cosine intrinsic function

ed{1}

change working directory

ede(l)

change the delia commentary of an SCCS della

cell (See floor{3M)

ceiling function

cexp (See exp(3FD

Fortran exponential intrinsic function

claw (1)

generate C flowgraph

char {See fpe(IFD

.explicit Fortran type conversion

chargefee (See accish(iM)
chase(§)

shell procedure for accounting

ity to escape the killer robots

chdir{2)

change working directory

checkall (1M}

faster file system checking procedure

checkew (See cw(lD

check text prepared with CW commands

checkey {See eqni(l))

check text prepared with eqn or negn commands

checkliat(4)

list of file sysiems processed by fsek

chieckmm (See mm(1)

check documents formatted with the MM macros

chgred (1M)

ge current UNIX system nodename

chgrp {See chown{lh

change group

chmed (1)

change mode

chmod (2}

change mode of file

chown(1)

change owner

chown(2)

change owner and group of a file

chreoct(1M)

change reot directory for a command

chreot (2}

change root directory

ckpacct (See accish(iM)

shell procedure for accounting

clear(l)

clear terminsal screen

clearerr {See ferror(ISHh

stream stalus inguiry

clock (3C)

report CPU Lime used

cleg {(See log(IFD .

Fortran natural logarithm intrinsic function

cleae(2)

close a file descriptor

closedir (See direcrory(IX))
elei{1M)

flexible length directory operation

clear inode

cmp(1)

compare two files

cmplx (See fiypef3F))

explicit Foriran type conversion

col(1)

filter reverse line-feeds

combine SCCS delas

configure system

comb(l)

comm{1) .sslect or reject lines common 10 1wo sorted files
COomBEIIM) e e e s e

conjg(3F) Fortran coemp

lex conjugate intrinsic function

-4-

-

connect(2N}

COMMANDS

initiate a connection on a socket

eonv(l)

oreDbject file converter

translate characters

conv{3C)
corel(d)

format of core image file

cos (See trig(3M)

trigonometric function

cos (3F)

Fortran cosing intrinsic function

cosh (See simh(IM))

hyperbolic Tunction

eosh (3F}

......... Fortran hyperbolic cosine intringic function
copy files

the game of craps

..clock daemon

encodefdecode

cpll)

EPIO(E) .. s copy file archives in and out
cpio(4) format of cpio archive
cpp(l) the C language preprocessor
cppS5.0(1) the C language preprocessor (System V a.out formal only)
cpset{1M) install object files inn binary directories
crapsi6)

crash(8) what 1o do when the sysiem crashes
creat(2} ..create g new file or rewrite an exisling one
eribbage(6} the card game cribbage
eroB{EM) e e e

eromtab (L) ..o e e e user crontab file
erypt(l}

CEXPILICY oot st e e s e e e e genetrale DES encryption
eshil) a shell (ex id interpreter) with C-like syntax
csin (See sin(3F)) ..Fortran sine intrinsic function
esplli{1)

context split

esqrt (See sqrt(3F)
ct(10) ...

Fortran square rool intrinsic function

..... Spawh gelly Lo a remote terminal

ctags (1)
ctermid{38)

maintain a tags file for & C program
generate filename for terminal

ctime (3C)

convert date and time 10 string

ctracetl)

....... C program debugger

ctype(3C)

classily characters

culiC)

cuble (See (6

call another UNIX system
tic-tac-toe

curses (3X)

CRT screen handling and optimization package

cuserld (3S)

get character login name of the user

cut(1)

cut out selected fields of sach line of a file

ew(1)

cxref(l)

prepare constant-width text for troff
generate C program cross-reference

-5

COMMANDS

dabs (See abs(3F)....

....... Fortran absolute value

dacos (See acos{FN ...

dasin (Ser asin(IFD .

Foriran arccosine intrinsic function

Fortran arcsine intrinsic function

datan (See aran(IFD)

Fottran arctangent intrinsic function

datan2 (See aran2(3F)
date(l)

..................................... Fortran arctangent intrinsic function

print and set the dale

dble (See fiype(3FN

explicit Fortran type conversion

deil)

desk calculator

demplx (Sov fiype (IF)
deonjg (Sec coinl2F)
deepy{1M)

explicit Fortran type conversion

Fortran complex conjugate intringic function
...capy file sysiems for optimal access lime

deopy 16(1M)

...copy file systems for opitmal access time

deos {See cos(IF)

Fortran cosine intrinsic function

deosh (See cosh(3F))

Fortran hyperbolic cosine intrinsic function

convert and copy a file

.deliver mail to arbitrary people

device name

report number of free disk blocks

differential file comparator

3-way differential file comparison

diff direclories

mark differences between files

ad(1)

alim (See dimt{3F)]) oot e ann positive difference intrinsic function
delivermail (8N)

BRIEATR) (o e e s make a debiz {change) to an SCCS file
deroff(1) remove groff/troff, tbl, and egn constructs
dexp (Sec expf3F). Fortran exponential intrinsic function
deynm (1M)

Af (1M}

afsck (See fsek (UMD e il sYSLEM consistiency check and interactive repair
412l (3C) blish an out-going terminal line connection
Ll

diff3(1)

diffdir{1)

difmk(1)

dim (3F) positive difference intrinsic functions

dimag (See aimag (3F)}
dint { Sev aimt{FF) ...

Fortran imaginary part of complex argument
Fortran int part intrinsic function

dirid) format of directories
diremp{1} directory ¢omparison
directory (3X) Nexible length directory operations
dirname (See basename(1)) deliver portions of path nzmes
dis(1) disassembl)

disable (Sew cuablef!)) disable LP printers
diskformat(IM) format a disk
disktume{1M) tune Noppy disk setiling time pasrameters

diskusg(1M)

COMMANDS

generate disk accounting data by user ID

dleg {See lug(3F)

"Fortran natural logarithm intrinsic function

dloglD (See iog HNIF))

Fortran common logarithm intrinsic function

dmaxl {See max(3F)

Fortran maximum-value function

Fortran minimum-value function

dminl {See min(3F})
dmod {(Sev mod (IF))

Fortran remaindering intrinsic function

dnint (See round (3FH

Fortran nearest integer function

dodisk (See acctsh(iM)
dprod (3F)

shell procedure for accounting

double precision product intrinsic function

drand48(3C)
dsign (See sign{3F)

generate uniformly distributed pseudo-random numbers
Fortran transfer-of-gign intrinsic function

dsln {Sew sin(3F))

Fortran sine intrinsic function

dsink {See sinh{3F))

Fortran hyperbolic sine intrinsic function

dsqrt {See sqre(3FDH

Fortran square root intrinsic function

dtan (Sve wan(3F)
dtanh (Sev wnh(3F)

Fortran tangent intrinsikc function
Fortran hyperbolic tangent intrinsic function

du(l)

summarize disk usage

dump(1) dump selected parts of an object file
dup(3) duplicate a descriptor
dup2(3N) duplicate a descriptor
echo(l) echo arguments
ecri{3C) convert floaling-point number to string
ed{(1) text editor
edsta (See end(3CH last locations in program
edit (See ex(L) text editor

efl(1)

Extended Fortran Language

egrep (Ser grep(i))

search a file for a patiern

enable(l)

enable LP printers

encrypt (See crppr(3C)H)

generate DES encryption

end (3C)

endgrent {See gergreat(3C))
endhastent (See gethostent (IND
endnetent {See geinetent(IN)
endprotoent (Ser petprotoent (3N}
endpwent (See xepwent(3CH
endservent (See getserveni(IN

endutent {See genut{3CH
env{l)

last locations in program
obtain group file entry from a group file

get network host entry

get network entry

gel protocol entry

get password file entry
get service eniry

access utmp file entry

set environment for commund execution

environ{5)

user envirpnment

1.

COMMANDS

eqn{l}

................. formal mathematical text for troff

eqnehar(S) ...
erand48 {(See drand48(3C)H

erf (IM)

............................. speciat characier definitions for egn and peqn)
,,,,,,,,,,, generate uniformly distributed pseudo-random numbers

........................... error function

erfc (See erf(3M)

........................ complementary error function

errdesd (1M)

wevvveenes B tFACt error records from dump

errdemon{1M)

....................... error-logging dacmaon

erriile(d)

error-log file Formal

esroo (See perror (3C)

systemn error message

error(7)

..... error-logging interface

text editor

execute a file

errpt(IM) process a report of logged errors
errstop (IM) terminate the error-fogging daemon
etext {See end{3CH ... Jlast locations in program
ex(1)

exec(2)

execl {See exec(2).

........ execute a file

execle {See exec(2)

..execute a file

execute a file

execlp (See exec{2).
execy (See exec(2))

....... execute a file

axecule a file

execre {See exec(2))
execyp (See exec{2}}

execule a fils

exit(2}

........ terminate process

tial intrinsic function

...... exponential function

eviluale arguments 25 an expression

exp(3F) Fortran exp

exp(3M)

expr(l)

exterr{l) turn onfoff the extended errors in the specified device
77(1)

Fortran 77 compiler

fabs (See foor(3MD

absolute value function

factor{(1)}

factor 2 number

false {See rruelth
felose(35)

provide truth values
close a stream

fentl{2}

file control

fenti(5)

file control options

fevt (See ecwt{ICH

..... convert floating-point number o string

tdopen (See fopen{iS)
feof (See ferror(38))

open a stream

stream status inquiry

ferror{38)

stream stalus inquiry

2aM)

list file names and statistics for a file gystem

fllwsh (See fefose(3S)

flush a siream

o~

fis (See bstring{INN

COMMANDS

bit string operation

fgete {See getclISH e

... gel character from a siream

fgetgrent {See getgrent(3C))
fgetpwent (See getpwent(3C)
fgets (See pets(35)

obtain group file entry from a group file
...... get password file entry

gel a string from a stream

search a file for a pattern

fgrep {See grep(i))

file(l) determine file type
filehdr{(4) file header for common object files
fillene (See fRrrot TISN .. esieeeerreisis e sssssssneseesn saenenns stream status inquiry
filesave{IM) ... e e e e daily/weekly UNIX file system backup
ARCUIMY ..ottt ssrobo s ee s s e sis s srssms s sasassases et eens e reanedesnsse fast incremental backup
find (1) find files
BSR{B)oeeocececvresi e s e rassresearssanens s snranes s e sesees et b Pyt s e s sean play “Go Fish™
Bonk (See fIvpe(IF)) ... e explicit Fortran type conversion
BooT(3M) ..ot e s e s floonr Tunction
el (See Hoor{3MD ...t et s er s aes sees remainder function
FOPERIIS) ... it e s open a stream
TOPK(2) oot e s CFEale 4 New process
Tortune(8)ooirirre e e e print a random, hopefully interesting, adage
fprinth (See PristfTISI. ... e s e e eessseren print formatted output
fpute (See putc(ISH oo put characier on a stream
ToULS (526 PUISTISD . ooooir e eeesereneses sessesnssceemaneas s senesn s sesbeenns pul a string on a stream
fread(3S) binary input
frec{IM)o e sess senenesne e .recover files from a backup tape

free (See malloc(iC)

main memory allocator

free (See matipc{3X)

fast main memory allocator

feeopen (See fopen(3iSh...........

... open & siceam

freq(1)
frexp(3C)

report on character frequencies in a file
manipulate parts of floating-point numbers

fs{4).

format of system volume

fscapd (See scanf(I5h

convert formatted input

fsck (1M)

file system consistency check and interactive repair

fsev(1M)

convert files between M6800O and VAX-11/780 processors

fsdb{1M}

file system debugger

fseek (3S)

........................ reposition g file pointer in a stream

.............. format specification in texi files

Ispec(d)
fsplit(1}

split £77, ratfor, or efl files

fstat (See stat(2))
ftell {See fieek (35N

......... get file status

..... reposition a file pointer in 8 stream

9.

COMMANDS

ftok (See stdipc{3CH

standard inlerprocess communication package

fip(IN)

file ransfer program

ftpd (8N}

DARPA Internet File Transier Protocol server

walk a file tree

ftw (3C)
ftype (3F)

explicit Fortran type conversion

fuser(iM)

identify processes using a file or file struciure

fwrite {Sec freqd (38)

binary output

fwimp(tM)

ipulate connect accolnting records

gamma(3iM)
gevt (See ecwt{3CH ..

log gamma (unction
...... convert floating-point number Lo sieing

ger(l)

get & version of an 5CCs file

getarg (3F)

return Fortran command-line argument

getc(38)

getchar (See xerc (35))
getewd (30)

get characier from a stream
Eel pathname of current working directory

getdtablesize(3N)
getegid (See geruid(2))

gel descriplor table size
get effective group 1D

geteny{3C)

return value for environment name

return Fortrap environment variable

getenv{3F)
getenid (See perid(2))

get effective user 1D

geigid {See genid(2))

get real group 1D

getgrent{3C}

....obtain group file entry from a group file

getgrgid {See getgrent(3CH

obtain group file entry from a group file

getgroam {Sev geigrem(3CH

gethostbysiddr (See gethosient(3N)

...................... obuain group file entry from a group file

gel network host entry

gethostbynnme (See gethostent (IN)
gethostent(ON} ...

get network host entry
get network host entry

gethostid (2N)

gel upigue identifier of current host

gethostname (2N)
getlogin(3)

get name of current host
get login name

getnethyaddr (See gernetent (2N}
getnethyname {See gemerens 3N}

get network entry
get network entry

getnetent(3N)

gel network entry

getopt (1)
getopt(3C)

parse command options
«-@El Option lecer from arguwment vector

getpass (3C)

.....read a password

getpeername (2N} ...

get name of connected peer

getpery (See gemid(2)

....... Rel process group LD

getpid(2)

get process 1D

-10-

getppid (See zeipid(2))

COMMANDS

get parent process [D

getprotobyname {See gefproroent(IN))
getpratobynumber {See getproroent(IND

getprotoent (3N)

gel protocol entey
gel protocol enlry
get protocel entry

getpw{3C)
getpwent (3C)

get name from UID
get password file entry

getpwnam {See getpwent(3C)

getpwuld (See retpwent (3CH
get=(38)

get password file entey

get password file entry

gel a string from a stream

getservhyname (See getservent(IN))
getservbyport (See getservent(IND

getservent (AN} ..

get service eniry
get service enlry

gal service enlry

getsockname(ZN)

get sockel name

getsockapt{ZN)

.get options on sockets

getty (I1M)
gettydefs{d)

sel lerminal type, modes, speed, and line discipline
speed and terminal settings used by getty

getuid{2)

get real user ID

getut (3C}

access utmp file entry

getutent {See getwst (3CH

access utmp file entry

getutid (See genn{3CH
getutline (See geua(3C)H

......... access utmp file entry
access utmp file entry

getw (Sew xerc(35))
gmtime {See ctime{3C)

get word from a stream
..convert date and time to string

graph(1G)

draw a graph

.....select terminal filter

greek (1)
greek (5)

...graphics for the extended TTY-37 type-box

grep (1)

..search a file for a paltern

grouvp{4)

......... group file

grpck {See pwek (IMA

........ group file checker

gsignal (See ssignal(3C))
ha {6)

....................................... soltware signal
guess the word

hashcheck (See speit(iD..............

hashmake spell{1}

............................ work with the spell program’s hash lists

work with the spell program's hash lists

hereate (See hsearch(3CH ...

,,,,,,,, manage hash search tables

hdestroy (See fsearch (3C)H
head (1)

manage hash search tables
.................................. give first few lines

BeIPLL) e

hex(1)

.. ask for help in using SCCS

.........translates object files

hostid{1N)

......... ...5el or print identifier of current host system

COMMANDS

bestname{1N) ...8¢1 oF print name of current host system
hosts{(4MN) host name data base
hseareh(3C) manage hash search tables

htenl (See byrearder(INDconvert values between host and network byte order
htons {See dyreorder(GN))convert values between host and network byte order

hyphen(l) find hyphenated words
hypet(3M) Euclidean distance function
fabs (Ser abs(3F)) Fortran absolute value
inrge 3F) count command ling arguments
ichar (See fype(3FN explicit Fortran type conversion
[TIH) print user and group IDs and names
tdim (See dim(3F) positive difference intrinsic function
Mint (See fype(IF)) explicit Fortran type conversion
inint (See round(3F)) Fortran nearest integer function
HoonBE BNccee e e s configure network interface parameters
ifix {See fiype(IFH explicit Fortran type conversion
index(3F) return location of Fortran substring
IREL(IND ..ot ssars s Internel address manipulation routines
Inet(5F) Internet protocol family
Inet_sddr (Sev inet(IN)) Internet address manipulation routine
Inet_Innaf {See inet{IND Internet address manipulation routine
Inet_mukeaddr (See iner(IND Internet address manipulation routine
Inet_netel (See inet(INJ) Internst address manipulation routine
inet_metwork (See inet(IND Internet address manipulation routing
inet_ntos (Sev inet(IN) Internet address manipulation routine
init(M) process control initialization
inittab{(4) scripl for the init process
inodel{d} format of an inode
insque (3N} insert element from a queue
instalt(LM) install commands
imt (See jivpe (IFD explicit Fortran type conversion
inctl(2) control device
ip(SP) Internet Protocol
Iperm{l)cconmmcariiirensrnn JEMOVE 3 Message queue, semaphore set or shared memory id
ipesil) repor! infer-process communication facilities status
irand (See rand(3F)) Fortran uniform random-number generator
isalnum (See ciype (TCN ..o e e classify characters
isalpha {See ctype(3C)) classify characters
isascii (Ser coppe(3CH . classify characlers

=-12-

COMMANDS

isatty (See mvname(1CH find name of a terminal
isentel {See ctype(ICH classify characiers
isdigit (See ctypeGCH : classify characters
isgraph (See ctvpe (30N ovvvnvivnnrenensienene classify characters
Isign {See sign(3F) Fortran transfer-of-sign intrinsic function
islower {See ctypel3ChH i classify characters
isprint (See coype(3CH classify characters
ispunct (See crvpe(3CH e classify characters
isspace {(See crype(ICH classify characters
issue(d} . issue identification file
isupper {See crype(3CH classify characters
Isxdigit (See ciype(ICH classify characters

J0 (See bessel(3M)
J1 (Sve bessel(IM)

Bessel functien
Bessel function

jn (See bessel(IMD . Bessel function
JOIRUIY o srs s sbs s e sees cansnnns relational database operator
jrand48 (See drand48(3CH............ generate uniformly disttibuted pseudo-random numbers
kilc1)...... lerminate a process
'3 1 11 . UV U U OO send a signal 10 a process or a group of processes
KIAIICIMY oo iiisnssessinnssssreressscrenss sesessees smssessmnsssensescesensen kill all active processes
killpg(3N) send signal to a process group
kmem (See memiTh v e COrE Mmemory
13101 (3C) convert belween 3-byte integers and long integers
164a (See BHO0D .. convert between long integer and base-64 ASCH string
labelit {See volcopy(IMM ...oneeveecne copy file systems with label checking
last(1) indicate last loging of users and teletypes
lastlogin (See accish(iMD shell procedure for accounting
la¥(1) print load average statistics
lcongdB (See drand43(3C)Hgenerate uniformly distribued pseudo-random numbers
1d(1}. link editor for common object fles
IS 00E) o s s s e link editor {System V a,out format only)
Idaclose (See ddgiose (XDoooooeereiineeesirersnsseercessssreraana oo close a common cbject file
tdahrend (3X) read the archive header of a member of an archive file
Idnopen {See idopen (IX)} . open & common object file for reading
léclose (3X) close a common object file
Idexp (See frexp(3CH manipulate parts of floating-point numbers
ldfen(4) common object file access routines
Idfhread (3X) read the file header of a commaon object file
lgetname(3X) ..o retrieve symbol name for object file

COMMANDS

Idlinit (See ldiread(3X)) .. manipulate line pumber éntries of a common objecs file function
ldlitem (See /dfread (3X)} .manipulate line number entries of a common object file function
{dlread 3X) .o manipulate ling number entries of a common chject file function
ldiseek (3X).......cnevemnnenes seek to line number entries of a section of @ common object file
Idniseek (Sev idiseek (1XDseek to line number entries of a section of & common object file
Idnrseek (See kirseek (3X)) ., seek 10 relocation entries of a section of a commeon object file
Idnshread {See ldshread(3)iBad an indexed/ named section header of a commen object file
Idnsseek (See ldsseek (3N ... seek to &n indexed/named section of a common object file

Idehseek (3X} seek lo the optional file header of 28 common object file
ldopen{3X) open a common object file for reading
Idrseek (3X)ceccemnnnee. seek to relocation entries of a section of a common object file
Idshresd (3X). read an indexed/named section header of a comman object file
Idsseek (3X) ..ovrrrinrenmncrenenas seek to an indexed/named section of 2 common ohject file
Idthindex{3X) compule the index of a symbol wbie entry of a common object file
Idthread (3X) ..o read an indexed symbol 1able eniry of 8 comman object file
ldibseck (3X) seek 10 the symbol 1able of a common object file
lea (3F) retuen length of Fortran siring
3) S generale programs for simphke lexical Lasks
Rnd (See BearchlI0 D) et et cetereens eee s seeaeeess e linear search and update
Ige (Sev stremp{3F) string comperision intringic function
Igt (See strempl3FD e e s string comparisien inirinsic funciion
TIFRUBY oovever e isss et nissns o aneme et et er s asean e rabs £n e seneseasaes shnssasans senens enen play the game of life
Limed1) .o read one line
linenumié4) line number entries in a common object file
link{1M) exercise link system call
TIRK (2Y oo ivsieeraseereeee e sseeeses st s et snm s sneaes . link to a file
17T LA OO PP a C program checker
listen(2N) - listen for connections on a socket
lle {See sircmp(3F) string comparision intrinsic function
1t (See stremp(3F) siring comparision intrinsic function
In (Sve ep(ih) link files
lo{5) software loopback network interface
localtime {See crime(FCH converl date and time to string
lockf{3C) record locking on files
locking{2) provide exclusive file regions lor reading or writing
log (Ser explIAD logarithm function
log (3F} Fortran natural logarithm inttinsic function
log1® (See exp(3MD logarithm function
log10(3F) Fortran common logarithm intringic function

-14-

login(1}

COMMANDS

sign on

logname{l)

get login name

logname{3X}

reiurn login name of user

longjmp (See setimp(3CH

non-local goto

Jorder(1)

<eeeeennind ordering relation for an object library

lorder5.041)find ordering relation for an object library (System V a.out format enty)

Ip(1}

...... send requests 10 an LP line printer

ipadmin{1M)

.....configure the LP spooling system

Ipmove (See lpsched(IMD

move LP requests

Ipsched O1M)
Ipshut {See Ipsched (IMD

..5tart the LP request scheduler
stop the LP request scheduler

Ipstat(l}

print LP status information

Irand48 {(See drand48(3CH

Is(1)

generate uniformly distributed pseudo-random numbers

list contents of directory

Isearch(3C)
Iseek(2)

................................. linear search and upxiate
move read/wrile file pointer

Ishift (See bool(IEH

Fortran bitwise boolean function

Macro processor

generate encryption key
fast main memoty allocator

main memory allocator

Hol3 (See 13010 oo converl between 3-byte integers and long integers
m4{l)

m68k (Sev machidil)) provide truth value about your processor type
machid(l) provide truth value about your processor type
mail(l) send maif 10 users or read mail
mailx (1) interaciive message processing system
make(1) maintain, update, and regenerate groups of programs
makekey (1}

maiiinfo (See matloc(3X))

malloc{3C)

malloc(3X)

fast main memory atlocator

mallopt {See matioc{3XJ)

fast main memory allocator

man{l)

man{5)

print entries in this manual
macros for formatting entries in this manual

master{d)

master device information table

math(5}

math functions and constants

matherr (3M)

error-handling function

Fortran maximum-value function

max {3F)
max0 (See max(3F)

Fortran maximum-value function

max1 {See mox (3FH

Fortran maximum-value function

maze(§)

...... generate 1 maze

meélce(l)

C compiler

-15-

COMMANDS

melock (3F)

....return Fortran lime accounting

mem(?)
memcepy {See memory(3C))

.. COTE MEemMOoTy
........................ memory operation

memchr (See memory(ICH
mememp {See memory(3C)H ...

memcpy (See memvry(3C))

................................. Mmemory operation
.. memory operation
memory operation

memory (3C)

MEmory operation

t (See p(ICH

............................. memory operation

mesg(1)

permit or deny messages

min(3F)

Fortran minimum-value function

min® (See min(IFN

........ . Fortran minimum-value function

minl (See min(3F)

Fortran minimum-value funclion

mkdir(1}

....... make a directory

mkfs (1M)

....................) construct & file system

mkfs1b(IM)

.................................. construct a file system

mk lost + Ind (1M)

make a lost+ found directory for fsck

mknod{IM}

....... build special file

mknod(2)

make a directory, or a special or ordinary fite

mksir{l)

create an error message file by massaging C source

mkiemp(IC)

make a unique filename

mm(l)

print documents formatted with the MM macros

mm (5)
mmt{l}

the MM macro package for formaiting documents
typeset documents

muitab{4)

d file system table

med (3F)

Fortran remaindering intrinsic function

medf (See frexp(3CH

manipulate parts of floating-point numbers

menncct {See acctsh{IM))
meniter(3C)

shell procedure for accounting
prepare execution profile

meo(6)

guessing game

mere(l)

file perusal filler for cr1 viewing

the OSDD adapter macro package for formatting documents

meunt{1M)
meunt(2)

moumnt file system
mount a file system

mptx(5)

the macro package for formatting & permuted index

mrand48 {See drand48(3CH ...

magetl(2)

..generate uniformly distributed pseudo-random numbers
message control pperations

magget {2}

gel message queve

magep{(2)

mesgage operations

mv (See cp(ih

move files

-16-

mv{5)}

COMMANDS

a troff macro package for typesetting view graphs and slides

mvdir(1M)

move a directory

mvt (See mmi(l))

...... typeset view graphs and slides

ncheck (1M)

generale names from inumbers

formal mathematical text Tor nreff

peqn (See eqn(i)y
oetmail (N)

the B-NET network mail system

netoaaller (BN)

Jeliver mail to B-NET

netstat (IN)

show network status

networks{4N)

....... network name data base

newlorm (1)
newgrp{l)

change the format of a text file
...... log in to 8 new group

news (1)

print news items

nice (1}

...................................... run a command at low priority

nice(2)

...... change priorily of a process

nint {See round(3F)
nl(1)

JFortran nearest integer function
line numbering filter

RLBLIICH. ... gel eptries from name list
nm{1) ' .print name list of common object file
nm5.8{(1) print name list (System V a.out format only)

hup{1) run a command immune to bangups {sh only)
not (Sev bool(3FN Fortran bitwise boolean function
nrandd8 {See drand48(3CH ... generate uniformly distribuied pseudo-random numbers
nroff(1) format text

ntob] {See &)

der {INJ)

convert values between host and network byle order

ntohs (See byteorder(IN))

nulk(7)

................... convert values between host and newwork byte order
the null file

nullsdm {See accish(IM)

aumber (6}

sheil precedure for accounting
convert Arabic numerals 10 English

od(1)

octal dump

open{2)

opendir (See directory(IXN ..o

or {See bool(IFH

open for reading or writing
flexible length directory operation
............................ Fortran bitwise booiean function

ostd (See mm (Ll i

pack(1)

Jprint documenis formatied with the MM and 0SDD macros
..compress files

passwd(1)
passwd{d)

............................. change login password
password file

panse(2)

...... merge same lines ol several files or subsequent lines of one file

suspend process until signal

... expand compressed files

COMMANDS

pelose (See popen(3S)

....initiate pipe to/from a process

pdpld (See machid(1)}

provide truth value about your processor type

pereor (3C)

EYSIEM CFror message

pell)
phys(2)

file perusal filter for sofi-copy \erminals
allow a process to access physical addresses

pipe(2}

creakte an interprocess channel

plock (2)

lock process, lexl, or data in memory

plot(3X)

graphics interface subroutines

graphics interface

plot(4)
pnchi4)

file farmat for card images

popen (38)
pow (Sev explIM)

....initiate pipe to/from & process
power function

powerfuil (See bre{iM))

..system initialization shell script

print files

pr(l)
pretmp (See accsh(IMA
prdsily {See avcsh{ M)
printeny (1)

...shell procedure for accounting

shell procedure for accounting

print out the environment

printf{38)

print formatted owlpul

display profile data

prof(l)
prof(5)

profile within a function

profit(2)

time profile

profile(d}

..... setting up an environment at login lime

protocols (4N)

protocol name data base

prirtl an SCCS file

prs(l)
priacct (See avcishiiM)

shell procedure for accounting

psil)
pstat(1M)

report process status
print system facts

ptrace(2)

PrOCESS irace

permuied index

ptx(1)
pty{5)

do terminal driver

put{iC)
putc(3s)

puis a file onio a remote machine
put character on a stream

putchar {See putc(3Sh

....... put characier on a siréeam

puteny (3C)
putpwent(3C)

change or add value 10 environment
wrile password file entry

puts(35)

put a string on a stream

pututllne (See gernt (3CH
putw {See putc(3Sh.

access utmp file entry

put word on a siream

...... password fike checker

pwck (1M}

-18-

COMMANDS

quicker sort

pwi(l} working directory name
qsort{3C)

quiz(6) test-your knowledge
raln{s) animated raindrops display
rand{(3C) simple random-number generator
rand{3F) .Fortrar uniform random-number generaior
ratfer (1) rational Foriran dialect
te (See bre(IM) system initialization shell script
remd{3N) routine for returning a stream to a remote command
rep(1IN) remote file copy
rerbex (1) o, translates Motorola S-records from downloading into a file
read(2) read from file

readdir (Sve direcrory(3X)
readv (3N)

flexible length direciory operation

read from file

real {See flype(3FD

...explicit Fortran lype conversion

realloc (See malioc{3C))

main memory allocator

realloc (See malloc{iX)
reboot (1M)

fast main memocy allocator
reboot the system

boot(2)

reboot the system

recy (2N}

receive o message from a socket

recvirom (See recv(2N)

...receive 4 message from a socket

recymsg (See recv2N)
red (See ed{1)) ...

.receive a message from a socket
text editor

segemp{l)

........... regular expression compile

regemp(3X)

compile a regular expression

regex (See regemp(3X)

execute a regular expression

regexp{5)
reject (See accepi(IM))

regular expression compile and match routines
prevent LP requests

reloc{d)

relocation information for a common object file

remaque (Se¢ insque (IN)

...... remove ¢lement from a queue

(1IN}

...... remote shell

remshd (8N}
reset (See tset(l)),

remole shell server
.......... reset the teletype bits to a sensible state

rewind {See fseek(iS)

reposition a file pointer in a stream

rewinddir (See direcion (1X))

rexec(3N)

flexible length directory operation

return siream to a remote command

rexecd (BN)
rlogin{IN)

................ remote execution server
... remote login

rlogind (8N}

remote login server

-19-

COMMANDS

(1) remove files
rmail (See mait{ 1)) send mail to users or read mail
mmdei{1} remove a delta from an SCCS file
rmdir (See rm{i)) remove directories
robots {6) escape from the robots
round{3F) Fortran nearest integer functions
ot (BN) ... s manually manipulate the routing tables
rowied (BN} network routing daemon
rresvpert (See remd N routine for returning a siream (o a remote command
rah (See sh{iD..............ovinivnenrnShelt, the restricted command programming language

Fortran bitwise boolean funclion

rshift {See bool{3F)}
runscct{1M)

run daily accounting

ruptime(1N}

show host status of local machines

ruserok {See remdOND .o,

rwho(IN)

routine for returning a stream to a remole command
who's logged in on local machines

rwhod{EN)
sal (See sar(IM}}

System siaius server
system activily teport package

sa2 (See sar(IM)}

....Syslem activity report package

sact(l)

print current SCCS file editing activity

sade (See sar(IM))

...Syslem activity reporl package

g (IG}
sar{l)

system activity graph
system aclivity reporter

sar(1M)

-....S¥Stem activity report package

shek (See drk(2)) ...

change data segment space allocation

scani(35)

convert formatied input

format of 5CCS file

symbelic debugger

seesdI B (1) compare two versions of an SCCS file
sccsfile(d)

senhdr(4) section header for a common object file
seript{l) make iypescript of terminal session
sde(1}

sdiff(1) .side-by-side difference program
sed(1)

stream editor

seedd8 (See drand48(3C) ..

seekdir {5ee direciory(3XD
select(ZN)

e generate uniformiy distributed pseudo-random numbers

flaxible length directory operation

..synchronous /0 multiplexing

semctl(2)

semaphore cantrol operations

semget(2)

get set of semaphores

semep(2)

semaphaore operation

send(2N)

........ send a message from a socket

-20-

.'/‘.h‘.

sendmsg (See send (2N}

COMMANDS

send a message from a socket

sendta (See send(2NJ)

services(dN)

send a message from a socket
service name data base

setbuf (38}

setgid {See setuid(2))

assign buffering to a stream
set group 1D

seigrent {See gewrent(3CH
sethostent {See gethostent(INJ)

obtain group file entry from a group file
get network host entry

sethostid (See gethostid (2N))
sethostname (See gethostname (2N))

set unigue identifier of current host
set name of current host

setjmp(3C)
setkey (See crypr (3CH

non-local goto
generate DES encryption

setmant (1M)

establish mount table

setnetent {See gemetent(INS

get network entry

set process group [D

setpgrp(2)
setprotoent {See getprotoentiING

get protocol entry

get password file entry

setpwent {See getpwent (3CH
setregid(2)

sel real and effective group 1D

setrenid(2)}

set real and effective user iDs

setservent {See¢ getservent(INJ)

get service entry

setsockopt (See gersockopr{2NJ))

set options on sockets

setuid(2)

set user 1D

setutent {See gean(3C)H

sccess utmp file entey

setvbuf {See serbuf(35H

assign buffering to 8 siream

sgetl (See sputt(3XDaccess long integer data in a machine independent fashion

sh(1}

shell, the standard command programming language

shi(1}

shell layer manager

shmetl (2)

shared memory control operations

shmget(2}

get shared memory segment

shmop(2)

shared memory operations

shutscet (See accish(iM))

shell procedure For accounting

shutdewn (1IM)

terminate all processing

shutdown (2N}

shui down part of a full-duplex connection

sign (3F)

... Fortran transfer-of-sigh intrinsic function

signal{2)}

specily what to do upon receipt of a signal

signat{3F)

specily Fortran action on receipt of a system signal

sin (See trig(IM))

trigonometric funclion

sin{3F}

Fortran sine intringic function

sinh 3F}

Fortran hyperbolic sine intrinsic function

sinh (IM)

hyperbodic funciion

-21-

COMMANDS

size(1)

size5.0{1)

size of an object file (System V z.out formal only)

sleep(1)

suspend execution for an interval

sleep(3C)

suspend execulion for interval

sngh {See fiype (3F))
sno{l)

explicit Fortran type conversion
SNOBOL inlerpreter

socket(ZN)

create an endpoint for communication

sort{l)

sort andfor merge files

spell (1}

find spelling errors

spellin (See spefi(i))
spline(1G)

.....wotk with the spell program’s hash lists
interpolate smooth curve

sphit(1)

split a file inlo pieces

sprintl (See pringf(35))

print formaued ouipui

sputl (3X)

access long integer data in a machine independent fashion

squere rool function

sqrt {See exp{IM)
sqrt(3F)

Fortran square rool intrinsic function

sramd {See rand(3C))
sramd (See rand (3F)

simple random-number generator
Fortran uniform random-number generator

srandd48 (See drand48(ICH

sscanf {See scanf(IS)

...generate uniformly distributed pseudo-random nun.bers
convert formatted input

ssignal (3C)

......... sofiware signal

sspii)

make output single spaced

startwp (Ser accrsh(IMB

shell procedure lor accounting

stat(2)

get file siawus

stat(5) data returned by stat system call
SHIOI3B) ..ot] standard buffered input/output package
stdipe(3C) standard interprocess communication package
stime(2)

set lime

streat (See siring(3C))

siring operation

strehr {See siring{(3CH

siring operation

stremp (See swing(ICH

siring operation

stremp (F)

siring comparision intrinsic function

strepy (See string(3CH

siring operalion

strespn (See string(3C)H)

siring operation

siring operation

strimg(3C)
strings{1)

find the printable strings in an object, or other binary file

strip(l)...
strip5.8(1) ...
strien (See string(30))

.....51tip symbol and line number information from an object file
...remove symbols and relocation bits {System V a.out format only)

siring operation

-22-

COMMANDS

strncat (See swring(3C))
stenemp (See string(3C)

...... sSiring operation
string operation

strnepy (See string(3CH
stepbek (See sring(3C)

string operation
string operation

strrchr {See string(3CH

string operation

strspn (See string (3C))

string operation

strtod (3C}

convert siring to double-precision numnber

strtok {See string (3C)

string operation

strtel (3C)

convert siring to integer

swap bytes
pseudo-device driver

stey(1) set the options for & terminal
sufl) become super-user or another user
sum (1} print checksum and block count of a file
sum7(1).. .sum and count blocks in a file
sumdir(1)..........coesrinrreeneeee...S5UM and count characiers in the files in the given directories
swab(3C)

sxt(T

syms{d) common object file symbol wable format
syneil) update the super block
sync(2)

sys_errlist (See perror(3CH

update supet-block
system error message

sys_nerr (See perror(3C))
sysdef(1M)

SYStem error message
systemn definition

issue a shell command from Fortran

system{3F)
system (35)

issue a shell command

tabs{1)

set tabs on a terminal

taik{i)

deliver the last part of a file

take{1C)

takes a file from a remote machine

talk (IN}

talk to another user

tan {See trig(3M)

tan (3F)

trigonometric function
Fortran tangent intrinsic function

tanh (See sinh (GM))

tanh (3F)

hyperbolic Munction
Fortran hyperbolic tangent intrinsic function

tapesave (See filesave(IM))
tar(1)

daily/ weekly UNIX file systern backup
tape file archiver

thl (1)

forman tables for nroff or woff

te(1)

phototypesetter simulator

Internet Transmission Control Protocol

tep(5P)
tdelete (See isearch(ICH

manage binary search frees

tee(l)

pipe fitting

-23-

COMMANDS

telinit (See init (1M

............... process control initialization

telidir (See divectory(3X))

telnet (AN}

..... fiexible length directory operation
user imierface 1o the TELNET protecol

telnetd (BN)

.................. DARPA TELNET prolocol server

tempnam (See tnp {35h

create & name for a temporary file

term(4)

........ format of compiled term file.

term (%)

conventional names for terminals

termeap(3X}

terminal independent operation routines

termeap(5)
termlnfo(4)

terminal capability data base
terminal capability data base

termio(7)

general lerminal interface

test(1}

condition evaluation command

thnd (See isearch(3CH

m binary search trees

titpd (8N)

tgetent (See termeaplIXNovverevvserieieieecesns e
tgetfing (See termeap (XD ..ivccnnnnineins i

DARPA Trivial File Transfer Prolocol server
terminal independent operation routine
termicnal independent operation rouline
terminal independeni operation routine

tgetnum (See rermcap(IX)
tgetser (See termcap(3X))

terminal independent operation routine

tgoto (See termcap(IX))
He(1M}

terminal independent operation routine
terminfo compiler

time a command

...... get lime

time(l)
time(2)
HIMEB{2)Y....onecireneer i n st s get process and child process times
timex(1) time a command; report process data and system activity
tapiile(3S) create a temporary file
tmpnam (38) create a name for a temporary file

toascii {See conv(3CH

translate characters

tolower {See conv(3CH

translate characters

touch(l)

update access and moedification times of a fike

towpper {See comv(3CH

translate characters

tp()

manipulate tape archive

tplot (1G)
tpui (1)

graphics fillers
query terminfo database

tputs {See rermeop (X))

terminal independent operation routine

(1}

translate charsclers

trek (6)

trekkie game

trig(3M)
troff(1)

trigonometric functions
typeset text

trpt{BN)

transliterate protocol trace

-24-

COMMANDS

BEBEULY oo eeviarbeb s int b ers s cerers s e e e caranas e neeeess ceneeenees beaeans steanaen s enenees reanaen provide truth values
ASRANCH T e e e manage binary search trees
1528 {L) oo e e set the teletype bits 10 a sensible state
1sert{1) topological sort
ABELB) ...ceoreesverrreriser e arnesess e s e e semeaeaea seranaescramanaea s nE e ne e Ean T eanaeae s nenRn e snnn s raeaeanans tic-tac-toe
1y (1) - «.gél the terminal’s name
HEY LTV oisiverneeiere s nest s res s ses e e an e sees ceen s sanen s ennanan s e nananraanns controlling terminal intesface
HEYMAMEIICY .. e s s e find name of a terminal
1YSIt{I0) .o e e find the slot in the uimp file of the current user
HYLYPE () ..o data base of terminal types by port

turnaeet (See accish (iAMDY
twalk (See tsearch{3CH
swinkie(6)

.shell procedure for accounting

.. manage. binary search trees

twinkle siars on the screen

types(5)
taset (Sev crime(3C))

primitive sysiem data types
....convert date and time 1o string

uib {(See machid (1}

provide truth value about your processor lype

udbS (See machid (1)

provide teuth value about your processor lype

udp(5P)

Internet User Datagram Protocol

ul{1)

ulimit(2)

do underlining
get and set user limits

umask (1)

set file-creation mode mask

vmask (2}

sel and get file creation mask

umount (See mount{iM)) ..

dismount file system

unmount a file system

d lines in a file

wmownt(2)

aname(l) print name of current UNIX system
WRBMELD) ..o eyt s gel name of current UNIX system
waget{l) undo a previous get of an SCCS file
ungetc{IS) push character back into inpul stream
unlq{l) report rep

uniis(1)

CONVETsSion program

undink (See fink (M1}

exercise unlink system call

uniink(2)

............................ remove directory entry

unpack (See pack (1)

expand compressed files

updater(1)
updster (1IM)

update files between Iwo machines
update files between two machines

ustat{2)

........ get file system statistics

utime(2)

................................. sel file access and modification times

utmp{4)

utmp entry formal

utmpname {See penu(3CH

... access utmp file entry

COMMANDS

suclean(1M) ...LIUCP spool directory clean-up
BUCPLIC) ... et e UNIX system to UNIX system copy
velog (See wucp{ICH. oo prints a summary log of UUCP and UUX transactions

wename {See ucp(ICH

- lists the UUCP names of known systems

naplek {See tiwe{1CH

pubhc UNIX-10-UNIX system Ble copy

uustat{1C)

unsub{1M}

UUCP status inquiry and job conirol
....monitor UUCP network

uuto{1C)

......... public UNIX-10-UNIX system fie copy

wox{1C)

UNIX-to-UNIX system command execution

uvar(2)

....... returns sysiem-specific configuration information

val(l)

...... validate $CCS file

values(5)

machine-dependent values

varargs(5)

handle variable argumnent list

vax (See machid (1)

..provide truth value about your processor type

ycll)

version control

vehk (1M)

...... version checkup

vedit {See vif1))

screen-oriented (visual) display editor based on ex

verslon(1)

reporis version number of files

viprintf {See vpring/(ISH
viprintf {See yvpring (IX)
vi(1)

.......................... ptint formatied output of & varargs argument list
........................... print formatied outpue of & varargs argument list

view (See vi(L)

screen-oriented {visugl)} display editor based on exJ
screen-oriented {visual} display editor based on ex

leopy (1M}

copy file sysiems with label checking

vprintf (3S)

print formatted output of a varargs argument list

yprintf (3X)

print formatted cutput of a varargs argument list

vsprintl {See voring(3SH

..... reeesreesesenaeneeeprint formatted output of a varargs argument list
vsprintl (See vprimtf XD ..o

print formatted output of a varargs argument list

write o all users

word count

identify $CCS files

who is on the system

who is doing what

walt(2) wait lor child process ¢ stop or terminate
wait3(2N} wail for child process 1o stop or lerminate
wall(1M)

well)

What(1) .o

whereis(1) locale source, binary, and/or manuai for program
who(1)

wheami(1) print effective current user id
whodo{IM) ... s s

ORI LB (...t e e e e s play the growing worm game
WOIISTB) oo e e e animate worms on a display terminal
write(1)

write 10 another user

write(3)

COMMANDS

..write on a fite

writev (3N)

write on a file

wimp {Sev urmp(4)

wimp entry format

wimphix (See fwrmp(IM)
wump{&}

manipulate connect accounting records
the game of huni-the-wumpus

xargs(l)

consiruct argument list(s) and execule command

xor (See bool(3F)

Fortran bitwise boolean funclion

xstr(l)

extract strings from C programs 1o implement shared strings

...... Bessel Munclion

¥0 (See bessel(3M)
¥1 (See bessel(IMD

Bessel funclion

yace(1)

yel another compiler-compiler

yn (See besselGM D

Bessel function

zabs (See abs(3FD

Fottran absolute value

227.

)

PERMUTED INDEX

functions of DAS] 300 and/
/special functions of DASL
of D'AS] 300 and 300s/ 300,
functions of DASI 300 and
13tol, 1tol3: convert between
comparison, diff3:
Tekironix 4014 terminal.
paginator for the Tekironix
of the DASI 450 terminal.
special functions of the DASI
f77: Fortran

long integer and base-64/

program.
Fortran absolute value.
value.

abs: return integer

dabs, cabs, zabs: Foriran
fHloor, ceiling, remainder,
socket. accept:

8 socket.

LP requests.

of a file. louch: updaie
utime: sed file

accessibility of a fite.
maching/ sputl, sgetl:

phys: allow a process to
Idfen: commen object file
copy file systems for optimal
/setuient, endutent, utmpname:
access: determine

enable or disable process
acctoon: connect-time
acctprel, acctpre: process
wurnacet: shell proceduras for
faccton, acctwimp: gverview of
accounling and miscelleneous
diskusg: generate disk

acct; per-process

search and print process
acctmerg: merge or add (otal
melock: return Fortran time
summary from per-process
wimpfix: manipulate connect
runacct: run daily

PrOCESS accounting.

fite format.

per-process accounting/
process accounting file(s).
connect-lime accounting.
sceounting. acciconl,
acctwimp: overview of/
overview of/ acctdisk,
accaunting files.

acctdisk, acctdusg,
accounting.

acctprek,

acctdisk, acctdusg, accton,
sin, Cos, tan, asin,

intrinsic function.

killall: kill all

300, 300s: handle special

300 and 3005 terminals, ,

300s: handle special functions

300s terminals. /special

3-byte integers and long/
3-way differential file ,
4014: paginator forthe ., ., . .
4014 terminal 4014:
450: handle special functions
450 terminal. 450: handle

77 compiler.
abdl, 164a; convert between
abort: generate an IOT fault,
abori: terminate Fortran
abs, wbs, dabs, cabs, zabs:

absolute value.

absolute value. abs, iabs,

absolute value functions.
accept a connection on g
accepl: accept 4 Connection on

accepl, reject: allow/prevent

access and modification times
aceess and modification times.
access: determine

access physical addresses.

access Toutimes.

access utmp file entry.
accessibility of a file.

accounting.

acgounting. /startup,
accounting and miscellaneous/ . .

accounting commands. fof
accounting data by user ID,

accounting file format. ., . ,

accounting file{s}. accicom:

accounting Bles,

accounting.
accounting records. fcommand
accounting records. fwimp,

accounting. .+ + . .« . . 4 v w

acct: enable or disable
acct: per-process accounting
acctems: command summary from
accleom: search and print

acctcon?: connect-time
acctdusg, acclon, acctwimp:

acctmerg: merge or add (otal
accton, acctwimp: overview off

acetwimp: averview of/
acos, atan, atan2:/f

active processes,

1.

abs: return integer absolute

sccess long integer dataina . . - .

accounting. acct:
accawnting. accteonl,, .

acciconl, aecteond: . . L L

acctdisk, acctdusg, aecton,

acos, dacos: Fortran arccosine . . .
..... v eov oo killall(IM)

. 300(1)

300(1)

. 300(1)

300(1)
13te1(3C}

. diff 31}

4014{1
4014(1)

. 450(1)
. 450(1)
. 1701}

a641(3C)

. abort(3C}

abort(IF)
abs(3F)
abs(3C)
abs(3C})
abs(3F)
floor (3M)
accepl(ZN)

. accept(IN)

accept(1M)}

. . touch(1}
. utime()

access(2)
sputl{3X)
phys(2)
Idfen(4)
deopy(1M)

. getut(3C)

access(2)
acct({2)
acctcon{1M)
acctpre{1M}
acctsh{lM)

. acct{1M)

acct{tM)
diskusg(1M)
acct(4)
acctcomil)
acctmerg{tM)
mclock (3F)

. acctems{1M)

fwimp(1M)
runacct{IM}
acct(2)
acct(4)

. acctems(iM)

acctcomil)
acctecon{iM}
acctcon(1M}
acct{1M)
acct{1M)

. . accumerg({IM}
. accl(1M)

acciprel, acctpre: process

acctpre: process accounting.

acetpre{1M)
acctpre{1M)
acct(1M)
trig(IM}
acos(3F)

Permuted Index

sag: system

sal, sal, sadc: system

sar: system

current SCCS file ediling
report process data and system
random, hopefully interesting,
formatting/ mosd: the OSDD
accimerg: merge or

putenv: change or
finet_netof: Internet

arp:

a process Lo access physical
SCCS files.

admin: create and

game.

imaginary part of complex/
part intringic function.
alarm: set & process's

clock.

delivermail.

aliases;

earth. aliens; The

attack the earth.

change data segment space
realioc, calloc: main memory
mallinfo: fast main memory
physical addresses. phys:
accept, reject:

npatural logarithm/ log,
logarithm intrinsic/ logl0,
information for bad block/
for bad block/ altbik:
Fartran/ max, max0,

max, max0, amax0, maxl,
Forfran/ min, minG,

min, mind, amind, minl,
remaindering intrinsic/ mod,
rshift: Fortran bitwise/
flocate source, binary,

sort: sort

terminal. worms:

rain:

Fortran neares! integer/
bed: convert 1o

link editor output.

files. aouthde.h -

editor oulpul

common object files.
introduction to commands and
maintenance commands and
maintainer for portable/
format.

maintainer.

format.

number: convert
delivermail: deliver mail to
language. bc:

acog, dacos: Fortran
maintainer, ar3.0:

for portable archives. ar:
cpio: formal of cpio

&r: COmmon

header of a member of an
an archive/ Mahread: read the

activity graph. . . « .« sagl1G)
activity report package. sar(1M)
AClivity TEpOrter. < . . - . sar(1)
aclivity. sact: print 0 . . sact(1)
activity. Jtime a command; timex{1)
adage. fortune: printa fortune(6)
adapter macro package for mosd{(5)
add total accounting files. acctmerg{ M)
add value to environment. putenv(IC}
address manipulation routines. inet(3N)
Address Resolution Protocol. arp{5P)
addresses. phys-allow phys(2)
admin: create and administer admin(l)
administer SCCS files. admin(1)
adventure: an exploration adventure(6)
aimag, dimag: Fortran aimag{iF)
aint, dint: Fortran integer aint(3F)
alarmelock. alarmi(2)
alarm: set a process’salarm alarm(2)
aliages: aliases filefor aliases(7N)
aliases file for defivermail. alases{(7N)
alien invaders atlack the aliens(6)
aliens: The alien invaders aliens(6)
allocation. brk, sbrk: brk{2)
allocator. malloc, free, mabloc{3C)
allocator. /ealloc, mallopt, malloc{3IX)
allow & process o a0cess phys(2)
allow/prevent LP requesis. accept(1M}
glog, dlog, clog: Fortran 10g{3F)
alogl?0, dicg)0: Fortran common . . . logi0{3F)
altblk: altermate block ahbik{4)
afternate block information ahblk(4)
amax0, max!, amax], dmaxl: max{3F}
amaxl, dmax!; Fortran/ max{3F}
amind, minl, aminl, dminl: min(3F)
aminl, dminl: Fortean/ min{3F}
amod, dmod: Fortran mod{3F)
and, or, xor, not, Ishift, bool(3F)
and/or manual for program. whereis(1)
and/ormerge fles. soril)
animate worms on a display worms(6)
animated raindrops display. rain(6)
anint, dnint, pint, idnint: round{3F)
antiguemedie. « bod(6}
a.out: common assembler and aoul(4)
a.oul header for common object . . . acuthdr{4)
a.out5.0; assembler and link 2.oul5 04}
aouthdr.h - a.out headerfor southdr(4)
application programs. intro: intro(l)
application programs. fsystem intro{1M)
gr: archive and library ar(1)

ar: common archive file ar(4)

ar5.0: archive and library arS.0{1)
ar5.0: archive (library) ke ar5.0{4)
Arabic numerzls to English. number{6)
arbitrary people. detivermail(8N)
arbitrary-precision arithmetic be(l)
arccosine intrinsic function. acos(3F)
archive and library wi.0(1)
archive and Bbrary maintainer ar(l)
archive. . . . « v v v v 0 v o« . cpio(d)
archive file format. ar(4)
archive file. /the archive kahread(3X)
archive header of a member of . . . Idahread{3X}

.2.

ar5.0:

1p: manipulate lape

tar: tape file

maintainer for portable

¢pio: copy file

asin, dasin: Fortran

atan?, datan; Fortran

atan, datan: Foriran
imaginary part of complex
return Fortran command-line
varargs: handle variable
formatted output of a varargs
formatted output of a varargs
command. xargs: construct
getopt: get option ketier from
expr: evaluate

echo: echo

be: arbitrary-precision
number facts,

Protocol.

expr: evaluale arguments

characters. asa; interpret
control characters,

ascii: map of

set.

long integer and base-64
number. atol: convert
and/ ctime, localtime, gmtime,
trigonometric/ sin, cos, tan,
intrinsic function.

healp:

ouiput. a.out; COMMOon
output. a.outs.:

a5 comaon

as5.0.

assertion.

asser\: verify program
setbuf, setvbuf:

a fater time.

sin, ©os, tan, asin, acos,
atclangent intrinsic/
arclangent intrinsic/

cos, 1an, asin, acos, atan,
Roating-point number.
double-precision/ strtod,
integer. striol, atol,
integer. striol,

aliens: The alien invaders
autorobots: Escape from the
automatic robots.

lav: print load

processing language.
ungetc: push character

back: the game of
daily/weekly UNIX file system
finc: fast incremental

frec: recover files from a

block information for
/program to set or update
update bad block information.

archive (library) file formal. . .

archive.
archiver.
archives. /archive and library
archives in and outl.
arcsine intrinsic function.
arctangent intrinsic function.
arctangent intrinsic function.
argument. /dimag: Fortran

argument. gelarg:
argument list.

Permuied Index

. atan2(3F)

argument list. fprint
. vprinaf(3X)

argument list. /prini ..
argument list(s) and execute
argument veclor. . .,

arguments as an expression. . . .

arguments.
arithmetic language.
arithmetic: provide drill in
arp: Address Resolution
as an expression.
as: common assembler.
as5.0; assembler.
ASA carriage control
asa: interpret ASA carriage
ASCII character set.
ascii: map of ASCIH character
ASCII string. fconvert between
ASCII string to floating-paint
asctime, tzsek: convert date
asin, acos, atan, atan2:
asin, dasin: Fortran arcsine
ask for help in using SCCS.
assembler and link editor

assembler and Jink editor ., , . .

assert: verily program . . .
assertion.

assign buffering 10 a stream. . . .

at, batch: execute commands at
atan, atan2: trigonomeiric/
atan, datan; Fortran

atan2, datan2: Fortran
atan: irigonometric/ sin, . . .

atof: convert ASCI string to
atof: convert string te
atoi: convert string to

.

. assert(3X)

- . a1an(3F)
. aimag(3F)

getarg{3F)
varargsts}
vprinif{3s)

: . xargs(l)
. getop1(3C)

expril)
echo(l)}
bell)
srithmetic(6)

. arp(5P)
. expril)

as(l}
as5.0(1)
asa(l)
asa(l}
ascii(5)
aseii(5)

. ab41(3C})

alof(3C)

. ¢time(3C)

trig(3IM)
asin{3F}
help{1}
a.out{4)
a.outs.0(4)
as{l)
asS.0{1)

agsert{3X)
setbuf(38)
at(1)
trig(3M)
atan(3F)
atan2(3F)

. trig(IM)

atol, atoi: convert steing to

attack the earth.

automalic robots.
autorobots; Escape from the
average statistics. .

awk: pattern scanning and . . .

back into input stream. . .
back: the game of backgammon.
backgammon.

backup. filesave, tapesave: . .

backup.
backup tape.
bad block handling. /alterna
bad block information.

badblk: program to set or

banner: make posters.

-3.

.. atof(3C)

stried{(3C)
strtel{3C)
striol(3C)
aliens(6)
autorobots(6)
sutorobots(6)
lavil)

. awk(l}

ungetc(3S}

. back{6)

. filesave(1M)

back{6)

finc{1M)
frec{IM)
altblk(4)
badblk{1M)
badblk{1M)
banner{l}

Permured Index

banner?: print targe

printer.

hosts: host name data
networks: network name data
porl. ttytype: data

protocols: protocol name data
services: service name data
terminai capability data
terminal capability data
between long integer and
{visual} display editor
partions of path names.

later time. at,

arithmetic language.

system initiatization/ brc,
string operations. boopy,
_ and byte string operations.

¢b: C program
0. jt, jm, ¥0, yl, yn:

whereis: locate source,
cpset: install object files in
sirings in an object, or other
fread, Pwrite:

bsearch:

tfind, tdelete, twalk: manage
bind:

bcopy, bemp, bzero, ffs:
remove symbols and refocation
/8=t or reset the leletype

Inot, Ishift, rshift: Fortran

bi: the game of

beopy: interactive

sum: print checksum and
block information for bad
program to set or update bad
block/ altblk: alternate
sync: update the super

bit, blt512;

df: report number of free disk
sum7: sum and count

data.

blt,

netmailer: deliver mail to
netmail: the

rshift: Foruran bitwise

system initialization shell/
space allocation.
modest-sized programs.
sorted table.

stdio: standard

setbuf, setvbuf: assign
mknod:

between host and network
fbemp, bzero, fFs: bit and
swab: swap

string/ beopy, bemp,

ce

banner on printer. banner¥{1)
banner7: print large banneron banner7{l)
base. e e e ke e e hosis(4N)
BASE. .« v 4 v e e e e e e networks{(4N}
base of terminal types by tytype(d)
BASE. .+ v n it s e e e aa e protocols{4N)
base. services(4N)
base. termeap: 4 termcap(5}
base. terminfo: terminfo(4)
base-64 ASCI! string. /eonvert . . ab41(3C)
based on ex. fscreen-oriented, vi(l}
basename, dirname: deliver basepame(1)
baich: execule commands ata aifl)

be: arbitrary-precision be(l)

bed: convert to antique media. bed(6)
beheckre, re, powerfail:, . . brc{1M}
bemp, bzero, ffs: bitand byte bstring{IN)
beopy, bemp, bzero, fls: bit bstring(3N)
beopy: interactive block copy. becopy(IM)
bdiff: bigaiff. bdifi{1)
beautifier. cb(1)
Bessel Functions. bessel(3M)
bfs: big file scenner. . . , bfs(l)
binary, and/ or manual I‘orf whereis(1}
binary directories.« . . cpset{1M)
binary Rle. fthe printable strings(1)
binary inputfoutput. fread(3S)
binary search a sorted toble. bsearch(3C)
binary search trees. tsearch, tsearch{3C)
bind a name toa socket. bind(2N)
bind; bind a name to a socket. bind (2N)
bit and byte string/ bsiring(3IN)
bits. strip§.0: Strip5.0(1)
bits to a sensible state. tset(1)
bitwise boolean functions. boel(3F)

bj: the game of black jack. bj(6)
blackjack. bj{6)
blockcopy. beopy (1M}
block countof afile. sum{l)
block bandling. falternate atiblk{4)
block information. badblk: badblk{1M)
block information for bed altbik{4)
block. . .« . - . o e 0. syncil}
block trangler data. bl(3C)
blocks. . - « « - v v i e e e df(1M)
blocksinafile. sum7(1}
bit, blt512: block transfer ., bI(3C)
blt512 block transfer data. bit(3C})
BNET.0 v v e e v o netmailer (8N}
B-NET network mail system. netmail{8N)
boolean functions. flshift, bool(3F)
boot: slartup procedutes. boot(8)
brc, beheckre, e, powerfail: bre(1M)
brk, sbrk: change data segment . . brk(2)

bs: a compiler/interpreter for bs{l}
bsearch: binary sesrcha bsearch(3C)
buffersd input/output package. . . stdie(3S)
buffering to a stream. setbuf(3S)
build special file. mkood(lM)
byte order. Fconvert values byleorder(3N)
byte string operations. bstring (3N}
BYIER. « v n v m e e e swab(3C)
bzero, As: bitandbyte bstring (3N}
Cceompiter. v 400 v o . cell)

o d-

cc5 .0

mcblcc:

cflow: generaie

cpp: the

cpp. the

cb:

{int: &

cxref: generate

mainiain a tags fle for a
ctrace;

xsir: extracl strings from
message file by massaging
value. abs, iabs, dabs,

dc: desk
cal: print

cu:
data relurned by stat system
malloe, free, realloc,

fast/ malloc, free, realloc,
inlro: introductien 1o sysiem
link and unlink system

to an LP line printer. Ip,
termcap: termina

terminfo: terminal

cribbage: the

pnch: file format for

asa: interprel ASA

files.

function. ¢os, dcos,

commeniery of an SCCS delta,
ceiling, remainder,/ floor,
feeil, fmod, labs: Noor,
intrinsic/ exp, dexp,

delts: make a delta

pipe: create an inlerprocess
fdble, cmplx, demplx, ichar,
stream. wngete: push

and neqn. eqnchar: special
file. freq: report on

user. cuserid: get

fgetchar, fgetc, getw: get
/puichar, fputc, putw: put
ascii: map of ASCII

interpret ASA carriage control
_tolower, toascii: ieanslale
isentrl, isasciic classify

given/ sumdir; sum and count
tr: translate

lastlogin, monacct, nulladm./
killer robots.

directory,

fdfsck: file system consistency
checking procedure,
constani-width text for/ cw,
text for nroff or/ egn, neqn,
lint: a C program

grpek: password/group file

C compiler.
C compiler.
C flowgtaph.
C language preprocessor.
C language preprocessor.

C program beautifier.

C program checker.

C program cross-refetence. . .

C program. ctags:
C program debugger.

C programs 10 implement shared/
C source. fcreate an error
cabs, zabs: Foriran absolute . .

Permuted Index

ce5.0(1}
me6Bec(l)

cxref(1)
ctags(1)
ctrace(l}

. oxsirdl)

cal: print calendar.

cakulator,
calendar.

calendar: reminder service. . .

call another UNIX system.
call. stal:

cailoc: main memory allocator, . .

calloc, mallopt, mallinfo:
calls and error numbers.

calls. link, unlink: exercise . .
cancel: send/cancel requests . .
capability data base.

capability dala base.
card game cribbage.
card images.

carriage control characters

cat: concalenate and primt . . .

cb: C program beautifier.

e Ceoompiler.+ ...
¢c5.0: C compiler.

ccos: Foruran cosine intrinsic
cd: change working directory.
cde: change the delta
ceil, fmod, fabs: floor,
ceiling, remainder, absolute/
cexp: Fortran exponential

cflow: generate C flowgraph.
. delall)

(change) to an SCCS file. . .
channel.
char: explicit Fortran type/
character back into input

characier definitions foreqn . .

character frequencies ina . .

character login name of the , .
character or word froma/ . . .
characier or word on a stream,

character set.
characters. @sa:

characters. /_toupper.

characters. Jisprint, isgraph,
characters in the files in the
characters.

chargelee, ckpacct, dod:sk ..

L R T

mksir{l}
abs(3F)
cai(l)
del)
cal(1)
calendar(1)

. cullC)

sta1(5)
malloc(3C)

. malloc(3X}

.

intro(2)
tink (1M}
Ip(i}
termcap(5)
terminfol4)
cribbage{6)
pnchi(4}
asa(l}
cat{i)
ch(1)

cell)

. «c3.001)

cos(3F)
cd(1)
edc(1)
floor(3M)
floor (IM)

. exp(IF)

chow(l)

pipel(2)

. fype(3F)

ungetc(38)
eqnchar(5)

. . freg(l)
. cuserid{1s)

getc(35)

. putc(3S)

chase: Try 1o escape the

chdir: ¢hange working

check and interactive repair. . .
checkaly faster file system . . .

checkew: prepare
checkeq: format smathematical

-5.

ascii(5)
asa(l)

. convi3C)

ctype(3C)

. sumdic(l)

tr(1)
acctsh(IM)
chase(8)
chdir(2)
fsck{1M)
checkall{1M)
cewl(1}

. eqnit)

lint(1)
pwek (1M}

Permisted fadex

checkall: fasier file system
copy file systems with label!
systems processed by Isck.
formatted with the/ mm, osdd,
file. sum: print

vchk: version

system nodename.

chown,

times: get process and
wrminate. wail: wait for
terminate. waitd: wait for

of a file.
group.

for a command.

monacet, nulladm,/ chargefee,
isgraph, iscntrt, isascii:
vuclean: wucp spool directory

clri:

ciear:

stalus/ Ferror, feof,
{command interpreter} with
dlarm: sel a process’s alarm
Cron:

logarithm/ log, alog, dlog,
Idclose, 1daclose:

close:

descriplor.

fclose, Mush:

ftelldir, seekdir, rewinddir,

freal, flpal, sngl, dble,
line-feeds.

comb:

common to two sorted files.
nice: run a

change root directery for a
env: set environment for
uux: UNEX-10-UNIX system
system: issue a shell

only). nohup: run a

C-like syntax. csh: a shell
gelopt: parse

/shell, the standard/restricted
retus ning a siream to a remote
and systemy/ timex: time a
return stream to a remote
per-process/ acclems:
sysiem: issue a shefl

1es1: condition evaluation
time: time a

argument listls) and execute
gelurg: return Fortran

and miscelianeous accounting
intro: introduction to

/1o sysiem maintenance

at, batch: execute

install: install

checking procedure. checkali(1M)
checking. volcopy, labelit: volcopy (1M)
checklist: listof file checklist(4)
checkmm: print/check documents . . mmi{l)
checksum and block count of 2 . . . sum(l)
checkup. - - - wchk{1M)
chgnod: change current UNIX chgnod{iM)
chgrp: change owner or group. . . - . chown(l)
child process times. times{2)
child process o stopor ., wait(2)
child process o stopor wait3(IN)
chmod: chenge made. chmod{l)
chmod: change mode of file. chmod{2)}
chown: change owner and group . . . chown(2)
chawn, chgrp: change owner or . chown(l}
chroot: change root directory. chroot(2)
chroot: change root directory . chroot{1M)
ckpacct, dodisk, lastbogin, acctshilM)}
clussify characters. Jisprint, ctype{3C)
clean-up. s uuclezn{ M)
clear: clear erminal screem. clear(l)
clear bRODE. o w h e e e clri{IM)
clear lerminal screen. - clear(})
clearerr, fil=no: stream ferror(38)
C-like syntax. csh:ashell cshil)
ok, .« . v vt e e e e e e e, alarm{2)
clockdagmon.- cron({IM)
clock: report CPU time used. .« . clock(3C)
clog: Fortran natural log (3F)
close a common object file. Idclose{3X)
close a file deseriptor. - . close(2)
close:close afile close(2)
close or flusha stream. fclose()S)
closedir: flexible length/ directory{3X)
ciri: cleari-mode. L 0L 0 clri{ 1M}
cmp: compare two files, cmpll)
cmplx, dcmptx, ichar, charf fiype(JF)
col: fillerreverse col(l)
comb: combing SCCS deltas. . comb(1)
combine SCCS dehas. comb(l)
comm: select or reject hnes commi(l)
command at fow priority. nice(l)
command. chroot: « v+ Chroot(1M)
command execution. envil}
command execulion. uux{lC)
command from Fortran. system(3F)
command immune to hangups (sh . . nobupil}
{(command interpreter) with csh(l)
command oplions. . - < getoptil)
command programming language. . . sh(l)
command. /routinesfor remd(3N)
command; report process data timex(l)
command. rexec: o« . Texec(3IN)
command summary from acctemns{IM)
command. . - v n e ... system (35}
command. 4 e .. tesi{l)
command. lime(1)
command. xargs: construct xargs(l)
command-line argument. gelarg(3F)
commsands. /of sccounting acct{IM)
commands and application/ intro{l)
commands and application/ intro{ 1M}
commands st a later time. atl)
commands. - - 440 s s s install{ LM}

-6 -

cdc: change the delta

ar:

editor output. s.out:

as:

log!D, alogl0, dleglQ: Foriran
routines. ldfen:

Idopen, Idaopen: open a
/line number entries of a
Idclose, Idaclose: close a
read the file header of &
entries of a section of a

the optional file header of a
fentries of a section of a
/section header of a

an indexed/named section of a
of a symbol table entry of a
symbol table entry of a
seek to the symbol iable of a
line number entries in a
nm:; print name list of
relocation information for a
scnhdr: section header for a
table format. syms:
aouthdr.h - ».0ut header for
filehdr: file header for

d: link editor for

size: print section sizes of
comm: select or reject lines
ipes: report inter-process
Nok: standard interprocess
sockel: creale an endpoint lor
diff: differential file

cmp:

SCCS file. sccsdiff:

Ige, 1gt, lle, 1t string

diff3: 3-way differentia! file
dircmp: directory
expression. regcmp, regex:
regexp: regular expression
regemp: regular expression
term: formai of

c: C

3.0 C

f77: Fortran 77

mobSce: C

lic: terminfo

yacc: yel another
modest-sized programs. bs: a
erf, erfc: error function and
Fortran imaginary part of
conig, deonjg: Fortran

pack, pral, unpack:

table entry of af ldibindex:
cal;

test:

uvar: returns sysiem-specific
parameters. ifconfig:

config:

system, Ipadmin:

conjugate intringic Tuncticn.
conjg, deonjg: Fortran complex
fwimp, wimpfix: manipulate
on a socket.

Permuted Index

commentery of an SCC5 delta. . . .
common archive file format.
common assembter and link
common assembler.
common logarithm intringic/
common object file access
common object file for/
common object file function.
common object file.
common object file.
common ohject file.
common object file.
common object file.
common object file.
common object fle.
common object file.

Idfhread:
/Mumber
/seek to

fseek o
/the index

cde(1}
arid)
a.out(4)
as(l)

. logl03F}

Idfen (4}
Idopen(3X)
Idiread (3X)
Idclose{3X)
1dfhread(3X)
Idiseek(3X}

. Ildohseek{3X)

Idrseek (3X}
Idshread (3X)
Idsseek (3X)

. Idibindex(3X)

common object file. findexed Idibread(3X}
common object Ale. Idibseek: . Idtbsesk{3X)
commoen object file. Enenum: . linenumi{4)
common object file. ., nm(1}
common object file. reloe: reloc(4)
common object file. , scnhdr (4)
common object file symbol syms(4)
common object files. « « aouthdri{4}
common object files. « + .« filehdr{4)
common object files. . ., . . (D
common cbjectfiles. size(1)
common to two sorted fikes. commil}
communication facilities/ ipes(l)
communication package. sidipc(3C)
communicalion. . .« socket(2N)
COMPAraior. .+ + « « + o« v « « o v e GIF(D)
compare wo files. v+« » cmp(l)
compare two versions of an scesdiff{1}
comparision indrinsic/ stremp{3F)
COMPEFISOT. + « + » + = + = + » = « diff3(1)
COMpENISON. .+ « « « + v « « o . .+ dircmp(l)
compile and execute a regular regemp(IX}
compile and match routines, regexp{5)
COMPIIE. + v ¢ ¢ & 4 v v ¢ v v = v s regemp(1}
compiledterm file.. termi4}
compiler. o v oce(l)
compiler. e . 665.001)
compiler. - . Y
compiler. . . . v i u e e e e e, mc68cell)
compiler. tic(IM}
compiler-compiler. o o yace(l)
compiler/interpreter for bs(l)
complementary error function. erf{3M)
complex argument. fdimag: aimag(3F)
complex conjugate intrinsic/ conjg{IF)
compress and expand files. . ., . ., . pack(l)

compute the index of a symbol

. Ildibindex{3X}

concatenate and print files. cat{l)
condition evaluation command. . test{l)
config: configure system. config(IM)
configuration information. uvar(2)
configure network interface ifconfig(8M)
configure system. config(IM)
configure the LP spooling Ipadmin{1M)
conjg, dconjg: Fortran camplex . . . conjg(JF)
conjugate intrinsic functien. conjg(3F)
connect accounting records. fwtmp{1M)

connect: initiate a conneclion

.7-

. connect(2N}

Permnnted Index

gelpeername: get name of
an oul-going terminal line
accept: accep! a

connect: initiate a

down part of a full-duplex
fisten: listen for

accteonl, acctcon:

fsck, dfsck: file system
math: math lunctions and
cw, checkow: prepare
mkislb:

mkfs:

execute command. xargs:
nroff/ troff, thi, and eqn
Is: list

csplit;

asa: interpret ASA carriage
ioctl:

fentl: file

init, telinit: process
msgctl: message

semctl: semaphore
shmctl: shared memory
fentl: file

tep: Internet Transmission
uucp status inquiry and job
v version

interface. uy:

terminais. term:

char: explicit Fortran type
units:

dd:

English. number:
floating-point number. atol:
integers and/ 13tol, ltold:
and hase-64 ASCIL/ abdl, 164a:
/gmiime, asctime, izset:
and VAX-11/780/ fscv:

to string. ecvi, foevl, gevt:
scanf, fscanf, sscanf:
sirtod, atof:

striol, atol, atoi:

bed:

hionl, hions, ntoht, niobs:
conv: object file

dd: convert and

beopy: interactive block
cpio:

Bocess time. deopy:
checking. volcopy, labelit:
¢p, In, mv:

rcp: remote file

UNIX system to UNIX system
UNIX-to-UNIX syslemﬁﬁle
le.

core: format of

mem, kmem:

cosine intrinsic funciion.
atan: trigonometric/ sin,
hyperbolic cosine intrinsic/
functions. sinh,

cos, deos, ccos: Fortran
{dcosh: Fortran hyperbolic

connected peer. - . . getpeername(2N)
connection. dial: establish . , dial(3C)
connection on a socket, accept (2N}
connection ont a socket. . . L . L L. connect{2N)
connection. shutdown: shut shutdown{2N)
conneclions on a socket. listen{2N}
conneci-time accounting. acctcon{1M)
consistency check and/ feck{1M)
CONSIANIS. . . + « v v & 4 0 v v 4. math{5)
constant-width text for wcoff. owl(l)
consiruct a Ate system. - - mkfsib{IM)
consiruct a file sysiem. mifs{1M}
consiruct argument list(s} and . xargs(1}
constructs. deroff: remove deroff{ 1}
contents of directory. Is{1)
contexi split. . . « « . . 4 4 4 . . . csplit{1)
control characters, nzafl)
control device. - 4w . .. ioctl(2}
CONLMD). & . v v a a e e e e e s fond(2)
control initialization. init{1M)
control operations. . . - . . - . . . msgetl(2)
control oparations. semctl(2)
control operations. shmctl(2)
controloplions. . » « « + « v . . . fenuds)
ControfProtocol. episP)
control. uustat: s uustat{1C)
comirol. e e vell)
controlling terminal - . uyi(7}

conv: oect file converter. conv(l)
convenlional namesfor termi$)
conversion. /dcmplx, ichar, fype(3F}
conversion program. units{l)
convertand copyafile. dd(1}
conver! Arabic numerals te number{6)
convert ASCII string t0 alof(3C)
conver! between 3-byte . ., Bol{3C)
convert between long integer . ab4(3C)
convert date and time to/ ctime(3C)
converl files between M68000 . Fscv(IM)
convert floating-point number ecvt(3C)
convert formatted input. scanf(35)
convertsiring to/ striod{3C)
convert string to integer. striok(3C)
convert te antique media, bed{(6)

convert values between host/

. byteorder{IN}

CONVETIEE. . & « « v & a o o » v & o convil)
copyafile.« v ... dd (1)
COPY. « « v = = 2 = e e e e e e beopy(1M}
copy fike archives in and oul. . cpiatl)
copy file systems for optimal . deopy(1M)
copy file systems with label volcopy{LM}
copy, link or move files. . ., - . . cpll)
CODY. + v = = » o ¢ 5 5 « « = « o« = rephLN)
cOpY. uucp, uulog, wuname: uucp(1C)
copy. uuto, uuapick: public uutal{1C}
core: formai of core image core(4)
core image Aile. - core{4)
COTE MEMOLY. - - « « « « + « » o « mem{?)
05, deos, ceos: Fortran cos(3F)
oS, tan, 4sin, acos, atan, - trig{IM}
cosh, dcosh: Fortean cosh(3F)
cosh, tanh: hyperbolic . - sinh(3M)
cosine intrinsic funclion. cos(IF)
cosine intwinsic function. cosh(3F)

.3

Permuted index

sum7: sum and count blocksinafile. ., ., ., sum¥)

in the given/ sumdit: sum and count characters in the fles sumdir{l)
sum: print checksum and block countofafile. sum(l)
we: word cownt. e e e e e e e we(1)
files. cp, In, mv: copy, link or move cp(l}
cpio: format of c¢pig archive. cpio(4)

and out. cpio: copy file archivesin cpio(l)
cpio: format of cpio archive. cpio(d}

preprocessor. cpp: the C language cppll)
preprocessor. cpp: the Clanguage cpps.0(1)
binary directories. cpset: install object fiesin cpset{IM)
clock; report CPU timeused. v o . clock(3C)
craps; the game of craps. + « « 2 . . . v« + . craps(6)
craps: the game of craps. ., craps(6)
system crashes. crash: what fo do whenthe crash(8)
what to do when the system cragshes. crash: crash(8)

rewrite an existing one. creatcreaieanew fileor creat{2)
file. tmpnam, tempnam: create a name for a temporary tmpnam(3S)

an existing one. creat; create s new file or rewrite creat(2)
fork: create a nEw Process. « . + & fork(2)
impfile: create a temporary file. umpfile{3S)
communication. socket: create an endpointfor socket(2N)
by massaging C source. mkstr: creale an error message file mkstr(l)
channel. pipe: create an interprocess pipel(2)
files. admin: create and administer SCCS admin(l}
umask: set and get file creationmask., wriask(2)
cribbage: the card game cribbage. 0. cribbage(6)
cribbage. cribbage: the card game cribbage(6)
cron: clock daemon. cron{lM}
crontab: user crontab file. e e e e crontab(1}
crantab: user crontab file. crontab(1)
caref: generate C program cross-referemce. cxref(l)
optimization package. curses: CRT screen handlingand curses{3X}
more: file perusal filter for crt viewing. e e e s more{l)
crypt: encodefdecode. crypt(1}

generate DES encryption. crypt, setkey, encrypt: . . . , . . . crypt{3IC)
interpreter) with C-like/ csh: a shell (command, . . csh(l}
function. sin, dsin, csin: Fortran sine intrinsic . , sin{3F)

csplit: context split. . ., csplit(1)
intrinsic/ sqr1, dsqrt, csqrt: Foriran square reot sgrt{3F)
terminal. ct: spawn getty toa remoie c{1C)

for & C program. <tags: maintain a tags file ., clags(l)
terminal. clermid: generate filename for clermid(38)

asclime, 1zset: convert date/ clime, localtime, gmtime, ctime(3C)
ctrace: C program debugger. ctrace(l)
cu: call another UNIX system. cu(lC)
11, cubic tic-tac-toe. v e . 11{6)
get/sel unique identifier of current host. /sethostid: gethostid(2N}
sethostname: gel/set name of ¢urrent host. gethostname, gethostname(2N)
set or print identifier of current host system. hogtid: hostid(1N)
hostname: set or (wint name of current host system. , . . . hostname{1N)
sctivity. sact: print current SCCS file editing sact(})
chgnod: change current UNIX system nodename. . . chgnod{1M)
uname: print name of current UNIX system. uname(l)
uname: get name of current UNEX system. uname{2)
whoami: print effective currentwser id. « . whoami(1}
slot in the utmp file of the current user. ffindthe ttyslot(3C)
getewd: get pathname of current working directory. gelcwd(3C)
and eptimization package. curses: CRT screen handling curses(3X)
spline: interpolate sMooth CULVE. . . = & . v & 4 4 4 0 n 4 - spline{1G)

name of the user. cuserid; gel character login cuserid(38}
of each line of a file. cut: cutl out selecied fields cut(l}
each line of a file. cut: cut out selected fieldsof cut{l)
constant-width 1ext fer/ ¢w, checkew: prepare . , cw(l)

.9.

Permuted Index

cross-reference.

absolule value. abs, iabs,
intripnsic function. acos,
cron: clock

errdemon: etror-logging
terminale the error-logging
routed: network routing
runaccl: run

buckup. Blesave, Lapesave:
Protocol server. [ipd:
lelngtd:

Proloco] server. tiped:
fhandle specia) funclions of
specil functions of the
intrinsic function. asin,
flime a command; report process
hosis: host name

nelworks: network name
pori. tylype:

protocols: prolacol neme
SETvices: service name
termcap: terminal capability
terminfo: terminal capability
bli, bli51Z: block wransfer
generate disk accounting
fsgell: access long integer
plock: bock process, text, or
prof: display profile

call. stat;

brk, sbrk: change

types: primitive system
join: relational

tput: query terminfe

udp: Internet Liser

intrinsic funclion. atan,
intrinsic function. atan2,
Jasctime, tzset: convert
date: print and set the

fidin1, real, float, sngl,

floar, sngl, dble, cmplx,
cenjugate intrinsic/ conjg.
optimal access time.
intrinsic function. cos,
cosine intrinsic/ cosh,

difference intrinsic/ dim,
clrace: C program

Fsdb; file system

sdb: symbolic

sysdef® system

eqncher: special characier
peaple. delivermail:
netmailer:

names. basename, dirname:
file. rail:

aliases: aliases file for
arbitrary people.

delta commmentary of an SCCS
file. delta: make a

delta. cdc: change the
rmdel: remove a

to an SCCS file.

cxref: generale C program cxref(l)
datbs, cabs, zubs: Forttan abs{3IF)
dacos: Foriean arccosine acos{3F)
daemon. 0000 .. cron{iM)
daemon. 0 e e e e e e e s eredemon(1M)
dacmon. errstop: . .+« « 4 v 4 . . errstop{1M)
daemom. e e e e e e s routed(§N)
daily accounting. runacct{iM}
daily/weekly UNIX file system . , . . Flesave{IM)
DARPA Internet File Transfer . fipd(8N)
DARPA TELNET protocol server. . . 1enetd{BN)
DARPA Trivial File Transfer tipd(8N)
DASI 300 and 300s (erminals. 300(1)
DASI 450 terminal. /handle 450(1)
dasin: Fortran arcsine, asinlIF)
data and system activity. timex{!}
database.00 hosis(4N)
dala base. . . . v . n e e e e e s networks{4N)
data base of 1etminal types by Lytype(d)
datsbase. protocols{4N)
database. 0 h v due . services{4N)
database. termcap(5}
database. ii.oaa terminfo(4)
data. e e e e e e bl(3C)

data by user ID. diskusg: diskusg(IM}
data in 4 machine independent/ . sputl(3X)
data in MEMOTY. . + + « « & « « o . plock (2}
T profil)

data returned by siat system stai(5)

data segment space atlocation. brk(2)

data WYpes. h e e e e iypes{5)
database operator. joinl1)
database. 0. a . w0 tput{l}
Datagram Protocol. udp(5P)
datan: Fortran arclangent aten(3F}
datan2: Fortran arcaangent utan2({3F}
date and time to steing. ctime(3C)
date. e date(1)
date: print and set the date. ., date(l}
dble, cmplx, demplx, ichar,/ fype(3F)
de: desk caleulator. o . . . de(l)
demplx, ichar, char: explicit! Type(3F)
deonjg: Fortran complex conjg(3F)
deopy: copy file systemsfor dcopy(IM)
dcos, coos: Fortran cosine cos(IF)
dcosh: Fortran hyperbolic cosh(3F}
dd: convert and copy a file. dd{1)

ddim, idim: positive dim{3F}
debugger.- ctrace(l)
debugger.00 . fsdb(1M)
debugger. e e . scbil)
definition. sysdef{IM)
definitions for eqn and negn. eqnchar(5)
deliver mail to arbitrary delivermail{8N)
deliver mail 1o B-NET. netmaiber (8N)
deliver portionsof path basename(l)
deliver the last partofa til(1}
delivermail. aliases(FN)
delivermail: deliver mailto delivermail(8N)
delta. cdc: changethe cde(l)

delta (change) 0 an SCCS delw(l)
delta commentary of an SCCS ede(l}

delta from an SCCS file. rmdel{I)
deita; make a delta (change} deltatl)

-10-

comb: combine SCCS
Mesg: permit or

tbl, and eqn constructs.
setkey, encrypt: generate
close: close a file

dup: duplicate a

dup: duplicale a
getdtablegize: get

de:

file. access:

file:

errors in the specified
master: masier

ioctl: control

devnm:

exponential intrinsic/ exp,
blocks.

check and interaclive/ fsck,
terminal line connection.
ratfor: rational Fortran
bdiff: big

comparator.

diffdir:

comparison.

dim, ddim, idim: positive
sdiff: side-by-side

diffmk: mark

diff:

Qiff3: 3-way

between files.

difference intrinsic/

of complex argument. aimag,
intrinsic function. aint,

install object files in binary
diffdir: diff

dir: format of

rm, rmdir; remove files or
in the files in the given
od: change working

chdir: change working
chroot: change root
uuckean: yucp spool
dircmp:

unlink: remove

chreot: change roet
{make a lost+found
pathname of current working
Is: list contents of

mkdir: make a

mvdir: meve a

pwd: working

felosedir: flexible length
ordinary file. mknod: make a
path names. basename,

printers. enable,

acct: enable or

dis;

type, modes, speed, and line
ID. diskusg: generate

Permured Index

deltas. e e s .« . comb(D)
deny messages. .+ - o+ . .o« ox o . . mesg(l)
deroff: remave nroff/troff, deroff(l)
DES encryption. ¢rypl, crypt(3C}
desctiplor. v v xoa . close(2)
dEeSCTiPIOr. .« o « « v r v v b n e e dup2(IN}
descriptor, .+ + - « v v 4 o n e s dup(3)
descriptor table size. petdiablesize(3N)
desk calculator. . . e e e e de(D)
determine accessibility of a .+ . . . access(2)
determine file wpe. file{l)
device. fon/off the extended exterr(l)
device information table. master(d}
device, e ioctl{2)
deviCE MAmME. . . . 4 . e b . . oa s devnm(lM)
devnm: device name. v« .« . devam(1M)
dexp, cexp: Fortran exp(3F)
dr: report number of free dl.slc v .. dfIMD
dfsck: file system consistency feck{1M)
diak: establish an out-going dial(3C}
dialeet. ratfor{l)
diff, «+ ... e . . . bdiff(1}
diff: differential file diff()

diff directories. v .. . diffdie(n)
diffd: 3-way differential file diff3(1)
diffdir: diff directories. diffdir(1)
difference intrinsie/ dim(3F)
difference program. sdiff(l)
differences between files. ., diffimk{1)
differential file comparator. diff{1}
differential file comparison. diff3(1}
diffmk; mark differences . , ., . . . diffmk{1}
dim, ddim, idim: positive dim{3F)
dimag: Fortran imaginery part wimag(3F)
dint: Fortran integer part aint(3F)
dir: format of directories. dir(4)
dircmp: direciory comparison. diremp(l)
ditectories. cpset: « » cpset(IM)
directories. diffdir(1)
directories, v e e o« o dir{d}
directories. « . -« v 4 osn s . s tm(1)
directories. /count characlers . . sumdir(1)
directory. o e ed(1)
directory, 0. .. « « « . chdir{2)
directory, . - « + ¢« = - chroot(2)
directory clean-up. uuclean{1M)
directory comparison. «+ . . . diremp(1)
directoryentry. unlink{2)
directory for a command,, . . chroot{IM)
directory for fsck. mklost+fnd{1M}
directory. getcwd: get getewd(3C)
directory. . . .0 v r e e 1s(1)
directory., . mkdir{1}
direciory. 0w+« mvdir(IM)
direclory npame. pwd(1)
directory operations. . . ., directory(3X}
ditectory, or a specigl o mknod(2)
dirname: deliver portions of basename(l)
dis: disassembler. o oo dis(l)
disable: enable/disable LP enable(l)
disable process accounting. acct(2)
disassembler. 004 .. dis{1)
discipline. /set terminal getty(IM)
disk accounting data by user disknsg(IM)

211 -

Permuted Index

df: report number of lree
diskformal: formal a
diskeune: tune floppy

du: summuarize

settling time parumeters.
accounting dats by user [D.
mount, umaount: mouni and
vi: screen-oriented (visual)
prof:

rain; animated raindrops
WOCS: animate worms on a
hypot: Euclidean

fleong4l: generate uniformly
iogarithm/ log, alog,
logarithm/ logl(, aloglO,
max, max(}, amax0, maxl, amaxl,
min, minQ, aming, minl, aminl,
intrinsic/ mod, amod,
nearest integer/ anini,

mm, osdd, checkmm: print/check
macro package for formatting
macro package for formatting
slides. mmt, mvt: Lypeset
nulladm,/ chargefee, ckpaccy,
whodo: who is

intrinsic function. dpred:
fatof: convert string to
/fMotorola S-records from
product intrinsic function.
nrand48, mrand48, jrand48,/
graph:

arithmeltic: provide

pty: pseudo terminal

sx\: pseudo-device
transfer-of-sign/ sign, isign,
intrinsic function. sin,
intrinsic function. sinh,

root intrinsic/ sqrt,

intrinsic function. 1an,
tangenl intrinsic/ tanh,

an object file.

exiract error records from
od: octal

object file. dump:

dup2:

dup:

The alien invaders attack the
echo:

floating-point number to/

program. end, etext,

ex,

gact: print current SCCS file
/ (visual) display

ed, red: text

ex, edit: text

flles. Id: link

1d5.0; link

common assembier and link

disk blocks. .« . . o v . 0. driimM)

disk. - . L e e e e e e e disklormat{ M)
disk setiling time parameters. disktune(lM)
disk usage.0 .. duf(l)
diskformal: format a disk. diskformatt M)
disktune: lune foppy disk diskiune{IM)
diskusg: generate disk diskusg(iM}
dismouns file system. mount{IM)
display edilor based onex. vill)

display profile data. prof(l)
display. rain(6)
display terminal. wormsl6}
distance function. hypol{IM)
distribuled pseudo-random/ . . . _ . drand48{3C)
dlog, clog: Forlran taturat log{3F)
dlegl0: Fortran common 1og10(3F}
dmuax]: Fortean maximum-value/ . max{3F)
dminl: Fottran minimum-value/ . . . min{3F)
dmod: Fortran remaindering . mod(3F)
dnind, nint, idnint: Fortran round{3F)
documents formutted with the/ . mmf{l)}
documents. mm: the MM mm(5)}
documents. /the OSDD adapler . mosd(5)
documents, view graphs, and . mmti{l}
dodisk, lastlogin, monacct, accish{1M)
doingwhal, whaodo(1M)
double precision produet dprod(3F}
double-precision number, striod (3C)
downloading intoafile. revhex(1)
dprod: double precision dprod(3F)
drand48, erand48, Irand48, drand483(3C}
drawagraph. graph{1G}
drilt in number facts. arithmetic(6)
driver. . ¢ v v h e e e e e e piy (5}
driver. skl

dsign: Fortran« sign(3F}
dsin, csin: Fortran sine sin{3F)
dsinh: Fortran hyperbolic sine . sinh{3F)
dsqrt, csqrt: Foruran square sqrt{JF)
dtan: Fortran tangent . . ., ., . . ., . an{3F)
dianh: Fortran hyperbolic tanh(3F}
du: summarize disk usage. du(l)

dump: dump selected parts of . dump(i}
dump. errdead: 4. .. errdead{1M)
dump. v e . 0di1)

dump selected partsofan dump(l}
dup: duplicate a descriptor. dupi3}
dup2: duplicate a descriptor. Sup2(IN)
duplicate a descriptor. dup2{3IN)
duplicale a descriptor. dup(3)
earth. aliens: aliens(6)}
echosrguments. echo(l)
echo: eche arguments. echofl)
ecvt, fovt, gevi:convert ecvi(3C)

ed, red: lexteditor. ed{(l)

edata: last locationsin end(3C)
edit: iexteditor, ex(l}
editing activity. sact(1}
editor based onex. vill)
L L4 0
editor. ., 0 ... oex(l)
editor for common object 1d(1)

editor.00 b0 ... 145.0(1)
editor output. gout a.out{4)

-12 -

Permuted Index

. . a.outs.0(4)
. . sed(l)

. . whoami(l)
. setregid(2)

a.outs.0; assembler and link editor outpat.
sed: stream editor.

whoami: print effective current user id.

setregid: set real and effective group ID. . . .

fuser, real group, and effectivegroupIDs. getuid(d)
setreuid; set real and effective user ID’s, setreuid(2)
and/ /getegid: get real user, effective user, real group, getuid(2)
Language. efi: Exiended Fortran . . , efi(l)
fsplit: split 177, ravfor, or eflfiks. . . , . . voeoe e Bsplit(l)
for a pattern. grep, egrep, ferep: searchalile v e . grepll)
insque, remque: insert/remove element ftomaquewe. insque(IN)
enable/disable LP printers. enable, disable: ., . , enable(l)
accounting. accl: enable or disable process acct(2)
enable, disable: enable/disable LP printers. enable(l)
crypt: encodefdecode. o o crypr(l)
encryption. crypt, setkey, encrypl: generate DES crypL{3C)
setkey, encrypl. generate DES encryption. crypt, crypl(3C}
makekey: generate encryplionkey. makekey(l)
locations in program. end, elext, edata: Jast « .. end(30)
fgetgrgid, getgrnam, seigrent, endgrent, fgelgrent: obtain/ getgren (3C)

/gethostbyname, sethostent, endhostent: get network host/ gethostent{3IN)
/geinetbyname, seinetent, endneteni: get nelwork eniry. getnelent{3N)
socket: create an endpoint for communication. socket{2N)
/getprolobyname, setprotoent, endprotoent: gel protocol/ getprotoent(IN)
fgetpwuid, getpwnam, seipwent, endpweni, fgetpwentzget/ getpwent(3C)
/getservbyname, setservenl, endservent: get service entry. petservent{3N)

wmp/ /pututline, seluient, endulent, utmpname: access getut{3C)
convert Arabic numerals to English. number: number{6)
nlisi: ge1 entries from name ist. , . nist(3C)
file. linenum: line number entries in a common object linenum{4)
man: print entries in this manuwal. man(1)

man; macros lor formatting entries in this manwal. man{$)
file/ /manipulate tine number entries of a common object, , Idiread(3X)

/ldnlseck: seek to line number entries of 8 sectionolal Idiseek(3X)
fldnrseek: seek 10 relocalion entries of a sectionofa/ Idrseek{3X}
utmp, wimp: utmp and wimp entry formats. utmpld}
/igetgreni: obain group file eowry from a groupfile. getgrent(3C)
endhosient: get network host entry. /sethostent, gethosten1(3N)
endnetent: get network entry. /setnestent, gewnetent (IN)
endprotoent: gel protocol entry. /setproloent, getprotoent(3N)
fgetpweni: get password file entry. /setpwent, endpwent, gelpweni{3C)
endservent: get service entry. fsetservent, « .. getservent(3N)
utmpname; access utmp fike entry. /setutent, endutent, gelut(3C)

fthe index of a symbol table entry of a common object file. Idtbindex{3X)

fread an indexed symbol lable entry of a common object file. Idtbread(3X)
putpwenl: write password file entry. o 0 4 v 4 . . .+ putpwent(3C)
unlink: remove directory entry. v v+ s 1+ unlink(2}
command execution. env: set enwronmem for env(l)
environ: user environment. environ{5)
profile: setling vp an environmenti at login ime. profile(4)

environ: user enviconment. 4+ « + . . environ($)

execution. env: sel environment for command ., . . ., . env(l)
geteny: return value for environment name. getenv(3C)
printenv: print oul the environment, printenv{l}
puteny: change or add value to environment. putenv{3C)
getenv: return Fortran environmenti variable., . , gelenv(IF}

character definitions for egn and negn. fspecial eqgnchar(3)
remove ntoff/iraff, tbl, and eqn constructs, derofl: decoff{l)
mathematical text for nroff/ eqn, negn, checkeq: format egnil)

definitions for eqn and neqn. eqnchar: special character egqnchar(5)
mrand48, jrand48,/ drand48, erand48, Irand48, nrand48, drand48{3C)
complementary error funclion. erf, erfe: error functionand erf(3M)
complementary error/ erf, erfc: ervor functionand erf(3M}
from dump. errdead: extract error vecords errdead{1M)

-13 -

Permuted Index

daemon.

format.

system error/ perror,
interface.

complementary/ erf, erfc:
function and complementary
massaging C/ mkstr: create an
sys_errlist, sys_nerr: sysiem
10 syslem calls and
errdead; extract

matherr:

errfile:

errdemon:

errslop: lerminate Lhe
errar:

process a repart of logged
/turn on/off the extended
hashcheck: find spelling
logged errors.

error-logging daemon,
robols. sutorobots:

rehols:

chase: Try 10

lerminal tine/ dial:

seitmnt:

in program. end,

hypoi:

EXpression. expr

test: condition

display editor based on
reading orf locking: provide
execlp, execvp: execule af
execvp: execute/ execl, execv,
execl, execv, execle, execve,
execve, gxeclp, execvp:
regemp, régex: compile and
construcl argument list(s) and
time. at, batch:

set environment for command
sleep: suspend

sleep: suspend

MOnilar: prepare

rexecd: remoteg

vrofil:

UNIX-10-UNIX sysiem command
execvp: execule af execl,
execuled execl, execy, execle,
fexecv, execle, axecve, execlp,
syslem calls. link, unlimk:

u new file or rewrite an
process.

exit,

exponential intrinsic/
exponential, logarithm,/

pcat, unpack: compress and
cmplx, dempix, ichar, char:
adventute: an

exp, dexp, cexp: Fortran

exp, log. logld, pow, sqri:
EXPTESSION.

routines. regexp: regular
regemp: regular

expr: evaluate drguments as an

errdemon: ercor-logging . . .

errfile: error-log file .,
errno, sys_errlist, sys_nerr: . .
erroc; error-logging
error functionand
error funclion. ferfc: error .
error message fileby

error messages. /ermo,
error numbers. /introduction .
error records from dump. . . .
error-handling function, . . - -

error-log fle farmat. .,
error-logging daemon.
error-logging daemen.
error-dogging interface, |, . , .
BrroOrs. BrIpll -
errors in the specified/ . . .

errors. fhashmake, spellin, . .
errpl: process 8 reportof . . .
errstop: lerminate the ., . . , .
Escape from Lhe aulomatic . .
Escape fram Lhe robots.
escape the killer robp1s,
establish an cut-going

establish mount table. ., . . .
eiexi, edata: last locations . . .

Euclidean distance function. . .
evaluate arguments asapn . . .
evaluation command.
ex, edit: text editor. . ., . .
ex. /screen-oriented {visuall .
exclusive Gle regions for . . .
execl, execv, execle, execve, .
execle, execve, execlp,
execlp, execvp: execule a/ . .
execute a file. fexecle,
execute a regular expression, .
execute command. xargs: .
execuie commands al a later .

execution. env:
execution for an interval. . . .
execution for interval
execution prefite. . . ., , ., .,
execulion Server. . ,
execution time profile,
execulion. wux: ., ., . . .

execv, execle, execve, execlp, .
execve, execlp, execvp: . . L .
execvp: execule a file. . . .,
exercise link and unlink
existing one. creal: create . . .
exit, _exiv terminate
_EXiL lerrninate process. . . .
exp, dexp, cexp: Foriran . . .
exp, log, logl0, pow, sqri: . . .
expend fBles. pack,
explicit Fortran type/ /fdble, . .
exploration game.
exponentisl intrinsic/, .
exponential, logarithm, power,/
expr: evaluate arguments as an

expression compile and malch .
expression compile. , . ., . . .
expression. . . .

.14 -

errdemon{iM)

errfile(4)
perror{3C)
error(7)
erf{3M)
erf{iM}
mkstril)
perror{dC)
intro(2)
errdeadiiM)
malherr(3M}
ersfile(4)
errdemon{1M)

. errstopl1M}
. error(T)
. errpli vl

exterr{l)
spellil)
errpll1 v}

. errstop(IM)}

autarobois{6)
robotsié)
chase(6)
dial(3C}
setmnt(IM)
end(3C}
hypot{iM)
expril}
1estil)
ex{l)

vitl)
locking(2)
exec(d)

. exec(2}

execi?]
exec()
regempl(3IX)
xargs{l)
at(1}
env(l)
sleep{l}
sleep{3C}
monitor{3C)
rexecd (8N)
prohl{2}
uux{1C)
exaci?}
exec({2)
exec(2}
link{LM}

. creatf2)

exil{2)
exitt2)
expllF)

. explIM)

packil)
ftypetiF}
adventure(6)
exp(3F)
expliM)
expril}
regexp{3}
regemp(l)
expr(l}

o~

compile and execute a regular
exterr: turn ondofl the

efl:

greek: graphics for the
exiended errors in the/
dump. errdead:

programs to implement/ xsir:

Fsplit: split
remainder,/ floor, ceil, fmod,
factor:

irue,

data in a machine independent
finc:

fealloc, mallopt, mallinfo:
procedure, checkall:

abort: generate an 10T

a stream.

floating-point number/ ecvy,
fopen, freopen,

status inquiries. ferror,
fikeno: stream stalus/
statistics for a file system.
stream. [fclose,

beopy, bemp, bzero,

word from a/ getc, getchar,
fgetgroam, seigreni, endgrent,
/geipwnam, setpwent, endpwent,
sweam. gets,

pattern. grep, egrep,

times. utime; set

Idfcn: common object
determine accessibility ol a
tar: lape

cpio: copy

mksir: create an error message
pwek, grpek: password/group
chmod: change mode of
change owner and group of a
aiff: differential

diff3: 3-way differential

fentl:

fentl:

conv;: object

rcp: remote

public UNIX-10-UNIX system
core: format of core image
umask: set and get

crontab; user crontab

fields of gach line of a

dd: convert and copy a

a dela (change) o an SCCS
close: close s

selected parts of an object
saci: prinl current SCCS
/fgeigrent: obtain group
fgelpwent: get password
utmpname: access utmp
putpwent: write password
execlp, execvp: execule a

eXpression. regemp, regex:
extended errors in the/

Exiended Fortran Language.

extended TTY-37 type-box.

exterr: turn onfoff the |, | . | .
extract error Tecords from

extract strings from C
£77: Fortran 77 compiler.
77, ratfor, or efl files.
fabs: Moar, ceiling,
factor a number.

factor: factor a number. . . , .,
false: provide truth values. . . .
fashion. /access leng integer . .
fast incremental backup, . . ., . ..
fagt main memory atlocator,

faster file system checking
fault.

.o

fclose, Mush: close or lush

fentd: file control. . . .
fenil: file centrol optlions.
fovi, gevl: convert
fdopen: open a stream.
feof, clearert, fileno: stream
ferror, feof, clearerr,

e

fl: list fite namesand . .,
fllush: close or flusha , ., ., . ..

{Ts: bit and byte siring/
fgetc, gelw: get character or . . .
fgetgrent: obiain group A/ . . .
fgetpwent: get password fle/

fgets: get a string from a
fgrep: search afile fora, .
file access and modification . . .
file access routines. . .
file. access:
file archiver.
file archives inand out. .,

st 4 R E a a4 o w

file by massaging C source, . ., . . .

file checkers. .
file.
Ale. chown:
fike comparator.

file comparison. 4 . .

filecontrel., .
file control options. .
file converter.
file copy. .
file copy. uuto, uupick: , . , . .
file. ...
file creation mask.
file.
file. cuw cut out selected . ., ., .
file.00
file. defta: make
file descriptor.

file: determine file type. ,
file. dump: dump
file editing activity.
file entry from a group file.
file entry. /endpwent,
file entry. /endulent,
file eniry.
fite. fexecv, execle, execve,

)

T T

-15 -

Permuted Index

regemp(3X}
exterr{l)
efl{1)
greek(5)
exterr(l)
errdead({1M)
xstril}
f77(1)
fsplitf1}
floor (3M)
.« Facior(l}
. . factor(1}
.« true(l)
. . sputl{3X)
finc(IM)
malloc(3X)
checkall(1M)
abort(3C)
fclose (35)
fontl(2)
fentl(5)
ecvi(3C)
fopen{35)
ferror(35)
ferror(38)
T(IM)
fclose(38)
bstring (3N)
gelc(3s)
. . getgrent(3C)
getpwent (3C)
gels(35)
grepll)
. utime(2)

. ldfen(4)
access(2)
. . tar(1)
.+ epiall)
mkstr{l}
pwek(IM)
chmod(2)
chown(2)
. . Giff(1}
diff3(1)
fentl(2)
fentl(5)
conv(l)
replIN)
nuto(1C)
carel{d)
umask(2)
cronteb(l)
cutdl)
dd(1)
delta(l)
close(2)
file(1)
dump(l)
. sact{l}
getgrent(3C)
getpwent(3C)
. getul{3C)
putpwent{3C}
exec(?)

Permuted Index

ctags: maintain a lags

grep, egrep, fgren: search a
aliases: aliases

Idaopen: open a common object
ACCL: per-process accouiting
ar: commoaon archive

ar5.0: archive (library)

errfite: error-log

pnch:

integ: introduction to

on character frequencies in a
take: fakes a

enlries of a cornmon object
get: get a version of an SCCS
group file entry from a group
group: group

files. filehdr:

file. Idfhread: read the
Idohseek: seek to the optional
split; split a

issve: issue identification

of a member of an archive
close & common abject

file header of a common ohject
symbol name for object

a section of a common object
file header of a common obiect
a section of a common object
header of a common object
section of a common chject
table entry of a common object
tabde entry of a common object
table of a commaon object
entries in a common object
fink: link to a

mknod: build special

or a special or ordinary

a Ale sysiem. iT: list

change the format of a text
neme list of common object
null; the null

ffind the slot in the utmp
put: puts a

/identify processes using a
One. creat: Create a new
passwd: password

or subsequent lines of one
viewing, more:

soft~copy werminals. pg:
Frewind, ftell: reposition a
1seek: move read/write

prs: print an 5CCS

from downloading inlo a
read. read from

readv: read from

locking: provide exclusive

for 4 common object

remove a della from an SCCS
bfs: big

twa versions of an SCCS
seesfile: formal of SCCS
header for & commoan object
size5.0: size of an object

sta, fstal: get

file fora C program. clagsil)
fileforapattern. . . . « . . « + « « grepl(1}

file for delivermail. aliases(TN)
file for reading. Idopen, idopen{3X)
fileformat.« v v 4 . . . BcCU4)
fileformat. ar{4)
fileformat. ar$.0(4)
fileformat. errfile{4)
file format for card images. pnchi{4)
fileformats.« v v o 4 e v oo intra(4)

file. freqzreport freg(l) —
file from a remote machine. 1ake(1C)
file function. /line number Idiread{3X)
file. + & v v v v i e get(l)

file. /fgetgrent: obtain getgrent{3C)
file. . . & . f e e e e e e e groupid}

file header for common object
file header of a common object
file header of a common object/

fileinto pieces.+ « split(1)

Ble. o v v v i s e e e e issue(4)

file. /read the archive header . Idahread{3X)
file. ldclose, Idaclose; Idclese{1X}
file. Idfhread: read the idfhread{3X)
file. Idgetname: retrieve ldgetname(3X)
file. /line number entriesof Idiseek (3X)
file. /seek to the optional ldohseck{3X)
file. frelocation entriesof idrseek (3X)
file. findexed/named section . Ildshread{}X)
file. /io an indexed/named ldsseek(3X}
file. /the index of a symbol idtbindex (3X)
file. fread an indexed symbol . Idtbread(3X)
fle. /seek 10 the symbol ldtbseck{3X)
file. linenum: line number linenum(4)
file. . . 00 e e e link (2} ——
file. . . & v i i mknod{1M)
Rle. fmake a directory, mknod{2}
file names and staustics for fM)

file. ewform: newlform(l)
file. nm: peint nm(l)

file.- . . null{?

file of the current user. . . « yslot(3C}
file onte a remote machine. put(1C)

file or file structure. fuser{1M)
file or rewrite an existing . - . - - - creat(2)

file. passwd(4)
file. flines of severalfiles paste{l}

file perusai filter forert morell)

file perusal filler for pell)

file pointer in a stream. Iseek (35}

file pointer. ¢ Iseek{2)

file, . . & s e e e e e e e prsili)

file. /Molorola S-records revhexil)
file.« . 0. read(2)

file., « . - o o e e e readv{IN)
file regions for readingor/ lockingi2)
file. /relocation information reloci4)}

file. omdel: 0. emdel(1}
flescanmer. . .« v v v o v 0w . bfs(t) -
file. sccsdiff: compare scesdiff (1}
Ble. « + - ¢ v v e e e e e e e secsfile(4)
file. senhdr: section scnhdri4)
file. & o 0 e s e e e e size5.0(1)
filestatus. v v o 0. 0. statl2}

- 16 -

filehar (4)

. Idfhread{3X)
. ldohseek{3X)

in an object, or cther binary
information from an object
pracesses using a file or
checksum and block count of a
sum and count blocks in a
syms: common object
tapesave: daily/weekly UNIX
procedure. checkall: faster
and interaclive/ fsck, dfsck:
fsdb:

names and statistics for a
volumne.,

mkisib: construct a

mkfs: consiruct a

umount: mount and dismount
mount: mount a

ustat: get

mnttab: mounted

umount: unmount a

access time. dcopy: copy

fsck. checklist: list of
valcopy, labelit: copy

deliver the last part of a

term: format of compiled term
tmpfike: create a temporary
create a name for a temporary
and modification times of a
fip:

fipd: DARPA Internel

tiipd: DARPA Trivial

fiw: walk a

file: delermine

undo a previous get of an SCCS
reporl repeated lices in a

vel: validate SCCS

write: wrile on a

wrilev: write on a

umask: sel

common object files.

ciermid: ganerate

mklemp: make a unigque
ferror, feol, clearerr,

and print process accounting
merge or add tolal accounting
create and administer SCCS
a.oul header for common object
VAX-11/780/ fsev: convert
updater: update

updater: update

cat: concatenate and print
Cmp: compare two

lines commeon to two sorled
cp, In, mv: copy, link or move
mark differences between

fike header for common object
find: find

frec: recover

formal specification in text
split F77, ratfor, or efl

hex: translates object

cpsel: install object

and count characlers in the
intro: introduction o special
link editor for common object

/—\

R

.'/_k '

—

Permuted Index

file. /the printable sirings strings{1)
file. /symbol and line number . strip(1)

file siructure. fidemtify {user{1M)
file. sum:print sum(l}

file. sum?: sum7(1}
file symbol table format. symsid)

file sysitem backup. filesave, filesave(1M)
file system checking checkall(1M)
file system consistency check . fack(1M)
file system debugger. - . . . fsdb(IM)
file system. - listfile ., fi{IM)

file sysiem: format of system . . fs(4)
filesystemn. o v o o mkisIB{EM)
filesyslem. . . . v v v « v v v « . mkfs(1M)
file systemn. mount, moum{lM)
filesystem.o o mount{2)
file system statistics. ustat(2)

file systemtable. mnttab(4)
Alesystem. v« . . « umouni{2)
file systems for optimal deopy(IM)
file sysiems processed by checklist{4)
file systems with label/ volcopy(IM)
fle. taik 00 v o tail(1)

file. ... v i it e term(4)

Ble. « « . v v v v o s e e e tmpfile(35)
file. tmpnam, tempnam: tmpnam{35)
file. touch: update access touch(l)
file transfer program. ftp(IN)

File Transfer Protocol server. . ftpd(8N)

File Transfer Protocol server.

- . tftpd(8N)

filetree. & v v v v 4w e ftw (3C})
filetype. « + + v v v v v e e e s file(1)
file. unget: o .. unget(l)
file. uniq: unig(1)
fife. & . v v v r e e e e e e vai{l)

file. i v i ie o write(3)
file. . . v v v v v e e e e e .. wrilev(IND
file-creation mode mask. umask (1)
filehdr: file header for filehdr{4)
filename for serminal, ctermid (35)
Blename. e e e e e e e s . mklemp(3C)
fileno: stream status/ ferror(38)
file(s). acctcom: search acctcom(1}
files. BCCUMIETE: « + + + « « « v + = » acctmerg{1M}
files. admin: admin(1)
files, aouthdr.h- aputhdr{4}
files between MGB0ODD and fscv (IM)
files beiween two machines. updater(1}
files between two machines. updater{IM}
files. 04 v v s v v« catll)
1 cmp(l}
files. comm: select or reject comm(]1}
Bles, .+ v & v v e e e e e e e e cpll)
files. diffmk:, difm;ki{l)
files. filehdr: filehdr(4)
files.0.0... find(1)
files from a backup tape. frec{IM)
files. fspec: + + v v v 4 v o x4 o . [spec(d)
files. Tsplit: e s e e e e s o Tsplin(l)
files. . . . ¢ v i i e e e hex(1)
files in binary direclories. cpset{1M)
files in the given/ fsum sumdir(l)
files.00 intro(?)
files. Id: . . 0 b b v e e e e e 1d(1}

Permuted index

lockf: record locking on

rm, rmdic: Temove

/merge same lines of several
unpack: compress and axpand
pr: print

section sizes of common object
50rt: s0r1 and/ or merge
reparts version number of
what: identily SCCS
daily/weekly UNIX file system/
more: file perusal

terminals. pg: file perusal
greek: select terminal

nlk line numbering

col:

tplot: graphics

find:

hyphen:

ttyname, isalty:

object library. lorder:

object library. lorder5.0:
hashmake, spellin, hashcheck:
an object, or other/ strings:
of the currenl user. uyslol:
fish: play “'Go

lee: pipe

/seekdir, rewinddic, closedir:
int, ifix, idint, real,

atol: convert ASCII siring 10
ecvt, fovl, gevl: convert
fmodf: manipulate parts of
floor, ceiling, remainder./
floor, ceil, fmed, fabs:
parameters. disklune: wune
cflow: generate C

fclose, Mush: close or
remainder,/ floer, ceil,
siream.

diskformat:

per-process accounting file
ar:. common archive file
ar5.0: archive (library) file
errfile: error-log file

pnch: file

nroff orf eqn, neqgn, checkeq:
newform: change the

inode:

lerm:

core:

cpio:

dir:

scesfile:

file system:

files. fspec:

object file symbol table
troff. tbl:

nroff:

intro: introduction 10 file
wimp: utmp and wimp entry
scanf, fscanf, sscanf: convert

files.
fites or directories. .
fites or subsequent linesoff

. - bockf(3C)
. rm(l)

paste(l)

files. pack, pcat,,, pack(l}
files. e e e e v . pril)
files. size: print . « . . o 4 4 . .. size{l)
Bles. .« v v s e e e e e e sori(l)
files. version: v+« . version(1)
files. .+ . v v 0 v e what(l)
filesave, tADESAVE: Hiesave(iM)
filter for crt viewing. more{l)
filter for solt-copy e et
filtker. A . greek(l)
filker. v e e .. ni{1}
filier reverse line-feeds. « o col(l}
flers. + « v « 4 v v 0w v, + .. tplot{lG)

fing: fast incremental backup, . . .
find files.
find: ind files.
find hyphenated words,
find name of a terminal.
find ordering relatien foran
find ordering relation foran
find spelling errovs. spell,
find the primable stringsin

. fine(1M}

find{1}
find(1)
hyphen{l)
uyname(3C)
lorder(1)

. lorder5.0(1)
. spell(1)

strings(l}

find the slet in the utmp file tysiot{3C)
Fish”. fish(6}

fish: play “Go Fish™™. , , fish(6)
Brting. - . 4 . e i . teell)
flexible length directorys directory(3X)
float, sngl, dble, cmplx,/ ftype(3F)
floating-point number. ., , , atof(3C}
floating-point number 10/ ecvt{(3C)
floating-point numbers, frexp(3C)
figor, ceil, Imod, fabs: ., floor(3IM)
Aoor, ceiling, remainder,f floar(3IM)
floppy disk setling time ., disktune (1M}
flowgraph.« . . v v v v » chow(l)
flushastream. + o . {close(3S)

fmad, fabs: floor, ceiling,

floor{3M}

fopen, freopen, fdopen: open a . fopen(3S)
fork: credie & new process. fork{2)
formatadisk. « diskformat{1M)
formal. acet: + o« . acctld)
format., ar(4)
FOFMEL + = « 4 4 4 v v a e v n ar5.0(4)
format. « « v o « « v v errfile(4)
format for card images. pachi{4)
format mathemalical text for . eqnli)
formatof g textfile. newlorm(1)
formatof aninode.« inodel4}
format of compiled term file., 1erm(4)
format of core image file. coreld)
formal of cpio archive. , , , cpio(4}
formal of direclories. dir(4)
format of SCCS file. , scesfile(4)
format of system volume, [5(4)
format specification in texv. fspec(4)
format. syms: common symsi{4}
format tables for nreffor bi(])
formattext. v+ o« nrofi{!}
formats. . + « « 4 + w v s v v« . . introl4)
formats. vamp, « « . utmpf4)
formatted inpui. scanf(38)

- 18 -

Fviprinif, vsprintf: print
fviprintf, vsprinif: print
fprinif, sprintf: print
fcheckmm: print/check documents
mptx: the macro package for
mm: the MM macro package for
OS5DD adapter macro package for
manual. man: macros for
77

abs, iabs, dabs, cabs, zabs:
system/ signal: specify
function, acos, dacos:
function. asin, dasin:
function. atan2, daian:
function, atan, datan:

or, xor, not, Ishift, rshift:
getarg: teturn

log i0, alogl0, dlogl0:
intrinsic/ conjg, dconjg:
function. cos, dcos, ccos:
ratfor: rational

geleny: rewurn

function. exp, dexp, cexp:
intringic/ cosh, deosh:
intrinsic/ sinh, dsinh:
inirinsic/ tanh, dianh:
complex/ aimag, dimag:
function. aint, dint:

efl; Extended

amax0, max], amaxl, dmaxl:
amind}, minl, aminl, dminl;
log, alog, dlog, clog:

anint, dnint, nint, idnint:
abort: terminate

functions. mod, amod, dmod:
function. sin, dsin, csin:
function. sgri, dsqr1, csqrt:
len: return length of

index: return location of
issue a shell command from
function, tan, dian:

melock: return

indrinsic/ sign, isign, dsign:
fdemplx, ichar, char: explicit
irand, srand, tand:

hopefully interesting, adage.
formatied cutput. printf,
word on a/ pute, putchar,
stream. puts,

input/outpul.

backup tape.

df: report number of
memory allocator. malloc,
mailopt, mallinfo:/ malloc,
stream. {open,

frequencies in a file.

freq: report on characler
parts of floating-point/

frec: recover files

obtain group fite entry
remque: inseri/remove element
take: 1zkes a file

FECYMSE: [ECEive & message
sendmsg: send a message

Permuted Index

formatted output of a varargs/
formatted outpud of a varargs/ . . .
formatted output, printf,

vprintf(38)
vprintf{3X)
printf(3S)

formateied with the MM macros. . . mmf{l}
formatting a permuted index, . mptx(5}
formatling documents., , , , mm{5)
formaiting documenis, /the mosd{5)
formatting entries inthis man(5)
Fortran 77 compiler. 71
Foriran absolute value. abs(3F)

Foriran action on receiptofa
Fortran arccosine intrinsic
Fortran arcsine intringic
Fortran arctangent intrinsic . . + . -
Fortran arctangent intrinsic
Fortran bitwise boolean/ and,
Fortran command-line argument.

signal(3F)
acos(IF)
asin{3F)
atan2(3F)

. atan{3F)

bool(3F)

. getarg(3F)

Fortran common logarithm/ log10{3F)
Fortran complex conjugate conja(3F)
Fortran cosine infrinsic + cos(3F)
Fortran diakeet. v+ « » . ratfor(1}
Foriran environment variable. getenv (3F}
Foriran exponential intrinsic exp(3F)
Fortran hyperbolic cosine cosh(3F)
Fortran hyperbolic sine sinh(3F}

Fortran hyperbolic tangent
Fortran imaginary partofl
Fortran integer part intrinsic
Fortran Language. . . .
Fortran maximum-value/ /max0, . .

1anh{3F}
aimag(3F)
aint{3F)
efi{1}

max (IF)

Fortran minimum-value/ /min0, . min{3F}
Fortran natural logarithm/ log (3F)
Fortran nearest integee/ round (3F)
Fortran program. + « + . abort{3F)
Fortran remaindering intrinsic mod{3F)
Fortran sine intrinsic . , sin(3F)
Fortran square root intrinsic sqre(3F)
Fortran SIHnNg. . « » « « « « « « .« len{3F)
Foriran substring. . ., . . . v+ . - index(3F)
Fortran. system: e e e e e . system(3F)
Foriran tangent intringic tan{3F)

Fortran time accounting.

melock (3F)

Fortran iransfer-of-sign sign{3F}
Fortran type conversion. - - ftype (3F)
Fortran uniform random-number/ . . rand{3F}
fortune: print a random, fortune(6)
fprintf, speimaf: primt printf(35)

fputc, putw: put characteror+ .
fputs: putastringona+ 4 »
fread, fwrite; bimary ,, . .
frec: recover files froma
free disk blocks.
free, realloc, cafloc: main
free, realloc, calloc,
freopen, fdopen: opena . .
freq: report on character
frequencies in a file.
frexp, Idexp, modi: manipulate . ., .
from a backup lape. . . .
from a group fle. /Hgetgrent:
from a queue. insque,
from a remote machine.
from a socket. /recvfrom,
from a socket. send, sendlo,

-19-

putci3s)
puts(35)

. fread(38)

frec(iM)
df(iM)
malioc{3C)
malloc(3X}
fopen(38)
freq(1)
freq(l)
frexp(3C)
frec(1M)

. gelgrent(3C)

insque(3N}
ake{1C)
recy (2N)

. send(2N)

Permuted Index

getw: get characler or word
gets, fgeis: get a string

and iine number information
rmdel: remove a deha
gelopt: g8l option letier
shared/ xstr: extract sirings
/uranslates Motorola S-records
errdead: extract error records
read: read

readv: read

sysiem: issue a shell command
ncheck: generate pames

nlist: get eniries

acctems: command summary
autorobots: Escape

robots:; Escape

gelpw: get name

formatted input. scanf,

of file systems processed by
consistency check and/

& Yost+ found directory for
M6BOO0 and VAX-11/780/

reposition a Ale pointer in/
text files.

ell files.

stat,

pointer in af fseek, rewind,
communication package.

Transfer Protocol server.

shutdown: shut down part of a
Fortran arccosine intrinsie
Fortran integer parl intrinsic
errorf erf, erfc: error
Fortran arcsine intrinsic
Fortran arclangent intrinsic
Fortran arctangent intrinsic
complex conjugate intrinsic
ccos: Fortran cosine intrinsic
hyperbolic cosine intrinsic
precision product intrinsic
and complementary error
Fortran exponential intrinsic
gamma: og gamma

hypot: Euclidean distance

of a common object file
common logarithm intrinsic
natural logarlthm intrinsic
matherr: error-handling
prof: profile within &
iransfer-of-sign intrinsic
csin: Fortean sine intrinsic
hyperbolic sine intringic
Fortran square rool intrinsic
Fortran tangent intrinsic
hyperbelic tangent intrinsic
math: math

1, jl, jm, ¥0, ¥1, yn: Bessel
Fortran bitwise boolkean
positive difference intrinsic
logarithm, power, square root
remainder, absolute value

from a siceam. /gete, aetc(38)
fromastream. - . gets(3S)
from an objex: file. fsymbol stripil)
froman SCCShte. rmdei(l}
from argument vector, . , ., . . . getop{3C)
from C programs te implement . xstri1)

from downloading into a file,

- 20 -

. tevhex(l)

fromdump. errdead(iM)
fromfle. readi2}
fromfile. - readv (3N}
from Fortran, . . « . &« v v « & & system{3F)
from i-numbers. ncheck{1M)
frompame list. nlist(3C}
from per-process accounting/ acctems(IM}
from the automatic robots. autorcbois(é)
fromtherobots. robots(6}
fromUID. getpw{3C)
fscanf, sscanf convenn scanf(358)
fsck. checkbist: list checklisti4)
fsck, dfsck: file system . , fsck(1M)
fsck. mklost+found: make mklost+fnd(1M)
fscv: convert files between fsov(IM)
fsdb: file system debugger. fsdb{IM)
fseek, rewind, Melt: fseek(35)
Ispec: formad specification in fspeci4)
fsplic: split (77, ratfor, or fsplit{B)
fatar: get file status. siat(2)

fiell; reposition a file ., , fseek (38}
fiok: standard interprocess stdipe(JC)
fip: file transfer program. ftp(IN}
ftpd: DARPA Internet File fipd (8N}
ftw: walk afileree. fitw(3C)
full-duplex connection. « « shutdown(2N)
function. acos, dacos: acos(3F)
funcion. aint, dint: aint(3F}
function and complementary . erf(3M)
function. asin, dasin: asin(3F)
function. atan2, datan?: atan2(3F)
function. atan, datan: . ., ., . . + .« . atan(3F)
funciion. /dconjg: Fortran conjg(3F)
function. cos, dcos, « tos(3F)
function. /dcosh: Fortran cosh{3F}
lunction. dprod: double dpred (3F)
Tunction. /errot function erf(OM)
function. exp, dexp, cexp: exp(3F)
function. e « + .« gamma(IM)
function. e e e hypo1{IM)
function. /line number entries Idiread{3X)
function. /dlogi0: Fortran loglO(3F}
function. /dlog, clog: Fortran . log{3F)
function. e e e e matherr (3M)
funclion. . . . v« 4 v b e e e on s prof(5)
function. /dsign: Fortran v o« sign(3F)
function. sin, dsin, sin(3F)
function. /dsinh: Fortran sinh(3F)
function. sqr, dsqri, csqrl: sqri(3F)
function. tan, dtan:, . tan(3F}
function, /dtanh: Fortran - . tanh(3F}
functions and constants,, math{5)
functions. v+« + bessel(3M)
functions. /lshift, rshift: bool(3F)
functions. dim, ddim, idim: « + + dim{3F)
functions. /sqri: exponential, exp(IM}
functions. ffoor, ceiling, - . foor(3M)

dmaxl: Fortran maximum-value
dminl: Fortran minimum-value
Foriran remaindering intrinsic
300, 300s: handle special
terminal. 450: handle special
Foriran nearest inlager

sinh, cosh, 1anh: hyperbolic
string comparision intrinsic

¢ atan, algn2: trigonometric
' using a file or file/
fread,

connect accounting records.
adventure: an exploration
cribbage: the card

moo: guessing

back: the

bj: the

craps: the

wump: the

lile: play the

rek. trekkie

worm: Play the growing worm
intro: introduction to

gamma: log

number to string. ecvt, fevl,
maze;

abort:

cflow:

cross-reference. cxref:
crypt, sétkey, encrypi:

by user ID. diskusg:
makekey:

terminal. ¢termid:

e ncheck:
lexical 1asks. lex:

fsrand48, seed48, lcongds:
srand: simple random-pumber
Fortran uniform random-number
gets, fgets:

get:

getsockopt, setsockopl:

ulimeit:

the user. cuserid:

getc, getchar, fgetc, getw:
getdiablesize:

nlist:

umask: set and

statl, fsuat:

ustat:

file.

getlogin:

logname.

msggel:

getpw:

gelpeername;

SYStem. uname:

. /setnetent, endnetent:
T - {sethostent, endhosient:
ungel: undo a previous

argument vector. gelopi:

{setpwent, endpwent, fgelpweni:

working directory. geigwd:

times. times:

Permuted Index

functions. #max!, amaxl, max(3F}
functiens. /minl, aminl, min{3F)
functions. mod, amod, dmod: med (3F)
functions of DASL 300 and 300s/ 300(1)
funclions of the DASI450 450(1)
fupctions. /nint, idnint: - . round{3F}
functions.« . sinh(3M)
functions. flgt, ke, stremp(3F)
functions. fian, asin, acos, trig(3M)
fuser: identify processes Muser(IM}
fwrite: binary input/output [(read(35)
fwimp, wimpfix: marupulate fwtmp{1M}
game. . . e e e e . . . adventure(b)}
pgame cnbhage cribbage{6)
BAMIE. + v & = - 2 4 w4 ke s moo(6)
game of ba.cksammon. e e s s« + + backi)
game of black jack. bi{6)

game of craps. craps(6}
game of hunt-the-wumpus. wump(§)
game of life. e . . lifelf)
BAME, . . 4 « s e b om e e e e s trek{6)
game. e e e e e s worm ()
BAMES. e e e e e e intro{6}
gamma flunction. e o+« pamma(IM)
gamma: log gamma function. .+ . gamma(3M)
gevt: convert Roating-poimt. ecvt(3C)
EemErale a MAaze. . . + + « x4 . . s maze(6)
generate an IOT fauht. abort(3C)
generate C Rowgeaph, clow(})
generate C program , cxref(l)
generate DES encryption. erypt(3C})
generate disk accounting data diskusg(IM)
generate encryption key, makekey(1)
generate filename for ctermid{38)
generate names from i-numbers. . . . ncheck{1M}
generate programs for simplte lex{(l)

generate uniformly distributed/

. drand48(3C)

generator. rand, v e e e s rand(3C)
generator. /srand, rand: rand(3F)

get a string from a stream. gets(38)

get a version of an SCCS file. . getil)

ge1 and set optionson/ getsockopt(2N)
get and set user limits, wlimit(2)

get1 character login name of cuserid{3S}

get character or word froma/ getc{3$)

get descriptor table size. getdtablesize(3N)
get entries from name list. nlist{3C)

get fke creation mask, ., umask(2)

get fiie status. e e e stat(2}

get file system statistics. ustat(d)

get: get a version of an SCCS . get(l)

get login pame. getlogin(3C)
get login mame. ., logname(1)
EEL MESSAEE QUELE. . . + + o « « . » msgget(2)
getname from UID. ., gelpw(3C)

get name of connected peer. getpeername (2N}
gel name of current UNIX uname(2)

Bel netwosk 8nry. v 4 . getpetent{IN}
get network hostentry. gethoslent(3N)
getofan SCCShle. . ., ungel(1}

get option lettec from . , . ., getopl{3iC)

get password fileentry. gepwent{3C)
get pathname of curtent gelewd{3C)
ge1 process and child process . times(2)

«21-

Permuted Index

and/ getpid, getpgep, getppid:
/setprotoent, endprotoent:
feeteuid, getgid, getegid:
/setservent, endservent:
semgel:

shmget:

getsockname:

[ty

time:

command-line argument.

gel characier or word from a/
character or word from/ gete,
current working directory.
table size.

geluid, geleuwid, getgid,
environment variable.
environment name.

real user, effectives getuid,
user,/ getuid, geteuid,
setgrent, endgrent,/
endgrent,/ getgeent,
gelgrent, getgrgid,
sethostent,/ gethostent,
gethostent, gethostbyaddr,
gethostbyname, sethostent,/
unique wentifier of current/
getlset name of current host.

setnetent,/ gelnetent,
gelnetent, getnetbyaddr,
getnetbyname, setnetent./
argument vector.

connected peer.

process group, and/ getpid,
process, Process group, and/
group, and/ getpid, getpgrp,
getprotoent, getprolobynumber,
getprotobypame,/ geiprotoent,
getlptotobyname, setprotoent./

seipwent, endpwent,f
getpwent, getpwuid,
endpwent,/ getpwent,

a stream.

getservent, getservhyport,
selservenl,/ getserveni,
getservbyname, setservent,/
gethostname, sethostname:
current/ geithostid, sethostid:

and set options on sockels.
and terminal seitings used by
modes, speed, and line/

cl. spawn

sethings used by getiy.
getegid: get real user,/
pututline, setulent,/
setutent, endutent,/ getutent,
setutent,/ getutent, getutid,
from af gete, getchar, fgeic,
converl/ ctime, localtime,
fish: play

gel process, process group,
get protocol entry.
get real user, effective user,/
gel service entry.
get set of semaphores. . , .,
gel shared memeory segmend.
get socket name.
get the terminal’s name.
gel time.
getarg, return Fortran .,
gelc, getchar, fgetc, getw:
getchar, fgete, getw: gel
getcwd: get pathnameof , , ., . ., .
getdiablesize: get descriptor
getegid: get real user./
geteny: return Fortran
getenv: retuwrn value for
gelenid, getgid, getegid: ger
getgid, getegid: get real
gelgrent, getgrgid, getgrnam,
gelgrgid, geigrnam, selgrent,
gelgrnam, selgrent, endgrent,/
gethosibyaddr, gethostbyname,
gethostbyname, sethostent,/
gethostent, gethostbyaddr,
gethostid, sethostid: get/sel
gethostname, sethostname:
getlogin: gel login name.
getnelbyaddr, getnetbyname,
gelnetbyname, setnetent f
getnetent, gelnetbyaddr,
gelopt: get option letter from
getopt: parse command options.
getpass: read a password.
gelpeername:; get name of
gelpgrp, getppid: get process, . . .
gelpid, getpgrp, getppid: get
getppid: get process, process
gelpeotobyname, setprotoent,/ . . .
getprotobynumber,
gelproloent, getprotobynumber,
getpw: get name from UID.
getpwent, getpwuid, getpwnam, . .
getpwnam, seipwent, endpwent./
getpwuid, getpwnam, seipwent,

L A

getpid{(2)
getprotoent (3N}

. getuid{2)

getservent(IN)
semget{2)

. shmget(2)

getsockname (2N}
tty (1}

time{2)
getargi3F)
gelc(ds)

gete(38)
getewd(3C)
getdiablesize{IN)
getuidi2}
getenv(3F)
getenv(3C}
getuid(2)
getuid(2)

. . getgremi(3C)
. . getgren1(3C)
. . geigrent{3C)
. gethostent{3N)

gethosient{3N)
gethostent (3N)
gethostid (2N)
gethostname (2N}
getlogin(3C)

. getnetent{3N)

getnetent(3N)
getnetent(IN)

. . getopt(3C)
. getopu{l)

geipass(3C)
geipeername{2N)

. gelpid()

gelpidi(2)
gelpid (2}

. gelproioeni(IN)

getprotoent{3N)

. petprotoeni(3IN)

getpwi(3C)

. getpweni(3C)
. getpwent(3C)
. getpweni(3C)

gets, fgets: get a string from gets(3S)
gelservbyname, setservent,/ getservent(3N)
geiservbyport, gelservbyname, . getservent(IN)
getservent, geiservbyport, getservent(IN)
get/set name of current host. . gethostname{2N)
get/sel unique identiffier of gethostid (2N}
getsockname: get socket name. . getsockname (2N}
getsockopt, setsockopt:get getsockopt (AN}
gelty. getiydefs:speed geltydeis(4}
gelty: set terminal type, getty{1M)

getty to a remote terminal. ct(1C)

gettydefs: speed and terminal . geltydafs(4)
getuid, geteuid, gewgid, getuid(2)
getulent, gelutid, getutline, getut(3C)
getutid, getutling, pututline, getut(3C)
getutline, puatline, ., getut(3C)

getw: get characteror word getc{35)

gmtime, asclime, 1zset: , ., , ctime(3C)
“GoeFish". fish(6}

-22-

setimp, longimp: non-local

graph: draw a

sag: system aclivity

tplot:

TTY-37 ype-box. greek:
plot:

subroutines. plot:

mvl: typeset documents, view
package for lypesetting view
extended TTY-37 type-box.

file for a pattern.

fuser, effective user, real
/getppid: gel process, process
chown, chgrp: change owner or
fendgrent, lgetgrent: obtain
obtain group file entry from a
group:

selpgrp: set process

set real and effective

id: print user and

real group, and effective
setuid, seigid: set user and
send signal 1o a process
newgrp: log in 10 8 new
chown: change owner and

a signa to a process or a
update, and regenerate
worm: Play the

checkers. pwek,

ssignal,

hangman:

moo;

DASI 300 and 300s/ 300, 300s:
the DASI 450 terminal. 450:
varargs:

information for bad block
package. curses: CRT screen

nohup: run a command immune to
hcreate, hdestroy: mapage

spell, hashmake, spellin,

find spelling errors. spell,

search 1ables. hsearch,

lablzs. hsearch, hcreate,

file. scnhds: section

files. aouthdr.h - a.out

files. filehds: file

file, jdfhread: read the file
fsaek 10 the optional file

/tead an indexed/named section
Idahread: read the archive
SCCS.

help: ask for

fortune: print & random,
{ntohs: convert values betwesn
endhosient: get network
unique identifier of current
get/sel pame of current

hosts:

ruptime: show

SOIO‘..........
graph: draw a graph.
graph. . .
graph.
graphics flters.
graphics for the exlended

graphics interface,
graphics intecface .
graphs, and slides. mmt,

LI T T

PR

P
.

graphs and slides. /macro . .

greck: graphics for the

P

greek: select terminal filter. . .

grep, egrep, fgrep: search a

group, and effective growp/ . . .

group, and parent process 1Ds.
group.

group file entry from a grovpy . . .

group file. /fgetgrent:
group file. . . .
group: group file. . .,
group iD. . . .
group ID. setregid:

PR

e om o e

group IDs and names.

group IDs. /feffective user,
groupIDs. . . .
group,. killpg: .
group. . PR
group ofaﬁle P

]

e

group of processes. /send

groups of programs. /maintain,
Browing worm game. . .
grock: password/group file
gsignzl: software signals. . .
guess the word,
guessing game,
handle special functions of

handle special funclions of

handle variable argument list.
handling. /alternate block . .

handling and optimization

hangman: guess the word. .
hangups (sh only).
hash seacch tables. hsearch,
hashcheck: find spelling/ . .
hashmake, spellin, hashcheck:
hereate, hdestroy: manage hash
hdesiroy: manage hash search

header for a common object . . .,
. . . aouthdr{4)

header for common object
header for common object
header of & common object
header of a common object/
header of a common object/
header of a member of an/
help: ask for help in using
help in asing SCCS,
hex: translates object files.
hopefulty interesting, adage. .
host and network byte order.
host entry. /sethosteni,
host, /sethostid: ger/set
host, /sethostname:
host name data base.
host status of ocal machines.

-23 .

. oe

P T R R

Permuted Index

seijmp(3C)
. . graph(1G)
. sraph(1G)
sag(1G)
tplot(1G}
. . greek(5)
. . plot{4}
. plor(3X)
mmt{l)
mv{i)

.

o greek(5)

greek(l)}
grep(l)
getuid(2)
getpid(2)

. chown(l}
getgrent(3C)
getgreni{3C)
group(4)
group{4)
seipgrp(2)

. v o s
. v s

.o e s

. . . setregid(2)

. . W)

. . getnid(2)

. . setuid(2}
. killpg (3N)

. newgrp(l)

chown(2)}
kill(2)

. make(l)
. . wormi{6)
.« pwek(IM)
ssignal(3C)

. « . hangman(é)

. moo(6)
300(1)
450(1)
varargs(5)
. . aliblk(4)

. . curses(3X)
hangman{6)
nohup(l}
hsearch{3C}
. spell{l)
spell(1)

. hsearch(3C)
hsearch(3C)
. . scnhdrid)

filehde(4)
IdMhread{3X)
. . |dohseek(3X)
. ldshread(3X)
Idatread (3X)
help{1)
help(l)
. . hex{l}
. fortune(s)
. byteorder (3IN)
. gethosten1(3N)
gethostid{2N)
gethosiname{2N)
hosis{4N)
. ruplime({]1N)

Permuted Index

or print identifier of current
set or print name of current
identifier of current hosy
current host system.

mansge hash search tables.
convert values between host/
values between host/ htonl,
wumyp: the game of

cosh, dcosh: Fortran

sinh, cosh, tanh:

sinh, dsinh: Fortran

tanh, dianh: Fortran

hyphen: find
funciion.
Fortran absolute value. abs,

/sngl, dble, cmplx, dempix,
disk accounting dats by user
semaphore set or shared memory
and names.

selpgrp: sel process group
set rea) and effective group
print effective current user
issue; issue

/sethostid: get/sel unigue
system. hostid: set or print
file or file/ fuser:

what:

intringic/ dim, ddim,

dble, cmplx,/ int, ifix,
integer/ anint, dnint, nind,
id: print user and group
group, and parent process
group, and effective group
set real and effective user
setgid: set vser and group
interface parameters.

sngl, dole, cmplx,/ int,
core: format of core

pnch: fle format lor card
aimag, dimag: Fortran
nohup: run & command
/strings from C programs to
finc: fast

long integer data in a machine
/1goto, iputs: lerminal

for formatting a permuied
of a/ ldibindex: compute the
pix: permuted

Fortran substring.

a common/ Idibread: read an
Idshread, idnshread: read an
ldsseek, ldnsseek: seek to an
and ieletypes. last:

family.

inet_ntoa, inet_makeaddr,/
finet_nioa, inet_makeaddr,
/inet_network, inct_ntoa,
/inet_makeaddr, inet_Inaof,
inet_makeaddr,/ inet_addr,
iney_addr, inet_network,
inittab: script for the

host system. hostidiset hostid(IN}
host systena. hostname: hostname{1N)
hostid: set or print hostid{IN}
hostname: set or print name of . ., ., hosiname{IN}
hosts: host name data base. hosts(4N)
hsearch, hereate, hdestroy: hsearch{3C)
htonl, htons, niohl, ntohs: byteorder{3N}
htons, nwohl, ntohs: convert byteorder (3N}
hunt-the-wummpws, + . - . . wump(6)
hyperbolic cosing intinsic/ + .+ . . cosh(3F)
hyperbolic functions. sinh{IM)
hyperbolic sine intrinsic/ sinh{3F)
hyperbolic tangent intrinsic/ tanh{3F}
hyphen: find hyphenated words. . hyphen(1}
hyphenated words. hyphen(1}
hypot: Euclidean disiance hypot{3M)
iabs, dabs, cabs, zebs: abs(3F)
jargc: et e e e e v+« . . iargc(3F}
ichar, char: explicit Fortran/ ftype (3F)

ID. diskusg: generate , , diskusg{lM)
id. /remove a message queue, iperm(l)

id: print user and group IDs id{D}

ID. ua. e e e e setpgrp(2)
D setresld e e e e . . setregid{(2)
id. whoami: . . « . v v v v w e a . whoami(l)
identification file. e e issue(d)
identifier of current host. gethostid(2N)
identifier of current host , . hostid(IN)
identily processes usinga fuser(iM)
identify SCCS files. what(l)
idim: positive difference dim{3F}
idind, real, float, sngl, Tiype(3F)
idnint: Fortran nearest round(3F}
IDs and names. . . e e e e id{1)

IDs. /get process, proness getpid{2)
IDs. feffective user, real getuid(2)
ID's. setrewid: setreuid(2)
IDs. setuid, .+ . « . . v o e ... setuid(2)
ifconfig: configure network . . ., . ifconfig (8N)
ifix, idint, real, float, + o . ftype(3F)
imagefile. v« . . corel4)
IMages. v . 0w e e e e pnchi{4)
imaginary part of cumplexf e+ v ., aimag(3F)
immune to hangups (sh only). neohup(1}
implement shared strings. xsir{l1}
incremental backwp. finc{1IM)
independent feshion. faccess .. sputl(3X)
independent operation/ termcap(3X)
index, /the macro package mptx{5}
index of a symbol table entry Idtbindex(3X)
MAEX. © v v v v b e e e e e pix(i}
index: return lecationof L . index(3F)

indexad symbol table entry of
indexed/named section header/

. ldtbread(3X)
. ldshread(3X)

indexed/named section of a/ ldsseek (31X}
indicate last logins of users fast(1)

inet: interpet protocol inet(5F)
inet_addr, inet_network, . . - . . . ine1{IN}
inet_Inaof, inet_netof/ . . - ine1(3N)
inet_makeaddr, inet_lsacf./ inet{3N)
inel_netof: Intesnet address/ . inet(3N)
inet_network, inet_ntoa, inet(3N)
inet_nioa, inet_makeaddr,/ inet(3N}
ML PYOCEss. + + « v v v v v a0 v w s inittab(4}

-4 -

initialization.

tnit, telinit. process conirol
frc, powerlail: system
sockel, connect:

process. popen, polose:
process.

clri: clear

inode: formal of an
sscanf: convert formatied
push characier back into
fread, fwrite: binary
stdio: standard buffered
fileno: stream status
uustat: yucp siatus
queue. insgue, remgue:
element from a queue.
install:

directories. cpset:

sngl, dble, emplx, demplx,/
abs: return

f164a: convert between long
sputl, sgetl: access long

nint, idnint: Fortran nearest
function. aint, dint: Fortran
atol, atoi: convert string to
/ltold: convert between 3-byte
3-byte integers and leng
beopy:

system. mailx:

system consistency check and
print a random, hopefully
Error; error-logging

lo: software loopback network
ifconfig: configure netwark
plot: graphics

plot: graphics

{ermio: general terminal
protocol. telnet: user

ty: controlling terminal
finet_Inaof, inet_netof:
Protocol server. fipd: DARPA
inet:

ip:

Protocol. icp:

Protocol. udp:

spline:

characters. asa:

sno: SNOBOL

syntax. csh: a shell (command
pipe: create an

facilities/ ipes: report
package. ftok: standard
suspend execution for an
sleep: suspend execution for
acos, dacos: Fortran arccosine
dinu: Fortran integer part
asin, dasin: Fortran arcsine
datan2: Fortran arctangent
datan: Fortran arctangeni
Fortran complex conjugate
dcos, ccos: Fortran cosine
Fortran hyperbolic cosine

Permuted Index

inil, telinit: process control . . init(LM)
initialization. init(1M)
initialization shetf scripts. bre(!M)
initiate a connectionona ., connect{2N)
initiate pipe to/froma popent3s)
inittab: script for the init inittab{4)
rnode, .. . L L .. e . clri{1M)
inode: format of an inode. « + inodeld)
Mode. . « v v v v b e s e s . . inode(d)
input. scanf, fscanf, scanf{1S)
input stream. ungete: ungetc(3S)
inputfoutput. fread(3S)
input/output package. sidio(38)
inquiries. /feof, clearerr, ferror(3s)
inquiry and jobcontral. uustat(1C)
insert/remove element froma insque{3N)
insque, remque: insert/remove . . . insque(IN)
ingtall commands. . ., . ., . . ingtall{1M)
install: install commands. install{1M)
install object files in binary cpset{1M)
int, ifix, idint, real, loat, ftype(3IF)
integer absolute value. abs{3C)
integer and base-64 ASCI/ ab41(3C)
integer data in a machine/ sputl(3X)
integer functions. /dnint, round{3F}
integer part intrinsic aint(3F)
integer, suetol, .. . L. ... L. stewol{3C)
integers and long integers. 13101{3C)
integers. fcomvert between 13t0l{3C)
interactive block copy. + +« « + + . . beopy (EM)
inleractive message processing mailx{1}
interactive repair. ffile fsck (1M}
interesting, adage. fortune: fortune{(6)
interface. error(?
inferface.0 ... S (1 61]
interface parameters. ifconfig{8N}
interface. e e e e e s plot{4}
interface subroutines., plot{3X)
interface. e .. termio(7)
interface to the TELNET telnet{IN}
interface. 4w e e e . . s tty(7)
Internet address manipulation/ . . inet{3N)
Internet File Transfer fipd{8N)
Internet protocol family. inet(5F}
Internet Protocol. ip(5P}
Internet Transmission Conirol tcpfSP)
Internet User Datagram udp(5P)
interpolate smooth curve. spline{lG)
interpret ASA carriage control asa{l)
MErPreter. . . . v v v e e e snell)
interpreter) with C-like csh(l)
interprocess channel.« pipe{2)
inter-process communicalion . . ipes(l)
interprocess communication stdipc{3C)
interval. sleep: « sleep{1)
interval. steep(3C)
intrinsic funetion. acos(3F)
intrinsic function. aint, aint(3F)
intringic function. asin{3F}
intrinsic function. aten2, atan2(3F)
intrinsic function. awan, atan(3F}
intrinsic function. /deonjg: conjg(3F)
intrinsic function. cos, cas(3F)
intrinsic function. fdcosh: . . cosh{3F}

.95,

Permuted Index

doubie precision product
cexp: Foriran exponential
Fortran common logarithm
Fortran natural logarithm
Fortran transfer-of-sign

sin, dsin, csin: Fortran sine
dsinh: Fortran hyperbolic sine
csqrt: Fortran square rool
tan, dtan: Fortran tangent
Fortran hyperbolic tangent
idim: positive difference
dmod: Fortran remaindering
lle, Ilt: string comparision
commands and application/
formats.

miscellany.

files.

subroutines and libraries.
calls and errgr numbers,
maintenance commands and/
mainilenance procedures.
application programs. intro:
intro:

intro:

intro;

facilities. nelworking:

intre:
intro:
intro:

and libraries.

and error numbers.
mainienance commands/ intro:
maintenange/ intro:

ncheck: generate names from
aliens: The alien

setect: synchronous

aborl. generate an

semaphore sel or shared/
coramunication facilities/
uniform random-number/
fislower, isdigit, isxdigit,
isdigit, isxdigit, isalnum,/
fisprint, isgraph, iscnirk,
terminal. 1i¥yname,
/ispunct, isprint, isgraph,
isalpha, isupper, islower,
/isspace, ispunct, isprint,
transfer-of-sign/ sign,
isainum,/ isalpha, isuppet,
/isalnum, isspace, ispunct,
Jisxdigit, isalnum, isspace,
fisdigit, isxdigit, isalnum,
Fortran. sysiem:

system:

issue:

file.

isxdigit, isalnum,/ isalpha,
tisupper, islower, isdigit,
news: print news
functions.

functions. j0,

bj: the game of black
functions. j0, j1,

intrinsic funcilion. dprod: dprod(3F)
intrinsic funclion. /dexp, exp(3F)
intrinsic function. /dlog0: log10(3F})
intrinsic function. /clog: log(3F)
intrinsic function. /dsign: sign(3F}
intrinsic function. « o . sin(3F)
intrinsic function, sinh, sinh(3F)
intringic function. /dsqrt, sqre(IF)
intrinsic function. 1an{3F)
intrinsic function. /dwnh: 1anh(3F)
intrinsic functions. /ddim, dim(3F)
intrinsic functions. famod, mod(3F}
intrinsic functions. figt, stremp{}F}
intro: introductionto intro(1)
intro: introduction to file intro{4)
intro: introduction to games. intro(6)
intro: introductionto intra(5)
intro: introduction to special intro{7)
intre: introductionto intro(3)
intro: introduction to system . . . intro(2)
intro: introduction to system intre{lM)
intro: introduction to system intro(8)
introduction to commands and . . . intro{l)
introduction to file formats, intro(d)
introduction to games. intro(6)
intreduction to miscellany. intro(5)
intreduction to networking intro(5N)
introduction to special files, intro(?)
introduction to subroutines intro(3)
intreduction to systemcalls intro(2)
introduction o system intre({1M)
introduction to system , intro{8)
i=numbers. ncheck (1M}
invaders allack the earth. aliens(6}
ifo multiplexing. select2N)
iocll: control device. iocli{Z)
10T fault. PPN . abor1{3C})
ip: Internet Protocol. ip{sp}
ipcrm: remove a message queue, . . . ipcrm())
ipcs: Teport inter-process ipes(l)
irand, srand, rand: Fortran rand{3F})
isalnum, isspace, ispunct,f ciype{3C)
isalpha, isupper, islower, ctype{3C)
isascii: classify characters. ctype(3C)
isatty: find name ofa ttyname{3C)
isentrl, isascii: classify/ clype(3C)
isdigit, isxdigit, isalnum,/ ciype{3C)
isgraph, iscotrl, isasciiz/ ctype(3C)
isign, dsign: Fortran sign{3F)
islower, isdigit, isxdigit, clype(3C)
isprint, isgraph, iscntrl,/ ctype{3C)
ispunct, isprint, isgraph./ ciype(3C)
isspace, ispunct, isprint,/ ctype(3C)
issue a shell command from system(3F)
issue a sheli command. sysiem(3S)
issue idenuification file. issue(4)
issue: issue identification issue(d)
isupper, istower, isdigit, v e« ctype(3C)
isxdigit, isalnum, isspace,/ . . . ctype{3C)
EMS. . & vt r h s e e e e news({)
j0, i1, in, ¥0, ¥1, yn: Bessel bessel(3M)
jlyim y0 vl yn:Bessel bessel(3M)
K. . e e e e e e bj{6)

jn, ¥0, ¥, yn: Bessel « . . bessel(3M)

-26 -

1/’-\.

operator.

Hrand48, nrand48, mrand48,
makekey: generate encryplion
killall:

Process or A group off

processes.
chase: Try to escape the
Process group.

mem,

quiz: test your

3-byte integers and long/
integer and base-64/ abdl,
copy file systems with

with label checking. volcopy,
scanning and processing
arbitrary-precision arithmetic
efl: Extended Fortran

cpp: the C

cpp: the C

command programming
chargelee, ckpacct, dodisk,
statistics.

shi: shell

/irand48, srand48, seeddg,
object files.

object file. ldclose,

header of a member of an/
file for reading. tdopen,
common object file.

of floating-point/ rexp,
access routines.

of a common object file.
name for object file,

line number entries/ Idiread,
number/ 1diread, ldlinit,
manipulate line number/
line numbes entries of a/
entries of a section/ ldiseek,
entries of a section/ ldrseek,
indexed/named/ ldshread,
indexed/named/ ldsseek,
file header of a common/
object file for reading.
retocation entries of a/
indexed/named section headet/
indexed/named section of a/
of a symbol table entry of af
symbol tabte entry of a/
table of a commen obiject/
string.

frewinddir, closedir: flexible
len: return

getopt: get option

simple lexical tasks.

generate programs for simple
updale. lsearch,
comparision intrinsic/
comparision intrinsic/ Ige,
to subrautines and

ar5.0: archive

relation for an object
relation for an object

Permuted Index

join: relational database jein{l}
jrand48, srand48, seed48,/ drand48(3C}
Key. o v a v v e e e e makekey(l)
kill all gclive processes. . « « « + « killall{1M)
kill:send asignaltoa . « + « « « - « kill{2}

kill: terminate a process. . - - . - . kil{1)

killall; kill all active« « . . . kitlall(t M)
killerrobots.« chase(s)
killpg: send signaltoa, . . killpg(3N)
kimem: core memory. v v .. mem(T)
knowledge, quiz(®)
13tel, ltol3: convert between 13t01(3C)
I64a: convert between long a641(3C)
label checking. flabelic volcopy(IM)
labelit: copy file systems velcopy(1M)
language. awk: pattern awk(1}
language. B o v 4 4 e x e w0 ow s be(l)
Language. ¢+« = 0 n 4 x s efl(1}
language preprocessor.ocpp(l)
language preprocessor. v e e e . CPPS.L)
language. lstandard!restncled « o a shiD)
lastlogin, monacct, nulladm,/ accish(1M)
lav: print load average lav(l)

layer manager. ¢+ o .o« . . shi{1)
lcongd8: generate uniformly/ drand48(3C)
id: link editor for common W{(1}

1d5.0: link editor. v e . W50
idaciose: close a common kclose(3X)
Idahread: read the archive idahread (3X)
Idaopen: open a common object . . . kopen(3X)
Idctose, ldaclose: closea . . . « .+ . . ldclose(3X)
Idexp, modf: manipulate parts frexp(3C)
Idfen: common objectfile Idfen(4)
ldfhread: read the file header ldfhread(3X)
Idgetname: retrieve symbol ldgetname(3X)
Idlinit, ldlitem: manipulate Idiread (3X)
Idlitern: manipulate line Idiread (3X)
idlread, kdlinit, Idlitem: + « ldlread(3X)
Idlseek, ldntseek: seek 10 ldlseek(3X)
ldnlseek: seek to line number Ildlsesk(3X)
Idnrseek: seek to relocation Idrseek(3X)
Wnshread: rezd an ldshread(3X)
ldnsseck: seek toan ., , . Idsseek(3X)
ldohseek: seck loLheopuonal . « . . ldohseek{3X}
Idopen, ldaopen: open 8 commen . . Idopen(3X)
Irseek, ldnrseek: seekto ldrseek (3X)
Idshread, Idnshread: read an ldshread(3X)
ldsseek, kdnssesk: seek toan . . ., . ldsseek (IX)
Idtbindex: compute the index Idtbindex{3X}
Idtbread: read an indexed Idtbread(3X)
Idtbseek: seek 1o the symbol Idibseek(3X)
len: return length of Fortran len(3F)
length directory operations. direclory(3X)
length of Fortran string. . . ., . . . len(3F)
letter from argument vector. getopt(3C)
lex: generate programs for lex(l)
lexical tasks. X <« + « 4 o v v o . Jex(D

Hind: linear searchand Isearch{3C}
Ige, Igt, te, Ut string stremp(3F)
igt, e, Mskeing stremp(3F)
libraries. fintroduction intro(3}
(library) file format, ., . . ., ar5.004)
library. /find ordering lorder{1}
library. /find ordering lorder5.0(1)

-27-

Permuted index

ar5.0: archive and

portable/ ar: archive and
ulimil: get and sel user

an out-going terminal

type, modes, speed, and

line: read one

common object fife. linenum:
/1dlinit, Idlitem: manipulate
Idiseek, ldnlseek: seek to

an/ strip: strip symbol and
nl:

out selected fields of each
send/cancel requests to an LP

Isearch, lfind:

col: filter reverse

in a common object fike.

files. comm: select or reject
head: give first few

unig: report repeated

of several files or subsequent
subsequent/ paste: merge same
link, unlink: exercise

files. Id:

Wd5.0:

a out: common assembler and
a.0uti.0; assembler and

cp, ln, mv: copy,
link:
and unlink system calls.

Is:

for a file system. IT:

nlist: get entries from name
nmi, 0 print name

nm: print name

by fsck. checklist:

handle variable argument
oulput of a varargs argument
output of 8 varargs argument
sockel. listen:

on a socket.

NATRS: CORStruct argument
intrinsic/ Ige, Igt,

intrinsic/ 1ge, lgt, lle

files. cp,

interface.

av: print

Lzsel: convert date/ ctime,
manual for program. whereis:
index: return

end, etext, edata: last
memory. plock:

files.

lockE: record

file regions for reading or/
natura! logarithm intrinsic/
gamma:

newgIp:

exponential, logarithm,/ exp,
common logarithm intrinsic/
logarithm, power,/ exp, log,
/alogl0, dioglD: Fortran common

library maintainer. ., ar5.004)
library maintainer fee ar(1}
limits.+ ... v ulimiti2)
line connection. feswblish ¢ial(3C)
line discipline. /set terminal getty (IM)
line. line(1}

line pumber entries ina linenum(4)
line number entries of 8/ Idlread{3X}
line number entries of a/ Idlseek (3X)
line number information from strip(l)
line numbering fiter, nl{l)

ling of a file. cut:cut cut{l)

line printer. lp, cancel: lp(1}

line: read one line. line (1)
linear search and update. Isearch(3C)
ling-feeds.oeol(l)
linenum: line number entries . . linenum{4)
lines common o two sorted comm{(1)
lOBS. & ¢ v v o v v n v v s + « - .« head(l)
linesinafile. unig{1)

lines of one file. Isame hnes e,

lines of several filesor paste(l}
link and unlink system calls. link{lM)
link editor for common object i (1))

link editor. P b e e a e e e td5.0(1)
link editor output. . ., B.out(d)
link editor gutput. . ., ., s.0ul5.004}
link: link toafile. . .., link (2}
link or move files. . .., cpll)
linktoafile. link¢{2}
link, unlink: exercise link link{1M)
lint: & C program checker. lint{l)

list contents of directory. I8{1)

Jist file names and statistics {1M)

HSE & v v v b ot h h e h e e e e s nlist(3C} -
HSE. w ¢ o o o o 8 o o v u + + « . nmM5.0(1}
list of common object file. nmil)

list of file systems processed checklist{4)
list. varargs: e e e e e varargs(5)
list. /print formatted e e e e e e vprintf{38)
list. /print formatted vprintf(3X)
listen for connectionsona listen{2N)
listen: listen for connections . . . - - listen{2N)
tist{s} and execute commsnd. xargs(l}
lle, Bt: string comparision stremp(3F)
1It: string comparision+ steemp(3F}
In, mv: copy, link or mave cp(l)

lo: software loopback network S "1 1)

load average statistics. lav{l)
localtime, gmtime, asctime, clime(3C)}
locate source, binary, and/or whereis(l)
location of Foriran substring. index(3F)
locations in program. end{3C)
lock process, text, or data ln v v . . plock(2)
lockf: record fockingon lockf(3C)
locking on files. v e« . lockf(3C)
locking: provide exclusive locking(2)
log, alog, dlog, clog: Fortran log(3F}
log gamma function, gamma{iM) —_
log in to & new group, newgrp(l)
log, logl0, pow,sqrt: exp(3M)
logl0, atogll, diogl(: Fortran .+« « loglOQF)
log10, pow, sqrt: exponential, exp(3M)
logarithm intrinsic function. . loglO(3F)

-2 -

paste(l)

/dlog, clog: Fortran naiural
flogl0, pow, sqrt: exponential,
errpl: process a report of
rwho: who's

getlogin: get

logname: get

cuserid: gel character
locgname: return

passwd: change

rlogin: remote

rlogind: remote

setting up an environment al
last: indicate last

user.

a6d], |64a: convert between
sputl, sgetl: access

between J-byte inwegers and
setimp,

lo: software

for an object library.

relation for an object/
mklost+ found: make a

nice: run & command a1
requests 1o an LP line/
send/cancel requests to an
disable: enabie/disable
/ipshui, Jpmove: stari/stop the
scoept, reject: allow/prevent
\padmin: configure the
Ipstal: print

spooling system.

request/ lpsched, Ipshut,
start/stop the LP request/
LP request scheduler/ lpsched,
information.

jrand48,/ drand48, erand48,
directory.

and update.

pointer.

bitwise/ and, or, xor, not,
integers and long/ l3tol,

facv: convert files between
provide truth value about/
faccess long integer date in a
put: puts a file onto a remote
takes a fike from a remote
values:

show host status of local
rwho: who's iogged in on local
update files between two
update files between two
permuted index. mptx: the
documenis. mm: the MM
mosd: the OSDD adapter
view graphs and/ mv: a troff
m4:

in this manual. man:
formatted with the MM

send mail to users or read
users or read mail.

netmail: the B-NET network

Jogarithm intrinsk function.
logarithm, power, square root/
logged errors.

logged in on local machines. . . .

login name.
login name.
login name of the user.

login name ol user, . ,

login password.
login,
login server.

login: sign on.
login time. profike:
logins of users and teletypes.
logname: get login name,

logname: return login name of

long integer and base-64 ASCIL
long integer data in 8 machine/
long integers. fltold: convert
longjmp: non-local goto,
loopback network interface.
lorder: find ordering relation
lorder5.0: find ordering . .
lost+ found directory for fsck.
low priority.
Ip, cancel: send/cancel

LP line printer. Ip, cancel: .
LP printers. enable,
LP request scheduler and move/
LP requesis.
LF spocling system.
LP status information.
Ipadmin: configure the LP
Ipmove: start/stop the LP
tpsched, Ipshut, Ipmove: .
Ipshut, lpmove: siart/swop the .

ipstat; print LP staws , . . ., . ..

Irand48, nrand48, mrand48,
Is: list conterus of . ,
Isearch, lfind: linear search
Iseek: move read/write file

Ishift, rshift: Fortran .,

liol3: convert between 3-byle

M68000 and VAX-11/780/
mé8k, pdpll, udb, ulbs, vax:
machine independent fashion.

' . . exp{IM)

Permuted Index
. .« log(3F)

. . errptilpM})
. . twhollN)
. . geloginf{iC)
. . logname(l)
. . cuserid(38)
. .« logname(3X)
- . passwd{l)
. . tlogin(1N)
. . rlogind(8N)
. . login{1)
. .« profile(4)

. last(1)
. . logname(l}
logname({3X)

. ab41(3C)
. . sputl{3X)
. . 13t0l(30)
. . seymp{3C)
. . Io(5)
. . lorder{1}
. . lorder5.0(1)
. . mklost+fnd(IM)
. . nice(1)
. . Ip{1}
. . Ip(1}
. . enable(1)
. . lIpsched(1M}
. . accept(IM)
. .« Ipadmin(iM)
.« Ipsuaill}
. . lpadmin(1M}
. .+ lpsched{1M)

.+ o Ilpsched(IM)

. Ipsched (1M}
lpstat(1)

. . drand48(3C)
.. Is(1)

. . Isearch(3C)
. lseek(2)

. bool{3F)

. Bol{3C)

md: MACEO PrOCESSOT. « . . ma(1)

.o FsevilM)

. . . machid(1}

. sputl{3X)

machine. - put{lC)
machine. take! take(1C)
machine-dependent values. values{5)
machines. ruptime: . ., ., . . « + o+ . ruptime(EN)
machings. - v 4+ s s s twhollN)
machines. updater: . . ., updater(1)
machines, updater: updater{1M)
macre package for formaiting a . mptx{5)
macro package for formatting . . . mml(5)
macto package for formatting/ mosd{5)
macro package for typesetting .. my(%)
MACEO PrOCESSOL, » « & + v v w « & & m4{l)
macros for formatiing eniries . . . mani{5)
macros, /print/check documents . . . mm(l)
mail. mail, cemaik ., . . . L L L. mail(l}
mail, rmail; send maito mail{1)

mail system- - - - 0. ... netmail(§N)

-29 .

Permuted Index

delivermail: deliver
netmailer: deliver

mail, rmail: send

processing sysiem.

malloc, free, realloc, calloc:
/mallopt, mallinfo: fast
program. {tags:

regenerate groups of/ make:
#r5.0; archive and library

ar; archive and library

intra: introduction to system
intro: introduction to system
SCCS file. delta:

mkdir:

ot ordinary file. mknod:

for fsck. mklost+ found:
mkiermnp:

regenerale groups of/

s&p:

banner:

session. scripl:

key.

frealloc, calloc, mallopt,
main memory allocator,
mallopt, mallinfo; fast main/
malloe, free, realloc, calloc,
entries in this manual.
manual.

ftfind, tdelete, twalk:
hsearch, hcreate, hdestroy:
shl: shefl layer

records. fwimp, wimpfix:
of/ Idlread, ldlinit, ldlitem:
frexp, ldexp, modE:

1p:

route: manually

/inet_netof: Interner address
locate source, binary, and/or
man: print ¢ntries in this

for formatting entries in this

routing tables, route:
ascii:
files. diffmk:

umask: set file-creation moge
set and get file creation

an error message file by

table. masier:

information table.

regular expression compile and
math:

constlanis.

eqn, neqn, sheckeq: format
function.

dmax]; Fortran maximum-value/
dmax1; Fortran/ max,

max, max0, amax®,

fmax 1, amax 1, dmax i: Foriran

maze: generale a

accounting.
bed: convert (o antique

memcpy, memset: memory/

mail 1o arbitrary people. delivermail (BN}
mail 10 B-NET. netmailer (8N)
mail 1o users or read mad. mail{l)
matix: interactive message mailx (1}
main memory allocator, malloc(3C)
main memory allocator, , ., ., malloc(3X)
maingin a wes fleforaC clags(l)
mainigin, update, and make(1)
maintainer. ar5.0(1}
maintainer for periable/ ar(l)
maintenance commands and/ . intro(IM) —
maintenance procedures, . ., iniro(§)

make 4 delta (change} toan delta(l)

make g ditectory. mkdir{1}
make a directory, or a special . . mkngd{2)
make a lost+ found directocy . mklost+fnd({M)
make a unique fitename, , . , . . . mktemp(3C)
make: maintain, update, and . make(])
make output single spaced. sspll)

make posters. . . « . . v o4 v . s banner(1)
make typescript of termipal scripe(1)
makekey: generate encryplion makekey(1}
mallinfo: fast main memory/ malloc(3X)
malloc, free, reallog, calloc; malloc{3C)
malloc, free, Tealloc, calioc, malloc(3X)
mallopt, mallinfo: fast main/ . malloc(3X)
man: macros for formating man(5)

man: print entries in this man{])
manage binary seacch trees. search(3C)
manage hash search tables, hsearch{3C)
MATARET. &+ = = « = 2 2 ot v . o - shi{l)
maniputate connect accounting fwimp{IM)

manipulate line number entries

. Idiread{3X)

manipulate partisoff . ., frexp(3C}
manipulate 1ape archive. tp(l) .
manipulate the routing sables. . roule(8N})
manipulation routines., . . . inet{3N)
manugl for program. whergis: . whereis(l)
manual. v L w e e . . man(l)
matyal. man: maccos Manl($)
manually manipulate the ., route(8N)
map of ASCH character set. ascii(5)
mark differences betwean « diffmk(1)
mask. - i e « umask(1)
mask, umask: - + « . umask(2)
massaging C source. fcreate mkstr(1)
master device information master{4)
master: master device + master{4)
match routines. regexp: fegexp(9)
math functions and constants. mMath{5)
math: math functionsand mathi§)
mathematical text for oroff orf . eqnil)
matherr: error-handling matherr(3M)
max, max{, amax0, maxl, amaxl, . . max{3F}
max0, amaxQ, max], amax!, . . max{3F}
max], amaxl, dmax!: Fortran/ . max{3F)
maximum-value funclions max{(3F)
maze: generale a maze. . . , ., . . . ntaze (6}
MBZE. . o v et v v voe e e e e maze () —
mc68ec: C compiler. meoSecll)
metock: return Fortran time mclock{3F)
media. . . . v e e . v« . bed(6)
mem, kmem: core memory. . . . « « mem(7}
memecepy, memchr, mememp, Memory{3C)

-30 -

A

memset: memory/ memccpy,
operations. memcepy, memchr,
memecpy, memchr, mememp,
free, realloc, calloc: main
mallopt, mallinfo: fast main
shmell: shared

queue, semaphote set or shared
mem, kmem: core

memenp, memcpy, memset:
shmop: shared

lock process, texy, or data in
shmget: get shared

/memchr, memcmp, memcpy,
sort: sort and/or

fles. acctmerg:

files or subsequent/ paste:

msgetl:

mKkstr: create an error
recvirom, recymsg: receive a
send, sendto, sendmsg: send a
msgop:

mailx; interactive

nisgget: gt

or shared/ iperm: remove a
mesg: permit or deny
S¥S_Nerr: system error

dminl: Fortran migimum-value/
dminl: Forwran/ min,

min, min{, amin®,

fminl, aminl, dminl: Foruran

system.
lost+found directory for/

special or ordinary file.

file by massaging C source.
filename.

formatling documents., mm: the
documents formatted with the
documents formatted with the/
formatting documents.

view graphs, and slides,

table.

temaindering inwinsic/
chmod: change

umask: set file-creation
chmod: change

getty: set terminal type,

bs: a compiler/interpreter for
floating-point/ frexp, ldexp,
touch: update access and
utime: set file access and
fekpacct, dodisk, lastlegin,
profife.

uusub:

package for formatting/
rcvhex: translates
mouni;

syStem. mounl, umount

setmnt: establish

Permuted Index

memchr, memcmp, memcpy, memory(3C)
memcmp, MEmMcpy, Mmemset; memory memory{3C)
memcpy, memset: memory/ memory{3C)
memory allocator. malloe, . . , . . malloc(3C)
memory alfocator. fcalioc, malloc(3X}
memoty control operations. shmetl(2)
memory id. fremove a message . . . iperm(l)
memory. e e e e mem{7)
memory operalions. /memchr, . . . memory(3C)
memory operalions.« « . . o Shmop(2}
memory. plock:+ plock(2)
memory segment. « + « + shmget(2)
memset: memory operations. memory(3C)
merge files,+ . sori(l}
merge or add total accounting gcctmerg(1M)
merge same lines of several paste(1}
mesg: permil or deny messages. . . . mesgll)
message conirol operalions. msgetl(2)
message file by messaging C/ mkstr(l)
message from a socket. recv, recv(2N)
message ffom asocket, ., send{2N}
message operations. msgop(2)
message processing system. mailx{(l)
message qUBUE,+ . msgget(2)
message queue, semaphore set . . iperm{1)
THESSABES. « « + + + b 2 o « o a o x o » mesg(l)
messages. ferrno, sys errlist, petror(3C)
min, min0, amin0, mini, amin!, . . . min(3F)
min0, aminO, mint, aminl. min{3F}
mini, aminl, dminl: Fortran/ min{3F}
minimum-value functions. min(3F}
mkdir: make a directory, ., mkdir(1)
mkis: construct a file system. mkis(1M)
mkislb: constructafile mkfsl1b(1lM)
mklost+found: makea mklost+Fnd(1M}
mknod: build special file. mknod(IM)
mknod: make a directory, ora mknod(2)
mksir: cTeate an error message . mkstr{l)
mkitemp: make a unigue mktemp{3C)
MM macro package for mm{5)

MM macros. /print/check mm(l)
mm, osdd, checkmm: print/check . . mm(l)

mm: the MM macro package for . . . mm(5)
mmt, mvt: typeset documents, . . mmt{l)
mnttab: mounted file system . mattab(4)
mod, amod, dmed: Fortran mod(3F)
mede, « .« . . h s e s e e e e chmod(1}
mode mask., . e e+ s+ s umask(l)
mode of file., chmod(2)
modes, speed, and lingf getty (IM)
modest-sized programs. ., ., ., bs(1}

modl: manipulate partsof . . + + + o frexp(3C)
medification times of a fle, touch(l)
moedification times. utime(2}
monacct, sulladm, pretmp,/ acctsh{iM)
monilor: prepare execttion monitor{3C)
monitar uucp network. uusub{1M)
moo: guessing game. moo{6)
mosd: the OSDD adapter macro . . . mosd($)
Motorola S-records from/ rcvhex ()
mount a file system. mount{2)
mount and dismeunt file mount(1M)
mount: mount a file system. mount(2}
mount tabte.« setmnt{1M)

-31-

Permuted Index

dismount file system.
mnttab:

mvdir:

cp, In, mv: copy, link or
lseck:

the LP request scheduler and
formatting a pertnuted index.
/erand4E, irand48, nrand48,
operalions.

select: synchronous ifo
typesetting view graphs and/
cp, In,

graphs, and slides. mmt,
log, alog, dlog, clog: Fortran
i-numbers.

Jdnint, nint, idnint: Foriran
mathematical 1ext for/ eqn,
definitions for eqn and

mail system.

B-NET.

values between host and
seinelent, endnetent: get
/sethostent, endhostent: get
lo: software loopback
ifconfig: configure

netmail; the B-NET
networks:

routed:

netstat: show

uwusub; monitor vucp
networking: introduction to
neiworking facilities.

base.

a text file.

news: print

Process.
priority.
integer/ anint, dnint,

kist.
object fike.

change current UNIX system
hangups (sh only).

setjmp, longimp:

bitwise boolean/ and, or, xer,
drand48, erand48, lrand48,

format mathematical text for
tbl: format tables for
consiructs. deroff: remove
between host/ htoni, hions,
host and/ htonl, htons, ntohl,
null; the

/dodisk, Jastlogin, monacet,
nl: line
number: convert Arabic

mount, umount: mount and mount{lM)
mounted file system table. mntiab(4}
move a directory. o« o« .. mvdir{1M)
move files. e . epll)

move read/write file pointer. Iseek{(2}
move requests. fstart/stop Ipsched (1M}
mptx: the macro package for . mptx{5)}
mrand48, jrand48, srend48,/ drand48(3C)
msgetl: message control msgetl{d)
msggew: get message queue, msggel(2)
msgop: message operations. msgop(2)
multiplexing. . - select(ZN}
my: a troff macro package for . . . my(3)

mv: copy, link or move files. . . ., cpll)
mvdir: move a divectory. mvdir{liM)
mvi: typeset documents, view mmt{l)
netursl logarithm intrinsic/ log(3F)

ncheck: generate names from ..
nearesi integer funcuons.
neqn, checkeq: format
negn. fspecial character
netmail; the B-NET network .

netmailer: deliver mail to .
netstat: show network slatus. .
network byte order. fconvert
neiwork entry. fgeinetbyname,
network hest entry. . .
network interface. , '
network interface parameters.,
network mail system.

. ncheck{1M)

round(3F)
eqni(l)
eqnchar (5)

. netmail{8N}

netmailer (8N)

. netsiat(IN)

byteorder (3N}

. getnetent(3N)

gethostent(IN)
lat5)
ifeonfig{8N}
neimail(BN)

network pame data base. networks{4N)
network routing daemon. routed(8N}
network status. - netsiat{1N)
network, « « .« . uusub{lM)
networking facilities, ., intro (5N}
nelworking: introduction to, intro(5N)
networks: network name data networks(d4N)
newlorm: change the format of . . . newferm{l)
newgrp: log in to a new group. newgrpil)
news items. e e e e e e s « « news(l)

News: print news ileéms. . « « « + « .

news(1)

nice; change priority ofa nice(d)

nice: run 8 command at low nice(1)

nint, idnint: Fortran nearest round (3F)
nl: line numbering fitter. - . ni{1)

nlist: get =ntries from name nlist(3C)
nm: print name list of common . nmfl)
nmsS.&: print name list, amS.0(1}
nodename. chgnod: « « . chgnod{lM)
nohup: run a command immune to . nohupil)
non-local 8OLO. .+ .« . 4 4 . e .o setjmp{3C)
nol, Ishif1, rshift: Fortran bool(3F)
nrand48, mrand48, jrand48,/ . . drand48(3C)
nroff: formattext. ., nroff(1)
nroff or weoff. fcheckeqr eqnil)

neoff or trofl. . . . L . e e, 1bI(1)
nroff/troff, thl, andeqn deroff(1)
ntohl, ntohs: convert values byteorder(3N)
ntohs: convert valies between byteorder(IN)
nell file,0 ... null(7)

oull: the nuilfile. . ., null{7)
nulladm, pretmp, prdaily,f acctsh(EM)
numbering filter. nl(1}
pumerals to English. ., number{é)

-32-

Idfen: common

cony:

dump seleci=d parts of an
Idopen, iaopen: open a common
aumber entries of a common
Idaclose: close a commen

the file header of a common
retrieve symbol name lor

of a section of a common

file header of a common

of a section of a common
section header of a common
section of a common

symbol table entry of a common
symbol table entry of a common
the symbol table of 2 common
number entries in a common
um: print name list of common
information for a common
section header for a common
size5.0: size of an

number information from an
format. syms: common

- a.out header for common

file header for common

hex: translates

directories. cpset: install

Id: link aditor for common
print section sizes of common
find ordering relation for an
find ordering refation for an
/the printable strings in an
/setgrent, endgrent, fgetgrent:
od:

command immune to hangups (sh
the specified/ exterr: turn

put: puts & file

reading. ldopen, ldaopen:
fopen, freopen, fdopen:

open:

writing.

seekdir, rewinddir, closedir:/
tputs: terminal independent

fFs: bit and byte string

Nexible length directoty
memecmp, memcpy, memset: memory
msgetl: message control

MSgop: message

semctl: semaphore control
semop: semaphore

shmctl: shared memory controd
shmop: shared memory

strespn, striok: string

join: relational database

deopy: copy file systems for
CRT screen handling and
vector. gelopt: get

common/ ldohseek: seek to the
fentl: file control

stty: set the

getopt: parse command
/setsockopt: get and set

Fortran bitwise boolean/ and,

Permuted Index

object file access routines.
object file converter.
object file. dump:

object file for reading. . .
object file function. fline
uhiect file. ldclose,
object file, |dfbread: read
object file. Idgetname:

object file. /number entries
object file. /to the optional
ubject file. /entries
object Ble, /an indexed/named

Idfen(4)
canv(i)
dump(1}
ldopen(3X)
Idiread (3X)
Idclose (3X)
Idfhread (31X}
ldgetname(3X)
Idiseek(3X)
Idohseek(3X)
Idrseek(3X)

. Idshread{(3X)

object file, /an indexed/named . . . Idsseek{3X)
object file, /the indexofa Idtbindex (3X)
object fike. /read an indexed Idtbread(3X)
objece file. /seekto . ., ldtbseek(3X)
object file. linenum: line linenum (4)
objectfile. nm(l)
object file, /relocation reloc(4)
object file, scobdr: scnhdr(4)
object file. size5.0(1)
object file. /symbol and line strip{1)
object file symboltable . ., syms{(4)
object files. aouthdr.h aouthdr{4)
object files. filehdr: filehdr{4)
objectfiles. hex(1)
object files in binary cpset(IM)
objectfiles. a1

obiect fles. size: o . size(l)
object library. lorder: lorder(l}
object library. lorder5.0: lorder5.0(1)
objeci, or other binary file. strings{l)
obtain group file entry froma/ . . . gelgrem(3C)
octaldump. od(1}
od:oclaldump.od(l)

only), nchupiruna nohup(i)
on/off the extended errors in . exterr(1)
onlo a remote machine, put{1C)
open a common object file for . « Idopen{iX}
OpEN @ SIEAM. . . « = . + & v« . . fopen(3S)
open for reading or writing. open(2)
open: open for readingor open(2)
opendir, readdir, teltdir, directory(3X)
operation routines. /tgote, termcap{3X)
operations. fhcmp, bzero, bstring(3N)
operations. /closedir: directory(3X)

operations. memeccpy, memchr,

. memory(3C)

operations. e e e e e e magetl{2)
operations. v v« s+ . msgop(2)
operations.+« semctl{D)
OPErationNs. 4 . 4444w semop(2)
operations. shmetl(2)
operations. e e e e e shmop(2)
operations. /strpbrk, strspn, string(3C)
OPETAIOL. &+ & v v s a2 now e s join{1}
optimal access time. deopy (1M}
oplimization package. curses: curses(3X)
option letier from argument getopt(3C)
optional file header of a Idohseek(3X)
OPHIODS. & 4 & 4 v v & h ke a e .. fentl(5)
options for a terminal. stey(1)
options. e h et e e e getopi(1)

options on sockets.
or, xor, not, Ishift, rshift:

-33.

. . getsockopt{2N)
. bool(3F}

Permuted Index

object library. korder: find
ohiect/ lorderS.0: find

a directory, or a special or
formatting/ mosd: the
documenis formalted with/ mm,
dial: establish an

assembler and link editor
asgembler and link editor
{vsprintfl: print formatted
/vsprintf. print formatted
gprintf: print formatted

55p. make

facetdusg, accion, acctwimg:
chown: change

chown, chgrp: change

and expand files.

bandling and optimization
permuted/ mpix: the macro
documents. mm: the MM macro
mosd: the OSDD adapier macro
graphs and/ mv: a wofl macro
sadc: system activity veport
standard buffered input/ output
interprocess communication
4014 terminal, 4014:

tune floppy disk settling time
configure network interface
PFOCEsS, process group, and
getopt:

fendpwent, (getpwent: get
puipwent: write

passwd:

getpass: read a

passwd: change login

pwck, grpck:

several files or subsequent/
dirname: deliver portions of
directory. getcwd: get
fgrep: search a file for a
processing language. awk:
signal.

expand files. pack,

@ process. popen,

truth value about your/ m68k,
get name of connected
mesg:

macre package for formatting a
pix:

format. acet:

accicms: command summary from
sys_nerr: system errorf
viewing. more: file
terminals. pg: file

soft-copy terminals.

1c:

access physical addresses.
allow a process 1o access
split: split a file into
channel.

tee:

popen, pclose: initiate

fish:

ordering relation foran ., . . ., . . . lorder(!)
ordering relation foran lorder5.6(1)
ordinary file. mknod: make mknad(2)
0SDD adapier macro package for . mosd(3)
osdd, checkmm: print/check mmf(l}
out-going terminal bine/ dial(3C)
outputl. a.out: common a.outl(4)
output, aout5.: . . . L. a.ou5.0(4)

output of a varargs argument/

. vprintf(3S)

output of a varargs argument/ vprimf(3X)

output. printf, fprimf, printf(35) —
output single spaced. e e e e sspil)

overview of accounting and/ acct{IM)

owner and group ofafile. chown(2)

OWDEL OF GEOUP. « + v o 0 v v o o s chown(!}

pack, peat, unpack: compress . pack(l}

package. curses: CRT screen

. curses(IX}

package for formattinga mpix{5)
package (ot formatting mml($)
package for formatting/ mosd(5)
package for typesetting view mv (5}
package. sal, sa2, v« o Sar{lM)
package. sidio: stdio{3S)
package. ftok: standard ., stdipe(3C)
paginator for the Tektronix 401401}
parameters. diskiune: . , , disktune{1M)
parameters. ifconfig: ifeonfig(8N)
parenti process IDs. fget getpid(2)
parse command options. . , . , . . getopt{l)
passwd: change login password . passwd(l)
passwd: password file. . , passwd{4)
password fileentry. getpwent(3C)
password Ale entry. putpwent(3C)
password file. passwd(4)}
password. getpass{3C) —
PASSWOTd. .« + .+ + v - 4 4w . oa e s passwd(l}
password/group file checkers v .. pwek(IM)
paste; merge same linesof paste(]}
path names. basename, basename(l)

pathname of current working

. getewd{(3C}

paltern. grep, €greP, « . . .« . . . - grepil)
pattern scapning and awk{l)
pause: suspend process until pause{2)
peat, unpack; compressand pack(l}
pclose: initiate pipe to/from popen(38)
pdpll, udb, ulb5, vax: provide . . . machid(])
peer. getpeername’ getpeername (2N)
permil or deny messages. mesg{l)
permuted index. mpixithe mptx{5)
permuted index. opix(l)
per-process accounting file acct{4}
per-process accounting/ . . ., . , . . acciems(iM}
perror, errno, sys_errlist, ., perror (3C})
perusal filter forert, more(l)
perusal filter for softcopy pa(l)

pg: file perusal filer for pg(l)
phototypesetter simulator, . ., (i}

phys: allow a processto ., phys(2)
physical addresses, phys: phys(2) —
pieces. e e e e e o« . o split(l)
pipe: creale an interprocess pipe{2}
pipefiting. tee(l)

pipe to/lrom a process. popen(3S}
play “Ge Fish™. fishi&)

-34.

lifa:
worm:
data in memory.

subroutines.

images.

fiell: reposition a file

tseek: move read/write file
to/from a process.

data base of terminal types by
and library maintainer for
basename, dirname: deliver
functions. dim, ddim, idim:
banner: make

logarithm,/ exp, log, logl0,
fsqrt: exponential, logarithm,
bre, beheckre, re,

/lastlogin, monacct, nulladm,
/monacct, nulladm, prctmp,
function. dprod: double

for troff. cw, checkew:
monilor:

cpp: the C language

cpp: the C language

unget: undo s

types:

interesting, adage. fortune:
prs:

date:

cal:

of a file. sum:

editing activity, sact:

id. whoami:

man;

cat: concatenate and

pr:

vprintf, vfprintl, vsprintf:
vpriatf, vfprintl, vaprintf:
printf, fprintf, sprintf:

host system. hostid: sei or
banner?:

lav:

Ipstat;

nm5.0:

abject file. nm:

system. hostname: set or
systemn. uname:

news:

printenvy:

file(s). acctcom: search and
object files. gize:

pstal

names, id:

objecy, or/ strings: find the
formatied/ mm, osdd, checkmm:
environment.

banner7: print large banner on
requests o an LP line
disable: enable/disable LP
print formatted output.
nice: run a command at low
nice: change

Errors. errpt:

Permuted Index

play the game of life. life(®
Play the growing worm game. . wormi6)
plack: lock process, text, or plock(2)
plot: graphics interface. plot(4}
plot: graphics intetface plo1(3X)
pnch: file format forcard pnch{4)
pointer in a stream. frewind, fseek(35)
POIMIER. + « v = o o o + o = o « = = Iseek{(2)
popen, pclose: initiate pipe popen(3S)
port, MYLYPE: e e e . .. itytype(4)
pottable archives. farchive ar(l)
portions of path names. basename(1)
positive difference intrinsic dim(3F)
POSIEIS. v v v v v v v v s v v + » » banner(l}
pow, sqrt: exponential, exp(3M)
power, square root functions. exp(IM)
powerfail: system/ bre{iM)
proprintfiles. pr(l)
preimp, prdaily, priacct,/ accish(1M)
prdaily, prtacct, runacct,/ acctsh(1M)
precision product intrinsic dprod(IF}
prepare constant-width text cw(l)
prepare execution profile. monitor{3C)
PICPIOCESSOL. + o+ « & « o + & = o & cpp(l)
PIEDIOCESSOT. + + « v v = v r = & » cpp5.0(1)
previous get of an SCCS fite. unget(1}
primitive system data types. types(5)
print a random, hopefully fortune (6)
printan SCCSfile. prs(1)
print and set the date. date(1)
peintcalendar. 4 . . cal{l)
print checksum and block count . . . sum(l)
print current SCCS file sact(1)
print effective current user whoami(l)
print entries in this manpal. man(l)
printfiles. cat(l)
printfles. pr(1)

print formatted output of &/ vprintf(3S)
print formatted output of &/ vprintf(3X)
print formatted owlput. printf(35)
print identifier of current hostid(1N)
print large banner on printer. banner7{1)
print load average statistics, lavi{l)
print LP status information. Ipstat(1)
priot name list. nmS.0(1}
print name list of common am(l}
print name of current host hosiname(IN)
print name of current UNIX uname(l)
printnewsitems. news(1)
print cut the environment. printenv(1)
print process acCOUNtng . « « « » .« » Bccteom(l)}
print seclion sizes of common size(l)
print systern facts. pstat(1M}
print user and group IDsand id(1)
printable strings inan strings(1)
print/check documents mm(})
printenv: print cut the+ printenv(l)
PHIEET. 4 ¢ v ¢+ 4 v v v m v e n s banner7(1)
printer. /cancel: send/cancel Ip(l)
printers. enable,, . . , . enable(l)
printf, fprintf, sprintf: printf(35}
PHOMY. + & - v v v v v a v n e n s nice(1)
priority of 8 process.« + . . mice(2)
process & report of logged errpt{IM)

-35-

Permuted fndex

acct: enable or disable
acctprel, accipre:

accloom: search and print
times. times: get

init, ielinit:

timex: time a command; report
exit, _exit: terminate

fork: create a new

/getpgrp, getppid: pel process,
seLpgrp: sel

killpg: send signal to a
process group, and parent
inittab: seript for the init

kill: terminate a

nice: change priority of &

kill: send a signal to a

initiate pipe to/from a

getpid, petpgrp, petppid: get
ps: report

memory. piock: lock

times: get process and child
addresses. phys: allow a

wait: wait lor child

waild: wait for child

ptrace:

pause: suspend

list of file systems

10 a process or a group of
killell: kill all active

structure. luser: identily
awk: patitern scanning and
shutdown: terminate all
mailx: interactive message
md: macro

provide truth value about your
between M6800D and VAX-11/780
alarm: set a

dprod: double precision

function.

profile.

prof: display

monitor: prepare execution
profil: execution time
environment at login lime.
prof:

standard/restricted command
arp: Address Resolution
fsetprotoent, endprotoent: get
inet: Internet

ip: Internet

protocols:

DARPA lniernet File Transfer
telnetd: DARPA TELNET
DARPA Triviel File Transfer
Internet Transmission Control
user interface 1o the TELNET
trpt: transliterale

udp: Internet User Dalagram
base.

arithmetic:

for reading or/ locking:
mbsk, pdpil, ulb, uibs, vax:
true, false:

process accounting. - - . . . acc1t2)
proocess accounting. . . ., acctpreliM)
process accounting fileds). acctcom(1)
process and child process times(2)
process controld L mit{1M)
process data and system/ , . timex{l)
PIOCESS. « + v = 4 ¢ 0 w2 4 s xoa s exit{2)
PEOCESS. .+ « = « « & 4 o v b v b s fork(2)
process group, and parenty getpid(2}
processgroup ID. . L L L., L. setpprp(2)
PrOCESS BIOUP. . .+ » o« . killpg (3N}
process I1Ds. /get process, getpid(?)
PrOCess. . « « - - . . . v v e« + . iniuabtd)
PrOCESS. « 4 v o + o w o » o n « v » kill(1}
PTOCESS. « « » « « = « « w w o 2 ¢ « nice(2)
process or a groupofy . . ., . . . kill(2)
process. popen, pclose: popen(3S)
Process, process group, and/ . getpid(2)}
Process Stalus. ps(l)
process, text, ordatain , . , plock(2}
process times. e e e e e s times(2}
process o acoess physical phys(2)
process to stop or lerminate. wait{2}

process 10 stop or lerminate.

. wait3(2N)

Process trace. .+ « « . . . 4 o0 . . . ptrace(2}
process until signal - pause(2)
processed by fsck. checklist: checklist(4)
processes. fsend asignal kill(2}
PrOCESSESS. « - = o & o « 2 o« « + = killall{1M}
processes using a file or file .+ o Fuser{lM)
processing tanguage. awk(l)
PTOCESSing. - . .« . . e e e e shutdown{1M)
processing system. mailx(1}
PrOCESSOT. - + « « + 4 = s « o v o+ » m4(1)
processor type. fu3bS, vax: machid(l)
processors. Fconvert filess fsew(IM)
process’s alarmclock,, . . . alarm(2)
product intrinsic function, dprod(3F)
prof: display profile data. prof(l)

prof: peofile withina+ prof(5)
profil: execution time . , , ., ., . . . profil{(2)
profiledata. prof{1)
profilte. moenitor (3C)
o profil{2)
profile: settingupan, .. profile{4}
profile within a function, prof{5)
programming language. /the . sh(i)
Protocol. .+ + « + « & v v v v .o arp(5P)
protocof entry. e v+« « .+ getprotoent{3N}
protocot family. . . ., inet{5F}
Protocol, « v v v v v v a e a . . ipl5P}
protocol name data bage. , protocols{dN)
Protocol server. fipd: fipd(&N)
protocol server. lelnetd(8N)
Protocol server. thipd: Uipd{8N)
Protocol. tep: .« v e v .. tcp(SP)
protocol. telnet: . . ., ., . . teinet{iN)
protocol IFACE. .+ &+ + 4 4 « v & 4w s trpt{8N)
Protocol. + » v v ¢ v v n e e . « » udp(5P)
protocols: protocol name data protocols(4N)
provide drill in number facts, . « . arithmetic(6)
provide exclusive file regions « « « locking(2)

provide truth value aboul your/
provide truth values.

...... ..

-3 -

. machid(1)

true(l)

fnulladm, pretmp, prdaily,

pty:
sxt:
/generate unifermly distributed

siream. ungele:

pui character or word on af
character or word on a/ putc,
environment.

enlry.

machine. put:

stream.

getutent, geiutid, getutline,
af pule, puichar, fpuic,

fite checkers.

tput:

insert/remove element from a
msgget: get message

ipCTm: rEMove a message
qsort:

display.

rain: animated
random-number/ irand, srand,
random-number generator,
adage. fortune: print a

rand, srand: simple

/srand, rand: Fortran uniform
fsplit: split 177,

dialect.

ratfor:

initialization/ bec, bcheckrc,
roulines [or returning a/

S-records from downloading/
gelpass:

entry of a common/ Idibread:
header/ ldshread, ldnshread:
read:

readv:

rmail: send mail 10 users or
line:

member of an/ Idahread:
common object Ale. ldihraad:
rewinddir, closedir:/ opendir,
open a common object file for
exclusive file regions for
apen: open for

iseek: move

cmplx,/ int, ifix, idine,
aliocator. malloe, free,
matiinfo: fast! malioc, free,

reboot.

prs: print an SCCS fle.
prtacel, runacct, shutacer,/

ps: ceport process status. .,
psendo lerminal driver.

pseudo-device driver.

pseudo-random numbers,
pstat: print system facts,

plrace: process ltace.
pix: permuted index. ., . .
pty: pseudo terminal driver.

push character back into input . .

putc, putchar, fputc, putw:
putchar, fpuic, putw: put
putenv: change or add value 1o
putpwent: write password file
puts a file onto a remote . . .
puts, fputs: put a string on 4

pututline, setutent, endutent,f . . .

puiw: pul character or word on
pwek, grpck: password/group
pwd. working direclory name.
qsort: quicker sorl.

query terminfo database.

queue, insque, remgue:
queue.
queue, semaphore set or shared/
quicker sortt.

quiz: test your knowledge.

rain: animated raindrops
raindrops display.
rand: Fortran uniform
rand, srand: simple .
random, hopefully interesting, .
random-number generator,
random-number generator.
ratfor, or el files.
ratfor: rational Fortran
rational Foriran dialect.
re, powerfail: sysiem

temd, cresvport, ruserok:
rep: remote Hle copy.
rcvhex: transiates Molorola
read a password. . .
read an indexed symbol table

read an indexed/named section
read from file,
read from file.
read mail. mail, . . ., .
read one line.
read: read from file.
read the archive header of a
read the file header ol a .
readdir, telidir, seekdir,

reading. ldepen, ldaopen:
reading or writing. fprovide . .
reading or writing.
readv: read from fle.
read/write file pointer.
real, float, sngl, dble,

P

realloc, calloc: main memory

realloc, calloc, mallopt,
reboot: reboot the system,
reboot: reboot the system.
rebool the system.

237 -

Permuted Index

prs(1)

.+ acctsh{lM)
. . psll)

. pty{s)
sx1(?)
drand48(3C)
pstat(1M)
pirace(2)
ptxi{1)
pty(5)

. . ungetc(38)

putc(38)
puic(3S})
. putenv{3C}

.. putpwent(3C)

. put{1C)
puts(3S)
. getat(3C)

.« . pulci3s)
. . . pwek(IM)

...... 44 ox on e a

T splin(h)

. v pwd(l)

. gsort(3C)
tpui(l)
insque(3N)
msgget(2)

. . iperm(l)

gsort{3C)
quiz(6)
rain{&)
rain(6)
rand (3F)
rand (3C}
. Tortune(6)
rend{(3C)
rand(3F})

ratfor{1)
ratfor(l)
bre(tM)
remd (3N)

. rep{IN)
revhex{1)
gelpass{3C)

. . . ldtbread(3X)

.« read(2}

A 4 b & oa e e

. lashread(3X}
. read(2)

. . readv(IN)

mail(1}
line(1}

Idahread{3X)
Id¢fhread(3X)
directory (3X)
Idopen{3X}

. locking(2)
opent2}
readv{3N)
lseek (2)
fiype{3F}
malloc(3C)
makoc{3X}
reboot{1M)

. teboot{2)
rebaot{1M)

Permuted Index

rebootl: Teboot the system. reboot(2)
specily what 10 do upon receipt of a signal. signal: signal(2)
/specily Fortran action on receipt of a system signal. signal(3F)
tecy, recvirom, recvmsg: receive a message froma/, . recv(2N)
lockf: vecord locking onfiles. lock{3C)
from per-process accounting records. /command summary . acclems(iM)
errdead; extract error records ffomdump. errdead (I M)
manipulate connect accounting records. fwimp, wimpfix: fwimp(iM)
tape. frec: recover files from » backup frec{lM)}
receive a message from a/ recv, recvfrom, recymsg: recv(2N}
message from a socket. recv, recvfrom, recvmsg: receivea recv(IN)
from a/ recv, recvirom, rECVMSE: TECEIVE 2 MESSERE - - - . . recv(2N)
ed, red:texteditor. ed(l)
execute & regular expression. regcmp, regex: compilcand , regemp(3IX)
compile. regcmp: regular expression regemp(l)
make: maintai pdate, and reg ate groups of programs. . . make(])
regular expression. regemp, regex: compile and execute a . regempl{3X)
compile and match routines. regexp: regular expression regexpll)
fpravide exclusive file regions for reading or/ locking{(2)
malch routines. regexp: regular expression compile and . regexp(5)
regemp: regular expression compile., regemp(§)
regex: compile and execule a regular expression. regemp, regempl(3X)
requests. accepl, reject: allow/prevent LP accept{IM}
sorted files. comm: select or reject lines common e two comm{l)
lorder: find ordering relation for an object/ lorder(l)
lorder5.0: find ordering relation for an object! lorder5.0(1)
join: relationsl database operator. join{l)
for a common object file. reloc: relocation information reloc(4)
strip5.0: remove symbols and relocation bits. strip5.0(1)
Idrseek, idnrseek: seek to relocation entries of a/ ldrseek (3X)
commeon object file. refoc: relocation informationfora reloc(4)
{fmod, fabs: floor, ceiling, remainder, absolute value/ Noor{3M)
mod, amod, dmod: Fortran remaindering intrinsie/ mod (3F)
calendar: reminder service. calendar(l)
for returning a stream to a remote command. froutines . . remd(3N)
TEXEC: return stream 10 & remote command. rexec(IN)
rexecd: remote execution server. rexecd{(8N}
rep: remote file copy. NN . rep{IN})
rlogin: remote loginek® PP riogin{1N)
rlogind: cemole login server., . rlogind (BN}
put: puts a file onto a remote machine. . ., L. put(1C)
take: takes a file [rom a remote machine. 1ake(IC}
remsh: remoteshell. remsh(IN)
remshd: remote shell secver. remshd{8N)
cL: 5pawn getty to a remote terminal., . ct{lC)
fike. rmdel: remove a delta from an SCCS ., . . . rmdel{])
semaphore sel off ipcrm: remove 8 MEsSAge queue,« . . ipcrmfl)
unlink: remove directory entry. ualink{2)
rm, rmdir: remove fles or directories. rm{l}
eqn constructs. deroff: remove nroff/woff, b, and deroff{1}

bits. strip3.0:
from a queue. insque,

check and imeractive
uniq: report

clock:

communication/ ipcs:
blacks. df:

errpi: precess 8
frequencies in a file. freq:
sa2, sade: system aclivity
{imex: time & command;
ps:

remove symbols and relocation
remque: insert/remove element

. . strip5.01)
. insque{IN)

remsh: remote shell, . ., remsh({IN)
remshd: remote shell server. remshd{gN)
repair. /system consistency [sck{1M}
repeated linesinafile. unig(1)
report CPU time used, clock(3C)
TEpOTL inter-process v o .. ipos(l)
report number of free disk df{1M)
report of logged erfors. errpt{1M)
repory on charsacter , , freq(l)
report package. sal, sar{iM)

report process deta and system/
report process status.

-3 -

: . limex(1)

ps(1}

file. unig:

sar: syslem activity

files. version:

stream. fseek, rewind, fiell:
{lpmove: starl/stop the LP
reject: allow/prevent LP
LP request scheduler and move
Ip, cancel: send/cancel
teletype bils 10 8/ tset,
sensible/ 1set, reset: set or
arp: Address

object file. Idgetname:
argument. getarg:
varigble. getenv:
accounting. mclock:

abs:

siring. len:

subsiring. index:
logname:

command. rexec:

name. getenv:

stal: data

fruserok: routines for
configuration/ uvar:

col: fileer

file pointer in &/ fseek,
/readdir, telidir, seekdir,
creal: create a new file or
remole command.

server.

directories.

read mail. mail,

SCCS file.

directories. rm,

Escape from the automatic
Try lo escape the killer
robots.

robots: Escape from the
chroot: change

chroot; change

logarithm, power, Square
fdsqrt, esqet: Fortran square
routing tables.

daemon.

remd, rresvport, ruserok:
Internet address manipulation
common object file access
expression compile and maich
terminal independent operation
routed: network

rouke: manually manipulate the
for teturning a stream/ remd,
standard/restricted/ sh,

and, or, xor, not, Ishift,

nice:

hangups (sh only). nohup:
runacct:

/preimp, prdaily, prtacet,
local machines.

reiurning &/ remd, reesvport,
machines.

repori repeated lines in a
reporier.
reparis version number of .
reposition a file pointer ina . .
request scheduler and move/
requests. accept,
requests. /start/stopthe , , .
requests o an LP line/ , ,
reset: sel or resel the
resel the teletype bits o a
Resolution Protacol,
retrieve symbol name for . . .
return Fortran command-line .
return Fortran environment . .
return Fortran time
return integer absolute value. .
return length of Fortran , , .
retorn location of Foriran
return login name of user.

relurn siream 1o & remote . . .

P

return value for environment ., .

returnied by stal system call. . .
returning # stream to a remote/

returns system-specific
reverse line-feeds.
rewind, fell: repositiona . . .
rewinddir, closedir: flexible/

rewrile an existingone.

rexec: return streamtoa .,

rexecd: remote execution

rlogin: remote login.
rlogind: remote login server. .
rm, rmdir: remove files or

rmail: send mail to users or
rmdel; remove a delta from an

Permuted Index

. . unig(1)
. sar(1}
. version{!)

. fseek(3S)

+ « lpsched(1M)

. . accept(IM)

.. Ipsched(1IM)

. . 1p(1}

. . tset{l}

.« tser{l}

+ « arp(SP)

+ « Wgetname(3X)

. . getarg(3F)

. . getenv(3F)

. . melock (3F)

. « abs(3C)

+ « len{3F)

. . index(3F)

. . logname(3X)

.+ rexec(IN)

. . getenv(3C)

. . stat(5)

. . remd(3N)

. o uver(2)

.« col{l)

. . fseek(3S)

. . directory(3X)

« « creat(2)

. . rexectIN)

. . rexecd(§N)

. . riogin{IN)

» » Tiogind{8N)

. . mfl}

. . mail(1)

+ « rmdel(1}

rmdir: remove flesor . ., rmil)
robots. autorobots: autorobots()
robots. chase: . .+ « - « chase(6)
robots; Escape from the , robots{6)
robots, « v s s+« . IObots(E)
rootdirectory. . . . v . 402 . .. chroot(2)
root directory for a command. chroot{IM)
root functions, /exponential, .+ . exp(3M)
root intrinsic function. sqrt(IF)
route: manually manipulate the + - route(8N}
routed: network routing rouled{SN)
routines for returning 8/ remd (3IN)
routines. finet_netof: inet(3N)

routines. ldfcn:
routines. regexp. regular . . .
routines. /igoto, fpuls:
routing dagmon,
routing tables.

cresvport, ruserok: routines . .
rsh: shell, the
rshift: Fortran bitwise/ .
tun a command at low priority.

run a command immune to . , . . .

run daily acconnting.
runacct: run daily accounting.

runacct, shutacct, siartup,/ . .
ruptime: show host status of . .
ruserok: roulines lor

rwho: who's logged in on local . .

-39 -

.« ldfen{4)

+ . regexp(5)

. . termcep(3X)}

« « routed (8N}

.« route(BN)

. . remd{3IN)

. . shil}

.« bool(3F)

. » nice(l)

nohupil)

. . runacct(1M)
. runacct(1M)

. accish{1M)

. . ruptime(IN)
. . rcmd(3N)
. . rwho(IN)

Permuted Index

activity report package.
report package. sal,
editing activity.
package, sal, sa2,

space allocation. brk,
formatied input.

bfs: big file

language. awk: pattern

the deha commentary of an
comb: combine

make a delta (change) 1o an
sact: prini current

gel: get a version of an

prs; print an

rmdel: remove a delta from an
comparg iwo versjions of an
sccsfile: format of

undo a previous get of an
val: validatle

admin: creawe and administer
what: identify

help: ask for help in using

of an SCCS file.

fstart/siop the LP request
common object file.

clear: clear terminal
optimization/ curses: CRT
twinkle: twinkle stars on the
display editor based on/ vi
inittab:

terminal session.

sysiem initialization shell

program.

grep, cgrep, fgrep:

bsearch: binacy

sepounting fle(s). acctocom:
Isearch, Wind: linear

h¢reate, hdesiuroy: manage hash
tdelete, twalk: manage binary
object file. scnhdr:

object/ /read an indexed/named
/1o line number entries of a
/to relocation entries of a
fseek 1o an indexed/named
files. size: print

/mrand48, jrand48, srand48,
section off ldsseek, ldnsseek:
& section/ Idiseek, ldnlseek:
a section/ ldrseek, idnrseek:
header of a commeon/ |dohseek:
comman object file. ldtbseck:
opendir, readdir, selldir,
shmgel: get shared memory
brk, sbrk: chapge data

10 two sorted fles. comm:
multiplexing.

greek:

of & file. cut: cut oul

rwhod: system staius server.
sal, sa2, sadc: system
sa2, sadc: sysiem activity
sact: print current SCCS file
sadc: systemn aclivity report
sag: system activity graph.
SaT: syslém activily reporter.
sbrk: change data segment
scanf, fscanf, sscani: convert
SCANMEL. . - & v v v uoa e e e
scanning and processing
SCCS delta. cdc: change
SCCSdeltas. -« v .
SCCS file, deita:
SCCS file editing activity.
SCCS fle,
SCCS hie.
SCCS file.
SCCS file,
SCCS file.
SCCS fle.
SCCS file.
SCCS files.
SCCS files.
SCCS. . . . e e ..
seesdiff: compare 1wo versions
scesfile: format of SCCS fiie.
scheduler and move requests.
scnhdr: section header for a
screen.
screen handling and
SCTBEM. = v w v« v v m e b e s
screen-otiented (visual)
script for the init process.
script: make typescript of
seripts. /re, powerfail:
sdb: symbwolic debugger.
sdiff: side-by-side difference
search a file for a pattern.
search a sorted table,
search and print process
search and update.
search tables. hsearch,
search trees. tsearch, thnd,
section header for a common ., . .
section headet of a common
section of a common object/
section of a common object/
section of a commeon object/
section sizes of common objec1 . . .
sed: stream editor.
seedd4d, lcongdd: generate/
seck 10 an indexed/ named
seek 10 line number entriesof
seek 1o relocation entries of
seek (@ 1he optional file
seek to the symbol 1able of a
seekdir, rewinddir. closedir:/

. scanf(38)

bfs(1)
awk(]}
cdel1}
comb(1)
deita{l)
sact{l)
getil)
prs(1}
rmdel(l)
scesdiff (1)
scesfile(d)
unget{1}
vall(1)
admin(1)
what{l)
help(l)
scesdiff (1}

. scesfile{4)
. lpsched{IM}

scnhdr{4)
clear(1}
curses{IX}
twinkle (6}
vill)
inittab(4}
script{l)
bre(1M)
sdb(l)

sdiff (1)
grepil)
bsearch{3C}
acctcom(1)
Isearch(3C)
hsearch(3C}
tsearch(3C)

. scnhdr(4)

Idshread (3X}
idiseek (3X)

. Idrseek(3X)
. ldsseek (3X)

size(1}

sed(l)
drand48(3C)
ldsseek{3X)
ldlseek{3X)
Idrseek (3X)
Idohseek{3X)

.« Idtbseek (3X}
. directory(3X)

SERMERL . . . - 4 4 4 e e shmget(2}

segmenl space allocation. brk(2) —
select or reject lines common . commil)

sefect: synchronous ifo select(2N)

sefect terminal filter. greck{l)

selected Bields of each tine cuel1)

- 40 -

file. dump: dump

semctl:

semop:

iptem: femove @ message queue,
semget: get set of

operations.

send, sendto, sendmsg:

a group of processes. kill:
mail. mail, rmail:

message from a socket.
group. killpg:

line printer. Ip, cancel:
socket, send, sendio,
message from a socket. send,
reset the weletype bits 1o a
File Transfer Protocol
remshd: remote shell

rexecd: remote execution
tlogind; remote login

rwhod: system status

telnetd: DARPA TELNET protocol
Triviat File Transfer Protocol
make typescript of terminal
buffering to a stream.

1Ds. setuid,

geigrent, getgrgid, getgrnam,
/gethostbyaddr, gethostbyname,
identifier of/ gethostid,
current host. gethostname,
goto.

encryption. crypt,

/getnetbyaddr, getnetbyname,

protocol/ /getproiobyname,
gelpwent, getpwuid, getpwnam,
effective group ID.

effective user ID's.
/getservbypori, getservbyname,
options on/ getsockept,

login time. profile:

gettydefs: speed and terminal
disktune: 1une floppy disk
group IDs.

/geiutid, getutline, pututline,
stream. setbuf,

data in @ machine/ sputl,

a command immune 1o hangups
standard/restricled command/
operations. shmetl:

queue, semaphore sel or
shmop:

shmget: gel

from C programs 1o implement
system: issue a

with C-like syntax. csh: a
system: issue &

shl

shutacct, startup, turnacct:
remsh: remote

system inilialization

remshd: remote

Permuted Index

selected parts of an object dump(l)
semaphore control operations. semcii(2}
semaphore operations. semop(2)
semaphore sel or shered memory/ . iperm{l}
semaphoTes. . . . v v v o s « . .« . Semget(2)
semctl: semaphore control semctl(2)
semgel; get set of semaphores. semget(2)
semop; semaphore operations. semop(2)
send a message from a socker. send(2N}
send a signal to a process or kill(2)

send mail to users orread mail (1)
send, sendto, sendmsg:- senda send(2ZN)
send signal to a process killpg (3N)
send/cancel requests toan LF Ip(i)
sendmsg: send a tnessage froma . . . send(2N)
sendte, sendmsg: senda send(2N)
sensible state. /reset: setor . . ., . . tset(l}
server. fipd: DARPA Internet [tpd(8N)
T remshd(8N)
SEIVET. & 4 o« b r wa e e a s . + rexecd(8N)
SEIVET. . - v . vy a .. « + + . rlogind{8N)
SETVET. = v v+ ¢ v u v s v « « « «» Fwhod(8N)
SETVET. 4+ ¢ v « 4 4 + 4 4 4 4 xn telnetd (8N)
server, thipd: DARPA titpd (8N)
session. scripti seript{l)
setbul, setvbuf: assign setbuf(35)
setgid: set user and group setuid (2}
setgrent, endgrent, fgetgrent:/ getgrent(3C)
sethostent, endhostent: get/ gethostent{3N)}
sethostid: get/set unique gethoslid(2N)
sethosiname: get/set name of gethostname(2N)
setjmp, longjmp: non-bocal setimp{iC)

setkey, encrypt: generate DES
setmnt: establish mount table.

. . erypt{3C)
. setmnt{1M)

setnetent, endnetent: get/ gemetent(3N)
setpgrp: set process group 1D, seipgrp(d)
setprotoent, endprotoent: get getprotoent{3N}
setpwent, endpwent, fgetpwent:/ . . . getpweni{JC)
setregid: setrealand setregid(2)
setreuid: set realand ., setreuid (2}
seiservent, endservent: get/ getservent(3N)
setsockopt: getandset , gelsockopt(2ZN)
setting up an environment at . profile(4)
seitings used by getty. gettydefs{4}
settling time parameters. disktune(1M)
setuid, setgid: set user and sewid{(2)
setutent, endulent, utmpname:/ . . . getut(3C)
setvbuf: assign buffering toa setbuf(3S)
sgetl: access long integer sputl(3X)

{sh only). nohup: run nohupll)

sh, rshoshell, the . . ., « sh(l)

shared memory conteol shmetl(2)
shared memory id. /a message . . . ipermil)
shared memory operations. shmop(2)
shared memory segment. shmget(2}
shared strings. fstrings xste(l)

shell command from Fortran. , . . . system{3F}
shell (command interpreter) csh(l)
shellcommand. system{3$)
shell layer manager. shi{1}

shell procedures for/ /runacct, . . . acctsh(lM)
shell, e e remsh{IN)
shell scripts. /rc, powerfai: bre(lM)

shell server. + « + . v o s+« + « + remshd(8N)

.41 .

Permuted Index
command programming/ sh, rsh:

operations.

segment.

Dperations.

full-duplex/ shutdown:
/prdaily, priace, runacct,
full-duplex connection.
processing.

program. sdiff;
transfer-of-sign intrinsic/
login:

pause: suspend process until
what 10 do upon receipt of a
action on receipt of a system
on receipt of a sysiem/
upon receipt of a signal.
killpg: send

of processes. kill: send a
ssignal, gsignal: software
lex: generate programs for
generator. rand, srand:

tc: pholotypesetier

atan, atanl: trigonometric/
intrinsic function.

sin, dsin, ¢sin: Fortran
/dsinh: Fortran hyperbolic
ssp: make outpu
functions.

hyperbolic sine intrinsic/
get descriplor table
size$.0:

common object files.

fite.

size: print section

an interval.

interval.

documents, view graphs, and
typeselting view graphs and
current/ ttyslot: find the
spline: interpolate

int, ifix, idint, real, float,

sn0:

accepl a CONNECHoN on a
bind: bind 2 name 10 2
initiate a connection on a
communication.

listen for connections on 4
getsockname: get

receive a message from a
sendmsg: send a message from a
get and set options on

pg: file perusal filier for
interface. lo:

ssignal, gsignal:

sorL

qsorl: quicker

tsort: topologicsl

or reject lines common 0 two
bsearch: binary search a

for program. whereis: locate
message file by massaging C

shell, the standacd/testrictad
shl; shell layer manager.

shmctl: shared memory contrel . . .
shmget: get shated memory
shmop: shared memory N
shut downpartofa

shutaccl, starlup, Wurnacet:/
shutdown: shul down partofa . . .
shutdown: erminate ali
side-by-side difference, . ..

sh(l)

shi(1)
shmeti(2)
shmget(2)
shmop(2}
shuidown{2N)
acctsh{lM)

. shutdown(IN)

shutdown(1M)
sdiff (1)

sign, isign, dsign: Fortran sign{3F)
signon. e oo login(l)
signal. v « « . . pause(d)
signal. signal; specify signal{2)
signal. /specify Fortran ., signal(3F)

signal: specify Foriran action

signal: specify whattodo
signal 10 a process group,
gignal 10 a process or a group
signals., .

simple lexical tasks.

signai{3F)
signal(2)
killpg (3N}
kill(2)
ssignal(3C)
lex(1}

simple random-number ., rand{iC)
simulator. . . - 4 0. . . . te(1)

sin, cos, tan, asin, acos, trig(3M)
sin, dsin, csin: Fortran sine sin{3F)
sine intrinsic function. sin(3F)
sine intrinsic function. sinh(3F})
singlespaced. sspll)

sinh, cosh, tanh: hyperbolic - sinh(3M)
sinh, dsinh: Fortran« sinh(3F)
size. geldtablesize: « . petdtablesize(3IN)
size of an object file. size5.0(1)
size: print section sizesof size(l}
size$.0: size of an object size5.0(1)
sizes of common object files. size(l)
sleep: suspend exectionfor sleep(1)
sleep: suspend executionfor sleep{3C)
stides. mmt, mvi: typeset mmt(1)
slides. /macro package for mv(5)

slot in the utmp file of the ttyslot{3C)
smoothcurve. « + - . spline(1G)
sngl, dble, cmplx, dempix,/ fiype(3F}
sno: SNOBOL interpreter. sno(l)
SNOBOL interpreter., . . .+ « sno(l)
socket, accept: - .. accept(2N)
SOCKEL .+ a v e s ., v« + « . bind(2N)
socket. conmect: connect(2N}
socket: create an endpoint for sockel(ZN)
socket. listen: [listen(2N}
sockeL DAME. . . . 4 4 4 e e e e . getsockname(2N)
socket. lrecvfrom, recvmsg . -+« recvi(2N)
sockel. send, sendto,, . .+ « send(2N)
sockets. fselsoclmpl: v+« s+« « getsockopt{2N)
soft-copy terminals. pell)
software loopback network (5}
software signals. ssignal(3C})
sort and/or merge files. ., sort{])
SOTL « v « v = = « » o o gsonrt{3C)
sort: sort and/or merge filkes. sort(l)
SOML v v v 4w e e e . .« tsort(l)
sorted files. comm select comm(l}
sorted table. v+ « . bsearch{3C)
source, binary, and/or mnnual v+ « . whereis(i)
source. /creale anermor mkstr(1)

-42 .

brk, shrk: change data segment
ssp: make oulput single
terminal. ci:

fspec: format

the extended errors in the
receipt of a system/ signal:
receipt of a signal. signal:
/set terminal type, modes,
used by getty. geltydefs:
hashcheek: find spelling/
spelling/ spell, hashmake,
spellin, hashcheck: find
curve.

split:

csplil: context

files. fsplit:

pieces.

uuclean: uucp

Ipadmin: conflgure the LP
output. printl, fprintf,
integer data in a machine/
square root intrinsic/

power,/ exp, log, logl0, pow,
exponential, logarithm, power,
sqrt, dsqrt, csqret: Fortran
random-pumber/ irand,
generalor. rand,

/nrand48, mrand48, jrand48,
rcvhex: translates Moterola
input. scenf, Fscanf,

signals.

spaced.

package. stdin:
communication package. ltok:
sh, rsh: shell, the

twinkle: twinkle

Ipsched, Ipshut, lpmove:
boot:

/ prtacct, runacct, shutacct,
system call.

sial: dais retuened by
ff: list file names and
lav: print load average
ustat: gel file system
Ipstat: print LP

feof, clearerr, filkeno: stream
contrel. uustat: uucp
communication facilities
netstai: show network
ruplime: show host

PS: TEpOTL process
rwhod: system

stat, fstat: get file
input/output package.

wait for child process to
wiit for child process to
strncmp, strepy, stracoy,/
/strcpy, sirncpy, strlen,
strncpy,/ strcat, strocat,
/sirncat, stremp, sirocmp,
fsterchr, strpbrk, sirspn,
sed:

Perminted index

space alfocation.
spaced.
SPawn getty 10 4 remote
specification in text files.
specified device. /turnonfoff
specify Forfean action on
specify what to do upon
speed, and line discipline. .
speed and terminal settings . .
spell, hashmake, spellin, o
spebtin, hashcheck: find

T L

spelling errors. fhashmake,
spline: interpolate smooth .
split a file into pieces.
split.
split 77, ratfor, or efl
split: split a file into

spool directory clean-up. . . . + . .
spocling system. .
sprintf: print formatted
sputl, sgetl: access long
sqri, dsqrt, csqrt: Fortran

R

I T T N

fspec(4)
exterr{l)
signat(3F)
signal(2) -
geuy (IM)
geuydefs(4)
speli(1)
spell{1}
speli(i)
spline{1G)
split(1)
csplit(1)
fsplit(1)
split(1)
vuclean(1M}
Ipadmin{l M}
printf(38)
sputl(3X)
sqre(3IF)

sqrt: exponential, logarithm, exp(3M)
square root functions. /sqre: exp(3M)
square root intrinsic/ sqrt{3F)
srand, rand: Fortran uniform . . . rand(3F)
srand: simple random-number rand{3C)
srand48, seed48, keongd8:/ drand48{3C)
S-records from downloading/ rcvhex(l)
sscanf: converl formatted scanf(3S)
ssignal, gsignal: software ssignal (3C)
ssp: make outputsingle ssp(l)
standard buffered input/output . . . stdio(3S)
standard interprocess stdipc(3C)
standard/restricied command/ sh(l)
starsonthescresn. . . . + = + « o twinkle(6)
start/stop the LP request/ Ipsched(IM}
startup procedures. boot(8)
startup, turnacct: shell/ accish(1M)
stat; data returned by stat stat(5)
stat, fstat: get file status. stat(2)
statsystemcatl. Stat(5)
statistics for a file system. , ., H{1M)
SIAtiSES. « + ¢ f v e e e w e lav(l)
SWBUSHES. .« « v v v v e w .. ustat(2)
status informetion. Ipstai(l}
status inquiries. ferror, . ., fetror(38)
status inquiryand job uusta{IC)
status. /report inter-process ipes(1)
SIBIWE. o o b v s e e e netstat(IN)
status of local machines. ruptime(IN)
status. ps(t)
SIS SETVET. .+ « v = + v 4 = w o . rwhod (8N}
SEAatus. . v . 4 v e e e . . stat(2)
stdio: standard buffered stdio(38)
stime: settime. stime(?)
stop or terminate. wait: wait{2)
stop or terminate. waitd: wait3 (2N)
streat, strocat, stremp, .+ String(3C)
strchr, strrchr, stepbek,/ L string(3C)
stremp, strnemp, SUCRY, « « - « . . string(3C)
sircpy, strocpy, strlen,/ string (3C)
strespn, sictok: string/ string(3C)
streameditor. Sed(l)

- 43 -

Permured Index

fllush: close or Mush a

fopen, freopen, fdopen: open a
reposition a Rle poinier in a
get character or word from a
fgets: get a string from a

pul character or word on a
puls, fputs: put a sicing on a
setvbuf: assign buffering to a
[feof, clearerr, fileno:
/routines for returning a
Texec: return

push character back into input
long integer and base-64 ASCII
Ige, Igt, lle, It

converl date and time to
floating-paint number to
gets, fgets: get a

len: return length of Foriran
puts, fputs: pul a

bemp, bzero, fis: bit and byte
sirspn, strespn, sirtok:
number. striod, atof: convert
number. atof: converi ASCII
strtol, atel, atoi: convert
Strings in an object, or/
implement/ xstr; extracl
strings: find the printable

C programs to implement shared
number information from an/
information from an/ strip:
relocation bits.

/strnemp, strcpy, stencpy,
strepy, strocpy,/ siecat,
sircat, strmcat, stremp,
fstremp, stroemp, strepy,
fsirlen, strchr, sirechr,
/sirnepy, strken, siwechr,
#strchr, streche, strpbek,

10 double-precision number.
{strpbrk, strspn, sircspn,
string to integer.

processes uging a file or file
terminal.

another user.

intro: introduction to

plot: graphics interface

/same lines of several files or
return location of Fortran
file. sum7:

the files in the/ sumdir:
count of a file.

a file.

characters in the files in/

du:

accounting/ acctems: command
sync: update the

sync: update

su: become

interval. sleep:

interval. sleep:

pause:

swab:

stream. folose, ., - .. felosel3S)
SIBAML. v v v 4 v v v e e e e fopen(33)
stream. fseek, rewind, flell: fseek{3S)
stream. fgelchar, Tgeic, gelw: . getc(3S)
stream. EetS, - gets(35)
stream. /puichar, fpulc, putw: . putc(38)
SUEAM. - -« = o v o m e e s puts{is)
stream. setbul, setbuf(38)
siream stlalus inquiries. - ferror(38)
siream to a remote command. remd(IN)
siream Lo a remote command. . rexec{IN}
Sream. Ungetsl ungetctis)
string. /164a: convert between . a641(3C)
string compatision intrinsic/ stremp(3F)
string. /asctime, 1zset: - - clime(3C)
string. ffewi, gevt convert ecvt(3C)
string from a stream. ge1s(3S)
BUHME. - « - & & v v v v h e e e len(3F)
sirifg oriastream. ., puts{3S5)
string operations. bcopy, bstring(3N)
string operations. fstrpbck, string{3C)
string to double-precision striod (3C)
string to fleating-point atof(3C}
string to-integer. striol(3C)
strings: find the printable sirings{1]
sirings from C programsto astril)
sirings in an object, or other/ . . strings{1}
sirings. /extract strings from . xsur(l}
strip: strip symbol and line strip(})
strip symbol and line number . .ostrip(l)
strip5.0: remove symbols and . striph. 00§}
strlen, strchr, striche, string (3C)
sirncat, stremp, Stroemp, + -+ .+ . - - string(3C)
sirncmp, sieepy, stenepy,/ . - . . . string(3C)
stenepy, strlen, strchr/ L L string (3C»
strpbrk, sirspn, strespn,/ string(3C)
strrchr, strpbtk, sirspn,/ - . string{3C)
strspm, strespn, streoks/ . . . L L L slring(3C)
striodd, atol: convert string streod (3C)
sirtok: string operations. string{3C)
strtol, atol, atoi: convert striol(3C)
structure. fuser: identify fuser(1M)
sity: set the options fora sty (1)

su: become super-yser or sull}
subroutines and libraries. intro{3)
subroutines. plot{3X}
subsequent lines of one file. paste{1}
substeing. index: index (3F)
sum and count blocksina sum?(1)
sum and count charactersin sumdir (E)
sum: print checksum and block . sum(l}
sum7: sum and count blocks in . sum7(1}
suendir: sum and count sumdir(1}
summarize disk usage. - . du(l}
summary from per-process aectems(1M)
superblock. synci{l)
super-black. 00w e . .. synel2)
super-user or ancther wser. sufl)
suspend execution foran sleep(l)
suspend execution for sleep(3C})
suspend process until signal. pause(2)
swab:swapbytes. swab(3C}
swapbyles, swab(3C)
sxl: pseudo-device driver. sxt(7)

-44 .

information from/ swip: sirip
ldgeiname: retrieve

object! /compute the index of a
Idibread: read an indexed

syms: common object file
object/ 1dthseek: seek 1o the
sdb:

strip3.0: remove

symbol 1able format,

selecl:
interpreter) with C-like

errord perror, errno,

perror, errng, sys_errlist,
information. uvar: returns
binary search a soried
/compute the index of a symbol
file. fread an indexed symbol
common object file symbo)
master device information
mnttab: mounted file system
Idibsesk: seek Lo the symbol
setmnt: establish mount
getdiablesize: get descriplor
tbl: format

hdestroy: manage hash search
maniputate the routing

tabs: set

ctags: maintain a
a file,

remote machine.
machine. take:

1alk:

trigonometric/ sin, cos,
intrinsic Munction,

tan, dian: Fortran

fdianh: Fortran hyperbolic
hyperbolic 1angent intrinsic/
sinh, cosh,

tp: manipulate

1ar;

recover files from a backup
file system backup. filesave,

programs for simple lexica)
deroff: temove nrofffuroff,
or troff.

Controt Prowocol.
scarch 1rees. tsearch, tfind,

4014: paginator for the
tset, resel: set or resel the
last logins of users and
initialization. init,
closediry/ opendir, readdir,
telnewd: DARPA

telnet: user interface to the
TELNET protocol,

Server,

Permuted Index

symbol and line number . . ., . . sirip{l)
symbol name for object file. ldgetname(3X)
symbol table entry of a common . . . Idtbindex(3X)
symbol wable entry of a common/ . Idibread(3X}
symbol 1able format. symsi4)
symbol 1able of a common Idibseek(3X)
symbelic debugger. sdbll)
symbols and retocation bits. strip5.0(1)
syms: common object ile syms(4}
sync: update super-block. synci2)
sync: update the super block. sync(l)
synchronous ifo multiplexing. . . select(2N)
syniax. csh; a shell (command csh{l)
sysdef: system definition. sysdef{1M)
sys_errlist, sys_nefr: system perror(3C)
SYS_nDerr: system error/ perror(3C)
system-specific configuration uvar(2}
table. bsearch:« . . . bsearch(3C)
table entry of a common object/ . ldibindex{3X)}
table entry of & common object . . ldibread(3X)
table format. syms: syms{d)
table. master:+ . master(4)
able. e e e e« . . maottab(4)
table of a common object file. ldthseek{3X)
fable. e e e e .- setmnt(I M)
table size. e e e e e getdiablesize (3N)
tables for nroff or roff, 1hl{D)

tables. hsearch, hcreate, hsearch(3C)
1ables. route; mapually, . route(§N)
tabson aterminal. . . ,, ., tabs{l)

1abs: set tabs on a terminal. tabs(!)

tags file for a C pregram. ctags{1)

tail: deliver the last partof tail(1)

ake: takes a file froma lake(lC)
takes a file from a remote lake{IC)
talk: talk to another user. talk{IN)

talk to angther user. talk{IN)

tapn, asin, acos, atan, atan2: trig{3M}
tan, dtan: Fortran tangent tan(3F}
tangen! intransic function. wWn{3F}
tangent intrinsic function. 1anh{3F}
tanh, duanh: Fortran , , tanh{3F}
tanh; hyperbolic functions. . . - . . sinh(3M)
tape archive. oo . tpll)

uape file archiver. e . tardl)

tape. frec: . . L L . L L. e e . . frec(iM)
tapesave: daily/weekly UNIX . . flesave{lM)
tar: tape file archiver. , o tar(l)

tasks. lex: generate lex(1)

thl, and £qn constructs. deroff(1)

thl: format tables for nrofl. thi(1}

ic: pholotypesetter simuelator. 1c(l}

tcp: Internet Transmission 1ep (5P}
tdelete, 1walk: manage binary Isearch(3C)
tee: pipe fitting. tee(l}
Tekironix 40414 terminal. 401441)
ieletype bits to & sensible/ 1se1{l}
teletypes. last: indicate . ., lasi{1}
telinit: precess conwrol L, init{ M)
telldir, seekdir, rewinddir, directory (3X)
TELNET protocol server. telnetd(8N)
TELNET protocol. elnet{1N)
ielnet: user interface lo the telnet{IN}
teinetd: DARPA TELNET protocol . telnetd{8N)

.45 .

Permuted Index

temporary file. tmpnam,
tmpfile: create a

tempnam: ¢reate a name for a
terminals.

term: format of compiled
file..

data base.

for the Tektronix 4014
functions of the DASI 450
termeap:

terminlo;

¢k spawn gelly Lo a remote
ciermid: generate filename for
pty: psewdo

greek: select

/tgetstr, tgoto, tpuls:
termio: general

ty: controlling

diak establish an oul-going
clear: clear

scripl: make lypascript of
getly. gettydefs: speed and
stty: sel the options for a
tabs: set tabs on a

isatty: find name of a

and line/ getty: sel

ttytype: data base of
animate worms on a display
functions of DASI 300 and 300s
tty: get the

perusal Alter for soft-copy
term: conventional names for
kill:

shutdown:

abort:

exit, _exit:

daemon. errstop:

for child process to s1op ot
for child process to stop or
tic:

1put: query

data base.

interface.

command.

quiz:

ed, Ted:

ex, edit:

change the format ol a
fspec: format specification in
fcheckeq: format mathematical
prepare constant-width
nroff: format

plock: lock process,

trofl: 1ypeset

binary search trees. tsearch,
Transfer Protocol server.
1geistr, tgolo, tputs:/
tputs:/ igetent, tgelnum,
lgoto, tputs:/ tgetent,
getent, tgetnum, tgetfag,
figetnum, tgetflag, tgetstr,

tet, cubic:
data and system/ timex:

tempnam: create a name for a

= impnam{35)

temporary file. tmpfile(38)
temporary fle. tmpoam, tmpnam (38)
term: conventional names for term(5}
termbke. Lo e term{4}
term: format of compiled term . termi4)
\ermeap: terminal capability termcap(5)
terminal. 4014: paginator 4014(1})
terminal. 450: handle special #50(1}

terminal capability data base.
terminal capabilily data hase.
terminal. . . .
terminal.
terminal dviver.
terminal filter.

terminal independent operation/

. termcap(5}
. terminfo(4)

ct{IC}
ctermid(35)
piy (5}
greek(l)

. termcap{3X)

terminal interface. termiol?)
terminal inderface. ty(7)
terminal line connection. dial{3C)
ierminal scTeen. . L s oa s clear(1}
terminal session. script{1)
terminal settings used by gettydefs(4)
termimal. e e e . - sty (1)
terminal. . . . - L L. .. tabs(1}
terminal. fiyname, ttyname(3C)
terminal type, modes, speed, . getty(IM)
terminal types by por. uytype(4}
terminal. worms: - . . . worms(6)
terminals. /handle special 300(1)
lerminal’s name. . . ., y(l)
terminals. pg:file pall)
terminals. v voe v . termi(3)
terminate a process.« . ., kill{1}
terminate all processing. . . - . . . shuidown{1M?
fersninate Fortran program. abort(3F)
terminale process. exit(2)
terminate the ercor-logging errstop(IM)
lecntinate. wait: wait wail{2}
terminate. waitd: wait, wait3(IN)
terminfo compiler. tic{1M)
terminfo database. e oo« . tputlh)
erminfo; werminal capability terminfo(4)
termio; general terminal termio{)
test; condition evaluation test(1)

test your knowledge. o« quiz{6)
fexteditor. . . .« . . v 4 4 s . ed(1)
texteditor. v .4 e s e - ex(l)

text file, newform: , ., ., newform{l)
textfiles. fspeci4)
text for nroff or troff. o o . oeqnll)

text for troff. cw, checkew: ewl(1}

KL v v v v b b e e e s nroff(1}
text, or data in memory, plock{2}
ext. e e e e troff{1}
tfind, tdelete, twalk: manage tsearch(3C)
thipd; DARPA Trivial File tfipd{8N}
tgeient, tgetnum, getflag, termecap{3X)
igewllag, 1getstr, tgolo, termeap(3X)
{getnum, tgetflag, tgetstr,+ termecap(3X)
igetstr, tgoto, tputs:y/ termecap(3X)
igota, lputs: lermtinal/ termcap{3X}
tic: terminfo compiler. o o tic(iM)
HE-tAC-OB. + v v v 4 v v 4 x4 4 s w6y

lime a command, report process . timex(1)

- 46 -

time:

mclock: réturn Fortran
execute commands at a later
systems for optimal access

tune floppy disk settling
profil: execution

up an environment at login
stime: set

ume: get

tzset: convert date and

clock: report CPU

process times.

update access and modification
gt process and child process
file access and modification
process data and system/

fle,

for a temporary file.
/iolower, _toupper, _tolower,
popen, peclose: initiate pipe
toupper, tolower, _toupper,
toascii: translawe/ toupper,
tsort:

acclmerg: merge or add
modification limes of a file.
translate/ loupper, tolower,
_lolower, toascii: translkate/

/igetilag, 1getatr, gol0,

plrace: process

trpt: transliterate protocol
blt, blt512: block

fip: file

fipd: DARPA Internet File
tfipd: DARPA Trivial File
sign, isign, dsign: Fortran
/_toupper, _tolower, toascil:
tr:

from downloading inlo/ revhex:
hex:

trpi:

tep: Internet

fiw: walk a Ale

twalk: manage binary search

trek:

1an, asin, aces, alan, atan2:
server. Wtpd: DARPA
constant-width tex1 for
mathematical tex1 for nrofl or
lypesetling view graphs/ mv: a
formal tables for nroff or

trace.

values.

pdpll, ulb, udb5, vax: pravide
true, fake: provide

robats. chase:

twalk: manage binary search/

Permqfed Index

timeacommand. limell)
time accouUnting. - - mclock{3F)
time. at, batch: at(l)

time. dcopy: copy file dcopy(iM)
time:gettime.« ... time(2)
time parameters. disktune: disktune(1M)
time profile. e v e . profil(2)
time. profile: setting profile(4)
time., v e n .. stime(d)
time: time a command, , , time(l)
time. v e e e .. . time(2)
time to string. !asctlme. v e e s . . clime(3C)
timeuwsed,+ clock(3Q)
times: get process and child times{(2}
times of a file. touch: « v . . touch()
limes. tlimes: v .on . . times(2)
times. ulime:set, . . » utime(2)
timex: l:meammmand report .+ timex(1}
tmpfile: create a temporary tmpfile(35)
tmpnam, tempnam: create & name . . Impnam(3S)
toascii: translate characters. conv(3C}
loffromaprocess . « s+ o= . . popeni(3S)
_tolower, 1oascii: wranslate/ conv(3C)
tolower, _toupper, _tolower, conv(3C)
topological sort e e e e e+ . tsortll)

total accounting files. acctmerg{1M)
touch: update accessand touch(l)
_toupper, _tolower, toascii: . . v conv(3IC)
toupper, tolower, _toupper, conv(3C)
tp: manipulate tape archive. tp{l)
tplot: graphics filters. tplot{1G}
tput: query tecrminfo database. tput(l)
tputs: terminal independenty termcap{3X)}
ir: translate characters. . ., (1)}
ace. .« oa . e e e e . ptrace(2)
race. . . . - - - P, .+ o trpri8N)
transfer data. « v . . BItEICY
transfer program. T1p({IN)
Transfer Protocol server, + . « .« . . ftpd (BN)
Transfer Pratocol server. tftpd(8N)
transfer-ol-sign inteinsic/ sign{3F}
trgnslate characters. conv(3C)
translate characters. . , tr(1}
transhates Motorola S-records revhex(l)
translates object files. hex(1}
transliterate protocel trace. trpt(8N)
Transmission Control Protecol. . . . tcp(5P)
UEE. o v b v m ., e s . frw(3C}
trees. /tfind, wdelete, , tsearch(3C)
trek: trekkie game., . trek(6)
trekkie game. « .. trek(6)
trigonemesric funclions. fcos, rig(3M)
Trivial File Transler Protoce! iftpd(8N)
troff. cw, checkew: prepare cw(l)
wroff. /neqn. checkeq: format . .. oegqnil)
teofl macro package for mvi§
wofl. tbl: ., e .. thI1)
troff: typesettext. troff(1}
trpt: translitecate protocol trpt{8N)
true, fatse: provide truth true{1}
truth value about youwr/ m68k, . . . machid(l)
truth values, . ., o .« . truell)
Try to escape the killer . , chase(&)
tsearch, tfind, 1delete, ., tsearch{3C)

.47 -

Permuted Index

teletype bits to a sensible/

interface.

graphics for the extended

a terminal,

utmp file of the current/
types by port.

parameters. diskiune;
frunacet, shutacct, startup,
tsearch, Ufind, tdelete,

twinkle:

SCreem.

ichar, char: explicit Fertran
file: determine fike

value aboul your processor
getty: set terminal

for the extended TTY-37
tiylype: data base of terminai
types.

types: primitive system data
session. script: make

graphs, and slides. mmt, mvt:
troff:

mv: a troff macro package for
flocaltime, gmtime, asclime,
value about your/ mé68k, pdpli,
about your/ mé8k, pdpll, ulb,
Protocol.

geipw: gel name from

limits.

creation mask.
mask.

flle system. mouni,

UNIX system.

UNIX system.

uk do

file. ungew:

an SCCS file.

into inpui stresm.

irand, srand, rand: Fortran
/seed48, lcongd8: generate
a file.

mkiemp: make a
gethostid, sethostid: get/set

execution. uux:

wuto, wupick: public
unlink sysiem calls, link,
entry.

unlink: exercise link and
umount:

files. pack, pcat,

times of a file. touch:

of programs. make: maintain,
badblk: program to set or
machines. updaler:
machines. updater:

lfind: linear search and
sync:

SYNC:

tset, reset: set or reset the tset(l)
tsort; topological sort. tsort(l)
ttt, cubic: tic-tac-toe. ui(6)

tty: controlling terminal uy(7)

tty: get the terminal’s name. tty(1}
TTY-37 type-box. greek:, . . greek(5)
Uyname, isatty: ind name of ttyname{3C)
ttyslot: find the slotinthe ttyslot(3C)
tiytype: data base of terminal . . . ltytype(d)
tung floppy disk settling time . , , . diskiune{tM)
turnacct: shell procedures for/ acctsh(IM) —
twalk: manage binary search/ . tsearch(3C})
twinkle stars on the screen. twinkbe(6)
iwinkle: twinkle stars on the , twinkle(6)
type conversion. /demplx, fiype(3F)
PR o v v v e e e, . . . fileil)
type. fvax: provide truth machid{1)
type, modes, speed, and line/ getty(IM)
type-box. greek: graphics greek{§)
types by port. e e e tiyiype(4)
types: primilive system data types(5)
IS, & v v v v n v e n e e, . . types(5}
typescript of lermmal« . script(h)
typeset documents, view mmi(l}
typeset text, v .. . treff(l)
typesetting view graphs and/ .« mv(5)
tzset: converl date and time/ ctime(3C)
udb, udbs, vax: provide truth . . . machid(1}
udbs, vax: provide truth value machid(])
udp: Internet User Datagram . . , . udp{5®)
UD, . ..« f h i e v s se e n - getpw(3C)
ut: do underlining. ulll)

ulimit: get and set user
umask: set and get file
umask: set file-creation mode

. ulimit{2)
. . umask(2}
. umask(1}

umount: mount and dismount mount(1M)
umount: unmount a file system. . . . umount(2)
uname: get name of current uname(2}
uname: print name of current . , . . uname(]}
underlining. . « o.oul(l}

undg a previeus get of an SCCS .« . unget(l}
unget: undo a previous get ol . . unget{l}
ungeic; push character back ungeic(35)
uniform random-number/ rand(3F)
uniformly distributed/ drand48{3C)
uniq: report repeated lines in - . . ., . unig{l)
unique Glename. ., + . . mkiemp(3C)
umque identifier of current/ gethostid{2N}
units: conversion program. , units(]}
UNIX-to-UNIX system command . . uuxllC)
UNIX-10-UNIX system file copy. . uue{lC)
unlink: exercise linkand hnk(1M)

unlink: temove directory
unlink system calls. link,
unmount a file system.
unpack: compress and expand . . , .
update acoess and modification .,
update, and regenerate groups . . .
update bad block information,

P T T

. unlink{(2)

link (1M)
umouni(2y
pack(1)

. touch{l}
. make(l)
. badblk(iM)}

—

update files betweentwo updater(t}
update fileg between two updater(lM}
update. Isearch, Isearch{3C)
update super-block, v ew e . syneid)
update the super Block. syne(l)

- 48 -

1wo machines.

two machines.

du: summazrize disk

id: print

setuid, setgid: set

crontab:

character togin name of the
udp: Internet

fgegid, getegid: get real
efiviron:

disk accounting data by
print effective current

set real and effective
protocol. tebnet:

ulimit: get and set

logname:; return 10gin name of
{get real user, effective
become super-user or anocther
talk: alk wo another

the utmp file of 1the current
write: write to another

Iast: indicale last logins of
mail, rmail: send mail to
wall: write to ail

fuser: idenlify processes
help: ask for help in
stalistics.

modification times.

ulmp, wimp:

endutent, uimpname: access
ttyslot: find the slot in the
entry formets.

fpututline, setulent, endutent,
clean-up.

uusub: monitor

uuclean:

control, uustae

system to UNIX sysiem copy.
UNIX system copy. uucp,
system copy. uucp, uulog,
system fike copy. uuto,

and job control.

UNIX-to-UNIX system file/
command execution.
configuration information.

val:

Fudb, u3b5, vax: provide truth
abs: return integer absolute
cabs, zabs: Foriran absotute
geteny: return

ceiling, remainder, absolute
puteny: change or add

/htons, niohi, ntohs: convert
values.

trug, false: provide truth
values: machine-dependent
Jprint formatted oulput of a
fprint formatted output of a
argument lisl.

varargs: handle

return Fortran environment
your/ mé8k, pdpll, ulb, ulbs,

Permited Index

updater: update Giles between
updater: update files between

. . updater(1}
. updater({M}

USHEE. - « « « & « o + 4 v 4o o n s s dull)

user and group IDs and names. . (1)
userand groupIDs. . ., .., . .. setuid{2)
usercrontabfAle. . . ., , ., ., . . . crontab(f)
user, cuserid: Bet . . -, cuserid(35)
User Datagram Protocol. udp{5P)
user, effective user, realy getuid(2)
user environment. environ(5)
user 1D. diskusg: generate diskusg {1 M)
user id. whoami: . . ., whoami(l)

user 1D's. setreuid: . .

. setreuid(2)

user interface to the TELNET telnet(IN}
user limiis. et e e e e e e ulimit(2}
UBBL. + o v v o v n = & o o s » #n « logname(3X)
user, real group, and/ getuid(2)
MSBE. SD & . v v x e a e e su(l)

7 « « talk(IN}
user. /find the sletin . ., , ., uyslot{3C)
USET. + « v & b e e s s e e e write{1)
users and tefetypes. tast{1}
wsersorread mail., mail{1)
MSETS. = v v o v o v & e e e e e o wall{IM)
usingafileor file/, fuser{IM)}
using SCCS. .« . v« v v v i e .. help(i)
ustst: get file system ustat(2)
utime: set file accessand ., utime(2)
utmp and wtmp entry formats. umpid)
utmp file entry. /setutemt, getut(3C)
utmp file of the current user. ttyslot{(3C)
uimp, wimp: utmp and wimp utmp(4)
utmpname: access wmp file/ gett{3C)
uuckean: uucp spool directory uvuclean{iM)
vucp network. « « « uusub{1M}
wucp spool directory clean-up. uuclean(iM)
wucp status inquiry and job uustat(1C)
uucp, wuleg, uuname: UNIX .« uuep(IC)
uulog, uuname: UNIX system to . . . wuep(lC)
uuname: UNIX system to UNIX ., . . wuep{lC)
uupick: public UNIX-t0-UNIX umef{lC)
uustat: vucp stetus inquiry uustat{1C)
uusub: monitor uucp network. uusub{IM}
uule, vupick: public uutp(1C)
uux: UNIX-to-UNIX system uux(IC)
uvar; returns system-specific uvar(2)
val; validate SCCS file. val(l)
validate SCCS file. val{1}
value about your processor/ . . . , . machid{l)
vallg, . v v . e e e e e e e e abs(3C)
value. abs, labs, dabs, abs(3F)

value for environment name.

. getenv(iC)

value funclions. /fabs: floor, floor{IM)
value 1o environment. , ., putenv(3C)
values between hostand/ . . , . . . byteorder(IN)
values: machine-dependent , values($)
values. . . ¢ 4w i e e e e true(1)
values. values(3)
varargs argument list. vprint(35)
varargs argument lis.. . . , ., . o oo vpRMT(3X)
varargs: handle variable varargs($)}
variable argument ist. varargs{$)
variable. getenv: getenv(3F)
vax: provide truth value about machid{1}

.49 .

Permitted Index

#files between M68000 and

option letier from argument
assert:

vchk:

(7

version: reports

gel: get a

number of files.

sccsdiff; compare two
formatted output of/ vprintf,
formatted output of/ vprintf,
disptay edilor based on ex.
mmi, mvL: typeset documents,
macro package for typeseciting
file perusal filter for <t

on ex. vi: screen-oriented
systems with label checking.
file system: format of system
print formatted output of a/
print formatied cutput of a/
oulpul of/ vprintf, viprintf,
outpul of/ vprintf, vfprintf,
of terminate. wait:

or lerminate. wait3:

o stop or terminate.

10 510p or terminate.

ftw:

signal. signal: specify
crashes. crash:

binary, andfor manual lor/
whodo:

who

current user id.

machines. rwho:

cd: change

chdir: change

gel pathname of current
pwd:

worm: Play the growing
game.

display terminal.
WOrms: animate

write;

writev:

pulpwent;

wall:

write:

file regions for reading or
open: open for reading or
utmp, wimp: utmp and
formats. utmp,

accounting records. wtmp,
huni-the-wumpus.

list(s} and execute command.

VAX-11/780 processors. .
ve: versioncontrol. . . L L o . . L
vehk: version checkup.
vettor. getopt: get
verify program assertion.

version checkup.
version control. ., .,
version number of files.
version of an SCCS fAle.

vc(l)
vchk (1M}
getopt(3C)
assert{3X)
vchk{1M)
vel(l)
version(1)
get{l}

version: reports version 4 . . version(l)
versions of an SCCS file. scesdiff(1)
viprintf, vsprintf; print P vprintf(38)
viprintf, vsprintl; print vprintf(3X)
vi: screen-oriented (visuall vi(l)

view graphs, and slides. mmi{l}
view graphs and slides. /irol mv(§)
viewing. more: more(1}
{visual) display editor based vi(l}
volcopy, labelit copy file voleopy(1M)
volUME. . - & v . e e e e e e fs(4)
vprintf, vlprintf, vsprinth vprintf(3S)
vprintl, viprintf, vsprintf: vprintf(3X)
vsprintf: print formatted vprintf(38)
vsprintf: print formatted vprintf{3X)
wait for child process 1o stop . wait{2)

wait for child process (o siop
wait: wait for child process .
waitd: wait for child process

walk afiletree. ., w(3C)
wall: write to altusers. ., wall(IM)
weowordoount. ., well)
what: identify SCCS files. what(1)
what to do upon receipt of 8 signal(?)
what to do when the system crash(8)
whereis: locate source, whereis(1) -—
whoisdoing what, ., whodo(1M)
who is on the system. « + . wholl)
who: who is on the system. who(l)
whoami: print effective whoami(l)
whodo: who is doing what. whodo{IM}
who's logged inon locat rwho{IN)
working directory. cd{l)
working dirsctory. chdir{2)
working direclory. getewd: getewd(3C)
working directory name. pwd(l)
wormgame. v v« . worm{f)
worm: Play the growing worm worm(6)
wOrms: animate wormsona worms(6)
worms on a display terminal. worms(6)
writeonafite. write{3)
writeonafile., . v v o s o writev(IN)
write pagsword flleentry, . . . - . . pulpwent(3C})
writttoallusers. wall{1M)
write o another user. o+ o+ write(l)
write: writtonafile. write{})
write: write to another wser. write(1)
writev: writeona file, writev{3N)
writing. /provide exclusive locking(2)
wriling. - - <+ 2 4. . . .+« . . open(2) .
wimp entry formats, utmp(4)}
wimp: vtmp and wimp entry utmpld)
wimpfix: manipulate connect fwimp{IM)
wump: the game of v+ v+ wampl6)
Xargs: construct argument xargs{l)

- 50 -

: . wait3(2N)

wait(2)
wait3(2N)

Fortran bitwise/ and, or,
programs 10 implement shared/
i, j1, jn,

i0, j1, jn, ¥0,
compiler-compiler.

8,11, jn, ¥0, ¥1,

abs, iabs, dabs, cabs,

Permuted Index

xor, not, Ighift, rshift: bool{3F)

xstr: exteact strings fromC xstr(1)

y0, y1, yn: Bessel functions. bessel(3M)

yi, yn: Bessel functions. bessel(3M)

yacc: yelanother yace(l)

yn; Bessel functions. .,, . bessel(3M)
abs(3F)

zabs: Fortran absolute value. . . ., .

-51-

f/"‘x

INTRO(2) INTRO(2)

NAME _
intro — introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls, Most of these calls have one or
more error returns. An exror condition is indicated by an otherwise impossible
returned value. This is almost always —1; the individual descriptions specify
the details. An emor number is also made available in the external variable
errno. Errno is not cleared on successful calls, so it should be tested only after
an error has been indicated.

There is a table of messages associated with each error, and a routine for print-
ing the message; see perror (3C). Each system call description attempts to list
all possible error numbers. The following is a complete list of the error
numbers and their names as defined in <errno.hx.

1 EPERM Not owner -
Typically this error indicates an attempt to modify a file in some way for-
bidden except to its owner or super-user. It is also returned for attempts by
oedinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This errer occurs when a file name is specified and the file should exist but
doesn’t, or when one of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kil or
pirace.,

4 EINTR Interrupted system call
An asynchronous signal (such as interrapt or quit), which the user has
elected w catch, occurred during a system call. If execution is resumed
after processing the signal, it will appear as if the interrapted system call
returned this error condition.

5 EIO /O error
Some physical 1/O error has occurred. This error may in some cases occur
on 2 call following the one to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers 1o a subdevice which does not exist, or beyond

Page 1 Seplember 24, 1987

INTRO(2) INTRO(2)

the Emits of the device. It may also occur when, for example, a tape drive
is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented 10 & member of the
exec family.

8 ENOEXEC Exec format emvor
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid magic nember (see a.out (4)).

9 EBADF Bad fife namber
Either a file descriptor refers to no apen file, or a read (respectively, wrile)
regoest is made to a file which is open only for writing (respectively, read-
ing).

10 ECHILD No child processes
A wait was executed by a process that had no existing or vnwailed-for
child processes.

11 EAGAIN No more processcs
The system is out of a resource that may be available later. A fork failed
because the system’s process table is full or the user is not allowed to
create any more processes. A system call which requires memory may
also fail with this error if the system is out of memory or swap space but
the request is less than the system-imposed per process limit.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than the sys-
tem is able to supply. This is not a temporary condition; the maximnm
space size is a system parameter. The error may also occer if the arrange-
ment of text, data, and stack segments requires 100 many segmentation
registers, or if there is not enongh swap space during a fork.

13 EACCES Permission denied
An attempt was made 10 access a file in a way forbidden by the protection
system,

14 EFAULT Bad address
The system encountered a hardware fault in atempting & vse an argument
of a system call,

15 ENOTELK Block device required
A non-block file was mentioned where a block device was required, e.g.,

September 24, 1987 Page 2

)

INTRO(2) INTRO(2)

in mount.

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted or an
attempt was made to dismounnt a device on which there is an active file
(open file, current directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting when it is already
enabled, The device or resource is currenily unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, .g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made 1o apply an inappropriate system call to a device;
e.8., read a writc-only device,

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example
in a path prefix or as an argument t chdir (2).

21 EISDIR Is a directory
An attempt was made t0 wrile on a directory.

22 EINVAL Invalid argument
Some invalid argument {e.g., dismounting a non-mounted device; mention-
ing an undefined signal in signal, or kill; reading or writing 2 file for which
Iseek has gencrated a negative pointer). Also set by the math functions
described in the (3M) entries of this manual,

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a time. When a
record lock is being created with feasl, there are 100 many files with record
Jocks on them.

26 ETXTBSY Text file busy
An attempt was made to ¢xecute a pure-procedure program which is
carreatly open for writing. Also an atempt ¢0 open for writing a pure-
procedure program that is being executed,

Page 3 September 24, 1987

INTRO(2) INTRO(2)

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes) or
ULIMIT; see sdimit (2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device,
In fentl, the setting or removing of record locks on a file cannot be accom-
plished because there are no more record entries left on the system

29 ESPIPE Illegal seck
An Iseek was issoed 1o a pipe. This error should also be issued for other
non-seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

31 EMLINK Too many links
An attempt to make more than the maximum sumber of links (1000) to a
file,

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This con-
dition normally generates a signal, the error is returned if the signal is
ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain
of the function.

34 ERANGE Result {00 large
The value of a function in the math package (3M) is not representable
within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on
the specified message quene; see msgop (2).

36 EIDRM Identifier Removed
This exvor is returned to processes that resume execution due to the remo-
val of an identifier from the file system’s name space (see msgctl (2),
semcil (2}, and shmcdl (2)).

45 EDEADLK Deadlock
A deadlock situation was detected and avoided.

September 24, 1987 Page 4

INTRO(2) INTRO(2)

55 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on an
object in non-blocking mode (see socket (2N)).

56 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect (2N})
was started on a pon-blocking object (see socket (ZN)).

57 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had
an operation in progress.

58 ENOTSOCK Socket operation on non-socket
Self-explanatory.

59 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

60 EMSGSIZE Message toc long
A message sent on a socket was larger than the intermnal message buffer.

61 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the
socket type requested. For example, you cannot use the intemet UDP proto-
col with type SOCK_STREAM.
62 ENOPROTQOPT Protocol not available
In this incamation of the system.
63 EPROTONOSUPPCRT Protocol not supported
In this incarnation of the system,
64 ESOCKTNOSUPPORT Socket type not supported
In this incarnation of the system.
65 EOPNOTSUPP Operation not supported on socket
For example, irying 10 accept a connection on a datagram socket.
66 EPFNOSUPPORT Protocol family not supported
In this incarnation of the system.

67 EAFNOSUPPORT Address family not supported by protocel family
An address incompatible with the requested protocol was used. For exam-
ple, yon shouldn’t necessarily expect to be able to use PUP Internet
addresses with ARPA Intemet protocols,

Page 5 Sepiember 24, 1987

INTRO(2) INTRO(2}

68 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

69 EADDRNOTAVAIL Can’t assign requested address
Nomnally results from an attempt to create a socket with an address not on
this machine.

70 ENETDOWN Network is down
A socket operation encountered a dead network.

71 ENETUNREACH Network is imreachable
A socket operation was attempted to an unreachable network.

72 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

73 ECONNABORTED Software cansed connection abort
A connection abort was caused internal to your host machine.

74 ECONNRESET Connection reset by peer

55 ENOBUFS No buffer space available
For a socket or a pipe in the buffer pool.

76 EISCONN Socket is already connected

77 ENOTCONN Socket is not connected

78 ESHUTDOWN Can't send after socket shutdown
79 unused

80 ETIMEDOUT Connection timed out
Due to failure 10 initiate properly or because keep-alives failed.

81 ECONNREFUSED Connection refused
No commection conld be made because the target machine actively refused
it

83 ENAMETOOLONG File name too long
A component of & path name exceeded 14 characters, or an entire path
name exceeded 1023 characiers.

84 EHOSTDOWN Host is down
A socket operation encountered a defunct host.

85 EHOSTUNREACH No rouie to host
A socket operation was attempted to an unreachable host.

September 24, 1987 Page 6

INTRO(2) INTRO(2)

100 BDEADLOCK Locking Deadlock
Returned by locking (2) system call if deadlock would occur or when
locktable overflows.

DEFINITIONS
Process ID
Each active process in the system is uniquely identified by a positive integer
called a process ID. The range of thisID is from 1 w0 30,000.
Parent Process ID
A new process is created by a currently active process; see fork (2). The parent
process ID of a process is the process ID of its creator.
Process Groap ID
Each active process is a member of a process group that is identified by a posi-
tive integer called the process group ID. This ID is the process ID of the group
leader. This grouping permits the signaling of related processes; see kill (2).
Tty Group ID
Each active process can be a member of a terminal group that is identified by a
positive integer called the tty group ID. This grouping is used to terminate a
group of related processes upon termination of one of the processes in the
group; see exit (2) and signal (2).
Real User ID and Real Groap ID
Each nser allowed on the system is identified by a positive integer called a real
user ID.
Each user is also a member of a group. The group is identified by & positive
integer called the real group ID.
An active process has a real user ID and real group ID that are set (o the real
user ID and real group ID, respectively, of the user responsible for the creation
of the process.
Effective User ID and Effective Group ID
An active process has an cffective user ID and an effective group ID that are
used to determine file access permissions (see below). The effective user ID
and effective group ID are equal to the process’s real user ID and real group D
respectively, unless the process or one of its ancestors evolved from a file that
had the set-user-ID bit or set-group ID bit set; see exec (2).

Suaper-user
A process is recognized as a super-wser process and is granted special

Pape 7 September 24, 1987

INTRO(2) INTRO(2)

privileges if its effective user ID is 0.

Special Processes

The processes with a process ID of 0 and a process ID of 1 are special processes
and are referred 1o as proc0 and procl .

Proch is the scheduler. Procl is the initialization process (imit). Procl is the
ancestor of every other process in the system and is used to control the process
structure.

File Descriptor

A file descriptor is a small integer used 1o do I/O on a file. The value of a file
descriptor is from (1 19. A process may have no more than 20 file descriptors
(0-19) open simultaneonsly, A file descriptor is returned by system calls such
as open(2), or pipe(2). The file descriptor is used as an argument by calls such
as read(2), write(3), iocti(2), and close(2).

File Name.

Names consisting of 1 10 14 characters may be used to name an ordinary file,
special file or directory.

These characters may be selected from the set of all character values excluding
N0 (null) and the ASCH code for / (slash),

Note that it is generally unwise to use *, 7, [, or] as part of file names because
of the special meaning attached to these characters by the shell. See sh(l).
Although permitied, it is advisable to avoid the use of unprintable characters in
file names.,

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional slash
(), followed by zero or more directory names separated by slashes, optionaily
followed by a file name.
More precisely, a path name is a null-terminated character string constructed as
follows:
<path-name>::=<file-name: | <path-prefix><file-name=1/
<path-prefixs::=<rtprefix> | /<rtprefix>
<riprefix>:=cdimames/ | <rtprefix-<dimames/
where <file-name> is a string of 1 10 14 chamcters other than the ASCII slash
and null, and <dirname> is a string of 1 to 14 characters (other than the ASCH
slash and null) that names a directory.

September 24, 1987 Page 8

INTRO(2) INTRO(2)

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named
a non-existent file.

Directory
Directory entrics are called links. By convention, a directory contains at least
two links, . and .., referred to as dot and dot-dot respectively, Dot refers to the
directory itself and dot-dot refers to its parent directory.

Root Directory and Curreat Working Directory
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path name searches. The root
directory of a process need not be the root directory of the root file system.

File Access Permissions
Read, wriie, and execute/search permissions on a file are granted o a process if
one or more of the following is true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of
the file and the appropriate access bit of the ““owner’’ portion (0700) of
the file mode is set.

The effective user ID of the process does not match the user ID of the
owner of the file, and the effective group ID of the process matches the
group of the file and the appropriate access bit of the “‘group’’ portion
(070) of the fike mode is set.

The effective user ID of the process does not maich the user ID of the
owner of the file, and the effective group ID of the process does not match
the group ID of the file, and the appropriate access bit of the *‘other*” por-
tion (07} of the file mode is set,

Otherwise, the corresponding permissions are denied.

Message Quene Identifier
A message queve identifier {msqid) is a unique positive integer created by a
msgget (2) system call. Each msqid has a message quene and a data structure

associated with it. The data structure is referred to as msqid_ds and contains
the following members:

Page 9 September 24, 1987

INTRO(2) INTRO(2)

struct ipc_perm msg_perm; /* operation permission struct */

ushort msg qgaum; J* number of msgs on q */

ushort msg_gbytes; J+ max number of bytes oa q +/
ushort msg lspid; /+ pid of last msgsad operation */
ushort msg Irpid; /f* pid of last msgrcv operation */
time t msg stime; f* last msgsnd time +/

time_t msg_rtime; /* last msgrev time +/

time_t msg_ctime; /% last change time */

J* Times measured in secs since *f
J* 00:00:00 GMT, Jan. 1, 1970 +/

Msg_perm is an ipc_perm structure that specifics the message operation per-
mission (see below). This structure includes the following members:

ushort cuid; J* creator user id */
ushort cgid; f+ creator group id */
ushort uid; f+ userid %/

ushort gid, /+ group id */

ushort mode; /* r/w permission +/
Msg_gnum is the number of messages currently on the queue. Msg_qbytes is
the maximum number of bytes aflowed on the quene. Msg_lspid is the process
id of the last process that performed a msgsnd operation. Msg trpid is the pro-
cess id of the last process that performed a msgrev operation, Msg stime is the
time of the last msgsnd operation, msg_rtime is the time of the last msgrev
operation, and msg ctime is the time of the last msgcd (2) operation that
changed a member of the above structure,

Message Operation Permissions

In the msgop(2) and msgctl(2) sysiem call descriptions, the permission
required for an operation is given as "{token}", where "token" is the type of
permission needed interpreted as follows:

00400 Read by user

00200 Write by user

00060 Read, Write by group

00006 Read, Write by others

Read and Write permissions on a msqid are granted 10 a process if one or more
of the following is true:

The effective user ID of the process is super-user.

September 24, 1987 Page 10

INTRO(2) INTRO(2)

The effective user ID of the process matches msg_perm.[cluid in the data
structure associated with msgid and the appropriate bit of the “‘user™ por-
tion (0600) of msg_perm.mode is sct.

The effective user ID of the process does not match msg_perm.[cJwid and
the process’s effective groump ID matches msg perm.clgid and the
appropriate bit of the “*group’” portion (060) of msg_perm.mode is set.

The effective user ID of the process does not match msg perm.[¢]uid and
the effective group ID of the process does not match msg_perm.[c]gid
and the appropriate bit of the ““other’’ portion (06} of msg_perm.mode is
set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier

A semaphore identifier (semid) is a unique positive integer created by a

semget (2) system call. Each semid has a set of semaphores and a data structure

associated with it. The data structure is referred to as semid_ds and contains

the following members:
struct ipc_perm sem_perm; /+ operation permission struct */
oshorn scm_nscms; J« number of scms in sct */
time_t sem_otime; /¢ last operation time */
time_t sem_ctime; J¢ last change time */

J* Times measured in secs since +f
£* 00:00:00 GMT, Jan. 1, 1970 =/

Sem_perm is an ipc_penmn structure that specifies the semaphore operation per-
mission (sze below). This structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort vid; /* user id »/

ushort gid; f* group id */

ushort mode; /f* 1fa permission */
The value of sem_nsems is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive integer refemed to as a
sem_num. Sem_num values run sequentially from 0 to the value of sem_nsems
minus 1. Sem_otime iz the time of the last semop(2) operation, and
sem_ctime is the time of the last semci (2) operation that changed a member of
the above structure,

Page 11 September 24, 1987

INTRO(2) INTRO(2)

A semaphore is a data structure that contains the following members:

ushort semval; /* semaphore value +/

short sempid: /« pid of last operation +/
ushort semncnt; /+ # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = () +/

Semval is a non-negative integer, Sempid is equal to the process ID of the last
process that performed a semaphore operation on this semaphore. Semncnt is a
count of the number of processes that are currently suspended awaiting this
semaphore’s semval to become greater than its current value. Semzent is a
count of the number of processes that are currently suspended awaiting this
semaphore’s semval to become zero.
Semaphore Operation Permissions
In the semop (2) and semeil (2) system call descriptions, the permission required
for an operation is given as "{token}", where "token" is the type of permission
needed interpreted as follows:
00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others
Read and Alter parmissions on a semid are granted {0 a process if ong or more
of the following is true:
The effective user ID of the process is super-user.
The effective user ID of the process matches sem_perm.cluid in the data
structure associated with semid and the appropriate bit of the “‘user” por-
tion (0600} of sem_perm.mode is set.
The effective user ID of the process does not match sem_perm.[cluid and
the effective group iD of the process matches sem_perm.[c]gid and the
appropriate bit of the “*group’* portion (060) of sem_perm.mode is set,
The effective user ID of the process does not match sem_perm.fefoid and
the effective group ID of the process does not match sem_perm.[c]gid and
the appropriate bit of the *‘other™ portion (06) of sem_perm.mode is set.
Otherwise, the corresponding permissions are denied.
Shared Memory Identifier
A shared memaory identifier (shmid) is a unique positive integer created by a
shmget (2) system call. Each shmid has a segment of memory (referred t0 as &

September 24, 1987 Page 12

INTRO(2) INTRO(2)

shared memory segment) and a data structure associated with it. The data struc-
ture is referred 1o as shmid_ds and contains the following members:

stroct ipc_perm shm_perm; /+ operation permission struct +/

int shm_segsz; f* size of segment */

ushort shm_cpid; /* creator pid */

ushort shm_lpid; f+ pid of last operation */

short shm_natich; f+ number of current attaches »/
time_t shm_atime; /¢ last attach time */

time_t shm_dtime; J* last detach time +/

time._t shm_ctime; Jf* last change time »/

J+ Times measured in secs since «/
f* 00:00:00 GMT, Jan, 1, 1970 */

Shm_perm is an ipc_perm structure that specifies the shared memory operation
permission (see below). This structure includes the following members:

ushort cuid; J* creator user id */

ushont cgid; /* creator group id «/

ushort uid; /* user id */

ushost gid; /* group id +/

ushort mode; J* 1fw permission */
Shm_segsz specifies the size of the shared memory segment. Shm_cpid is the
process id of the process that created the shared memory identifier, Shm_Ipid
is the process id of the last process that performed a shmop (2) operation.
Shm_mattch is the nomber of processes that currently have this segment
attached. Shm_stime is the time of the last shmat operation, shm_dtime is the
time of the last shmdt operation, and shwm_ctime is the time of the last
shmetl (2) operation that changed one of the members of the above structure.

Shared Memory Operation Permissions

In the shmop(2) and shmctl(2) system call descriptions, the permission
required for an operation is given as "{token}", where "tcken" is the type of
permission needed interpreted as follows:

00400 Read by user

00200 Write by user

00060 Read, Write by group

00006 Read, Write by others

Read and Write permissions on a shmid are granted o a process if one or more
of the following is true:

Page 13 September 24, 1987

INTRO(2) INTRO(2)

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm.[cluid in the data

structure associated with shmid and the appropriate bit of the *“user’’ por-
tion (0600) of shm_perm.mode is set. .
The effective user ID of the process does not match shm_perm.[¢]uid and
the effective group ID of the process matches shm_perm.[clgid and the
appropriate bit of the **group™ portion (060) of shm_perm.mode is set.
The effective user ID of the process does not mach shm_perm.[c]uid and
the effective group ID of the process does not match shm_perm.{c]gid
and the appropriate bit of the “‘other’’ portionr (06) of shin_perm.mode is
set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
close(2), ioctl(2), open(2), pipe(2), read(2), write(3), intro(3),

September 24, 1987 Page 14

"

_EXIT(2) SEE EXIT _EXIT(2)

Page 1 July 26, 1985

ACCEPT (2N) UniSoft ACCEPT (2N)

NAME

accept — accept a connection on a socket

SYNOPSIS

ftinclude <sys/types.h>
fHinclude <<sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct seckaddr *addr;

int *addrlen;

o ... —Inet

DESCRIPTION

The argument s is a socket which has been created with socker(ZN), bound
to an address with bind(2N), and is listening for connections after a
listen(2N). Accepr extracis the first connection on the queue of pending
connections, creates a new socket with the same properties of s and allo-
cates a new file descriptor, ns, for the socket. If no pending connections
are present on the queue, and the socket is not marked as non-blocking,
accept blocks the caller until a connection is present. If the socket is
marked non-blocking and no pending connections are present on the
queue, gccept returns an error ag described below. The accepted socket, ns,
may not be used to accept more connections. The original socket s remains
open.

The argument addr is a result parameter which is filledIn with the address
of the connecting entity, as known to the communications layer. The exact
format of the addr parameter is determined by the domain in which the
communication is occurring. The addrfen is a value-result parameter; it
should initially contain the amount of space pointed to by addr; on return it
will contain the actual length (in bytes) of the address returned. This call is
used with connection-based socket types, currently with SOCK_STREAM,

It is possible to select{2N) a socket for the purposes of doing an accept by
selecting it for read.

RETURN VALUE

The call returns —1 on error. If it succeeds it returns a non-negative
integer which is a descriptor for the accepted saogket.

ERRORS

Page 1

The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file, not a socket.

[EOPNOTSUPPI The referenced socket is nmot of type
SOCK_STREAM.

[EFAULT] The addr parameter is not in a writable part of the
user address space.

[EWOULDBLOCK] The socket is marked non-blocking and no connec-
tions are present to be accepted.

July 16, 1985

ACCEPT (2N} UniSoft ACCEPT (2N}

LINKING
This library is accessed by specifying —Inet as the last argument o the
compile line, e.g.:

©C —o prog prog.c —Inet

SEE ALSO
bind(ZN), connect(2N), listen{2N), select{2N), socket(2N)

July 16, 1985 Page 2

ACCES5(2) ACCESS(2)

NAME
access — determine accessibility of a file

SYNOPSIS
int access (path, amode)
char +path;
int amode;

DESCRIPTION
FPath points to a path name naming a file. Access checks the named file for
accessibility according fo the bit pattern contained in amode, using the real
user D in place of the effective user ID and the real group ID in place of
the effective group 1D. The bit pattern contained in amode is constructed as

follows:
04 read
02 write
0t execute {search)
09 check existence of file

Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is
requested for a null path name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the
path prefix.

{EROFS] Write access is requested for a file on a read-only
file system.

[ETXTBSY] Write access is requested for a pure procedure
{shared text) file that is being executed.

[EACCESS] Permission bits of the file mode do rot permit
the requested access.

[EFAULT] Partk points outside the allocated address
space for the process.

The owner of a file has permission checked with respect to the “owner”
read, write, and execute mode bits Members of the file’s group other than
the owner have permissions checked with respect to the ‘“‘group” mode
bits, and all others have permissions checked with respect to the “‘other™
maode bits.

The super-user is always granted execute permission even though 1. exe-
cute permission is meaningful only for directlories and regular files, and 2.
exec requires that at feast one execute mode bit be set for regular file to be
executable.

Notice that it is only access bits that are checked. A directory may be
announced as writable by acvess, but an attempt to open it for writing will
fail because it is not allowed to write into the directory structure itself,
although files may be created there. A file may look executable, but exec
will fail unless it is in proper format.

RETURN VALUE
If the reguested access is permitted, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

Page 1 July 12, 1985

ACCESS(2)

SEE ALSO

chmod(2), stat(2).

July 12, 1985

ACCESS{2)

Page 2

ACCT(2) ACCT(2)

NAME
acct — enable or disable process accounting

SYNOPSIS
int acct (path)
char +path;

DESCRIPTION
Acct is used to enable or disable the systemn process accounting routine. If
the routine is enabled, an accounting record will be writien on an account-
ing file for each process thai terminates. Termination can be caused by one
of two things: an exit call or a signal; see exit(2) and signai(2}. The
effective user ID of the calling process must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file
format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur
during the system call.

Accr will fail if one or more of the following are true:

{EPERM] The effective user of the calling process is not super-user.

{EBUSY] An attempt is being made to enable accounting when it is
already enabled.

{ENOTDIR] A component of the path prefix is not a directory.

{[ENOENTI One or more components of the accounting file path name
do not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES] The file named by pash is not an ordinary file.

[EACCES] Mode permission is denied for the named accounting file.

[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only file system.

[EFAULTI] Path points to an illegal address.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

SEE ALSO
exit(2}, signal(2), acct(4).

ALARM (2) ALARM(2)

NAME
alarm — set a process’s alarm clock

! SYNOPSIS
' unsigned alarm (sec)
T unsigned sec;

DESCRIPTION .
Alarm instructs the calling process’s alarm clock to send the signal
SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed; see signal(2).

Alarm reguests are not stacked; successive calls reset the calling process’s
alarm clock. If the argument is 0, any alarm request is canceled. Because
the clock has a 1-second resolution, the signal may occur up to one second
early, because of scheduling delays, resumption of execution of when the
signal is caught may be delayed an arbitrary amount. The longest
specifiable delay time is 4,294,967,295 (2**32-1) seconds, or 136 years.

RETURN VALUE
Alarm returns the amount of time previcusly remaining in the calling
process’s alarm clock.

SEE ALSO
pause(2), signal{2).

BIND (2N) ' UaiSeft BIND (2N)

NAME
bind — bind & name to a socket

SYNOPSIS
#include < sys/types.h>>
#include <sys/socket.h>

bind(s, name, namelen)
int s;

struct sockaddr *name;
int namelen;

o ... —Inet

DESCRIPTION
Bind assigns a name 1o an unnamed socket. Whan a socket is created with
socket(2N) it exists in a name space (address family) but has no name
assigned, Bind requests the ramte, be assigned to the socket.

NOTES
The rules used in name binding vary between communication domains.
Consult the manual entries in section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of —1 indi-
cates an error, which is further specified in the global errno.

ERRORS
The bind call wild fail if:
[EBADF} Sis not a valid descriptor.
[ENOTSOCK] §is not a socket,
[EADDRNOTAVAIL}
The specified address is not available from the local
machine.)
[EADDRINUSE] The specified address is already in use.
[EINVAL] The socket is already bound io an address.
[EACCESS] The requested address is protected, and the current
user has inadequate permission to access it.
[EFAULTI The name parameter is not in a valid part of the user
address space.
LINKING

This library is accessed by specifying —Inet as the last argument to the
compile line, eg.:

o —0 prog prog.c —Inet

SEE ALSO
connect(2N), listen{2N), socket(2N), getsockname (2N)

Page 1 July 16, 1985

BRK(2) - BRK(2)

NAME
bik, sbrk — change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;
char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space aflocated for
the calling process’s data segment; see exec (2). The change is made by reset-
ting the process’s break valuc and allocating the appropriate amount of space.
The break valoe is the address of the first location beyond the end of the data
segment. The amount of allocated space increases as the break value increases.
The newly allocated space is set to zero,
Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accord-
ingly. Incr can be negative, in which case the amount of allocated space is
decreased.
ERRORS
Brk and sbrk will fail without making any change in the allocated space if one
or mare of the following are true: '
Such a change would resalt in more space being allocated than is allowed by a
system-imposed maximum (see ulimit(2)}. Two types of this condition with
associated error messages may be encountered:
[ENOMEM]
Not enough space. Program asks for more space than the system is able to
supply.
[EAGAIN]
The system has temporarily exhansted its available memory or swap
space.
Such a change would result in the break value being greater than or equal to the
start address of any attached shared memory segment (see shmop(2)).
RETURN YALUE
Upon successful completion, brk returns a value of 0 and sbrk retums the old
break value. Otherwise, a value of —1 is returned and errno is set to indicate

Page 1 September 24, 1987

BRK(2) | BRK(2)

the error.

SEE ALSO
exec(2), shmop(2), ulimit(2).

September 24, 1987 Page 2

CHDIR {2} CHDIR {(2)

NAME
chdir — change working directory
f SYNOPSIS
int chdlr (path}
char +path;
DESCRIPTION
Path points to the path name of a directory. Chdir causes the named direc-

tory to become the current working directory, the starting point for path
searches for path names not beginning with /.

Chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENTI The named directory does not exist.

[EACCES] Search permission is denied for any component of the path
name.

[EFAULTI Path points outside the allocated address space of the pro-
CCSS.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Qtherwise, a value
of —1 is returned and errno is set to indicate the error.

~— SEE ALSO
i chroot(2).

CHMOD (2} CHMOD (2}

NAME
chmod — change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permis-
ston portion of the named file’s mode according to the bit pattern contained
in mode,

Access permission bits are interpreted as follows:

04000 Set user ID an execution.

02000 Set group 1D on execulion.

01000 Save text image after execution.

(00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.
00070 Read, write, execute {(search} by group.
00007 Read, write, execute {search) by others.

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000
(save text image on execution} is cleared.

If the effective user 1D of the process is not super-user and the effective
group ID of the process does not maich the group ID of the file, mode bit
02000 (set group ID on execution) is cleared,

If an executable file is prepared for sharing (see the ¢c —n option}, then
maode bit 01000 prevents the system from abandoning the swap-space image
of the program-text portion of the file when its last user terminates. Thus,
when the next user of the file executes it, the text need not be read from
the file system but can simply be swapped in, saving time.

Changing the owner of a file turns off the set-user-id bit, unless the
superuser does it. This makes the system somewhat more secure at the
expense of a degree of compatibility. Chmad will fail and the file mode will
be unchanged if one or more of the Following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[EPERMI The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the pro-
cess.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value

-1-

CHMOD{2) CHMOD (2)

of —1 is returned and errno is set to indicate the error.

. SEE ALSO
r'/._‘ : chown(2}, mknod(2).

CHOWN(2) CHOWN({2)

NAME
chown — change owner and group of a file

SYNOPSIS
int chown (path, owner, group}
char +path;
int owner, group;

DESCRIPTION
FPath points to a path name naming a file, The owner ID and group ID of
the named file are set to the numeric values contained in owner and group
respectively.
Only processes with effective user ID equal to the file owner or super-user
may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-
group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

Chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are irue:

{ENOTDIR] A component of the path prefix is not a directory.

[ENQENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[EPERM] The effective usger ID does not maich the owner of the file
and the effective user ID is not super-user.

[ERQFS!] The named file resides on a read-only file system.

[EFAULT] FPath points outside the allocated address space of the pro-
cess.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
chown(1), chmod(2).

CHROOT (2) CHROOT(2)

NAME

chroot — change root directory

SYNOPSIS

int chroot (path)
char +path;

DESCRIPTION

Path points to & path name naming a directory. Chroot causes the named
directory to become the root directory, the starting point for path searches
for path names beginning with /. The wuser’s working directory is
unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root
directory. :

The .. entry in the root directory is interpreted to mean the root directory
itself. Thus, .. cannot be used to access files outside the subtree rooted at
the root directory.

Chroot will fail and the root directory will remain unchanged if one or more
of the following are true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

{EPERM] The effective user ID is not super-user.

{EFAULTI] Path points outside the allocated address space of the pro-
cess.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Qtherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO

chdir(2).

CLOSE(2) CLOSE (2}

NAME
close — close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creqr, open, dup, fent, pipe, or
socker system call Close closes the file descriptor indicated by fildes. A
close of all files is automatic on exir, but since there is a 20 open file timit
on the number of open files per process, close is necessary for programs
which deal with many files. All outstanding record locks owned by the pro-
cess (on the file indicated by fildes) are removed.

{EBADF] Close will fail if fildes is mot a valid open file descriptor.

RETURN YALUE
Upon successful completion, a value of O is returned. Otherwise, a value

of —1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(3), exec(2), fentl(2), open(2), pipe(2), socket(2N).

Page 1 July 22, 1985

CONNECT (2N) UniSoft CONNECT (2N}

NAME
connect — initiate a connection on a socket

SYNOPSIS
#Hinclude <sys/types.h>
#tinclude <sys/socket.h>>

connect(s, name, namelen)
Int s;

struct sockaddr *name;
int namelen;

¢ ... —Inet

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call
permanently specifies the peer to which datagrams are to be sent; if it is of
type SOCK_STREAM, then this call attempts to make a connection to
another socket. The other socket is specified by neme which is an address
in the communications space of the socket. Each communications space
interprets the name parameter in its own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a —1
is returned, and a more specific error code is stored in errno.

ERRORS
The call fails if:
[EBADF] Sis not a valid descriptor.
[ENOTSOCK] Sis a descriptor for a file, not a socket.
[EADDRNOTAVAIL]
The specified address is not available on this
machine.

[EAFNOSUPFORT] Addresses in the specified address family cannot be
used with this socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without estab-
lishing a connection.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn’t reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] The name parameter specifies an area outside the pro-
cess address space.

[EWOULDBLOCK] The socket is non-blocking and the and the connec-
tion cannot be completed immediately. 1t is possible
to seleci(2N) the socket while it is connecting by
selecting it for writing.

LINKING
This library is accessed by specifying —Inet as the last argument to the
compile ling, e.g.:

Page 1 July 16, 1985

CONNECT (2N} UniSoft

¢ —o prog prog.c —Inet

SEE ALSO
- accept(2N), select(2N), socket(2N), getsockname(2N)

July 16, 1985

CONNECT (2N)

Page 2

CREAT(2) CREAT{(2)

NAME

creat — create a new file or rewrite an existing one

SYNOPSIS

int creat {path, mode)
char +path;
int mode;

DESCRIPTION

Page 1

Crear creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file’s owner ID is set to the effective user ID, of
the process the group 1D of the process is set to the effective group 1D, of
the process and the low-order 12 bits of the file mode are set to the value
of mode modified as follows:

All bits set in the process’s file mode creation mask are cleared.
See wmask(2).

The ‘‘save text image after execution bit” of the mode is cleared.
See chmod(2).

Upon successful completion, the file descriptor is returned and the file is
open for writing, even if the mode does not permit writing. The file
pointer is set to the beginning of the file. The file descriptor is set to
remain open across exer system calls, See fent/(2). No process may have
more than 20 files open simultaneously.

The mode given is arbitrary; it need not allow writing. This feature is used
by programs which deal with temporary files of fixed names. The creation
is done with a mode that forbids writing. Then, if a second instance of the
program attempts a creatf, an error is returned and the program knows that
the name is unusable for the moment.

The system-scheduling algorithm does not make this a true uninterruptible
operation, and a race condition may develop if crear is done at precisely the
same time by two different processes.

Creat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENQENTI A component of the path prefix does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[ENOENT] The path name is null.

[EACCESI The file does not exist and the directory in which the file is
to be-created does not permit writing.

IEROFS] The named file resides or would reside on a read-only file
system.

[ETXTBSYI] The file is a pure procedure (shared text) file that is being
executed.

July 29, 1985

CREAT(2) CREAT(2)

[EACCES] The file exists and write permission is denied.

[EISDIR]) The named file is an existing directory.

[EMFILE] Twenty (20) file descriptors are currently open.

[EFAULT] Farir poinis outside the allocated address space of the pro-
cess.

[ENFILE] The system file table is full.

RETURN VALUE .
Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of —1 is returned and errmo is
set to indicate the error.

SEE ALSO
chmod(2), close(2), dup(3}), fentl(2), Iseek(2}, open{2), read(2},
umask(2}, write(3).

July 29, 1985 Page 2

v

DUP(2) DUP(2)

NAME

(" dup - duplicate a descriptor

- SYNOPSIS
news = dup(oldd)
int newd, oldd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a2 small
non-negative integer index in the per-process descriptor table. The value must
be less than the size of the table, which is returned by getdtablesize(3N). The
new descriptor newd returned by the call is the lowest numbered descriptor
which is not currently in use by the process.
The object referenced by the descriptor does not distinguish between references
using oldd and newd in any way. Thus if newd and oldd are duplicate refer-
ences to an open file, read(2), write(2), and Iseek(2) calls all move a single
pointer into the file. If a separate pointer into the file is desired, a differens
cbject reference to the file must be obtained by issuing an additional open(2)
call
) RETURN YALUE
-./-\ The value -1 is returned if an error occurs in either call. The external variable
- errno indicates the cause of the error.

ERRORS
Dup fails if:
{EBADF]
Oldd or newd is not a valid active descriptor
[EMFILE]
Too many descriptors are active.
SEE ALSO
accept(2N), open(2), close(2), pipe(2), socket(2N), getdtablesize(3N).

Page 1 September 28, 1987

DUP2(2) {UniSoft) DUP2(2)

NAME
dup2 — duplicate a descriptor

SYNOPSIS
dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
Dup2 causes newd 10 become a duplicate of oldd. If newd is already in use, the
descriptor is first deallocated as if a close(2) call had been done first.
The cbject referenced by the descriptor does not distinguish between references
using oldd and newd in any way. Thus if newd and oldd are duplicate refer-
ences to an open file, read(2), write(2), and Iseek(2) calls all move a single
pointer into the file, If a separate pointer into the file is desired, a different
object reference to the file must be obtained by issuing an additional open(2)
call

RETURN YALUE
The value —1 is retumed if an error occurs in either call. The external variable
errno indicates the canse of the error.

ERRORS
Dup? fails if;
[EBADF]
Oldd or newd is not a valid active descriptor

[EMFILE]
Too many descripiors are active,

SEE ALSD
accept(2N), open(2), close(2), pipe(2), socket(2N), getdiablesize(3N).

Page 1 September 28, 1987

~

S

.

EXEC(2) EXEC(2)

NAME

execl, execv, execle, execve, execlp, execvp — executs a file

SYNOPSIS

int execl (path, arg0, argl, ..., argn, 0}

char +path, arg0, *argl, .., *argn;

int execv (path, argv)

char +path, *argvl 1;

int execle (path, arg0, argi, ..., argn, 0, envp)
char *path, *arg0, +argl, .., *argn, *envp| };
int execve (path, argv, envp)

char *path, «argv[], *eavp(J;

it execlp (file, arg0, argl, ..., argn, 0)

char +file, *arg0, *argl, .., *argn;

int execyp (file, argv)
char *file, *argv[J;

DESCRIPTION

Exec in all its forms teansforms the calling process into a new process. The
new process is constructed from an ordinary, executable file called the new pro-
cess file. This file consists of a header (see a.out (4)), a text segment, and a data
segment. The data segment contains an initialized portion and an wminitialized
portion (bss). There can be no retumm from a successful exec because the cal-
ling process is overlaid by the new process.

Path points to a path name that identifies the new process file,

File points to the new process file, The path prefix for this file is cbtained by 2
search of the directories passed as the emvironmemt line "PATH =" (see
environ (5)). The environment is supplied by the shell (see sk (1)). The shell is
invoked if a command file is found by execlp or execvp.

Arg0, argl, ..., argn arc pointers 1o null-terminated character strings. These
strings constitute the argument list available to the new process. By convention,
al least arg0 must be present and point to a string that is the same as path (or its
last component).

Argv is an amay of character pointers to null-terminated strings. These sirings
constitute the argument list available to the new process. By convention, argy
must have at least one member, and it must paint to a string that is the same as
path (or its last component). Argv is terminated by a null pointer and is directly

Page 1 September 24, 1987

EXEC(2) EXEC(2)

usable in another execv becanse argv[arge 1is 0.
Envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process. Envp is terminated by a nufl
pointer. For execl and execv, the C min-time start-off routine places a pointer to
the environment of the calling process in the global cell:
extern char s*environ;

and it is used to pass the environment of the calling process 10 the new process.
File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fondl (2). For those file
descriptors that remain open, the file poinier is unchanged.
Signals set to terminate the calling process will be set 1o terminate the new pro-
cess. Signals set to be ignored by the calling process will be set to be ignored
by the new process. Signals sct to be canght by the calling process will be set
10 terminate new process; see signal (2),
If the set-user-ID mode bit of the new process file is set (see chmod (2)), exec
sets the effective user ID of the new process to the gwner ID of the new process
file. Similarly, if the set-group-ID mode bit of the new process file is set, the
effective group ID of the new process is set to the group ID of the new process
file, The real user ID and real group ID of the new process remain the same as
those of the calling process.
The shared memory segments attached to the calling process will not be
attached 1o the new process (see shmop (2)).
Profiling is disabled for the new process; see profil (2).
The new process also inherits the following attributes from the calling process:

nice value (see nice (2))

processID

parent process ID

process group ID

semadj valves (see semop (2))

tty group ID (see exit (2) and signal (2))

trace flag (see ptrace (2) request 0)

time left until an alarm clock signal (see alarm (2))

current working directory

root directory

file mode creation mask {see wmask (2))

September 24, 1987 Page 2

EXEC(2) EXEC(2)

file size limit {see wlimir (2))

utime, stime, cutime , and cstime (sc& fimes (2))
From C, two interfaces are available. exec! is useful when a known file with
known arguments is being called; the arguments to execl are the character
strings constituting the file and the arguments; the first argument is convention-
ally the same as the file name (or its last component). A 0 argument must end
the argument list.
When a C program is execuled, it is called as follows:

main(argc, argv, envp)

g arge,

cbarl*argv,**envp:
where arge is the argument count and argv is an array of character pointers to
the arguments themselves, As indicated, arge is conventionally at least one and
the first member of the array points 10 a string containing the name of the file.

Envp is a pointer 10 an array of strings that constitute the emvironment of the
process. Each string consists of 2 name, an =, and a aull-terminated value. The
array of pointers is terminated by a null pointer. The shell sh(1} passes an
environment entry for each global shell variable defined when the program is
called. See environ(5) for some conventionally used names. The C run-time
start-off routine places a copy of envp in the global cell environ, which is used
by execv and execl to pass the environment to any subprograms executed by the
current program. The exec routines use lower-level routines as follows to pass
an environment explicitly:

execve(file, argv, environ);

execle(file, arg0, argl, . . ., argn, 0, environ);

Execlp and execvp are called with the same arguments as exec! and execv, but
duplicate the shell's actions in searching for an executable file in a list of direc-
tories. The directory list is obtained from the environment.

Exec will fail and retumn to the calling process if one or more of the following

are true:

[ENOENT] One or more components of the new process file’s path name
do not exist.

[ENOTDIR] A component of the new process file's path prefix is not a
directory.

Page 3 September 24, 1987

EXEC(2)

[BACCES]

[(EACCES]
[EACCES]
[EAGAIN]

[ENOEXEC]

[ETXTBSY]
[ENOMEM]
[E2BIG]
{EFAULT]

[EFAULT}
RETURN VALUE

EXEC(2)

Search permission is denied for a directory listed in the new
process file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution permission,

The system has temporarily exhansted its available memory
OF SWap space.

The exec is not an execlp or execvp, and the new process file
has the appropriate access permission but an invalid magic
number in its header,

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM.

The number of bytes in the new process’s argument list is
greater than the system-imposed limit of 5120 bytes.

The new process file is not as long as indicated by the size
values in its header.

Path, argv, or envp point to an illegal address,

If exec returns to the calling process an exror has occumrred; the retum value will
be —1 and errno will be set to indicate the error.

SEE ALSO

sh(1), alarm(2), exit(2), fork(2). nice(2), pirace(2), semop(2), signal(2),

times(2).

September 24, 1987

Pape 4

/—\

EXIT(2)

NAME

EXIT (2}

exit, _exit — terminate process

SYNOPSIS

void exit (status)
int status; void _exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wair, it is
notified of the calling process’s termination and the low order eight
bits (i.e., bits 0377) of status are made available to it; see wair(2).

If the parent process of the calling process is not executing a wair, the
calling process is transformed into a zombie process. A zombie process
is a process that only occupies a slot in the process table. It has no
other space allocated either in user or kernel space. The process table
stot that it occupies is partially overlaid with time accounting informa-
tion {see <sys/proc.h>>) to be used by fimes.

The parent process ID of all of the calling process’s existing child
processes and zombie processes is set to 1. This means the initializa-
tion process (see intro(2)) inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj
value (see semop(2)), that semadj value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock, an wnloeck is performed
(see plock(2)).

An accounting record is written on the accounting file if the system’s
accounting routine is enabled; see accr(2).

If the process ID, tty group ID, and process group ID of the calling
process are equal, the SIGHUP signal is sent to each process that has a
process group ID equal to that of the calling process,

The C function exit may cause cleanup actions before the process exits.
The function _exif circumvenis all cleanup.

SEE ALSO

acct(2), intro(2), plock{(2}, semop(2), signal(2}, wait(2).

WARNING

See WARNING in signal(2).

Page |

July 23, 1985

FCNTL{(2)

NAME

Page 1

FCNTL{(2)

fentl — file control

SYNOPSIs
#include <fentl.h>

int fentl (fildes, emd, arg)
int fildes, cmd, arg;

DESCRIPTION
Fenmil provides for control over open files. Fildes is an open file descriptor
obtained from a creat, open, dup, feud, or pipe system call.

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

¥_GETFL
F_SETFL

F_GETLK

F_SETLK

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file {or pipe) as the original file.

Same file pointer as the original file (i.e., both file descrip-
tors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(2) system
calls.

Get the close-on-exec flag asscciated with the file descrip-
tor fildes. If the low-order bit is @ the file will remain
open across exee, otherwise the file will be closed «pon
execution of exee,

Set the close-on-exec flag associated with fildes to the
low-order bit of arg (I or 1 as above).

Get fife status flags.

Set file status flags to arg, Only certain flags can be set;
see feati(5).

Get the first lock which blocks the lock description given
by the variable of type strucr flock pointed to by arg. The
information retrieved overwrites the information passed
to fearf in the flock structure, If no lock is found that
would prevent this lock from being created, then the
structure is passed back unchanged except for the lock
type which will be set to F_UNLCK.

Set or clear a file segment lock according to the variable
of type struct flock pointed to by aorg [see fenti(5)]. The
emd F_SETLK is used to establish read (F_RDLCK) and
write (F_WRLCK) locks, as well as remove either type of
lock {F_UNLCK). If a read or write lock cannot be set,
Jenil will return immediately with an error value of -1.

August 2, 1985

"

FCNTL(2) FCNTL (2}

F_SETLKW This cmrdf is the same as F_SETLK except that if a read or
write lock is blocked by other locks, the process will sleep
until the segment is free to be locked.

F_GETOWN Get the process ID or process group currently receiving
SIGIO and SIGURG signals; process groups are returned as
negative values.

F_SETOWN Set the process ot process group to receive SIGIO and
SIGURG signals, process groups are specified by supplying
arg as negative, otherwise arg is interpreted as a process
1D

A read lock prevents any process from write locking the protected area.
More than one read lock may exist for a given segment of a file at a given
time. The file descriptor on which a read lock is being placed must have
been opened with read access.

A write lock prevenis any process from read locking or write locking the
protected area. Only one write lock may exist for a given segment of a file
at a given time. The file descriptor on which a write Jock is being placed
must have been opened with write access.

The structure flock describes the type (I type), siarting offset (/ whence),
relative offset ([srerd), size (! len), and process id ({ pid) of the segment
of the file to be affected. The process id field is only used with the
F_GETLK «md to return the value for a block in Jock. Locks may start and
extend beyond the current end of a file, but may not be negative relative to
the beginning of the file. A lock may be set to always extend to the end of
file by setting / Jen to zero (0). If such a lock also has [stert set to zero
(D), the whole file will be locked. Changing or unlocking a segment from
the middle of a larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by the calling process
causes the old lock type to be removed and the new lock type to take affect.
All locks associated with a file for a given process are removed when a file
descriptor for that file is closed by that process or the process holding that
file descriptor terminates. Locks are not inherited by a child process in a
Jork(2) system call.

Fentf will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILEI] Cmd is F_DUPFD and 20 file descriptors are currently open.

[EINFILE] Cmd is F_DUPFD and arg Is negative or greater than 20,

{EINVAL] Cmd is F_GETLK, F_SETLK, ot SETLKW and arg or the data
it points to is not valid.

[EACCESS] Cmd is F SETLK the type of lock (/ fype) is a read

(F_RDLCK) or write (F_WRLCK) lock and the segment of a
file to be locked is already write locked by another process
or the type is a write lock and the segment of a file to be
locked is already read or write locked by another process.

August 2, 1985 Page 2

FCNTL {2}

[EMFILE}

[ENOSPC)

[EDEADLK]

[ENOTSOCK]

RETURN VALUE

FCNTL (2)

Cmd is F_SETLK or F_SETLKW, the type of lock is a read or
write lock and there are no more file locking headers avail-
able {too many files have segments locked).

Cmd is F_SETLK or F_SETLKW, the type of lock is a read or
write lock and there are no more file locking headers avail-
able (too many files have segments locked) or there are no
more record locks available {too many file segments
locked}.

Cmd is F_SETLK, when the lock is blocked by some lock
from another process and sleeping (waiting) for that lock
to become free, this causes a deadlock situation.

Cmd is F_GETOWN or F_SETOWN and fildes is not a file
descriptor for a socket,

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of flag {only the low-order bit is defined).
F_SETFD Value other than —1.

F_GETFL Value of file flags.

F_SETFL Value other than —1.

F_GETLK Value other that —1.

F_SETLK Value other than —1.

F_SETLKW Value other than —1.

F_GETOWN Value other than —1.

F_SETOWN Value other than —1.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO

close(2), exec(2), open(2}), fentl(5).

Page 3

August 2, 1985

o —

FORK (2) FORK(2)

NAME

fork — create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). This means the child process
inherits the following attributes from the parent process:

environment

close-on-exec flag (see exec(2))

signal handling settings (i.e., SIG_DFL, SIG_ING, function address)
set-user-ID mode bit

set-group-1D mode bit

profiling on/off status

nice value (see nice (2))

all attached shared memory segmemx (sce shmop(2))
process group ID

ity group ID (see exit(2) and signal(2))

mace ftag (see ptrace (2) request 0)

timee left until an alarm clock signal (see alarm(2))
curnrent working directory

root directory

file mode creation mask (sec umask(2))

file size limit (see wlimit(2))

The child process differs from the parent process in the following ways:

Page 1

The child process has a unique process ID.
The child process has a different parent process ID (i.e., the process ID of
the parent process).

The child process has its own copy of the parent's file descriptors. Each
of the child's file descriptors shares a common file pointer with the
caresponding file descriptor of the parent,

All gemadj values are cleared {sce semop(2)).

Process locks, text Jocks and data locks are not inherited by the child (see
plock(2)).

September 24, 1987

FORK(2) FORK (2)

The child process’s xtime, stime, cutime, and cstime are set 10 0 (see
times(2)). The time left until an alarm clock signal is reset to 0.

Fork will fail and no child process will be created if one or more of the follow-

ing are true:

[BAGAIN} The system-imposed limit on the total number of
processes under execution woukl be exceeded.

[EAGAIN] The system-imposed limit on the total mumber of
processes under execution by a single vser would be
exceeded.

[EAGAIN] The system has temporarily exhsusted its available
Memory or Swap space.

RETURN VALUE
Upon successful completion, fork retums a valve of O wo the child process and
retumns the process ID of the child process to the parent process. Otherwise, a
valoe of —1 is retwened to the parent process, no child process is created, and
errno is set to indicate the error.

SEE ALSOD
exec(2), nice(2), plock(2), pirace(2), semop(2), shimop(2), signal(2), imes(2).

September 24, 1987 Page 2

——

FSTAT(2)

GETEGID{2)

GETEUID (2)

GETGID(2)

SEE STAT

SEE GETUID

SEE GETUID

SEE GETUID

FSTAT(2)

GETEGID(2)

GETEUID (2)

GETGID (2)

GETHOSTID {2N) UniSeft GETHOSTID (2N)

NAME
gethostid, sethostid — get/set unique identifier of current host

SYNOPSIS
hostid = gethostid0
int hostid;

sethostid (hostid)
int hostid;

e¢ ... —Inet

DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor which is
intended to be unique among ali UNIX systems in existence. This is nor-
mally a DARPA Internet address for the local machine. This call is allowed
only io the super-user and is normally performed at boot time.

Gethostid returns the 32-bit identifier for the current processor.

LINKING
This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

cc —o prog prog.c —Inet

SEE ALSO
hostid(1N), gethostname(2N)

BUGS
32 bits for the identifier is 100 small,

Page 1 July 16, 1985

GETHOSTNAME (2N} UniSoft GETHOSTNAME (2N}

NAME
gethostname, sethostname — getfset name of current host

SYNOPSIS
gethostname{name, namelen)
char *name;
int namelen;

sethostname{name, namelen)
char *name;
int namelen;

¢ ... —Inet

DESCRIPTION
Gethostname returns the standard host name for the current processor, as
previously set by sethostname. The parameter namelen specifies the size of
the name array. The returned name is null-terminated uniess insufficient
space is provided.

Sethostname sets the name of the host machine to be name, which has
length namelen. This call is restricted to the super-user and is normally
used only when the system is bootstrapped.

RETURN YALUE
if the call succeeds a value of 0 is returned. If the call fails, then a value of
—1 is returned and an error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:
[EFAULT] The name or #amelen parameter gave an invalid address.
[EPERM] The caller was not the super-user.

LINKING

This library is accessed by specifying —Inet as the Iast argument to the
compile line, e.g.

oc¢ —o prog prog.c —Inet
SEE ALSQ
gethostid(ZN}

BUGS
Host names are limited to 255 characters.

Page ! July 16, 1985

GETPEERNAME (ZN) UniSoft GETPEERNAME (2N)

NAME

getpeername — get name of connected peer
SYNOPSIS

getpeername(s, name, namelen)

int s;

struct sockaddr *name;
int *namelen;

o ... ~Inet

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The
namelen parameter should be imitialized to indicate the amount of space
pointed to by name, On return it coniains the actual size of the name
returned (in bytes).

DIAGNOSTICS .

A 0 is returned if the call succeeds, — 1 if it Fails.
ERRORS

The call succeeds unless:

[EBADF] The argument 5 is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to per-
form the operation.

[EFAULTI The name parameter points to memory not in a valid part
of the process address space.
LINKING

This library is accessed by specifying —Inet as the last argument to the
compile line, e.p.:

¢ —0 prog prog.c —Inet
SEE ALSO
bind(2N), socket{2N), getsockname(2N)

Page 1 July 16, 1985

GETPGRF(2)

SEE GETPID

GETPGRP(2)

GETPID (2) GETPID(2)

NAME
getpid, getperp, getppid — get process, process group, and parent process
IDs

SYNOPSIS
int getpid ()

Int getpgrp (}
Int getppld ()

DESCRIPTION
(retpid Teturns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.
Gerppid returns the parent process 1D of the calling process.

These system calls are useful for generating uniquely-named temporary
files.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

GETPPID(2)

SEE GETPID

GETPFID (2}

GETSOCKNAME (2N) UniSoft GETSOCKNAME (2N}

NAME
getsockname — get socket name
SYNOPSIS
getsockname(s, name, namelen)
int &3

struct sockaddr *name;
int *namelen;

o ... —Inet

DESCRIPTION
Getsockname returns the current mame for the specified socket. The
namelen parameter should be initialized to indicate the amount of space
pointed to by mame. On return it contains the actual size of the name
returned (in bytes).

DIAGNOSTICS

A 0 is retarned if the call succeeds, —1 if it fails.
ERRORS

The call succeeds unless:

[EBADFI] The argument s is not a valid descriptor.

[ENOTSOCK] The argument sis a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to per-
form the operation.
[EFAULT] The rame parameter points to memory not in a valid part
of the process address space.
LINKING

This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

cc —o prog prog.c —Inet

SEE ALSO
bind(2N), socket(2N)

Page | Juily 16, 1985

..

GETSOCKOPT {2N) UniSoft GETSOCKOPT (2N)

NAME

getsockopt, setsockopt — get and set options on sockets

SYNOPSIS

#include <sys/types.h>
#include < sys/socket.h>

getsockopt (s, level, optname, optval, optlen)
int s, level, optname;

char “optval;

int *optlen;

setsockopt(s, level, optname, optval, optlen)
int 8, Jevel, optname;

char *optval;

int optlen;

ce ... —Inet

DESCRIFTION

Gersockopt and setsockopr manipulate options associated with a socket.
Options may exist at multiple protocol levels: they are always present at the
uppermost “‘socket’ level.

When manipulating socket options the level at which the option resides and
the name of the option must be specified. To manipulate options at the
“socket” level, level is specified as SOL_SOCKET. To manipulate options
at any other level the protocol number of the appropriate protcol controlling
the option is supplied. For example, to indicate an option is to be inter-
preted by the TCP protocol, fevef should be set to the protocol number of
TCP; see geiprotoent{3N).

The parameters optval and opilen are used to access option values for ser-
sockopt. For getsockopr they identify a buffer in which the value of the
requested options(s) are to be returned. For gefsockopl, optlen is a value-
result parameter, initially containing the size of the buffer pointed to by
optval . and modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, opival may be
suppiied as 0.

Opiname and any specified options are passed uninterpreted to the appropri-
ate protocol module for interpretation. The include file < sysiocket.h>>
contains definitions for “*socket™ level options; see socket{(2N). Options at
other protocol levels vary in format and name, consult the appropriate
entries in (5P).

RETURN VALUE

A 0 is returned if the call succeeds, —1 if it fails.

ERRORS

Page |

The call succeeds unless:
[EBADF] The argument s is not a Valid descriptor,
[ENOTSOCK] The argument s is a file, not a socket,
[ENOPROTOOPT] The option is unknown.

July 16, 1985

GETSOCKOPT (2N} . UniSoft GETSOCKOPT (IN)

[EFAULTI The options are not in a valid part of the process
address space.

LINKING
This libtary is accessed by specifying —Inet as the last arpument to the
compile line, e.g.:

¢ —o prog prog.c —Inet

SEE ALS0O
socket(ZN), getprotoent(3N).

July 16, 1985 Page 2

GETUID(2) GETUID (2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective user, real group,
and effective group 1Ds

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid (O

DESCRIPTION
Getuid returns the real user 1D of the calling process.

Getewid returng the effective user 1D of the calling process.
Getgid returns the real group ID of the calling process.
Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2}, setuid(2).

i10CTL(2) IOCTL (2)

NAME

ioctl — control device
SYNOPSIS

foctl (Rldes, request, arg)

int fildes, request;
DESCRIPTION

foctl performs a variety of functions on character special files (devices).
The write-ups of various devices in Section 7 of the UniPlust System
Administrator Reference Manual discuss how ioctl applies to them.

foct! will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.
[ENOTTYI] Fildes is not associated with a character special device.

[EINVAL} Reguest or arg is not valid. See Section 7 of the UniPlust
System Administrator Reference Manual
[EINTR] A signal was caught during the foctf system call.

RETURN VALUE
If an error has occurred, a value of —1 is returned and errme is set to indi-
cate the error.

SEE ALSO
termio(7) in the UniPlus™ System Administrator Reference Manual,

KILL(2) KILL{2)

NAME
kill — send a signal to a process or a group of processes

i SYNOPSIS
int kill (pid, sig)
int pld, sig:

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or
group of processes to which the signal is to be sent is specified by pid. The
signal that is to be sent is specified by sig and is either one from the list
given in signal(2), or 0, If sig is O (the null signal), error checking is per-
formed but no signal is actually sent. This can be used to check the validity
of pid.
The real or effective user ID of the sending process must match the real or

effective user ID of the receiving process, uniess the effective user ID of the
sending process is super-user, or the process is sending to itself,

The processes with a process ID of 0 and a process ID of 1 are special
processes (see fntro(2)) and will be referred to below as proc® and procl
respectively.

If pid is greater than zero, sig will be sent to the process whose process ID
is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to al) processes excluding procQ and proc! whose
P process group 1D is equal to the process group ID of the sender.

i If pid is —1 and the effective user ID of the sender is not super-user, sig
-~ will be sent to all processes excluding proc and procl whose real user 1D is
equal to the effective user ID of the sender.
If pid is —1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding procO and procl.

If pid is negative but not —1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are

troe: .
[EINVALI Sig is not a valid signal number.
[EINVALL Sig is SIGKILL and pid is 1 {procl).
[ESRCH] No process can be found corresponding to that
specified by pid.
[EPERM] The sending process is not sending to itself, its

effective user ID is not super-user, and its real or
effective user ID does not match the rezl or effective
user ID of the receiving process. [EPERMI

— RETURN YALUE
f Upon successful completion, a valug of 0 is returned. Qtherwise, a valpe
of —1 is returned and errno is set to indicate the error.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2).

LINK (2}

NAME

LINK{2)

link — link to a file

SYNOPSIS

int link (pathl, path)
char +=paihl, +path2;

DESCRIPTION

Parhl points to a path name naming an existing file. PathZ points to a path
name naming the new directory entry to be created. Link creates a new
link {directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following are

true:
[ENOTDIR]
[ENOENT]
[EACCES]

[ENOENTI
[EEXISTI]
[EPERM]

[EXDEV]

[ENOENT]
[EACCES]

[EROFS}

[EFAULTI]

[EMLINK]

RETURN VALUE

A component of either path prefix is not a directory.
A component of either path prefix does not exist.

A compenent of either path prefix denies search permis-
gion.

The file named by path! does not exist.
The link named by poth? exists.

The file named by pathi is a directory and the effective
user 1D is not super-user.

The link named by parkh2 and the file named by pathf are
on different logical devices {file systems).

Path2 points to a null path name.
The requested link requires writing in a directory with a
mode that denies write permission.

The requested link requires writing in a directory on a
read-only file system.

Path points outside the allocated address space of the pro-
cess.

The maximum number of links to a file would be
exceeded.

Upon successful completion, a value of 0 is returned. Otherwise, a value
-of —1 is returned and errno is set to indicate the error.

SEE ALSO
unlink(2).

LISTEN {2N) UniSoft LISTEN (2N)

NAME

listen — listen for connections on a socket
SYNOPSIS

isten(s, backlog)

int s, backlog;

cc ... —Inet

DESCRIPTION
To accepi connections, a socket is first created with socker(2N), a backlog
for incoming connections is specified with fisren(2N) and then the connec-
tions are accepted with accept(ZN), The listen call applies only to sockets of
type SOCK_STREAM or SOCK_PKTSTREAM.

The backleg parameter defines the maximum length the queue of pending

connections may grow to. If a connection request arrives with the gqueue

full the client will receive an error with an indication of ECONNREFUSED.
RETURN VALUE

A 0 return value indicates success; — 1 indicates an error.

ERRORS
The call fails if:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the opera-
tion lisren.

LINKING
This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.

¢ — o prog prog.c —Inet

SEE ALSO
accept(2ZN), connect{2N)}, socket(2N)

BUGS
The backlog is currently limited (silently) to 5.

Page | July 16, 1985

LOCKING (2} UniSoft LOCKING (2)

NAME

locking — provide exclusive file regions for reading or writing

SYNOPSIS

locking(fildes, mode, size)
int fildes;

int mode;

int size;

DESCRIPTION

Locking will allow a specified number of bytes to be accessed only by the
locking process. Other processes which attempt to lock, read, or write the
locked area will sleep until the area becomes unlocked.

Fildes is the word returned from a successful open, creat, dup, or pipe sys-
tem call.

Mode i3 zero to unlock the area. Mode is one or two for making the area
locked. If the mode is one and the area has some other lock on it, then the
process will sleep until the entire area is available. If the mode is two and
the area is locked, an error will be returned.

Size is the number of contiguous bytes to be locked or unlocked. The*area
to be locked starts at the current offset in the file. If size is zero, the area
to the end of file is locked.

The potential for a deadlock occurs when a process controlling a locked area
is put to sleep by accessing another process’s locked area. Thus calls to
locking, read, or write scan for a deadlock prior to sleeping on a locked area.
An error return is made if sleeping on the locked area would cause a
deadlock.

Lock requests may, in whole or part, confain or be contzined by a previ-
ously locked area for the same process. When this or adjacent areas occur,
the areas are combined into a single area. If the request requires a new
lock element with the lock table full, an error is returned, and the area is
not locked.

Unlock requests may, in whole or part, release one or more locked regions
conirolled by the process. When regions are not fully released, the remain-
ing areas are still locked by the process. Release of the center section of a
locked area requires an additional lock element to hold the cut off section.
If the lock table is full, an error is returned, and the requested area is not
released.

While locks may be applied to special files or pipes, read/write operations
will not be blocked. Locks may not be applied to a directory.

Note that close(2) automatically removes any locks that were associated
with the closed file descriptor.

SEE ALSO

close(2), creat(2}, dup(3), open(2), read(2), write(3).

DIAGNOSTICS

Page 1

The value —1 is returned if the file does not exist, or if a deadlock using
file locks would occur. EACCES will be returned for lock requests in which
the area is already locked by another process. EDEADLOCK will be relurned

July 29, 1985

LOCKIivG (2} UniSoft LOCKING (2)

by: read, write, or locking if a deadlock would occur, EDEADLOCK will also
be returned when the locktable overflows.

July 29, 1985 Page 2

LSEEK (2) . LSEEK (2)

NAME
Iseek — move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes i a file descriptor returned from a creaf, open, dup, or fentl system
call. Lseek seis the flie pointer associated with fildes as follows:

If whence is 0, the pointer is set to offSet bytes.
If whence is 1, the pointer is set to its current location plus offSer.
If whence is 2, the pointer is set to the size of the file plus offSer.

Upon successful completion, the resulting pointer location, as measured in
bytes from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of
the following are true:

[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.
[EINVAL and SIGSYS signail
Whence isnot 0, 1, or 2,
[EINVALI The resulting file pointer would be negative.
Some devices are incapable of secking. The value of the file pointer associ-
ated with such a device is undefined.

RETURN VALUE
Upon suvccessful completion, a non-negative integer indicating the file
pointer value is returned. Otherwise, a value of —1 is returned and errno
is set to indicate the error.

SEE ALSO
creat(2), dup{3), fentl(2), open(2).

Page 1 July 22, 1985

MKNOD (2} MENOD 2}

NAME
mknod — make a directory, or a special or ordinary file

SYNOPSIS
int mknod {path, mode, dev)
char spath;
int mode, dev;

DESCRIPTION
Mtknod creates a new file named by the path name pointed to by path. The
mode of the new file is initialized from mode. Where the value of mode is
interpreted as follows:
0170000 file type;, one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or GO0 ordinary file
0004000 set user ID on execution
0002000 set group 1D on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following
0000400 read by owner
0000200 write by owner
0000100 execute {search on directory) by owner
o~ 0000070 read, write, execute (search) by group
; 0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The
group ID of the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be
used. The low-order 9 bits of mode are modified by the process’s file mode
creation mask: all bits set in the process’s file mode creation mask are
cleared. See wnask(2). If mode indicates a block or character special fle,
dev is a configuration-dependent specification of a character or block 1/0
device. If mode does not indicate a block special or character special device,
dev is ignored.

Mknod may be invoked only by the super-user for file types other than
FIFO special.

Mhknod will fail and the new file will not be created if one or more of the
following are true:

()

[EPERM] The effective user ID of the process is not super-user.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENTI A component of the path prefix does not exist.

o~ [ERQFS] The directory in which the file is to be created is located on
a read-only file system.
— [EEXIST] The named file exists.

[EFAULTI] Path points cutside the allocated address space of the pro-

cess.

RETURN VALUE
Upon successful completion a value of O is returned. Otherwise, & value of

-1-

MKNOD(2)

—1 is returned and errno is set to indicate the error.

SEE ALSO
mkdir(1), chmod(2), exec(2), umask(2), fs(4).

MENOD(2)

et

MOUNT (2) MOUNT(2)

NAME
mount — mount a file system

f’-\ SYNOPSIS
: int mount (spec, dir, rwilag)
char *spec, +dir;

int rwilag;

DESCRIPTION
Mount requests that a removable file system contained on the block special
file identified by spec be mounted on the directory identified by dir. Spec
and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is permit-
ted according to individual file accessibility. Physically write-protected and
magnetic tape file systems must be mounted read-only or errors will occur
when access times are updated, whether or not any explicit write is
attempted.

Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are irue:

[EPERM) The effective user ID is not super-user.
7 [ENOENTI Any of the named files does not exist.
’ [ENOTDIR] A component of a path prefix is not a directory.
[ENOTBLK] Spec is not a block special device.
[ENX10) The device associated with spec does not exist.
[ENOTDIR] Dir is not a directory,
[EFAULTI] Spec or dir points outside the allocated address space of the
Process,
[EBUSY] Dir is currently mounted on, is someone's current working
directory, or is otherwise busy,
[EBUSY] The device associated with spec is carrently mounted.

[EBUSY] There are no more mount table entries.

RETURN YALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
—1 is returned and errne is set to indicate the error.

SEE ALSQO
umount(2).

MSGCTL (2)

NAME

MSGCTL (2)

msgct] — message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msget]! (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds +buf;

DESCRIPTION

Msget! provides a variety of message control operations as specified by omd.
The following cmds are available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current velue of each member of the data struc-
ture associated with msgid into the structure pointed to by
buf. The contents of this structure are defined in infro(2).
{READ}

Set the value of the following members of the data struc-
ture associated with msgid to the corresponding value
found in the structure pointed to by b

msg_perm.uid

msg_perm.gid

msg_perm.mode /» only low 9 bits »/

msg_gbytes

This ¢md can only be executed by a process that has an
cffective user ID equal to either that of super user or to the
value of msg_perm.uld in the data structure associated
with msgid. Only super user can raise the value of
msg_qbytes.

Remove the message queue identifier specified by msqid
from the system and destroy the messsge queue and data
structure associated with it. This cmd can only be executed
by a process that has an effective user ID equal to either
that of super user or to the value of msg_perm.unid in the
data structure associated with msgid.

Msget! will fail if one or more of the following are true:

[BINVAL]
[EINVAL]
[EACCES}

{EPERMI

[EPERM]

Msqid is not a valid message queue identifier.
Cmd is not a valid command.

Cmd is equal to IPC_STAT and [READ) operation permis-
sion is denied to the calling process {see intro(2)).

Cmd is equal to IPC_RMID or IPC_SET. The effective user
ID of the calling process is not equal to that of super user
and it is not equal to the value of msg_perm.uid in the
data structure associated with msgid.

Cmd is equal to IPC_SET, &n attempt is being made to
increase to the value of msg_qbytes, and the effective user
ID of the calling process is not equal to that of super user.

MSGCTL (2) MSGCTL(2)

[EFAULT] Buf points to an illegal address.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgget(2), msgop(2).

MSGGET (2) MSGGET (2}

NAME
msgget — get message queue
SYNOPSIS
#include <sys/types.h>
#tinclude <sys/ipe.h>
#include < sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIFTION
Msgget returns the message quene identifier associated with key.

A message queue identifier and associated message quene and data siruc-
ture (see intro(2)) are created for keyif one of the following are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated
with it, an¢ {msgflg & IPC_CREAT} is “‘true”.

Upon creation, the data structure associated with the new message queus
identifier is initialized as follows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and
msg_perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal io the low-
order 9 bits of msgfg.

Msg_gnum, msg_lspid, msg_lrpid, msg_stime, and msg_riime are
set equal to 0.

Mgsg_ctime is set equal to the current time,
Msg_gbytes is set equal to the system lirnit.
Msgeet will fail if one or more of the following are true:

[EACCES) A message queue identifier exists for key, but operation
permission (see intro(2)) as specified by the low-order 9
bits of msgfly would not be granted.

[ENOENTI A message queue identifier does not exist for key and
(msgflg & 1PC_CREAT) is “‘false™.
[ENOSPC] A message queue identifier is to be created but the

_ system-imposed limit on the maximum number of allowed
message quene identifiers systern wide would be exceeded.

[EEXISTI] A message queue identifier exists for key but { (msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL) } is ““true”.

RETURN YALUE
Upon successful completion, a non-negative integer, namely a message
" queue identifier, is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

SEE ALSO
intro(2), msegctl(2), msgop(2).

MSGOP(2) MSGOP(2)

NAME

I msgop, msgsnd, msgrey — message cperations
. SYNOPSIS

#linclude <sys/types.h>

#finclude <sys/ipc.h>

#inctude <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)

int msqgid;

struct msgbuf *msgp;

int msgsz, msgfig;

int msgrev (msqid, msgp, msgsz, msgiyp, msgilg)

int msqid;

struct msgbuf *msgp;

int msgsz;

long msgtyp;

int msgflg;

DESCRIPTION

Msgsnd is used to send a message to the queue associated with the message
o queue identifier specified by msqgid. {WRITE) Msgp points to a strzctuze con-
: taining the message. This staructare is composed of the following members:

long mtype; [+ message type */
char mtext[]; /* message text */

Miype is a positive integer that can be used by the receiving process for mes-
sage selection (see msgrcv below), Miext is any text of length msgsz bytes.
Msgsz can range from 0 to a system-imposed maximum.

Msgfig specifies the action to be taken if one or more of the following are troe:

The number of bytes alrcady on the queue is equal 10 msg qbytes (see
intro (2)).

The total number of messages on all queues system-wide is equal to the
system-imposed Limit.
These actions are as follows:

If (msgfig & IPC_NOWAIT) is “‘true’", the message will not be sent and
the calling process will remun immediately.

Page 1 September 24, 1987

MSGOP(2) MSGOP(2)

If (msgfiy & IPC_NOWAIT) is *‘false™, the calling process will suspend
execution until one of the following occurs:
The condition responsible for the suspension no longer exists, in
which case the message is sent,
Msgid is removed from the system (see mspgetl(2)). When this
occurs, errno is set equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be canght. In this case
the message is not sent and the calling process resumes execution in

the manner prescribed in signal (2)).
Msgsnd will fail and no message will be sent if one or mare of the following are
true:
[EINVAL) Msgid iz not a valid message quene identifier.
[EACCES] Operation permission is denied o the calling process
(see intro (2)).
[EINVAL) Miype isless than 1,
[EAGAIN] The message cannot be sent for one of the reasons cited
_ above and (msgfig & IPC_NOWAIT) is **true””,
[EINVAL) Msgsz is less than 2ero or greater than the system-
[EFAULT] Msgp points to an illegal address.

Upon successful compietion, the following actions are taken with respect to the

data structure associated with msgid (see intro (2)).
Msg_qoum is incremented by 1.
Misg_lspid is set equal to the process ID of the calling process.
Msg_stime is sct equal to the current time,

Msgrcv reads a message from the guene associated with the message queue

identifier specified by msgid and places it in the structure pointed to by msgp.
[R&D}msmm:smposedofmefoﬂowmgmmbt_m

long mtype; /+ message type */
char mtext[]; /+ message text »/

Mtype is the received message’s type as specified by the sending process.
Mtext is the text of the message, Msgsz specifies the size in bytes of myext.

September 24, 1987 Page2

MSGOP(2) MSGOP(2)

The received message is truncated to msgsz bytes if it is larger than msgsz and
' (msgflg & MSG_NOERROR) is “"true’”. The truncated part of the message is
' lost and no indication of the truncation is given to the calling process.
Msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the quene is received.
If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not on
the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is “‘true’’, the calling process will return
immediately with a return value of —1 and errno set to ENOMSG.
If (msgfig & TPC_NOWAIT) is “‘false’, the calling process will suspend
execution uetil one of the following occurs:

A message of the desired type is placed on the queune.

Msgid is removed from the system. When this occurs, errmo is set
£ equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. In this case
a message is not received and the calling process resumes execution
in the manner prescribed in signal (2)).

Msgrev will fail and no message will be received if one or more of the follow-

ing are true:

[EINVAL] Msqgid is not a valid message queue identifier,

[EACCES] Operation permission is denied to the calling process.

[EINVAL] Msgsz is less than O,

[EZBIG] Mtext is greater than msgsz and (msgfls &
MSG_NOERROR) is ‘*false™,

[ENOMSG] The gueue does not contain a message of the desired
type and (msgtyp & TPC_NOWAIT) is “‘true”,

[EFAULT] Msgp points 10 an illegal address.

o~ Upon successful completion, the following actions are taken with respect to the

data structure associated with msqgid (see intro (2)).

Page 3 September 24, 1987

MSGOP(2) MSGOP(2)

Msg_gnum is decremented by 1.
Msg_Irpid is set equal to the process ID of the calling process.
Msg_rtime is set equal to the current time.

RETURN YVALUES
If msgsnd or msgrev retum due to the receipt of a signal, a value of —1 is
rewrned to the calling process and errno is set to EINTR. If they return due to
removal of msgid from the system, a value of -1 is returned and errno is set to
EIDRM.

Upon successful completion, the return valoe is as follows:
Msgsnd retorns a value of 0.

Msgrev returns a value equal 1o the number of bytes actally placed into
niext. .

Otherwise, a valne of —1 is retumexd and errne is set to indicate the error.

SEE ALSO
intro(2), msgetl(2), msgget(2), signal(2).

September 24, 1987 Page 4

NICE(2) NICE(2)

NAME
‘2 nice — change priority of a process
L SYNOPSIS
int nice (incr)
int imcr;
DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process’s
nice value is a positive number for which a more positive value results in lower
CPU priority.
A maximum nice value of 39 and a minimum nice value of 0 are imposed by
the system. Requests for values above or below these limits result in the nice
value being set to the corresponding limit.
[EPERM]} Nice will fail and not change the nice value if incr is nega-
tive or greater than 40 and the effective user ID of the calling
Process is not super-user.
RETURN VALUE
Upon successful completion, nice retwrns the new nice value minus 20. Other-
P wise, a value of —1 is returned and errno is set to indicate the error. If a value
J of -1 is a valid retum value on successful completion (i.e., if your new nice
T value is 19), errno is not changed.
SEE ALSO
nice(l), exec(2).

Page 1 September 24, 1987

OPEN{2)

NAME

Page 1

OPEN (2}

open — open for reading or writing

SYNOPSIS
#include <fentlh>
int epen {path, oflag [, mode |)

char +path;

int oflag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a file descriptor for
the named file and sets the file status flags according to the value of offag.
Oflag values are constructed by or-ing flags from the following list {only
one of the first three flags below may be used):

O_RDONLY
O_WRONLY
O_RDWR

O_NDELAY

O_APPEND

O_CREAT

Open for reading onaly.
Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and writes. See
read(2) and wrire(3).

When opening a FIFQ with O_RDONLY or O_WRONLY set:
If O NDELAY is set:

An open for reading-onlty witl return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

" If O NDELAY is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

When opening a file associated with a communication line:
If O_NDELAY is set:

The open will return without waiting for carrier.
If O_NDELAY is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior
to each write,

If the file exists, this flag has no effect. Otherwise, the
owner I} of the file is set to the effective user ID of the pro-
cess, the group ID of the file is set to the effective group 1D
of the process, and the low-order 12 bits of the file mode
are set to the value of mode modified as follows (see
creat(2})):

All bits set in the file mode creation mask of the
process are cleared. See wmask(2).

The “save text image after execution bit’” of the
mode is cleared. See chmod(2}.

July 29, 1985

OPFEN (2}

O_TRUNC

0_EXCL

OPEN(2)

If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

If O_EXCL and O_CREAT are set, .open will fail if the file
exists.

The file pointer used to mark the current position within the file is set to
the beginning of the file.

The new file descriptor is set to remain open across exec system calls. See

Jenti(2),

The named file is opened unless one or more of the following are true:

[ENOTDIR]
{ENOENT]
[EACCES]
[EACCES]
[EISDIR]

[ERQFS]
[EMFILE]
[ENXIO]
[ETXTBSY]
[EFAULT]

[EEXISTI
[ENXIO]

[EINTR]
[ENFILE]
RETURN VALUE

A component of the path prefix is not a directory.
O_CREAT is not set and the named file does not exist.

A component of the path prefix denies search permission.
Offag permission is denied for the named file.

The named file is a directory and offag is write or
read/write.

The named file resides on a read-only file system and offag
is write or read/write.

Twenty (20) file descriptors are currently open.

The named file is a character special or block special file,
and the device associated with this special file does not
exist,

The file is a pure procedure (shared text} file that is being
executed and oflag is write or read/write.

Path points outside the allocated address space of the pro-
cess.

O_CREAT and O_EXCL are set, and the named file exists.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading.

A signal was caught during the open system call.
The system file table is full.

Upon successful completion, the file descriptor is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO

chmod{2), close(2), creat(2), fcnii(2), Ilseek(2), read(2), umask(2},

write(3).

July 29, 1985

Page 2

PAUSE (2} PAUSE(2)

NAME
pause — suspend process until signal

SYNOPSIS
pause ()}

DESCRIPTION .
Pause suspends the calling process until it receives a signal. The signal
must be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from
the signat-catching function (sec signai(2)), the calling process resumes
execution from the point of suspension; with a return vaiue of —1 from
pause and errno set to EINTR.

SEE ALSO
alarm(2}, kill(2), signal(2), wait(2).

PHYS(2) UniSoft PHYS (2}

NAME
phys — allow a process 10 access physical addresses

SYNOPSIS
phys (physnum, virtaddr, size, physaddr)
int physnum
char *virtaddr;
long size;
char *physaddr;

DESCRIPTION
The phys(2) call maps arbitrary physical memory into a process’s virtual
address space. The virtual address used by phys must not otherwise be
used. Physnum is a number (0-3) that specifies which of 4 physical spaces
to set up. Up to 4 phys(2) calls can be active at any one time. Virtaddr is
the process’s virtual address. Size is the number of bytes to map in. Phy-
saddr is the physical address to map in.

Valid virtaddr and physaddr values are constrained by hardware and must be
at an address multiple of the resolution of the CPU's memory management
scheme. If size is non zero, size is rounded vup to the next MMU resolution
boundary. If size is zero, any previous phys{2) mapping for that physnum
segment is nullified.
For example, the call:

phys (2, 0x100000, 32768, 0)

will allow a process 1o access physical locations 0 through 32767 by
referencing virtual address 0x100000 through 0x100000+ 32767,

In actvality, the CPU MMU register is loaded with physaddr shifted to
account for page resolution.

Phys (2) may only be executed by the super-user.

DIAGNOSTICS
The value zero is returned if the phys call was successful. The value —1 is
returned if not super-user, if virtaddr or physaddr is not in the proper range,
or if the specified virfaddr segment register is already in use.

BUGS
This system call is very machine dependent,

PIPE(2) PIPE (2)

NAME

pipe — create an interprocess channel

SYNOPSIS

int pipe (fildes)
int fildes|2];

DESCRIPTION

Pipe creates an I/ mechanism called a pipe and returns two file descrip-
tors, fildes[0] and fildes[1]). Fildes[0] is opened for reading and fildes(1] is
opened for writing.

Up to 5120 bytes of data are buffered by the pipe before the writing process
is blocked. A read only file descriptor fildes[0] accesses the data written 1o
fildes[1] on a first-in-first-out (FIFO) basis.

[EMFILE] Pipe will fail if 19 or more file descriptors are currently

open.
{ENFILE] The system file table is full.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO

Page |

sh(l), read(2), write(3).

July 29, 1985

PLOCK(2) PLOCK(2)

NAME o

plock — lock process, text, or data in memory

SYNOPSIS
finclude <sysflock.h>
int plock (op)
int op;

DESCRIPTION
Pilock allows the calling process to lock its text segment (text lock), its data seg-
ment {data lock}, or both its text and data segments (process lock) into memory.
Locked segments are immune to all routine swapping. Plock also allows these

segments to be unlocked. The effective user ID of the calling process must be
super-user to use this call. Op specifics the following:

PROCLOCK — lock text and data segments into memory (process
lock)

TXTLOCK — lock text segment into memory {text lock)
DATLOCK — lock data segment into memory (data lock}
UNLOCK — remove locks

Plock will fail and not perform the requested operation if one or more of the
following are true:

[EPERM] The effective user ID of the calling process is not super-user.

[EAGAIN] The system has temporarily exhausted its available memory
Or swap space.

[EINVAL)] Op is equal to PROCLOCK and a process lock, a text lock, or
a data lock already exists on the calling process.

[EINVAL]) Op is equal to TXTLOCK and a text lock, or a process lock
already exists on the calling process.

[BINVAL) Op is equal to DATLOCK and a data lock, or 2 process lock
already exists on the calling process.

{EINYAL} Op is equal to UNLOCK and no type of lock exists on the
calling process.

RETURN VALUE
Upon successful completion, a value of 0 is remrned to the calling process.
Otherwise, a value of —1 is returned and errng is set to indicate the error,

Pape 1 September 24, 1987

PLOCK(2) PLOCK(2)

SEE ALSO
exec(2), exit(2), fork(2).

September 24, 1987 Page 2

PROFIL (2) PROFIL(2)

NAME
profil — execution time profile

./—\ SYNOPSIS

' profil (buff, bufsiz, offset, scale)
char +buff;

int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz.
After this call, the user’s program counter (pc} is examined each clock tick;
offset is subtracted from it, and the result multiplied by scale. If the result-
ing number corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned (16 bit), fixed-point fraction with
binary point at the left: FFFF (hex) gives a 1-1 mapping of pc’s to words in
buff, FFFF (hex) maps each pair of instruction words together. 2{hex)
maps all instructions onto the beginning of suf (producing a non-
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective
by giving a buyfsiz of 0. Profiling is turned off when an exec is executed, but
remains on in child and parent both after a fork. Profiling will be turned
off i an update in buff would cause a memory fault.

RETURN VALILIE
Not defined.

f SEE ALSO

.. prof(1}, monitor{3C).

PTRACE(2) PTRACE(2)

NAME
ptrace — process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, dsta;

DESCRIPTION

Prrace provides a means by which a parent process may control the execu-
tion of a child process. lts primary use is for the implementation of break-
point debugging. The child process behaves normally until it encounters a
signal (see signa/(2) for the list}, at which time it enters a stopped state
and its parent is notified via wgir{2). When the child is in the stopped
state, its parent can examine and modify its ‘‘core image'' using ptrace.
Aiso, the parent can cause the child either to terminate or continue, with
the possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by prrace
and is one of the following:

0 This request must be issued by the child process if it is 1o be
traced by its parent. It turns on the child’s trace flag that stipu-
lates that the child should be left in a stopped state upon receipt
of a signal rather than the siaie specified by fimc, see signal(2).
The pid, addr, and data arguments are ignored, and a return
value is not defined for this request. Peculiar results will ensue
if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For
each, pid is the process ID of the child. The child must be in a stopped
state before these requests are made.

1, 2 With these requests, the word at location addr in the address
space of the child is returned to the parent process. Either
request 1 or request 2 may be used with equal results. The data
argument is ignored. These two requests will fail if oddr is not
the start address of a word, in which case a value of —1 is
returned to the parent process and the parent’s errmo is set to -
EIO.

3 With this reguest, the word at location addr in the child's USER
area in the system's address space (see <sys/user.h>) is
returned to the parent process. Addresses are system dependent.
The data argument is ignored. This request will fail if addr is
not the start address of a word or is outside the USER area, in
which case a value of —1 is returned to the parent process and
the parent’s errno is set to E10.

4,5 With these requests, the value given by the dare argument is
written into the address space of the .child at location addr. -
Either request 4 or request ¥ may be used with equal results.
Upon successful completion, the value written into the address
space of the child is retarned to the parent. These two requests
will fail if addr is a location in a pure procedure space and
another process is executing in that space, or addr is not the start
address of a word. Upon failure a value of ~1 is returned to the
parent process and the parent’s errne is set to EIO,

PTRACE{(2) PTRACE(2)

6 With this request, a few entries in the child’s USER area can be

written. Data gives the value that is to be written and addr is

ol the location of the eniry. The few entries that can be written
| are:

the general registers
the cendition codes
certain bits of the Processor Status Word

7 This request causes the child to resume execution. 1f the data
argument is 0, ail pending signals including the one that caused
the child to stop are canceled before it resumes execution. If the
data argument is a valid signal number, the child resumes execu-
tion as il it had incurred that signal, and any other pending sig-
nals are canceled. The addr argument must be equal to 1 for
this request. Upon successful completion, the value of daota is
returned to the parent. This request will fail if dote isnot 0 or a
valid signal number, in which case a value of —1 is returned to
the parent process and the parent’s errno is set to EIO.

8 This request causes the child to terminate with the same conse-
quences as exif(2).

9 This request sets the trace bit in the Processor Status Word of
the child and then executes the same steps as listed above for
request 7. The trace bit causes an interrupt upon completion of

—— one machine instruction. This effectively allows single stepping
(of the child.
“_ Note: the irace bit remains set after an interrupt.

10 Read user register; pid = child process id, addr = register
number; data is ignored; returns value of child’s register.

11 Write user register, pid = child process id, addr = register
number; date = integer value to be written into named register.
NOTE: For both requests 10 and 11, the register numbers are as
shown below for the 68000 family (these numbers are system

dependent).

Register Register # Register Regisier #

do 0 al 9

dl I a2 10

d2 2 a3 11

d3 3 ad 12

d4 4 as 13

ds 5 ab 14

dé 6 SP 15

d7 7 PC 16

al 8 PS 17

To forestall possible fraud, ptrace inhibits the set-user-id facility on subse-

/'_ quent exec(2) calls. If a traced process calls exec, it will stop before execut-

i ing the first instruction of the new image showing signal SIGTRAP.

L
GENERAL ERRORS
Pirace will in general fail if one or more of the following are true:

Reguest is an illegal number. [EIOI

PTRACE(2) PTRACE(2)

Pid identifies a child that does not exist or has not executed a prrace
with request 0. [ESRCH]
NOTE
Request 11 completely supercedes request 6, and request 10 iargely super-
cedes request 3 (request 3 can read any part of the child's user area while
request 10 can only read register values of the child).
SEE ALSO
exec(2), signal(?), wait{2).

READ(2) READ(2)

NAME
read — read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *~buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fonil, pipe, or
socket system call.
Read attempts to read nbyte bytes from the file associated with fildes into the
buffer pointed to by buf.
On devices capable of seeking, the read siarts at a position in the file given by
the file pointer associated with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actally read.
Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.
Upon successful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyre if the file is associated
with a communication line (see foctl(2), socket(2N), and termio(7)), or if the
number of bytes left in the file is less than nbyte bytes. A value of 0 is retarned
when an end-of-file has been reached.,

When attempting 1o read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is written to the file or
the file is no longer open for writing,

When attempting ¢o read a file associated with a tty that has no data currently
available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block nntil data becomes available,
Read will fail if one or more of the following are tue:
[EIO] A physical [fO ermor has occurred.

Page 1 September 24, 1987

READ(2) READ(2)

[ENXI0] The device associated with the file descriptor is a block-
special or character-special file and the value of the file
pointer is out of range,

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT] Buf points outside the allocated address space.

[EINTR] A signal was caught during the read system call,

RETURN YALUE

Upon suceessful completion a non-negative integer is retumed indicating the
nmnberufbyﬁesacumﬂyread. Otherwise, a —1 is returned and errno is set to
indicate the error.

SEE ALSO

creat(2), fentl(2), ioctl(2), open(2), pipe(2), socket(2N).
termio(7) in the Administrator Reference Manual.

September 24, 1987 Page 2

READV(2) {UniSoft) READV(2)

NAME

readv — read from file

SYNOPSIS

#inclunde <sys/types.h>
#inclnde <sys/uio.h>

cc¢ = readv(d,iov,iovent)
int cc, d;

siruct iovec *iov;

int iovcnt;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fcnil, pipe, or
socket system call,

Readv attempts to read nbyte bytes from the file associated with fildes and
scatters the input data into the iovent buffers specified by the members of the
iovec array: iov[0], iov[1], ..., iov[iovent —11.

The iover structure is defined as:

struct iovec {
caddr_t jov_basc;
int iov_len;
}
Each iovec entry specifies the base address and length of an area in memory
where data should be placed. Readv will always fill an arca completely before

proceeding to the next,

On devices capable of sceking, the readv starts at a position in the file given by
the file pointer associated with fildes. Upon return from readv, the file pointer
is incremented by the number of bytes actually read,

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, ready returns the number of bytes actually read
and placed in the buffer; this number may be less than abyte if the file is associ-
ated with a communication line (see iocti(2), socket(2N), and termio (7)), or if
the pumber of bytes left in the file is less than nbyte bytes. A value of 0 is
returned when an end-of-file has been reached.

Page 1 September 28, 1987

READV(2) {UniSoft) READV(2)

When attempting to read from an empty pipe {or FIFO):
If O_NDELAY is set, the read will return 3 0.

H O_NDELAY is clear, the read will block until data is written to the file or

the file is no longer open for writing.
When attempting to read a file associated with a tty that has no data currently
available:

If O_NDELAY is set, the read will retarn a 0.

If O_NDELAY is clear, the read will block until data becomes available.
Ready will fail if one or more of the following are truc:

[EBADF] Fildes is not a valid file descriptor open for reading.
[EFAULT] Buf points owside the allocated address space.
[EINTR] A signal was caught during the reqd system call.
In addition, readv may retum one of the following emors:
[EINVAL] Fovent was less than or equal to 0, or greater tham 16,
[EINVAL] One of the iov_len values in the jov arvay was negative,
{EINVAL) The sum of the iov_len values in the iov array overflowed a
32-bit integer.
RETURN VALUE

Upon successful compleion a non-negative integer is rehwrned indicating the
number of bytes actually read. Otherwise, a —1 is retwrned and errmo is set to
SEE ALSO

creat(2), fentl(2), ioctl(2), open(2), pipe(Z), socket(ZN).
termio(7) in the Administrator Reference Manual.

September 28, 1987 Page 2

REBOOT(2) ((UniSoft)) REBOOT (2)

NAME
reboot — reboot the system

SYNOPSIS
reboot ()

DESCRIPTION
Reboot causes the kemel to execute the initial bootstrap code that was used to
boot the operating system.
The reboot (2) command takes the place of 2 manual restart. Reboot does not
work on all systems.

SEE ALSO
reboot{1m).

Page 1 September 24, 1987

RECV (2N} : UniSoft RECV {2N)

NAME

recy, recvirom, recvmsg — receive a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <<sys/socket.h>

ec = recv(s, buf, len, flags)
int cc, s;

char *buf;

int len, fiags;

cc = recyfrom(s, buf, len, flags, from, fromlen}
int cc, 5

char *buf;

int len, flags;

struet sockaddr *from;

int *fromlen;

¢c = recvinsg{s, msg, flags)

Int ¢e, §;

struct msghdr msell;

int flags;

e ... —Inet

DESCRIPTION

Page 1

Recv, recyfrom, and recvmsg are used to receive messages from a socket.

The recv call may be used only on a connecied socket (see connect(2N)),
while recvfrom and recvmsg may be used to receive data on a socket whether
it is in 2 connected state or not.

If from is non-zero, the source address of the message is filled in. Fromien
is a value-resuit parameter, initialized to the size of the buffer associated
with from, and modified on return te indicate the actual size of the address
stored there. The length of the message is returned in ¢c. If a message is
too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from; see
socker(2N).

If no messages are available at the socket, the receive call waits for a mes-
sage to arrive, unless the socket is nonblocking (see jocti(2)) in which case
a ¢c of —1 is returned with the external variable errno set to EWOULD-
BLOCK.

The select(2N} call may be used to determine when more data arrives.

The Aags argument to a send call is formed by or’ing one or more of the
values,

#defineMSG_PEEK 0x1 /* peek at incoming message */
#defineMSG_OOB Ox2 /* process out-of-band data */

The recvmsg call uses a msghdr structure to minimize the number of direcily
supplied parameters. This structure has the following form, as defined in
< sysfockel. W2 ;

Juely 22, 1985

RECV{2N) UniSoft

struct msghdr {
caddr_t msg_name;

int msg_namelen;
struct iov *msg_iov;
int msg_iovlen;

caddr_t msg_accrights;
int msg_accrightsten;

kL

,‘
It
f*
I*
f‘

RECV {2N)

optional address */

size of address */
scatier/gather array */

elements in msg_iov */
access rights sent/received */

Here msy_name and msg_namelen specify the destination address if the
socket is unconnected; msg name may be given as a null pointer if no
names are desired or required. The msg iov and msg_iovien describe the
scatter gather locations. Access rights to be seat along with the message
are specified in msg_accrights, which has length msg_accrightsien.

RETURN VALUE

These calls return the number of bytes received, or —1 if an error

occurred.
ERRORS
The calls fail if:
[EBADF] The argument s is an invalid descriptor.
[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive

operation would block.

[EINTRI The receive was interrupted by delivery of a signal
before any data was available for the receive.
[EFAULT] The data was specified to be received into a non-

existent or protected part of the process address

space.
LINKING

This library is accessed by specifying —Inet as the last argument to the

compile line, e.g..

©¢ — o prog prog.c —Inet

SEE ALSO
read(2), send(2N), socket(2N}

Tuly 22, 1935

Page 2

RECVFROM (2N)

RECYMSG (2N)

SBRK (2)

SEE RECY

SEE RECV

SEE 8RK

RECVFROM (2N)

RECYMSG (2N)

SBRK (1)

—

(

SELECT (2N) UniSoft SELECT (2N)

NAME
select — synchronous i/o multiplexing

SYNOPSIS
#include <sys/time.h>

nfound = select{nfds, readfds, writefds, execptids, timeout)
int nfound, nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout;

ce ... —Inet

DESCRIPTION

Select examines the i/o descriptors specified by the bit masks readfds, wri-
tefifs, and execptfds to see if they are ready for reading, writing, or have an
exceptional condition pending, respectively. File descriptor fis represented
by the bit 1< «<f in the mask. Afds descriptors are checked, i.e. the bits
from 0 through n/is-1 in the masks are examined. Select returns, in place,
2 mask of those descriptors which are ready. The total number of ready
descriptors is returned in afound.

If timeout is a non-gero pointer, it specifies a maximum interval to wait for
the selection to complete. If fimeout is a zero pointer, the select blocks
indefinitely. To affect a poll, the fimeout argument should be non-zero,
pointing to a zero valued timeval structure,

Any of readids, writefds, and execpifds may be given as 0 if no descriptors
are of interest.
RETURN VALUE

Select returns the number of descriptors which are contained in the bit
masks, or =1 if an error occurred. If the time limit expires then select

returns 0.
ERRORS
An error return from select indicates:
[EBADF] One of the bit masks specified an invalid descriptor.
[EINTR] A signal was delivered before any of the selected for
events occurred or the time limit expired.
LINKING

This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

¢C — o Prog prog.¢ —Inet

SEE ALSO
aceept{2N), connect(2N), readv(3N), writev(3N}, recv(2N), send{2N)

BUGS
The descriptor masks are always modified on return, even if the call returns
as the result of the timeout.

Page 1 July 22, 1985

SEMCTL(2) SEMCTL(2)

NAME
semct]l — semaphore control operations

SYNOPSIS
finclude <sys/types.h>
#include <sys/ipe.h>
#include <gys/sem.h>

int semetl (semid, semnum, cmd, arg)
int semid, emd;
int semnum;
union semun {
int val;
struct semid_ds +buf;
ushort *array;
) arg;
DESCRIPTION
Semct provides a8 varicty of semaphore control operations as specified by
cmd.

The following cmds are executed with respect to the semaphore specified by
semid and semnum:

GETVAL Return the value of semval {see intro(2)). [READ}

SETVAL Sei the value of semval to arg.val. |ALTER) When
this cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all
processes is cleared.

GETPID Return the value of sempid. [READ)
GETNCNT Return the value of semnent. (READ)
GETZCNT Return the value of semzent. [READ)

The following cmds return and set, respectively, every semval in the set of
semaphores.

GETALL Place semvals into array pointed to by argarrgy.
[READ]

SETALL Set semvals according to the array pointed to by
arg.array. {ALTER} When this cmd is successfully
execttted the semadj values corresponding to each
specified semaphore in all processes are cleared.

The following cmds are also available:

IPC_STAT Place ihe current value of each member of the data
structure associated with semid into the structure
pointed to by arg.buf. The contents of this structure
are defined in lnrro(2). [READ)

IPC_SET Set the value of the following members of the data
structure associated with semid to the corresponding
value found in the structure pointed to by arg.buf:
sem_perm.uid
sem_perm.gid
sem_perm.mode /+ only low 9 bits +/

SEMCTL{2)

IPC_RMID

SEMCTL (2)

This ¢md can only be executed by a process that has
an effective user ID equal to either that of super-user
or to the value of sem_perm.uid in the data structure
agsociated with semid.

Remove the semaphore identifier specified by semid
from the system and destroy the set of semaphores
and data structure associated with it. This cmd can
only be executed by & process that has an effective
user ID equal to either that of super-user or to the
value of sem_perm.uid in the data structure associ-
ated with semid.

Semcif will fail if one or more of the following are true:

[EINVAL]
[EINVALI

[EINVAL]
[EACCES]

[ERANGE]

[EPERMI

[EFAULTI
RETURN VALUE

Semid is not a valid semaphore identifier.

Semnum is less than zero or greater than
sem_nsems.

Cmd is not a valid command.

Operation permission is denied to the calling pro-
cess (see intro(2)).

Cmd is SETVAL or SETALL and the value to which
semval is to be set is greater than the system
imposed maximum.

Cmd is equal to IPC_RMID or IPC_SET and the
effective user 1D of the calling process is not equal
to that of super-user and it is not equal io the
value of sem_perm.uid in the data structure asso-
ciated with semid,

Arg.buf points to an illegal address.

Upon successful completion, the value returned depends on cmid as follows:

GETYAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
A value of 0.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO

intro(2), semget(2), semop(2).

SEMGET (2) SEMGET (2}

NAME
semgel — get set of semaphores

SYNOPSIS
#include <sys/types.h>
#inclade <sys/ipe.h>
#include <sys/sem.h>

" int semget (key, nsems, semflg)
key t key;
int nsems, semfig;
DESCRIPTION
Semget returns the semaphore identifier associated with key,

A semaphore identifier and associated data structure and set containing
nsems semaphores (see intro(2)) are created for key if one of the following
arg true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associated with it,
and (semfig & IPC_CREAT) is ““true”.

Upon creation, the data structure associated with the new semaphore
identifier is initialized as follows:

Sem_perm.cuid, sem_perm.aid, sem_perm.cgid, and
sem_perm.gid are set equal to the effective user ID and effective
group 1D, respectively, of the calling process.

The low-order 9 bits of semn_perm.mode are set equal to the Jow-
order 9 bits of semfig.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal to the
current time.

Semget will fail if one or more of the following are true:

[EINVALL Nsems is either less than or equal to zero or greater than
the system-imposed limit.

{EACCES] A semaphore identifier exists for kep, but operation per-
mission (see intro(2)} as specified by the low-order 9 bits
of semjlg would not be granted.

[EINVAL] A semaphore identifier exists for key, but the number of

semaphores in the set associated with it is less than nsems
and nsems is not equal to zero.

[ENOENT] A semaphore identifier does not exist for key and (semflg
& IPC_CREAT) is ““false’’.
[ENOSPC] A semaphore identifier is to be created but the system-

imposed limit on the maximum number of allowed sema-
phore identifiers system wide would be exceeded.

[ENOSPC] A semaphore identifier is to0 be created but the system-
imposed limit on the maximum number of allowed sema-
phores systemn wide would be exceeded.

SEMGET (2) SEMGET (2}

[EEXIST] A semaphore identifier exists for key but ((semfle &
IPC_CREAT) and (semfig & IPC_EXCL) } is “‘true’’.
RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of —1 is returned and errmo is
set to indicate the error.

SEE ALSO
intro(2), semetl(2), semop(2).

SEMOP(2) SEMOP{2)

NAME

semop — semaphore operations

SYNOPSIS

fHnclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;

int nsops;

DESCRIPTION

Semop is used to automatically perform an arrey of semaphore operations
on the set of semaphores associated with the semaphore identifier specified
by semid. Sops is a pointer to the array of semaphore-operation structures.
Nsops is the number of such structures in the array. The contents of cach
structure incledes the following members:

short sem_pum;, /+ semaphore number +/
short sem_op; /= semaphore operation +/
short sem_fig; /* operation flags +/

Each semaphore operation specified by sem_op is performed on the
corresponding semnaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following wilt occur:
[ALTER}

If semval (see intro(2)) is greater than or equal to the
absolute value of sem_op, the absolute value of sem op is
subtracted from semval. Also, if (sem_fig & SEM_UNDOQ)
is ““true™, the absolute velue of sem_op is added to the cal-
ling process's semadj value (see exir(2)) for the specified
semaphore.

If semval is less than the absolute valus of sem _op and
(sem_fig & TPC_NOWAIT) is ‘“‘true™, semop will return
immediately.

If semval is less than the absolute value of sem_op and
(sem_flg & IPC_NOWAIT) is ‘“‘false’’, semop will increment
the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the
following conditions occur.

Semval becomes greater than or egual io the absolute
value of sem _op. When this occurs, the value of semnent
associated with the specified semaphore is decremented,
the absolute value of sem_op is subtracted from semval
and, if (sem_flg & SEM_UNDO) is “true*’, the absolute
vatue of sem op is added to the calling process’s semadj
value for the specified semaphore.

The semid for which the calling process is awaiting action
is removed from the system (sec semct/{2)). When this
occurs, errno is set equal to EIDRM, and a value of —1 is

-1-

SEMOP(2)

SEMOP(2)

returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in
signal(2).

If sem_op i3 a positive integer, the value of sem_op is added to
semval and, if (sem_flg & SEM_UNDQ) is “true™, the value of
sem_op is subtracted from the calling process’s semadj value for
the specified semaphore, [ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem flz &
IPC_NOWAIT) is ““true’’, semop will return immediately.

If semval is not egual 0 zero and (sem flz &
IPC_NOWAIT) is “false’, semop will increment the
semzent associated with the specified semaphore and
suspend execution of the calling process until one of the
following occurs:

Semval becomes zerc, at which time the value of semzcnt
associated with the specified semaphore is decremented.

The semid for which the calling process is awaiting action
is removed from the system. When this occurs, errne is
set equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semzent associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in
signai(2).

Semop wilk fail if one or more of the following are true for any of the sema-
phore operations specified by sops:

[EINVAL]
[EFBIG]

[E2BIG]
[EACCESI]

[EAGAINI]
[ENOSPC]
[EINVAL]

[ERANGE]

Semid is not a valid semaphore identifier.

Sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.

Nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (see
intro(2)).

The operation would result in suspension of the calling
process but (sem fig & IPC_NOWAIT) is ““true”.

The limit on the number of individual processes request-
ing an SEM_UNDO would be exceeded.

The number of individual semaphores for which the calling
process requests 8 SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the
system-imposed limit.

SEMOP(2) SEMOP(2)

[ERANGE] An operation would cause a semadj value to overflow the
system-imposed limit.
[EFAULT] Sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore
specified in the array pointed to by sops is set equal to the process ID of the
calling process.

RETURN VALUE
If semap returns due to the receipt of a signal, a value of —1 is returned to
the calling process and errno is set to EINTR. If it returns due to the remo-
val of & semid from the system, a value of —1 is returned and errmo is set to
EIDRM.

Upon successful completion, the value of semval at the time of the call for
the last operation in the array pointed to by sops is returned. Otherwise, a
value of —1 i5 returned ang errno is set to indicate the emmor.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semetl(2), semget(2).

i/-‘\

SEND (2N) UniSoft SEND {2N)

NAME

send, sendto, sendmsg — send a message from a socket

SYNOPSIS

##include <sys/types.h>
#include <sys/socket.h>

¢ = send(s, msg, len, flags)
int ¢, §;

char *msg;

int len, fiags;

cc =~ sendto(s, msg, len, flags, to, tolen)
int cc, s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

¢ = sendmsg(s, msg, flags}

int cc, s;

struct msghdr msgll;

int flags;

e ... —Inet

DESCRIPTION

Send, sendio, and sendmsg are used to transmit a message 1o another socket.
Send may be used only when the socket is in a connected state, while sendio
and sendmsg may be used at any time.

The address of the target is given by te with felen specifying its size. The
length of the message is given by len. If the message is too long to pass
atomically through the underlying protocol, then the error EMSGSIZE is
returned, and the message is not transmitied.

No indication of failure to deliver is implicit in a send. Return values of
—1 indicate some locaily detected errors.

If no messages space is available at the socket to hold the message to be
fransmitted, then sexd normally blocks, unless the socket has been placed
in non-blocking i/o mode. The selecr(2N) call may be used to determine
when it is possibte to send more data.

The /lags parameter may be set to MSG_QOB to send out-of-band data on
sockets which support this notion (e.g. SOCK_STREAM).

See recv(2N) for a description of the msghdr structure.

RETURN VALUE

The call returns the number of characters sent, or —1 if an error eccurred.

ERRORS
[EBADF] An invalid descriptor was specified.
[ENOTSQCK] The argument s is not a socket.
[EFAULT] An invalid user space address was specified for a

Page 1

parameter.

July 16, 1985

SEND (2N) UniSoft SEND (2N)

[EMSGSIZE] The socket requires that message be sent atomically,
and the size of the message (0 be sent made this
impossible.

[EWOQULDBLOCK] The socket is marked non-blocking and the requested
operation would block,

LINKING
This library is accessed by specifying —Imet as the last argiment to the
compile line, e.g.:

¢ ~ 0 prog prog.c —Inet

SEE ALSOQ
recv(2N), socket(ZN)

July 16, 1985 Page 2

SENDMSG (2N)

SENDTO (2N)

SETGID (2)

SETHOSTID (2N)

SETHOSTNAME (IN)

SEE SEND

SEE SEND

SEE SETUID

SEE GETHOSTID

SEE GETHOSTNAME

SENDMSG {2N)

SENDTO {2N)

SETGID(2)

SETHOSTID (2N}

SETHOSTNAME {2N)

SETPGRP(2) SETPGRP(2)

NAME

setpgep — set process group ID
SYNOPSIS

int setpgrp {) _—
DESCRIPTION

Setpgrp sets the process group 1D of the calling process to the process ID of
the calling process and returns the new process group ID.

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSOD
exec(2), fork(2), getpid(2), intro(2), kill(2}, signal(2).

SETREGID (2) UniSoft SETREGID (2)

NAME
setregid — set real and effective group ID

SYNOPSIS
setregid (rgid, egid)
int rgid, egid;
¢ ... —Llnet

DESCRIPTION
The real and effective group ID"s of the current process are set to the argu-
ments. Only the super-user may change the real group ID of a process.
Unpriviledged users may change the effective group 1D to the real group
ID, but to no other.

Supplying a value of —1 for either the real or effective group ID forces the
system to substitute the current [D in place of the —1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

ERRORS
{EPERMI] The current process is not the super-user and a change
other than changing the effective group-id to the real
group-id was specified.
LINKING

This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

o —o prog prog.c —lInet

SEE ALSO
getgid(2), setreuid(2), setuid(2)

Page 1 July 16, 1985

SETREUID (1) UniSoft SETREUID (2)

NAME
setreuid — set real and effective user 1D's

SYNOPSIS
setrenid (ruid, euid)
int ruid, ewid;

¢ ... —Inet

DESCRIPTION
The real and effective user 1D’s of the current process are set according to
the arguments. If rwid or enid is —1, the current wid is filled in by the sys-
tem. Only the super-user may modify the real uid of a process. Users
other than the super-user may change the effective vid of a process only to
the real uid.

RETURN VALUE
Upon successful completion, a value of ¢ is returned. Otherwise, a value
of —1 is returned and errno is set to mdicte the error.

ERRORS
[EPERM] The current process is not the super-user and a change
other than changing the effective user-id to the real user-id
was specified.
LINKING

This library is accessed by specifying —Inet as the last argument to the
compile line, e.p.

¢ —o prog prog.c —Inet

SEE ALSO
getuid(2), setregid(2), setuid(2)

Page 1 July 16, 1985

I

SETUID (2} SETUID (2)

NAME

setuid, setgid — set user and group IDs

SYNOPSIS

int setuid (uid)
int uid;

int setgid (gid)
int gld;

DESCRIFTION

Setuid (setgid) is used to set the real user (group) 1D and effective user
(group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real vser
{group) ID and effective vser (group) 1D are set to wid (gid).

If the effective user ID of the calling process is not super-user, but iis real
user {group) ID is equal to uid (gid), the effective user {(group) ID is set to
wid (gid).

If the effective user ID of the calling process is not super-uvser, but the
saved set-user (group) ID from exec(2) is equal to wid {gid), the effective
user (group) ID is set to wid (gid).

Setuid (sergid) will fail if the real user (group) ID of the calling process is
not equal to wid (gid) and its effective user 1D is not super-user, [EPERM]

The widis out of range. [EINVALI]

RETURN VALUE

Upon suctcessful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO

getuid(2), intro(2).

SHMCTL(2) SHMCTL(2)

NAME

shmetl — shared memory control operations
SYNOPSIS

#include <sys/types.h>

#include <sys/Ipc.h>

#include <sys/shm. h-

int shmetl (shmid, cmd, buf)

int shmid, cmd;

struct shmid ds *buf;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as specified by
emd. The following cmds are available:
IPC_STAT Place the current value of each member of the data structire

associated with shmid into the structure pointed to by buf.
The contents of this stucture are defined in intro(2).
{READ}

IPC SET Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by buf:
shm_perm.uid
shm_perm.gid
shm_perm.mode /» only low 9 bits s/

This ¢md can only be executed by a process that has an effective user ID equal
to either that of super-user or to the value of shm perm.uid in the data struc-
tare associated with shmid.

IPC_RMID _

Remove the shared memory identifier specified by shmid from the system and
destroy the shared memory segment and data structure associated with it. This
cmd can only be executed by a process that has an effective user ID equal to
either that of super-user or to the value of shm_perm.uid in the data stracture
associated with shmid.

Shmetl will fail if one or more of the following are true:

[EINVAL] Shmid is not a valid shared memory identifier.

Page 1 September 24, 1987

SHMCTL(2)

[EINVAL)
[EACCES]

[EAGAIN]

[EPERM]

[EFAULT]
RETURN VALUE

SHMCTL{2)

Cmd is not a valid command,

Cmd is equal to IPC_STAT and {READ} operation permis-
sion is denied to the calling process (see intro(2)),

The system has temporarily exhausted its available memory
Or Swap space.

Cmd is equal to IPC_RMID or IPC_SET and the effective
user ID of the calling process is not equal to that of super-
user and it is not equal to the value of shm_perm.nid in the
data structure associated with shmid.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1
is returned and errne is set to indicate the error.

SEE ALSO

intro(2), shmget(2), shmop(2)},

September 24, 1987

Page2

SHMGET(2) SHMGET(2)

NAME
shmget — get shared memory segment
SYNOPSIS
#inclode <sys/types.h>
#include <sysfipc.h>
#include <sys/shmh»
int shmget (key, size, shmflg)
key_t key;
int size, shenfig;
DESCRIPTION)
Shmget returns the shared memaory identifier associated with key.
A shared memory identifier and associated data structure and shared memory
segment of size size hytes (see infro(2)) are created for key if one of the follow-
ing are true: _
Key is equal to IPC_PRIVATE.
Key does not atready have a shared memory identifier associated with it,
and (shmflg & IPC_CREAT) is “‘true’.
Upon creation, the data structure associated with the new shared memory
identifier is initalized as follows:
are set equal io the effective nser ID and effective group ID, respectively,
of the calling process.
The low-onder 9 bits of shm perm.mode are set equal to the low-order 9
bits of shmflg. Shm_segsz is set equal to the value of size.
Shm_lpid, shm_natich, shm_atime, and shm_dtime are set equal to 0.
Shm_ctime is set equal to the current time.
Shmget will fail if one or more of the following are true:

[EINVAL] Size is less than the system-imposed minimum or greater
than the system-imposed maximum.

[EACCES] A shared memory identifier exists for key but operation per-
mission (see intro(2)) as specified by the low-order 9 bits of
shmflg would not be granted.

Page 1 September 24, 1987

SHMGET(2)

September 24, 1987

SHMGET(2)

[BAGAIN] The system has temporarily exhausted its available memory

!/H Or swap space.

. [EINVAL] A shared memory identifier exists for key but the size of the
segment associated with it is less than size and size is not
equal to zero.

[ENOENT) A shared memory identifier does not exist for key and
(shmflg & IPC_CREAT) is ““false”’,

[ENOSPC] A shared memory identifier is 10 be created but the system-
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

[ENOMEM] A shared memory identifier and associated shared memory
segment are to be created but the amount of available physi-
cal memory is not sufficient to fill the request.

[BEXIST] A shared memory identifier exists for key but { {(shmflg &
IPC_CREAT) and (shimflg & IPC_EXCL)) is *‘true”.

RETURN VALUE
— Upon successful completion, a non-negative integer, namely a shared memory
{ identifier is returned. Otherwise, a value of -1 is returned and errno is set o
- indicate the error.
SEE ALSO
intro(2), shmeil(2), shmop(2).

Page 2

SHMOP(2) SHMOP(2)

NAME

shmop - shared memory operations
SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h=

#include <sys/shm h>

char +shmat (shmid, shmaddr, shmilg)

int shmid;

char +shmaddr

int shmflg;

int shmdt (shmaddr)
char *shmaddr
DESCRIPTION
Shmat attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process. The
segment is attached at the address specified by one of the following criteria:
¥ skmaddr is equal to zero, the segment is attached at the first available
address as selected by the system.

If shmaddr is not equal t0 zero and (shmflg & SHM_RND) is “‘true™, the
segment is attached at the address given by (shmaddr - (shmaddr modulus
SHMLEBA)).
If shmaddr is not equal to zero and (shmflg & SHM_RND) is “false”’, the
segment is attached at the address given by shmaddr.
The segment is attached for reading if (shmflg & SHM_RDONLY) is “‘true”
{READY}, otherwise it is attached for reading and writing {READVWRITE}.
Shmat will fail and not attach the shared memory segment if one ar more of the
following are true:

[EINVAL] Shmid is not a valid shared memory identifier.

[EACCES] Operation permission i3 denied to the calling process (see
intro(2)).

[EAGAIN] The system has temporarily exhausted its available memory
Of swap space.

[ENOMEM)] The available data space is not large enough to accommodate
the shared memory segment.

Page 1 September 24, 1987

SHMOP(2)

[EINVAL]

[EINVAL]
[EMFILE]

[EINVAL]

{EINVAL]

RETURN VALUES

SHMOP(2)

Shmaddr is not equal to zero, and the value of (shmaddr -
(shmaddr modulus SHMLBA)) is an illegal address.

Shmaddr is not equal to zero, (shmfly & SHM_RND) is
““false’’, and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the cal-
ling process would exceed the system-imposed limit.

Shmdi detaches from the calling process's data segment the

shared memory segment located at the address specifiad by
shmaddr.

Shmdr will fail and not detach the shared memory segment if
shmaddr i3 not the data segment start address of a shared
memory segment.

Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached shared
memory segment.
Shmdt returns a value of 0,

Otherwise, a value of —1 is returned and errne is set to indicate the error,

SEE ALSO

exec(2), exit(2), fork(2), intro(2), shmetl(2), shmget(2).

September 24, 1987

Page 2

SHUTDOWN (2N) UniSoft SHUTDOWN (2N)

NAME
shutdown — shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;
cc ... —lnet
DESCRIPTION
The shurdown call causes all or part of a full-duplex connection on the
socket associated with 5 to be shut down. If how is 0, then further receives

will be disallowed. If jsow is 1, then further sends will be disallowed. IF
how is 2, then further sends and receives will be disallowed.

DIAGNOSTICS

A 0 is returned if the call succeeds, —1 if it fails,
ERRORS

The call succeeds unless:

[EBADF] Sis not a valid descriptor.

[ENOTSQCK] Sis a file, not a socket.
[ENOTCONNI] The specified socket is not connected.

LINKING :
This library is accessed by specifying - Inet as the last argument to the
compile line, e.g.:

ce —o0 prog prog.c —Inet

SEE ALSO
connect(2N), socket(2N)

Page 1 July 16, 1985

SIGNAL(2) SIGNAL (2)

NAME

signal — specify what to do upon receipt of a signal
SYNOPSIS

#include <signalh>

int (ssignal (sig, func)) ()
int sig;
void (+func)();

DESCRIPTION
Signal allows the calling process to choose one of three ways in which it is
possible to handle the receipt of a specific signal. Sig specifies the signal
and func specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP 01 hangup

SIGINT 02 interropt

SIGQUIT 03+ quit

SIGILL 04+ illegal instruction {not reset when caught)
SIGTRAP 05* trace trap {(not reset when caught)
SIGIOT 06* 10T instruction

SIGEMT 07* EMT instruction

SIGFPE 0g* floating point exception

SIGKILL 09 kill {cannot be caught or ignored)
SIGBUS 10* bus error

SIGSEGY 11+ segmentation violation

SIGSYS 12¢ bad argnment to system call

SIGPIPE 13 write on a pipe with no one io read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGUSR1 16 user defined signal 1

SIGUSR2 17 user defined signal 2

SIGCLD 18 death of a child (see WARNING below)
SIGPWR 19 power fail (see WARNING below)

See below for the significance of the asterisk { + } in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. The actions prescribed by these values are as follows:

SIG_DFL — terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be ter-
minated with the following conseguences:

All of the receiving process’s open file descriptors will be closed.

If the parent process of the receiving process is executing a wait,
it will be notified of the termination of the receiving process and
the terminating signal’s number will be made available to the
parent process; see wair(2).

If the parent process of the receiving process is not executing a
wait, the receiving process will be transformed into a zombie
process {see exit(2) for definition of zombie process).

The parent process ID of each of the receiving process’s existing
child processes and zombie processes will be set to 1. This
means the initialization process (see imfro(2)) inherits each of
these processes.,

-1-

SIGNAL (2)

SKGNAL (2)

Each attached shared memory segment is detached and the value
of shm_nattach in the data siruciure associated with its shared
memory ideniifier is decremented by 1.

For each semaphore for which the receiving process has set a
semadj value (see semop(2)), that semadj value is added to the
semval of the specified semaphore. '
If the process has a process, text, or data fock, an unfock ix per-
formed (see plock(2)).
An accounting record will be written on the accounting file if the
system's accounting routine is enabled; see acct(2).
If the receiving process’s process ID, ity group ID, and process
group ID are equal, the signal SIGHUP will be sent to all of the
processes that have a process group ID equal to the process
group ID of the recejving process.
A ‘core image’ will be made in the current working directory of
the receiving process if' sig is one for which an asterisk appears in
the zbove list ead the following conditions are met:
The effective user ID and the real user ID of the receiving
process are equal
An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the follow-
ing properties:
a mode of 0666 modified by the file creation mask
(see umask(2))
a file owner 1D that is the same as the effective user ID
of the receiving process
a file group 1D that is the same as the effective group
iD of the receiving process

SIG_IGN — ignore signal

The signal sig is to be ignored,
Note: the signal SIGKILL cannot be ignored.

Junction address — caich signal

Upon receipt of the signal sig, the receiving process is to execute the
signai-catching function pointed to by func. The signal number sig
will be passed as the only argument to the signal-caiching function.
Additional arguments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal-catching func-
tion, the value of finc for the caught signal will be set to SIG_DFL
unless the signzal is SIGILL, SIGTRAP, or SIGPFWR.

Upon return from the signal-catching function, the receiving process
will resume execution at the point it was intetrupted.

When a signal that is to be caught occurs during a read, a write, an
open, or an ioctl system call on a slow device (like a terminal; but not
a file), during a pause system call, or during a wait system call that
does not return immediately doe to the existence of a previously
stopped or zombie process, the signal-catching function will be exe-
cuted and then the interrupted system call may return a —1 to the

-2

SIGNAL(2) SIGNAL (2)

calling process with errne set to EINTR.
Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL
signal.

Signal will fail if sig is an iltegal signal number, including SIGKILL.
[EINVAL]

RETURN VALUE
Upon successful completion, sigrna! returns the previous value of junc for
the specified signal sig. Otherwise, a value of —1 is returned and errno is
set to indicate the error.

SEE ALSO
kill{1), kilt(2}, pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING
Two other signals that behave differently than the signals described above
exist in this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail {not reset when caught}

There is no guarantee that, in future releases of the UNIX system, these
signals will continue to behave as described below; they are included only
for compatibility with other versions of the UNIX system. Their use in new
programs is strongly discouraged.

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN,
or a function address, The actions prescribed by these values of are as fol-
lows:

S1G_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling
process’s child processes will not create zombie processes when they
terminate; see exit(2),

Junction address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for func equal to function address. The same is true if
the signal is SIGCLD except, that while the process is executing the
signal-catching function, any received SIGCLD signals will be queued
and the signai-catching function will be continually reentered until the
queue is empty.

The SIGCLD affects two other system calls (wait(2), and exit(2}) in the fol-

lowing ways:

waif If the func value of SIGCLD is set o SIG_IGN and a wait is exe-
cuted, the wair will block until all of the calling process's child
processes terminate; it will then return a value of — 1 with errne set
to ECHILD.

exit If in the exiting process’s parent process the fimc value of SIGCLD
is set to SIG_IGN, the exiting process will not create a zombie pro-
Cess.

When processing a pipeline, the shell makes the last process in the pipeline
the parent of the proceeding processes. A process that may be piped into in

-3-

SIGNAL(2) SIGNAL(2)

BUGS

this manner (and thus become the parent of other processes) should take
care not to set SIGCED {0 be caught.

If a repeated signal arrives before the last one can be reset, there is no
chance to catch it.

The type specification of the routine and its fimc argument are problemati-
cal.

The symbols sighnd and sigirap are globally defined symbols used by sig-
nal(2) and are reserved words.

SOCKET (2N) UniSoft SOCKET (2N)

NAME

socket — create an endpeint for communication

SYNOPSIS

flinclude < sys/types.h>
#include <sys/socket.h>

s = socket{af, type, protocol}
int s, af, type, protocol;

et ... —~net

DESCRIPTION

Page |

Socket creaies an endpoint for communication and returns a descriptor.

The qf parameter specifies an address format with which addresses specified
in later operations using the socket should be interpreted. These formats
are defined in the include file < sysfocketh> . The currently understood
formats are

AF_UNIX (UNIX path names},

AF_INET (ARPA Internet addresses),

AF_PUP (Xerox PUP-I Internet addresses), and
AF_IMPLINK (IMP host at IMP addresses}.

The socket has the indicated /ype which specifies the semantics of commun-
ication. Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection
based byte sireams with an out-of-band data transmission mechanism. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable
messages of a fixed (typically small) maximum length). SOCK_RAW sock-
ets provide access to internal network interfaces. The types SOCK_RAW,
which is available only to the super-user, and SOCK_SEQPACKET and
SOCK_RDM, which are planned, but not yet implemenied, are not
described here.

The protocof specifies a particular protocol to be used with the socket. Nor-
mally only a single protocol exists to support a particular socket type using a
given address format, However, it is possible that many protocols may
exist in which case a particular protocol must be specified in this manner.
The protocol number to use is particular to the communication domain in
which communication is to take place; see services{4N)} and protocols(4N).

Sockets of type SOCK_STREAM are full-duplex byie streams, similar to
pipes. A stream socket must be in a connected state before any data may be
sent or received on it. A connection to another socket is created with a
comnect{2N) call. Once connected, data may be transferred using read(2)
and write(3} calls or some variani of the send(2N) and recv(2ZN) calls.
When a session has been completed a close(2) may be performed. Qut-of-
band data may also be transmitted as described in sead(ZN) and received as
described in recv(2N).

July 29, 1985

SOCKET (2N} UniSoft SOCKET(2N)

The communications protocols used to implement 3 SOCK_STREAM
insure that data is not lost or duplicated. If a piece of data for which the
peer protocol has buffer space cannot be successfully transmitted within a
reasonable length of time, then the connection is considered broken and
calls will indicate an etror with — 1 returns and with ETIMEDQUT as the
specific code in the global variable errno, The protocols optionally keep
sockets warm by forcing transmissions roughly every minute in the absence
of other activity. An error is then indicated if no response can be elicited
on an otherwise idle connection for a extended period (e.g. 5 minutes). A
SIGPIPE signal is raised if a process sends on a broken siream; this causes
naive processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to
correspondents named in md(ZN) calls. It is also possible to receive
datagrams at such a socket with recr(2N),

An fenil(2) cal] can be used to specify a process group to receive a
SIGURG signal when the out-of-band data arrives.

The operation of sockets is controlled by socket level oprions. These
options are defined in the file < sysfockerh> and explained below. Ser-
sockopt and getsockopr(2N) are used to set and get options, respectively.

SO_DEBUG turn on recording of debugging information
SO_REUSEADDR allow local address reuse

SO_KEEPALIVE keep connections alive

50_DONTROUTE do no apply routing on cutgoing messages
SO LINGER linger on close if data present

SO_DONTLINGER do not linger on close

S0_DEBUG ecnables debugging in the underlying protocol modules.
SO REUSEADDR indicates the rules used in validating addresses supplied
in a bind(2N) call should allow reuse of local addresses. SO_KEEPALIVE
enables the periodic transmission of messages on a connected socket.
Should the connected party fail to respond to these messages, the connec-
tion is considered broken and processes using the socket are notified via a
SIGPIPE signal. S50 _DONTROUTE indicates that oulgoing messages
should bypass the standard routing facilities. Instead, messages are directed
to the appropriate network interface according to the network pertion of the
destination address. SO_LINGER and SO _DONTLINGER control the
actions taken when unsent messages are queued on socket and a dose(2) is
performed. 1f the socket promises reliable delivery of data and
SO_LINGER is set, the sysiem will block the process on the close attlempt
until it is able to transmit the data or until it decides it is unable to deliver
the information {a timeout period, termed the linger interval, is specified in
the setsockopt call when SO_LINGER is requested). If SO_DONTLINGER
is specified and a close is issued, the system will process the close in a
maziner which allows the process to continue as quickly as possible.

RETURN VALUE
A —1 is returned if an error occurs, otherwise the return value is a descrip-
tor referencing the socket.

ERRORS
The socket call fails if:

July 29, 1985 Page 2

SOCKET (2N) UniSoft SOCKET (2N)

[EAFNOSUPPORT! The specified address family is not supported in this
version of the system.

[ESOCKTNOSUPPORT]
The specified socket type is not supported in this
address family.

[EPROTONOSUPPORTI
The specified protocol is not supported.
[EMFILE] The per-process descriptor table is full.
[ENOBUFS] No buffer space is available. The socket cannot be
created.
LINKING

This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

¢ —o prog prog.c —lInet

SEE ALSO
accept(2N}, bind(2N}, connect{2ZN}, getsockname(2N), getsockopt(ZN),
ioctl(2), listen(2N), recv(2N), select(2N), send(2N)}, shutdown (2N}

BUGS
The use of keepalives is a questionable feature for this layer.

Page 3 July 29, 1985

STAT(2} STAT(2)

NAME
siat, fstat — get file status

SYNOPSIS
#tinclude < sys/types.h>
##include <sys/stat.h>

int stat {path, buf)
char =path;
struet stat »buf;

int fstat (fildes, buf}
int fildes;
struct stat »buf;

DESCRIPTION :
Path points to a path name naming a file. Read, write, or execute permis-
sion of the named file is not required, but all directories listed in the path
name leading to the file must be searchable. Star obtains information about
the named file.

Similarly, fstar obtains information aboul an open file known by the file
descriptor fildes, obtained from a successful open, crear, dup, fentl, or pipe

system call.
8nf is a pointer to a sras structure into which information is placed concern-
ing the file.
The contents of the structure pointed to by bu/f include the following
members:

ushort st_mode; /» File mode; see mknod(2) =/

ino_t st_ino; /+ Inode number «/

dev_t st dev; /+ 1D of device containing »/

/+ a directory entry for this file =/
dev_t st rdev, I+ 1D of device »/

/+ This entry is defined only for =/
/+ character special or block special files »/
short st_nlink; /* Number of links ¢/

ushort st_wid; /+ User 1D of the file's owner +/
ushort st_gid, /+ Group ID of the file’s group +/
off t st_size; /= File size in bytes «/

time_t st _atime; /+ Time of last access »/
time_t st mtime; /+ Time of last data modification +/
time_t st ctime; /+ Time of last file status change »/
/+ Times measured in seconds since */
/+ 00:00:00 GMT, Jan. 1, 1970 +/

st_atime Time when file data was last accessed. Changed by the following
system calls: crear(2), minod(2), pipe(2), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following
system calls: creat(2), mkmnod(2), pipe(2), utime(2), and write(3}.

st_ctime Time when file status was last changed. Changed by the follow-
ing system calls: chmod(2), chown(2), crear(2), link(2),
mknod(2), pipe(2), unlink(2), utime(2), and wrire(3).

Page 1 July 29, 1985

STAT{2) STAT{2)

Stat will fail if one or more of the following are true:
[ENOTDIR) A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

{EFAULT] - Buf or path points to an invalid address.

Fstar will fail if one or more of the following are true:

[EBADF] Fitdes is not a valid open file descriptor.

[EFAULT] Buf points to an invalid address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
—1 is returned and errrro is set to indicaie the error.

SEE ALSO
chmod(2), chown(2}, creat(2), link(2), mknod(2), pipe{2), read(?},
time(2}, unlink(2), utime(2), write{3).

July 29, 1985 Page 2

STIME(2) STIME{2)

NAME
stime — set time
SYNOPSIS
int stime (tp)
long =tp;
DESCRIPTION
Stime sets the system’s idea of the time and date. 7p points to the value of
time as measured in seconds from 00:00:00 GMT January 1, 1970,

IEPERM] Stime will fail if the effective user ID of the calling process
is not super-user.
RETURN VALUE
Upon succegsful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
time(2).

-

SYNC(2) SYNC (2}

NAME

sync — update super-block
SYNOPSIS

void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be writien
out. This includes modified super blocks, modified i-nodes, and delayed
block 1/0.

it should be used by programs which examine a file system, for example
Jick, df, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return
from sync,

TIME(2) TIME(2)

NAME

time — get time
SYNOPSIS

long time ((long *) 0)

long time (tloc)
long *tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January I, 1970.

If tloc (taken as an integer) i3 non-zero, the return value is also stored in the
location to which tloc points.

[EFAULT] Time will fail if #loc points to an iltegal address.

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a value
of —1 is returned and errno is set 1o indicate the error.

SEE ALSO
stime(2), ctime(3).

Page 1 September 24, 1987

TIMES(2) TIMES(2)

NAME
times — get process and child process times
SYNOPSIS '
#inclode <sys/types.h>
#inclnde <sys/times h»
long times (buffer)
struct tras *buffer;
DESCRIPTION
Times fills the strocture pointed to by buffer with time-accounting information.
The following are the contents of this structure:

struct tms {

time t tms_utime;

time_t tns_stime;

time_t tms_cutime;

time_t tms_cstime;
2
This information comes from the calling process and each of its terminated
child processes for which it has executed a wait. All times are in 60ths of a
second.
Tms_utime is the CPU time used while executing instructions in the user space
of the calling process.
Tms_stime is the CPU time used by the system on behalf of the calling process.
Tns_cutime is the sum of the oms wimes and ms_cutimes of the child
processes.
Tms _cstime is the sum of the ims_stimes and oms cstimes of the child
processes.
[EFAULT] Times will fail if buffer points to an illegal address.

RETURN VALUE
Upon successful completion, fimes returns the elapsed real time, in 60ths of a
second, since an arbitrary point in the past (e.g., system start-up time). This
point does not change from one invocation of times to another. If times fails, a
-1 is returned and errao is set to indicate the error.
SEE ALSO

exec(2), fork(2), time(2), wait(2).

ULIMIT(2) ULIMIT (2)

NAME
ulimit — get and set user limits

SYNOPSIS
long ullmit (cwmd, newlimit)
int cmd;
long newlimit;
DESCRIPTION
This function provides for conirol over process limits. The cmd values
available are:
1 Get the file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be
read.

2 Set the file size limit of the process to the value of mewlinmit, Any pro-
cess may decrease this limit, but only a process with an effective user
ID of super-user may increase the limit. &limir will fail and the limit
will be unchanged if a process with an effective user ID other than
super-user attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise,
a value of —1 is returned and errme is set to indicate the error.

SEE ALSO
brk(2), write(3).

Page 1 July 29, 1985

i

UMASK (2) UMASK (2}

NAME

umask — set and get file creation mask

SYNOPSIS

int umask (emask)
int cmask;

DESCRIPTION

Umask sets the process’s file mode creation mask to cmask and returns the
previous value of the mask. Only the fow-order 9 bits of cmask and the file
moede creation mask are used.

The file mode creation mask is used whenever a file is created by crear(2),
mknod(2) or open(2}. The actnal mode (see chmod(2)) of the newly-
created file is the difference between the given mode and cmask. In other
words, cmask shows the bits to be turned off when a new file is created.

The previous value of cmask is returned by the call. The valvue is initially
022, which is an octal ‘mask’ number representing the complement of the
desired mode. ‘022’ here means that no permissions are withheld from the
owner, but write permission is forbidden to group and to others. Its com-
plement, the mode of the file, would be 755. The file mods creation mask
is inherited by child processes.

RETURN VALUE

The previous value of the file mode creation mask is returned.

SEE ALSOQ

mkdir{1), sh(1), chmod(2), creat(2}, mknod(2), open(2).

UMOUNT(2) UMOUNT(2)

NAME
umount — unmount a file system

SYNOPSIS
int umount (spec)
char #spec;

DESCRIPTION
Umount requests that a previously mounted file system contained on the block
special device identified by spec be mmounted. Spec is a pointer to a path
name. After unmounting the file system, the directory upon which the file sys-
tem was mounted reverts to its ordinary interpretation.
Umount may be invoked only by the super-user,

Umount will fail if one or more of the following are true:

[EPERM] The process’s effective user ID is not super-user.
[ENXIO] Spec device does not exist.
[ENOTBLK] Spec is not a block special device,
[EINVAL] Spec is not mounted,
[EBUSY] A file on spec is busy.
[ENOENT] No such spec file or directory.
RETURN YVALURE

Upon successful completion a value of 0 is retumed. Otherwise, a value of -1
is retrned and errno is set to indicate the error,

SEE ALSO
mount(2).

Page 1 September 24, 1987

UNAME(2) UNAME(2)

NAME
uname — get name of current UNIX system

SYNOPSIS
#include «< sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIFTION
Uname stores information identifying the current UNIX system in the struc-
ture pointed to by name.

Uname uses the structure defined in <sys/utsname.h>:
struct utsname {

char sysname{9];
char nodename[9];
char release[9];
char version [9];
char machine[9];

kL

eXtern struct uisname utsmame;
Uname returns a nuli-terminated character string naming the current UNIX
system in the character array spsmame. Similarly, nodename contains the
name that the system is known by on a communications network. Release
and version further identify the operating system. Machine contains a stan-
dard name that identifies the hardware that the UNIX system is running on.

[EFAULT] Uname will fail if same points to an invalid address.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise,
—1 is returned and errno is set to indicate the error.

SEE ALSO
uname(1).

UNLINK (2)

NAME

UNLINK (2)

unlink — remove directory entry

SYNOPSIS

int unlink (path)

char +path;

DESCRIPTION

Unilnk removes the directory entry named by the path name pointed to be

path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROF3]

[EFAULTI}

A component of the path prefix is not a directory.
The named file does not exist.

Search permission is denied for a component of the path
prefix.

Write permission is denied on the directory containing the
link to be removed.

The named file is a directory and the effective user ID of
the process is not super-user.

The eniry to be unlinked is the mount point for a mounted
file system.

The entry to be unlinked is the last link to a pure pro-
cedure (shared text) file that is being executed.

The directory entry to be unlinked is part of a read-only
file system.

Parh points outside the process’s allocated address space.

When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to exist. If
one or more processes have the file open when the last link is removed, the
removal is postponed until all references to the file have been closed.

RETURN YALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errne is set to indicate the error.

SEE ALSO

(1), close(2), link(2}, open{(2).

Fame

USTAT(2} USTAT (2}

NAME
ustat — get file system statistics

SYNOPSIS
#tinclude <sgys/types.h>
#include <ustat.h>

int usiat (dev, buf)
int dev;
struct ustat =buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a device
number identifying a device containing a mounted file system. Bufis a
pointer to & ustat siructure that inciudes to following elements:

daddr_t {_tfree; /= Total free blocks »/
ino_t {_tinode; /* Number of free inodes +/
char f fnamel6]; /+ Filsys name +/
char f fpack[6]; /+ Filsys pack name »/
Ustat will fail if one or more of the following are true:
[EINVAL] Dev is not the device number of a device containing a
mounted file system.
[EFAULTI] By points outside the process’s sllocated address space.

RETURN YALUE
Upon successful completion, a value of 0 js returned. Otherwise, & value
of —1 is returned and errmo is set to indicate the error.

SEE ALSO
stat(2}, fs(4).

UTIME (2} UTIME (2}

NAME
utime — set file access and modification times

SYNOPSIS
#include < sys/types.h>
Int utime (path, times)
char +path;
struct utimbuf *times;
DESCRIPTION
Path points to & path name naming a file. Ctime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write per-
mission to use utime in this manner.

If times is not NULL, fimes is interpreted as a pointer to a utimbuf structure
and the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user may use
utime this way. .
The times in the following structurz are measured in seconds since 00:00:00
GMT, Jan. 1, 1970,

struct wtimbuf (

time t actime, /* access time «/
\ time_t modtime; /+ modification time +/

Utime will fail if one or more of the following are true:

[ENOENTI The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EACCES] Search permission is denied by a component of the path
prefix.

[EPERMI The effective user ID is not super-user and not the owner
of the file and times is not NULL.

[EACCES] The effective user ID is not super-user and not the owner
of the file and #imes is NULL and write access is denied.

[EROFSI The file system containing the file is mounted read-only,

[EFAULTI Times is not NULL and points outside the process’s allo-
cated address space.

[EFAULT] Path points outside the process's allocated address space.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a vatue
of —1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

.

UVAR(2)

NAME

UniSoft UVAR{2)}

uvar — returns system-specific confipuration information

SYNOPSIS

##include <sys/var.h>

uvar(y}

struct var *v;

DESCRIPTION

Lhvar returns system-specific configuration information contained in the ker-
nel. The information returned contains table sizes, mask words, and other
system-specific information for programs such as %/{1) and ps(1).

Presently a maximum of 256 bytes of information is returned. This number
is subject to change. V points to the vgr siructure:

struct var {
int
int
int
char *
int
char *
int
char *
int
char *
int
char *
int
im
int
int
int
inl
int
int
int
int
int
int
int
int
int
int
it
in1
int
int
int
int
char *
int

Page |

v_buf;
v_call;
v_inode;
ve_inode;
v_file;
ve_file;
v_mount;
ve_mount;
v_proc;
ve_proc;
v_text;
ve_text;
v_clist;
v_sabul;
v_maxup;,
v_cmap,
v_smap;
v_hbuf;
v_hemask;
v_flock;
v_phys;
v_clsize;
v_txtrnd;
v_bsize;
v_cxmup;
v_ciktick;
v_hz;
v_usize;
v_pageshift;
v_pagemask:
v_segshift;
v_segmask;
v_ustart;
v_uend;

ve _call;
v_stkgap;

/* Number of system bufiers */

/* Maximum number of sitnuftaneous callouts */
/* Maximum number of incore inodes */

/* Pointer 1o last incore inode table */

/* Maximum number of open files "/

/* Pointer to last open file table */

/7* Maximum number of file systems mountable */
#* Painter to last mounted file system table */
/* Maximum number of processes */f

/* Pointer to last process table */

F* Maximum anumber of shared text segments */
/* Pointer to Iasl shared tex1 segment table */
#* Maximum number of clists */

/* Maximum number of system activity buffers */
/* Maximum number of user processes */

/* Size of core memory allocation map */

#* Size of swap memory allocation map */

* Maximum number of buffer headers */

/* Maximum number of buffer headers - 1 */

/* Maximum number of file locks */

£* Maximum number of simultaneous phys calls */
#* Click size */

/* Number of clicks per segment "/

/* Block size */

/* Context map size */

7* Clock tick */

f* Hz %/

/* Size of user structure */

7* Page shift */

/* Page mask */

#* Segment shif1 */

/* Segment mask */

/* Starting virtual address for user program */

/* Ending virtual address for user program */

/* Pointer to last callout table */

/* Obsolete */

July 12, 1985

UVAR(2)

ini
int
int
int
ini
int
char *
int
int
ini
ini
IR
SEE ALSO

v_cputype;
¥_CPuver;
v_mmutype;
v_doffser;
v_kvoflset;
v_sviext;
ve_sviext;
v_pbuf;
v_nscatload,
v_udot;
v_fill[64-48};

fusr/include/sys/space.h

July 12, 1985

UniSoft UVAR(2)

7* CPU 1ype (1=68000) */

/* CPU version id (1=68000, 2=68010, 3=68020) */
/* MMU type (1=none, 2=SUN, 3=68451) */

/* Data offser */

#* Kernel virtual offse1 */

/* Maximum number of text loitering segments */
/* Pointer to last text Joitering segment in table */
/* Maximum number of buflers for physio */

/* Maximum number of entries in scatler map */
/* Address of user structure */

/* Sized to make var 256 bytes long */

Page 2

WAIT (2) WAIT (2)

NAME

wait — wait for child process to stop or terminate

SYNOPSIS

int wait (stat_loc)
int sstat_loc;

int wait ((int =)0}

DESCRIPTION

Wait suspends the calling process until one of the immediate children ter-
minates or until a child that is being traced stops, because it has hit a break
point. The wair system call will return prematurely if a signal is received
and if a child process stopped or terminated prior to the call on wad, return
is immediate.

If srat_foc (taken as an integer) is non-zero, 16 bits of information called
status are stored in the low order 16 bits of the location peointed to by
star_loc. Srawus can be used to differentiate between stopped and ter-
minated child processes and if the child process terminated, status identifies
the cause of termination and passes useful information to the parent. This
is accomplished in the following manner:

If the child process stopped, the high order 8 bits of status will con-
tain the number of the signal that caused the process to stop and
the low order 8§ bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8
bits of status will be zero and the high order 8 bits will contain the
low order 8 bits of the argument that the child process passed to
exit, see exit(2).

If the child process terminated due to a signal, the high order 8 bits
of status will be zero and the low order 8 bits will contain the
number of the signal that caused the termination. In addition, if the
low order seventh bit (i.e., bit 200} is set, & *‘core image” will have
been produced; see signai(2).

If a parent process terminates without waiting for its child processes to ter-
minate, the parent process ID of each child process is set to 1. This means
the initialization process inherits the child processes; see intro(2).

Wair will fail and return immediately if one or more of the following are
true:

[ECHILDI] The calling process has no existing unwaited-for child

processes.
[EFAULTI Stat_loc points to an illegal address.

RETURN VALUE

If wair returns due to the receipt of a signal, a value of —1 is returned to
the calling process and errmo is set to EINTR. If wait returns due to a
stopped or terminaied child process, the process ID of the child is returned
to the calling process. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

SEE ALSO

Page |

exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

July 26, 1985

WAIT(2) WAIT(2)

WARNING
See WARNING in signal(2).

July 26, 1985 Page 2

o

WAIT3(2N) (UniSoft) WAIT3(2N)

NAME

wait3 — wait for child process to stop of terminate
SYNOPSIS

#include <sys/waith>

pid = wait3(status, options, 0)

int pid;

union wait "status;

int options;

DESCRIPTION
Wait3 provides an interface for programs which maust not block when collecting
the status of child processes. The status parameter is defined as above. The
options parameter is used o indicate the call should not block if there are no
processes which wish to report stats (WNOHANG).
When the WNOHANG option is specified and no processes wish to report
status, wait3 returns a pid of 0.

RETURN VALUE
Wait3 returns —1 is there are no children not previously waited for; 0 is returned
if WNOHANG is specified and there are no stopped cr exited children.

SEE ALSO
exit(2)

Page 1 September 24, 1987

WRITE(2) WRITE(2)

NAME
write — wrile on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPFTION
Fildes is a file descriptor obtained from a creal, open, dup, fondd, pipe, of
socket system call,
Write attempts o write nbyte bytes from the buffer pointed to by bif to the file
associated with the fildes.
On devices capable of secking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon reiurn from write, the file
pointer is incremented by the number of bytes actually writien,
On devices incapabie of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set 1o

the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or more of the

following are true:

[EIO} A physical 1O error has occurred.

[ENXIO] The device associated with the file descriptor is a block-
special or character-special file and the value of the file
pointer is out of range.

[EBADF] Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal)
An attempt is made to write to a pipe that is not open for
reading by any process.

[EPIPE] An attempt is made to write to a pipe that is not open for
reading by any process.

[EFBIG] An attempt was made to write a file that exceeds the

process’s file size himit or the maximum file size. See

Page 1 September 28, 1987

WRITE(2) WRITE(2)

ulimit(2).
T [EPAULT) Part of iov or data 10 be written to the file points outside the
e process’s allocated address space.
[EFAULT) Buf points outside the process’s allocated address space.
[EINTR] A signal was canght during the write system call,
{ENOSPC] Not enough space is left on the device containing the file,

H a write requests that more bytes be written than there is room for (e.g., the
ulimit (see ulimit(2)) or the physical ead of a medium), only as many bytes as
there is room for will be writter. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write of 512 bytes wilt return
20. The next write of a non-zero number of bytes will give a failure return
{except as noted below).
If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file
flag word is set, then write to a full pipe (or FIFC) will retum a count of 0, Oth-
erwise (O_NDELAY clear), writes to a full pipe (or FIFO} will block until space
becomes available.
— RETURN VALUE
f Upon successful completion the number of bytes actvally written is returned.
. Otherwise, —1 is retarned and errno is set to indicate the error.
SEE ALSO
creat(2), Iseek(2), open{2), pipe(2), socket(2N), ulimit(2).

September 28, 1987 Page 2

WRITEV(2) (UniSoft) WRITEV(2)

NAME
writev — write on a file
SYNOPSIS

#imclude <sys/types.h>
#inciude <sys/uio.h>

writev(d, lov, ioveclen)
int d;
struct jovec *iov;
int ioveclen;

DESCRIPTION
Fildes i3 a file descriptor obtained from a creat, open, dup, fonil, pipe, or
socket system call.
Writev attempts to write nbyte bytes w the file associated with the fildes and
gathers the output data from the iovien buffers specified by the members of the
fovec array: iov[0], iov[1], etc.
On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer, Upon retumn from writev, the
file pointer is incremented by the number of bytes actually written,
On devices incapable of seeking, writing always takes place starting at the
current position. The value of a filc pointer associated with such a device is
undefined.
If the O_APPEND flag of the file status flags is set, the file pointer will be set to
the end of the file prior to each write.

Wrizev will fail and the fike pointer will remain unchanged if one or more of the

following are true:

[EBADF] Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]
An attemp¢ is made to write to a pipe that is not open for
reading by any process.

[EFIPE]} An attempt is made 10 write to a pipe that is not open for
reading by any process.

[EFBIG] An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size, See
ulimit(2).

Page 1 Scptember 28, 1987

WRITEV(2) (UniSoft) WRITEV(2)

[EFAULT] Part of iov or data to be written to the file points outside the
7o process's allocated address space.
e [ERAULT] Buf points outside the process’s allocated address space.
[EINTR] A signal was caught during the writev system call.

If a writev requests that more bytes be written than there is room for (e.g., the
ulimit (see ulimit(2)} or the physical end of a medium), only as many bytes as
there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write of 512 bytes will return
20. The next write of a non-zero number of bytes will give a failure return
(except as noted below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file

flag word is set, then write 10 a full pipe {or FIFO) will return a count of (0, Oth-

erwise (O_NDELAY clear), wtites to a full pipe (or FIFO) will block until space

becomes available. '
RETURN VALUE

Upon successful completion the number of bytes actually written is returned.

Otherwise, —1 is retuned and errno is set to indicate the exror,

7" SEEALSO
' creat(2}, 1seek(2), open(2), pipe(2), socket(2N), ulimit(2),

September 28, 1987 Page 2

INTRO (3) INTRO(3)

NAME
intro ~— introduction to subroutines and libraries

SYNOPSIS
#inclode <stdio.h>

#tinclude <math.h>

DESCRIPTION
This section describes functions found in various libraries, other than those
functions that directly invoke system primitives, which are described in Sec-
tion 2 of this volume. Certain major collections are identified by a letter
after the section number:

(3C)} These functions, together with those of Section 2 and those marked
(38), constitute the Standard C Library, libc, which is automatically
loaded by the C compiler, cc(l). The link editor /d(1) searches this
library under the —Ilc option. Some functions require declarations
that can be included in the program being compiled by adding the
line

)

#tinclude < header filename>

The appropriate #include file is indicated in the SYNOPSIS part of a
function description.

(3F) These functions constitute the FORTRAN intrinsic function library,
libF77. These functions are automatically available to the FORTRAN
programmer and reguire no special invocation of the compiler.

{(3M) These functions constitute the Math Library, fibm. They are
automatically loaded as needed by the FORTRAN compiler f77(1).
They are not automatically loaded by the C compiler, cc{l1); how-
ever, the link editor searches this library under the —Ilm option.
Declarations for these functions may be obtained from the #include
file < math.h>.

(33) These functions constiiute the *‘standard 150 package’’; an introduc-
tion to this package is provided in stdio(38). The functions are in
the library #bec, already mentioned. Declarations should be obtained
from the #lnclude file <stdio.h>.

(3X) Various specialized libraries. The files in which these libraries are
found are given on the appropriate pages.

)

For descriptions and examples of #include files, refer to the
“Libraries” section of the Programming Guide.

DEFINITIONS

A character is any bit patiern able to fit into a byte on the machine. The
null character is a character with value 0, represented in the C language as
AN, A character array is a sequence of characters. A rull-terminated char-
. acter array is a sequence of characters, the last of which is the rulf charac-
(’ ter. A string is a designation for a null-terminated character array. The null
N - string is a character array containing only the null character. A NULL
pointer is the value that is obtained by casting 0 into a pointer. The C
language guarantees that this value will not match that of any legitimate
pointer, o many functions that return peinters return it to indicate an
error. NULL is defined as 0 in «<stdio.h>; the user can include his own

definition if he is not using < stdio.h>>.

-1-

INTRO (3} INTRO(3)

Many groups of FORTRAN intrinsic functions have gereric function names
that do not require explicit or implicit type declaration. The type of the
function is determined by the type of its argument(s). For example, the
generic function max returns an integer value if given integer arguments
(max0), a real value if given real arguments {amax), or a double-precision
value if given double-precision arguments (dmaxi),

FILES
flib/libc.a
fusr/lib/libF77.a
Jlib/libm.a

SEE ALSO
ar(1}, cc(l), £77(1), 1d(1}, lint(1}, am(l), intro(2), stdio(38), math(5).
Programming Guide.

DIAGNOSTICS
Functions in the C and Math Libraries (3C and 3M) may return the con-
ventional values 0 or +HUGE {the largest-magnitude single-precision
floating-point numbers; HUGE is defined in the < math.A> header file)
when the function is undefined for the given arguments or when the value
is not representable. In these cases, the external variable errmo (see
intro(2)) is set to the value EDOM or ERANGE. Because many of the FOR-
TRAN intrinsic functions use the routines found in the Math Library, the
same conventions apply.

WARNING

Many of the functions in the libraries call and/or refer to other functions
and external variables described in this section and in section 2 (Sysrem
Calls). If a program inadvertantly defines & function or external variable
with the same name, the presumed library version of the fuaction or exter-
nal variable may not be loaded. The fini1) program checker reports name
conflicts of this kind as “‘multiple declarations’ of the names in question.
Definitions for sections 2, 3C, and 38 are checked automatically. Other
definitions can be included by using the —1 option (for example, —1lm
includes definitions for the Math Library, section 3M). Use of lintis highly
recommended.

A64aL (3C) AG4L (3C)

NAME

abdl, 164a — convert between long integer and base-64 ASCII string

SYNOPSIS

long a64l (s}
char »s;

char «l64a (1)
long |;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in bgse-64 ASCII
characters. This is a notation by which long integers can be represented by
up to & characters; each character represents a ‘*digit’’ in a radix-64 nota-
tion.

The characters used to represent ‘‘*digits™ are . for 0, / for 1, 0 through 9
for 2—11, A through Z for 12—37, and a through z for 38—63.

A64l takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to by s contains
more than § characters, a64/ uses the first 6,

Lé64a takes a long argument and returns a pointer to the corresponding
base-64 representation. If the argument is 0, /64a returns a pointer to a
null string.

The value returned by /64a is a pointer into a static buffer, the contents of
which are overwritten by each call.

ABORT (3C) ABORT (3C)

NAME
abort — generate an IOT fault

SYNOPSIS
int abort (}

DESCRIPTION
Abort first closes all open files il possible, then causes an 10T signal o be
sent to the process, This usually results in termination with a core dump.

1t is possible for abort to return control if SIGIOT is caught or ignored, in
which case the value returned is that of the &i#7(2) system call.)

SEE ALSQ
sdb(1), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writ-
able, a core dump is produced and the message abort — core dumped is
writtan by the shell.

Page 1 July 22, 1985

ABORT {3F) ABORT (3F)

NAME
abort — terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION
Abort terminates the program which calls it, closing all open files truncated
to the current pogition of the file pointer.

DIAGNOSTICS
When invoked, abort prints Fortran abort routine called on the standard
error output.

SEE ALSO
abort(3C).

ABS(3C) ABS(3C)

NAME
abs — return integer absolute value

SYNOPSIS
int abs D
int i;
DESCRIPTION
Abs returns the absolute vaiue of its integer operand.

BUGS
In two’s-compiement representation, the absolute value of the negative
integer with largest magnitude is undefined. Some implementations trap
this error, but others simply ignore it.

SEE ALSO
floor(3M}.

ABS (3F) ABS (3F)

NAME
abs, iabs, dabs, cabs, zabs — Fortran absolute value

SYNOPSIS
integer il, i2
real rl, r2
double precision dpl, dp2
complex cxl, cx2
double complex dxl, dx2

12 = abs(rl)
i2 = iabs(il)
iz = abs(il)
dp2 = dabs(dpl)
dp2 = abs(dpl}

cx2 = cabs{cx1)
ex2 = abs{cxl)

dx2 = zabs(dxl)
dx2 = abs{dx1)

DESCRIPTION
Abs i3 the family of absolute value functions. fabs returns the integer
absolute value of its integer argument. Dads returns the double-precision
absolute value of its double-precision argument. Cabs returns the complex
SO absolute value of its complex argument. Zabs returns the double-complex
absolute value of its double-complex argument. The generic form abs
— returns the type of its argument.

SEE ALSO
floor(3M).

ACOS (3F) ACOS (3F)

NAME
acos, dacos — Fortran arccosine intrinsic function

SYNOPSIS
real r1, r2
deuble precision dpl, dp2

12 = acos(rl})

dp2 = dacos(dpl)
dp2 = acos{dpl)

DESCRIPTION
Acos returns the real arccosine of its real argument. Dacos returns the
double-precision arccosine of its double-precision argument. The generic
form acos may be used with impunity because its argement determines the
type of the returned value.

SEE ALSO
trig(3M).

7

AIMAG (3F) AIMAG (3F)

NAME

aimag, dimag — Fortran imaginary part of complex argument
SYNOPSIS

real T

complex cxr

double precision dp

double complex cxd

r = aimag(cxr)

dp = dimag{cxd)
DESCRIPTION

Aimag returns the imaginary part of its single-precision complex argument.
Dimag returns the double-precision imaginary part of its double-complex
argument.

AINT (3F) AINT (3F)

NAME
aint, dint — Fortran integer part intrinsic function

SYNOPSIS
real r1, 12
double precision dpl, dp2

12 = aint{rl)

dp? = dini(dpl)
dp2 = ajnt{dpl)

DESCRIPTION
Aint returns the truncated value of its real argument in a real. Dint returns
the truncated value of its double-precision argument as a double-precision
value. Aimt may be used as a generic function name, returning cither a real
or double-precision value depending on the type of its argument.

ASIN (3F) ASIN (3F)

NAME
asin, dasin — Fortran arcsine intrinsic function
SYNOPSIS
real rl, 2
double precision dpl, dp?
r2 = asin(rl)
dp2 = dasin{dpl)
dp2 = asin(dpl}
DESCRIPTION
Asin returns the real arcsine of its real argumeni. Dasin returns the
double-precision arcsine of its double-precision argument. The generic
form asin may be used with impunity as it derives its type from that of its
argument.
SEE ALSO _
trig(3M).

ASSERT (3X) ASSERT (3X)

NAME
assert — verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
imt expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. H expression is
false (zero) when assert is executed, gssert prints

Assertion failed: expression, file xyz, line nnn

on the standard error cuiput and aborts. In the error message, Xz is the
name of the source file and »nn is the source line number of the assert
statement.
Compiling with the preprocessor option —DNDEBUG (see cpp(1)), or with
the preprocessor control statement #Hdefime NDEBUG ahead of the
fHinclude << assert.h’> statemeni, stops assertions from being compiled
into the program.

SEE ALSO
cpp(1), abort(3C).

ATAN (3F) ATAN(3IF)

NAME
atan, datann — Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

12 = atan{(rl)

dp2 = datan(dpl)
dp2 = atan(dpl)

DESCRIPTION
Atan returps the real arctangent of its real argument. Defen returns the
double-precision arctangent of its double-precision argument. The generic
form atan may be used with a double-precision argument returning a
double-precision value.

SEE ALSO
trig(3M).

ATAN2(3F) ATAN2(3F)

NAME
atan2, dstan2 -~ Fortran arctangent intringic function

SYNOPSIS
real 11, 12, 13
double precision dpl, dp2, dp3

13 = atan2(ri, r2)

dp3 = datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)

DESCRIPTION
Atan2 returns the arctangent of argl/srgZ as a real value. Datan2 returns
the double-precision arctangent of its double-precision arguments. The
generic form atan2 may be used with impunity with double-precision argu-
ments.

SEE ALSO
trig(3M).

ATOF(3C) ATOF({3C)

NAME
atof — convert ASCII string to floating-point number

SYNOPSIS
double atof (nptr)
c¢har =npir;

DESCRIPTION

Ataf converts a character string pointed to by apir to a double-precision
foating-point number. The first unrecognized character ends the conver-
sion. Atef recognizes an optional string of white-space characters (blanks
or tabs), then an optional sign, then a string of digits optionally containing
a decimal point, then an optional ¢ or E followed by an optionally signed
integer. If the string begins with an wnrecognized character, «fof returns
the value zero.

DIAGNOSTICS
When the correct value would overflow, arof returns HUGE, and sets errio
to ERANGE. Zero is returned on underflow,

SEE ALSO
scanf(38), strioi{3C).

Page 1 July 22, 1985

BESSEL (3M) BESSEL (3M)

NAME
j0, j1, jn, 0, ¥1, yn — Bessel functions

SYNOPSIS
#tinclude < math.h>

double jo (x)
double x;

double ji (x}
double x;

double jn (n, x)
int n;
double x;

double y0 (x}
double x;

double y1 (%)
double x;

double yn (0, x)
Int n;
double x;

DESCRIPTION
J0 and j{ return Bessel functions of x of the first kind of orders 0 and 1
respectively. Jn returns the Bessel function of x of the first kind of order
n,

Y0 and yI return the Bessel functions of x of the second kind of orders 0
and 1 respectively. ¥n returns the Bessel function of x of the second kind
of order n. The value of x must be positive.

DIAGNOSTICS
Noan-positive arguments cavse 30, ¥/, and yn to return the value —HUGE
and to set errmo to EDOM. In addition, 3 message indicating DOMAIN error
is printed on the standard error cutput

Arguments too large in magnitude cause 0, jI, 0 and yI to return zero
and to set errno to ERANGE. In sddition, a message indicating TLOSS error
is printed on the standard error output,

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(3M),

BLT (3C) UniSoft BLT (3C)

NAME
bl¢, bit512 — block transfer data

7~ SYNOPSIS
' int blt(to,from,count)
char *to;

char *from;

int count;

.

int bit512{to,from,count)
char *to;

char *from;

int count;

DESCRIPTIHON
Blt does a fast copy of count bytes of data starting at address from to
address fo.

Bit512 does a fast copy of count number of consecutive 512 byte units
starting at address from to address to,

BOOL (3F) BOOL {3F)

NAME

and, or, xor, not, Ishift, rshift — Fortran bitwise boolean functions

SYNOPSIS

integer i, j, k
real a, b, ¢
double precision dpl, dp2, dp3

k = and(i, j)

¢ = orla, b)

j = xor(i, a)

j = not(i)

k = Ishifti, j»

k = rshife(i, })
DESCRIPTION

NOTE

BUGS

The generic intrinsic boolean functions and, or, and xor return the value of
the binary operations on their argpments. Not is a unary operator returning
the one’s complement of its argument. Lshift and rshift return the value of
the first argument shifted left or right, respectively, the number of times
specified by the second (integer} argument.

The boolean functions are generic, i.e., defined for all data types as argu-
ments and return valies. Where required, the compiler generates appropri-
ate type conversions.

Although defined for all data types, use of boolean functions on non-
integer data is not productive.

The implementation of the shift functions may cause large shift values to
deliver unexpected results.

BSEARCH (3C) BSEARCH (3C)

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include < search.h>

char *bsearch ({char *} key, (char +) base, nel, width, compar)
unsigoed nel; width,
int (*compari{);

DESCRIPTION

Bsearch is a binary search routine generalized from Knuth (6.2.1) Algo-
rithm B. It returns a pointer into a table indicating where a datum may be
found. The table must be previously sorted in increasing order according to
a provided comparison function. Key points to a datum instance to be
sought in the tzble. Base points to the element at the base of the table.
Nel is the number of elements in the table. Width is the width of an ele-
ment in bytes; sizeq/ (*kep) should be used. Compar is the name of the
comparison function, which is called with two arguments that point to the
eiements being compared, The function must return an integer less than,
equal to, or greater than zero as accordingly the first argument is to be con-
sidered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting
of a string and its length. The table is ordered alphabetically on the string
in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node
and prints out the string and its length, or prints an error message.

#include <sidio.h>
#include < search.h>>

#define TABSIZE 1000

struct node | /* these are stored in the table of
char *siring;
int length;

k

strucl node lable[TABSIZEl; f+ table to be searched */

struct nede =nede_ptr, node;
int node_compare(); /* ine o compare 2 nodes +/
char sir_space[20]; /+ space to read string into +/

node.string = 5tr_space;
white (scanf("%s", node.string) != EOF) |
node_pir = {strucl node «)bsearch{{char +){&node),
(char *)iable, TABSIZE,
sizeof (siruct node), node compare);
il (node_ptr 1= NULL) |

-1-

BSEARCH (3C) BSEARCH (3C)

(void}printl{"string ~ %20s, length = %d\n",
node_ptr— > siring, node_pir—>>length):
] else (
(voidlprintf("not found: %s\n", node.siring);
]

This routine compares two nodes based on an
alphabeticel ordering of the swring fieid.
of
int
node_compare{nodel, node?)
struct node *nodel, snode2;
(
return stremp{nodel— > siring, nodel— > siring);
1

NOTES
The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byle, so arbitrary data
may be contained in the clements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should
be cast intc type pointer-to-element.

SEE ALSO
hsearch(3C), lsearch(3C), gsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

BSTRING (3N) UniSoft BSTRING (3N)

NAME

bcopy, bcmp, bzero, ffs — bit arid byte siring operations
77 SYNOPSIS
e beopy(bl, b2, length}

char *b1, *b2;

int length;

bemp{bl, b2, length)

char *hl, *h2;

int length;

bzero(b, length)

char *b;

int length;

fis (i)

int {;

e ... —Inet

DESCRIPTION

The functions bcopy, bemp, and bzero operate on variable length strings of

bytes. They do not check for null bytes as the routines in s#ing{3C} do.

Beopy copies Jength bytes from string 57 to the string 2.

Bemp compares byte string b/ against byte string 52, returning zero if they
o~ are identical, non-zero otherwise. Both strings are assumed to be fengrh
] bytes long.

- Bzera places length 0 bytes in the string &1,
Ffs find the Arst bit set in the argument passed it and returns the index of
that bit, Bits are numbered starting at 1. A return value of —1 indicates
the value passed is zero.
LINKING
This library is accessed by specifying —Inet as the last argument to the
compile line, e.g..
cc — o prog prog.c — Inet
BUGS

The bemp and bcopy routines take parameters backwards from siremp and

strepy.
A

Page 1 July 22, 1985

BYTEORDER (3N} UniSeft BYTEORDER (3N}

NAME
htonl, htons, ntohl, ntohs — convert values between host and network byte

order

SYNOPSIS
#include <sys/types.h>
#inclnde < npetinet/in.h>

netlong = hionl(hostlong);
u_long metlong, hostlong;
netshort = hions(hosishort);
u_short netshort, hostshort;
hostleng = ntohl{netlong);
u_long hostlong, netlong;
bostshort = ntohs(netshort);
u_short hostshort, netshort;
e ... ~Inet

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order
and host byte order. On machines such as the SUN these routines are
defined as null macros in the include file < netinet/in.h>.

These routines are most often used in conjunction with Internet addresses
and ports as returned by gethostent(3N) and getservent(3N).

LINKING
This library is accessed by specifying —Inet as the last argument to the
compile line, e.8.:

©¢ —o0 prog prog.c ~Inet

SEE ALSO
gethostent{IN), getservent(3IN)

Page 1 July 22, 1985

/"*“\\

CLOCK (3C) CLOCK (3C)

NAME
clock — report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock teturns the amount of CPU time (in microseconds) used since the
fist call to clock. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which it
has executed wair(2) or systen(38).

SEE ALSO
times{(2}, wait(2), system(38).

BUGS
The value returned by cleck is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resoiution. Because
of this, the value returned wraps around after accumulating only 2,147
seconds of CPU time (about 36 minuies).

CONJG (IF) CONIG (3F}

NAME

conjg, deonjg — Fortrant complex conjugate intrinsic function
SYNOPSIS

complex cxl, cx2

double complex dxl, dx2

cx2 = conjxlcxl)

dx2 = dconjg(dxl)
DESCRIPFTION

Conjg returns the complex conjugate of its complex argument Deonig
returns the gouble-complex conjugate of its double-complex argument.

/"‘“\

/,-"-\

CONV (3C) CONV{3C)

NAME

toupper, tolower, _toupper, _tolower, toascii — translate characters

SYNOPSIS

#include <ctype.h>

int tompper {(c)
int ¢

int tolower (c)
int ¢;

int _toupper (c)
int ¢;

int _tolower (¢}
int ¢;

int toascii (c)
int c;

DESCRIPTION

Toupper and folower have as domain the range of gew(38): the integers
from —1 through 255. If the argument of toupper represents a lower-case
letter, the result is the corresponding upper-case letter. If the argument of
tofower represents an upper-case letter, the result is the corresponding
lower-case leiter. All other arguments in the domain are returned
unchanged.

The macros _toupper and _tolower, are macros that accomplish the same
thing as foupper and folower but have restricted domains and are faster.
_toupper requires a lower-case lfetier as its argument; its result is the
corresponding upper-case letter. The macro _tolower requires an upper-case
letter as its argument; its result is the corresponding lower-case letter.
Arguments outside the domain cause undefined results.

Toaseii yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other sysiems.

SEE AL3O

ctype(3C), getc(38).

COS (3F) COS {3F)

NAME

cos, deos, ¢cos — Fortran cosine intrinsic function
SYNOPSIS

read rl, r2

double precision dpl, dp2

r2 = cos(rl)

dp2 = deos(dpl)
dp2 = cosldpl)
cx2 = ¢eos{cxl)
cx2 = cos{cxl)

DESCRIPTION
Cos returns the real cosine of its real argument. Dcos returns the double-
precision cosine of its double-precision argument. Ceos returns the com-
plex cosine of its complex argument. The generic form cos may be used
with impunity because its returned type is determined by that of its argu-
ment.

SEE ALSO
trig(3M).

COSH (3F) COSH (3F)

NAME
cosh, dcosh — Fortran hyperbolic cosine intrinsic function
SYNOPSIS
real rl, 12
double precision dpl, dp2
r2 = cosh(zrl)
dp2 = deoshidpl)
dp2 = coshidpl)
DESCRIPTION
Cosh returns the real hyperbolic cosine of its real argument. Dcosh returns
the double-precision hyperbolic cosine of its double-precision argument.
The generic form cosh may be used to return the hyperbolic cosine in the
type of its argument,.
SEE ALS0O
sinh(3M).

CRYPT{3C) CRYPT(3C)

NAME
crypt, setkey, encrypt — generate DES encryption

SYNOPSIS
char *erypt (key, sal)
char »key, »salt;

void setkey {(key)
char +key:

void encrypt {(block, edfiag)
char =block;
int edilag;

DESCRIPTION
Crypt is the password encryption function. It is based on the NBS Data
Encryption Standard (DES), with variations intended to frustrate use of
hardware implementations of the DES for key search.

Key is a user’s typed password. Salf is a 2-character string chosen from the
set [a-2zA-Z0-9./]; this string is used to perturb the DES algorithm in one of
4,096 differcnt ways, after which the password is used as the key te encrypt
repeatedly a constant string. The returned value peinis to the encrypted
password. The first 2 characters are the sali itself,

The setkey and encrypt entries provide (rather primitive) access to the actual
DES algorithm. The argument of setkey is a character array of length 64
containing only the characters with numerical value 0 and 1. K this string
is divided into groups of 8, the low-order bit in each group is ignored; this
gives a 56-bit key which is set into the machine. The 56-bit key is used
with the above-mentioned algorithm to encrypt or decrypt the string bock
with the function encrypt.

The argument to the encrypt entry is a character array of length 64 contain-
ing oniy the characters with numerical value 0 and 1. The argument array
is modified in place to a similar srray representing the bits of the argument
after having been subjected to the DES algorithm using the key set by ser-
key. If edflag is zero, the argument is encrypted, if non-zero, it is

decrypted.
SEE ALSO
login(1), passwd(1), getpass(3C), passwd(4).

BUGS
The return value points to static data that is overwritten by each call.

NOTE
The international distribution of thigs family of subroutines has serkey
removed and disallows decryption by the encrypt function.

CTYERMID (38) CTERMID (35)

NAME

ctermid ~ generate filename for terminal

SYNOPSIS

#include < stdio.h>

char sctermld(s)
char +s;

DESCRIPTION

NOTES

Ctermid generates the pathname of the controlling terminal for the current
process, and stores it in a siring.

If 5 is a NULL pointer, the string is stored in an internal static area, the
contents of which are overwritten at the next call to ctermid, and the
address of which is returned. Otherwise, 5 is assumed to point to a charac-
ter array of at least L_ctermid elements; the pathname is placed in this
array and the value of 5 is returned. The constant L_ctermid is defined in
the < stdie.h> header file.

The difference between ctermid and #tyname(3C) is that ftyname must be
handed a file descriptor and returns the actual name of the terminal associ-
ated with that file descriptor, while ctermid returns a string (/dev/tty) that
refers to the terminal if used as a filename. For this reason, #vname is use-
ful only if the process already has at least one file open o a terminal.

SEE ALSO

tyname(3C).

CTIME (3C) CTIME(3C)

NAME
ctime, localtime, gmiime, asctime, tzset — convert date and time to siring

SYNOPSIS
#include <time.h>

char »ctime {(clock)

long =clock;

struct (m +Jocaltime (clock)
long *clock;

struct tm *gmtime (clock)
long «clock;

char =asctime (im)
struet tm oton;

extern long timezone;
extern int daylight;
extern char siznamel2];
void tzset ()

DESCRIPTION .
Ctime converts a long integer, pointed to by clock, representing the time in
seconds since 00:00:00 GMT, Januvary 1, 1970, and returns a pointer to a
26-character string in the following form. All the fields have constant
width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to tm structures, described below.
Localtime corrects for the time zone and possible Daylight Savings Time;
gmiime converts directly to Greenwich Mean Time (GMT), which is the
time the system uses.

Asctime converts a fm structure to a 26-character string, as shown in the
above example, and returns a pointer to the string.

Declarations of all the functions and externais, and the fm structure, are in
the < time.h> header file. The structure declaration is:

struct tm {
int tm_sec; /+ seconds (0 - 59) «/
int tm_min; /+ minutes (0 - 59) »/
int tm_hour; /+ hours (0 - 23) +/
int tn_mday; /* day of month (1 - 31) =/
int tm_mon; /+ month of year (0 - 11) »/
int tm_year; /» year — 1900 »/
int tm_wday; /* day of week {Sunday = 0} «/
int tm_yday; /= day of year (0 - 365) +/

| int tm_isdst;

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds,
between GMT and local standard time (in EST, timezone is 5+60+60); the
external variable daylight is non-zero if, and only if, the standard US.A.
Daylight Savings Time conversion should be applied. The program knows

-1-

CTIME (3C) CTIME (3C)

about the peculiarities of this conversion in 1974 and 1975; if necessary, a
table for these years can be extended.

If an environment variable named TZ is present, gsctime uses the contents
of the variable to override the default time zone. The value of TZ must be
a 3-letter time zone name, followed by a number representing the
difference between local time and Greenwich Mean Time in hours, fol-
lowed by an optional 3-letter name for a daylight time zone. For example,
the setting for New Jersey would be ESTSEDT. The effects of setting TZ
are thus to change the values of the external variables timezone and day-
light, in addition, the time zone names contained in the external variable

char stznamel2] = [“EST™, "EDT" };

are set from the environment variable TZ. The function rzser sets these
external variables from TZ: fzsef is called by ascrime and may aiso be called
explicitly by the user.

Note that in most installations, TZ s set by default when the user logs on,
to a value in the local /ete/profile file {(see profile(4)).

SEE ALSO
time(2), getenv(3C), profile(4), enviren(5).

BUGS
The return values point to static data whose content is overwritten by each
call.

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntri, isascii — classify characters

SYNOPSIS
#include <ctype.h>

int isalpha (c)
int ¢

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each
is a predicate returning nonzero for true, zero for false. Fsascii is defined
on all integer values; the rest are defined only where fsascii is true and on
the single non-ASCH value EOF (—1); see stdic(38)).

isalpha ¢ is a letter.

isupper ¢ is an upper-case letter.

istower ¢ is a lower-case letter.

isdigit ¢ is a digit [0-9].

isxdigit ¢ is a hexadecimal digit {0-9], [A-F] or [a-fl.

Isalntum ¢ is an alphanumeric (letter or digit).

isspace ¢ is a space, tab, carriage return, new-line, vertical tab, or
form-feed.

ispunct ¢ is a puncteation character {(neither control nor
alphanumeric).

isprint ¢ is a printing character, code 040 (space) through G176
(tilde).

isgraph ¢ is a printing character, similar to isprint except false for
space.

iscntri ¢ is a delete character {0177) or an ordinary control charac-
ter (less than 040).

isascii ¢ is an ASCII1 character, code less than 0200.

DIAGNOSTICS

If the argument to any of these macros is not in the domain of the func-
tion, the result is undefined.

SEER ALSO
stdio(38), ascii(5).

/J"‘-_

CURSES{3X) CURSES (3X)

NAME

curses — CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>
ec { flags | files —lcurses [libraries |

DESCRIPTION

These routines give the user a method of updating screens with reasonable
optimization. In order to initialize the routines, the routine initscr() must
be called before any of the other routines that deal with windows and
screens are used. The routine engwin() should be called before exiting. To
get character-at-a-time input without echoing, (most interactive, screen
oriented-programs want this} after calling inirscr(} you should call “‘moni{J;
chreak{); moecho();”

The full curses interface permits manipulation of data structures called win-
dows which can be thought of as two dimensional arrays of characters
represeniing all or part of a CRT screen. A default window called sidser is
supplied, and others can be created with newwin. Windows are referred to
by variables declared “WINDOW *¥°, the type WINDOW is defined in
curses.h to be a C structure, These data structures are manipulated with
functions described below, among which the most basic are meove, and
addch. (More general versions of these functions are included with names
beginning with ‘w’, allowing you to specify a window. The routines not
beginning with ‘w’ affect stdscr.} Then refresh() is called, telling the rou-
tines to make the users CRT screen look like stdser.

Mini-Curses is a subset of curses which does not allow manipulation of
more than one window. To invoke this subset, use -DMINICURSES as a ¢¢
option. This level is smaller and faster than full curses.

If the environment variable TERMINFO is defined, any progiam using
curses will check for a local terminal definition before checking in the stan-
dard place. For exampie, if the standard place is /usr/lib/terminfo, and
TERM is set to ‘‘vil(0”, then normally the compiled file is found in
Jusr/lib/terminfo/v/vt100. (The “‘v** is copied from the first letter of
“vt100” to avoid creation of huge directories.) However, if TERMINFQ is
set to Jusr/mark/myterms, curses will first check
fusr/mark/myterms/¥/¥t100, and if that fails, will then check
fuse/lib/terminfo/v/vi100. This is useful for developing experimental
definitions or when write permission in /usr/lib/terminfo is not available.

SEE ALSO

terminfo(4).

FUNCTIONS

Routines listed here wmay be called when using the full curses. Those
marked with an asterisk may be called when using Mini-Curses.

addch{ch)* add B character 0 sifscr
(fike putchar) (wraps to next
fine at end of line)

addstr{str)" calls addch with each character in st
attrof (atirs)* turn off atiributes named
atirontatirs)* 1urn on attributes named

altrset (attrsh* sel curcent attributes 10 ahrs
baudrate()* current terminal speed

-1-

CURSES (3X)

beepl}*
pox(win, vert, har)

clear{)
clearokiwin, bf}
cletobot()
clrioeol{)
chreak(}*
delay_oulputims®
deleh{}
deleteln(}
delwiniwin)
doupdate{)}
echol)
endwint J*
erase!)
erasechar{)
fixterm()
flagh{)
flushinp()*
getch()*
getstrisir}
getimode()
getyxiwin, ¥, x)
hag_icl }
has_ilt)
idlokiwin, bf)*
inch{}

initscrt)*
insch(c}
ingertin{)
inteflush (win, bf
keypad(win, bf)
killchar ()
leaveck(win, flag)

fongname{)

metalwin, ftag)*

movely, x*

mvaddchiy, x, ch)

mvaddstr(y, x, str)

mvcur{okdrow, oldcol, newrow, newcol}

myvdeich(y, x)
mvgetchly, x)
mvgestely, x)
mvinchiy, x}

mvinschiy, x,
mvprintw(y, x, fmt, args)
mvscanwiy, x, fmt, args)
mvwaddch(win, ¥, x, ch)

CURSES (3X)

sound beep on Lerminal

draw a box around cdges of win

vert and for ave chars 10 use for verl
and hor. edges of box

clear stdser

clear screen belore next redraw of win
clear o bouom of srdser

clear to end of line on stdser

set cbreak mode

insert ms millisecond pause in output
delete a characler

delete a line

delete win

update screen from all wnoouicefresh
set eche mode

erd window modes

Erase sifser

Feiurn user’s erase characier

restore tty lo "in curses” stale

flash screen or beep

throw away any 1ypeahead

gel 2 char [rom Uy

get a string through srdser

establish current ity modes

get {y, x) co-ordinates

true if terminal can do insert character
true if terminal can do insert line

use rermipal’s inserl/delete line if bf != 0
gel char a1 current iy, x) co-ordinates
intialize screens

ingert a char

insert a line

imerrupts flush output if bf is TRUE
enable keypad input

return current user’s Kill character
DK 1o leave cursor anywhere afier refresh if
flag!=0 for nin, otherwise cursor must be left
at current position.

return verbose name of terminal
atlow meta characwers on inpul if flag = 0
move to {y, x} on sidser

movely, &} then addchich)

similar...

low [evel cursor motion
like delch, but movedy, x) first
e,

CURSES (3X)

mvwaddstriwin, y, x, str)
mvwdelchiwin, y, x}
mywgeichi{win, ¥, &)
mywgetsiriwin, ¥, x)
mywiniwin, by, bx}
mywinchiwin, ¥,)
mvwinschiwin, y, x, ¢}
mvwprintwi{win, ¥, X, fmt, args)
mvwscanw{win, ¥, 1, fmt, args)
newpad{nlines, neols)

newterm (type, 1d)
newwinilines, cols, begin_y, begin_x)

nll)*

nocbreak()*

nodelay{win, &)

noechot)*

nonl{ }*

noraw{ }"

overlay (winl, win2)

overwriledwink, win2)
proutrefresh(pad, pminrow, pmincol,
sminrow, smincol, smaxrow, smaxcol)

prefresh(pad, pminrow, pmincol,
sminrow, smincel, smaxrow, smaxcol}

printw({mt, acgl, arg2, ...}

tawl(}*

refreshi}*

resettermd)

reseity{)*

suvetermi)®

savelty(}"

scanw(fm1, argl, arg2, ...)

scrolliwin)

scrollok (win, flag}

se_lerminew)

selscrrepdl, b)

selterm{iype)

setuptermiierm, filenum, errret)
standend! J*

standoutd)*

subwiniwin, lines, cols, begin_y, begin_x)

towchwin{win)
traceoffl)
wraceont)
typeahead{fd}

CURSES (3X)

create a new pad with given dimensions
sel up new terminal of given type 1o owiput on fd

creale & new window

set newline mapping

unsel cbreak mode

enable noedelay inpul mode through gelch
unset echo mode

unset newline mapping

unset Taw mode

overlay winl on win2

overwrile winl on top of win2

like prefresh but with no output until doupdate called

refresh lvom pad starting with given upper left
corner of pad with cutput to given
portion of sereen

prinif on sfdser

s¢l raw mode

make current screen look like stdser
sel ity modes 10 "cul of curses” stale
resel tiy flags 1o stored value

save curreni modes as "in curses” siate
store current ity Nags

scanf through sidser

scroll wiz one line

allow terminal to scroli if flag !'= 0

now talk 10 terminal new

sel user scrolling region to lines 1 through b
eslablish terminal with given Lype

clear standout mode ailribule
sel stundoul mode atiribute

creuie a subwindow

change all of win

turn ofl debugging irace cutput

turn on debugging lrace oulpul

use file descripior id 10 check lypeahead

-3.

CURSES (3X} CURSES{(3X)

unctri{ch)* printable version of ok
waddch{win, ¢h) add chat te win

waddstriwin, sir} &add string to win

wattrofl (win, altrs} turn off airiin win

wattron (win, alirs) Lurn en aifrs in win
waltrset{win, arirs) Set 4irs in win to aifry
welear{win} clear win

welrtobot(win} clear 1o bottom of win
welrtoeol(win) clear 10 end of line on win
wdelch{win, c) delete char lrom win
wileleteln(win) delete line from win
werase(win) erase niy

wgetch{win) get & char through win
wgetstriwin, sir} Eet & siring through win
winchi{win) get char at current (y, x} in win
winsch{win, ¢} ingerl char inte win
winsertln{win} insert line into win
wmove(win, y, x) set current (y, x} co-ordinaies on win
wnoutrefresh{win} refresh bul no sereen output

wprintw(win, fmt, argl, arg2, ...}

priatf on win
wrefresh(win} wake screen look like win
wscanwi{win, Imt, argl, arg2, ...)

scanf through win

wsetscrreg{win, t, b) sel scrolling region of wip
wslandend{win) clear standout atiribute in win
wslandout (win) set slandoul atribule in win

TERMINFQ LEVEL ROUTINES

These routines should be called by programs wishing to deal directly with
the terminfo database. Dwue to the low level of this interface, it is
discouraged. Initially, sesupierm should be called. This will define the set of
terminal dependent variables defined in terminfo(4). The include files
<curses.h> and <term.h> should be included to get the definitions for
these strings, numbers, and flags. Parmeterized strings should be passed
through tparm to instantiate them. Al terminfo strings {including the out-
put of tparm) should be printed with fputs or putp . Before exiting, resetterm
should be called to restore the tty modes. (Programs desiring shell escapes
or suspending with control Z can call resesterm before the shell is called and
Jixterm after returning from the shefl.)

fixterm(} restore tty modes for terminfo use

(called by setuptersn}
resetterm() reset (ty modes to state before program entry
setupterm{term, fd, rc) read in database. Terminal type is the

character string rerm, all output is to UNIX

System file descriptor fif. A status value is

returned in the integer pointed to by r |

is normal. The simplest call would be

setupterm (8, f, 04 which uses all defaults.
tparm{sir, pl, p2, ..., p9)

instantiate string str with parms P;-
tputsistr, affent, pute) apply padding info 1o string st

affent is the number of lines affected,

or 1 if not appticable. Fuicis a

-4.-

CURSES (3X) CURSES (3X)

putchar-like function to which the characters
are passcd, one at a time.

puip(sitr) handy function that calls tputs
(sir, 1, putchar)
vidputs(attrs, pute) output the string to put terminal in video

aitribute mode anrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like
function pute,

vidattriattrs} Like vidputs but outputs through
putchar

TERMCAP COMPATIBILITY ROUTINES

These routines were included as a conversion aid for programs that use
termcap. Their parameters are the same as for termcap. They are emu-
lated using the terminfo database. They may go away at a later date.

tgetent(bp, name) look up termcap entry for name
tgetflag(id) get boolean entry for id

tgetnum {id) get numeric entry for id

tgetstr(id, area) get string entry for id

tgotolcap, col, row) apply parms to given cap

tputs(cap, affcnt, fn) apply padding to cap calling fn as puichar

ATTRIBUTES

The following video attributes can be passed to the functions
atrron, attroff, attrset,

A_STANDOUT . Terminal’s best highlighting mode
A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Haif bright

A _BOLD Extra bright or bold

A_BLANK Blanking (invisible)

A _PROTECT Protected

A_ALTCHARSET Alternate character set

FUNCTION KEYS

The following function keys might be returned by geich if keypad has been
enabled. Note that not all of these are currently supported, due to lack of
definitions in ferminfo or the terminal not transmiiting 2 unique code when
the key is pressed.

Name Value Key name

KEY_BREAK 0401 break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...
KEY_UP 0403

KEY_LEFT 0404

KEY_RIGHT 0405

KEY_HOME 0406 Home key {upward+left arrow)
KEY_BACKSPACE 0407 backspace (unreliable)

KEY_F0 0410 Function keys. Space for 64 is reserved.
KEY_F{n) (KEY_FO0+(n)) Formula for fn.

KEY_DL a510 Delete line

KEY_IL 0511 Insert line

KEY_DC 0512 Delete character

KEY_IC 0513 Insert char or enter insert mode

CURSES (3X)

KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY SF

KEY SR
KEY_NPAGE
KEY_PPAGE
KEY STAB
KEY_CTAB
KEY CATAB
KEY_ENTER
KEY_SRESET
KEY RESET
KEY_PRINT
KEY LL

WARNING

CURSES (3X)

Exit insert char mode

Clear screen

Clear to end of screen

Clear io end of line

Scrolf 1 Line lforward

Scroll 1 line backwards (reverse)
Next page

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send (unreliable)

soft (partial} reset {unreliable}
reset or hard reset (unreliable)
print or copy

home down or bottom (lower left)

The plotting library plof(3X)} and the curses library curses(3X} both use the
names erase() and move(). The curses versions are macros. If you need
both libraries, put the plor(3X) code in a different source file than the
curses(3X)} code, and/or #undef move() and erase() in the pler(3X)} code.

o~

CUSERID (38) CUSERID (38}

NAME
cuserid — get character login name of the user

SYNOPSIS
fHnelude < stdio.h>

char +cuserid (s)
char »s5;

DESCRIPTION
Cuserid generates a character-string representation of the login name that
the owner of the current process is logged in under. If s is a NULL pointer,
this representation is generated in an internal static area, the address of
which is returned. Otherwise, 5 is assumed to point to an array of at least
L_cuserid characters; the representation is left in this array. The constant
L_cuserld is defined in the < stdio.h>> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if 5 is
not a NULL pointer, a null character {\0) is placed at s{0/.

SEE ALSO
getlogin(3C), getpwent(3C).

BUGS
Cuserid uses getpwnam(3C); thus the results of a user’s call to the latter
will be obliterated by a subsequent call to the former.

The name cuserid is rather a misnomer.

DIAL (3C) DIAL (3C)

NAME

dial — establish an out-going terminal line connection

SYNOPSIS

#include <dial.h>>

int dial (call)
CALL call;

void undial {id)
int fd;

DESCRIFTION

Page 1

Dial returns a file descriptor for a terminal line open for read/write. The
argument to dia/ is a CALL structure (defined in the <dial.h> header
file}.

When finished with the terminal line, the calling program must invoke
undial 10 release the semaphore that has been set during the allocation of
the terminal device.

The CALL typedef in the <dial.h> header file is:

typedel struct |

strucl termio ~yttr; £+ pointer to termio attribule struet +/

int baud; #+ Iransmission duta rale =/

int spesd; {* 212A modem: low=300, high=1200 «/

char «lina; #* device name for oul-geing line =/

char slelno; £+ pointer 10 Izl-no digits slring =/

int modem, #+ specify modem control for direct lines «/
| eaLL:

char *device; F* Will hold the name of the device used

1o make g conneclion *f
int dev_len #* The length of the device used

make connection */

The CALL element speed is intended only for use with an outgoing dialed
call, in which case its value should be either 330 or 1200 to identify the
113A modem, or the high-speed or low-speed setting on the 212A modem.
Note that the 113A modem or the low-speed setting of the 212A modem
will transmit at any rate between 0 and 300 bits per second. However, the
high-speed setting of the 2121 modem transmits and receives at 1200 bits
per second only. The CALL element dawd is for the desired iransmission
baud rate. For example, one might set bauwd to 110 and speed to 300 (or
1200). However, if speed is set to 1200 bauwd must be set to high (1200},

If the desired terminal line is a direct line, a string pointer to its device
name should be placed in the line element in the CALL structure. Legal
values for such terminal device names are kept in the L-devices file. In this
case, the value of the boud element need not be specified as it will be
determined from the L-devices file.

The tefno element is for a pointer to a character string representing the tele-
phone number to be dialed. The termination symbol will be supplied by
the dial function, and should not be included in the refno string passed to
dial in the CALL structure.

Juiy 29, 1985

DIAL (3C)

DIAL (3C}

The CALL element modem is used to specify modem conirol for direct lines.
This element should be non-zero if modem control is required. The CALL
element anr is a pointer to a termio structure, as defined in the
< termio.h>> header file. A NULL value for this pointer element may be
passed to the dial function, but if such a structure is included, the elements
specified in it will be set for the outgoing terminal line before the connec-
tion is established. This is important for attributes such as parity and baud
rate.

The CALL element device is used to hold the device name {(cul..) that estab-
lishes the connection.

The CALL element dev_fen is the lengih of the device name that is copied
into the array device.

FILES
fusr/lib/ uucp/L-devices
fusr/spoolfuucp/ LCK.. Hy-device
SEE ALSO
wucp(1C}, alarm(2), read(2), write(3).
termio(7} in the Administrator’s Manual.
DIAGNOSTICS
On failure, a negative value indicating the reason for the failure is returned.
Mnemonics for these negative indices as listed here are defined in the
< dial.h> header file.
INTRPT -1 £+ interrupt occurred =/
D_HUNG —2 /= dialer hung (no return from write) +/
NU_ANS -3 £+ no gnswer wilthin 10 seconds =/
1ILL_BL -4 £+ illegal baud-raie +/
A_PROB -5 #* acu problem {open{) failure) »/
t._FROB -6 £ line problem {open{) failure) «/
NO_Ldv —7 £+ can't open LBEVS file =/
DV_NT_A -8 /¢ requested device not available «f
DV_NT K -9 /= requesied device not known »/
MO_BD_A -10 /+ no device availabie at requested baud «f
NO_BD_K =11 /+ no device known al requesied baud o/
WARNINGS
Including the <«dial.lh>> Theader file automatically includes the
< termio.h>> header file.
Because the above routine uses <stdie.h>>, the size of programs not oth-
erwise using standard I/0Q is increased more than might be expected.
BUGS

July 29, 1985

An alarm(2) system call for 3,600 seconds is made (and caught) within the
dial module for the purpose of “*touching’™ the LCK.. file and constitutes
the device allocation semaphore for the terminal device. Otherwise,
wwcp(1C) may simply delete the LCK.. entry on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or
write(3) system call, causing an apparent error return. If the user program
is to run for an hour or more, ertvor returns from reads should be checked
for (errno= =EINTR), and the read possibly reissued.

Page 2

DIM {3F) DIM (3F)

NAME
dim, ddim, idim — positive difference intrinsic functions

SYNOPSIS
integer al,a2,ad
23 = idim{=l,s2)

real al,a2,a3
a3 = dim(al,a2)

double precision al.a2.,a3
a3 = ddim(al,a2)
DESCRIPTION
These functions return:
al-a2 if al > a2
o if al <<= a2

R—

DIRECTORY(3X) DIRECTORY (3X)

NAME

opendir, readdir, telldir, seckdir, rewinddir, closedir — flexible length directory
operations

SYNOPSIS

#inclode <sys/dir.h>
DIR *opendir(filename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)

DIR *dirp;
seekdir(dirp, loc)

DIR *dirp;

long loc;
rewinddir{(dirp}

DIR *dirp;
closedir(dirp)

DIR *dirp;

cc ... -Indir

DESCRIPTION

The purpose of this library is to simulate the new flexible length directory
names of 4.2BSD UNIX on top of the old directory structare of 4.1BSD. It
allows progtams to be converted immediately 1o the new directory access inter-
face, so that they need only be relinked when 4.2BSD becomes avaitable,

Opendir opens the directory named by filename and associates a directory
stream with it. Opendir returns a pointer 10 be used to identify the directory
streamn in subsequent operations. The pomter NULL is returned if filename can-
not be accessed or is not a directory.

Readdir retums a pointer to the next directory entry, It returns NULL upon
reaching the end of the directory or detecting an invalid seekdir operation,
Telldir returns the current location associated with the named directory stream.
Seekdir seis the position of the next readdir operation on the directory stream.

The new position reverts o the one associated with the directory stream when
the telldir operation was performed, Values remmed by telldir are good only

Page 1 September 28, 1987

DIRECTORY (3X) DIRECTORY (3X)

for the lifetime of the DIR pointer from which they are derived. If the directory
is closed and then reopened, the telidir value may be invalidated duc to
undetected directory compaction. It is safe 1o use a previous felldir value
immediately after a call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of
the directory.

Closedir canses the named directory stream to be closed, and the structure asso-
ciated with the DIR pointer o be freed.

See fusr/include/dir.h for a descripion of the fields available in a directory
entry, The preferred way to search the current directory for entry “‘name’” is:

len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dir))
if (dp->d_namien == len && Istrcmp(dp->d_name, name)) {
closedir{dirp);
retum FOUND;

}
closedir(dirp);
returm NOT_FOUND;

LINKING
This library is accessed by specifying “*-Indir*’ as the last argument to the com-
pile line, e.g.:

cc -0 prog prog.c -Indir

SEE ALSO
fusrfinclude/sys/ndir.h, open(2), close(2), read(2), 1seck(2)

AUTHOR
Kirk McKusick

September 28, 1987 Page 2

DPROD (3F) DPROD (3F)

NAME

dprod — double precision product intrinsic function
SYNOPSIS

real al,a2

double precision a3
23 = dprod {al,al)

DESCRIPTION
Dprod returns the double precision preduct of its real arguments.

DRAND48{(3C) DRAND48(3C)

NAME

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seedd48,
lcong48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS

double drand48 ()

double erand48 (xsubi)
unsigned short xsubil3l;

long Irandd8 ()

long nrand48 (xsubi)
unsigned short xsubil3l;

tong mrandd8 ()

long jrandd8 (xsubi)
unsigned short xsubilil;
void srand48 (seedval)
long seedval;

unsigned short *seed4® (seedlév)
unsigned short seedlévi3l;

vold lcongdB (param)
unsigned short paraml(7l;

DESCRIPTION

This family of functions generates pseudo-random numbers using the well-
known linear congruential algorithm and 48-bit integer arithmetic.
Functions drand48 and erand48 return non-negative double- precision
floating-point values uniformly distributed over the interval [0.0, 1

Functions /rand48 and nrand48 reti;rn non-negative long integers umformly
distributed over the interval {0, 2°

Functions mrand48 and Jrand48 return signed long integers uniformly dis-
tributed over the interval [~2 3

Functions srand48, seed48, and Icong48 are initialization entry points, one
of which should be invoked before drand48, lrand48, or mrand48 is called.
(Although it is not recommended practice, constant default initializer
values are supplied automatically if drand48, Irand48, or mrand48 is called
without a prior call to an initialization entry point.) Functions erand48,
nrand48, and jrand48 do not require an initialization entry point to be
cailed first.

All the routines work by generating a sequence of 48-bit integer values, X;,
according to the linear congruential formula

Xt = (aX, + Omoa m nz0.
The parameter M = 2°%. hence 48-bit integer arithmetic is performed.
Unless fcong48 has been invoked, the multiplier value @ and the addend
value ¢ are given by

a = SDEECE&6D | = 273673163155,

c=B 6™ 13 8-
The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48, or jrand48 is computed by first generating the next 48-

-1-

//'—-"\.

DRAND4E (3C) DRAND48(3C)

bit X; in the sequence. Then the appropriate number of bits, according to
the type of data item to be returned, are copied from the high-order (left-
most) bits of X; and transformed into the returned value.

The functions drand48, trand48, and mrand48 store the last 48-bit X; gen-
erated in an internal buffer; that is why they must be initialized prior to
being invoked. The functions erand48, nrand48, and jrand48 require the
calling program to provide storage for the successive X; values in the array
specified as an argument when the functions are invoked. That is why
these routines do not have to be initialized; the calling program merely has
to place the desired initial value of X, into the array and pass it as an argu-
ment. By using different arguments, functions erand48, wnrand48, and
jrand4§ allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, i.e., the sequence of
numbers in each stream dees sot depend upon how many times the rou-
tines have been called 1o generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32
bits contained in its argument. The low-order 16 bits of X; are set to the
arbitrary value 330E 4.

The initializer function Seed4§ sets the value of X; to the 48-bit value
specified in the argument array. The previous value of A; is copied into a
48-bit internal buffer, used only by seed48. A pointer to this buffer is the
value returned by seed48. The returned pointer, which can be ignored if not
needed, is useful if a program is to be restarted from a given point at some
future time. Use the pointer to get and store the last X; value; then use
this value to reinitialize via seed48 when the program is restarted.

The initialization function lcong4¥ allows the user to specily the initial X;,
the multiplier value g, and the addend value ¢. Argument array elements
param{0-2] specify X;, elements param{3-5] specify the multiplier @, and
param{6] specifies the 16-bit addend c¢. After lcong4& has been called, a
subsequent call to either srand48 or seed48 will restore the *‘standard™
multiplier and addend values, @ and ¢, specified on the previous page.

The routines are coded in portable C. The source code for the portable
version can even be used on computers which do not have flpating-point
arithmetic. 1ln such a situation, functions drand4& and erand48 de not
exist; instead, they are replaced by the following two functions:

long irand48 (m)

unsigned short m;

long krand48 {(xsubi, m)
unsigned short xsubil3], m;

Functions irand48 and krand48 return non-negative long integers uniformiy
distributed over the interval {0, m—11].

SEE ALSO

rand(3C).

ECVT (3C) ECVT (3C)

NAME

ecvt, fovt, gevt — convert floating-point number to siring

SYNOPSIS

char =ecvt (value, ndigit, decpt, sign}
double value;

int ndigit, *decpt, *sign;

char *fcvt {vazlue, ndigit, decpt, sign)
double value;

int ndigit, #decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;

int ndigit;

char +buf;

DESCRIPTION

Ecvt converts value 10 a null-terminated string of ndigit digits and returns a
pointer to this string. The high-order digit is non-zero, unless the value is
zero. The low-order digit is rounded. The position of the decimal point
relative to the beginning of the string is stored indirectly through decpr
{negative means to the left of the returned digits). The decimal point is not
included in the returned siring. If the sign of the result is negative, the
word pointed to by sign is non-zero, otherwise it is zero,

Fevt is identical to ecvt, except that the correct digit has been rounded for
printf “*%f"’ (Fortran F-format)} output of the number of digits specified by
ndigit,

Govt converts the value to a null-terminated string in the array pointed to
by buf and returns byf. It attempis to produce ndigit significant digits in
Fortran F-format, ready for printing; E-format is produced when F-format is
not possible. A minus sign, if there is one, or a decimal point is included
as part of the returned string. Trailing zeros are suppressed.

SEE ALSO

BUGS

printf(38).

The values returned by eevt and fow point to a single static data array.

END {3C) END{3C}

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end:
extern efext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting con-
tenits. The address of etext is the first address above the program text,
edata above the initialized data region, and end above the uninitialized data
region,

When execution begins, the program break (the first location beyond the
data) coincides with end, but the program break may be reset by the rou-
tines of brk(2), malioc (3C), standard input/output (stdio(35)), the profile
(—p) option of cc{1}, and 50 on. Thus, the current value of the program
break should be determined by sbrk(0) (see brk(2)).

These symbols are accessible from assembly language if it is remembered
that they should be prefixed by _.

SEE ALSO
cc(l}, brk(2), malloc(3C), stdio(35).

ERF{3M) ERF{3M)

NAME
erf, erfe — error function and complementary error function

SYNOPSIS
#include < math.h>
double erf (x)
double x:

double erfe (x}
double x;

DESCRIPTION .
. . 2 r_
Erf returns the error function of x, defined as -—-_fe ? dr.
VI

Erfe, which returns 1.0 — erf{x), is provided because of the extreme loss of
relative accuracy if e7f(x) is called for large x and the result subtracted from
1.0 {e.g. for x = 5, 12 places are lost).

SEE ALSQ
exp(IM).

EXP (3F) EXP (3F)

NAME
exp, dexp, cexp — Fortran exponential intrinsic function

/"" SYNOPSIS

: real rl, 12
T double precision dpl, dp2
complex ¢x1, cx2

r2 = explrl)

dp2 = dexp(dpl)
dp2 = expldpl)

cx2 = cloglexl)
ex2 explexl)

DESCRIPTION]
Exp returns the real exponential function ' of its real argument. Dexp
returns the double-precision exponential lunction of its double-precision
argument. Cexp returns the complex exponential Function of its complex
argument. The generic function exp becomes a call to dexp or cexp, as
required, depending on the type of its argument,

SEE ALSO
exp(IM)}.

EXP(3M) EXP(3M)

NAME
exp, log, logl0, pow, sqrt — exponential, logatithm, power, square root

functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
deuble x;

double logl0d (x)
double x;

double pow (x, ¥)
double x, y;

double sqrt (x)
double x;

DESCRIFTION
Exp returns &%,

Log returns the natural logarithm of x. The value of x must be positive,

Logi0 returns the logarithm base ten of x. The value of x must be posi-
tive,
Pow returns x*. If x is zero, y must be positive. If x is negative, y must
be an integer.
Syrt returns the non-negative square root of x. The value of x may not be
negative.

DIAGNOSTICS
F£xp returns HUGE when the correct value would overflow, or & when the
correct value would underflow, and sets errno to ERANGE.

Log and Jjogi0 return —HUGE and set errme to EDOM when x is non-
positive. A message indicating DOMAIN error {or SING error when x is 0)
is printed on the standard error output.

Pow returns 0 and sets errne 10 EDOM when x is 0 and p is non-positive, or
when x is negative and y is not an integer. In these cases a message indi-
cating DOMAIN error is prinied on the standard error output. When the
correct value for pow would averflow or underflow, pow returns + HUGE or
0 respectively, and seis errno to ERANGE,

Sgrt returns 0 and sets errno to EDOM when x is negative. A message indi-
cating DOMAIN error is printed on the standard ertor output.

These error-handling procedures may be changed with the function
marherr(3M).

SEE ALSO
intro(2), hypot(3M), matherr{3IM), sinh(3M}.

FCLOSE (35} FCLOSE (38)

NAME
fclose, fllush — close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE #siream;

int fAush (stream)
FILE *stream;
DESCRIPTION
Fclose causes any buffered data for the named stream to be written out and
the stream t0 be closed.

Felose is performed automatically for all open files upon calling exir(2).

Ffiush causes any buffered data for the named stream to be written to that
file. The stream remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying
to write to a file that has not been opened for writing) was detected.

SEE ALSO
close{2), exit(2), fopen(35), setbuf(38).

FERROR (38) FERROR (38)

NAME

ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS

#include < sidio.h>

int feof (stream)
FILE *stream;

int ferror (stream)
FILE sstream;

void clearerr (stream)
FILE »streams

int fileno (stream)
FILE #*siream;

DESCRIPTION

NOTE

Feof returns non-zero when EOF has previously been detected reading the
named inpuot stream; otherwise, it returns zero.

Ferror returns non-zero when an I/0 error has previously occurred reading
from or writing to the named sirearr; otherwise, it returns zero.

Clearerr reseis the error indicator and EOF indicator to zero on the named
stream.

Fileno returns the integer file descriptor associated with the named stream;
see open(2).

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO

open(2), foren(3s).

FLOOR (3M) FLOOR (3M)

NAME
floor, ceil, fmod, fabs — floor, ceiling, remainder, absolute value functions

£) SYNOPSIS
'\ #include <math.h>

- double floor (x)
double x;

double ceil (x)
double x;

double fmeod (x, ¥}
double x, y;

double fabs {(x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not greater
than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by) zero if
¥ is zero or if x/¥ would overflow; otherwise the number f with the same
sign as x, such that x = iy + ffor some integer /, and i < Iyl.

Fabs returns the absolute value of |x|.

P SEE ALSO
' abs(3C).

FOPEN(38) FOPEN(35)

NAME

fopen, freopen, fdopen — open a stream

SYNOPSIS

#include < stdio.h>

FILE #*fopen (filename, type)
char sfilename, =type;

FILE +freopen (filename, type, stream)
char «filename, *type;
FILE *strecam;

FILE «idopen (fildes, type)
int fildes;
char +type;

DESCRIPTION

Page 1

Fopen opens the file named by fifenmame and associates a stream with it.
Fopen returns a pointer to the FILE structure associated with the stream.

Filename points to a character string that contains the name of the file to be
opened.

Type is a character string having one of the following values:

r open for reading

w truncate or create for writing

a app@nd; open for writing at end of file, or create for
writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at end-ol-file

Frenpen substitutes the named file in place of the open sircam. The original
streant i3 ¢losed, regardless of whether the open ultimately succeeds. Freo-
pen returns a pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated with
stdin, stdout, and stderr to other files.

Fdupen associates a stream with a file descriptor by formatting a file struc-
ture from the file descriptor. Thus, fdepen can be used 10 access the file
descriptors returned by open(2), dup(3), crear(?), or pipe(2). (These calls
open files but do not return pointers to a FILE structure.) The ope of
stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on
the resulting sircam. However, output may not be directlty followed by
input without an intervening /fseck or rewind, and input may not be directly
followed by output without an intervening fsvek, rewind, or an input opera-
tion which encounters end-of-file.

When a file is opened for append (i.e., when fpe is "a" or "a+"), it is
impossible to overwrile information already in the file. Fseek may be used
to reposition the file pointer to any position in the file, but when output is
written to the file the current file pointer is disregarded. All output is

July 22, 1985

FOPEN (38) FOPEN (35)

written at the end of the file and causes the file pointer to be repositioned
at the end of the cutput. If two separate processes open the same file for
append, each process may write freely to the file without fear of destroying
cutput being written by the other. The output from the two processes will
be intermixed in the file in the order in which it is written.

SEE ALSQO
creat(2}, dup{3), open(2), pipe(2), fclose(38), fseck(3S).

DIAGNQSTICS
Fopen and freopen return a NULL pointer on failure.

July 22, 1985 Page 2

FREAD (38) FREAD (35}

NAME

fread, fwrite — binary input/output

SYNOPSIS

#include < stdio.h>

int fread (ptr, size, nitems, stream)
char »ptr;

int size, nitems;

FILE #stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE sstream;

DESCRIFPTION

Fread copies niterns items of data from the named input stream into an
array beginning at per. An item of data is a sequence of bytes (not neces-
sarily terminated by a null byte} of length size. Ffread stops appending
bytes if an end-of-file or error condition is encountered while reading
streant o1 if nitems items have been read. Fread leaves the file pointer in
stream, if defined, pointing to the byte following the last byte read if there
is one. Fread does not change the contents of seream,

Furite appends at most witems items of data from the the array poeinted to
by pir to the named output seream. Fwrite stops appending when it has
appended nitems items of data or if an error condition is encountered on
stream. Fwrite does not change the contenis of the array pointed to by prr,

The variable size is typically sizeoffepir} where the pseudo-Function sizeof
specifies the iength of an item pointed to by per. If pir points to a data type
other than c/ar it should be cast into a pointer to char,

SEE ALSO

read(2)}, write(3), fopen(3$8), getc(35), gets(35), printf(38), putc(3S),
puts(3S), scanf(38),

DIAGNOSTICS

Page 1

Fread and fwrite return the number of items read or written. If size or
nitems is non-positive, no characters are read or written and 0 is returned
by both fread and furite,

July 29, 1985

-

FREXP (3C) FREXP (3C)

NAME
frexp, ldexp, modf — manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, ¢pir)
double value;
int weptr;

double ldexp {value, exp)
double value;
int exp ;

double modf {value, ipir)
double value, =iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x+ 2", where the
“mantissa’ (fraction) x is in the range 0.5 € |x| < 1.0, and the
‘‘exponent’ # is an integer, Frexp returns the mantissa of a double valve,
and stores the exponent indirectly in the location pointed to by epfr. If
value is zero, both results returned by frexp are zero.

Ldexp returns the quantity vafues 277,

Modf returns the signed fractional part of wive and stores the integral part
indirectly in the location peinted to by ipwr.

DIAGNOSTICS
If !dexp would cause overflow, = HUGE is returned (according to the sign of
value), and errno is set 10 ERANGE.
If ldexp would cause underflow, zero is returned and errne is set to
ERRANGE.

FSEEK (38) FSEEK (35)

NAME
fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS
#iachade <stdio.h>>

int fseek (stream, offset, ptrname)
FILE *stream;

long oifset;

int ptrname;

void rewind (stream}
FILE =*siream;

long ftell (stream}
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the siream.
The new position is at the signed distance offser bytes from the beginning,
the current position, or the end of the file, when the value of prruame is 0,
1, or 2, respectively,

Rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value
is returned.

Fseek and rewind undo any effects of ungetc(18).

After fseek or rewind, the next operation on a file cpened for update may
be either input or cutput.

Frell returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

SEE ALSO
1seek{2}, fopen(3S), popen(38}, ungetc(38).

DIAGNOSTICS
Fseek returns non-zero for improper seeks; otherwise it returns zero. An
improper seek can be, for example, an fSeek done on a file that has not
been opened via fopen; in particular, fseek may not be used on a terminal
or on a file opened via popen(3S),

WARNING
On an offset returned by frell is measured in bytes, and it is permissible to
seek to positions relative to that offset, however, portability to systems
other than requires that an offset be used by fseek directly. Arithmetic may
not meaningfully be performed on such an offset, which is not necessarily
measured in bytes.

/.--_

FTOK(3C) FTOK(3C)

NAME
fiok — standard interprocess communication package

SYNOPSIS
#inclode <sys/types.h>
#include <sys/ipc.h>
key_t frok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be
nsed by the msgget(2), semget(2), and shmget(2) system calls to obtain inter-
process communication identifiers. One method for forming a key is to use the
frok subroutine described below. Another way (o compose keys is to include
the project ID in the most significant byte and to use the remaining portion as a
sequence number. There are many other ways to form keys, but it is necessary
for each system to define standards for forming them. If a standard is not
adhered to, unrelated processes may interfere with each other’s operation.
Therefore, it is strongly suggested that the most significant byte of a key in
some sense refer to a project so that keys do not conflict across a given system.
Fiok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls, Path must be the pathname of an existing file
that is accessible to the process. Id is a character that uniquely identifies a pro-
ject. Ftok retums the same key for linked files when called with the same id; it
returns different keys when called with the same filename but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmgei(2).

DIAGNOSTICS
Fiok returns (key_t) —1 if path does not exist or if it is not accessible to the pro-
Ccess.

WARNING
If the file whose path is passed to flok is removed when keys still refer to the
file, future calls to fiok with the same path and id will return an error, If the
same file is recreated, fiok is likely to return a different key than it did the origi-
nal time it was called.

Page 1 Sepiember 28, 1987

FTW ({3C) FTW{(3C)

NAME

ftw — walk a file tree

SYNOPSIS

#include <ftw.h>

int fiw {path, fn, depth)
char =path;

int («fn) ();

int depth;

DESCRIFTION

Frw recursively descends the directory hierarchy rooted in path. For each
object in the hierarchy, fiw calls fn, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat struc-
ture (see stas(2)) containing information sbout the ohject, and an integer.
Possible values of the integer, defined in the < ftw.h> header file, are
FTW_F for a file, FTW_D for a directory, FTW_DNR for a directory that can-
not be read, and FTW_NS for an object for which star could not be executed
successfully. If the integer is FTW_DNR, descendants of that directory will
not be processed. If the integer is FTW_NS, the stat structure will contain
garbage. An example of an object that would cause FTW_NS to be passed
to fir is a file in a directory with read permission but not execute {(search)
permission.

Frw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fi
returns 2 nonzero value, or an error is detected within fiw (such as an 1/0
error). If the tree is exhausted, fiw returns zero. If fn returns a nonzero
value, fiw stops its tree traversal and returns whatever value was returned
by fn. If fiw detects an error, it returns —1, and sets the error type in
Errmo,

Ftw uses one file descriptor for each leve] in the tree. The depth argument
limits the number of file descriptors so used. If depth is zero or negative,
the effect is the same as if it were 1. Depth must not be greater than the
number of file descriptors currently available for use. Fiw runs more
quickly if depth is at Jeast as large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), mailoc{3C).

Because fiw is recursive, it is possible for it to terminate with a memory
fault when applied to very deep file structures.

Few could be made to run faster and use less storage on deep structures at
the cost of considerable complexity.

Fiw uses malloc(3C) to allocate dynaemic storage during its operation. If fiw
is forcibly terminated, such as by longimp being executed by /m or an inter-
rupt routineg, fiw does not have a chance to free that storage, so it remains
permanently allocated. A safe way to handle interrupts is 10 store the fact
that an interrupt has occurred, and arrange to have f# return a nonzero
value at its next invocation.

FTYPE(3F) FTYPE (3F)

NAME
int, #ix, idint, real, float, sngl, dble, cmplx, demplx, ichar, char — explicit
(‘\ Fortran type conversion

SYNOPSIS
. integer i, j
real 1, §
double precision dp, dq
complex cx
double complex dex
character =1 ch

i = int{r)
i = inti{dp)
i = intlcx)
i = inildex)
i = ifix{n)
i = idint{(dp)
r = real(})
r = real(dp)
r = reallex)
r = real(dcx)
r = float(i}
r = sngl{dp)

—_— dp = dble(i)

r dp = dble(r)

" dp = dble(cx)
dp = dble(dcx}
cx = emplx (i)
cx = emplx (i, j)
cx = emplx(r)
cx = cmplx{r, 8
¢x = cmplx (dp)
¢x = cmplx(dp, dq)
cx = cmplx(dcx)
dex = demplx{i)
dex = demplxdi, j)
dex = demplx(r)
dex = demplx(r, s)
dcx = demplx (dp)
dcx = demplx(dp, dq)

dex = demplx(cx)

i = ichar{ch)
ch = char(i)

. DESCRIPTION
/ These functions perform convetsion from one data type to another.

S Int converis to integer form its real, double precision, complex, or double
complex argument. If the argument is real or double precision, Int returns
the integer whose magnitude is the largest integer that does not exceed the
magnitude of the argument and whose sign is the same as the sign of the
argument {i.e., truncation). For complex types, the above rule is applied to

-1-

FTYPE (3F) FTYPE(3F)

the real part. Ifix and ldint convert only real and double precision argu-
ments respectively.

Reanl converts to real form an integer, double precision, complex, or double
complex argument. If the argument is double precision or double complex, as
much precision is kept as is possible. If the argument is one of the complex
types, the real part is returned. Float and sngl convert only integer and
double precision arguments, respectively.

Dble converts any integer, real, compilex, or double complex argument to dou-
ble precision form. If the argument is of a complex type, the real part is
returned.

Cmplx converts its infeger, real, double precision, or double complex
argument(s} to complex form. '

Demplx converts its integer, real, double precision, or complex argument(s)
to double complex form.

Either one or two arguments may be supplied to cmplx and demplx . If
there is only one argument, it is taken as the real part of the complex type
and a imaginary part of zero is supplied. If two arguments are supplied, the
first is taken as the real part and the second as the imaginary part.

Ichar converis from a character to an integer depending on the character’s
position in the collating sequence.

Char returns the character in the ih position in the processor collating
sequence, where {is the supplied argument.

For a processor capable of representing » characters,
tchar{char(i)) = ifor 0 <= < #, and

char(ichar(ch)) = ch for any representable character ch.

GAMMA (3IM)} : GAMMA (3M)

NAME
gamma — log gamma function

SYNOPSIS
#include <math.h>

extern int signgam;

double gamma {(x)
double x;

DESCRIPTION
Gamma returns the natural log of gamma as a function of the absolute
v:lﬁue of a given value, Gamma returns In(|T(x}{), where I'(x) is
defined as

Te"r*“dr.
0

The sign of I'(x) is returned in the external integer signgam. The argu-
ment x may not be a non-positive integer,
The following C program fragment might be used to calculate T':

if {((y = gamma(x}) > LN_MAXDOUBLE)

error();

y = signgam * exp(y);
where LN_MAXDOUBLE is the least value that causes exp{IM) to return a
range error, and is defined in the < values.h> header file.

DIAGNOSTICS

For non-negative integer arguments HUGE is returned, and errio is set to
EDOM. A message indicating SING error is printed on the standard error
gutput,
If the correct value would overflow, gamma returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr(3M),

SEE ALSO
exp(3M), matherr(3M), values(5).

GETARG (3F) GETARG (3F)

NAME
getarg — return Fortran command-line argument
SYNOPSIS
charactersN ¢
Integer i
getarg (i, c)
DESCRIPTION -
Gretarg returns the /-th command-line argument of the current process.
Thus, if a program were invoked via
foo argl arg2 argd
getarg (2, ¢) would return the string arg2 in the character variable c.
SEE ALSO

getopt(3C).

o

GETC (38) GETC (38)

NAME

getc, getchar, fgetc, getw — get character or word from a stream

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE »stream;

int getchar ()

int fgete (siream)
FILE *stream;

int getw (stream)
FILE ssiream;

DESCRIPTION

Gete returns the next character (i.e., byte) from the named input stream, as
an integer. 1t also moves the file pointer, if defined, ahead one character in
streant. Getchar is defined as gete (sedin). Gete and getchar are macros.

Frete behaves like gere, but is a Function rather than a macro. Fgefe runs
more slowly than gere, but takes less space per invocation and its name can
be passed as an argument to a function.

Getw returns the next word {32-bit integer on a 68000) from the named
input steam, Getw increments the associated file pointer, if defined, to
point to the next word. Cerw assumes no special alignment in the file.

SEE ALSO

fclose(38), ferror(3S), fopen(35), fread (35}, gets(35), putc(3S), scanf(35),
ungetc{35).

PIAGNOSTICS

These functions return the constant EOF at end-of-file or upon an error.
Because EQF is a valid integer, ferror(35) should be used to detect geiw
errors.

WARNING

BUGS

Page 1

If the integer value returned by getc, geichar, or fieic is stored into a char-
acter variable and then compared against the integer constant EQOF, the
comparison may never succeed, because sign-extension of a character on
widening to integer is machine-dependent.

Because it is implemented as a macro, gelc treats incorrectly a stream argu-
ment with side effects. In particular, getc(+f++} does not work sensibly.
Fgene should be used instead.

Because of possible differences in word length and byte ordering, files writ-
ten using prrw are machine-dependent, and may not be read using gerw on
a different processor.

July 22, 1985

GETCWD (3C) GETCWD{3C)

NAME
getewd — get pathname of current working directory

SYNOPSIS
char sgetewd (buf, size)

char *buf;
int size;

DESCRIPTION
Getewd returns a poinier to the current directory pathname. The value of
size must be at least two greater than the length of the pathname to be
returned.
If byf is a NULL pointer, getewd obtains size bytes of space using
malloc(3C). In this case, the pointer returned by getcwd may be used as the
argument in a subsequent call io free.
The function is implemented by using popen(38) to pipe the output of the
pwd(1) command into the specified string space.

EXAMPLE
char sewd, *getewd();
if ((cwd = getewd((char ©)NULL, 64)) == NULL) {
perror(**pwd™);
exit(1);
printf(*%s\n"’, cwd),
SEE ALSQ
pwd(1}, malloc(3C), popen(38).
DIAGNOSTICS

Returns NULL with errne set if size is not large enough, or if an error
occurs in a lower-level function.

GETDTABLESIZE (3N) UaiSoft GETDTABLESIZE (3N)

NAME

getdiablesize — get descriptor table size
SYNOPSIS

nds = getdtablesize(

int nds;

e ... —lnet

DESCRIPTION
Each process has a fixed size descriptor table which is guaranteed to have at
least 20 slots. The entries in the descriptor table are numbered with small
integers starting at 0. The call gesdfablesize returns the size of this table.
LINKING

This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

ec —o prog prog.c —Inet

SEE ALSO
close(2), dup(3), open(2)

Page 1 July 22, 1985

GETENV{(3C) GETENV (3C)

NAME
getenv — return value for environment name

SYNOPSIS
char sgetenv {name)
char sname;

DESCRIPTION
Getenv searches the environment list (see enwiron(5)) for a string of the
form name= value, and returns a pointer to the vafue in the current
environment if such a string is present, otherwise a NULL pointer is
returned.

SEE ALSO
exec(2), putenv(3C), environ(5).

GETENYV (3F) GETENYV {3F}

NAME

getenv — return Fortran environment variable
SYNOPSIS

character +N ¢

getenv (TMPDIR, c)

DESCRIPTION
Getenv returns the character-string value of the environment variable
represented by its first argument into the character variable of its second
argument. If no such environment variable exists, all blanks are returned.

SEE ALSO
getenv(3C), environ(5).

GETGRENT(3C} GETGRENT (3C)

NAME

getgrent, getgrgid, geigraam, setgrent, endgrent, fgetgrent — obfain group
file entry from a group file

SYNOPSIS

##include <grp.h>>

struct group sgetgrent {)
struct group sgetgrgid (gid)
int gid;

struct group +getgroam (name}
char »*name;

void setgrent ()

struct group +fgetgrent (f}
FILE *f;

void endgrent ()

DESCRIPTION

FILES

Getgrent, getgrgid, and getgrmam each return pointers to an object with the
following structure containing the brokem-out fields of a line in the
fetc/group file. Each line coniains a group structure, defined in the
< grp.h>> header file.

struct group {

char +gr_name; /+the name of the group +/

char sgr_passwd; /+ the encrypted group password =/

int Br_gid; /+ the numerical group ID +/
| char ssgr_mem; /+ vector of pointers to member names */
When first called, gergrent returns a pointer to the first group structure in
the file; thereafter, it returns a pointer to the next group structure in the
file; therefore, successive calls may be used to search the entire file. Ger-
grgid searches from the beginning of the file until a numerical group id
matching gid is found; it returns a pointer to the particular structure in
which the match was found. Getgrram searches from the beginning of the
file until a group name matching name is found; it returns a peinter to the
particular structure in which the match was found. If an end-of-file or an
error is encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is
complete.

Fgergrent returns a pointer to the next group structure in the siream f,
which maiches the format of /ete/group.

fetc/group

SEE ALSO

getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

WARNING -

The above routines use < stdic.h>. This causes them to increase the size

-1-

//"“\

GETGRENT (3C) GETGRENT (3C)

of programs not otherwise using standard 170 more thsn might be
expected.

BUGS

All information is contained in & static area, so it must be copied if it is to
be saved,

GETHOSTENT{(3N) UniSoft GETHOSTENT (3N}

NAME

gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent — get
network host entry

SYNOPSIS

#include < netdh.h>
struct hostent *gethostent()

struct hostent *gethostbyname(name)
char *name;

struct hosteant *gethosibyaddr(addr, len, type)
char *addr; int len, type;

sethostent (stayopen)
int stayopen

endhostent ()
o ... —Inet

DESCRIPTION

FILES

Page 1

Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an
object with the following siructure containing the broken-out fields of a line
in the network host data base, /rw/fiosis.

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */

int h_addrtype: /* address type */

int h_length; /* length of address */
char *h_addr; /* address */

L
The members of this structure are:
h_name Official name of the host.
h_aliases A zero terminated array of alternate names for the host.
h_addrtype The iype of address being returned; currently always

AF_INET.
h_length The length, in bytes, of the address.
h_addr A pointer to the network address for the host. Host addresses

are returned in network byte order.
Gerhostent reads the next line of the file, opening the file if necessary.

Sethasient opens and rewinds the file. 1f the stayopen flag is non-zero, the
host data base will not be closed after each call to gethostens (either directly,
or indirectly through one of the other gethost calls).

Endhostent closes the file.

Gethostbyname and gerhosthyaddr sequentially search from the beginning of
the file until a matching host name or host address is found, or until EOF
is encounterad. Host addresses are supplied in network order.

fetc/hosts

July 22, 1985

GETHOSTENT (3N) UniSoft GETHOSTENT (3N}

LINKING
This library is accessed by specifying —Imnet as the last argument o the
compile line, e.g.:

¢¢c ~0 prog prog.c —Inet
SEE ALSOQ
hosts(4N)

DIAGNOSTICS
Null pointer (0} returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to
be saved. Only the Internet address format is currently understood.

July 22, 1985 Page 2

GETLOGIN {3C} GETLOGIN (3C)

NAME
getlogin — get login name
SYNOPSIS
char sgetlogin ();
DESCRIPTION :

Getlogin returns a pointer to the login name as found in /etc/utmp. It may
be used in conjunction with gefpwnam to locate the correct password file
entry when the same user ID is shared by several login names.

If gerlogin is called within a process that is not attached to a terminal, it

returns a NULL pointer. The correct procedure for determining the login
name is to call cuserid or getlogin. If getlogin fails, call getpwuid.

FILES
fetc/utmp

SEE ALSO
cuserid(38), getgrent{3C), getpwent(3C), utmp(4).

DIAGNOSTICS
Getlogin returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is overwritten by each

call.

-

GETMNTENT(3) GETMNTENT(3)

NAME

setmntent, getmntent, addmntent, endmntent - get file system descriptor file
entry

SYNOPSIS

#include «<stdio.h>

#include <nntent.hy>

FILE *setmntent(filep, type)
char *filep;

char *fype;

struct mntent *getmntent(filep)
FILE *fiep;

int addmntent{filep, mni)

FILE “filep;

struct mntent *may;

int endmntent(filep)
FILE *filep;

DESCRIPTION

These routines access the file system description file /etc/fstab, and the
mounted file system description file /etc/mnitab.

Setmntent opens a file system description file and retumns a file pointer for use
with getmnient , addmntent , or endmntent . The type argument is the same as in
fopen (3). Getmntent reads the next line from filep and retums a pointer to an
object with the following stracture containing broken-out fields of a line in the
file system description file, mattab.hi . The ficlds have meanings described in as
follows:
struct mmtant {

char *mut_fsaame; /* file system name */

char *mnt_dir; /* file system path prefix ¥/
]
Addmntent adds the mntent structure mnt to the end of the open file filep . Note
that filep has w be opened for writing if this is to work, Endmnient closes the
file.

RETURN YALUE

NULL pointer (0) retamed on EQF or error.

Page 1 September 28, 1987

GETMNTENT(3) GETMNTENT (3}

FILES
fetc/mnttab
SEE ALSO
mnitab(4)
BUGS

The returned mintent structure points to static information that is overwritien in
each call.

September 28, 1987 Page 2

~

GETNETENT (3N) UniSoft GETNETENT (3N)

NAME

SYNOP

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent —. get net-
work entry

SIS
#include < netdb.h>

struct netent *getnetent()

struct netent *getnetbyname(name)
char *name; .

struet netent *getnetbyaddr(net)
long net;

setnetent{(stayopen}
int stayopen

endnetent()
e ... —Inet

DESCRIPTION

FILES

Getnetent, getnetbyname, and getnethvaddr each return a pointer te an object
with the following structure containing the broken-out fields of a line in the
network data base, ferc/networks.

struct netent {

char *n_name; /* official name of net */
char **n_aliases; /* alias list */

int n_addrtype; /* net number type */
long n_net; /* net number */

L
The members of this structure are:
n_name The official name of the network.
n_aliases A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently conly
AF_INET.

n_net The network number. Network numbers are returned in
machine byte order.

Uetnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the
net data base will not be closed after each call to gernetent (either directly,
or indirectly through one of the other getnel calls).

Endnetent closes the file.

Gemetbyname and getnetbyaddr sequentially search from the beginning of
the file until a matching net name or net address is found, or until EOF is
encountered. Network numbers are supplied in host order.

fete/ networks

LINKING

Page 1

July 22, 1985

GETNETENT (3N) UniSoft GETNETENT (3N)

This library is accessed by specifving —lInet as the last argument to the
compile line, e.g.:

o¢ —o prog prog.c —Inet
SEE ALSO
networks(4N}

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to
be saved. Only Internet network numbers are currently understood.
Expecting network numbers to fit in no more than 32 bits is probably naive.

July 22, 1985 Page 2

GETOPT (3C)} GETOPT (3C)

NAME

getopt — get option letter from argument vector

SYNOPSIS

int getopt (argc, argv, optstring)
int argc;
char »=argy ; +optstring ;

extern char »optarg;
extern Int optind, opterr;

DESCRIFTION

Getopr returns the next option letter in orgv that matches a letter in opr-
string. Optstring is a string of recognized option letters; iff a letter is fol-
lowed by a colon, the option is expected to have an argument that may or
may not be separated from it by white space. Oprarg is set to point to the
start of the option argument on return from geropt.

Getopt places in optind the argv index of the next argument to be processed.
Because optind is external, it is normally initialized to zero automatically
before the first call to gefopt.

When all options have been processed (i.e., up to the first non-option argu-
ment), getopt returns EOF. The special option — — may be used to delimit
the end of the options; EOF will be returned, and — — will be skipped.

DIAGNOSTICS

Getopt prints an error message on siferr and returns a question mark (?)
when it encounters an option letter not included in opistring, This error
message may be disabled by setting oprerr to 0.

EXAMPLE

Page 1

The following code fragment shows how one might process the arguments
for a command that can take the mutually exclusive options a and b, and
the options f and o, both of which require arguments:

main {arge, argy)
int arge;
char »=argv,

int c;
extern int optind;
extern char =oplarg,

while {{c = getopt (argc, argv, "abfo:")) != EOF)
switch (¢) {
case ‘a"
if {bflg)
ertflg+ +;
clse
aflg++:
break;
case ‘b
it (aflg}
errflg+ +;

July 22, 1985

GETOPT (3C) GETOPT (3C)

else
bproc();
break:
case 'f
ifile = optarg;
break;
case ‘o
ofile = optarg;
break:
case "7
errflg + +;

if (errflg) {
fprintf (stderr, "usage: . . . ")
exit (2);

for { ; optind < argc; optind++) |
if {access (argvloptind]l, 4)) {

}

SEE ALSO
getopt(1).

July 22, 1985 Page 2

e

GETPASS (3C) GETPASS(3C)

NAME
getpass — read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPFTION
Getpass reads up to a newline or EOF from the file /dev/ity, after prompt-
ing on the standard error output with the null-terminated string prompt and
disabling echo. A pointer is returned to a null-terminated string of at most
B characters. If /dev/tty cannot be opened, a NULL pointer is returned.
An interrupt terminates input and sends an interrupt signal to the calling
program before returning.

FILES
Jdev/ity

SEE ALSO
crypt(3C).

WARNING
The above routine uses < stdio.h>. This causes the size of programs not
otherwise using standard 1/0 to increase more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each
call.

GETPROTOENT (3N) UniSoft GETPROTOENT (3N)

NAME

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent
— get protocol entry

SYNOPSIS

#include <netdb.h>
struct protoent *getprotoent(}

struct proteent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber{proto)
int proto;

setprotoent (stayopen}
Int stayopen

endprotoent ()
c¢ ... —Inet

DESCRIPTION

FILES

Getprotoent, getprotobyname, and getprotobyuumber each return a pointer to
an object with the following structure containing the broken-out ficlds of a
line in the network protocol data base, fetc/protocols.

struct protoent |

char *p_name, /* official name of protocol */
char **p_aliases; /* aliag list */
long p_proto; /* protocol number */

I8
The members of this structure are:
p_name The officiat name of the protocol.
p_aliases A zero terminated list of alternate names for the protocol.
p_proto The protocol number.
Gerprotoent reads the next line of the file, opening the file if necessary.

Setprotvent opens and rewinds the file. If the srayopen flag is non-zero, the
net data base will not be closed after each call to gerproroent (either directly,
or indirectly through one of the other getproto calls).

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning
of the fle until a matching protocol name or protocol number is found, or
until EQF is encountered.

fete/protocols

LINKING

Page 1

This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

cec —o prog prog.c —Inet

July 22, 1985

GETPROTOENT (3N} UniSoft GETPROTOENT (3N)

SEE ALSO
protocols(4N}

DIAGNOSTICS
Null pointer {0) returned on EQF or ercor.

BUGS
All information is contained in-a static area so it must be copied if it is to
be saved. Only the Internet protocols are currently understood.

July 22, 1985 Page 2

GETPW {3C) GETPW (3C)

NAME
getpw — get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char +buf;

DESCRIPTION
Getpw searches the password file for a user id number that equals wid,
copies the line of the password file in which wid was found into the array
pointed to by buf, and returns 0. The line is null terminated. Gepw
returns non-zero if #id cannot be found.
This rootine is included only for compatibility with prior systems and
should not be used; see getpwent(3C) for routines to use instead.

FILES
fetc/ passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Geipw returns non-zero on error.

WARNING

The above routine uses < stdio.h> . Therefore, the size of programs not
otherwise using standard [/0 is increased more than might be expected.

&

GETPWENT (3C) GETPWENT (3C)

NAME

SYNOFSIS

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent — get pass-
word file entry

#include <pwd.h>
struct passwd +getpwent {)

struct passwd egeipwuld {uid)
int uvid;

struct passwd *getpwnam (name)
char ename;

void setpwent ()
void endpwent ()

struct passwd *fgetpwent (D
FILE of;

DESCRIFTION

Getpwent, getpwuid, and getpwnam cach return a pointer to an object with
the following structure containing the broken-out fields of a line in the
fete/passwd file. Each line in the file contains a passwd structure, declared
in the <pwd.h> header file:

struct passwd [
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char »pw_dir;
char +pw_shell,
I
Because this structure is declared in <pwd.h>>, it is not necessary to rede-
clare it.

The pw ceomment field is unused; the others have meanings described in

When first called, getpwent returns a pointer to the first passwd structure in
the file; thereafter, it returns a pointer to the next passwd structure in the
file; therefore, successive calls can be used to search the entire file.
Gerpwuid searches from the beginning of the file uniil a numerical user id
matching wid is found, it returns a pointer to the particular structure in
which the maich was found. Geipwnam searches from the beginning of the
file until a login name matching neme is found; it returns a pointer to the
particular structure in which the match was found. If an end-of-file or an
error is encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches, Endpweni may be called to close the password file when
processing is complete.

GETPWENT (3C) GETPWENT (3C)

Fgetpwenr Teturnsg a pointer to the next passwd structure in the stream f,
which matches the format of /etc/passwd.

FILES
fetc/passwd
SEE ALSO
cuserid(38), getlogin(3C), getgrent(3C), passwd(4).
DIAGNOSTICS
A NULL pointer is returned on EOF or error.
WARNING
The above routines use <<stdio.h>>. Therefore the size of programs not
otherwise using standard 170 is increased more than might be expected.
BUGS

All information is contained in a static area, so it must be copied if it iz to
be saved.

GETS (38} GETS (38)

NAME

gets, fgets — get a string from a stream

SYNOPSIS

#include < stdio.h>

char +gets (s)
char *s;

char =fgets (s, n, stream)
char #s;

int n;

FILE *siream;

DESCRIPTION

Gets reads characters from the standard input stream, sidin, into the array
pointed to by s, untiil a new-line character is read or an end-of-file condition
is encountered. The new-line character is discarded and the string is ter-
minated with a null character.

Fgets reads characters from the stream into the array pointed to by s until
n—1 characters are read, or a new-line character is read and transferred to
s, or an end-of-file condition is encountered. The string is then terminated
with a null character.

SEE ALSO

ferror(35), fopen(38), fread(38), geic(38), scanf(3S).

DIAGNOSTICS

NOTE

If end-of-file is encountered and no characters have been read, no charac-
ters are transferred to s and a NULL pointer is returned. If a read error
{e.g., trying to use these functions on a file that has not been opened for
reading) occurs, a NULL pointer is returned. Otherwise 5 is returned.

Gets deleies the new-line ending its input, but fzets keeps it.

GETSERVENT (3N} UniSof GETSERVENT (3N)

NAME

getservent, getservbyport, getservbyname, setservenl, endservent — get
service entry

SYNOPSIS

##include < netdb.h>>
struct servemt *getservent()

struet servent *getservbyname(name, proio)
char *name, *proto;

struct servent *getservbyport{port, proto}
int port; char *proto;

setservent{stayopen)
int stayopen

endservent()
e ... —Inet

DESCRIFTION

FILES

Getservent, getservbyname, and getservbyporr each return a peinter to an
object with the following structure containing the broken-out fields of a line
in the network services data base, /et /Services.

struct servent [

char *s_name; /* official name of service */
char **s_aliases; /* alias list */

long s_port; /* port service resides at *f
char *s_proto; /* protocol to use */

The members of this structure are:
s_name The official name of the service.
s_aliases A zero terminated list of alternate names for the service.

§_port The port number at which the service resides. Port numbers are
returned in network byte order.

s proto The name of the protocol to use when contacting the service.
Gerservent reads the next line of the file, opening the file if necessary.

Serservent opens and rewinds the file, If the stayopen flag is non-zero, the
net data base will not be closed after each call to gerservens (either directly,
or indirectly through one of the other getserv calls).

Endservent closes the file.

Getservhyname and getservbyport sequential]ly search from the beginning of
the file until a matching protocol name or port number is found, or until
EOF is encountered. If a protoco] name is also supplied (nor-NULL),
searches must also match the protocol.

{ete/services

LINKING

Page 1

July 22, 1985

GETSERYENT (IN) UniSoft GETSERVENT (3N)

This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

¢ —o prog prog.c ~lnet
SEE ALSO
getprotoent{3N), services(4N)
DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is confained in a static area so it must be copied if it is to
be saved. Expecting port numbers to fit in a 32 bit quantity is probably
naive.

July 22, 1985 Page 2

GETUT(3C) GETUT(3C)

NAME
geitent, getutid, getutline, pututline, setutent, endutent, utmpname — access
utmp file entry

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

struct utmp *getutent { }

struet utmp *getutid (id)
struct utmp *id;

struct otmp *getutline (line)
struct utmp *line;

void putuniline (utmp)
struct utmp *atmp;

void setmtent {)
void endutent ()

void utmpname (file)
char «file;
DESCRIPTION
Getutent, getutid, and getutline each retwn a pointer to a structure of the fol-
lowing type:

struct utmp {
char ut_vser[8]; /» User login name «/
char ut_id[4]; f* fetcfinittab id (usvally line #) +/
char ut_linef12]; f* device name {console, Inxx) «/
short ut_pid; /* process id =/
short ut_type; /* type of entry +/

struct exit_status [
short e_termination; /* Process termination status */

short e_exit; [+ Process exit status */
} ut_exit; /* The exit status of a process
/* marked as DEAD_PROCESS. */
time_t ut_time; /* time entry was made */

I
Getutent reads in the next entry from a wmp-like file, If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

Page 1 September 24, 1987

GETUT(3C) GETUT(3C)

Getutid searches forward from the current point in the utmp file untl it finds an
entry with a ut_fype matching id—>ut type if the type specified is RUN_LVL,
BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, getu-
tid will return a pointer to the first entry whose type is one of these four and
whose u¢_id field matches id->ut_id. Getutid fails if the end of file is reached
without a match,

Getutline searches forward from the current point in the wmp file until it finds
an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a
ut_line string matching the line—>ut_line string, If the end of file is reached
without a match, it fails.

Pututline writes out the supplied utmp strocture into the utmy file. It uses getu-
tid 10 search forward for the proper place if it finds that it is not already at the
proper place, It is assumed that the wser of pwrutline has searched for the
proper entry using one of the getut routines. I this has been done, puutline
will not search, If pututline does not find a matching slot for the new entry, i¢
will add a new entry 1o the end of the file.

Setutent resets the input stream to the beginning of the file. This should be

done before each search for a new entry if it is desired that the entire file be
examined.

Endutent closes the currently open file,

Utmpname allows the user to change the name of the file examined from
letclutmp to any other filename. It is expected that most ofien this other file
will be /etc/wtmp. If the file doesn’t exist, this will not be apparent until the
first attempt to reference the file is made. Utmpname does not open the file. k
just closes the old file, if it is currently open, and saves the new filename,

FILES
fetcfutmp
feic/wimp
SEE ALSO
ttyslot(3C), utmp(4).
DIAGNOSTICS -
A NULL pointer is retwrned upon failure 1o read or write. Failure to read may
be due to permissions or because end-of-file has been reached,

September 24, 1987 Page 2

GETUT(3C) GETUT(3C)

COMMENTS

The most current entry is saved in a static structure. Multiple accesses require
that it be copied before further accesses are made. Each call to either getutid or
getutline sees the routine examine the static structure before performing more
1/0. If the search of the static structure results in a match, no further search is
performed. To use getutline to search for multiple occurences, zero out the
static structure after each success; otherwise getutline will just retum the same
pointer over and over again. There is one exception to the rule about removing
the smuctare before further reads are done, If the implicit read done by putus-
line finds that it isn't already at the comect place in the file, the contents of the
static structure retarned by the getutent, getutid, or getutline routines are not
harmed, if the user has just modified those contents and passed the pointer back
to putusline.

These routines use buffered standard O for input, but putetline uses an unbuf-
fered non-standard write to avoid race conditions between processes trying to
modify the utmp and wimp files.

Page 3 September 24, 1987

HSEARCH (3C) HSEARCH (3C)

NAME
hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS
#inciude <search.h>

ENTRY shsearch (item, action)
ENTRY ftem;
ACTION action;

int hereate (nel}
unsigned nel;

void hdestroy ()

DESCRIPTION

Hsearch is a hash-iable search routine generalized from Knuth (6.4) Algo-
rithm D. It returns a pointer into a hash table indicating the location at
which an entry can be found. fremn is a structure of type ENTRY (defined in
the < search.h> header file) containing two pointers: ftem.key points to the
comparison key, and irem.data poinis to any other data to be asscciated
with that key. {(Pointers to types other than character should be cast to
pointer-to-character.) Action is a member of an enumeration type ACTION
indicating the disposition of the entry if it cannot be found in the table.
ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuc-
cessful resolution is indicated by the return of a NULL pointer.

Hereate allocates sufficient space for the table, and must be called before
hsearch is used. Nel is an estimate of the maximum number of entries that
the table will contzin. This number may be adjusted upward by the algo-
rithm in order to obtain certain mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by another call to
hcreate.

NOTES
Hsearch uses open addressing with a multipiicative hash function. However,
its source code has many other options available which the user may select
by compiling the hsearch source with the following symbols defined to the

preprocessor:
Drv Use the remainder modulo tabie size as the hash function
instead of the multiplicative algorithm.
USCR Use a User Supplied Comparison Routine for ascertain-

ing table membership. The routine should be named
heompar and should behave in a manneer similar to
stremp (see string(3C)).

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become available.

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in des-
cending order.

- 1-

HSEARCH (3C) HSEARCH (3C)

Additionally, there are preprocessor flags for obtaining debugging printout
{—DDEBUG) and for including a test driver in the calling routine
(—DDRIVER)}. The source code should be consuited for further details.

EXAMPLE :
The following example will read in strings followed by two numbers and
store them in a hash table, discarding duplicates. It will then read in strings
and find the matching entry in the hash table and print it out.

#include < stdio.h>
#tinclude < search.h>

struct info { /+ this is the info stored in the table »/
int age, room; /7« other than the key. »/
B

#define NUM_EMPL 5000 /» # of ¢lements in search table «/

main()

!
/v space to store strings =/
char string_space[NUM_EMPL#20];
/+ space to store employee info */
struct info info_space[NUM_EMPL];
#+ next avail space in string space *+/
char “sir_ptr = string_space;
/+ next avail space in info_space »/
struct info +info_ptr = info_space;
ENTRY item, *found_item, *hsearch{ };
/+ name 10 look for in table +/
char name_to_find[30];
int i = 0;

/+ create table =/

{void) hcreate{NUM_EMPL);

while (scanf("%s%d%d", str_pir, &info_ptr—:-age,
&info_ptr—>>r1o0om) !|= EQF && i++ < NUM_EMPL) |
S+ put info in structure, and siructure in item +/
itemn.key = str_ptr;
item.data = (char #)info_pir;
str_ptr += strlen(str_ptr} + 1;
info_pte++;
/+ put item into table «/
{void) hsearch{item, ENTER};

]

I access table »/
item.key = name_to_find;
while (scanf{"%s", item.key) != EOF) |
if {((found_item = hsearch(item, FIND}) !'= NULL} {
/+ il item is in the table «/
{void)printf("found %s, age = %d, room = %d\n",
found_item— == key,
((struct info +}found_jtem— > data)— > age,
" ((struet info #)found_item— > data)— > room);

.2.

HSEARCH (3C) HSEARCH (3C)

J else |
(void)printf("no such employee %s\n",
name_to_find)

j

SEE ALSO
bsearch(3C), Isearch(3C}, malloc(3C), malioc(3X)}, string(3C),
tsearch(3C).

DIAGNOSTICS
Hsearch teturns a NULL pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is fuil.

Hereate returns zero if it cannot allocate sufficient space for the table.

WARNING
Hsearch and hcreate use malioc{3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

HYPOT (3M) HYPOT (3M)

NAME
hypot — Euclidean distance function

SYNOPSIS
#include < math.h>

double hypot {x, y)
double x, y;

DESCRIFTION
Hypot returns the following, taking precautions against unwarranted
overflows:

sgrt{x s x + y=y)

DIAGNOSTICS
When the correct value would overflow, Aypot returns HUGE and sets errno
to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(IM).

TIARGC (3F) IARGC (3F}

NAME

fargc
SYNOPSIS

integer i

i = iargeQ)

DESCRIPTION
The iarge function returns the number of command line arguments passed

to the program. Thus, if a program were invoked via
foo argl arg? argd

jarge () would return “*3”.

SEE ALSO
getarg (3F).

INDEX (3F} INDEX (3F)

NAME
index — return location of Fortran substring
SYNOPSIS
character *N1 chil
character *+N2 ch2
integer i
i = index{chl, ch2)
DESCRIPTION
Index returns the location of substring ch2 in string ¢hf. The value

returned is either the position at which substring ¢A2 starts or 0 if chl is
not present in string chi,

INET {3N) UniSoft INET {3N)

NAME

inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet Inaof, inet_netof
— Internet address manipulation routines

SYNOPSIS

#include < sys/socket.h>>
#include < netinet/in.h>
#include < arpa/inet.h>

struct in_addr imet_addr{cp}
char "cp;

int inet_network (cp}
char *cp;

char *lnet_ntoa{in)
struct inet_addr in;

struct in_addr inet_makeaddr(net, Ina)
int net, Ina;

int inet_Inaof (in)
struct in_addr In;

int inet_petof(in)
struct in_addr in;

ec ... —Inet

PESCRIPFTION

The routines inet_addr and iref_neiwork each interpret character strings
representing numbers expressed in the [nternet standard *‘.* notation,
returning numbers suitable for use as Internet addresses and Internet net-
work numbers, respectively. The routine inet mroa takes an Internet
address and returns an ASCII string representing the address in **.” nota-
tion. The routine iner makeaddr takes an Internet network number and a
local network address and constructs an Internet address from it. The rou-
tines inet_netof and imet_lngof break apart Internet host addresses, returning
the network number and local network address part, respectively.

All Internet address are returned in network order (bytes ordered from left
to right). All network numbers and local address parts are returned as
machine format integer values,

INTERNET ADDRESSES

Page 1

Values specified using the **."’ notation take one of the following forms:
a.b.cd
a.b.c
a.b
a
When four paris are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right most two bytes of the network address.
This makes the three part address format convenient for specifying Class B
neiwork addresses as “*128.net.host™.

July 22, 1985

INET (3N} UniSoft INET (3N)

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right most three bytes of the network address.
This makes the two part address format convenient for specifying Class A
network addresses as “net.host’’,

When only one part is given, the value is stored directly in the network
address without any byte rearrangement.

[T}

All numbers supplied as “‘parts™ in a ‘“.”’ notation may be decimal, octal,
or hexadecimal, as specified in the C language (i.e. a leading Ox or 0X
implies hexadecimal; otherwise, a leading 0 implies octal, otherwise, the
number is interpreted as decimal).

LINKING
This library is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

cc —o prog prog.c —inet

SEE ALSO
gethostent(3N), getnetent(3N), hosts(4N), networks(4N),

DIAGNOSTICS)
The value —1 is returned by inet_addr and inei_network for malformed
requests.

BUGS

The probiem of host byte ordering versus network byte ordering is confus-
ing. A simple way to specify Class C network addresses in a manner simi-
lar to that for Class B and Class A is needed. The string returned by
inei_ntoq resides in a static memory ares.

July 22, 1985 Page 2

INSQUE (3N) UniSoft

NAME

insque, remque — insert/remove element from a queue

SYNOPSIS

struet gelem {
struct qelem *q_forw;
struct qelem *q_back;
char q_datall;
insque(elem, pred)
struct gelem *elem, *pred;
remgque{¢lem)
struct gelem *elem;

e ... —Inet

DESCRIPTION
Insque and remgue manipulate queues built from doubly linked lists. Each
element in the queue must in the form of “‘struct gelem®'. /nsque inserts
elemt in a queue immediately after pred, remgie removes an entry elem from

a queue,

LINKING
This library is accessed by specifying —Inet as the last argument to the

Page 1

compile line, e.g..

oc — o prog prog.c —Inet

INSQUE {3N)

July 22, 1985

KILLPG (3N} UgiSoft " KILLPG (3N)

NAME
killpg — send signal to a process group

SYNOPSIS
kitlpg (pgrp, sig)
int pgrp, sig;
e ... —Inet

DESCRIPTION
Kiflpg sends the signal sig to the process group pgrp.

The sending process and members of the process group must have the
same effective user ID, otherwise this call is restricted to the super-user.
As a single special case the continue signal SIGCONT may be sent to any
process which is a descendant of the current process,

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and the global variable ¢rrao is set to indicate the error.

ERRORS

Kilipg will fail and no signal will be sent if any of the lollowing occur:

[EINVAL} Sig is not a valid signal number.

{(ESRCHI No process can be found corresponding to that specified by
pid,

[EPERM] The sending process is not the super-user and one or more
of the target processes has an effective vser ID different
from that of the sending process.

LINKING

This fibrary is accessed by specifying —Inet as the last argument to the
compile line, e.g.:

ec —o prog prog.c —linet

SEE ALSO
kill(2), geipid(2)

Page | July 22, 1985

L3TOL (3C) L3TOL (3C)

NAME
13tol, ltol3 — convert between 3-byie integers and long integers

SYNOPSIS
void 1301 (lp, ¢p, n)
long *Ip;
char »cp;
int n;

void Itol3 (cp, Ip, n}
char *cp;
long *lp;
int n;

DESCRIPTION
L3to! converts a list of n 3-byie integers (packed into a character string
pointed to by ¢p) into a list of long integers pointed to by fp.
Lwoi3 performs the reverse conversion from long integers {lp) to 3-byie
integers (cp).
These functions are useful for file system maintenance where the block
numbers are 3 bytes long.

SFE ALSO
fs{4).

BUGS
Because of possible differences in byte ordering, the numerical values of
the fong integers are machine-dependent.

LDAHREAD {3X) LDAHREAD (3X}

NAME
ldahread — read the archive header of a member of an archive file

SYNOPSIS
#include < stdlo.h>
#include <ar.h>
#include <filehdr.h>
#tinclude < ldfen.h>

int ldahread (Idptr, arhead}
LDFILE =Idptr;
ARCHDR =arhead;

DESCRIPTION
If TYPE(/dptr} is the archive file magic number, Idajread Teads the archive
header of the common object file currently associated with Idptr into the
area of memory beginning at arkead.
Ldahread returns SUCCESS or FAILURE. Ldahread fails if TYPE(idptr)
does not represent an archive file or if it cannot read the archive header.
The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ar(4), idicn(4).

LDCLOSE (3X) LDCLOSE (3X)

NAME
Idclose, ldaclose — close a common object file

SYNOPSIS
#include < stdio.h>>
#include < filchdr.h>
#include <ldfcn.h>-

int ldclose (ldptr)
LDFILE «ldpir;

int laclose (ldptr)
LDFILE =ldpir;

DESCRIPTION
Ldopen{(3X) and ldclose are designed to provide uniform access to both sim-
ple object files and object files that are members of archive files, Thus an
archive of common object files can be processed as if it were a series of
simple common object files.

If TYPE(/dptr) does not represent an archive file, Mdelose closes the file and
frees the memory gllocated to the LDFILE structure associated with ldprr.
If TYPE{/dptr) is the magic number of an archive file, and if there are any
more files in the archive, ldclose reinitializes OFFSET(/dptr) to the file
address of the next archive member and returns FAILURE, The LDFILE
structure is prepared for a subsequent /dopen(3X). In all other cases,
ldciose returng SUCCESS,

Ldaclose closes the file and frees the memory allocated to the LDFILE struc-
ture associated with /dptr regardless of the value of TYPE (Mdpir). Ldaclose
always returns SUCCESS. The function is often used in conjunction with
ldaopen.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
fclose(3S), dopen(3X), idfcn(4).

LDFHREAD (3X) LDFHREAD (3X)

NAME
Idfhread — read the file header of a common object file

SYNOPSIS
#include <stdio.h>
#include < filehdr.h>
finclude <ldfen.h>

int ldfhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR =filehead;

DESCRIPTION
Ldfhread reads the file header of the common object file currently associ-
ated with ldprr into the area of memory beginning at filehead.

Ldfhread returns SUCCESS or FAILURE. Ldffiread fails if it cannot read the
file header.

In most cases the use of /dfwread can be avoided by using the macro
HEADER (/dptr} defined in <Mfcn.h> (see /dfcn{4)). The information in
any field, fleldname, of the file header may be accessed using
HEADER (ldptr) . fieldname.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), ldfen(4).

LDGETNAME (3X) LDGETNAME (3X)

NAME

Idgetname — retrieve symbol name for object file symbol table entry

SYNOPSIS

#tinclude < stdio.h>
#tinclude <« flehdr.h>~
#include <syms.h>
#include <ldfen.h>

char ldgetname (ldpir, symbol
LDFILE ldptr;
SYMENT symbol;

DESCRIFTION

Ldgetname returns a pointer to the name associated with symbol as a string.
The string is contained in a static buffer local to ldgemame. Because the
buffer is overwritten by each call to Idgetname, it must be copied by the
caller if the name is to be saved.

The common object file format has been extended to handle arbitrary
length symbol names with the addition of a "string table”. Ldgetmame
returns the symboel name associated with a symbol table entry for either an
object file or a pre-object file. Thus, ldgetname can be used to retrieve
names from object files without any backward compatibility problems.
Ldgetname returns NULL {defined in < stdio.h>) for an object file if the
name cannot be retrieved. This occurs when:

- the string table cannot be found.
- not enough memory can be allocated for the string table.

- the string table appears not to be a string table {e.g., if an auxiliary
: entry is handed to ldgetname that looks like a reference to a name
in & non-existent string table).

- the name's offset into the string table is beyond the end of the
string table.

Typically, ldgetname is called immediately after a successful call io Idebread
to retrieve the name associated with the symbol table entry filled by
Idtbread.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO

Idclose(3X}, Idopen(3X), ldtbseck (3X), Idtbread(3X), 1dfen(4),

LDLREAD (3X} LDLREAD (3X)}

NAME
Idiread, 1dlinit, ldlitem — manipulate line number entries of a common
objeci file function

SYNOPSIS
#include <stdie.h>>
#include <filehdr.h>
#tinclude < Hnenum.h>
#include <ldfen.h>

int lélread (Kdptr, fcnindx, linenum, linent)
LDFILE »ldptr;

long fcnindx;

pnsigned short linenum;

LINENO linent;

int ldlinit (dptr, fcnindx)

LDFILE »ldptr;

long fenindx;

int ldiitem (ldptr, linenum, linent)
LDFILE +Idptr;

unsigned short linenum;

LINENO linent;

DESCRIPTION

Ldiread searches the line number entries of the common object file
currently associated with Idptr. Ldiread begins its search with the line
number entry for the beginning of a function and confines its search to the
line numbers associated with a single function. The function is identified
by femindx, the index of its entry in the object file symbol table. Ldiread
reads the entry with the smallest line number equal to or greater than fine-
num into linent.

Ldlinit and Idlitem together perform exactly the same function as ldiread.
After an initial call to Idiread or Idiinit, Idfiten may be used to retrieve a
series of line number entries associated with a single function. Ldiinit sim-
ply locates the line number entries for the function identified by femind.
Ldlitem finds and reads the entry with the smallest line number equal to or
greater than linentm into linent,

Ldiread, ldlinit, and Idlitems each return either SUCCESS or FAILURE,
Ldlread fails if there are no line number entries in the object file, if fonindx
does not index a function entry in the symbol table, or if it finds no line
number equal to or greater than linenmum. Ldlinit fails if there are no line
number entries in the object file or if fenindr does not index a function
entry in the symbol table. Ldiitern fails if it finds no line number equal {0
or greater than linenum.

The programs must be loaded with the object file access routine library
libid.a.

SEE ALSO
ldclose(3X), Idopen(3X)}, ldtbindex(3X), ldfen{4).

LDLSEEK (3X) LDLSEEK (3X)

NAME

SYNOP:

Idiseek, ldnlseek — seek to line number entries of a section of a common
object file

515
#include <stdio.h>
#nclude < filehdr.h>>
#include <ldfen.h>

int ldiseek (ldptr, sectindx)
LDFILE #ldpir;
unsigned short sectindx;

int ldnlseek (ldptr, sectname)

LDFILE #ldpir;
char *sectname;

DESCRIFTION

Ldlseek secks to the line number entries of the section specified by sectindx
of the commeon object file currently associated with idpr.

Ldniseek seeks to the line number entries of the section specified by
secinanie.

Ldlseek and ldniseek return SUCCESS or FAILURE. Ldiseek fails if sectindx
is greater than the number of sections in the object file; ldniseek fails if
there is no section name corresponding to s=sectname. Either function fails
if the specified section has no line number entries or if it cannot seek to the
specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO

ldclose(3X), l1dopen{(3X), ldshread(3X}, Idfcn(4).

LDOHSEEK (3X) LDOHSEEK (3X)

NAME
ldohseek — seek to the optional file header of a common object file

SYNOPSIS
#tinclude < stdio.h>
#ftinclude < filehdr.h>
#include <ldfen.h>

int Idohseek (idptr)
LDFILE =ldptr;
DESCRIPTION
Ldohseek secks to the optional file header of the common object file
currently associated with idptr.

Ldohseek returns SUCCESS or FAILURE. [Ldohseek fails if the object file
has no optional header or if it cannot seek to the optional header.

The program must be leaded with the object file access routine library
libld.a.

S5EE ALSOD
ldclose(3X), ldopen{3X), ldfhread(3X), ldfcn(4).

&

LDOPEN (3X) LDOPEN (3X)}

NAME
Idopen, ldaopen — open a commaon object file for reading

SYNOPSIS
#include <stdlo.h>
#include < filehdr.h>>
#include < ldfen.h>

LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE «ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filename;
LDFILE #oldpir;

PESCRIPTION
Ldopen and ldclose{3X) are designed to provide uniform access to both
simple object files and object files that are members of archive files. Thus,
an archive of common object files can be processed as if it were a series of
simple common object files.

If idptr has the value NUI, ldopen opens filename, allocates and initializes
the LDFILE structure, and returns a pointer to the structure to the calling
program.

If ldptr is valid and TYPE(/dptr) is the archive magic number, /dopen reini-
tializes the LDFILE structure for the next archive member of filemante.

Ldopen and ldclose are designed to work in concert. Ldrilose returns
FAILURE only when TYPE{/dptr) is the archive magic number and there is
another file in the archive to be processed. Only then should [dopen be
called with the current value of Idpfr. In all other cases, in particular when-
ever a new fifename is opened, ldopen should be called with a NULL ldptr
argument.

The following is a prototype for the use of Idoper and ldclose.
/* for each filename to be processed »/

Idptr = NULL;
do
if ((Idptr = ldopen(filename, ldpir)) 1= NULL)

{ .
/* check magic number +/
[+ process the file »/

} while (ldclose(ldptr} == FAILURE):

If the value of oldptr is not NULL, Kdeopen opens filename anew and allo-
cates and initializes a new LIDFILE structure, copying the TYPE, OFFSET,
and HEADER Relds from oldprr. Ldaopen returns a pointer to the new
LDFILE structure. This new pointer is independent of the old pointer,
oldptr. The two pointers may be used concurrently to read scparate parts of
the object file. For example, one pointer may be used to step sequentially
through the relocation information, while the other is used to read indexed
symbol table entries.

LDOPEN (3X) LDOPEN (3X)

Both Idopen and ldazopen open filename for reading. Both functions return
NULL if filename cannot be opened or if memory for the EDFILE structure
cannot be allocated. A successful open does not insure that the given file is
a common object file or an archived object file.

The program must be loaded with the object fAle access rouiine library
libid.».

SEE ALSO
fopen(38), ldclose(3X), idfen(4).

LDRSEEK (3X) LDRSEEK (3X)

NAME
Idrseek, ldarseek -~ seek to telocation entries of a section of a common

object file

SYNOPSIS
#include <stdio.h>
#include < filehdr.h>
#include <ldfcn.h>

int ldrseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;
int ldnrseek {ldptr, sectname)
LDFILE =idptr;
char *sectpname:
DESCRIPTION
Ldrseek seeks to the relocation entries of the section specified by sectindx of
the common object file currently associated with ldptr.

Ldnrseek seeks to the relocation entries of the section specified by sectrame,

Ldrseek and ldnrseek return SUCCESS or FAILURE, Ldrseek fails if sectindx
is greater than the number of sections in the object file; !dnrseek fails if
there is no section name corresponding with sectname. Either function Fails
if the specified section has no relocation entries or if it cannot seek to the
specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
libM.a.

SEE ALSO
Idclose(3X), ldopen(3X), Idshread(3X), ldfen{4).

LDSHREAD (3X} LDSHREAD (3X)

NAME
Idshread, ldnshread — read an indexed/named section header of a common
object file

SYNOPSIS
#include < stdio.h>
#include < filehdr.h>
#include <senhdr.h>
#include <ldfcn.h>

int ldshread {idptr, sectindx, secthead)
LDFILE #ldptr;

unsigned short sectindx;

SCNHDR ssecthead;

int ldoshread (ldptr, sectname, secthead)
LDFILE +lipir;

char ssectname;

SCNHDR =secthead;

DESCRIPTION
Ldshread reads the section header specified by sectindx of the common
object file currently associated with /dprr into the area of memory beginning
at secthead.

Ldnshread reads the section header specified by Sectname into the area of
memaory beginning at secthead.

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshread fails if
sectindd is greater than the number of sections in the object file; /dnshread
fails if there is no section name corresponding with sectname. Either func-
tion fails if it cannot read the specified section header.

Note that the first section header has an index of one.

The program must be leaded with the object file access routine library
tibld.a.

SEE ALSO
idclose (3X), Idopen(3X), ldfen(4).

LDSSEEK (3X) LDSSEEK (3X)

NAME
Idsseek, Idnsseek — seek to an indexed/named section of a common object
file

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>>
#include <ldfcn.h>

int ldsseek (ldptr, sectindx)
LDFILE +ldptr;

unsigned short sectindx;

int Mnsseek (Idptr, sectname)
LDFILE +ldptr;

char *sectname;

DESCRIPTION
Ldsseek seeks to the section specified by sectindx of the common object file
currently associated with fdptr.

Ldnsseek seeks to the section specified by sectname,

Ldsseek and ldnsseek return SUCCESS or FAILURE. Ldsseek fails if' sectindx
is greater than the number of sections in the object file;. Idnsseek fails if
there is no section name corresponding with sectname. Either function fails
if there is no section data for the specified section or if it cannot seek to the
specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
tdelose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

LDTBINDEX (3X) LDTBINDEX (3X)

NAME
Idtbindex — compute the index of a symbol table eatry of a common object

file

SYNOPSIS
##include <stdio.h>
ffinclude < filehdr.h>
ftinclude <syms.h>
ftinclude < ldfcn.h>

long ldtbindex (ldpir}
LDFILE #ldptr;

DESCRIPTION
Ldtbindex returns the (long) index of the symbol table entry at the current
position of the common object file associated with ldptr.

The index returned by idibindex may be used in subsequent calls to
ldtbread(3X). However, since Idtbindex returns the index of the symbol
table entry that begins at the current position of the object file, if Idthindex
is calied immediately after a particular symbol table entry has been read, it
returns the the index of the next entry.

Ldtbindex fails if thete are no symbols in the object file or if the object file
is not positioned at the beginning of a symbol table eniry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
Idclose(3X), Idopen{3X), Idtbread{(3X), ldtbseek(3X}, Idfcn{4).

———

LDTBREAD (3X) LDTBREAD (3X)

NAME
Idtbread — read an indexed symbol table entry of a common object file

SYNOPSIS
ftinclude <stdio.h>
#include < filchdr.h>
#include < syms.h>
#include <ldfcn.h>

int lMdtbread (ldptr, symindex, symbof)
LDFILE *ldptr; :
long symindex;
SYMENT sgymbol;
DESCRIPTION
Ldtbread reads the symbol table entry specified by symindex of the common
object file currently associated with ldptr into the area of memory beginning
at symbol. '
Ldtbread returns SUCCESS or FAILURE., Ldbread fails if symindex is

greater than the oumber of symbols in the object file or if it cannot read
the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero,

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclos(e().?X). ldgetname(3X)}, Idopen(3X), Ildtbseek(3X}, idgetname(3X),
Idfcn{4).

LDTBSEEK (3X} LDTBSEEK (3X)

NAME
ldtbseek — seek to the symbol table of a commeon object file

SYNOPSIS
#include < stdio.h>
#include < filehdr.h>
#include < Idfen.h>

int ldtbseek (dptr)
LDFILE +=ldptr;

DESCRIPTION
Ldrbseek seeks to the symbol table of the object file currently associated
with ldptr,
Ldthseek returns SUCCESS or FAILURE, Ldthseek fails if the symbol table
has been stripped from the object file or if it cannot seek to the symbol
table.
The program must be loaded with the object file access routine library
libld.a.

SEE ALSOQ
Idclose(3X), idopen{3X), ldtbread(3X), Idfcn(4).

LEN (3F)

NAME

len — return length of Fortran string
SYNOPSIS

charactersN ch

integer i

i = len(ch)

DESCRIPTION
Len returns the length of string ch.

LEN (3F)

LOCKF(3C) LOCKF(3C)

NAME
" lockf - record locking on files

SYNOPSIS
include <umistd h>

lockf (fildes, function, size) long size;
function;

DESCRIPTION
The lockf call will allow sections of a file 10 be locked (advisory write locks;
mandatory or enforcement mode record locks are not currently available).
Locking calls from other processes which attempt to lock the locked file section
will either return an error value or be put to sleep until the resource becomes
unlocked. All the locks for a process are removed when the process terminates,
[See fenti(2) for more information about record locking.)

Fildes is an open file descriptor, The file descriptor must have O_WRONLY or
O_RDWR permission in order to establish lock with this function call.

Function is a control value which specifies the action to be taken. The permissi-
ble values for fitnction are defined in cumistd.hs as follows:

#define F_ULOCK 0 /¥ Unlock a previously locked section */

#define F_LOCK 1 J* Lock a section for exclusive use */

#define F_TLOCK 2 J* Test and lock a section for exclusive use */
" #define F_TEST 3 /* Test section for other processes locks */

All other values of function are reserved for future extensions and will result in
an error retum if not implemented.

F_TEST is used to detect if a lock by another process is present on the specified
section, F_LOCK and F_TLOCK both lock a section of a file if the section is
available. F_ULOCK removes locks from a section of the file.

Size is the mumber of contignous bytes o be locked or unlocked. The resource
to be locked starts at the current offset in the file and extends forward for a posi-
tive size and backward for a negative size. If size is zero, the section from the
current offset through the largest file offset is locked (i.c., from the current
offset through the present or any future end-of-file). An area need not be allo-
cated to the file in order to be locked, as such locks may exist past the end-of-
file.

Page 1 September 28, 1987

LOCKF(3C) LOCKF(3C)

The sections locked with F_ LOCK or F_TLOCK may, in whole or in part, con-
Ve tain or be contained by a previously locked section for the same process. When
: this occurs, or if adjacent sections ocour, the sections are combined into a single
section. If the request requires that a new element be added to the fable of
active locks and this table is already full, an error is returned, and the new sec-
tion is not Jocked.
F_LOCK and F_TLOCK requests differ only by the action taken if the resource
is mot available, F_LOCK will cause the calling process to sleep until the
resource is available. F_TLOCK will cause the function to retum a —1 and set
errno to [EACCES] error if the section is already locked by another process.

F_ULOCK requests may, in whole or in part, release one or more locked sec-
tions controlled by the process. When sections are not fully released, the
remaining sections are still locked by the process. Releasing the center section
of a locked section requires an additionat element in the table of active locks. If
this table is full, an [EDEADLK] error is retumed and the requested section is
not released.
A potential for deadlock occurs if a process controlling a locked resource is put
10 sleep by accessing another process's locked resource. Thus calls to lock or
™ Jentl scan for a deadlock prior to sleeping on a locked resource. An error retum
. is made if sleeping on the locked resource would cause a deadlock.
Sleeping on a resource is interrupted with any signal. The alarm(2) command
may be used to provide a timeout facility in applications which require this

facility,
ERRORS
The lockf wiility will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open descripior,
[EACCES] Cmd is F_TLOCK or F_TEST and the section is already
locked by another process.
[EDEADLK] Cmd is F_LOCK or F_TLOCK and a deadlock would

occur. Also the cmd is either of the above or F_ULOCK
and the namber of entries in the lock table would exceed
the number atlocated on the system.

RETURN VALUE
Upon successfut completion, a value of 0 is returned. Otherwise, a value of -1
e is renrned and errno is set to indicate the error.

September 28, 1987 Page 2

LOCKF(3C) LOCKF(3C)

CAVEATS
Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data which is/was locked. The stan-
dard I/O package is the most common source of unexpected buffering.

SEE ALSO
close(2), creat(2), fentl(2), intro(2), open(2), read(2), write(2).

Page 3 September 28, 1987

LOG (3F) LOG (3F}

NAME

log, alog, dlog, clog — Foriran natural logarithm intrinsic function
SYNOPSIS

rezl rl, 12

double precision dpl, dp2

complex ¢x1, cx2

r2 = alog{rl)

r2 = log(rl)

dp2 = dleg(dpl)

dp2 = logddpl)

cx2 = cloglcxl)

ex2 = loglexl)
DESCRIPTION

Alog returns the real natural logarithm of its real argument. Diog returns
the double-precision natural logarithm of its double-precision argument.
Clog returns the complex logarithm of its complex argument. The generic
functiont log becomes a call to afog, diog, or cleg depending on the type of
its argument.

SEE ALSO
exp(3M).

LOG10(3F) LOG18{3F}

NAME
logl0, alogl0, dlogl® — Fortran commeon logarithm intrinsic function

SYNOPSIS
real rt, 12
double precision dpl, dp2

2 = aloglirl)
r2 =« logl0(rl)

dp2 = dlegld{dpl)
dp2 = logl0(dpl)

DESCRIPTION
Alog10 returns the real common logarithm of its real argument. DHogl0
returns the double-precision common logarithm of its double-precision
argument. The generic function Jogi/0 becomes a call to alogl0 or diogl0
depending on the type of its argument.

SEE ALSO
exp(3IM).

LOGNAME (3X) LOGNAME (3X}

NAME

logname — return login name of user
SYNOPSIS

char *logname()
DESCRIPTION

Logname returns a pointer to the null-terminated login name; it extracts the
SLOGNAME variable from the user’s environment.

This routine is kept in /1ib/libPW.a.

FILES
fetc/profile
SEE ALSO
env{l), login(1), profile(4), environ(5).

BUGS
The return values point to static data whose content is overwritten by each
call.

This method of determining a login name is subject to forgery.

LSEARCH (3C) LSEARCH (3C)

NAME
Isearch, lfind — linear search and update

SYNOPSIS
#include < stdio.h>
#include < search.h>

char »lsearch ((char s)key, {char #)base, nelp, widch, compar)
unsigned *nelp, width;
int (scompar){);

char +lfind ((char *)key, (char *}base, nelp, width compar)
unsigned *nelp, width;
int (scompar)();

DESCRIPTION

Lsearch is a linear search routine generalized from Knuth (6.1} Algorithm
S. 1t returns a pointer into a table indicating where a datum may be found.
If the datum dees not occur, it is added at the end of the table. Key points
to the datum to be sought in the table. Base points to the first element in
the table. Nelp points to an integer containing the current number of ele-
ments in the table. The integer is incremented if the datum is added to the
table. Width is the width of an element in bytes: sizegf (*key) should be
used. Compar is the name of the comparison function which the user
must supply (stremp, for example). It is called with two arguments that
point to the elements being compared. The function must return zero if
the elements are equal and non-zero otherwise.

Lfind is the same as lsearch except that if the datum is not found, it is not
added to the table. Instead, a —1 pointer is returned.

NOTES
The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast o type pointer-to-character,
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element.

EXAMPLE
This fragment will read in < TABSIZE strings of length < ELSIZE and store
them in a table, eliminating duplicates.

#include < stdio.h>
#include < search.hi>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZEI, *lsearch{);
unsigned nel = 0,
int stremp():

while (fgets(line, ELSIZE, stdin) != NULL &&
nel << TABSIZE)
{void) Isearchiline, (char +}ab, &nel,
ELSIZE, stremp);

LSEARCH (3C) LSEARCH(3C)

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

DIAGNOSTICS
If the searched for datum is found, both Isearch and Ifind return a pointer
to it. Otherwise, {find returns NULL and /search returns a pointer to the
newly added element.

BUGS

Undefined results can occur if there is not enough room in the table to add
a new item.

MALLOC (3C) MALLOC(3C)

NAME
malloc, free, realloc, calloc — main memory atlocator

SYNOPSIS
char *malloc {size}
unsigned size;

void free {(ptr)

char *ptr;

char erealloc (ptr, size}
char »ptr;

unsigned size;

char scalloc (nelem, elsize)
unsigned nelem, elsize;

cfree (ptr, nelem, elsize)
char *ptr,
unsigned nelem, elsize;

DESCRIFTION
Malloc and free provide a simple general-purpose memory allocation pack-
age. Malloc returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to fiee is a pointer to a block previously allocated by malloc,
after free is performed this space is made available for further allocation,
but its contents are left undisturbed.

Undefined results occur if the space assigned by mallioc is overrun or if
some random nomber is handed to free.

Malloc allocates the first contiguous reach of free space of sufficient size
found in a circular search from the last block allocated or freed; it coalesces
adjacent frec blocks as it searches. It calls sérk (see brk(2)) to get more
memory from the system when there is no suitable space already free.

Realloc changes the size of the block pointed to by pir to size bytes and
returns a pointer (o the (possibly moved) block. The contents are
unchanged up to the lesser of the new and old sizes. If no free block of
size bytes is available in the storage arena, realloc asks malioc to enlarge the
arena by size bytes and then moves the data to the new space.

Realloc also works if pfr points to a block freed since the last call of malloc,
realloc, or cailoc, thus sequences of free, malloc, and realfoc can exploit the
search strategy of mailor to do storage compaction.

Calloc allocates space for an array of relem clements of size elsize. The
space is initialized to zeros.

The arguments to cffee are the pointer to a block previously allocated by
calloe plus the parameters to cafloc.

Each of the allocation routines returns a pointer to space suitably aligned
{after possible pointer coercion) for storage of any type of object.

DIAGNOSTICS
Malloc, realloc, and calloc return a NULL pointer if there is no available
memoty or if the arena has been detectably corrupted by storing outside the
bounds of a block. When this happens the block pointed to by pir may be
destroyed.

MALLOC(3C) MALLOC(3C)

NOTE
Search time increases when many objects have been allocated; i.e., if a pro-
gram allocates space but never frees it, each successive allocation takes
longer.

SEE ALSO
brk(2), malloc(3X). For an alternate, more flexible implementation, see
malloc(3X).

MALLOC (3X} MALLOC(3X)

NAME

malloc, free, realloc, calloe, mallopt, mallinfo — fast main memory alloca-
tor

SYNOPSIS

#include <malloc.h>

char *malloc {size)
unsigned size;

void free (ptr}

char spir;

char srealloc {ptr, size)
char *ptr;

unsigned size;

char +calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo (max)
int max;

DESCRIPTION

Malloc and free provide a simple general-purpose memory aflocation pack-
age, which runs considerably faster than the mafloc(3C} package. It is
found in the library “‘malloc”, and is loaded if the option **—Imalloc’* is
used with cc(1) or Md(1).

Malloc returns a pointer to a block of at least size bytes suitably aligned for
any use.

The argument to free is a pointer 1o a block previously allocated by malloc;
after free is performed this space is made available for further allocation,
and its contents have been destroyed (but see mallopt below for a way to
change this behavior).

Undefined resuits will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

Realloc changes the size of the block pointed to by pir to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of size elsize. The
space i§ initialized to zeros.

Mullopt pfovides for control over the allocation algorithm. The available
values for cmd are:

M_MXFAST Set maxfasr to value. The algorithm allocates all blocks
below the size of maxfasr in large groups and then doles
them out very quickly. The default value for maxfast is 0.

M_NLBLKS Set numiblks to value. The above mentioned “‘large
groups” each contain aumiblks blocks. Numiblks must be
greater than 0. The default value for numiblks is 100,

M_GRAIN Set grain to value. The sizes of all blocks smaller than max-
Jast are considered to be rounded up to the nearest multiple

.1-

MALLGC (3X) MALLOC{3X)

of grain. Grain must be greater than 0. The default value
of grain is the smaliest number of bytes which will allow
alignment of any data type. Value will be rounded up to a
multiple of the default when grain is set.

M_KEEFP Preserve data in a freed block until the next malfoc, realloc,
or cqlioe, This option is provided only for compatibitity
with the old version of malioc and is not recommended.

These values are defined in the < malloc.h> header file,

Maliopt may be called repeatedly, but may not be called after the first small
block is allocated.

Mallinfo provides instrumentation describing space usage. It returns the

structure:

struct mallinfo {
int arena; /* total space in arena */
int ordblks; /* number of ordinary blocks */
int smblks; /* number of small blocks */
int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */
int vsmblks; /* space in small blocks in wse */
int fsmblks; /* space in free small blocks */
int uordblks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */

int keepcost; /* space penalty if keep option */
} /* is used */ .
This structure is defined in the < malloc. > header file.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNQSTICS _
Malloc, realfoc and calloc return a NULL pointer if there is not enough
available memory. When realloc returns NULL, the block pointed to by ptr
is left intact. If mallopt is called after any allocation or if ¢md or value are
invalid, non-zero is returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloc(3C).
The code size is also bigger than malloc(3C),
Note that unlike malioc(3C), this package does not preserve the contents of
a block when it is freed, unless the M_KEEP option of malfopt is used.
Undocumented features of malloc{3C) have not been duplicated.

MATHERR (3M) MATHERR (3M)

NAME
matherr — error-handling function

SYNOPSIS
#include < math.h>

int matherr (x}
struct exception »x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are
detected. Users may define their own procedures for handling errors, by
including a function named matherr in their programs. Matherr must be of
the form described above. When an error occurs, a pointer to the excep-
tion structure x will be passed to the user-supplied matherr function. This
structure, which is defined in the < math. k> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg?, retval;
The clement rype is an integer describing the type of error that has
occurred, from the following list of constants {defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element mame points to a siring containing the name of the function
that incurred the error. The variables argf and arg2 are the arguments
with which the function was invoked. Rerval is set to the default value that
will be returned by the function uniess the user’s muatherr sets it o a
different value.

If the user’s matherr function returms non-zero, no error message will be
printed, and errno will not be set.

If marherr i3 not supplied by the user, the default error-handling pro-
cedures, described with the math functions involved, will be invoked upon
error. These procedures are also sutnmarized in the table below. In every
case, errno is set to EDOM or ERANGE and the program continues.

EXAMPLE
#include < math.h>

int
matherr{x)
register struct exceplion »x;

switch (x— > type) [

case DOMAIN:
#» change sgrt to return sqri{—argl), not 0 «/

Page 1 August 19, 1985

MATHERR (3M)

if (Ustremp(x— > name, *sqrt™}) {

}

case SING:

x—>retval = sgri{—x—>argl);
return (0); /* print message and set errno */

MATHERR (3M}

/+ all other domain or sing errors, print message and abort +/
fprintf{(stderr, "domain error in %s\n", x— > name};

abort{);
cage PLOSS:

#+ prini detailed error message */
forintf (sidere, "loss of significance in %s(%g} = %g\n",

return {1); /* take no other action */

x—>name, x—>argl, x—>retval);

return (0); 7+ all other errors, execule default procedure «/

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS
ernie LDOM EDOM LRANGE ERANGE ERANGE | ERANGE
BLSSEL: - - - - M, 0 .
yo, ¥l ynlarg £ 00| M, —H - - - — _
EXP: - - 1l Q - -
LOKG , LOG Nk
(arg < O} M, —H - - - - -
{urg = 0} — M, —H -~ - — -
PW: - - +H Q0 - -
neg ** non-int M. D - - - - -
0« non-pos
SQRT: M, 0 - - - - —
GAMMA: - M, H H - - -
HYIT: — - H - — —~
s - - +H - - -
CUSH: et - H - — -
SIN, COS, TAN - - - — M, 0 -
ASIK, ACOS, ATAN2: M, 0 - - - - -
ABBREVIATIONS
L] As much as possible of the value is returned.

M Message is printed (EDOM error).

H HUGE is returned.

—H —HUGE is returned.

+H HUGE or —HUGE is returmed.

0 0 is returned.
August 19, 1985 Page 2

MAX{3F) MAX (3F)

NAME
max, max0, amax0, maxl, amaxl, dmaxl — Fortran maximum-value
functions

SYNOPSIS
Integer i, j, k, 1
real a, b, ¢, d
double precision dpl, dp2, dp3

1 = max(i, j, K

¢ = max(a, b)

dp = max(a, b, c)

k = max0(i, j)

a = amax9¥(i, j, k)

i = maxl{a, b}

d = amaxl{a, b, c)
dp3 = dmax1{dpl, dp2}

DESCRIPTION

The maximum-value functions return the largest of their arguments; there
may be any number of arguments. Meax is the generic form which can be
used for all data types and takes its return type from that of its arguments.
All arguments must be of the same type. Max(returns the integer form of
the maximum value of its integer arguments; amax0, the real form of its
integer arguments, maxl, the integer form of its real arguments; amaxli,
the real form of its real arguments; and dmax!, the double-precision form
of its double-precision arguments.

SEE ALSO
min(3F).

MCLOCK (3F} MCLOCK (3F)

NAME

mclock — return Fortran time accounting
SYNOPSIS

integer i

i = melock()

DESCRIPTION
Melock returns time accounting information about the current process and
its child processes. The value returned is the sum of the current process’s
user time and the user and system times of all child processes.

SEE ALSO
times{2), clock(3C}, system(3F}.

MEMORY (3C) MEMORY {(3C)

NAME

memeccpy, memchr, mememp, memcpy, memset — memory operations

SYNOPSIS

#include <memory.h>

char *memeepy (sl, s2, ¢, n)
char =51, =52;
int ¢, n;

char *smemchr (s, c, n)
chay =s;
int ¢, n;

int mememp (sl, s2, n)
char +sl, »s2;
Int n;

char *memcpy (sl, s2, n)
char +sl, »s2;

int n;

char *memset (s, c, n)
char »5;

int ¢, m;

DESCRIPTION

NOTE

BUGS

These functions operate efficiently on memory areas (arrays of characters
bounded by a count, not terminated by a nult character). They do not
check for the overflow of any receiving memory area.

Memccpy copies characters from memory area 52 into si, stopping afier the
first occurrence of character ¢ has been copied or after # characters have
been copied, whichever comes first. It returns either a pointer to the char-
acter after the copy of ¢ in sI or & NULL pointer if ¢ was not found in the
first n characters of s2.

Memchr returns either a pointer to the first occurrence of character ¢ in the
first » characters of memory area s or a NULL pointer if ¢ does not occur,

Mememp compares its arguments, looking at the first » characters only. [t
returns an integer less than, equal to, or greater than 0, depending on
whether s/ is lexicographically less than, equal to, or greater than s2.

Memcpy copies » characters from memory area s2 to si. It returns si.

Memset sets the first n characters in memory area s to the value of charac-
ter ¢. Itreturns 5.

For user convenience, all these functions are declared in the optional
< memory.h> header file,

Memcmp uses native character comparison.

Because character movement is performed differently in different imple-
mentations, overlapping moves may yield unexpected results.

I/"" .

MIN {3F} MIN (3F)

NAME
min, min®, amin(}, minl, aminl, dminl — Fortran minimum-value func-
tions

SYNOPSIS
integer i, j, k, |
real a, b, ¢, d
doudle precision dpl, dp2, dpl

1 = mind, j, k)

¢ = minfa, b)

dp = min(a, b, ¢}

k = mind, j

a = amin0{i, j, K}

i = minl(a, b}

d = aminl(a, b, ¢}
dp3 = dminl(dpl, dp2)

DESCRIPTION

The minimum-value functions return the minimum of their arguments.
There may be any number of arguments. Min is the generic form which
can be used for all data types. It takes its return type from that of its argu-
ments, which must all be of the same type. Min0 returns the integer form
of the minimum value of its integer arguments; aming, the real form of its
integer arguments;, minl, the integer form of its real arguments; amini, the
real form of its real arguments; and dmini, the double-precision form of its
double-precision arguments.

SEE ALSO
max{3F).

MKTEMP(3C) MKTEMP (3C)

NAME
mktemp — make a unique filename

 SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION
Mktemp replaces the contents of the siring pointed to by template with a
unique filename; it returns the address of femplate, The string in template
should look like a filename with six trailing Xs; mkremp replaces the Xs
with a letter and the current process ID. The letter is chosen so that the
resulting name doss not duplicate an existing file.

SEE ALSO
getpid(2), tmplile(3S), tmpnam(38).

BUGS
It i3 possible to run out of letters.

MOD (3F) MOD (3F)

NAME
mod, amod, dmod — Fortran remaindering intrinsic functions

/7 SYNOPSIS

- integer i, j, k

T real rl, r2, r3
double precision dpl, dp2, dpd
k = med(,)

13 = amod(rl, r2)
r} = mod(rl, 12)

dp3 = dmod{dpl, dp2)
dp} = mod(dpl, dp2)

DESCRIPTION
Mod returns the integer remainder of its first argument divided by its
second argument. Amod and dmod return, respectively, the real and
double-precision whole number remainder of the integer division of their
two arguments. The generic version mod returns the date type of its argu-
ments.

MONITOR (3C) MONITOR (3C)

NAME

monitor — prepare execution profile

SYNOPSIS

#include <mon.h>

vold monitor (lowpe, highpe, buffer, bufsize, nfuncl
int (slowpc)(}, (#highpc){);

WORD sbuffer;

int bufsize, nfunc;

DESCRIFTION

FILES

An executable program created by cc —p automatically includes calls for
monitor with default parameters; monitor needn’t be called explicitly except
to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpe are the addresses of
two functions, buffer is the address of a (user supplied) array of bufsize
WORD (defined in the < mon.h> header file). Monitor arranges to record a
histogram in the buffer. This histogram shows periodically sampled values
of the program counter and counts of calls of certain functions. The lowest
address sampled is that of lowpc, the highest address is just below highpe.
Lowpc may not equal 0 for this use of monitor. Nfunc is the maximum
number of call counts that can be kept, only calls of functions compiled
with the profiling option —p of ce(1) are recorded. (The C Library and
Math Library supplied when ce -p is used also have call counts recorded.}
For the results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few times
smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use
extern etext,

;;onitor ({int {+)())2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the resuits on the file mon.out, use
monitor {(int (+J0)0, 0, 0, 0, 0);

Prof(1) can then be used to examine the results,

mon.out
flib/libp/libc.a
Jlib/libp/libm.a

SEE ALSO

cc(l), prof(1}, profil(2), end{(3C).

NLIST (3C) ' NLIST (3C)

NAME

nlist — get entries from name list

SYNOPSIS

#include <a.out.h>

int nlist (filename, nl)
char »filename:
struct nlist nl

DESCRIFTION

Nlist examines the name list in the executable file whose name is pointed to
by filename: it selectively extracts a list of values and puis them in the array
of alist structures pointed to by »#f. The name list #f consists of an array of
siructures containing names of variables, types, and values. The list is ter-
minated with a null name; i.e., a null string is in the name position of the
structure. Each variable name is looked up in the name list of the file, If
the name js found, the type and value of the name are inserted in the next
two fields. The type filed will be set to 0 unless the file was compiled with
the —g option. If the name is not found, both entries are set to 0. See
a.out{4) for a discussion of the symbol table structure.

This function is useful for exartining the system name list kept in the file
funix. In this way programs can obtain system addresses that are up 10
date.

SEE ALSO

a.out(4).

DIAGNOSTICS

All value entries are set to 0 if the file cannot be read or if it does not con-
tain a valid name list.

Nlist returns — 1 wpon error; otherwise it returns 0.

PERROR (3C) PERROR (3C)

NAME

perror, errno, sys_errlist, sys_nerr — system error messages

SYNOPSIS

void perror (s)
char =s;

extern int errmo;
extern char »sys_errlistl |;
extern int sys_nerr;

DESCRIPTION

Perror produces a message on the standard error output, describing the last
error encountered during a call to a system or library function. The argo-
ment string s is printed first, then a colon and a blank, then the message
and a new-line. To be of most use, the argument string should include the
name of the program that incurred the error. The error number is taken
from the external variable errro, which is set when errors occur but not
cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; errmo can be used as an index in this table to get the
message string without the new-line. Sys merr is ihe largest message
number provided for in the table; it should be checked because new error
codes may be added to the system before they are added to the table.

SEE ALSO

intro{2).

I’/.-h..

PLOT (3X) PLOT (3X)}

NAME

plot — graphics interface subroutines

SYNQPSIS

openpl ()

erase (}

label (s)

char »=s;

Hne (x1, ¥1, x2, y2)

int x1, yl, x2, y2;
circle (x, ¥, 1}

int x, ¥, 1;

arc (x, y, x0, y0, x1, ¥1)
int x, ¥, x0, y0, x1, ¥1;
move (x, ¥)

int %, ¥;

cont (x, y)

int x, ¥;

point (x, y}
int x, ¥

linemod (3)
char »=s;

space (x0, y0, x1, y1)
int x0, y0, x1, y1;

closepl ()

DESCRIPTION

These subroutines generate graphic output in a relatively device-
independent manner. Space must be used before any of these functions to
declare the amount of space necessary; see plor(4). Openpl must be used
before any of the others to open the device for writing. Closepi flushes the
ocutput.

Circle draws a circle of radius r with center at the point {x, y).

Arc draws an arc of a circle with center at the point (x,) between the
points (x0, y0) and (x1, y1).

String arguments to fabel and /inemod are terminated by nulls and do not
contain new-lines,

See plot(4) for a description of the effect of the remaining {enctions.
The library files listed below provide several variations of these routines.

FILES
fusr/lib/libplot.a produces output for plor(1G) filters
fusr/lib/1ib300.a for DASI 300
fusr/1ib/lib3005.2 for DASI 300s
fusr/lib/lib450.a for DASI 450
Jusr/lib/lib4014.a for Tektronix 4014
WARNINGS

To compile a program containing these functions in fife.c, use ccfife.c— Iplot

-1-

PLOT (3X) PLOT (3X)

To execute it, use a.out | tplot,

The above routines use < stdlo.h>>. Therefore, the size of programs not
otherwise using standard I/0 is increased more than might be expected.

SEE ALSO
tplot{1G), plot(4).

POPEN (35) POPEN {38}

NAME

/7 SYNOPSIS

popen, pclose — initiate pipe to/from a process

#include <stdio.h>

FILE *popen {command, type)
char *command, *iype;

int pclose (stream)
FILE »stream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings; one string
coniains a shell command line and the other contains an [/O mode. The
mode may be either r for reading or w for writing. Popen creates a pipe
between the calling program and the command to be executed. The value
returned is a stream pointer. If the I/O mode is w, one can write to the
standard input of the command by writing to the file stream: if the 1/Q
mode is r, one c¢an read from the standard output of the command, by
reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the
associated process 10 terminale and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input
filter and a type w as an output filter.

/”\ SEE ALSO
_ pipe(2), wait(2), fclose(3S), fopen{3S), system(38}.
= DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be created or if
the shell cannot be accessed.

Pclose returns — 1 if stream is not associated with a command opened by
popen.

If the original processes and processes opened by popen concurrently read
or write a common file, neither should use buffered I/0, because the
buffering gets all mixed up. Problems with an output filter may be fores-
talled by careful buffer flushing, e.g., by using flusk; see feiose(38).

If an illegal type is passed, popen will fork and exec the command line
passed to it before it discovers that the type was illegal. This will result in a
NULL pointer being returned and a broken pipe (with the command execut-
ing in the background).

PRINTF (38} PRINTF(35)

NAME
printf, fprintf, sprintf — print formatted output

SYNOPSIS
#include < stdio.h>

int printf (format [, arg] ...)
char +format;

int fprintf (stream, format [, arg 1 ...)
FILE »stream;
char +format;

int sprintf (s, format | , arg | ... }
char =5, format;

DESCRIPTION
Printf places output on the standard output stream stdour. Fpringf places
oufput on the named output stream. Springf places “‘output,” followed by
the null character (\0) in consecutive byies starting at »s; it is the user’s
responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \ 0 in the
case of sprintf), or a negative value if an output error was encouniered.

Each of these functions converts, formats, and prints its args under control
of the format. The format is 2 character string that contains two types of
objects: plain characters, which are simply copied to the output stream, and
conversion specifications, each of which resuits in fetching zero or more
args. The results are undefined if there are insufficient args for the format,
If the format is exhausted while grgs remain, the excess args are simply
ignored.

Each conversion specification is introduced by the character %. Afier the
%, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum feld width,
If the converted value has fewer characters than the field width, it
will be padded to the field width on the left (default) or right (if the
left-adjustment flag ‘—' has been given); see below for flag
specification. If the field width for an s conversion is preceded by a
0, the string is right adjusted with zero padding on the left.

A precision that gives the minimum number of digits to appear for
the d, o, u, x, or X conversions, the number of digits to appear
after the decimal point for the e and f conversions, the maximum
number of significant digits for the g conversion, or the maximum
number of characters to be printed from a string in s conversion.
The format of the precision is a period (.} followed by a decimal
digit string; a null digit string is treated as zero.

An optional 1 (ell) specifying that a following d, o, u, x, or X
conversion character applies to a long integer arg. An | before any
other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (+) instead of a
digit string. In this case, an integer aerg supplies the field width or

-1-

PRINTF (35)

PRINTF (35)

precision. The arg that is actually converted is not fetched until the
conversion letter is seen; therefore, the args specifying field width or preci-
sion must appear before the arg (if any) to be converted.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the field.

The result of a signed conversion will always begin with a sign
(+ or -).

If the first character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and
+ flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an *‘alter-
nate form.” For ¢, d, s, and u conversions, the flag has no
effect. For ¢ conversion, it increases the precision to force the
first digit of the result to be a zero. For x (X} conversion, a
non-zero result will have 0x (0X) prefixed to it. Fore, E, 1, g,
and G conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, 2 decimal
point appears in the result of these conversions only if a digit
follows it). For g and G conversions, trailing zeroes will nor be
removed from the result (which they normally are}.

The conversion characters and their meanings are:
d.o,u,x,X The integer arg is converted to signed decimal, unsigned octal,

eE

decimal, or hexadecimal notation (x and X), respectively; the
letters abedef are used for x conversion and the letters ABCDEF
for X conversion. The precision specifies the minimum number
of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading
zeroes. (For compatibility with older versions, padding with
leading zeroes may alternatively be specified by prepending a
zero to the field width.) This does not imply an octal value for
the field width. The default precision is 1. The result of con-
verting a zero value with a precision of zero is a null siring.

The float or double arg is converted to decimal notation in the
style “[—]ddd.ddd”’, where the number of digits after the
decimal peint is equal to the precision specification. If the preci-
sion is missing, & digits are output, if the precision is explicitly
0, no decimal point appears.

The float or double arg is converted in the style
[~ 1d.ddde+dd>’, where there is one digit before the decimal
point and the number of digits after it is equal to the precision;
when the precision is missing, 6 digits are produced; if the preci-
sion is zero, no decimal point appears. The E format code pro-
duces a number with E instead of e introducing the exponent.
The exponent always contains at Jeast two digits.

PRINTF (35)

g6

%

PRINTF{35)

The float or double arg is printed in style f or e {or in style E in
the case of a G format code), with the precision specifying the
number of significant digits. The style used depends on the
value converted: style e is used only if the exponent resulting
from the conversion is less than —4 or greater than the preci-
sion. Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

The character arg is printed.

The arg i3 taken 0 be a siring {character pointer) and characters
from the string are printed until a null character {\ 0) is encoun-
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are
printed. A NULL value for arg yields undefined resuits.

Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field widih, the field is
simply expanded to contain the conversion result. Characters generated by
printf and fpringf are printed as if purc(38) had been called.

EXAMPLES

To print a date and time in the form “‘Sunday, July 3, 10:02", where week-
day and month are pointers to null-terminated strings:

printf{*%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min);
To print pi to 5 decimal places:

SEE ALSOQ

printf("pl = %.5f", 4=atan(1.0)};

ecvt(3C), putc(38}, scanf(35), stdio(38S).

/f’\

PUTC (38) PUTC (35}

NAME

puic, putchar, fputc, putw — put character or word on a stream

SYNOPSIS

#include < stdio.h>

int pute (c, stream)
int c;
FILE *stream;

int putchar (c)
int c;

int fpute (c, stream)
it ¢;
FILE *sircam;

int putw (w, stream)
int w;
FILE »stream;

DESCRIPTION

Putc writes the character ¢ onto the output stream at the position where the
file pointer, if defined, is pointing. Putchar(c) is defined as putc(c, stdour).
Putc and purchar are macros.

Fpute behaves like putc, but is a function rather than a macro. Fputc runs
more slowly than pufe, but it takes less space per invocation and its name
can be passed as an argument to a function.

Putw writes the word (32-bit integer on the 68000) w to the output stream
at the position at which the file pointer, if defined, is pointing. Putw nei-
ther assumes nor causes special alignment in the file.

Qutput streams, with the exception of the standard error stream siderr, are
by defaukt buffered if the output refers to a file and line-buffered if the out-
put refers to a terminal. The standard error output stream siderr is by
default unbuffered, but use of freopen{sce fopen(38)) causes it to become
buffered or line-buffered. When an output stream is unbuffered informa-
tion, it is quened for writing on the destination file or terminal as soon as
written; when it is buffered, many characters are saved up and written as a
block; when it is line-buffered, each line of output is queued for writing on
the destination terminal as soon as the line is completed (i.e., as soon as a
new-line character is written or terminal input is requested), Serbuf(3S}
may be used to change the stream’s buffering strategy.

SEE ALSO

fclose(35), ferror(35), {fopen(33), fread(38), printf(38), puts(3S),
setbuf(38),

DIAGNOSTICS

BUGS

On success, these functions each return the value they have written. On
failure, they return the constant EOF. This occurs if the file siream is not
open for writing or if the output file cannot be grown. Because EOF is a
valid integer, ferror(38) should be used to detect putw errors.

Because it is implemented as a macro, putc ireats incorrectly a stream argu-
ment with side effects. In particular, putele, »f+ +); doesn’t work sensi-
bly. Fpuic should be used instead.

-1-

PUTC (38) PUTC(3S)

Because of possible differences in word length and byte ordering, files writ-
ten using putw are machine-dependent and may not be read using gefw on a
different processor.

PUTENYV (3C) PUTENV{3C)

NAME

puteny — change or add value to environment

SYNOPSIS

int puteny (striag)
char »string;

DESCRIPFTION

String points to a string of the form “rame=value,” Putenv makes the
value of the environment variable name equal to value by altering an cxist-
ing variable or creating a new one. In either case, the string pointed to by
string becomes part of the environment, so altering the string will change
the environment. The space used by string is no longer used once a new
string-defining rame is passed to putenv,

DIAGNOSTICS

Putenv returns non-zero if it was unable to obtain enough space via mafloc
for an expanded environment, otherwise zero.

SEE ALSO

exec(2), getenv{3C), malloc(3C}, environ(5).

WARNINGS

Putenv manipulates the environment pointed to by environ, and can be used
in conjunction with getenv. However, envp (the third argument to mein) is
not changed.

This routine uses mailec(3C) to enlarge the environment.

After puwtenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argu-
ment, then exit the cailing function while srring is still part of the environ-
ment,

PUTPWENT (3C) PUTPWENT(3C)

NAME
putpwent — write password file entry

SYNOPSIS
#lInclude <pwd.h>

int putpwent (p, f)
struct passwd sp;
FILE =f;

DESCRIPTION
Putpwent is the inverse of gefpwent(3C). Given a pointer to a passwd struc-
ture created by getpwent (or getpwuid or getpwnam), putpwuid writes a line
on the stream f which matches the format of /etc/passwd.

The < pwd.,h>> header file is described in gerpwend3C).

SEE ALSQO
getpwent(3C).

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation;
otherwise it returns zero.

SEE ALSO
getpwent(3C).

WARNING
The above routine uses < stdie.h> . Therefore, the size of programs not
otherwise using standard 170 is increased more than might be expected.

PUTS (38} PUTS (38}

NAME
puts, fputs — put a string on a stream
SYNOPSIS
#include <« stdio.h>
int puts (3)
char »s;
int fputs (s, stream)
char *s;
FILE e*siream;
DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new-
line character, to the standard output stream sidot.

Fputs writeg the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.
SEE ALSO
ferror{38), fopen(3S), fread (38}, printf(3S), putc(35).

DIAGNOSTICS
Both routines return EOF on error. This occurs if the routines try to write
on a file that has not been opened for writing.

NOTES
Puts appends a new-line character while /purs does not.

QSORT (3C) QSORT(3C}

NAME
gsort — quicker sort

SYNOPSIS
void gsort ({char ¢) base, nel, width, compar}
unsigned nel, width;
int (+compar)(};

DESCRIPTION
{sort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.
Base points to the element at the base of the table. Nef is the number of
elements in the table. Width is the width of an element in bytes; sizeo/
{base) should be used. Compar is the name of the comparison function,
which is called with two arguments that point to the elements being com-
pared. The function must return an integer less than, equal to, or greater
than zero according as the first argument is to be considered less than,
equal to, or greater than the second.

NOTES
The pointer to the base of the table should be of type pointer-to-element,

and cast to type puinter-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
The order in the output of the two items which compare as equal is
unpredictable.
EXAMPLE
struct entry {
char *name;
int flags;
main()
struct entry hpl[100];

int entemp();
int i, count;

for (i = 0; i < (count = 100); i++) {
/+ fill the structure with the name and flags «/

qsort{ {char *} hp, count, sizeof {hpl0]), entcmp};

entcmp{ep,ep2)
struct entry =ep, *ep2;

return {stremp(ep->>name, ep2->> name));

will sort a set of names with associated flags in ASCII order.

SEE ALSO
sort(1}, bsearch{3C), Isearch(3C), string{3C).

r/-_-\

RAND(3C) RAND (3C)

NAME

rand, srand — simple random-number generator

SYNOPSIS

int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

NOTE

Rand uses a multiplicative congruential random-number generator with
period 2 |limt returns successive pseudo-random numbers in the range
fromOto 2" —1.

Srand can be called at any time to reset the random-nnumber generator to a
random starting point. The generator is initially seeded with a value of 1.

The spectral properties of rand leave a great deal to be desired.
Drand48(3C) provides a much better, though more elaborate, random-
number generator.

SEE ALSO

drand48(3C).

RAND (3F) RAND (3F)

NAME
irand, srand, rand — Fortran uniform random-number generator

SYNOPSIS
call srand{iseed)

i = jrand()
x = rand()

DESCRIFTION)
Irand generates successive pseudo-random numbers in the range from 0 o
2**15-1. Rand generates pseudo-random numbers distributed in (0, 1.0).
Srand uses its integer argument to re-initialize the seed for successive invo-
cations of irand and rand,

SEE ALSO
rand (3C).

—~

B

—

RCMD

NAME

(3N) UniSoft RCMD (3N)

-remd, rresvport, ruserok — routines for returning a stream to a remote
command

SYNOPSIS

rem = rcmd(ahost, inport, locuser, remuser, emd, fd2p);
char **ahost;

uw_short inport;

char *locuser, *remuser, *cmd;

int *fd2p; -

s = rresyport(port);

int *port;

ruserok (rhost, superuser, ruser, luser};

char *rhost;

int superuser;
char *ruser, *luser;

e ... —Inet

DESCRIPTION

Page 1

Remd is a routine used by the super-user to execute a command on a
remote machine using an auihentication scheme based on reserved port
numbers. Rresvport is a routine which returns a descriptor 1o a sockel with
an address in the privileged port space. Ruserok is a routine used by
servers to authenticate clients requesting service with remd. All three func-
tions are present in the same file and are used by the remshd{8N) server
(among others),

Remd looks up the host “*ahost using gethostent(3N)}, returning —1 il the
host does not exist. Otherwise *afiost is set to the standard name of the
host and a connection is established to a server residing at the well-known
Internet port import.

if the call succeeds, a socket of type SOCK_STREAM is returned to the
caller, and given to the remote command as stdin and stdemt. If fidlp is
non-zero, then an auxiliary channel to a control process will be sel up, and
a descriptor for it will be placed in %d2p. The control process will return
diagnostic output from the command (unit 2} on this channel, and will also
accept bytes on this channel as being UNIX signal numbers, to be for-
warded to the process group of the command. 1f #/2p is 0, then the stderr
(unit 2 of the remote command) will be made the same as the stdeut and
ne provision is made for sending arbitrary signals to the remoie process,
although you may be able to get its attention by using out-of-band data.

The protocol is described in detail it resshd (8N).

The rresvport routine is used to obtain a socket with a privileged address
bound to it. This socket is suitable for use by rcmd and several other rou-
tines. Privileged addresses consist of a port in the range 0 to 1023, Only
the super-user is allowed to bind an address of this sort to a sacket.

Ruserok takes a remote host's name, as returned by a gethostent(3N) rou-
tine, two user names and a flag indicating if the local user’s name is the
super-user. [t then checks the files Arcfhosts.equiv and, possibly, .rhosts in
the current working directory {normally the local user’s home directory) to

July 22, 1985

RCMD (3N) UniSoft RCMD (3N)

see if the request for service is allowed. A | is returned if the machine
name is listed in the *‘hosts.equiv’” file, or the host and remote user name
are found in the *“‘.rhosts” file: otherwise ruserek returns 0. IF the superuser
ftag is 1, the checking of the “host.equiv’ file is bypassed.

LINKING
This library is accessed by specifying —Inet as the last argument to the
compile line, eg.:

ce — ¢ prog prog.c ~Inet
SEE ALSQ
rlogin(1N}, remsh(1N}, rexec(3N}, rexecd(8N), riogind(8N), remshd(8N)

BUGS
There is no way to specify options to the socket call which remd makes.

July 22, 1985 Page 2

READV (3N) UniSoft READY (3N}

NAME

readv — read from file

SYNOPSIS

#include <sys/types.h>
#include <sys/ujo.h>

cc = ready(d,iov,iovent)
int ce, d;

struct iovec *lov;

Int lovent;

DESCRIPTION

Page 1

Fitdes is a Rle descriptor obtained from a creat, open, dup, finil, pipe, or
socket system call.

Readv attempts to read nbyte bytes from the file associated with fildes and
scatters the input data into the fovemt buffers specified by the members of
the jovec array: iovI0], iovill, ..., iovliovent —1].

The iovee structure is defined as:

struct iovec |
caddr_t iov_base;
int iov_len;

Each ivvec entry specifies the base address and iength of an area in memory
where data should be placed. Readv will always Gl an area completely
before proceeding to the next.

On devices capable of seeking, the readry starts at a position in the file given
by the file pointer associated with fildes. Upon return from regdv, the file
pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, readv returns the number of bytes actually
read and placed in the buffer; this number may be less than nbyie if the file
is associated with a communication line (see foctf(2), socket(2N), and ter-
mie(T}), or if the number of bytes left in the file is less than »byte bytes.
A value of 0 is returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data becomes avail-
able.

July 26, 1935

READV{3N) UniSoft READYV {3N)

Readv will fail if one or more of the following are true:

[EBADFI] Fildes is not a valid file descriptor open for reading.
[EFAULTI Buf points outside the allocated address space.

[EINTR] A signal was caught during the read system call.

In addition, ready may return one of the following errors:

[EINVAL} fovent was less than or equal to 0, or greater than 16.
[EINVALJ One of the iov_len values in the /ov array was negative.
[EINVAL] The sum of the jov_len values in the iov array overflowed a

32-bit integer.
RETURN VALUE
Upon successful completion 2 non-negative integer is returned indicating
the number of bytes actually read. Otherwise, a —1 is returned and errvo
is set to indicate the error.

SEE ALSO
creat(2), fentl(2), ioctl(2), open(2), pipe(2), socket(ZN},
termio{7) in the Administrator Reference Manual.

July 26, 1985 Page 2

REGCMP(3X} REGCMP(3X)

NAME

regemp, regex — compile and execute a regular expression

SYNOPSIS

char eregemp(stringl |, string2, ...l1, (char "))}
char estringl, #stringl, ...;

char sregex(re, subjectl, ret0, ...1}
char ere, =subject, *retd, ...;

extern char »locl;

DESCRIPTION

Regemp compiles a regular expression and returns a pointer to the compiled
form. Malioc(3C) is used to create space for the vector. It is the user's
responsibility to free unneeded space that has been allocated by malloc. A
NULL return from regemyp indicates an incorrect argument. Regemp(l) has
been written to generally preclude the need for this routine at execution
time.

Regex executes a compiled pattern against the subject siring. Additional
arguments are passed 10 receive values back. Regex returns NULL on
failure or a pointer to the next unmatchéd character on success. A global
character pointer Joc! points to where the match began. Regemp and regex
were mostly borrowed from the editor, ed(1); however, the syniax and
semantics have been changed slightly. The following are the valid symbols
and their associated meanings.

| These symbols retain their current meaning.

$ This symbol matches the end of the.string; \'n matches the new-
line. _ _
- Within brackets the minus means "through”.” For example, la—z]

is equivalent to [abed...xyzl. The — can appear as itself only if
used as the last or first character. For example, the character
class expression []1— | matches the characters] and —.

+ A regular expression followed by + means "one or more times”.
For exampie; 0—-91+ is equivalent to [0—91[0—9l,

{m) {m)}

{s,u} Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be applied. The minimum
number is m and the maximum number is », which must be less
than 256. If only m is present (e.g., [m]), it indicates the exact
number of times the regular expression is to be applied. [} is
analogous to {m,inﬁnlteg). The plus (+) and star () operations
are equivalent to (1,) and (0,}, respectively.

{...)8# The value of the enclosed regular expression is to be returned.
The value will be stored in the (7+ZLith argument following the
subject argument. At present, at most 10 enclosed regular
expressions are allowed. Regex makes its assignments uncondi-
tionally.

{...) Parentheses are used for grouping. An operator {eg., », +, {])
can work on a Single character or a regular expression enclosed in
parentheses. For example, (a~{cb+)+)80.

REGCMP (3X} REGCMP(3X)

By necessity, all the above defined symbols are special. They must, there-
fore, be escaped to be used as themselves.

EXAMPLES

Example 1:
char *cursor, *newcursor, *pir;

newcursor = regex{{ptr = regemp(""\n", 0}, cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed at
by cursor.

Example 2:
char ret0[9];
char *newcursor, *name;

name = regemp(”([A —Za—z](A—za— 20— 9_1{0,7h 0", 0);
newcursor = regex(name, "123Testing321", retd);
This example will match through the string ““Testing3'” and will return the
address of the character after the last matched character (cursor+11). The
string ““Testing3”’ will be copied to the character array ref,

Example 3:
#inclode "file.i”
char sstring, *newcursor;

newcursor = regex(name, string);

This example applies a precompiled regular expression in fled (see
regemp(1)} against string.

This routine is kept in /lib/HbPW.a_

SEE ALSO

BUGS

ed{l), regemp(1), malloc(3C).

The user program may run out of memory if regemp is called iteratively
without freeing the vectors no longer required. The following user-supplied
replacement for malloc(3C) reuses the same vector, saving time and space:

/* user's program */
char *

mallocin)
unsigned n;

static char rebuf[512];
return {n < = sizeof rebuf) ? rebuf ; NULL;

A

REXEC(3N) UniSoft REXEC (3N)

NAME

rexec — return stream to a remoie command

SYNOPSIS

rem = rexec{ahost, inport, user, passwd, cmd, fdp);
char **ahaost;

u_short inport;

char *user, *passwi, *emd;

int *f2p;

e ... —Inet

DESCRIPTION

Rexec looks up the host *ahost using gethostenr(3N), returning —1 if the
host does not exist. Otherwise *"ghosf is set to the standard name of the
host. If a username and password are both specified, then these are used
to authenticate to the foreign host; otherwise the environment and then the
user’s .#efre file in his home directory are searched for appropriate informa-
tion. [f all this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for
the connection: it will normally be the value returned from the call
“getservbyname ("exec”, "tcp")”’ (see getservensf(3N)). The protocol for
connection is described in detail in rexecd(8N).

if the call succeeds, a socket of type SOCK_STREAM is returned to the
caller, and given to the remote command as stdin and stdoat. If fdlp is
non-zero, then a auxiliary channel to a control process will be setup, and a
descriptor for it will be placed in %#2p. The control process will return
diagnostic output from the command (unit 2) on this channel, and will also
accept bytes on this channel as being UNIX signal numbers, to be for-
warded to the process group of the command. If /i#2p is 0, then the stderr
{unit 2 of the remote command)} will be made the same as the stdout and
no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-of-band data.

LINKING

This library is accessed by specifying —Lnet as the last argument to the
compile line, e.g.:

cc — o prog prog.c ~Inet

SEE ALSO

BUGS

Page 1

remd{3N), rexecd(8N)

There is no way to specify options to the secker call which rexec makes.

July 22, 1985

ROUND (3F} ROUND (3F)

NAME
anint, dnint, nint, idnint — Fortran nearest integer functions

SYNOPSIS
integer i
real rl, r2
double precision dpl, dp2

r2 = amint(rl)
i = nint(rl)

dp2 = anint{dpl)
dp2 = dnint(dpl)

i = nint(dpl)
i = idnint{dpl)

DESCRIPTION
Anint returns the nearest whole real number to its real argument (i.e.,
int(a+0.5) if a 2 0, int{a—0.5) otherwise). Dnint does the same for its
double-precision argument. Ninr returns the nearest integer to its real
argument. Jfdnint is the double-precision version. Anint is the generic form
of anint and dnint, performing the same operation and returning the data
type of its argument. Nint is also the generic form of ldnint.

5

SCANF(35) SCANF (35)

NAME

scanf, fscanf, sscanf — convert formatted input

SYNOPSIS

#Hnclude < stdio.h>>

int scanf (format | , pointer 1 ...)
char *format;

int fscanf (stream, format [, pointer | ...)
FILE *stream;
char *format;

int sscanf (s, format [, pointer 1 ...)
char =s, *format;

DESCRIPTION

Page |

Scanf reads from the standard input stream sidin, Fscanf reads from the
named input stream. Sscan/ teads from the character string 5. Each func-
tion reads characters, interprets them according to formar, and stores the
results in its arguments. Each function expects two arguments: a control
string formar (described below) and a set of pointer arguments indicating
where the converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1. White-space characters (blanks and tabs) which, except in two cases
described below, cause input to be read up to the next non-white-space
character.

2. An ordinary character (not %), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppression character =, an optional numerical maximum
field width, an optional 1 {(ell} or b indicating the size of Lhe receiving
variable, and a conversion code.

A conversion specification directs the conversion of the next input field;
the result is placed in the variable pointed to by the corresponding argu-
ment, unless assignment suppression has been indicated by ». The
suppression of assignment provides a way of describing an input field which
is to be skipped. An input field is defined as a string of non-white-space
characters; it extends to the next inappropriate character or until the field
width, if specified, is exhausted. For all descriptors except *“[* and *‘¢™,
white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument should be given. The following
conversion codes are legal:

% A single % is expected in the input at this point: no assignment is
done.
d A decimal integer is expected; the corresponding argument should

be an integer pointer.

July 22, 1985

SCANF{35)

efg

SCANF (38)

An unsigned decimal integer is expected; the corresponding argu-
ment should be an unsigned integer pointer.

An octal integer is expected; the corresponding argument should be
an integer pointer.

A hexadecimal integer is expecied, the corresponding argument
shouid be an integer pointer,

A floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a flear. The input format for floating point
numbers is an optionally signed string of digits, possibly containing
a decimal point, followed by an optional exponent field consisting
of an E or an e, followed by an optional +, —, or space followed by
an integer. :

A character string is expected; the corresponding argument should
be a character pointer to am array of characters large enough to
accept the string and a terminating \0, which will be added
automatically. The input feld is terminated by a white-space char-
acter.

A character is expected; the corresponding argument should be a
character pointer. The normat skip over white space is suppressed
in this c¢ase; to read the next non-space character, use %ls. 1f a
field width is given, the corresponding argument should refer to a
character array; the indicated number of characters is read.

String data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters (the
seanser) and a right bracket; the input field is the maximal sequence
of input characters consisting entirely of characters in the scanser.
The circumflex, ("), when it appears as the first character in the
scanset, serves as a complement operator and redefines the scanset
as the set of all characters #of contained in the remainder of the
scanset string. There are some conveations used in the construc-
tion of the scanser. A range of characters may be represented by
the construct first-lasr, thus, [012345678%] may be expressed 10-9].
Using this convention, firsr must be lexically less than or equal to
fast, or else the dash will stand for itself. The dash will also siand
for itself whenever it is the first or the tast character in the scanser.
To include the right square bracket as an element of the scanset, it
must appear as the first character {possibly preceded by a
circumflex) of the scasser, otherwise it will be interpreted syntacti-
cally as the closing bracket. The cerresponding argument must
point to a characier array large enough to hold the data field and
the terminating \0, which will be added automatically. At least one
character must match for this conversion to be considered success-
ful.

The conversion characters d, u, o, and x may be preceded by | or h to indi-
cate that a pointer to long or short, rather than int, is in the argument list.
Simitarly, the conversion characters e, f, and g may be preceded by | to
indicate that a pointer to double, rather than float, is in the arguwment list.

The 1 or h modifier is ignored for other conversion characters. Scanf
conversion terminates at EQOF, at the end of the control string, or when an

July 22, 1985

Page 2

SCANF (38) SCANF (38)

input character conflicts with the control string. In the laiter case, the
offending character is left unread in the input stream.

Scan/ returns the number of successfully matched and assigned input
items; this number can be zero when an early conflict between an input
character and the control string occurs. If the input ends before the first
conflict or conversion, EOF is returned.

EXAMPLES

The call

int i; n: float x; char namel50};
o = scanf ("%d%f%s", &i, &x, name);

with the input line
25 54,32E—1 thompson

will assign the value 3 to #, the value 25 to i, and the value 5.432 o x;
name will contain thompsoen\0.

The call

int i; float x; char namelS6l;
(void} scanf ("%2d4%f%=d %[0-9]*, &i, &x, name};

with input
56789 0123 56a72

will assign 56 to /, 789.0 to x, skip 0123, and place the string 56\0 in name.
The next call to geichar (see getc(38)) will return a.

SEE ALSO

NOTE

gete(38), printf(38), strtod{3C), striol(3C).

Trailing white space is left unread unless matched in the control string.

DIAGNOSTICS

BUGS

Page 3

These functions return EOF on end of input and a short count for missing
or illegal data items.

The success of literal matches and suppressed assignments is not directly
determinable.

July 22, 1985

SETBUF(3S) SETBUF(358)

NAME
setbuf, setvbuf — assign buffering to a stream
SYNOPSIS
#include «<stdio.h>
void setbuf (stream, buf)
FILE »stream;
char *buf;
int setvbuf (stream, buf, type, size)
FILE #*stream;
char *buf;
int type, size;
DESCRIPFTION
Setbuf may be used after a stream has been opened but before it is read or writ-
ten, It causes the amray pointed to by buf to be used instead of an automatically
allocated buffer. If buf is the NULL pointer input/output will be completely
unbuffered,

A constant BUFSIZ, defined in the <stdioh> header file, tells how big an array
is needed:
char buf[BUFSIZ];

Sewvbif may be used after a stream has been opened but before it is read or
written. Type determines how stream will be buffered. Legal values for type
(defined in stdio.h) are:

_JOFBF causes input/output to be fully buffered.

_TOLBF causes output to be line buffered; the buffer will be flushed when
a newline is written, the buffer is full, or input is requested.

_IONBFR causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering,

instead of an automatically allocated buffer. Size specifies the size of the buffer

to be used. The constant BUFSIZ in <stdio.h> is suggesied as a good buffer

size. If input/output is unbuffered, buf and size are ignored,

By default, output to a terminal is line buffered and all other input/output is
fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

Page 1 September 24, 1987

SETBUF(35) SETBUF(38)

DIAGNOSTICS
a If an illegal value for fype or size is provided, setvbuf retums a non-zero value.
| Otherwise, the value returned will be zero.
NOTE
A commoen source of error is allocating buffer space as an “*automatic’’ vari-
able in a code block, and then failing to close the stream in the same block.
Setbyf allows assignment of a new /O buffer after the stream has been read
(written), and if unflushed data remains in the original buffer, This could lead to
a loss of data error.

September 24, 1987 Page?2

SETIMP(3C)} SETIMP(3C)

MNAME

setymp, longjmp — non-local goto
SYNOPSIS

#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp {(env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encoun-

tered in a low-level subroutine of a program.

Setjmp saves its stack environment in env for later use by fongimp. The
envitonment type Jjmp byf is defined in the <setjmp.h> header file,
Setimp returns the value 0.

Longimp restores the environment saved by the last call of setfmp with the
corresponding env argument. After longimp is completed, program execu-
tion continues as if the corresponding call of segimp (which must not itseif
have returned in the interim} had just returned the value val. Longimp
cannot cause seffmp to return the value 0. If longimp is invoked with a
second argument of 0, segmp will return 1. All accessible data have values
as of the time longimp was celled.

SEE ALSO
signai(2).

WARNING
Longimg fails if it is called when env was never primed by a call to seimp or
when the last such call is in 2 function which has since returned.

SIGN (3F} SIGN (3F)

NAME
sign, isign, dsign — Fortran transfer-of-sign intrinsic function

SYNOPSIS
integer i, j, k
real rl, r2, 3
double precision dpl, dp2, dp3
k = isigni, j)
k = sign(i, j
r3 = sign{rl, r2)
dpl = dsign{dpl, dp2)
dp3 = sign(dpl, dp2)
PESCRIPTION
Isign returns the magnitude of its first argument with the sign of its second
argument. Sign and dsign are its real and double-precision counterparts,
respectively, The generic version is sign, which devolves to the appropriate
type depending on its arguments.

SIGNAL (3F) SIGNAL (3F)

NAME

signal — specify Fortran action on receipt of a system signal
SYNOPSIS

integer i

external integer intfnc

call signal{i, intfnc)

DESCRIPTION
Signal allows a process to specify a function to be invoked upon receipt of a
specific signal. The first argument specifies a fault or exception; the second
argument specifies the function to be invoked.

SEE ALSO
kill(2), signal(2).

SIN (3F) SIN(3F)

NAME
sin, dsin, csin — Fortran sine intrinsic function

/7~ SYNOPSIS

real rl, 2

T - double precision dpl, dp2
complex cxl, cx2

12 = sia(rl)

dp2 = dsin{dpl)
dp2 = sin(dpl)
cx2 = esin{cxl)
cx2 = sin{cxl)

DESCRIPTION
Sin returns the real sine of its real argument. Dsin returns the double-
precision sine of its double-precision argument. Csin returns the complex
sine of its complex argument. The generic sin function becomes dsin or
csin as required by argument type.

SEE ALSO
trig(3M).

SINH {3F) SINH (3F)

NAME

sinh, dsinh — Fortran hyperbolic sine intrinsic function
SYNOPSIS

real rl, r2

double precision dpl, dp2

r2 = sinh(rl)

dp2 = dsinh(dpl)
dp2 = sinh(dpl)
DESCRIPTION
Sink returns the real hyperbolic sine of its real argument. Dsinh returns
the double-precision hyperbolic sine of its double-precision argument. The

generic form sinh may be used to return a double-precision value given a
double-precision argument.

SEE ALSO
sinh(3M).

SINH (3M)} SINH(3M)

NAME

sinh, cosh, tanh — hyperbolic functions
SYNOPSIS

#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;
double tanb (x)
double x;
DESCRIFTION
Sinh, cosh, and tenh return, respectively, the hyberbolic sine, cosine, and
tangent of their argument.
DIAGNOSTICS
Sinh and cosh return HUGE {and sinh may return — HUGE for negative x)
when the correct value would overflow and set errno to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr{3M).

SLEER{(3C) SLEEP(3C)

NAME

sleep — suspend execution for interval

SYNOPSIS

unsigned sleep {seconds}
unsigned seconds;

DESCRIPTION

Sleep suspends the current process from execution for the number of
seconds specified by the argument. The actual suspension time may be less
than that requested for two reasons: (1) scheduled wakeups occur at fixed
1-second intervals, (on the second, according to an internal clock) and (2)
any caught signal will terminate sleep following execution of the signal
catching routine. The suspension time may be longer than requested by an
arbitrary amount, due to the scheduling of other activity in the system.
The value returned by sleep is the ““unslept”™ amount (the requested time
minus the time actually slept) in case the caller had an alarm set to go off
earlier than the end of the requested sleep time or in case there is prema-
ture arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it
(or some other signal) occurs. The previous state of the alarm signal is
saved and restored. The calling program may have set up an alarm signal
before calling sfeep. if the sleep time exceeds the time before the alarm sig-
nal, the process sleeps only until the alarm signal would have occurred and
the caller’s alarm caich routine is executed just before the sicep routine
returns. If the sfeep time is less than the time before the calling program’s
alarm, the prior alarm time is reset to go off at the same time it would have
without the intervening sleep.

SEE ALSO

alarm(2}, pause(2), signal(2}.

SPUTL {3X) SPUTL{3X)

NAME

sputl, sgetl — access long integer data in a machine independent fashion.
SYNOPSIS

sputl (value, buffer)

long value;

char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION
Sputl takes the 4 bytes of the long integer vafue and places them in
memory, starting at the address pointed to by duffer. The ordering of the
bytes is the same across all machines,

Sgetd retrieves the 4 bytes in memory, starting at the address pointed to by
buffer, and returns the long integer value in the byte ordering of the host
machine.

Use of sputi and sged! provide a machine independent way of storing long
numeric data in a file in binary form without conversion to characters.

A program that uses these functions must be loaded with the object file
access routine library 1ibid.a.

SEE ALSO
ar(4).

SQRT (3F) SQKT (3F)

NAME
sqrt, dsqrt, csgrt — Foriran square root intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex c¢xl, cx2

r2 =~ sqri(rl}

dp2 = dsqrt(dpl)
dp2 = sqrtidpl)

cx2 = csqrilcxl)
ex2 sqrt{cx1)

DESCRIPTION
Sgqrt returns the real square root of its real argument. Dsgrf returns the
double-precision square root of its double-precision argument. Csgrt
returns the complex square root of its complex argument. Sgrr, the generic
form, will become dsgrt or csqrt as required by its argument type.

SEE ALSO
exp(IM},

SSIGNAL (3C) SSIGNAL (3C)

NAME

ssignal, gsignal — software signals

SYNOPSIS

#include <signal.h>

int {*ssignal {(sig, action}){)
fnt sig, (saction)(};

int gsignal (sig)

in¢ sig;

DESCRIPTION

Ssignal and gsigna/ implement a software Ffacility similar to sigral(2). This
facility is used by the Standard C Library to enable users to indicats the
disposition of error conditions; it is also made available to users for their
OWn purposes.

Software signals made available to users are associated with integers in the
inclusive range 1 through 15. A call to ssignal associates a procedure,
action, with the software signal, sig; the software signal, sig, is raised by a
call to gsignal. Raising a software signal causes the action established for
that signal to be taken.

The first argument to ssigmal is a number identifying the type of signat for
which an action is to be established. The second argument defines the
action; it is either the name of a user-defined action function or one of the
manifest constants SiG_DFL (default) or SIG_IGN (ignore}. Ssigna! returns
the action previously established for that signal type; if no action has been
established or the signal number (sig) is illegal, ssignaf returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is
reset to SIG_DFL and the action function is entered with argument sig.
Gsignal returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes
no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes
no other action.

If sig has an illegal value or no action was ever specified for sig, gsig-
nal returns the value 0 and takes no other action.

SEE ALSO

NOTES

signal{2}.

There are some additional signals with numbers outside the range 1
through 15 which are used by the Standard C Library to indicate error con-
ditions. Thus, some signal numbers outside the range 1 through 15 are
legal, although their use may interfere with the operation of the Standard C
Library.

STDIO(3S) STDIO (3S)

NAME

stdic — standard buffered input/output package

SYNOPSIS

#include < stdio.h>
FILE »+stdin, *stdout, sstderr;

DESCRIPTION

The functions described in the entries of sub-class 35 of this manual consti-
tute an efficient, user-level IO buffering scheme. The input/cutput func-
tion may be grouped into ihe following categories: file access, file status,
input, output, miscellaneous. For lists of the functions in each category,
refer to the "Libraries” section of the Programming Guide. The in-line mac-
ros gerc(38) and purc(38) handle characters quickly. The macros gefchar
and puichar, and the higher-level routines Jfierc, fgets, fprintf, fputc, fputs,
Jread, fscanf, fwrite, gers, gerw, primtf, puis, putw, and scanf all use gefc and
puic;, they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a
pointer to a defined type FILE. Fopen(3S) creates certain descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions. Normally, there are three open streams with constant pointers
dectared in the < stdio.h> header file and associated with the standard
open files:

stdin standard input file
stdout standard gutput file
stderr standard error file.

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (—1) is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual descrip-
tions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the
particular implementation.

Any program that uses this package must include the header file of per-
tinent macro definitions, as follows:

f#tinclude <stdic.h>
The functions and constants mentioned in the entries of sub-class 38 of
this manual are declared in that header file and need no further declaration.
The constants and the following functions are implemented as macros: gerc,
getchar, putc, putchar, feof, ferror, clearerr, and fileno. Redeclaration of
these names is perilous.
The < stdio.h>> file is illustrated in the "Libraries" section of the Program-
ming Guide.

SEE ALSO

Page 1

openf2}, close(2), lseek(2), pipe(2), read(2), ctermid(38), cuserid(38),
fclose(38), ferror(38}, fopen(3S), fread(3S), fseek(35), getc(38), gets(38),
popen(38), printf(35), putc(35), puts(38), scanf(38), sethuf(38),
system(3S}, tmpfile{35}, tmpnam(3S), ungeic(38), write(3).

July 29, 1985

STDIO (35) STDIO (38)

DIAGNOSTICS
Invalid stream pointers cause serious errors, possibly including program ter-
mination. Individual function descriptions describe the possible error con-
ditions,

July 29, 1985 Page 2

STDIPC(3C) STDIPC(3C)

NAME

ftok — standard interprocess commuagication package

SYNOFPSIS

##include <sys/types.h>
#tinclude <sys/ipe.h>
key_t ftok (path, id)

char =path;

char id;

DESCRIPTION

All interprocess communication facilities require the user to supply a key to
be used by the msgger(2), semget(2), and shmget(2) system calls to obtain
interprocess communication identifiers. One method for forming a key is
to use the ffok subroutine described below. Another way to compose keys
is to include the project ID in the most significant byte and to use the
remaining portion as a sequence numbes. There are many other ways to
form keys, but it is necessary for each system to define standards for form-
ing them. If a standard is not adhered to, unrelated processes may inter-
fere with each other’s operation. Therefore, it is strongly suggested that
the most significant byte of a key in some sense refer to a project so that
keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. Pathk must be the pathname of an existing
file that is accessible to the process. /4 is a character that uniquely
identifies a project. Fok returns the same key for linked files when called
with the same id; it returns different keys when called with the same
filename but different ids.

SEE ALSO

intra(2), msgget(2}, semget(2), shmget{2).

DIAGNOSTICS

Fiok returns (key_t) —1 if parh does not exist or if it is not accessible to
the process.

WARNING

If the file whose path is passed to ftok is removed when keys still refer to
the file, future calls to fiok with the same path and id will return an error.
If the same file is recreated, fiok is likely to return a different key than it
did the original time it was called.

STRCMP (3F) STRCMP (3F)

NAME

Ige, Igt, lle, lit — string comparision intrinsic functions
SYNOPSIS

character*N al, al

logical 1

1 = lge (al,a2)
1 = gt (al,a2)
1 = lle {al,a2)
1 = 1t {al,a2)

DESCRIPTION
These functions return .TRUE, if the inequality holds and .FALSE. other-
wise,

STRING (3C} STRING (3C)

NAME
strcat, sirncat, stremp, strocmp, strepy, stracpy, strlen, strchr, sirrchr,
strpbrk, strspn, strcspn, strtok — string operations

SYNOPSIS
#include <string.h>

char streat (sl, s2)
char «3l, *32;

char estrmcat {51, 52, n)
char esl, *s2;
int n;

int stremp (51, 82)
char +sl, »s2;

int strnemp (s1, s2, n)
char »s51, »52;

int n;

char estrepy (51, 52)
char +s1, *52;

char =strnepy (sl, s2, n)
char *s], *s2;
int n;

int strlen (5)
char »s;

char =strchr (s, c)
char =s;
int c;
char »strrchr (s, ¢
char »s;
int c;
char sstrpbrk (s1, s2}
char »sl, *s2;
int strspn (i, s2)
char +sl, »52;
int strespn {51, s2)
char *sl, »s2;
char +strtok (s, s2)
char s], »s2;
DESCRIPTION
The arguments si, s2, and s point to strings (arrays of characters ter-
minated by a null character). The functions srrecar, strncat, strepy, and
strncpy all alter 2. These functions do not check for overflow of the array
pointed to by si.
Streat appends a copy of string s2 to the end of siring si. Strncat appends
at most »# characters. Each function returns a pointer to the null-
terminated result.

Stremp performs a lexicographical comparison of its arguments and returns
an integer less than, equal to, or greater than 0, when s/ is less than, equal

-1-

STRING (3C) STRING (3C)

NOTE

BUGS

to, or greater than s2, respectively. Strnemp makes the same comparison
but looks at 8 maximum of » characters.

Strcpy copies string s2 10 string s/, stopping after the null character has
been copied. Strncpy copies exactly # characters, truncating s2 or adding
null characters to s/ if necessary. The result is not null-terminated if the
length of 52 is # or mere. Each function returns s/,

Strien returns the number of characters in s, not including the terminating
null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character ¢
in string s, or a NULL pointer if ¢ does not occur in the string. The null
character terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occutrence in string s/ of any character
from string 52, or a NULL pointer if no character from 52 exists in s/.

Strspn (strcspn) returns the length of the initial segment of string s{ which
consists entirely of characters from (not from) string s2.

Sirtok considers the string sf 1o consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer s/ specified) returns a pointer to the
first character of the first token, and writes a null character into s/ immedi-
ately following the returned token. The function keeps track of its position
in the string between separate calls, so that on subsequent calls (which
must be made with a NULL pointer as the first argument) it works through
the string s! immediately following that token. This can be continued until
no tokens remain. The separator string s2? may be different from call to
call. When no token remains in s/, a NULL pointer is returned.

For user convenience, all these functions are declared in the optional
< string.h> header file.

Strcmp use native character comparison, Thus the sign of the value
returned when one of the characters has its high-order bit set is
implementation-dependent.

All string movement is performed character by character starting at the left,
Thus overlapping moves toward the left will work as expected, but overlap-
ping moves to the right may yield surprises.

STRTOD(3C) STRTOD(3C)

NAME

strtod, atof — convert string 1o double-precision number

SYNOPSIS

double strtod (str, ptr)
char *str, *epir;
double atof (str)

char =str;

DESCRIPTION

Strtod returns as a double-precision floating-point number the wvalue
represented by the character string pointed to by str. The string is scanned
up to the first unrecognized character.

Strtod recognizes an optional string of ““white-space’* characters (as defined
by isspace in cppe(3C)), then an optional sizn, then a string of digits
optionally containing a decimal peint, then an optional e or E followed by
an optional sign or space, followed by an integer.

If the value of prr is not (char »+}NULL, a pointer to the character ter-
minating the scan is returned in the location pointed to by ptr. If no
number can be formed, »pir is set to str, and zero is returned.

Atof(str) is equivalent to strfod(str, (char s JNULL),

SEE ALSO

ctype(3C), scanf(35), strtol(3C).

DIAGNOSTICS

If the correct value would cause overflow, £HUGE is returned {(according to
the sign of the vajue), and errno is set (0 ERANGE,

If the correct value would cause underflow, zero is returned and errno is set
to ERANGE,

STRTOL (3C} STRTOL (3C)

NAME

strtol, atol, atoi — convert string to integer

SYNOPSIS

long strtel (str, ptr, base)
char #+str,»+ pir;
int base;

long atol {(str)
char #str;

int atel (str)
char sstr;

DESCRIPTION

Striof returns as a long integer the value represented by the character string
pointed to by str. The siring is scanned up to the first character incon-
sistent with the base. Leading white-space characters (blanks and tabs) are
ignored.

If the value of ptr is not {char *+)NULL, a pointer to the character ter-
minating the scan is returned in the location pointed to by ptr. If no
integer can be formed, zere is returned.

If base is positive {and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored; a
leading 0x or 9X is ignored if base is 16.

If base is zero, the string itself determines the base. Afier an optionsl lead-
ing sign, a leading zero indicates octal conversion and a leading 0x or 0X
indicates hexadecimal conversion; otherwise, decimal conversion is used.
Truncation from long to int can take place upon assignment or by an expli-
cit cast.

Atol(sir} is equivzient to striel{se, (char »+)NULL, 10).
Atol(str) is equivalent to (/inf) strtel(st, {char »*}NULL, 10).

SEE ALSO

BUGS

ctype(3C), scanf(38), strtod(3C).

Overflow conditions are ignored.

SWAB(3C) SWAER{3C)

NAME
swab — swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIFTION
Swab copies nbyres bytes pointed to by from to the array pointed to by ro,
exchanging adjacent even and odd bytes. It is useful for carrying binary
data between PDP-11s and other machines. AMbytes shouid be even and
non-negative. If nbwes is odd and positive, swad uses nbytes—1 instead. If
nhytes is negative, swab does nothing.

SYSTEM (3F)} SYSTEM (3F)

NAME
system — issue a shell command from Fortran

SYNOPSIS
character sN ¢

call systemf{c)

DESCRIPTION
System causes its character argument to be given to sh{1) as input, as if the
string had been typed at a terminal. The current process waits until the
shell has completed.

SEE ALSO
sh(1), exec(2), system(38).

SYSTEM (35) SYSTEM (35)

NAME
system — issue a shell command

SYNOPSIS
#include < stdio.h>>

int system (string)
char sstring;

DESCRIPTION
System causes string to be given to s#(1} as input, as if the string had been
typed as a command at a terminal. The current process waits until the shell
has completed, then returns the exit status of the shell.

FILES
/bin/sh
SEE ALSO
sh(1), exec{(2).
DIAGNOSTICS .
System forks to creaie a child process that in turn performs exec(2) on
/binfsh in order to execute string. If the fork or exec fails, system returns a
negative value and sets errno.

TAN (3F) TAN(3F)

NAME
tan, dtan — Fortran tangent intrinsic function

SYNOPSIS
real rl, 2
double precision dpl, dp2
r2 = tan{rl)
dp2 = dtan{dpl)
dp2 = tan{dpl)
DESCRIPTION
Tan returns the real itangent of its real argeument. Drgn returns the
double-precision tangent of its double-precision argument. The generic fan
function becomes dfan ag required with a double-precigsion argument.
SEE ALSO
wrig(3M).

TANH (3F) TANH{3F)

NAME
tanh, dtanh — Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = tanh(rl)

dp2 = dtanh{dpl)
dp2 = tanh(dpl)

DESCRIPTION
Tanh returns the real hyperbolic tangent of its real argument. Dienh
returns the double-precision hyperbolic tangent of its double precision argu-
ment. The generic form ranh may be used to return a double-precision
value given a double-precision argument.

SEE ALSO
sinh(3M).

"z

TERMCAP{3X)

NAME

TERMCAP(3X)

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs — terminal independent operation

routines

SYNOPSIS

char PC;
char *BC;
char »UP;
short ospeed;

tgetent(bp, name)
char sbp, *name;

tgetnum(id)

char *id;

tgetflag(id)

char *id;

char *

tgetstr(id, area)

char *id, s+area;
char =

tgoto{cm, destcol, destline)
char scm;

tputs(cp, affent, outc)
register char *cp;
int affcnt;

int *outc)(;

DESCRIPTION

These functions extract and use capabilities from the terminal capability data

base termeap(5). Note that these are low-level routines.

Tgetent extracts the entry for terminal name into the boffer at bp. Bp should be
a character buffer of size 1024 and must be retained through all subsequent
calls to rgetnian, tgetflag, and tgetstr. Tgetent retums —1 if it cannot open the
termcap file, 0 if the terminal name given does not have an entry, and 1 if suc-
cessful. It looks in the environment for a TERMCAP variable. If a variable is
found whose value does not begin with a stash and the terminal type name is
the same ag the environment string TERM, the TERMCAP string is used
instead of reading the termcap file. If the value does begin with a slash, the

Page 1

September 24, 1987

TERMCAP(3X) TERMCAP(3X)

string is used as a pathname rather than /et¢/termcap. This can speed up entry
into programs that call tgesant, It can also help debug new terminal descrip-
tions or be used to make one for your terminal if you can’t write the file
fetc/termcap.

Tgetnum gets the numeric value of capability id, returning —1 if is not given for
the terminal, Tgeiflag retumns 1 if the specified capability is present in the
terminal’s entry, O if it is not. Tgetstr gets the string value of capability id,
placing it in the buffer at area, advancing the area pointer. It decodes the
abbreviations for this field described in trermcap(5), except for cursor address-
ing and padding information.

Tgoto returns a cursor addressing string decoded from cm to go to column
destcol in line destline, It uses the external variables UP (from the up capabil-
ity) and BC (if be is given rather than bs) if necessary to avoid placing \n, D or
“@ in the returned string. (Programs that call ¢goto should be sure to turn off
the XTABS bit(s), since igoto may now output a tab. Note that programs using
termcap shoyld in general turn off XTABS myway since some terminals use
control-I for other functions, such as nondestructive space.) If a % sequence is
given which is not understood, then tgoto retums OOPS.

Tputs decodes the leading padding information of the string cp; affent gives the
number of lines affected by the operation, or 1 if this is not applicable; outc is a
routine that is called with each character in turn, The external variable ospeed
should contain the output speed of the terminal as encoded by stty (1). The
external variable PC should contain a pad character to be uwsed (from the pc

capability) if a null ("@®) is inappropriate.
FILES
fust/litylibtermcap.a —ltermeap library
feic/termecap data base
SEE ALSO
ex(1), termcap(5)

September 24, 1987 Page 2

TMPFILE(3S) TMPFILE{3S)

NAME
tmpfile — create a temporary file

SYNOPSIS
#include < stdio.h>>

FILE stmpfile ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated by tmpnam(38),

and returns a corresponding FILE pointer, If the file cannot be opened, an
error message is printed using perror(3C), and a NULL pointer is returned.
The file is automatically deletied when the process using it terminates. The
file is opened for update ("w=+"). Tmpfile calls fopen and so returns any
error code passed to it from fopen.

SEE ALSO
creat(2), unlink(2), fopen{3S}, mktemp(3C), perror(3C), tmpnam{38).

TMPNAM (38) TMPNAM (35)

NAME
tmpnam, tempnam — create a name for a temporary file

SYNOPSIS
#inclode < sedio.h>

char stmpnam {s)
char »s;

char #tempnam (dir, pfx)}
char =dir, *pfx;

DESCRIPTION
These functions generate filenames that can safely be used for a temporary
file.

Tmpnam always generates a filename using the pathname defined as
P _tmpdir in the <stdio.h> header file. If 5 is NULL, rpnam leaves its
result in an internal static area and returns a pointer to that area. The next
call to impram will destroy the contents of the area. If 5 is not NULL, it is
assumed fo be the address of an array of at least L_tmpnam bytes, where
L _tmpnam is a constant defined in <<stdio.h>: tmpram places its result in
that array and returns s.

Tempnam allows the user o control the choice of a directory. The argu-
ment dir points to the pathname of the directory in which the file is to be
created. If dir is NULL or points to a string which is not a pathname for an
appropriate directory, the pathname defined as P _tmpdir in the <stdio.h>
header file is used. If that pathname is not accessible, /tmp will be used as
a last resort. This entire sequence can be upstaged by providing an
environment variable TMPDIR in the user’s environment, whose value is a
pathname for the desired temporary-file directory.

Many applications prefer that names of temporary files contain favorite ini-
tial letter sequences. Use the pfx argument for this. This argument may be
NULL or point to a string of up to 5 characters to be used as the first few
characters of the name of the temporary file.

Tempnam uses mafloc(3C) to get space for the constructed filename and
returns & pointer to this area. Thus, any pointer value returned from femp-
nam may serve as an argument to free (see malloc(3C)). If tempnam can-
not return the expected result for any reason {i.e., mafioc failed or attempts
to find an appropriate directory were unsuccessful}, a NULL pointer will be
returned.

NOTES
These functions generate a different filename each time they are called.

Files created using these functions and either fopen(3S) or crear(2) are
temporary only in the sense that they reside in a directory intended for
temnporary use and their names are unique. It is the user’s responsibility to
use wniink(2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen{3S), mallac(3C), mkiemp{3C), tmpfile(35).

BUGS
If called more than 17,576 times in a single process, tmpram and tempriam

Page 1 July 22, 1985

TMPNAM (35) TMPNAM (38)

will start recycling previously used names.

Between the time a filename is created and the file is opened, it is possible
e for some other process to create a file with the same name. This can never
! happen if that other process is using fmpunam, tempnam, or mktenmp(3C) and
e the filenames are chosen carefully to avoid duplication by other means.

July 22, 1985 Page 2

TRIG (3M) TRIG (3M)

NAME

sin, cos, tan, asin, acos, atan, atan? — trigonometric functions

SYNOPSIS

#include < math.h>
double sin (x)

double x;
double cos (x)
double x;
double tan (x}
double x;
double asin (x)
double x;
double acos (x)
double x;
double atan (x)
double x;

double atan2 (y, x)
double x, y;

DESCRIPTION

Sin, cos, and ran return, respectively, the sine, cosine, and tangent of their
argument, which is in radians.

Asin returns the arcsine of x, in the range — = /2 to w/2.
Acos returns the arccosine of x, in the range 0 to ».
Atan returns the arctangent of x, in the range — o /2 to w/2.

Atan2 returns the arctangent of /x, in the range — o to w, using the signs
of both arguments to determine the quadrant of the return value.

DIAGNOSTICS

Sin, cos, and ten lose accuracy when their argument is far from zere. For
arguments sufficiently large, these functions return 0 when there would
otherwise be a complete loss of significance. ln this case a message indicat-
ing TLOSS error is printed on the standard error output. For less extreme
arguments, a PLOSS error is generated but no message is printed. In both
cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if
both arguments of afan2 are zero, zero is returned and errno is set to
EDOM. In addition, a message indicating DOMAIN error is printed on the
standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO

matherr(3M).

/—\

TSEARCH (3C} TSEARCH (3C)

tsearch, tfind, tdelete, twalk — manage binary search trees

SYNOPSIS

#include < search.h>
char stsearch ({(char *) key, (char *+} rootp, compar)
int (scompar}(); -

char #tfind ((char *) key, (char) rootp, compar)
int {*compar)();

char stdelete ({char ¢} key, (char *+) rootp, compar)
int {*compar)();

void twalk {((char ») root, action)
void (eaction)();

DESCRIPTION

Tsearch, tfind, tdefete, and twalk are routines for manipulaiing binary search
trees. They are¢ generalized from Knuth (6.2.2) Algorithms T and D. All
comparisons are done with a user-supplied routine. This routine is called
with two arguments, the peointers to the elements being compared. It
returns an integer less than, equal ito, or greater than 0, according to
whether the first argument is to be considered less than, equal to or greater
than the second argument. The comparison function need not compare
every byte, so arbitrary data may be contained in the elements in addition
to the values being compared.

Tsegrch is used to build and access the tree. Key is a pointer to a datum to
be accessed or stored. If there is a datum in the tree equal to «key (the
value pointed to by key), a pointer to this found datum is returned. Other-
wise, *key is inserted, and a pointer to it returned. Only pointers are
copied, s0 the calling routine must store the data. Rootp points to a vari-
able that points to the root of the tree. A NULL value for the variable
pointed to by rootp denotes an empty tree; in this case, the variable will be
set to point to the datum which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to
it if found. However, if it is not found, (find will return a NULL pointer.
The arguments for tfind are the same as for tsearch.

Tdelete deletes a node from a binary search tree. The arguments are the
same as for tsearch. The variable pointed to by rootp will be changed if the
deleted node was the root of the tree. Tdelete returns a pointer to the
parent of the deleted node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below
that node.) Acrion is the name of a routine to be invoked at each node.
This routine is, in turn, called with three arguments. The first argument is
the address of the node being visited. The second argument is a value
from an enumeration data type typedef enum | preorder, postorder, endorder,
leaf | ViSIT; {defined in the < search.h> header file), depending on
whether this is the first, second or third time that the node has been visited
(during a depth-first, left-to-right traversal of the tree), or whether the
node is a leaf. The third argument is the level of the node in the tree, with
the root being level zero.

TSEARCH (3C) TSEARCH (3C)

The pointers to the key and the root of the tree should be of type pointer-
to-element, and cast to type pointer-to-character. Similarly, although
declared as type pointer-to-character, the value returned should be cast into
type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing a
pointer fo each string and a count of its length. It then walks the tree,
printing out the stored strings and their lengths in alphabetical order.

#include < search.h>
#include < stdio.h>

struct node { /» pointers to these are stored in the tree +/
char *siring;
int length;

)i

char string_space[10000]; /+ space 1o store strings +/

struct node nodes[500]; /+ nodes to store */

struct node *root = NULL, /+ this points to the root */

main{)

{
char «strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk{ };
int i = 0, node compare();

while (gets(strptr) '= NULL && i++ < 500) |
7+ set node *+/
nodeptr— > string = strptr;
nodeptr—>> length = strien{strpir);
/+ put node into the tree +/
{void} tsearch{(char *)nodeptr, &root,

node_compare);

/+ adjust pointers, so we don’t overwrite tree */
strptr += nodeptr—>>length + 1;
nodepir+ +;

H

twalk(root, print_node);

)

i
This routine compares two nodes, based on an
alphabetical ordering of the string field.

o/

int

node_compare(nedel, node2)
struct node »nodel, *node2;

return strempi(nodel— > string, node2— > string);

This routine prints out a node, the frst time
twalk encounters it.

-2

TSEARCH (3C) TSEARCH (3C)

=/
void
print_node{node, order, level)
struct node *+node;
VISIT order;
int level;
{
il (order == preorder |l order == leaf} |
{void)printf("siting = %20s, length = %d\n",
{=node)— > string, {*node}—>> length);

]

SEE ALSO

bsearch(3C), hsearch(3C}, lsearch(3C).

DIAGNOSTICS

A NULL pointer is returned by tsearch if there is not enough space available
to create a new node.

A NULL pointer is returned by tsearch, tfind and tdelete if Tootp is NULL on
entry. .

If the datum is found, both tsearck and ¢find return a pointer to it. If not,
tfind returns NULL, and tsearch returns & pointer to the inserted item.

WARNINGS

BUGS

The root argument to fwalk is one level of indirection less than the rootp
arguments to rsearch and tdelete,

There are iwo nomenclatures used to refer to the order in which tree nodes
are visited. Tsearch uses preorder, postorder and endorder to respectively
refer to visting a node before any of its children, after its left child and
before its right, and after both its children. The alternatie nomenclature
uses preorder, inorder and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder,

If the calling function alters the pointer to the root, resulis are unpredict-
able,

TTYNAME (3C) TTYNAME(3C}

NAME
ityname, isatty — find name of a terminal

SYNOPSIS
char *ityname (filies)
in¢ fildes;
int isatty (fildes)
int fildes;

DESCRIPTION
Toyname returns a pointer to a siring containing the null-terminated path-

name of the terminal device associated with file descriptor fiides.
Isay returns 1 if fildes is associated with a terminal device; otherwise, it
returns 0.

FILES
fdev/*

MAGNOSTICS
Tiyname returns a NULL pointer if fildes does not describe a terminal device

in directory /dev.

BUGS
The return value points to static data whose content is overwritten by each

call.

TTYSLOT (3C) TTYSLOT(3C)

NAME

ttyslot — find the slot in the utmp file of the current user
SYNOPSIS

int ttyslot ()
DESCRIPTION

Ttyslot returns the index of the current user’s entry in the fetc/utmyp file,
This is accomplished by scanning the file /ete/inittab for the name of the
terminal device associated with the standard input, the standard output, or
the error output (0, 1, or 2),

FILES

Jetc/inittab
fetc/utmp

SEE ALSO
getut(3C), uyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error is encovntered while searching for the
terminal name or if none of the above file descriptors is associated with a
terminal device.

UNGETC(38) UNGETC {35)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include < stdio.h>
Int ungete (c, stream)
char c;
FILE »stream;

DESCRIPTION
Ungete inserts the character ¢ into the buffer associated with an input
stream. That character, ¢, will be returned by the next gefc call on that
stream. Ungetc returns ¢ and leaves the file stream unchanged.
One character of pushback is guaranteed provided something has been read
from the stream and the stream is actually buffered. In the case that stream
is stdin, one character may be pushed back onto the buffer without a previ-
ous read statement.
If ¢ equals EQF, ungetc does nothing to the buffer and returns EOF.

Fseek(38) erases all memory of inserted characters.

SEE ALSO -
fseek (38), getc(38), setbuf(35).

DIAGNOSTICS
Ungete returns EOF if it can’t insert the character.

VPRINTF{35) VPRINTF (38)

NAME
vprintf, vfprintf, vsprintf — print formatted output of a varargs argument
Pamn list
' SYNOPSIS
- ftinclude < stdio.h>
#include < varargs.h>

int vprintf (format, ap)
char +format;
va_list ap;

int viprintf (siream, format, ap)
FILE esiream;

char sformat;

va_list ap;

int vsprintf (s, format, ap).
char »s, »format;
va_list ap;

DESCRIPTION
vpring, vprintf, and vsprintf are the same as prinif, fpringf, and sprintf
respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by varargs(5).

EXAMPLE
The following demonstrates how wpring could be used to write an error
e routine.
#include <stdio.h>>
#include < varargs.h>

FE

] error should be called like

* error(function_name, format, argl, arg2..);
«f

/*VARARGSO0+/

void

error{va_alist)
/+ Note that the function_name and format arguments cannot be

» separately declared because of the definition of varargs.
v;,_dcl
va_list args;
char «fmt;
— va_start(args);

{+ print out name of function causing error =/
(void)fprintf(stderr, "ERROR in %s: *, va_arg(args, char »)};
fmt = va_arglargs, char +);

/+ print out remainder of message *+/

(void}vfprintf(Fmt, args);

va_end(args);

VPRINTF(38) VPRINTF (38}

{void}abort();

SEE ALSO
vprintf(3X), varargs(5).

VPRINTF (3X) VPRINTF {3X)

NAME
vprintf, viprintf, vsprintf — print formatted output of a varargs argument
list

SYNOPSIS

#include <stdio.h>
#inclode < varargs.h>

int vprintf (format, ap)
char sformat;
va_list ap;

int viprintf {(stream, format, ap)
FILE *stream;
char «format;
va_list ap;
int vsprintf (s, format, ap)
char +s5, *format;
va_list ap;
DESCRIPTION
worintf, viprintf, and vsprintf are the same as prinff, fprinyf, and sprintf
respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by varargs(5).
EXAMFLE
The following demonstrates how wipring could be used to write an error
routine.
#include < stdio.h>
#include <varargs.h>

F L

* error should be called like

. error(function_name, format, argl, arg2..};
+/

/*VARARGSOs/

void

error(va_alist)
/* Note that the function_name and format arguments cannot be

] separately declared because of the definition of varargs.
«/
iza_dcl

va_list args;

char *fmt;

va_start(args);

/+ print out name of function causing error »/
(void)fprintf(stderr, "ERROR in %s: *, va_arg(args, char »));
fmt = va_arg(args, char +);

I+ print out remainder of message +/

(void)vfprintf{(fmt, args);

va_end(args);

VPRINTF (3X) VPRINTF (3X)

{void)abort(};

SEE ALSO
printf(38), varargs(5).

WRITE(3) WRITE (3)

NAME

write — write on a file

SYNOPSIS

int write (fitdes, buf, nbyte}
int fildes;

char +buf;

unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a crear, open, dup, fond, pipe, or
socket system call.

Write attempts to write nbyte bytes from the bulfer pointed to by buf to the
file associated with the jildes.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write,

. the file pointer is incremented by the number of bytes actually written.

Page 1

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined. .

I the O_APPEND flag of the file status flags is set, the file pointer will be
set to the end of the file prior 1o each write.

Write will ail and the file pointer will remain unchanged if one or more of
the following are true:

[EBADFI] Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]
An attempt is made to write 1o a pipe that is not open for
reading by any process.

[EPIPE] An attempt is made to write Lo a pipe that is not open for
reading by any process.

[EFBIG] An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size. See
ulimir(2}.

[EFAULTI Part of iov or data to be written to the file points ouiside
the process's allocated address space.

[EFAULTI] Buf points outside the process’s allocated address space.

[EINTRI A gignal was caught during the write system call.

If a write requests that more bytes be wrilten than there is room for (e.g.,
the wiimit (see wlimit(2)) or the physical end of a medium), only as many
bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512
bytes will return 20. The next write of a non-zero number of bytes will
give a failure return (except as noted below).

If the file being written is a pipe (or FIFO} and the O_NDELAY flag of the
file flag word is set, then write to a full pipe {or FIFO) will return a count of
0. Otherwise (O_NDELAY clear), writes to a Full pipe (or FIFO} will block
until space becomes available,

July 26, 1985

WRITE(3) WRITE (3)

RETURN VALUE
Upon successful completion the number of bytes actually written is
returped. Otherwise, — 1 is returned and ¢rrno is set to indicate the error.

SEE ALSO
creat(2), Iseek(2), open(2), pipe(2), socket(2N), ulimit(2).

July 26, 1985) Page 2

-~

WRITEV (3N) UniSoft WRITEY (3N)

NAME

writev — write on a file

SYNOPSIS

#include < sys/types.h>
#include <sys/uio.h>

wrltev(d, iov, ioveclen}
int d;

struct iovec “iov;

int loveclen;

DESCRIPTION

Page 1

Fildes is a file descriptor obtained from a creat, epen, dup, fentl, pipe, or
socket system call.

Writev attempts to write nbyre bytes to the file associated with the fildes and
gathers the ouiput data from the iovien buffers specified by the members of
the iovec array: iov[0], iovll], eic.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from writey,
the file peinter is incremented by the number of bytes actually writien.

On devices incapable of seeking. writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be
get to the end of the file prior to each write.

Writev will fail and the file pointer will remain unchanged if one or more of
the following are true:

[EBADF] Fildes is not a valid file descriptor open for writing.

{EPIPE and SIGPIPE signall

An attempt is made to write to a pipe that is not open for
reading by any process.

[EPIPE] An attempt is made to write to a pipe that is not open for
reading by any process.

[EFBIG] An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size. See
wlimir(2).

[EFAULT) Part of iov or data to be written to the file points outside
the process’s allocated address space.

[EFAULT] Buf points outside the process’s allocated address space.

[EINTRI] A signal was caught during the writer system call.

If a writev requests that more byies be written than there is room for {e.g.,
the whmit (see utimit(2)) or the physical end of a medium), only as many
bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512
bytes will return 20, The next write of a non-zero number of bytes will
give a failure return (excepl as noted below).

Tuly 26, 1985

WRITEV (3N) UniSoft WRITEV (3N)

If the file being written is a pipe {or FIFO) and the O_NDELAY flag of the
file flag word is set, then write to a full pipe {or FIFO) will return a count of
0. Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO} will block
until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is
returned. Otherwise, —1 is returned and errno is set to indicate the error.

SEE ALSO .
creat(2), Iseek(2), open(2), pipe(2), socket(2N}, ulimit(2).

July 26, 1985 Page 2

INTRO (4) INTRO(4)

NAME
intro — introduction to file formats

(“ > DESCRIPTION

\ This section outlines the formats of various files. The C struct declarations

. - for the file formats are given where applicable. Usually, these structures
can be found in the directories fusr/include or /usr/include/sys.

References of the type nome(1M) refer to entries found in Section 1 of the
UniPlus ™ Administrator’s Manual.

ACCT(4) ACCT(4)

NAME
acct — per-process accounting file format
SYNOPSIS
#linclude <sys/acet.h>>
DESCRIPTION
Files produced as a result of calling gccr(2) have records in the form
defined by < sys/acet.h>>, whose contents are;
typedel ushort comp_t; /+ "floating peint” =/
/+ 13-bit fraclion, 3-bil exponent »/
siruct acel |
char ac_flag; £+ Acecounting flag =/
char ac_slat, £+ Exit stalus »/
ushort ac_uid; #* Accounting user 1D ~/
ushort ac_gid: f+ Accounting group LD «f
dev_t ac_tly; #+ control typewriter «f
time_1 ac_btime; {+ Beginning 1ime */
comp 1 ag utime: f* acctng user time in clock ticks +/
comp_l ac_stime; #* acctng system time in clock licks +/
comp 1 ac_elime; f+ acctng elapsed time in clock ticks =/
comp_1 ac_mem, f* memory usage in clicks ~f
comp_1 ac_io; #+ chars trasivd by readfwrite «/
comp_1 ac_rw; f« number of block reads/wriles =/
char ac_comml(3]; f» command name «/
I
extern siruct acct accibuf
extern struct inode +acctp; /+ inode ol accounting file +/
#define aFORK Dl f+ hag execuled lork, but no exec =/
#idefine AsU 02 {+ used super-user privileges =/
#Hdefine accTr 300 £+ record type: 00 = acct =/

In ac_fiag, the AFORK flag is turned on by each fork(2) and turned off by
an exec{2}. The ac_comm field is inherited from the parent process and is
reset by any exec., FEach time the system charges the process with a clock
tick, it alse adds to ac_mem the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem/{ac_stime + ac_utime} can be viewed as an approxi-
mation to the mean process size, as modified by text-sharing.

ACCT(4)

ACCT(4)

The structure tacct, which resides with the source files of the accounting
commans, represents the total accounting format used by the various
accounting commands:

f+

+ total eccounting (for acct period), also for day

o/

struct tacet |
uid_t
char
float
float
ficat
float
long
unsigned short
unsigned short
ungigned short

h

SEE ALSO
acct(1M), acctcom(l}, acct(2), exec(2), fork(2).

BUGS

ta_uid;
ta_name[8);
1a_cpul2};
ta_kcore[2];
ta_conl2];
ta_du;
ta_pc;
ta_sc;

a de;
u_fee;

£+ userid «/

£+ login name +/

/+ cum. cpu iime, pfnp {mins} «/
/= cum kcore-minuies, p/np +/

#+ cum. connect lime, p/np, mins +/
/+ cum. disk usage =/

7+ count of processes «/

£+ count of login sessions +/

£+ count of disk samples +/

£+ lee for special services »/

The ac_mem value for a short-lived command gives little information about
the actuaj size of the command, because @c_mem may be incremented while
a different command {e.g., the shell) is being executed by the process.

ALIASES(4) (UniSoft) ALIASES(4)

NAME

aliases — aliases file for delivermail
SYNOPSIS

fusr/iib/aliases

DESCRIPTION
This filke describes nser ID aliases that will be used by /ete/delivermail. It is
formatted as a series of lines of the form
name;addr1,addr?2,...addrn

The name is the name to alias, and the addri arc the addresses to send the mes-
sage t0. Lines beginning with white space are continuation lines. Lines begin-
ning with *#’ are comments,

Aliasing occurs only on local names. Loops cannot occur since no message
will be sent to any person more than once.

SEE ALSO
delivermail(8N).

Page 1 September 28, 1987

/““.

ALTBLE (4) UniSolt ALTBLK (4)

NAME

altblk — alternate block information for bad block handling
SYNOPSIS

#include <aithlk.h>
DESCRIFTION

Altblk is the data structure used by badbik{1M) to handle bad blocks for
disk drives that support soft sector bad block remapping.

The layout of this structure is as follows:

#define MAXALT 50 {* max alternate disk Blocks *f
#define ALTMAGIC - OxDBDF /* bad block information is valid flag "/

'f‘
*
*f

struct a_map |

long a_altek; /* bad biack */
long a_index; /" relative bad Block index */

gtruclure for alternate block mapping

B

”
* disk header block format for allernate klock mapping
i
struet aliblk |
char a_fillfss12L-sizeof (struct a_map) -4*sizeof (long) .
#* fill to make streciure BSIZL bytes long */
struct a_map a_mapll); #* mapping */

long a_magic; #* verification code (ALTMAGIC) */
long a_count; £* bad block count */

long a_nichad, £* max number of bad blocks */

long a_maxalt; /* max alu binck used so lar */

|
This structure describes the upper portion of block 0 of each physical disk.

The array a_map is inverted {i.e., it is indexed backwards). The specific
fields in aithbik are: .

a_maxalt — the next usable block in bad block area relative to the start of
the bad block area

a_nichad -~ the maximum number of elements in the a_map structure

a_count — the number of bad blocks currently remapped on the disk

a_magic — a magic number for verification

a_map — bad block remap information’

SEE ALSO
badblk(1M)

A.OUT(4) A.QUT(4)

NAME
a.out — common assembler and link editor cutput

DESCRIPTION
A.out is the output file from the assembler #s(1) and the link editor /4(1).
A.out can be executed on the target machine if there were no errors in
assembtling or linking and no unresolved external references.

The object file format supports user-defined sections and contains extensive
information for symbolic software testing. A common object file consists of
a file header, an optional aout header, a table of section headers, relocation
information, (optional) line numbers, and a symbol table. The order is
given below,

File header.
Optional aout header.
Section ! header.

g'ection n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

§&tion n line numbers.
Symbol table.
String table.

The last four sections (relocation, line numbers, symbol table, and string
table) may be missing if the program was linked with the —s option of
#(1) or if the symbol table and relocation bits were removed by serip(l).
Also note that if the program was linked without the —r option, the reloca-
tion information will be absent. The string table exists only if necessary.

When an a.out file is loaded into memory for execution, three logical seg-
ments are set up: the text segment, the data segment (initialized data fol-
lowed by uninitialized data, the latter actually being initialized to all ¢°s},
and a stack. The text segment begins at location ¢ in the core image; the
header is not loaded. If the magic number {the first field in the optional
aout header} is 407 (octal), it indicates that the text segment is not to be
write-protected or shared, so the data segment will be contiguous with the
text segment. If the magic number is 410 {(octal}, the data segment beging
at the next segment boundary following the text segment, and the text seg-
ment is not writable by the program. If other processes are executing the
same a.out file, they will share a single text segment.

On the M68000 family of processors the stack begins at the end of memory
and grows toward lower addresses. The stack is automatically extended as
required. The data segment is extended only as requested by the &rk(2)
and sbrk(2) system calls.

The value of a word in the text or data portions that is not a reference to
an undefined external symbol is exactly the value that will appear in

-1-

A.OUT (4} AQOUT(4)

memory when the file is executed. If a word in the text involves a refer-
ence to an undefined external symbol, the storage class of the symbol-table
entry for that word will be marked as an ‘“‘external symbol”, and the sec-
tion number will be set to 0. When the file is processed by the link editor
and the exiernal symbol becomes defined, the value of the symbol will be
added to the word in the file.

See aouthdr(4), filehdr(4), linenum(4), scnhdr(4), reloc(4), and syms(4) for
descriptions of the individuals parts. Every section created by as(1} con-
tains a multiple-of-four number of bytes; directives to /(1) can create a
section with an odd number of bytes.

SEE ALSO

as(1), ccfl), I4(1), aouthdr{4), filehdr(4), ldfen(4}, linenum(4), reloc(4),
scnhdr{4), syms(4).

AOQUTS.0(4)

NAME

System V a.out format AOUT5.0{4)

a.ounts.0 — assembler and link editor output

SYNOPSIS

#include <a.out.h>

DESCRIPTION

A.out5. 0 is the output file of the assembler 455.0(1) and the link loader
id5.001), Ld5.0(1) makes a.out5.0 executable if there were no errors and
no unresolved external references. Layout information as given in the
include file for the 68000 is:

i*
»

»

* header of 8 longs

Layout of a.out file:

* header;

* lexk
* data:

* symbol table:

* text relocation:
* data relecation:

*
/* various parameters */
#define SYMLENGTH
#* ypes of files "/
#define ARCMAGIC
#define FMAGIC
#define NMAGIC
#* symbol types */
#define EXTERN
#define UNDEF
#define ABS
#define TEXT
#define DATA
#define BSS
#define COMM
#define REG
#* relocation reghons */
#define RTEXTY
#define RDATA
#define RBSS
#define REXT

magic number 405, 407, 41@, 411
tex1 size

data size

biss size

symbol table size

text relocalion size

data retocation size

entry point

in bytes

et e e

1]

32

32 + textsize

32 +textsize + datasize

32+ 1extsize + datasize + symsize

32+ texisize + datasize + symsize + rtextsize

50 #* maximum tength of a symbol */

0177545 /* ar files */f

0407 {* standard executable */
410 /* shared text executable */
040 #* external *f
00 #* undefined */
1] #* absolute */
0 1* text *
ix] #* data */f
#" bss */
05 £* internal use only */

f* regisier name */

A QUT5.0(4) System V a.out formai ALOUT5.0(4)

7* relocation sizes */

fidefine RBYTL 00
#define RWORD [i1]
#define KLONG 02

#* macros which define various positipns in file based on a bhdr, fithdr */

#define TEXTPOS ((long) sizeof(Rlhdr))
#define DATAPUS {TEXTPOS + fillndr.asize}
#define SYMPOS (DATAPOS + fillhdr.dsize)
#define RTEXTPOS (5YMPOS + Alhdr.ssize)
#define RDATAPOS (RTEXTPOS + filhdr.risize)
#define ENDPOS (RLATAPOS + Rlhdr.rdsize)
#* header of a.out files "/
struct bhdr {

long fmagic;

long 15ize;

long dsize;

long beize;

long ssize;

long risize;

long rdsize;

long eniry:

k

#* symbol management */

struct sym {
char siype; f* symbol Lype */
char sympad; #* pad to shory align */
fong svalue; f* value */

#* relocation commands */
struct reloc |
unsignad rsegment:Z; /7 RTLEXT. RDATA, KBSS, or REXTERN *F

unsigned rsize:d; £* RBYTL, RWORD, or RLUNKG */

unsigned rdisp:l; #* | =2 4 displacement "/

unsigned relpad]:3; £ pad | */

char relpad2; £* pad 2%/

short rsymbol; /" id of the symbol of exiernal relocations */
long 4 e H #* position of relocation in .

#* symbol luble eniry */

struct nlist |
char n_namef8l; /* symbol name */
inl n_type; £* 1ype fag */
unsigned n_value; F* value */

k

A.OUT5.0(4) System V a.out format A0QUT5.0(4)

#* values for type fiag */

#deline N_UNDF @ #* undefined =/

#deline MN_abS 01 /* abgolute */

#define N_TEXT 02 #* text symbol */

#dafine N_DATA 03 #* data symbot */
#deline N_iss 04 #* bss symbol */

#define N_TYPL 037 -

#tdefine N_REG 024 #* register name */
#define MN_FN 037 £* file name symbol */
#detine N_EXT 040 #* external bit, or'ed in */

#define FORMAT "%060" {* to prinl a value */

The file has four sections: a header, the program and data text, a symbol
table, and relocation information. The last two may be empty if the pro-
gram was loaded with the —s option of /d5.0 or if the symbols and reloca-
tion have been removed by sirip(1).

In the header the sizes of each section are given in bytes, but are even.
The size of the header is not included in any of the other sizes.

When an a.outJ.@ file is loaded into core for execution, three logical sep-
ments are set up: the text segment, the data segment (with uninitialized
data, which starts off as all 0, following initialized data), and a stack. The
text segment begins at the user program start address in the core image;
the header is not loaded. [f the magic number in the header is FMAGIC,
it indicates that the text segment is not t¢ be write-protected and shared, so
the data segment is immediately contiguous with the text segment. If the
magic number is NMAGIC, the data segment begins at the next segment
boundary following the text segment, and the text segment is not writable
by the program, if other processes are executing the same file, they will
share the text segment.

The stack will occupy the highest possible user program locations in the
core image and will grow downwards. The stack is automatically extended
as required. The data segment is only extended as requested by brk(2).

The start of the text segment in the file is 32(10); the start of the data seg-
ment is 32+ 5t (the size of the text) the start of the relocation information
is 32+ 5t+5d; the start of the symbol table is 32+ 2(St+8d) if the reloca-
tion information is present, 32+ St+8d if not.

The layout of a symbol table entry and the principal flag values that distin-
guish symbol types are given in the include file.

If a symbol’s type is undefined external, and the value field is non-zero,
the symbol is interpreted by the loader /d as the name of a common region
whose size is indicated by the value of the symbol.

The value of a word in the text or data pertions which is not a reference to
an undefined external symbol is exactly that value which will appear in core
when the file is executed. If a word in the text or data portion involves a
reference to an undefined external symbol, as indicated by the relocation
information for that word, then the value of the word as stored in the file is
an offset from the associated external symbol. When the file is processed
by the link editor and the external symbol becomes defined, the value of
the symbol will be added into the word in the file.

AOUT5.0(4) System V a.out format AQUTS.0(4)

If relocation information is present, it will appear in the form of the siruc-
ture shown above.

SEE ALSO
a85.0(1), 1d3.0(1), nm5.0(1)

AOUTHDR {4) . AOUTHDR (4}

NAME
aouthdr.h - a.out header for common object files

DESCRIPTION
Optional a.out header for common object files. The C structure appears
below.

* static char ID_gouthl] = "@ (#)aouthdr.h 21 -

*/
typedef struct aouthdr |
short magic; /* see magic.h %/
short vstamp: /* version stamp */
long tsize; /* text size in bytes, padded to FW
bdry *
long dsize: /* initialized data * "*/
long bsize; /* uninitialized data® "*f
#ifdef u3b
long duml;
long dum?; /*Pad to entry point*/
#endif
long entry; /* entry pt. *f
long text_start; /* base of text used for this file*/
long data_start; /* base of data used for this file*/
} ADUTHDR;
SEE ALSO
a.outf{4).

Page 1 July 22, 1985

AR(4) AR {4)

NAME
ar — common archive file format

Pane DESCRIPTION

; The archive command ar is used to combine several files into one.

. Archives are used mainly as libraries t0 be searched by the link editor
(1.

Each archive begins with the archive magic string.

##define ARMAG "!<arch>\n" /* magic string +/
$define SARMAG 8 /+ length of magic string +/

Each archive which contains comenon object files (see 2.0uf4)) includes an
archive symbol table. This symbol table is used by the link editor /(1) to
determine which archive members must be loaded during the link edit pro-
cess. The archive symbol table Gf it exists) is always the first file in the
archive (but is never listed) and is automatically created and/or updated by
ar.

Following the archive magic string are the archive file members., Each file
member is preceded by a file member header which is of the following for-
mat: .

#define ARFMAG ""\n" [+ header trailer string +/

struct ar_hdr /+ file member header =/
s char ar_nameli6l; /+ °/' terminated file member name «/
' char ar_date[l2); /» file member date +/
e char ar_uidl6l; /= file member user identification »/

char ar_gidlél; /* file member group identification +/
char ar_model8]; /+ file member mode */

char ar_sizelldl; /= file member size »/

char ar_fmagl2); /+ header trailer string +/

B

All information in the file member headers is in printable ASCII. The
numeric informsation contained in the headers is stored as decimal numbers
{except for ar_mode which is in octal). Thus, if the archive contains print-
able files, the archive itself is printable.

The ar_name filed is blank-padded and slash (/) terminated. The ar_date
field is the modification date of the file at the time of its insertion into the
archive. Common format archives can be moved from system to system as
long as the portable archive command er(1) is used.

Each archive file member begins on an even byte boundary, a newline is
inserted between files if necessary. Nevertheless, the size given reflects the
actual size of the file exclusive of padding.

o~ Notice there is no provision for empty arcas in an archive file.

if the archive symbol table exists, the first file in the archive has a zero
- length name (i.e., ar_namel0l = */’). The contents of this file are as fol-
lows:

® The number of symbols. Length: 4 bytes.

AR (4)

SEE ALSO

AR(4)

The array of offsets into the archive file. Length: 4 bytes * “‘the
number of symbois™.

The name string table. Length: ar_size — (4 bytes » (*‘the number of
symbols™ +1)). The number of symbols and the array of oflsets are
managed with sgeff and sputl The string table contains exactly as many
null terminated strings as there are elements in the offsets array. Each
offset from the array is associated with the corresponding name from
the string table {in order}). The names in the string table are all the
defined global symbols found in the common object files in the archive.
Each offset is the location of the archive header for the associated sym-
bot.

ar(1), 1d(1), strip(1}, sputl(3X), a.out(4).

WARNINGS

Strip(1) will remove all archive symbol entries from the header. The
archive symbol entries must be restored via the s option of the ar(1) com-
mand before the archive can be used with the link editor /d(1).

ARS5.0(4) System V a.out formai only ARS0(4)

NAME
ar5.0 — archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar5.0 is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link-editor 5.0,

A file produced by ar5.0 has a magic number at the start, followed by the
constituent files, each preceded by a file header. The magic number and
header Jayout as described in the include file are:

#define ARFMAG 0177545

struct ar_hdr {

char ar_name([14];
long ar_date;
short ar_uid;

short ar_gid;

short ar_mode;
long ar_size;

IR
The "ar_fmag" field contains the 32-bit number ARFMAG to help verify the
presence of a header, The name is a blank padded string. The other fields
are left-adjusted, blank-padded numbers. They are decimal except for
"ar_mode", which is octal. The date is the modification date of the file at
the time of its insertion into the archive,

Each file begins on an even (0 mod 2) boundary; a new-line is inserted
between files if necessary. Nevertheless the size given reflects the actual
size of the file exclusive of padding.

There is no provision for empty areas in an archive file,

SEE ALSO
ar5.0(1), 1d5.001), am5.0(1)

BUGS
File names lose trailing blanks. Most software dealing with archives takes
even an included biank as a name terminator.

CHECKLIST (4} CHECKLIST (4)

NAME
checklist — list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory fete and contains a list of at most 15 special
Sienames. Each special filename is contained on a separate line and
corresponds to a file system. If no file-systemm argument is provided to
Ssck(IM), each file listed in /etc/checklist is automatically read and
checked for inconsistencies.

SEE ALSO
fsck(1M).

I/“"\.

&

CORE(4) CORE(4)

core — format of core image file

DESCRIPTION

The UNIX System writes out a core image of a terminated process when any
of various errors occur. See signai(2) for the list of reasons; the most com-
mon are memory violations, illegal instructions, bus errors, and user-
generated quit signals. The core image is called core and is writien in the
process's working directory (provided it can be; normal access controls
apply). A process with an effective user 1D different from the real user ID
will not produce a core image.

The first section of the core image is a copy of the system’s per-user data
for the process, including the registers as they were at the time of the fault.
The size of this section depends on the parameter USIZE , which is defined
in /ust/include/sys/param.h. The remainder represents the actual con-
tents of the user’s core area when the core image was written. If the text
segment is read-only and shared, or scparated from data space, it is not
dumped.

The format of the information in the first section is described by the user
structure of the system, defined in /usr/include/sys/user.h. The impor-
tant stuff not detailed therein is the locations of the registers, which are
outlined in fusr/include/sys/reg.h.

SEE ALSO

setuid(2), signal{2).

CPIO (4} CPIO(4)

NAME
cpio — format of cpio archive

DESCRIPTION
The header structure, when the —e option of cpiv(l) is not used, is:

struct {
short h_magic,
h_dev;
ushort h_ino,
h_mode,
h_uid,
h_gid;
short h_nlink,
h_rdev,
h_mtimef2],
h_namesize,
h_filesizel2];
char h_namel[h_namesize rovnded to wordl;
} Hdr;

When the —e¢ option is used, the header information is described by:

sscanf(Chdr,*%60%60%60%60%60%60%60%60%1110%60%1 110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize, &Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr h_filesize,
respectively. The contents of each file are recorded in an element of the —
array of varying length structures, archive, together with other items
describing the file, Every instance of A_magic contains the constant 070707
(octal). The items h _dev through h_mtime have meanings explained in
‘5taf(2). The length of the null-terminated path name #_name, including
the null byte, is given by k_namesize.

The last record of the archive always contains the name TRAILER!!!. Special
files, directories, and the trailer are recorded with A_filesize equal to zero.

SEE ALSO
cpiol1), find(1), stat(2).

DIR (4) DIR {4)

NAME
dir — format of directories

SYNOPSIS
##include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a bit
in the fag word of its i-node entry (see f5(4)). The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif

struct direct |
ino_t d_ino;
] char d_name{DIRSIZ];
By convention, the first iwo entries in each directory are for . and ... The
first is an entry for the directory itself. The second is for the parent direc-
tory. The meaning of .. is modified for the root directory of the master file
system; there is no parent, so .. has the same meaning as ..

SEE ALSO
fs{d).

ERRFILE(4) ERRFILE (4}

NAME
ertfile — error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record is gen-
erated and passed to the error-logging daemon for recording in the error log
for later analysis. The default error log is /usr/adm/errfile.

The format of an error record depends on the type of error that was
encountered. Every record, however, has a header with the following for-

mat:

struct errhdr |
shorl e_type; f» record type */
short e len; /+ bytes in record (inc hdr} +/
lime_t e_time; £+ tlime of day «/

1
The permissible record types are as follows:

#define k_GUTS [HI+] 7+ start for the UNIN/TSeS
#define E_GUGRT oLt #+ s1art for the UNIX/RT/
#define E_STOP 012 #+ slop ~f

#define L_TCHG GL3 £+ time change »/
#define L_CONG 014 #+ configuration change =/
#aefine E_BLK 020 F+ block device error of
#define E_STRAY 030 fe steay inlerrupt =/
#define E_PRTY 031 f+ memory parity */

Some records in the error file are of an administrative nature. These
include the startup record that is entered into the file when logging is
activated, the stop record that is written if the daemon is terminated
“gracefully”, and the time-change record that is used to account for
changes in the system’s time-of-day. These records have the following for-

mats:
seruct estart |
short e_cpu, £+ CPU Iype +f
SIruCl LESname &_name; /= system names o/
iz
#define eend erchdr /+ record header +/

struct elimehe |
time_t e_ntime; i+ new lime =/
ki
Stray interrupts cause a record with the following format to be logged:

strucl estray {
uint e_saddr; £+ styay loc or davice addr »/
5
Generation of memory subsystern errors is not supported in this release.
Error records for block devices have the following format

DIR (4} DIR (4)

NAME
dir — format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a bit
in the flag word of its i-node entry (see /5(4)). The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#Fendif

struct direct {
ino_t d_ino;
} char d_namelDIRSIZ];
By convention, the first two entries in each directory are for . and ... The
first is an entry for the directory itself. The second is for the parent direc-
tory. The meaning of .. is modified for the root directory of the master file
system; there is no parent, so .. has the same meaning as ..

SEE ALSO
fs{4}.

ERRFILE (4) ERRFILE (4}

NAME
errfile — error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record is gen-
erated and passed to the error-logging daemon for recording in the error log
for later analysis. The default error log is /usr/adm/errfile.
The format of an error record depends on the type of error that was
encountered. Every record, however, has a header with the following for-

mat:

struct errhdr |
shott e _type; £+ racord type +/
short e_len; £+ bytes in record (inc hde) =/
time_t e_time; #+ time of day */

B
The permissible record types are as follows:

#define E_GOTS oo Fe start for the UNIX/TS+f
#define E_GORT 01 £v start [or lhe UNLX/RT+/
#define E_STOP 012 7+ stop +/

#defire £_TCHG 013 /= lime change »/
#define E_CCHG 0l4 /v configuration change +/
#define E_BLK 020 #+ block device error +f
#define E_STRAY o030 /* siray interrupt +/
#define E_PRTY (3]} #+ memory parity +/

Some records in the error file are of an adminisirative nature. These
include the startup record that is entered into the file when logging is
activated, the stop record that is written if the daemon is terminated
“gracefully’’, and the time-change record that is used to account for
changes in the system’s time-of-day. These records have the following for-

mats:
struct eslart |
shott &_opu; £+ CPLU type of
siruct ulsname e_nams; {* system names *f
h
#define eend esrhdr /+ record header +/

struct etimehg (
tlime_t 2_ntime; £+ new lime +/
I
Stray interrupis cause a record with the following format to be logged:

struct estray [
uint ¢_saddr; Fe stray loc or device addr «/
I
Generation of memory subsystem errors is not supported in this release.
Error records for block devices have the following format:

(

ERRFILE (4}

struct eblock |

dev_te_dev;

physadr

shor e_bacty:

struct iostat |
long
long
ushort

l

short 2_bflags;

short e_cyioff,

daddr_t

ushort

paddec_L

ushort

shori e_nreg,

1k

ERRFILE (4)

£+ "rue” myjor + minor dev no *f
e_regloc; /+ controller address «/
£+ other block 170 activity =/

io_ops, #+ number read/wriles «f
io_misc; F ber "other” of ions +/
ic_unlog: £+ number unlogged erroes =
€_slals;

/» read/write, error, elc +f
/+ logical dev start cyl «/

&_bnum; #* logical block number ¢/
e bytes; #+ number bytes o wransfer =/
e_memadd; #+ buffer memery address +/

e_riry; {* number reiries «/
#+ number device registers +/

The following values are used in the e_bffags word:

#define L_WRITE
#define E_READ
#define E_NGI
#define L_PHYS
#define E_IFORMAT
#define E_ERROR

SEE ALSO
errdemon(1M).

0 £+ wrile operation »/
1 #+ read operation +f
02 #+ no i) pending «f
04 /= physical 110 +/
oo #+ Formaiting Drisks/
020 #e 1jy Failed =/

FILEHDR (4)

NAME

FILEHDR (4)

flehdr — file header for common object files

SYNOPSIS

#include <filehdr.h>

DESCRIFTION

Every common object file begins with a 20-byte header. The following C
struct declaration is used:

struct filehdr
(

unsigned short f _magic ;
unsigned short { nscns ;

/+ magic number +/
f+ number of sections +/

long f_timdat ; f+ time & date stamp *»/
long f symptr ; /= file ptr to symtab »/
long f_nsyms ; /+« # symtab entries =/

unsigned short { opthdr ;
unsigned short f flags ;

s

/* sizeof(opt hdr) =/
/= flags »/

F symptr i3 the byte offset into the file at which the symbol table can be
found. Its value can be used as the offset in fSeek(35) to position an 1/0Q
siream to the symbol table. See aourhdr(4) for the structure of the optional
acut header. The valid magic number is:

#define MCSSMAGIC 0520

/* magic number +/

The value in f timdat is obtained from the fime(2) system call. Flag bits
currently defined are:

#define
#define
#define
ftdefine
#define
##define
F#define
#define
#define
#define
#define

SEE ALSO

F_RELFLG 00001

F_EXEC 00002
FLNNO 00004
F_LSYMS 00010

F_MINMAL 00020
F_UPDATE 00040
F_SWaABD 00100
F_ARIEWR 00200
F_AR3IWR 00400
F_ARZW 01000
F_PATCH 02000

/+ relocation entries stripped +/
/+ file is executable +/

{+ line numbers stripped */

/+ local symbols stripped +/

/+ minimal object file «/

/+ anpdate file, ogen produced =/
[+ file is "pre-swabbed" »/

/* 16-bit DEC host +/

f+ 32-hit DEC host +/

/+ non-DEC host »/

/+ "patch” list in opt hdr */

time(2), fseek(38), a.out(4), aouthdr(4).

F5(4) F5 (4}

NAME
file system — format of system volume

SYNOPSIS
#include < sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

DESCRIPTION
Every file systiem storage volume has a common format for certain vital
information. Every such volume is divided into a certain number of 512-
byte long sectors. Sector {) is unused and is available to contain a bootstrap
program or other information.

Sector 1 is the superblock. The format of a superblock is:

fe
« Structure of the superblock
»f
struct filsys
{
ushori s_isize; £+ gize in blocks of i-list »/
daddr 1 5 fsize; #+ size in blocks of entire volume +/
short 5_niree; fe number of addresses in s_free =/
daddr_1 s_free[NICFREE]; /« Free block list o/
short s_ninode; f+ number of incdes in s_inode =/
ino_t s_inode[NICINOD]; /+ free inode list »/
char 5_llock, £+ lock during free list manipulaiion «/
char 5_itock: £+ lock during i-list manipulation */
char s_(mod; #+ superblock modified flag «/
char s_ronly: F= mounted read-only flag »/
time_t & time; #* las1 superblock update +f
short s_dinfol4]; f+ device information «/
daddr_t s5_ifree; #* 1onal Free blocks+/
inn_t 5_tinode; #+ 1oual Free inodes +/
cher s_[name(6]; /v file system name »f
char 5 Ipack[6]; /+ file system pack name ¢/
long s_fin{14); #4 AIMUST size of filsys to 512 +/
ino_t 5_basti; /+ start place lor circular search +/
ino 1 s_nbehind; /¢ est # free inodes before s_lasti =/
long s_magics £* magic number Lo indicate new file system =/
. long §_type, /v type of new file sysiem +/
k
#deling Fsmacie Oxfd1§7e20 /» 5_magic aumber s/
#deline Fslb 1 #* 512-byte block «/
#deline Fsib 2 #+ 1024-byte block */
#tdeline Fsdb 4 4+ 2048-byie block «f

§ wpe indicates the file system type. Currently, iwo types of file systems
are supported: the original 512-byte oriented and the new improved 1024-
byte oriented. §_magic is used to distinguish the original 512-byte oriented
file systems from the newer file systems. If this field is not equal to the
magic nuinber, FsMAGIC, the type is assumed to be Fsib, otherwise the
s_ype field is used. In the following description, a block is then determined
by the type. For the original 512-byte oriented file system, a block is 512

o1

F5(4)

. F5(4)

bytes. For the 1024-byte oriented file system, a block is 1024 bytes or two
sectors. The operating system takes care of all conversions from logical
block numbers to physical sector numbers.

S _isize is the address of the first data block after the i-list; the i-list starts
just after the super-block, namely in block 2; thus the i-list is s isize—2
blocks long. S5 fize is the first block not potentially available for allocation
to a file. These numbers are used by the sysiem to check for bad block
numbers; if an “‘impossible’® block number is allocated from the free list or
is freed, a diagnostic is writien on the on-line console. Moreover, the free
array is cleared, so as to prevent further allocation from a presumably cor-
rupted free list.

The free list for each volume is maintained as follows. The s free array
contains, in s_free(l], ..., s freels_nfree—1], up to 49 numbers of free
blocks. S freel0] is the block number of the head of a chain of blocks con-
stituting the free list. The first long in each free-chain block is the number
{up to 50) of free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next member of the
chain. To allocate a block: decrement 5 nfree, and the new block is
s_freels nfree). 1f the new block number is 0, there are no blocks left, so
give an error. If s nfree became 0, read in the block named by the new
block number, replace s_nfree by its first word, and copy the block numbers
in the next 50 longs into the s _free array, To free a block, check if 5_nfree
is 50; if so, copy s _snfree and the s free array into it, write it out, and set
s_nfree to 0. In any event set s freels nfiee] to the freed block’s number
and increment s_nfree,

S_ifree is the total free blocks available in the file system.

§ ninode is the number of free i-numbers in the 5 inode array. To allocate
an inode: if s minode is greater than 0, decr¢ment it and return
s fnodels_ninode]. 1If it was 0, read the i-list and place the numbers of all
free inodes (up to 100) into the s_inode array, then try again, To free an
inode, provided s ninode is less than 100, place its number inio
s_inodels_ninode] and increment s_minode. 1f s ninode is already 100, do
not bother to enter the freed inode into any table. This list of inodes is
only 1o speed up the allocation process; the information as to whether the
inode is really free or not is maintained in the inode itself.

S tinede is the total free inodes available in the file system.

§ flock and s_ilock are flags maintained in the core copy of the file system
while it is mounted and their values on disk are immaterial. The value of
s_fmod on disk is likewise immaterial; it is used as a flag to indicate that the
super-block has changed and should be copied to the disk during the next
periodic update of file system information.

§ ronly is a read-only flag to indicate write-protection.

S _time is the last time the super-block of the file system was changed, and
is the number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT).
During a reboot, the 's_time of the super-block for the root file system is
used to set the system’s idea of the time.

S _frame is the name of the file system and s_fpack is the name of the pack.

I-numbers begin at 1, and the storage for inodes begins in block 2. Also,
inodes are 64 bytes long. Inode 1 is reserved for future use. Inode 2 is

. 2-

FS(4) F5(4)

reserved for the root directory of the fle system, but no other i-number
has a built-in meaning. Fach inode represents one file. For the format of
an inode and its flags, see inode(4).

FILES
- fusr/include/sys/filsys.h
{usr/include/sys/stat-h

SEE AL50
fsck(1M), fsdb{1M), mkfs(1M}, inode(4).

FSPEC (4) FSPEC (4}

NAME
fspec — format specification in text files

DESCRIPTION

it is sometimes convenient to maintain text files on the UNIX System with
non-siandard tabs, (i.e., tabs which are not set at every eighth column).
Such files must generally be converted to a standard format, frequently by
replacing all tabs with the appropriate number of spaces, before they can be
processed by UNIX System commands. A format specification occurring in
the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and :>». Each parameter con-
sists of a keyletier, possibly foflowed immediately by a value. The follow-
ing parameters are recognized:

tiabs The ¢ parameter specifies the tab settings for the file. The value
of tabs must be one of the following:
1. a list of column numbers separated by commas, indicating
tabs set at the specified columns:
2. a — followed immediately by an integer », indicating tabs at
intervals of » columns;
3. a — followed by the name of a “‘canned’ tab specification.

Standard tabs are specified by t—8, or equivalently,
11,9,17,25,etc. The canned tabs which are recognized are defined
by the tabs{1} command.

§s5ize The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have
been expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. lts presence indicates that the
line containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t—8
and m®. If the 5 parameter is not specified, no size checking is performed.
If the first line of a file does not contain a format specification, the above
defaults are assumed for the entire file. The following is an example of a
line containing a format specification:

« <:t5,10,15 s72:> +
If a format specification can be disguised as a comment, it is not necessary
to code the d parameter.

Several UNIX System commands correctly interpret the format specification
for a file. Among them is gath which may be used to convert files to a
standard format accepiable to other UNIX System commands.

SEE ALSO _
ed{1), newform(1), tabs(1).

f/-_k

GETTYPEFS (4)

NAME

GETTYDEFS (4)

gettydefs — speed and terminal settings used by getty

DESCRIPTION

The fetc/gettydefs file contains information used by gery(1M) to set up
the speed and terminal settings for a line. It supplies information on what
the fogin prompt should look like. It also supplies the speed to try next if
the user indicates the current speed is not correct by typing a < break>

character.

Each entry in /ete/getivdefs has the following format:
label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain
quoted characters of the form \b, \n, \c, etc., as well as \»ran, where nnn is
the octal value of the desired character. The various fields are:

label

initial-flags

Sinal-flags

{ogin-prompt

next-label

This is the string against which gefty tries to maich its second
argument. It is often the speed, such as 1200, at which the
terminal is supposed to run, but it need not be (see below).

These flags are the initial ioct(2) settings to which the ter-
minal is to be set if a terminal type is not specified to geny.
The flags that gerry understands are the same as the ones
listed in /fusr/include/sys/termio.h (see rermio(7)). Nor-
mally only the speed flag is required in the initigl-flags.
ety automatically sets the terminal o raw input mode and
takes care of most of the other flags. The initial-flag setlings
remain in effect until gefty executes fogin{l).

These flags take the same values as the initial-flags and are
set just prior to geny executes login, The speed flag is again
required. The composite flags SANE or SANE2 take care of
most of the other flags that need to be set so that the pro-
cessor and terminal are communicating in a rationai fashion.
The other two commonly specified final-flags are TAB3, so
that tabs are sent to the terminal as spaces, and HUPCL, so
that the line is hung up on the final close. Flag attributes
are added from left to right, flags that start with a = are sub-
tracted, e.g., SANE "PARENB. SANE is defined to be
BRKINT IGNPAR ISTRIP ICRNL IXON OPOST ONLCR
CS? PARENB CREAD ISIG ICANON ECHO ECHOK.
SANE? is the same as SANE but with eight bits and no par-
ity, e.g., SANE2 = SANE "CS57 CS8& "PARENB.

This entire field is printed as the Jogin-prempr. Unlike the
above fields where white space is ignored (a space, tab or
new-line), they are included in the fogin-prompt fieid.

If this entry does not specily the desired speed, indicated by
the user typing a < break> character, then getty will search
for the entry with nexi-fabel as its label field and set up the
terminal for those settings. Usually, a series of speeds are
linked together in this fashion, into a closed set; For
instance, 2400 linked to 1208, which in turn is linked to
300, which finally is linked to 2400.

GETTYDEFS (4) GETTYDEFS (4)

FILES

If gesy is called without a second argument, then the first entry of
fetc/gettydefs is used, thus making the first entry of fetc/gettydefs the
default entey. It is also used if getty can not find the specified fabel, I
fetc/gettydefs itself is missing, there is one entry built into the command
which will bring up a terminal at 300 baud.

It is strongly recommended that alter making or modifying /etc/gettydefs,
it be run through gery with the check option to be sure there are no errors.

The following four symbols define the state.

define ISANE (BRKINTIIGNPARIISTRIPIICRNL IXON)
define OSANE (OPOST|ONLCR)

define CSANE (CS7IPARENBICREAD)

define LSANE (ISIG|[CANON|ECHOQ|ECHOK)

fetc/gettydefls

SEE ALSO

login{1), ioctl(2).
gelty(1M), termico(7) in the Administrator Reference Manual,

GROUP(4) GROUF{4)

NAME
group — group file
/“ DESCRIPTION
Group contains for each group the following information:
e group name
encrypted password
numerical group ID
comma-separated list of all user allowed in the group

This is an ASCH file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is aull, no
password is demanded.

This file resides in directory fete. Because of the encrypied passwords, it
can and does have general read permission and can be used, for example,
to map numerical group ID's to names.

FILES
fetc/group

SEE ALSO
newgep(1), passwd(1), crypt(3C), passwd(4),

HOSTS (4N) UniSoft HOSTS (4N)

NAME

hosts — host name data base

DESCRIFTION

FILES

The hosts file contains information regarding the known hosts on the
DARPA Internet. For each host a single line should be present with the
following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A
“#* indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search the file. This file is nor-
mally created from the official host data base maintained at the Network
Information Control Center {NIC), though local changes may be required
to bring it up to date regarding unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional **."’ notation using the
ine{_addr(} routine from the Internet address manipulation library,
iner{3N). Host names may contain any printable character other than a
field delimiter, newline, or comment character.

/ete/ hosts

SEE ALSO

BUGS

gethostent{(3N)

A name server should be used instead of a static file. A binary indexed file
format should be available for fast access.

-

INITTAB (4) INITTAB(4)

inittab — script for the init process

DESCRIPTION

The inittab file supplies the script to imif's role as a general process
dispaicher. The process that constitutes the majority of inif's process
dispatching activities is the line process /etc/getty that initiates individual
terminal lines. QOther processes typically dispaiched by imif are daemons and
the shell.

The inittab file is composed of entries that are position dependent and have
the following format:

id:rstate:action: process

Each entry is delimited by a newline, however, & backslash (\) preceding a
newline indicates a continuation of the entry. Up 1o 512 characters per
entry are permitted. Comments may be inserted in the process field using
the s#{1) convention for comments. Comments for lines that spawn gerys
are displayed by the who(l) command. It is expected that they will contain
some information about the line such as the location. There are no limits
(other than maximum entry size) imposed on the number of entries within
the inittab file. The entry ficlds are:

id This is one or two characters used to uniquely identify an entry.

rstate This defines the run-ievel in which this eniry is to be processed.
Run-levels effectively correspond to a configuration of processes in
the system. That is, each process spawned by jnit is assigned a
run-level or run-levels in which it is allowed to exist. The run-levels
are represented by a mumber ranging from 0 through 6. As an
example, if the system is in run-level 1, only those eniries having
a 1 in the rsiate ficld will be processed. When /nit is requested to
change run-levels, all processes which do not have an entry in the
rstate field for the target run-level will be sent the warning signal
(SIGTERM) and allowed a 20-second grace period before being
forcibly terminated by a kill signal (SIGKILL). The rstate field can
define multiple run-levels for a process by selecting more than one
rin-fevel in any combination from 0-—6. If no run-level is
specified, then the process is assumed to be valid at all run-levels
0—6, There are three other values, a, b and ¢, which can appear
in the rstate field, even though they are not true run-levels.
Entries which have these characters in the rstare ficld are pro-
cessed only when the refinit (see init(1M))} process requests them
to be run (regardless of the current run-level of the system). They
differ from run-levels in that init can never enter run-fevela, b or ¢,
Also, a request for the execution of any of these processes does
not change the current run-fevel. Furthermore, a process started
by an a, b or ¢ command is not killed when irit changes leveis.
They are only killed if their line in fete/Inittab is marked off in
the action field, their line is deleted entirely from /etc/inittab, or
init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in
the process field. The actions recognized by infr are as follows:

respawn If the process does not exist then siart the process,
do not wait for its termination {continue scanning

-1-

INITTAB (4)

wait

once

bootwait

powerfnil

powerwait

off

ondemand

Initdefault

INITTAB{4)

the inittab file), and when it dies restart the process.
If the process currently exists then do nothing and
continue scanning the inittab file.

Upon inif's entering the run-level that matches the
entry’s rstate, start the process and wait for its termi-
nation. All subsequent reads of the inmittab file while
init is in the same runm-fevel will cause init to ignore
this entry.

Upcn init’'s entering a run-fevel that maitches the
entry’s rstate, start the process, do not wait for its
termination. When it dies, do not restart the pro-
cess. If upon entering a new run-level where the
process is still running from a previous run-level
change, the program will not be restarted.

The entry is 1o be processed only at /sit’s boot-time
read of the inirtad file. Init is to start the process, not
wait for its termination; and when it dies, not restart
the process. In order for this instruction to be mean-
ingful, the rstate should be the default or it must
match inif’s run-ievel at boot time. This action is use-
ful for an initialization function following-a hardware
reboot of the system.

The entry is to be processed only at init’s boot-time
read of the imittad file. Init is to start the process,
wait for its termination and, when it dies, not restart
the process.

Execute the process associated with this entry only
when init receives a power fail siznal (SIGPWR see
signal(2)),

Execute the process associated with this entry only
when init receives a power fail signal (SIGPWR) and
wait until it terminates before continuing any pro-
cessing of inittab.

If the process associated with this entry is currently
running, send the warning signal (SIGTERM) and
wait 20 seconds before forcibly terminating the pro-
cess via the kill signal (SIGKILL). If the process is
nonexistent, ignore the entry.

This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is
given a different keyword in order to divorce its asso-
ciation with run-levels, This is used only with the a,
b or ¢ values described in the rsiaze field.

An entry with this action is only scanned when inif
initially invoked. Jnir uses this entry, if it exisis, to
determine which run-leve! 1o enter initially. It does
this by taking the highest run-level specified in the
rstate field and using that as its initial state. If the
rstate field is empty, this is interpreted as 0123456
and 50 imit will enter run-level 6, Also, the

..

INITTAB (4) INITTAB (4}

initdefaunlt entry cannot specify that inir start in the
SINGLE USER state. Additionally, if init does not find

an initdefault entry in /etc/inittab, then it will

(\ request an initial run-level from the user at reboot
G time.

sysinit Entries of this type are executed before irit tries to

access the console. It is expected that this entry will
be only used to initialize devices on which inir might
y to ask the rum-level question. These entries are
executed and waited for before continuving.

process This is a sh command to be executed. The entire process field is
prefixed with exec and passed to a forked sk as sh —c ‘exec com-
mand’. For this reason, any legal sh syntax can appear in the pro-
cess field. Comments can be inserted with the ; # comment syntax,

" PILES
Jetc/inittab
SEE ALSO
sh(1), who(1}, exec(2), open(2), signal(2),
getty (1M), init(1M) in the Administrator Manual.

INODE (4) INODE{4)

NAME
inode — format of an inode

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION
An i-node for a plain file or directory in a file system has the following
structure defined by < sys/ino.h>.

/= Inode structure as it appears on a disk block. +/
struct dinode {

ushort di_mode; /» mode and type of file +/
short di_nlink; /» number of links to file «/
ushort di_uid; /+ owner’s user id =/

ushort di_gid; /» owner's group id */

off_t di_size; /*» number of bytes in file +/
char di_addr[40]; /» disk block addresses +/
time_t di_atime; /* time last accessed +/
time_t di_mtime; /+ time last modified =/
time_t di_ctime; f* time created +/

|3
i*
» the 40 address bytes:
" 39 used; 13 addresses
* of 3 bytes each.
“f
For the meaning of the defined types off ¢ and time_t see tvpes(5).
FILES
fust/include/sys/ino.h
SEE ALSOQ
stat(2), fs{4}, types(5}).

ISSUE (4) ' ISSUE(4)

NAME
issue — issue identification file
DESCRIPTION
The file /etc/Issue contains the issue of project identification to be printed
as a login prompt. This is an ASCIH file which is read by program getty and
then written to any terminal spawned or respawned from the lires file,
FILES
Jetc/issue
SEE ALSO
login(1).

LDFCN(4) LDFCN (4}

NAME
ldfen — common object file access routines

SYNOPSIS
#include <stdio.h>
#include < filehdr.h>
#include <Ildfen.h>

DESCRIPTION
The common object file access routines are a collection of functions for
reading an object file that is in common object file form. Although the cal-
ling program must know the detailed structure of the parts of the object file
that it processes, the routines effectively insulate the calling program from
knowledge of the overall structure of the object file.

The interface between the calling program and the object file access rou-
tines is based on the defined type LDFILE (defined as struct ldfile), which
is declared in the header file < ldfen.h>. The primary purpose of this
structure is to provide uniform access to both simple object files and object
files that are members of an archive file.

The function /dopen(3X) allocates and initializes the LDFILE structure and
returns & pointer to the structure to the calling program. The felds of the
LDFILE structure may be accessed individually through macros defined in
< ldfen.h>> and contain the following information:

LDFILE sldptr;

TYPE(ldptr) The file magic number, used to distinguish between
archive members and simple object files.

10PTR(ldptr) The file pointer returned by fopen(3S) and used by the
standard input/output functions.

OFFSET(ldptr) The file address of the beginning of the object file; the
offset is non-zero if the object flle is a member of an
archive file.

HEADER (Idptr) The file header structure of the object file.

The object file access functions may be divided into four categories:

(1} functions that open or close an object file

idopen(3X) and idaopen

open a common ohject file
Idclose(3X) and idaclose

close a common object file

(2} functions that read header or symbol table information

Idatread{3X)
read the archive header of a member of an archive
file
Idfhread(3X)
read the file header of a common object file
Idshread(3X) and idnshread
read a section header of a common object file
Idtbread(3X)
read a symbol table entry of a common object file

-1-

LDFCN (4}

LDFCN (4)

Idgetname(3X)
retrieve a symbol name from a symbol table entry
or from the string table

(3) functions that position an object file at (seek to} the start of
the section, relocation, or line number information for a particular

section.

ldohseek (3X)
seek to the optional file header of a common object
file
Idsseek(3X) and Idnsseek
seek to a section of a common object file
Idrseek(3X) and Idnrseek
seek to the relocation information for a section of a
common object file
Idiseek(3X) and ldniseck
seek to the line number information for a section of
a common object file
Idtbseek{3X)
seek to the symbol table of a common object file

(4) the function ldtbindex (3X) which returns the index of a particu-
lar common object file symbol table entry

These functions are described in detail in the manual pages identified for

each function.

All the functions except ldopen, ldgetmame(3X), Idaopen, and Idthindex
return either SUCCESS or FAILURE, which are constants defined in
<ldfen.h>,. Ldopen and Ildacpen both return pointers to a LDFILE struc-

ture.
MACROS

Additional access to an object file is provided through a set of macros
defined in < ldfcn.h>. These macros parallel the standard input/output
file reading and manipulating functions, translating a reference of the
LPFILE structure into a reference to its file descriptor field.

The following macros are provided:

GETC (ldptr)

FGETC (ldptr)

GETW (ldptr)

UNGETC(c, 1dptr}

FGETS(s, n, ldptr)
FREAD{(char *) pir, sizeof (+ptr), nitems, ldptr)
FSEEK {ldptr, offset, ptrname}
FTELL {ldptr)

REWIND (Idptr)

FEOF (idpir)

FERROR (ldptr)

FILENO (ldpir)

SETBUF (ldptr, buf)
STROFFSET (ldptr)

The STROFFSET macro calculates the address of the string table in a
object file. See the manual entries for the corresponding standard
input/output fibrary functions for details on the use of these macros. (The

-2

LDFCN {4} LDFCN (4)

Functions are identified as 35 in Section 3 of this manual.)

The program must be loaded with the object file access routine library
libld.a.

WARNINGS
The macro FSEEK defined in the header file «<ldfen.h> translates into a
call to the standard input/output function fseek(35), FSEEK should not be
used to seek from the end of an archive file since the end of an archive file
may not be the same as the end of one of its abject file members.

SEE ALSQ
fopen(38), fseek(3S), Idahread(3X), Iidclose(3X), Idfhread(3X),
Idgetname(3X), Idiread(3X), Idiseek(3X), Idohseek(3X), Idopen(3X),

idrseek(3X), Idiseek(3X)}, Idshread(3X), Idtbindex(3X), Idtbread(3X),
idtbseek (3X}.

COFF in the Programming Guide.

LINENUM (4} LINENUM (4}

NAME
linenum — line number entries in a commeon object file

o SYNOPSIS
#include <linenum.h>

o DESCRIPFTION
The C compiler generates an entry in the object file for each C source line
on which a breakpoint is possible (when invoked with the —g option; see
cc(1)). Users can then reference line numbers when using the appropriate
software test system (see sdb(1)). The structure of these line number
entries appears below.

struct lineno
nion

fong 1_symndx ;
long 1 _paddr ;
I _addr;
unsigned short | Inno ;
Numbering starts with one for each function. The initial line number eatry
for a function has [inno equal to zero, and the symbol table index of the
function's entry is in [symndx. Otherwise, ! Inno is non-zero, and ! paddr
is the physical address of the code for the referenced line. Thus the overall

r/‘ ’ structure is the following:
e {_addr { Inno
function symtab index 0
physical address line

physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
cell), sdb(l), aout(4).

MASTER (4) MASTER (4)

NAME
master — master device information table

DESCRIPTION
This file is used by the config(1M) program to obtain device information
that enables it to generate the configuration files. The file consists of 3
parts, each separated by a fine with a dollar sign (§) in column 1. Part 1
contains device information; part 2 contains names of devices that have
aliases; part 3 contains tunable parameter information. Any line with an
asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines consisting of at least 7 fields and at most 10 fields,
with the fields delimited by tabs andfor blanks:

Field 1: device name {8 chars. maximum).
Field 2: handlers {9 character string).
’g?, INIT, xxxxinitQ
o, OPEN, xxaxopend)
¢, CLOSE, xxxxclose(}
', READ, xxxxread()
*w’, WRITE, xxxxwrite()
A IQCTL., xxxxioctl()

Y, SELECT, xxxxselect()
' No handlers

Field 3: evice type indicator (9 character string):
', YS, a ity device
o, ONCE, can only be specified once
’s’, NOCNT, suppress count & other stuff
, REQ, required device
b, BLOCK, a block device
e’ CHAR, a character device
'k, CLOCK, the clock device
p', PECULIAR, peculiar (use devname, not prefix)
', FORCE,
.t No type indicators

Field 4: handler prefix (4 chars. maximum).

Field §: major device number for block-type device (short
decimal).

Field 6: major device number for character-type device (short
decimal}.

Field 7: maximum number of devices/lines (short decimal).

Fields 8-10: optional structure declarations (40 chars. maximum).
Part 2 contains lines with 2 fields each:

Field 1: alias name of device (20 chars. maximum).
Field 2: reference name of device (20 chars. maximum;
specified in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1; parameter name {as it appears in description file; 20
chars. maximum)

Field 2: text form {(as it appears in the coaf.c file; 20 chars.
maximum)

Field 3: default parameter vslue (20 chars. maximum;

specification in description file is required if this field

-1-

MASTER (4)

is omitted)
SEE ALSO
config(IM).

FILES
fetc/master

MASTER (4)

MASTER (4) (Vireal) MASTER(4)

NAME
master — master device information table

DESCRIPTION
This file is used by the config(1M) program to obtain device information that
enables it to generate the configuration fites. The file consists of 3 parts, each
separated by a line with a dollar sign ($) in column 1. Part 1 contains device
information; part 2 contains names of devices that have aliases; part 3 contains
tunable parameter information. Any line with an asterisk (*) in column 1 is
treated as a comment.

Part 1 contains lines consisting of at least 7 fields and at most 10 fields, with the
fields delimited by tabs and/or blanks:

Field 1: device name (8 chars. maximum).
Field 2: handlers (9 character string)
s, INIT, xxxXinit()
‘o', OPEN, xxxxopen()
e, CLOSE, xxxxclose()
', READ, xxxxread()
‘w', WRITE, xxxawrite)
i, IOCTL, xxxxioctl()
', SELECT, xxxxselect()
ey No handlers
Field 3: devme type indicator (9 character string):
'm’, SEMAS, define semaphores
', TTYS, a tty device
o, ONCE, can only be specified once
's’, NOCNT, suppress count & other stuff
T, REQ, required device
b7, BLOCK, a block device
e, CHAR, a character device
'k, CLOCK, the clock device
P, PECULIAR, peculiar (use devname, not prefix)
', FORCE, Define count if not a ity
' No type indicators
Field 4: I'umdler prefix (4 chars. maximum).
Field 5: major device number for block-type device {short decimal).
Field 6: major device number for character-type device (short
decimal).
Field 7: maximum number of devices/lines (short decimal).

Fields 8-10: optional structure declarations (40 chars. maximum).
Part 2 contains lines with 2 fields each:

Field 1: alias name of device (20 chars. maximum).

Field 2: reference name of device (20 chars. maximum; specified in
part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description file; 20 chars,
maximum)

Field 2: text form (as it appears in the conf.c file; 20 chars. max-
imum)

Field 3: default parameter value (20 chars. maximum; specification

in description file is required if this field is omitted)

SEE ALSO
config(1M}.

2

MASTER(4)

fetc/master

{ Virtual)

MASTER (4)

MNTTAB (4) MNTTAB (4)

NAME

mnttab — mounted file system table
SYNOPSIS

#include <mnpttab.h>
DESCRIPTION

Mnitab resides in directory /etc and contains a table of devices, mounted by
the mounr(IM} command, in the following structure as defined by

< mnitab.h>:
struct mnttab {
char mt_dev[32];
char mt_filsys[32];
short mi_ro_flg:
time_t mi_time;

k
Each entry is 70 bytes in length; the first 32 bytes are the null-padded name
of the place where the special file is mounted; the next 32 bytes represent
the null-padded toot name of the mounted special file; the remaining 6
bytes contain the mounted special file®s read/write permissions and the date
on which it was mounted.

SEE ALSO
df{iM}, mount{1M), setmnt(1M} in the Administrator Reference Manual,

Page 1 July 23, 1985

NETWORKS (4N) UniSoft NETWORKS (4N}

NAME
networks — network name data base

DESCRIPTION
The aetworks file contains information regarding the known networks which
comprise the DARPA Internet. For each network a single line should be
present with the following information:

official network name
network number
aliases

Items are separated by any nummber of blanks and/or tab characters. A
“# indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search the file. This file is nor-
mally created from the official network data base maintained at the Network
Information Control Center (NIC), though local changes may be required
to bring it up to date regarding unofficial aliases and/or unknown networks.

Network number may be specified in the conventional **.** notation using
the imet_metwork() routine from the Internet address manipulation library,
inet(3N). Network names may contain any printable character other than a
field delimiter, newline, or comment character.

FILES
fetc/networks

SEE ALSO
getnetent{3N)

BUGS
A name server should be used instead of a static file. A binary indexed file
format should be available for fast access.

PASSWD (4) FASSWD (4)

NAME

passwd — password file

DESCRIFTION

FILES

Passwd contains for each user the following information:

login name

encrypted password

numerical user ID

numerical group ID

GCOS job number, box number, optional GCOS user ID

initial working directory

program to use as Shell
This is an ASCH file. Each field within each user’s entry is separated from
the next by a colon. The GCOS field is used only when communicating
with that system, and in other installations can contain any desired infor-
mation. Each user is separated from the next by a new-line, If the pass-
word field is null, no password is demanded; if the Shell field is null, the
Shell itself is used.

This file resides in directory fete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-
character alphabet (., /, 0—9, A—Z, a—z}, except when the password is
aull, in which case the encrypted password is also null. Password aging is
effected for a particular user if his encrypted password in the passworg file
is followed by a comma and a non-null string of characters from the above
alphabet. {Such a string must be introduced in the first instance by the
super-user.)

The first character of the age, M say, denotes the maximum number of
weeks for which a password is valid. A uwser who attempts to login after his
password has expired will be forced to supply a new one. The next charac-
ter, m say, denotes the minimum period in weeks which must expire before
the password may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last changed.
(A null string is equivalent to zero.) M and m have numerical values in the
range 0—63 that correspond to the 64-character alphabet shown above (ie.,
/ =1 week, z = 63 weeks). If m = M = 0 (derived from the siring . or
..} the vser will be forced to change his password the next time he logs in
(and the **age" will disappear from his entry in the password file). If m >
M (signified, e.g., by the string ./} only the super-user will be able to
change the password.

Jetc/passwd

SEE ALSO

login(1), passwd(1), a641(3C), crypt(3C), getpwent(3C), group(4).

PLOT (4) PLOT (4)

NAME

plot — graphics interface

DESCRIFTION

Files of this format are produced by routines described in plor(3X) and are
interpreted for various devices by commands described in tplof{1G). A
graphics file is a stream of plotting instructions. Each instruction consists
of an ASCI letter usually followed by bytes of binary information. The
instructions are executed in order, A point is designated by four bytes
representing the x and y values; each value is a signed integer. The last
designated point in an I, m, n, or p insiruction becomes the *‘current
point’ for the next instruction.

Each of the following descriptions begins with the name of the correspond-
ing routine in plot(3X).

tn move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next
four bytes. See tplor{1G).

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the
point given by the foliowing four bytes.

t label: Place the following ASCII string so that its first character falls on
the current point. The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style for
drawing further lines. The styles are “‘dotted”, **solid”*, “longdashed’’,
“*shortdashed”, and *‘dotdashed’’. Effective only for the —T4014 and
=Tver options of pler{(1G) (TEKTRONIX 4014 terminal and Versatec
plotter).

s space: The next four bytes give the lower left corner of the plotting
area; the following four give the upper right corner. The plot will be
magnified or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with wnity scaling appear
below for devices supporied by the filters of plor(1G). The upper limit is
just outside the plotting area. In every case the plotting area is taken to be
square;, points outside may be displayable on devices whose face is not
square,

—

DASI 300 space (0, O, 4096, 4096}
DASI 300s space (0, 0, 4096, 4096},
DASI 450 space (0, 0, 4096, 4096}

TEKTRONIX 4014 space(0, 0, 3120, 3120);
Versatec plotter space{0, 0, 2048, 2048);

SEE ALSO

tplot{1G}, plot{3X}, term(5).

WARNING

Page 1

The plotting library plot(3X) and the curses library curses(3X) both use the
names erase() and move(). The curses versions are macros. If you need

July 23, 1985

PLOT {4) PLOT (4)

both libraries, put the plor(3X) code in a different source file than the
curses(3X) code, and/or #undel move() and erase() in the plor(3X) code.

July 23, 1985 Page 2

PNCH({4) PNCH (4)

NAME
pnch — file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consisting of card
images in an arbitrary code.

A PNCH file is a simple cencatenation of card records. A card record con-
sists of a single control byte followed by a variable number of data bytes.
The control byte specifies the number {which must lie in the range 0-80) of
data bytes that follow. The data bytes are 8-bit codes that constitute the
card image. If there are fewer than 80 data bytes, it is undersiood that the
remainder of the card image consists of trailing blanks.

SEE ALSO
send(2N).

Page 1 July 23, 1985

PROFILE (4) PROFILE(4)

NAME
profile — setting up an environment at login time

DESCRIPTION
If your fogin directory contains a file named .profile, that file will be exe-
cuted (via the shell’s exec .profile} before your session begins; .profiles are
handy for setting exported environment variables and terminal modes. If
the file /etc/profile exists, it will be executed for every user before the
.profile. The following example is typical (except for the commentis):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL = fusr/ mail/myname
Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
echo "terminal: \c¢"
read TERM
case $TERM in
stty cr2 ni0 tabs; tabs;;
300s) stty cr2 nl0 tabs; tabs;;

450) stty cr2 ni0 tabs; tabs;;
hp) stty crQ nl0 tabs; tabs;;
745)735) sity crt nll —tabs; TERM=745;;
43) stty crl nl0) —tabs;;
4014|tek) stty cr® nl0 —tabs f11; TERM=4014; echo "\33;";;
+} echo "STERM unknown";;
esac
FILES
$SHOME/ .profile
fetc/profile
SEE ALSO

env(l), login(1), mail(L), sh(1), stty (1), su{l), environ{5}, term(5).

PROTOCOLS (4N} UniSeft PROTOCOLS (4N)

NAME
protocols — protocol name data base

/7" DESCRIPTION
The protorols file contains information regarding the known protocols used
i in the DARPA Internet. For each protocol a single line should be present
with the following information:

official protocol name

protocal number

aliases

Items are separated by any number of blanks and/or tab characters. A
“# indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search the file,

Protocol names may contain any printable character other than & field del-
imiter, newline, or comment character,

FILES
Jetc/protocols

SEE ALSO
getprotoent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file
format should be available for fast access.

-

RELOC (4}

NAME

reloc —

SYNOPSIS

RELOC (4)

relocation information for a commen object file

#include <reloc.h>

DESCRIPTION

Object files have one relocation entry for each relocatable reference in the

text or
format.

As the

data. If relocation information is present, it will be in the followin

struct reloc

{
long T_vacdr ; {+ {virtual) address of reference +/
long r_symndx ; /+ index into symbol table »/
short r_type ; [+ relocation type »/

b

fe

* All generics

. reloc. alrendy performed to symbol in the same section

*/

#define R_ABS 0

fu

* DEC Processors VAX 11/780 and VAX 11/750

o
#define R_RELBYTE 017
#define R_RELWORD 020
#define R_RELLONG 021
#define R_PCRBYTE 022
#define R_PCRWORD 023
#define R_PCRLONG 024

=

* Motorola 68000 uses R_RELBYTE, R_RELWORD, R_RELLONG,
* R_PCRBYTE, and R_PCRWORD as for DEC machines above.

«f

link editor reads each input section and performs relocation, the

relocation entries are read. They direct how references found within the
input section are treated.

R_ABS

The reference is absolute, and no relocation is necessary.
The entry will be ignored.

R_RELBYTE A direct 8-bit reference to a symbol’s virtual address.
R_RELWORD A direct 16-bit reference to a symbol’s virtual address.
R_RELLONG A direct 32-bit reference to a symbol’s virtual address.
R_PCRBYTE A *‘PC-relative’ B-bit reference to a symbol’'s virtual

address.

RELOC (4) RELOC {4)

R_PCRWORD A *‘PC-relative’™ 16-bit reference io a symbol’s virtual
address.

- R_PCRLONG A “PC-relative’> 32-bit reference to a symbol’s virtual
address.
On the VAX processors, relocation of a symbol index of -1 indicates that

the relative difference between the current segment’s start address and the
program’s load address is added to the relocatable address.

Other relocation types will be defined as they are needed.

Relocation eniries are generated automatically by the assembler and
automatically utilized by the link editor. A link editor option exists for
removing the relocation entries from an object file.

SEE ALSO
id(1}, strip(1), a.out(4), syms(4).

SCCSFILE(4) SCCSFILE (4)

NAME

sceshile — format of SCCS file

DESCRIPTION

Page |

An SCCS file is an ASCII file. It consists of six logical parts: the checksun,
the delia table {contains information about each delta), user names (con-
tains login names and/or numerical group 1Ds of users who may add del-
tas), Mags (contains definitions of internal keywords), comments {contains
arbitrary descriptive information about the file), and the body (coniains the
actual text lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCI1 SOH
(start of heading) character (octal 001), This character is hereafier referred
to as the contref character and will be represented graphically as @. Any
line described below which is not depicted as beginning with the control
character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between
00000 and 99999).

Each logical part of an SCCS file is described in detail below.
Checksum

The checksum is the first line of an SCCS file. The form of the line
is:

@hDDDDD

The value of the checksum is the sum of all characters, except
those of the first line. The @h provides a magic number of (octal)
064001,

Delta rable
The delta table consists of a variable number of entries of the form:

@s DDDDI/ DDDDD/DDDDD

@d <type>> <SCCSID> yr/mofda br:mise < pgmr> DDDDD DODDD
@j DDDDD ...

@x DDDDBD ...

@g DDDDD ...

@m <MR number>>

@e < commentss> ...

@e
The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:

R}, the SCCS ID of the delta, the date and time of creation of the
delta, the login name corresponding to the real user ID at the time

August 6, 1985

——r

SCCSFILE(4)

SCCSFILE (4)

the delta was created, and the serial numbers of the delta and its
predecessor, respectively,

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated
with the delta; the @c lines contain comments associated with the
delta.

The @e line ends the delta table entry.

User names

Flags

August 6, 1985

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines con-
taining these login names and/or numerical group IDs are sur-
rounded by the bracketing lines @u and @U. An empty list allows
anyone to make a delta. Any line starting with a ! prohibits the
succeeding group or user from making deltas.

Keywords used internalty (see admin(1) for more information on
their use). Each flag line takes the form:

@f <flag> < optional text>

The following flags are defined:
@ft <type of program>
@f v < program name>>
@fi <keyword string>

@fhb
@fm < module name>>
@ff <floor>

@fc <ceiling>

@fd <default-sid>

@fn

@fj

@fl <lock-releases>

@fq <user defined>

@fz <reserved for use in interfaces>

The t flag defines the replacement for the % Y% identification key-
word. The v flag controls prompting for MR numbers in addition to
comments; if the optional text is present it defines an MR number
validity checking program. The & flag conirols the warning/error
aspect of the “*No id keywords' message. When the 1 flag is not
present, this message is only a warning; when the i flag is present,
this message will cause a “‘fatal” error (the file will not be gotten,
or the delta will not be made), When the b flag is present the ~b
keyletter may be used on the gof command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement

Page 2

SCCSFILE{4)

SCCSFILE(4)

text of the %M% identification keyword. The [flag defines the
“floor” release; the release below which no deltas may be added.
The ¢ flag defines the ‘“ceiling’” release; the release above which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a ger command. The n flag causes delta
to insert a “‘null® delta {(a delta that apglies no changes} in those
releases that are skipped when a delta is made in a #ew release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped). The absence of the n flag causes skipped releases to be
completely empty. The j flag causes gef to allow concurrent edits of
the same base SID. The 1 flag defines a list of releases that are
locked against editing (ger(1} with the —e keyletter). The q flag
defines the replacement for the %Q% identification keyword. The z
flag is used in certain specialized interface programs.

Comments

Body

SEE ALSQ

Arbitrary text is surrounded by the bracketing lines @t and @T.
The comments section typically will contain a description of the
file’s purpose.

The body consists of text lines and control lines. Text lines do not
begin with the control character, control lines do. There are three
kinds of control lines: imsert, defere, and end, represented by:

@I DDDDD
@D DDDDD
@E DDDDD

respectively, The digit siring is the serial number corresponding to
the delta for the control line.

admin(1}, delta(1}, get(1), prs(1).
SCCS in the Programming Tools Guide.

Page 3

August &, 1985

SCNHDR(4) SCNHDR (4)

NAME

scnhdr — section header for 2 common object file
SYNOPSIS

#include <« scnhdr.h>
DESCRIPTION

Every common object file has a table of section headers to specify the lay-
out of the data within the file. Each section within an object file has iis
own header. The C structure appears below.

?truct scnhdr

char s_name[SYMNMLEN]; /+ section name */
long s_paddr, /+ physical address »/

long s vaddr; /+ virtual address «/

long s_size, /+ section size »/

long s _scnptr; /= file pir to raw data +/
long 8 _relptr, /+ file pir to relocation «/
long s_lnnoptr; /+ file ptr to line numbers +/

unsigned short s_nreloc; /« # reloc entries »/
vnsigned short s_nlnno; /= # line number entries +/
l long s flags; /+ flags «/

File pointers are byte offsets into the file; they can be used as the offset in
a call to fseek(35). If a section is initialized, the file contains the actual
bytes. An uninitialized section is somewhat different. It has a size, sym-
bols defined in it, and symbols that refer to it, but it can have no relocation
entries, line numbers, or data. Consequently, an uninitialized section has
no raw data in the object file, and the values for s_scuptr, s_relptr, s Innoptr,
s _nrefoc, and s_ninno are zero.

SEE ALSO
1d(1), fseek(38), a.ount{4).

SERVICES (4N) UniSoft SERVICES(4N)

NAME

services — service name data base

DESCRIPTION

FILES

The services file contains information regarding the known services available
in the DARPA Internet. For each service a single line should be present
with the following information:

official service name
port number
protocol name
aliases

Items are sepatated by any number of blanks and/or tab characters. The
poert number and protocot name are considered a single itent; & **/*" is used
to separate the port and protocol (e.g. “*512/tcp™”). A “‘#” indicates the
beginning of a comment; characters up to the end of the line are not inter-
preted by routines which search the Rie.

Service names may contain any printable character other than a field delim-
iter, newline, or comment character.

letc/services

SEE ALSO

BUGS

getservent (3N}

A name server should be used instead of a static file. A binary indexed fle
format should be available for fast access,

SYMS (4) SYMS (4}

NAME
syms — common object file symbol table format

/f'\- SYNOQPSIS
: #include < syms.h>

DESCRIPTION
Common object files contain information to support symbolic software test-
ing (see s#b(1). Line number entries, {inenum(4}, and extensive symbolic
information permit testing at the C source level. Every object file’s symbol
table is organized as shown below.

Filename 1.
Function 1.
Local symbols for function 1.
Function 2
Lecal symbols for Tunction 2.

Static externs for file 1.

Filename 2.
Function 1.
Local symbols for function 1.
Function 2.
Local symbols for function 2.

~ Siatic externs for file 2.

Defined global symbols.
Undefined globel symbols.

The entry for a symbol is a fixed-length structure. The members of the
structure hold the name {null padded), its value, and other information.
The C structure is given below.

#defline 5YMNMLEN 3
#define FILNMLEN 14
siruct symeni
{
union _ #* ways 10 get & symbol names/
i
char _n_name[SYMNMLEN] :/+ names less than B chars. +/
struct /+ names & char or more+/
{
long _N_zeroes; #» = = (L, when in string wble~/
long _n_oifset; £+ location of neme in tabk */
) n_m;
/"_\ char +_n_nptrl2]; f+ allows overlaying +/
| in .
pR— long n_value ; F+ value of symbol +/
shorl n_Sepum ; #+ saction number +/
unsigned short n_type ; 7= type and derived type «/
char n_sclass | {+ storage class «/
char n_numaux ; #+ number of aux entries »/

-1-

SYMS(4) SYMS (4)

#define n_name _Nn._n_name
#define n_zerces _0._ 1N n._n_zerows
#define n_offsel _n._1_n._n_oflset
#define n_npir _n._n_nprl1]

Meaningful values and explanations for them are given in both syms.h and
Common Object File Format. Anyone who needs te interpret the entries
should seek more information in these sources. Some symbols require
more information than a single entry; they are lollowed by auxiliary entries
that are the same size ag a symbol entry. The format follows.

union auxent

sirucl

{
long x_lagndx;
unicn

siruct

unsigned short x_Inno;
unsigned shorl x_size,

| %_lnsz;
long x_fsize;
} x_misc;
union
{
struct
{
long x_lnnopts;
long a_endnda;
' x_len;
struct
{
d short x_dimen[DIMNUM];
' X_ary;
} x_femary;
unsigned shorl x_tvndx;
1 X_sym;

struct
l
char x_frnemelFiLNMLEN];
| x_fily
Siruct
i
long x_scnlen;
ungsigned short x_nreloc;
vnsigned shorl x_nlinno;
] x_sem;

siruct

{

unsigned shorl x_tvien;

.7.

SYMS ({4} SYMS (4)

unsignad short x_tvran[2];
] x_tv
I
Indexes of symbol table entries begin ai zero.

SEE ALSO
sdb(1}, a.out{4}, linenum{4).
COFF in the Programming Guide.

WARNING
In machines in which longs are equivalent to ints (M68000 and VAX}, the
longs are converted to ints in the compiler to minimize the complexity of
the compiler code generator. Thus, the information about which symbols
are declared as longs and which as ints cannot be determined from the
symbol table.

TERM (4) TERM {4)

NAME
term — format of compiled term file.

SYNOPSIS
term

DESCRIPTION

Compiled terminfo descriptions are placed under the directory
fust/lib/terminfo, In order to avoid a linear search of a huge UNIX system
directory, a two-level scheme is used: /usr/lib/terminfo/c/name where
name is the name of the terminal, and ¢ is the first character of name.
Thus, act4 can be found in the file /usr/lib/terminfo/a/act4. Synonyms
for the same terminal are implemented by multiple links o the same com-
piled file.

The format has been chosen so that it will be the same on all hardware.
An 8 or more bit byte is assumed, but no assumptions about byte ordering
or sign extension are made.

The compiled file is created with the compile program, and read by the rou-
tine sempterm. Both of these pieces of software are part of curses(3X}.
The file is divided into six parts: the header, terminal names, boolean flags,
numbers, strings, and string table.

The header section begins the file. This section contains six short iniegers
in the format described below. These integers are (1) the magic number
(octal 0432); (2) the size, in byies, of the names section; (3} the number
of bytes in the boclean section; (4) the number of short integers in the
numbers section; (5) the number of offsets (short integers) in the strings
section; (6) the size, in bytes, of the string table.

Short integers are stored in two B-bit bytes. The first byte contains the
least significant 8 bits of the value, and the second byte contains the most
significant 8 bits. (Thus, the value represented is 256*second+first.} The
value —1 is represented by 0377, 0377, other negative value are illegal.
The —1 generailly means that a capability is missing from this terminal.
Note that this format corresponds to the hardware of the VAX and PDP-11.
Machines where this does not correspond to the hardware read the integers
as two bytes and compute the result,

The terminal names section comes next. It contains the first line of the
terminfo description, listing the various names for the terminal, separated
by the ¢ character. The section is terminated with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as
the flag is present or absent. The capabilities are in the same order as the
file <term.h>.

Between the boolean section and the number section, a null byte will be
inserted, if necessary, to ensure that the number section begins on an even
byte. All short integers are aligned on a short word boundary.

The numbers section is similar to the flags section. Each capability takes up
twp bytes, and is stored as a short integer. If the value represented is — 1,
the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short
integer, in the format above. A value of —1 means the capability is miss-
ing. Otherwise, the value is taken as an offset from the beginning of the
string table. Special characters in "X or \¢ notation are stored in their

-1-

o

TERM (4) TERM (4)

FILES

interpreted form, not the printing representation. Padding information
$<nn> and parameter information %x are stored intact in uninterpreted
form,

The final section is the string table. It contains all the values of string capa-
bilities referenced in the string section. Each string is nult terminated.

Note that it is possible for setupterm to expect a different set of capabilities
than are actually present in the file. Either the database may have been
updated since setuprerm has been recompiled (resulting in extra unrecog-
nized entries in the file) or the program may have been recompiled more
recently than the database was updated (resulting in missing entries). The
routine setupternt must be prepared for both possibilities — this is why the
numbers and sizes are included. Also, new capabilities must always be
added at the end of the lists of boolean, number, and siring capabilities.

As an example, an octal dumnp of the description for the Microterm ACT 4
is included:

microtermiactdimicroterm act iv,
cr="M, cudi="], ind="J, bel="G, am, cubl="H,
ed="_, el="", clear="L, cup="T%pl%c%p2%c,
cols#80, lines#24, cufl = "X, cuul ="Z, home="],

000 932 001 VOOZE A\B AR AOZIZNG NG m i oe

020 o termlactdlmicro

M40 t e t m act i v \0 0001 YO0

060 30 X0 \0 \0 A0 W0 AD N0 W0 D VO AD AD D NG AD

100 40 0 P NOITY 3TV 030 \0 377377 3773977 377 377 311 317
120377 377 377 377 \0 \D 002 \0 377 377 377 377 004 \0 006 \O
40 \b Y0377 377 377 377 \n V0 026 \D 030 \0 377377032 \0
160 377 372 3717 317034 \Q 377 377 036 0 377 377 377 37171377 377
2003717 31T ATT AT ANT 3N 3N ITT ITT 3T I 31T 3T 377 31 N
520317 317317077 \O 37T 31T ATTATT ATT 3TT 317377377 317
540 377 377 377 377 377 ITT 007 \0 \r \O \f V0036 \DO37 \O
560024 % p 1 % c % p 2 % ¢\ \G0I5 D

&00 ‘b \0 030 0 032 \0 \n \O

Some limitations: total compiled entries cannot exceed 4096 bytes. The
name field cannot exceed 128 bytes.

Juse/lib/terminfo/*/* compiled terminal capability data base

SEE ALSO

curses{3X), terminfo(4).

TERMINFO(4) TERMINFO(4)

NAME
terminfo — ierminat capability data base
SYNOPSIS '
fusr/lib/terminfor* /*
DESCRIPTION
Terminfo is a <daia base describing terminals, used, e.g.,, by wi(l) and
curses(3X), Terminals are described in terminfo by giving a set of capabilities
which they have, and by describing how operations are perforned. Padding
requirements and initialization sequences are included in ferminfo.
BanMmdqfacmmofannmbaof‘.'Wﬁelds.Whmmaﬂa
each *." is ignored. The first entry for each terminal gives the names which are
known for the terminal, separated by ‘" characters. The first name given is the
most common abbweviation for the terminal, the last name given should be a
long name fully identifying the terminal, and all others are understood as
synonyms for the ierminal name. AH names but the Iast should be in lower case
and contain no blanks; the 1ast name may well contain upper case and blanks
for readability.
Terminal names (except for the last, verbose entry) should be chosen msing the
following conventions. The particular piece of hardware making up the texmi-
nal should have a root name chosen, thus **hp2621°*. This name should not
contain hyphens, except that synonyms may be chosen that do not conflict with
other names, Modes that the hardware can be in, or nser preferences, should be
indicated by appending a hyphen and an indicator of the mode, Thus, a vt100
in 132 column mode would be vt100-w. The folkowing suffixes shonld be used
where possible:
Suffix Meaning Example
-W Wiide mode (more than 80 columns) vt100-w
-am ‘With anto, marging (usually defaul) vt100-am

-nam Without automatic margins vt100-nam

- Number of lines on the screen aaa-60

-na No amow keys (leave them inlocal) c100-na

-np Number of pages of memory c100-4p

-v Reverse video c100-rv
CAPABILITIES

The variable is the name by which the programmer (at the terminfo level)
accesses the capability. The capname is the short name used in the text of the
database, and is nsed by a person updating the database. The i.code is the two

Page 1 September 24, 1987

TERMINF(Q(4)

TERMINFOQ(4)

letter internal code used in the compiled database, and always corresponds to

the old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5 charac-
ters has been adopted to keep them short and to allow the tabs in ihe source file
¢aps to line up nicely. Whenever possible, names are chosen to be the same ag
or similar to the ANSI X3.64-1979 standard. Semantics are also intended to

maich those of the specification.

® mdlcatesﬂlatpaddmgmaybespeciﬁed
(G) indicates that the string is passed through tparm withparms as given (i).
*) mﬂlcatesﬂlatpaddmgmybebasedonﬂwnumbaoﬂmaffected

(#) indicates the:
Variable
Booleans

suto_left margin,

suto_right margin,
bechive glitch,

ceol standout glitch,

eal_newline_glitch,

has_statuz_line,
insext_null_glitch,
memory_above,
memory_below,

move_insert_mode,

move_standout_maode,

over_sirike,

September 24, 1987

parameter,

L
Code
bw

am
xb
X3

sEF EF¥ B8 B

[~ "
-2

gge

Description

cbl wraps from column O to 1ast
colnmn

Terminal has sutomatic margins
Beehive (fl=cscape, P=cirl C)
Standout not erased by overwriting
(hp)

newline ignored after 80 cols
(Concept)

Can erase overstrikes with a blank
Generic line type (e.g.,, dialup,
switch).

Hardcopy terminal

Haz a meta key (shift, sets parity
bit)

Has extra “status line”

Insert mode distinguishes nulls
Display may be retained above the
BCTEEn

Display may be retained below the
scresn

Safe to move while in insert mode
Safe to move in standout modes
Terminal overstrikes

Page 2

TERMINFO(4)

status_line_esc_ok,

teleray_glitch,

tilde_glitch,
transparent_underline,
xon_xoff,

Numbers:
columns,
init_tabs,

lines,
lines of memory,

magic_cookie_glitch,
padding_baud_rate,

virtual_terminal,
width_status_line,

Strings:

back_tab,

bell,

cariage_retum,
change scroll region,

clear_all_tabs,
clear_screen,
clr_eol,

clr_eos,
column_address,
commsand_character,
cursor_address,

cursor_down,
cursor_home,
cursor_invisible,
cursor_left,
cursor_mem_address,

Page 3

na

BEFR

bt
bl

28

ct

aRe

ch

cm

gF2ge

TERMINFO(4)

Escape can be uzed on the status line
Tabs ruin, magic so char (Teleray
1061}

Hazeltine; can not print “’s

underline character overstrikes
Terminal uses xon/xoff handshaking

Number of columns in a line

Tabs initially every # spaces

Number of lines on screen or page
Lines of memory if » lines. 0 means
varics

Number of blank chars left by smso or
mso

Lowest band where cr/nl padding is
needed

Virtal terminal number (UNIX system)
No. columns in status line

Back tab (P)

Audible signal (bell) (P}

Carriage return (P*)

change to lines #1 through #2 (vt100)
gt}

Clear all tab stops (P)

Clear screen and home cursor (P*)
Clear to end of line (P)

Clear to end of display (P*)

Set cursor colurm (PG)

Term. settable cmd char in proiotype
Screen rel. cursor motion row #1

col #2 (PG)

Down one line

Home cursor (if no cup)

Make cursor invisible

Move cursor left one space

Memory relative cursor addressing

September 24, 1987

TERMINFO(4)

Cursor_up,

Septernber 24, 1987

ichl
1 H

FEERBRERPASE SRR R ESEREFRETRREERRRESERT

TERMINFO(4)

Maike cursor appear normal (undo va/vi)
Non-destructive space {cursor right)
Last line, first colunm (if no cup)
Upline (cursor up)

Make cursor very visible

Delete character (P*)
Delete line (P*)

Dizable statns line

Half-line down (forward 1/2 linefeed)
Start alternate character set (F)
Tam on blinking

Tum on bold {extra bright) mode
String to begin programs that use cup
Delete mode {enter)

Turn on half-bright mode
Insert mode (enter);

Turn on protected mode

‘Turn on reverse video mode

Turn on blank mode (chars invisible)
Begin stand ont mode

Start underscore mode

Erase #1 characters (PG)

End alternate character set (P)
Turn off all aitributes

String to end programs that use cup
End dejete mode

End insert mode

End stand out mode

End underscore mode

Vieible bell (may not move cursor)
Hardcopy terminal page cject (P*)
Return from status line

Terminal initialization string
Terminal initialization string
Terminal initialization string
Name of file containing is

Insert character (P)

Add new blank line (P*)

Insert pad after characier insexted

Page 4

TERMINFO(4) TERMINFO(4)

®"

key_backspace, kbs kb Sent by backspace key
key_catab, kibe ka Sent by clear-all-tabs key
key clear, kelr kC Sent by clear screen or erase key
key ctab, ketab t Sent by clear-tab key
key_dc, kdchl xD Sent by delete character key
key_dl, kdll kL Sent by delete line key
key down, keudl kd Sent by terminal down arrow key
key_cic, krmir M Sent by rmir or smir in insert mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_cos, ked kS Sent by clear-to-end-of-screen key
key_f0, 1%i1) k0 Sent by function key f0
key fl, kil Kl Sent by function key f1
key f10, kf10 ka Sent by function key f10
key f2, kf2 k2 Sent by function key f2
key f3, kf3 | «] Sent by function key £3
key_f4, kfd x4 Sent by function key f4
key f5, kfS x5 Sent by function key £5
key f6, xf6 k& Sent by function key {6
key {7, k7 k7 Sent by function key 7
key {8, kf8 k8 Sent by function key f8
key 19, k9 'y Sent by function key {9
key_home, khome kh Sent by home key

 key ic, kichl Kl Sent by ing char/enter ins mode key
key il, kill kA Sent by insert line
key left, keubl s Sent by terminal left arow key
key 1, il kH Sent by home-down key
key_npage, kep kN Sent by next-page key
key_ppage, kpp kP Sent by previous-page key
key right, keufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
key sr, Xri kR Sent by scroll-backward/up key
key_stab, khis kT Sent by set-tab key
key_up, kecuul ku Sent by terminal up arrow key
¥eypad_locsl, mkx ke Out of "keypad transmit” mode
keypad_xmit, smkx ks Put terminal in "keypad transmit’ mode
lab_f0, i 10 Labels on function key i} if not f0
lab_f1, 1f1 11 Labels on function key fl if not f1
lab_f10, If10 la Labels on function key £10 if not f10

Page 5 September 24, 1987

TERMINFO(4)

iab_f2,
lab_f3,
lab_fd,
lab_f5,
lab_f5,
lab_f7,
lab {8,
lab_f9,
meta on,
meta_off,
newline,

pad_char,
pam_dch,
parm_delete_line,
parm_down_cursor,
parm_ich,
parm_index,
parm_inseri_line,
parm_left_cursor,
parm _right cursor,
parm_rindex,
parm_up_cursor,
pkey_key,
pkey_local,
pkey_xmit,
print_screen,
prir_off,
prir_on,
repeat_char,
reset 1string,
reset_2string,
1esct_3siring,

reset file,
restore_cursor,

row_address,

save_cursor,
scroll forward,

September 24, 1987

22F% BREEESHAESS

BEg=EE

cun

¥

o g
En
8

AT TR TL

g

E8

gggaﬁﬁamrms

SER?

IC
SF
AL
SR

rk

SAHBII2IPYTTYEL

B3

TERMINFO(4)

Labels on function key {2 if not £2
Labels on function key f3 if not f3
Labels on fanction key 4 if not f4
Labels on function key £5 if not f5
Labels on function key f6 if not 16
Labels on function key 7 if not £7
Labels on function key f8 if not f8
Labelz on function key 9 if not 19
Turn on "meta mode" (Bth bit)

Tum off "meta mode"

Newline (behaves like cr followed

by 1f)

Pad character (rather than pull)
Delete #1 chars (PG*)

Delete #1 lines (PG*)

Move cursor down #1 lines (PG*)
Insert #1 blank chars (PG*)

Seroll forward #1 lmes (PG)

Add #1 new blank lines (PG*)

Move cursor left #1 spaces (PG)
Move cursor right #1 spaces {PG*)
Scroll backward #1 lines (PG)

Move cursor up #1 lines (PG*)

Prog funct key #1 to type siring #2
Prog funct key #1 to execuie siring #2
Prog funct key #1 to xmit string #2
Print contents of the screen

Turn off the printer

Turn on the printer

Repeat char #1 #2 times, (PG*)
Reset terminal completely to sane modes.
Reset terminal completely to sane modes.
Reset terminal completely fo sme modes.
Name of file containing reset string
Restore cursor to position of last sc
Vertical position absolute

(set row) (PG)

Save cursor position (P)

Scroll text up ()

Page 6

TERMINFO(4) TERMINFO({4)

scroll_reverse, H sr Scroll wext down (P)

set_attributes, SET sa Define the video atiributes (PG9)
sel_tab, htg st Set a tab in all rows, current ¢column
set_window, wind wi Current window is lines #1-#2

cols #3-#4

tab, ht ta Tab to next 8 space hardware tab stop
to_status line, sl 13 Go 1o status line, column #1
underline char, uc uc Underscore one char and move past it
up_half_line, hu hu Half-line up (reverse 1/2 linefeed)
init_prog, iprog iP Path name of program for init
key_al, kal X1 Upper left of keypad
key a3, ka3 K3 Upper right of keypad
key b2, kb2 K2 Center of keypad
key cl, kel K4 Lower left of keypad
key c3, ke3 KS Lower right of keypad
prir_non, meSp PO Tum on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept-100, is among the more

complex entries in the serminfo file as of this writing,
concept 100 c100f concept| ¢104 | ¢100-4p| concept 100,

am, bela"G, bank=\EH, blink=\EC, clear="L$<2* >, cnorm=\Ew,

colt#80, cr="M$<9>, cubl="H, cudl="I, cufl =\E=,

up=\Ea%pl%’ "%t HoHp2%’ "B e,

awl=\E;, cvvis«\EW, db, dchl=\E"A$<16*>, dim=\EE, 4l =\E"B$§<3*:,

eda\E"CS<16%>, el=\E'US<16>, ¢0, flach=\Ek$<20-\EK, ht=\t$<8>,

1=\E*R$<3*>, in, md="], .ind="T§<9>, ip=§<16%=,

i82=\EUNENENES\ERENENH\EK\E\20(REo&k \20EcTE,

kbs="h, ¥cub1=\E>, keud1=\E«, keufl w\Ea, kevul=\E;,

kfl=\ES, Kf2=\ES, k3=\ET, khomaw\E?,

lines#24, mix, ph#0600, prot=El, rep=\Er%p1 %c%p2%’ *%+%c$<.2%>,

rev=\ED, mcup=\Ev $<6:\Ep\rin, mir=\F\200, rmkx=\Ex,

rmzoe\Ed\Ee, mtu\Eg, rmula\Eg, sgrO-AEN\200,

sowup=\EU\Ev BpAEpr, smir=\E'P, smkx=\EX, emso=\EF\ED,

sul=AEG, tabs, v, vi#8, xenl,

Entries may continue onto multiple lines by placing white space at the begin-
ning of each line except the first, Comments may be included on lines begin-
ning with “‘#°. Capabilities in terminfo are of three types: Boolean

Page 7 September 24, 1987

TERMINFO(4) TERMINFO(4)

capabilities which indicate that the terminal has some particular feature,
numeric capabilities giving the size of the terminal or the size of particular
delays, and string capabilities, which give a sequence which can be used to per-
form particular terminal operations,

Types of Capabilities

All capabilides have names. For instance, the fact that the Concept has
automatic margins (i.e., an automatic return and linefeed when the end of a line
is reached) is indicated by the capability am. Hence the description of the Con-
cept includes am, Numeric capabilities are followed by the character ‘#' and
then the value. Thus cols, which indicates the number of columns the terminal
has, gives the value *80’ for the Concept.

Finally, string valued capabilities, such as el {clear to end of line sequence) are
given by the two-character code, an *=', and then a string ending at the next fol-
lowing *,". A delay in milliseconds may appear anywhere in such a capability,
enclosed in $<..> brackets, as in el=\EK$<3>, and padding characters are sup-
plied by fputs 1o provide this delay. The delay can be either a number, e.g.,
20°, or a number followed by an “’, ie, *3*', A ** indicates that the padding
required is proportional to the aumber of lines affected by the operation, and the
amount given is the per-affected-unit padding required. (In the case of insert
character, the factor is still the number of lines affected. This is always one
unless the texminal has xenl and the software uses it.y When a “*’ is specified,
it is sometimes useful to give a delay of the form *3.5° w specify a delay per
unit to tenths of milliseconds, {Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued capabilities for
easy encoding of characters there, Both \E and ‘e map to an ESCAPE character,
°x maps to a control-x for any appropriate x, and the sequences \n \t \r \t \b \f\s
give a newline, linefeed, return, tab, backspace, formfeed, and space. Other
escapes include V" for °, W\ for \, \, for comma, \; for ;, and \0 for null. (0 will
produce 1200, which does not terminate a string but behaves as a null character
on most terminals.) Finally, characters may be given as three octal digits after a
\

Sometimes individual capabilities must be commented out. To do this, put a
period before the capability name, For example, see the second Ind in the
example above.,

September 24, 1987 Page 8

TERMINFO(4) TERMINFO(4)

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The moest effective
way to prepare a terminal description is by imitating the description of a similar
terminal in terminfo and o boild up a description gradually, using partial
descriptions with vi to check that they are correct, Be aware that a very unysyal
terminal may expose deficiencies in the ability of the terminfo file to describe it
of bugs in vi. To easily test a new terminal description you can set the environ-
ment variable TERMINFO to a pathname of a directory containing the com-
piled description you are working on and programs will look there rather than in
tusrilibiterminfo. To get the padding for insert line right (if the terminal
manufacturer did not document it} a severe test is to edit /etc/passwd at 9600
baud, delete 16 or so lines from the middle of the screen, then hit the ‘u’ key
several times quickly, If the terminal messes up, more padding is usually
needed. A similar test can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols
numeric capability, If the terminal is a CRT, then the number of lines on the
screen is given by the lines capability. If the terminal wraps around 10 the
beginning of the next line when it reaches the right margin, then it should have
the am capability. If the terminal can clear its screen, leaving the cursor in the
home position, then this is given by the clear string capability, If the terminal
overstrikes (rather than clearing a position when a character is strack over) then
it should have the os capability. If the terminal is a printing terminal, with no
soft copy unit, give it both he and os. (o0s applies to storage scope terminals,
such as TEKTRONIX 4010 series, as well as hard copy and APL terminals.) If
there is a code o move the cursor o the left edge of the current row, give this
as er. (Normally this will be carriage return, controt M.) If there is a code w
produce an andible signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such as backspace)
that capability should be given as cubl. Similarly, codes to move to the right,
up, and down should be given as cufl, cunl, and cndi. These local cursor
motions should not alter the text they pass over, for example, you would not
normally use ‘cufl=’ becanse the space would erase the character moved over,
A very important point here is that the local cursor motions encoded in terminfo
are undefined at the left and top edges of a CRT terminal. Programs should
never attempt to backspace around the left edge, unless bw is given, and never
attempt t0 go up locally off the top. In order to scroll text up, a program will go

Page 9 September 24, 1987

TERMINFO(4) TERMINFO({4)

t0 the botiom left corner of the screen and send the ind (index) string.

Te scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined when
not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which have
the same semantics as ind and ri except that they take one parameter, and scroll
that many lines. They are also undefined except at the appropriate edge of the
SCIeen.

The am capability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cufl from the last
column. The only local motion which is defined from the left edge is if bw is
given, then a cubl from the left edge will move to the right edge of the previous
row. If bw is not given, the effect is undefined. This is useful for drawing a
box around the edge of the screen, for example, If the terminal has switch
selectable automatic margins, the terminfo file usually assumes that this is on;
ie., am. If the terminal has a command which moves to the first column of the
next line, that command can be given as nel (newline), It does not matter if the
command clears the remainder of the cutrent line, so if the terminal has no er or
if it may still be possible to craft a working nel out of one or both of themn,

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus
the model 33 teletype is described as
33tty33 |y | model 33 teletype,
bel="(, cols#?2, cr="M, cudl="], he, ind="], o3,
while the Lear Siegler ADM-3 is described as
adm3 |3 | 1si adm3,
am, bel="G, clearw"Z, cols#80, cr="M, cubl="H, cud1="J,
inde"], lines#24,
Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are
described by a parameterized string capability, with pring(35) like escapes %x
in it. For example, to address the cursor, the cup capability is given, using two
patameters: the row and column to address to. (Rows and columns are num-
bered from zero and refer to the physical screen visible to the user, not to any
unseen memory.) If the terminal has memory relative cursor addressing, that
can be indicated by mreup.

September 24, 1987 Page 10

TERMINFOQ(4) TERMINFO(4)

The parameter mechanism uses a stack and special % codes o manipulate it.
Typically a sequence will push one of the parameters onte the stack and then
print it in some format. Often more complex operations are necessary.

The % encodings have the following meanings:

%% outputs "%’

%d print pop() as in printf
%2d print pop() like %2d
B3d print pop() like %3d
%024

%03d as in printf

%C print pop() gives %c

%S print pop() gives %5
%p[1-9] push ith parm

%Pla-z] set variable {a-z] to pop()
%g[a-z) get variable {a-z] and push it
%'c’ char constant ¢

%f{an} integer constant nn

%+ %- %+ %/ B
arithmetic (%m. is mod): push(pop() op pop(})

Bk %] %" bit operations: push{pop(} op pop(})
%=%> %< logical operations: push{pop() op pop())
%! %" unary operations push{op pop(})
®i add 1 to first two parms {for ANSI terminals)
%7 expr %t thenpart %e elsepart %;
if-then-else, %¢ clscpart is optional.
else-if's are possible ala Algol 63:

%7 ¢ %th ‘:Fve cz%l.bz %e% %tbs e 7 %tb4 %e %;
c; are conditions, bi are bodies,

Binary operations are in postfix form with the operands in the usval order. That
is, to get x-5 one would use "%gx%{5}%-".

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent
\E&al2c03Y padded for 6 milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column are printed as two digits.
Thus its cop capability is cop=6\E& %p2%2dc%pl%2dY.

Page 11 September 24, 1987

TERMINFO(4) TERMINFO(4)

The Microterm ACT-IV needs the current row and column sent preceded by a
*T, with the row and column simply encoded in binary, cup="T%pl%cH%p2%C.
Terminals which use %¢ need to be able to backspace the cursor (cub1), and to
move the cursor up one Line on the screen (cuul). This is necessary becavse it
is not always safe to transmit \n "D and ‘r, as the system may change or discard
them, (The library routines dealing with terminfo set tty modes so that tabs are
never expanded, so \t is safe to send. This turng out to be essential for the Ann
Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus cup=\E=%pl%' '%+%c%p2%’ ’%+%c. After sending
“E=', this pushes the first parameter, pushes the ASCII value for a space (32),
adds them (pushing the sum on the stack in place of the two previous values)
and outputs that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be
given as single parameter capabilities hpa (horizontal position absolute) and
vpa (vertical position absolute). Sometimes these are shorter than the more
general two parameter sequence {as with the hp2645) and can be used in prefer-
ence 0 cup . If there are parameterized local motions (e.g., move # spaces to
the right) these can be given as cud, cub, cuf, and cun with a single parameter
indicating how many spaces to move. These are prisarily useful if the terminal
does not have cup, such as the TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left comer of
screen) then this can be given as home; similarly a fast way of getting to the
lower left-hand comer can be given as Il; this may involve going up with cunl
from the home position, but a program should never do this itself (unless Il
does) because it can make no assumption about the effect of moving up from
the home position, Note that the home position is the same as addressing to
(0,0): to the top left comer of the screen, not of memory. (Thus, the \EH
sequence on HP terminals cannot be used for home.)

Area Clears

If the terminal can clear from the current position to the end of the line, leaving
the cursor where it is, this should be given as el. If the terminal can clear from
the current position to the end of the display, then this should be given as ed.
Ed is only defined from the first column of a line. (Thus, it can be simulated by
a request to delete a large number of lines, if a true ed is not available.)

September 24, 1987 Page 12

TERMINFO(4) TERMINFO(4)

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is,
this should be given as ill; this is done only from the first position of a line.
The cursor must then appear on the newly blank line, If the terminal can delete
the line which the cursor is on, then this should be given as dIL; this is done
only from the first position on the line to be deleted. Versions of ill and dI1
which take a single parameter and insert or delete that many lines can be given
as il and dl. If the terminal has a settable scrolling region (like the vt100} the
command to set this can be described with the ¢sr capability, which takes two
parameters: the top and bottom lines of the scrolling region. The cursor posi-
tion is, alas, undefined after using this command. It is possible to get the effect
of insert or delete line using this command — the s¢ and re (save and restore
cursor) commands are also useful. Inserting lines at the top or bottom of the
screen can also be done wsing ri or ind on many terminals without a true
insert/delete line, and is often faster even on terminals with those features.

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the parameterized string wind, The four
parameters are the starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should
be given; if display memery can be retained below, then db should be given.
These indicate that deleting a line or scrolling may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines,

1nsert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete
character which can be described using ferminfo. The most common
insert/delete character operations affect only the characters on the current line
and shift characters off the end of the line rigidly. Other terminals, such as the
Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or expanded to two
untyped blanks. You can determine the kind of terminal you have by clearing
the screen and then typing text separated by cursor motions. Type abc def
using local cursor motions (not spaces) between the abe and the def. Then posi-
tion the cursor before the abc and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidiy and characters to fall off the
end, then your ferminal does not distinguish between blanks and untyped

Page 13 September 24, 1987

TERMINFO(4) TERMINFO(4)

positions. If the abe shifts over to the def which then move together around the
end of the current line and onto the next as you insert, you have the second type
of terminal, and should give the capability Im, which stands for insert null.
While these are two logically separate attributes (one line vs. multiline insert
mode, and special teatment of untyped spaces) we have seen ne terminals
whose insert mode cannot be described with the single attribute,

Terminfo can describe both terminals which have an insert mode, and terminals
which send a simple sequence to open a blank position on the current line.
Give as smir the sequence to get into insert mode. Give as rmir the sequence
10 leave insert mode. Now give as ichl any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a true insert
mode will not give ichl; terminals which send a sequence to open a screen
position should give it here. (If your terminal has beth, insert mode is ysually
preferable 1o ichl. Do not give both unless the terminal actually requires both
to be used in combination.) If post insert padding is needed, give this as a
number of milliseconds in ip (a siring option). Any other sequence which may
need to be sent after an insert of a single character may also be given in ip. If
your terminal needs both to be placed into an ‘insert mode’ and a special code
to precede each inserted character, then both smir/rmir and ichl can be given,
and both will be used. The ich capability, with one parameter, #, will repeat the
effects of ichl » times.

It is occasionally necessary to move around while in insert mode to delete char-
acters on the same line (e.g., if there is a tab after the insertion position). If
your terminal allows motion while in insert mode you can give the capability
mir to speed up inserting in this case. Omitting mir will affect only speed.
Some terminals (notably Datamedia’s) must not have mir because of the way
their insert mode works,

Finally, you can specify dchl to delete a single character, dch with one param-
eter, n, to delete n characters, and delete mode by giving smde and rmdc to
enter and exit delete mode (any mode the terminal needs to be placed in for
dchl to work).

A command to erase a characters (equivalent t0 outputting n blanks without
moving the cursor) can be given as ech with one parameter,

Highlighting, Underlining, and Visible Bells

If your terminal has cne or more kinds of display attributes, these can be
represented in a number of different ways. You should choose one display
form as standout mode, representing a good, high contrast, easy-on-the-eyes,

September 24, 1987 Page 14

TERMINFQ(4) TERMINFO{4)

format for highlighting error messages and other attention getters. (If you have
a choice, reverse video plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as smso and rmso, respec-
tively. If the code to change into or out of standout mode leaves one or even
two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then xmc
should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul
respectively, If the terminal has a code to underline the current character and
move the cursor one space to the right, such as the Microterm Mime, this can be
given as ue.

Other capabilities 10 enter varions highlighting modes include blink (blinking)
bold (bold or extra bright} dim {dim cr half-bright) invis (blanking or invisible
text} prot (protected) rev (reverse video) sgr0 (tum off alf attribute modes)
smacs (enter alternate character set mode) and rmacs (exit alternate character
set mode). Turning on any of these modes singly may or may not turn off other
modes.

If there is a sequence to set arbirary combinations of modes, this should be
given as sgr (set attributes), taking 9 parameters, Each parameter is either 0 or
1, as the corresponding atiribute is on or off. The 9 parameters are, in order:
standout, underline, reverse, blink, dim, bold, blank, protect, alternate character
set. Not all modes need be supported by sgr, only those for which correspond-
ing separate attribute commands exist.

Terminals with the “*magic cookie™ glitch {xmc) deposit special *‘cookies”
when they receive mode-setting sequences, which affect the display algorithm
rather than having exira bits for each character, Some terminals, such as the HP
2621, automatically leave standout mode when they move to a new line or the
cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline, unless the msgr capability,
asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a
bell replacement) then this can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to
find block or blinking underline) give this sequence as cvvis. If there is a way
to make the cursor completely invisible, give that as civis. The capability
cnorm should be given which undoes the effects of both of these modes.

Page 15 September 24, 1987

TERMINFOQ(4) TERMINFO(4)

If the terminal needs to be in a special mode when running a program that uses
these capabilities, the codes to entex and exit this mode can be given as smeup
and rmcup. This arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only memory relative cur-
sor addressing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to work properly.
This iz also used for the TEKTRONIX 4025, where smenp sets the command
character to be the one used by terminfo,

If your terminal correctly generates underlined characters (with no special
codes needed) even though it does not overstrike, then you should give the
capability ul. If overstrikes are erasable with a blank, then this should be indi-
cated by giving eo.

Keypad

If the terminal has a keypad ﬂmms:mtscod&s when the keys are pressed, this
informnation can be given, Note that it is not possible to handle terminals where
the keypad only works in local (this applies, for example, to the unshifted HP
2621 keys). If the keypad can be set to transmit or not transmit, give these
codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit.
The codes sent by the left arrow, right acrow, up arrow, down arrow, and home
keys can be given as kcubl, keufl, kcuul, keudl, and khome respectively, If
there are function keys such as 0, f1, ..., f10, the codes they send can be given
as kf0, kf1, ..., kf10. If these keys have labels other than the default fO through
10, the labels can be given as 1f, Ifl, ..., If10. The codes transmitted by cer-
tain other special keys can be given: kll (home down), kbs (backspace), kthe
{clear all tabs), ketab (clear the tab stop in this column), kelr (clear screen of
erase key), kdchl (delete character), kdll (delete ling), krmir (exit insert
mode), kel (clear to end of line), ked (clear to end of screen), kichl {insert
character or enter insert mode), kill (insert line), kmp (next page), kpp (previ-
ous page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab
siop in this column). In addition, if the keypad has a 3 by 3 array of keys
including the four arrow keys, the other five keys can be given as kal, ka3,
kb2, kcl, and ke3. These keys are useful when the effects of a 3 by 3 direc-
tional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the comumand to advance to the next tab stop
can be given as ht (usually control I). A “‘backtab’’ command which moves
leftward to the next tab stop can be given as cht. By convention, if the teletype

September 24, 1987 Page 16

TERMINFO(4) TERMINFO(4)

modes indicate that tabs are being expanded by the computer rather than being
sent to the terminal, programs should not use ht or cbt even if they are present,
since the user may not have the tab stops properly set. If the terminal has
hardware tabs which are initially set every » spaces when the terminal is
powered up, the numeric parameter it is given, showing the number of spaces
the tabs are set to. This is normally used by the fset command to determine
whether to set the mode for hardware tab expansion, and whether to set the tab
stops. If the terminal has tab stops that can be saved in nonvolatile memory, the
terminfo description can assume that they are properly set.

Orher capabilities include isl, is2, and is3, initialization strings for the terminal,
iprog, the path name of a program to be run to initialize the texminal, and i, the
name of a file containing long initialization strings. These strings are expected
to set the terminal into modes consistent with the rest of the terminfo descrip-
tion. They are normally sent to the terminal, by the tsef program, each time the
user logs in. They will be printed in the following order: isl; is2; setting tabs
using the and his; if; running the program iprog; and finally is3. Most initiali-
zation is done with is2, Special terminal modes can be set up without duplicat-
ing strings by putting the common sequences in is2 and special cases in is1 and
is3. A pair of sequences that does a hander reset from a totally unknown state
can be analogously given as rsl, rs2, rf, and rs3, analogous to is2 and if.
These strings are output by the reser program, which is used when the terminal
gets into a wedged state. Commands are ncemally placed in rs2 and rf only if
they produce annoying effects on the screen and are not necessary when log-
ging in, For example, the command to set the vt100 into 80-column mode
would normally be part of is2, but it causes an annoying glitch of the screen and
is not normally needed since the terminal is usually already in 80 column mode.
If there are commands to set and clear tab stops, they can be given as the (clear
all tab stops) and hts (set a tab stop in the current column of every row}. If a
more complex sequence is needed 10 set the tabs than can be described by this,
the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily
needed by hard copy terminals, and are used by the fset program to set teletype
modes appropriately. Delays embedded in the capabilities cr, ind, eubl, f, and
tab will cause the appropriate delay bits to be set in the iteletype driver. If pb
{padding baud rate) is given, these values can be ignored at baud rates below
the value of ph.

Page 17 September 24, 1987

TERMINFQ{(4) TERMINFO(4)

Miscellaneous

If the terminal requires other than a null {zero) character as a pad, then this can
‘be given as pad. Only the first character of the pad string is used.

If the terminal has an extra ““status line’’ that is not normally used by software,
this fact can be indicated. If the status line is viewed as an extra line below the
bottom line, into which one can cursor address normally (such as the Heathkit
h19’s 25th line, or the 24th line of a vt100 which is set to a 23-line scrolling
region), the capability hs should be given. Special strings to go to the begin-
ning of the status line and to return from the status line can be given as tsl and
f5l. (fsl must leave the cursor position in the same place it was before tsl, If
necessary, the s¢ and re strings can be included in tsl and fsl to get this effect.)
The parameter ts] takes one patameter, which is the column number of the
status line the cursor is to be moved to. If escape sequences and other special
commands, such as tab, work while in the statos line, the flag eslok can be
given. A string which tumns off the status line (or otherwise erases its contents)
should be given as dsl. If the terminal has commands 10 save and restore the
position of the cursor, give them as sc and rc, The status line is normally
assumed to be the same width as the rest of the screen, e.g., cols. If the status
tine is a different width (possibly because the terminal does not allow an entire
line to be loaded) the width, in columns, can be indicated with the numeric
patametes wsl,

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts
and subscripts on hardcopy terminals. If a hardcopy terminal can eject to the
next page (form feed), give this as fT (usually control L),

If there is a command to repeat a given character a given number of times (o
save time transmitting a large number of identical characters) this can be indi-
cated with the parameterized string rep. The first parameter is the character to
be repeated and the second is the number of times to repeat it. Thus,
tparm{repeat_char, 'x’, 10) is the same as *XxXXxXxXAxxXX’,

If the terminal has a settable command character, such as the TEKTRONIX
4025, this can be indicated with cmdch. A prototype command character is
chosen which is used in all capabilities. This character is given in the emdch
capability to identify it. The following convention is supported on some UNIX
systems: The environment is 10 be searched for a CC variable, and if found, all
occurrences of the prototype character are replaced with the character in the
environment variable,

September 24, 1987 Page 18

TERMINFO(4) TERMINFO(4)

Terminal descriptions that do not represent a specific kind of known terminal,
such as switch, dialup, parch, and nerwork, should include the gn (generic)
capability so that programs can complain that they do not know how to talk to
the terminal. (This capability does not apply to virtual terminal descriptions for
which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding
information should still be included so that routines can make better decisions
about costs, but actual pad characters will not be transmitted.

If the terminal has a ““meta key”’ which acts as a shift key, setting the 8th bit of
any character transmitted, this fact can be indicated with km, Otherwise,
software will assume that the 8th bit is parity and it will usvally be cleared. If
strings exist to tumn this ‘*meta mode’” on and off, they can be given as smm
and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with lm. A value of Im#() indi-
cates that the number of lines is not fixed, but that there is still more memory
than fits on the screen.

"I the terminal is one of those supported by the UNIX virtual terminal protocol,
the terminal number can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal
can be given as me0: print the contents of the screen, med: turn off the printer,
and mcS: tom on the printer. When the printer is on, all text sent to the termi-
nal will be sent to the printer. It is undefined whether the text is also displayed
on the terminal screen when the printer is on. A variation mcSp takes one
parameter, and leaves the printer on for as many characters as the value of the
parameter, then turng the printer off. The parameter should not exceed 255. All
text, including me4, is transparently passed to the printer while an mcSp is in
effect.

Strings to program function keys can be given as pfkey, pfloc, and pfx. Each
of these strings takes two parameters: the function key number to program
{from 0 10 10) and the string to program it with. Function key numbers out of
this range may program undefined keys in a terminal dependent manner, The
difference between the capabilities is that pfkey causes pressing the given key
to be the same as the user typing the given string; pfloc causes the string to be
executed by the terminal in local; and pfx causes the string to be transmitted to
the computer.

Page 19 September 24, 1987

TERMINFQ(4) : TERMINFO(4)

Glitches and Braindamage

Hazeltine terminals, which do not allow *~ characters to be displayed should
indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the
Concept and v¢100, should indicate xenl,

If el is required to get rid of standout (instead of merely writing normal text on
top of it), xhp should be given,

Teleray terminals, where tabs turn all characters moved over to blanks, should
indicate xt (destructive tabs). This glitch is also taken to mean that it is not pos-
sible to position the cursor on top of a **magic cockie”, that to erase standout
mode it is instead necessary to use delete and insert line,

The Bechive Superbee, which is unable to correctly transmit the escape or con-
trol C characters, has xsb, indicating that the f1 key is used for escape and f2
for control C. (Only certain Superbees have this problem, depending on the
ROM.)

Other specific terminal problems may be comrected by adding more capabilities
of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with the
name of the similar terminal, The capabilities given before use override those
in the terminal type invoked by use. A capability can be cancelled by placing
xx(@ to the left of the capability definition, where xx is the capability. For
example, the entty
2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence
does not turn on the function key labels when in visual mode. This is useful for
different modes for a terminal, or for different user preferences.

FILES
fustr/lib/terminfo/ 2/* files containing terminal descriptiong

SEE ALSO
curses(3X), printf(3S), term(S).
tic{1M) in the System Administrator Reference Manual.

September 24, 1987 Page 20

TTYTYPE{4) UniSoft TTYTYPE(4)

NAME
ttytype — data base of terminal types by port

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the kind of
terminal that is attached to it. There is one line per port, containing the
terminal kind (as a name listed in termcap(5)}, a space, and the name of
the tty, minus /dev/.

This information is read by rser(1) and by fogin(l) to initialize the TERM
environment variable at login time.

EXAMPLE
dw console
3a tty0
hi9 ttyl
h19 tty2
du ttyd(
FILES
fetc/ ttytype
SEE ALSO

tset(1}, login{l).

UTMP(4) UTMF (4)

NAME

utmp, wtmp — utmp and wtmp entry formats

SYNOPSIS

#lnclude <sys/types.h>
##include <utmp.h>>

DESCRIPTION

FILES

These files, which hold user and accounting information for such com-
mands as who(1), write(1), and fogin{1), have the following structure as
defined by <utmp.h>>:

#deline UTMIEFILE e/ uimp”
#deline WIMP_LILI “fetc/wimg”
#deline ut_name ui_user

sirucl ulmp |

char ut_userl®]; £+ User login name »/
char ul_id[4}; £+ feletiniliab id (usually line #) «f
vhar ui_line|$2); f+ device name {console, Inxx) »/
short uL_pids 1+ process id </
short ul_lype; £+ type of enlry +/
struel exil_siatus |

short e_termination; /v Process termination stutus +f

short c_exil; F+ Process exil status «/
| ut_exit; 7+ The exil sttus of a process

» marked as DEAL_PROCESS. of

tme_t wi_time; F+ lime entry was made «f
whar ut_host|i6]; {+ hosl name if remote «/

f+ Delinitions For ui_type «/
#deline MY 0
#deline RUN_IAL 1
#deline BOwW)_LIMY. 2
#define OLL_T18L 3
Hdefine KEW_TIMI 4
#define INIT_PHICLESS 5 #+ Process spawned by "init" +/
#define LOGIN_PROCESS & £+ A "gerty” provess waiting Tor login +/
#dchine LSER_PROULYS 7 7+ A user process «/

#define DEAI_PRIKCESS 8

#define ACCOUNTING 9

#deling LTMANTYIM ACCUUNTING Fv Largest fegal value of ul_type «f

Fe Special strings of lormuts used in the "u_ling” lield when +f
£ accounting For something other than a provess, «/

#+ No sicing for the ul_line fiekd can be mere than | chars + /
£+ aNULL in lenglth, «f

#deline RUNLYVL MSG "run—level %™
#deline BOUT MM "system boot”
define (111 _MSG "ol lime”
#deline %UMI_MSG "Rew lime”

Jusr/include/uimp.h

UTMP({4) UTMP{4)

fetc/utmp
fetc/wimp

SEE ALSQ
login{1), who(1), write(1}, getut{3C).

-

INTRO(5) INTRO(5)

NAME
intro = introduction to miscellany

DESCRIPTION
This section describes miscelianeous facilities such as macro packages, char-
acter set tables, eic.

INTRG (5N) UniSoft INTRO(5N)

NAME

networking — introduction to networking facilities

SYNOPSIS

#include <sys/socket.h>
#inclode < net/rowte.h>
#include <net/If.h>

DESCRIPTION

This section briefly describes the networking facilities available in the sys-
tem. Documentation in this part of section 5 is broken up into three areas:
protocol-families, protocols, and network interfaces. Entries describing a
protocol-family are marked **5F*', while entries describing protocol use are
marked “3P”, Hardware support for network interfaces are found among
the standard **5°° entries.

All network protocols are associated with a specific prowocol-family. A
protocel-family provides basic services to the protocol implementation to
allow it to function within a specific network environment. These services
may include packet fragmentation and reassembly, routing, addressing, and
basic fransport. A protocol-family may support multiple methods of
addressing, though the current protocol implementations do not. A
protocol-family is normally comprised of a number of protocols, one per
socket(2N) type. 1t is not required that a protocol-family suppart all socket
types. A protocol-family may contain multiple protocols supporting the
same socket abstraction.

A protocol supports one of the socket abstractions detailed in socker(2N).
A specific protocol may be accessed either by creating a socket of the
appropriate type and protocol-family, or by requesting the protocol explicitly
when creating a socket. Protocols normally accept only one type of address
format, usually determined by the addressing structure inherent in the
design of the protocol-family/network architecture. Ceriain semantics of
the basic socket abstractions are protocol specific. All protocols are
expected to support the basic model for their particular socket type, but
may, in addition, provide non-standard facilities or extensions to a mechan-
ism. For example, a protocol supporting the SOCK_STREAM abstraction
may allow more than one byte of out-of-band data to be transmitted per
out-of-band message.

A network interface is similar to a device interface, Network interfaces
comprise the lowest layer of the networking subsystem, interacting with the
actual transport hardware. An interface may support one or more protocol
families, and/or address formaits.

PROTOCOLS

The system currently supports only the DARPA Internet protocols fully.
Raw socket interfaces are provided to IP protocol layer of the DARPA
Internet, to the IMP link layer (1822), and to Xerox PUP-I layer operating
on top of 3Mb/s Ethernet interfaces. Consult the appropriate manual pages
in this section for more information regarding the support for each protocol
family.

ADDRESSING

Associated wilh each protocol family is an address format. The following
address formats are used by the system:

R

INTRQ (5N) UniSolt INTRO (5N}

#deline AF_UNIX
#deline AF_INET
#define AF_IMPLINK
#dcline AF_TUP

#* locul fo host (pipes, portuls) */
% internetwork: LGP, TCP, e, */
f* arpanet imp addresses "

#* pup prolocols: &.4. BSP */

£t bt

ROUTING

The network facilities provided limited packet routing. A simple set of data
struclures comprise a “‘routing table” used in selecting the appropriate net-
work interface when transmitting packets. This table contains a single entry
for each route to a specific network or host. A user process, the routing
daemon, maintains this data base with the aid of two socket specific jocti(2}
commands, SIGCADDRT and SIOCDELRT. The commands allow the
addition and deletion of a single routing table entry, respectively. Routing
table manipulations may only be carried out by super-user.

A rouling table entry has the following form, as defined in < werfroute.h>

struct rientry |

u_long ri_hush;

steuet sockaddr ri_dst;
struct sockaddr ri_gateway,
shory ri_[lags;

shory ri_refent;

u_long rl_uses

strucl imel *r_ilp,

with rt_flags defined from,

#deline RTF_UP Ox1 f* route usuble */
#deline RTI_GATEWAY 0x2 £* destination is a galeway */
#dcfine RTF_HOST Und #* host entry |nel otherwise) */

Routing lable entries come in three flavors: for a specific host, for all hosts
on a specific network, for any destination not matched by entries of the
first two types {a wildcard route). When the system is booted, each network
interface auwtoconfigured installs a routing table entry when il wishes to
have packets sent through it. Mormally the interface specifies the route
through it is a “‘direct”” connection to the destination host or network. If
the route is dicect, the transport layer of a protocol family usually requests
the packel be sent to the same host specified in the packet. Otherwise, the
interface may be requested to address the packet 1o an enltity different from
the eventual recipient {i.e. the packet is forwarded).

Rouling table entries installed by a user process may nol specify the hash,
reference count, wse, or interface fields: these are filled in by the routing
routines. If a route is in use when it is deleted (#_refiwr is non-zero), the
resources associated with it will not be reciaimed wntil further references to
it are released,

The rouwting code returns EEXIST if requested to duplicale an existing
entry, ESRCH if requesied to delete a non-existant entry, or ENOBUFS if
insufficient resources were available 10 install a new route.

User processes read the rouling tables through the AdvvAmem device,

INTRO{5N) UniSoft INTRO{5N)

The rt_use field contains the number of packets sent along the route. This
value is used to select among multiple routes to the same destination.
When multiple routes to the same destinalion exist, the leasi used route is
selected.

A wildcard routing entry is specified with a zero destination address value.
Wildcard routes are wsed only when the system fails to find a route to the
destination host and network. The combination of wildcard routes and
routing redirects can provide an economical mechanism for routing traffic.

INTERFACES
Each network interface in a system corresponds to a path through which
messages may be sent and received. A network interface usually has a
hardware device associated with it, though certain interfaces such as the
loopback interface, fo(5), do nol.

At boot time each interface which has underlying hardware support makes
itself known {o the system during the autoconfiguration process. Once the
interface has acquired its address it is expected to install a routing table
entry so thal messages may be routed through it. Most interfaces require
some part of their address specified with an SIOQCSIFADDR ioctl before
they will allow traffic to flow through them. On interlaces where the
network-link layer address mapping is static, enly the network number is
taken from the ioctl; the remainder is found in a hardware specific manner.
On interfaces which provide dynamic network-link layer address mapping
facilities {e.g. 10Mb/s Ethernets), the entire address specified in the ioctl is
used.

The Ffollowing iocif calls may be used to manipulate network interfaces.
Unless specified otherwise, the request takes an ifrequest structure as ils
parameter. This structure has the form

struet ifreq |
char ifr_namecll6]; £* name of interface e "ouli™y 1/
union {
shrugt sockaddr ilru_adelr;
siruct sockuddr ifru_dstaddr;
short ilru_Nags;
| ilr_ifru;
#deline ifr_addr ilr_tfrwifru_addr /7 address */
#deline ilr_dstadur ilr_ifru.ifru_dsiaddr /7 olher end ol p-to-p link */

#deline ifr_Mags ilr_ifruilro_Nags 7% Nags */

H

SIOCSIFADDR
Set interface address. Following the address assignment, the *‘ini-
tialization'" routine for the interface is called.

SIOCGIFADDR
Get interface address.

SIOCSIFDSTADDR

Set point to point address for interface.
SIOCGIFDSTADDR

(et point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any

.3-

INTRO (5N) UniSoft INTRO (5N}

processes currently routing packets through the interface are
notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an {feon/f struc-
ture (see below) as a wvalue-result parameter, The it _len ficld
should be initially set to the size of the buffer pointed to by {fe_buf.

On return it will contain the length, in bytes, of the configuration
list,

'.t.

* Structure used in SIGCGIFCONF request.
* Used te relrieve interface conligucation

* for machine (useful for programs which

* musl know all neiworks accessible}.

i

siruel ifconf |
im ilfc_ten; #* size of associated buller */
unien |

cadde_t ifcu_buly
siruct ifreq *ifcu_req;
| ifc_ifeu;

#define ifc_bul e jfow.ifcu_buf /* buffer address */

#Hdefine ilc_req ifc_ifcw.ifcu_req 7* array of structures reiurned */
1B

SEE ALSO
socket{2N), ioctl(2), routed(8N)

ASCHA{5)

NAME

ascii — map of ASCII character set

SYNOPSIS

cat /usr/pub/ascii

DESCRIFTION
Ascif is a map of the ASCI] character sei, giving both octal and hexadecimal

equivalents of each character, to be printed as needed. It contains:
stx 003

1000 nul 1001
[010 bs (D11
1020 d¢1e]021
|30 can{031
1040 sp (041
1050 ¢ {051
|060 0 1061
1070 8 {071
lwo@ |[101
110 H 111
120 P |121
[130 X §131
[140 * [141
[150 b }151
[160 p 161
170 5 171
| 00 oull QI
| 08 bs | 09
| 10 diel 11
i 18 can] 19
b 26 sp | 21
| 28 (| 29
| 300 | 3
I 388 | 39
40 @ | 41
P48 H | 49
| 50P | 51
i 58X | 59
| 80 + | 61
] 68 b | 69
| 70p | 71
] 78 x | 79
FILES
fusr/pubtascii

soh 002
hi |0t2
del 022
em 1032
jo42
1052
062

102
112
|122
|132
1142

162
172

o e g e AT e e WD e

o w
-0
=2
= o
Bk

dcl| 12

1]
2
—
-

O e W el D e e D e e am
w
(X7

la72 :

|152 j

Mo e] D e B e

lo13

de2|023
sub|033

lo43
1053
|063
1073
{103
113
[123
133
{143
[153

#
-+
3

w

etx |004
vt |014
de3 1024
esc | 034

|044
1054
| 064

074
| 104
L4

FL34
144
[154
| 64
[174

etx |
vt |
decd |
esc |

v N =R

C
K
s |124
[
C
k
5
{

04
Oc
14
te
24
2c
34
¢
44
4c
54
Sc
64
6c
74
Tc

———A DA B

ack J007
so |017
syn|027
rs 037
& 047
1057
|o67
1077
[107
{117
[127
1137
[147
|157
[167
[177

re Z Voo

P e

ack |
so |
syn|
rs |
&

v ZmY e

|
|
{
|
|
|
|
|
i
I
[

LR = B

EO0 =~

ASCII(5}

bel |
si |
eth]

£ oml
o %

~

ARP (5P} UniSoft ARP (5P)

arp — Address Resolution Protocol

DESCRIPTION

ARP is a protacol used to dynamically map between DARFPA Internet and
10Mb/s Ethernel addresses on a local area network. It is used by all the
10Mb/s Ethernet interface drivers and is not directly accessible to users.

ARP caches lnternet-Elthernet address mappings. When an interface
requests a mapping for an address not in the cache, ARP queues the mes-
sage which requires the mapping and broadcasts a message on the associ-
ated network requesling the address mapping. If a response is provided,
the new mapping is cached and any pending messages are transmitted.
ARP itself is not Internet or Ethernet specific; this implementation, how-
ever, is. ARP will queus at most one packet while waiting for a mapping
request to be responded lo; only the most recently ““transmitted’” packet is
kept.

ARP watches passively for hosts impersonating the local host (i.e. a host

which responds to an ARP mapping request for the local host’s address)
and will, optionally, periodically probe a neiwork looking for impostors.

DIAGNOSTICS

duplicate TP address!! sent from ethernet address: %x %x %x %x %x %x .
ARP has discovered another host on the local network which responds to
mapping requesis for its own Internet address.

ENVIRON({S} UniSoft ENVIRON {5}

NAME

environ — user environment
SYNOPSIS

extern char **environ;
DESCRIPTION

An array of strings called the ’environment’ is made available by exec(2)
when a process begins. By convention these strings have the form
'name= value'. The following names are used by various commands:

PATH The sequence of directory prefixes that sh, time, nice(l), ete.,
apply in searching for a file known by an incomplete path name.
The prefixes are separated by .
Login(1) sets ;
PATH=:/bin;/ust/bin.

HOME A user’s login directory, set by fogin(1) from the password file
passwi(4)
TERM The kind of terminal for which output is to be prepared. This

information is used by commands, such as nmrafl. more, or i,
which may exploit special terminal capabilities. See Archernmncap
or (rermeap(5)) for a list of terminal types.

SHELL The file name of the users login shell.

TERMCAP The string describing the terminal in TERM, or the name of the
termcap file, see rermeap (5).

EXINIT A startup list of commands read by ex(1), edir(1), and vi(1),
LOGNAME The login name of the user.

TZ Time zone information. The format is xxx»#zzz where xxx is
standard local time zome abbreviation, # is the difference is
hours from GMT, and zzz is the abbreviation for the daylight-
saving local time zone, if any, for example, ESTSEDT.

Further names may be placed in the environment by the export command

and ‘name=value’ arguments in sk(l), or by the serenv command if you

use csir(1}. Arguments may also be placed in the environment at the point
of an exec(2). It is unwise to conflict with certain s/(1) variables that are
frequently exported by ".profile® files: MAIL, PS1, PS2, IFS,

SEE ALSO
esh(1), ex(1), login(1), sh(1), exec(2), system{3S), termcap(5), tty(7),

Page | July 23, 1985

EQNCHAR (5} EQNCHAR (5)

NAME

egnchar — special character definitions for eqn and neqn
SYNOPSIS

eqn /usr/pub/eqnchar [files] | troff [options]

negn /usr/pub/eqnchar [files] | nroff [options]

DESCRIPTION
Eqnchar contains troff and nroff character definitions for constructing char-
acters that are not available on the Wang Laboratories, Inc. C/A/T photo-
typesetter. These definitions are primarily intended for use with egn and
negn;, eqnchar contains definitions for the following characters:

ciplus @ Il fl square O
citimes @ langle { circle O
wig - rangle) bipt m|
—wig = hbar R bullet L]
>wig 2 ppd L prop =
< wig = < = e empty 4
-yig = < =2 member €
star * | < € nomem
bigstar % |> *+ cup v
=dot = ang L cap n
orsien V rang L incl c
andsign N 2dot subset c
=del a thf supset D
oppA v quarter % Isubset C
oppE 3 Jquarter % Isupset D
angstrom A degree ° serL scrl,
== — -—— =l
FILES
fusr/pub/eqnchar
SEE ALSO

eqn(l), nroff(1), woff{1).

FCNTL (5} FCNTL {5}

NAME
fentl — file control options

SYNOPSIS
#include < fentl.h>

DESCRIFTION
The fent{2) function provides for control over open files. The include file
describes reguests and arguments to fort and open(2}),

#+ Flag values accessible to open(2) and fomif(2) «f
7+ {The first three can only be set by oper) o/
#define O_RDONLY 0

#define © WRONLY |

#define 0 RDWR 2

#define O_NDELAY 04 /» Non-blecking 1/0 +f

#define O_APPEND Q10 /+ append (writes guaranteed al the end) »/

/» Flag values accessible only to open(2) of

#define O_CREAT 00400 /+ open with file create {uses third open arg) «/
#define O_TRUNC 01000 /+ open with trencation «/

f#define O_EXCL 02000 /+ exchusive open */

/+ fum(2) requests «f
#define F_DUPFD
#define F GETFD

0 £+ Duplicate fildes «f
1 f* Get fildes flags «/
##define F_SETFD 2 /# Set fildes flags +/
#define F_GETFL 3 7+ Get file Nags +/
#define F SETFL 4 I+ Set file flags #/
#define F_GETLK 5 I Get blocking file tocks «/
#define F_SETLK [£+ Set or clear file tocks and fai on busy =/
#define F_SETLKW 7 /* Set or clear file locks and wait on busy +/
#define F GETOWN 8 /= Get owner +f
#define F_SETOWN 9 /+ Set owner */

/* file segment locking control structure */
struct flock [

short L type;
short | whence;
long 1_start;
long I_len; £ i 0 then until EOF */
int 1_pid; #* returned with F_GETLK */
/* file segment locking types "/
#define F_RDLCK (1 /* Read lock */
#define F WRLCK (2 /* Write lock */
#define F_UNLCK (3 /* Remove locks */
SEE ALSO

fentl(2), openl(2).

Page 1 August 8, 1985

GREEK (5) GREEK (5}

NAME

greek — graphics for the extended TTY-37 type-box
SYNOPSIS

cat /usr/pub/greek [| greek —Tierminal |
DESCRIPTION

Greek gives the mapping from ASCIl to the *‘shift-out™ graphics in effect
between SO and S1 on TELETYPE® Model 37 terminals equipped with a
128-character type-box. These arve the default greek characters produced by
nrofl. The filters of greek(1) attempt to print them on various other termi-
nals. The file contains:

alpha a A beta 8 B gamma y \
GAMMA T G delta 8§ D DELTA A W
epsilon e S5 zeta { Q eta n N
THETA e T theta 8 O lambda X L
LAMBDA A E mu w M nu v @
Xi ¢ X pi a) Pl m P
rho e K sigma o Y SIGMA I R
tau E | phi ¢ U PHI & F
psi gV PS1 ¥ H omega w C
OMEGA 0 Z nabla v oI not - _
partial 3 1 integral [°

FILES

fusr/pub/greek
SEE ALSQ

300(1), 4014(1}, 450(1}, greek(1), 1c(1), nroff{l1).

INET (5F) UniSoft INET {5F}

NAME
inet — Internet protocol family

SYNOPSIS
#include <sys/types.h>
ftinclude < netinet/in.h>

DESCRIPTION
The Internet protocol family is a collection of protocols layered atop the
Internet Protocol (P} wransport layer, and utilizing the Internet address for-
mat. The Internet Ffamily provides protocol support for the
SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types; the
SOCK_RAW interface provides access to the 1P protocol.

ADDRESSING
Internet addresses are four byte quantities, stored in network standard for-
mat {on the YAX these are word and byte reversed}). The include file
< netinet/in.h> defines this address as a discriminated wnion.

Sockets bound to the Internet protocel family utilize the following address-
ing structure,

struct sockaddr_in {

short sin_family,
u_short sin_port;

struct in_addr sin_addr;
char sin_zero[8];

L

Sockets may be created with the address INADDR_ANY to effect wildcard
matching on incoming messages.

PROTOCOLS

The Internet protocol family is comprised of the IP transport protocol,
Internet Control Message Protocol (ICMP), Transmission Control Protocol
(TCP), and User Datagram Protocof {(UDP), TCP is used to support the
SOCK_STREAM abstraction while UDP is used to support the
SOCK_DGRAM abstraction. A raw interface to IP is available by creating
an Internet socket of type SOCK_RAW. The ICMP message protocol is
not directly accessible.

SEE ALSO
tep{5P), udp(5P), ip(5P)

CAVEAT
The Internet protocol suppart is subject to change as the internet protocols
develop. Users should not depend on details of the current implementa-
tion, but rather the services exported.

1P (5P)

NAME

UniSoft

ip — Internet Protocol

SYNOPSIS

#Finclude <sys/socket.h>
#include < netinet/In.h>

s = socket(AF_INET, SOCK_RAW, 0);

DESCRIFTION
IP is the transport layer protocol used by the Internet protocol family. It
may be accessed through a raw socket when developing new protocols, or
special purpose applications. IP sockets are connectionless, and are nor-
mally used with the sendto and recwfrom calls, though the connecr(2N) call
may also be used to fix the destination for future packets (in which case the
read(2) or recv(2N) and write(3) or send(2N) system calis may be used).

Outgoing packets automatically have an IP header prepended to them
(based on the destination address and the protocol number the socket is
created with). Likewise, incoming packets have thejr IP header stripped

before being sent to the user.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:
[EISCONN] when irying to establish a connection on a socket which

already has one, or when trying to send a datagram with
the destination address specified and the socket is already

connected;

IP (5P)

[ENOTCONN} when trying to send a datagram, but no destination address
is specified, and the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data

structure;
[EADDRNOTAVAIL]

when an attempt is made to create a socket with a network
address for which no network interface exists.

SEE ALSO

BUGS

Page |

send(2N), recv(ZN), intro{5N), inet(5F)}

One should be able to send and receive ip options.
The protocol should be settable after socket creation.

July 29, 1985

LO{5) UniSoft LO(5}

NAME
lo — software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPFTION
The foop interface is a software loopback mechanism which may be used for
performance analysis, software testing, and/or local communication. By
default, the loopback interface is accessible at address 127.0.0.1 (non-
standard); this address may be changed with the SIOCSIFADDR ioctl.

DIAGNOSTICS
lo%d: ean’t handle af%d. The interface was handed a message with
addresses formatted in an unsuitable address family; the packet was
dropped.

SEE ALSO
intro{5N), inet{5F)

BUGS
It should handle all address and protocol families. An approved network
address should be reserved for this interface.

MAN(S) MAN(5)

NAME .

man — macros for formatting entries in this manual
SYNOPSIS

nroff —man files

troff ~man { -rsl] files

DESCRIPTION
These troff(1) macros are used to lay out the format of the entrics of this
manual. These macros are used by the man(1) command.

The default page size is 8.5x11”, with a 6.5"%10” wxt area; the —rs1 option
reduces these dimensions to 6"”x9” and 4.75"x8.375", respectively; this option
(which is not effective in nroff} also reduces the default type size from 10-point
to 9-point, and the vertical line spacing from 12-point to 10-point. The —rV2
option may be used to set certain parameters to values appropriate for certain
Versatec printers: it sets the line length to 82 characters, the page length to 84
lines, and it inhibits underlining; this option should not be confused with the
—Tvp opticn of the man(l) command, which is available at some UNIX System
sites,

Any text argument below may be one to six “words’’. Double quotes (") may
be used to include blanks in a **word™. If text is empty, the special treatment is
applied to the next line that contains text to be printed. For example, I may be
used to italicize a whole line, or .SM followed by .B 10 make small bold text.
By default, hyphenation is trned off for nroff, but remains on for roff.

Type font and size are reset to defanlt values before each paragraph and after
processing font- and size-setting macros, e.g., X, .RB, .SM. Tab stops are nei-
ther used nor set by any macro except .DT and .TH.

Default units for indents in are ens, When in is omitted, the previcus indent is
used. This remembered indent is set (o its default value (7.2 ens in troff, 5 ens
in nroff—this corresponds to 0.5” in the default page size) by .TH, .P, and .RS,
and restored by .RE.

THtscn Setthe title and entry heading; ¢ is the title, s is the section number,
¢ is extra commentary, ¢.g., ‘‘local’’, n is new manual name.
Invokes .DT (see below).

SHtex Place subhead fext, e.g., SYNOPSIS, here,

8Stext Place sub-subhead text, e.g., Options, here.

B text Make text bold,

Page 1 Sepiember 24, 1987

MAN(S) MAN(5)

X text Make fext italic.

SM et Make text 1 point smaller than defaunlt point size.

Rlab Concatenate roman g with italic b, and alternate these two fonts for
up to six arguments. Similar macros altemate between any two of
roman, italic, and bold:

JR .RB .BR JIB .Bl

P

Begin a paragraph with normal font, point size, and indent. .PP is a synonym

for .P.

HPin

Begin paragraph with hanging indent.

TP in

Begin indented paragraph with hanging tag. The next line that contains text t

be printed is taken as the tag. If the tag does not fit, it is printed on a separate

line,

JPtin

Same as .TP in with tag ¢; often used to get an indented paragraph without a tag,

RS in

Increase relative indent (initially zero). Indent all cutput an extra in units from

the current left margin.

REE

Retn to the kth relative indent level (initially, k=1; k=0 is equivalent to k=1);

if k is omitted, return 10 the most recent lower indent level.

PMm

Produces proprietary markings; where m may be P for PRIVATE, N for

NOTICE, BP for BELL: LABORATORIES PROPRIETARY, or BR for BELL

LABORATORIES RESTRICTED.

DT

Restore default tab settings {every 7.2 ens in troff, 5 ens in nroff).

PV

Set the interparagraph distance to v vertical spaces. If v is omitted, set the

interparagraph distance to the default value (0.4v in troff, 1v in rroff).

The following strings are defined:

=R ® in troff, (Reg.} in nroff.
\+§ Change to default type size.
*(Tm Trademark indicator.,

The following mumber registers are given default values by .TH:

September 24, 1987 Page 2

MAN(5) MAN(5)

IN Left margin indent relative to subheads (default is 7.2 ens in troff, 5
ens in nroff).
LL Line length including IN.
D Current interparagraph distance,
CAVEATS

In addition to the macros, strings, and number registers mentioned above, there
are defined a number of internal macros, strings, and number registers. Except
for names predefined by traff and number registers d, m, and y, all such intemna?
names are of the form XA, where X is one of),), and }, and A stands for any
alphanumeric character.

If a manual entry needs to be preprocessed by cw(l), egn(1) (or negn), andfor
thi(1), it must begin with a special line {described in man(1)), causing the man
command to invoke the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted Index for

this Manual assume the NAME section of each eniry consists of a single line of
input that has the following format:

name{, name, name ...] — ¢xplanatory text
The macro package increases the inter-word spaces (to eliminate ambiguity) in
the SYNOPSIS section of each entry,
The macro package itself uses only the roman font (so that one can replace, for
example, the bold font by the constant-width font-see ew(1)). Of course, if the

input text of an entry conmins reguests for other fonis {(e.g., I, .RB, \T), the
corresponding fonts must be mounted.

EXAMPLE
nroff -man man.5
to rroff this mannal section,

FILES
JusrAlib/tmac/tmac.an
Jusr/lib/macros/cmp.[nt].[di].an
fusr/lib/macrosfucmp.[nt].an

Page 3 September 24, 1987

MAN(5) MAN(5)

SEE ALSO
man(1), nroff(1}), troffi(1).

BUGS
If the argument to .TH contains any blanks and is not enclosed by double
quotes ("), there will be bird-dropping-like things on the output.

e

September 24, 1987 Page 4

MATH{5)} MATH({5)

NAME
math — math functions and constants

/7 SYNOPSIS
. #iaclude <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various functions in the C Library
(Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M} error-
handling mechanisms, including the following constant used as an error-
return value:

HUGE The maximum value of a single-precision floating-
point number.

The following mathematical constanis are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOGI0E The base-10 logarithm of e.

M_LN2 The naturat logarithm of 2.

M_LNID The natural logarithm of 10,
— M_PI The ratio of the circumference of a circle to its diam-
. eter. {There are also several fractions of its recipro-
S cal and its square root.)

- M_SQRT2 The positive square root of 2.
M_SQRTI_2 The positive square root of 1/2,

(13

For the definitions of various machine-dependent ‘*constants,”” see the

description of the < values. k> header file,

FILES
fusr/include/math.h

SEE ALSO
intro(3), matherr(3M), values(5).

MM (5) MM (5)

NAME

mm — the MM macro package for formatting documents
SYNOPSIS

mm [options 1 [files |

nroff —mm [options 1 [files]
nroff —cm [options } [files |

mmt [options) [fikes]
troff —mm [options 1 [files]
trof —cm [options] [files |

DESCRIPTION
This package provides a formatting capability for a very wide variety of
documents. 1t is the standard package used by the BTL typing pools and
documentation centers. The mannes in which a document is typed in and
edited is essentially independent of whether the document is to be eventu-
ally formatted at a terminal or is to be phototypeset. See the references
below for further details.

The —mm option causes argffand rrof{1) to use the non-compacted ver-
sion of the macro package, while the —cm option results in the use of the
compacted version, thus speeding up the process of loading the macro

package.
FILES
Jusr/lib/tmac/tmac.m pointer to the non-compacied version of
the package
fusr/1lib/macros/mm[nt} non-compacied version of the package
fusr/lib/ macros/emp. [ntl. [dtl.m compacted version of the package
fusr/lib/ macros/ucmp.[ntl.m initializers for the compacted version of
the package
SEE ALSO

mm(1), mmt{l}, nroff(1), troff(1).
MM in the Document Processing Guide,

&

MOSD (5) MOSD{5)

mosd — the OSDD adapter macro package for formatting documents

SYNOPSIS

osdd [options] [files]

mm —mosd [options | [files]

nroffl —mm —mosd [options] [files]
nroff —cm —mosd [options] [files]

mmi —=mosd [options] [files)
troff ~mm —mosd [options] [files |
troff —cm —mosd | options] [files]

DESCRIPTION

The OSDD adapter macro package is a tool used in conjunction with the MM
macro package to prepare Qperations Systems Deliverable Documentation.
Many of the OSDD Standards are different than the defanlt format provided
by MM. The OSDD adapter package sets the appropriate MM options for
automatic production of the OSDD Standards. The OSDD adapter package
also generates the correct OSDD page headers and footers, heading styles,
Table of Contents format, etc.

0SDD document (input) files are prepared with the MM macros. Additional
information which must be given at the beginning of the document file is
specified by the following string definitions:

.ds H1 document-number

.ds H2 section-number

«ds H3 issue-number

.ds H4 date

.ds HS rating

The document-number should be of the standard 10 character format. The
words “‘Section” and “Issue” should not be included in the string
definitions: they will be supplied automatically when the document is
printed. For example:

.ds H1 OPA—1P135—01

ds H2 4

.ds H3 2
automatically produces

OPA-1P135-01

Section 4

Issue 2
as the document pzge header, Quotation marks are not uwsed in string
definitions.

If certain information is not to be included in a page header, then the string
is defined as null; e.g.,

.ds H2
means that there is no section-nurnber.

The 0SDD Standards require that the Table of Contents be numbered begin-
ning with Page 1. By default, the first page of text will be numbered Page
2. If the Table of Contents has more than one page, for example n, then
either —rPn+! must be included as a command line option or .or P n
must be included in the document file. For example, if the Tabdle of

-1-

MOSD (5} MOSD{5)

FILES

Contents is four pages then use —rP5 on the command line or .or P 4 in
the document file.

The 0SDD Standards require that certain information such as the document
rating appear on the Document Index or on the Table of Contents page if
there is no index. By default, it is assumed that an index has been
prepared separately. If there is no index, the following must be included in
the document file:
aorDio

This will ensure that the necessary information is included on the Table af
Conftents page.

The 0SDD Standards require that all numbered figures be placed at the end
of the document. The .Fg macro is used te produce full page figures. This
macro produces a blank page with the appropriate header, footer, and figure
caption. Insertion of the actual figure on the page is a manual operation.
The macro usage is
.Fg page-count "figure caption”

where page-count is the number of pages required for a multi-page figure
(default 1 page).

Figure captions are produced by the .Fg macro using the .BS/.BE macros.
Thus the .BS/.BE macros are also not available for users. The .Fg macro
cannot be used within the document unless the final .Fg in a series of
figures is followed by a .SK macro to force out the last figure page.

The Table of Contenis for OSDD documents (see Figure 4 in Section 4.1 of
the OSDD Standards) is produced with:

.Tc

System Type

System Name

Document Type

Ta
The .Tc/.Td macros are used instead of the .TC macro from MM,

By default, the adapter package causes the NOTICE disclosure statement to
be printed. The .PM macro may be used to suppress the NOTICE or to
replace it with the PRIVATE disclosure statement as follows:

PM none printed
PM P PRIVATE printed
PMN NOTICE printed {default)

The .P macro is used for paragraphs. The Np regisier is set automatically
to indicate the paragraph numbering style. It is very important that the .P
macro be used correctly. All paragraphs (including those immediately fol-
lowing a .H macro) must use a .P macro. Unless there is a .P macro, there
will not be a number generated for the paragraph. Similarly, the .P macro
should not be used for text which is not a paragraph. The .5P macro may
be appropriate for these cases, e.g., for “‘paragraphs’ within a list item.

The page header format is produced automatically in accordance with the
0SDD Standards. The OSDD Adapter macro package uses the .TP macro
for this purpose. Therefore the .TP macro normally available in MM is not
available for users.

/usr/lib/tmac/tmac.osd

MOSD{5} MOSD(5)

SEE ALSQ
mm{l), mmt(l), nroff (1}, troff{1}, mm{3).
MM in the Document Processing Guide.

MPTX (5) MPTX (5)

NAME
mptx — the macro package for formaiting a permuted index

SYNOPSIS
oroff —mpix [options] [files]

troff —mptx [options] [files)

DESCRIPTION
This package provides a definition for the .xx macro used for formaiting a
permuted index as produced by px(1). This package does not provide any
other formatting capabilities such as headers and foolers. If these or other
capabilities are required, the mpix macro package may be used in conjunc-
tion with the MM macro package. In this case, the —mpix option must be
invoked after the —~mm call. For example:

nroff —em —mpix file

or
mm —mptx file
FILES
fusc/lib/tmac/tmac.ptx pointer to the non-compacted version of the
package
fusr/libf macros/ptx non-compacted version of the package
SEE ALSQ

mm{1}, nroff(1}, ptx(1), troff{1), mm(5).

MY (5)

NAME

MV{(5)

my — a troff macro package for typesetting view graphs and slides

SYNOPSIS

mvt [—a] [options] [files]
troff [—a) [—xX1 1 —mv { options] [files]

DESCRIPTION

This package makes it easy to typeset view graphs and projection slides in a
variety of sizes. A few macros (briefly described below) accomplish most
of the formatting tasks needed in making transparencies. All of the facili-
ties of trof (1), ew(l), eqn(1}, and (1) are available for more difficult
tasks.

The output can be previewed on most terminals, and, in particular, on the
Tektronix 4014, as well as on the Versatec printer. For these two devices,
specify the —rX1 option (this option is automatically specified by the mw
command—q.v.—when that command is invoked with the -Td4014 or
—Tvp options). To preview output on other terminals, specify the —a
option.

The available macros are:

¥S [al [1 [Foil-start macro; foil size is to be 7"%7"; # is the foil
number, / is the foil identification, o is the date; the
foil-start macro resets all parameters (indent, point
size, etc.) to initial default values, except for the values
of 7 and d arguments inherited from a previous feil-
start macro; it also invokes the .A macro (see below).

The naming convenlion for this and the following eight
macros is that the first character of the name (V or §)
distinguishes between view graphs and slides, respec-
tively, while the second character indicates whether the
foil is square (S), small wide (w), small high (h), big
wide (W), or big high (H). Slides are ‘*skinnier’” than
the corresponding view graphs: the ratio of the longer
dimension to the shorter one is larger for slides than
for view graphs. As a resuli, slide foils can be used for
view graphs, but not vice versa;, on the other hand,
view graphs can accommodate a bit more text,

Yw [4] [] [A Same as .VS, except that foil size is 7" wide x 5" high.

Yh (4[] [d Same as .¥S, except that foil size is 5" x 7",

YW Al [[dA Same as .VS, except that foil size is 7”'x5.4".

JYH [a (] (4 Same as . VS, except that foil size is 7"x9",

Swo 4[] [d Same as .VS, except that foil size is 7" x5".

Sh [# (1 [4 Same as .¥S, except that foil size is 5" x7".

SW (A [[A Same as .¥S, except that foil size is 7" % 5.4".

SH (4 [] [d Same as . VS, except that foil size is 7" x9".

A I Place text that follows at the first indentation levetl (left
margin): the presence of x suppresses the %2 line spac-
ing from the preceding text.

B o Imld] Place text that follows at the second indentation level;
text is preceded by a mark, » is the mark (default is a
large ballet). s is the increment or decrement to the
point size of the mark wilh respect to the prevaifing

MV(5)
[m s}
D [mls] |
T string
d ik [afd]
S A1
DF nflnf..l

DV {d (8 [d [4

U sl [sird]

MV(5)

point size (default is 0); if s is 100, it causes the point
gize of the mark to be the same as that of the defawlt
mark.
Same as .B, but for the third indentation level; default
mark is a dash.
Same as .B, but for the fourth indentation level;
default mark is a small bullet.
String is printed as an over-size, centered title,
Change the current text indent (does not affect titles);
in is the indent {in inches unless dimensioned, default
is 0); if in is signed, it is an increment or decrement;
the presence of ¢ invokes the .A macro (see below)
and passes x {if any) 10 it.
Set the point size and line length; p is the point size
(default is “‘previous™); if p is 100, the point size
reverts to the initial default for the current foil-start
macro; if p is signed, it is an increment or decrement
(default is 18 for .VS, .VH, and .SH, and 14 for the
other foil-start macros); / is the line length (in inches
unless dimensioned; default is 4.2" for .¥Vh, 3.8" for
.5h, 5" for .SH, and 6" for the other foil-start macros).
Define font positions; may not appear within a foil’s
input text (i.e., it may only appear after all the input
text for a foil, but before the next foil-start macro); #
is the position of font £ up to four “*»n f** pairs may be
specified; the first font named becomes the prevaifing
font; the initial setting is (H is a synonym for G):
.DF1 H213B4S
Alter the vertical spacing between indentation levels; «
is the spacing for .A, b is for .B, ¢ is for .C, and o is
for .D; all non-null arguments must be dimensioned;
null arguments leave the corresponding spacing
unaffected,; initial setting is:
DV 5v 5v 5v Ov
Underline str/ and concatenate str2 (if any) to it.

The last four macros in the above list do not cause a break; the . macro
causes a break only if it is invoked with more than one argument; all the
other macros cause a break.

The macro package also recognizes the following upper-case synonyms for
the corresponding lower-case roff requests:

.AD .BR .CE

.F1 .HY .NA .NF .NH .NX .30 .5P .TA .Tl

The Tm string produces the trademark symbol.
The input tilde (7) character is translated into a blank on output.

FILES

/ust/lib/ tmac/tmac.v
fusr/libf macros/vmcea

SEE ALSO

ew(l), eqn(1), mmt{1), tbl{1}, troff(1).

BUGS

The .¥VW and .SW foils are meant to be 9" wide by 7' high, but because

.2

MY({5) MV (5)

the typesetter paper is generally only 8" wide, they are printed 7" wide by
5.4" high and have to be enlarged by a factor of 9/7 before use as view
graphs; this makes them less than totally wseful.

PROF (5) PROFE (5)

NAME

prof — profile within a function

SYNOFSIS

#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION

MARK will introduce a mark called nmame that will be treated the same as a
function entry peoint. Execution of the mark will add to a counter for that
mark, and program-counter time spent will be accounted to the immedi-
ately preceding mark or to the function if there are no preceding marks
within the active function.

Name may be any combination of up to six letters, numbers or under-
scores. Each name in a single compilation must be unique, but may be the
same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the
header file < prafh> is included. This may be defined by a preprocessor
directive as in the synopsis, or by a command line argument, ie:

e —p —DMARK foo.c

If MARK is not defined, the MARK{(name) stalements may be left in the
source files containing them and will be ignored.

EXAMPLE

In this example, marks can be used 1o determine how much time is spent
in each loop. Unless this example is compiled with M4RX defined on the
command line, the marks are ignored.

#include <profh>

foo()

{

int i, 3

i\{ARK(Ioopl);
for {i = 0; i < 2000; i++) |

}
MARK(loop?);
for (j = 0; j < 2000; j++) |

)
}

SEE ALSO

prof(1), profil(2), monitor{3C).

PTY (5) UniSoft PTY(5)

NAME
pty — pseudo terminal driver

/" DESCRIPTION

: The piy driver provides support for a device-pair termed a psendo terminal.
A pseudo terminal is a pair of character devices, a master device and a slave
device. The slave device provides processes an interface identical to that
described in fermio{7). However, whereas all other devices which provide
the interface described in fermio(7) have a hardware device of some sort
behind them, the slave device has, instead, another process manipulating it
through the master half of the pseudo terminal. That is, anything writlen
on the master device is given to the slave device as input and anything
written on the slave device is presented as input on the master device.

The following ioctf calls apply only to pseudo terminals:

TIOCSTOP
Stops output to a terminal {(e.g. like typing "S). Takes no parame-
ter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing "S). Takes no
parameter.

TIOCPKT

Enable/disable packet mode. Packet mode is enabled by specifying
{by reference) a nonzero parameter and disabled by specifying (by

7 reference) a zero parameter. When applied to the master side of a
L pseudo terminal, each subsequent read from the terminal will
r— return data written on the slave part of the pseudo terminal pre-

ceded by a zero byte (symbolically defined as TIOCPKT_DATA),
or a single byte reflecting control status information. In the latter
case, the byte is an inclusive-or of zero or more of the bits:

TIOCPKT_FLUSHREAD
whenever the read queue for the terminal is flushed.

TIOCPKT FLUSHWRITE
whenever the write queue for the terminal is flushed.

TIOCPKT_STOP
whenever output to the terminal is stopped a la ™S,

TIOCPKT START

whenever output to the terminal is restarted.
TIOCPKT_DOSTOP

whenever {_stopc is "S and ¢ startc is "Q.
TIOCPKT _NOSTOP

whenever the start and stop characters are not "5/°Q.

This mode is used by rfogin(1N) and rlogind(3N) 1o implement a

Pl remote-echoed, locally "S/°Q flow-controlled remote login with

proper back-flushing of output; it can be wsed by other similar pro-
e grams.
TIOCCREMOTE

A mode for the master half of a pseudo terminal, independent of

TIOCPKT. This mode causes input to the pseudo terminal to be

flow controlled and not input edited (regardless of the terminal

-1-

PTY (5) UniSoft PTY (5}

mode). Each wrile to the control terminal produces a record boun-
dary for the process reading the terminal. 1n normal usage, a write
of data is like the data iyped as a line on the terminal; a write of 0
bytes is like typing an end-of-file character. TIOCREMOTE can be
used when doing remote line editing in a window manager, or
whenever flow controlled input is required.

FILES
fdev/pty[p-rI[0-9a-f] master pseudo terminals
Jdev/uylp-t][0-9a-f] slave pseudo terminals

DIAGNOQSTICS
None.

BUGS
It is not possible to send an EQT.

~

REGEXP (5}

NAME

REGEXP (5)

regexp — regular expression compile and match routines

SYNOPSIS

#fdefine INIT <declarations>

#define GETC{) <getc code>>

##define PEEKC() < peekc code>>

#define UNGETC{c) <ungetc code>
##define RETURN {pointer) <return code>
##define ERROR(val) <error code>

#inclade <regexp.h>>

char *compile (instring, expbuf, endbuf, eof)
char sinsiring, sexpbuf, *endbuf;

int eof;

int step (string, expbuf)
char sstring, *expbuf;

extern char slocl, *loc2, +loes;

extern int ciref, sed, nbra;

DESCRIFFION

This page describes general-purpose regular expression matching routines in
the form of ed(1}, defined in Fusr/include/regexp.h. Programs such as
ed(1), sed(l), grep(l), bs(1), expr(1}, etc,, which perform regular expres-
sion matching use this source file. In this way, only this file need be
changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include
this file must have the following five macros declared before the
“#include <regexp.h>" statement. These macros are used by the compile

routine.
GETC()

PEEKC()

UNGETC{¢)

RETURN{ pointer)

ERROR{vaf)

Return the value of the next characier in the regular
expression pattern. Successive calls to GETC()
should return successive characters of the regular
expression.

Return the next character in the regular expression.
Successive calls to PEEKC{) should return the same
character (which should also be the next character
returned by GETC()}.

Cause the argument ¢ to be returned by the next call
to GETC() (and PEEKC()}. No more that one char-
acter of pushback is ever needed and this character is
guaranteed to be the last character read by GETC().
The value of the macro UNGETC{c} is always
ignored,

This macro is used on normal ¢xit of the compile Tou-
tine. The value of the argument pointer is a pointer
to the character afier the last character of the com-
piled regular expression. This is useful to programs
which have memory allocation to manage.

This is the abnormal return from the compile routine.
The argument vaf is an error number {see lable

-1 -

REGEXP(5) REGEXP(5)

below for meanings). This call should never return.

ERROR MEANING

11 Range endpoint too large.

16 Bad number.

25 “\digit” out of range.

36 Illegal or missing delimiter.

41 No remembered search string.

42 % (\} imbalance.

43 Too many \(.

44 More than 2 numbers given in \{ \}.
45 } expected after \.

46 First number exceeds second in \[\}.
49 [1 imbalance.

50 Regular expression overflow.

The syntax of the compile routite is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine
but is uscful for programs that pass down different pointers to input charac-
ters. It is sometimes used in the INIT declaration (see below). Programs
which call functions to input characters or have characters in an external
array can pass down a value of ({char +) 0} for this parameter.

The next parameter expbyf is a character pointer. It points to the piace
where the compiled regular expression will be placed.

The parameter endbiif is one more than the highest address where the com-
piled regular expression may be placed. If the compiled expression cannot
fit in (endbuf— expbuf} bytes, a call to ERROR(50) is made.

The parameter egf is the character which marks the end of the regular
expression. For example, in ed(1), this character is usually a /.

Each program that includes this file must have a #define statement for
INIT. This definition will be placed right after the declaration for the func-
tion compile and the opening curly brace ({). It is used for dependent
declarations and initializations. Most often it is used to set a register vari-
able to point the beginning of the regular expression so that this register
variable can be used in the declarations for GETC(), PEEXC() and
UNGETC(). Otherwise it can be used to declare external variables that
might be used by GETC(), PEEKC{} and UNGETC(). See the example
below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expres-
sion maiching, one of which is the function srep. The cali to step is as fol-
lows:

step(string, expbuf)
The first parameter to sfep is a pointer to a string of characters to be
checked for a match. This string should be pull terminated.

The second parameter expbuf is the compiled regular expression which was
obtained by a call of the function compile.

The function step returns non-zere if the given string matches the regular
expression, and zero if the expressions do not match. If there is a maich,
two external character pointers are set as a side effect to the czll to step.

-2

REGEXP(5) REGEXP(5)

The variable set in siep is foci. This is a pointer to the first character that
matched the regular expression. The variable foc2, which is set by the
function advance, points to the character after the last character that
matches the regular expression. Thus if the regular expression matches the
entire line, Joc! will point to the first character of sfring and Joc2 will point
to the null at the end of string.

Step uses the external variable circ/ which is set by compile if the regular
expression beging with ~. If this is set then step will try to match the regu-
lar expression to the beginning of the string only. If more than one regular
expression is to be compiled before the first is executed the value of cirgf
should be saved for each compiled expression and cirgf should be set to
that saved value before each call to step.

The function advance is called from step with the same arguments as step.
The purpose of srep is to step through the string argument and call advance
until advance returns non-zero indicating a match or until the end of string
is reached. If one wants to constrain string to the beginning of the line in
all cases, step need not be called; simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression,
it will advance its pointer to the string to be matched as far as possible and
will recursively call itself trying to match the rest of the string to the rest of
the regular expression. As long as there is no maich, advance will back up
along the string until it finds a match or reaches the point in the string that
initially matched the = or \[\). It is sometimes desirable to stop this back-
ing up before the initial point in the string is reached. If the external char-
acter pointer locs is equal to the peint in the string at sometime during the
backing up process, advance will break out of the loop that backs up and
will return zero. This is used by ed(l1) and sed(l)} for substitutions done
globally (not just the first occurrence, but the whole line) so, for example,
expressions like s/ye//g do not loop forever.

The additional external variables sed and néra are used for special purposes.

EXAMPLES

FILES

The following is an example of how the regular expression macros and calls
look from grep(1):

#define INIT register char *sp = instring;
#define GETC(} {vsp+ +)

#define PEEKC() (+sp)

#define UNGETC(c) (——sp}

#define RETURN({c) return;

#define ERROR{c) regerr()

#include <regexp.h>
{void) compile(»argv, expbuf, &expbuf[ESIZE], \0";

if (step{linebuf, expbuf))
succeed();

fusr/include/regexp.h

SEE ALSOQ

bs(1), ed(t), expr(l), grep{l), sed(1).

- 3-

REGEXP({5) REGEXP(5)

BUGS
The handling of circ/ is kludgy.
The actual code is probably easier to understand than this manual page.

STAT(5)

NAME

STAT(5)

stat — data returned by stat system call

4 SYNOPSIS

. #include <sys/types.h>
T #include <sys/stat.h>>

DESCRIPTION

The system calls star and fstat return data whose structure is defined by this
include file. The encoding of the field st mode is defined in this file also.

I*

* Structure of the result of stat

*
struct

]‘

#define
#define
#define
#define
fdefine
#define
#define
#define
#define
#tdefine
#define
##define

FILES

stat |

dev_t
ino_t
ushort
short
ushort
ushort
dev_t
off_t
time_t
time_t
time_t

S_IFMT
S_IFDIR
5_IFCHR
S_IFBLK
S_IFREG
5_IFIFO
5_ISUID
5_ISGID
S_ISVTX
S_IREAD

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
si_gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

0170000
0040000
0020000
0060000
0100000
0010000
04000
02000
01000
004030

S_IWRITE 00200

S_IEXEC

00100

fusrfinclude/sys/types.h
Jusr/include/sys/stat.h

SEE ALSO

stat(2), types(5).

/* type of file «/

{+ directory «/

/+ character special »/

/+ block special +/

I+ regular +/

/v fifa »/

/% set user id on execution »/

f+ set group id on execution *+/

/+ save swapped text even after use »/
/+ read permission, owner »/

/* write permission, owner =/

/+ execute/search permission, owner +/

TCP{5P} UniSoft TCP(SP)

NAME

tcp — Internel Transmission Control Protocol

SYNOPSIS

fhinclude <sys/socket.h>>
#include < netinet/in.h>

s = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPFTION

The TCP protocol provides reliable, flow-controlled, two-way transmission
of data. 1t is a byte-stream protocol used to support the SOCK_STREAM
abstraction. TCP uses the standard Internet address format and, in addi-
tion, provides a per-host collection of port addresses. Thus, each address is
composed of an Inilernet address specifying the host and network, with a
specific TCP port on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either active or passive. Active sock-
els initiate connecticns 10 passive sockets. By default TCP sockets are
created active; to create a passive socket the fisten(2N) system call must be
used after binding the socket with the bind(2ZN) sysiem call. Only passive
sockets may use the accepr(2ZN) call to accept incoming connections. Only
active sockets may use the connect{2N) call to initiate connections.

Passive sockets may underspecify their location to match incoming connec-
tion requests from multiple networks. This technique, termed wildcard
addressing, allows a single server to provide service to clienits on multiple
networks. To create a socket which listens on all networks, the Internet
address INADDR_ANY must be bound. The TCP port may still be
specified at this time; if the port is not specified the system will assign one.
Ouce a connection has been established the socket’s address is fixed by the
peer entity’s location. The address assigned the socket is the address asso-
ciated with the network interface through which packets are being transmit-
ted and received. Normally this address corresponds to the peer entity’s
network.

DIAGNOSTICS

A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a sockel
which already has one;

[ENOBUFS] when the system runs out of memory for an internal
data structure;

[ETIMEDOUTI when a connection was dropped due to excessive

retranstnissions;
[ECONNRESET] when the remote peer forces the conmection to be
closed,

[ECONNREFUSED] when the remote peer actively refuses connection
establishment (usually because no process is listening
to the pori);

[EADDRINUSE] when an attempt is made to create a socket with a
port which has already been allocated;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a
network address for which no network interface

-1-

TCP{5P) UniSoft TCP{5P)

exists.

SEE ALSO
intro{5N), inet(5F)

BUGS
1t should be possible to send and receive TCP options. The system always
tries to negotiates the maximum TCP segment size to be 1024 bytes. This
can result in poor performance if an intervening network performs exces-
sive fragmentation.

TERM (5) TERM (5)

NAME
term — conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., nroff, mm(1), man(l),
tabs(1)) and are maintained as part of the shell environment (see sk(1),
profile(4}, and environ(5)) in the variable STERM:

1520 Datamedia 1520

1620 Diablo 1620 and others using the HyType II printer
1620—12 same, in 12-pitch mode

2621 Hewlett-Packard HP2621 series

2631 Hewlett-Packard 2631 line printer

2631—c¢ Hewlett-Packard 2631 line printer - compressed mode
2631—e Hewleti-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series

2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASI/DTC/GSI 300 and others using the HyType 1 printer
300--12 same, in 12-pitch mode

300s DASIYDTC/GSL 3008

382 DTC 382

300s—12 same, in 12-pitch mode

3045 Datamedia 3045

33 TELETYPE® Terminal Model 33 KSR
37 TELETYPE Terminal Model 37 KSR
40—2 TELETYPE Terminal Model 40/2
40—4 TELETYPE Terminal Model 40/4
4540 TELETYPE Terminal Model 4540
3270 1BM Model 3270

40003 Trendata 4000z

4014 Tektronix 4014

43 TELETYPE Model 43 KSR

450 DASI 450 (same as Diablo 1620)

450—12 same, in 12-pitch mode

735 Texas Instruments TI735 and T1725

745 Texas Instruments TI745

dumb generic name for terminals that lack reverse
line-feed and other special escape sequences

sync generic name for synchronous TELETYPE
4540-compatible terminals

hp Hewlett-Packard (same ag 2645)

1p generic name for a line printer

tn1200 General Electric TermiNet 1200
tn300 General Electric TermilNet 300

Up to 8 characters, chosen from [—a—z0—%], make up a basic terminal
name. Terminal sub-models and operational modes are distinguished by
suffixes beginning with a —. Names should generally be based on original
vendors, rather than local distributors. A terminal acquired from one ven-
dor should not have more than one distinct basic name.

Commands whose behavior depends on the iype of terminal should accept
arguments of the form —Tterm where ferm is one of the names given
above; if no such argument is present, such commands should obtain the
terminal type from the environment variable $TERM, which, in turn,

.1-

TERM (5} TERM(5)

should contain term.
See /ete/termcap on your system for a complets list.
SEE ALSO
mm{l), nroff(1}, sh(i}, stty(1), tabs{l), tplot(1G), profile(4), environ(5).

BUGS
This is a small candle trying to illuminate a large, dark problem. Programs
that ought to adhere to this nomenclature do so somewhat fitfully.

TERMCAP(5) TERMCAP(5)

NAME

termcap — terminal capability data base
SYNOPSIS '

letc/termcap

DESCRIPTION
Termcap is a data base describing terminals used, e.g., by wi(1), Terminals are
described in termcap by giving a set of capabilities which they have, and by
describing how operations are performed. Padding requirements and initializa-
tion sequences are included in termecap.

Entries in termcap consist of a number of °:* separated fields. The first entry for
each terminal gives the names which are known for the terminal, separated by
‘" characters. The first name is always 2 characters long and is used by older
version 6 systems which store the terminal type in a 16 bit word in a system-
wide data base. The second name given is the most common abbreviation for
the terminal, and the last name given should be a long name fully identifying
the terminal. The second name should contain no blanks; the last name may
well contain blanks for readability.

CAPABILITIES
(P) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected

st (P*) Add new blank line

bool Terminal has automatic margins

str () Start alternate character set

str Backspace if not “H

bool Terminal can backspace with "H

st (P Backab

bool Backspace wraps from column 0 to last column
Command character in prototype if terminal settable
st (@) Clear to end of display

str (P) Clear toend of line

st (P) Like cm buthorizontal motion only, line stays same
st (P*) Clear screen

str (P) Cursor motion

num Number of colwmns in a line

sir (P*) Carriage return, (default “M)

R882088Q7FTTRE RS
%

Page 1 September 24, 1987

TERMCAP(S)

cs str
v str
da bool
dB num
db bool
dC num
dc str
dF mm
dl str
dm str
dN num
do sir
dT num
ed str
el str
eo str
ff str
hc bool
hd st
ho st
hu str
hz str
ic sir
if str
im str
in bool
ip str
is str
k0-k9 str
kb str
kd st

ke
kh
kl
kn num
ko
kr
ks
ku

(P) Change scrolling region (vt100), like cm

(P) Like ch but vertical only.
Display may be retained above
Number of millisec of bs delay needed
Display may be retained below
Number of millisec of cr delay needed
(P*) Delete character
Number of millisec of ff delay needed
(P*) Delete line
Delete mode (enter)
Number of millisec of nl delay needed
Down one line
Number of millisec of tab delay needed
End delete mode
End insert mode; give zei=: if ic
Can erase overstrikes with a blank

(P*) Hardcopy terminal page eject (defaunlt “L)

Hardcopy terminal
Half-line down (forward 1/2 linefeed)
Home cursor (if no cm)
Half-line up (reverse 1/2 linefeed)
Hazeltine; can’t print s

(P) Insert character
Name of file containing is
Insert mode {enter); give :im=: if ic

Insert mode distinguishes nulls on display

(P*) Insert pad after character inserted
Terminal initislization string
Sent by other function keys 0-9
Sent by backspace key
Sent by terminal down arrow key
Out of keypad transmit mode
Sent by home key
Sent by terminal left arrow key
Number of other keys

Termcap entries for other non-function keys

Sent by terminal right arrow key
Put terminal in keypad transmit mode
Sent by terminal up arrow key

September 24, 1987

TERMCAP(S)

Page 2

TERMCAP(S)

-]

AU HNBEISSESERRETFERRENAERRRRRRRERBRRBEFFD

Page 3

gggggﬁ%%%%gg#ﬁﬁﬁﬁﬁﬁ%gﬁ g

P*)

88

TERMCAP({5)

Labels on other function keys

Number of lines on screen or page

Last line, first column (if no cm)

Arrow key map, used by vi version 2 only

Safe to move while in insert mode
Memory lock on above cursor.

Safe to move while in standout and underline mode

“Memory unlock (tumn off memory lock).

No correctly working carriage return (DM2500,H2000)
Non-destructive space {cursor right)

Newline character (default \m})

Terminal is a CRT but doesn’t scroll.

Teminal oversirikes

Pad character {rather than null)

Has hardware tabs {may need to be set with is)
End stand out mode

Scroll forwards

Number of blank chars left by so or se

Begin stand out mode

Scroll reverse (backwards)

Tab (other than “I or with padding)

Entry of similar terminal - must be last

String to end programs that use cm

String to begin programs that use cm

Underscore one char and move past it

End underscore mode

Number of blank chars left by us or ue

Terminal underlines even though it doesn’t overstrike
Upline (cursor up)

Start underscore mode

Visible bell {may not move cursor)

Sequence to end openvvisual mode

Sequence to start open/visual mode

Bechive (fl=escape, f2=ctrl C)

A newline is ignored after a wrap {Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 2647)
Tabs are destructive, magic so char (Teleray 1061)

September 24, 1987

TERMCAP(5) TERMCAP(5)

A Sample Entry

The following entry, which describes the Concept—100, is among the more
complex entries in the termcap file as of this writing. (This particular concept
entry is outdated and is used as an example only.)

¢l ci00| concept1 00:is=\ENEREMES\ES\BNENHNEK\E\2000E0&\200:
:Al=INE R:ambscd=16ME Cicon 1 S\E"S:cla2*"Licti=\Ea %+ %+ :cof B0\
10e=160E"A:dl=3ME"B:ei=\E200:00:im=\E"P:in:ip=16*1#24:mimd =\E=:\
se=\Ed\Ee:zo=\FTAEEta=8\tuliup=\E;vb=\EK\EK -an:

Eniries may continue onto multiple lines by giving a \ as the last character of a
line, and that empty fields may be included for readability (here between the
last field on a line and the first field on the next). Capabilities in fermeap are of
three types: Boolean capabilities which indicate that the terminal has some par-
ticular feature, numeric capabilities giving the size of the terminal or the size of
particular delays, and string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Concept
has automatic margins (i.e. an automatic return and linefeed when the end of a
line is reached) is indicated by the capability am. Hence the description of the
Concept includes am. Numeric capabilities are followed by the character #°
and then the value. Thus co which indicates the number of columns the termi-
nal has gives the value ‘80’ for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line sequence) are
given by the two character code, an ‘=’, and then a string ending at the next fol-
lowing “’. A delay in milliseconds may appear after the “=’ in such a capabil-
ity, and padding characters are supplied by the editor after the remainder of the
string is sent to provide this delay. The delay can be either a integer, e.g. “20°,
or an integer followed by an **’, ie. ‘3*’, A ** indicates that the padding
Tequired is proportional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. When a *** is specified,
it is sometimes useful 1o give a delay of the form “3.5" specify a delay per unit
to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for
easy encoding of characters there, A \E maps t0 an ESCAPE character, “x maps
to a control-x for any appropriate x, and the sequences \n \r \t \b \f give a new-
line, return, tab, backspace and formfeed. Finally, characters may be given as

September 24, 1987 Page 4

TERMCAP(S) TERMCAP(5)

three octal digits after a \, and the characters ~ and \ may be given as " and W\, If
it is necessary to place a : in a capability it must be escaped in octal as \072. If
it is necesgary to place a null character in a string capability it must be encoded
as \200. The routines which deal with fermcap use C strings, and strip the high
bits of the output very late so that a \200 comes out as a \000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective
way to prepare a terminal description is by imitating the description of a similar
terminal in termcap and to build up a description gradually, using partial
descriptions with ex to check that they are correct. Be aware that a very
unusual terminal may expose deficiencies in the ability of the fermeap file to
describe it or bugs in ex. To easily test a new terminal description you can set
the environment variable TERMCAP to a pathname of a file containing the
description you are working on and the editor will look there rather than in
fetcitermeap, TERMCAP can also be set to the termcap entry itself to avoid
reading the file when starting up the editor. (This only works on version 7 sys-
tems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric
capability. If the terminal is a CRT, then the number of lines on the screen is
given by the li capability. If the terminal wraps around to the begimning of the
next line when it reaches the right margin, then it should have the am capabil-
ity. If the terminal can clear its screen, then this is given by the el string capa-
bility. If the terminal can backspace, then it should have the bs capability,
unless a backspace is accomplished by a character other than “H (ugh) in which
case you should give this character as the be string capability, If it overstrikes
(rather than clearing a position when a character is struck over) then it should
have the os capability,

A very important point here is that the local cursor motions encoded in termcap
are undefined at the left and top edges of a CRT terminal. The editor will never
atternpt to backspace around the left edge, nor will it attempt o go up locally
off the top. The editor assumes that feeding off the bottom of the screen will
cause the screen to scroll up, and the am capability tells whether the cursor
sticks at the right edge of the screen. If the texminal has switch selectable
automatic margins, the fermcap file usually assumes that this is on, i.e. am,
These capabilities suffice to describe hardcopy and glass-tty terminals. Thus
the model 33 teletype is described as

Page 5 September 24, 1987

TERMCAP(S) TERMCAP(5)

13133 | 1ty33:colt72:08
while the Lear Siegler ADM-3 is described as

cljadm3i3[lsi adm3:am:bs:cl="Z:1i#24:co#80
Cursor addressing
Cursor addressing in the terminal is described by a em string capability, with
printf(3s) like escapes %x in it. These substitute 1o encodings of the current
line or column position, while other characters are passed through unchanged.
If the em string is thought of as being a function, then its arguments are the line
and then the column to which motion is desired, and the % encodings have the
following meanings:

%d asin pringf, O origin

%2 like %2d
%3 like %3d
% like %c

%+x adds x to valye, then %.

%>xy if value > x adds y, no output,

%r reverses order of line and column, no output

%i increments line/column (for 1 origin)

%% gives asingle %

%n exclusive or row and column with 0140 (DM2500)
%B BCD (16*(x/10)} + (x%10), no output.

%D Reverse coding (x-2*(x%16)), no cutput. (Delta Data).

Consider the HP2645, which, 10 get to row 3 and column 12, needs to be sent
\E&:a12¢03Y padded for 6 milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column are printed as two digits.
Thus its em capability is cm=6G\E&%r%2c%2Y. The Microterm ACT-IV needs
the current row and column sent preceded by a “T, with the row and column
simply encoded in binary, cm~"T%.%.. Terminals which use %. need to be
able to backspace the cursor (bs or be), and o move the cursor up one line on
the screen (up introduced below). This is necessary because it is not always
safe to transmit \t, \n "D and \r, as the system may change or discard them,

A final example is the LST ADM-3a, which uses row and column offset by a blank
character, thus cm=\E=%+ %+ .

Cursor motions

September 24, 1987 Page 6

TERMCAP(5) TERMCAP(5)

If the terminal can move the cursor one position to the right, leaving the charac-
ter at the current position unchanged, then this sequence should be given as nd
{non-destructive space), If it can move the cursor up a line on the screen in the
same column, this should be given as up. If the terminal has no cursor address-
ing capability, but can home the cursor (to very upper left corner of screen) then
this can be given as ho; similarly a fast way of getting to the lower left hand
commer can be given as 11; this may involve going up with up from the home
position, but the editor will never do this itself (unless If does) because it makes
no assumption about the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving
the cursor where it is, this shouid be given as ce. If the terminal can clear from
the current position to the end of the display, then this should be given as cd.
The editor only uses cd from the first column of a line.

Insert/delete line

If the erminal can open a new blank line before the line where the cursor is,
this should be given as al; this is done only from the first position of a line, The
carsor must then appear on the newly blank line. If the terminal can delete the
line which the cursor is on, then this should be given as df; this is done only
from the first position on the line to be deleted. If the terminal can scroll the
screen backwards, then this can be given as sh, but just al suffices. If the termi-
nal can retain display memory above then the da capability should be given; if
display memory can be retained below then db should be given. These let the
editor understand that deleting a line on the screen may bring non-blank lines
up from below or that scrolling back with sb may bring down non-blank lines,
Insert/delete character

There are two basic kinds of mtelligent terminals with respect to insert/delete
character which can be described using fermcap. The most common
insert/delete character operations affect only the characters on the current line
and shift characters off the end of the line rigidly. Other terminals, such as the
Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insest or delete only to an
untyped blank on the screen which is either eliminated, or expanded to two
untyped blanks, You can find out which kind of terminal you have by clearing
the screen and then typing fext separated by cursor motions. Type abc def
using local cursor motions {not spaces) between the abc and the def, Then posi-
tion the cursor before the abc and put the terminal in insert mode. If typing

Page 7 September 24, 1987

TERMCAP(5) TERMCAP(S)

characters causes the rest of the line to shift rigidly and characters to fall off the
end, then your terminal does not distinguish between blanks and untyped posi-
tions. If the abe shifts over to the def which then move together around the end
of the current {ine and onto the next as you insert, you have the second type of
terminal, and should give the capability in, which stands for insert null. If your
terminal does something different and unusual then you may have to modify the
editor to get it to use the insert mode your terminal defines. We have seen no
terminals which have an insert mode not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals
which send a simple sequence to open a blank position on the current line,
Give as im the sequence to get into insert mode, or give it an empty value if
your terminal uses a sequence to insert a blank position. Give as ei the
sequence to leave insert made (give this, with an empty value also if you gave
im 30}, Now give as ic any sequence needed 1o be sent just before sending the
character to be inserted. Most terminals with a true insert mode will not give ic,
terminals which send a sequence to open a screen position should give it here,
(Insext mode is preferable to the sequence to open a position on the screen if
your terminal has both.) If post insert padding is needed, give this as a number
of milliseconds in ip {a string option). Any other sequence which may need to
be sent after an insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete char-
acters on the same line (e.g, if there is a tab after the ingertion position). If your
terminal allows motion while in insert mode you can give the capability mi to
speed up inserting in this case. Omitting mi will affect only speed. Some ter-
minals (notably Datamedia’s) must not have mi because of the way their insert
mode works,

Finally, you can specify delete mode by giving dm and ed (o enter and exit
delete mode, and dc to delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences 1o enter and exit standout mode these can be
given as 50 and se respectively. If there are several flavors of standout mode
(such as inverse video, blinking, or underlining — half bright is not usually an
acceptable standout mode unless the terminal is in inverse video mode con-
stantly) the preferred mede is inverse video by itself, If the code to change into
or out of standout mode leaves one or even two blank spaces on the screen, as
the TVI 912 and Teleray 1061 do, then ug should be given to tell how many
spaces are left,

September 24, 1987 Page 8

TERMCAP(5) TERMCAF(S)

Codes to begin underlining and end underfining can be given as ns and we
respectively, If the terminal has a code to underline the current characier and
move the cursor one space to the right, such as the Microterm Mime, this can be
given as ve. (If the underline code does not move the cursor 0 the right, give
the code followed by a nondestructive space.)

Many terminals, such as the HP 2621, agtomatically leave standout mode when
they move (o a new line or the cursor is addressed. Programs using standout
mode should exit standout mode before moving the corsor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a
bell replacement) then this can be given as vh; it must not move the cursor, If
the terminal should be placed in a different mode daring open and vissal modes
of ex, this can be given as vs and ve, sent at the start and end of these modes
respectively. These can be used to change, e.g., from a underdine to a block
cursor and back.,

If the texminal needs to be in a special mode when running a program that
addresses the cursor, the codes to enter and exit this mode can be given as ti
and te. This arises, for example, from terminals like the Concept with more
than one page of memory. If the terminal has only memosy relative cursor
addressing and not screen relative cursor addressing, a one screen-sized win-
dow raust be fixed into the terminal for cursor addressing to work properly.

If your terminal comrecly generates underlined characters (with no special
codes needed) even though it does not overstrike, then you should give the
capability ul. If overstrikes are erasable with a blank, then this should be indi-
cated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this
information can be given, Note that it is not possible to handle terminals where
the keypad only works in Jocal (this applies, for example, to the unshifted HP
2621 keys). If the keypad can be set to transmit or not transmit, give these
codes as ks and ke, Otherwise the keypad is assumed to always transmit. The
codes sent by the Ieft arrow, right armow, up arrow, down arrow, and home keys
can be given as ki, kr, ku, kd, and kh respectively. If there are function keys
such as 10, f1, ..., 19, the codes they send can be given as k0, k1, .., k9. If these
keys have labels other than the default f0 through 9, the labels can be given as
10, 1, ..., 19. If there are other keys that transmit the same code as the terminal
expects for the corresponding function, such as clear screen, the termcap 2
letter codes can be given in the ko czpability, for example, ;ko=cliLsfsb:,

Page 9 September 24, 1987

TERMCAP(5) TERMCAP(5)

which says that the terminal has clear, home down, scroll down, and scroll up
keys that transmit the same thing as the cl, L1, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which have single
character amrow keys. It is obsolete but still in use in version 2 of vi, which
must be run on some minicomputers due to memeory limitations. This field is
redundant with kl, kr, ku, kd, and kh. It consists of groups of two characters,
In each group, the first character is what an arrow key sends, the second charac-
ter is the corresponding vi command. These commuands are h for ki, j for kd, k
for ku, 1 for kr, and H for kh. For example, the mime would be
:me="Kj Zk"X]: indicating arrow keys left ("H), dowa ("K}, up ("Z), and right
("X). (There is no home key on the mime.}

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can
be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character other
than "I to tab, then this can be given as ta,

Hazeltine terminals, which don’t allow “ characters to be printed should indi-
cate bz, Datamedia terminals, which echo carriage-return linefeed for carriage
return and then ignore a following linefeed should indicate ne. Early Concept
terminals, which ignore a linefeed immediately after an am wrap, should indi-
cate xn. If an erase-eol is required to get rid of standout (instead of merely
writing on top of it), xs should be given. Teleray terminals, where tabs tum all
characters moved over to blanks, should indicate xt. Other specific terminal
problems may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, che
name of a file containing long initialization strings. These strings are expected
to properly clear and then set the tabs on the terminal, if the terminal has sett-
able tabs. If both are given, is will be printed before §f. This is useful where if
is fusrilibltabsetistd but is clears the tabs firse,

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability t¢ can be given with the
name of the similar terminal. This capability must be last and the combined
length of the two entries must not exceed 1024, Since termlib routines search
the entry from left to right, and since the tc capability is replaced by the
comesponding entry, the capabilities given at the left override the ones in the

September 24, 1987 Page 10

TERMCAP(5) TERMCAP(5)

similar terminal, A capability can be cancelled with xx@ where xx is the capa-
bility. For example, the eniry
hn| 262 Intks@:ke@:tc=2621: —

defines a 2621nl that does not have the ks or ke capabilities, and hence does not
furm on the function key labels when in visual mode. This is vseful for different
modes for a terminal, or for different user preferences.

FILES
fetc/termeap file containing terminal descriptions .

SEE ALSO
ex(1), tser(1), ul(1), vi(1), termecap(3X).

BUGS
Ex alows only 256 characters for string capabilities, and the routines in
termeap(3X) do not check for overflow of this buffer, The total length of a sin-
gle entry (excluding only escaped newlines} may not exceed 1024,
The ma, vs, and ve entries are specific to the vi program.
Not all programs support all entries. There are entries that are not supported by
any program.

AUTHOR

William Joy -
Mark Horton added underlining and keypad support

Page 11 September 24, 1987

TYPES(5)

NAME

TYPES(5)

types — primitive system data types

SYNOPSIS

#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX System code;
some data of these types are accessible to user code:

struct { int r[1]; } = physadr;

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedel
typedef
typedef

long

char +
unsigned int
unsigned short
ushort
short

long

int

short

long

long

long

daddr_t;
caddr_t;
uint;
ushori;
ino_t;
cnt_t;
time _t;
label_t{10];
dev_t;
off t;
paddr_t;
key_t.

The form daddr_t is used for disk addresses except in an i-node on disk,
see fi(4). Times are encoded in seconds since 00:00:00 GMT, January 1,
1970. The major and minor parts of a device code specify kind and unit
number of a device and are installation-dependent. Offsets are measured in
bytes from the beginning of a file. The /abel ¢ variables are used to save
the processor state while another precess is running.

SEE ALSO

fs(4),

UDP(5F) UniSoft UDP (5P}

NAME

udp — Internet User Datagram Protacol

SYNOPSIS

#include <sys/socket.h>
#lnclude < netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION

UDP is a simple, unreliable datagram protocol which is used to support the
SOCK _DGRAM abstraction for the lnternet protocol family. UDP sockets
are connectionless, and are normally used with the sendrv and recvfrom
calls, though the conwecr(2N) call may also be used to fix the destination
for future packets {in which case the recv(2ZN) or send(2N} system calls
may be used).

UDP address formais are identical to those used by TCP, In particular GDP
provides a port identifier in addition to the normal Internet address format.
Note that the UDP port space is separate from the TCP port space (i.e. a
UDP port may not be connected to a TCP port). In addition broadcast
packets may be sent (assuming the underlying network supports this) by
using a reserved broadcast address; this address is network interface depen-
dent.

DIAGNOSTICS

A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which
already has one, or when trying to send a datagram with
the destination address specified and the socket is already
connected;

[ENOTCONN] when trying to send a datagram, but no destination address
is specified, and the socket hasn’t been connected;

[ENOBUFS] when the system runs out of memory for an inlernal data
structure;

[EADDRINUSE]
when an attempt is made to create a socket with a port
which has already been allocated;

[EADDRNOTAVAILI]
when an attempt is made to create a socket with a network
address for which no network interface exists.

SEE ALSO

send(2N), recv(2N), intro(3N), inet(5F)

—~

VALUES (5}

NAME

VALUES (5)

values — machine-dependent values

SYNOPSIS

#include < values.h>

DESCRIFTION

This file contains a set of manifest constants, conditionally defined for par-
ticular processor architectures.

The model assumed

for integers is binary representation (one's or two’'s

complement}, where the sign is represented by the value of the high-order

hit.
BITS (1ype)
HIBITS

HIBITL
HIBIT{
MAXSHORT

MAXLONG

MAXINT

The number of bits in a specified type (e.g., int),

The value of a short integer with only the high-order
bit set {(in most implementations, 0x8000).

The value of a long integer with only the high-order
bit set (in most implementations, 0x80000000).

The value of a regular integer with only the high-
order bit set {usually the same as HIBITS or HIBITL).

The maximum value of a signed short integer (in
most implementations, 0x7FFF = 32767).

The maximum value of a signed long integer (in
maost implementations, 0x7FFFFFFF =
2147483647).

The maximum value of a signed regular integer (usu-
ally the same as MAXSHORT or MAXLONG).

MAXFLOAT, LN MAXFLOAT The maximum value of a single-precision

floating-point number, and its natural log-
arithm.

MAXDOUBLE, LN_MAXDOUBLE

The maximum value of a double-precision
floating-point number, and its natural log-
arithmn.

MINFLOAT, LN_MINFLOAT The minimum positive value of a single-

precision floating-point number, and its
natvrat logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double-

FSIGNIF
DSIGNIF

FILES

fusrfinclude/values.h
SEE ALSO

intro(3), math(5).

precigsion floating-point number, and its
natural logarithm.
The number of significant bits in the mantissa of a
single-precision floating-point number.

The number of significant bits in the mantissa of a
double-precision floating-point number.

VARARGS (5) VARARGS (5)

NAME

varargs — handle variable argument list
SYNOPSIS

##include <varargs.h>

va_alist

va_dcl

void va_start(pvar)
va_list pvar;
type va_arg(pvar, type)
va_list pvar;
void va_end(pvar)
va_list pvar;
DESCRIPTION
This set of macros allows portable procedures that accept variable argument
lists to be written. Routines that have variable argument lists (such as
printf(38)} but do not use warargs are inherently nonportable, as different
machines use different argument-passing conventions.
va_alist is used as the parameter list in a function header.
va_del is a declaration for va_alist. No semicolon should follow va_dcl.
va_list is a type defined for the variable used to traverse the list.
va_start is called to initialize pvar to the beginning of the list.

ya_arg will reiurn the next arguoment in the list pointed to by pvar. Tipeis
the type the argument is expected to be. Different types can be mixed, but
it is up to the routine to know what type of argument is expected, as it can-
not be determined at runtime.

va_end is used to clean up.
Multiple traversals, each bracketed by we_start... wa_end, are possible.

EXAMPLE
This example is a possible implementation of exec/(2).

#include < varargs.h>
#define MAXARGS 100

/= execl is called by
p execl(file, argl, arg2, ..., {char #)0);
*

execl{va_alist)
Era_dcl

va_list ap;

char =file;

char ~args[MAXARGSI:
int argno = 0;

va_start{ap);
file = va_arg(ap, char +);
while ((argslargno+ +] = va_arg(ap, char #}) != (char +)0)

L3

-1-

VARARGS(5) VARARGS (5)

va_end{ap);

return execv(file, args);
/"_"\-,]
!

! SEE ALSO
T exec(2), printf(38).
BUGS

It is up to the calling routine te specify how many arguments there are,
since it is not always possible to determine this from the stack frame. For
example, execl is passed a Zero pointer to signal the end of the list. Pringf
can tell how many arguments are there by the format.
It is non-poriable to specify a second argument of char, short, or float to
va_arg, since arguments seen by the called function are not char, short, or
float. € converts char and short arguments to /nf and converts float argu-
ments to double before passing them to a function.

INTROQ (6)) INTRO (6)

NAME
intro — introduction to games

DESCRIPTION
This section describes the recreational and educational programs found in
the directory fusr/games. The availability of these programs may vary
from system to system.

ADVENTURE (6} Unisoft ADVENTURE({6)

NAME

adventure — an exploration game
SYNOPSIS

/usr/games/adventure
DESCRIPTION

The object of the game is to locate and explore Colossal Cave, find the
treasures hidden there, and bring them back to the building with you. The
program is self-describing to a point, but part of the game is to discover its
rules.

To terminate a game, type “quit’’; to save a game for later resumption,
type “‘suspend”.

BUGS
Saving a game creates & large executable file instead of just the information
needed to resume the game.

ALIENS(6) UniSoft ALIENS (6)

NAME

aliens — The alien invaders attack the earth
SYNIOPSIS

fusr/games/aliens
DESCRIPTION

This is a UNIX version of Space Invaders. The program is pretty much self
documenting.

FILES
fusr/games/lib/aliens.log Score file

BUGS
The program is a CPU hog. It needs to be re-written. It doesn’t do well on
terminals that run slower than 9600 baud.

ARITHMETIC (6) ARITHMETIC (6)

NAME

arithmetic — provide drill in number facts
SYNOPSIS

/usr/games/arithmetic [+ —x/ | [range]
DESCRIPTION

Arithmetic types out simple arithmetic problems, and waits for an answer to
be typed in. If the answer is correct, it types back “‘Right!™, and a new
problem. If the answer is wrong, it replies *“What?"*, and waits for another
answer. Every twenty problems, it publishes statistics on correctness and
the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be gen-
erated;, +, —, x, and / respectively cause addition, subtraction, multiplica-
tion, and division problems to be generated. One or more characters can
be given, if more than one is given, the different types of problems will be
mixed in random order; default is + ~.

Range is a decimal number; all addends, subirahends, differences, multipli-
cands, divisors, and quotients will be less than or equal to the value of
range. Defaull range is 10,

At the start, all numbers less than or equal to range are equally likely to
appear. If the respondent makes a mistake, the numbers in the problem
which was missed become more likely to reappear.

As a matier of educational philosophy, the program will not give correct
answers, since the learner showld, in principle, be able to calculate them.
Thus the program is intended to provide drill for someone just past the first
learning stage, not to teach number facis de novo. For almost all users, the
relevant statistic should be time per problem, not percent correct.

AUTOROBOTS (6) UniSoft AUTOROBOTS {6)

NAME
autorobots — Escape from the automatic robots

(/" SYNOPSIS

‘ Jusr/games/autorobots

DESCRIPTION
The object of the game awrorobots is to move arcound inside of the box on
the screen without getting eaten by the robots chasing you and without run-
ning into any robots or junk heaps. The robots move continuously.

If a robot runs into another robot or junk heap while chasing you, they
crash and leave a junk heap.

You start out with 10 robots worth 10 points each. If you defeat ali of
them, you get 20 robots worth 20 points each. Then 30, etc. Until you get
eaten!

The game keeps track of the top ten scores and prinis them at the end of
the game.

The valid commands are described on the screen.

BACK (6) BACK (6)

NAME

back — the game of backgammon

SYNOPSIS

fusr/games/back

DESCRIFTION

FILES

BUGS

Page 1

Back is a program which provides a partner for the game of backgammon.
It is designed to play at three different levels of skill, one of which you
must select. In addition to selecting the opponent’s level, you may also
indicate that you would like to roll your own dice during your turns {for the
superstitious players). You will also be given the opportunity to move first.
The practice of each plaver rolling one die for the first move is not incor-
porated.

The points are numbered 1—24, with 1 being white’s exireme inner table,
24 being brown’s inner table, ¢ being the bar for removed white pieces and
25 the bar for brown. For details on how moves are expressed, type y
when back asks ‘‘Instructions?’’ at the beginning of the game. When back
first asks ““Move?", type ? to see a list of move options other than enter-
ing your numerical move.

When the game is finished, fuck will ask you if you want postmortem
statistics. If you respond with y, back will attemnpt to append to or create a
file .backlog in your HOME directory.

/usr/games/lib/backrules rules file
$HOME/ .backlog log file

The only level really worth playing is “‘expert™, and it only plays the for-

ward game.
Doubling is not implemented.

July 23, 1983

BCD (6) UniSofl
NAME

bed — convert to antique media
SYNOPSIS

fusr/games/bed text
DESCRIPTION

Bed converts the literal rext into a form familiar to old-timers,

This program works best on hard copy terminals.

BCD(6)

BI{(6) BI(6)

NAME
bj — the game of black jack

SYNOPSIS
fusr/games/hj

DESCRIPFTION
B is a serious attempt at simulating the dealer in the game of black jack (or
twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player “‘natural” (black jack) pays $3. A dealer natural loses $2.
Both dealer and player naturals is a “*push’® (no money exchange).

If the dealer has an ace up, the player is allowed to make an
““insurance’’ bet against the chance of a dealer natural. If this bet is not
taken, play resumes as normal. If the bet is taken, it is a side bet where
the player wins $2 if the dealer has a natural and loses 31 if the dealer
does not.

if the player is deait two cards of the same value, he is allowed to “‘dou-
ble”. He is allowed to pisy two hands, each with one of these cards.
(The bet is doubled also; 32 on each hand.)

If a dealt hand has a total of ten or eleven, the player may ‘‘double
down’’, He may double the bet {32 to $4) and receive exacily one more
card on that hand.

Under normal play, the player may “*hit"’ {draw a card) as long as his
iotal is not over twenty-one. If the player “‘busts™ {goes over twenty-
one), the dealer wins the bet.

When the player “‘stands™ (decides not to hit), the dealer hits until he
attains a total of seventeen or more. If the dealer busts, the player wins
the bet.

If both player and dealer stand, the one with the largest total wins. A
tie is a push.
The machine deals and keeps score. The following questions will be asked

at appropriate times. Each question is answered by ¥ followed by a new-
line for ‘*ves", or just new-ling for *'no".

? (means, ‘“do you want a hit?’*)
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the “‘action™ (total

bet} and ‘‘standing” {total won or lost} is printed. To exit, hit the inter-
rupt key (DEL) and the action and standing will be printed.

CHASE(6) UniSoft CHASE(¢6)

NAME
chase — Try to escape the Killer robots
SYNOPSIS
/ust/games/chase [nrobots | | nfences)
DESCRIPTION
The object of the game chase is to move around inside of the box on the

screen without getting eaten by the robots chasing you and without running
into anything.

If a robot runs into another robot while chasing you, they crash and leave a
junk heap. If & robot runs into a fence, it is destroyed.

If you can survive until all the robots are destroyed, you have won!

If you do not specify either nrobots or nfences, chase will prompt you for
them.

The valid commands are described on the screen.

CRAPS (6) CRAPS (6)

NAME
craps — the geme of craps

SYNOPSIS
/usr/games/craps

DESCRIPTION
Craps is a form of the game of craps that is played in Las Vegas. The pro-
grzm simulates the roller, while the uvser (the player) places bets. The
player may choose, at any time, to bet with the roller or with the House. A
bet of a negative amount is taken as a bet with the House, any other bet is
a bet with the roller.

The player staris off with a **bankroll™ of §2,000,
The program prompis with:
bet?

The bet can be all or part of the player’s bankroll. Any bet over the total
bankroll is rejected and the program prompis with bet? until a proper bet is
made.

Once the bet is accepted, the roller throws the dice. The following rules
apply (the player wins or loses depending on whether the bet is placed with
the roller or with the House; the odds are even). The first roll is the roll

immediately foliowing a bet:
1. On the first roll:
Torll wins for the roller;
2,3, 0r12 wins for the House,

any other number is the point, roll again (Rule 2 applies).
2. On subsequent roils:

point roller wins;
7 House wins;
any other number roll again.

If a player loses the entire bankroll, the House will offer to lend the player
an additional $2,000. The program will prompt:

marker? :
A yes (or ¥) consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a
bet is placed, how many markers are outstanding.
If, at any time, the bankroll of a player whe has outstanding markers
exceeds $2,000, the House asks:

Repay marker?

A reply of yes {or y) indicates the player’s willingness to repay the loan. If
only 1 marker is outstanding, it is immediately repaid. However, if more
than 1 marker are outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is entered (or
just a carriage return), an appropriate message is printed and the program
will prompt with How many? until a valid number is entered.

CRAPS(6) CRAPS(6)

If a player accumulates 10 markers (a total of $20,000 borrowed from the
House), the program informs the player of the situation and exits.

Should the bankroll of a player who has outstanding markers exceed
$50,000, the total amount of money borrowed will be aquwematically repaid
o the House.

Any player wha accumulates $100,000 or more breaks the bank. The pro-
gram then prompts:

New game?
to give the House a chance to win back its money.

Any reply other than yes is considered to be a no {(except in the case of
ket? or How many?). To exit, send an interrupt (break), DEL, or control-
D. The program will indicate whether the player won, lost, or broke even.

MISCELLANEQUS
The random number generator for the die nembers uses the seconds from
the time of day. Depending on system usage, these numbers, at times,
may seem strange but occurrences of this type in a real dice situation are
not uncommon.

CRIBBAGE (6) UniSoft CRIBBAGE(6)

NAME

cribbage — the card game cribbage
SYNOPSIS

/use/games/cribbage [-Irllellq] } name ...
DESCRIPFTION

Cribbage plays the card game cribbage, with the program playing one hand
and the user the other. The program will initially ask the user if the rules
of the game are needed -- if so, it will print out the appropriate section
from Accerding to Hoyle with more (1),

Cribbage options include;

—e
When the player makes a mistake scoring his hand or crib, provide an
explanation of the correct score. (This is especially useful for beginning
players.)

-q .
Print a shorter form of all messages -- this is only recommended for
users who have played the game without specifying this option.
-r
Instead of asking the player to cut the deck, the program will randomly
cut the deck.

Cribbage first asks the player whether he wishes to play a short game (once
around, to 61} or a long game (twice around, to 121). A response of ‘s’
will result in a short game, any other response will play a long game.

At the start of the first game, the program asks the player to cut the deck
to determine who gets the first crib. The user shouid respond with a
number between O and 51, indicating how many cards down the deck is to
be cut. The player who cuts the lower ranked card gets the first crib. §f
more than one game is played, the loser of the previous game gets the frst
crib in the current game.

For each hand, the program first prints the player’s hand, whose crib it is,
and then asks the player to discard two cards into the crib. The cards are
prompted for one per line, and are typed as explained below.

After discarding, the program cuts the deck (if it is the player’s crib) or
asks the player to cut the deck (if it’s its crib); in the later case, the
appropriate response is a number from 0 to 39 indicating how far down the
remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the person who
doesn’t have the crib) leading the first card. Play continues, as per crib-
bage, until all cards are exhausted. The program keeps track of the scoring
of all points and the total of the cards on the table.

After play, the hands are scored. The program requesis the player to score
his hand (and the crib, if it is his} by printing out the appropriate cards
(and the cut card enclosed in brackets). Play continues until one player
reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent o typing
the lowest legal value; when cutting the deck this is equivalent to choosing
the top card.

CRIBBAGE (6} UniSoft CRIBBAGE(§)

FILES

Cards are specified as rank foillowed by suit. The ranks may be specified as
one of: ‘a’, ‘27, °3°, ‘47, °5°, 6, ‘T, 8, 9, 0, Y, ‘q’, and *k°, or alterna-
tively, one of: ace, two, three, four, five, six, seven, eight, nine, ten, jack,
gqueen, and king. Suits may be specified as: 's’, °h’, *d’, and ‘¢’, or alterna-
tively as: spades, hearts, diamends, and clubs. A card may be specified as:
<rank> <{suit>, or: <rank> of <suit>. If the single letter rank and
suit designations are used, the space separating the suit and rank may be
left out. Also, if only one card of the desired rank is playable, typing the
rank is sufficient. For example, if your hand was 2H, 4D, 3C, 6H, JC, KD
and it was desired to discard the king of diamonds, any of the following
could be typed: k, king, kd, k d, k of d, king d, king of d, k diamonds, k of
diamonds, king diamonds, or king of diamonds.

fusr/games/cribbage

AUTHOR

Earl T. Cohen

CUBIC (6) SEE 77T CUBIC (&)

FISH{6) UniSoft FISH (6}

NAME
fish — play **Go Fish”

SYNOPSIS
fusr/zames/fish

DESCRIPTION

Fish plays the game of Go Fish, a childrens® card game. The Object is to
accumulate ‘books’ of 4 cards with the same face value. The players alter-
nate turns; each turn begins with one player selecting a card from his hand,
and asking the other player for all cards of that face vaiue. If the other
player has one or more cards of that face value in his hand, he gives them
to the first player, and the first player makes another request. Eventually,
the first player asks for a card which is not in the second player’s hand: he
replies “GO FISH!” The first player then draws a card from the ‘pool’ of
undealt cards. 1f this is the card he had last requested, he draws again.
When a book is made, either through drawing or requesting, the cards are
laid down and no further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8,
9, 10, j, q, or k when asked. Hiiting return gives you information about
the size of my hand and the pool, and tells you about my books. Saying ‘p’
as a first guess puts you into ‘pro’ level; the default is pretty dumb.

FORTUNE (6) UniSoft
NAME
fortune — print a random, hopefully interesting, adage
SYNOPSIS
fortune
DESCRIPTION

Fortune prints out a random adage.

FILES
fusr/games/lib/fortunes

FORTUNE {6}

HANGMAN (6) HANGMAN(6)

NAME

hangman — guess the word
SYNOPSIS

/usr/games/hangman { erg]
DESCRIPTION

Hangman chooses a word at least seven letters long from a dictionary. The
user is to guess letters one at a time.

The optional argument grg names an alternate dictionary.

FILES
fusrflib/w2006

BUGS
Hyphenated compounds are run together,

LIFE (6} UniSoft LIFE (6}

NAME
life — play the game of life

SYNOPSIS
lfe [-rl

DESCRIFTION
Life is a pattern generating game set up for interactive use on a video ter-
minal. The way it operates is: You use a series of commands to set up a
patternt on the screen then let it generate further patierns from that patiern.

The algorithm used is: For each square in the mairix, look at it and iis
eight adjacent neighbors. If the present sguare is not occupied and exactly
three of its neighbor sqguares are occupied, then that square will be occupied
in the next pattern. If the present square is occupied and two or three of
its neighbor squares are occupied, then that square will be occupied in the
next pattern. Otherwise, the present square will not be occupied in the
next patiern.

The edges of the screen are normally treated as an unoccupied void. If you
specify the —r option on the command line, the screen is treated as a
sphere; that is, the top and bottom lines are considered adjacent and the
left and right columns are considered adjacent.

The pattern generation number and the number of occupied squares are
displayed in the lower left hand corner.

Below is a list of commands available to the user. A # stands for any
number. A " followed by a capital letter represents a control character.

.4 Add a block of elements. The first number specifies the hor-
izontal width. The second number specifies the vertical width.
If a number is not specified, the default is 1.

#c Step through the next # patterns. If no number is specified,
.-Etep forever, The operation can be aborted by typing rubout
delete).

#.#d Delete a block of elements. The first number specifies the hor-
izontal width. The second number specifies the vertical width.
If a number is not specified, the default is 1.

#1 Generate a little flier at the present location. The number
(modulo 8) determines the direction,
#.¥%#g Move to absolute screen location. The first number specifies the

torizontal location. The second number specifies the vertical
location. If a number is not specified, the defauit is 0.

#h Move left # steps. If no number is specified, the default is 1.
#i Move down # steps. The default is 1.

#k Move up # steps. The default is 1.

#1 Move right # steps. The default is 1.

#n Step through the next # patterns. [f no number is specified,

generate the next pattern. The operation can be aborted by typ-
ing rubout (delete).

P Put the last yanked or deleted block at the present location.

LIFE{6) UniSoft LIFE{(6)

q Quit.

#,#y Yank a block of elements. The first number specifies the hor-
izontal width. The second number specifies the vertical width.
If a number is not specified, the default is 1.

C Clear the pattern.

#F Generate a big flier at the present location. The aumber
(modulo 8) determines the direction.

#H Move to the left margin.

#4J Move to the bottom margin.

#K Move to the top margin,

#L Move to the right margin.

#'H Move left # steps. If no number is specified, the default is 1.

#°J Move down # steps. The default is 1.

#°K Move up # steps. The default is 1.

#°L Move right # steps. The default is 1.

R Redraw the screen. This is used for those occasions when the

terminal screws up.
. Repeat the last add (a) or delete (d) operation.
H Repeat the last move {h, j, k, 1) operation.

BUGS
The following features are planned but not implemented:
#.#5 Save the selected area in a file.
R Restore from a file.
m Generate a macro command.
! Shell escape.
e Edit a file.
i Input commands from s file.
AUTHOR

Asa Romberger

MAZE(6) MAZE{6)

NAME
maze — gencrate a maze
SYNOPSIS
/usr/games/maze
DESCRIPTION
Mauze asks a few questions and then prints a maze.

BUGS
Some mazes {especially small ones) have no sclutions.

MO0 (6] MOO {(6)

NAME
moo — guessing game

SYNOPSIS
fusr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. The player guesses four
distinct digits being scored on each guess. A “‘cow™ is a correct digit in an
incorrect position. A *‘*bull™ is a correct digit in a correct position. The
game continues until the player guesses the number (a score of four bulls).

NUMBER (6) UniSoft NUMBER {6)

NAME

number — convert Arabic numerals to English
SYNOPSIS

/usr/games/number
DESCRIPTION

Number copies the standard input to the standard output, changing each
decimal number to a fully spelled out version.

QUIZ {6) QUIZ(6)

NAME

quiz — test your knowledge

SYNOPSIS

fusr/games/quiz [—i file] [—t] [categoryl category2]

DESCRIPTION

FILES

BUGS

Quiz gives associative knowiedge tests on various subjects. It asks items
chosen from category! and expects answers from caregory2, or vice versa.
if no categories are specified, guiz gives instructions and lists the available
categories.

Quiz iells a correct answer whenever you type a bare new-line. At the end
of input, upon interrupt, or when queslions run out, guiz reports a score
and terminates.

The ~t flag specifies “*tutorial>’ mode, where missed guestions are repeated
later, and material is gradually introduced as you learn.

The —i flag causes the named file to be substituted for the default index
file. The lines of these files have the syntax;

line = category new-kine | category : line
category = alternate | category | alternate
alternate = empty | alternate primary

primary character | [category | | option
option { category)

The first category on each line of an index file names an information file.
The remaining categories specify the order and contents of the data in each
line of the information file. Information files have the same syntax.
Backslash \ is used as with s#{1) to quote syntactically significant characters
or to insert transparent new-lines into a line. When either a question or its
answer is empty, guwiz will refrain from asking it.

fusr/games/lib/quiz/index
Jusr/games/lib/quiz/«

The construct “ajab’ doesn’t work in an information file. Use “a{b}™.

RAIN (&) UniSolt RAIN(6)

NAME
rain — animated raindrops display
SYNOPSIS
rain
DESCRIPTION
Rain’s display is modeled after the VAX/VMS program of the same name.
The terminal has to be set for 9600 baud to obtain the proper effect.
As with all programs that use fermcap, the TERM environment variable
must be set (and exported) to the type of the terminal being used.
FILES
Jetc/termcap

AUTHOR
Eric P. Scott

ROBOTS (6) UniSoft ROBOTS (6)

NAME

robots — Escape from the robots
SYNOPSIS

/usr/games/robots
DESCRIPTION

The object of the game robofs is to move around inside of the box on the
screen without getting eaten by the robots chasing you and without running
into anything.

If a robot runs into another robot while chasing you, they crash and leave a
junk heap.

You start out with 10 robots worth 10 peints each. If you defeat all of
them, you get 20 robots worth 20 points each. Then 30, ete. Unitil you get
eaten!

The game keeps track of the top ten scores and prints them at the end of
the game.

The valid commands are described on the screen.

TREK (6)

MNAME
trek — trekkie game

SYNOPSIS

UniSofs

fusr/games/trek [[—a] file]

DESCRIFTION

TREK (6)

Trek is a game of space glory and war. Below is a summary of commands.
For complete documentation, see Trek by Eric Aliman.

If a filename is given, a log of the game is written onto that file. If the ~a
flag is given before the filename, that file is appended to, not truncated.

The game will ask you what length game you would like. Valid responses
are short, medium, and long. You may also type restart, which restarts a
previously saved game. You will then be prompted for the skill, to which
you must respond novice, fair, good, expert, commadore, or impossible.
You should normally start out with a novice and work up.

In general, throughout the game, if you forget what is appropriate the game
will tell you what it expects if you just {ype in a question mark.

COMMAND SUMMARY
abandon
cloak up/down
computer request; ...
destruct
help
Irscan
phasers automatic amount

phasers manual amtl coursel spreadl ...
torpedo course {yes] angle/no

ram course distance
shell

srscan [yes/no]
status

undock

warp warp_factor

AUTHOR
Eric Allman

capture

damages

dock

impulse course distance
move course distance

rest time
shieids np/down

terminate yes/no
visual course

TTT{6) TTT (6}

NAME
ttt, cubic — tic-tac-toe
/ SYNOPSIS
. jusr/games/ttt
- /usr/games/cubic
DESCRIPTION
T# is the X and O pame popular in the first grade. This is a learning pro-
gram that never makes the same mistake twice,
Although it learns, it learns slowly, 1t must lose nearly 80 games to com-
pletely know the game.
Cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are
specified as a sequence of three coordinate numbers in the range 1-4.

FILES
Jusr/games/itt.k learning file

TWINKLE (6)

NAME

UniSoft TWINKLE (6)

twinkle — twinkle stars on the screen

SYNOPSIS

fusr/games/twinkle [-+ [ssave]] [densityl] [density2]

DESCRIPTION

Twinkie causes a specified density of “stars’ to twinkle on the screen. The
following options are available;

density

EXAMPLE

print out the present screen density (the percentage of the screen
that will be filled with stars} in the lower left hand corner of the
screett. This number will change as stars go on and off.

do not ‘randomize’ before starting. The screen starts out com-
pletely blank and stars are added, bit by bit. In this case the density
rises beyond the specified density, then falls to the required percen-
tage.

save binary density on file ‘save’, in case you wanl to see the den-
sity curve that a particular density specification produced during the
life of the show.

I no density is specified, density is .5 (50% of the screen will be
filled with stars).

If only density! is given, density is 1/densityl

If both densityl and density? are given, density is the resultant of
densityl/ {density1 +density2).

twinkle -+ 2 6

would start from a blank screen and twinkle stars to a final density of 2/8,
of 25%. The densities would be shown in the lower left hand corner, as a
three-place decimal.

AUTHOR

Asa Romberger

Page 1

July 23, 1985

WORM {6} UniSoft WORM (6)

NAME

worm — Play the growing worm game

SYNOPSIS

worm [size]

DESCRIPTION

BUGS

In worm, you are a little worm, your body is the "0o"’s on the screen and
your head is the "@". You move with the hjkl keys (as in the game snake).
If you don’t press any keys, you continee in the direction you last moved.
The upper case HIKL keys move you as if you had pressed several (9 for
HL and 5 for JK) of the corresponding lower case key (unless you run into
a digit, then it stops).

On the screen you will see a digit; if your worm eats the digit, it will grow
longer. The actual amount by which the worm will grow longer depends
upen which digit was eaten. The object of the game is to see how long you
can make the worm grow.

The game ends when the worm runs into either the sides of the screen, or
itself. The current score (how much the worm has grown) is kept in the
upper left corner of the screen.

The optional argument, if present, is the initial length of the worm.

If the initial length of the worm is set to less than one or more than 75,
various strange things happen.

WORMS (6) UniSoft WORMS (6)

NAME

wOorms — animate worms on a display terminal
SYNOPSIS

worms [-field] [-length # 1 [-number # 1 [-trail }
DESCRIPTION

-field makes a ‘‘field" for the worm(s) to eat; -trail causes each worm to
leave a trail behind il. You can figure out the rest by yourself,

FILES
Jetc/termeap

DIAGNOSTICS
Invalid length
Value not in range 2 <= length <= 1024

Invalid number of worms
Value not in range | <= number < = 40

TERM: parameter not set
The TERM environment variable is not defined. Do

TERM = terminal type
export TERM

Unknown terminal type

Your terminal type (as determined from the TERM environment vari-
able) is not

defined in /ete/termcap.

Terminat not capable of cursor motion
Y our terminal is too stupid to run this program.

Out of memory
This should never happen.

BUGS
The lower-right-hand character position will not be updated properly on a
terminal that wraps at the right margin.

Terminal initialization is not performed.

AUTHOR
Eric P. Scott

WUMP(5) WUMP (6}

NAME
wump — the game of hunt-the-wumpus

SYNOPSIS
fusr/games/wump

DESCRIPTION
Wump plays the game of “Hunt the Wumpus.”” A Wumpus is a crealure
that lives in a cave with several rooms connected by tunnels. You wander
among the rooms, trying to shoot the Wumpus with an arrow, meanwhile
avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop ¥ou in
some random room.

The program asks various questions which you answer one per line; it will
give a more detailed description if’ you want,

This program is based on one described in People's Computer Company, 2, 2
(November 1973).

BUGS
It will never replace Adventure.

Colophon

Composed at UniSoft Systems Inc.

on the UniPlust Operating System
Designed by the Documentation Department
Printed in Times Roman on Sequoia Matt

