
' 

·o~· 

0 

0 -- ,_, ____ .~---·~~-"'"'""'-- ~- ~.,.,,..,._,.., ,_ r-::: "'"''""',""'~- -~- -. . 
., . . . - . 

- . . - "'' 
--~"-·~--'"''"'""''' ~~ ,..,...~""'"' 
----~~ 'li!!i!l!Mlflltl!l'·~r-:;-

• ...:_ -'-' ...... !.••(q''T'~-



COPYRIGHT 

Copyjiabl c 1985 by Un!Soft Systems. PortioDB of this mstorial have 
been previously copyrigbtod by AT&T Bell Labotatoriess, Western 
El .. tric COtnpaJjy, and Regents of the University of California. Hold­
ers of a UNIX md-UniPtus+ software Hcense are permitted to copy this 
document, or any pOrtion of it, as necessary for licensed use or the 
software, provided this copyright notice and statement of -perinission 
are included. 

DISCLAIMER 

0 

Wlaile UniSoft SystemJ bas endeavored to- exercise care In ,(be 

prepmtton of tlil& guide, lt nevertlleless makes no 1t'i.rranttes of auy 
kW w!tb tecUd to the documentation contained herein, lneltllll:na_-no <~0· 
watraDty ol m.erdUilltUlllty odl:tness for a particular pul'pOse. Ia no 
event shaD UitiSOft be Hable for lncldental or oonsequential d~es 
in eouectlon with or- arlslna out of the furnishing, perfwm•nee, or 
UH ef any Of this doeumentatlon. . 

TRADEMARKS 

UNIX i.,s_a fra(lema;r~ of AT&T Bell Laboratories. UniPlus+ 8Jld UriiSoft 
are registered trademarks of UniSoft Systems. 

Adapted to UniPlus+ by Heather Allen of UniSoft Systems. 0 



INTRODUCTION 

INTRODUCTION 

( This manual describes the features of System V UniP!us+, a UNIX 
operating system. All commands, features, and facilities described in 
this manual are available on UniPlus+. 

This manual is divided into two volumes containing a total of six sec­
tions, some divided into subsections. 

I. Commands and Application Programs: 
1. General-Purpose Commands. 
IC. Communications Commands. 
lG. Graphics Commands. 
IN. Networking Commands. 

2. System Calls. 
2N. Networking Calls. 

3. Subroutines: 
3C. C and Assembler Library Routines. 
3F. FORTRAN Library Routines. 
3M. Mathematical Library Routines. 
3N. Networking Routines. 
3S. Standard 110 Library Routines. 
3X. Miscellaneous Routines. 

4. File Formats. 
4N. Networking Formats. 

5. Miscellaneous Facilities. 
5F. Protocol Family. 
5P. Protocol Descriptions. 

6. Games. 

Section 1 (Commands and Application Programs) describes programs 
invoked directly by the user or by command language procedures, as 
opposed to subroutines, which are called by the user's programs. Com­
mands generally reside in the directory /bin (for binary programs). 
Some programs also reside in /usr/bin, to save space in /bin. These 
directories are searched automatically. Subsection lC contains com­
munication programs such as cu, send, uucp, etc. 

Section 2 (System Calls) describes the entries into the UNIX System 
kernel, including the C language interface. 

1 



INTRODUCTION 

Section 3 (Subroutines) describes the available subroutines. Their 
binary versions reside in various system libraries in the directories /lib 
and /usr/lib. See intro(3) for descriptions of these libraries and the 
files in which they are stored. 

Section 4 (File Formats) documents the structure of particular kinds of 
files. Excluded are files used by only one command (for example, the 
assembler's intermediate files). In general, the C language strud 
declarations corresponding to these formats can be found in the direc­
tories /usr/include and /usr/lnclude/sys. 

Section 5 (Miscellaneous Facilities) contains descriptions of character 
sets, macro packages, etc. 

Section 6 (Games) describes the games and educational programs that 
reside in the directory /usr/games. 

Each section consists of several entries, each a page or so long. The 
name of the entry appears in the upper corners of its pages. Entries 
within each section are alphabetized, except the introduction that begins 
each section. The page numbers of each entry start at l. Some entries 
may describe several routines, commands, etc. In such cases, the entry 
appears only once, alphabetized under its "major" name. 

All entries are based on a common format, not all of whose parts 
always appear: 

2 

NAME gives the name(s) and a brief description of the entry. 

SYNOPSIS summarizes the use of the program. A few conven­
tions are used, particularly in Section l (Commands): 

Boldface strings are typed just as they appear. 

Italic strings usually represent substitutable argument proto-
types (such as filename) which you are expected to substitute _;· 
for the actual name. When an argument prototype is given as 
"name" or "file", it always refers to a file name. 



INTRODUCTION 

Square brackets (I around an argument prototype indicate that 
the argument is optional. 

Ellipses • • • show that the previous argument prototype may 
be repeated. 

A final convention is used by the commands themselves. An 
argument beginning with a minus -, plus +, or equal sign = is 
often taken to a flag argument, even if it appears in a position 
where a file name could appear. Therefore, it is unwise to 
have files whose names begin with-,+, or=. 

DESCRIPTION discusses the program. 

EXAMPLE(S) gives example(s) of usage. 

FILES gives the file names that are built into the program. 

SEE ALSO gives pointers to related information. 

DIAGNOSTICS discusses the diagnostic indications that may be 
produced. Self-explanatory messages are not listed. 

WARNINGS points out potential pitfalls. 

BUGS gives known bugs and sometimes deficiencies. Occasionally, 
the suggested fix is also described. 

At the front of each volume there is a a table of contents and a per­
muted index. The permuted index lists the commands by the informa­
tion in the NAME part of each entry in the User and Administrator 
Manual. The permuted index contains three columns. The center 
column is an alphabetic list of keywords. The last column is the entry 
that the keyword in the center column refers to. This entry is followed 
by the appropriate section number in parentheses. The first column 
contains the remaining information from the NAME part that either 
precedes or follows the keyword. 

3 



INTRODUCTION 

For example, to look for a text editor, scan the center column for the 
word ~editor." There are several index lines containing an •editor refer­
ence, i.e.: 

ed, red: text 
files. ld: link 

editor .............. ed (1) 
editor for common object .............. ld(l) 

You can then turn to the entries listed in the last column, ed(l) and 
ld(l), to find information on the editor. 

On most systems, all entries are available on-line via the man(I) com­
mand. 

4 



TABLE OF CONTENTS 

2. System Calls 

intro • • • • • . • . . • , , introduction to system calls and error numbers 
accept • • • • . • • , , , , • • • • • • • • accept a connection on a socket 
access • • • • • , , , , . . • • • • • • • • determine accessibility of a file 
acct • • • • • • • • , . . • • • • • • enable or disable process accounting 
alarm , , , ...•• set a process's alarm clock 
bind , , . . • • • • • • • • , . . . . . • • • • • bind a name to a socket 
brk • • • • • . . • • • • • • • • • • change data segment space allocation 
chdir . . . . • • • • , , • . . . • . . • • • • • change working directory 
chmod . . • . • • • , • . . . . . • • • • • • • • . . change mode of file 
chown , • , . • • • • . . • • • • , , . • change owner and group of a file 
chroot • • • • • • • • • , , , change root directory 
close , • • • • , , • • • • . . . • . • • • • • • • • close a file descriptor 
connect • • • • • . . . • • • • • • • • • initiate a connection on a socket 
creal • • • • • • • • • • • . . . create a new file or rewrite an existing one 
exec • • . • execute a file 
exit • • • • • • • • • • • • • • • • • • . . . • • • • • terminate process 
fcntl • • • • , • , , . . • • • . • • • • • • • • . • • • • . • file control 
fork • • • • • • • . . . • • • • • • • • • . . . . • create a new process 
gethostid •••...•••••••. get/set unique identifier of current host 
gethostname •••• , , , ...•••••• , get/set name of current host 
getpeername , • . • • • • • • , , , , . . • • get name of connected peer 
getpid • • • • • • , , , , get process, process group, and parent process IDs 
getsockname . • . • • • • • • , • • . . . • • • • • • • get socket name 
getsockopt • • • • • , , . . . . • • • • • • get and set options on sockets 
getuid • • • . get real user, effective user, real group, and effective group IDs 
ioctl . • • • • • • . • • • • • . • . • control device 
kill • • • • • • • • • • • . send a signal to a process or a group of processes 
link • • • • • • • . . . • • • • • • • • . . . • • • • • • • link to a file 
Hsten • • • • • • • • • • • • • • • • . . listen for connections on a socket 
locking , • • . . . . . . provide exclusive file regions for reading or writing 
!seek • • • • . . . . • • • • • • • • • • . . • move read/write file pointer 
mknod ••• , , .....•• make a directory, or a special or ordinary file 
mount . • • • • • • • • • • • • • • • • • • . • • • • mount a file system 
msgctl • • • • • • . . . . . . . • • • • • . . message control operations 
msgget . • . • • . • • • , , , , • . . • • • • • • • • get message queue 
msgop • • • • , , , • • • • • • . • • • • , , , • • • message operations 
nice • • . • • • • • . . • • • • • • • • • • . change priority of a process 
open . . . . • • • • , , , , , , . . . . • • • open for reading or writing 
pause . • • • • • , • suspend process until signal 
phys • • . . . . . • • • • • • • allow a process to access physical addresses 
pipe . • • • . • • • • , , . • • • • • • . • create an interprocess channel 
plock • lock process, text, or data in memory 
profit ••••.....• , • , , , , , , ....• execution time profile 
ptrace • • • • . . • • , , , • • • • • . . . . • • • • • • , process trace 
read • • • • , , , , • • • • . . . • • • • , , • • • • • . read from file 
reboot • , • • . . . . . • • • • , , • . . . . . . • • • reboot the system 
recv • • • • . . • • • , , • • • • • • . . receive a message from a socket 
select ••••••••.....•••••• , synchronous i/o multiplexing 
semctl . . . . • . • • • • • • • • • • • • • semaphore control operations 
semget . . . • • • , • • • • . . . . . . . . • • • • get set of semaphores 
semop • • • • • • • . . . . • • • • • • • • , , , • semaphore operations 
send . • send a message from a socket 
setpgrp • • • • , . . . . . • • • • • • . • • • • • • set process group ID 

- I -



Tabll' af Ca//lt'/1/S 

setregid , , . • • • • • • • • . . • • • set real and effective group ID 
setreuid •••••.•• , , , ••••• set real and effective user ID's 
setuid . . . • • • • • • • , , . , • • • • • • • • set user and group IDs 
shmctl • • • . . . • • • • • • • , • , , shared memory control operations 
shmget . • . • • • • • • • • . . . • • • • • • get shared memory segment 
shmop • . . . • • • • • • • . • . . . . • • • • shared memory operations 
shutdown • • • • • • , • • shut down part of a fuU-duplex connection 
sisnal • • • • • • • • • • . • • • specify what to do upon receipt of a sisnal 
socket • • • • . . . • • • • • • • • create an endpoint for communication 
stat , , • , • • • • • , , , • • • • • • • • • • • • • • • • get file status 
stime • • • • • • set time 
sync . • • • • • • • • • • • • • • • , • , • • • update super-block 
time , , , • • • • • • , , • • • • • • • • • . . • • • • • • • • get time 
times • • • • • • • • • • • • • • • • • get process and child process times 
ulimit • • • • • • • , • • • • • • • , , • • • • get and set user limits 
umask • • • • • • • . . . • • • • • • • • . set and get file creation mask 
umount • • • • • • • . . • • • • • • • • • • • , • unmount a file system 
uname • • • • • • • • • • • • get name of current UNIX system 
unlink . • • • • • • • • . . • • • • • • • • • • , remove directory entry 
ustat . • • • • • • • • • • • • • • • • • • • . . . get file system statistics 
utime • • • . . . . • • • • • . • . . set file access and modification times 
uvar • returns system-specific configuration information 
wait • • wait for child process to stop or terminate 
wait3 • • • • wait for child process to stop or terminate 

3. Subroutines 

intra • • • • • • • , , • • • • , , introduction to subroutines and libraries 
a641 , • • • • • • . . convert between long integer and base-64 ASCII string 
abort . . • • • • • • . , , • • • • • • • • • • • • generate an lOT fault 
abort . . • • • terminate Fortran program 
abs • , . • • • • • • . . . • • • • • • • • • return integer absolute value 
abs . . • • • • • • • . . . • • • • • • • • • • • . Fortran absolute value 
acos • • • • • , , • • • • • • . • . . . Fortran arccosine intrinsic function 
aimag • , • , . • • • • • • • . Fortran imaginary part of complex argument 
aint • • Fortran integer part intrinsic function 
asin • • • • • • • , • • • • • • • • • • • Fortran arcsine intrinsic function 
assert • • • , • . . . • • • • • • • • • • • • • • verify program assertion 
atan . • • • • • • . . . , • • • • • • Fortran arctangent intrinsic function 
atan2 • • • • • • • • , . . • • • • • • Fortran arctangent intrinsic function 
atof • • • • • • • . • • • • • convert ASCII string to ftoating-point number 
bessel . • • • • • • • • . • • • Bessel functions 
bit • • • • • • • • • • • • • block transfer data 
boo! • Fortran bitwise boolean functions 
bsearch • • • • • • • binary search a sorted table 
bstrins • • • • • • bit and byte string operations 
byteorder • • • • • • • , convert values between host and network byte otder 
clock • • • • • • • . • • • • • • • • • • • • • • • report CPU time used 
conjg , • • • • • • • . . • • • Fortran complex conjugate intrinsic function 
conv . • • . • . • • • • • • translate characters 
cos • • • • • • • • • • • • • . • • • • • • Fortran cosine intrinsic function 
cosh • • • • • • • , • • • • • • Fortran hyperbolic cosine intrinsic function 
crypt • • , , • • • • . . . • • • • • • • • • • , generate DES encryption 
ctermid • • • . , , • • • • • , • . • • . • generate filename for terminaJ 
ctime • • • • • • • . . . . • • • • • • • • convert date and time to string 
ctype • , , • • • • • • • • • • • • • • • • • • • • • • classify characters 
curses • • . • • • • • • • • CRT screen hand.lins and optimization package 

- 2 -



Table of Contents 

cuserid . . . . . • • • • . . • . • • • get character login name of the user 
dial • . • • • • . • . . . . • establish an out-going terminal line connection 
dim • • . . • • • • • • • • • • • • • positive difference intrinsic functions 
directory • • • • • • • • • • . • • • • • flexible length directory operations 
dprod • • • . . . • . • . . • • • double precision product intrinsic function 
drand48 . . generate uniformly distributed pseudo-random numbers 
dup • • • . . . . • • duplicate a descriptor 
dup2 • • • • • • • • • • • • • . . . . . . duplicate a descriptor 
ecvt • • • •••••••• convert floating-point number to string 
end . • • • • • • . • • • • last locations in program 
erf • • • • • • • • • • . . error function and complementary error function 
exp • • • • • • . . • • • • . • _ • • Fortran exponential intrinsic function 
exp •......••• exponential, logarithm, power, square root functions 
fclose • • • • • • • • . . . • • • • • • • • , • • . close or flush a stream 
ferror • • • • • • • , , • • • . . . . . . . • • • • stream status inquiries 
floor •......•••• floor, ceiling, remainder, absolute value functions 
fopen • • • • • • • • • . . • • • • • • • • • • • • . • • . open a stream 
fread ••••••..•••••••..•.••••• binary input/output 
frexp • • • • • . . • • . • • • • manipulate parts of floating-point numbers 
fseek . . • . • • • • • • • . . • . . . reposition a file pointer in a stream 
ftw • . . . . . . • • • • • • • • • • • . . . . . . . • • walk a file tree 
ftype • • • • • • • • • • . . . . • . . • • explicit Fortran type conversion 
gamma . . . • • • • • • • • • • • • . . . . . . • • log gamma function 
getarg ••••...••••..•. return Fortran command-line argument 
getc • • • • • • • • • • • • • • • • • get character or word from a stream 
getcwd . . • . • • • • . • • get pathname of current working directory 
getdtablesize • • • • • • • . . . . . . . • • • • • get descriptor table size 
getenv . • • • • • • • . . • • • • • • return value for environment name 
getenv • • • • • • • • . . • • • • • • return Fortran environment variable 
getgrent • • • • • • . . • • • • • • obtain group file entry from a group file 
gethostent • • • • • • • • • . . . . . • • • • • • • get network host entry 
getlogin , . . • • • • • • • • . . . . . . • • • • • • • • get login name 
getnetent . . . . • • • • • • • • • • • • . . • . • . . get network entry 
getopt • • • • • • . • • • • • . . . get option letter from argument vector 
getpass • • • • • • read a password 
getprotoent . . • . . get protocol entry 
getpw • . . • • • • • • • • • • • . • • . . . • • • • get name from UID 
getpwent . . • • • • . . . • • • • • • . . • • • • get password file entry 
gets . . • • • • • • • • • . . . . . . . . • • • get a string from a stream 
getservent . . • . • • • • • • • • . . . . . . • • • • • get service entry 
getut • • • • . . . • • • • . . • • • • • . . . . • access utmp file entry 
hsearch • . . • • • • • • • • • • . • • . • • • manage hash search tables 
hypot • • • • • • • . . . . • • • • . . . • • • Euclidean distance function 
iargc ••••••••..••••••••••••.....•••••• 
index ••••.•••••••••••• return location of Fortran substring 
inet • • • . • • • • Internet address manipulation routines 
insque . • • • • • • • • • . . . • . • insert/remove element from a queue 
killpg • • • • • • • • • • • • . . send signal to a process group 
lltol • • • • • • • . . . . convert between 3-byte integers and long integers 
ldahread • read the archive header of a member of an archive file 
ldclose • • . . . . . • • • • • • • • • • • . . • close a common object file 
ldfhread • • • • • • • . . . . • read the file header of a common object file 
ldgetnarne •••••••••••••.• retrieve symbol name for object file 
ldlread • • • manipulate line number entries of a common object file function 
ldlseek ••• seek to line number entries of a section of a common object file 
ldohseek • • • • • • • seek to the optional file header of a common object file 
ldopen • • • • . • • • • • . • • • • open a common object file for reading 

- 3-



Table of Comems 

ldrseek , , seek to relocation entries of a section of a common object file 
ldshread ... read an indexed/named section header of a common object file 
ldsseek . . • • • • seek to an indexed/ named section of a common object file 
ldtbindex . compute the index of a symbol table entry of a common object file 
ldtbread • • read an indexed symbol table entry of a common object file 
ldtbseek • , seek to the symbol table of a common object file 
len • • • . . . • . , , , , , , return length of Fortran string 
lockf • • . . . . • . . . • . . . • • . . record locking on files 
log • • • • • • • • • • • • • • • Fortran natural logarithm intrinsic function 
loglO ..•••••.•.••. Fortran common logarithm intrinsic function 
logname . • • • • • • . . . • • • . • . . . • • return login name of user 
!search • • • • • • • • • • • • • • • • • • . • • linear search and update 
malloc . • • , main memory allocator 
malloc . . . • • fast main memory allocator 
matherr , , , ••• error-handling function 
max • . . Fortran maximum-value functions 
mclock • • • • • • • • • • • • • • • . • • return Fortran time accounting 
memory . . . • • . , , . • • • , , , , , • • . , , , memory operations 
min • • • . . • • • • . . . • • • • . . Fortran minimum-value functions 
mktemp • • • • • • • • • • • • • • • • • • • • • make a unique filename 
mod ••...•••....••. Fortran remaindering intrinsic functions 
monitor • • • . . . • • • • . . • • • • • • . . . prepare execution profile 
nlist • • • • • • • • • • • • • • • • • • • • • • get entries from name list 
perror • . . • • • • . . . . • • . . . . . . • • • • system error messages 
plot • • • • • . . . • • • • . . . • • • • • graphics interface subroutines 
popen • • • • • • • • • • • • • • • • • • • initiate pipe to/from a process 
printf . • • • • . . . print formatted output 
pule • . • • • • • • • • • • • • • • • • put character or word on a stream 
putenv , • • • , , , • • • • , , , , , change or add value to environment 
putpwent • . • . • • . • . • • • • • • . . . . . write password file entry 
puts • • • • • • • • • • • • • • • • • • • • • • • put a string on a stream 
qsort • • , , • • • • , , , • • • • , • . . . • • • • • • . . quicker sort 
rand • • • . . • • • . . . . • • • • • • simple random-number generator 
rand , , • • • , , • • • • . , , Fortran uniform random-number generator 
rcmd • . • • • • • . . routines for returning a stream to a remote command 
readv • • • • , , • • • . . , , • • • • • • , , , • • • • , read from file 
regcmp • • • , • • • • • . . • • • compile and execute a regular expression 
rexec • . . . • • • • . . • • • • . . . return stream to a remote command 
round • • • • • • • • • • • • • • • • • • Fortran nearest integer functions 
scanf • • • , . • • • . . • • • • • . . . . • • • convert formatted input 
setbuf • • • , , , • • • , . • • • • • • , , , assign buffering to a stream 
sctjmp • • • , • • • • • , • • • • • • • , , . . • • • • . non-local goto 
sign • • . . . • • • • . . • • . . Fortran transfer-of-sign intrinsic function 
signal , ••••••••• specify Fortran action on receipt of a system signal 
sin , , , • • • • , • • • • , , , , • • • • • Fortran sine intrinsic function 
sinh , , • , , • • • . . • • • • • Fortran hyperbolic sine intrinsic function 
sinh . . • • • • • • • • • • • • • • • • • • • • • • hyperbolic functions 
sleep • • • • , • • • , , , • • • • • • • • • suspend execution for interval 
sputl • , , • • • • access long integer data in a machine independent fashion 
sqrt • . • • • • . • • • • • • , , • Fortran square root intrinsic function 
ssignal , • • • , , , • • • • • • . . . • • • • • . . • • software signaJs 
stdio. . .•• standard buffered input/output package 
stdipc • • • • , , • • , standard interprocess communication package 
strcmp , , • • • • • • • • • • • • . . string comparision intrinsic functions 
string • • • • • • . . . • • . , , , , • • • • • • • • , string operations 
strlod • convert string to double-precision number 
strtol • • . , • • • convert string to integer 

- 4-



·-~ 

Table af Contents 

swab • • • • • • • • • • • , . . . • • • • , • • • . • • , , , swap bytes 
system • • • • , • • . . . • • • • • • issue a shell command from Fortran 
system • • • . . • , • • • • issue a shell command 
tan • • • • • • • • Fortran tangent intrinsic function 
tanh • Fortran hyperbolic tanjent intrinsic function 
termcap • terminal independent operation routines 
tmpfile • . • . • • • • , • , create a temporary file 
tmpnam . . • • • • • • . • • • • • create a name for a temporary file 
Iris • . • . • • • • . • . . • • • • • • • • • • • trigonometric functions 
tsearch • • , , , . • • • • , , , • . . . , , , manage binary search trees 
ttyname • • , , , • • . • • , , • • • • • , • , , find name of a terminal 
ttyslot • • • • . . • • • • , find the slot in the utrnp file of the current user 
ungetc • • . . . • • push character back into input stream 
vprintf • print formatted output of a varargs argument list 
vprintf • • • print formatted output of a varargs argument list 
write • . write on a file 
writev • • • • , , , , . . . • , , , , • • • • write on a file 

4. File Formats 

intro • • • • • • • • • • • • • • • • • . . . • introduction to file formats 
a.out • • • • • • • . . • • • • • common assembler and link editor output 
a.out5.0 •..•••••••..••••• assembler and link editor output 
acct • • • • • • • • , , • • • • • , , • . per-process accounting file format 
altblk • • • , , , . . • • alternate block information for bad block handling 
aouthdr •••••••••. aouthdr.h- a.out header for common object files 
ar • • • • • • • • • . . . • • • • • • • • • , common archive file format 
arS.O • • • •••• archive (library) file format 
checklist . . • • • • • • • • • • list of file systems processed by fsck 
core • , , • • • • • • . . . • , • • • format of core image file 
cpio • • • • • • • • • • • . • • • • • . • . . format of cpio archive 
dir • . . . • • , , • • • • , , . . • • • • , • format of directories 
errfile • • • , . • . • • • • , . . . . • • , • • • • • error-log file format 
filehdr • • . . • • • • • • • . . • • • • file header for common object Iiles 
fs • • • • • • • • • • • • • • • • • • • • • • • format of system volume 
fspec • • • • • • • • • • • • • • • • • • , format specification in text files 
gettydefs • • • • • • • . . . • • • speed and terminal settings used by getty 
group • , , • , • • • • group file 
hosts • • • , • • • • • • • . . . • . • • • • • . . . host name data base 
inittab • • , • • • • . . • • , , • • • • • • • • script for the init process 
inode . . • • • • • • • • • • • • • • • • • • • • • • • format of an inode 
issue • • • • • • • . • • • • • • • • • • • , , , • issue identification file 
ldfcn • • • • • • • • • • . . • • • • • • common object file access routines 
linenum . • • , , • • • • • • • line number entries in a common object file 
master • • • . . . . • • • • • • • • • • • master device information table 
mnttab • • • • • • • • • • • • • • • . . . . . . mounted file system table 
networks • , network name data base 
passwd • • • • • , • • • • • • • • password file 
plot • • • • • . . . . • • • • • graphics interface 
pnch . . • • , • • file format for card images 
profile • • • setting up an environment at login time 
protocols • , . . • • • • • protocol name data base 
reloc • • • . . • • • • • • . relocation information for a common object file 
sccsfi.le • • . • • • • • . . . • . • • • • • • • . • • • format of sees file 
scnhdr . • • , • • • • • • • , , , • section header for a common object file 
services • . . . • • • • • • . . . . . . • • • • • • service name data base 
syms • . • • • . . • • • • • • • • common object file symbol table format 

-' -



Table of Conlenls 

te•m 
term info 
ttytype • • • 
utmp •••• 

• • • • • • • • • • • • • • • • format of compiled term file. 
. • • • terminal capability data base 
• data base of terminal types by port 
• • • utmp and wtmp entry formats 

S. MtseeUaneous Facilities 

intro • • • • • • • • • • • • • • • • • • • • • • introduction to miscellany 
arp • . . . . • • • • . . . . . . . . . . . . Address Resolution Protocol 
ascii • • • • • . • . • • • • • • • • • • • • • map of ASCII character set 
environ • • • • • • • • • • • • • • • • • • • • • • • • user environment 
cqnchar • special character definitions for cqn and ncqn 
fcntl • • . . . • • • • • • • • • • • • • • • , • • • • file control options 
greek ••••••••••••• graphics for the extended TTY-37 type-box 
inet • • • • • • • . • • • • • • • • . • • • • • • Internet protocol family 
intro • • • • • • • • • • • • • • • • • introduction to networking facilities 
ip • • • • • • • • • • • • • • • • • . . . • • • • • • • Internet Protocol 
lo • • • . • • • • • • software loopback network interface 
man • • • • • • • • • • • • • macros for formatting entries in this manual 
math • • • • • • • • • • • • . . . • . • • • math functions and constants 
mm • • • . • • • • • • • the MM macro package for formatting documents 
mosd . • • • • • the OSOD adapter macro package for formatting documents 
mptx • • • • • • • . . . the macro package for formattins a permuted index 
mv . • • • • • • a troff macro package for typesetting view graphs and slides 
prof • • • • • • • • • • • • • • . . • • • • • • • profile within a function 
pty • • • • • . • • • • • • • • • • • • • • • • • • pseudo terminal driver 
regexp • • • • • • • • • • • regular expression compUe and match routines 
stat • • • • • • • • . . • • • • • • • • • data returned by stat system call 
tcp • • • • • . • • • • • • • • • • Internet Transmission Control Protocol 
term • • • • • • • • • • • • • • • . • conventional names for terntinals 
termcap • • • • • • • • • • • • • • • • • • • terminal capability data base 
types • . • • • • • • • • • • • • • • • • • • • primitive system data types 
udp • • . . • • • • • • • • • • • • • • • Internet User Datagram Protocol 
values • • • machine-dependent values 
varargs • • • . . . • • • • , • • • • • • • • handle variable argument list 

6. G•mes 

intro . • • • • • • • • . . • • • • • • • • • • • • • introduction to games 
adventure • • . . . • • • • • • • • • • • • • • . • . an exploration game 
aliens • . . . • • • • • • • • • • • • • The alien invaders attack the earth 
arithmetic , , • • • • • • • . . • • • • • • • provide drill in number facts 
autorobots • • • . . • • • • . • • • • • • Escape from the automatic robots 
back • . . . • • • • • • , • • • • • • • . • • • the game of backgammon 
bed • • • • • • • • • • • • . • • • • • • • • • , convert to antique media 
bj • • • • • • • . . • • • • • • • • • • • • • • • . the game of black jack 
chase • • • • . . . • • • • • • • • • • • • • Try to escape the killer robots 
craps • • • • • , • • • • • • • . . . • • • • • • • • • the game of craps 
cribbage • • • • • . . . • • • • • • • • • • • • • the card game cribbage 
fish ••••••••..••••••••..••••••• play "Go Fish" 
fortune . . . • • • • , • . • • print a random, hopefully interesting, adage 
hangman • • • , • . • • • • . , , , , • • • • • • . • . • guess the word 
life • • • • • • • • , • • • • . . • • play the game of life 
maze • • • • . . . , • • • • . . . . . . • • • • • , • • generate a maze 
moo • • . . • , • • • • • . . . • • • • • • • • • • . • • guessing game 
number • convert Arabic numerals to English 
quiz • , , • • test your knowledge 
rain • • • • . . . animated raindrops display 



Table of Contents 

robots • • • • • • • • • • • • • • • • • • • • . . Escape from the robots 
trek • . • • • • • • • • • • • • • • • • • • • • • . • • • • trekkie game 
ttt • • • • • • • • • • • . . • • • • • • • • • • • • • • • • . tic-tac-toe 
twinkle • • • . . . . . • • • • • • • • • • , , twinkle stars on the screen 
worm • • • • • • • • • • , • , • • • • • • • Play the growing worm game 
worms • animate worms on a display terminal r wump • • • • • • • • • • • • • • • • • • • the game of hunt-the-wumpus 

- 7 -





c 

r 

c 

COMMANDS 

300(1) ... ........ llandle special functions of DASIJOO terminal 
300s (St't' J{}{}(JJJ .•• . .......................... handle special functions of DASl 300s terminal 

4814(1) ............................ . 

450(1) ............... . 

_nit (&e <'Jiii(}}J 

__ t.lower (Sff nm••(JCJJ ............. . 
_teupper (S.... mm•(.IC)) 

...... 1(4) 

. ................. pqinator for the Tektronix 4014 terminal 

. .... handle special functions of the DASI 450 terminal 

......................................... terminate process 

. ... translate characters 

........... translate ctu.racters 

......... common auembler and link editor output 

a.autS.OI·O ....... . .......... assembler and link editor output (System V a.out format only) 
a6410CI ............... . ..convert between long integer and base-64 ASCII string 

allort(lC) ······•••····••••••····•••• 
abottUF) 

... uc> 

... IJF) ................... . 

..... .generate an lOT fault 

...................................... terminate Fortran proaram 

......... return integer absolute value 

........................ Fortran absolute value 

acce"(IM). .............................. . ........ allow LP requests 

acceptiZN) ............ ................................. . ..... a~pt a connection on a $0Cket 

acte!lsU)... .......................... . .......................... determine accessibility of a file 

KCt(lM) ..... ......................... . .......... overview of accountina 

KCt(l) ............................. . ...................... enable or disable process accounting' 

KCt(4) ...... . ............. per·process aeeounting file format 

KCtcmsUM) .... . ......... command summary from per-proeess aecounting records 

aeetmmU) ........................ . .. sean:h and print process accounting file(s} 

aeetm•UM) ... 

acctconl (Seeo•~·troJI(IMJJ .... 

aeeteG~~l (Seeorm:mdiMJJ ••••.......•. 

acctdlsk (See O<"<"lf/MJJ . ...•.••.......•.... 

. ....... conneet·time accounting 

. ...... connect·time accounting 

. ......................... connect-time accounting 

. ....................... miscellaneous accounting command 

acctd1111 (S<'f' o<"t·dJM!J ................................. miscellaneous accounting command 

.eetrn.e111(lM). . ............... . 
ICdoa (Set>ut-c/(IM!J 

.:etprcUM) ......................... . 

acctprd (See O<"<"tprcfiM!J .••••••••••• 

aeetprcl: (See ampn."(/M}} 

a«tshUM). . .............. . 
acclwtmp (S<'f' acrtfiM}J 

aees <See trigOMIJ .....••• 

.-(Jf)..... ······················ 
Umln(l) ...... . 

-1-

. .............. merse or add total accounting Hies 

............ miscellaneous accounting command 

..process accounting 

. ........................................ process accounting 

..................... process accounting 

. ..... shell procedures for accounting 

.miscellaneous accounting command 

. ..................................... trigonometric function 

............. Fortran arccosine intrinsic funetion 

. .......... create and administer sees files 



COMMANDS 

M•e•hlre(6) ....... . 
almq(Jf) ............................. . 

l.int(lF) ........ . 

alarm Ill ................................ . 

alluesi7NI ....................... . 

allens(6) .................... . 

. ........................................ an ex.ploration game 

. ..... Fortran imacinary part of complex araument 

.Fortran integer part intrinsic function 

. .... set a proceg's alarm clock 

. ............ aliases file for delivermail 

. ......... the alien invaders attal:k the earth 

. ...... Fortran naturalloprithm intrinsic funttion 1101 ISet•lwdJf"JI ...••... 

ale~~ll (St•,• la~-:lfi(.U")) ................. Fortran common loprithm intrinsic function 

altb1U41 ........ . 

a•axO (S.'t• mmdJFIJ •••...••.. 

amaxl IS.'C' mw:Uf"}) ....... . 

a•inl (St't- minUf"IJ ..... . 

amlnl (St't' nlinUf"}) ..•......•.• 

••" (Set• ,,.d(Jf"JJ. 
an• (Set· bm/(JFIJ ..•.... 

a•lnt (S.'t• roundUf"IJ •.... 

-•Wr(4) ...... . 

. ..... alternate block information for blld block handlin& 

. ........................... Fortran maximum-value function 

. ... Fortran maximum-value function 

. ........ Fortran minimum-value function 

. ............. Fortran minimum-value function 

. ........... Fortran remainderin& intrinsic: furu.1ion 

. .......... Fortran bitwi~~e boolean furu:tion 

................ Fortran nearest intqer function 

. ..... a.out header for common object files 

. ...... archive and library maintainer for portable archives 
.r(l) ····························· 
ar(4) .........................•.. 

arS.O(l) ....... . 

ar5.0(4) ......................... . 

. ...............•....................... common an:hive file format 

...... archive and library maintainer (System V a.out format only) 

. ... .archive (library) file format (System V a.out format only) 

arllh..etk(6) ...... . . ........ provide drill in number facts 

ar•I5P) ......... . . ................ Address Resolution Protocol 

as(l) ................ . . ................... common assembler 

asS,O(l). ............................... assembler (System V a.out format only) 

ualt) ........................ . 
ascU(S) ........•••....•••••...••••••....••• 

llHiime (St-t-,·tilfi<'(.J("IJ 

asia (St-e trii((JMJJ •••... 

asi•<JF) ... . 
usert(lX) ......... . 

at(l) ............................. . 

ataa (St-e lriJ(OMh ... . 

atan<JF) .......... . 
atanl (Set• lrixOMh ••.....••••.....•.• 

atlnl(JF) 

atofllC) ........ . 

atel IS<'<' smoiOCIJ ....••••••. 
atoJ (S<'>' strloiUCh 

-2-

. ......... .interpret ASA carriqe control characters 

. ........................... map of ASCII dulral:ter set 

.... convert date and time to string 

. ..................... trigonometric function 

. ..... Fortnln arcsine intrinsic function 

. ......... verify program assertion 

......... execute commands at a later time 

. ............................. trigonometric function 

......... Fortran arctansent intrinsic function 

. ............. tri1onometric function 

......... Fortran arctanr;ent intrinsic function 

.convert ASCII suins to lloatin&-point number 

. .... convert strins to inte(!:er 

..... convert strinr; to integer 



COMMANDS 

anloro1Mtts(6) ......... . ...... escape from the automatic robots 

awk(l) ........................... .. ... pattern scanning and processing langua&e 

back(6) ..................... ..................................... .. ..... the pme of backJammon 
badblkUM) ............................ . ... proaram to set or update bad block information 
bannu(l) ........ . ............................. make posters 
banner7(1) ................ .. .. ................................. : ............ print lar&e banner on printer 
basename(l). ...deliver portions of path names 
batch (S,., ad/))...... .. ................................. e)(«Ute commands at a later time 

be( I).. ............................................... .. .. arbitrary-precision arithmetic Jangua1e 
001(6) ...... 

bebeekn: CSt't' bn·(JM!J ................... .. 

bemp (S.'<' bslrin~:(JN}J 

bcepy (S.'t' bstrin~:(JN}J 

beopyUMJ ................... .. 
WJtr(l)..... .. .............................. .. 
bene! OM) ... 

............. convert to antique media 

.. ............... system initialization shell saipt 
...................... byte string operation 

.... byte strin& operation 
.. ...................... .interactive block copy 

............ bil diff 
. .................................. Bessel functions 

Ws(l) ...................................... ............................... .. ...... bil file saanner 
blnd{lN). ...................... .. ............................... bind a name to a socket 
11:1£61....... ................... .. ................... the game of black jll(:k 
blt(3C) .......................... .. 

blt.!ill (S.'<' bltUCJJ ........................ . 
... block transfer data 

.. .. block transfer data 
booi(JF)..................... .. ................. . .. ....... Fortran bitwise boolean functions 
l:loot(8) 

bn:<tM) ........... . 
brk(l) ............. .. 
bs(l) 
Hem:h(JC) ...... 

bstrln10N) 

............................ su~rtup procedures 

... system initialization shell script 
.. ................ change dala segment space allocation 

. ....... a compiler/interpreter for modest-sized programs 
.. ....................................... binary search a sorted table 

......................................... bit and byte string operations 
byteortlerUN>................. . ...... convert values between host and network byte order 
bzero (S<'t' bstrmg(JN}J .................. .. ....................... byte string operation 

cabs C&e absfJF!J ....... . ................................... Fortran absolute value 

cal(l) .: .. ,.. . .............................................................................................. print calendar 
calendarU) ... 

calloc (See malloc(JC}J. 

calloc (See malloc(JX}J ......................... . 

cancel (See /p(l)) 

cat(J) .............................. . 

eb(l) 

edU. 

-3-

. ..................... reminder service 
. ................... main memory allocator 

. ........................... fast main memory allocator 

................. cancel requeslS to an LP line printer 
.......................... concatenate and print files 

........................ C program beautifier 

....... C compiler 



COMMANDS 

c:c5.0(1) ........ ·················· .................... C compiler (System V a.out format only) 

eea (Set- t-osUFJJ ...•••••.....••••. . ..•................. Fortran cosine inlriru;ic function 
a:l<t)....................................................................... . ........ chanae working directory 

a:l((l) ...•••..•••••..••••••...••••••......... . .... chs111e the della commentary of an sees delta 
cell (Set-.ffoorfJM}J ••••••...••••....•••••.. . ..................... ceiling function 
ce1:p (S<'t' expUF}J ...... . 

e....,U) ......................... . 
char (S,....I/;"f't'UFJJ •.•••••.....••... 

ch•r&efee (Sfi• at."Cilh(JM}J. 

eh-(6) ............................. . 

. ....... Fortran exponential intrinsic function 

. ................................... generate C Dowaraph 
. ....... explicit Fortran type conversion 

. ......................................... shell procedure for accounting 

. ................. try to escape the killer robots 
ehdlr(Z) ................................................... . . ........... change working directory 
checkall<tM) ... . .................................. faster file system checking pr01:edure 

elledl.ew (Set- (w(JJJ ............... . ........•.... check text prepared with cw commands 
cllecke41 (Set' t>qn(J}J .••••••.••••••••••••••••••••••••• check text prepared with CCIID or neqn commands 

dledlllad<l) .................. . ............ list of file systems processed by fsek 
dleekm• (Snmm(J}J ••••..••••. . ........ check documents formatted with the MM macros 
di1MIIUMI ............ .. . .........................•.... change current UNIX system nodename 
dllrp (Sndwwn(JJJ •••.. . ................. chanae group 
c•mtot~(l) ......................................... . . ............... chan1e mode 
dlmCNICZ) .................... . ........... change mode of file 

dJown(l) ............................ . ....... ........... ........................... . ........ chanae owner 

dJownW ........ . ............. chanae owner and group of a file 

ch1*1tUM) .......................... .. . ...... change root directory for a command 

dJI-.ot(Z) ..... . ................... . . ......................... change root directory 
ckpiiiD (Stot' oa:tsh(JMJ)...... ............................ . ..... shell procedure for accounting 

clear(l) ................................... .................... . ..... clear terminal screen 
c:leuerr (Set- forrorfJS}} ....•••....••••.. . ....................... stream slatus inquiry 
cloek(lC) ...................... . 

c ... (Sfi> lox OF» .................. . 
c:lese(Z) ........... . 

dosedlr (See dim·mry(JX}J 

dri(lM) ................... . 

CIBp(l).. . ...................... . 

cmpiJ: (Stot'.fl)if'E'UFJJ ... . 

col( I) ...... ~ ................ . 

com•m .. 
commU) ............ . 

. ...... report CPU time used 

. ... Fortran natural logarithm intrinsic function 
..................... dose a file descriptor 

. .. flexible Length directory operation 

. .... dear inode 
..... compare two files 

. ..................................... explicit Fortran type conversion 
................................ fitter reverse line-feeds 

. .... combine sees deltas 
. .............. select or reject lines common to two sorted files 

coniii(IM) ... . ............................... . ....................................... configure system 

conj1(3F) .... . . ...................................... Fortran complex conjugate intrinsic function 

-·-



connectUN) .... 

COPV(l) ··••••·••••••• 

conv(lC). 

core(4) ....................... . 
cos (See lriKUM}) ... . 

cosUF) ......................... . 
cosh (See si11hUM}) 

coshUFI...... . ................ . 
cp(ll ......... . 

COMMANDS 

. ........ initiate a ~onne~tion on a socket 

......... obje~t file ~onverter 

. ............................................... translate characters 
....................... . .............................. format of core image file 

. .................................. trigonometri~ fun~tion 
. .................. Fortran cosine intrinsic function 

......................................... hyperbolic function 

. .............. Fortran hyperbolic cosine intrinsic function 
........................................... copy files 

cplo(l) ... . ................................... copy file archives in and out 

tplo(4) ...................................................... ................. . ............. .format of cpio archive 
cpp(l) 

tp.S.O(I) .. 

..... the C laDJuage preprocegor 

...... the C language preprocessor (System V a.out format only) 
cpset<tMI .................................................................. install object files in binary directories 
l:r.ps(6) 

crash(B) .. 

creat(2) 
crlhbqe(Ci) .................... . 

cronUMI ... . 
crontab(l) ...................... . 

..................................... the game of crapS 
. ........................... what to do when the system crashes 

.................................... create a new file or rewrite an existilli one 

.the card same cribbage 
. ................................................................... clock daemon 

. .. user crontab file 
crypt(l) ........................... . . ..................................... encode/decode 
cryptOCI .. . . ................................................. generate DES encryption 
nh(ll .... a shell (command interpreter) with C-like syntax 
csln (S,... sin(JF)) .......................................................... Fortran sine intrinsic function 

cspllt(l) ................... . . ........ context split 
nqn (S..,. sqn(JFJ) ...... Fortran square root intrinsic fuoction 

ctUCJ ............................. spawn getty to a remote terminal 
ctap(l) .... . ................................. maintain a tap file for a C program 
clermld(3SI •..................................... . ..................... generate filename for terminal 
ctlme(3C) 

ctrace(l) ........ . 

ctypeOCI •......••••...... 

cuUCI ........... . 
eubk (See m(6}) 

cursesUXI ......... . 
CUSMJd(3S) 

cut<tl. 
cw(tl .... 
cuef(l) 

.......... convert date and time to striJii 

. ...... C pro1ram debuuer 

..... claMify characters 
. ..................................................... call another UNIX system 

..................... tic-tac-toe 
.CRT screen handlill& and optimiution package 

........... get character login name of the user 
. ....................... cut out selected fields of each line of a file 

. ...... prepare constant-width text for trOff 
....................... .generate C pro1ram cross-reference 

-5-



COMMANDS 

dabs IS.~· ah_,(JF)) .•• 

dM:OI (Sr·r• a<"<JsUFJ) 

__ Fortran absolute value 

................ Fortran arccosine intrinsic func.:tinn 

duln IS<'<' '";,(JFIJ ............................................................ Fortran arcsine intrinsic: function 
dalan (Se<' utwtUFJJ .... . ............................... Fortran arctangent intrinsic function 
dataa2 (Set' UIUII!UFJ) ............... . . .. Fortran arctangent intrinsic: function 

...... print and set the date date (I) 
dble (Set'./iJ"Pt'UFlJ 
dell) ..................... . 

dempb. (Set- ftyf"!UFJJ ..... 

lkonj& (Se<• COI/i!d.IF}) 
dcepy(IM) .............. .. 
dcGpyU.(lM) .. . 

dcos (S.,.,· cmJJFlJ. 
kush (Se<• !YISb{JF)) •• 

dd.IJ) . . ................ .. 

lYim (Set' dimUFJ) 

..... explicit Fortran type conversion 
. .............................. desk calculator 

. ............... explicit Fortran type conversion 
........................ Fortran complex conjugate intrinsic: function 

. .................................... copy file systems for optimal access time 

. ..... copy file systems for optimal access time 
. ...... Fortran cosine intrinsic: function 

. ..................... Fortran hyperbolic cosine intrinsic function 
. ... convert and copy a file 

............................... positive difference intrinsic function 
delh'ermall 18N) ........................ . . ................................... deliver mail to arbitrary people 
dl!lra(l) ... . 
derolf(l) .... .. 

bxp (St'<• e:>·pUFJ). 

de'nmUM) ............... . 

UUM) ................. .. 

dfsck (S.'f' Jkk( IM}) 

dlai(JC) ........................ . 
.jlf(l) 

dill311) .... 
dlffdlr(l) 

dilfmk(l) ... 

dlmi3F> ...... 

. ................................. make a delta khange) to an sees file 
. ....... remove nroft"/troff, tbl, and eqn ~vn~tructs 

........................... Fortran exponential intrinsic function 
.. ...... device name 

..report number of free disk ~ks 
.. file system consilltency cht'(:k and interactive repair 

establish an nut-going terminal line connection 
................. differential file comparator 

.3-way differential file comparison 
...... dilf directories 

........ mark differences between files 

. ....... positive difference intrinsic functions 
dimq IS.'<'ainwi((./F)) ...................... .. .Fortran imal!nary part of complex argument 

.Fortran integer part intrinsic function 

................ format of directories 

dint (Ser.·aiiiiUF}) 

dlr(4). 

dirnnp(l) 
dlredwyi3X) ...... 

dlrna•e (~h- busenamd I)) 
dls(l) ... 

disable (Set> t'IIUble(/}) .. .. 

dlskf-•tCIMl ..................... . 
dlskt••UM) ....... 

-6-

.... diredory compari!lon 

.. .. Duible length directory operations 
..... deliver portions of path names 

. .................. disassembler 

.. ......................... disable LP printers 
.. .............. format a disk 

......... tune Doppy disk settlin& lime parameten; 



COMMANDS 

dlshscUM) ..... ............................................. generate disk accounting dala by user ID 
dlq (See/uJdJF)) .•. . ..... :.Fonran naturalloprithm intrinsic function 
dlqiO (Set- /(>1//(I(JF}) ...................... . . ... Fortran common logarithm intrinsic function 

dmaxl (SI!<' maxUF}) ............ Fortran maximum-value function 
dmlnl (See minUFlJ ..................... . . ............... Fortran minimum-value function 
dmol (S,...• modUF}) .Fortran remaindering intrinsic function 

linlnf (See round(JF!J ...... . . ...... Fortran nearest integer function 
4odl$k (Seea,·mh(IMJJ .. . . .......... shell procedure for accounting 

dprod(JF) ................. . . ....... double precision product intrinsic function 
................. generate uniformly distributed pseudo·random numbers 

dsllln (Set' signUF)) ............. Fortran transfer-of-sign intrinsic function 
dsln (&1/ sinO F)) .................... . . ........................................ Fortran sine intrinsic function 

dslnb (&.! sinhfJF)) .... Fortran hyperbolic sine intrinsic function 

dsqrt (&I! sqrt(JF}) ......... .. ......... Fortran square root intrinsic function 
dtan (St't' tmrOF}) ................. .. ..... Fortran \llngent intrinsic function 

dtub (&.! tunhOF}) ......................................... Fortran hyperbolic tanaent intrinsic function 
du<tl ..................... .. 
dump(l) ............................................. . 

dup(l) 
dup2(3Nl ................... .. 

.. .. summarize disk usqe 
........... dump selected parts of an object file 

.. duplicate a descriptor 
.. .............. duplicate a descriptor 

ecbo(l) ... . . ....................................................................................... echo arauments 
ecrt(3C) .... .. ..convert floating-point number to strinJ 

edctl .................................................. . ................................... tellt editor 

.......................................................... last locations in proaram edata (See endOC}) 

ecUt ( St!e ex (I JJ .. .. ...... tell! editor 
ell(l) ........................................... .. .. ............ .EJII.tended Fortran Language 
et;rep IS...• ~>:rep(/}) ............................................................................ search a file for a pattern 

enftle(l) ......................... .. ........ enable LP printers 
encrypt (Sfi• crypr(JC}) .............. .. .. ................. generate DES encryption 
end(3CI ................................ . .. ... last locations in program 
endarent (S...- l(ell(rent(JC)) .... obtain group file entry from a group file 

endhosteat (Set' t:ethostentON}} ........................................................... aet network host entry 

en4netent (Set' ~tnetentON}).............................................. .. ....... aet network entry 
endprotoeat (See ~tprotoent(]N}}. ................. .. ........ get protocol entry 
endpwent (See ~lpwentOCJJ ................................................................ aet paHWord file entry 
endsenrent (Set' ~~rwntUN}} ............................. .. .. ..... aet service entry 
enclutent (See getutUCJJ ..... .. ............. acceas utmp file entry 
env<tl ...................................................................... set environment for command ellecution 
envlron(5).... .................................. . .. user environment 

·1· 



COMMANDS 

eqn{l) ..... . ................................. format matiN:mati~altext for trotr 

eqnchar(S) ...................................................... special chara~ter definitions for eqn and neqn 
erand48 (S<'<' Jrami48UC }j ........... senerate uniformly distributed pseudo-random numbers 
erf(lM) ..... . 

erfc (See e(IUMJ) ... . 

err4eUIIMI ........... . 
emlemoaUMI ..... . 
errllle(4) 

.. ...................... error function 

.......................................... complementary error fun~tion 
. ................. extract error re~ords from dump 

. ..................... error-logging daemon 
...... error-log file format 

erroo (S<'i' perror(JC}) . ...................... .. .. ............................... system error message 
errer(71 ............... .. . ........................... error-logging interface 

nrptUMI.. ................ .. .................................... process a report of loped errors 
errstopUM) ............... terminate the error-logging daemon 
etext (See end(JCJ) .................................. .. ............... last locations in program 

uU)........ ................... ....................................... .. ....................... text editor 
execUI ........... . 
uecl (See exer(l}J ......... .. 

uec:le (See uedJ}) 
ueclp (See e:rer(J}J ... . 

exec• (See exed2JJ ............... . 
exec•e (See exn(}JJ .. .. 
exec'JI (See e.xu(JJJ ... . 
exlt(2) ...................................... .. 
expUFI ......... . 
exp(lM) .............................. .. 
expr(l) .. 

exterrUI ................ . 
n7(l). 
f•H (See jioor(JMJJ ...... 
faelorUI ....................... . 
false (See true(/}) .................. .. 

fdos•(]S) ................... .. 

fmtl{2) ......................... .. 

.. ............................................ execute a file 
................ execute a file 

....... execute a file 

. ............................................. execute a file 
.. ............................ exe<;:ute a file 

........................ .. ....... execute a file 
.............................................. execute a file 

.. .......... terminate process 

.. ..... Fortran exponential intriru;ic function 
.. ......... exponential function 

.. ... evaluate arguments as an expression 
... turn on/off the extended errors in the specified device 

.. .. Fortran 17 compiler 

.. ......... absolute value function 
.. .... fa~::tor a number 

.. .......................... provide truth values 
.. ......................... close a stream 

.......... file control 

knti(S) .......................................... .. .. ...................... file control options 
fcvt (Seeec~OC}J ........ .. .. ................ convert floatiDJ-point number to strii!J 

ftlopeo (See fopen(JS}j ........... .. ......................................................... open a stream 
feof (See ferror(JSJJ...... ........................................... .. ............. stream status inquil)' 

ferror(lS) ............................ ............................ .. ..... stream status inquiry 
lf(IM) ................................................................ list file naml'll and statistics for a file ll)'stem 

.................... flush a stream 

-8-



ffs (Set' bstring{JN}J, 

faetc (Sff ~tcOSJJ . 

fceq:renl ISH K~/Xn'ntOCJJ .... 
faetpwent (SH ~,p...,mUC JJ 

faets (SH xetsUSJJ. 

COMMANDS 

........................... bit string operation 

. ................................................... get eharaeter from a stream 
...... obtain group file entry from a group file 

.................... get password file entry 

.get a string from a stream 
rarep (SH xr~p(IJJ .. 

flle(l). 

.. .......................................................... seareh a file for a pattern 

.. ....... determine llle type 

flle .. r(4) .................. .. .................................... file header for common objeet files 

fllene (SH.fi>rrorOS}} ..................... .. .............................................. stream status inquiry 

filesave(IMI ...................... ..daily/weekly UNIX file system backup 

ftndlMI 
fin•m 
ftsb(6) 

.. fast ineremental backup 
................................................. find files 

................................ play "Go Fish" 

ftnl (SH./Iype(JF}) ............................................................. explicit Fortran type conversion 
ftoori3MI .......... .. ................................................. floor function 
fmed (Set' .floor{JM!J .................................................................. remainder function 

fopen(JS) ........................ .. .. ........................................................................ open a stream 
fork(l) ..... 

fol1:une(61 

.. .... create a new process 

......................................... print a random. hopefully interesting, adage 
fprlntf (See prm(!US!J .. 

fpulc (See putc(JS!J ..... 

fputs (See putsOS}J 

.. ............................................. print formaued output 
.. ............. put character on a stream 

................................................... put a string on a stream 
fread(3S) ...................................... .. .... .............................. .. ........ binary input 
frec(IM) ............... .. .... recover files from a backup tape 

free (Set> mollocUC!J. .. ........................................... main memory allocator 
free (Sw mol/oc{JX!J ...................................... . . ............... fast main memory allocator 

freOIICD (Sw jopen(JS}) ........ .. .................................................................... open a stream 
freq{l) ........ .................. . ................. report on character frequeneies in a file 

frexp13CL................... .. ................................ manipulate parts of flo.ating-point numbers 
fs(4) .................................................................. format of Sf$tem volume 
f5CIDf (S..t> sca'fiUS}} ................................. convert formatted input 

fsckiiMI. ....... file system consistenq eheck and interactive repair 
fscv(IM). .. ......................... eonvert files !Jet ween M68000 and V AX-111780 processors 
rs•bllM) .......... ................................... . .................................. file system debuuer 
fseek(3S) 

fspec(4) .............................. .. 
fsplltU) ... 

fstat (Set> stodJ}) 

hell (S,....fSt't'kUS!J 

............................ reposition a file pointer in a stream 
..................... format specifkation in text files 

.. ............... split n1, ra1for, or ell files 

.......... get file s1a1us 
.................. reposition a file pointer in a stream 

-9-



COMMANDS 

flok (SHsldipdJC}J 

flp(IN) .. 

flpd(8N) ................ . 
ftw(lC) ... . 
ftype(3F) ..... . 

fuser(JM) ................... .. 

fwrlte (S,....fN:odUS}J ................ .. 

.............. standard interprocess communication package 
.. ............................................. file transfer proJ!Iam 

.. ............ DARPA Internet File Transfer Protocol server 
.. ........ walk a file tree 

.. ......... e1<plicit Fortran type conversion 

.......... identify processes using a file or file structure 
.. ............................ binary output 

fwlmp(IM).. .. ....................... manipulate connect accounting records 
gamma (3M)..... ................. ...log gamma function 

r;c¥1 (fief! ~cwOCJJ ................................................... convert floating-point number to string 
r;et(l) ........................................... ................... .. ......... get a version of an sees file 

getar&(3f) ................... return Fortran command-line argument 
gek(3S) ............................................ . 

aetchar (See Xf!tdJS}J ................... . 

............... get character from a stream 
.. ..... get character from a stream 

aetnodOC) ........ . .. ............ get pathname of current working directory 
ptdtaltlealze(3N) ...... . ..... get descriptor table size 

aete&id (Set! /«'1Uid0JJ ........................... . .. ...... get elfedive group lD 

getem•OC) ............ .. ..return value for environment name 
aeteo1'(3f) ......................... .. .. ...... return Fortran environment variable 
geteaid (Sfot>Kt'(uid(}}J .. ............................... . .. .............. get effective user ID 
plf:ld (Sf<> xetuid(]Jl ...... .. .. ........ get real group 10 

pq:rentOC) .............................. .. ................... obtain group file entry from a group file 
plf:qld (Stv gergrem(JCIJ 

aeq:rnam (S,... getgrem(JC IJ 

gethoslbyJIHr (See gnh<m~m(JN}) .. 

r;elbolltb)-aame (S..., gethosrendJN}J 

r;etbostent<JN) ......................................... . 

.. ...... obtain group file entry from a sroup file 
... obtain group file entry from a group file 

.. ...... set network host entry 
.............................. get network host entry 

.. ...... aet network host entry 
..get unique identifier of current host r;etbolitW<lN) ..... .. ............... . 

cethostoame(lN) .................. . ............................... get name of current host 
r;ello&ioOC) .. .. ....................................... .. .. .......... get login name 
r;etnetbyaddr (See xeme/entUNIJ .... 

r;etnetbyaUJe (Set! xetnffl'mUNJJ ... 

r;etneteatON) ..... .. 

r;etopt(ll .................. .. 
getopt(JC) .. 

r;etpass (lC) .......... .. 

aetpeernameUNJ ....................... . 
getpgrp (Set" getpid(})). 

r;etpld<l) ........................... . 

-10-

.. ............. &et network entry 

.. ............... get network entry 
.. ........ get network entry 

..parse command options 
.. .. get option letter from argument vector 

.. ................... read a password 

....................... get name of connected peer 

.. ................................ get process group ID 
.. .................... get process ID 



~tpphl (See gt'lpirJ(11J .................... . 

getprolclbyname (Su Kf'IPro/Of'nl( JN}) .••••......••• 

aetprotobynumhr (See R"tproiOf'ntON!J. 

aetprotoeat(JN).... . ........................ . 

aetpw(JC) ................... . ................... . 
aetpweat(JC). . ........................ . 
aetpwnlllll (S.... Kf'lpWf'niOC }). 

aetpwuld (See flt'IPwendJC}) ............ . 

aets(JSJ ....................... . 
tetserv.yaame (Set' l(f'lserwm(JN}) •....•••. 

getservbJPOrt (S....Ift'ISt'rllf!ntONJJ ... 

COMMANDS 

. ........... get parent process ID 

........... aet protocol entry 

. .......... get protocol entry 
. .................. get protocol entry 

. ........ aet name from UID 

........................ get password file entry 
. ...... aet password file entry 

...... get password file entry 
. ... get a string from a stream 

. .......... get service entry 

. ... aet service entry 
aetserveni(JN) ... ..................................... . .... get service entry 
telsodmune(2N) ............ get socket name 
getsoc:kopt<lN) ... . ... .get options on sockets 

cettJUMl .............................................. set terminal type, modes, speed. and line discipline 
aettyliets(4)...... ................... . .......... speed and terminal settings used by aetty 
tetuld(2) ... ..................... . .......... aet real user ID 
getut(JCl ........... .. 

aetutenl <Set' J..'f'lut(JCIJ ........................... .................................... . 

.access utmp file entry 

attess utmp file entry 
...access utmp file entry telutld. (See getutOCJJ .... . 

getutllne (See g<'IUtOC!J .................... . .............. access utmp file entry 

aetw (S.., li<'lcOSJJ ...................................... . 

am time (See <'llmdJC}) 

araphUGl 
~:reek (I) ..... . 

.. ................. get word from a stream 

........ convert date and time to strina 
....................................... draw a graph 

.. ......................... select terminal filter 

xreek(Sl ...................................... . ........ graphics for the extended TTY-37 type-box 
arep(l) ................... .. .. ......................... search a file for a pattern 
(ll0Up(4) .......... .. . .............. group file 
1rpck (See pwddJM!J 

plana! (See ssiRnai(JC}) ..... 

............................................................... xroup file checker 

hancman(li) .. 

hashchedr. (See spe//(1!! ...................... . 

hashmake spell(l) 

. .............................................. software sisnal 

.. ............ guess the word 

.. .... work with the spell program's hash lists 

...... work with the spell program's hash lists 
hcreate (See hseon:h(JC}J .............................................................. manage hash search tables 

hdestroy (.'ih' hseon:h (3CJJ ................................................ manaae hash search tables 
bead (I) ................................. .. ...................... give first few lines 

bt-lp(l) ............................................................................................ ask for help in using sees 
bn(l) ......................................... translates object files 

hostidUN) ......................................................... set or print identifier of current host system 



COMMANDS 

lllshiUDeUNJ ......................................................... set or print name of current host system 
bosts(o41N) ..••.....••••..•••••••...••••••..••.••.. . .....•.....••...•....•......••••...•••••..•••••• host name data base 
bHarchOC) ................ .................. . ... mao.qe bash search tables 
h••• (See byte(m}er(JN}J .................... convert values between host and network byte order 

hteas (Set- byteo!YkdJN!J ................... convert values between host and network byte order 
hypbea(l) ............................................................•................................. find hyphenated words 
hyptt(3M) ..... Euclidean distance fuoction 

lah (S.... obs(JFJJ .......................... . .. Fortran ab!lolute value 
laqc:(Jf) ................................................................................. count command line arguments 
kllu (5« ftype(JF}J ....................... .. ............................ explicit Fortran type conversion 
Wl(l). ......................................... .. ........ print user and 1roup IDs and names 

Wllm (See dJm(JFJJ ..................................... .. ........ positive difference intrinsic function 
illlat (Set-Jtype(JF}J ............................................................... explicit Fortran type conversion 

Wl•lnt (SoT roumiOFJJ.................. ...Fortran nearest intqer fWJction 
ifl'lRII&(IN)..................................... . .......... configure network interface parameters 
!&11. (See j/ypt!(JF}J ................................................................. explicit Fortran type conversion 

1Uex(3f) .................... .. ....... return location of Fortran substrina: 
lnel(lN) .................................................................... .Internet address manipuhltion routines 
lnet(5f) ............................................................................................... .lnternet protoall family 

had_ ..... (See inl't(JNJJ .......... .. .... .Internet addreSR manipulation routine 
Jnet_lnMf (See inetON}J ............................................. Internet address manipulation routine 

lnel_mlkedU (Set- IIH't(JNJJ.. ................ .. .... .Internet address manipuhltion routine 
lnet_net.l (SoT ltredJN}J ............................................ .Internet address manipulation routine 
lnet_.eurorl (See llll!t(JN}J ..... .. .... .Internet address manipulation routine 

Inet_am. (See inet(JNJJ .................... . 
lnJt(IM) ........................................ . 

lalnab(<l) .................................... .. 

ln*(<l) ................................................. .. 

1•-..ellNl ............. . 
lastaii(IM) ....................................... . 

ial (S& flYtwUFJJ ................ .. 

&aetl(1) .................................................... . 

lp(5PI .... .. 

.... .Internet address manipuhltion routine 
. ............................. process control initialization 

...script for the !nit process 

.. ....... format of an inode 
.. .......................... insert element from a queue 

.. .......... install commands 
.. ...... explicit Fortran type conversion 

....................... control device 

.. .... Internet Protocol 

I[!Hm(l) .............................. remove a message queue, semaphore set or shared memory id 
lpes(l). .. ............................... report inter-process communication facilities status 
irand (SH romJUFJJ. ..Fortran uniform random-number generator 

isalnum ($& ctytwUCJJ .......... ................................................. . ........ classify characters 

.. .... classify characters 
....................... classify characters 

lsalpba (See ctype(JC)) .............. .. 

lsasdl (See ctype(JC!J .... .. 

-12-



COMMANDS 

lutty (See ttynomeUC}) .. find name of a terminal 

lscntrl <See ,·rype(JC}) •.....•. ...••••.....••.. . ............. classify characters 

isd.iait (Ste ctypeUCJ) .................................. . . ........ classify characters 

isgnph (See ctype(JCJJ ....••.....••••.....................•.................. . .............. classify characters 

lsi&n (See sign(Jf)) 

is lower (Stt ctype(JC J) 

!sprint (See ctype(JC}J. 

ispunct (See ctype(JCJJ 

lsspace {See ctype(JCJJ 

........ Fortran transfer-of-sign intrinsic function 
................................................................. classify characters 

. .............. classify characters 
........................ classify characters 

............................... classify characters 

issue(4) .................. ............................................................. . ..... issue identification file 

Is upper IoSee ctype(JC }J ....•••....••••. . ......................................................... classify characters 
lsxdialt (Set ctypeOC}J ................ .. ............ classify characters 

JO (See bessi!IOMJJ ..................... .................... .. .......... Bessel function 
jl (S,•e bessi!IOM}J ............................................................ Bessel function 
jn (See lx!sse/UMJ) .................. .. ............... Bessel function 

joinUI ........................................................................................ relational database operator 
jnnd48 (See drand48UCJ) 

kiJI(l) ............... . 

klll(2) ................. .. 

klllall<tMI 

klllpa(lNl ................. .. 
kmem (Stt memO!! 

lltoH3C) ...................... . 
164a (Stta64/UC!J .. . 

...... aenerate uniformly distributed pseudo-random numbers 
.. ......... terminate a process 

...................... send a signal to a process or a group of processes 
.. .......................... kill all active processes 

. ..................... send signal to a process group 
................................................................................ core memory 

. .... convert between 3-byte integers and long integers 
...... convert between long integer and base-64 ASCII string 

labelit (S.... 1'0/copy(/M}J .............................................. copy file systems with label checking 

last(ll ........................... .. ....................... .indicate last logins of users and teletypes 
lutlosln (Su acctsh( /M}) ...................................................... shell procedure for accounting 

luUJ .......................................................... print load average statistics 
lcona48 (Su drond48(JCIJ ............ generate uniformly distributed pseudo-random numbers 
ld(l) ........................................... link editor for common object files 

I.S.IIII) .................................................................... link editor (System v a.out format only) 
ldulose (See ldclosdJX}J .................. .. .. .... close a common object file 

ldahread(]X) 
ldaopen (See ldopen(JX}J 

........... read the archive header of a member of an archive file 
..................................... open a common object file for reading 

1Kiosei3XJ ................................................................................. close a common object file 
lde~:p (See jh!xp(]CJJ ...... ................................... manipulate parts of floating-point numbers 

ld(cn(4) ............................................................................ common object file access routines 

ldfhread(3X) .. .. ........................ read the file header of a common object file 
ldaletaameUX) ............................................................... retrieve symbol name for object file 

-13-



COMMANDS 

ldllait (See ldlreadUX)) .. manipulate line number entries of a common object file function 
llilltem (Set- ldlreadUX)).manipulate line number entries of a common object file function 

ldlreadUXl ....... manipulate line number entries of a common object file function 
ldlseekiJXJ ............. seek to line number entries of a section of a common object lile 
ldnl$eek IS<'t' /<1/wekUX))seek to line number entries of a section of a common object file 

ldnrseek (Set- ldrswk(./X}J ... seek to relocation entries of a section of a common object file 
ldnshread (Set> ldsht"f"ad(JM;ijad an inde~ed/named section header of a common object file 
ldnsseek (S.,.e ldsseekUXJJ ....... seek to an inde~ed/named section of a <;:Ommon object file 

ldohseek(JX) ................................. seek to the optional file header of a common object file 
ldopen{JX>.... .. ............................. open a common object file for reading 
ldrseek(JX) .seek to relocation entries of a section of a common object file 
ldsbreadUX) ..................... read an indexed/named section header of a common object file 

ldsseek(JX) ........ . ............... seek to an indexed/named section of a common object file 
ldtlrindu(JX) .............. compute the inde:~~ of a symbol table entry of a common object file 
ldtbreadUXl.. .. .............. read an indexed symbol table entry of a oommon object file 

ldtbseekiJXI .................. .. 
len(JF) 
ll!!l(l) 
lftnd (S...• lleanMJCJ) 

lge IS<'t' sm:mpOF}J 

lgt (St't' .•lmnpUF)) 

llfe(6) ................ . 

line (I) 
llnenum(4) ....... 
llnk(lM) 

..................... seek to the symbol table of a common object file 
.. ........ return length of Fortran string 

.................................... generate programs for simple lexical tasks 
............................................................... linear sear<;:h and update 

... string comparision intrinsic function 
............................................ string oomparision intrinsic function 

......................................................... play the game of life 

................................ read one line 
.................... .line number entries in a common object file 

.................. .............. . . ..... e~ercise link system call 

llnk(2) .............. .. ...................................................................................... .link to a file 

lint (I) 

listen(2N). 

. ........................................................ a C proeram checker 
.. ............ listen for connections on a socket 

lie ISet>srrt:mp(JFJJ ................................. . . ... string comparision intrinsic function 

lit (~sm·mpfJF)) ..... . 

In (See <p(/}J ................ . 

lo(S) ........ 

localtime (See ellmefJCJJ 

lockfiJC) ............................ .. 

. ....................... string oomparision intrinsic function 
............................................................................ .link files 

.software loopback network interface 
.......... ,onvert date and time to strin& 

................................. record locking on files 

locki01(1J ........................ ............ provide exclusive file regions for readi11111 or writing 

loa(,<;,... expOMJJ .......... .. 
IO&IJF) ................................. . 
Joall I See e:xp(JMJJ ............. . 
loaiOIJF) ............................ .. 

................... logarithm function 
.. ....... Fortran naturalloprithm intrinsic function 

.. ......... loprithm function 
.. .... Fortran common logarithm intrinsic function 

-14-



IoainU> ...................... . 
logname<t) ..... . 

IOIID&me{JX) ... . 
longjmp (See seljmpUC!! 

Jorder(l) 

COMMANDS 

........................... sign on 

. ................................................ get login name 

............................. return login name of user 

.................................... . ............................ non-local goto 

.......................... lind ordering relation for an object Library 

lorder5.0(1) ......... find ordering relation for an object library (System V a.out format only) 

lp(l) 

!padmlnUM). . ............................. . 

........................................... send requests to an lP line printer 
................. configure the LP spooling system 

.............. move LP requests 

........................ start the lP request scheduler 
JpmoYe (See lpsrhed(/M}J 

lpsche4UM) 
lpsbul (See /psdred( JM}J ........................................ stop the lP request scheduler 

lpslatU)...... . ..................... . . ......................................... print lP status information 

lnmd48 (See dram148(JC}J .. . 

lsll) ........................ . 
lsear~b(JC) ...................... . 

Jseek(l) .... 
!shift (Sf'l' boo/UFJJ 

ltoJJ (See /310/0C!! ...••......• 

m-4(1). 

. .. generate uniformly distributed pseudo-random numbers 
. ............................................. .list oontents of direc10ry 

. ......................................................... linear search and update 

. ..... move read/write file pointer 
............................................ Fortran bitwise boolean function 

. .......... oonvert between J-byte integers and long integers 
. ........................... macro processor 

m68k (See mut•hidfJJJ .................... provide truth value about your processor type 

machldll). ...................... . .... provide truth value about your processor type 
mai!U) ......................................... send mail to users or read mail 

mallx(O ..... . . ........ interactive message processing system 

make(l) .. ........................... maintain. update, and regenerate groups of programs 

makekey(l) ..... 
malllnfo (5ff mallor(JXJJ •• 

malle~e(JC) 

mallKIJX) ......... . 
mallopt (See mullodJX!! ... . 

. .................................. generate encryption key 

. ........................... fast main memory alloc:ator 

............................................. main memory allocaiOr 
. ...................... fast main memory alloca10r 

. ........................... fast main memory alloca10r 

mao(l) ....................... ................... . ............. print entries in this manual 

man(5) 

master(4) ............................... . 
math(.!i) ... . 

matherr13M) ..... . 
max(lf) ...................................... . 

maxO (See max(JFJJ .... 

maxi (See max(JFJJ .••••. 

maze(6) ...................................... . 

me68ee(l) .. 

...... macros for formatting entries in this manual 

. ............. master device information table 

. .. math functions and constants 
. ..................... error-handling function 

. .. Fortran maximum-value function 
.Fortran maximum-value function 

. .. Fortran maximum-value function 

. ........................ generate a maze 
. .............•..................................................... C compiler 

-IS-



COMMANDS 

mclock<JF) ...... . ............... return Fortran time accounting 
mem(7) .............................................................................. core memory 

memccpy (Sff memory{JC}) ........... memory operation 
memcbr (See memory(JC]) 

mememp (See memory(JC )) 

................................................................ memory operation 
............................................................... memory operation 

memcpy (Sf'<' memrJryUCfJ... .. ............................................................ memory operation 
memory(](:).................................. .. ..................................... memory operation 
memset (See memory(JC}). 

IDl'llll) ......... .. 
mln(JFJ ..... . 
minll (See m/n(JFJ) 

mini IS,... mln(JF}) ...... 

mkdlr(t) ............. .. 

mkfsllMl ............... .. 

. ............................................................... memory operation 

.. ...................................................... permit or deny messages 
.. ........................................ Fortran minimum-value function 

........................................... Fortran minimum-value function 

.. ....................... Fortran minimum-value function 
.. ..................... make a directory 

........................................................... construct a file system 

mkhlbiiM) ................................ . .. ................................................ construct a file system 

mklost+rndUMl .. . .. .... make a lost+found directory for fsck 

mknu4<tMl .......................... .. .. ......................... build special file 

mkiiOII(Z) ... .make a directory, or a special or ordinary file 

mkstr(l) .............................. . ............ create an error message file by massaging C source 
mktemp(JC) ..... .. ............................ make a unique filename 
mm(l).. .. ...... print documents formatted with the MM macros 

mm<s) ...................................................... the MM macro package for formatting documents 

mmt(l) ... .. .. ..................... typeset documents 

manab(4) .... .. ............................................ mounted file system table 

med(JF) ................................................................... Fortran remaindering intrillSic function 
mMf (Set- Jrexp(JC}J ... manipulate parts of floating-point numbers 

menKd (St>t> orctsh(/M}J ........... . ..... shell procedure for accounting 
IIMIIItw<JC) ................ .. ......... prepare execution profile 

meo(6) ..................................... .. ............ guessina aame 
m.e(l) ........... .......................... ........................... . ..... file peruSIII filter for crt viewing 

1DM411(5) ................................... the OSDD adapter macro packqe for formatting documents 

••nt(IM)......................... . ..... mount file system 
mevnt(Z) ...................................................... ...mount a file system 

mpt~:IS) ..................... . .. ......... the macro packqe for formattina a permuted index 
lllJUld.48 (Set' dnmd4S(JCJJ .......... generate uniformly distributed pseudo-random numbers 
mfiiCliU) ........................................................................................ message control operations 

mq&at(Z) ............................ ..Jet message queue 
IDIIPPW ...................................................... . .... messaae operations 
m• (SH ~p(I}J .............. ................ ........................................................... .. ....... move files 

-16-



,-­
I 

COMMANDS 

IBY(5) ......................... ,, .... a troll' macro packa&e for typesetting view graphs and slides 

mY41rUMI ...•.. ................ . ... move a directory 

•"t (See mmt(/}) ...................................................... . . ...... typeset view 1raphs and slides 

nchec:II.UMI ................ . .. ..... generate names from inumbers 

neqn (SN" t>qldlh ............................................................ format mathematicalte11t for nrell 

Ml•aii(IN) .... . . ............................. the B·NET network mail system 

net•aller(8NI ............................ . . ........................................... deliver mail to B-NET 

netslaiUNI ... . ....... show network status 

networlr.s(4N) ....•••••...•••••....•••....••••. . ........... network name data base 

newrormUI ... .......... change the format of a text Hie 

newpp(t) ............................... . . ..................................................... .log in to a new ]!.COUP 

news (I) ......... print news items 

nlceUI ............ . 
nlcell) ............................. . 

. ............................................. run a command at low priority 
..... change priority of a process 

ninl (Set- roundOF]J •••••....•••....•.••.. . ................ Fortran nearest integer fum:tion 

nl(l) 

nllstllCI ....................... . 

nmUI 

nm5.1(1) 
nohup(U .......................... . 

.......................... .line numbering filter 
.................................................. get entries from name list 

. ................. print name list of common objttt file 

.......... print name list (System V a.out format only) 
. ..... run a command immune to hangups (sh only) 

not(~ OOo/OFJJ •••...•••••...••••. .......................... . ............ Fortran bitwise boolean fum:tion 

nr~ad48 (Sffdmnd4B(JC]J •....••• .. generate uniformly distributed pseudo-random numbers 
nroiJ(l) ........................................... format text 

ntobl (Sff byteortkr(JNJJ ....•• . ...... convert values between host and network byte order 
otohs (See byteordedJN}) .................. convert values between host and network byte order 

oull(1) ....................................... . . ..................... the null file 

null.,m (Sff awsh(/M}J ...• . ............. shell procedure for accounting 
numkr(6). . ........................................... convert Arabic numerals to English 

od(IJ........................................ .......................... ...................................... . ...... octal dump 
open(l) 

opencllr (SO'f' dlm:loryOX}). 

...................... open for reading or writing 
. .. Oexible length directory operation 

or (See boo/OFJJ... . ................. Fortran bitwise boolean function 
osiN. ISt>e mmOJJ ••••....•••.....••... print documents formatted with the MM and OSDD macros 
pack (I) ......................................................................... compress Iiles 

passwd(l) .......................... . ........................................................... change login password 
puswd(4) .................... .password file 

pastelll..... . ......... merge same lines of several files or subsequent lines of one file 
psuse(l) ............................ .................. . ... suspend process until signal 
pest (Set pack(/}J .... . .................................................. expand compressed Iiles 

-17-



COMMANDS 

pc:lose (:iff popt'n (JS)) •. 

pdplt (Sffmot·hid(llJ .......... . 

(N'rrori3C). 

Pl(l) .... 

phys(l) .. 
plpe(l) ............. . 
ploc:kll) ........................ . 

plotiJX) 
ploti•O ...... 

. ........................................ .initiate pipe to/from a pra~:ess 

.. ............... provide truth value about your proce!ISOr type 

.. ....... lfslem error messuge 
. ... file perusal filter for soft-collf terminals 

.. .......... allow a process to aa:ess physical addresses 
.. .......... create an interprocess channel 

.. .... .lock process, text, or data in memory 
............................... ,raphics interface subroutines 

.. ......... &raphics interface 
pnch(4) ........................................................ . ... file format for card imaaes 

.. ......... .initiate pipe to/from a process po(N'nUS) ............................. . 
,_ (St-t- exp(JM)) 

po.,.erfaU (Sf!f! brdiMJl 

pr(l) ..................................... .. 

p:rctmp (See m:ct&h( JM)) ............... . 

prdally (Sff ot-crsh(/M)) ... .. ............. . 

p:rlntenY(l) ............................. .. 
printf(3S) ............... .. 

p:rof(l) ............................. .. 
prof(S) ...................... .. 

p:rofll(l).. .. ....................... .. 

......... power function 

...... lfstem initialization shell script 
.................. ................. .. .. print files 

.. ......... shell procedure for accounting 
.. ....... shell procedure for accounting 

.. ............ print out the environment 
.. ....... print form.&tted output 

. .......................... display profile data 
.. ... profile within a function 

.. .. execution time profile 

proftle(4) ...... .. ...................................... settillfl up an environment at lOBin time 
prolocolst4N) ................... ................. .. ...... protocol name data base 

praU) ..... ................................... ...prinl an sees file 
prtacct (St>e O<'<'tshUM)) 

ps(l) ........................... . 

pstatUMl ...................................... . 
ptrau(l) ........... . 

ptx(l) ........................... .. 
pty(S) ....................................... .. 
putUC) ...................... . 

putcUS). .. ...................... .. 
putchar IS.... purr(JSJl ... .. 

putenY(lC) 
putpwent(lC) ..... .. 
puts(JS) ................. .. 
pututiiDt! (Sf!f! g<'tut(JC)) ... 

putw (Sff putdJSlJ ... 

p.,.ckllM) ............. .. 

-18-

... shell procedure for accountin& 
...report process status 

.. ... print system facts 
. ...................... process lraCC 

.. ...... permuted index 

.. ......... pseudo terminal driver 

.pUts a file onto a remote mochine 

...... put character on a stream 
.. ..... put character on a stream 

.. chanae or add value to environment 
.......... write password file entry 
.. ........ put a string on a stream 

..access utmp file entry 

.. .. put word on a stream 
..... password file checker 



pwd(l) 

qsortOC) .................. . 

qulz(6) .............. .. 
rala(6) ....................... .. 

ramiOC).. .. ..................... .. 
randOF) ........... .. 

ratfer(l) ........................... . 
n: (SeebrdJM)) 

COMMANDS 

............. workilll directory name 
. ........................ quicker sort 

.. .................................. lest your knowledJe 
....... animated raindrops display 

.. .......................... simple random·number generator 
.................... Fortran uniform random·number generator 

.. ... rational Fortran dialec.:t 
........... system initialization shell script 

remdC3NJ .......................... .. ......... routine for returning a stream to a remote command 
rep(lN) .... ....................................... .......................... .. ......... remote ftle copy 
n•ltnU) .. ...translates Motorola S·records from downloading into a file 

read(l) ..................................... .. ............. read from file 
readdir (St't' dim:tu~~(JX}) ....... 
readvON) 
real (!ieeftype(JFJI .............. . 

realloe (See mollfx:(JC}) ......... .. 

realloc (See malkx:OX}) .. 

... Dexible length directory operation 
.. ..................................... read from file 
.. ...... explicit Fortran type conversion 

.................................. main memory allocator 
.. ..... fast main memory allocator 

reboot<IMJ .......................... .................. .. ........ reboot the system 
reboot(l) ........................................ ...................... .. ............... reboot the system 
reev(2N) ........ receive a messase from a socket 
recvfTom (See recv(}N}). .. ...... receive a messa&e from a socket 
recvmsg (S<'f' n>n(lNJI ......... ...................... .. .. receive a message from a socket 
red (See e<f(l}) ........................... .. .. ............................................. le!U editor 
r$mp(l) ............................ regular expression compile 
ft'IICmp(3X) ............ .. . ........ compile a regular expression 
rege11 (See regcmpUX}) ................. .. .. ..................................... execule a regular expression 
ft'llellp(S) ................ . .. ...... reaular expression compile and match routines 
reject (St't' accept OM}) .......... .. .. ........................................................ preventLP request.s 
reloc(4)... .... relocation information for a common object file 
remqae (5<'<' imqui'(JN}) .... .................................................... remove element from a queue 
remsb(IN)..... ................... .. ................................................. remote shell 

remsltd(8N) .................................................................... remote shell server 
reHt (See tset(l}) .................................................... reset the teletype bits to a sensible state 
rewind (See.fseekUS})... ................. .. ...... reposition a file pointer in a stream 

r rewinddir (S<'<' dirt't'!OryUX)) ............................................ flexible leiJith directory operation 
rexed3NI ........... return stream to a remote command 
rexecd(BN) ... 
rlot~ln(lN) .. 
rloglnd(8NI 

............................... . .. remote execution server 
.. ........................................................................... remote login 

................................. remote lo&in server 

.]9-



COMMANDS 

nn(l) ................................ . 

nnall (See moi/(1)) ........................ . 

rm*UH ..................... . 
nn"r (See rmO}) .............. . 

robota(li), ......... . 

ro•IIIIUFJ .................. . 
route(IN) ..................................... . 
ro•leii(IN) .............. . 

. .... remove Illes 
. ........ send mail to users or read mail 
..... remove a delta from an sees file 

. .......... remove directories 
. ....... eso;ape from the robots 

........ Fortran nearest inteaer furn:tions 

. .. manually manipulate the routina: tables 
. .......... network routing daemon 

rresv,.rl (St¥ n.'md(JNh ... . .... routine for returning a stream to a remote command 

nil (SN sh(J}) ............•.•...••••....••••••.... shell, the restricted command programming lana:ua1e 
rsllllh (Sloe booi(JFIJ .... . ........................... Fortran bitwise boolean function 

runM!dUM) ...................... . .. ..... run daily accounting 

rupthDe(lN). ................................ .. ....... show host status of local machines 
rusenk (St>t> n:mdUNh.... .. ........ routine for returning a stream to a remote command 

rwho(lN).......................... .. .. who's logged in on local machines 
rwhod(IN) ............................ . 
sal CSt>ewdJMh ........ ....................... .. 

.. .... system staiUs server 
.. ..... system activity report package 

sal (St>t> sarOMh........ .. ......................... system activity report package 

sM:t(l) .......................................................................... print current sees file editing activity 

s-* (Sn sorfJM}J ................. .. 

s .. IIG) .............................................. .. 
sarU) ................................ .. 
sar(IM) ..................... .. 

skk (See bfk(}}J ................. .. 

ICIIDf(3S) ............................................ .. 

.-.Hif£1) ................ .. 

sa:dlle(4) .................................... . 

smbdr(4) ............. .. 

script( I) .................................. . 

~~~~(I) .... .. 

scUif(l) ............................. .. 

.. .................. system activity report packaa;e 
.. ..................... system activity 1raph 

.. ........... system activity reporter 

.. ........ system activity report packa1e 

.. ... chan1e data sq:ment SPlice allocation 
.................. convert formatted input 

. ....... compare two versions of an sees file 
...... format of sees file 

...section header for a common objei:t file 
.. .... make typescript of terminal session 

.. ....... symbolic debug1er 

..... side-by-side difference program 

sN(l) ..... ..................... ..stream editor 

seed41 (St>t> drand48(JC}J ............ generate unif-ormly distributed pseudo-random numbers 
seeUir (See dim:rory(JXJJ ... 

seled(1N) 

sellldlU) .............. .. 

.. flexible length directory operation 
.. ................. synchronous 1/0 multiplexing 

..................... semaphore control operations 

semaetC1l .. .. . .................................................................. get set of semaphores 

semep(Z) ....... .. ........................................................ semaphore operation 

sendi1N) .. .. . ...................................................... send a message from a socket 

-20-



COMMANDS 

sendmq (See send(2NJJ ............ . . .. send a meSS~~&e from a socket 
sendto (See send(2N}J . .............. .. . ... send a message from a socket 

senriRa(,.N) ............................. ~ .......................................................... serv~ name data base 

setbuf(3S) ................................... .. ...... usiJn buffering to a stream 
sell:ld (See sNuid(2}J ............................................................................... . .. .... set group ID 

seqreat (See getgrellt(JCJJ.... .. .. obtain group file entry from a aroup file 
setboslent (Set- gethostem(JN}J ............... .. ................................ get network host entry 

MtbostY (See gethostldf2NIJ . ......................................... set unique identifier of current host 
setbolitname (Set- gethostname(2NIJ 

M(Jmp(lC) ..... .. ............................... .. 

.etker (See cryptUC!J ........... .. 

setmnt(1MJ ............................................ . 
setnelent (See getnete11tfJNJJ ................... .. 

setp1rp(1) ........................... .. 
setprotoent (See getpTO/OtlltON}) .. 

......... set name of current host 
. ....................................... non-local goto 

................. .. ........ generate DES encryption 

............................... establish mount table 
.. ............................................ aet network entry 

.. ............... set process group 10 

.. .... get protocol entry 

setpweat (See getpwem(JC}) ............................................................... get password file entry 
setrqld(l).. .... set real and effective group 10 

setreuld(l) ...................................... ...set real and effective user IDs 

set&er?eat (See gerserrlf'm(JN}J ............. ........................ .. .... get service entry 
setsoclr.opt (See getsockopd2NJJ ............................ set options on sockets 

set~~:Y(l) ........ ................................. .. ....... set user ID 

set•tent (See geau(JC})............................. .. ......................... access utmp file entry 
lel"fbuf (See sertJW'fJS}J .... .. .................... assian buffering to a stream 

qetl (See sput/OXJJ ...... .. .. access lona inteaer data in a machine independent fashion 
sh(l) .................................................... shell, the standard command programming laDBuage 
shl(l)..................... .. ...... shell layer manager 
shmdl(l) ... 

shmaet(2) .. 
shmop(2) .............................................. .. 
shutlll:d (See acctsh(IMIJ .. . 

.. .... shared memory control operations 
.. ............. get shared memory segment 

.. ... shared memory operations 

.. ........ shell procedure for accounting 
shut4ewa(IM) .......................................... .. ............. terminate all processing 

shutdowa(lN) .shut down part of a full-duplex connection 

sianUFl ..... .. ....... Fortran transfer-of-sign intrinsic function 
slt;nal(2) .. spei:ify what to do upon receipt of a signal 

sllnal(lF) ...... .. .... specify Fortran action on receipt of a system sia;nal 
sin (S<'<' "ig(JMJJ ................................................................................ triJonometric function 

sln(lF) ................... Fortran ~ine intrinsic function 
slnhUF) ................................................................. Fortran hyperbolic sine intrinsic function 
slnhOM) ................ . .. ......... hyperbolic function 

-11-



COMMANDS 

slze(l) ... 

sl.zeS.O(l) 

slee•(l) 

. ..................... : ... print section sizes of common object files 

.••. size of .an object file (System V a.out format only) 

.................. suspend execution for an interval 

sleep(JC) ........................................................... . . ........ suspend execution for interval 

..... e:Kplicit Fortran type conversion sn1l ($<'(' j/yfw(JFIJ 

snoUI ........... . 
socketllN) ............................. . 

sort(l) ............... . 

spell II) ................................ . 

spellln (S,...wei/OJJ ..................... . 

spll11eU6l .... . 

splll(l) ................................... . 

. .................... SNOBOL. inlerpreter 

.......... create an endpoint for oommunianion 

. ... sort and/ or merge files 
. ...................... find spelling errors 

.. ..... work with the spell proaram's hush lists 

...interpolate smooth curve 

.. ............ split a file into pieces 

sprtntf I See prin([OS!J .................. .. ... print formatted output 

sputHlX) ................... ...access long integer data in a machine independent fashion 

sqrt l&e .. xpOM)) .................. .. ......... square root function 

sqrtllFl .................................. .. .. Fortran square root intrinsic function 

sralld (See rand(JC)) ................. .. ............ simple random-number generator 

sra114 (&e rami OF))...... .. ............ Fortran uniform random-number generator 

sra .. a (&e drand48UC)).. .generate uniformly distributed pseudo-random nun.bers 

sseaof (See srai({OS)). .. ........................... ,onvert formaued input 

ssianal(lC) ........................................................ . .. .. software signal 

ssp(l). 

starhl• (&eacrlsh(/M)) 

statUJ 

sblt(5) ........ .. 

sldloOSl ........................... .. 

stdlpe(lC) ......... .. 

sllme(l) ............................. . 

slmtl (Set- slrltiJdJCJJ ........... .. 

slrcbr (&e slrinJ((JC)) .......... . 

slrcm• (See slrimdJC}) ......... .. 

strcm•OF) .... 
slrcpJ (&e 5/rinJ(UCJJ ..... 

.. ......................... make output sin&le spaced 

.... shell proredure for aceounting 

.................. aet file status 

.. ....... data returned by stat system call 

........ standard bulfered input/output .-o:kage 

.. ... standard interprCH:eSS communication .-ckqe 

.. ........ set time 

.. ..................... strina operation 

.. .... striiJ& operation 

.. .................... strin& operation 

.. ...... string comparision intrinsic function 

.. .... slrin& operation 

slrcsllfl (Sw $lring(.JC)).... .. ... strin& operation 

strl•1llCl ....... ................. .. .. strin& operation 

strlnp(l) ... .. .............. find the printable strings in an object, or other binary file 

stri.IH ................................... strip symbol and line number information from an object file 

strl~-1(1) .................... remove symbols and relocation bits (System V a.out forlllllt only) 

str~n (&e stringOC)) ..... .. ............................ strin1 operation 

-22-



stmeat (See string(JC)) ...... . 

strncmp (See strlng(JC 1J .... . 
slrncpy (See string(JC}J ....••... 

strpbrk (See string(JC}J 

COMMANDS 

. ........... string operation 

. ...... string operation 

. .. string operation 
................................... string operation 

stnehr (See strmg(JC}J ................................................................... ... . ... string operation 
slnpn (See string(JC}J .....•...... string operation 

strtodUC) .... . ............................................. convert string to double-precision number 
slrlok (S...- slringOC)) ............ string operation 

strtol (lC) ................•••••.....••• . ................ convert string to integer 
sltyU) ............. . . ....... set the options for a terminal 

suU) ............... . . ......................................... become super-user or another user 
sumU) ............ . ............................................ print checksum and block count of a file 
sum7(1) .................. . . ....................................................... sum and count blocks in a file 

sumcUr(l) .............................. sum and count characters in the files in the given directories 
swabUC) ............................... . .............................. swap bytes 
sxt(7) ........ . . .... p;seudo-device driver 

syms(4) ........................ .common object file symbol !able format 
sync(l) ........................ . ............ update the super block 
synd2) ... ......................... . ....... update super-block 

sys_errllst (See perrorUClJ.. . ............•••......••••.....••••.....•••......••..... SYStem error message 
srs_nerr (See perror(JC!J .•••.. . .... system error messqe 
s:rsdefUM) .. . ..... system definition 
system(3F) .................... . .................. issue a shell command from Fortran 
system(3S) ....................... . ....... issue a shell command 
tabs<t) ...... ..................... ...... . ....... set labs on a terminal 

tall(l) .......................... . ......................•........................... deliver the last part of a file 
takeUC) .. . ...... takes a file from a remote machine 
talk UN) .............. . . ...................................................... talk to another user 
tan (See triKOMJJ ..•••......••....••••.. . ............... tril;onometric function 
tanUF) ....................... . .... Fortran tangent intrinsic function 

tanh (See ~inhOM)) .....••••....••• 

tapesan (See ji/esaw(/M}) 

tarU). . ...................... . 
tltl (1) ••••..••.• . ......••..••.••.•••••••• 

. .......................................... hyperbolic function 

...... Fortran hyperbolic tanaent intrinsic function 

............•........... daily/weekly UNIX file system backup 
............................... tape file archiver 

. .. format tables for nrolf or troll" 
tc<t) .......................... . . ............................................... phototypeseller simulator 
tcp(5P) .... .Internet Transmission Control Protocol 
!delete (See lst'lln."h(JCJJ .. . ..................................... manage binary search trees 

tee(l) ····•••·····••••···••••········· .....•••..•.••••. pipe fitting 

-23-



COMMANDS 

tellnit (Sfl! init(IM/} .. . ........................................................ process control initialization 

telldlr (See dlrectory(JXJ) ................................. flexible length directory operation 

telnetUN) .................................... . . .... user interface to the TELNET protocol 

telnetd(8N) .. . .................. DARPA TELNET protocol server 

tempDIID (SE't' lmpnomUS}J .. . ....................... ,.,reate a name for a temporary file 

term£4) ...................................... . . ................................ format of compiled term file. 

term(!) ... . 

termeap(JX) .. 
termcap<s) .••••......••••....•••••...•••... 

termlafo(4) ..... . 

termlo(7) .•....•...•.•.......••.....••...•••••.....•••... 

test<t) ................................... . 

tllnd (SIT tsearch(JC J) ............................ . 

tftpd.(8Nl ••••..••••••..••••....•••••..•••. 

tpteat (Sn termct~pUX!J .................... . 
tptfl .. (S<'f' termrop(JX}J ...................... .. 

lpla•m (See termcop(JXJJ .. 
tptstt (See terrm:opUX!J 
tpto (Sft> lermcap(JXIJ ......••. 
tle(IM) ..... . 

. ....... conventional names for terminals 

. .. terminal independent operation routines 

. ......... terminal capability data base 

. ......... terminal capability data base 

. ........ general terminal interface 

. ............. condition evaluation command 

. ........ manage binary search trees 

. ..•••• OARPA Trivial File Transfer Protocol server 

. ........ terminal independent operation routine 

. .. terminal independent operation routine 

. .......... terminal independent operation routine 

......... terminal independent operation routine 

. ....... terminal independent operation routine 

. .............. terminfo compiler 

llme(l) ..................................................................................... . . ... time a command 

llme(l) .... . . .............................. 1et time 

tlme•(l) .............................................. . . .......... get process and child process times 

llmexUL ..................................... time a command; report process data and system activity 

ll•plle(3S) ...... . ................... create a temporary file 

Imp••• US) ................................................. . . .. create a name for a temporary file 

toasdl (See conv(JC}J. . ............................... translate characters 

tolower (See conv(JCJJ ............. . ..................... translate characters 

loiKII(I) ............................................................ update aa:eu and modification times of a file 

M11per (See convUCJJ ...... . ....... translate characters 

tp(l) ....................................................................•.............................. manipulate tape archive 

tplot(lG)......................................................... . ............. J11aphics filters 

tput(l) ....................... . ........ query term info database 

lptlts (See terrm:op(JX!J ............................................. terminal independent operation routine 

tr(l). .................................................................... . ............. translllte charactel"S 

trek(6) .................. . .... .trekkie pme 

tr11UM) ..••..•...•••••••..••••....•••...•••••....•••••.••••••......••.•....••••....••••.....•........ trigonometric functions 

troB"(l)............ . ............... typesettext 

trpt(8N) ................................................ . ...... transliterate protocol trace 

-24-



COMMANDS 

trueUI 
tsurcb{JC) 

.............................................................................. provide truth values 

............................................................ manage binary sear'h trees 
tset(l) 

tsortUI 
nH6l .....••.. 
uyUJ .... 

................................. set the teletype bitllto a sensible state 
.... topological son 

. ........................................................................ tic-tac-toe 
. ...................................... get the terminal's oame 

IIJ(7J ......•••.. ................................................................ controlli/1& terminal interfa'e 

uynaiDe(lC) 
IIJslotOC) .... 

............................. . ............. find name of a terminal 
. .................................... find the slot in the utmp file of the current user 

lt)'tJpe(4) .. data base of terminal types by port 

turnaeec (Set' acmh(IMJJ ........................................ shell procedure for accounting 

t•alk (S,... rs<'Dn·hfJC }J ..............•..................•.........• manase binary search trees 
t•lnkle(6).... ............................ . ............. twinkle stars on the screen 
IJpes(!i) ...... . ..... primitive system data types 

tu~t (See <"limd JC)) 

ulb (Set- mochid( I)) 

ulb!i (St'tomot"hid(l/} .•••••....•••.....••• 

ud,(!iP) ... 

ul(ll ························· 
ullmll(l). 

umukCO. 
umuk(l) .......................... . 
IIIDOUDt (St'f' mounrfiMJJ .. , 

umCNnt(l) ................. . 
uname(l) .. 

•nameUJ ........................................ . 

.... oonvert date and time to string 
.. provide truth value about your processor type 

. ....... provide truth value about your processor type 
. .... .Internet User Datagram Protocol 

....•••••.....••.......••••..•. do underlining 

. .......................... set and set user limits 
....... set file-creation mode mask 

. ...................... set and set file creation mask 

. ... dismount file system 

. ............................ unmount a file SJStem 
..... print name of current UNIX system 

. .................... set name of current UNIX system 
•qet(l) .................................................... . . .. undo a previous set of an sees file 

. .. push character back into input stream •qetc(JS) ...... . 

unlq{l) ......... . 

unltsUI 
unlink (5« lmk(/M}J 

unlink(l) ................ . 
unpack (St'f' pot"k(//} 

updater(l) ... 

updaterUM) ........ . 
ustat(l). . ..................... ... 

. .................................... report repeated lines in a file 
........................... conversion program 

.......... exercise unlink system call 
. ................................................. remove directory entry 

... expand compressed files 
. ..................................... update files between two machine:;; 

. ............................ update files between two machines 

. .............................................. 1et file system statistics 
utlm~<Z) 

utmp(4) 
....................................................... set file access and modification times 

.............. utmp entry format 
utmpnal!'le (Set• xnutUC)) ..................................................................... access utmp file entry 

-25-



COMMANDS 

IIUdnaCIMI .......... . 

autp(IC) ............................. .. 

a•loa (~ uur:p(/CJJ ... . 

uuname (See uu<p0Ch 

Dllplck (So-t- UU/0(/C!J •••• 

UU&tat(IC) 

DIIID.UM) .............. . 

uuto(lC) .................. , ......... . 

. .............. UUCP spool directory elean-up 

. ..................................... UNIX system to UNIX system copy 

..prints a summary lo& of UUCP and UUX transactions 

.. lists the UUCP names of known systems 
....... public UNIX-to-UNIX sysrem file copy 

............................ UlJCP slatus inquiry and job conlrol 

. ....................... monitor UUCP network 

......................... public UNIX-to-UNIX sysrem file copy 

uux<tCI ........ UNIX-to-UNIX system command execution 

unrUI .......................... . ............ returns system-specific confiauration information 

val (I).... ....................... ........................ . ....................................... validate sees file 

nlun(S) ...... . . .... machine-dependilnt values 

nrarp(SJ ............... . . ................................................. llandle variable ar&ument list 

vu; (See ma<·h«J(/}J .•••••.•...••••........................ provide truth value about your processor type 

veil) ................ . .... version control 

1'thk(1M) ........................ . ............................ . .......... version checkup 

•Nil (Sf't' vi(JJ) ... . ................. scretn-oriented (visual) display editor based on ex 
venlonll) ......... . . ......... reports version number of files 

dp:rlntf (See vprill{f{JSJ) ...••...... print formaued output of a vararp argument Jist 

vfprlntf (See ,.,,.;,.ff{JXJ) ............• print formatted output of a varar&s argument Jist 

vi (I).... . .......•...•••••....•••................. screen-oriented (visual) display editor based on ul 
•lew (See ~;(IJJ .••... .screen-oriented (visual) display tditor based on u. 
1'0lcopy(IM) ............. . . ................... copy file systems with label checking 

•prlatf(3S). .......................... . ...... print formatted output of a varargs argument Jist 

vprlatf{JX) ......... . ........... print formatted output of a varargs argument list 

uprfbtf (See vpri11/}tJS!J .••. . ...... print formatted output of a varar&s argument list 
nprlntf (See vprliii/OXh ... . .......... print formatted output of a varargs argument list 

walt(2) ............................ . .... wait for child procesrs to stop or terminate 

waltlUN) ........................... . 
... uuM> 

.....•. wait for child procesrs to stop or terminate 

..... write to all users 

wc(l) ....... ,,,, ••••• ,., ................................... ,,,,,, .••.....•.••......•.......••....... "''''"""""''''' ....... word count 

what(l) ..... . 

wherelsU) 
wholl) .............. . 

................ .identify sees files 

.. .locate source, bioary, and/or manual for proaram 

. .................. who is on tlu: system 

"'IMaml(l) 
whodo(IM) 

........................................................................ print effective current user id 

worm(6) ......................... . 

worms(6) .. 

wrlte(l) .... 

.................................................. who is doing what 

..play the growing worm game 

.......................................... animate worms on a display terminal 

.. ................. write to another user 

-:Z6-



COMMANDS 

wrlteiJ) ........ write on a file 

wrllevON) .............................................................................................. . .write on a fi~ 
wt•p (Set' u/mpU}J.. .. ............................................................. wtmp entry format 

wt•pllx (So>.> ]'wlmp(JM}J ......................... manipulate connect accountina records 
wump(6) ............................................ .. ............ the game of hunt-the-wumpus 
xarp(l). .. ............... construct arsument list(s) and execute command 

xor (Set> booJ(JFJJ ........................... .................................... Fortran bitwise boolean function 

xstr(l). .. ........ extract strin&s from C pro1rams to implement shared strin&s 
f(l (S,... bt>SMJ(JM}J ............................... .. .......................................... Bessel function 
rl (Sw ~SMIOM}J ...... ...................... .. .......... Bessel function 
yace(l). ................ .. .............. yet another compiler-compiler 

yn (S,... ~ssti(JM}J ...................... ........................ ...Be!l!lel function 
nbs (s.>t> ab$(JFIJ ......................... .. ........................ Fortran absolute value 

-27-





c 

(' 

c 

PERMUTED INDEX 

functions of DASI 300 and/ 300, JOOs: handle special 
/special functions of OASI 300 and JOOs terminals. 

of DASI 300 and JOOst 300, 300s: handle s~ial functions 
functions of DASI 300 and JOOs terminals. /special . 

Jltol, ltol3: convert between 3-byte integers and lon&f 
comparison. diff3: 3-way differential file • 

Tektronix 4014 terminal. 4014: paginator for the 
paginator for the Tektronix 4014 terminal 4014: 
of the DASI 450 terminal. 450: handle special functions 

special functions of the DASI 450 terminal. 450: handle . 
177: Fortran 71 compiler. • •••••• 

long integer and base-64/ a64l, l64a: convert between 
abort: generate an JOT fault 

program. abort: terminate Fortran 
Fortran absolute value. abs, iabs, dabs, cabs, zabs: 

value. abs: return integer absolute 
abs: return integer absolute value. . . . .. 

dabs, cabs, zabs: Fortran absolute value. abs, iabs, 
/floor, ceiling, remainder, absolute value functions. 

socket. accept: accept a connection on a 
a socket. accept: accept a connection on 

LP requests. accept, reject allow/prevent . 
of a file. touch: update access and modification times 

utime: set file access and modification times. 
accessibility of a file. access: determine 

machine/ sputl, sgetl: access long integer data io a 
phys: allow a process to access physil:al addresses. 

ldfcn: common object file access routines. 
copy file systems for optimal access time. dcopy: 

/setutent. endutent, utmpname: access utmp file entry. 
ac.:ess: determine accessibility of a file. 

enable or disable process accounting. acct: 
a"tcon2: connect-time accounting. acctconl, 

acctprcl, acctprc2: process accounting. 
turnacct: shell procedures for accounting. /startup, 

/accton, acctwtmp: overview of accounting and miscellaneous! 
accounting and miscellaneous accounting commands. /of 

diskusg: generate disk accounting data by user ID. 
acct: per-process accountillll file format. 

search and print process accounting file(s). acctcom: 
acctmera: merge or add total accounting files. • • • • • 
mclock: return Fortran time accounting. . . . .. 
summary from per-process accounting records. /command 

wtmpfix: manipulate connect accountiniJ records. fwtmp, 
runa.cct: run daily accounting. • • . . ... 

process accountina. acct: enable or disable 
file format. acct: per-process accountillll 

per-process accountina/ acctcms: command summary from 
proce,~ acoounting file(s). acctcom: search and print 
connect·time accounting. acctconl, acctcon2: 

accounting. acctconl, acctcon2: connect-time 
acctwtmp: overview of/ acctdisk, acctdusg, accton, 
overview of/ acctdisk, acctdusg, accton, acctwtmp: 

accounting files. acctmerg: merge or add total 
acctdisk, aectdusg, accton, acctwtmp: overview of/ 

accountina. acctprcl, acctprc2: process . 
acctprcl, acctprc2: process accounting .. 

acctdisk, acctdusg, accton, acctwtmp: overview of/ ... 
sin, cos, tan, asin, acos, atan, atan2:/ •.... 
intrinsic function. acos, dacos; Fortran arccosine 

killall: kill all active processes. . . . . . • 

- I -

300(1) 
300(1) 
300(1) 
300(1) 
13to!OCJ 
dilf3(1) 
4014(1) 
4014(1) 
450(1) 
450(1) 
mm 
a641(3C) 
abort(3C) 
abort(3Fl 
abs(3Fl 
abs(3C) 
abs(3C) 
abs(3Fl 
fioor(3Ml 
accept(2N) 
accept(2N) 
accept OM) 
touch (I) 
utime(2) 
access(2) 
sputH3Xl 
phys(2) 
ldfcn(4) 
dcopy(IM) 
getut(3C) 
access(2) 
acct(2) 
acctcon(IM) 
acctprc(IM) 
acctshUM) 
acctOMl 
acct(\M) 
diskusg(IM) 
acct(4) 
acctcomOl 
acctmerg{IM) 
mclock(3Fl 
acctcms(IM) 
fwtmpOMl 
runacct(IM) 
acct(2) 
acct(4) 
acctcms(IM) 
&l:i:tcom(l) 
acctconUMl 
a"tconOMl 
aect(IM) 
acct(IM) 
acctmerg(IM) 
acct(IM) 
acctprd I M) 
acctprc( I M) 
acct(IM) 
trig(3M) 
acos(3F) 
kil\aii(IM) 



Pnmuted Index 

sag: system activity graph. 
sal, sal, sadc: system activity report package. 

sar: system activity reporter. 
current sees file editing a~::tivity. sact: print 

n:port process data and system activity. /time a command; 
random, hopefully interesting, adage. fortune: print a 
formatting/ mosd: the OSDD adapter mac:ro package for 

aa:tmerg: merge or add total aa:ounting tiles. 
putenv: change or add value t() environment. 

/inet_netof: Internet address ma11ipulalion routines. 
arp: Address Resolution Protocol. 

a process to access physical addn:sses. phys: aUow 
sees files. admin: create and administer 

admin: create and administer sees files. 
pme. adventure: :an exploration 

imqinary part of complex/ aimag, dimag: Fortran 
part intrinsic function. aint. dint: Fortran integer 
alarm: set a process's alarm clock. • ••••• 

clock. alarm: set a process's alarm 
delivermail. aliases: aliases file for .. 

aliases; aliases file for delivermail 
earth. aliens: The alien invaders lltlack the 

attack the earth. aliens: The alien invaders 
change data segment space allocation. brk. sbrk: •• 

realloc, calloc: main memory allocator. malloc, free, 
mallinfo: fast main memory allocator. /calloc, mallopt, 

physical addresses. phys: allow a process to aa:ess 
a~:cept. n:je(t: allow/prevent LP requesiS. 

naturalloprithmf lor;, alor;, dlos. dor;: Fortran 
logarithm intrinsK:/ lo&IO, aloa10, dloglO: Fortran common 
information for bad blockf altblk: alternate block . , •• 

for bad block/ altblk: alternate btock. information 
Fortran/ max, maxO, amaxO, maxi, amaxl, drnaxl: 

max, maxO, amaxO, maxi, amaxl, dmaxl: Fortran! 
Fortran/ min, minO, aminO, mini, aminl, dminl: 

min, minO, aminO, mini, aminl, dminl: Fortran/ 
remaindering intrinsic/ mod, amod, dmod: Fortran •.. 

rsbift: Fortran bitwise/ and, or, xor, not, !shift, 
llocate source, binary, andfor manual for prQ&r&m. 

sort: sort andfor mer3e files. , ••. 
terminal. worms: anilllilte worms on a display 

rain: animated raindrops display. 
Fortran nearest integer/ anini, dnint, oint, idnint: 

bed: convert to antique media. • •..•• 
link editor output. a.out: common assembler and 

Hies. aouthdr.h • a.out header for common object 
editor output. a.outS.O: assembler and link 

common object files. aouthdr.h · a.out header for • 
introduction to commands and application proarams. intro: • 

maintenance commands and application pTOIJI"ams. /system 
maintainer for portable/ ar: archive and library 

format. ar: common archive Hie . 
maintainer. arS.O: arclJive and library 

format. arS.O: archive (library) file 
number: convert Arabic numerals to ElJ&Iisb. 

deliverm.t~il: deliver m.t~ilto arbiuary people. • •..• 
laDJuage. OC: arbitrary-IJI"C(:ision arithmetic 

acos, daoos: Fortran ara:osine intrinsic function. 
maintainer. arS.O: archive and library •..•• 

for portable archives. ar: archive and library maintainer 
cpio: format of cpio archive. • • . . • • . . . • 

ar: common archive file format. ••.•• 
header of a member of an archive file. I the archive 

an archive/ klahread: read the archive header of a member of 

. 2. 

saaUGl 
sar(IM) 
sar(l) 
sact(l) 
timex()) 
fortune(6) 
mosd<sl 
acctmera(IM) 
putenv<Jel 
ineiUNl 
arp(SP) 
phys(2) 
admin(l) 
admin(i) 
adveruure(6) 
aimq(lF) 
aintiJF) 
alurml1l 
alarml2) 
aliases(7N) 
aliases(7N) 
aliens(6) 
aliens(6) 
brk(2) 
malloc(JC) 
malloe(JX) 
phys(2) 
aa;ept{IM) 
Jos{JF) 
lo&IO(JF) 
altblk(4) 
ahblk(4) 
max OF) 
maxUFl 
min(JF) 
min OF) 
modi3Fl 
bool(lFl 
whereis(l) 
sort(!) 
worms(6) 
rain(6) 
roundUFJ 
bcd(6) 
a.out(4) 
aoulhdr(4) 
a.outS.0(4) 
aouthdt(4) 
intro(i) 
intro(IM) 
arm 
ar(4) 
arS.O(I) 
arS.0(4) 
number(6) 
delivermaii(8N) 
be(!) 
acos(JF) 
arS.O(I) 
arm 
cpio(4) 
ar(4) 
klahread(JXl 
klahread(JX) 



,r-

arS.O: 
tp: manipulate tape 

tar: tape file 
maintainer for portable 

cpio: copy file 
asin, duin: Fortran 

atan2, datan2: Fortran 
atan, datan: fortran 

imqinary part of complex 
return Fortran command-line 

varargs: handle variable 
formatted output of a varargs 
formatted output of a varargs 

command. xargs: construct 
getopt: get option letter from 

expr: evaluate 
ei:ho: echo 

be: arbitrary-precision 
number facts. 

Protocol. 
expr: evaluate arguments 

characters. asa: interpret 
control characters. 

ascii: map of 

~·· long integer and base-64 
number. atof: convert 

and/ clime, Jocaltime, gmtime, 
trigonometric/ sin, cos, tan, 

intrinsic function. 
help: 

output. a.out: common 
output. a.out5.0: 

as: common 
asS.O: 

assertion. 
assert: verify program 

setbuf, setvbuf: 
a later time. 

sin, oos, tan, asin, acos, 
arc1angent intrinsic/ 
arclangent intrinsic/ 

cos, 1an, asin, acos, alan, 
floating-point number. 

double-precision/ strtod, 
integer. strtol, atol, 

integer. strtol, 
aliens: The alien invaders 

autorobots: Escape from the 
automatic robots. 

lav: print load 
processing language. 

ungetc: push character 

back: the game of 
daily/weekly UNIX file system 

fine: fast incremental 
free: recover Iiles from a 

block information for 
/program to set or update 

update bad block information. 

archive (library) file format. 
archive. . . . • . . . . . 
archiver. 
archives. /archive and library 
archives in and out. 
arcsine intrinsic function. 
arctangent intrinsic function. 
arctangent intrinsic function. 
argument. /dimag: Foman 
argument. getar&: 
argument Jist. 
argument Jist. /print 
argument Jist. /print .. 
argument Jist(s) and execute 
argument vector ..... . 
a111uments as an expression. 
arguments. . •.... 
arithmetic language. 
arithmetic: provide drill in 
arp: Address Resolution 
as an expression. 
as: common assembler. 
asS.O: assembler .... 
ASA carriage control . 
asa: interpret ASA carriage 
ASCII character set. 
ascii: map of ASCII character 
ASCII string. /convert between 
ASCII string to floating-point 
asctime, tzset: convert date 
asin, acos, atan. alan2: 
asin, dasin: Fortran arcsine 
ask for help in using sees. 
assembler and link editor 
assembler and link editor 
assembler .....• 
assembler .•...• 
assert: verify program 
assertion. . ...• 
assign buffering to a stream. 
at, batch: execute commands at 
atan, atan2: tri&onometric/ 
alan, datan: Fortran 
atan2, datan2: Fortran 
atan2: trigonometric/ sin, , 
atof: convert ASCII string to 
atof: convert strillll to •• 
atoi: convert string to . . 
atol, atoi: convert string to 
attack the earth. 
automatic robots. 
autorobots: Esct~pe from the 
avera&e statistics. , , , •. 
awk: pattern scanning and , 
back into input stream. 
back: the pme of backgammon. 
backpmmon. . . . .. 
backup. filesave, tapesave: 
backup. . ....•. , 
backup tape. . .•... 
bad block handling. /alternate 
bad block information. 
badblk: provam to set or 
banner: make posters . 

• J • 

Pt'rmurt'd Jndt'x 

ar5.0(4) 
tp(l) 
tarl I) 
arl l) 
cpio( I) 
asinOFl 
atan2(3F) 
atan(3F) 
aimaa:OF) 
getai"J0f) 
varargs(5) 
vprintfOS) 
vprinlf(3Xl 
xarp(l) 
getopt(3C) 
expr(ll 
echo( I) 
be(\) 
arithmetic(6) 
arp(5P) 
expr(l) 
as(l) 
asS.O(I) 
asa(l) 
asa(l) 
ascii(5) 
ascii(5) 
a641(3C) 
atofOCl 
ctime(3C) 
trig(JM) 
asinOF) 
help(!) 
a.out(4) 
a.out5.0(4) 
as(!) 
asS.O(l) 
assertOXl 
assert(JX) 
setbuf(JS) 
at (I) 
triJ;OMl 
atan(3Fl 
atan2(3Fl 
trig(3M) 
atof(3C) 
strtod(3C) 
strtoiOCl 
strtol(3C) 
aliens(6) 
autorobots(6) 
autorobots(6) 
lavOl 
awk(l) 
ungetc(3S) 
back(6) 
back(6) 
filesave(IM) 
finc{IM) 
frec(IM) 
altblk(4) 
badblkUMJ 
badblkOMJ 
banner(\) 



Permuted Index 

banner7: print large ba!lller on P'l"inter. . ...• 
printer. banner7: print large banner on 

hosts: host name data base. . .•....•. 
networks: network name data base. . . • . . . . . . 

port. ttytype: data base of terminal types by 
protocols: protocol name data base. 

services: service name data base. . . • . . . . . . 
terminal capability data base. termcap: . . •.. 
terminal capability data base. terminfo: 

between Ions inteaer and base-64 ASCII string. /convert 
(visual) display editor based on ex. /screen-oriented 

portions of path names. basename, dirname: deliver . 
later time. at, batch: execute commands at a 

arithmetic language. be: arbitrary-precision . . . . 
bed: convert to antique media. 

system initialization/ brc, bcheckrc, rc, powerfaiJ: 
string operations. bcopy, bcmp, hzero, ffs: bit and byte 

and byte string operations. bcopy, bcmp, bzero, ffs: bit • 
bcopy: interactive block copy. 
bdiff: big dill". 

cb: C program beautifier. • ...•... 
jO, jl, jn, yO, yl, yn: Bessel functions .•••.. 

hfs: big file scanner. 
whereis: locate source, binary, and/or manual for/ 

cpset: install object files in bi011ry directories. 
strings in an object, or other binary file. /the printable . 

fread, fwrite: binary input/output. 
bsearch: binary search a sorted table. 

tftnd, !delete, !walk: manase binary search trees. tsearch, 
bind: bind a name to a socket. 

bind: bind a name to a socket. 
bcopy, bcmp. bzero, ffs: bit and byte string/ ... 

remove symbols and relocation bits. stripS.O: •• , , • 
/set or reset the teletype bits to a sensible slate. 

/not, !shift, rshift: Fortran bitwise boolean functions. 
bj: the game of black jack. 

bj: the aame of black jack. • •••••. 
bcopy: interactive block copy. . .•... 

sum: print checksum and block count of a file. 
block information for bad block handlii!J. /alternate 

program to set or update bad block information. badblk: 
block/ altblk: alternate block information for bad 
sync: update the super block. • ••..• 

bit, bltSI2: block transfer data ..•. 
df: report number of free disk blocks. • •...••. 

surn7: sum and count blocks in a file. , , , , , 
data. bit, bltSI2: block transfer 

bit, bltSI2: block transfer data. 
netmailer: deliver mall to B·NET. . ••....•. 

netmail: the B·NET network mail system. 
rshifl: Fortran bitwise boolean functions. /!shift, . 

boot: startup. procedures. 
system initialization sbe!V brc, bcheckrc, rc, powerfail: 

space allocation. brk, sbrk: cbana:e data seamen! 
modest-sized programs. bs: a compiler/interpreter for 

sorted table. bsearch: binllry search a , • • 
stdio: standard buffered input/output packqe. 

setbuf, setvbuf: usisn bufferins to a str1111m ..•• 
mknod: build special file. • • • • • 

between host and network byte order. /convert values 
/bcmp, !nero, ffs: bit and byte string operations. 

swab: swap bytes. •.•.••.. 
strina:l bcopy, bcmp, bzero, ll"s: bit and byte 

~: C compiler. • •••• 

. 4. 

bannerHil 
banner7<1) 
hosts(4N) 
networks(4N) 
ttytype(4) 
protocols(4N) 
services(4N) 
termcap(5) 
terminfo(4) 
a6410C) 
vi(!) 
basename(l) 
at(!) 
he (I) 
bcd(6) 
brdiM) 
bstring(JN) 
bstring(3N) 
bcopy(IM) 
bdiff(l) 
cb(l) 
besselOMJ 
bfs(l) 
whereis(l) 
cpset{IM) 
strinas(l) 
fread(3S) 
bsearch(3C) 
tsearch(JC) 
bind(2N) 
bind(2N) 
bstring(JN) 
stripS.O(l) 
tset(i) 
booi(3F) 
bj(6) 
bj(6) 
bcopy(lM) 
sum (I) 
altblk(4) 
badblk(IM) 
altblk.(4) 
sync (I) 
blt(3C) 
df(lM) 
sum7(1) 
blt(JC) 
blt(3C) 
netmailer(SN) 
netmail(SN) 
booiOFl 
boot(IIJ 
brc(IM) 
brk(2) 
bsO) 
bsearch(JC) 
stdioOS) 
setbuf<JS) 
mknodOM) 
byteorder(JN) 
bstring(JN) 
swab(3C) 
bstrina:(JN) 
cc(l) 



cc5.0: C compiler. 
mc68cc: C compiler. 

cflow: generate C flowgraph. 
cpp: the C language preprocessor. 
cpp: the C language preprocessor. 

cb: C program beautifier .. 
lint: a C program checker. 

cxref: generate C program cross-reference. 
mainlllin a tags file for a C program. "ags: 

ctrace; C program debugger. 
~str: extract strilll!S from C programs to implement shared/ 

message file by massaging C source. /create an error 
val\le. abs. iabs, dabs, cabs, zabs: Fortran absolute 

cal: print calendar. 
de: desk cak:ulator ....... . 

cal: print calendar. . ..... . 
calendar: reminder service. 

cu: call another UNIX system. 
data returned by SUit system call. SUit: . . . . . .. 

malloc, free, realloc, calloc: main memory allocator. 
fast/ malloc, frw, realloc, calloc, mallopt, ma\linfo: 

intro: introduction to system calls and error numbers. 
link and unlink system calls. link, unlink: exercise 

to an LP line printer. lp, cancel: send/ -cancel requests 
termcap: terminal e&PIIbility dat.a base. 

terminfo: terminal capability data base. 
cribbage: the card game cribbq;e. 

pnch: file format for card images. . .. 
asa: interpret ASA carriage control characters. 

files. cat: concatenate and print 
cb: C program beautifier. 
e<:: C compiler ... , .• 
ccS.O: C compiler. 

function. cos, dcos, ccos: Fortran cosine intrinsic 
cd: change working directory. 

commentary of an sees delta. cdc: cbanae the delta 
ceiling, remainder,/ floor, ceil, fmod, fabs: floor, 

/ceil, fmod, fabs: floor, ceiling, remainder, absolute/ 
intrinsic/ exp, deKP, cexp: Fortran cl\ponential . 

cllow: generate C flowgraph. 
delta: make a delta (change) to an sees file. 

pipe: create an interprocess channel. •••.•..•. 
/dble, cmpbt, dcmp]x_ ichar, char: explicit Fortran type/ 

stream. ungetc: push character back into input 
and neqn. eqnchar: special character definitions for eqn 

file. freq: report on character frequencies in a . 
user. cuserid: get character login name of the 

/getchar, fgetc, getw: get characler or word from a/ . 
/putchar, fputc, putw: put character or word on a stream. 

ascii: map of ASCII character set. 
interpret ASA carriage control characters. asa: . . . .. 

tolower, toascii: translate characters. I toupper, 
- iscntr~ isasci~ classify characters. /[sprint, isgraph, 

given/ sumdir: sum and count characters in the files in the 
tr: translate characters. . . . . . •.. 

lastlogin, monacct, nulladm,/ chargefu, ckpacct, dodisk, 
killer robots. chase: Try to escape the .. 

directory. chdir: change working 
/dfsck: file SYStem consistency check and interactive repair. 

checking procedure. checkall· faster file system . 
constant-width text for/ cw, checkcw: prepare ..•.. 
text for nroff or/ eqn, neqn, checkeq: format mathematical 

lint: a C program checker. 
grp<:k: password/group file checkers. pwck, ..... . 

. 5. 

f>t'rmu/ed Index 

cc5.0(J) 
mc68cc(l) 
cnow( I) 
cpp(l) 
cpp5.0(]) 
cbOJ 
lint OJ 
cxref(l) 
ctags(l) 
ctrace(l) 
~strO) 
mkstr(]) 
absOFJ 
cal(]) 
deW 
cal OJ 
calendar( I) 
culiCJ 
stat(S) 
malloc(3C) 
mallodJX) 
intro(2) 
tinkUMJ 
lp(l) 
termcap(S) 
termiofo(4) 
cribbage(6) 
pnch(4) 
asa(]) 
catO) 
cb(l) 
a:(]) 
cc5.0{1) 
cos(3F) 
cd(l) 
cdc(!) 
lloor(3M) 
floor(3M) 
expOF) 
cflow(]) 
delta(]) 
pipe(2) 
ftype(JF) 
ungetc(JS) 
eqnchar(S) 
rreq(IJ 
cuserid(3S) 
getc(JS) 
putcOS) 
ascii(S) 
asa(l) 
conv(3C) 
ctype(3C) 
sumdir(l) 
trO) 
acctsh(JMJ 
chasel6J 
chdir(2) 
fsck.OM) 
checkall(lM) 
cw(l) 
eqn{l) 
lintO) 
pwck(JM) 



checkall: faster file system 
copy file systems with label 
systems processed by fsck. 

formatted with the/ mm, osdd, 
file. sum: print 

vchk: version 
system nodename. 

chown, 
times: get process and 

terminate. wait: wait for 
terminate. waitJ: wait for 

of a file. 
group. 

for a command. 
monacct, nulladm,/ chargefee, 

isgraph, iscntrl, isascii: 
uuclean: uucp spool directory 

clri: 
clear: 

Slatus/ ferror, feof, 
(command interpreter) with 
alarm: set a process's alarm 

cron: 

Josarithm/ los. alos. dlog, 
ldclose, ldaclose: 

close: 
descriptor. 

fclose, ffiush: 
/telldir, seekdir, rewinddir. 

/real, float, sngl, dble, 
line-feeds. 

comb: 
common to two sorted files. 

nice: run a 
chaf18.e root directory for a 

env: set environment for 
uux: UNIX-to-UNIX system 

system: issue a shell 
only). nohup: run a 

C-like syntax. csh: a shell 
getopt: parse 

/shell. the standard/restricted 
returning a stream to a remote 

and system! timex: time a 
return stream to a remote 

per-process/ acctcms: 
system: issue a shell 

test: condition evaluation 
time: time a 

argument list(s) and execute 
getarg: return Fortran 

and miscelblneous accounting 
intro: introduction to 

/to system maintenaoce 
al, batch: execute 

install: inslall 

checking procedure. 
checking. volcopy, labelit: 
checklist: list of file ... 
checkmm: printll::heck documents 
checksum and block count of a 
checkup. . . . . . . . . . 
chgnod: change current UNIX 
chgrp: chanae owner or group. 
child process times. . . 
child proceSii to stop or 
child process to stop or 
chmod: change mode. 
chmod: cha.nge mode of file. 
chown: change owner and group 
chown, ch&rp: change owner or 
chroot: chan1e root directory. 
chrool: chan1e root directory 
ckpacct, dodisk, lastlogin, . 
classify <;haracters. /isprint, 
clean-up. ..•.... 
clear: clear terminal screen. 
clear i·node. . .... 
clear termin11l screen. 
clearerr,fileno: stream 
C-like syntax. csh: a shell 
clock .........• 
clock daemon. • ...• 
clock: report CPU lime used. 
clos: Fortran natural 
close a oommon object file. 
close a file descriptor. . 
close: close a file ... 
close or flush a stream. 
closedir: flexible len1thl 
clri: clear i-node .... 
cmp: compare two Iiles. 
cmplx, dcmplx, ichar, char:/ 
col: filter reverse ...•. 
comb: oombine sees dellas. 
combine sees del~as. 
comm: select or reject lines 
command at low priority. 
command. chroot: 
command exe<:ution. 
command execution. 
<;ommand from Fortran. 
command immune to haqups (sh 
(command interpreter) with ... 
command options. . . • . . . . 
command programming lanauage. 
command. /routines for 
CQmmand; repon process data 
command. rexec: 
command 5ummary from 
command. 
command .......• 
command. 
command. xargs: construct 
command-line argument. 
commands. /of accounting 
commands and application/ 
commands and application/ 
commands at a later time. 
commands. . ..... . 

- 6-

checkaiiOMJ 
volcopy(IM) 
checklist(4) 
mm{l) 
sumO) 
vchkllMJ 
ch&nodOMJ 
chownUJ 
times{2) 
wait(l) 
wait3(2Nl 
chmod{IJ 
chmodUJ 
chown{2l 
chown(IJ 
chroott2) 
chrootHM) 
aa:tsh{IMJ 
ctype(JC) 
uudeanUM) 
clear{!) 
clriOMJ 
clear{!) 
ferrorOSl 
csh{IJ 
altorm(l) 
cronOMJ 
clockOe) 
logOFl 
klcloseOXJ 
close(2) 
close(2) 
f<;loseUSJ 
directory(JXJ 
clrHIM) 
cmp(l) 
fiYpeUFI 
col()) 
comb{!) 
comb(!) 
commH) 
nice()) 
chrootOMJ 
env{l) 
uuxHCl 
systemUFJ 
nohup(l) 
csh{l) 
1e10pt(J) 
sh(i) 
n;mdUNJ 
timex (I) 
rexec()N) 
acctcmsUMl 
system USI 
test{ I) 
time(!) 
XI !"IS( I) 
ptar1UFJ 
aa:tOM) 
introOJ 
intro{IM) 
at(!) 
install( 1M) 



cdc: change the delta commentltry of an sees delta. 
ar: common archive file format. 

editor output. a.out: common assembler and link 
as: common assembler. 

JogiO, aloglO, dlogJO: Fortran common l011arithm intrinsic/ 
routines. ldfcn: common object file access . 

Jdopen, ldaopen: open a common object file for/ .. 
/line number entries of a common object file function. 

ldclose, ldaclose: close a common object file. 
read the file header of a common object file. ldfhread: 
entries of a section of a common oQiect file. /number 

the optional file header of a common object file. /seek to 
/entries of a section of a common object file. 

/section header of a common object file. 
an indexed/named section of a common object file. /seek to 

of a symbol table entry of a common object file. /the index 
symbol !able entry of a common obj.ect file. /indexed 

seek to the symbol table of a common obj.ect file. ldtbseek: 
line number entries in a common object file. linenum: 

nm: print name list of common object file. 
relocation information for a common object file. reloc: 
scnhdr: section header for a common object file. 

lable format. syms: common object file symbol 
aouthdr.h • a.out header for common object files. 

filehdr: file header for common object files. 
ld: link editor for common object files. 

size: print section sizes of common object files. 
comm: select or reject lines common to two sorted files. 

ipcs: report inter-process communication facilities/ 
fiok: s1andard interproces.s communication packaae. 

socket: create an endpoint for communication. 
diff: differential file comparator. , •.••. 

cmp: compare two files. 
sees file. sccsditr: compare two versions of an 

lie, ]&t, lie, lit: string comparision intrinsic/ , , , 
dilf3: 3-way differential file comparison. , , • , ..• 

dircmp: directory comparison. , .•...• 
expression. re~tmp, reaex: compile and execute a reaular 
reaexp: regular expression compile and match routines. 

re&emp: regular expression compile ..• , , . 
term: format of compiled term file .. 

cc: e compiler. 
ccS.O: C compiler. 

n1: Fortran 77 compiler. 
mc68cc: e compiler. 

tic: terminfo compiler. 
yacc: yet another compiler-compiler. 

modest·sized programs. bs: a compiler/interpreter for 
erf, erfc: error function and complementary error function. 

Fortran imaginary part of complex argument. /dimag: 
col1.ig, dcol\iJ: Fortran complex conjugate intrinsic/ . 

pack, peat, unpack: compress and expand files. 
table entry of at ldtbindex: compute the index of a symbol 

cat: concatenate and print files. 
test: condition evaluation command. 

config: configure system. 
uvar: returns system-specific configuration information .. 

parameters. ifconfig: ~onfigure network interface 
~onfig: configure system. 

system. Ipadmin: configure the LP spooling . 
conjugate intrinsic function. conjg, dconjg: Fortran complex 

conjg, dconjg: Fortran complex conjugate intrinsic function. 
fwtmp, wtmpfix: manipulate ~onnect ac~ounting records. 

on a sodet. connect: initiate a connection 

- 7-

Permuted Index 

cdc(!) 
ar(4) 
a.out(4) 
as(]) 
loJIOOFl 
ldfcn(4) 
ldopen(3Xl 
ldlread(3Xl 
ldclose(3X) 
ldfhreadOX) 
ldlseek(3X) 
ldohseek(3X) 
ldrseekOXl 
ldshreadOXl 
ldsseekOXl 
ldtbindex (3X l 
ldtbread(3X) 
ldtbseek(3X) 
linenum(4) 
nm(l) 
reloc(4) 
~~Cnhdr(4) 
syms(4) 
aouthdr(4) 
filehdr(4) 
Jd(l) 
size(]) 
comm(l) 
ipcs(l) 
stdipdJe) 
socked2Nl 
dJff(l) 
cmp(l) 
IICCSdifl'{l) 
strcmpOFl 
diff3(1) 
dircmp(l) 
regcmp(3X) 
re,exp(S) 
reJCmp(l) 
term(4) 
cc(l) 
ccS.O(l) 
n7(1) 
mc68cc(l) 
ticOMl 
yaccOl 
bs(l) 
erf(3M) 
aimq(3F) 
conjg(JF) 
pack (I) 
ldtbindex(lX) 
cat(]) 
testOJ 
config(IM) 
uvar(2) 
ifconflg(8NJ 
config(IM) 
lpadmin(IM) 
conjg(JF) 
COnjJ(JF) 
fwtmp(IM) 
connect(2N) 



Permuted Index 

ptpeername: get name of connected peer. 
an out-goina terminal line connection. dial: establish 

accept: accept a connection on a socket. . 
connect: initiate a connection on a socket. 

down part of a full-duplex connection. shutdown: sllut 
listen: listen for connections on a socket. 

acctconl, acctcnn2: connect-time accounting. 
fsck, dfsck: lile system consistency check and/ 

math: math functions and constants. • . . . . . 
cw, checkcw: prepare constant-width te~t for troll 

mkfslb: construct a llle system. 
mkfs: construct a file system. 

execute command. urgs: construct argument list(s) and 
nrolf/troff, tbl. and eqn constructs. deroff: remove 

Is: list contents of directory. 
csplit: context split .•. 

asa: interpret ASA carriage control characters. 
ioctl: control device. . 

fcntl: file control. 
init, telinit: process control initialization. 

m*tl: message control operations. 
semctl: semaphore control operations. 

shmctl: shared memory control operations. 
fcnll: file control options. 

tcp: Internet Transmission Control Protocol. 
uucp status inquiry and job control. uustat: 

vc: version control. 
interface. Uy: controlling terminal 

conv: object file converter. 
terminals. term: conventional names for • 

char: explicit Fortran type conversion. /dcmplx, ichar, 
units: conversion program. 

dd: convert and copy a file. . . 
English. number: convert Arabic numerals to 

floating-point number. atof: convert ASCII string to •. 
integers and! lltol, ltoll: convert between 3-byte •. 

and base-64 ASCII/ a641, l64a: convert between lona integer 
/gmtime, asctime, tzset: convert date and time to/ , . 
and VAX·ll/780/ fscv: convert files between M68000 

to strin1. ecvt, fcvt, gcvt: convert floating-point number 
scanf, fscanf, sscanf: convert formatted input. 

strtod, atof: convert strina: to/ 
strtol, atol, atoi: convert string to integer. 

bed: convert to antique media. 
htonl, htons, ntohl, ntohs: convert values between host/ 

conv: object file converter. 
dd: convert and copy a lile. . • . . . . . . 

bcopy: interactive block copy. . . . • . . . , .. 
cpio: copy file arcllives in and out. 

access time. ck:opy: copy file systems for optimal 
checking. volcopy, labelit: copy lile systems with label 

cp, In, mv: copy, link or move files. 
rep: remote file copy. . . . • . . .... 

UNIX system to UNIX system copy. uucp, uulog, uuname: 
UNIX-to-UNIX system file copy. uuto, uupick: public . 

file. core: format of core imaae 
core: format of core image file. 

mem, kmem: core memory. . .... 
cosine intrinsic fun~tion. cos, dcos, ccos: Fortran . 

atan2: trigonometric/ sin, cos, tan, asin, acos, atan, 
hyperbolic cosine intrinsic/ cosh, dcosh: Fortran 

functions. sinh, cosh, tanh: hyperbolic 
cos, dcos, ccos: Fortran cosine intrinsic function. 

/dcosh: Fortran hyperbolic cosine intrinsic function. 

- ' -

getpeername(2Nl 
diaiOCJ 
acceptUNJ 
connectUNJ 
shutdownUNJ 
listen(2NJ 
acctcon(IM) 
fsckUM) 
mathiS) 
cw(l) 
mkfslb(IM) 
mkrs(lM) 
xargs(l) 
deroff( ll 
ls(J) 
Qiplit(l) 
asa(l) 
ioctll2l 
fcntll2l 
initOMJ 
msgctl(2) 
semctll2l 
shmctii2J 
fcntl(5) 
tcpiSP) 
uustat( lCJ 
vcOJ 
uy(7) 
conv{l) 
term(SJ 
fiype(JF) 
units(\) 
dd(l) 
number(6J 
atofiJC) 
13toll3CJ 
a641(3C) 
ctime(JC) 
fscv(lM) 
ecvt(JC) 
~~~:anfi3SJ 
strtodOC) 
strtoi(3C) 
bcd(6) 
byteorder13NJ 
conv(l) 
dd(l) 
bcopyUMJ 
cpioOJ 
dcopyOMl 
volcopy(lM) 
cp(IJ 
rcp([N) 
uucpOC) 
uutoOCJ 
core(4) 
core(4J 
memOJ 
cosOFJ 
trigOMJ 
coshOFJ 
sinhDMJ 
cosDFJ 
coshOFJ 



sum7: sum and count blocks in a file. 
in the given/ sumdir: sum and count characters in tile Iiles 
sum: print checksum and block count of a file. . .. , . . 

we: word count. . . . . .•• · •. 
Illes. cp, In, mv: capy, link or move 

cpio; format of cpio archive. . .. , ... 
and out. cpio: copy file archives in 

cpio: format of cpio archive. 
preprocessor. cpp: the C language .. . 
preprocessor. cpp: the C language .. . 

binary directories. cpset: install object Illes in 
clock: report CPU time used. 

craps: the same of craps. . . , .•.... 
craps: the game of craps. 

system crashes. crash: what to do when the 
what to do when the system crashes. crash: , . . . .. 

rewrite an existins one. creat; create a new file or 
file. tmpnam, tempnam: create a name for a temporary 

an existing one. creat; create a new file or rewrite 
fork: create a new process. 

tmpfile: create a temporary file. 
communicallon. socket: create an endpoint for 

by massq:ing C source. mkstr: create an error message file 
channel. pipe: create an interprocess •.. 

files. admin: create and administer sees 
umask: set and get file creation masK. 

cribbase: the card game cribbage. . . . . . • 
cribba&e. cribba&e: the card game 

cron; clock daemon. 
crontab: user crontab file. . .... 

crontab: user crontab file. 
cuef: &enerate C program cross-reference. 

optimization packa&e. curses: CRT screen handling and 
more: file perusal filter for crt viewing. . ..•. 

crypt: encode/decode. 
generate DES encryption. crypt, setkey, encrypt: 

interpreter) with C·like/ csh: a shell (command 
function. sin, dsin, csin: Fortran sine intrinsic 

csplit: contex_t split. 
intrinsic/ sqrt, dsqrt, csqrt: Fortran square root 

terminal. ct: spawn getty to a remote 
for a C program. ctags: maintain a tagS file .. 

terminal. ctermid: generate filename for 
asctime, tzset: convert date/ clime, localtime, gmtime, .. 

ctrace: C program debugger .. 
cu: call another UNIX system. 

Ill, cubic: tic·lac·toe. . .•.. 
get/set unique identifier of current host. /sethostid: 

sethostname: get/set name of current host. getbostname, 
set or print identifier of current host system. hostid: 

hostname: set or print name of current host system. 
activity. sact: print current sees file editi1111 , 

cbgnod: change current UNIX system nodename. 
uname: print name of current UNIX system. 

uname: get name of current UNIX system. 
wboami: print effective current user id. 

slot in the utmp file of the current user. /find the 
&etcwd: get pathname of current working directory. 

and optimization package. curses: CRT screen handling 
spline: interpolate smooth curve. . . • . . , ..•. 

name of the user. cuserid: set .::haracter login 
of each line or a file. cut; cut out selected fields 

each line of a file. cut; cut out selected fields of 
constant-width text for/ cw, eheckcw: prepare . , 

. 9. 

Permuted index 

sum70) 
sumdir{l) 
sum(!) 
wc(l) 
cp(l) 
cpio(4) 
cpio(l) 
cpio(4) 
cpp(l) 
cppS.O(J) 
cpsetOMJ 
clockOCJ 
craps(6) 
craps(6) 
crash(8) 
crasb(8) 
creat(2) 
tmpnam(JS) 
creat(2) 
fork(2) 
tmpfile(3S) 
socket(2N) 
mkstr(i) 
pipe(2) 
admin(i) 
umask(2) 
cribbage(6) 
cribbaJe(6) 
cronOM) 
crontab{l) 
crontab(i) 
cxref(l) 
cursesOX) 
more(]) 
crypt(!) 
crypt(JC) 
csh(i) 
sin(3F) 
csplit(i) 
sqrtOF) 
ctOC) 
ctags(\) 
ctermidOS) 
ctime(JC) 
ctrace(i) 
cu(IC) 
m(6) 
gethostid(2N) 
gethostname(2Nl 
bostid{lN) 
bostnameON) 
sact{\) 
chgnodOM) 
uname(l) 
uname(2) 
whoamiOl 
ttyslotOC) 
setcwdOC) 
curses(3X) 
spline(IG) 
cuserid(3S) 
cut(!) 
cut(!) 
cw{l) 



H·mwtt·d lmlt·x 

cross-reference. cxref: generate C program 
absolute value. abs, iabs. dabs, cabs, ubs: Fortran 

intrinsi& function. acos, dat.-os: Fortran arccosine 
cron: clock daemon. 

errdemon: error-logging daemon. 
terminate the error-Jogging daemon. errstop: 

routed: network routing daemon. 
runact:t: run daily a<:counting. 

backup. fileSIIve. tapesave: daily/weekly UNIX file system 
Protocol server. ftpd: DARPA Internet File Transfer 

telnetd: DARPA TELNET protocol server. 
Protocol server. tftpd: DARPA Trivial File Transfer 

/handle special functions of DASI 300 arlld JOOs terminals. 
specml functions of the DASI4SO terminal. /handle 
intrinsic fuoction. asin, dasin: Fortran arcsine • 

/time a command; report process data and system activity. 
hosts: host name data base. . .•... 

networks: network name data base. . .•... 
port. Uytype: data base of terminal types by 

protocols: protocol name dala base. 
services: service oome dala base. 

termcap: terminal capability dala base. 
terminfo: termioot capability dala base. 

bit, blt512: block transfer dala. 
generate disk accountin& dala by user ID. diskusa: 

/saetl: acress long integer data in a machine independem/ 
plock: lock process, teJtt, or data in memcry. . •... 

prof: display profile data. . .••...•... 
call. slat: data returrted by stat system . 

brk, sbrk: change data segment space allocation. 
types: primitive system data types. • • •• 

join: relational database operaiOr. 
tput: query terminfo database. 

udp: Internet User Datagram Protocol. 
intrinsic fuoction. atan, datan: Fortran arctangent 

intrinsic function. atan2, datan2: Fortran arclangemt 
/asctime, tzset: convert date and time 10 strifl&. 

date: print and set the date. . . • . .•... 
date: print and set the date. 

/idint, real, float, sngl, dble, cmpl11, dcmpb. ichar,/ 
de: desk calculator. 

lfloa.t, sngl, dble, cmplx, dcmplx, i&har, char: explicit/ 
conjugate intrinsic/ conjg, dcon.is: Fortran complex 

optimal access time. dcopy: copy file systems for 
intrinsic function. cos, dcos. ccos: Fortran cosine 
cosine intrinsic/ cosh, dcosh: Fortran hyperbolic 

dd: convert and copy a file. 
difference intrinsic/ dim, ddim, idim: positive 

ctrace: e program debuager. 
fsdb: file system debuger. • ..•• 

sdb: symbolic debuuer. . ..•. 
sysdef: system ddinition. • ...• 

eqnchar: special "haracter definitions fo~ eqn and neqn. 
people. delivermail: deliver mail to arbitrary 

netmailer: deliver mail to 8-NET. 
names. basena.me, dimame: deliver portions of path 

file. tail: deliver the last part of a 
aliases: aliases file for delivermail. .•••. 

arbitrary people. delivermail: deliver maiiiO 
delta commentary of an sees delta. cdc: chanae the .•. 

file. delta: make a delta (change) to an sees 
della. cdc: change the delta commentary of an sees 

rmdel: remove a delta from an sees file. 
10 an sees file. delta: make a delta (chan&el 

- 10-

cxref{]J 
absUFJ 
acosOFJ 
cron(IMJ 
errdemonHMJ 
errstopHMI 
routed(IN) 
runacctUMJ 
filesaveOMJ 
ftpd(8NJ 
telnetd(INJ 
tftpdi8N) 
300(1) 
450(1) 
asiniJFJ 
timex( I) 
hosu(4NI 
networks{4N) 
Uytype(4) 
protncols(4N) 
services(4N) 
termcap(SJ 
terminfo(4) 
bltiJeJ 
diskusaCJMJ 
sputi(JXJ 
plock(2) 
profll) 
stat(S) 
brk(21 
types(5) 
join (I) 
tput{l) 
udp(SPI 
alan OFI 
alan2(Jf"J 
ctimeOeJ 
date {I) 
date(]) 
ftype(JF) 
dcOl 
ftype(JFJ 
conj&OF) 
dcopyHMI 
cosOFJ 
coshOFJ 
dd(l) 
dimUFI 
ctrawU) 
fsdb(IMJ 
sdb{l) 
sysdefliM) 
eqnthar(S) 
delivCTmaii(8NJ 
netmailer(8N) 
basenameU) 
lai](l) 
aliases(7NI 
delivermaii(INJ 
cddl) 
delta(!) 
cdc(!) 
rmdel(]) 
delta (I) 



comb: combine sees deltas. 
mesg: permit or 

tbl, and eqn constructs. 
setkey, encrypt: generate 

dose: dose a file 
dup2: duplicate a 
dup: duplicate a 

setdtablesize: get 
de: 

file. access: 
file: 

errors in the specified 
master: master 

ioetl: control 
devnm: 

exponential intrinsic/ exp, 
blocks. 

check and interactive/ fsck, 
terminal line conneetion. 

ratfor: rational Fortran 
bdiff: bill 

comparator. 
dilfdir: 

comparison. 

dim, ddim, idim: positive 
sdilf: side-by-side 

diffmk: mark 
diff: 

diff3: 3-way 
between files. 

difference intrinsic/ 
of complex arJument. aimaJ, 

intrinsic function. aint, 

install object files in binary 
dilfdir: diff 

dir: format of 
rm, rmdir: remove files or 

in tbe files in the given 
cd: change working 

chdir: change working 
ehroot: change root 
uuclean: uucp spool 

dircmp: 
unlink: remove 

chroot: chanae root 
/make a lost+found 

pathname of current working 
Is: list contents of 

mkdir: make a 
mvdir: move a 

pwd: working 
/closedir: flexible length 

ordinary file. mknod: make a 
path names. basename, 

printers. enable, 
acct: enable or 

dis: 
type, modes, speed, and line 

ID. diskuSJ: Jenerate 

deny messages. 
derolf: remove nroff/troff, 
DES encryption. crypt, 
descriptor. 
descriptor. 
descriptor. 
descriptor table size. 
desk calculator. 
determine accessibility of a 
determine file type. • 
device. /on/off the elllended 
device information table. 
device. 
device name. 
devnm: device name. 
de:o;p, cexp: Fortran 
df: report number of free disk 
dfsck: file system consistency 
dial: establish an out-going 
dialeet. • 
diff. - . . . . . 
diff: differential file 
dill" directories. 
diffJ: 3-way differential file 
diffdir: diff directories. 
difference intrinsic/ • 
difference pro&ram. • 
differences between files. 
dilferential file comparator. 
dilferential file comparison. 
dilfmk: mark differences 
dim, ddim, idim: positive 
dimag: Fortran imaginary part 
dint: Fortran integer part 
dir: format of directories. 
din:mp: directory comparison. 
directories. cpaet: 
directories. 
directories. 
directories. 
directories. /count characters 
directory. 
directory. 
directory. 
directory clean-up. 
directory comparison. 
directory entry. 
directory for a command. 
directory for fsck. 
directory. getcwd: Jet 
directory. 
directory. 
directory. 
directory name. 
directory operations. 
directory, or a special or 
dirname: deliver portions of 
dis: disassembler. 
disable: enable/disable LP 
disable process aa:ountina. 
disassembler. • 
discipline. /set terminal • 
dil;k accountin& data by user 

- 11 -

Permuted Index 

comb(l) 
meq(IJ 
de rolf(]) 
crypt(JC) 
close(2) 
dup2(3N) 
dup(3) 
getdtablesize(JN) 
dc(l) 
access(2) 
file(]) 
e:o;terrU) 
master(4) 
ioctl(2) 
devnmOM) 
devnmOM) 
exp(3F) 
df(IM) 
fsckOM) 
dial(JC) 
ratforO) 
bdilf(l) 
diff(l) 
diffdir(l) 
diff3(1) 
diffdir(l) 
dim(JF) 
sdiff(l) 
dilfmk(l) 
dilf(l) 
diff3(1) 
dilfmk(l) 
dim{3F) 
aimag(3F) 
aint(3F) 
dir(4) 
dircmp(l) 
cpset(IM) 
diffdir(l) 
dir{4) 
rm(l) 
sumdir(l) 
cd(l) 
chdir{2) 
chroot(2) 
uucleanOM) 
dircmp(l) 
unlink(2) 
cbroot(IM) 
mkiO!It+fndOM) 
JelcwdOC) 
Is( I) 
mkdirO) 
mvdir(IM) 
pwd(l) 
direc:tory(3X) 
mknod(2) 
basename(l) 
dis(l) 
enable{]) 
acct(2) 
dis{l) 
geuy(IM) 
diskuSII(IM) 



l'emwtnl lndn; 

df: report number of free 
diskformat: formal a 
disktune: tune floppy 

du: summarize 

sellling time parameters. 
accounting data by user 10. 
mount, umount: mount and 

vi: screen-oriented (visual) 
prof: 

rain; animated raindrops 
worms: animate worms on a 

hypot: Euclidean 
/lcong48: generate uniformly 

logarithm/ los, alog. 
losarithm/ log!O, aloglO, 

max, maxO, amaxO, maxi, amaxl, 
min, minO, aminO, mini, aminl, 

intrinsic/ mod, amod, 
nearest inteser/ anini, 

mm, osdd, checkmm: print/check 
macro packqe for formatting 
macro package for formatting 

slides. mmt, mvt: typeset 
nulladm,/ charaefee, ckpacct, 

whodo: who is 
intrinsic function. dprod: 

/atof: convert string to 
/Motorola S-re<:ords from 
product intrinsic function. 

nrand48, mrand48, jrand48,/ 
llaph: 

arithmetic: provide 
pty: pseudo terminal 

ut: pseudo-device 
transfer-of-sia;n/ sia;n, isign, 

Intrinsic function. sin, 
intrinsic function. sinh, 

root intrinsic/ sqrt, 
intrinsic function. tan, 

tan1ent intrinsic/ tanh, 

an object file. 
exuact error records from 

od: octal 
object file. dump: 

dup2: 
dup: 

The allen invaders attack the 
echo: 

Doatin1-point number to/ 

program. end, etext, 

"· sact: print current sees file 
/(visual) display 

ed, red: text 
ex, edit: text 
Illes. ld: link 

ldS.O: link 
common assembler and link 

di~k blocks. 
disk. 
disk setthng time parameters. 
disk usage. . . . ... 
diskformat: format a disk. 
disktune: tune floppy disk 
diskusg: generate disk 
dismount file system. 
display eduor based on ex. 
display profile data. 
display. 
display term;nal. 
distance function. 
distributed pseudo-random/ 
ding, clo~:: Fortran natural . 
dlog!O: Fortran common 
dmul: Fortran muimum-value/ 
dminl: Fortran minimum-value/ 
dmod: Fortran remaindering 
dnint, nint, idnint: Fortran 
documents formatted with the/ 
documents. mm: the MM •.. 
documents. /the OSDD adapter 
documents, view 1raphs, and 
dodisk, blstlogin, monaa:t, 
doing what. ...•.. 
double precision product 
double-precision number. 
downloading into a file. 
dprod: double precision . 
drand48, erand48, lrand4fl, 
draw a graph. 
drill in number facts. 
driver. 
driver. . •.... 
dsJan: Fortran 
dsin, csin: Fortran sine 
dsinh: Fortran hyperbolic sine 
dsqrt, csqrt: Fortran square 
dtan: Fortran tangent .. , , 
dtanh: Fortran hyperbolic .. 
du: summarize disk usqe. 
dump: dump selected parts of 
dump. errdead: 
dump. . •....... 
dump selected parts of an . 
dup: duplicate a descriptor. 
dup2: duplicate a descriptor. 
duplicate a descriptor. 
duplicate a descriptor. 
earth. aliens: 
echo arguments. 
echo: echo arguments. 
ecvt, fcvt, gcvt: eonvert 
ed, red: text editor. . 
edata: lostlocu.tions in 
edit: text editor. 
editing activity. 
editor based on ex. 
editor. • ••.• 
editor. , , , . , 
editor for common object 
editor. . •.•.. 
editor output. a.out: 

- 12 -

t.IHIM! 
di~kformat(lM) 

disktunetlM) 
du(l) 
diskformattlM) 
disktune(lMJ 
diskusg( 1M) 
mount{ 1M! 
vi( 11 
prof([) 
rain(6) 
worms(6) 
l!ypotOMJ 
drand48(3CJ 
log OF! 
logiOOFJ 
max OF) 
minOFJ 
modOFJ 
round(JFJ 
mm(l) 
mm(5) 
mosd(SJ 
mmtU) 
acctshOMJ 
whodo(IM) 
dprod(JF) 
strtod(JC) 
revliex(IJ 
dprodOFJ 
drand480eJ 
graph(! G) 
arithmetic(6) 
ptyiS) 
nt(7) 
sign(3FJ 
sinOFJ 
sinhOF) 
sqrt(JF) 
tan(JFJ 
tanhOFJ 
du(l) 
dump(!) 
errdead(\MJ 
odOJ 
dump(!) 
dup(J) 
dup2()N) 
dup2(JN) 
dup(3) 
aliens(6) 
~ho(l) 
echo(\) 
ecvt(3e) 
ed(l) 
endOel 
e~t(\) 
sact(\) 
vi(]) 
ed(l) 
e~t(l) 
ld(J) 
ldS.O(l) 
a.out(4l 



a.outS.O: assembler and link editor output. 
sed: stream editor. 

whoami: print effective current user id. 
~~etregid: ~~et real and effective group ID. • •• 

/u~~er, real group, and effective group IDs. 
setreuid: set real and effective user ID's. • •• 

and/ /aetegid: set real user, effective user, real group, 
Language. eft: Extended Fortran .• 

fsplit: split n1. ratfor, or en Iiles. • •••.•.. 
for a pattern. grep. egrep. fsrep: search a file 

insque, remque: insert/remove element from a queue. 
enable/disable LP printers. enable, disable: 

accounting. acct: enable or disable process 
enable, disable: enable/disable LP printers. 

crypt: encode/ decode. 
encryption. crypt, setkey, encrypt: aenerate DES 

setkey, encrypt: aenerate DES encryption. crypt, 
makekey: generate encryption key. 

locations in Pl"ot~ram. end. etext, edara: last . 
/setsrgid, getgrnam, setgrent, end&rent, fgelgrent: obtain/ 

/gethostbyname, sethostent, endhostent: get network host/ 
laetnetbyname, setnetent, endnetent: aet network entry. 

socket: create an endpaint for communication. 
laetprotobyname, ~~etprotoent, endprotoent: get protocol/ 

/aetpwuid, setpwnam, setpwent, endpwent, fsetpwent: get/ • 
/getservbyname, setservent, endservent: get service entry. 
utmpl /puunline, setutent, endutent, utmpname: aa:ess 
convert Arabic numerals to En&lish. number: 

nllst: get entries from name list. 
file. linenum: line number entries in a common object 

man: print entries in this manual. 
man: macros for formattins entries in this manual. 

file/ /manipulate line number entries of a common object 
/ldnlseek: seek to line number entries of a section of a/ 

/ldnrseek: seek to relocation entries of a section of a/ 
utmp, wtmp: utmp and wtmp entry formats. 

/fgetJrent: oblain group lite entry from a group file. 
endhostent: get network host entry. fsethostent, 

endnetent: get network entry. /setnelent, 
endprotoent: get protocol entry. fsetprotoent, 

fgetpwent: aet paSsword lile entry. /setpwent, endpwent, 
endservent: get service entry. /setsenent, ..•. 

utmpname: access utmp file entry. fsetutent, endutent, 
/the index of a symbol !able entry of a common object file. 

/read an indexed symbol !able entry of a common object file. 
putpwent: write password file entry. , , , • , , , , , 

unlink: remove directory entry ....... , .. , 
command execution. env: set environment for 

environ: user environment. 
profile: seuins up an environment at login time. 

environ: user environment. , , , . , , 
execution. env: set environment for command 

getenv: return value for environment name. 
printenv: print out the environment. 

putenv: chanse or add value to environment. 
getenv: return Fortran environment variable. 

character definitions for eqn and neqn. /special 
remove nroffftroff, tbl, and eqn constructs. derolf: 
mathematical text for nrolf/ eqn, neqn, checkeq: format 

definitions for eqn and neqn. eqnchar: special character 
mrand48, jrand48,/ drand48, erand48, lrand48, nrand48, 

complementary error function. erf, erfc: error function and 
complementary error/ erf, erfc: error function and .. 

from dump. errdead: extract error records 

- 13 -

a.out5.0(4) 
sed(\) 
whoami(i) 
setregid(2) 
a;etuid(2) 
setreuid(2) 
getuid(2) 
eft(!) 
fsplitW 
srep(l) 
insqueUNl 
enable(\) 
acct(2) 
enable(\) 
crypt(!) 
crypt(JC) 
crypt(JC) 
makekey(l) 
endOCl 
setsrent(JC) 
aethostent(JN) 
aetnetentUN) 
socket(2Nl 
&etprotoentUNJ 
getpwent(JCl 
aetserventONl 
getut(JC) 
number(6) 
nlist(JCl 
linenum(4) 
man(!) 
man(S) 
ldlreadOXl 
ldlseek(3X) 
ldrseek(JX) 
utmp(4J 
setsrent(JCl 
gethostentUNJ 
getnetent(JN) 
getprotoent{3N) 
aetpwent(3C) 
getservent(JN) 
getut(JC) 
ldtbindex(JX) 
ldtbread(JX) 
putpwent(JC) 
unlink(2) 
env(l) 
environ(S) 
proHle(4J 
environ(S) 
env(l) 
getenv(JC) 
printenv(l) 
putenv(3Cl 
getenv()f) 
eqnchar(S) 
derolf(l) 
eqn(l) 
eqnchar(S) 
drand48(3C) 
erf(JM) 
erfUMl 
errdeadOMl 



Permuted 111d1•>.-

daemon. 
format. 

system error/ perror, 
interfa•e. 

complementary/ erf, erfc: 
fun<;tion and complementary 

massaging C/ mkstr: create an 
sys errlist, sn nerr: system 

- to sys\em calls and 
errdead: extract 

matilerr: 
errfile: 

errdemon: 
errslop: terminate tile 

error: 
process a report of logged 
/turn on/off tile e~tended 

ilasilcileck. find spelling 
logged errors. 

error-logsing daemon. 
robots. autorobots: 

robots: 
chase: Try to 

terminal line/ dial: 
setmnt: 

m program. end, 
hypot: 

e~pression. expr: 
test: condition 

display editor based on 
reading or/ locking: provide 

execlp, exec~p: execute a/ 
execvp: execute/ execl, execv, 

execl, execv, execle, execve, 
exel:ve, execlp, execvp: 

regcmp, regex: compile and 
construct argument list(s) and 

time. at. batch: 
set environment for command 

sleep: suspend 
sleep: suspend 

monitor: preP!lre 
rexecd: remote 

profil: 
UNIX-to-UNIX system command 

execvp: execute a/ execl, 
execute/ execl, execv, execle, 

/execv, execle, execve, execlp, 
system calls. link, unlink: 

a new file or rewrite an 
process. 

exit, 
exponential intrinsic/ 

exponential, logarithm,/ 
peat, unpack: compress and 
cmplx, dcmplx. tchar, char: 

adventure: an 
exp, dexp, cexp: Fortran 

exp, log, logiC, pow, sqrt: 
expression. 

routines. rege~p: regular 
regcmp: regular 

expr: evaluate arguments as an 

errdemon: error-logging , 
errfile: error-log file 
errno, sys enlist. sn nerr: 
error: errOr-logging -
error function and 
error function. /erfc: error 
error message file by 
error messages. /errno, . , 
error numbers. /introduction 
error records from dump. 
error-handling function. 
error-log tile format 
error-log11-ing daemon_ 
error-logg_ing daemon. 
error-logsing interface. 
errors. errpt: 
errors in tile specified/ 
errors. /ilashmake, spellin. 
errpt: process a report of 
errstop: terminate the . . . 
Escape from tile automatic 
Escape from the robots. 
escape the killer robots. 
estabhsh an out-going 
establish mount table. 
etext. eda.ta: last locations 
Euclidean distance function. 
evaluate arguments as an 
evaluation command_ 
ex, edit: text editor. 
ex. /screen-oriented \visual/ 
e~clusive file regions for 
execl. execv, execle, execve, 
execle, e1<ecve, execlp, 
execlp, execvp: execute a/ 
execute a file. /execle, 
execute a regular expression. 
execute command. xargs: 
execute commands at a later 
e~ecution. env: 
execution for an inter~al. 
execuuon for interval. 
execuhon profile. . , 
execution server .. , 
execution time profile. 
execution. uu~: 
execv, execle, execve, exedp, 
execve, execlp, execvp: 
exe<;vp: execute a file. 
exercise link and unlink 
existing one creat: create 
exit, _exit: terminate 
e~it: terminate process. 

;xp, dexp, cexp: Fortran 
exp, log, loglO, pow, sqrt: 
expand files. pack, 
explicit Fortran type/ /dble, 
exploration game. 
exponential intrinsic/ , , . 
exponential, logarithm, power,/ 
cxpr: evaluate arguments as an 
expression compile and match 
expression compile. 
expression. 

- 14-

errdemon(IMJ 
errfile(4) 
perrorOCJ 
error OJ 
erfOMJ 
erfOMJ 
mkstrOJ 
pcrrorOCJ 
mtro(2) 
errdead(IMJ 
matherrDMJ 
errlile(4) 
errdemon(lMJ 
errstop(IMJ 
error(7) 
errptUMJ 
exterrHJ 
spell( I) 
errpt(IMJ 
errstop(] M) 
autorobots(6) 
robots(6) 
chase(6) 
dialOC) 
setmnt(IMJ 
endOCJ 
hypotOMJ 
expr(IJ 
test(!) 
exO) 
~i(l) 

locking(2) 
exed2J 
exec(2) 
execUJ 
execl2J 
regcmpOXJ 
xargs(IJ 
at(] J 
env(ll 
sleep( II 
sleepOCJ 
monitorOCJ 
rexecd(8N) 
profil(2) 
uux(lCJ 
exec\21 
execl2J 
exec(2) 
linkHMJ 
creat(2) 
exiH2J 
exit<2J 
expOFJ 
expOMJ 
pack(]) 
ftypeOFJ 
adventure(6) 
expOF) 
expOMl 
expr(l) 
rege~p(5) 
regcmp(l) 
expr(IJ 



Pamuted Index 

compile and e~ecute a regular e~pression. regcmp, rege~: rea:cmp(JX) 
exterr: turn on/off the e~tended errors in the/ exterrU) 

ell: E~tended Fortran Language. ell(]) 
greek: graphics for the e~tended TTY -37 type-bo~. greek(S) 
e~tended errors in the/ exterr: turn on/off the e~terr(l) 

dump. errdead: e~tract error rKOrds from errdead(]M) 
programs to implement/ ~str: extract strin1s from e xstr(U 

;- n7: Fortran 77 compiler. mm 
!split: split n1, ratfor, or ell files. fsplit(l) 

remainder,/ Door, ceil. fmod, fabs: floor, ceiling, Door OM) 
Factor: Factor a number. factor( I) 

factor: factor a number. factor(!) 
true, false: provide truth val11es. true(!) 

data in a machine independent fashion. /aa:ess long inteaer sputl{3X) 
fine: fast incremental backup, finc(IM) 

/calloc, mallopt, mallinfo: fast main memory allocator. mallocOXJ 
procedure. checkall: faster file system checkins checkaii(IM) 

abort: generate an lOT fault. ... . abort(le) 
a stream. fclose, ffiush: close or flush fclose(3S) 

fcntl: file control. fcntl(2) 
fcntl: file control options. fcntl(5) 

floating-paint number/ ecvt, fcvt, scvt: convert ecvtOel 
fopen, freopen, fdopen: open a stream. fopen(3S) 

stallls inquiries. ferror, feof, clearerr. fileno: stream ferror(3S) 
fileno: stream status/ ferror, feof, clearerr, . ferror(3S) 

statistics for a file system. ff: list file names and IT(IM) 
stream. !close. ffi1.1Sh: close or flush a fclose(3S) 

bcopy, bcmp, bzero, ITs: bit and byte siring/ bstring(3N) 
word from a/ getc, getchar, f1etc, setw: set character or getc(3S) 

/setgrnam, selgrent, endsrent, fsetarent: oblain 1roup file/ setgrent(3e) 
/setpwnam, setpwent, endpwent, fsetpwent: get password file/ lelpwent(3e) 

;- stream. gets, faets: set a string from a 1etsUSl 
pa.uern. grep, esrep, fsrep: search a file for a srep{l) 

times. utime: set file access and modification utime(2) 
ldfcn: common object file access routines. ldfcn(4) 

determine aa:essibiUty of a file. access: access(2) 
tar: tape file archiver. tar(!) 

cpio: copy file archives in and out. cpio(l) 
mkstr: create an error message file by massqins e source. mkstr(]) 

pwek, grpck: password/group file checkers. pwck(IM) 
chmod: change mode of file. ehmod(2) 

change owner and group of a file. ehown: ehown(2) 
diff: differential file comparator. dift'(l) 

diff3: 3-way differential file comparison. difl'3(1) 
fcntl: file control. fcntl(2) 
fcntl: file control options. fcntl(5) 

conv: objet:! file converter. conv(l) 
r~p: remote file copy. rcp(IN) 

public UNIX-to-UNIX system file copy. uuto, uupiek: UUto(le) 
core: format of core imaa:e file . . . . . . . core(4) 

umask: set and set file creation mask. umask(2) 
crontab: user crontab file. uonlab(i) 

fields of each line of a file. cut: cut out selected cut (I) 
dd: convert and copy a file. dd(l) 

a delta (change) to an sees file. delta: m11ke delta(]) 
close: close a file descriptor. close(2) ,- file: determine file type. file(]) 

selected parts of an object file, dump: dump dump(]) 
sact: print current sees file editins activity. sact(U 
/fgelgrent: obtain 1roup file entl'}' from a group file. le1Jrent(3el 
fsetpwent: set password file entry. /endpwent, getpwent(le) 
utmpname: access utmp file entl')'. /endutent, getut(JC) 

putpwent: write password file entry. putpwentUel 
execlp, execvp: e~ecute a file. /e~ecv, .execle, execve, e~ec(2) 

- 15 -



Permuted Index 

ctap: maintain a tap file for a e pro1ram. 
1fep, q:rep, f1rep: search a file for a pellern. . 

aliases: aliases file for delivermail. 
ld&open: open a common object file for readina. ldopen, 

acct: per-process acctlbntina file format. 
ar: common archive file format. 

arS.O: archive Uibrary) file format. 
errllle: error-lo1 file format. 

pnch: file format for card images. 
intro: illtrOdi,ICtion to file form11ts. . . . . ... 

on character frequencies in a file. freq: report •...• 
take: takes a file from a remote machine. 

entries of a common object file function. /line number 
get: get a version of an sees file. • • • • . • . • 
group file entry from a 1roup file. /fgetgrent: obtain 

1roup: &roup file. . . . . . . . . 
files. ftlehdr: file header for common object 

file. ldfhread: read the file header of a common object 
ldohseek: seek to the optional file header of a common object/ 

split: split a lile into pieces. . . . . ... 
issue: issue identification file. , . , .. , . 

of a member of an archive file. /read the archive header 
close a common object file. ldclose, ldaclose: 

file header of a common object file. ldfbread: read the 
symbol name for object file. ldgetname: retrieve 

a section of a common object file. /line number entries of 
file header of a common object file. /seek to the optional . 

a section of a common object file. /relocation entries of . 
header of a common object file. /indexed/named section 
section of a common object file. /to an indexed/named 

table entry of a common object file. /the index of a symbol . 
table entry of a common object file. /read an indexed symbol 

table of a common object file. /seek to the symbol 
entries in a common object file. linenum: line number 

link: link to a tile. . . . . . . . .. 
mknod: build special file. . . . . . . . ... 

or a special or ordinary file. /make a directory, . 
a file system. ff: list file names and statistics for 

cha1111e the format of a text file. newform: 
name list of common object file. nm: print 

null: the null file. . . . .. 
/lind the slot in the utmp file of the current user. 

put: puts a file onto a remote machine. 
/identify processes using a file or tile structure. 

one. creat: create a new tile or rewrite an existing 
passwd; password file. . . . ... 

or subsequent lines of one file. /lines of several files 
viewing. more: file perusallilter for crt 

soft....:opy terminals. pg: file perusallilter for 
/rewind, ftell: reposition a file pointer in a stream. 

!seek: move read/write file pointer. . . . .. 
prs: print an sees file ......... . 

from downloading into a file. /Motorola S-records 
read: read from file ...... . 

readv: read from file .......... . 
locking: provide exclusive file regions for reading or/ 

for a common object file. /relocation information 
remove a delta from an sees file. rmdel: 

bfs: big file scanner. 
two versions of an sees file. sccsdiff: compare 
sccsfile: format of sees file. . . . . . . 

header for a common object file. scnhdr: section 
sizeS.O: size of an object file. 

stat, fstat: get file status. 

- 16 -

ctap(l) 
grep(l) 
aliases(7N) 
ldopen(JX) 
acct(4) 
ar(4) 
arS.Of4) 
errfile(4) 
pnch(4) 
introf4) 
freq(J) 
takeOe) 
ldlreadOX) 
get (I) 
getsrentOCI 
group(4) 
lilehdr(4) 
ldfhread(JX) 
ldohseekOXJ 
split(]) 
issue(4) 
ldahreadOXJ 
ldcloseOXJ 
ldfbreadfJX) 
ldgetnameOX) 
ldlseekOXJ 
ldohseekOX) 
ldrseekOXI 
ldshreadOXJ 
ldsseek(JX) 
ldtbindex(JX) 
ldtbread(JXJ 
ldtbseekOX) 
linenum(4) 
link(2) 
mknodOMJ 
mknod(2) 
ff(IM) 
newform(l) 
nm(l) 
nuum 
uyslotUCl 
put(lC) 
fuserOMJ 
creat(2) 
passwd(4) 
p.a.steOJ 
more OJ 
paUl 
fseekDSJ 
lseekf2J 
prs(JI 
rcvhe~(l) 
read(21 
readvONJ 
lockingf2) 
reloc(4) 
rmdel(l) 
bfs(l) 
sccsdiff( 1 ) 
sccsfile(41 
scnhdr(4) 
sizeS.O(JJ 
stat(2) 



in an object, or other binary 
information from an object 

processes using a file or 
checksum and block count of a 

sum and count blocks in a 
syms: common object 

tapesave: daily/weekly UNIX 
procedure. checkall: faster 

and interactive/ fsck, dfsck: 
fsdb: 

names and statistics for a 
volume. 

mkfsl b: construct a 
mkfs: construct a 

umount: mount and dismount 
mount: mount a 

ustat: get 
mnttab: mounted 

umount: unmount a 
access time. dcopy: oopy 

fsck. checklist: list of 
voloopy, lllbelit: oopy 

deliver the last part of a 
term: format of compiled term 

tmpfile: create a temporary 
create a name for a temporary 

and modilkation times of a 
ftp: 

ftpd: DARPA Internet 
tftpd: DARPA Trivial 

ftw: walk a 
tile: determine 

undo a previous 11et of an seeS 
report repeated lines in a 

val: validate sees 
write: write on a 

writev: write on a 
umask: set 

common object files. 
ctermid: aenerate 

mktemp: make a unique 
ferror, feof, clearerr, 

and print process accounting 
merae or add total aa:ountina 

create and administer sees 
a.out header for common object 

VAX-ll/780/ fscv: convert 
updater: update 
updater: update 

eat: ooncatenate and print 
cmp: compare two 

lines common to two sorted 
cp. In, mv: copy,link or move 

mark differences between 
file header for common object 

find: find 
free: recover 

format specification in text 
split n1, ratfor, or ell 
hex: translates object 

cpset: install object 
and count characters in the 

intro: introduction to special 
link editor for common object 

file. /the printable strings 
file. /symbol and line number 
file structure. /identify 
file. sum: print 
file. sum7: 
tile symbol table format. 
file system backup. filesave, 
file system checking 
tile system consistency check 
file system debugger. 
file system. ff: list file 
file system: format of system 
file system. 
Hie system. 
file system. mount, 
file system. 
file system statistics. 
file system table. 
file system. 
file systems for optimal 
file systems proceSIICd by 
file systems with label/ 
tile. tail: 
Hie.. - - - -
Hie. - • -
file. tmpnam, tempnam: 
file. touch: update actess 
file transfer proaram. -
File Transfer Protocol server. 
File Transfer Protocol server. 
file tree. 
file type. 
file. unaet: 
file. uniq: 
file. 
file. 
Hie. 
file-creation mode mask. 
filehdr: file header for 
filename for lerminal. 
filename. 
lileroo: stream status/ 
file(s). acctcom: search 
Illes. aa:tmera: . -
files. admin: 
files. aouthdr .h -
files between M68000 and 
Illes between two machines. 
Illes between two machines. 
files. - • • 
files. - - -
Illes. comm: select or reject 
files. 
files. diffmk: 
files. filehdr: 
Illes. 
files from a backup tape. 
files. fspeo;:: 
files. fsplit: .... 
files in binary directories. 
files in the aiven/ /sum 

••• files. ld: 

• 17 -

l'ermured Index 

strings(\) 
strip(!) 
fuser(\M) 
sum(]) 
sum70J 
syms(4) 
filesave(\M) 
chechUOMl 
fsckOMl 
fsdbOMl 
ff(]M) 
fs(4) 
mkfslb(IM) 
mkfs(IM) 
mount(IM) 
mount(2) 
ustat(2) 
mnttab(4) 
umount(2) 
dcopy(IM) 
checklist(4) 
volcopyOM) 
tail(]) 
term(4) 
tmpJIIe(JS) 
tmpnamOSl 
touch(\) 
ftp(INJ 
ftpd(8N) 
tflpd(8N) 
ftw(Je) 
file(]) 
unaetOl 
uniq(l) 
val(]) 
writeOl 
writev(JN) 
umask(l) 
filehdr(4) 
ctermid(JS) 
mktemp(JC) 
ferror(JS) 
a«:tcom (I) 
acctmeraOMl 
admin(l) 
aouthdr(4) 
fscv(IM) 
updater(l) 
updaterUMl 
cat(]) 
cmp(l) 
comm(l) 
cp(\) 
diffmkOJ 
filehdr(4) 
find(!) 
fredlM) 
fspec(4) 
fspllt(l) 
hex(]) 
cpset(IM) 
sumdir(l) 
inuo(7) 
ld(l) 



l01:kf: record lockill& on files. . . . . . . . . .. 
rm, rmdir: remove Jiles or directories. 

/merge same lines of several files or subsequent lines of/ 
unp~~ck: compress and exp~~nd files. p~~ck, peat, 

pr: print files. 
section sizes of common object files. size: print 

sort: sort and/or merJe files. 
repOrts version number of files. version: 

wlutt: identify sees files. 
daily/weekly UNIX file system/ filesave. tapcuve: 

more: file perusal filler for crt viewing. 
terminals. PS: file perusal filter for soft-copy 

greek: se"lect terminal filter. . .•... 
nl: line numbering filter. . ..... 

col: filter reverse line-feeds. 
tplot: srapllics filters. • . . . . . .. 

fine: fast incremeinal badlup. 
lind: find files. 

lind: find files. 
hyphen: lind hyphenated words. 

ttyname, isatty: find natne of a terminal. 
object library. larder: lind ordering relation for an 

object library. lorderS.O: lind ordering relation for an 
llasllmake, spellin, llasl!clleck: find spelliR& errors. spell, , 

an object, or other/ strings: find tile printable strings in 
of the current user. ttyslot: lind tile slot in tile utmp file 

fish: play "Go Fish". . .•... 
fish: play "Go Fish". 

tee: pipe fitting. . . . . . . 
/seekdir, rewinddir, closedir: lle,.;ible length directory/ 

int, ilix, idiot, real, lloat, SJ\tll, dble, cmplx,/ 
atof: convert ASCII string to floating-point number. 

ecvt, fcvt, gcvt: convert lloating-point number to/ 
/modf: manipulate parts of lloating-point numbers. 
lloor, ceiling, remainder .I lloor, ceil, frflod, fabs: 

floor, ceil, fmod, fabs: lloor, ceiling, remainder.{ 
parameters. disktune: tune lloppy disk settling lime . 

cllow: generate C llowgraph. . . . . . . . 
fclose, ffiusll: close or llush a stream ..... . 

remainder.{ floor. ceil. fmod, fabs: Door, ceiling, .. 
stream. fopen, freopen, fdopen: open a 

fork: create a new process. 
diskrormat: formal a dislc. 

per-process accounting file format. acct: 
ar: common arcliive file format. 

ar5.0: archive (library) file format. 
errfile: error-log file format. 

pnch: file format for card images. 
nroH' or/ eqn, neqn, checkeq: format mathematical text for 

newform: change the format of a text file. 
inode: format of an inode. . ..• 
term: format of compiled term file .. 
core: format of core image file. 
cpio: format of cpio archive. 

dir: format of directories. 
sccsllle: format of sees file. 

file system: format of system volume. 
files. fspec: format specification in text 

object file symbol table format. syms: common . 
troH'. tbl: format tables for nroH' or 

nroH': format texL 
intra: introduction to file formats. . ••• 

wtmp; utmp and wtmp entry formats. u1mp, 
scanf, fscanf, sscanf: convert formatted input. 

. 18. 

lockfOCJ 
rm(l) 
paste (I) 
pack(!) 
pr(]) 
size(!) 
sortOJ 
version OJ 
what (I) 
filesavc{IM) 
more{]) 
Pi(]) 
greek (I) 
nlOJ 
col (I) 
tplotOGJ 
fincOMJ 
find (I) 
IindO) 
hyphen(]) 
nyname(JC) 
lorder(l) 
lorderS.O(I) 
spell(]) 
strings(]) 
ttyslotf3C) 
fish(6) 
/ish(6) 
tee(]) 
directory OX> 
ftypeOFI 
atofCJC) 
ecvt{3C) 
frexp(3CJ 
Door OM) 
Door OM) 
disktuneflM) 
cflow(l) 
fclose(JS) 
lloorOMJ 
fopen(JS) 
fork(2) 
diskformat( l M I 
acct(4) 
ar(4J 
arS.0(4) 
errfile(4) 
pnch(4) 
eqn(l) 
newformOI 
inode(4) 
term(4) 
coref4) 
cpio(4) 
dir(4) 
sccslllc(4) 
fs(4) 
fspec(4) 
syms(41 _, 
tbl(i) 
nroff(l) 
intro(4) 
utmp(4) 
scanfOS) 



f 
' 

/vfprintf, vsprintf: print formatted output of a varargs/ . 
/vfprintf, vsprintf: print formaued output of a varargs/ . 

fprintf, sprintf: print formatted output. printf, 
/clleckmm: print/check documents formatted with the MM macros. 

mptx: the macro packiiJe for formatting a permuted index. 
mm: the MM macro package for formatting documents. 

OSDD adapter macro package for formatting documents. /the 
manual. man: macros for formatting entries in this 

n1: Fortran 77 compiler. 
abs, iabs, dabs, eabs, zabs: Fortran aMolute value. 

system! signal: spedfy Fortran action on receipt of a 
function. acos, dacos: Fortran arccosine intrinsic . 
function. asin, dasin: Fortran arcsine intrinsic •. 

function. atan2, datan2: Fonran arctangent intrinsic 
function. alan, dalan: Fortran arctangent intrinsic 

or, xor, not, lshift, rshift: Fortran bitwise boolean/ and, 
getarg: return Fortran command-line arsument. 

lo&IO, alog!O, dlogiO: Fortran common loprithm/ 
intrinsic/ conjg, dconjg: Fortran complex conjugate 

function. cos, dcos, ocos: Fortran cosine intrinsic . . 
ratfor: rational Fortran dialect. . ..•. 
getenv: return Fortran enYironment variable. 

function. exp, dexp, cexp: Fortran exponential intrinsic 
intrinsic/ cosh, dcosh: Fortran hyperbolic cosine . 
intrinsic/ sinh, dsinh: Fortran hyperbolic sine .. 

intrinsic/ tanh, dtanh: Fortran hyperbolic tangent 
complex/ aimag, dimag: Fortran imaginary pan of . 

function. aint, dint: Fortran integer part intrinsic 
efl: Extended Fortran La11JU8Jie. 

amaxO, maxi, amaxl, dmaxl: Fortran maximum-value/ /maxO, 
aminO, mini, aminl, dminl: Fortran minimum-value/ IminO, 

log, alog, dlo;, clog: Fortran natural loprithm/ 
anint, dnint, nint, idnint: Fortran nearest integer/ 

abort: terminate Fortran program ...•. 
furn:tions. mod, amod, dmod: Fortran remainderii!J intrinsic 

function. sin, dsin, csin: Fortran sine intrinsic , •. 
function. sqrt, dsqrt, csqrt: Fortran square root intrinsic 

len: return length of Fortran string. 
index: return location of Fortran substring. 

issue a shell command from Fortran. system: 
function. tan, dtan: Fortran tangent intrinsic 

mclock: return Fortran time accounting. 
intrinsic/ sign, isi&n, dsign: Fortran transfer-of-sian , 

/dcmplx, ichar, char: explicit Fortran type conversion. 
irand, srand, rand: Fortran uniform random-number/ 

hopefully interesting, adage. fortune: print a random, 
formatted output. printf, fprintf, sprintf: print 

word on a/ pule, putchar, fputc, putw: put character or 
stream. puts, fputs: put a strin& on a 
input/output. fread, fwrite: binary 
backup tape. free: recover files from a 

df: report number of free disk blocks. 
memory allocator. malloc, free, realloc, calloc: main 

mallopt, mallinfo:/ malloc, free, realloc, calloc, ... 
stream. fopen, freopen, fdopen: open a , 

frequencies in a file. freq: report on character 
freq: report on character frequencies in a file. . • 

parts of floating-point/ frexp, ldexp, modf: manipulate 
free: recover files from a backup tape. 

obtain group file entry from a group file. /fgetgrent: 
remque: inserlfremove element from a queue. insque, 

take: takes a file from a remote machine. 
recvmsg: receive a message from a socket. /recvfrom, 

sendmq: send a message from a socket. send, sendto, 

- 19 -

Permuted Index 

vprinlf()S) 
vprintf(3X) 
prinlf(lS) 
mm(l) 
mptx(5) 
mm(5) 
mosd(5) 
man(5) 
n7(1) 
abs(JFJ 
signai(JF) 
aoos(JF) 
asinOFl 
atan2(3F) 
atanOFl 
boo! OF) 
&etarg(JF) 
log!O(JF) 
eonjg(lF) 
cosUFl 
ratfor(O 
getenv(3F) 
expUF) 
cosh OF) 
sinh OF) 
tanhUFl 
aimag(JF) 
aintOFl 
eJI(l) 
max(lF) 
min(lf) 
lo;(JF) 
round(3Fl 
abort(JF) 
mod(JF) 
sinOFl 
sqrt(JF) 
len(lF) 
index(JF) 
system OF) 
tanOFl 
mclock(lf) 
sia:n(JF) 
ftype(JFl 
rand OF) 
fortune(6) 
printf(lS) 
putc(3Sl 
puts(lS) 
fread(JS) 
frecUMl 
df(IMl 
malloc(lC) 
malloc(JX) 
fopen(JS) 
freqOl 
freq(l) 
frexp(JC) 
frec(IM) 
getpent(JC) 
insque(JNl 
takeOC) 
rCCY(2N) 
send(2N) 



PrrnruwJ l11dt'x 

&etw: set charKter or word from a stream. /fsetc, 
gets, facts: get a string from a stream. 

and line number information from an object file. /symbol 
rmdel: remove a delta from an sees file. 

&etopt: get option lel\er from argument vector. 
shared/ ,;str: extract strings from C programs to implement 

/translates Motorola S-records from downlo.adins into a file. 
errdead: extract error records from dump. 

read: read from file. 
readv: read from flle. 

system: issue a shell command from Fortran. 
ncheck: senerate names from i-numbers. 

nli:it: get entries from name List. 
aa:tcms: command summary from per-p:roress acwuntinl!f 

autorobots: Escape from the automatic robots. 
robots; Escape from the robots. 

setpw: get name from UID. • • • • • 
formatted input. scanf, fscanf, sscanf: convert 

of file systems processed by fsck. chet:klist: list 
consistency check and/ fsck, dfsck: file system 

a lost+found directory for fsck. mklost+found: make 
M68000 and VAX-111780/ fscv: converl files between 

fsdb: lile system debuuer. 
repOsition a file painter in/ fseek, rewind, ftell: ... 

text files. fspec: format specification in 
efl flies. fsplit: split n7, ratfor, or 

stat, fstat; set file status. . .. 
painter in a/ fseek, rewind, fleD: repOsition a file 

communication package. ftok: standard interprocess 
ftp: file tram;;fer program. 

Transfer Protocol server. ftpd: DARPA Internet File 
ftw: walk a file tree. 

shutdown: shut down part of a full-duple,; connection. 
Fortran arccosine intrinsic function. acos, dacos: . 

Fortran integer part intrinsic function. aint, dint: 
error/ erf, erfc: error function and complementary 

Fortran arcsine intrinsic function. as3n, dasin: 
Fortran arctangent intrinsic function. atan2, datan2: . 
Fortran arctangent intrinsic function. alan, datan: .. 
complex col\iupte intrinsic function. /dconjg: Fortran 

~:CUS: Fortran cosine intrinsic function. cos, dcos, 
hyperbolic cosine intrinsic function. /dcosh: Fortran 
precision product intrinsil: function. dprod: douhle . 
and complementary error function. /error function 

Fortran e,;ponential Intrinsic function. exp, de,;p, e<::~~p: 
pmma: log pmma function. . .•...• 

hypot: Euclidean distance function. . ...••. 
of a common objeet file function. /line number entries 

common loltllrithm intrinsic function. /dioslO: Fortran 
natural logarithm intrinsic function. /dlog, cloa:: Fortran 

matberr: error-handlin& function. . •... , • 
prof: profile wilhirt a function. • .••..• 

transfer-of·si&n intrinsic function. /dsign: Fortran 
csin: Fortran sine intrinsic function. sin, dsin, ..• 

hyperbolic sine Intrinsic function. /dsinh; Fortran 
Fortran square root intrinsic function. sqrt, dsqrt, csqrt: 

Fortran tansent intrinsic function. tan, dtan: ••. 
hyperbolic tanaent intrinsic function. ldtanh: Fortran 

math: math functions and constants. 
jO, jl, jn, yO, yl, yn; Bessel functions.. ••••..• 

Fortran bitwise boolean functions. llshift. rshift: 
positive difference lntriiUIIc functions. dim, ddim, idim: 

logarithm, power, square root fufl(:tions. /sqrt: expOnential, 
remainder, absolute value functions. /Door, ceilinJ, 

• 20. 

getd3SJ 
getsOSJ 
stripOJ 
rmdel(]) 
getoptOCJ 
xstr(ll 
rcvhexO) 
errdead(lM) 
read(2) 
readvONJ 
systemOFJ 
ncheck(lM) 
nlist(JC) 
acctcmsU M) 
autorobots(6) 
robots(6) 
setpw(JC) 
SCilnfi3SJ 
checkli:it(4) 
fsckOM) 
mklost+fnd(IMJ 
fscv(IM) 
fsdb(IM) 
fseek(3Sl 
fsped4J 
fsplitOJ 
stot(2) 
fseekOSJ 
stdipcOeJ 
ftp(IN) 
ftpd(8N) 
ftw(JC) 
shutdown(2NJ 
acosCJF) 
aintOFJ 
erf(3M) 
asin(3F) 
ata.n20F) 
atanCJF) 
col\ig(JF) 
cosO F) 
cosh OF) 
dprod(JF) 
erf(JM) 
expOF) 
samma(JM) 
hypot(3M) 
ldlreadCJX) 
!og]O(JF) 
log(JF) 
matherrOMJ 
prof(5) 
sianf3F) 
sinO F) 
sinh(JF) 
sqrt(3F) 
tan OF) 
tanh(JF) 
math(S) 
bessel OM) 
bool(JF) 
dim(3F) 
exp(JM) 
Door(JM) 



~~ 

dmaxl: Fortran maximum-value functions. /maxi, amaxl, , .. 
dminl; Fortran minimum-value functions. /mini, aminl, 

Fortran remaindering intrinsic functions. mod, amod, dmod: 
300, JOOs: handle special fuoctions of DASI JOO and 300s/ 

terminal. 450: handle special functions of the DASI 450 
Fortran nearest integer functions. /oint, idnint: 

sinh, cosh, tanh: hyperbolic functions. . . . . ... 
string oomparision inlrinsic functions. /lgt, lie, !It: 
atan, atan2: trigonometric functions. /tan, asin, acos, 

usin1 a file or file/ fuser: iden{ify processes .. 
fread, fwrite: binary input/outpul 

connect accounting records. fwtmp, wtmpflx: manipulate 
adventure: an exploration &arne. • . . . 

cribbage: the card &arne cribb.a&e. • . • 
moo: guessing game. . . . . . . . 

back: the game of backgammon. 
bj: the game of black jack. 

craps: the 11ame of craps. 
wump: the game of hunt-the-wumpus. 

life: play the game of life. 
trek: trekkie game. 

worm: Play the 1rowing worm game. . . . 
intra: introduction to games. 

pmma: log pmma function. 
gamma: loB gamma function. 

number to strif¥. ecvt. fcvt, gcvt; convert floatiiJI-pnint 
maze: generate a maze. 
abort: generate an lOT fault. 
dlow: generate C flowgraph. 

cross-reference. c1uef: aenerate C program 
crypt, setkey, encrypt: generate DES ern:ryption. 

by user !D. diskusg: generate disk au:ounting data 
makekey: generate encryption key. 

terminal. ctermid: 11enerate filename for .... 
ncheck: generate names from i-numbers. 

leKicaltasks. lex: generate pr011rams for simple 
lsrand48, seed48, lcong48: generate uniformly distributed/ 

srand: simple random-number &enerator. rand, 
Fortran uniform random-number aenerator. /srand, rand: 

gets, f1ets: get a string from a stream. 
get: get a version of an sees file. 

getsockopt, setsockopt: &et and set options on/ 
ulimit: get and set user limits. 

the user. cuserid: get character login name of 
getc, getchar, fgetc, getw: get character or word from a/ 

getdtablesize: get descriptor table size. 
nlist: aet entries from name list. 

umask: set and get file creation mask. 
stat, fstat: get file status. .. , , . 

ustat: get file system statistics. . 
file. get: get a version of an sees 

getlogin: &et login name. 
logname: get login name. 

msgget: get message queue. 
getpw: get name from UID. 

aetpeername: get name of connected peer. 
system. uname: get fl8me of current UNIX 

/setnetent, endnetent: get network entry. 
lsethostent, endhostent: get network host entry. 

unget: undo a previous get of an sees file. 
argument vector. getopt 1et option letter from . 

/setpwent, endpwent, fgetpwent: get password file entry. 
working directory. getcwd: get pathname of current 

times. times: get process and child process 

• 21 • 

Permuted Jndex 

max OF) 
minOF) 
mod(JF) 
300(1) 
450(1) 
roundOFJ 
sinh OM) 
strcmp(3F) 
trig OM) 
fuser(IM) 
freadOS) 
fwtmpOMl 
adventure(6) 
cribballe(6) 
moo(6) 
back(6) 
bj(6) 
craps(6) 
wump(6J 
life(6J 
trek(6) 
worm(6) 
intro(6) 
pmma(JM) 
aamma(JM) 
ecvt(JC) 
maze(6J 
abortOCJ 
cflow(l) 
cxref(l) 
crypt(3CJ 
diskusg(IM) 
makekey{l) 
ctermidOS) 
ncheck(IM) 
lex (I) 
drand48(3C) 
randOCJ 
rand OF) 
getsOSl 
get (I) 
Ketsockopt(2N) 
ulimit(2) 
cuseridOSJ 
getcOS) 
getdtablesize(JN) 
nlistOC) 
urnask(2) 
stat(2) 
ustat(2) 
get! II 
setloginOC) 
logname(l) 
msgget(2) 
getpwOCJ 
getpeernarne(2N) 
unameOJ 
getnetent{JN) 
gethostentONJ 
unget(IJ 
getoptOCl 
getpwentOCJ 
getcwd(JCJ 
timesm 



Permuted Index 

and/ getpid, getpgrp, getppid: get process, process group, 
/setprotoent, endprotoent: get prottXol entry. 

/geteuid, getgid, getegid: get real user, effective user,/ 
/setservent, endservent: get service entry ..... . 

semget: get set of semaphores. 
sbmget: get shared memory segment. 

getsockname: get socket name. 
tty: get \be terminal's name. 

time: get time. . . . . . . 
command-line &I"Jument. getarg: return Fonran 

get character or word from a/ getc, getcbar. fgetc. getw: 
character or word from/ getc, getcbar, fgetc, getw: get . 

current working directory. getcwd: get patbname of 
table size. getdtablesize: get descriptor 

getuid, geteuid, getgid, getegid: get real user .I 
environment variable. getenv: return Fortran 

environment name. getenv: return value for 
real user, effective/ getuid, geteuid, getgid, getegid: get 

user,/ getuid, geteuid, getgid, getegid: get real 
setgrent, endgrent,/ getgrent, getgrgid, getgrnam, 
endgrent,/ getgrent, getgrgid, getgrnam, setgrent, 

getgrent, getgrgid, getgrnam, setgrent, endsrent,/ 
setbostent,/ &etbostent, getbostbyaddr, getbostbyname, 

getbostent, getbostbyaddr, getbostbyname, setbostent,/ 
gethostbyname, setbostent,/ getbostent, getbostbyaddr, 
unique identifier of current/ getbostid, setbostid: get/set 

get/set name of current host. getbostname, setbostname: 
getlogin: get login name. 

setnetent,/ getnetent, getnetbyaddr, getnetbyname, 
getnetent, getnetbyaddr, getnetbyname, setnetent,/ 

getnetbyname, setnetent,/ getnetent, getnetbyaddr, 
argument vector. getopt: get option letter from 

getopt: parse command options. 
getpass: read a password. 

connected peer. getpeername: get name of . 
process group, and/ getpid, getpgrp, getppid: get process, 
pr~ss. proce.ss group, and/ getpid, getpgrp, getppid: get 
group, and/ getpid, getpgrp, getppid: get process, pr~ss 

getprotoent, getprotobynumbcr, getprotobyname, setprotoent,/ 
&elprotobyname,/ getprotoent, getprotobynumber, ••••. 
getprotobyname, setprotoent,/ getprotoent, getprotobynumber, 

getpw: get name from UID. 
setpwent, endpwent,/ getpwent, getpwuid, getpwnam, 

getpwent, getpwuid, getpwnam, setpwent, endpwent,/ 
endpwent,/ getpwent, getpwuid, getpwnam, setpwent, 

a stream. gets, fgets: aet a string from . 
getservent, getservbyport, getservbyname, setservent,/ . 

setservent,/ getservent, getservbyport, getservbyname, 
getservbyname, setservent,/ getservent, getservbyport, .. 
getbostname, setbostname: get/set name of current host. 

current/ getbostid, sethostid: get/set unique identifier of 
getsoo;:kname· get socket name. 

and set options on sockets. getsockopt, setsockopt: get 
and terminal settings used by geuy. gettydefs: speed 

modes, speed, and line/ geuy: set terminal type, . 
ct: spawn getty to a remote terminal. 

settings used by geuy. gettydefs: speed and terminal 
getegid: get real user,/ getuid, geteuid, getgid, 

pututline, setutent,l getutent, getutid, getutline, 
setutent, endutent,/ getutent, getutid, getutline, pututline, 

setutent.l getutent, getutid. getutline, pututline, 
from a/ getc, getcbar, fgetc, getw: get character or word 

convert/ ctime, localtime, gmtime, asctirne, tzset: 
fish: play "Go Fisb". . ..... . 

• 22 . 

getpid(2) 
getprotoentON) 
getuid(2) 
getserventONJ 
semgetUJ 
shmget(2) 
getsockname(2NJ 
tty(]) 
time(2) 
getargOFJ 
getcOSJ 
getcOSJ 
getcwdOC) 
getdtablesizeONJ 
&etuid(2J 
getenv(JF) 
getenvOC) 
getuid(2) 
getuid(2J 
getgrentOCJ 
getgrentOC) 
getgrentOC) 
gethostentONI 
aetbostentONJ 
getbostentON) 
getbostidC2N) 
getbostnameC2NJ 
&etlo&inOCJ 
getnetentONl 
getnetentON) 
getnetent(JNJ 
getoptOCJ 
getopt(l) 
getpassOCJ 
getpeernameUNJ 
getpid(2) 
getpid(2) 
getpid(2J 
JetprotoentONJ 
getprotoentONl 
getprotoentONl 
getpwOCl 
getpwent(JC) 
1etpwentOCJ 
getpwentOCJ 
getsOSl 
getservent(JN) 
getserventON) 
getserventONl 
gethostname(2N) 
gethostidC2N) 
getsockname(2NJ 
getsockopt(2Nl 
gettydefs(4) 
getty OM) 
ct(IC) 
gettydefs(4) 
letuid(2) 
getutOCJ 
getut(JC) 
getut(3Cl 
getd3SJ 
ctimeOCJ 
fisb(6) 



r 
' 

set,Jmp, lol\&imp: non-local 

11raph: draw a 
sa11: system activity 

tplot: 
TIY-37 type-box. greek: 

plot: 
subroutines. plot: 

mvt: typeset documents, view 
package for typesetting view 
extended TIY-37 type-box. 

file for a pattern. 
/user, elfective user, real 

/getppJd: get process, process 
~hown, ~hllrp: ~1\ange owner or 

/end11rent, fgetgrent: obtain 
obtain group file entry from a 

group: 

setpgrp: set process 
set real and elfectlve 

id: print user and 
real11roup, and efl'e~tive 

setuid, setgid: set user and 
send signal to a process 
newgrp: loa in to a new 

~bown: ~Range owner and 
a sillnal to a process or a 

update, and re11enerate 
worm: Play the 

checkers. pw~k, 
ssillnal, 

hangman: 
moo: 

DASl 300 and 300s/ 300, 300s: 
the DASl 450 terminal. 450: 

varargs: 
information for bad block 

package. curses: CRT screen 

nohup: run a command immune to 
hcreate, hdestroy: manage 

spell, hashmake, spellin, 
find spelling errors. spell, 

search tables. hsea"h, 
tables. hsearch, hcreate, 

file. scnhdr: section 
files. aouthdr.h- a.out 

files. filehdr: file 
file. ldfhread: read the file 

I seek to the optional file 
/read an indexed/named section 

ldahread: read the archive 
sees. 

help: ask for 

fortune: print a random, 
/ntohs: convert values between 

endhostent: get network 
unique identifier of current 

get/set name of current 
hosts: 

ruptime: show 

11010. 
araph: draw a 11raph. 
graph. 
graph. • 
graphics lilters. • 
araphics for the extended 
araphics interface. 
graphics interface . • • 
graphs, and slides. mmt, 
graphs and slides. /macro 
greek: araphics for the 
greek: select terminal filter. 
grep, egreP. fgrep: search a 
group, and effective aroupf 
group, and parent process IDs. 
group. • 
aroup file entry from a group/ 
aroup file. ffgetgrent: 
group ftle. • 
group: aroup file. • 
group ID. • 
group JD. seuejid: 
aroup IDs and names. 
group IDs. /effective user, 
group IDs. 
aroup. killpa: 
JTOUp. 
group of a file. 
group of processes. /send 
groups of proarams. /maintain, 
&rowing worm game. 
grpck: password/aroup file 
&signal: software signals. 
1uess the word. 
guessing pme. 
handle special functions of 
handle special functions of 
handle variable ai'Jument list. 
handling. /alternate block 
handlin& and optimization • 
hangman: suess the word. 
1\angups (sh only). 
hash seareh tables. hsearch, 
hashcheck: find spellinaf 
hashmake, spellin, hashcheck: 
hcreate, hdestroy: manage hash 
hdestroy: manase hash search 
header for a common object 
header for common object 
header for common object 
header of a common object 
header of a common object/ 
header of a common object/ 
header of a member of an/ 
help: ask for help in using 
help in using sees. 
hex: translates object files. 
hopefully interesting, adase. 
host and network byte order. 
host entry. /sethostent, 
host. /sethostid: set/set . 
host. /sethostname: 
host name data base. 
host status of local machines. 

- 23 -

Permuted Index 

setjmp(lC) 
araphUGl 
graph(IG) 
sag (I G) 
tplotUG) 
sreek(5) 
plot(4) 
plot(lX) 
mmt(l) 
mv(5) 
greek(5) 
greek(!) 
grep(l) 
getuid(2) 
getpid(2) 
chown(l) 
getgrent(3C) 
getgrent(JC) 
sroup(4) 
sroup(4) 
setPaTP(2) 
setregid(2) 
id(l) 
getuid(2) 
setuid(2) 
killpa(3N) 
newgrp(l) 
chown(2) 
kill(2) 
make( I) 
worm(6) 
pwckOM) 
ssianai(3C) 
hanaman(6l 
moo(6) 
300(1) 
450(1) 
vararp(5) 
altblk(4) 
curses OX) 
hangman(6) 
nohup{l) 
hsearch(JC) 
spell (I) 
spell (I) 
hsea"h(JC) 
hsea"h(3C) 
scnhdr(4) 
aouthdr(4) 
ftlehdr(4) 
ldfhread{JX) 
ldohseek{JX) 
ldshread(3X) 
ldahl'ead(3Xl 
help(!) 
help(]) 
hex(\) 
fortune(6) 
byteorderONl 
gethostentONJ 
gethostid(2N) 
gethostname(2N) 
hosts(4N) 
ruptime(lNl 



Permuted Index 

or print identifier of current 
set or print name of current 

identifier of current host/ 
current host system. 

manage hash search tables. 
convert values between host/ 

values between host! hton~ 
wump: the game of 

cosh. dcosh: Fortran 
sinh., cosh, tanh: 

sinh, dsinh: Fortran 
tanh, dtanh: Fortran 

hyphen: find 
function. 

Fortran absolute value. abs, 

/sql, dble, cmplx, dcmplx, 
disk accountiq data by user 

semaphore set or shared memory 
and names. 

setparp: set process group 
set real and effective group 
print effective current user 

issue: issue 
/setbostid: get/set unique 

system. hostid: set or print 
file or file/ fuser: 

what: 
intrinsic/ dim, ddim, 

dble, cmplx.,/ int. ifix, 
integer/ anini, dnint, nint, 

id: print user and group 
aroup, and parent process 

Jroup, and effective group 
set real and effective user 
sel8id: set user and &roup 

interface parameters. 
SIIJI, dble, cmplx,/ int, 

core: format of core 
pnch: file format for card 

aimas, dimag: Fortran 
nohup: run a command 

/stri1111s from C programs to 
fine: fast 

101111 integer data in a machine 
/ta:oto, tputs: terminal 

for formatting a permuted 
of a/ ldtbindex: compUte the 

ptx.: permuted 
Fortran substriq. 

a common/ ldtbread: read an 
ldshread, ldnshread: read an 
ldsseek, ldnsseek: seek to an 

and teletypes. last: 
family. 

inet ntoa, inet makeaddr,/ 
/inel ntoa, inel makeaddr, 

/inet network: inet ntoa, 
/inet_nlakeaddr, inet_lnaof, 
inet_makeaddr ,/ inet_ addr, 

inet addr, inet network, 
iniuab: script for the 

host system. hostid: set . . .. 
host system. hostname: . . .. 
hostid: set or print . , •... 
hostname: set or print name of 
hosts: host name data base. 
hsearch, hcreate, hdestroy: 
htonl, htons, ntohl, ntohs: 
htons, ntohl, ntohs: convert 
hunt·the·wumpus. 
byperbolk; cosine intriru;k:/ 
hyperbolic functions. 
hyperbolk sine intrinsic/ 
hyperbolic taqent intrinsic/ 
hyphen: find hyphenated words. 
hyphenated words. 
hypo!: Euclidean distance 
iabs, dabs, cabs, 2.11bs: 
iargc: . . • • , ..•. 
ichar, char: explicit Fortran/ 
ID. diskuss: generate . , . 
id. /remove a me!ISIIge queue, 
id: print user and group IDs 
ID. 
ID. setregid: .... , . 
id. whoami: ..... . 
identification file. . . .. 
identifier of current host. 
identifier of current host 
identify processes using a 
identify sees files. . . 
idim: positive difference 
idint, real, float, SJI&I, , 
idnint: Fortran nearest 
IDs and names. 
IDs. /get process, process 
IDs. /effective user, real 
!D's. setreuid: , . . .. 
IDs. setuid, , .•.. , 
ifoonfis: configure network 
ifiK, idint, real, noat, 
imase file ..•.•.... 
images. • .......• 
imasinary part of complex./ 
immune to hangups (sh only). 
implement shared strinp. 
incremental backup. 
independent fashion. /access 
independent operation/ , .. 
index. /tl'te macro packase 
index. of a symbol table entry 
index ..•......... 
index: return lrotion of 
indexed symbol table entry of 
indexed/named section header/ 
index.ed/roamed section of a/ 
indicate last Logins of users 
inet: Internet protocol 
inet addr, inet network, 
iroe(lnaof, ine~netof:/ 
inet_makeaddr, inet_lnaof./ 
inet netof: Internet address/ 
inet-network, inet ntoa, 
inet=ntoa, inet_makeaddr,/ 
init process. . . . . ... 

. 24. 

hostid(\N) 
hostname(IN) 
hostid(IN) 
hostname(IN) 
hosts(4N) 
hsearchOC) 
byteorder(3N) 
byteorder(JN) 
wump(6) 
eosh(JF) 
slnh(JM) 
slnh(3F) 
tanhOFl 
hyphen(!) 
hyphen(]) 
hypotOMl 
absOFl 
iargcOFl 
ftype(JF) 
diskussOMl 
ipcrm(l) 
id(l) 
setpgrp(2) 
setreaidU) 
whoamiO) 
issue{4) 
gethostid(2Nl 
hostidON) 
fuserOM) 
what(!) 
dim(3Fl 
ftype(3F) 
round(JF) 
id(l) 
setpid(2) 
1etuid{2) 
setreuid(2) 
setuid(2) 
ifconlis(8N) 
ftype(JF) 
core{4) 
pnch(4) 
aimagOF) 
nohup(l) 
xstr(l) 
finc(IM) 
sputiCJX) 
termcap(JX) 
mptx(S) 
ldtbindexOXl 
ptx(l) 
index OF) 
ldtbreadOX) 
ldshreadOXJ 
ldsseekOXJ 
last (I) 
inet(SF) 
inetONl 
inet(3Nl 
inetONl 
inetONl 
inet(JN) 
inet(JNl 
inittab(4) 



initialization. init, telinit: pnx:ess control 
init, telinit: process control initialization. . . , ••• 

/rc, powerfail: system initialization shell so;ripts. 
socket. connect: initiate a connection on a 

process. popen, pclose: initiate pipe to/from a 
process. inittab: strip! for the init 

clri: clear i·node. . . . . . . .. 
inode: format of an inode. 

inode: formal of an inode. , . , • • • • 
sso::anf: convert formaued input. sc:anf, fsc:anf, 
push character back into input stream. ungetc: 

fread, fwrite: binary input/output. 
stdio: standard buffered input/output package. 

fileno: stream status inquiries. /feof, clearerr, 
uustat: uucp status inquiry and job control. 

queue. insque, remque: insert/remove element from a 
element from a queue. insque, remque: insert/remove 

install: install commands. 
install: install commands. 

directories. cpset: install object flies in binary 
sngl, dble, cmplx, dcmplx,/ int, iflx, idiot, real, noat, 

abs: return inteaer absolute value. 
/164a: convert between Ions integer and base-64 ASCII/ 

sputl, saetl: access long integer data in a machine/ 
oint, idnint: Fortran nearest integer functions. /dnint, 
function. aint, dint: Fortran inteaer part intrinsic 
atol, atoi: convert strina to integer. strtol, , , .. , 

/ltolJ: convert between J·byte integers and long integers. 
3-byte integers and long integers. /convert between 

bcopy: interactive block copy. 
system. mailx: interactive message processing 

system consistency check and interactive repair. /file 
print a random, hopefully interesting, ada1e. fortune: 

error: error-logaing interface. • . . . . 
lo: software loopback network interface. . , , , . 

ifconfig: configure network interface parameters. 
plot: graphics interface. . . . . . 
plot: graphics interface subroutines. 

lermio: general terminal interface. . . , .. 
protocol. telnet: user interface to the TELNET 

tty: controlling terminal interface. . ..•... 
/inet_lnaof, inet_netof: Internet address manipulation/ 

Protocol server. ftpd: DARPA Internet File Transfer . 
inet: Internet protncol family. 

ip: Internet Protocol. 
Protocol. tcp: Internet Transmission Control 

Protocol. udp: Internet User Datagram , .. 
spline: interpolate smooth curve. . . 

characters. asa: interpret ASA carriage control 
sno: SNOBOL interpreter. . •... 

syntax. csh: a shell (command interpreter) with C·like , . 
pipe; create an inlerprocess channel. 

facilities/ ipcs: report inter-process communication 
packaae. ftok: standard interprocess communication 

suspend execution for an interval. sleep: , 
sleep: suspend execution for interval. . . . . 

aoos, dacos: Fortran arccosine intrinsic function. 
dint: Fortran integer part intrinsic function. aint, 

asin, dasin: Fortran arcsine intrinsic function. 
datan2: Fortran arctangent intrinsic function. atan2, 

datan: Fortran arctana:ent intrinsic function. atan, . 
Fortran complex oonjuaate intrinsic function. /dconja: 
dcos, ccos: Fortran cosine intrinsic function. cos, 
Fortran hyperbolic cosine intrinsic function. /dcosh: 

• 25 • 

Permuled Index 

initOMl 
init(lM) 
brdlM) 
connect(2N) 
popenOSJ 
inittab(4) 
clriOMl 
inode(4) 
inode(4) 
scanf(JS) 
ungetcOS) 
freadOS) 
stdio(3S) 
ferror(JS) 
uustatOCl 
insque(3N) 
insque(JN) 
install{IM) 
install{IM) 
cpsetOM) 
ftype(3F) 
absOCl 
a641(3C) 
sputl(JX) 
round OF) 
aint(JF) 
strtoH3C) 
lJtol(JC) 
JJtolOCl 
bcopy(IM) 
mailx(l) 
fsc:k(IM) 
fortune(6) 
error(?) 
Jo(S) 
ifconlia(8N) 
plot(4) 
plotOXJ 
termio(7) 
telnet(IN) 
tty(7) 
inetONl 
ftpd(8N) 
inet(SF) 
ip(SP) 
tcp(SP) 
udp(5Pl 
spline (I OJ 
asa(l) 
sno(l) 
csh(l) 
pipe(2) 
ipcs(l) 
stdipc(JC) 
sleep (I) 
sleep(3C) 
aoos{3F) 
aint(JF) 
asinOFl 
atan2(JF) 
atanOF) 
conjgOFl 
oosOFl 
cosh OF) 



Permuted Index 

double precision product intrinsic function. dprod: 
cexp: Fortran exponential intrinsic function. /dexp, 

Fortran common logarithm intrinsic function. /dlogiO: 
Fortran naturallo~J~~rithm intrinsic function. /clog: 

Fortran transfer-of-sign intrinsic function. /dsign: 
sin, dsin, csin: Fortran sine intrinsic function. 

dsinh: Fortran hyperbolic sine intrinsic function. sinh, , 
csqrt: Fortran square root intrinsic function. /dsqrt, 
tan, dian: Fortran tangent intrinsic function. 

Fortran hyperbolic tangent intrinsic function. /dtanh: 
idim: positive difference intrinsic functions. /ddim, 

dmod: Fortran remaindering intrinsic functions. /amod, 
lie, lit: string comparision intrinsic functions. /lgt, , . 

commands and application/ intro: introduction to . . . 
formats. intra: introduction to llle 

intra: introduction to games. 
miscellany. intro: introduction to ... 

files. intra: introduction to special 
subroutines and libraries. intra: introduction to . . . 
calls and error numbers. intro: introduction to system 

maintenance commands and/ intro: introduction to system 
maintenance procedures. intra: introduction to system 

application programs. intra: introduction to commands and 
intro: introduction to file formats. 
intra: introduction to games. 
intra: introduction to miscellany. 

facilities. networking: introduction to networkin& 
intra: introduction to special files. 

and libraries. intra: introduction to subroutines 
and error numbers. intra: introduction to system calls 

maintenance commands/ intro: introduction to system 
maintenance/ intra: introduction to system 

ncheck: generate names from i-numbers. . .... 
aliens: The alien invaders attack the earth. 

select: synchronous i/o multiple~ing. 
ioctl: control device. 

abort: generate an lOT fault. 
ip: Internet Protocol. 

semaphore set or shared/ ipcrm: remove a messa~t queue, 
communication facilities/ ipcs: report inter-process 

uniform random-number/ irand, srand, raod: Fortran 
/islower, isdi&it, isxdi1it, isalnum, isspace, ispunct,/ 

isdigit, isxdilil, isalnum,/ isalpha, isupper, islower, 
/isprint, iSifaph, iscntrl, isascii: classify characters. 

terminal. ttyname, isatty: find name of a .. 
/ispunct, isprint, isgraph, isc:ntrl, isascii: classify/ 
isalpha, isupper, islower, isdi1it, isxdiJil, isalnum,/ 
/isspace, ispunct, isprint, isaraph, iscntrl, isascii:/ 

transfer-of-siJn/ sign, isign, dsign: Fortran 
isalnum,/ isalpha, isupper, islower, itdigit, isxdigit, 
/isalnum, isspace, ispunct, isprint, iscraph, iscntrl,/ 
/isxdigit, isa.lnum, isspace, illpunct, isprint, iqraph,/ 
/isdigit, isxdigit, isalnum, isspace, ispunct, isprint,/ 

Fortran. system: issue a shell command from 
system: issue a shell command. 

issue: issue identification file. 
file. issue: issue identillcation 

isxdigit, isalnum,/ isalpha, illupper, ii:lower, isdi&it, . 
/isupper, islower, isdiait, is~digit, isalnum, isspace,/ 

news: print news items. . • . . ..... 
functions. jO, jl, jn, yO, yl, yn: Bessel 

functions. jO, jl, jn, yO, yl, yn: Bessel 
bj: the game of black jack. 

functions. jO, jl, jn, yO, yl, yn: Bessel 

- 26 -

dprod(JF) 
e~pOF) 
log!OOF) 
log(JF) 
siJnOFl 
sin(JF) 
sinh(JF) 
sqrt(JF) 
tan(JF) 
tanh(JF) 
dim(JF) 
modOFl 
strcmpOFl 
intro(\) 
intro(4) 
intro(6) 
intro(S) 
intro(7) 
introOl 
intro(2) 
intro(\M) 
intro(8) 
introOl 
intro(4) 
intro(6) 
intro(S) 
intro(5Nl 
intro(7) 
introOl 
intro(2) 
introOMl 
intro(8) 
ncheck(lM) 
aliens(6) 
seJect(2N) 
iocti(~) 
abort(JC) 
ip(SPJ 
ipcrm(l) 
ipcs(l) 
rand(3F) 
ctype{3C) 
ctypeOCl 
ctype(3C) 
ttynameOCl 
ctype(3C) 
ctype(3C) 
ctype(3C) 
sign OF) 
ctype(3C) 
ctype(JC) 
ctypeOCl 
ctype(JC) 
system(3F) 
system(JS) 
issue(4) 
issue(4) 
ctype(JCJ 
ctype(3C) 
news(!) 
besseJ(3M) 
bessel{JM) 
bj(6) 
beuelOM) 



operator. join: relational database 
/lrand48, nrand48, mrand48, jraod48, srand48, seed48,/ 

makekey: generate eneryption key. 
killall: kill all aetive processes. • 

process or a group of/ kill: send a signal to a • 
kill: terminate a process. 

processes. killall: kill all active 
chase: Try to escape the killer robots. • 

process group. killpg: send si&nalto a 
l'lttill, kmem: core memory. 

quiz: test your knowledge. • 
3-byte inteaers and long/ IJtol, ltol3: convert between 

inteaer and base-641 a641, l64a: convert between loq 
copy file systems with label checking. /Jabelil: 

with label checking. volcopy, Jabelit: copy file systems 
scanning and processina: langua~t. awk: pattern 

arbitrary-precision arithmetic la~t~IJllle. be: 
ell: Extended Fortran Lansua~t. • 

cpp: the C language preprocessor. 
cpp: the C language preproce~~sor. 

command programming language. /standard/restricted 
chargefee, ckpacct, dodisk, lastiiJiin, monacd, nulladm,/ 

statistics. lav: print load averaae 
shl: shell layer manaaer. . • , •• 

/jrand48, srand48, seed48, lcong48: generate uniformly/ 
objeet files. ld: link editor for common 

ldS.O: link editor. • • • 
oQiect file. ldclose, ldaclose: close a common 

header of a member of ani ldahread: read the archive • 
file for readina:. ldopen, ldaopen: open a common object 

common oQiect file. ldclose, ldaclose: close a , .• 
of tloating-pointf frexp, Jdexp, modf: manipulate parts 

acceSII routines. ldfcn: common oQject file 
of a common object file. ldfhread: read the file header 

name for object file. ldgetname: retrieve symbol 
line number entries/ ldlread, ldlinit, ldlitem: manipulate • 

number/ ldlread, ldlinit, ldlitem: manipulate line •• 
manipulate line number/ ldlread, ldlinit, ldlitem: •• 
line number entries of a/ ldlseek, Jdnl:seek: seek to 

entries of a section{ ldlseek, ldnlseek: seek to line number 
entries of a sectionl ldrseek, ldnrseek: seek to relocation • 

indexed/named/ ldshread, ldnshread: read an .• 
indexed/named{ Jdsseek, ldnsseek: seek to an 
file header of a common/ ldoh$eek: seek to the optional 

object file for readina:. ldopen, ldaopen: open a common 
relocation entries of a/ ldrseek, ldnrseek: seek to 

indexed/named section header/ ldshread, ldnshread: read an 
indexed/named seetlon of at ldsseek, klnsseek: sock to an 
of a symbol table entry of a/ ldtbindex: compute the index 

symbol table entry of a/ ldtbread: read an indexed 
table of a common objectf ldtbseek: seek to the symbol 

string. len: return length of Fortran 
/rewinddir, closedir: flexible length directory operations. 

len: return lena:th of Fortran string. 
aetopt: aet option letter from ~~t~ument vector. 

simple lexical tasks. lex: generate prosrams for 
gene,.te programs for simple lexical tasks. lex: • 

update. !search, lflnd: linear :search and 
compari!ion intrinsic/ lge, l&t, lie, llt: strina 

comparision intrinsic/ lge, l&t, lie, lit: slriD& 
to subroutines and libraries. /introduction 

arS.O: archive Oibrary) file formal. 
relation for an object library. /find orderiq 
relation for an object library. /find orderiDJ 

• 27. 

Permuted Index 

join(!) 
drand48(3C) 
makekey(l) 
killaliUM) 
kill(2) 
kill (I) 
killallOMl 
chase(6) 
kiliP&(3N) 
mem(7) 
quiz(6) 
J3toi(JC) 
a64J(3C) 
volcopy(IM) 
volcopy(IM) 
awk(l) 
be (I) 
ell()) 
cpp(l) 
cpp5.0(1) 
sh(l) 
acclsh(IM) 
tav(l) 
shl(i) 
drand48(3C) 
ld(l) 
ldS.O(l) 
ldclose(3X) 
ldahread(3X) 
ldopen(3X) 
ldclose(3X) 
frexp(3C) 
ldfcn(4) 
ldfltread(3X) 
ldaetname(3X) 
ldlread{3X) 
ldlread(3X) 
ldlretld(3X) 
Jdlseek(3X) 
ldlseek(3X) 
ldrseek(3X) 
ldshreadOX) 
ldsseek(3X) 
ldoh$eek(3X) 
ldopen(3X) 
ldrseekOX) 
ldshread(3X) 
ldsseek(3X) 
ldtbindex(3X) 
ldtbread(3X) 
ldtbseek(3X) 
len OF) 
directory (3X) 
len(3F) 
aetopt<JC) 
lex{]) 
lex (I) 
15earch(JC) 
strcmp(JF) 
strcmpOF) 
lntro(3) 
arS.0(4) 
lorder(l) 
lorderS.O(l) 



Permuted Index 

ar5.0: archive and library maintainer. 
portable/ ar: archive and library maintainer for 

ulimit: get and set user limits. . . . . . .. 
an out-going terminal line connection. /establish 

type, modes, speed, and line discipline. /set terminal 
line: read one line. . . . . . . . . . 

common object file. linenum: line number entries in a 
/ldlinit, ldlitem: manipulate line number entries of a/ 

ldlseek, ldnlseek: seek to line number entries of a/ 
an/ strip: strip symbol and line number information from 

nl: line numbering filter. 
out selected fields of each line of a file. cut: cut 

send/cancel requests to an LP line printer. lp, cancel: 
line: read one line. 

]search, lllnd: linear sean:h and update. 
col: filter reverse line-feeds. . . . . . . 

in a common object file. linenum; line number entries 
files. comm: select or reject lines common to two sorted 

head: aive first few lines. . . . . • . . . . . 
uniq: report repeated lines in a file. • .. , , . 

of several files or subsequent Jines of one file. /same lines 
subsequent/ paste: merae same lines of Kveral files or 

link, unlink: exercise link and unlink system calls. 
files. ld: link editor for common object 

ld5.0: link editor. 
a.ouc common assembler and link editor outpuL 

a.out5.0: usembler and link editor output. 
link: link to a file. 

cp, In, mv: copy, link or move files. 
link: link to a file. , , , 

and unlink system calls. link, unlink: exen:ise link 
lint: a C program checker. 

Is: list contents of directory. 
for a file system. ff: list file names and Statistics 

nlist: get entries from name list. . . . . , ...•. 
nm5.0: print name list. . , , •...••.. 

nm: print name list of common object file .. 
by fsck. checklist: list of file systems processed 

handle variable argument list vararp: 
output of a vararp argument lisl. /print formatted , . 
output of a vararas argument list. /print formatted .• 

socket. listen: listen for connections on a 
on a socket. listen: listen for connections 

xargs: construct ar1ument list{s) and execute command. 
intrinsic/ lge, lgt, lle, DC stri111 comparision .• 

intrinsic/ tae, lgt, lle, llt: string. comparision ...• 
files. cp, In, mv: copy, link or move 
interface. lo; software loopb&ck network 
lav: print load average statistics. 

tzset: convert date/ clime, localtime, gmtime, asctime, 
manual for proJiam. whereis: locate source, binary, and/or 

index: re1urn IOC&tion of Fortran substriq. 
end, etext, edata: las! loo::atlons in program. 

memory. plock: lock process, text, or data In 
files. lockf: record locking on . 

lockf: record locking on Jiles. , . . . • 
Jile rqions for readii!J or/ locking: provide exclusive , 
nalurallogarithm inlrinsicl lor;, alog., dlotl, cloa: Forlran 

gamma: log pmma function. 
newarp: 1011 in to a new aroup. 

exponential, Joaarilbm,/ exp, loa,loaHI, pow, sqrt: 
common logarithm intrinsic/ loalO, aJ.or;lO, dloglO: Forlran 
klpritbm, power,/ exp,Joa, loa tO, pow, sqrt: exponential, 

/alo&IO, dloglO: Fortran common logarithm intrinsic function. 

- 28 -

ar5.0(l) 
ar(]) 
ulimit(2) 
diaiOCl 
geny(IM) 
line(]) 
linenum(4) 
ldlreadOX) 
ldiseek.(JX) 
strip(!) 
nHI) 
cut(]) 
lp(]) 
line (I) 
lsearch(JC) 
col{l) 
linenum(4) 
comm(l) 
head (I) 
uniq(l) 
paste (I) 
paste(]) 
link(]M) 
Jd{l) 
ld5.0{l) 
a.out(4) 
a.ou\5.0(4) 
link(2) 
cp(l) 
link(2) 
link OM) 
lint{l) 
Is(]) 
lf(]M) 
nlist(JC) 
nmS.O(I) 
nm(l) 
checklist(4) 
vararp(5) 
vprintf{JS) 
vprintf(3X) 
listen(2N) 
listen(2Nl 
xargs(l) 
strcmp(3F) 
stn:mp(3f) 
cp{l) 
Jo(S) 
lav{l) 
ctime(3C) 
whereis(l) 
index(3F) 
endOCJ 
plock(2) 
lockf(3C) 
lockf(3C) 
locking(2) 
log{JF) 
gamma(3Ml 
newarp(l) 
exp(3M) 
loJI0(3f) 
expOMl 
JoaJ0(3Fl 



Permuted Index 

/dlo&, clog: Fortran natural logarithm intrinsic funttion. log{JF) 
/log!O, pow, sqrt: exponential, logarithm, power, square root/ exp{JM) 

errpt: process a report of logged errors. errptOMl 
rwho: who's logged in on local ma<:hines. rwhoONl 
&etlo&in: get lo&in name. getlogin(3C) 
logname: get IQ~in name. logname(l) 

tuserid: &et charatter lo&in name of the user. cuserid(3Sl 

( 
logname: return login name of user. loanameOXl 
JIIISSWd: chanae login JIIISSWOTd. passwd{l) 
rlogin: remote login. . .. rlogin{IN) - rlogind: remote login ser~er. rlogind(8N) 

login: sign on. loginUJ 
settin& up an en~ironment at login time. profile: profile(4) 

last: indicate last logins of users and teletypes. last(\) 
logname: get login name. logname(]) 

user. loaname: return login name of lognameOXl 
a64], l64a: oon~ert betw~n lona integer and base-64 ASCIU a6410CJ 

sputl, sgetl: access long integer data in a mathine/ sputlOXl 
between 3-byte integers and long inter;ers. /ltol3: oon~ert 13tol(3C) 

setjmp, long.imp: non-local goto. setjmp(3C) 
to: software loopback network interface. lo(S) 

for an object library. lorder: find ordering relation larder( I) 
relation for an object/ lorderS.O: find ordering lorder5.0(1) 

mklost+found: make a lost+ found directory for fsck. mklost+fnd(IM) 
nice: run a tommand at low priority. . nice (I) 
requests to an LP line/ lp. cancel: send/cancel lp(l) 

send/cancel requests to an LP line printer. lp, cancel: ]p(l) 
disable: enable/disable LP printers. enable, enable( I) 

/lpshut, lpmo~e: start/stop the LP request sc:heduler and mo~e/ lpsched(lM) 
accept, reject: allow/pre~ent LP requests. accept(JM) 

Ipadmin: configure the LP spooling system. l)llldmin(IM) 

( 
lpstat: print LP status information. lpstatOJ 

spooling system. Ipadmin: conJigure the LP lpadmin(lMl 
request/ lpsched, lpshut, lpmove: start/stop the LP lpsched(IM) 

start/stop the LP request/ lpsched, lpshut, lpmo~e: lpsched(IM) 
LP request scheduler/ lpsched, lpshut, lpmove: start/stop the lpsched (I M l 

information. lpstat: print LP status lpstatO) 
jrand4fl,/ drarK14fl, erand48, lrand4fl, nrand48, mrand48, drand48(3C) 

directory. Is: list contents of Is(]) 
and update. lsean:h, lfind: linear search lsearch(3C) 

pointer. lseek: mo~e read/write file lseek(2) 
bitwise/ and, or, ,.;or, not, lshift, rshifl: Fortran boolOF) 

integers and long/ 13tol, ltol3: con~ert betw~n 3-byte 13tol0C) 
m4: macro processor. m4(l) 

fsc~: con~ert files between M68000 and VAX-11/780/ fsc~OMJ 
pro~ide truth value about/ m68k, pdpll, u3b, uJbS, ~a,.;: machid(l) 

/access long inteaer data in a machine independent fashion. sputlOX) 
put: puts a file onto a remote machine. . put(IC) 

takes a file from a remote machine. take: takeOCl 
~alues: machine-dependent ~alues. values(S) 

show host status of local machines. ruptime: ruptime(JN) 
rwho: wtw's logged in on local mactlines. rwhoHNJ 

update files between two mat hines. updater: updater(]) 
update files betw~n two machines. updater: updaterOM) 

permuted index. mpt,.;: the macro packa.ae for formatting a mptx(5) 
documents. mm: the MM macro package for formatting mm(SJ 

( mosd: the OSDD adapter macro package for formauingl mosd(5) 
~iew graphs and/ mv: a troff macro package for typesetting m~(5) 

m4: macro processor. m4{l) 
in this manuaL man: macros for formatting entries man{5) 

formatted with the MM macros. /print{ check documents mm(l) 
send mail to users or read mail. mail, rmail: mail(]) 

users or read mail. mail, rmail: send mail to mail(]) 
netmail: the B-NET network mail system. netmail(SN) 

- 29. 



Permuted Index 

delivermail: deliver mail to arbitrary people .. 
netmailer: deliver mail to B·NET. 
mail, rmail: send mail to users or read mail. 

processing system. mailx: interactive message 
malloc, free, reaUoc, calloc: main memory allocator .. 

/mallopt, mallinfo: fast main memory allocator .. 
proaram. ctags: maintain a tags file for a C 

regene!"llte groups off make: maintain, upda.te, and 
arS.O: archive and library maintainer. 

ar; archive and library maintainer for PQrlab!el 
intra: introdu"ion to system maintenance commands and/ 
intra: introduction to system maintenance procedures. 

sees file. delta: make a delta (change) to an . 
mkdir: make a directory. 

or ordinary file. mknod: make a directory, or a special 
for fsck. mklost +found: make a lost+ found directory 

mktemp: make a unique filename. 
regenerate groups off make: maintain, update, and 

ssp: make output single spaced. 
banner: make posters. . . . . .. 

session. script: make typescript of terminal 
key. makekey: generate encryption 

fre.alloc, calloc, mallopt, mallinfo: fast main memory/ 
main memory allocator. malloc, free, realloc, canoe: 

mallopt, mallinfo: fast main! malloc, free, realloc, canoe. 
malloc, free, re.alloc, calloc, mallopt, mallinfo: fast main/ 

entries in this manual. man: macros for formatting 
manual. man: print entries in this 

/tfind, !delete, twalk: manage binary search trees. 
hsearch, hcreate, hdestroy: manqe hash search tables. 

shl: shell layer manager. . ...... . 
records. fwtmp, wtmplb: manipulate connect ac.:ountill& 

off ldlread, ldlinit, ldlitem: manipulate line number entries 
frexp. lde~p, modf: manipulate parts of/ 

tp: manipulate tape archive. 
route: manually manipulate tile routing tables. 

/inet netof: Internet address manipulation routines. 
locate source, binary, and/or manual for program. whereis: 

man: print entries in this manual. . . . . . . .. 
for formatting entries in this manual. man: macros 

routing tables. route: manually manipulate the 
ascii: map of ASCII character set. 

files. diffmk: mark differences between 
umask: set llle·creation m~e mask. . . . . . 

set and get file creation mask. umask: . . .... 
an error mesSIIie file by maSSajing C source. /create 

table. master: master device information 
information table. master: master device 

regular expression compile and match routines. regexp: . . 
math: math fun,tions and constants. 

constants. math: math functions and .. 
eqn, neqn, 'll~keq: format mathematical te~t for nroff or/ 

function. matherr: error-handling .. , 
dmaxl: Fortran ma~imum·value/ rna~, maxO, amaxO, rna~ I. amaxl, 

dmaxl: Fortran/ rna~, maxO, amaxO, maxi, amad, 
max, maxO, amaxO, maxi, amaxl, dma~l: Fortran/ 

/maxi, ama~l. dmax\. Fortran maximum-value functions. 
maze: generate a maze. 

maze: generate a maze. . . . . . . . . . . 
mc68cc: C compiler. 

ac.:ounting. mclock; return Fortran time 
bed: convert to antique media. . • . . . . . . . 

mem, kmem: core memory. 
memcpy, memset: memory! memccp)', memchr, memcmp, 

. 30 . 

delivermai1(8N) 
netmailer(8NJ 
mail(!) 
maibUJ 
mallocOCJ 
mallod3XJ 
ctags(l) 
make(!) 
arS.O(l) 
ar( I) 
introUMJ 
intro(8J 
delta OJ 
mkdirOJ 
mknod(2) 
mklost+fnd(IMJ 
mktempOCl 
make(]) 
ssp (I) 
banner(\) 
script OJ 
makekey(l) 
malloc(JX) 
mallocOCJ 
malloc(JXI 
ma1Joc(3X) 
man(S) 
man( I) 
tsearch(JCJ 
hsearchOC) 
S)d(l) 
fwtmpOMl 
ldlreadOXl 
fre~p(JCJ 
tp(l) 
route(gN) 
inet(JNJ 
whereisOJ 
man (I) 
man(5) 
route(8Nl 
ascii(5) 
diffmk(l) 
umask(l) 
umask(2) 
mkstrOJ 
master(4) 
master(4) 
regexp(S) 
math(S) 
math(S) 
eqn(l) 
matherrOM) 
max OF) 
max OF) 
maxiJF) 
max(JF) 
maze(6) 
maze(6) 
mc68cdl) 
mclockOF) 
bcd(6) 
mem(7) 
memoryOC) 



Permuted Index 

memory(3C) 
memory(JC) 
memory(JC) 

memset: memory/ memecpy, memchr, mememp, memepy, 
operations. memcx:py, memehr, memcmp, memepy, memset: memory 

mema:py, memehr, mememp, memcpy, memset: memory/ 
free, realloc, callcx: main memory allocator. malloc, 

mallopt, mallinfo: fast main memory allocator. /caLLcx, 
shmetl: shared memory control operations. 

queue, semaphore set or shared memory id. /remove a message 
mem, kmem: core memory. . •••.. 

mememp, memepy, memset: memory operations. /memehr, 
shmop: shared memory operations. 

lock proeess, text, or data in memory. plock: .•... 
shmget: l(ll shared memory sea;ment. . . . . • 

/memehr, memc:mp, memepy, memxt: memory operations. 
sort: sort and/or merl(l files. • , •••••• 

files. aa:tmerg: mer1e or add total aa:ountins 
files or subsequent/ paste: merae same Jines of several . 

mesg: permit or deny messages. 
msgctl: message control operations. 

mkstr: create an error message file by massasina: C/ 
recvfrom, recvmsg: receive a message from a socket. reev, 

send, sendto, sendmsg: send a message from a socket. , • 
mS&op: message operations. 

mailx: interaetive message processing system. 
mqget: get messqe queue. 

or shared/ ipcrm: remove a meS51111e queue, semaphore set 
mesg: permit or deny messages. • •..• , •.. 

sys nerr: system error messages. /errno, sys_errlist, 
dminl: Fortra"ii minimum-value/ min, minO, aminO, mini, aminl, 

dminl: Fortran/ min, minO, aminO, mini, aminl, 
min, minO, aminO, mini, aminl, dminl: Fortran/ 

/min\, aminl, dminl: Fortran minimum-value fundions. 
mkdir: make a diredory. 
mkfs: eoru;trud a file system. 

system. mkfsl b: construct a file • 
Jost+found direetory for/ mklost+fou.nd: make a .. 

mknod: build spedal file. 
special or ordinary file. mknod: make a directory, or a 

file by massa11ina: C source. mkstr: create an error message 
filename. mktemp: make a unique 

formallillll documents. mm: the MM macro package for . . . 
documents formatted with the MM macros.. /print/check 

documents formatted with the/ mm, osdd, cbeekmm: print/check 
formattins documents. mm: the MM macro package for 

view sraphs, and slides. mmt, mvt: typeset documents, 
table. mnttab: mounted file system 

remaindering intrinsic/ mod, amod, dmod: Fortran 
cbmod: chanse mode. . . . 

umask: set file-creation mode mask. 
chmod: change mode of file. 

getty: set terminal type, modes, speed, and line/ 
bs: a compiler/interpreter for modest·sized programs. 
floating-point/ frexp, ldexp, modf: manipulate ports of 

touch: update access and modification times of a file. 
utime: set file aocess and modification times. 

fckpa.cd, dodisk, Lastlogin, monacct, nulladm, prctmp,/ 
profile. monitor: prepare execution 
uusub: monitor uucp network. 

moo: guessing game. 
package for formatting/ mosd: the OSDD adapter macro 

rcvhe;~~: translates Motorola S-records from/ 
mount: mount a file system. 

system. mount, umount: mount and dismount file 
mount: mount a file sygtem. 

setmnt: establis.h mount table ....... . 

. 31 -

malloc(JC) 
malloc(JX) 
shmctl(2) 
ipcrm(\) 
mem(7) 
memory(JC) 
shmop(2) 
plock{2) 
shmget(2) 
memory(JC) 
sort(\) 
acctmeq:(\M) 
paste(!) 
mesg(l) 
msgct1(2) 
mkstr(\) 
recv(2N) 
send(2Nl 
msgop(2) 
maiJx(l) 
msgget(2) 
ipcrm(\) 
meq;(l) 
perror(JC) 
min(JF) 
min(3Fl 
min(3Fl 
minUFl 
mkdir(\) 
mkfs(\M) 
mkfslb(IM) 
mklost+fnd(IM) 
mknod(\M) 
mlr.nod(2) 
mkstr(l) 
mktemp(3Cl 
mm(S) 
mm(l) 
mm(\) 
mm(S) 
mmt(l) 
mnttab(4) 
modOFl 
chmod(l) 
umuk(l) 
chmod(2) 
llelly(!Ml 
bs(l) 
frexp(JC) 
touch(!) 
utime(2) 
acctshOMl 
monitor(JC) 
uusub(lM) 
moo(6) 
mosd(S) 
rcvhex(l) 
mountUl 
mountOMl 
mount(2) 
setmnt(IM) 



Permuted Index 

dismount file system. mount, umount: mount and 
mnttab: mounted file system table. 
mvdir: mnve a directory. 

cp, In, mv: copy, link or move files. , ..••.. 
lseek: move read/write file pointer. 

the LP request scheduler and move requests. /start/stop 
formauina a permuted index. mptx: the macro package for 
/erand48, lrand48, nrand48, mrand48, jrand4a, srand48,/ 

operations. msgctl: message control . . 
msuet: JCI message queue. 
m510p: message operations. 

seloct: synchronous i/o multiplexing. . ..... 
typeseuina view graphs and/ mv: a troff macro package for 

cp. In, mv: copy, link or move files. 
mvdir: move a directory. 

graphs, and slides. mmt, mvt: typeset documents, view 
log, alog, dlog, clog: Fortran natural loprithm intrinsic/ 

i-numbers. ncheck: generate names from 
/dnint, nint, idnint: Fortran nearest integer functions. 
malhematicaltext for/ eqn, neqn, checkeq: format 

definitions for eqn and neqn. /special character •. 
mail system. netmail: the 8-NET network 

8-NET. netmailer: deliver mail to 
netstat: show network status. 

values between host and network byte order. /convert 
setnetent, endnetent: get network entry. /getnetbyname, 

/sethostent, endhostent: get network host entry. 
lo: software loopback network interface. , . . , , 

ifconlig: configure network interface parameters. 
netmail: the 8-NET network mail system. 

networks: network name data base. 
routed: network routiTill daemon. 

netstat: show network status. 
uusub: monitor uucp network. . , , .• , . 

networkiTill: introduction to networking facilities. 
networking facilities. networking: introduction to 

base. networks: network name d.ata 
a text file. newform: change the format of 

newgrp: Ill& in to a new group. 
news: print news items. . , . , , . 

news: print news items. 
process. nice: chanae priority of a 
priority. nice: run a command at low 

integer/ anini, dnint, nint, idnint: Fortran nearest 
n1: line numbering filter. 

list. nlist: get entries from name 
object file. nm: print name list of common 

nm5.0: print name list. 
change current UNIX system nodename. chgnod: . . , , . 

hangups (sh only). nohup: run a command immune to 
setjmp, loJI&imp: non-local goto. . . . . . . . 

bitwilie boolean/ and, or, xor, not, !shift, rshift: Fortran 
drand48, erand48, lrand48, nrand48, mrand48, jrand48,1 

nroff: format text. 
format mathematical text for nroff or troff. /checkeq: 

tbl: format tables for nroff or troff_ 
constructs. deroff: remove nroff/trolf, tbl, and eqn 

between host/ htonl, htons, ntohl, ntnhs: convert values 
host and/ htonl, htons, ntohl, ntohs: convert values between 

null: the null file. . . . . .... 
null: the null file. . . . . 

/dodisk, lastlogin, monacct, oulladm, prctmp, prd.aily,l 
rd: line numbering filter. 

number: convert Arabic numerals to English. 

- 32 -

mount( 1M) 
mnuab(4) 
mvdir(IM) 
cp(l) 
lseek(2) 
lpsched(IM) 
mptx(5) 
drand480C) 
msgctiW 
msgget(2) 
msgop(2) 
select(2N) 
mv(S) 
cp(l) 
mvdirUMJ 
mmtO) 
log(JF) 
ncheck(IMJ 
roundOF) 
eqn(l) 
eqnchar(5J 
netmail(8N) 
netmailer(8Nl 
netstat(IN) 
bytenrderON) 
aetnetentONJ 
gethostent(JNJ 
lo(S) 
ifoonlla(8N) 
netmaii(BN) 
networks(4N) 
routed(8NJ 
netstat(IN) 
uusubOM) 
intro(SN) 
intro(SNJ 
networks(4N) 
newform(l) 
newgrp(l) 
news{ I) 
news(]) 
nice(2) 
nice(]) 
roundOFl 
nl(J) 
nlistOC) 
nm(l) 
nmS.O(]) 
chgnodOMJ 
nohup(l) 
setjmp(JC) 
booUJF) 
drand480Cl 
nrolf(]) 
eqnOJ 
tb((l) 
deroff(]) 
byteorder(JN) 
byteorderONl 
null(7) 
null(7) 
acctshOM) 
nl(l) 
number(6) 



ldfcn: common object file access routines. 
conv: object file converter. 

dump selected parts of an object file. dump: 
ldopen, ldaopen: open a common object file for reading. 

number entries of a common object file function. /Hoe 
ldaclose: close a common object file. ldclose, 

the file header of a common object file. ldfhread: read 
retrieve symbol name for object file. ldsetname: 
of a section of a common object file. /number entries 
file header of a common object file. /to the optional 

of a section of a common object file. /entries • 
section header of a common object file. /an indexed/named 

section of a common object file. /an indexed/named 
symbol table entry of a common object file. /the index of a 
symbol table entry of a common objecl file. !read an indexed 

the symbol table of a common object file. /seek. to . • 
number entries in a common object file. linenum: line 

nm: print name list of common object file. • 
information for a common object file. /relocation 

section header for a common object file. scnhdr: 
sizeS.O: size of an object file. • 

number information from an object file. /symbol and line 
format. syms: common object file symbol table 

• a.out header for common object files. aouthdr.h 
file header for common object files. filehdr: • 

hex: translates object files. 
directories. cpset: install object files in binary 

ld: link. editor for common object files. 
print section sizes of common object files. size: 

find ordering relation for an object library. larder: 
find ordering relation for an object library. lorder5.0: 

/the printable strinp in an object, or other binary file. 
lse~&rent, endgrent, fsetarent: obtain &roup file entry from a/ 

od: octal dump. 
od: octal dump. 

command immune to haqups (sh only). nohup: run a 
the specified/ exterr: turn on/oil the extended errors in 

put: puts a file onto a remote machine. 
reading. ldopen, ldaopen: open a common object file for 

fopen, freopen, fdopen: open a stream. • 
open: open for reading or writing. 

writing. open: open for reading or • 
seekdir, rewinddir, closedir:/ opendir, readdir, telldir, 

tputs: terminal independent operation routines. /tgoto, 
ffs: bit and byte string operations. /bcmp, bzero, 

Dexible length directory operations. /closedir: • 
memcmp, memcpy, memset: memory operations. memccpy, memchr, 

msgctl: message control operations. 
msgop: mes:sqe operations. 

semctl: semaphore control operations. 
semop: semaphore operalions. 

shmctl: shared memory control operuions. 
shmop: sh4red memory operalions. 

strcspn, strtok: strin1 operalions. /strpbrk., slT!lpn, 
join: relational database operuor. • 

dcopy: copy file systems for optimal access time. 
CRT screen handling and optimization pack.aae. curses: 

vector. a:etopt: a:et option letter from argument 
common/ ldohseek: seek to the optional file header of a 

fcntl: file control options. 
stty: set the options for a terminal. 

aetopt: parse command optioru. 
/setsockopt: aet and set optioru on sockets. 

Fortran bitwise boolean/ and, or, xor, not, lshift. rshift: 

• 33 • 

Permuted Index 

ldfco(4) 
conv(l) 
dump(!) 
ldopenOXl 
ldlread(JX) 
ldclose(JX) 
ldfhread(JX) 
ldgetname(JX) 
ldlseekOXJ 
ldohseek.OXl 
ldrseek(JX) 
ldshread(JX) 
ldsseek.(JX) 
ldtbindex(JXJ 
ldtbreadOX) 
ldtbseekOX) 
linenum(4) 
nm(l) 
reloc(4) 
scnhdr(4) 
sizeS.O(l) 
strip(!) 
syms{4) 
aouthdr{4) 
filehdr(4) 
hex{!) 
cp&et(IM) 
ld(l) 
size (I) 
larder (I) 
lorderS.O(l) 
strings (I) 
getgrentOC) 
od(l) 
od(l) 
nohup(l) 
exterr{l) 
putOC) 
ldopen(JX) 
fopen(3S) 
open{2) 
open{2) 
directory OX) 
termcap(3X) 
bstrina:(3N) 
directory OX) 
memory(JC) 
mqctl{2) 
msa:op(2) 
semctl{2) 
semop(2) 
shmctl(2) 
shmop(2) 
stri~~&(JC) 
join (I) 
dcopy{IM) 
curses(3X) 
getopt.OC) 
ldohseekOX) 
fcntl{S) 
stty(l) 
aetopt{l) 
pll;ockopt(2N) 
booi(3F) 



Permuted Index 

object library. lorder: find ordering relation for an .. 
object/ lorderS.O: lind ordering relation for an . , 

a directory, or a special or ordinary file. mknod: make 
formaniogl mosd: the OSDD adapter macro package for 

documents formaned with/ mm, osdd, checkmm: print/check , 
dial: establish an out-going terminal line/ . . . 

assembler and link editor output. a.out: common .. . 
assembler and link editor output. a.outS.O: ..... . 
/vsprintf: print forma ned output of a varargs argument/ 
/vsprintf: print formatted output of a varargs ar&umcntl 

sprintf: print formatted output. printf, fprintf, 
ssp: make output sinale spaced. . , . 

/accldusg, accton, acctwtmp: overview of accounting and/ 
chown: change owner and group of a file. 

chown, chgrp: chanae owner or group. . ... , 
and expand Illes. pack, peat, unpack: compress 

handlina and optimization package. curses: CRT screen 
permuted/ mptx: the macro packaae for formatting a 

documents. mm: the MM macro package for formauina 
mosd: the OSDD adapter macro package for formallingl . . 

graphs and/ mv: a troff macro peckage for typeseuing view 
sadc: system activity report packqe. sal, sa2, 

standard buffered input/output package. stdio: 
interprocess communication package. ftok: standard 

4014 terminal. 4014: paainator for the Tektronix 
tune Doppy disk settling time parameters. disktune: . 

configure network interface parameters. if-ronlig: 
process, process group, and parent process IDs. /get 

getopt: parse command options. 
passwd: change lna:in password. 
passwd: password file. 

/endpwent, faetpwent: get password file entry. 
putpwent: write password file entry. 

pa!lliwd: password file. 
getpass: read a password. 

passwd: chanae login pessword. , , 
pwck, grpck: password/group file checkers. 

several Illes or subsequent/ paste: merge same lines of 
dirname: deliver portions of path names. basename, . , , 

directory. getcwd: get pathname of current working 
fgrep: search a file for a panern. arep, egrep, 

processing lanauaJe. awk: pallern scanning and 
signal. pause: suspend process until 

exp~~nd files. pack, peat, unpack: compress and 
a process. popen, pclose: initiate pipe to/from 

truth value about your/ m68k, pdp \I, uJb, u3bS, vax: provide 
get name of connected peer. Jetpeername: .•.. 

mesg: permit or deny messaaes. 
macro packaae for formatting a permuted index. mptx: the 

ptx: permuted index. 
format. acct: per-process accounting file 

acctcms: command summary from per-process accounlini/ , 
sys nerr: system error/ perror, errno, sys_errlist, 

-viewing. more: llle perusal filter for crt , , . 
terminals. PI: file perusal filter for soft-copy 

soft-copy terminals. Pi; llle perusal filter for . 
tc: phototypesetter simulator. 

access physical addresses. phys: allow a process to 
allow a process to access physical addresses. phys: 

split: split a llle into pieces. . , , . . .. 
channel. pipe: create an interprocess 

tee: pipe fitting. • .. , , 
popen, pclose: initiate pipe to/from a process. 

fish: play "Go Fish". 

- 34-

lorder(IJ 
lorder5.0(1) 
mknod(2) 
mosd(S) 
mm(l) 
diai(JC) 
a.out(4) 
a.out5.0(4) 
vprintfCJS) 
vprintf(3X) 
printf(JS) 
ssp(]) 
acetUM) 
chown(2J 
chown(IJ 
pack(]) 
curses(JX) 
mptx(5) 
mm(SJ 
mosd(S) 
mv(5) 
sarHMJ 
stdioOS) 
stdipc(3CJ 
4014(1) 
disktune(IM) 
ifconfig(SN) 
getpid(2) 
getoptO) 
passwd(l) 
passwd(4) 
getpwentOCl 
putpwentOCl 
passwd(4) 
getpass(JC) 
passwd(l) 
pwck(IM) 
paste(!) 
basename(l) 
Jetcwd(JC) 
grep(l) 
awk(l) 
pause OJ 
pack(]) 
popen(3S) 
machid(]J 
getpeername(2N) 
meq(l) 
mptx(S) 
ptx{l) 
acct(4) 
acctcms(IM) 
perror(JC) 
more( I) 
pg(l) 
.. (I) 
1cOl 
phys(2) 
phys(2) 
split(]) 
pipe(2) 
tee(!) 
popenOSJ 
fish(6) 



life: play the game of life. 
worm: Play the growina worm same. 

data in memory. plock: lock process, text, or 
plot: graphics interface. 

subroutines. plot: graphics interface 
images. pnch: lile format for card 

ftell: reposition a file pointer in a stream. /rewind, 
]seek: move read/write file pointer. • 

to/from a process. popen, pclose: initiate pipe 
data base of terminal types by port. ttytype: 

and library maintainer for portable archives. /archive 
basename, dirname: deliver portions of path names. 
functions. dim, ddim, idim: positive difference intrinsic 

banner: make posters. • • 
loprithm,/ exp, log, logiO, pow, sqrt: exponential, 

/sqrt: exponential, logarithm, power, square root functions. 
brc, bcheckrc, rc, powerfail: system/ 

pr: print files. • • 
/lastlogin, monacct, nulladm, prctmp, prdaily, prtacct,/ 

/monacct, nulladm, prctmp, prdaily, prtacct, runacct,/ 
function. dprod: double precision product intrinsic 
for troll". cw, checkcw: prepare constant·width text 

monitor: prepare exec:ution profile. 
cpp: the e Janauage preprocessor. • 
cpp: thee lanauaae preprocessor. • • 

unset: undo a previous set of an sees file. 
types: primitive system data types. 

interesting, adage. fortune: print a random, hopefully 
prs: print an sees file. 

date: print and set the date. 
cal: print calendar. 

of a file. sum: print checksum and block count 
editing activity. Silct: print current sees file 

id. whoami: print effective current user 
man: print entries in this manual. 

cat: concatenate and print files. • •• 
pr: print files. • • • 

vprintf, vfprintf, vsprintf: print formatted output of a/ 
vprintf, vfprintf, vsprintf: print formatted output of a/ 

printf, fprintf, sprintf: print formattod output. 
host system. hostid: set or print identifier of current 

banner7: print large banner on printer. 
lav: print load average statistics. 

lpstat: print LP status information. 
nmS.O: print name list. . • • 

object file. nm: print name list of common 
system. hostname: set or print name of current host 

system. uname: print name of current UNIX 
news: print news items. • • 

printenv: print out the environment. 
6!e(s). acctcom: search and print process accounting , 

oQiect flies. size: print section sizes of common 
pstat: print system facts. • • 

names. id: print user and group IDs and 
object, or/ strings: find the printable strings In an 

formatted/ mm, osdd, checkmm: print/chock documents 
environment. printenv: print out the 

banner7: print large banner on printer. • 
requests to an LP line printer. /cancel: send/cancel 

diSIIble: enable/diSIIble LP printers. enable, • 
print formatted output. printf, fprintf, sprintf: • 

nice: run a command at low priority. • . • . . • • 
nice: change priority of a process. 

errors. errpt: process a report of losged 

. 35 . 

Permuted Index 

life(6) 
worm{6) 
plock(2) 
plot(4) 
plot(JX) 
pnch(4) 
fseek(JS) 
lseek(2) 
popen(JS) 
ttytype(4) 
ar(]) 
buename(l) 
dim OF) 
banner(!) 
exp(JMJ 
exp(JM) 
brc(IM) 
pr(l) 
acctsh(IM) 
acctsh(IM) 
dprod(JF) 
cw(l) 
monitor(Je) 
cpp(l) 
cppS.O(I) 
unget(l) 
types(S) 
fortune(6) 
prs(l) 
date(!) 
cal {I) 
sum (I) 
sact(l) 
whoamiU) 
man( I) 
cat (I) 
pr(l) 
vprintf(JS) 
vprintf(JX) 
printr(JS) 
hostid(IN) 
banner7(1) 
Jav{l) 
lpstat(i) 
nmS.O(l) 
nm(l) 
hostnameUNl 
unameO) 
news( I) 
printenv(l) 
acctcomU) 
sizeOl 
pstal(lM) 
id(l) 
strillls(l) 
mm(l) 
printenv(l) 
banner7(1) 
lp(l) 
enable(l) 
printr(JS) 
nice(!) 
nice(2) 
errpt(IM) 



Permuted Index 

aoct: enable or disable process accountina. 
a~tprcl, acctprc2: process accounting. 

acctcom: search and print process accounting file(sJ. 
times. times: aet process and child process 

init, telinit: process control/ 
timex: time a command; repOrt process data and system/ 

exit, _exit: terminate process ........ . 
fork: create a new process. . • . . . . .. 

/getpgrp, getppid: get process, process group, ~nd parent/ 
setP&rp: set process group ID. 

killptJ: send signal to a process aroup. . .... 
process group. and parent process IDs. /Jet process, 

inittab: script for the init process. 
kill: terminate a process. . • . ••• 

nice: change priority of a process. . . . , .. 
kill: send a signal to a process or a :~~roup of/ 
initiate pipe to/from a process. p0pen, pclose: 

getpid, getpgrp, getppid: aet process, process group, and/ 
ps: repOrt process status. 

memory. plock: lock process, text, or data in . 
times: get process and child process times. . .••. 

addresses. phys: sllow a process to access physical 
wait: wait for child process to stop or terminate. 

waitJ: wait for child process to stop or terminate. 
ptrace: process trace. . . . . . . 

pause: suspend process until signal ...• 
list of file systems processed by fsck. checklist: 

to a process or a group of processes. /send a signal 
killa.ll: kill all active processes. • ..•..• , 

structure. fuser: identify processes using a file or file 
awk: pattern scanning and processing la.nguaae. 

shutdown: terminate all processing. 
mailx: interactive message processing system. 

m4: macro proce!iiKir .••.. 
provide truth value about your processor type. /u3b5, vax: 

between M68000 and VAX-111780 processors. I convert files 
alarm: set a process's alarm clock. , , 

dprod: double precision product intrinsic function. 
prof: display profile data. 

function. prof: profile within a 
profile. profil: execution time 

prof: display profile data. 
monitor: prepare execution profile. • • , , • . 

profil: execution time profile. , • , ..• 
environment at lnain time. profile: setting up an 

prof: profile within a function. 
standard/restricted command programmina language. /the 

arp: Address Resolution Protocol. 
/setprotoent, endprotoent: set protocol entry. 

inet: Internet protocol family. 
ip: Internet Protocol. 

protocols! prOIOCOII\ttMC data base. 
DARPA Internet File Transfer Protocol server. ftpd: 

telneld: DARPA TELNET protocol server. 
DARPA Triv_illl File Transfer Protocol server. tftpd: 

Internet Transmission Control Protocol. tcp: 
oaer interface to tbe TELNET protocol. te~net: 

trpt: transliterate protocol trace. • 
udp: Internet User Da~~Jram Protocol. 

base. protocols: protocol name data 
arithmetic: provide drill in number facts. 

for reading or/ locking: provide exclusive file reaions 
m68k, pdp! I, u3b, uJbS, vax: provide trutb value about your/ 

true, false: provide trutb values. . ..•• 

- 36-

acct(2) 
acctprcUMJ 
acctcom(lJ 
times(l) 
initOMJ 
timex(!) 
exitU) 
fork(2J 
&etpid(2) 
setpgrp(2) 
killptJ(3N) 
getpid(2l 
inittab(4) 
kill(IJ 
nice(2) 
kill(2) 
popenOSJ 
getpid(2) 
ps(ll 
plock(2l 
times(2) 
phys(2) 
wait(2) 
wait3(2Nl 
ptrace(2) 
pauseUJ 
checklist(4) 
kill(2) 
killallOMl 
fuser(IM) 
awk(l) 
shutdownOMl 
mailx(l) 
m40l 
machid(l) 
fscv(\M) 
alarm(2) 
dprodOFl 
prof(!) 
prof(S) 
profi1(2) 
profO) 
monitor(JC) 
profiH2l 
profile(4) 
prof(S) 
shOl 
arp(SP) 
aetprotoentONl 
inet(SF) 
ip(SP) 
protooold4Nl 
ftpd(8Nl 
telnetd(SN) 
tftpd(8N) 
tcp(SP) 
telnetUNl 
trpt<8Nl 
udp(SP) 
protocols(4Nl 
arithmetic(6) 
lockiq(2) 
machid(l) 
true(!) 



prs: print an sees file. 
/n11lladm, prctmp, prdaily, prtaeet, runacct, shutacct,! 

ps: report process status. 
pty: pseudo terminal driver. 
sxt: pseudo-device driver. 

/senerate uniformly distributed pseudo-random numbers. 
pstat: print system facts. 
ptrace: pr~M:ess trace. 
ptx: permuted index. 
pty: pseudo terminal driver. 

stream. ungete: push character back into input 
put character or word on a/ putc, putch.ar, fputc, putw: 

character or word on a/ putc, putch.ar, fputc, putw: put 
environment. putenv: eh.aqe or add value to 

enlry. putpwent: write password file 
machine. put: puts a file onto a remote 

stream. puts, fputs: put a strin1 on a . 
aetutent, getutid, aetutline, pututline, setutent, endutent,/ 

af putc, puk:har, fputc, putw: put character or word on 
file checkers. pwck, grpck: password! group 

pwd: worki~ directory name. 
qson: quicker sort. 

tput: query terminfo database. 
insert/remove element from a queue. insque, remque: 

msu,et: get messase queue. . • . . . . . 
ipcrm: remove a messaae queue, semaphore set or shared/ 

qsort: quicker sort. . . • • . . 
quiz: test your knowledfle. 

display. rain: animated raindrops 
rain: animated raindrops display. 

random-number/ irand, srand, rand: Fortran uniform 
random-number generator. rand, srand: simple •• 

adaJe. fortune: print a random, hopefully interestina, 
rand, srand: simple random-number senerator. 

/srand, rand: Fortran uniform random-number senerator. 
fsplit: split n1. ratfor, or en files. 

dialect. ratfor: rational Fortran 
ratfor: rational Fortran dialect. 

initialization/ hrc, bcheckrc, rc, powerfail: system 
routines for returnins af rcmd, rresvport, ruserok: 

rep: remote file copy. . . 
S·records from downloading/ rcvhex: translates Motorola 

getpass: read a passw-ord. • , . . • 
entry of a common/ Jdtbread: read an indexed symbol table 
!Nlader/ Jdshread, ldnshread: read an indexed/named section 

read: read from file. 
readv: read from file. . 

rmail; se11d mail to users or read mail. mail, 
line: read one line. 

read: read from file. 
member of an/ ldahread: read the archive header of a 

oommon object file. ldlbread: read the file header of a • 
rewinddir, closedir:/ opendir, readdir, telldir, seekdir, .. 

open a common object file for readiJIII. ldopen, ldaopen: 
exclusive file regions for reading or writing. /provide 

open: open for reading or writing. 
readv: read from file. 

!seek: move read/write file pointer. 
cmplx,/ int, ifi~. idiot, real, float, sngl, dhle, 
allocator. malloc, free, realloc, calloc: main memory 

mallinfo: fast/ malloc, free, realloc, ealloc, mallopt, 
reboot: reboot the system. 
reboot: reboot the system. 

reboot: reboot the system. 

- 37 -

Petmuted Index 

prs(l) 
a!Xtsh(\M) 
ps(l) 
pty(S) 
sxti7J 
drand48(3C) 
pstatU Ml 
ptrace(2J 
ptx(l) 
pty(5) 
unsetc<JS) 
put<: OS) 
putcOSl 
putenv{JC) 
putpwent(3Cl 
putUCl 
puts(3S) 
aetut(3Cl 
putcOSl 
pwckOMl 
pwd(l) 
q$ort(3C) 
tput(l) 
insque(3N) 
msgget(l) 
ipcrm(l) 
qsortOCl 
quiz(6) 
rain(6) 
rain(6) 
rand(3F) 
rand(3C) 
fortune(6) 
r~ndOCl 
rand{JF) 
fsplit(l) 
ratforOl 
ratfor(\) 
brc(IM) 
rcmd(3N) 
rcp(INJ 
rcvhex(\) 
&elpaS$(3C) 
ldtbread(3X) 
ldshread(3Xl 
read(2) 
readv<JN) 
maiJ{J) 
line OJ 
read(l) 
ldahreadOXl 
ldfhreadOXl 
directory OX) 
ldopen(3X) 
lockil!i(l) 
open(l) 
readv(JN) 
lseek(l) 
ftype(3FJ 
malloc<JC) 
malloc(3X) 
reboot{IM) 
reboot(2) 
rebootOM) 



Permuted Index 

reboot: reboot the system. 
specify what to do upon receipt of a signal. sianal: 

/specify Fortran action on receipt of a system si&nal. 
recv, recvfrom, recvmsg: reteive a messaae from a/ 

lockf: record locKing on files. 
from per·process atcounting records. /c;ommand summary 

errdead: extract error rerords from dump. 
manipulate connect atcountina records. fwtmp, wtmpfix: 

tape. free: recover files from a backup 
receive a message from a/ recv, recvfrom, recvmsg: 

messqe from a socket. re<:v, recvfrom, re<:vmsg: receive a 
from a/ recv, recvfrom, recvm511: receive a messqe 

ed, red: text editor. . .. , . 
execute a regular expression. rea:cmp, regex: compile and 

compile. regcmp: reaular expression 
make: maintain, update, and regenerate sroups or proarams. 
reaular expression. rescmp, reau: compile and execute a 
compile and mat~::h routines. resexp: resular expression .. 

/provide exclusive file regions for reading or/ 
mall:h routines. regexp: regular expression compile and 

rescmp: regular expression compile. 
regex: compile and execute a regular expression. regcmp, 

requests. aa:ept, reject: allow/prevent LP 
sorted files. comm: seled or reje<:t lines common to two 

lorder: find ordering relation for an object/ 
lorder5.0: find orderins relation far an objecll 

jain: relational database operator. 
for a common object file. reloc: relocation information 

strip5.0: remove symbols and relocation bits. .•..•. 
ldrseek, ldnrseek: seek to relocation entries of a/ 

common object file. reloc: relocation information for a 
If mod, fabs: Door, ceiling, remainder, absolute value/ 

mod, amod, dmod: Fortran remainderi~ intrinsic/ 
calendar: reminder service .....• 

for returning a stream to a remote command. /routines 
rexec: return stream to a remote command. 

rexecd: remote execution server. 
rep: remote file copy. 

rlosin: remote lOBin. 
rlosind: remote IQ~in server. 

put: puts a file onto a remote m.achine. 
take: takes a file from a remote machine. 

remsh: remote sJKII. 
remshd: remote shell server. 

ct: spawn getty to a remote terminal. 
file. rmdel: remove a delta from an sees 

semaphore set or/ ipcrm: remove a message queue, , 
unlink: remove directory entry ...• 

rm, rmdir: remove files or directories. 
eqn constructs. deroff: remove nroffltroff, tbl, and , 

bits. strip5.0: remove symbols and relocation 
from a queue. insque, remque: insert/remove element 

remsh: remote shell. 
remshd: remote shell server. 

check and interactive repair. /system consistency 
uniq: report repeated lines in a file. 

clock: report CPU time used. 
communication/ ipcs: report inter·process .. 

blocks. df: report number of free disk 
errpt: process a report of logged errors. • . 

frequencies in a file. freq: report on character ••.. 
sal, sadc: system activity report packqe. sal, 
timex: time a command; repart process data and system/ 

ps: report process status. . .•.. 

- 38 -

reboot(2) 
si&nal(2) 
sitnalUF) 
recv(2N) 
lockfOeJ 
acctcms(lM) 
errdead(l M) 
fwtmpUMJ 
frecUMI 
recv(2N) 
recv(2N) 
recv(2N) 
ed(l) 
regcmp()XJ 
regcmp(l) 
make(]) 
rescmpiJXI 
reaexp(5) 
lockill8(2) 
rege:o:p(S) 
regcmp(l) 
regcmptlXJ 
acceptUM) 
comm(l) 
larder(]) 
lorderS.O(I) 
join(]) 
relod4J 
stripS.O(I) 
ldrseek(JX) 
reloc(4) 
DooriJM) 
modOFJ 
allendar(l) 
rcmd(3N) 
rexecON) 
rexecd(8N) 
rcp(IN) 
rlogin(IN) 
rlogind(8N) 
putOel 
take (I C) 
remsh(IN) 
remshd(8NI 
ct(le) 
rmdeiOI 
ipcrm(l) 
unlink(2) 
rm(IJ 
deroff(l) 
strip5.0(1) 
insque(3N) 
temshCIN) 
remshd(8N) 
fsckOMI 
uniq(l) 
clock(3C) 
ipcs(l) 
df(IM) 
errptiiMJ 
freq(l) 
sarUM) 
timex(IJ 
ps(l) 



file. uniq: report repeated lines in a 
sar: system activity reporter. • • , , ••. 

files. version: reports version number of 
stream. fseek, rewind, ftell: reposition a lile pointer in a 
/lpmove: start/stop the LP request scheduler and move/ 

reje(:t: allow/prevent LP ~uests. accept. .•. 
LP request scheduler and move requests. /s&art/stop the 

lp, cancel: send/ cancel requests to an LP line/ 
teletype bits to aJ Qet, rtlset: set or reset the • 

sensible/ ISet, reset: set or reset the teletype bits to a 
arp: Address Resolution Protocol. 

object file. ld1etname: retrieve symbol name for 
argument. ~etata: return Fortran command-line 

variable. getenv: return Fortran environment • 
accounting. mclock; return Fortran time 

abs: return intqet" absolute value. 
string. len: return length of Fortran 

substring. index: return ioeation of FQrtran 
loaname: return !olin name of user. 

command. rexec: return stream to a remote 
name. 1etenv: return value ror environment 

stat: data returned by stat system call. , 
/ruserok: routines for returning a strum to a remote/ 

oonfiguratlonf uvar: returns system-specific 
col: filter reverse line-reeds. 

file pointer in a/ fseek, rewind, ftell: reposition a 
lreaddir, telldir, seekdir, rewinddlr, closedir: flexible/ 
creat: ctellle a new file or rewrite an existing one. 

remote comrnand. rexec; return stream to a 
server. rexecd: remote execution 

rlogln: remote !olin. 
rlo1ind: remote lotin server. 

directories. rm, rmdlr: remove files or 
read mail. mail, rmail: send mail to users or 

sees file. rmdel: remove a delta rrom an 
directories. rm, rmdir: remove files or 

E~~:ape from the automatic robots. autorobots: •• 
Try to escape the killer robots. dwse: 

robots. robots: E~~:ape from the 
robots: Escape from the robots. • . . ••.. 

chroot: chaqe root directory. • . , • 
chroot: change root directory for 1 command. 

loprithm, power, square root functions. /exponential, 
/dsqrt, csqrt: Fortran square root intrinsic function. 

routiq tables. route: manually manipulate the 
daemon. routed: network routina • 

rcmd, rresvport, ruserok: routines for retumint a/ 
Internet addreslii manipulation routines. /inet_netoC: •• 

common object file acceu routines. ldfcn: 
expression compile and match routines. rqexp: rqular 

terminal independent operation routines. /ta;oto, tputs: 
routed: network routilll!l daemon. 

route: manually manipulate the routilll!l tables. 
for returnin& a stream/ rcmd, rresvport, ruserok: routines 

standard/restricted/ sh, rsh: shell, the , • . .. , 
and, or, xor, not,lshift, rshift: Fortran bitwise/ 

nice: run a command at low priority. 
hanaups (sh only). nohup: run a command immune to . 

runacct: run daily accounting. 
runae<;t: run daily accountiq. 

/prctmp, prdaily, prtacct, runacct, shutacct, startup,/ 
local machines. ruplime: show host status of . 

returning a/ rcmd, rresvport, ruserok: routines for 
machines. rwho: who's logged in on local 

. 39-

Permuted Index 

unlq(l) 
sar(l) 
version(!) 
rseek(lS) 
lpscbed(IM) 
accept(JM) 
lpschedOMl 
Jp(l) 
tsedn 
tsetHl 
arp(SP) 
ldgetname(3X) 
1CIIri(3F) 
aetenv(3Fl 
mclock(3Fl 
absi3Cl 
len()F) 
index()f) 
loaname(3Xl 
reled3Nl 
ptenv(3el 
stat(S) 
rcmd(3Nl 
uvar(2) 
col( I) 
fseek(lS) 
direetory<3Xl 
creat(2) 
rexec(3N) 
rexecd(SN) 
rlotln(IN) 
rloalndi8N) 
rm(i) 
mail Ill 
rmdel(l) 
rm(l) 
autorobots(6) 
chase(6) 
robots(6) 
robots(6) 
chrootl2) 
chroot(JM) 
np<3Ml 
sqrti3Fl 
route(gN) 
routed(SN) 
rcmdi3Nl 
inet(3Nl 
ldfcnl4l 
regup(S) 
termcap(3Xl 
routod(8Nl 
routei8N) 
rcmd(3Nl 
shU) 
booi(3F) 
nice OJ 
nohup(l) 
runacct(IM) 
rul\flcct(IM) 
acctshOM) 
ruptime(IN) 
rcmd!JN) 
rwho(IN) 



Permuted Index 

rwhod: system status server. 
activity repon package. sal, sa2, sadc: system ... 

report packa&e. sal, sa2, sadc: system activity 
editing activity. sact: print current sees file 

package. sal, sa2, sadc: system activity report 
sag: system activity graph. 
sar: system activity reporter. 

space allocation. brk, sbrk: change data segment 
formatted input. scanf, fscanf, sscanf: convert 

bfs: big file scanner. . . . . .... 
language. awk: pattern scanning and processing 

the delta commentary of an sees delta. cdc: change 
comb: combine sees delta$. . . . .. 

make a delta (change) to an sees file. delta: 
sact: print current sees file editing activity. 

get: get a version of an sees file. 
prs: print an sees file. 

rmde~ remove a delta from an sees file. 
compare two versions of an sees file. ~sdiff: 

st:esfile: format of sees file. 
undo a previous get of an sees file. unget: 

val: validate sees file. 
admin: create and administer sees Iiles. 

what: identify sees Iiles. 
help: ask for help in using sees. 

of an sees file. sccsdiff: campare two versions 
sccslile: formal of sees file. 

/start/stop the LP request scheduler and move requests. 
common object file. scnhdr: section header for a 
clear: clear terminal screen. • . . .. 

optimization/ curses: CRT screen handling and 
twinkle: twinkle stars on the screen. 
display editor based on/ vi: screen-oriented (visual) 

inittab: script for the init process. 
terminal session. script: make typescript of 

system initialization shell scripts. Ire, powerfail: 
sdb: symbolic debu~ger .. 

proaram. sdiff: side-by-side difference 
grep, egrep, fgrep: search a file for a panern. 

bsearch: binary search a sorted table. 
accounting file(sl. acctcom: search and print process . 

!search, !lind: linear search and update. 
hcreate, hdestroy: manage hash search tables. hsearch, 

tdelete, twalk: manage binary search trees. tsearch, tlind, 
object file. scnhdr: section header for a common 

object/ /read an indexed/named section header of a common 
Ito Line number entries of a section of a common object/ 

Ito relocation entries of a section of a common object/ 
/seek to an indexed/named section of a common object/ 

files. size: print section sizes of common object 
sed: stream editor. 

/mrand48, jrand48, srand48, seed48, Lcong48: generate/ 
section of/ ldsseek, ldnsseek: seek to an indexed/named 

a section/ Ldlseek, Ldnlseek: seek to line number entries of 
a section/ ldrseek, ldnrseek: seek to relocation entries of . 

header of a common/ Jdohseek: seek to the optional file . . . 
common object file. ldtbseek: seek to the symboL table of a 

opendir, readdir, telldir, seekdir, rewinddir, closedir·f 
shmget: get shared memory segment. . . . . . . . . . 

brk, sbrk: change data segment space allocation. 
to two sorted Iiles. comm: select or reject lines common 

multiplexing. select: synchronous i/o 
greek: select terminal filter. 

of a file. cut: cut out selected fields of each hne 

- 40-

rwhodCSN) 
sar(IM) 
sarClM) 
sact(JJ 
sarOMJ 
sag(! G) 
sad I) 
brkUJ 
S~:anf(JS) 

bfs(l) 
awk(]) 
cdcCI) 
combOl 
delta(!) 
sact(l) 
get( I) 
prsCJl 
rmdel(l) 
sccsdiff(l) 
sccsfile{4) 
ungetCI) 
val( I) 
admin(i) 
what(!) 
help{]) 
sccsdiff( 1 ) 
sccsfile(4) 
lpsched(lM) 
scnhdr(4) 
clear(!) 
cursesOXJ 
twinkle(6) 
vi(!) 
iniuab(4) 
S~:ript(l) 
brc(IM) 
sdb(l) 
sdiff(l) 
grep(ll 
bsearchOCJ 
a«:tcom(l) 
lsearch(JC) 
hsearch(JC) 
tsearch(3C) 
scnhdr(4) 
Ldshread(3X) 
ldlseek(3X) 
ldrseek(3X) 
ldsseek(JX) 
size( I) 
sed OJ 
drand480CJ 
ldsseekOX) 
ldlseekOX) 
ldrseek(3X) 
ldohseekOXJ 
JdtbseekOX) 
dire.:tory(3X) 
shmget(l) 
brk(l) 
commCJ) 
select(2N) 
greek CO 
cud I) 



file. dump: dump sele<:ted parl.'l of an object 
sem~tl: semaphore control operations. 
semop: semaphore operations. 

iperm: remove a message queue, semaphore set or shared memory/ 
semget: get set of semaphores. • 

operations. sem~tl: semaphore control , 
semget: get set of semaphores. 
semop: semaphore operations. 

send, sendto, sendlllS&: send a messqe from a socket. 
a group of processes. kill: send a sit;nal to a J)tottSS or 

mail. mail, rmail: send mail to users or read 
mesSBge from a socket. send, sendto, sendmsg: send a 

group. killPII: send sianal to a process 
line printer. lp, cancel: send/cancel requests to an LP 
socket. send, sendto, sendmsa: send a message from a 

messaae from a socket. send, sendto, sendmsg: send a 
reset the teletype bits to a sensible state. /reset: set or 

File Transfer Protocol server. ftpd: DARPA Internet 
remshd: remote shell server. 

rexeed: remote execution server. 
rlosind: remote login server. 
rwhod: system status server. 

telnetd: DARPA TELNET protocol server. 
Trivial File Transfer Protocol server. tftpd: DARPA 

make typescript of terminal session. :script: • 
buffering to a stream. setbuf, setvbuf: assian 

IDs. setuid, set;id: set user and group 
set~tent, aeta:rgid, getg.rnam, seta;rent, endgrent. fgetg.rent:/ 

/aetbostbyaddr, gethostbyname, sethostent, endhostent: 1et/ • 
identifier of/ &ethostid, sethostid: 1et/set unique 

current bost. aethostname, sethostname: get/set name of 
goto. setjmp, longjmp: non-local 

encryption. crypt, setkey, encrypt: 11enerate DES 
setmnt: establish mount table. 

/getnetbyaddr, getnetbyname, setnetent, endnetent: get/ 
setpgrp: set process 11roup ID. 

protocol/ t~~etprotobyname, setprotoent, endprotoent: get 
getpwent, setpwuid, getpwnam, setpwent, endpwent, fgetpwent:/ 

effective group ID. setregid: set real and 
effective user ID's. setreuid: set real and 

/getservbyport,getservbyname, set.servent, endservent: get/ 
options on/ getsock.opt, setsock.opt: get and set 

losin time. profile: setting up an environment at 
gettydefs: speed and terminal settings used by getty. 

disk.tune: tune floppy disk settling time parameters. 
aroup IDs. setuid, set&id: set user and 

/getutid, aetutline, pututline, setutent, endutent, utmpname:/ 
stream. setbuf, setvbuf: assign buffering to a 

data in a machine/ sputl, sgetl: access long integer 
a command immune to bangupS {sh only). nohup: run 

standard/restricted command/ sh, rsh: shell, the .• 
operations. sbmctl: shared memory control 

queue, semaphore set or shared memory id. /a message 
shmop: shared memory operations. 

shma:et: aet shared memory segment. 
from C pr01rams to implement shared strinp. /strings 

system: issue a shell command from Fortran. 
wit.h C-likc syntax. csh: a shell (command interpreter) 

system: issue a shell command. • 
shl: shell layer manager. 

shutacd, startup, turnacct: shell procedures for/ /runacet, 
remsh: remote shell. • • • 

system initialiution shell scripts. /rc, pnwerfail: 
remshd: remote shell server. • , 

• 41 • 

Permuled Index 

dump(!) 
semctl(2) 
semop(2) 
iperm(l) 
semget(2) 
semctl(2) 
scm&et(2) 
scmop(2) 
send(2Nl 
k.ill(2) 
maiHU 
send(2Nl 
k.illpg(lN) 
[p(l) 
send(2N) 
send(2N) 
tset(i) 
ftpd(8Nl 
rcmshd(8N) 
relleed(8N) 
rtogind(8Nl 
rwhod(8N) 
telnctd(8N) 
tftpd(8N) 
script(!) 
sctbuf(lS) 
setuid(2) 
getgrent(lCl 
aethostent(3N) 
gethostid(2Nl 
aethostname(2N) 
setjmp()C) 
crypt(lC) 
sctmntOM) 
aetnetentONl 
setpgrp(2) 
getprotocntON) 
aetpwentOCJ 
setregid(2) 
setreuid(2) 
getservcnt(lN) 
getsock.opt(2N) 
proflle(4) 
aettydefs(4) 
disk.tune(IM) 
setuid(2) 
getut(3C) 
sctbuf(lS) 
sputl(3Xl 
nohup(l) 
sb(l) 
shmct1(2) 
ipcrm(l) 
shmop(2) 
shmget(2) 
xstrOl 
systemUFJ 
csh(i) 
system OS) 
shl(i) 
aa:tsh(IM) 
remsh(IN) 
brdtM) 
remsbd(8N) 



Permuted Index 

command programming/ sh, rsh: shell, the standard/restricted 
shl: shell layer manager. 

operations. shmctl: shared memory control 
segment. shm1et: lj:et shared memory 

operations. shmop: shared memory •• 
full-duple10;/ shutdown: shut down part of a 

/prdaily, prtacct, runacd, shutacct, startup, turnacct:/ 
full-duplex connection. shutdown: shut down part of a 

processing. shutdown: terminate all . 
program. sll.iff: side·by·si(le difference 

transfer-of-sign intrinsic/ sign, isilj:n, dsig.n: Fortran 
losin: sign on. . . . •.. 

pause: suspend process until signal. . . . . •... 
what to do upon receipt of a silj:nal. silj:nal: specify , 
action on receipt of a system silj:nal. /specify Fortran , 

on receipt of a system/ signal: spe<:ify Fortran action 
upon receipt of a si!plal. signal: specify what to do 

kiliPII: send silj:nalto a process group. 
of processes. kill: send a signal to a process or a &roup 
ssi&nal, gsilj:nal: software signals. . . ..•.• 

lex: generate pro1rams for simple lexical tasks. 
generator. rand, srand: simple random-numbe:r 

tc: phototypesetter simulator. . , .. , . 
atan, atan2: trigonometric/ sin, cos, tan, asin, acos, 

intrilulc function. sin, dsin, csin: Fortran sine 
sin, dsin, csin: Fortran sine intrinsic function. 

/dsinh: Fortran hyperbolic sine intrinsic function. 
ssp: make output single spaced. 

functions. sinh, cosh, tanh: hyperbolic 
hyperbolic sine intrinsic/ sinh, dsinh: Fortran 

set descriptor table size. getdtablesile: 
sile5.0: size of an object file. 

common object files. sil.e: print section siles of 
file. sil.e5.0: size o-f an object 

size: print section siles of common object files. 
an interval. sleep: suspend execution for 

interval. sleep: suspend execution for 
documents, view sraphs, and slides. mmt, mvt: typeset 

typeselling view graphs and slides. /macro package for 
current/ ttyslot: lind the slot in the utmp file of the 

spline: interpolate smooth curve. . •... 
int, ifix, idiot, real, float, sngl, dble, cmplx, dcmplx,/ 

sno: SNOBOL interpreter. 
sno: SNOBOL interpreter. 

accept a connection on a socket. ao;cept: 
bind: bind a name to a socket. . . • •.. 

initiate a connection on a socket. connect: 
communication. sockel: create an endpoint for 

listen for connections on a socket. listen; . . . .. , 
getsockname: aet socket name. . . . , , . 

receive a messaiC from a socket. /ret:vfrom, reevmsg: 
sendm~: Knd a meSSIIJe from a socket. send, scndto, 

~tt and set options on scx:kets. /setsockopt: .•• 
PI' file perusal filter for soft-copy terminals ...• , 

interface. lo: software Loopback network 
ssJBnal, gsignal: software sianals. •. 

sort: sort and/or mer&e files. .. 
qsort: q11icker sort. . . . . ..•••. 

sort: son and/or merae files. 
tsort: topo-losical sort. . • • . •.•.. 

or reject lines common to two sorted files. comm: select • 
bsearch; binary search a sorted table. . •....• 

for prOJfam. whereis: locate source. binary, and! or manll.fll 
meSSIIIe file by ma$SI:&ina C source. !create an error 

. 42 • 

sh(l) 
shl(l) 
shme\1(2) 
shmpt(2) 
shmop(2) 
shutdown(2N) 
aectshOM) 
shutdown(2N) 
shutdown( 1M) 
sdilf(l) 
siin<JF) 
toain(l) 
pause(2) 
sianal(2) 
si.gnalUF) 
silj:nal(3F) 
si&nal(2) 
kiliP&ONl 
kil1(2) 
ssi.gnai(JC) 
lex(]) 
rand<JC) 
tc{l) 
trig OM) 
sin(JF) 
sinO F) 
sinh OF) 
ssp(]) 
sinh OM) 
sinhUF) 
&etdtablesizeON) 
siz.eS.O(l) 
size(]) 
size5.0(1) 
size(]) 
sleep{]) 
sleep(3C) 
mmtO) 
mv(S) 
nyslot(3C) 
splineOG) 
flype(lF) 
sno(l) 
sno(]) 
aecept(2N) 
bind(2N) 
connect(2N) 
socket(2N) 
listen(2N) 
getsockname(2N) 
reev(2N) 
send(2N) 
~ttsockopt(2N) 
PI (I) 
lo(S) 
ssi&nal(JC) 
sort(!) 
qsort(JC) 
sort(!) 
tsortUl 
comm(ll 
bsearch{JC) 
whereis(l) 
mkstr(l) 



Permuted Index 

brk, sbrk: change data segment space allocation. brk(2) 
ssp: make output single spaced. ssp(!) 

terminal. ct; spawn getty to .a remote ct(IC) 
fspec: format specification in text files. fspec(4) 

the extended errors in the specified device. /turn on/off exterr(l) 
receipt of a system/ signal: specify Fortran action on signai(3F) 

receipt of a signal. signal: specify what 10 do upon signal(2) . 

( 
/set terminal type, modes, speed, and line discipline. getty {1M) 

used by getty. gettydefs: speed and terminal settinas gettydefs(4) 
hashcheek: find spelling/ spell, hashmake, spellin, spell (I) 

spelling! spell, hashmake, spellin, hasbcheck: lind spell(!) 
spellin, hashcheck: find spellina errors. /hashmake, spell(]) 

curve. spline: interpolate smooth spline (I G) 
split: split a file into pieces. split(!) 

csplit: context split. . csplit(i) 
files. fsplit: split 177, ratfor, or eO fsplitO) 

pieces. split: split a file into split {I) 
uuclean: uucp spool directory clean-up. uuclemOM) 

Ipadmin: configure the LP spooling system. lpadmin(IM) 
output. printf, fprintf, sprintf: print formanod printf(3S) 

integer data in a machine/ sputl, sgetl: access long sputH3X) 
square root intriDllicl sqrt, dsqrt, csqrt: Fortran sqrt{3F) 

power,/ exp, log,loalO, pow, sqrt: exponential, logarithm, exp(3M) 
exponential, l011arithm, power, square root functions. /sqrt: exp(3M) 

sqrt, dsqrt, csqrt: Fortran square root intrinsic/ sqrt(JF) 
random·number/ irand, srand, rand: Fortran uniform rand(JF) 

generator. rand, srand: simple random·number r'lnd{JC) 
/nrand48, mrand48, jrand48, srand48, seed48, lcong48:/ drand48(3C) 

rcvhex: traDlllates Motorola S·records from downloading/ rev hex (I) 
input. scanf, fscanf, ssc:anf: convert formallod scanf(JS) 

sisnals. ssignal, gsignal: software ssi&naiOC) 

,.-. ·-· ssp: make output single SSJ)0) 
package. stdio: standard buffered input/output stdio0S) 

communication package. ftok: standard interpl"ocess . stdipc(JC) 
sh, rsh: shell, the standard/ restricted command! sh(l) 

twinkle: twinkle stars on the screen. .. twinkle(6) 
lpsched, lpshut, lpmove: start/stop the LP request/ lpschodOM) 

boot: startup procedures. .. boot(8) 
/prtacct, runacct, shutacct, startup, turnacct: shell/ . acclSh(IM) 

system call. stat: data returned by stat stat(S) 
stat, fstat: aet file status. stat(2) 

stat: data returned by stat system call. stat(S) 
ff: list file names and statistic!! for a file system. ff(IM) 

lav: print load averaae statistic!!. lav(l) 
ustat: get file system statistic!!. . . ustat(2) 

lpstat: print LP status information. lpstat(l) 
reof, clearerr, fileno: stream status inquiries. ferror, ferror(3S) 

control. uustat: uucp status inquiry and job . uustatOC) 
communication facilities status. /report inter-process ipcs(l) 

netstat: show network status. . . netstatON) 
ruptime: show host status of local machines. ruptimeON) 

ps: report process status. ps(l) 
rwhod: system status server. rwhod(8N) 

stat, fstat: rpt file status. stat<2) 
input/output PIICkaae. stdio: standard buffered stdloOS) 

stime: set time. stime(2) 
~ wait for child process 10 stop or terminate. wait: wait(2) 

wait for child process to slOp or terminate. waitJ: wait3(2N) 

·~ strncmp, strcpy, strncpy,/ strcat, strncat, strcmp, string(3C) 
fstrcpy, strncpy, strlen, strchr, strrchr, strpbrk,/ string(JC) 

strncpy ,I strcat, strncat, strcmp, strncmp, strcpy, strina<JC> 
/strncat, strcmp, strncmp, strcpy, strncpy, strlen,/ strlna(JC) 

fstrrchr, strpbrk, strspn, strcspn, strtok: strina/ strinaOC) 

"'' stream editor. Jed {I) 

. 43. 



Permuted Index 

mush: close or !lush a 
fopen, freopen, fdopen: open a 

reposition a file pointer in a 
get character or word from a 

faets: aet a string from a 
put character or word on a 

puts, fputs: put a string on a 
setvbuf: assign bulfering to a 

/feof, clearerr, lileno: 
/routines for returning a 

rexec: return 
push character back into input 

long integer and base-64 ASCII 
J&e, lgt, lie, Ill: 

convert date and time to 
floating-point number to 

gets, fgets: get a 
len: return length of Fortran 

puts, fputs: put a 
bcmp, bzero, ffs: bit and byte 

strspn, strcspn, strlok: 
number. strtod, atof: convert 
number. atof: convert ASCII 

strtol, atol, atoi: convert 
strings in an object, or/ 

implement/ xstr: extract 
strings: find the printable 

C programs to implement shared 
number information from an/ 

information from an/ strip: 
relocation bits. 

/strncmp, strcpy, strrn:py, 
strcpy, strncpy,/ strcat, 
strcat, strncat, strcmp, 

/strcmp, strncmp, strcpy, 
/strlen, strchr, strrchr, 
/strncpy, strlen. strchr, 

I strchr, strrchr, strpbrk, 
to double-precision number. 

/strpbrk, strspn, strcspn, 
string to integer. 

processes using a file or file 
terminal. 

another user. 
intra: introduction to 

plot: graphics interface 
/Slime lines of several files or 

return location of Fortran 
file. sum7: 

the Illes in the/ sumdir: 
count of a file. 

a llle. 
characters in the files in/ 

du: 
accounting/ acctcms: command 

sync: update the 
sync: update 
su: become 

interval. sleep: 
interval. sleep: 

pause: 

swab: 

stream. fclose, ..... . 
stream. 
stream. 
stream. 
stream. 
stream. 
stream. 

fseek, rewind, ftell· 
/getchar, fgetc. getw. 
_gets, . . . . . .. 
/putchar. fputc. putw: 

stream. setbuf, 
stream status inquiries. 
stream to a remote wmmand. 
stream tn a remote command. 
stream. ungetc: 
string. /164a: convert between 
string comparision intrinsic/ 
string. /asctime, tzset: 
string. /fcvt, gcvt: convert 
string from a stream. 
string. . . . .... 
string on a stream. 
string operations. bcopy, 
string operations. /strpbrk, 
string to double-precision 
string to- !loating-point 
string to- inte1er. 
strings: find the printable 
strings ffom C programs to 
strings in an object, or other/ 
strings. /extract strings from 
strip: strip symbo-l and line 
strip symbol and line number 
strip5.0: remove symbo-ls and 
strlen, strchr, stnchr,/ 
strncat, strcmp, strncmp, 
strrn:mp, strcpy, strncpy,/ 
strncpy, strlen, strchr,/ 
strpbrk, strspn, strcspn,/ 
strrchr, strpbrk, strspn,/ 
strspn, 5trcspn, stnok:l 
strtod, atof: convert string 
smok: string operations. 
strtol, atol, atoi: convert 
structure. fuser: identify 
suy: set the options for a 
su: beco-me super·user or 
subroutines and libraries. 
subroutines. . . . ... 
subsequent Jines of one file. 
substrina. index: . . . . . 
sum and count blocks in a 
sum and count characters in 
sum: print ~hecksum and block 
sum7: urn and count blo~ks in 
sumdir: sum and count . . 
summarize disk usage. 
summary from per-process 
super block. . .... . 
super-block. ..... . 
super-user or another user. 
suspend exe~ution for an 
suspend execution for 
suspend process until signal. 
swab: swap bytes. 
swap bytes. • ..... 
sxt: pseudo-device driver. 

-44. 

fctoseiJSJ 
fopeniJSJ 
fseekOSJ 
getcOSJ 
gets OS) 
putcOSl 
putsOSJ 
setbufOSJ 
ferrodJS) 
rcmdUNJ 
rexedJNl 
ungetcOSJ 
a641(3Cl 
strcmpOF) 
ctime(]Cl 
ecvd3CJ 
gets(JSJ 
JenOFJ 
putsOSJ 
bstringONJ 
stringOCJ 
strtodOCJ 
atofOCJ 
strtoiOCJ 
strings() J 
Jlstr{l) 
strings()) 
xstr(O 
strip(!) 
strip( I) 
stripS.OCIJ 
stringOCJ 
string(JC) 
stringOCl 
stringOCJ 
string(3C) 
string(3C) 
string(3C) 
strtodOCJ 
stringOCJ 
strtoi(JC) 
fuser(JMJ 
stty(IJ 
su(J) 
introOl 
ptotOXl 
paste (I) 
index OF) 
sum7(1) 
sumdir(l) 
sum(!) 
sum7(1J 
sumdirO) 
du(l) 
acctcms(l Ml 
sync(]) 
sync{2) 
su(l) 
sleep (I) 
sleep(JCJ 
pause(2) 
swab(JC) 
swab(JC) 
sxt(7) 



information from/ strip: strip symbol and line number 
ldgetname: retrieve symbol name for object file. 

object/ /compute the index of a symbol table entry of a common 
ldtbread: read an indexed symbol table entry of a common! 
syms: common object file symbol table format. 

o"ect/ Jdtbseek: seek to the symbol table of a common 
sdb: symbolic debuuer. 

strip5.0: remove symbols and relocation bits. 
symbol table format. syms: common objed file , 

sync: update super-block. 
sync: update the super block. 

select: synchronous i/o multiplexing. 
interpreter) with C-like syntax. csh: a shell (command 

sysdef: system definition. 
error/ perror, errno, sys errlist, sys nerr: system 

perror, errno, sys errlist, sys-nerr: systeffi error/ 
information. uvar: feturns syslem-specilic configuration 

binary search a sorted table. bsearch: .•.... 
/compute the index of a symbol table entry of a common object/ 

file. /read an indexed symbol table entry of a common object 
common o"ect file symbol table format. syms: . , . . . 
master device information table. master: •...•.. 

mnttab: mounted file system table. . . • . .. , . . .. 
ldtbseek: seek to the symbol table of a common object file. 

setmnt: establish mount table. . .•. , . . . 
aetdtablesize: get descriptor table size. • . . ... 

tbl; format tables for nroff or troff. 
hdestroy: manage hash search tables. hsearch, hcreate, 

manipulate the routillll tables. route: manually 
tabs: set tabs on a terminal. 

tabs: set tabs on a terminal. 
ctags: maintain a tap file for a C program. 

a file. tail: deliver the last part of 
remote machine. take: takes a file from a . 

machine. take: takes a file from a remote 
talk: talk to .another user. 

talk: talk to another user. 
trigonometric/ sin, cos, tao, asin, acos, atan, atanl: 

intrinsic function. tan, dtan: Fortran tangent 
tan, dtan: Fortran tallllent intrinsic function. 

ldtanh: Fortran hyperbolic tangent intrinsic function. 
hyperbolic tansent intrinsic/ tanh, dtanh: Fortran 

sinh, cosh, tanh: hyperbolic functions. 
tp: manipulate tape archive. 

tar: tape file archiver. . . . . 
recover files from a backup tape. free: . . . . . . . 

file system backup. filesave, tapesave: daily/weekly UNIX 
tar: tape file archiver. 

pr011rams for simple lexical tasks. lex: generate . . . . 
deroff: remove nroff/troff, tbl, and eqn constructs. 

or \rolf. tbl: format tables for nroff 
tc: phototypesetter simulator. 

Control Protocol. tcp: Internet Transmission . 
search trees. tsearch, tlind, tdelete, twalk: manage binary 

tee: pipe fitting. 
4014: paginator for the Tektroni~ 4014 terminal. 

tset, reset: set or reset the teletype bits to a sensible/ 
last lo&ins of users and teletypes. Last: indicate 

initialization. init, telinit; process control 
closedir:/ opendir, readdir, telldir, seekdir, rewinddir, 

telnetd: DARPA TELNET protocol server. 
telnet: user interface to the TELNET protocol. 

TELNET protocol. telnet: user interface to the 
server. telnetd: DARPA TELNET protocoL 

. 45 • 

Permuted Index 

strip(!) 
Ld&etname()X) 
ldtbindex(JXl 
ldtbread(JX) 
syms(4) 
ldtbseekOXl 
sdbO) 
strip5.0(J) 
syms(4) 
sync(2) 
sync( I) 
select(lNJ 
csh(l) 
sysdef(\M) 
perror()C) 
perror()C) 
uvar(2) 
bsearch(3C) 
ldtbindexOXJ 
LdtbreadOXl 
syms(4) 
master(4) 
mnttab(4) 
ldtbseek(3X) 
setmnt(IM) 
getdtablesize(3N) 
tbl(i) 
hsearch(3C) 
route(8N) 
tabs{\) 
tabs(]) 
cta&s(l) 
tail(!) 
take (I C) 
takeOC) 
talk ON) 
talk (IN) 
tritiOMJ 
tan OF) 
tan OF) 
tanhOFl 
tanh(3F) 
sinhOMJ 
tpUJ 
tar (I) 
fr~OMJ 
filesave(\MJ 
tar(!) 
Lex(\) 
deroff(l) 
tbl(l) 
tc(l) 
tcp(SPJ 
tsearch(3C) 
teem 
4014(1) 
tset(\) 
lastO J 
inid!Ml 
directory(JXJ 
telnetd(BN) 
telnet(INJ 
telnet(LN) 
telnetd(8NJ 



Permuted Index 

tempOrary file. tmpnam, 
tmptile: ~:reate a 

tempnam: create a name for a 
terminal$. 

term: format of compiled 
file .. 

data base. 
for the Tektronix 4014 

functions of the DA51450 
termcap: 

terminfo: 
ct: spawn gel\y to a remote 

ctermid: aenerate filename for 
pty: pseudo 

greek: select 
/tgetstr, tgoto, tputs: 

termio: general 
tty: controlling 

dia~ establish an out.goi~ 
clear: clear 

script: make typescript of 
getty. gettydefs: speed and 

stty: set the options for a 
tabs: set tabs on a 

isal\y: find name of a 
and line/ getty: set 

uytype: data base of 
animate worms on a display 

functions of DASI 300 and 300s 
tty: get the 

perusal filter for soft-copy 
term: conventional names for 

kill: 
shutdown: 

abort: 
exit, exit: 

daemon. errstop: 
for child process to stop or 
for child process to stop or 

tic: 
tput; query 
data base. 
interface. 

command. 
(!uiz: 

ed, red: 
ex, edit: 

change the format of a 
fspec: format specification in 

/checkeq: format mathematical 
prepare constant-width 

nrolf: format 
plock: lock process, 

trolf: typeset 
binary search trees. !search, 

Transfer Protocol server. 
tgetstr, tgoto, tputs·/ 

tputs:/ llletent, tgetnum, 
tgoto, !pUts:/ tgetent, 

111etent, tgetnum, tget11ag, 
/tgetnum, taet11ag, tgetSIT, 

m, cubk: 
data and system/ timex: 

tempnam: create a name for a 
tempOrary file. . . . ..•• 
tempOrary file. tmpnam, 
term: conventional names for 
term file.. . . . . . . . .. 
term: format of compiled term 
termcap: terminal capability 
terminal. 4014: paginator 
terminal. 450: handle special 
terminal capability data base. 
terminal capability data base. 
terminal. 
terminal. 
terminal driver. 
terminal filter. 
terminal independent operation/ 
terminal interface. 
terminal interface. 
terminal line connection. 
terminal screen. 
terminal session. 
terminal settings used by 
terminal. 
terminal. ...... . 
terminal. ttyname, ..• 
terminal type, modes, speed, 
terminal types by port. 
terminal. worms: .•.. 
terminals. /handle special 
terminal's name. 
terminals. Pll: file 
terminals. 
terminate a process. 
terminate all processifli. 
terminate Fortran program. 
terminate process. 
terminate the error-loggina 
terminate. wait: wait 
terminate. wait3: wait 
terminfo compiler. 
terminfo dlltabase. 
terminfo: terminal capability 
termio: general terminal 
test: condition evaluation 
test your k.nowledge. 
text editor. 
text editor. 
text file. newform: 
text files. 
text for nroff or trolf. 
text for tr-olf. cw, checkcw: 
text. 
text, or data in memory. 
text. .....•.• 
tfind, tdelete, twalk: manage 
tflpd: DARPA Trivial File 
llletent, tgetnum, tgetflaa, 
tgetflag, tgetstr, llloto, 
tgetnum, taet11ag, tgetstr, 
tgetstr, tgoto, tputs:/ 
tgoto, tputs: terminal/ 
tic: terminfo compiler. 
tic-tac-toe .... , . 
time a command; report process 

- 46-

tmpnamOS) 
tmpfile(3S) 
tmpnam(3S) 
term(S) 
term(4) 
term(4) 
termcap(S) 
4014(1) 
450(1) 
termcap(S) 
terminfo(4) 
ct(IC) 
ctermidOS) 
pty(S) 
greek (I) 
termcap{JX) 
termio(7) 
tty(7) 
diaiOCJ 
clear(]) 
script(]) 
gettydefs(4) 
suy(IJ 
tabs (I) 
ttyname(3C) 
getty(IMJ 
uytype(4) 
worms(6) 
300(1) 
uy(l) 
pg(l) 
term(S) 
kill(]) 
shutdown(]M) 
abort(3fl 
exit(2J 
errstop(lM) 
wait(2) 
wait3(2N) 
ticHMJ 
tput(l) 
terminfo(4) 
termio{7) 
test(]) 
quiz(6) 
ed(J) 
ex (I) 
newform(l) 
fspec(4) 
eqn{l) 
cw(ll 
nrolf(l) 
plock(2) 
trolf(l) 
tsearchOC) 
tftpdCSNJ 
termcapOX) 
termcap(3X) 
termcapOX) 
termcap(3X) 
termcap(3X) 
tic(IM) 
111(6) 
timex (I) 



time: 
mdock: return Fortran 

execute commands at a Later 
systems for optimal acceSll 

tune floppy disk settling 
profit: execution 

up an environment at login 
stime: set 

time: set 
tzset: convert date and 

clock: report CPU 
pr~ss times. 

update access and modification 
get proceSll and child process 

lite access and modification 
pr~Sll data and system/ 

lite. 
for a temporary lite. 

/to lower, _toupper, _ tolower, 
popen, pc:lose: initiate pipe 

toupper, tolower, toupper, 
toascii: translate/-toupper, 

tsort: 
acctmerg: merge or add 

modification times of a file. 
translate/ toupper, tolower, 
_tolower, toascii: translate/ 

I tsetllag, tsetstr, tsoto, 

ptrace: pr~ss 
trpt: transliterate protocol 

bit, blt512: block 
ftp: file 

ftpd: DARPA Internet File 
tftpd: DARPA Trivial File 
sign, isign, dsign: Fortran 

/_toupper, _to lower, toascii: 
tr: 

frnm downloading into/ rcvhex: 
hex: 
trpt: 

tcp: Internet 
ftw: walk a file 

twalk: manage binary search 

trek: 
tan. a~in, acos, atan, atan2: 

server. tftpd: DARPA 
constant-width text for 

mathematical text for nrotr or 
typesetting view graphs/ mv: a 

format tables for ruolf or 

trace. 
values. 

pdpll, uJb. u3b5, vax: provide 
true, fate: provide 

robots. chase: 
twalk: manase binary search/ 

time a command. 
time accounting. 
time. at, batch: 
time. dcopy: copy file 
time: set time. • •• 
time parameters. disktune: 
time profile. 
time. profile: setting 
time ...•.... 
time: time a .;:ommand. 
time ..•.•...• 
time to string. /asctime, 
time used .•..••• 
times: get process and child 
times of a file. touch: 
times. times: . . . . • . 
times. utime: set ...• , 
timex: time a command; report 
tmpfile: create a temporary 
tmpnam, tempnam: create a name 
toascii: translate characters. 
to/from a precess. 
tolower, toascii: translate/ 

lolower, _toupper, _tolower, 
topolosical sort. 
total accountin1 files. 
touch: update access and 
toupper, tolower, toascii: 

loupper, tOiower, _toupper, 
tp: manipulate tape archive. 
\plot: graphics filters. 
tput: query terminfo databllse. 
tputs: terminal independent/ 
tr: translate characters. 
trace. 
trace. • .•.. 
transfer <lata. 
transfer program. 
Transfer Protocol server. 
Transfer Protocol server. 
transfer-of-sian intrinslcl 
translate characters. 
translate ch.a.racters. 
translates Motorola S·records 
translates object files. 
transliterate protocol trace. 
Transmission Control Protocol 
tree. . ••...• 
trees. /tfind, tdelete, 
trek: trekkie game. 
trekkie game. 
trigonomeui~ f\&nctions. /cos, 
Trivial File Transfer Protocol 
\rolf. ~. 'heckcw: prepare 
\rolf. /neqn, checkeq: format 
trolf macro package for . 
trotr. tbl: , , ..... 
trolf: typeset texl. 
trpt: transliterate proto~ol 
true, false: provide truth 
truth value about your/ m68k, 
truth values. 
Try to escape the killer 
tsearch, tlind, tdelete. 

• 47 -

Permuled Index 

time (I) 
mdock(JF) 
at(l) 
dcopy(]Ml 
time(2) 
dlsktune(IM) 
profil(2) 
proftle(4) 
stime{2) 
time(!) 
time{2) 
ctime(JC) 
clock(JC) 
times(2) 
touch(l) 
times(2) 
utime(2) 
timex(!) 
tmpflle{JS) 
tmpnam(3S) 
conv(JC) 
popen(JS) 
conv(JC) 
conv<JC) 
UiortOJ 
acctmerg(IM) 
touch( I) 
conv(JC) 
conv(JC) 
tp{J) 
tplotOGl 
tput{l) 
termcap{JX) 
tr{J) 
ptrace(2) 
trpt(8N) 
bltOCJ 
fip(IN) 
ftpd(8N) 
tftpd(8N) 
siini3Fl 
conv(JC) 
tr(l) 
rcvhex(J) 
bex{J) 
trpt(8Nl 
tcp(SP) 
ftw(JC) 
tsearch(JC) 
trek(6) 
trek(6) 
trifi3M) 
tftpd(8N) 
cw(l) 
eqn(l) 
mvm 
tbt(l) 
troffOJ 
trpt(8N) 
true(]) 
machid(l) 
trueO) 
chase(6) 
tsearch(3CJ 



Permuted lndex 

teletype bits to a sensible/ tset, reset: set or reset the tset(l) 
tsort: topological sort. tsortOJ 
ttl, cubic: tic-tac-toe. ut(6) 

interface. tty: controlling terminal • Uy(7) 
tty: aet tbe terminal's name. tty(!) 

sraphics for the extended TTY-37 type-box. greek: sreek(S) 
a terminal. ttyname, isatty: find name of ttynameOel 

utmp file of the current/ ttyslot: find the slot in the . ttyslot(Jel 
types by port. ttytype: data base of terminal Uytype(4) 

parameters. diskllme; lune floppy disk settlins time disktune(IMJ 
/runa«t, shutaa:t, startup, turnacct: shell procedures for/ aoctsh(\M) -

tsearch, !lind, !delete, twalk: manage binary search/ tsearch(Je) 
twinkle: twinkle stars on the screen. twinkle(6) 
screen. twinkle: twinkle stars on the twinkle(6) 

icbar, char: explicit Fortran type conversion. /dcmplx, ftype(Jf) 
file: determine file ""· . file(!) 

value about your proce$SOr type. /vax: provide truth machid{]) 
aetty: set terminal type, modes, speed, and line/ genyOMl 

for the extended TTY-37 type-box. areek: graphics greek(5) 
ttytype: data base of terminal types by port. l\ytype(4) 

types. types: primitive system data types(S) 
types: primitive system data types. . types(5) 

session. script: make typescript of terminal script (I) 
araphs, and slidell. mmt, mvt: typeset documents, view mmtOJ 

troll": typesettellt. . troff(l) 
mv: a troJf macro packaae for typesetting view araphs and/ mv(Sl 
liocaltime, smtime, asctime, llSCt: convert date and time/ ctime(JC) 

value about your/ m68k, pdpll, u3b, u3b5, vu: provide truth machid(l) 
about your/ m68k, pdp! I, u3b, u3b5, vall: provide truth value machid(l) 

Protocol. udp: Internet User Datagram udp(SPJ 
getpw: aet name from UID. . aetpw(Jel 

ui: do underlining. ul(l) 
limits. ulimit: get and set user ulimit(2) 

creation mask. umask: set and get file umask(2) 
mask. umask: set file-creation mode umask(l) -· 

file system. mount, umount: mount and dismount mount( 1M) 
umount: unmount a file system. umount(2) 

UNIX system. uname: get name of current uname(2) 
UNIX system. uname: print name of current uname(ll 

ul: do underlining. ul(i) 
file. unget: undo a previous get of an sees ungetOJ 

an sees file. unget: undo a previous get of ungetO) 
into input stream. ungetc: push character back unaetdJS) 

irand, srand, rand: Fortran uniform random-number/ rand(3F) 
/seed48, lcong;48: generate uniformly distributed/ drand48(3C) 

a file. uniq: report repeated lines in uniq(IJ 
mktemp: make a unique filename. mktemp(Je) 

JCthostid, sethostid: get/set unique identifier of current/ gethostid(2Nl 
units: conversion prosram. units(]) 

eliOCCUtion. UUll: UNIX-to-UNIX system command uux(le) 
uuto, uupick: public UNIX-to-UNIX system file copy. uutoOe) 

unlink system cells. link, unlink: exercise link and link OM) 
entry. unlink: remove directory unlink(2) 

unlink: exercise link and unlink system calls. link, linkOMJ 
umount: unmount a file system. umount(l) 

files. pack, peat, unpack: compress and e!lpand pack(!) 
times ofa file. touch: update access and modification touch(!) 

of programs. make: maintain, update, and reaenerate groups make(!) 
badblk: program to set or update bad block information. hadblk(IM) ~ 

machines. updater: update Iiles between two updater(IJ 
machines. updater: update files between two updater(IM) 

!find: linear search and update. !search, lsearch(Je) 
sync: update super-blo<:k. sync(2) 
sync: update lhe super block. sync(\) 

- 48 -



two mad1ines. updater: update Iiles between 
two machines. updater: update files between 

du: summarize disk usage. 
id: print user and I!JOUp IDs and names. 

setuid, setgid: set user and group IDs. 
crontah: user crontab file. 

character login name of the user. cuserid: get 
udp: Internet User Data&ram Protocol. 

/getgid, getegid: get real user, effective user, reaV 
environ: user environment. 

disk accounting data by user 10. dlskusg: generate 
print effective current user id. whoami: • 
set real and eJfective user ID's. selreuid: • 

protoc:ol. telnet: user interface to the TELNET 
ulimit: get and set user limits. 

lotname: return login name of user. 
fact real user, effective user, real group, and/ 

berome super-user or another user. su: 
t.alk: t.alk to another user. 

the utmp file of the current user. /find the slot in 
write: write to another user. 

last: indil:ate last logiru; of users and teletypes. 
ll'lllil, rll'lllil: send mail to users or read mail. 

wall: write to all users. • . • 
fuser: identify processes usi111 a file or file/ 

help: ask for help in usina sees. 
stalistics. ustat: gel file system 

modificaaion times. utime: set file access and 
utmp, wtmp: utmp and wtmp entry formalS. 

endutent, utmpname: access utmp file entry. /selutent, 
ttyslot: find the slot in the utmp file of the current user. 

entry formats. utmp, wimp: utmp and wtmp 
/pututline, setutent, endutenl, utmpname: access utmp file/ 

clean-up. uuclean: uucp spool directory 
uusub: monitor uucp network. • 

uuclean: uucp spool directory clean-up. 
control. uust.at: uucp status inquiry and job 

srstem to UNIX system copy. uucp, uulog, uuname: UNIX 
UNIX system copy. uucp, uulog, uuname: UNIX system to 
system copy. uucp, uulog, uuname: UNIX system to UNIX 

system file copy. uuto, uupick: public UNIX-to-UNIX 
and job control. uustat: uucp slatus inquiry 

uusub: monitor uucp network. 
UNIX-to-UNIX system file/ uuto, uupick: public 

command execution. uux: UNIX-to-UNIX system 
configuration information. uvar: returns system-specific 

val: validate sees file. 
val: validate sees file. 

/ulb, u3b5, va:o:: provide truth value about your PfOCCS!IOr/ 
abs: return integer abllolute value. • 
cabs, zabs: Fonran absolute value. abs, la.bs, dabs, 

aetenv: return value for environment name. 
ceilina. remainder, absolute value functions. ffabs: Door, 

putenv: chanae or add value to environment. 
/htons, ntohl, ntohs: convert values between host and/ 

values. values: machine-dependent 
true, false: provide truth values. • 

values: machine-dependent values. • • • 
/print formatted output or a varargs argument list. 
/print formatted oulput or a vararp argument list. 

argument list. varar&s: handle variable 
vara11s: handle variable argument list. 

rewrn Fortran environment variable. getenv: 
your/ m68k, pdpll, uJb, uJbS, vax: provide truth value about 

. 49. 

Permuted Index 

updater(l) 
updater(IM) 
du(l) 
id(l) 
setuid(2) 
crontab(ll 
cuseridOSl 
udp(5Pl 
getuid(2) 
environ(5) 
dlskusg(]M) 
whoamiUJ 
setreuid(2) 
telnet(IN) 
ulimit(2) 
logname(JX) 
getuid(2) 
su(l) 
t.alk(IN) 
uyslotOeJ 
write( I) 
last{]) 
mail(]) 
wali(IM) 
fuserOMl 
help(]) 
ustat{2) 
utime(2) 
utmp(4) 
getut<JC) 
ttyslot(Je) 
utmp(4) 
jelu\(JC) 
uucleanOMl 
uusubOMl 
uuclean(IM) 
uustatOel 
uucpOel 
uucp(IC) 
uucp(IC) 
uuto{le) 
uustatUel 
uusub(IM) 
uutoOCl 
uux(IC) 
uvar(2) 
val(]) 
vaJ{I) 
machid(l) 
abs(Je) 
absOFl 
getenvOCl 
Door OM) 
putenv(3C) 
byteorder(JN) 
values(S) 
true(!) 
values(5) 
vprlntN3S) 
vprintf{JX) 
vara!JS(S) 
vararp(S) 
getenv(JF) 
machid(l) 



Permuted Index 

/files between M68000 and VAX-11/780 processors. 
vc: version control. 
vchk: version checkup. 

option lener from argument vector. getopt: get 
assert: verify program assertion. 
vchk: version checkup. 

vc: version control. 
version: reports version number of files. 

get: get a version of an sees file. 
number of files. version: reports version 

sccsdilf: compare two versions (If an sees file. 
fnrmatled output of/ vprintf, vfprintf, vsprintf: print 
formatted output nf/ vprintf, vfprintf, vsprintf: print 

display editor based on ex. vi: screen-oriented (visual) 
mmt, mvt: iypeset documents, view graphs, and slides. 
macro packqe for typesetting view graphs and slides. /\rolf 

file perusal filter for crt viewing. more: • 
on ex. vi: screen-oriented (visual) display editor based 

systems with label checking. volcopy, labelit: copy file 
file system: format of system volume. 
print formatted output of a/ vprintf, vfprintf, vsprintf: 
print formatted output of a/ vprintf, vfprintf, vsprintf: 
output of/ vprintf, vfprintf, vsprintf: print formatted 
output of/ vprintf, vfprintf, vsprintf: print formalted 

nr terminate. wait: wait for child process to stop 
or terminate. waitJ: wait for child process to stop 

to stop or terminate. wait: wait for child process 
to stop or terminate. waitl: wait for child process 

ftw: walk a file tree. 
wall: write to all users. 
we: word count. 
what: identify sees files. 

signal. silflal: specify what to do upon receipt of a 
crashes. crash: what to do when the system 

binary, and/or manual for/ whereis: locate source, 
whodo: who is doing what. 

who: who is on the system .•. 
who: who is on the system. 

current user id. whoami: print elfective 
whodo: who is doing what. 

machines. rwho: who's logged in on local 
cd: change working directory. 

chdir: change working directory. 
gel pu.thname of current working directory. getcwd: 

pwd: working directory name. 
worm: Play the growing worm game. 

game. worm: Play the growing worm 
display terminal. worms: animate worms on a 
worms: animate worms on a display terminal. 

write: write on a file. 
writev: write on a file. • 

putpwent: wrilc pa15'111ord file entry, 
wall: write to all users. 

write: write to another user. 
write: write on a file. 
write: write to another user. 
writev: write on a file. 

file regions for reading or writing. /provide exclusive 
open: open for reading or writing. • 

utmp, wimp: utmp and wtmp enuy formats. 
formats. utmp, wimp: utmp and wtmp entry 

accounting records. fwtmp, wtmplix: manipulate connect 
hunt-tbe-wumpus. wump: the game of . • 

list(sJ and execute command. xargs: construtt araument 

- so • 

fscvOM) 
vcm 
vchkOM) 
getoptOel 
assert OX) 
vchkOM) 
vc(l) 
version(!) 
get {I) 
version(!) 
sccsdilf( I ) 
vprintf(JS) 
vprintf(JX) 
vi(!) 
mmt(l) 
mv(S) 
more( I) 
vi(!) 
volcopy(IM) 
fs(4) 
vprintf<3S) 
vprintf(JX) 
vprintf(JS) 
vprintf<3X) 
wait(2) 
wait3(2N) 
wait(2) 
wait3(2N) 
ftw{JC) 
wall( 1M) 
we(!) 
what{!) 
signal(2) 
crash(8) 
whereis(l) 
whodo(IM) 
who(!) 
who (I) 
whoami(l) 
whodo(IM) 
rwho(IN) 
cd(l) 
chdir(2) 
Jelcwd(JC) 
pwd(l) 
worm(6) 
worm(6) 
worms(6) 
worms(6) 
write(]) 
writevUN) 
putpwentOC) 
wall(IM) 
write(!) 
write(]) 
write(]) 
writev(JN) 
lockiDJ(2) 
open(2) 
utmp(4) 
utmp(4) 
fwtmp(IM) 
wump(6) 
xaras(l) 



Fortran bitwise/ and, or, xor, not, lshift, rshift: 
proBrams to implement shared/ xstr: extract strings from C 

jO, jl, jn, y(l, yl, yn: Bessel functions. 
jO, jl, jn, yO, yl, yn: Bessel functions. 

compiler-compiler. y~cc: yet another ..... 
jO, jl, jn, y{l, yl, yn: Bessel f11nctions. 

abs, iabs, dabs, cabs, zabs: Fortran absolute value. 

-51 -

Permwed Index 

booiOF) 
xstr(l) 
bessel(JM) 
besseHJM) 
yacd I) 
bessel (3M) 
absOF) 



- j 

- j 

- j 
j 
j 

j 
j 
j 

j 
j 
j 

I 

j 
j 



c 

INTR0(2) INTR0(2) 

NAME 
intro- introduction to system calls and enoc numbers 

SYNOPSIS 
#loclude <errno.h::. 

DESCRIPITON 
This section describes all of the system calls. Most of these calls have one or 
more error returns. An enM condition is indicated by an otherwise imposSible 
returned value. This is almost always -1; the individual descriptions specify 
the details. An error number is also made available in the external variable 
errno. Errno is not cleared on successful calls, so it should be tested only after 
an error has been indicated. 

There is a table of messages associated with each mor, and a routine for print­
ing the message; see perror(3C). Each system call description attemptS to list 
all possible em:r numbers. The following is a complete Jist of the error 
numbers and their names as defined in <errno.h>. 

1 EPERM Not owner 
Typically this error indicates an attempt to modify a file in some way for­
bidden except to its owner or super-user. It is also returned for attempts by 
ordinary users to do things allowed only to the super-user. 

2 ENOENT No such file or directory 
This mor occms when a file name is specified and the file should exist but 
doesn't, or when one of the directories in a path name does not exist. 

3 ESRCH No such process 
No process can be found corresponding to that specified by pid in hll or 
ptrace. 

4 EINTR lnlelTupted system call 
An asynchronous signal (such as interrupt or quit), which the user has 
elected to catch, occurred during a system call. If execution is resumed 
after processing the signal, it will appear as if the interrupted system call 
returned this error condition. 

5 EIO 1/0 error 
Some physical 1/0 error has occurred. This error may in some cases occur 
on a call following the one to which it actually applies. 

6 ENXIO No such device or address 
(' 1/0 on a special file refers to a subdevice which does not exist, or beyond 

!'ago I September 24, 1987 



INTR0(2) INTR0(2) 

the limits of the device. It may also occur when. for example. a tape drive 
is not on-line or no disk pack is loaded on a drive. 

7 E2BIG Arg list too loog 
An argument list longer than 5,120 bytes is pesented to a member of the 
exec family. 

8 ENOEXEC Exec format error-
A request is made to execute a file which, although it has the appropriate 
pennissions, does not start with a valid magic numb<2" (see a.olll(4)). 

9 EBADP Bad file number 
Either a file descriptor refers to no open file, or a read (respectively, write) 
request is made to a file which is open only for writing (respectively, read­
mg). 

10 ECH1LD No child processes 
A wait was executed by a process that had no existing or unwailed-for 

child """"""'" 
II EAOAIN No more processes 

The system is out of a resooree that may be available later. A fori failed 
because the system's process table is fuD 01' the user is oot allowed to 
aeate any more processes. A system caD which requires memory may 
also fail with this error if the system is out of memory or swap space but 
the request is less than the system-imposed per process limiL 

12 ENOMEM Not enough space 
Dming an exec, brt, 01' sbrk, a program asks for more space than the sys-­
tem is able to supply. 1bis is not a temporary coodilion; the maximum 
space size is a system parameter. The error may also occur if lhe arrange-. 
ment of text, dala, and stack segments requires too many segmentation 
registers, or if there is not enough swap space during ajorlc. 

13 EACCES Permission denied 
An attempt was made to access a file in a way forbidden by the proteCtion .,....... 

14 EFAULT Bad address 
The system encountered a hardware fault in atrempling 10 nse an argument 
of a system calL 

15 ENOTBLK Block device required 
A non-block file was mentioned where a block ck:vice was required, e.g., 

September 24, 1987 Page2 



INTR0(2) INTR0(2) 

in moiUit. 

( 16 EBUSY Device or resource busy 
"-- An attempt was made to mount a device that was already mounted or an 

attempt was made to dismount a device on which there is an active file 
(open file, cwrent directory, mounted-on file, active text segment). It will 
also occur if an attempt is made to enable accounting when it is already 
enabled, 'The device or resource is cunently unavailable. 

17 EEXIST F'tle exists 
An existing file wu mentioned in an inappropriate context, e.g., link. 

18 BXDEV Cross«vice link 
A link to a file on another device was attempted. 

19 ENODEV No such device 
An attempt was made to apply an inappropriate system call to a device; 
e.g., read a write-only device. 

20 ENOIDIR Not a din:ctory 
A non-directory was specified where a directory is required, fcl' example 
in a path prefix or as an argument to chdir(2). 

1--. 21 EISDIR Is a directory 
An attempt was made to write on a directory. 

22 EINV AL Invalid argument 
Some invalid argument (e.g., dismounting a non-mounted device; mention­
ing an undefined signal in signal, or kill; reading or writing a file for which 
lseek has generated a negative pointer). Also set by the math fwtctions 
described in the (3M) entries of this manual 

23 ENFILE File table overftow 
The system file table is full, and tempcnrily no more opens can be -24 EMFILE Too many open files 
No process may have more than 20 file descriptOrS open at a time. When a 
reconllock is being created withfcntl, there are 100 many files with record 
locks on them. 

26 BTXTBSY Text fi.Se busy 

Page3 

An attempt was made to execute a pure-procedure program which is 
currently open for writing. Also an attempt 10 open for writing a pure.. 
puccdure program that is being executed. 

September 24, 1987 



INTR0(2) INTR0(2) 

27 EFBIG File too large 
The size of a file exceeded the maximum file size (1,082,201,088 bytes) or 
UUMIT; see Jdimit(2). 

28 ENOSPC No space left on device 
Owing a write to an ordinary file, there is no free space left on the device. 
In fcntl, the setting or removing of reconllocks on a file cannot be accom­
plished because there are no more record enlries left on the system 

29 ESPIPE illegal seek 
An lseek was issued to a pipe. This error should also be issued for other 
non-seekable devices. 

30 EROFS Read-only file system 
An auempt to modify a file or dilcctory was made on a device mounted 
read-only. 

31 EMLINK Too many links 
An attempt to make more than the maximum number of links (1000) to a 
file. 

32 EPIPB Broken pipe 
A write on a pipe for which there is no process to read the data. This con­
dition nonnally generates a signal; the error is returned if the signal is 
ignored. 

33 EDOM Math argument 
The argument of a function in the math package (3M) is out of the domain 
of the functioo. 

34 ERANOE Result too large 
The value of a function in the math package (3M) is not representable 
within machine precision. 

35 ENOMSG No message of desin:d type 
An attempt was made to receive a message of a type that does not exist on 
the specified message queue; see msgop (2). 

36 EIDRM Identifier Removed 
This error is returned to processes that resume execution due to the remo-­
val of an identifier from the- file system's name space (see msgctl(2), 
mnctl(2), and shmt:tl (2)). 

45 EDBADLK Deadloek 
A cJe.Bock situalion wu detected and avoided. 

Septembec 24, 1987 Page4 



r-' 
' 

INTR0(2) INTR0(2) 

55 EWOULDBLOCK Opemtion would block 
An opel'8lion which would cause a process to block was attempted on an 
object in non-blocking mode (see socket(2N)). 

56 EINPROGRESS Operation now in progress 
An operation which ~sa long time to complete (such as a connect(2N)) 
was started on a non-blocking object (see sockt't(2N)). 

57 EALREADY Operation already in progress 
An opemtion was attempted on a non-blocking object which already had 
an operation in progress. 

58 ENOTSOCK Socket qJellltion on non-socket 
Self-explanalory. 

59 EDEST ADDRREQ Destination address required 
A required address was omiued from an opemtion on a socket. 

60 BMSGSIZE Message too long 
A message sent on a socket was larger than the internal message buffer. 

61 EPROTOTYPE Protocol wrong type for socket 
A protocol was specified which does not support the semantics of the 
socket type requested. For example, you cannot use the internet UDP proto­
col with type SOCK_STRBAM. 

62 ENOPROTOOPT Protocol not available 
In this incarnation of the system. 

63 EPRaroNOSUPPORT Protocol not supported 
In this incarnation of the system. 

64 ESOCKTNOSUPPORT Socket type not suppotted 
In this incarnation of the system. 

65 EOPNOTSUPP Opemti.on not supported on socket 
For example. II'ying to accept a connection on a datagram sockeL 

66 EPFNOSUPPORT Protocol family not supported 
In this incarnation of the system. 

67 EAFNOSUPPORT Address family not supported by protlX;Ol family 

PageS 

An address incompatible with the requested protocol was used. For exam­
ple, you sbooldn't necessarily expect to be able to use PUP Internet 
addresses with ARPA Internet protOCOls. 

Septembu 24, 1987 



INTR0(2) 

68 BAOORINUSE Address already in use 
Only one usage of each address is oormally permitted. 

69 EADDRNOfAVAIL Can't assign requested. address 

INTR0(2) 

Normally results from an auempt to create a socket with an address not on 
this machine. 

70 ENETOOWN Netwmk is down 
A socket operation enoounlered a dead netwolt.. 

71 ENETUNREACH Netwol"k is 1IIIre8Cbable 
A socket operation was attempted to an nnreachable network. 

72 ENBTRESET Network dropped connection on reset 
The host you were connected to crashed and rebootrd. 

73 ECONNABOR.TED Software caused connection abort 
A connection abort was caused internal to your host machine. 

74 ECONNRESET Connection reset by peer 

55 BNOBUFS No buffer space available 
F<H" a socket or a pipe in the buffet pool. 

76 FJSCONN Socket is already connected 

77 ENOTCONN Socket is not connected 

78 ESHUI'OOWN Can'tsendaftersocketshutdown 

79 "'"'"" 
80 ETIMEDOtrr Connection timed out 

Due to failure to initiate properly or because keep-alives failed. 

81 ECONNREFUSED Connection refused 
No connection could be made because the target machine actively refused 
;L 

83 ENAMBTOOWNO Fde name too long 
A component of a path name exceeded 14 characters, Of' an entire path 
name exceeded 1023 characters. 

84 EHOSTDOWN HO$f. is down 
A socket operation encountered a defunct host. 

85 EHOSTUNREACH No route to host 
A socket opemtion was attempted to an unreachable bosL 

September 24, 1987 Page6 



INTR0(2) INTR0(2) 

100 BDBADLOCK Locking Deadlock 
Returned by locking (2) system call if deadlock would occur ex when 
locktable overflows. 

DEFINmONS 
l'roceuiD 
Each active process in the system is uniquely identified by a positive integer 
called a process ID. The range of thisiD is from 1 to 30,000. 

Parent Process ID 
A new process is created by a currently active process; seefork(2}. The parent 
process m of a process is the process m of its creator. 

Process Group ID 
Each active process is a member of a process group that is identified by a posi­
tive integer called the process group ID. This ID is the process ID of the group 
leader. This grouping permits the signaling of related processes; see kill (2). 

TtyGroupiD 
Each active process can be a member of a terminal group that is identified by a 
positive integer called the tty group m. This grouping is used to terminate a 
group of related processes upon tennination of one of the processes in the 
group; see erit(2) and signal(2). 

Real User m and Real Group m 
Each user allowed on the system is identified by a positive integer called a real 
..... m. 
Each user is also a member of a group. The group is identified by a positive 
integer called the real group ID. 

An active process has a real user ID and real group ID that are set to the real 
user ID and real group ID. respectively, of the user responsible for the creation 

of the """"""" 
Effeclive User m and Effective Group ID 
An active process has an effective user ID and an effective group ID that are 
used to detennine file access permissions (see below). The effective user ID 
and effective group ID are equal to the process's real user ID and real group ID 
respectively, unless the process or one of its ancestors evolved from a file that 
had the set-user-ID bit or set-group ID bit set; see euc (2). 

Super-user 

1

,..--- A process is recognized as a super-user process and is granted special 

Page7 September 24, 1987 



INTR0(2) 

privileges if its effective user ID is 0. 

Special Processes 

INTR0(2) 

The processes with a process m of 0 and a process ID of 1 are special JmCtSSCS 
and are referred to as procO and procl . 

Prod) is the scheduler. Procl is the initialization process (itrit). Procl is the 
ancestor of every other process in the system and is used to control the process -File Descripto< 
A file desciipttY is a small integer used to do IJO on a file. The value of a file 
descriptor is from 0 10 19. A process may have no more than 20 file descriptors 
(0-19) open simultaneously. A file descriptor is returned by system calls so;h 
as o~tt(Z), or pipe(2). The file descriptor is used as an argwnent by calls such 
as read(2), wrik(3), ioctl(2), and close{2). 

FileName. 
Names consisting of 1 to 14 characters may be used to name an ordinary file, 
special file or directmy. 

These charactel's may be selected from the set of all character values excluding 
'D (nuB) and the ASCU code for I {slash). 

Note that it is genemlly unwise to use *, ? , I. or 1 as part of file names because 
of the special meaning attached to these characters by the shell. See sh (1). 
Ahhough pennitled, it is advisable to avoid the use of unprintable cbaracters in 
file names. 

Path Name aDd Path Prefix 
A path name is a nuDMterminated characler string starting with an optional slash 
(1), followed by zero 01' mOIC directory names separated by slashes, optionally 
followed by a file name. 

More precisely, a path name is a null-terminated character string constructed as 
follows: 

<path-name>::=<filc-name> I <palh-prefix><file-name> I/ 
<path-pretix>,=<nprefix> 1/<nprefix> 
<nprefix>"-<dimame>/1 <nprefiP<Ctinwne>/ 

where <file-name> is a string of 1 to 14 cbaracters other than the ASCll slash 
and null, and <dimame> is a string of I to 14 characters (other than the ASCII 
slash and null) that names a directory. 

September 24, 1987 PageS 



INTR0(2) INTR0(2) 

If a path name begins with a slash, the path seareh begins at the root directory. 
( Otherwise, the search begins from the current working directory. 

A slash by itself names the root directory. 

Unless specifically stated otherwise, the null path name is treated as if it named 
a non-existent file. 

Directory 
Directory entries are called links. By convention, a directory contains at least 
two links,. and "• referred to as dot and dot-dot respectively. Dot refers to the 
directory itself and dot-dot refers to its parent directory. 

Root Directory and Current Working Directory 
Each process bas associated with it a concept of a root directory and a current 
working directory for the pwpose of resolving path name searches. The root 
directory of a process need not be the root directory of the root file system. 

Ftle Access Permissions 
Read, write, and execute/search pennissions on a file are granted to a process if 
one or more of the following is true: 

The effective user ID of the process is super-user. 

The effective user ID of the process matches the user m of the owner of 
the file and the appropriate access bit of the "owner" portion (0700) of 
the file mode is set. 

The effective user ID of the process does not match the user ID of the 
owner of the file, and the effective group ID of the process matches the 
group of the file and the appropriate access bit of the "group" portion 
(070) of the file mode is set. 

1be effective user ID of the process does not match the user ID of the 
owner of the file, and the effective group ID of the process does not match 
the group ID of the file, and the appropriate access bit of the "other" por­
tion (07) of the file mode is set. 

Otherwise, the corresponding permissions are denied 

Message Queue Identifier 
A message queue identifier (msqid) is a unique positive integer created by a 
msgget(2) system call. Each msqid has a message queue and a data structure 
associated with it. The data structure is referred to as msqid _ ds and contains 

( the following members: 

Page9 September 24, 1987 



INTR0(2) INTR0(2) 

sttuct ipc_perm msg_perm; I* operation permission struct •I 
ushort msg_qnum; I* nwnberofmsgs on q •/ 
ushort msg_qbytes; /• max number of bytes on q •I 
ushort msg_lspid; t• pid of last msgsnd operation •I 
ushort msg_ lrpid; I* pid of last msgrcv operation •I 
time_t msg_stime; /•last msgsnd time •/ 
time_t msg_rtime; I• last msgrcv time •I 
time_t msg_ctime; /*last change time •/ 

I• Times measured in sees since •I 
I• 00:00:00 GMT,Ian. 1, 1970 */ 

Msg_penn is an ipc_penn structure that specifies the message opemtion per­
mission (see below). This structure includes the following membels: 

ushon. cuid; 
ushort cgid; 
ushort uid; 
ushort gid; 
ushon mode; 

,. creator usu id ., 
,. creator group id •1 
I* userid •I 
!• group id •I 
I• r/w pennission •/ 

Msg_qnum is the number of messages currendy on the queue. Msg_qbytes is 
the maximum number of bytes allowed on the queue. Msg_lspid is the process 
id of the last process that performed a msgsnd operation. Msg_ lrpid is the pro­
cess id of the last process that performed a msgrcv operation. Msg_ stime is the 
time of the last msgsnd operation, msg_rtim.e is the time of the last msgrcv 
operation, and msg_ctime is the time of the last msgctl(2) operation that 
changed a member of the above structure. 

Message Operation Permissions 
In the msgop (2) and msgctl (2) system call descriptions. the pennission 
required for an operation is given as ~£tokenr, where "token" is the type of 
permission needed interpreted as follows: 

00400 Read by user 
00200 Write by user 
00060 Read, Write by group 
00006 Read, Write by others 

Read and Write permissions on a msqid are granted to a process if one or more 
of the following is true: 

The effective useriD of the pucess is super-user. 

September 24, 1987 Page 10 



INTR0(2) INTR0(2) 

The effective user ID of the process matches msg_perm.[c]uid in the data 
structure associated with msqid and the appropriate bit of the ''user" por­
tion (0600) of msg_perm.mode is set. 

The effective user ID of the process does not match msg_perm.[c]uid and 
the process's effective group ID matches msg_perm.[c]gid and the 
appropriate bit of the • 'group'' portion (060) of msg_perm.mode is set. 

The effective user ID of the process does not match msg_perm.[c]uid and 
the effective group ID of the process does not match msg_perm.[c]gid 
and the appropriate bit of the ''other'' portion (06) of msg_perm.mode is 
"'l 

Otherwise, the corresponding permissions are denied 

Semaphore Identifier 
A semaphore identifier (semid) is a unique positive integer created by a 
semget (2) system call. Each semid has a set of semaphores and a data structure 
associated with it. The data structwe is referred to as semid _ ds and contains 
the following members: 

struct ipc_penn sem_penn; /• operation permission struct •/ 
usbon sem__nsems; /• number of sems in set •I 
time_t sem_otime; /* last operation time*/ 
time_t sem_ctime; /* last change time */ 

t• Times measured in sees since •I 
/* 00:00:00 GMT,Jan. 1, 1970 •/ 

Sem _perm is an ipc_perm structure that specifies the semaphore operation per­
mission (see below). This structure includes the following members: 

ushort cuid; 
ushort cgid; 
ushort uid; 

""""' gid; ushon mode; 

I• creator user id •I 
,. creator group id ., 
I• user id •I 
I* group id *I 
I* r/a permission *I 

The value of sem _ nsems is equal to the number of semaphores in the set. Each 
semaphore in the set is referenced by a positive integer referred to as a 
sem _ num. Sem_num values nm sequentially from 0 to the value of sem_nsems 
minus 1. Sem otime is the time of the last semop (2) operation, and 
sem ctime is~ time of the last semctl (2) opemtion that changed a member of 
the above structure. 

Page ll September 24, 1987 



INTR0(2) INTR0(2) 

A semaphore is a data structure that contains the following members: 

ushort semval; 
short sempid; 
usbort semncnt; 
ushort semzcnt; 

I• semaphore value •/ 
I• pid of last operation *I 
I* #awaiting semval > cval •/ 
I* # awailing semval = 0 */ 

Semval is a non-negative integer. Sempid is equal10 the process ID of the last 
process that perfonned a semaphore operation on this semaphore. Semncnt is a 
cOWlt of the number of processes that are currendy :ruspended awaiting this 
semaphore's semval10 become greater than its current value. Semzcnt is a 
count of the number of processes that are currendy suspended awaiting this 
semaphore's semval10 become zero. 

Semaphore Operation Pennissions 
In the 54!mop(2) and semctl (2) system call descriptions, the permission required 
for an opemtion is given as H{tolcen}", where H10kenft is the type ofpennission 
needed interpreted as follows: 

00400 Read by user 
00200 Aher by user 
00060 Read, Alter by group 
00006 Read, Ahu by o<he<s 

Read and Alter pennissions on a semid are granted 10 a process if one ()(" more 
of the following is true: 

The effective USQ ID of the process is super-user. 

The effective user ID of the process matt:hes sem _perm.[c }uid in the data 
structure associated with semid and the appropriate bit of the "user" por­
tion (0600) of sem _perm.mode is set. 

The effective user ID of the process does not match sem _perm.[ c }uid and 
the effective group ID of the process matches sem _perm.[ c ]gid and the 
appropriate bit of the ''group'' portion (060) of sem _perm.mode is set. 

The effective UStY ID of the process does not matt:h sem _perm.{ c]uid and 
the effective group ID of the process does not match sem _perm.[c]gid and 
the appropriate bit of the ·'other'' portion (06) of sem _perm.mode is set. 

Otherwise. the conesponding permissions are denied. 

Shared Memory Identifier 
A shared mem<Wy identifier (shmid) is a mrique positive inleger cn:atod by a 
shmget (2) system call. Each shmid has a segment of memory (referred 10 as a 

September 24, 1987 Page 12 



INTR0(2) INTR0(2) 

shared memory segment) and a data structure associated with it. The data struc­
ture is refcncd to as shmid _ ds and contains the following members: 

SIIUCt ipc_perm shm_perm; ~ operation permission struct •/ 
int shm_segsz; 
ushort shm_cpid; 
ushon shm_lpUI; 
short shm_naueh; 
time_t shm_atime; 
time_t shm_dtime; 
time_t shm_ctime; 

I• size of segment •I 
I• creator pid •I 
I• pidoflastoperation •I 
I• nmnber of cmrent attaches •I 
,.,. last attach time., 
!• last detach time •I 
!• last change time •I 
I* Times measured in sees since •I 
/* 00:00:00 GMT, Jan. l, 1970 */ 

Shm _perm is an ipc_perm structure lhat specifies the shared memory operation 
pennission (see below). This structure inc1udes the following members: 

ushort cuid; 
ushort cgid; 
ushort Wd; 
ushort gid; 
ushort mode; 

I* creator user id •I 
I* creatoc group id ., 
f* user id •/ 
I* group id •/ 
f* r/w permission •/ 

Shm _ segsz specifies the size of the shared memory segment Sbm _ cpld is the 
process id of the process that creatOO the shared memory identifier. Shm _Ipid 
is the process id of the last process that performed a shmop (2) operation. 
Shm. _ natkh is the number of processes that currently have this segment 
attached. Shm atime is the time of the last shmat operation, shm dtime is the 
time of the laSt shmdt operation, and shm _ ctime is the timC of the last 
shmctl (2) opel'8tion that changed one of the members of the above structure. 

Shared Memory Operation Pennissions: 
In the shmop (2) and shmctl (2) system call descriptions, the permission 
required for an operation is given as "{token}", where "tokenM is the type of 
permission needed inteipreted as follows: 

00400 Read by user 
00200 Write by user 
00060 Read, Write by group 
00006 Read, Write by others 

Read and Write permissions on a shmid are granted ro a process if one or more 
1,.- of the following is true: 

Page13 September 24, 1987 



INTR0(2) INTR0(2) 

The effective user-ID of the process is super-user. 

The effective usee ID of the process matches sbm_perm.[c]uid in the data 
structure associated with shmUI and the apprquiate bit of the ''user'' por­
tion (0600) of sbm _penn.mode is set. 

The effective user ID of the process does not match shm _perm.[c]uid and 
the effective group ID of the process matches sbm_perm.[c]gid and the 
appropriafe bit of the ''group'' portioo (060) ofshm_perm.m.ode is set 

The effective user ID of the process does not match shm _perm.{ c]uid and 
lhe effective group ID of the process does not match shm _penn.{c]gid 
and the apJrOpriate bit of the "other" portion (06) of shm _perm.mode is 
set. 

Otherwise, lbe corresponding pennissions are denied 

SEE ALSO 
close(2), ;ocd(2), open(2), p;pe(2), read(2), write(3), uuro(3). 

Septemba 24, 1987 Page 14 



_EXIT(2) SEE EXIT _EXIT(2) 

Page I July 26, 1985 



ACCEPT(2N) UniSoft ACCEPT (2N) 

NAME 
accept - accept a connection on a socket 

SYNOPSIS 
#Include <sys/types.h> 
#lnclulle <sys/soeket.b> 

os = aeeept(s, addr, addrlen) 
lnl DS, s; 
slnct soekaddr *addr; 
lnt *illrlen; 

cc .•. -lnel 

DBSCRIPTION 
The arsument sis a socket which has been created with sockei(2N), bound 
to an address with hind(2N), and is listening for connections after a 
listen(2N). Accept extracts the first connection on the queue of pending 
connections, creates a new socket with the same properties of s and allo­
cates a new file descriptor, ns, for the socket. If no pending connections 
are present on the queue, and the socket is not marked as non-blocking, 
accept blocks the caller until a connection is present. If the socket is 
marked non-blocking and no pending connections are present on the 
queue, acc:eptreturns an error as described below. The accepted socket, ns, 
may not be used to accept more connections. The original socket s remains 
open. 

The argument addr is a result parameter which is filled1n with the address 
of the coanecting entity, as known to the communications layer. The exact 
format of the addr parameter is determined by the domain in which the 
communication is occurrins. The addrfen is a value-result parameter; it 
should initially contain the amount of space pointed to by addr; on return it 
wiU contain the actuallensth (in bytes) of the address returned. This call is 
used with connection-based socket types, currently with SOCK_STREAM. 
It is possible to sefect(2N) a socket for the purposes of doing an accept by 
selecting it for read. 

RETURN VALUE 
The call returns -I on error. If it succeeds it returns a non-negative 
inteser which is a descriptor for the accepted s~ket. 

EltRORS 

Page 1 

The accept will fail if: 

[EBADF] The descriptor is invalid. 

[ENOTSOCK] 

{EOPNOTSUPPI 

The descriptor references a file, not a socket. 

The referenced socket is not of type 
SOCK_STREAM. 

(EFAULT] The addr parameter is not in a writable part of the 
user address space. 

(EWOULDBLOCK] The socket is marked non-blocking and no connec- __/ 
lions are present to be accepted. 

July 16, 1985 



ACCEPT(2N} UniSort ACCEPT(2N} 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

cc -o prog prog.c -Inet 

SEE ALSO 
bind(2N), connect(2N), listen(2N), select(2N), socket(2N) 

July 16, 1985 Page 2 



ACCESS (2) ACCESS (2) 

NAME 
access - determine accessibility of a file 

SYNOPSIS 
lnt a«ess (path, amode) 
char •path; 
int amode; 

DESCRIPTION 
Pmh points to a path name naming a file. Ain•ss checks the named file for 
accessibility according to the bit pattern contained in anwcle, using the real 
user ID in place of the effective user ID and the real group ID in place of 
the effective group ID. The bit pattern contained in umocle is constructed as 
follows: 

04 read 
02 write 
01 execute (search) 
00 check existence of file 

Access to the file is denied if one or more of the following are true: 
[ENOTDIR] A component of the path prefix is not a directory. 
[ENOENT] Read, write, or execute (search) permission is 

requested for a null path name. 
(ENOENT] The named file does not exist. 
(EACCES] Search permission is denied on a component of the 

path prefix. 
[EROFS] Write access is requested for a file on a read-only 

file system. ___.· 
(ETXTBSY] Write access is requested for a pure procedure 

(shared text) file that is being executed. 
(EACCESS] Permission bils of the file mode do not permit 

the requested access. 
(EFAULT] Path points outside the allocated address 

space for the process. 

The owner of a file has permission checked with respect to the "owner" 
read, write, and execute mode bits Members of the file's group other than 
the owner have permissions checked with respect to the "group" mode 
bits, and all others have permissions checked with respect to the "other" 
mode bits. 

The super-user is always granted execute permission even though I. exe­
cute permission is meaningful only for directories and regular files, and 2. 
exec requires that at least one execute mode bit be set for regular file to be 
executable. 

Notice that it is only access bits that are checked. A directory may be 
announced as writable by access, but an attempt to open it for writing will 
fail because it is not allowed to write into the directory structure itself, 
although files may be created there. A file may look executable, but exec 
will fail unless it is in proper format. 

RETURN VALUE 

Page l 

If the requested access is permitted, a value of 0 is returned. Otherwise, a 
value of -1 is returned and ermo is set to indicate the error. 

July 12, 1985 



ACCESS(2} ACCESS(2} 

SEE ALSO 
chmod(2), stat(2). 

July 12, 1985 Page2 



ACCT(l) ACCT(l) 

NAME 
acct - enable or disable process accounting 

SYNOPSIS 
inl am (palb) 
char •path; 

DESCRIPTION 
Acct is used to enable or disable the system process accounting routine. If 
the routine is enabled, an accounting record will be writlen on an account­
ing file for each process that terminates. Termination can be caused by one 
of two things: an exit caU or a signal; see exit(l) and signa/(2). The 
effective user ID of the calling process must be super-user to use this call. 

Path points to a path name naming the accounting file. The accounting file 
format is given in acct(4}. 

The accounting routine is enabled if path is non-zero and no errors occur 
during the system call. It is disabled if path is zero and no errors occur 
during the system call. 

Acct will fail if one or more of the following are true: 

iEPERMI The effective user of the calling process is not super-user. 
(EBUSY) 

(ENOTDIR] 

!ENOENT] 

!EACCES] 

[EACCES) 

[EACCES) 

[ElSDIR] 

[EROFS] 

[EFAULT] 

RETURN VALUE 

An attempt is being made to enable accounting when it is 
already enabled. 

A component of the path prefix is not a directory. 

One or more components of the accounting file path name 
do not exist. 
A component of the path prefix denies search permission. 

The file named by path is not an ordinary file. 

Mode permission is denied for the named accounting file. 

The named file is a directory. 

The named file resides on a read-only file system. 

Path points to an illegal address. 

Upon successful completion, a value of 0 is returned. Otherwise, a value of 
-1 is returned and errno is set to indicate the error. 

SEE ALSO 
exit(2), sis;na1(2), acct(4). 

. I . 



ALARM(2) ALARM(2) 

NAME 
alarm - set a process's alarm clock 

SYNOPSIS 
unsigned alarm (sec) 
unslened see; 

DESCRIPTION 
Alarm instructs the calling prat:ess's alarm clock to send the signal 
SIGALRM to the calling process after the number of real time seconds 
specified by sec have elapsed; see signa1(2). 

Alarm requests are not stacked; successive calls reset the calling process's 
alarm clock. If the argument is 0, any alarm request is canceled. Because 
the clock has a !-second resolution, the signal may occur up to one second 
early; because of scheduling delays, resumption of execution of when the 
signal is caught may be delayed an arbitrary amount. The longest 
specifiable delay time is 4,294,967,295 (2**32-1) seconds, or 136 years. 

RETURN VALUE 
Alarm returns the amount of time previously remaining in the calling 
process's alarm clock. 

SEE ALSO 
pause(2), sit!nal{2). 

. I . 



BIND (2N) UniSon BIND(2N) 

NAME 
bind - bind a name to a socket 

SYNOPSIS 
#lndude <sys/lypes.h> 
#indude <sys/soeket.b> 
~ind (s, name, namelen) 
lot s; 
struct soekaddr *name; 
int namelen; 
ec ••• -lnet 

DESCRIPTION 

NOTES 

Bind assigns a name to an unnamed socket. Wh~m a socket is created with 
sockei(2N) it exists in a name space (address family) but has no name 
assigned. Bind requests the name, be assigned to the socket. 

The rules used in name bindillJ vary between communication domains. 
Consult the manual entries in section 4 for detailed information. 

RETURN VALUE 
If the bind is successful, a 0 value is returned. A return value of -I indi· 
cates an error, which is further specified in the global errno. 

ERRORS 
The bind call will fail if: 

[EBADF] Sis not a valid descriptor. 

[ENOTSOCK] S is not a socket. 
[EADDRNOTAV AIL} 

(EADDRINUSE] 

IEINVAL] 

IEACCESS] 

IEFAULT] 

The specified address is not available from the local 
machine. 

The specified address is already in use. 

The socket is already bound to an address. 

The requested address is protected, and the current 
user bas inadequate permission to access it. 

The name parameter is not in a valid part of the user 
address space. 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
t;:OPlpile line, e.g.: 

ec -o pJ'OI prog.c -lnet 

SEE ALSO 
connect(2N), listen(2N), socket(2N), getsockname(2N) 

Page I July 16, 1985 



BRK(2) 

NAME 
( brk, sbrk - change data segment space allocation 

SYNOPSIS 
int brt (endds) 
char "'endds; 

char "'sbrk (incr) 
int intt; 

DESCRIPilON 

BRK(2) 

Brk. and sbrk are used to change dynamically the amount of space allocated for 
the calling process's data segment; see exec(2). The change is made by reset­
ting the process's break value and allocating the appropriate amount of space. 
The break value is the address of the first location beyond the end of the data 
segment. The amount of allocated space increases as the break value increases. 
The newly allocated space is set to zero. 

Brk sets the break value to ~ttdds and changes the allocated space accordingly. 

Sbrk adds incr bytes to lhe break value and changes the allocaled space I'ICCOid­
ingly. !ncr can be negative, in which case the amount of allocated space is 

~ ........... 
ERRORS 

Brie and sbrk will fail without making any change in the allocated space if one 
or more of the following are ttue: 

Such a change would result in more space being allocated than is allowed by a 
system-imposed maximum (see ulimit(2)), Two typeS of this condition with 
associated error messages may be encountered: 

[ENOMEM) 
Not enough space. Program asks for more space than the system is able 1o 
supply. 

(BAGAIN] 

The system has temporarily exhausted its available memory or swap _.. 
Such a change woold result in the b'eak value being greater than or equal to the 
start address of any a1fached shared memory segment (see shmop(2)). 

RETURN V ALUB 
Upon successful completion, brk returns a value of 0 and sbrk. returns the old 
break value. Otherwise, a value of -1 is returned and errno is set to indicate 

Page 1 Septemba 24, 1987 



BRK(2) BRK(2) 

.......... 
SBB ALSO 

=(2), shnooil(l), ulinUt(2). 

Septembel' 24, 1987 P...,2 



CHDIR(l) CHDIR(2) 

NAME 
chdir - change working directory 

,r'- SYNOPSIS 
tnt ~hdlr (path} 
~bar •path; 

DESCRIPTION 
Path points to the path name of a directory. Chdir causes the named direc­
tory to become the current working directory, the starting point for path 
searches for path names not beginning with/. 

Chdir will fail and the current working directory will be unchanged if one or 
more of the following are true: 

(ENOTDIRI A component of the path name is not a directory. 

IENOENTI The named directory does not exist. 

IEACCESI 

(EFAULT] 

RETURN VALUE 

Search permission is denied for any component of the path 
name. 
Path points outside the allocated address space of the pro­
cess. 

Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
chroot(2). 

. I . 



CHMOD(2) CHMOD(2) 

NAME 
chmod - change mode of file 

SYNOPSIS 
int chmod (path, mode) 
char •path; 
int mode; 

DESCRIPTION 
Path points to a path name naming a file. Chmod sets the access permis­
sion portion of the named file's mode according to the bit pattern contained 
in mode. 

Access permission bits are interpreted as follows: 

04000 
02000 
01000 
00400 
00200 
00100 
00070 
00007 

Set user ID on execution. 
Set group ID on execution. 
Save text image after execution. 
Read by owner. 
Write by owner. 
Execute (search if a directory) by owner. 
Read, write, execute (search) by group. 
Read, write, execute (search) by others. 

The eJfective user ID of the process must match the owner of the file or be 
super-user to change the mode of a file. 

If the effective user ID of the process is not super-user, mode bit 01000 
(save text image on execution) is cleared. 

If the effective user ID of the process is not super-user and the effective 
group ID of the process does not match the group ID of the file, mode bit 
02000 (set group ID on execution) is cleared. 

If an executable file is prepared for sharing (see the cc -n option), then 
mode bit 01000 prevents the system from abandoning the swap-space image 
of the program-text portion of the file when its last user terminates. Thus, 
when the next user of the file executes it, the text need not be read from 
the file system but can simply be swapped in, saving time. 

Changing the owner of a file turns off the set-user-id bit, unless the 
superuser does it. This makes the system somewhat more secure at the 
expense of a degree of compatibility. Chmod will fail and the file mode will 
be unchanged if one or more of the following are true: 

[ENOTDIRI A component of the path prefix is not a directory. 

[ENOENTI 

[EACCESI 

IEPERMI 

[EROFSI 

[EFAULT] 

RETURN VALUE 

The named file does not exist. 

Search permission is denied on a component of the path 
prefix. 

The effective user ID does not match the owner of the file 
and the effective user ID is not super-user. 

The named file resides on a read-only file system. 

Path points outside the allocated address space of the pro­
cess. 

Upon successful completion, a value of 0 is returned. Otherwise, a value 

- I -



CHMOD(2) CHMOD(2) 

of -I is returned and errno is set to indicate the error. 

SEE ALSO 
chown(2), mknod(2). 

- 2 -



CHOWN(2) CHOWN(2) 

NAME 
chown - change owner and group of a file 

SYNOPSIS 
lot cbown (path, owner, group) 
char •path; 
int owner, group; 

DESCRIPTION 
Path points to a path name naming a file. The owner ID and group ID of 
the named file are set to the numeric values contained in owner and group 
respectively. 

Only processes with effective user ID equal to the file owner or super-user 
may change the ownership of a file. 

If chown is invoked by other than the super-user, the set-user-ID and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be 
cleared. 

Chown will fail and the owner and group of the named file will remain 
unchanged if one or more of the following are true: 

IENOTDIRI A component of the path prefix is not a directory. 

(ENOENTI The named file does not exist. 

[EACCESI 

[EPERMI 

[EROFS] 

!EFAULT] 

RETURN VALUE 

Search permission is denied on a component of the path 
prefix. 

The effective user ID does not match the owner of the file 
and the effective user ID is not super-user. 

The named file resides on a read-only file system. 

Path points outside the allocated address space of the pro­
cess. 

Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
chown(l), chmod(2). 

. I . 



'·--

CHROOT{2) CHROOT(l) 

NAME 
chroot - cha~t~e root directory 

SYNOPSIS 
lnt ehroot (path) 
ebar •path; 

DESCRIPTION 
Path points to a path name naming a directory. Chrool causes the named 
directory to become the root directory, the starting point for path searches 
for path names beginning with /. The user's workilli directory is 
unaffected by the chroot system call. 

The effective user ID of the process must be super-user to change the root 
directory. 

The ,, entry in the root directory is interpreted to mean the root directory 
itself. Thus, .• cannot be used to access files outside the subtree rooted at 
the root directory. 

Chroot will fail and the root directory will remain unchanged if one or more 
of the following are true: 
(ENOTDIR] Any component or the path name is not a directory. 

(ENOENT] 

{EPERM] 

(EFAULT] 

RETURN VALUE 

The named directory does not exist. 

The effective user ID is not super-user. 

Path points outside the allocated address space or the pro­
cess. 

Upon successful completion, a value or 0 is returned. Otherwise, a value 
of -I is returned and ermo is set to indicate the error. 

SEE ALSO 
chdir(2). 

- I -



CLOSE{2) CLOSE(2) 

NAME 
close - close a file descriptor 

SYNOPSIS 
inl close (ftldes) 
lui tildes; 

DESCRIPTION 
Fildes is a file descriptor obtained from a creat, open, dup, fi·ntl, pipe, or 
socket syslem call. Close closes the file descriptor indicated by ji/des. A 
close of all files is automatic on exit, but since there is a 20 open file limit 
on the number of open files per process, dose is necessary for programs 
which deal with many files. All outstanding record locks owned by the pro­
cess (on the file indicated by tildes} are removed. 

{EBADF] Close will fail if jifdes is not a valid open file descriptor. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value 
of - I is returned and errno is set to indicate the error. 

SEE ALSO 
creat(2), dup(3), exec(2), fcntl(2}, open(2}, pipe(2), socket(2N). 

Pagel July 22, 1985 



CONNECT(2N) UniSoft CONNECT(2N) 

NAME 
connect - initiate a connection on a socket 

SYNOPSIS 
#ln~lude <sys/typH.h> 
#include <sys/socket.b> 

~onnect(s, name, namelen) 
int s; 
stmct sockaddr *name; 
int namelen; 

ce ..• -lnet 

DESCRIPTION 
The parameter sis a socket. If it is of type SOCK_DGRAM, then this can 
permanently specifies the peer to which datagrams are to be sent; if it is of 
type SOCK STREAM, then this call attempts to make a connection to 
another socket. The other socket is specified by name which is an address 
in the communications space of the socket. Each communications space 
interprets the name parameter in its own way. 

RETURN VALUE 
If the connection or binding suC~;Ceds, then 0 is returned. Otherwise a -I 
is returned, and a more specific error code is stored in errno. 

ERRORS 
The call fails if: 
(EBADF) Sis not a valid descriptor. 

(ENOTSOCK] Sis a descriptor for a file, not a socket. 

(EADDRNOTAVAILJ 
The specified address is not available on this 
machine. 

(EAFNOSUPPORT] Addresses in the specified address family cannot be 
used with this socket. 

(EISCONN) 

(ETIMEDOUT] 

(ECONNREFUSED] 

(ENETUNREACH) 

[EADDRINUSE] 

[EFAULT] 

The socket is already connected. 

Connection establishment timed out without estab­
lishing a connection. 

The attempt to connect was forcefully rejected. 

The network isn't reachable from this host. 

The address is already in use. 

The 11ame parameter specifies an area outside the pro­
cess address space. 

(EWOULDBLOCK] The socket is non-blocking and the and the connec­
tion cannot be completed immediately. It is possible 
to se/ect(2N) the socket while it is connecting by 
selecting it for writing. 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

Page I July 16, 1985 



CONNECT (2N) UniSoft CONNECT(2N) 

ee - o prog prox.e -lnel 

SEE ALSO 
accept(2N), select(2N), socket(2N), setsockname(2N) 

July 16, 1985 Page 2 



CREAT(2) CREAT(2) 

NAME 
creal - create a new file or rewrite an existing one 

SYNOPSIS 
lnt ereat (path, mode) 
ebar •path; 
int mode; 

DESCRIPTION 

Pagel 

Creal creates a new ordinary file or prepares to rewrite an existing file 
named by the path name pointed lo by Jill/h. 

If the file exists, the length is truncated to 0 and the mode and owner are 
unchanged. Otherwise, the file's owner ID is set to the effective user ID, of 
the process the group ID of the process is set to the effective group ID, of 
the process and the low-order 12 bits of the file mode are set to the value 
of mode modified as follows: 

All bits set in the process's file mode creation mask are cleared. 
See umask(1). 

The "save text image after execution bit" of the mode is cleared. 
See chnwd(1). 

Upon suC~;essful completion, the file descriptor is returned and the file is 
open for writing, even if the mode does not permit writing. The file 
pointer is set to the beginning of the file. The file descriptor is set to 
remain open across exec system calls. See ./i"ntf(1). No process may have 
more than 20 files open simultaneously. 

The mode given is arbitrary; it need not allow writing. This feature is used 
by programs which deal with temporary files of fixed names. The creation 
is done with a mode that forbids writing. Then, if a second instance of the 
program attempts a aeat, an error is returned and the program knows that 
the name is unusable for the moment. 
The system-scheduling algorithm does not make this a true uninterruptible 
operation, and a race condition may develop if creat is done at precisely the 
same time by two different processes. 
Creal will fail if one or more of the following are true: 

IENOTDIRI A component of the path prefix is not a directory. 

[ENOENT] 

[EACCESI 

[ENOENT] 

[EACCFS) 

(EROFS] 

(ETXTBSY] 

A component of the path prefix does not exist. 

Search permission is denied on a component of the path 
prefix. 

The path name is null. 

The file does not exist and the directory in which the file is 
to be created does not permit writing. 

The named file resides or would reside on a read-only file 
system. 

The file is a pure procedure (shared text) file that is being 
executed. 

July 29, 1985 



CREAT(2) 

[EACCES] 

[EISDIR] 

[EM FILE] 

[EFAULT] 

[EN FILE] 

RETURN VALUE 

The file exists and write permission is denied. 

The named file is an existing directory. 

Twenty (20) file descriptors are currentJy open. 

CREAT(2) 

Pa1h points outside the allocated address space of the pro­
cess. 

The system file table is full. 

Upon successful completion, a non-negative integer, namely the file 
descriptor, is returned. Otherwise, a value of -I is returned and t!rrtw is 
set to indicate the error. 

SEE ALSO 
chmod(2), close(2), dup(J), fcntU2), lseek(2), open(2), read(2), 
umask(2), write(J). 

July 29, 1985 Page2 



DUP(2) 

NAMB 
( dup - duplicate a descriptOr 

SYNOPSIS 
news = dup(oldd) 
int newd, oldd; 

DESCRIPTION 

DUP(2) 

Dup duplicates an existing object descriptor. The argument oldd is a small 
non-negative integer index in the per-process descriptor table. The value must 
be less than the size of the table, which is returned by getdtablesi:ze(3N). The 
new descriptOr newd returned by the call is the lowest numbered descriptor 
which is not currently in use by the process. 

The object referenced by the descriptor does not distinguish between references 
using oldd and newd in any way. Thus if newel and oldd are duplicate refer­
ences to an open file. read(2). write(2). and lseek(2) calls all move a single 
pointer into the file. H a separate pointer into the file is desired, a different 
object reference to the file must be obtained by issuing an additional open (2) 
oall 

RETURN V ALUB 
The value -1 is returned if an ernr occws in either call. The external variable 
emw indicates the cause of the error. 

ERRORS 
Dup fails if: 

[EBADF] 
Oldd or newd is not a valid active descriptor 

[EMFILE] 
Too many descriptors are active. 

SEE ALSO 
a=pt(2N), open(2), close(2), p;pe(2), .aclret(2N), groltable&ze(3N). 

Page I Septemlx7 28, 1987 



DUP2{2) 

NAME 
dup2 - duplicate a descriptOr 

SYNOPSIS 
dup2(oldd, newd) 
int oldd, newd; 

DESCRIPTION 

(UniSoft) DUPZ(2) 

Dup2 causes newd 10 become a duplicate- of oldd. If newd is already in use, the 
descriptOr is first deallocated as if a clos~(2) call had been done first 

The object referenced by the descriptor does not distinguish between references 
using oldd and newd in any way. Thus if newd and oldd are duplicate refer~ 
ences ID an open file, read(2), write(2). and lseek(2) calls all move a single 
pointer into the file. If a separate pointer into the file is desired, a different 
object reference to the file must be obtained by issuing an additional open (2) 
call 

RETURN VAWE 
The value -1 is returned if an error occurs in either call. The external variable 
e1T110 indicates the cause of the error. 

BRllORS 
Du.p2 fails if: 

[EBADF] 
Oldd or newd is not a valid active descriptor 

[EMFILE] 
Too many descriptors are active. 

SEE ALSO 
acccpi(2N), open{2), clo..(2), pipo(2), """""'<2N), getd1ablo02o(3N), 

Page I Sep1emb<r 28, 1987 



EXEC(2) 

NAME r exec). execv. execle, execve, execlp, execvp - execute a file 

SYNOPSIS 
int execl (path, argO, argl, .. ., aran, 0) 
char •path, •argO, •argl, •. ., •argu; 

int execv (path, argv) 
char •path, •argv( ]; 

lDt neele (path, argO, argl, .. ., arp, 0, envp) 
dlar •patb, •argO, •argl, • .., •argn, •envp[ Ji 
int exeeve (patb, argv, eavp) 
char •path, •aravl J, •eavp( ]; 

int exedp (file, ar&O, aral, ... , argn, 0) 
char •file, •argO, •arat, -• •aran; 
int execvp (file, argv) 
claar •me. •argv[ ]; 

DESCRIPTION 

EXEC(2) 

Exec in all its fonns transforms the calling process into a new process. The 
new process is constructed from an Oidinary, executable file called the new pro­
cess file. This file consists of a header (see a.out(4)), a text segment. and a data 
segmenL The data segment contains an initialized portion and an uninitialized 
portion (bss). There can be no return from a successful exec because the cal­
ling process is overlaid by the new process. 

Path points to a path name that identifies the new process file. 

File points to the new process file. The path prefix for this file is obtained by a 
seareb of the directories passed as the enviro~J~Mnt line ''PATH =" (see 
environ (5)). The environment is supplied by the shell (see sh(l)). The shell is 
invoked if a command file is found by execlp or execvp. 

ArgO, argl, ... , argn are pointeJs to null-tenninated character strings. These 
strings constitute the argument list available to the new process. By convention, 
at least argO must be present and point to a string that is the same as path (or it<; 
Wt component). 

Argv is an aaay of character pointen to null~temrinated strings. These strings 
constitute the argwnent list available to the new process. By convention, argv 
must have at least one member, and it must point to a string that is the same as 
path (or its last component). Argv is terminated by a null pointer and is directly 

Page I September 24, 1987 



EXEC(2) EXEC(2) 

usable in anolher execv becaose argv [ argc ) is 0. 

Envp is an array of chamctec pointers to null-terminated strings. These strings 
comtitute the environment for the new process. Envp is terminated by a null 
pointer. For exed and e:recv, the C nm-time scan-off routine places a pointer to 
the environment of the calling process in the global cell: 

extern char ••environ; 
and it is used to pass the environment of the calling process to the new process. 

F'lle descriptors open in the calling ~ remain open in the new process, 
except for those whose close-on-exec ftag is set; see fcntl (2). For those file 
descripiOJS lbat remain open, the file pointer is unchanged. 

Signals set to temJinate the calling pocess will be set to terminate the new pro­
cess. Signals set to be iglued by the calling process will be set to be ign<red 
by the new process. Signals set to be caught by the calling process will be set 
to tc:nninale new process; see .riglltll (2). 

H the set-user-ID mode bit of the new process file is set (see chmod(2)), exec 
sets the effective user ID of the new process to the owner ID of the new process 
file. Similarly, if the set-group-ID mode bit d the new process file is set, the 
effective group m of the new process is set to the group ID of the new process 
file. The real user m and real group m of the new process remain the same as 
those of lhc caWng"""""" ~· 

The shared memory segmentS attached to lhe calling process wiD not be 
attached to tbe new process (see shmop (2)). 

Profiling is disabled for the new process; see proftl (2). 

The new process also inherits the following auribuces from the calling process: 

nice value (see~ (2)) 
proc<ssiD 

- """"""ID procasgroupiD 

<en>a<lj values (see ''"""P(2)) 
tty group m (see exit (2) and signol (2)) 
trace flag (see ptrace {2) request 0) 
time left until an alarm clock signal (see alarm{2)) 

"""""-<tireclmy root directory 
file mode creation mask (see umask (2)) 

September 24, 1987 Page2 



EXEC(2) EXEC(2) 

file size limit (see ulimit (2)) 
Ulime, stime, cutime, and cstittu (sec times(2)) 

From C, two interfaces are available. execl is useful when a known file with 
known arguments is being called; the arguments to execl are the chamctet 
strings constituting the file and the arguments; the first argument is convention­
ally the same as the file name (or its last component). A 0 argument must end 
the argument lisL 

When a C program is executed. it is called as follows: 

mam(-. """. envp) 
intargc; 
char "'"'argv, "'"'envp; 

where argc is lhe argument count and argv is an array of character pointers to 
the arguments tbemselves. As indicaled. argc is conventionally at least one and 
the first member of the array points 10 a string containing the name of the file. 

Envp is a pointer to an array of strings that constitute the enlliroflmiW of the 
process. Each string consists of a name, an=, and a null-terminated value. The 
array of pointers is terminated by a null pointer. The shell sh(l) passes an 
environment entry for each global shell variable defined when the program is 
called. See environ (5) for some conventionally used names. The C run-time 
start-off routine places a copy of envp in the global cell environ, which is used 
by execv andexecl to pass the environment to any subprograms executed by the 
current program. The exec routines use lower-level routines as follows to pass 
an environment explicitly: 

execve(lile, argv, environ); 
execle(file, argO, argl, ... , argn, 0, cnviroo); 

Ex.eclp and execvp are called with the same arguments as execl and eucv, but 
duplicate the shell's actions in searching for an executable file in a list of direc­
tories. The directory list is obtained from the environmenL 

EXec will fail and retmn to the calling process if one or more of the following 

are""" 
[ENOENT] 

[ENOI'DIR] 

Page3 

One or more components of the new process file's path name 
do not exist 

A component of the new process file's path prefix is not a 
clirecto<y. 

Septembcr 24, 1987 



EXEC(2) 

[I!ACCES) 

[EACCES] 

[EACCES) 

[EAGAIN] 

[I!NOEXEC) 

[EI'XTBSY] 

[ENOMEM) 

[E2BIG] 

[EPAUL11 

[BFAULT) 

RI!TUIIN v ALUI! 

EXEC(2) 

Search pennission is denied for a directcry listed in the new 
process file's polh prefix. 

The new pocess file is not an ordinary file. 

'I'he new process file mode denies execution pennission. 

The system has temporarily exbausled its available memory 

"' 'W1IP _., 
The exec is not an execlp or uecvp, and the new process file 
bas the appropriate access pennission but an invalid magic 
nwnber in its header', 

The aew process file is a pUre proceduie (shared text) file 
that is currently open fcc writing by some JXQCeSS. 

The new process requires more memory than is allowed by 
the system·imposed maximmn MAXMEM. 

The number of bytes in the new process's argument list is 
grealel' than the system·imposed limit of 5120 bytes. 

The new process file is not as long as indicared by the size 
values in its header. 

Path, argv, or envp point to an illegal address. 

H au returns to the calling process an emx has occurred; the return value will 
be -1 and emw will be set to incticalc the error. 

SEBALSO 
sh(IJ, alann(2J, eni(2J, lmk(2J, nire(2J, """"o(:!J, ... op(2J, ,;guai(2J, 
times(2). 

Septembe< 24, 1987 Page4 



EXIT(2) EXIT(2} 

NAME 
exit, _exit - terminate process 

SYNOPSIS 
void exit (status) 
int status; void _exit (status} 
lnt status; 

DESCJLIPTION 
Exit terminates the calling process with the following consequences: 

All of the file descriptors open in the calling process are closed. 

If the parent process of the calling process is executing a wail, it is 
notified of the calling process's termination and the low order eight 
bits (i.e., bits 0377) of status are made available to it; see wait(2). 

If the parent process of the calling process is not executing a wait, the 
calling process is transformed into a zombie process. A zombie process 
is a process that only occupies a slot in the process table. It has no 
other space allocated either in user or kernel space. The process table 
slot that it occupies is partially overlaid with time accounting informa­
tion (see < sys/prec.h>) to be used by times. 

The parent process ID of all of the calling process's existing child 
processes and zombie processes is set to I. This means the initializa­
tion process (see imro(2)) inherits each of these processes. 

Each attached shared memory segment is detached and the value of 
shm nattach in the data structure associated with its shared memory 
identifier is decremented by 1. 
For each semaphore for which the calling process has set a semadj 
value (see semop(2) l, that semadj value is added to the semval of the 
specified semaphOre. 

If the process has a process, text, or data lock, an unlock is performed 
(see plm:k(2)). 

An accounting record is written on the accounting file if the system's 
accounting routine is enabled; see acct(2). 

If the process ID, tty group ID, and process group ID of the calling 
process are equal, the SIGH UP signal is sent to each process that has a 
process group ID equal to that of the calling process. 

The C function exit may cause cleanup actions before the process exits. 
The function _exilcircumvents all cleanup. 

SEE AlSO 
acct(2), intro(2), plock(2), semop(2), signa1(2), wait(2). 

WARNING 
See WARNING in signa/(2). 

Pagel July 23, 1985 



FCNTL(2) FCNTL{2) 

NAME 
fcntl - file control 

SYNOPSIS 
#include <fcntl.h> 
int fcntl (tildes, emd, arg) 
lnt flldes, emd, arg; 

DESCRIPTION 

Page 1 

Fmtl provides for control over open files. Fildes is an open file descriptor 
obtained from a aeat, OJWn, dtw, .fi:ml, or pill<' system call. 
The cammam/s available are: 

F_DUPFD 

F_GETFD 

F_SETFD 

F_GETFL 

F_SETFL 

F_GETLK 

F_SETLK 

Return a new file descriptor as follows: 

Lowest numbered available file descriptor greater than or 
equal to arg. 

Same open file (or pipe) as the original file. 

Same file pointer as the original file (i.e., both file descrip­
tors share one file pointer). 

Same access mode (read, write or read/write). 

Same file status flags (i.e., both file descriptors share the 
same file status flags). 

The close-on-exec flag associated with the new file 
descriptor is set to remain open across exec(2) system 
calls. __.-

Get the close-on-exec flag associated with the file descrip-
tor ji/des. If the low-order bit is 0 the file will remain 
open across exl'i·, otherwise the file will be closed upon 
execution of exec 

Set the close-on-exec flag associated with Jildes to the 
low-order bit of OrR (0 or 1 as above). 

Get file status flags. 

Set .tile status flags to afl:. Only certain flags can be set; 
see.fCnt/(5). 

Get the first lock which blocks the lock description given 
by the variable of type struct j/ock pointed to by arg. The 
information retrieved overwrites the information passed 
to .tCml in the j/ock structure. If no lock is found that 
would prevent this lock from being created, then the 
structure is passed back unchanged except for the lock 
type which will be set to F_UNLCK. 

Set or clear a file segment lock according to the variable 
of type struct flock pointed to by arg [see .kntf(5)]. The 
emd F SETLK is used to establish read (F RDLCK) and 
write (F WRLCK) locks, as well as remove either type of 
lock (F "iJNLCK). If a read or write lock cannot be set, 
.fCmlwiiT return immediately with an error value of -1. 

August 2, 1985 



FCNTL(2) 

F_SETLKW 

F_GETOWN 

F_SETOWN 

FCNTL (2} 

This cmd is the same as F SETLK except that if a read or 
write lock is blocked by other locks, the process will sleep 
until the segment is free to be locked. 

Get the process ID or process group currently receiving 
SIGIO and SIGURG signals; process groups are returned as 
negative values. 

Set the process or process group to receive SIGIO and 
SIGURG signals; process groups are specified by supplying 
art: as negative, otherwise arg is interpreted as a process 
!D. 

A read lock prevents any process from write locking the protected area. 
More than one read lock may exist for a given segment of a file at a given 
time. The file descriptor on which a read lock is being placed must have 
been opened with read access. 

A write lock prevents any process from read locking or write locking the 
protected area. Only one write lock may exist for a given segment of a file 
at a given time. The file descriP"IOr on which a write lode. is being placed 
must have been opened with write access. 

The structure .ffm·k describes the type (f type), starting offset (f whence), 
relative offset (l_sfart), size ({_fen), and Process id ({_pic/) of the segment 
of the file to be affected. The process id field is only used with the 
F _GETLK cmd to return the value for a block in lock. Locks may start and 
extend beyond the current end of a file, but may not be negative relative to 
the beginning of the file. A lock may be set to always extend to the end of 
file by setting f fen to zero (0). If such a lock also has f start set to zero 
(0), the whole file will be locked. Changing or unlocking-a segment from 
the middle of a larger locked segment leaves two smaller segments for 
either end. Locking a segment that is already locked by the calling process 
causes the old lock type to be removed and the new lock type to take affect. 
All locks associated with a file for a given process are removed when a file 
descriptor for that file is closed by that process or the process holding that 
file descriptor terminates. Locks are not inherited by a child process in a 
j0rk(2) system call. 

Fcmf will fail if one or more of the following are true; 

[EBADF] 

[EMFILE] 

[EJNFJLE] 

(EINVAL] 

(EACCESS] 

August 2, 1985 

Fildes is_ not a valid open file descriptor. 

Cmd is F_DUPFD and 20 file descriptors are currently open. 

Cmd is F _ DUPFD and arg Is negative or great.er than 20. 

Cmd is F GETLK, F SETLK, or SETLKW and arg or the data 
it points 'to is not vaiid. 

Cmd is F SETLK the type of lock (f type) is a read 
(F_RDLCK) or write (F_WRLCK) lock and- the segment of a 
file to be locked is already write locked by another process 
or the type is a write lock and the segment of a file to be 
locked is already read or write locked by another process. 

• .,., 2 



FCNTL(2) FCNTL (2) 

(EM FILE) 

IENOSPC) 

[EDEADLK] 

[ENOTSOCK] 

Cmcfis F_SETLK or F'_SETLKW, the type of lock is a read or 
write lock and there are no more file locking headers avail­
able (too many files have segments locked). 

Cmcfis F_SETLK or F_SETLKW, the type of lock is a read or 
write lock and there are no more file locking headers avail­
able (too many files have segments locked) or there are no 
more record locks available (too many file segments 
locked). 

Cmcf is F_SETLK, when the Jock is bl<X:ked by some lock 
from another process and sleeping (waiting) for that l<X:k 
to become free, this causes a deadl<X:k situation. 

Cmcf is F GETOWN or F SETOWN and ji/des is not a file 
descriptor-for a socket. -

RETURN VALUE 
Upon successful completion, the value returned depends on cmd as follows: 

F _DUPFD A new file descriptor. 
F GETFD Value of flag (only the low-order bit is defined). 
F-SETFD Value other than -I. 
F=GETFL Value of file flags. 
F SETFL Value other than -I. 
F=GETLK Value other that -1. 
F SETLK Value other than -I. 
F-SETLKW Value other than -1. 
F-GETOWN Value other than -1. 
F =SETOWN Value other than -I. ___...· 

Otherwise, a value of -I is returned and errno is set to indicate the error. 

SEE ALSO 
close(2), exec(2), open(2), fcntl(S). 

Page 3 August 2, 1985 



FORK(2) FORK(2) 

NAME 
(.---- fOlk- create a new process 

SYNOPSIS 
int fork 0 

DBSCRIPI10N 
Fork causes creation of a new process. The new process (child process) is an 
exact copy of the calling process (parent process). This means the child process 
inherits the following attribut.es from the parent process: 

envirooment 
close-on-exec flag (see exec(2)) 
signal handling settings (i.e., SIG_DFL, SIG_ING, function address) 
set-user-ID mode bit 
set-group-ID mode bit 
profiting on/off status 
nice value (see nice (2)) 
all attached shared memory segmeniB (see shmop(2)) 
process group m 
tty group ID (see exit(2) and signal(2)) 
II8Ce ftag (see ptrace(2) ICquest 0) 
time left until an alarm clock signal (see alarm(2}) 
current worlcing directory _.........,. 
file mode creation mask (see wnasi(2)) 
file size limit (see u/imit(2)) 

The chi1d process diffen~ from the parent process in the following ways: 

Page I 

The child process has a unique process ID. 

The child process has a different parent process ID (i.e., the process ID of 
the parent process). 

The child process has its own copy of the parent's file descriptors. Each 
of the child's file descriptors shares a common file pointer with the 
corresponding file descriptor of the parent. 

All sernadj values are cleared (see semop(2)). 

Process locks, text locks and data locks are not inherited by the child (see 
plock(2)). 

September 24, 1987 



FORK(2) FORK(2) 

The chikt process's lllime, ~. t:utimt!, and cstime are set to 0 (see 
times(2)). The time left until an alann clock signal is reset to 0. 

Fork will tail and no cbild process will be creared if one or more of the follow­
ing are tme: 

[BAGAIN] 

[EAOAIN] 

[EAGAIN] 

RBTURN VALUB 

The system-imposed limit on the total nmnlx7 of 
processes under execution would be exceeded 

1be system-imposed limit on the 1ota1 n1JIIIIM2" of 
processes under execution by a single I1Sel" would be 
exceeded. 

The system has tempOrarily exhausted its available 
memory or swap space. 

Upon successful completion. fori: returns a value of 0 to the child process and 
returns the process ID of the child process to the parent pocess. Otherwise. a 
value of -I is rettmed to the parent pocess, no child process is crrated. and 
emw is set to indicate the error. 

SBBALSO 
exec(2), Dioe(2), _,.), puace(2), scmop(2), shmop(2), ,;goal(2), tim<0\2). 

September 24. 1987 Page2 



FSTAT(2) SEE STAT FSTAT(l) 

GETEGID(2) SEE GETUID GETEGID(2) 

GETEUID (2) SEE GETUID GETEUID (2) 

GETGID (2) SEE GETU/D GETGID(2) 

- I -



OBTHOSTID(2N) UniSoh OETHOSTID (2N) 

NAME 
gethostid, sethostid - get/set unique identifier of current host 

SYNOPSIS 
boslid = eetbostid 0 
lot hostld; 

sethoslid (hoslid) 
lnt hostld; 
ce ••. -loet 

DESCRIPTION 
Sethostid establishes a 32-bil identifier for the current processor which is 
intended to be unique among all UNIX systems in existence. This is nor­
mally a DARPA Internet address for the local machine. This call is allowed 
only to the super-user and is normally performed at boot time. 

Gethostld returns the 32-bit identifier for the current processor. 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

ce-o PIVII pf811l.C -lnet 

SEE ALSO 
hostid(lN), gethostname(2N) 

BUGS 
32 bits for the identifier is too small. 

Page I July 16, 1985 



GETHOSTNAME(2N) UniSort GETHOSTNAME (2N) 

NAME 
gethostname, sethostname - get/set name of current host 

SYNOPSIS 
aetbostname(name, namelen) 
char *name; 
lnt namelen; 

setbostname(name, namelen) 
char *name; 
lnt namelen; 

ce •.• -lnet 

DESCRIPTION 
Gethost11ame returns the standard host name for the current processor, as 
previously set by sethost11ame. The parameter namele11 specifies the size of 
the name array. The returned name is null-terminated unless insufficient 
space is provided. 

Selhostname sets the name of the host machine to be name, which has 
length 11amelf!ll. This call is restricted to the super·user and is normally 
used only when the system is bootstrapped. 

RETURN VALUE 
If the call succeeds a value of 0 is returned. If the call fails, then a value of 
-I is returned and an error code is placed int the global location errno. 

,...--. ERRORS 
The following errors may be returned by these calls: 

IEFAULT] The 11ameor uamele11 parameter gave an invalid address. 

IEPERM] The caller was not the super-user. 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

tt -o prog prog.c -lnet 

SEE ALSO 
getbostid(2N) 

BUGS 
Host names are limited to 255 characters. 

Page 1 July 16, 1985 



GETPEERNAME(2N) UniSoft GETPEERNAME(2N) 

NAME 
getpeername - get name of connected peer 

SYNOPSIS 
setpeername(s, name, namelen) 
inl s; 
struct soekaddr *name; 
lot *namelen; 

cc ..• -lnel 

DESCRIPTION 
f.i<?tpeemame returns the name of the peer connected to socket s. The 
llam<?l"''' parameter should be initialized to indicate the amount of space 
pointed to by 11ame. On return it contains the actual size of the name 
returned Gn bytes). 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -I if it fails. 

ERRORS 
The call succeeds unless: 

(EBADF] The arguments is not a valid descriptor. 

IENOTSOCK] The argument sis a file, not a socket. 

(ENOTCONNI The socket is not connected. 
[ENOBUFSI 

[EFAULT) 

Insufficient resources were available in the system to per­
form the operation. 

The 11ame parameter points to memory not in a valid part 
of the process address space. 

LINKING 
This library is accessed by specifying -lnel as the last argument to the 
compile line, e.g.: 

ce - o Prot pJOI.C -lnel 

SEE ALSO 
bind(2N), socket(2N), getsockname(2N) 

.... , July 16, 198S 



OETPGRP(2) SEE GETPID GETPGRP(2) 

.r-· 

. I . 



GETPID(2) GETPID(2) 

NAME 
getpid, getpgrp, getppid - get process, process group, and parent process 
ID• 

SYNOPSIS 
lat getpld () 

IDt getpgrp () 

lnt getppld () 

DESCRIPTION 
Getpid returns the process ID of the calling process. 

Getpgrp returns the process group ID of the calling process. 

Getppid returns the parent process ID of the calling process. 

These system calls are useful for generating uniquely-named temporary 
files. 

SEE ALSO 
exec(2), fork(2), intro(2), setpgrp(2), signal(2). 

- 1 -



( 
\ 

r-· 
' 

GETPPID(2) SEE GETPID OETPPID(2) 



OBTSOCKNAME(2N) UniSon GBTSOCKNAME(2N) 

NAME 
getsockname .;.... get socket name 

SYNOPSIS 
ptsockname(s, aame, namelen) 
int s; 
strnet soekaddr *name; 
lnt *namelen; 
cc ••• -lnet 

DESCRIPTION 
Getsockname returns the current name for tbe specified socket. The 
name/en parameter should be initialized to indicate the amount of space 
pointed to by name. On return it contains the actual size of the name 
returned (in bytes). 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -1 if it fails. 

EIUlORS 
The call succeeds unless: 

[EBADF) The arguments is not a valid descriptor. 

[ENOTSOCKI The argument sis a file, not a socket. 

[ENOBUFS) 

(EFAULT] 

Insufficient resources were available in tbe system to per­
form the operation. 
The name parameter points to memory not in a valid part 
of tbe process address space. 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

ec - o Prot! prog.c -lnet 

SEE ALSO 
bind(2N), socket(2N) 

Page I July 16, 1985 



\. __ 

~-
( 

OETSOCKOPT{2N) UniSoft GETSOCKOPT(2N) 

NAME 
getsockopt, setsockopt - get and set options on sockets 

SYNOPSIS 
#include <i!iYI!i/ly~s.b> 
#lndade <sys/soeket.b> 

RelsockopHs, level, optname, optval, optlen) 
int s, lenl, optname; 
char •optval; 
int •optlen; 

setsockopt(s, level, optname, optval, optlen) 
int s, level, oplname; 
char •optval; 
lot optlen; 

ce ..• -lnet 

DESCRIPTION 
Getsockopt and setsockopt manipulate oplions associated with a socket. 
Options may exist at multiple protocol levels; they are always present at the 
uppermost ''socket" level. 

When manipulating socket options the level at which the option resides and 
the name or the option must be specified. To manipulate options at the 
"socket" level, level is specified as SOL SOCKET. To manipulate options 
at any other level the protocol number of the appropriate protcol controlling 
the option is supplied. For example, to indicate an option is to be inter­
preted by the TCP protocol, /eve/ should be set to the protocol number of 
TCP; see getprotoent(3N). 

The parameters optKII and opt/en are used to access option values for set· 
sockopt. For getsockopt they identify a buffer in which the value or the 
requested options(s) are to be returned. For getsockopt, opt/en is a value· 
result parameter, initially containing the size or the buffer pointed to by 
opt110/ . and modified on return to indicate the actual size of the value 
returned. If no option value is to be supplied or returned, optro/ may be 
supplied as 0. 

Optnome and any specified options are passed uninterpreted to the appropri· 
ate protocol module for interpretation. The include file <syslsocket.h> 
contains definitions for "socket'' level options; see socket(2N). Options at 
other protocol levels vary in format and name, consult the appropriate 
entries in (SP). 

RETURN VALUE 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 

Page I 

The call succeeds unless: 

(EBADFI 

(ENOTSOCKI 

(ENOPROTOOPTI 

The argument sis not a \oalid descriptor. 

The arsument sis a file, not a socket. 
The option is unknown. 

July 16, 1985 



OETSOCKOPT(2N) 

[EFAULT) 

UNimiG 

UniSoft GETSOCKOPT(2N} 

The options are not in a valid part of the process 
address space. 

This librazy is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

ec -o pro& proa;.e -lnet 

SEE ALSO 
soeket(2N), getprotoent(JN). 

July 16. 1985 Page 2 



r 

GETUID(2) GETUID(2) 

NAME 
getuid, geteuid, getgid, getegid - get real user, effective user, real group, 
and effective group IDs 

SYNOPSIS 
unslsned short getnld () 

unsigned short geteuid. () 

unsitned short get~:id () 

unsigned shod getegld 0 

DESCRIPTION 
Getuld returns the real user ID of the calling process. 

Geteuid returns the effective user ID of the calling process. 

Getgid returns the real group ID of the calling process. 

Getegid returns the effective group ID of the caJiing process. 

SEE ALSO 
intro(2), setuid(2). 

- I -



IOCTL(2) IOCTL(2) 

NAME 
ioctl - control device 

SYNOPSIS 
ioctl (fillies, request, arg) 
inl llldes, request; 

DESCRIPTION 
/oct/ performs a variety of functions on character special files (devices). 
The write-ups of various devices in Section 7 of lhe UniP/us+ System 
Administrator Reference Manual discuss how ioctl applies to them. 

/oct! wiU fail if one or more of the following are true: 

(EBADF] Fildes is not a valid open file descriptor. 
[ENOTIYJ 

(EINVAL] 

(EJNTRJ 

RETURN VALUE 

Fildes is not associated with a character special device. 
Request or arg is not valid. See Section 7 of the Un/Pfus+ 
System Adminisll'ator Reference ManuaL 

A signal was caught during the /oct/ system call. 

If an error has occurred, a value of -I is returned and errno is set to indi· 
cate the error. 

SEE ALSO 
termio(7) in the UniP/us+ System Administrator Reference Manual. 

- I -



KILL(2) IULL(2) 

NAME 
kill - send a signal to a process or a group of processes 

SYNOPSIS 
lal kill (pid, sig) 
tat pld, sla; 

DESCRIPTION 
Kill sends a signal to a process or a group of processes. The process or 
group of processes to which the signal is to be sent is specified by pid. The 
signal that is to be sent is specified by slg and is either one from the list 
given in slgna/(2), or 0. If sig is 0 (the null signaO, error checking is per­
formed but no signal is actually sent. This can be used to check the validity 
of pid. 

The real or effective user ID of the sending process must match the real or 
effective user ID of the receiving process, unless the effective user ID of the 
sending process is super-user, or the process is sending to itself. 

The processes with a process ID of 0 and a process ID of 1 are special 
processes (see lntro(2)) and will be referred to below as procO and procl 
respectively. 

If pid is greater than zero, sig will be sent to the process whose process ID 
is equal to pld. Pld may equal l. 

If pld is 0, slg will be sent to all processes excluding procO and procl whose 
process group ID is equal to the process group ID of the sender. 

If pid is -I and the effective user ID of the sender is not super-user, sig 
wiD be sent to all processes excluding procO and procl whose real user 10 is 
equal to the effective user ID of the sender. 

If pid is -I and the effective user ID of the sender is super-user, sig will be 
sent to aU processes excluding procO and procl. 

If pid is negative but not -1, sig will be sent to all processes whose process 
group ID is equal to the absolute value of pld. 

KI/J will fail and no signal will be sent if one or more of the following are 
true: 

IEINVAL] 

IEINVALI 

IESRCHI 

IEPERMI 

RETURN VALUE 

Sig is not a valid signal number. 
Sig is SIGKILL and pid is 1 (procl). 

Ng process can be found corresponding to that 
specified by pid. 

The sendins; process is not sending to itself, its 
effective user ID is not super-user, and its real or 
effective user lD does not match the real or effective 
user ID of the receiving process. IEPERMI 

Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
kill (I), getpid(2), setpgrp(2), signal(2). 

- I -



LINK(l} LINK(l} 

NAME 
link - link to a file 

SYNOPSIS 
int link (pathl, path2) 
char •pathl, •path2; 

DESCRIPTION 
Path/ points to a path name naming an existing file. Pathl points to a path 
name naming the new directory entry to be created. Link creates a new 
link (directory entry) for the existing file. 

Link will fail and no link will be created if one or more of the following are 
true: 
[ENOTDIR] 

(ENOENT] 

[EACCES] 

[ENOENT] 

[EEXIST] 

(EPERM] 

(EXDEVI 

[ENOENT] 

[EACCES] 

[EROFS) 

IEFAULTI 

(EM LINK] 

R.BTUR.N VALUE 

A component of either path prefix is not a directory. 

A component of either path prefix does not exist. 

A component of either path prefix denies search permis· 
sion. 

The file named by path/ does not exist. 

The link named by pathl exists. 

The file named by path 1 is a directory and the effective 
user ID is not super.user. 

The link named by pathl and the file named by path/ are 
on dilferent logical devices (file systems). 

Pathl points to a null path name. 

The requested link requires writing in a directory with a 
mode that denies write permission. 

The requested link requires writing in a directory on a 
read·only file system. 

Path points outside the aJiocated address space of the pro· 
cess. 

The maximum number of links to a file would be 
exceeded. 

Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -I is returned and errno is set to indicate the error. 

SI!.E ALSO 
unlink<2). 

- I -



LISTEN UN) UniSort LISTEN (2N) 

NAME 
listen - listen for connections on a socket 

SYNOPSIS 
llslen(s, h•eklog) 
lnt s, b•eklog; 

ee ••• -lnel 

DESCRIPTION 
To accept connections, a socket is first created with socket(2N), a backlog 
for incoming connections is specified with listen(2N) and then the connec· 
tions are accepted with atcept(2N). The listen call applies only to sockets of 
type SOCK_STREAM or SOCK_PKTSTREAM. 

The backlog parameter defines the maximum length the queue of pending 
connections may grow to. If a connection request arrives with the queue 
full the client will receive an error with an indication of ECONNREFUSED. 

RETURN VALUE 
A 0 return value indicates success; -I indicates an error. 

ERRORS 
The call fails if: 

[EBADFl 

[ENOTSOCK) 

[EOPNOTSUPP) 

The argument sis not a valid descriptor. 

The argument sis not a socket. 

The socket is not of a type that supports the opera­
tion listen. 

LJNK.INO 
This library is accessed by specifying -Inel as the last argument to the 
compile line, e.g.: 

ec -o prog prog.e -lnet 

SEE ALSO 
accept(2N), connect(2N), socket(2N) 

BUGS 
The backlog is currently limited (silently) to 5. 

Page I July 16, 1985 



LOCKING(2) UniSoft LOCKING{2) 

NAME 
locking - provide exclusive file regions for reading or writing 

SYNOPSIS 
locklng(fildes, mode, size) 
int Wdes; 
lnt mode; 
lnt size; 

DESCRIPTION 
Locking will allow a specified number of bytes to be accessed only by the 
locking process. Other processes which attempt to lock, read, or write the 
locked area will sleep until the area becomes unlocked. 

Fildes is the word returned from a successful open, aea1, dup, or pipe sys­
tem call. 

Mode is zero to unlock the area. Mode is one or two for making the area 
locked. If the mode is one and the area has some other lock on it, then the 
process will sleep until the entire area is available. If the mode is two and 
the area is locked, an error will be returned. 

Size is the number of contiguous bytes to be locked or unlocked. The•area 
to be locked starts at the current offset in the file. If size is zero, the area 
to the end of file is locked. 

The potential for a deadlock occurs when a process controlling a locked area 
is put to sleep by accessing another process's locked area. Thus calls to 
locking, read, or wrile scan for a deadlock prior to sleeping on a locked area. 
An error return is made if sleepins; on the locked area would cause a -· 
deadlock. 

Lock requests may, in whole or part, contain or be contained by a previ­
ously locked area for the same process. When this or adjacent areas occur, 
the areas are combined into a single area. If the request requires a new 
lock element with the lock table full, an error is returned, and the area is 
not locked. 

Unlock requests may, in whole or part, release one or more locked regions 
controlled by the process. When regions are not fully released, the remain­
ing areas are still locked by the process. Release of the center section of a 
locked area requires an additional lock element to hold the cut off section. 
If the lock table is full, an error is returned, and the requested area is not 
released. 

While locks may be applied to special files or pipes, read/write operations 
will not be blocked. Locks may not be applied to a directory. 

Note that c/ose(2) automatically removes any locks that were associated 
with tile closed file descriptor. 

SEE ALSO 
close(2), creat(2), dup(J), open(2), read(2), write(3). 

DIAGNOSTICS 

Page I 

The value -I is returned if the file does not exist, or if a deadlock using 
file locks would occur. EACCES will be returned for lock requests in which 
the area is already locked by another process. EDEADLOCK will be returned 

July 29, 1985 



LOCIC.Ii-.0 ( 2) UaiSoft LOCIC.ING (2) 

by: read, write, or locking if a deadlock would occur. EDEADLOCK will also 
be returned when the locktable overflows. 

July 29, 1985 Page 2 



LSEEK(2) LSEEIC.(2) 

NAME 
!seek - move read/write file pointer 

SYNOPSIS 
lona lseek (tildes, alfset, whene!e) 
lot fllies; 
lont oJfset; 
lot wbeoee; 

DESCRIPTION 
Fildes is a file descriptor returoed from a creat, open, dup, or ji:ntl system 
call. Lseek sets the flle pointer associated with }ifdes as follows: 

If whence is 0, the pointer is set to o.ffiet bytes. 

If whence is I, the pointer is set to its current location plus offiet. 

If whence is 2, the pointer is set to the size of the file plus offiet. 

Upon successful completion, the resulting pointer location, as measured in 
bytes from the beginning of the file, is returned. 

Lseek will fail and the file pointer will remain unchanged if one or more of 
the following are true: 

(EBADF] Fildes is not an open file descriptor. 

[ESPIPE] Fildes is associated with a pipe or fifo. 

(EINVAL and SIGSYS signal] 
Whence is not 0, 1, or 2. 

[EINVAL] The resulting file pointer would be neptive. 

Some devices are incapable of seeking. The value of the file pointer associ­
ated with such a device is undefined. 

RETURN VALUE 
Upon successful completion, a non-negative integer indicating the file 
pointer value is returned. Otherwise, a value of -1 is returned and errno 
is set to indicate the error. 

SEE ALSO 
creat(2), dup{l), fcntl{2), open(2). 

Page I July 22, 1985 



MKNOD(2) MKNOD\J.J 

NAME 
mknod - make a directory, or a special or ordinary file 

SYNOPSIS 
lnl mknod (palh, mode, deY) 
char •palb; 
int mode, deY; 

DESCRIPTION 
Mknod creates a new file named by the path name pointed to by path. The 
mode of the new file is initialized from mode. Where the value of mode is 
interpreted as follows: 

0170000 file type; one of the following: 
0010000 fifo special 
0020000 character special 
0040000 directory 
0060000 block special 
0100000 or 0000000 ordinary file 

0004000 set user ID on execution 
0002000 set group ID on execution 
0001000 save text image after execution 
0000777 access permissions; constructed from the following 

0000400 read by owner 
0000200 write by owner 
0000100 execute (search on directory) by owner 
0000070 read, write, execute (search) by group 
0000007 read, write, execute (search) by others 

The owner ID of the file is set to the effective user ID of the process. The 
group ID of the file is set to the effective group ID of the process. 

Values of mode other than those above are undefined and should not be 
used. The low-order 9 bits of mode are modified by the process's file mode 
creation mask: all bits set in the process's file mode creation mask are 
cleared. See umask(2). If mode indicates a block or character special file, 
dev is a configuration-dependent specification of a character or block 110 
device. If mode does not indicate a block special or character special device, 
dev is ignored. 

Mknod may be invoked only by the super-user for file types other than 
FIFO special. 

Mknod will fail and the new file will not be created if one or more of the 
following are true: 

[EPERMI The effective user ID of the process i.~ not super-user. 
[ENOTDIR] 

[ENOENT] 

[EROFSI 

(EEXIST] 

(EFAULT] 

RETURN VALUE 

A component of the path prefix is not a directory. 

A component of the path prefix does not exist. 

The directory in which the file is to be created is located on 
a read-only file system. 

The named file exists. 

Path points outside the allocated address space of the pro­
~;:ess. 

Upon successful completion a value of 0 is returned. Otherwise, a value of 

- l -



MKNOD(2) MKNOD(2) 

-I is returned and errno is set to indicate the error. 

SEE ALSO 
mkdir(l), chmod(2), exec(2), umask(2), fs(4). 

---

- 2 -



r-

MOUNT(2) MOUNT(l) 

NAME 
mount - mount a file system 

SYNOPSIS 
int mount (spec, dlr, rwftag} 
char •spec, •dir; 
int rwfla~:; 

DESCRIPTION 
Mount requests that a removable file system contained on the block special 
file identified by spec be mounted on the directory identified by dir. Spec 
and dir are pointers to path names. 

Upon successful completion, references to the file dir will refer to the root 
directory on the mounted file system. 

The low-order bit of rwjfag is used to control write permission on the 
mounted file system; if 1, writing_ is forbidden, otherwise writing is permit­
ted ae<:ording to individual file accessibility. Physically write-protected and 
magnetic tape file systems must be mounted read-only or errors will occur 
when ae<:ess times are updated, whether or not any explicit write is 
attempted. 

Mount may be invoked only by the super-user. 

Mount will fail if one or more of the following are true: 

[EPERMI The effective user ID is not super-user. 
[ENOENT] 

[ENOTDIR] 

[ENOTBLK] 

[ENXIO] 

[ENOTDIR] 

[EFAULT] 

IEBUSYI 

(EBUSY] 

(EBUSY) 

RETURN VALUE 

Any of the named files does not exist. 

A component of a path prefix is not a directory. 

Spec is not a block special device. 

The device associated with spec does not exist. 

Dir is not a directory. 

Spec or dir points outside the allocated address space of the 
process. 

Dir is currently mounted on, is someone's current working 
directory, or is otherwise busy. 

The device associated with spec is currently mounted. 

There are no more mount table entries. 

Upon sue<:essful completion a value of 0 is returned. Otherwise, a value of 
-I is returned and errno is set to indicate the error. 

SEE ALSO 
umount(2). 

. I . 



MSGCTL(2) MSGCTL(2) 

NAME 
msgctl - message control operations 

SYNOPSIS 
#include <sys/types.h> 
#loclnde <sys/ipc.b> 
#include <sys/msg.b> 

inr msactl (msqid, cmd, bu.f) 
int msqid, cmd; 
struct msqid_ ds •buf; 

DESCRIPTION 
Msgcd provides a variety of message control operations as specified by cmd. 
The following cmds are available: 

IPC_STAT Place the current value of each member of the data struc­
ture associated with msqid into the structure pointed to by 
buf. The contents of this structure are defined in intro(2). 
{READ I 

IPC_SET 

IPC_RMID 

Set the value of the following members of the data struc­
ture associated with msqid to the corresponding value 
found in the structure pointed to by IHif. 

msg_perm.uid 
msg__perm.gid 
msg_perm.mode /• only low 9 bits •/ 
msg_qbytes 

This cmd can only be executed by a process that has an ___/ 
effective user ID equal to either that of super user or to the 
value of msg_perm.nld in the data structure associated 
with msqid. Only super user can raise the value of 
msg_,bytes. 

Remove the messpge queue identifier specified by msqid 
from the system and destroy the message queue and data 
structure associated with it. This cmd can only be executed 
by a process that bas an effective user ID equal to either 
that of super user or to the value of ms1_perm.uld in the 
data structure associated with msqid. 

Msgctlwill fail if one or more of the following are true: 

IEINVAL] Msqidis not a valid message queue identifier. 

[EINVAL] 

IEACCES] 

IEPERMI 

IEPERMI 

Cmd is not a valid command. 

CnuJ is equal to IPC_STAT and IREADJ operation permis­
sion is denied to the -caUin& process (see lntro(2)). 

Cmd is equal to JPC_RMID or IPC_SET. The effective user 
ID of the call.ing process is not equal to that of super user 
and it is not equal to the value of mq_perm.ui• in the 
data structure associated with msqid. 

Cmd is equal to IPC SET, an attempt is being made to 
increase to the value Or ms& qbytes, and the effective user 
ID of the callin& process is nOt equal to that of super user. 

- I -



,r' 

'~ 

'~ 

MSGCTL(Z) MSOCTL(2) 

[EFAULTI Bl((points to an illegaJ address. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of 
-1 is returned and errno is set to indicate the error. 

SEE ALSO 
intro(2), msgget(2), msgop(2). 

- 2-



MSGGET(2) MSGGET(2) 

NAME 
msgget - get message queue 

SYNOPSIS 
#lodnde <sys/types.b> 
#Include <sys/ipe.h> 
#include <sys/msg.h> 
lnt msgget (key, msg81) 
key_t key; 
int msg8g; 

DESCRIPTION 
Msgget returns the message queue identifier associated with key. 

A message queue identifier and associated message queue and data struc­
ture (see intro(2)) are created for key if one of the following are true: 

10 Key is equal to IPC_PR.IVATE. 

Key does not already have a message queue identifier associated 
with it, and (msgffg &. IPC_CR.EAT) is "true". 

Upon creation, the data structure associated with the new message queue 
identifier is initialized as follows: 

Mse_perm.euid, msg_perm.uid, msg__perm.qld, and 
msg_perm.gid are set equal to the effective user 10 and effective 
group ID, respectively, of the caJiing process. 

The low-order 9 bits of msg_perm.mode are set equal to the low­
order 9 bits of msgffg. 

Msg_qnum, msg__lspid, msg_lrpld, msx_stime, and msg_rlime are 
set equal to 0. 

Msa_etime is set equa1 to the current time. 

Msg__qbytes is set equal to the system limit. 

M$1fget will fail if one or more of the following are true: 

[EACCES) A message queue identifier exists for key, but operation 
permission (see intro(2)) as specified by the low-order 9 
bits of msg/fg would not be granted. 

[ENOENT] 

[ENOS PC] 

[EEXIST] 

RETURN VALUE 

A message queue identifier does not exist for key and 
(msgflg & IPC_CREAT) is "false". 

A message queue identifier is to be created but the 
system-imposed limit on the maximum number of aUowed 
message queue identifiers system wide would be exceeded. 

A message queue identifier exists for key but ( (msgflg & 
IPC_CREAT) & ( msgffg & IPC_EXCL)) is "true". 

Upon successful completion, a non-negative integer, namely a message 
queue identifier, is returned. Otherwise, a value of -1 is returned and __..· 
errno is set to indicate the error. 

SEE ALSO 
intro(2), msgctl(2), msgop(2). 

- I -



MSGOP(2) 

NAME 
,!' msgop, msgsnd, msgrcv - message operations 

SYNOPSIS 
#include <Sys/typts.h> 
#include <Sys/ipc.b> 
#include csys/msg.h> 

lnt msgmd (msqid, msgp, msgsz, msgftg) 
lnt maqld; 
struct msgbut •msgp; 
int mspz, msgll&; 

int msarcv (msqld, msgp, msgsz, mSgtyp, msg:llg) 
iDt msqid; 
strnct msgbnf •msgp; 
int mspz; 
loog msgtyp; 
lilt msgflg; 

DESCRIPTION 

MSGOP(2) 

Msgsnd is used to send a message to the queue associated with the message 
queue identifier specified by msqid. {WRJI'E) Msgp points to a structure con~ 
taining the message. This structure is composed of the following members: 

long mtype; ,. message type ., 
char mtext[]; /• message leXt •I 

Mtype is a positive integer that can be used by the receiving process for mes­
sage selection (see msgrcv below). Mtext is any text of length msgsz bytes. 
Msgsz can range from 0 to a system-imposed maximum. 

Msgftg specifies the action to be taken if one or more of the following are true: 

The number of bytes already on the queue is equal to msg_ qbytes (see 
intro(2)). 

The total number of messages on all queues system-wide is equal to the 
system-imposed limit. 

These actions are as follows: 

Page I 

If (msgflg & IPC_NOWAIT) is "true", the message will not be sent and 
the calling process will retum immediately. 

September 24, 1987 



MSGOP(2) MSGOP(2) 

If (.,.gflg &IPC_NOWAIT) u "fabe", lbc calling process will­
cxeculion until one of the following occurs: 

The condition lelpOilSible for the suspension no longer exists, in 
which cue lhe message is senL 

M&qid is removed from the system (see msgctl(2)). When this 
occurs, errno is set equal 1o EIDRM. and a value of -1 is recumed. 

The calling process receives a signallbat is to be caughL In this case 
the message is not sent and lbe ca1ling process resumes execulion in 
1be manner prcscribcd in sigiUJl (2)). 

Msgmd will fail and no message will be sent if ooe cr more of the following are 

"""' IEINVALI 
[I!ACCI!SI 

IEINVALI 
[I!AGAIN] 

IEINVALJ 

(BPAULT] 

Msqid is nota valid message queue identifiu. 

Operation permission is denied 10 the calling process 
(see inlro (2)). 

Mtype is less than 1. 

The message cannot be llmlt for one of the reMODS cited 
above and (msgftg &IPC_NOWAIT)is .. lrue". 

Msgsz is less lhan ZICro or greater than 1he system­
Uoposed llinU. 

Msgp points to an illcga1 address. 

Upon succeasfuJ. completion. lbe following IEtions are taken with respect 10 lhe 
data SlrUCIOre associaled with msqid (see intro (2)). 

Mq_qaUDI is inaemenred by ], 

Mlc...lspld is set equal to the process m or the ealling process. 

Ml&_stlme is set cquaiiO lhe current time. 

Msgrcv reads a message from the q.-eoe associared with tbc message queue 
identifier specified by msqid and places it in the structure pointed to by msgp. 
(READ) 'Ibis struclllrC is composed of the foUowing members: 

Joog mtype; ,. -type., 
dlar mtext[]; ,. message text., 

Mtypc is tbc rccdvcd messasc's type u specified by the ICilding process. 
Mtut is the text of the message. Msgn specifies the size in bytes of mtul. 

September 24, 1987 Page2 



MSGOP(2) MSGOP(2) 

The received message is truncated 10 msgsz byteS if it is larger than msgsz and 
(msgflg & MSG_NOERROR) is "true". The truncated part of the message is 
lost and no indication of the truncation is given to the calling process. 

Msgtyp specifies the type of message requested as follows: 

If msgtyp is equal to 0, the first message on the queue is received. 

If msgtyp is greater than 0, the first message of type msgtyp is received 

If msgtyp is less than 0, the first message of the lowest type that is less 
than or equal to the absolute value of msgtyp is received. 

Msgflg specifies the action to be taken if a message of the desired type is not on 
the queue. These are as follows: 

If (msgflg & IPC_NOWAIT) is "true", the calling process will return 
immediately with a return value of -1 and emw set to ENOMSG. 

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend 
execution until one of the following occurs: 

A message of the desired type is placed on the queue. 

Msqid is removed from the system. When this occurs, errno is set 
equal to EIDRM, and a value of -1 is returned. 

The calling process receives a signal that is to be caught. In this case 
a message is not received and the calling process resmnes execution 
in the marmer p-escribed in signal (2)). 

Msgrcv will fail and no message will be received if one or more of the follow­
ing are true: 

[EINVAL] 

[EACCES] 

[EINVAL] 

Msqid is not a valid message queue identifier. 

Operation permission is denied to the calling process. 

Msgsz is less than 0. 

[E2BIG] Mtext is greater than msgsz and (msgflg & 
MSG_NOERROR) is "false", 

[ENOMSO] The queue does not contain a message of the desired 
type and (msgtyp & IPC_NOWAIT)is "true". 

[EFAULT] Msgp points to an illegal address. 

Upon successful completion, the following actions are taken with respect to the 
data structure associated with msqid (see intro (2)). 

Page3 September 24, 1987 



MSGOP(2) MSGOP(2) 

Msg_ qnum is decremented by I. 

Msg_ Irpid is set equal to the process ID of the calling process. 

Msg_ rtime is set equal to the cwrent time. 

RETURN VALUES 
If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is 
returned to the calling process and errno is set to EINTR. If they return due to 
removal of msqid from the system, a value of -1 is returned and errno is set to 
EIDRM. 

Upon successful completion, the return value is as follows: 

Msgsnd returns a value of 0. 

Msgrcv returns a value equal to the number of bytes actually placed into 
mt<Xt. 

Othenvise, a value of -1 is returned and errno is set to indicate the CII'OI'. 

SEE ALSO 
intro(2), msgctl(2), msgget(2), signal(2). 

September 24, 1987 ...... 
---" 



NICE(2) 

NAMB 
~ nice - change priority of a process 

SYNOPSIS 
int nice (incr) 
int incr; 

DESCRIPTION 

NICE(2) 

Nice adds the value of incr to the nice value of the calling process. A process's 
nice value is a positive number for which a more positive value results in lower 
CPU priority, 

A maximum nice value of 39 and a minimum nice value of 0 are imposed by 
the system. Requests for values above or below these limits result in the nice 
value being set to the corresponiling limit. 

[EPERMJ Nice will fail and not change the nice value if incr is nega­
tive or greater than 40 and the effective user ID of the calling 
process is not super-user. 

RETURN VALUE 
Upon successful completion, nice returns the new nice value minus 20. Other-

r·- wise, a value of -1 is returned and errno is set to indicate the error. If a value 
of -1 is a valid return value on successful completion (i.e., if your new nice 
value is 19), errno is not changed. 

SEE ALSO 
nice(l), exec(2). 

Page I September 24, 1987 



OPEN{l) OPEN (2) 

NAME 
open - open for reading or writing 

SYNOPSIS 
#include <fcntl.h> 
lnt open (path, ollag [ , mode I ) 
char •path; 
int ollag, mode; 

DESCRIPTION 

Page I 

Pmh points to a path name naming a file. Opl!n opens a file descriptor for 
the named file and sets the file status flags according to the value of u.!la~J. 
0./lag values are constructed by or-ing flags from the following list (only 
one of the first three flags below may be used): 

O_RDONLY Open for reading only. 

O_WRONLY Open for writing only. 

O_RDWR 

O_NDELAY 

O_APPEND 

O_CREAT 

Open for reading and writing. 

This flag may affect subsequent reads and writes. See 
read(2) and wrile(3). 

When opening a FIFO with O_RDONLY or O_WRONLY set: 

lfO_NDELAY is set: 

An opl!n for reading-only will return without delay. 
An open for writing-only will return an error if no 
process currently has the file open for reading. · 

If O_NDELAY is clear: 

An open for reading-only will block until a process 
opens the file for writing. An open for writing-only 
will block until a process opens the file for reading. 

When opening a file associated with a communication line: 

If O_NDELAY is set: 

The open will return without waiting for carrier. 

lfO_NDELAY is clear: 

The open will block until carrier is present. 

If set, the file pointer will be set to the end of the file prior 
to each write. 

If the file exists, this flag has no effect. Otherwise, the 
owner ID of the file is set to the effective user ID of the pro­
cess, the group ID of the file is set to the effective group ID 
of the process, and the low-order 12 bits of the file mode 
are set to the value of mode modified as follows (see 
creat(2)): 

All bits set in the file mode creation mask of the 
process are cleared. See umask(2). 

The "save tellt image after execution bit" of the 
mode is cleared. See chmod(2). 

July 29, 1985 



,­
{ 

OPEN (2} 

O_TRUNC 

O_EXCL 

OPEN(2) 

If the file exists, its length is truncated to 0 and the mode 
and owner are unchanged. 

If 0 EXCL and 0 CREA T are set, .open will fail if the file 
exisiS. -

The file pointer used to mark the current position within the file is set to 
the beginning of the file. 

The new file descriptor is set to remain open across exec system calls. See 
JCnt/(1). 

The named file is opened unless one or more of the following are true: 

[ENOTDIR] A component of the path prefix is not a directory. 

(ENOENTl o_CREAT is not set and the named file doeS not exist. 

[EACCES] 

[EACCES] 

[EISDIR] 

[EROFS] 

[EM FILE] 

[ENXIO] 

[ETXTBSY] 

[EFAULT] 

[EEXIST] 

[ENXIO] 

(EINTR] 

!EN FILE] 

RETURN VALUE 

A component of the path prefix denies search permission. 

Oj/ag permission is denied for the named file. 

The named file is a directory and oj/ag is write or 
read/write. 

The named file resides on a read-only file system and oj/ag 
is write or read/write. 
Twenty (20) file -descriptors are currently open. 

The named file is a character special or block special file, 
and the device associated with this special file does not 
exist. 
The file is a pure procedure (shared text) file that is being 
executed and o.flag is write or read/write. 

Path points outside the allocated address space of the pro­
cess. 
o_CREAT and O_EXCL are set, and the named file exists. 

0 NDELA Y is set, the named file is a FIFO, 0 WRONL Y is 
sit, and no process has the file open for readini. 

A signal was caught during the open system call. 

The system file table is full. 

Upon successful completion, the file descriptor is returned. Otherwise, a 
value of -I is returned and errno is set to indicate the error. 

SEE ALSO 
chmod(2), close(2), creat(2), fcntH2), lseek(2), read(2), umask(2), 
write(J). 

July 29, 1985 Page2 



PAUSB(l) PAUSB(l) 

NAME 
pause - suspend process until signal 

SYNOPSIS 
pause 0 

DESCRIPTION 
Pause suspends the caJJing process until it receives a signal. The signal 
must be one that is not currently set to be ignored by the calling process. 

If the signal causes termination of the calling process, pause will not return. 

If the signal is caught by the calling process and control is returned from 
the signal-catching function (see sfgna/(2)), the calling process resumes 
execution from the point of suspension; with a return value of -1 from 
pause and errno set to EINTR. 

SEE ALSO 
alarm(2}, kill(2}, signai(2}, wait(2). 

- l -



PHYS(2) UaiSort PHYS (2) 

NAME 
phys - allow a process to access physical addresses 

SYNOPSIS 
pbys(pbysnum, virtaddr, size, physaddr) 
inl pbysnum 
char *vlrtaddr; 
loq size; 
char *pbysaddr; 

DESCRIPTION 
The p/zys(2) call maps arbitrary physical memory into a process's virtual 
address space. The virtual address used by phys must not otherwise be 
used. Physnum is a number (0-3) that specifies which of 4 physical spaces 
to set up. Up to 4 phys(2) cans .can be active at any one time. Virtaddr is 
the process's virtual address. Size is the number of bytes to map in. Phy­
saddr is the physical address to map in. 

Valid virlllddr and physaddr values are ~nstrained by hardware and must be 
at an address multiple of the resolution of the CPU's memory management 
scheme. If size is non zero, size is rounded up to the next MMU resolution 
boundary. If size is zero, any previous phys(2) mapping for that physnum 
segment is nullified. 

For example, the call: 

phys(2, OxlOOOOO, 32768, 0) 

will allow a process to access physical locations 0 through 32767 by 
referencing virtual address OxlOOOOO through OxlOOOOO+ 32767. 

In actuality, the CPU MMU register is loaded with physaddr shifted to 
account for page resolution. 

Phys(2) may only be executed by the super-user. 

DIAGNOSTICS 

BUGS 

The value zero is returned if the phys call was successful. The value -I is 
returned if not super-user, if ~irtaddr or phyroddr is not in the proper range, 
or if the specified virtaddr segment register is already in use. 

This system call is very machine dependent. 



PIPE(2) PIPE(2) 

NAME 
pipe - create an interprocess channel 

SYNOPSIS 
lnl pipe (tildes) 
tnt llldesl21; 

DESCRIPTION 
Pipe creates an 110 mechanism called a pipe and returns two file descrip­
tors, fi/de.s[O] and fiide.s[ll. Filde.s[O] is opened for reading and fildes(l) is 
opened for writing. 

Up to 5120 bytes of data are buft"ered by the pipe before the writing process 
is blocked. A read only file descriptor fi/des[O] accesses the data written to 
fi/de.slll on a first-in-first-out (FIFO) basis. 

[EMFILEI 

IENFILE) 

P;pe will fail if 19 or more file descriptors are currently 
open. 

The system file table is full. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -I is returned and ermo is set to indicate the error. 

SEE ALSO 
sb(l), read(l), write(J). 

Page I July 29, 1985 



PLOCK(2) PLOCK(2) 

NAME 
plock.- lock process, text, or data in memory 

SYNOPSIS I 
#include <Sys/lock.h> 

int plock (op) 
int op; 

DBSCRIPI10N 
Plock allows the calling process to lock its text segment (text lock), its data seg­
ment (data lock), or both its text and data segments (process lock) into memory. 
Locked segments are immune to all routine swapping. Plock also allows these 
segments to be unlocked The effective user ID of the calling process must be 
super-user to use this call. Op specifies the following: 

PROCLOCK- lock text and data segments into memory (process 
lock) 

TXTLOCK- lock text segment into memory (text lock) 

DATLOCK- lock data segment into memory (data lock) 

UNLOCK- remove locks 

Plock will fail and not perform the requested operation if one or more of the 
following are true: 

[EPERM! 

[EAGAIN] 

[EINVAL] 

[EINVAL] 

[BINVAL] 

[BINVAL] 

Rl!TURN VALUE 

1be effective user ID of the calling process is not super-user. 

1be system has temporarily exhausted its available memory 
or swap space. 

Op is equal to PROCLOCK and a process lock, a text lock, or 
a data lock already exists on the calling process. 

Op is equal to TXTLOCK and a text lock, or a process lock 
already exists on the calling process. 

Op is equal to DATWCK and a data lock, or a process lock 
already exists on the calling process. 

Op is equal to UNLOCK and no type of Jock exists on the 
calling process. 

Upon successful completion, a value of 0 is returned to the calling process. 
Otherwise, a value of -1 is returned and errno is set to indicate the error. 

Page 1 September 2A, 1987 



PLOCK(2) PLOCK(2) 

SEE ALSO 
exec(2), exit(2), fork(2). 

September 24, 1987 Page2 



r­
' 

PROFIL (2) PROFIL(2) 

NAME 
profil - execution time profile 

SYNOPSIS 
pr~fil (buff, bufsb:, offset, s~ale) 
char •buff; 
int bufsiz, offset, scale; 

DESCRIPTION 
Buff points to an area of core whose length Gn bytes) is given by buftiz. 
After this call, the user's program counter (pc) is examined each clock tick; 
offset is subtracted from it, and the result multiplied by scale. If the result· 
ing number corresponds to a word inside buff, that word is incremented. 

The scale is interpreted as an unsigned (16 bit), fixed-point fraction with 
binary point at the left: FFFF (hex) gives a 1-1 mapping of pc's to words in 
buff; FFFF (hex) maps each pair of instruction words together. 2(hex) 
maps aU instructions onto the beginning of buff (producing a non· 
interrupting core clock). 

Profilifli is turned off by giving a scale of 0 or I. It is rendered ineffective 
by giving a bujslz of 0. Profiling is turned off when an exec is executed, but 
remains on in child and parent both after a fork. Profiling will be turned 
off if an update in buff would cause a memory fault. 

RETURN VALUE 
Not defined. 

SEE ALSO 
prof(I), monitor(3C). 

- 1 -



PTRACE(l) PTRACE(l) 

NAME 
ptrace - process trace 

SYNOPSIS 
lnt ptnce (request, pld, addr, data): 
int request, pld, addr, d11ta; 

DESCRIPTION 
Ptrace provides a means by which a parent process may control the execu­
tion of a child process. Its primary use is for the implementation of break­
point debugging. The child process behaves normally until it encounters a 
signal (see signa/(2) for the lisd, at which time it enters a stopped state 
and its parent is notified via wait(2). When the child is in the stopped 
state, its parent can examine and modify its "core image" using ptrace. 
Also, the parent can cause the child either to terminate or continue, with 
the possibility of ignoring the signal that caused it to stop. 

The request argument determines the precise action to be taken by ptrace 
and is one of the following: 

0 This request must be issued by the child process if it is to be 
traced by its parent. It turns on the child's trace flag that stipu­
lates that the child should be left in a stopped state upon receipt 
of a signal rather than the state specified by jilnc; see signal(2). 
The pid, addr, and data arguments are ignored, and a return 
value is not defined for this request. Peculiar results will ensue 
if the parent does not expect to trace the child. 

The remainder of the requests can only be used by the parent process. For 
each, pid is the process ID of the child. The child must be in a stopped 
state before these requests are made. 

I, 2 With these requests, the word at location addr in the address 
space of the child is returned to the parent process. Either 
request 1 or request 2 may be used with equal results. The data 
argument is ignored. These two requests will fail if addr is not 
the start address of a word, in which case a value of -I is 
returned to the parent process and the parent's errno is set to -
EIO. 

3 With this request, the word at location addr in the child's USER 
area in the system's address space (see <sys/user.h>) is 
returned to the parent process. Addresses are system dependent. 
The data argument is ignored. This request will fail if addr is 
not the start address of a word or is outside the USER area, in 
which case a value of -I is returned to the parent process and 
the parent's errno is set to EIO. 

4, 5 With these requests, the value given by the data argument is 
written into the address space of the .child at location addr. 
Either request 4 or request 5 may be used with equal results. 
Upon successful completion, the value written into the address 
space of the child is returned to the parent. These two requests 
will fail if addr is a location in a pure procedure space and 
another process is executing in that space, or addr is not the start 
address of a word. Upon failure a value of -I is returned to the 
parent process and the parent's errno is set to EIO. 

- I -



'-

PTRACE(2) 

• 

7 

8 

9 

PTRACE(2) 

With this request, a few entries in the child's USER area can be 
written. Data gives the value that is to be written and addr is 
the location of the entry. The few entries that can be written 
are: 

the general registers 
the condition codes 
certain bits of the Processor Status Word 

This request causes the child to resume execution. If the data 
argument is 0, all pending signals including the one that caused 
the child to stop are canceled before it resumes execution. If the 
data argument is a valid signal number, the child resumes execu­
tion as if it had incurred that signal, and any other pending sig­
nals are canceled. The addr argument must be equal to I for 
this request. Upon successful completion, the value of data is 
returned to the parent. This request will fail if data is not 0 or a 
valid signal number, in which case a value of -1 is returned to 
the parent process and the parent's errno is set to EIO. 

This request causes the child to terminate with the same conse­
quences as exit(2). 

This request sets the tra~;:e bit in the Processor Status Word of 
the child and then executes the same steps as listed above for 
request 7. The trace bit causes an interrupt upon ~;:ompletion of 
one machine instruction. This effectively allows single stepping 
of the child. 
Note: the trace bit remains set after an interrupt. 

10 Read user register; pid - child process id; addr register 
number; data is ignored; returns value of child's register. 

II Write user register; pid - child process id; addr - register 
number; data - integer value to be written into named register. 
NOTE: For both requests 10 and 11, the register numbers are as 
shown below for the 68000 family (these numbers are system 
dependent). 
Re~:ister Register # Register Register # 
dO 0 at 9 
d1 1 a2 10 
d2 2 a3 11 
d3 3 a4 12 
d4 4 aS 13 
d5 5 a6 14 
d6 6 SP 15 
d7 7 PC 16 
aO 8 PS 17 

To forestall possible fraud, p/race inhibits the set-user-id facility on subse­
quent exec(2) calls. If a traced process calls exec, it will stop before execut­
ing the first instruction of the new image showing signal SIGTRAP. 

GENERAL ERRORS 
Ptrace will in general fail if one or more of the following are true: 

Request is an illegal number. (EIOI 

- 2 -



PTRACE(2) PTRACE(2) 

NOTE 

Pld identifies a child that does not exist or has not executed a ptrace 
with request 0. (ESRCH] 

Request II completely supercedes request 6, and request 10 largely super­
cedes request 3 (request 3 can read any part of the child's user area while 
request 10 can only read register values of the child). 

SEE ALSO 
exec(2), signaU2), wait(2). 

- 3 -

-



READ(2) 

NAMB 
,,.--- read - read from file 

SYNOPSIS 
int read (filde~ buf, nbyte) 
int fildes; 
Char •buf; 
unsigned nbyte; 

DESCRIPTION 

READ(2) 

Fildes is a file desc:ripki obtained from a creat, open, dap,fcntl, pipe, or 
socket system call. 

Read attemptS to read nbyte bytes from the file associated with fildes into the 

""""' pointed 10 by buf. 
On devices capable of seeking, the read starts at a position in the file given by 
the file pointer associated withfildes. Upon return from read, the file pointer is 
incremented by the number of bytes actually read. 

Devices that are incapable of seeking always read from the cmrent position. 
The value of a file pointer associated with such a file is undefined. 

,~.--. Upon successful completion, read returns the number of bytes actually read and 
placed in the buffer, this number may be less than nbyte if the file is associated 
with a conmunication line (see ioctl(2), socket(2N), and termio(1)), oc if the 
number" of bytes left in the file is less than nbyte bytes. A value of 0 is returned 
when an end-of-file has been reached. 

When attempting to read from an empty pipe (or FIFO): 

IfO..)IDELAY is set, the read will return a 0. 

If O...JIDELA Y is clear, the read will block until data is written to the file or 
the file is no longu open fcK writing. 

When attempting to read a file associated with a tty that has no data currently 
available: 

IfO...JIDELAY is set. the read will retumaO. 

H O_NDELA Y is clear, the read will block tmtil data becomes available. 

Read will fail if one or more of the following are true: 

[EIO] A physicalliO error has occurred. 

Page I September 24, 1987 



READ(2) 

[ENXIO] 

[EBADF] 

[EFAULT] 

[EINI'R] 

RBTURNVAWB 

READ(2) 

The device associated with the file descriptm' is a block­
special or character-special file and the value of the file 
poinler is out of range. 

Fildes is not a valid file descriptor open for reading. 

Bll/ poinls outside the allocated address space. 

A signal was caught during the read system call 

Upon soccessfui completion a non-negative inleger is returned indicating the 
nwnbu of bytes acloally read. Otherwise, a -1 is returned and errno is set to 
indicale the CIIOI'. 

SEBALSO 
cmd(2), faill(2), roctl(2). """'(2), -2). sockei(2N). 
tennio(7) in the AdmittistTator Ref~rence Ma~~ual. 

September 24, 1987 Poge2 



READV(2) 

NAME 
( readv - read from file 

SYNOPSIS 
#include c:sys/types.b> 
#include <SySiuio.h> 

tt = readv(d,iov,iovcnt) 
int ce, d; 
struct iovec *iov; 
int iovmt; 

DBSCRIP110N 

(UniSoft) READV(2) 

Fildes is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or 
socket system calL 

Reodv attempts to read nbyte bytes from the file associated with fildes and 
scatters the input data into the iovcnt buffers specified by the members of the 
iovec array: iov[O], iov[l], ... , iov[iovcnt -1]. 

The itwec structure is defined as: 

struct iovec { 
caddr_t iov_base; 
int iov_km; 

Each iovec entry specifies the base address and length of an area in memory 
where data should be placed. Readv will always fill an area completely before 
proceeding to the nexL 

On devices capable of seeking, the readv starts at a position in the file given by 
the file pointer associated with fildes. Upon return from readv, the file pointer 
is incremented by the number of bytes actually read. 

Devices that are incapable of seeking always read from the current position. 
The value of a file pointer associated with such a file is undefined. 

Upon successful completion, readv returns the number of bytes actually read 
and placed in the buffer; this numbel" may be less than nbyte if the file is ~t~~soci­
ated with a communication line (sec ioctl(J.), socket(1N), and tennio(J)), or if 
the number of bytes )eft in the file is less than nbyte bytes. A value of 0 is 

1
- returned when an end-of-file has been reached. 

Page 1 September 28, 1987 



READV(2) (umsott) READV(2) 

When attempting to read from an empty pipe (or FIFO): 

HO_NDBLAY is set. the read will return a 0. 

HO_NDELAY is clear, the read will block until data is written 10 the file or 
the file is no longer open frr writing. 

When attempting to read a file associated with a tty that has no data currently 
available: 

IfO_NDELAY is set. the read wiD return a 0. 

IfO_NDELAY is clear,lhe read will block until data becomes P8ilable. 

Rendv will fail ifoneormoreoftbefoilowingare true: 

[EBADI'] 

[EFAULT] 

[EINTI<J 

Fildes is not a valid file descriptor open fo£ reading. 

Bllj points outside the allocaled address space. 

A signal was caught during the read system call 

In addition, reodv may return one of the following errors: 

[BINVAL] lovcnt was less than oreqUBI toO,orgreaterthan 16. 

[EINVAL] 

[BINVAL] 

One of the iov _le, values in the iov array was negalive. 

RETURN VALUE 

The sum of the iov _ kn values in the iov array overflowed a 
32-bit integer. 

Upon successful completion a non-negative integer is returned iruticaling the 
number of bytes actually read. Otherwise. a -1 is returned and erT1IO is set to 
indicate the enor. 

SEE ALSO 
oreal(2), fcntl(2), iootl(2), opcm(2), Jripe(2), sod<oi(2N). 
tmnio(7) in the Administrator Rq'ermce Manual. 

September 28, 1987 Page2 



REBOOT(2) ( (UniSoft)) REBOOT(2) 

NAME 
.~ reboot - reboot the system 

·- SYNOPSIS 
reboot () 

DESCRIPTION 
Reboot causes the kernel to execute the initial bootstrap code that was used to 
boot the operating system. 

The reboot(2) command takes the place of a manual restart. Reboot does not 
work on all systems. 

SEE ALSO 
reboot(lm). 

Page I September 24, 1987 



RECV(2N) UniSort RECV(2N) 

NAME 
recv, recvfrom, recvmsg - receive a message from a socket 

SYNOPSIS 
#lnrlude <sys/types.b> 
#include <sys/siK"ket.h> 

cc = reev(s, buf, len, Ha~~:s) 
int ec, s; 
char *buf; 
lnt len, lla~~:s; 

ee - reel'from(s, buf, len, ftags, foom, fromlen) 
int ee, s; 
char *buf; 
lnt len, Ha~~:s; 
struct SIK"kaddr •room; 
lut *fromlen; 

cc = recl'msg(s, msg, Hags) 
lnt ee, s; 
struct msghdr ms~~:ll; 
lnt ftat!ls; 
cc ••• -lnet 

DESCRIPTION 

Page I 

Recv, recvj;om, and re,·vmsg are used to receive messages from a socket. 

The recv call may be used only on a conmmed socket (see comwct(2N)). 
while recvj;om and recvmsg may be used to receive data on a socket whether 
it is in a connected state or not. 

If }i"om is non-zero, the source address of the message is filled in. From/en 
is a value-result parameter, initialized to the size of the buffer associated 
with j;om, and modified on return to indicate the actual size of the address 
stored there. The length of the message is returned in '"'"· If a message is 
too lofti to fit in the supplied buffer, excess bytes may be discarded 
depending on the type of socket the message is received from; see 
socket(2N). 

If no messages are available at the socket, the receive call waits for a mes­
sage to arrive, unless the socket is nonblockifti (see ioct/(2)) in which case 
a tc of -I is returned with the external variable errno set to EWOULD­
BLOCK. 

The select(2N} call may be used to determine when more data arrives. 

The }fags argument to a send call is formed by or'ing one or more of the 
values, 

#defineMSG PEEK Oxl 
#defineMSG=OOB Ox2 

/* peek at incoming message • I 
r process out-of-band data., 

The recwnsg call uses a msghdr structure to minimize the number of directly 
supplied parameters. This structure has the following form, as defined in ___.. 
< sys!socket.h> : 

ll•ly 22, 1985 



RECV(2N) UniSort RECV(2N) 

struct msghdr { 
caddr t msg name; 
int - msLnamelen; 
struct iov •msg__iov; 
int msg_iovlen; 
caddr_t msg_accrights; 
int msg_accrightslen; 

I* optional address*/ 
1• size of address*/ 
I* scatter/gather array •t 
I* #elements in msg_iov •t 
I* access rights sent/received •1 

Here msg_name and msg_namelen specify the destination address if the 
socket is unconnected; msg name may be given as a null pointer if no 
names are desired or required. The msg_/ov and msg_lovlen describe the 
scatter gather locations. Access rights to be sent along with the message 
are specified in msg_accrighls, which has length msg_ accrighlslen. 

RETURN VALUE 
These calls return the number of bytes received, or -I if an error 
occurred. 

ERRORS 
The calls fail if: 

(EBADF) The argument s is an invalid descriptor. 

(ENOTSOCK] The argument s is not a socket. 

(EWOULDBLOCK) The socket is marked non-blocking and the receive 
operation would block. 

IEINTR] The receive was interrupted by delivery of a signal 
before any data was available for the receive. 

(EFAULT] 

LINKING 

The data was specified to be received into a non­
existent or protected part of the process address 
space. 

This library is accessed by specifying -lnel as the last argument to the 
compile line, e.g.: 

cc - o pro& proa;.c -lnet 

SEE ALSO 
read(2), send(2N), socket(2N) 

July 22, 1985 Page 2 



RECVFROM(2N) SEE RECV RECVFROM (2N) 

RECVMSG 12N I SEE RECV RECVMSG (2N I 

SBRK (2) SEE BRK SBRK(l) 

- I -



SELBCT(2N) UniSoft SELECT(2N) 

NAME 
select - synchronous i/o multiplexing 

.:-- SYNOPSIS 
#include <sys/lime.h> 
nfountl • select(nfds, readftls, writeftls, exeeptftls, timeout) 
tnt nfound, nfds, *readftls, *writeftls, *exeeptfds; 
struct tlmenl *tlmeoat; 

ec ,,, -lnet 

DESCitiPTION 
Select examines the i/o descriptors specified by the bit masks reaq{ds, wr/­
te}Us, and execp(/Us to see if they are ready for reading, writing, or have an 
exceptional condition pending, respectively. File descriptor }"is represented 
by the bit I< <f in the mask. Nj(Js descriptors are checked, i.e. the bits 
from 0 through nfds-1 in the masks are examined. Select returns, in place, 
a mask of those descriptors which are ready. The total number of ready 
descriptors is returned in nfound. 

If timeout is a non-zero pointer, it specifies a maximum interval to wait for 
the selection to complete. If timeout is a zero pointer, the select blocks 
indefinitely. To affect a poll, the timeout argument should be non-zero, 
pointing to a zero valued timeval structure. 
Any of reaqj(Js, wrile}Us, and execprjds may be given as 0 if no descriptors 
are of interest. 

ltETUitN VALUE 
Select returns the number of descriptors which are contained in the bit 
masks, or -I if an error occurred. If the time limit expires then select 
returns 0. 

EltltOitS 
An error return from select indicates: 

[EBADF] 

[EINTR] 

One of the bit masks specified an invalid descriptor. 

A signal was delivered before any of the selected for 
events occurred or the time limit expired. 

LINKING 
This library is accessed by specifying -!net as the last argument to the 
compile line, e.g.: 

ec -o proll prq.e -!net 

SEE ALSO 

BUGS 

Page I 

accept(2N), connect(2N), readv(3N), writevON), recv(2N), send(2N) 

The descriptor masks are always modified on return, even if the call returns 
as the result of the timeout. 

July 22, 1985 



SBMCTL(2) SEMCTL(2) 

NAME 
scmctl - semaphore control operations 

SYNOPSIS 
#lnduft <sys/types.b> 
#taclufe <sys/ipc.h> 
#lnclufe <sys/sem.b> 
tat semdl (semid, semnum, cmd, aq) 
lnt semld, cmd; 
tat semnum; 
•nlon semun { 

lot 't'al; 
strud semld_ds •buf; 
usbort •array; 

aq; 

DESCRIPTION 
Semctl provides a variety of semaphore control operations as specified by 

'""'· The followina cmds are executed with respect to the semaphore specified by 
semid and semnum: 

GETVAL 

SETVAL 

GETPID 

GETNCNT 

GETZCNT 

Return the value of semval (see /ntro(2)). [READ) 

Set the value of scmval to arg.lltll. [ALTER) When 
this cmd is successfully executed, the semadj value 
corresponding to the specified semaphore in all 
processes is cleared. 

Return the value of sempid. [READ) 

Return the vaJue of semncnt. [JtE!.D) 

Return the value of semzcnt. [READ) 

The following cmds return and set., respectively, every semval in the set of 
semaphores. 

GET ALL 

SET ALL 

Place semvaJs into array 
[READ) 

pointed to by arg.array. 

Set semvaJs according to the array pointed to by 
arg.array. {ALTER) When this cmd is successfully 
executed tht;l semadj vaJues correspondi.nj: to each 
specified semaphore in all processes are cleared. 

The following cmds are also available: 

IPC_STAT Place the current value of each member of the data 
structure associated with semld into the structure 
pointed to by arg.huf. The contents of this structure 
are defined in lmro(2). {READ) 

IPC_SET Set the value of the following members of the data 
structure associated with semld to the corresponding 
value found in the structure pointed to by arg.buf. 
sem_perm.uld 
sem_perm.gid 
sem_perm.mode /• only low IJ bits •/ 

. I . 



SEMCTL(l) SEMCTL(l) 

This cmd can only be executed by a process that has 
an effec.tive user ID equal to either that of super-user 

(" or to the value of sem_perm.uid in the data structure 
associated with semid. 

IPC_RMID Remove the semaphore identifier specified by semid 
from the system and destroy the set of semaphores 
and data structure associated with it. This cmd can 
only be executed by a process that has an effective 
user ID equal to either that of super-user or to the 
value of sem_perm.uid in the data structure associ­
ated with semid. 

SemctfwiU fail if one or more of the following are true: 

[EINVAL) Semidis not a valid semaphore identifier. 

[EINVAL) 

[EINVAL] 

[EACCES] 

[ERANGE] 

(EPERM] 

IEFAULTI 

Semnum is less than zero or greater than 
sem_nsems. 

Cmd is not a valid command. 
Operation permiasion is denied to the calling pro­
cess (see lntro(2)). 

Cmd is SETV AL or SET ALL and the value to which 
semval is to be set is greater than the system 
imposed maximum. 

Cmd is equal to IPC_RMID or IPC_SET and the 
effective user ID of the calling process is not equal 
to that of super-user and it is not equal to the 
value of sem_perm.uld in the data structure asso­
ciated with semid. 
Arg.bl({points to an illegal address. 

RETURN VALUE 
Upon successful completion, the value returned depends on cmd as follows: 

GETVAL The value of semval. 
GETPID The value of sempid. 
GETNCNT The value of semncnt. 
GETZCNT The value of semzcnt. 
All others A value of 0. 

Otherwise, a value of -I is returned and errno is set to indicate the error. 

SEE ALSO 
intro(2), semget(2), semop(2) . 

• 2 • 



SEMGET(2) SEMGET(2) 

NAME 
semget - get set of semaphores 

SYNOPSIS 
#include <sys/types.b> 
#ladude <sys/ipc.b> 
#include <sys/sem.b> 

lnl semget (key, nsems, semflg) 
key t key; 
inl Dsems, semftg; 

DESCIUPTION 
Semget returns the semaphore identifier associated with key. 

A semaphore identifier and associated data structure and set containing 
nsems semaphores (see intro(2)) are created for key if one of the foUowing 
are true: 

Key is equaJ to IPC_PRIVATE. 

Key does not aJready have a semaphore identifier associated with it, 
and (semjlg & IPC_CREAT) is "true". 

Upon creation, the data structure associated with the new semaphore 
identifier is initialized as follows: 

Sem_perm.culd, sem_perm.uid, sem_perm.qld, and 
sem_perm.xid are set equal to the effective user JD and effective 
group ID, respectively, of the calling process. 

The low-order 9 bits of sem_perm.mode are set equal to the low- -
order 9 bits of semjlg. 

Sem_nsems is set equal to the value of nsems. 

Sem_otime is set equaJ to 0 and sem_ctlme is set equal to the 
current time. 

Semget will fail if oae or more of the followins are true: 

[EINVALI Nsems is either less than or equal to zero or greater than 
the system-imposed limit. 

IEACCESI 

[EINVAL] 

[ENOENTI 

[ENOSPC) 

[ENOSPC) 

A semaphore identifier exists for key, but operation per­
mission (see intro(2)) as specified by the low-order 9 bits 
of semjlg would not be granted. 

A semaphore identifier exists for key, but the number of 
semaphores in the set associated with it is less than nsems 
and nsems is not equal to zero. 

A semaphore identifier does not exist for key and (semflg 
& IPC_CREAT) is "false". 

A semaphore identifier is to be created but the system­
imposed limit on the maximum number of allowed sema­
phore identifiers system wide would be exceeded. 

A semaphore identifier is to be created but the system­
imposed limit on the maximum number of allowed sema­
phores system wide would be exceeded . 

. I . 



SEMOET(l) 

[EEXIST] 

RETURN VALUE 

SEMOET(2) 

A semaphore identifier exists for key but ( (seniflg & 
IPC_CREAT) and ( semjlg & IPC_EXCL) ) is "true". 

Upon successful completion, a non-negative integer, namely a semaphore 
identifier, is returned. Otherwise, a value of -1 is returned and errno is 
set to indicate the error. 

SEE ALSO 
intro(2), semctl(2), semop(2). 

- 2-



SEMOP(2) SEMOP(2) 

NAME 
semop - semaphore operations 

SYNOPSIS 
#:Include <sys/types.h> 
#Include <sys/lpc.b> 
#Include <sys/sem.h> 

lnt semop (semid, sops, nsops) 
lot semld; 
strud sembuf .. sops; 
lnt nsops; 

DESCRIPTION 
Semop is used to automatically perform an array of semaphore operations 
on tbe set of semaphores associated with the semaphore identifier specified 
by semid. Sops is a pointer to tbe array of semaphore-operation structures. 
Nsops is the number of such structures in the array. The contents of each 
structure includes the following members: 

short sem_num; /• semaphore number •/ 
short sem_op; /• semaphore operation •/ 
short sem_Og; I• operation flags •/ 

Each semaphore operation specified by sem_op is performed on the 
corresponding semaphore specified by semid and sem_num. 
Sem_ op specifies one of three semaphore operations as follows: 

If sem_op is a negative inte.ger, one of the followi08 will occur: 
{ALTER} 

If semval (see intro(2)) is greater than or equal to the 
absolute value of sem op, the absolute value of sem op is 
subtracted from semv81. Also, if (sem_ftg & SEM_uNoo) 
is "true", the absolute value of sem op is added to the cal· 
ling process's semadj value (see exlt(2)) for the specified 
semaphore. 

If semval is less than the absolute value of sem op and 
(sem_jlg & IPC_NOWAIT) is "true", semop wilf return 
immediately. 

If semval is less than the absolute value of sem op and 
(sem_jlg & IPC_NOWAIT) is "false", semopwiU inCrement 
tbe semncnt associated with the specified semaphore and 
suspend execution of the calling process until one of the 
followins conditions occur. 

Semval becomes greater than or equal to the absolute 
value of sem op. When this occurs, the value of semncnt 
associated with the specified semaphore is decremented, 
the absolute value of sem op is subtracted from semval 
and, if (sem..ftg & SEM_UNDO) is "true", the absolute 
value of sem op is added to the callins process's semadj _-
value for the Specified semaphore. 

The semid for which the callins process is awaiti08 action 
is removed from the system (see semct/(2)). When this 
occurs, errno is set equal to EIDRM, and a value of -I is 

- 1 -



~· 

-· 

SEMOP(2) SEMOP(2) 

returned. 

The calling process receives a signal that is to be caught. 
When this occurs, the value of semncnt associated with 
the specified semaphore is decremented, and the calling 
process resumes execution in the manner prescribed in 
signaf(2). 

If sem op is a positive integer, the value of sem op is added to 
semval and, if (semJfg & SEM_UNDO) is "true", the value of 
sem_ op is subtracted from the calli08 process's semadj value for 
the specified semaphore. (ALTER} 

If sem_op is zero, one of the following will occur: (READ} 

If semval is zero, semop will return immediately. 

If semval is not equal to zero and (semJfg & 
IPC_NOWAIT) is "true", semopwill return immediately. 

If semval is not equal to zero and (sem_jlg & 
IPC NOWAIT) is "false", semop will increment the 
semZcnt associated with the specified semaphore and 
suspend execution of the calling process until one of the 
followifii occurs: 

Semval becomes zero, at which time the vaJue of semzcnt 
associated with the specified semaphore is decremented. 

The semid for which the calling process is awaiting action 
is removed from the system. When this occurs, errno is 
set equal to EIDRM, and a value of -I is returned. 

The ca1li08 process receives a signal that is to be caught. 
When this occurs, the value of semzcnt associated with 
the specified semaphore is decremented, and the calling 
process resumes execution in the manner prescribed in 
signaf(2). 

Semop will fail if one or more of the following are true for any of the sema­
phore operations specified by sops; 

[EINVAL] Semldis not a valid semaphore identifier. 

[EFBIG] Sem num is less than zero or greater than or equal to the 
nunlber of semaphores in the set associated with semld. 
Nsops is greater than the system-imposed maximum. 

Operation permission is denied to the calling process (see 
intro(2)). 

[E2BIG] 

[EACCES] 

(EAGAIN] 

(ENOS PC] 

(EINVAL] 

(ERANGE] 

The operation would result in suspension of the calling 
process but (sem_jlg & JPC_NOW AIT) is "true". 

The limit on the number of individual processes request­
ing an SEM_UNDO would be exceeded. 

The number of individual semaphores for which the callifii 
process requests a SEM_UNDO would exceed the limit. 

An operation would cause a semval to overflow the 
system-imposed limit. 

. 2. 



SEMOP(2) 

(ERANGB] 

[EFAULT] 

SBMOP(2) 

An operation would cause a semadj value to overflow the 
system-imposed limit. 

Sops points to an illegal address. 

Upon successful completion, the value of sempid for each semaphore 
specified in the array pointed to by s-ops is set equal to the process ID of the 
calling process. 

RETURN VALUE 
If semop returns due to the receipt of a signal, a value of -I is returned to 
the calling process and emw is set to EINTR. If it returns due to the remo­
val of a umid from the system, a value of -I is returned and errno is set to 
EIDRM. 

Upon successful completion, the value of semval at the time of the caU for 
the last operation in the array pointed to by $OI'S is returned. Otherwise, a 
value of -I 15 returned and ermo is set to indicate the error. 

SEE ALSO 
eiec(2), eiit(l), fork(l), intro(l), semctl{l), semget<2). 

- 3-



SEND(2N) UoiSoft SEND UN) 

NAME 
send, sendto, sendmsg - send a mess!lie from a socket 

.f SYNOPSIS 
#Include <sys/types.h> 
#Include < sys/socket.b> 

ce = send(s, msg, len, Hags) 
int ee, s; 
char •msc; 
lot len, Hags; 

ce - sendto(s, msa, len, Haas, to, tolen) 
lnl ce, s; 
char •msg; 
int len, Hags; 
struct sockad.d.r •to; 
int tolen; 

cc = seudmsg(s, msg, Hags) 
lnl cc, s; 
slruct msgbdr msgll; 
iot flags; 

ce .•. -lnet 

DESCRIPTION 
Send, 5endw, and sendmsg are used to transmit a message to another socket. 
Send may be used only when the socket is in a connected state, while sendw 
and sendmsg may be used at any time. 

The address of the target is given by to with to/en specifying its size. The 
length of the message is given by len. If the message is too long to pass 
atomically through the underlying protocol, then the error EMSGSIZE is 
returned, and the message is not transmitted. 

No indication of failure to deliver is implicit in a send. Return values of 
-I indicate some locally detected errors. 

If no mess!lies space is available at the socket to hold the message to be 
transmitted, then se11d normally blocks, unless the socket has been placed 
in non-blocking ilo mode. The se/ect(2N) call may be used to determine 
when it is possible to send more data. 

The .!lags parameter may be set to MSG_OOB to send out-of-band data on 
sockets which support this notion (e.g. SOCK_STREAM). 

See ren(2N) for a description of the msghdr structure. 

RETURN VALUE 
The call returns the number of characters sent, or -I if an error occurred. 

ERRORS 
[EBADF] 

Page I 

[ENOTSOCK] 

[EFAULT] 

An invalid descriptor was specified. 

The argument s is not a socket. 

An invalid user space address was specified for a 
parameter. 

July 16, 1985 



SEND(2N) UlliSoft SEND(2N) 

IEMSGSIZEI The socket requires that message be sent atomically, 
and the size o.f the message to be sent made this 
impossible. 

[EWOULDBLOCK) The socket is marked non·blocking and the requested 
operstion would block. 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

ce-o prog prog.c -!net 

SEE ALSO 
recv(2N), socket(2N) 

July 16, 1985 Page 2 



SENDMSG(2N) SEE SEND SENDMSG{2N) 

SENDTO <2N) SEE SEND SENDTO UN) 

( 

SETGID (l) SEE SETUID SETMD Cll 

SETIIOSTID ( 2N) SEE <iETIIOSTID SETHOSTID UN ) 

SETHOSTNAME ( 2N) SEE (i£THOSTNAM£ SETHOSTNAME(lN) 

- I -



SETPGJtP(l) 

NAME 
setpgrp - set process group ID 

SYNOPSIS 
inl selpKfp (} 

DESCRIPTION 

SETPGRP(l) 

Setpgrp sets the process group ID of the calling process to the process ID of 
the calling process and returns the new process group ID. 

RETURN VALUE 
Setpgrp returns the value of the new process group ID. 

SBE ALSO 
exec(2), fork(2), getpid(2), intro(2), kill(2), signal{2) . 

• 1 • 



SETREGJD (2) UniSort SETREGID (2) 

NAME 
setregid - set real and effective group ID 

SYNOPSIS 
setregid(rgld, egld) 
int raid, egid; 

tt ••• -lnet 

DESCRIPTION 
The real and effective group ID's of the current process are set to the argu­
ments. Only the super-user may change the real group ID of a process. 
Unpriviledged users may change the effective group ID to the real group 
ID, but to no other. 

Supplying a value of -1 for either the real or effective group ID forces the 
system to substitute the current ID in place of the -1 parameter. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise. a value 
of -1 is returned and ermo is set to indicate the error. 

ERRORS 
IEPERM] 

LINKING 

The current process is not the super-user and a change 
other than challiing the effective group-id to the real 
group·id was specified. 

r- This library is accessed by specifying -!net as the last argument to the 
compile line, e.g.: 

cc -o prog prog.c -!net 

SEE ALSO 
getgid(2), setreuid(2), setuid(2) 

Page 1 July 16, 1985 



SETREUID(l) UniSort SETREUID(2) 

NAME 
setreuid - set real and effective user ID's 

SYNOPSIS 
setreuidbuid, euid) 
lnl ruid, euid; 

ce .•. -lnet 

DESCRIPTION 
The real and effective user ID's of the current process are set according to 
the arguments. If ruid or euid is -I, the current uid is filled in by the sys­
tem. Only the super-user may modify the real uid of a process. Users 
other than the super-user may change the effective uid of a process only to 
the real uid. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -I is returned and errno is set to indic;..te the error. 

ERRORS 
[EPERM] The current process is not the super-user and a change 

other than changing the effective user-id to the real user-id 
was specified. 

LIN KINO 
This library is accessed by specifying 
compile line, e.g.: 

ee -o prog pl'CJI.c -lnet 

SEE ALSO 
getuid(2), setregid(2), setuid(2) 

Pqe I 

-lnet as the last argument to the 

July 16, 1985 



\ __ _ 

SETUW(2) SETUW(2) 

NAME 
setuid, setsid - set user and group IDs 

SYNOPSIS 
lnt seluld (uld) 
lnt uld; 

lnt set1ld (sld) 
lnt lfd; 

DESCRIPTION 
Setuid (setgid) is used to set the real user (group) ID and eft'ective user 
(group) ID of the calling process. 

If the effective user ID of the calling process is super-user, the reaJ user 
(group) JD and effective user (group) ID are set to uid (gld). 

If the effective user ID of the calling process is not super-user, but its real 
user (group) ID is equal to uid (gld), the effective user (group) ID is set to 
uid (gld). 

If the effective user ID of the calling process is not super-user, but the 
saved set-user (group) ID from e.xec(2) is equal to uid (gidJ, the effective 
user (group) ID is set to uid (g/dJ. 

Setuid (setg/d) will fail if the real user (group) ID of the calling process is 
not equal to uid (gid) and its effective user ID is not super-user. (EPERM] 

The uid is out of range. (EINV AL] 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a va1ue 
of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
getuid(2), intro(2). 

. I . 



SHMCTL(2) 

NAME 
shmctl - shared memory control operations 

SYNOPSIS 
#bldwle <SyS/types.h> 
#include <S)'SIIpc.h> 
#bldude<SyS/-.h> 

iDt sbmcd (sbmid, cmd, bul) 
tnt slunld, and; 
Strud: sbmid _ ds •buf; 

DESCRIPTION 

SHMCTL(2) 

Shmctl provides a variety of shared memory control open.tions as specified by 
cmd. The following cmds are available! 

IPC_STAT Place the current value of each member of the data structure 
associated with shmid into the structure pointed to by buf. 
The contents of chis structure are defined in intro(2). 
{READ} 

IPC _SET Set the value of the following members of the data structure 
associated with shmid to the corresponding value found in the 
structure pointed to by buf: 
shm _penn.uid 
shm _perm.gid 
shm_perm.mode/• only low9 bits., 

This cmd can only be executed by a process that has an effective user m equal 
to either that of super-user or to the value of shm _perm.uid in the data struc­
ture associated with shmid. 

IPC_RMID 
Remove the shared memory identifier specified by shmid from the system and 
destroy the shared memory segment and data structure associated with it. This 
cmd can only be executed by a process that has an effective user ID equal to 
either that of super-user or to the value of shm _perm.uid in the data structure 
associated with shmid. 

Shmcd will fail if one or more of the following are ttue: 

[EINV AL] Shmid is not a valid shared memory identifier. 

Page 1 September 24, 1987 



SHMCTL(2) 

[BINVAL] 

[EACCES] 

[EAGAIN] 

[EPERM] 

[EFAUL11 

RETUR.N VALUE 

SHMCTL(2) 

Cmd is not a valid command. 

Cmd is equal to IPC_STAT and {READ} operation permis­
sion is denied to the calling p-ocess (see intro(2)). 

1be system has temporarily exhausted its available memory 
or swap space. 

Cmd is equal to IPC _ RMID or IPC _SET and the effective 
l15el' ID of the calling process is not equal to that of super­
user and it is not equal to the value of shm_perm.uid in the 
data structure associated with shmid. 

Bl(points to an illegal address. 

Upon successful completion, a value of 0 is returned Otherwise, a value of -1 
is returned and ernw is set to indicate the error. 

SEE AUO 
mtto(2), shmgel(2), shmop(2). 

September 24, 1987 Page2 



SHMGEf(2) 

NAME 
sbmget- get shared meiilOI)' segment 

SYNOPSIS 

- <171flypel.b> IIIDducle<IJI/Ipc:.b> _..,.,_... 
.......... (key, ..... sbmllg) 
key_t key; 
int size, lhmllg; 

DESCRIPnON 

SHMGEf(2) 

Shmget returns tbe shared memory identifier associated witb.l:ey. 

A shared memory identifier and associated data structure and shared memory 
segment of size siu bytes (see intro(2)) are created for key if one of the follow· 
ing are true: 

Key is equaliOIPC_PRIVATE. 

Key does DOt already have a shared memory identitler associated with it. 
.ud(slurflg &IPC_CREAT) is "ttuer. 

Upon cn:adon, tbe data struc:CUre associated with tbe new shared memory 
ide:nt.ifl.er is initialized as follows: --

Sbm.........,....U obm_perm.ukl, obm_pena.<gld, ond obm_penn.gid 
are set equal to lhe effective nser ID and effective group ID, respectively, 
~ lbe calling process. 

The low~ 9 bits of shm_perm.mode are set equal to the low-order' 9 
bils of 6hmjlg. Sbm _ segsz is set equal to lhe value of siz~. 

Sbm._lpld.lhm_natteh.shm_atime, andshm_dtime are set equal toO. 

Shm _dime is set equal to tbe current time. 

Shmget will fail if one m IJlOie of the following are true: 

[EINVAL] Size is less than lhe system-imposed minimum oc greater 
than the system-imposed maximum. 

[BACCBS] 

Pagel 

A shared memory identifier exists for key but operation per­
mission (see intro(2)) as specified by the low-order 9 bits of 
shmjlg would not be granted. 

September 24, 1987 



SHMGET(2) 

[BAGAIN] 

[EINVALl 

[ENOENT] 

[ENOSPC} 

[ENOMEM] 

[EEXIST] 

RETURN VALUE 

SIIMGET(2) 

The system has temporarily exhausted its available memory 
or swap space. 

A shared memory identifier exists for key but the size of the 
segment associated with it is less than size and size is not 
equal to zero. 

A shared memOiy identifier does not exist for key and 
(shmjlg &IPC_CREAT) is "false'', 

A shared memory identifier is to be created but the system­
imposed limit on the nuainmm number of allowed shared 
memory identifiers system wide would be exceeded. 

A shared memory identifier and associated shared memory 
segment are to be created but the amount of available physi­
cal memory is not sufficient to fill the request. 

A shared memory identifier exists for key but ( (shmjlg & 
IPC_CREAT) and ( shmjlg &IPC_EXCL)) is "true". 

Upon successful completion, a non-negative integer, namely a shared memOiy 
identifier is returned. Otherwise, a value of -1 is returned and emw is set to 
indicate the enor. 

SEE ALSO 
intro(2), shmcd(2). shmop(2). 

September 24, 1987 Page2 



SIIMOP(2) 

NAME 
sbmop - shared memory operations 

SYNOPSIS 
lfindude <S,., ...... , 
lliDclude ..,.Jipe.b> 
#include ..,.,_, 

char •shmat (sbmid, shmaddr. sbmftg) 
iDt shmid; 
char •shmaddr 
intsbmftg; 

int shmdt (shmaddr) 
char •shmaddr 

DESCIUPTION 

SHMOP(2) 

Shmat attaches the shared memory segment associated with the shared memory 
identifier specified by shmid to lhe data segment of lhe calling process. The 
segment is attached at the address specified by one of the following criteria: 

H shmlliiJr is equal to zero, the segment is attached at the first available 
address as selected by the system. 

If shmaddr is not equal to zero and (shmjlg & SHM _ RND) is ''true", the 
segment is attached at the address given by (shmaddr - (shmaddr modulus 
SBMLBA)). 

If shmtuldr is not equal to zero and (shmjlg & SHM_RND) is .. false", tbe 
segment is attaclred at the address given by shmaddr. 

The segment is attached for reading if (shmjlg & SHM_RDONLY) is «true" 
{READ}, odlerwise it is attached for reading and writing {READ/WRITE}. 

Shmat will fail and not attach the shared memory segment if one or 11101e of the 
following are ttue: 

[EINVAL] 

[I!ACCES] 

[EAGAIN] 

Pagel 

Shmidis not a valid shared memory identifier. 

Open.tion permission is denied to the calling process {see 
.....,(2)), 

The system bas remporarily exhausted its available memory 
or swap space. 

The available data space is not large enough to accommodale 
lbe shared memory segment. 

Septembec 24, 1987 



SHMOP(2) 

[EINVAL] 

[EINVAL] 

[EMFILE] 

[EINVAL] 

{EINVAL] 

RETURN VALUES 

SHMOP(2) 

Shmaddr is not equal to zero. and the value of (shmaddr -
(shmaddr modulus SHMLBA)) is an illegal address. 

Shmaddr is not equal to zero, (shmjlg & SHM_RND) is 
"false", and the value of shmaddr is an illegal address. 

The number of shared memory segments attached to the cal­
ling process would exceed the system-imposed limiL 

ShmdJ detaches from the calling process's data segment the 
shared memory segment located at the address specified by 
.~. 

Shmdt will fail and not detach the shared memory segment if 
shmaddr is not the data segment start address of a shared 
memory segment. 

Upon successful completion, the return value is as follows: 

Shmat returns the data segment start address of the attached shared 
memory segment. 

Shmdtretums a value ofO. 

Otherwise, a value of -1 is returned and emw is set to indicate the error, 

Sl!l! ALSO 
exec(2), exit(2), fork(2), mtro(2), slunctl(2), •hmgot(2). 

September 24, 1987 Page2 



SHUTDOWN (2N) UniSoft 

NAME 
shutdown - shut down part of a full-duplex connection 

SYNOPSIS 
sbutdown(s, how) 
inl s, how; 

ce .•. -lnet 

DESCRIPTION 

SHUTDOWN (2N) 

The shutdown call causes all or part of a full-duplex connection on the 
socket associated with s to be shut down. If flow is 0, then further receives 
will be disallowed. If how is l, then further sends will be disallowed. If 
how is 2, then further sends and receives will be disallowed. 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -I if it fails. 

ERRORS 
The call succeeds unless: 

IEBADF] Sis not a valid descriptor. 

(ENOTSOCK] Sis a file, not a socket. 

[ENOTCONN] The specified socket is not connected. 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

ce - o prog prog.e -!net 

SEE ALSO 
connect(2N), socket(2N) 

Page 1 July 16, 1985 



SIGNAL(2) SIGNAL(2) 

NAME 
signal - specify what to do upon receipt of a signal 

SYNOPSIS 
#include < !ilt~al.h> 
tnt (•si&nal (sle, tunc))() 
int sig; 
void (•fune)O; 

DESCRIPTION 
Signal aUows the calling process to choose one of three ways in which it is 
possible to handle the receipt of a specific signal. Sig specifies the signal 
and June specifies the choice. 

Sig can be assigned any one of the following except SIGKILL: 
SIGHUP 01 hangup 
SIGINT 02 interrupt 
SIGQUIT OJ• quit 
SIGILL 04• illegal instruction (not reset when caught) 
SIGTRAP os• trace trap (not reset when caught) 
SIGIOT 06" lOT instruction 
SIGEMT 07" EMT instruction 
SIGFPE 08* floating point exception 
SIGKILL 09 kill (cannot be caught or ignored) 
SIGBUS 10" bus error 
SIGSEGV II• segmentation violation 
SIGSYS 12" bad argument to system call 
SIGPIPE 13 write on a pipe with no one to read it 
SIGALRM 14 alarm clock 
SIGTERM IS software termination si.Jnal 
SIGUSRl 16 user defined sipal1 
SIGUSRl 17 user defined signal 2 
SIGCLD 18 death of a child (see WARNING below) 
SIGPWR 19 power fail (see WARNING below) 

See below for the significance of the asterisk ( • ) in the above Jist. 

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a jUnction 
addren. The actions prescribed by these vaJues are as follows: 

SIG_DFL - terminate process upon receipt of a signal 
Upon receipt of the signal sig, the receiving process is to be ter­
minated with the following consequences: 

All of the receiving process's open file descriptors will be closed. 

If the parent process of the receiving process is executiDJ a walt, 
it will be notified of the termination of the receiving process and 
the terminating si.j;nal's number will be made available to the 
parent process; see walt(2). 

If the parent process of the receiving process is not executing a 
walt, the receiviDJ process will be transformed into a zombie 
process (see ex/1(2) for definition of zombie process). 

The parent process ID of each of the receiving process's existing 
child processes and zombie processes will be set to 1. This 
means the initialization process (see intro(2)) inherits each of 
these processes. 

. I . 



SIONAL(2) SIONAL(2) 

Each attached shared memory segment is detached and the value 
of shm_nattacb in the data structure associated with its shared 
memory identifier is decremented by I. 

For each semaphore for which the receivilll process has set a 
semadj value <see semop(2)), that semadj value is added to the 
semval of the specified semaphore. 

If the process bas a process, text, or data loc:Jr.:, an unlock is per­
formed (see p/ock(2)). 

An accounting record wiU be written on the accountin& file if the 
system's accountins routine is enabled; see a«t(2). 

If the receiving process's process ID, tty group ID, and process 
group lD are equal, the signal SIGHUP will be sent to all of the 
processes that have a process group ID equal to the process 
group ID of the receiving process. 

A 'core image' will be made in the current working directory of 
the receiving process if slg is one for which an asterisk appears in 
the above list and the foUowiag conditions are met: 

The effective user JD and the real user ID of the receiviq 
process are equal. 

An ordinary file named core exists and is writable or can be 
created. If the file must be created, it will have the follow­
ing properties: 

a mode of 0666 modified by the file creation mask 
(see umask(l)) 

a file owner ID that is the same as the effective user ID 
of the receivins process 

a file group ID that is the same as the effective group 
ID of the receivins process 

SIG_JGN - ia;nore signal 
The sia;nal sig is to be ignored. 

Note: the signal SIGKILL cannot be ignored. 

function address - catch sia;nal 
Upon receipt of the signal slg, the receiving process is to execute the 
signal-catching function pointed to by func. The signal number sig 
wiD be passed as the only argument to the si3nal-catcbiog function. 
Additional arsuments are passed to the sia;nal-catcbiog function for 
hardware-generated signals. Before enterinJ the signal-catchin& func­
tion, the value of june for the causht signal will be set to SIG_DFL 
unless the siJnal is SIGILL, SIGTRAP, or SIGPWR. 

Upon return from the si&naJ-catchin& function, the receiving process 
will resume execution at the point it was interrupted 

When a sia;nal that is to be causht occurs during a read, a write, an 
open, or an ioctl system call on a slow device (like a terminal; but not 
a file), durins a pause system call, or during a wait system call that 
does not return immediately due to the existence of a previously 
stopped or zombie process, the si&nal-catching function wiD be exe­
cuted and then tbe interrupted system caD may return a -1 to the 

- 2-



SIGNAL(2) 

calling process with errno set to EINTR. 

Note: The signal SIGKILL cannot be caught. 

SIGNAL(2) 

A call to signal cancels a pendins signal s/g except for a pending SIGKILL 
signal. 

Signal will fail if slg is an illegal signa] number, including SIGKILL. 
[EINVALI 

RETURN VALUE 
Upon successful completion, signal returns the previous value of june for 
the specified signal s/g. Otherwise, a value of -I is returned and errno is 
set to indicate the error. 

SEE ALSO 
kill(!), kill(2), pause(2), ptrace(2), wait(2), seljmp(3C). 

WARNING 
Two other signals that behave differently than the signals described above 
exist in this release of the system; they are: 

SIGCLD 18 death of a child (reset when caught) 
SIGPWR 19 power fail (not reset when caught) 

There is no guarantee that, in future releases of the UNIX system, these 
signals will continue to behave as described below; they are included only 
for compatibility with other versions of the UNIX system. Their use in new 
programs is strongly discouraged. 

For these signals, june is assigned one of three values: SIG DFL, SIG IGN, 
or a function oddress. The actions prescribed by these values of are aS fol­
lows: 

SIG_DFL- ignore signal 
The signal is to be ignored. 

SIG_IGN- ignore signa] 
The signal is to be ignored. Also, if slg is SIGCLD, the calling 
process's child processes will not create zombie processes when they 
terminate; see exit(2). 

function address - catch signal 
If the signal is SIGPWR, the action to be taken is the same as that 
described above for func equal to function address. The same is true if 
the signal is SIGCLD except, that while the process is executing the 
signal-catching function, any received SIGCLD signals will be queued 
and the signal-catching function will be continually reentered until the 
queue is empty. 

The SJGCLD affects two other system calls (wa/t(2), and ait(2)) in the fol­
lowing ways: 
wait IC the june value of SIGCLD is set to SIG IGN and a wait is exe­

cuted, the wait will block until all of the calling process's child 
processes terminate; it will then return a value of -I with errno set 
to ECHILD. 

exit If in the exiting process's parent process the june value of SIGCLD 
is set to SIG_IGN, the exiting process will not create a zombie pro­
cess. 

When processing a pipeline, the shell makes the last process in the pipeline 
the parent of the proceeding processes. A process that may be piped into in 

- 3 -



SIONAL{2) SIGNAL(l) 

BUGS 

this manner (and thus become the parent of other processes) should take 
care not to set SIGCLD to be caught. 

If a repeated si&nal arrives before the last one can be reset, there is no 
chance to catch it. 

The type specification of the routine and its jUne arsument are problemati· 
"1. 
The symbols slghnd and slgtrap are globally defined symbols used by s/g· 
na/(2) and are reserved words. 

- 4-



SOCKET(lN) UniSort SOCKET(lN) 

NAME 
socket - create an endpoint fw communication 

SYNOPSIS 
#Include <sys/types.h> 
#include <sys/socket.h> 

s • socket(af, type, protocol) 
lnt s, af, type, protocol; 

cc .•. -lnet 

DESCRIPTION 

Page I 

Socket creates an endpoint for communication and returns a descriptor. 

The ~{parameter specifies an address format with which addresses specified 
in later operations using the socket should be interpreted. These formats 
are defined in the include file < sys/socket.h> . The currently understood 
formats are 

AF UNIX 
AF-INET 
AF-PUP 
AF)MPUNK 

(UNIX path names), 
(ARPA Internet addresses), 
(Xerox PUP-I Internet addresses), and 
(IMP host at IMP addresses). 

The socket has the indicated type which specifies the semantics of commun· 
ication. Currently defined types are: 

SOCK STREAM 
SOCK-DGRAM 
SOCK-RAW 
SOCK-SEQPACKET 
SOCK=RDM 

A SOCK STREAM type provides sequenced, reliable, two-way connection 
based byte streams with an out-of-band data transmission mechanism. A 
SOCK DGRAM socket supports datagrams (connectionless, unreliable 
messaies of a fixed (typically small) maximum length). SOCK RAW sock­
ets provide access to internal network interfaces. The types SOCK_RAW, 
which is available only to the super-user, and SOCK SEQPACKET and 
SOCK RDM, which are planned, but not yet implemented, are not 
described here. 

The proloc:ol specifies a particular protocol to be used with the socket. Nor­
mally only a single protocol exists to support a particular socket type using a 
given address format. However, it is possible that many protocols may 
exist in which case a particular protocol must be specified in this manner. 
The protocol number to use is particular to the communication domain in 
which communication is to take place; see .wrl'ices(4N) and prolm:ols(4N). 

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to 
pipes. A stream socket must be in a i"onnected state before any data may be 
sent or received on it. A connection to another socket is created with a 
comlft"I(2N) call. Once connected, data may be transferred using read(2) 
and write{3) calls or some variant of the send(2N) and rec~(2N) calls. 
When a session has been completed a dose(2) may be performed. Out-of­
band data may also be transmitted as described in send(2N) and received as 
described in recv(2N). 

July 29, 1985 



SOCKET(2N) UniSoft SOCKET(2N) 

The communications protocols used to implement a SOCK STREAM 
insure that data is not lost or duplicated. If a piece of data for-which the 
peer protocol has buffer space cannot be successfully transmitted within a 
reasonable length of time, !hen the conne<:tion is considered broken and 
calls will indicate an error with ~I returns and with ETIMEDOUT as the 
specific code in the global variable errno. The protocols optionally keep 
sockets warm by forcing transmissions roughly every rilinute in the absence 
of other activity. An error is then indicated if no response can be elicited 
on an otherwise idle connection for a exte11ded period (e.g. 5 millules). A 
SlGPIPE sig11al is raised if a process sends on a broken stream; this causes 
naive processes, which do not handl_e the signal, to exit. 

SOCK DGRAM and SOCK RAW sockets allow sending of datagrams to 
corresPondents p_amed in .~;m/(2N) Cails. It is also possible to receive 
datagrams at such a soCkefwlth fft"I"(2N). 

A11 ji:m/(2) call can be used to specify a process group to receive a 
SIGURG signal when the out-of·band data arrives. 

The operation of sockets is controlled by socket level fllllio11s. These 
options are defined in the file < syslsucket.h> and explained below. Set· 
sm.·kupt and gelso,·kupt(2N) are used to set and get options., respectively. 

SO DEBUG turn on recording of debugging infonnation 
SO-REUSEADDR allow local address reuse 
SO-KEEPALIVE keep connections alive 
SO -DONTROUTE do no apply routing on outgoing messages 
SO-LINGER linger on close if data present 
SO=DONTLINGER do not linger on close 

SO DEBUG enables debugging in the underlying protocol modules. 
SO-REUSEADDR indicates the rules used in validating addresses supplied 
in ii hilld(2N) call should allow reuse of local addresses. SO KEEP ALIVE 
enables the periodic transmission of messages on a oonilected socket. 
Should the connected party fail to respond to these messases, the connec-­
tion is considered broken and processes using the socket are notified via a 
SIGPIPE signal. SO DONTROUTE indicates that outgoing messages 
should bypass the standard routing facilities. Instead, messages are directed 
to the appropriate network interface according to the network portion of the 
destination address. SO LINGER and SO DONTLINGER control the 
actions taken when unsenl messages are queu-ed on socket and a dose(2) is 
performed. If the socket promises reliable delivery of data and 
SO LINGER is set, the system will block the process on the dOSf' attempt 
until it is able to transmit the data or until it decides it is unable to deliver 
the information (a timeout period, termed the linger interval, is specified in 
the sf'ISockopl call when SO_LINGER is requested). If SO_DONTLINGER 
is specified and a close is issued, the system will process the dose in a 
manner which allows the process to continue as quickly as possible. 

RETURN VALUE 
A ~I is returned if an error occurs, otherwise the return value is a descrip-­
tor referencing the socket. 

ERRORS 
The socket call fails if: 

July 29, 1985 Pqe2 



SOCKET(2N) UoiSoft SOCKET(2N) 

[EAFNOSUPPORTI The specified address family is not supported in this 
version of the system. 

[ESOCKTNOSUPPORT] 
The specified socket type is not supported in this 
address family. 

(EPROTONOSUPPORT) 

(EM FILE] 
IENOBUFS) 

The specified protocol is not supported. 

The per-process descriptor table is full. 

No buffer space is available. The socket cannot be 
created. 

LINKING 
This Ubrary is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

cc -o Pro& pf01.e -lnet 

SEE ALSO 

BUGS 

Page 3 

accept(2N), bind(2N), connect(2N), getsockname(2N), getsockopt(2N), 
ioctl(2),1isten(2N), recv(2N), select(2N), send(2N), shutdown(2N) 

The use of keepalives is a questionable feature for this layer. 

July 29, 1985 



STAT(2) STAT(2) 

NAME 
stat, fstat - get file Slatus 

SYNOPSIS 
#include <sys/types.h> 
#indude <sys/stat.h> 

int stat (path, buf) 
char •path; 
struct stat •buf; 

lnt fstal (tildes, buO 
int tildes; 
slruct stat •buf; 

DESCRIPTION 

Page I 

Path points to a path name naming a file. Read, write. or execute permis­
sion of the named file is not required, but all directories listed in the path 
name leading to the Ji.le must be searchable. Stat obtains information about 
the named file. 

Similarly, fStal oblains information about an open file known by the file 
descriptor .tildes, obtained from a su~:cessful open, aeat, dup, .kill/, or pipe 
system call. 

B11l is a pointer to a stat structure into which information is placed concern­
ing the file. 

The contents of the structure pointed to by buf include the following 
members: 

ushort 
ino t 
dev-=_t 

dev_t 

short 
ushort 
ushort 
olf_t 
time_t 
time t 
time=t 

st_mode; 
st_ino; 
st_dev; 

st_rdev; 

st nlink; 
st-uid; 
st-gid; 
st-size; 
st=atime; 
st mtime; 
s(ctime; 

I• File mode; see mknod(2) •I 
I• !node number •I 
1-• ID of device containing •I 
I• a directory entry for this file •I 
I• ID of device •I 
I• This entry is defined only for •I 
I• character special or block special files •I 
I• Number of links If 
I• User ID of the file's owner •I 
I• Group ID of the file's group •</ 
I• File size in bytes •I 
I• Time of last access •I 
I• Time of last data modification •I 
I• Time of last file status change •I 
I• Times measured in seconds since •I 
I• 00:00:00 GMT, Jan. I, 1970 •I 

st_atime Time when file data was last a~essed. Changed by the following 
system calls: creat(2), mknod(2), plpe(2), utime(2), and read(2). 

st_mtlme 

st_clime 

Time when data was last modified. Changed by the following 
system calls: creat(2), mknod(2), pipe(2), utime(2), and write(J). 

Time when file status was last changed. Changed by the follow­
ing system calls: chmCJd(2), chown(2), creat(2), flnk(2), 
mknCJd(2), pipe(2), unlink(2), utime(2), and write(J). 

July 29, 1985 



STAT(l) STAT(2) 

Sial will fail if one or more of the following are true: 

[ENOTDIRI A component of the path prefix is not a directory. 

The named file does not exist. [ENOENT) 

[EACCES] Search permission is denied for a component of the path 
prefix. 

[EFAULT] Buf or path points to an invalid address. 

Fstat will fail if one or more of the following are true; 

[EBADF] Fildes is not a valid O!)en file descriptor. 

[EFAULT] Buf points to an invalid address. 

RETURN VALUE 
Upon successful completion a value of 0 is returned. Otherwise, a value of 
-1 is returned and errno is set to indicate the error. 

SEE ALSO 
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), 
time(2), unlink(2), utime(2), write(J). 

July 29, 1985 Page 2 



STIMB(2) STIMB(2) 

NAME 
stim.e - set time 

SYNOPSIS 
tnt stboe (lp) 
loq •tJ; 

DESCRIPI'ION 
StJme sets the system's idea of the time and date. Tp points to the value of 
time as measured in seconds from 00:00:00 GMT January I, 1970. 

IEPERMl 

RETURN VALUE 

Slime will fail if the effective user ID of the calling process 
is not supcr·user. 

Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -1 is returned and e"no is set to indicate the error. 

SEE ALSO 
tim.e(2). 

- I -



SYNC (2) SYNC (2} 

NAME 
sync - update super-block 

.f SYNOPSIS 
void sync ( ) 

DESCRIPTION 
Sync causes all information in memory that should be on disk to be written 
out. This includes modified super blocks, modified i-nodes, and delayed 
block 110. 
It should be used by programs which examine a file system, for example 
fsck, tif, etc. It is mandatory before a boot. 

The writing, although scheduled, is not necessarily complete upon return 
from sync. 

- I -



TIME(2) TIME(2) 

NAMB 
tima- get lime 

SYNOPSIS 
loo& time ((loag •) 0) 

loag time (tloc) 
lcmg •tloc; 

DESClUPTION 
Time returns the value of time in seconds since 00:00:00 GMr, January 1, 1970. 

If doc (taken as an integer) is non-zero. lhe return value is also stored in the 
locali.on to which tloc points. 

[EFAtn..T] Time will fall if tloc points to an illegal address. 

RI!I1JilN v ALUI! 
Upon successful completion, time returns the value of time. Othclwise. a value 
of -1 is returned and et7110 is set to indicate dte eii'OI'. 

SBBALSO 
slime(2~ ctUne(3). 

Pagel September 24, 1987 



r 

TIMES(2) 

NAME 
times - get process and child process times 

SYNOPSIS 

linducle <Syl/tnesJI> 
lindude <SyS/times.ll> 

lone times (buffer) 
strud tdll •bllrrer; 

DESCJUPI10N 

TIMES(2) 

Times fi11s the str'OCba'e pointed to by buffer with time-accounting information. 
The foDowing are the contents of lhis sttucture: 

struct uns { 

}: 

timeJ tms_utime; 
timeJ tmsJtime; 
time_t tms_culime; 
time_t uns_cstime; 

This infonnalion comes from the calling process and each of iiS terminated 
child processes for which it bas executed a wait. All limes are in 60ths of a ........ 

( Tms_lllime is the CPU time used while executing instructions in the oset space 
of the calling process. 

Tms _slime is the CPU time used by the system on behalf of the calling process. 

Tms_cJUime is the sum of the tms_llliml!s and tms_cutimes of the child 
pro<CSSCS. 

Tms_cstilM is lhe sum of the tms_stimes and tms_cstimes of the child 
processes. 

[EFAUL11 Times will fail if bMjfor points to an illegal addless. 

RIITURN V ALUB 
Upon successful completion, times returns the elapsed real time. in 601bs of a 
second, since m arbitrary point in the past (e.g., syslem start-up lime). This 
point does not change from one invocation of times to another. If times fails. a 
-1 is n:turnod and emw is sec 10 indicate the mor. 

SEE ALSO 
exec(2), fod:(2),1imc(2). wai1(2). 



ULIMIT(2) ULIMIT(2) 

NAME 
ulimit - get and set user limits 

SYNOPSIS 
long ullmil (tmd, newlimU) 
lnl cmd; 
long newlimit; 

DESCRIPTION 
This function provides for control over process limits. The ,·md values 
available are: 

I Get the file size limit of the process. The limit is in units of 512-byte 
blocks and is inherited by child processes. Files of any size can be 
read. 

2 Set the file size limit of the prO<:ess to the value of llt-wlimit. Any pro­
cess may decrease this limit, but only a process with an effective user 
ID of super-user may increase the limit. Ulimit will fail and the limit 
will be unchanged if a process with an effective user ID other than 
super-user attempts to increase its file size limit. (EPERM] 

3 Get the maximum possible break vaJue. See brk(2). 

RETURN VALUE 
Upon successful completion, a non-negative value is returned. Otherwise, 
a value of -1 is returned and t-rr11o is set to indicate the error. 

SEE ALSO 
brk(2), writeO). 

Page 1 July 29, 19SS 



'-

--·-

UMASK(2) UMASK(2) 

NAME 
umask ~ set and get file creation mask 

SYNOPSIS 
tnt umuk (mtsk) 
tnt cmask; 

DESCRIPTION 
Umask sets the process's file mode creation mask to cmask and returns the 
previous value of the mask. Only the low-order 9 bits of cmask and the file 
mode creation mask are used. 
The file mode creation mask is used whenever a file is created by creat(2), 
mknod(2) or open(2). The actual mode (see chmod(2)) of the newly­
created file is the difference between the given mode and cmask. In other 
words, cmask shows the bits to be turned off when a new file is created. 

The previous value of cmask is returned by the call. The value is initially 
022, which is an octal 'mask' number representins the complement of the 
desired mode. '022' here means that no permissions are withheld from the 
owner, but write permission is forbidden to group and to others. Its com­
plement, the mode or the file, would be 755. The file mode creation mask 
is inherited by child processes. 

RETURN VALUE 
The previous value or the file mode creation mask is returned. 

SEE ALSO 
mkdir(l), sb(l), chmod(2), creat(2), mknod(2), open{2). 

• 1 • 



UMOUNT(2) 

NAME 
umount - unmount a file system 

SYNOPSIS 
int umount (spee) 
char •spec; 

DESCRIP110N 

UMOUNT(2) 

Umount requests that a previously mounted file system contained on the block 
special device identified by spec be unmounted Spec is a pointer to a path 
name. After unmounting the file system. the directory upon which the file sys­
tem was mounted reverts to its onlinary interpretation. 

Umolllll may be invoked only by the super-user. 

UmoWII will fail if one or more of the following are true: 

[EPERM] 

[ENXIO] 

]ENOTBLK] 

[EJNVAL] 

[EBUSY] 

[BNOENT] 

lliiTUilN vALVE 

The process's effective user ID is not super-user. 

Spec device does not exist. 

Spec is not a block special device. 

Spec is not mounted 

A file on spec is busy. 

No such spec file or directory. 

Upon successful completioo a value of 0 is returned. Otherwise, a value of -1 
is recumed and errno is set to iDdicate the error. 

SI!BALSO 
mounl(2~ 

Pagel Sepcembu 24, 1987 



UNAME(l) UNAME(2) 

NAME 
uname - get name or current UNIX system 

SYNOPSIS 
#include <sys/utsname.h> 
int uname (name) 
strnct utsname •name; 

DESCRIPTION 
Uname stores information identifying the current UNIX system in the struc­
ture pointed to by name. 
Uname uses the structure defined in <sys/utsname.h>: 

struct utsname { 
<hu 
char 
char 
char 
char 

}; 

sysname{9]; 
nodename{9]; 
release[9J; 
version [9]; 
machine{9]; 

extern struct utsname utsname; 

Uname returns a null-terminated character string naming the current UNIX 
system in the character array sysname. Similarly, nodename contains the 
name that the system is known by on a communications network. Release 
and version further identify the operating system. Machine contains a stan· 
dard name tbat identifies the hardware that the UNIX system is running on. 

(EFAULT] Uname will fail if name points to an invalid address. 

RETURN VALUE 
Upon successful completion, a non-negative value is returned. Otherwise, 
-1 is returned and errno is set to indicate the error. 

SEE ALSO 
uname(l). 

• 1 • 



UNLINI:.(2) UNLINk.(2) 

NAME 
unlink - remove dirC(;tory entry 

SYNOPSIS 
lot uoUok (patb} 
char •path; 

DESCRIPTION 
Unlink removes the directory entry named by the path name pointed to be 
path. 

The named file is unlinked unless one or more of the following are true: 

[ENOTDIRI A component of the path prefix is not a directory. 

[ENOENT) 

[EACCES] 

[EACCESI 

[EPERMI 

[EBUSY] 

[ETXTBSY) 

[EROFSI 

IEFAULTI 

The named file does not exist. 
Search permission is denied for a component of the path 
prefix. 

Write permission is denied on the directory containing the 
link to be removed. 

The named file is a directory and the effective user JD of 
the process is not super-user. 

The entry to be unlinked is the mount point for a mounted 
file system. 

The entry to be unlinked is the last link to a pure pro­
cedure (shared text) file that is being ex~uted. 

The directory entry to be unlinked is part of a read-only 
file system. 

Path points outside the process's allocated address space. 

When all links to a file have been removed and no process has the file 
open, the space occupied by the file is freed and the file ceases to exist. If 
one or more processes have the file open when the last link is removed, the 
removal is postponed until all references to the file have been closed. 

RETURN VALUE 
Upon successful completion, a value or 0 is returned. Otherwise, a value 
of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
nn(l), close(2), link(2), open(2). 

- I -



USTAT(2) USTAT(2} 

NAME 
ustat - set file system statistics 

SYNOPSIS 
#lncJulle <sys/lypes.b> 
#include <ustat.b> 

lnt ustat (dev, bufl 
lnt dev; 
strud uslat •buf; 

DESCRIPTION 
Uslilt returns information about a mounted file system. Dev is a device 
number identifying a device containing a mounted file system. Buf is a 
pointer to a ustQt structure that includes to following elements: 

daddr t f tfree; /• Total free blocks •/ 
ino t- f-tinode; I• Number of free inodes •I 
cba[ rfname[6]; /• Filsys name •I 
char (fpack[6]; I• FilsYS pack name •/ 

Uslilt will fail if one or more of the following are true: 
(EINVALJ Dev is not the device number of a device containing a 

mounted file system. 
IEFAULT] Bl({points outside the process's allocated address space. 

R.BTURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -1 is returned and ermo is set to indicate tbe error. 

SEE ALSO 
stat(2), fs(4). 

. I . 



UTIME(2} UTIMB(2} 

NAME 
utime - set file access and modification times 

SYNOPSIS 
#include <sys/types.h> 
lot utlm.e (path, times) 
ehar •path; 
struet utlmbuf •times; 

DBSCIUPTION 
Path points to a path name naming a file. Utime sets the access and 
modification times of the named file. 

If times is NULL, the access and modification times of the file are set to the 
current time. A process must be the owner of the file or have write per· 
mission to use utime in this manner. 
If times is not NULL, times is interpreted as a pointer to a utimbuf structure 
and the access and modification times are set to the values contained in the 
designated structure. Only the owner of the file or the super-user may use 
utime this way. 

The times in the following structur.:: are measured in seconds since 00:00:00 
GMT, Jan. 1, 1970. 

struct utlmbuf { 
time t actime; 
time=:t modtime; 

I• access time •I 
I• modification time •I 

); 

Utime will fall if one or more of the following are true: 

IENOENTl The named file does not exist. 
IENOTDIR] 

[EACCES] 

[EPERMI 

IEACCES] 

IEROFSI 

[EFAULT] 

[EFAULTI 

RETURN VALUE 

A component of the path prefix is not a directory. 

Search permission is denied by a component of the path 
prefix. 

The effective user JD is not super-user and not the owner 
of the file and times is not NULL. 

The effective user ID is not super-user and not the owner 
of the file and times is NULL and write access is denied. 

The file system containing the file is mounted read-only. 

Times is not NULL and points outside the process's allo­
cated address space. 

Path points outside the process's allocated address space. 

Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
stat(2). 

- I -



UVAR(l) Un!Soft UVAR(2) 

NAME 
uvar - returns system-specific configuration information 

SYNOPSIS 
#include <sys/var.h> 

uvar(v) 
struct var *v; 

DESCRIPTION 

Page I 

Uvur returns system-specific configuration information contained in the ker­
nel. The information returned contains table sizes, mask words, and other 
system-specific information for programs such as td(!) and psO). 

Presently a maximum of 256 bytes of information is returned. This number 
is subject to change. V points to the I'Uf structure: 
struct var { 

int v_buf; I* Number of system buffers •f 
int v_call; r Maximum number of simultaneous callouts "I 
int v_inode; I* Maximum number of incore inodes "/ 
char • ve_inode; I" Pointer to last incore inode table */ 
int v_file; I* Maximum number of open files*/ 
char • ve_file; I" Pointer to last open file table *I 
int v_mount; r Maximum number of file systems mountable "I 
char • ve_mount; I" Pointer to last mounted file system table */ 
int vyroc; I* Maximum number of processes *I 
char • ve_proc; I" Pointer to last process table 'I 
int v_text; r Maximum number of shared text segments *I 
char • ve_text; I" Pointer to last shared text segment table 'I 
int v_clist; I" Maximum number ofclists *I 
int v_sabuf; I* Maximum number of system activity buffers "I 
int v_maxup; I' Maximum number of user processes "I 
int v_crnap; I" Size of core memory allocation map *I 
int v_smap; I" Size of swap memory allocation map *I 
int v_hbuf; r Maximum number of buffer headers*/ 
int v_hmask; !"Maximum number of buffer headers- I */ 
int v_nock; r Maximum number of file locks "I 
int v_phys; I* Maximum number of simultaneous phys calls"/ 
int v_clsize; I" Click size*/ 
int v_txtrnd; /*Number of clicks per segment*/ 
int v _bsize; I" Block size*/ 
int v_cxmap; I* Context map size*/ 
int v_clktick; I* Clock tick *I 
int v hz, ;• Hz 0 / 

int v_usize; r Size of user structure *I 
int v_pageshift; I" Page shift *I 
int v pagemask, I* Page mask •1 
int v_segshift; I" Segment shift *I 
int v_segmask; I* Segment mask *I 
int v _ustart; I* Starting virtual address for user program •1 
int v_uend; I" Ending virtual address for user program *I 
char • ve_call; I* Pointer to last callout table 'I 
int v_stkgap; /*Obsolete *I 

July 12, 1985 



UVAR(2) 

k 
SEE ALSO 

int 
int 
in\ 
int 
int 
int 
char • 
int 
int 
il'll 

in I 

v_cputype; 
v_cpuver; 
v_mmutype; 
v_doffset; 
v_kvoffset; 
v_svtext; 
ve_svtext; 
v_pbuf; 
v_nscatload; 
v_udot; 
v_fill[64-46l; 

I usr/ include/ sys/ space.h 

July 12, 1985 

UniSoft UVAR(l) 

I* CPU type (1=68000) "I 
I* CPU version id 0-68000,2-68010, 3=68020) */ 
/* MMU type (!=none, 2=SUN, 3=68451) 0

/ 

I* Data offset "I 
I" Kernel virtual offset "I 
/*Maximum number of text loitering segments*/ 
/* Pointer to last text loitering segment in table ., 
I* Maximum number of buffers for pliysio */ 
/* Ma"imum number of e11tries i11 scalier map*/ 
!*Addr-ess of user structure •t 
/* Sized to make var 256 bytes long*/ 

Page 2 



WAIT(2) WAIT(2) 

NAME 
wait - wait for child process to stop or terminate 

SYNOPSIS 
int wait (stat_loe) 
int •stat_loe; 

int wait ((int •)0) 

DESCRIPTION 
Wail suspends the calling process until one of the immediate children ter­
minates or until a child that is being traced stops, because it has hit a break 
point. The wail system call will return prematurely if a signal is received 
and if a child process stopped or terminated prior to the call on wait, return 
is immediate. 

If slat lac (taken as an integer) is non-zero, 16 bits of information called 
status-are stored in the low order 16 bits of the location pointed to by 
sial lac. Staws can be used to differentiate between stopped and ter­
millated child processes and if the child process terminated, status identifies 
the cause of termination and passes useful information to the parent. This 
is accomplished in the following manner: 

If the child process stopped, the high order 8 bits of status will con­
tain the number of the signal that caused the process to stop and 
the low order 8 bits will be set equal to 0177. 

If the child process terminated due to an exit call, the low order 8 
bits of status will be zero and the high order 8 bits will contain the 
low order 8 bits of the argument that the child process passed to 
exir; see exi/(2). 

If the child process terminated due to a signal, the high order 8 bits 
of sratus will be zero and the low order 8 bits will contain the 
number of the signal that caused the termination. In addition, if the 
low order seventh bit (i.e., bit 200) is set, a "core image" will have 
been produced; see signa£(2). 

If a parent process terminates without waiting for its child processes to ter­
minate, the parent process ID of each child process is set to 1. This means 
the initialization process inherits the child processes; see intro(2). 

Walt will fail and return immediately if one or more of the following are 
true: 

[ECHILD] 

[EFAULT] 

The calling process has no existing unwaited-for child 
processes. 

Stat_ lac points to an illegal address. 

RETURN VALUE 
If wait returns due to the receipt of a signal, a value of -I is returned to 
the calling process and errno is set to EINTR. If wait returns due to a 
stopped or terminated child process, the process ID of the child is returned 
to the calling process. Otherwise, a value of -I is returned and errno is set 
to indicate the error. 

SEE ALSO 
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2). 

Page I July 26, 1985 



WAIT(2) WAIT(2) 

WARNING 
See i~ARSf'li(; in Mgna/(2). 

July 26, 198S Page2 



WAIT3(2N) (Urusoft) 

NAME 
,r- wait3 - wait for child process to stop or cenninate 

-~ SYNOPSIS 
#include <Sys/wait.h> 

pid = wait3(status, options, 0) 
int pid; 
union wait "'status; 
int options; 

DESCRIPTION 

WAIT3(2N) 

W ait3 provides an interface for programs which must not block when collecting 
the status of child processes. The status parameter is defined as above. The 
options parameter is used to indicate the call should not block if there are no 
processes which wish to report stats (WNOHANG). 

When the WNOHANG option is specified and no processes wish to report 
status, wait3 returns a pid of 0. 

RETUitN VALUE 
.,..--._ Wait3 returns -1 is there are no children not previously waited for; 0 is returned 

ifWNOHANO is specified and there are no stopped or exited children. 

SEE AUO 
exit(2) 

Page 1 September 24, 1987 



WRITE(2) WRITE(2) 

NAME 
write - wrile on a file 

SYNOPSIS 
inf: write (&Ides, but, abyte) 
lnt &Ides; 
char •but; 
unsigned nbyte; 

DESCRIPTION 
Fildes is a file descriptta" obtained from a creat, open., dup, fcnll., pipe, or 
socket system call. 

Write attempts ID wrire nbyte bytes from the buffer pointed to by buf to the file 
associated with the filtks. 

On devices capable of sedting. the actual writing of data proceeds from the 
position in the file incticated by the file pointer. Upon return from write, the file 
pointer is incremented by the number of bytes actually wriuen. 

On devices incapable of seeking, writing always takes place starting at the 
current position. The value of a file pointer associated with such a device is 
undefined. 

If the O_APPEND flag of the file status ftags is set, the file poinlel" will be set to 
the end of the file prior to each wrile. 

Write will fail and the file pointer will remain unchanged if one or more of the 
foUowing are true: 

[EIOJ A physical 1/0 error bas occurred. 

[ENXIO] The device associated with the file descripkr is a block­
special or character-special file and the value of the file 
pointer is out of range. 

[EBADF] Fildes is not a valid file descriptor open for writing. 

[EPIPB and SIGPIPE signal] 

[EPIPE] 

[EFBIO] 

Page 1 

An auempt is made to write to a pipe lhat is not open for 
reading by any process. 

An attempt is made to write to a pipe that is not open for 
reading by any process. 

An attempt was made to write a file that exceeds the 
process's file size limit or the maximum tile size. See 

September 28, 1987 



WRITE(2) 

[EFAULT] 

[EFAULT] 

(EINI'R] 

[ENOSPC] 

WRITE(2) 

ulimit(2). 

Part of itw m data to be written to the file points outside the 
process's allocated address space. 

Bufpoints outside the process's allocated address space. 

A signal was caught during the write system call. 

Not enough space is left on the device containing the file. 

If a write requests that more bytes be written lhan there is room for (e.g., the 
Jdimit (see ulimit(J.)) or the physical end of a medium), only as many bytes as 
there is room for will be written. For example, suppose there is space for 20 
bytes more in a file bef<xe reaching a limit A write of 5 12 bytes will return 
20. The next write of a non-zero number of bytes will give a failure return 
(except as noted below). 

If the file being written is a pipe (or FIFO) and the O_NDELAY tlag of the file 
flag word is set, then write to a full pipe (or FIFO) will return acountofO. Oth­
erwise (O_NDBLAY clear), writes to a full pipe (orFIOO) will bb::k until space 
becomes available. 

RETURN VALUE 
Upon successful completion the number of bytes actually written is returned 
OtbeRri.se, -1 is returned and errt10 is set to indk:ate the error. 

SEE ALSO 
creal(2),1seek(2), open(2), p;po(2), socket(2N), ulimi«2). 

September 28, 1987 Page2 



WRITEV(2) 

NAMB 
wrUcv - write oo a file 

SYNOPSIS 

-~ - ..,.,.......,. 
wrllev(d, lov, iovedea) 
int d; 
sCnu:t iovec •iov; 
lnt ioveden; 

DI!SCRIPl10N 

(UniSoft) WRITEV(2) 

Fildes is a file descriptu' CJbtained from a creat, open, dup, fc1Jil, ~, or 
socket system call 

Writev attempts 10 write 1lbyre bytes to the file associated with lhe filMs and 
galheis the ou1p0t data from the iovlen. buffers specified by the memben: of the 
iowc amy: iov[O], iov[l], etc. 

On devices capable of seeking, the actual writing of data proceeds from the 
posilim in the file indicaac:d by the file pointer. Upon return from writev, the 
file pointer is inaemented by the number of bytes actually written. 

On devices incapable of seeking, writing always takes place starting at the 
current position. The value of a file pointer associated with SDCh a device is 
undefined. 

H the O_APPEND ftag of the file status flags is set. the file poinler will be set to 
the end of tbe file prior to each write. 

Wrltev will fail and l:be file pointer will remain unchanged if one or mcxe of the 
following are true: 

[EBADFJ Fildes is not a valid file descriptol' open for writing. 

[EPIPB and SIGPIPE signal] 

[EPIPB) 

[EFBIG) 

Page I 

An attempt is made 10 write to a pipe that is not open foe 
reading by any process. 

An attempt is made to write to a pipe that is not open for 
reading by any process. 

An attempt was made to write a file that exceeds the 
process's file size limit or the maximum file size. See 
ulimit(2). 

September 28, 1987 



WRITEV(2) 

[EFAULT] 

[EFAULT] 

[I!INfR] 

(UniSoft) WRITEV(2) 

Part of iov or data to be written 1o the file points outside the 
process's allocated address space. 

Bufpoints outside the process's allocated address space. 

A signal was caught during the writev system call. 

If a writev requests that more byteS be written than !here is room for (e.g., the 
ulimit (see ulimit(2)) or the physical end of a medium), only as many bytes as 
there is room for will be written. For example, suppose there is space for 20 
bytes more in a file before reaching a limit. A write of 512 bytes will return 
20. 1be next write of a non-zero number of bytes will give a failure return 
(except as noted below). 

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file 
8ag word is set, then write to a full pipe (oc FIFO) will return a count of 0. Olh­
erwise (O_NDELAY clear), writes to a full pipe (or FIFO) will block until space 
becomes· available. 

RETURN VALUE 
Upon successful complelion the number of byteS actually written is returned. 
Otherwise, -1 is returned and e"no is set to indicate the error. 

,.---- SEE ALSO 

creat(2), 1.,..(2), open(2), pipe(2), •oclret(2N), ulimit(2). 

September 28, 1987 Page2 





c 

INTILO (3) JNTILO(J) 

NAME 
intro - introduction to subroutines and libraries 

SYNOPSIS 
#include <stdio.h> 

#Include <math.h> 

DESCR.IPTION 
This section describes functions found in various libraries, other than those 
functions that directly invoke system primitives, which are described in Sec­
tion 2 of this volume. Certain major collections are identified by a Jetter 
after the section number: 

OC) These functions, together with those of Section 2 and those marked 
(3S), constitute the Standard C Library, libc, which is automatically 
loaded by the C compiler, cc(l). The link editor /d(l) searches this 
library under the -lc option. Some functions require declarations 
that can be included in the program being compiled by adding the 
line 

#include <header filename> 

The appropriate #include file is indicated in the SYNOPSIS part of a 
function description. 

(3F) These functions constitute the FORTRAN intrinsic function library, 
libF77. These functions are automatically available to the FORTRAN 
programmer and require no special invocation of the compiler. 

OM) These functions constitute the Math Library, /ibm. They are 
automatically loaded as needed by the FORTRAN compiler /770). 
They are not automatically loaded by the C compiler, ceO); how­
ever, the link editor searches this library under the -1m option. 
Declarations for these functions may be obtained from the #Include 
file <math.h>. 

(3S) These functions constitute the "standard 1/0 package"; an introduc­
tion to this package is provided in stdio(3S). The functions are in 
the library //be, already mentioned. Declarations should be obtained 
from the #Include file <stdlo.h>. 

(3X) Various specialized libraries. The files in which these libraries are 
found are given on the appropriate pages. 

DEFINffiONS 

For descriptions and examples of #include files, refer to the 
"Libraries" section of the Programming Guide. 

A character is any bit pattern able to fit into a byte on the machine. The 
null character is a character with value 0, represented in the C language as 
'\0'. A character array is a sequence of characters. A null-terminated char­
acter array is a sequence of characters, the last of which is the null charac­
ter. A string is a designation for a null-terminated character array. The null 
string is a character array containing only the null character. A NULL 
pointer is the value that is obtained by casting 0 into a ·pointer. The C 
langu31e guarantees that this value will not match that of any legitimate 
pointer, so many functions that return pointers return it to indicate an 
error. NULL is defined as 0 in <stdio.b>; the user can include his own 
definition if he is not using <stdio.h>. 

- 1 -



INTRO(]) INTRO(l) 

FILES 

Many groups of FORTRAN intrinsic functions have generic function names 
that do not require explicit or implicit type declaration. The type of the 
function is determined by the type of its argument(s). For example, the 
generic function max returns an integer value if given integer argumellts 
(maxO), a real value if given real arguments (a max[), or a double-precision __.-
value if given double-precision arguments (dmaxl). 

llib/libc.a 
/usr/lib/libF77 .a 
/libllibm.a 

SEE ALSO 
ar<O, cc(l), n7(1), ld(l), !intO), nm(l), intro(2), stdio(3S), math(5). 
Programming Guide. 

DIAGNOSTICS 
Functions in the C and Math Libraries (JC and 3M) may return the con­
ventional values 0 or ±HUGE (the largest-magnitude single-precision 
floating-point numbers; HUGE is defined in the < math.h> header file) 
when the function is undefined for the given arguments or when the value 
is not representable. In these cases, the external variable errno (see 
intro(2)) is set to the value EDOM or ERANGE. Because many of the FOR· 
TRAN intrinsic functions use the routines found in the Math Library, the 
same conventions apply. 

WARNING 
Many of the functions in the libraries call and/or refer to other functions 
and external variables described in this section and in section 2 (System ___/. 
Calls). If a program inadvertantly -defines a function or external variable 
with the same name, the presumed library version of the function or exter-
nal variable may not be loaded. The fint(l) program checker reports name 
conflicts of this kind as "multiple declarations" of the names in question. 
Definitions for sections 2, JC, and JS are checked automatically. Other 
definitions can be included by usina the -I option (for example, -1m 
includes definitions for the Math Library, section 3M). Use of /intis highly 
recommended. 

- 2-



A64LUC) A64L(3C) 

NAME 
a641, 164a - convert between long integer and base-64 ASCII atring 

SYNOPSIS 
lone a641 (s} 
eb•r •s; 

eb•r •164• (I) 
long I; 

DESCRIPTION 

BUOS 

These functions are used to maintain numbers stored in base-64 ASCII 
characters. This is a notation by which long integers can be represented by 
up to 6 characters; each character represents a "digit" in a radix-64 nota­
tion. 

The characters used to represent "digits" are. for 0, I for 1, 0 through 9 
for 2-11, A through Z for 12-37, and a through z for 38-63. 

A641 takes a pointer to a null-terminated base-64 representation and 
returns a corresponding lont; value. If the string pointed to by s contains 
more than 6 characters, a641 uses the first 6. 

L64a takes a long argument and returns a pointer to the corresponding 
base-64 representation. If the argument is 0, J64a returns a pointer to a 
null string. 

The vaJue returned by /64a is a pointer into a static buffer, the contents of 
which are overwritten by each caJI. 

- I -



ABORT(3C) ABORTUC) 

NAME 
abort - generate an lOT fault 

SYNOPSIS 
tnt 1bort ( } 

DESCRIPTION 
Abort first closes all open files if possible, then causes an lOT signal to be 
sent to the process. This usually results in termination with a core dump. 

It is possible for obon to return control if SJGIOT is caught or ignored, in 
which case the value returned is thai of the kill(2) system call. 

SEE ALSO 
sdb(l), exit(2), kill(2), signal(2). 

DIAGNOSTICS 

Page I 

If SIGIOT is neither caught nor ignored, and the current directory is writ­
able, a core dump is produced and the message •bort - eo:re dumped is 
written by the shell. 

July 22, 1985 



ABORT{lF) ABORT(JF) 

NAME 
abort - terminate Fortran program 

r SYNOPSIS 

. r 

eall aborl ( ) 

DESCRIPTION 
Abort terminates the program which caUs it, c:losing all open files truncated 
to the current position of the file pointer. 

DIAGNOSTICS 
When invoked, abort prints Fortran abort routine eaUed on the standard 
error output. 

SEE ALSO 
abort(3C) . 

- I -



ABS{JC) 

NAME 
abs - return integer absolute value 

SYNOPSIS 
lnt alta (i) 
lnl i; 

DESCRIPTION 
Ab& returns the absolute value of its integer operand. 

BUGS 

ABS(JC) 

In two's-complement representation, the absolute value of the neptive 
integer with largest magnitude is undefined. Some implementations trap 
this error, but others simply ignore it. 

SBB ALSO 
Ooor(JM). 

. I . 



ABS(JF) ABS{JF) 

NAME 
abs, iabs, dabs, cabs, zabs - Fortran absolute value 

SYNOPSIS 
Integer il, i2 
rnl rl, r2 
double preelslon dpl, dp2 
complex ext, cx2 
double complex dxl, dx2 
r2 abs(rl) 

i2 = iabs(il) 
i2 = abs(il) 

dp2 dabs(dpl) 
dp2 abs(dpl) 

cx2 eabs(cxD 
cx2 abs(cxl) 

dx2 zabs(dxl) 
dx2 - abs(dxl) 

DESCRIPTION 
Abs is the family of absolute vaJue functions. labs returns the integer 
absolute value of its integer argument. Dabs returns the double-precision 
absolute value of its double-precision argument. Cabs returns the complex 
absolute value of its complex argument. Zabs returns the double-complex 
absolute value of its double-complex argument. The generic form abs 
returns the type of its argument. 

SEE ALSO 
Ooor(JM). 

- l -



ACOS(JF) 

NAME 
acos, dacos - Fortran arccosine intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 

r2 - aces(rl) 

dp2 = daces(dpl) 
dp2 - aces{dpl) 

DESCRIPTION 

ACOS(lP) 

Aros returns the real arccosine of its real argument. Dacos returns the 
double-precision arccosine of its double-precision argument. The generic 
form acos may be used with impunity because its argument determines the 
type of the returned value. 

SEE ALSO 
tri&(JM). 

. I . 



AIMAO(lF) 

NAME 
aimag, dimag - Fortran imaginary part of complex argument 

SYNOPSIS 
real r 
complex cxr 
double precision dp 
double oomplex cxd 
r = aimac(cxr) 

dp - dlmag(cxd) 

DESCRIPTION 

AIMA0(3F) 

Aimag returns the imaginary part of its single-precision complex argument. 
Dimag returns the double-precision imaginary part or its double-complex 
argument. 

. I . 



AINT(JF) AINT(JF) 

NAME 
aint, dint - Fortran integer part intrinsic function 

SYNOPSIS 
real rl, r2 
double preclsJon dpl, dp2 

r2 - aint(rl) 

dp2 - dlnt(dpO 
dp2 - alnt(dpl) 

DESCRIPTION 
Aint returns the truncated value of its real argument in a real. Dint returns 
the truncated value of its double-precision argument as a double-precision 
value. Alnr may be used as a generic function name, returning either a real 
or double-precision value depending on the type of its argument. 

- I -



ASINUF) 

NAME 
asin, dasin - Fortran arcsine intrinsic function 

.r-- SYNOPSIS 
real rl, r2 
double preeislon dpl, dp2 

r2 = asJn(rl) 

dp2 • Usln{dpl) 
dp2 = asln(dpl) 

DESCR.IPTION 

ASINUF) 

Asin returns the real arcsine of its real argument. Dasin returns the 
double-precision arcsine of its double-precision argument. The generic 
form asin may be used with impunity as it derives its type from that of its 
argument. 

SEE ALSO 
trig(JM). 



ASSBRT(lX) ASSERTUX) 

NAME 
assert - verify prosram assertion 

SYNOPSIS 
#incluft <•ssert.h> 
•ssert (expression) 
lot expression; 

DESCRIPTION 
This macro is useful for putting diagnostics into propams. If expression is 
false (zero) when assert is executed, assert prints 

Assertion f•lled: expression. file .lCJ'Z, line nnn 

on the standard error output and aborts. In the error messqe, xyz is the 
name of the source file and nnn is the source line number of the auert 
statemenL 
Compilins with the preprocessor option -DNDDUG (see cpp(l)), or with 
the preprocessor control statement #H6ae NDDUG ahead of the 
#Indole <usert.h> statement, stops assertions from being compiled 
into the program. 

SBB ALSO 
cpp(l), abort(JC). 

- I -



ATAN(3F) ATANUF) 

NAME 
atan, datan - Fortran arctangent intrinsic function 

,r' SYNOPSIS 

,r-

real rl, r2 
double preclslon dpl, dp2 

r2 • alan(rl) 

dp2 • dalan(dpl) 
dp2 - atan(dpl) 

DESCRIPTION 
AUln returns the real arctangent of its real argument. DaUln returns the 
double-precision arctangent of its double-precision argument. The generic 
form ofQn may be used with a double-precision argument returning a 
double-precision value. 

SEE ALSO 
trig(3M). 

- I -



ATAN2(3F) 

NAME 
atan2, datan2 - Fortran arctangent intrinsic function 

SYNOPSIS 
real rl, r2, rJ 
do••le trecision dpl, dpl, dp3 

r3 - ataD2(rl, r2) 

dp3 - datan2(dpl, dp2) 
dp3 - ataD2(dpl, dp2) 

DESCRIPTION 

ATAN2(3F) 

Aton2 returns the arctangent of argl/arg2 as a real value. Datan2 returns 
the double-precision arctangent of ita double-precision arguments. The 
pneric form atan2 may be used with impunity with double-precision argu­
ments. 

SEE ALSO 
trig(3M). 

- I -



ATOF(JC) ATOF(JC) 

NAME 
atof- convert ASCII string to floating-point number 

SYNOPSIS 
double atof (nptr) 
char •nptr; 

DESCRIPTION 
Atof converts a character string pointed to by 11p/r to a double-precision 
floating-point number. The first unrecognized character ends the conver­
sion. Atqf recognizes an optional string of white-space characters (blanks 
or tabs), then an optional sign, then a string of digits optionally containing 
a decimal point, then an optional e or E followed by an optionally signed 
integer. If the string begins with an unrecognized character, atof returns 
the value zero. 

DIAGNOSTICS 
When the correct value would overflow, atofreturns HUGE, and sets ermo 
to ERAN'fE. Zero is returned on underflow. 

SEE ALSO 
scanf(3S), strtolOC). 

Page I July 22, 1985 



BESSEL(JM) BESSEL(lM) 

NAME 
jO, jl, jn, yO, yl, yn - Bessel functions 

SYNOPSIS 
#include <malh.h> 

double jO (x) 
double x; 

double jl (x) 
double x; 

double jn In, ,, 
lnt n; 
do .. ble x; 

double yfl '" double x; 

double yl ,,, 
double x; 

do .. ble yn (n, x) 
lnt n; 
do .. ble x; 

DESCRIPTION 
JO and )1 return Bessel functions of x of the first kind of orders 0 and I 
respectively. Jn returns the Bessel function of x of the first kind of order 
n. 

YO and yl return the Bessel functions of x of the second kind of orders 0 
and 1 respectively. Yn returns the Bessel function of x of the second kind 
of order n. The value of x must be positive. 

DIAGNOSTICS 
Non-positive arguments cause yO, yl, and yn to return the value -HUGE 
and to set errno to EDOM. In addition, a messqe indk:atiq DOMAIN error 
is printed on the standard error outpul 

Arauments too Jara;e in magnitude cause }0, }1, yO and yl to return zero 
and to set errno to t:RANGE. In addition, a messqe indicating TLOSS error 
is printed on the standard error outpUt. 

These error-handling procedures may be cbansed with the function 
mothel"r(lM). 

SBE ALSO 
matherr(lM). 

. I . 



BLT(JC) UniSort BLT(JC) 

NAME 
bit, bitSl2 - block transfer data 

SYNOPSIS 
int hlt(to,from,teund 
char •to; 
ebar *from; 
tat count; 

int bltS12(to,from,oount) 
char *to; 
char *from; 
tnt oonnt; 

DESCRIPTION 
Bit does a fast copy of count bytes of data starting at address from to 
address to. 
Blt511 does a fast copy of count number of consecutive 512 byte units 
starting at address from to address to. 

- 1 -



800LC3F) BOOL(3F) 

NAME 
and, or, xor, not, lshift, rshift - Fortran bitwise boolean functions 

SYNOPSIS 
integer i, j, k 
real a, b, c 
double precision dpl, dp2, dp3 

k - and(i, j) 
c = or(a, b) 
j - xor(i, a) 
j = not(i) 
k = lshifHi, j) 
k • rshlfl (i, j) 

DESCRIPTION 

NOTE 

BUGS 

The generic intrinsic boolean functions and, or, and xor return the value of 
the binary operations on their arguments. Not is a unary operator returning 
the one's complement of its argument. Lshift and rshift return the value of 
the first argument shifted left or right, respectively, the number of times 
specified by the second Gnteger) argument. 

The boolean functions are generic, i.e., defined for all data types as argu­
ments and return values. Where required, the compiler generates appropri­
ate type conversions. 

Although defined for all data types, use of boolean functions on non· 
integer data is not productive. 

The implementation of the shift functions may cause large shift values to 
deliver unexpected results. 

- I -



BSEARCH (3C) BSEARCH (3C) 

NAME 
bsearch - binary search a sorted table 

SYNOPSIS 
#include <searcb.h> 
char •bsearcb ((char •) key, (char •) base, nel, width, compar) 
unsiened nel; width, 
lnt (•oomparH ); 

DESCRIPTION 
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algo· 
rithm B. It returns a pointer into a table indicating where a datum may be 
found. The table must be previously sorted in increasing order according to 
a provided comparison function. Key points to a datum instance to be 
sought in the table. Base points to the element at the base of the table. 
Nel is the number of elements in the table. Width is the width of an ele­
ment in bytes; sizeof (*key) should be used. Compar is the name of the 
comparison function, which is cal!ed with two arguments that point to the 
elements being compared. The function must return an integer less than, 
equal to, or greater than zero as accordingly the first argument is to be con­
sidered less than, equal to, or greater than the second. 

EXAMPLE 
The example below searches a table containing pointers to nodes consisting 
of a string and its length. The table is ordered alphabetically on the string 

( in the node pointed to by each entry. 

This code fragment reads in strings and either finds the corresponding node 
and prints out the string and its length, or prints an error message. 

#include <sldlo.h> 
#include <s~n:h.h> 

#define T,o,BSIZE 1000 

struct node l 
char •string; 
int length; 

I• these are stored in the table •/ 

struct node table[TAIISIZEl; /• table to be searched •/ 

struct node •node_ptr, node; 
int node_compare( ); I• routine to compare 2 nodes •/ 
char str_space[20l; /• space to read string into •/ 

node.string - str_space; 
while (scanf("%s", nod.e.strlfl3) !- EOf) I 

node_ptr - (struct node •)bsearch((char •)(&node), 
(char •)table, TAIISIZ~, 
sizeof(struct node), node_compare); 

if (node_ptr t- NULL) [ 

- I -



BSBARCH (3C) BSBARCH(]C) 

NOTES 

I• 

•I 

'"' 

I else ( 

(vold)printf("strinJ - 'llo20s, lei!Jih - %11\n", 
node_j>lr->strins, nodeytr->Jensthl; 

(void}print11"not found: 'lbs\n", node.slrina); 

This routine rompares two nodes baaed on •n 
alphabetical orderinv. of lhe slrillll field. 

node_ compare(nodel, nodel) 
strw:t node •nodel, •nodc2; 

I 
retu.m stremp(nodel- >siring, nodel- > •Irina); 

The pointers to the key and the element at the base of the table should be 
of type pointer-to-element, and cast to type pointer-to-character. 
The comparison function need not compare every byte, so arbitrary data 
may be contained in the elements in addition to the values being compared. 
Although declared as type pointer-to-character, the value returned should 
be cast into type pointer-to-elemenL 

SEE ALSO 
hsearch(3C), lsearch(JC), qsort(JC), tsearch(JC). -

DIAGNOSTICS 
A NULL pointer is returned if the key cannot be found in the table. 

- 2-



BSTRING(JN) UniSoft BSTRING(JN) 

NAME 
boopy, bcmp, bzero, fl's - bit artd byte string operations 

SYNOPSIS 
beopy(bl, b2:, length) 
eh•r *bl, *bl; 
int lensth; 

bcmp(bl, bl, lenath) 
ehar *bl, *bZ; 
lni length; 

bzero(b, length) 
ehar •b; 
lot length; 

fl's(i) 
tnt I; 

tt ... -lnet 

DESCRIPTION 
The functions bcopy, bcmp, and bzero operate on variable length strings of 
bytes. They do not check for null bytes as the routines in string(3C) do. 

Bcopy copies length bytes from string bl to the striOi bl. 

Bcmp compares byte string bl against byte string b2, returning zero if they 
are identical, non-zero otherwise. Both strings are assumed to be length 
bytes long. 

Bzero places length 0 bytes in the string bl. 

F]S find the first bit set in the argument passed it and returns the index of 
that bit. Bits are numbered starting at I. A return value of -I indicates 
the value passed is zero. 

LINKING 

BUGS 

Page I 

This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

tt - o prog prog.e -!net 

The lxmp and bcopy routines take parameters backwards from strcmp and 
slrcpy. 

July 22, 1985 



BYTBORDEil ( 3N) UniSoft BYTEORDER(3N) 

NAME 
htonl, htons, ntohl, ntohs - convert values between host and network byte 
order 

SYNOPSIS 
#Include <sys/types.h> 
#lnelude <netinet/ln.h> 

netlong • htonl (hostlona); 
u_lon1 netlon1, hostlong; 

nelshorl - hlons (bostshort); 
u_short netshort, hostshorl; 

hostloua - ntohHnetlonJ); 
n_long hostlong. netlon1; 
boslshorl • ntohs(netshort); 
u_short hostshort, netshort; 

ce ••• -lnel 

DESCRIPTION 
These routines convert 16 and 32 bit quantities between network byte order 
and host byte order. On machines such as the SUN these routines are 
defined as null macros in the include file < netlnetlin.h>. 

These routines are most often used in conjunction with Internet addresses 
and ports as returned by gethostent(3N) and getser~~ent(3N). 

UNXJNG 
This library is accessed by specifying -lnet as the last argument to the -' 
compile line, e.g.: 

ce - o prog prog.e -Inet 

SEE ALSO 
gethostent(3N), getsetvent(3N) 

Page 1 July 22, 1985 



CLOCK(3C) CLOCK(3C) 

NAME 
clock - report CPU time used 

,;--- SYNOPSIS 
long ~lock ( ) 

DESCRIPTION 
Clock returns the amount of CPU time On microseconds) used since the 
first call to clock. The time reported is the sum of the user and system 
times of the calling process and its terminated child processes for which it 
has executed wai1(2) or system(3S). 

SEE ALSO 

BUGS 

times(2), wait(2), system(JS). 

The value returned by clock is defined in microseconds for compatibility 
with systems that have CPU clocks with much higher resolution. Because 
of this, the value returned wraps around after accumulating only 2,147 
seconds of CPU time (about 36 minutes) . 

. I . 



CONJG(JF) CONJG(lF} 

NAME 
conjg, dconjg - Fortran complex conjugate intrinsic function 

SYNOPSIS 
complex cxl, cx2 
double complex dxl, dx2 

cx2 = ooujl!l(cxl) 

dx2 .., dooujl!l(dxl) 

DESCRIPTION 
Co'!ig returns the complex conjug.ate of its complex argument. lJt:o'lig 
returns the double-complex conjugate of its double-complex arsument. 

- I -



CONV(3C) CONVOC) 

NAME 
to upper, to lower, _to upper, _to lower, toascii - translate characters 

SYNOPSIS 
#include <etype.h> 

int toupper (c) 
int c; 

int tolower (c) 
int c; 

lot toupper (c) 
lot C; 
lot tolower (c) 
tnt C; 
lot toasell (e) 
int c; 

DESCRIPTION 
Toupper and to/ower have as domain the range of getc(3S): the integers 
from -1 through 255. If the argument of toupper represents a lower-case 
letter, the result is the corresponding upper·case letter. If the argument of 
to/ower represents an upper-case letter, the result is the correspondins 
lower-case letter. All other arguments in the domain are returned 
unchanged. 

The macros toupper and to/ower, are macros that accomplish the same 
thing as toup"J,er and tololier but have restricted domains and are faster. 
_toupper requires a lower-case letter as its argument; its result is the 
correspondins upper-case letter. The macro to/ower requires an upper-case 
letter as its argument; its result is the cOrresponding lower-case letter. 
Arguments outside the domain cause undefined results. 

Toascii yields its argument with all bits turned off that are not part of a 
standard ASCII character; it is intended for compatibility with other systems. 

SEE ALSO 
ctype(JC), gctc(JS). 

• 1 • 



COS (lF) 

NAME 
cos, dcos, ccos - Fortran cosine intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 

r2 "" ees(rl) 

dp2 dees(dpl) 
dp2 cos(dpl) 

cx2 ceos(cxl) 
cx2 cos(cxl) 

DESCRIPTION 

COS(lF) 

Cos returns the real cosine of its real arsument. Dcos returns the double­
precision cosine or its double-precision argument. Ccos returns the com­
plex cosine of its complex argument. The generic form cos may be used 
with impunity because its returned type is determined by that of its argu­
ment. 

SEE ALSO 
trJa(3M). 

- 1 -



COSH(JF) 

NAME 
cosh, dcosh - Fortran hyperbolic cosine intrinsic function 

( SYNOpSIS 
real rl, r2 
double precision dpl, dp2 

r2 - cesb (r 1) 

dp2 - dcesb (dp 1) 
dp2 - cosb(dpl) 

DESCRIPTION 

COSH(3F) 

CQSh returns the real hyperbolic cosine of its real argument. lkosh returns 
the double-precision hyperbolic cosine of its double-precision argument. 
The generic form cosh may be used to return the hyperbolic cosine in the 
type of its argument. 

SEE ALSO 
sinh(JM). 

- 1 -



CRYPT{lC) CRYPT(3C) 

NAME 
crypt, setkey, encrypt - generate DES encryption 

SYNOPSIS 
cbar ~t (key, salt) 
ch•r •key, •salt; 

'fold setke;r (key) 
char •key; 

void eol:l1)lt (block, edflag) 
char •block; 
lot edflag; 

DESCRIPTION 
Crypt is the password encryption function. It is based on the NBS Data 
Encryption Standard (DES), with variations intended to frustrate use of 
hardware implementations of the DES for key search. 

Key is a user's typed password. Salt is a 2-character string chosen from the 
set [11-zA-Z0-9./]; this string is used to perturb the DES algorithm in one of 
4,096 different ways, after which the password is used as the key to encrypt 
repeatedly a constant string. The returned value points to the encrypted 
password. The first 2 characters are the salt itself. 

The setkey and encrypt entries provide (rather primitive) access to the actual 
DES algorithm. The argument of setkey is a character array of length 64 
containing only the characters with numerical value 0 and l. If this strins 
is divided into groups of 8, the low-order bit in each group is ignored; this 
gives a 56-bit key which is set into the machine. The 56-bit key is used 
with the above-mentioned algorithm to encrypt or decrypt the string block 
with the function encrypt. 

The argument to the encrypt entry is a character array of length 64 contain­
ing only the characters with numerical value 0 and I. The argument array 
is modified In place to a similar array representing the bits of the argument 
after having been subjected to the DES algorithm using the key set by set­
key. If edjfog is zero, the argument is encrypted; if non-zero, it is 
decrypted. 

SBB ALSO 

BUGS 

NOTE 

login (I), passwd(l), getpass(JC), passwd(4). 

The return value points to static data that is overwritten by each call. 

The international distribution of tbis family of subroutines bas setkey 
removed and disallows decryption by the encrypt function. 

- I -



CTERMID US) CTERMID (3S) 

NAME 
ctcrmid - generate filename for terminal 

SYNOPSIS 
#include <stdio.b> 
char ooetermld (s) 
char •s; 

DESCRIPTION 

NOTES 

Ctermid generates the pathname of the controlling terminal for the current 
process, and stores it in a string. 

If s is a NULL pointer, the string is stored in an internal static area, the 
contents of which are overwritten at the next call to ctermid, and the 
address of which is returned. Otherwise, t~ is assumed to point to a charac­
ter array of at least L_dermid elements; the pathname is placed in this 
array and the value of t~ is returned. The constant L dermid is defined in 
the <stdio.h> header file. -

The difference between ctermid and ttyname(3C) is that ttyname must be 
handed a file descriptor and returns the actual name of the terminal associ­
ated with that file descriptor, while ctermid returns a string (/del'/tly) that 
refers to the terminal if used as a filename. For this reason, ttyname is use­
ful only if the process already has at least one file open to a terminal. 

SEE ALSO 
ttynameOC). 

- 1 -



CI1MB(3C) CTIMB(3C) 

NAME 
ctime, localtime, gmtime, asctime, tzset - convert date and time to string 

SYNOPSIS 
#lnch1de < lime.h> 

char -etlme (clock) 
lon& •clock; 

struct tm •JGCaltime (clock) 
long •clock; 

stract tm •&mtlme (clock) 
loq •clock; 

char •asctlme (tm) 
struet tm •tm; 

ntern lone timezone; 
extern int daylight; 

extern ebar •tznamelll; 
..-oid lzsel ( ) 

DBSCR.IPTION 
Crime converts a ion& inteser, pointed to by clock, representing the time in 
seconds since 00:00:00 GMT, January I, 1970, and returns a pointer to a 
26-character string in the following form. AU the fields have constant 
width. 

Sun Sep 16 01:03:52 1973\n\0 

Localtime and gmtime return pointers to tm structures, described below. 
Locaftime corrects for the time zone and possible Daylight Savings Time; 
gmtfme converts directly to Greenwich Mean Time (GMT), which is the 
time the system uses. 

Asctlme converts a tm structure to a 26-character string, as shown in the 
above example, and returns a pointer to the string. 

Declarations of all the functions and externals, and the tm structure, are in 
the < time.h> header file. The structure declaration is: 

struct tm { 
int tm_sec; I• seconds (0 ·59) •I 
int tm min; I• minutes (0- 59) •I 
int tm -hour; I• hours (0 • 23) •I 
int un::::mday; I• day of month (I - 31) •/ 
int tm_mon; I• month of year (0 - II) •I 
int tm_year; I• year- 1900 •/ 
int tm_wday; I• day of week (Sunday= 0) •I 
int tm_yday; I• day of year (0- 365) •I 
int tm_isdst; 

Tm_ischt is non-zero if Daylight Savings Time is in elfect. 

The external long variable timezone contains the difference, in seconds, 
between GMT and local standard time Gn EST, limezone is 5•60•60); the 
external variable daylight is non-zero if, and only if, the standard U.S.A. 
Daylight Savings Time conversion should be applied. The program knows 

. I . 



CTIME(3C) CTIME(3C) 

about the peculiarities of this conversion in 1974 and 1975; if necessary, a 
table for these years can be extended. 

If an environment variable named TZ is present, asctime uses the contents 
of the variable to override the default time zone. The value of TZ must be 
a 3-letter time zone name, followed by a number representing the 
difference between local time and Greenwich Mean Time in hours, fol­
lowed by an optional 3-letter name for a daylight time zone. For example, 
the setting for New Jersey would be ESTSEDT. The effects of setting TZ 
are thus to change the values of the external variables timezone and day­
light; in addition, the time zone names contained in the external variable 

char •lznamelll - { "EST", "EDT" l; 
are set from the environment variable TZ. The function tzset sets these 
external variables from TZ: tzset is called by asctime and may also be called 
explicitly by the user. 

Note that in most installations, TZ is set by default when the user logs on, 
to a value in the local/etc/profile file (see pro}ile(4)). 

SEE ALSO 

BUGS 

time(2), getenv(JC), profile(4), environ(S). 

The return values point to static data whose content is overwritten by each 
call. 

• 2 • 



CTYPEUC) CTYPE(lC) 

NAME 
isalpha, isupper, islower, isdig:it, isxdigit, isalnum, isspace, ispunct, isprint, 
issraph, iscntrl, isascii - classify characters 

SYNOPSIS 
#inelude <ctype.h> 
lot lsalpha (c) 
int c; 

DESCRIPTION 
These macros classify character-coded integer values by table lookup. Each 
is a predicate returning nonzero for true, zero for false. /soscii is defined 
on all integer values; the rest are defined only where isascii is true and on 
the single non-ASCII value EOF (-I); see stdia(JS)). 

isalpho c is a letter. 

/supper 

/slower 
isdlgit 

lsxdlglt 

lsalnum 

isspace 

lspuncr 

/sprint 

lsgroph 

iscntrl 

isascii 

DIAGNOSTICS 

cis an upper-case letter. 

cis a lower-case letter. 

cis a digit (0-9). 

cis a hexadecimal digit [0-9), [A-F) or [a-fl. 

cis an alphanumeric (letter or digit). 

c is a space, tab, carriage return, new-line, verticaJ tab, or 
form-feed. 
c is a punctuation character (neither control nor 
alphanumeric). 

c is a printing character, code 040 (space) through 0176 
(tilde). 

c is a printing character, similar to isprint except faJse for 
space. 
cis a delete character (0177) or an ordinary control charac­
ter Uess than 040). 

c is an ASCII character, code less than 0200. 

If the argument to any of these macros is not in the domain of the func­
tion, the result is undefined. 

SEE ALSO 
stdio(3S), ascii(S). 

- I -



-' ' 

CURSES{JX) CURSES (3X) 

NAME 
curses - CRT screen handling and optimization package 

SYNOPSIS 
#include <eunes.h> 
ee I flags I files -lcurses [ libraries I 

DESCRIPTION 
These routines give the user a method of updating screens with reasonable 
optimization. In order to initialize the routines, the routine initscr{) must 
be called before any of the other routines that deal with windows and 
screens are used. The routine endwln() should be called before exiting. To 
get character-at-a-time input without echoing, (most interactive, screen 
oriented-programs want this) after calling lnltscr() you should call "nan/(); 
cbreak(); noecho();" 

The full curses interface permits manipulation of data structures called win­
dows which can be thought of as two dimensional arrays of characters 
representing all or part of a CRT screen. A default window called stdscr is 
supplied, and others can be created with newwln. Windows are referred to 
by variables declared "WINDOW *", the type WINDOW is defined in 
curses.h to be a C structure. These data structures are manipulated with 
functions described below, among which the most basic are move, and 
addcb. (More general versions of these functions are included with names 
beginning with 'w', allowing you to specify a window. The routines not 
beginning with 'w' affect sldscr.) Then rej;esh() is called, telling the rou­
tines to make the users CRT screen look like stdscr. 

Mini-Curses is a subset of curses which does not allow manipulation of 
more than one window. To invoke this subset, use -DMINICURSES as a cc 
option. This level is smaller and faster than full curses. 

If the environment variable TERMINFO is defined, any program using 
curses will check for a local terminaJ definition before checking in the stan­
dard place. For example, if the standard place is /usr/lib/terminfo, and 
TERM is set to "vt100", then normaJiy the compiled file is found in 
/usr/lib/termlnfo/vh'ttOO. (The "v" is copied from the first letter of 
"vtlOO" to avoid creation of huge directories.) However, if TERMINFO is 
set to /usr/mark/myterms, curses will first check 
/usr/mark/myterms/v/vtlOO, and if that fails, will then check 
/usr/lib/terminfo/v/vtlOO. This is useful for developing experimental 
definitions or when write permission in /usr/llb/termlnfo is not available. 

SEE ALSO 
terminfo(4). 

FUNCTIONS 
Routines listed here may be called when using the full curses. Those 
marked with an asterisk may be called when using Mini-Curses. 

addcb(cb)" 

addstrbtr)• 
auroll"(attrs)• 
auron(aun)• 
altrset(altrs)" 
baudraceo• 

odd B character to stdscr 

Uike puttharl (wraps to next 
line at end of line) 
colls oddcb with each character in str 
turn off attributes named 
turn on attributes named 
set current attributes to ottrs 
current terminal speed 

- I -



CURSES(JX) 

beep{)' 

bo~lwin, vert, hor) 

dear\) 
clearoklwin, bO 
clrtobotO 
dnoeot{) 
cbreokl )' 
dela~ _output{ms)' 
de!ch{) 

deletelnl) 
delwin(win) 
doupdote() 

echoO' 
endwinO' 
erase() 
.,...,char() 
ftdenn() 

flashO 
flushinp()' 
setchO' 
getstrtstrl 
11ettmode() 
11ety~twin, y, ~) 
has_ic() 

has_ilO 
ldlok(win, bO' 
lnchO 
initscrO' 
inoc:h(c) 
lnsertln( l 
intrflush(wln, bf) 

keypad(win, b/J 
kiUchar( l 
leovcok(win, llq) 

longname() 
metl(win, itq)' 
movc(y, .0' 
mvaddc:hly, x, ch) 

mvaddstr(y, x. str) 
mvcur(oldrow, oldcol, newrow, newcol) 

mvdek:h(y, d 
mvgetch(y, x) 

mVKetstr(y, d 
mvincMy, d 
mvlnsch(y, x, cl 
mvprintw(y, x, fmt, arp) 
mvsgnw(y, x, fmt, arp) 

mvwaddm(wln, y, x, ch) 

CURS£S(3X) 

sound beep on terminal 
draw a box around edgll$ of ~-;,. 
'"''and lwr ~re chars to use for vert. 
ond hor. edges of box 

dear sui,..,. 
clear screen before next rednlw of ~·in 
dear to bottom of >tdn·r 
dear to end of tine on sub,,_., 
set cbreak mode 
insen ms millisecond pause in output 
delete a character 

delete a line 
delete ,;,. 

update screen from all wnooutrefresh 
set echo mode 
end window modes 

erase "''"''' 
re~urn user's erase character 
rC$tOre tty to "in curses" state 
flash screen or beep 
throw away am typeahead 
aet a chor from ny 
zeta suing through mhr:r 

establish currentuy modes 
get ly, x) co..ordinalell 
true if terminal can do Insert character 
true if terminal can do insert line 
US<! terminal's insert/delete line if bf !- II 
l"t char at current ly, x) co..ordiruotes 
Initialize soreens 
insert a char 
insert a lim: 
interrupts flush output if bf is TRUE 
eBIIble keypad input 
relum current user's kill character 
OK to leave cursor anywhere lifter refresh if 
lla11!-!l for w/N, otherwise cursor must be len 
at .::urrent position. 
return verbose name of tenninal 
aUow meaa characters on input if flas !- 0 
move to ly, x) on SldS<.·r 

100ve(y, AI then •dlkh(~h) 
similllr ... 

low level cursor motion 
liluo delch, but move(y, ~~first 

'"· 

- 2 -



CURSES()X) 

mvwaddSU"Iwin, y, x, strl 
mvwdelch(win, y, d 
mvwsetch(win, y, xl 
mvwsetstr(win, y, x) 

mvwin(win, by, bd 
mvwinchh•in, y, x) 

mvwinsch(win, y, x, c) 
mvwprintw(win, y, x, fmt, arv;s) 

m""'scanwtwin, y, x, fmt, argo) 
newpad(nlines, ncots) 
newtermhypc:, fdl 
newwinCiines, col•, begin_y, bqin_xl 

nH )" 
nocbreak( )" 
nodelay(win, bf) 

noechol )" 
nonl(l" 
norawll" 
overlay(winl, win2) 
overwritetwinl, win2) 
pnouuefreshtpad, pminrow, pmincol, 
sminrow, smincol, smaxrow, smaxcotJ 

prefresh(pad, l'minrow, pmincol, 
sminrow, smincol, smaxrow, smuC<It) 

printwlfmt, argl, ar112, ... ) 

raw()" 

refresh I I' 
resetrerml )" 
re.e\ty( )' 

SIIVeU:rm( )' 

saveuy( I" 
scanw(fmt, argl, argl, ... ) 

scroUiwin) 
scrollok(win, Hag) 

~~~:t_tennlnew) 

setscrregit, b) 
.ettermltype) 
setuptermlterm, filenum, errret) 
stondendO" 
slllndoutl )" 
subwinlwin, lines, cots, begln_y, begin_x) 

touchwinlwin) 
lraceoffl l 
traceoniJ 
typcaheadlfd) 

CURSES()X) 

create a new pad with 11iven dimensions 
set up new terminal of given type to output on fd 

create a new window 
set newline mappin1 
unset cbreak mode 
enable nodelay input mode through getch 
unset echo mode 
unset newline mapping 
unset raw mode 
overlay win\ on win2 
overwrite winl on top of win2 

like prefresh but with no output until doupdate called 

refresh from pad stanin11 with given UI'P'" tdt 
C<lrner of pod with output to given 
portion of screen 

printf on >~d•"' 
.et raw mode 
make current screen look like.,,,.,_., 

set Uy mode• to "out of curses" slate 
re.et tty flags to stored volue 
save current modes as "in curses" state 
store current tty Oqs 

scanf throu11h >id>rr 
scroll •. ;.,one line 
allow terminal to scroll if Hag !~ I) 

now talk to terminal new 

set user scrolling region to lines \through b 
establish terminal with given type 

clear standout mode attribute 
set standout mode anribute 

cre•te • subwindow 
change all of wm 
turn off debugging trace output 
turn on debugging trace output 
use lite descriptor fd to check typeallc•d 

• J • 



CURSES OX) 

unctrl(ch)" 
waddch(win, ch) 
-ddstr{win, sir) 
wattrolf( win, attrs) 

wattron ( wln, aUrs) 
waursel(win, anrs) 
wclearlwinl 
wclriObol( win) 
wclrtoeollwin) 
wdelch{win, c) 

wdeleleln(winl 
wel'll.'le(win) 
Wl!elch(win) 
Wllelsirlwin, str) 
winch( win) 
winsch(win, c) 

winsenln{win) 
wmove(win, y, x) 

wnouirefresh(win) 
wprintw(win, fmt, argl, arg2, ... ) 

wrefresh(win) 
wscanw(win, fmt, argl, arg2, .. .1 

wsetscrreg(win, 1, b) 
mt.andend(winl 
wstandout(win) 

TERMJNFO LEVEL ROUTINES 

printable version of ,·h 

add char to win 
add siring 10 win 

turn off"'"" in n"i11 
turn on aim; in wi11 

set anrs in ""in to'""·' 
dear wi11 

clear to bollom of .,·in 

clear 10 end of line on ""111 
delete char from ,.;, 
delete line from wi11 

erase ll"ill 

get a char through ,..,. 
llet a siring through win 

set char a! current (y, xl in"""' 
insert char into win 
insert line into ,;, 

CURSES(lX) 

$et currently, x) co-ordinates on n;ll 

refresh but no screen output 

prinlf on n·m 

make screen look like '"" 

scanf through win 
set scrolling region of ,.;, 
clear standout allribute in wi11 

sel standout anribute in 11"/11 

These routines should be called by programs wishing to deal directly with 
the terminfo database. Due to the low level of this interface, it is 
discouraged. Initially, setupterm should be called. This will define the set of 
terminal dependent variables defined in terminfo(4). The include files 
<curses.h> and <term.h> should be included to get the definitions for 
these strings, numbers, and flags. Parmeterized strings should be passed 
through tparm to instantiate them. All terminfo strings Oncluding the out­
put of tparm) should be printed with tputs or pulp . Before exiting, resetterm 
should be called to restore the tty modes. (Programs desiring shell escapes 
or suspending with control Z can call resetterm before the shell is called and 
}ixterm after returning from the shell.) 
fixtermO restore tty modes for terminfo use 

reseuerm ( ) 
setupterm(term, fd, rc) 

tparm{str, pl, p1, ... , p9) 

tputs(str, affcnt, putcl 

(called by setupterm) 
reset tty modes to slate before program entry 
read in database. Terminal type is the 
character string term, all output is to UNIX 
System file descriptor .fd. A status value is 
returned in the integer pointed to by n.: J 
is normal. The simplest call would be 
setup/erm(/1, I. IJ} which uses all defaults. 

iostantiate string str with parms pi. 
apply padding info to string sir. 
a}Rnt is the number of lines affected, 
or l if not applicable. 1'111<" is a 

- 4-



r~ 

CURSES(JX) 

putp(str) 

vidputs(attrs, putc) 

vidattr(attrs) 

CURSES(JX) 

putchar-like function to which the characters 
are passed, one at a time. 
handy function that calls tputs 
(sir, 1, putchar) 
output the strina: to put terminal in video 
attribute mode 01/1'$, which is any 
combination of the attributes listed below. 
Chars are passed to putchar-like 
function putc, 
Like vidputs but outputs throusb 
putchar 

TERMCAP COMPATIBILITY ROUTINES 
These routines were included as a conversion aid for prosrams that use 
termcap. Their parameters are the same as for termcap. They are emu­
lated using the termin/o database. They may go away at a later date. 
tgetent(bp, name) look up termcap entry for name 
tgetflag(id) get boolean entry for id 
tgetnum(id) get numeric entry for id 
tgetstr(id, area) get string entry for id 
tgoto(cap, col, row) apply parms to given cap 
tputs(cap, affcnt, fn) apply padding to cap calling fn as putchar 

ATIRIBUTES 
The following video 
attron, attroff. at/rset. 
A STANDOUT. 
A -UNDERLINE 
A-REVERSE 
A-BLINK 
A-DIM 
A-BOLD 
A-BLANK 
A-PROTECT 
A=ALTCHARSET 

FUNCTION KEYS 

attributes can be passed to the functions 

Terminal's best highlighting mode 
Underlining 
Reverse video 
Blinking 
Half bri_ght 
Extra bright or bold 
Blanking (invisible) 
Protected 
Alternate character set 

The following function keys might be returned hy getch if keypud has been 
enabled. Note that not all of these are currently supported, due to lack of 
definitions in termin.fO or the terminal not transmitting a unique code when 
the key is pressed. 
Name Value Key name 
KEY_BREAK 0401 break key (unreliable) 
KEY_DOWN 0401 The four arrow keys ... 
KEY_UP 0403 
KEY_LEFT I>l04 
KEY_RlGHT 0405 
KEY_HOME 04<16 Home key (upward+ left arrow) 
KEY_BACKSPACE 0407 backspace (unreliable) 
KEY FO 0410 Function keys. Space for 64 is reserved. 
KEY=f(n) (KEY_FO+(nll Formula for fn. 
KEY_DL 0510 Delete line 
KEY_IL 0511 Insert line 
KEY_DC 0512 Delete cbaracter 
KEY_IC 0513 Insert char or enter iru;ert mode 

- 5 -



CURSES(lX) 

KEY_EIC 
KEY_CLEAR 
KEY EOS 
KEY=EOL 
KEY_SF 
KEY_SR 
KEY_NPAGE 
KEY_PPAGE 
KEY_STAB 
KEY_CTAB 
KEY_CATAB 
KEY_ENTER 
KEY_SRESET 
KEY_RESET 
KEY_PRINT 
KEY_LL 

WARNING 

0514 
0515 
0516 
0517 
0520 
0521 
0522 
0523 
0524 
0525 
0526 
0527 
0530 
0531 
0532 
0533 

Exit iru;ert char mode 
Clear screen 
Clear to end of screen 
Clear to end of line 
Scroll! lin.:: forward 

CURSES(JX) 

Scroll I line backwards (reverse) 
Next page 
Previous page 
Set tab 
Clear tab 
Clear all tabs 
Enter or send (unreliable) 
soft (partial) reset (unreliable) 
reset or hard reset (unreliable) 
print or copy 
home down or bottom (lower left) 

The plotting library plot(3X) and the curses library curses(JX) both use the 
names erase() and move(). The curses versions are macros. If you need 
both libraries, put the p/ot(JX) code in a different source file than the 
curses(JX) code, and/or #undef move() and erase() in the p/ot(3X) code. 

- 6-



CUSERID (35) CUSERID {3S) 

NAME 
cuserid - get character login _name or the user 

SYNOPSIS 
#Include <stdio.h> 
cb•r •eu.serld (s) 
cbu •s; 

DESCRIPTION 
Cuserid generates a character-string representation or the login name that 
the owner or the current process is logged in under. Ir s is a NULL pointer, 
this representation is generated in an internal static area, the address or 
which is returned. Otherwise, s is assumed to point to an array or at least 
L_caserid characters; the representation is lert in this array. The constant 
L_euserld is defined in the <sldio.b> header file. 

DIAGNOSTICS 
Ir the login name cannot be found, cuserid returns a NULL pointer; if s is 
not a NULL pointer, a null character (\0) is placed at s[O]. 

SEE ALSO 

BUGS 

getlogin(3C), getpwent(3C). 

Cuserid uses getpwnam(3C); thus the results or a user's call to the latter 
will be obliterated by a subseQuent call to the former. 

The name cuserid is rather a misnomer. 

- I -



DIAL (JC) DIAL(JC) 

NAME 
dial - establish an out-going terminal line connection 

SYNOPSIS 
#include <dial.h> 
int dial (call) 
CALL call; 

void undial (fd) 
int fd; 

DESCRIPTION 

Page I 

Dial returns a file descriptor for a terminal line open for read/write. The 
argument to dial is a CALL structure (defined in the <dial.h> header 
file). 

When finished with the terminal line, the calling program must invoke 
uudial to release the semaphore that has been set during the allocation of 
the terminal device. 

The CALL typedef in the <dlal.h> header file is: 

t~pedef struct ( 

I CALL; 

struct termio 
int 
in\ 
char 
char 
in! 

char 

int 

••ttr: 
baud; 

speed; 
•tine; 
•tel no; 
modem: 

'dcvie<:; 

dev_len 

I• pointer 10 termio anribute struct •I 
I• transmission dat• rate •I 
I• lilA modem: tow-300, high-1200 •I 
I• <Ievie<: name for out-going line •I 
I• pointer to tel-no digiLS ~Iring •I 
I• specify modem control for direcllines •I 

r Will hold the name of the devke used 

to make a connection 'I 
r The length of the de viet: used to 
make connection *I 

The CALL element speed is intended only for use with an outgoing dialed 
call, in which case its value should be either 300 or 1200 to identify the 
llJA modem, or the high-speed or low-speed setting on the 212A modem. 
Note that the IIJA modem or the low-speed setting of the 212A modem 
will transmit at any rate between 0 and 300 bits per second. However, the 
high-speed setting of the 2121 modem transmits and receives at 1200 bits 
per second only. The CALL element baud is for the desired transmission 
baud rate. For example, one might set baud to 110 and speed to 300 (or 
1200). However, if speed is set to 1200 baud must be set to high (1200). 

If the desired terminal line is a direct line, a string pointer to its device 
name should be placed in the Iiiii! element in the CALL structure. Legal 
values for such terminal device names are kept in the L-devius file. In this 
case, the value of the baud element need not be specified as it will be 
determined from the L-devices file. 

The telno element is for a. pointer to a character string representing the tele­
phone number to be dialed. The termination symbol will be supplied by 
the dial function, and should not be included in the lf'l1w string passed to 
dial in the CALL Slruclure. 

July 29, 1985 



···-· 

DIAL(lC) DIAL(lC) 

FILES 

The CALL element modem is used to specify modem control for direct lines. 
This element should be non-zero if modem ..control is required. The CALL 
element allr is a pointer to a termio structure, as defined in the 
<termlo.h> header file. A NULL value for this pointer element may be 
passed to the dial function, but if such a structure is included, the elements 
specified in it will be set for the out&oing terminal line before the connec­
tion is established. This is important for attributes such as parity and baud 
rate. 

The CALL element devke is used to hold the device name (cul.J that estab­
lishes the connection. 
The CALL element dev len is the length of the device name that is copied 
into the array device. -

I usr/lib/ uucp/L-devices 
/usr/ spool/ uucp/ LCK .. IIy-device 

SEE ALSO 
uucp(IC), alarm(2), read(2), write(3). 
termio(7) in the Administrator's Manual. 

DIAGNOSTICS 
On failure, a negative value indicating the reason for the failure is returned. 
Mnemonics for these negative indices as listed here are defined in the 
<dial.h> header file. 

INTkPT 
_, 

I• interrupt oe<:urred •I 
ll_HUNG 

_, 
I• dialer hung (no return from write) •I 

NO_ANS 
_, 

I• no answer within 10 se~onds •I 
ILL_BU -· I• illepl baud-rate •I 
A_PROB 

_, 
I• •~u problem lopenO failure) •I 

L_l'ROU -· I• line problem (open() failure) •f 
NO_Ldv 

_, 
f• can't open LllEVS file •f 

UV_NT_I\ -· f• requested device no< available •f 
JlV_NT_K -9 f• requested device ool known •I 
NO_Bil_il -w I• no device available at reque•ted baud •f 
No_Bil_K 

_, 
I• no device known at requested baud •I 

WARNINGS 

BUGS 

Including the <dial.h> header file automatically includes the 
<lermio.h> header file. 

Because the above routine uses <sldio.h>, the size of programs not oth­
erwise using standard 110 is increased more than might be el(pected. 

An alarm(2) system call for 3,600 seconds is made (and caught) within the 
dial module for the purpose of "touching" the LCK .. file and constitutes 
the device allocation semaphore for the terminal device. Otherwise, 
uucp(lC) may simply delete the LCK .. entry on its 90-minute clean-up 
rounds. The alarm may go off while the user program is in a read(2) or 
wr/te(l) system call, causing an apparent error return. If the user program 
is to run for an hour or more, error returns from reads should be checked 
for (errno= =EINTR), and the re.ad possibly reissued. 

July 29, 1985 Page 2 



DIM (JF) 

NAME 
dim, ddim, idim - positive difference intrinsic functions 

SYNOPSIS 
lntq:er al,a2,a3 
a3 = idim(al,d) 

real al,a2,a3 
a3 = dim (al,a2) 

double precision al,a2.,a3 
a3 = ddim(al,a2) 

DESCRIPTION 
These functions return: 

al-a2 if al > a2 
o ifal<=a2 

- I -

DIM (]F) 



DIRECTORY(3X) DIRECTORY(3X) 

NAME 
opendir, readdir, telldir, seekdir, rewinddir, closedir- flexible length directory 
operations 

SYNOPSIS 
#include <Sys/dir.h> 

DIR •openclir(fileoame) 
char •filename; 

struct direct *readdir(dirp) 
DIR •dJrp; 

.... telldlr(dlrp) 
DIR •clirp; 

seekdir(dlrp, loc) 
DIR •dirp; 
loag Joe; 

rewlnddlr(dlrp) 

DIR ~irp; _.,.) 
r DIR ~irp; 

cc- -lndir 

DESCRIPTION 
The pmpose of this library is to simulate the new flexible length directory 
names of 4.2BSD UNIX on top of the old directory structnre of 4.1BSD. It 
allows programs to be converted immediately to the new directory access inter­
face, so lhat they need only be relinked when 4.2BSD becomes available. 

Opendir opens the directory named by filename IUid associates a directory 
stream with it. Opendir returns a pointer to be used to identify the directory 
stream in subsequent operations. The pointer NULL is returned if filename can­
not be accessed or is not a directory. 

Readdir returns a pointer to the next directory entry. It returns NULL upon 
reaching the end of the directory or detecting an invalid seekdir operation. 

Telldir returns the current location associated with the named directory stream. 

Seekdir sets the position of the next readdir operation on the directory stream. 
The new position reverts to the one associated with the directory stream when 

(' the telldir operation was perfonned. Values returned by telldir are good only 

Page I SeptemM 28, 1987 



DIRECTORY(3X) DIRECTORY(3X) 

for the lifetime of the DIR pointer from which they are derived. If the directory 
is closed and then reopened, the telldir value may be invalidated due to 
undetected directory compaction. It is safe to use a previous telldir value 
immediately after a call to opendir and before any calls to readdir. --' 

Rewinddir resets the position of the named directory stream to the beginning of 
the directory. 

Closedir causes the named directory stream to be closed, and the structure asso­
cialed with the DIR pointer to be freed. 

See /usr(mclude/dir.h for a description of the fields available in a directory 
entry. The preferred way to search the current directory for entry "name" is: 

len"' strlen(name); 
dirp"' opendir(" ."); 
'"' (dp = readifu(dll"p); dp !=NUlL; dp= read<fu(dU)) 

if (dp->d_namien =len && !strcmp(dp->d_name. name)) { 
d~dll"p); 

LINKING 

} 
closedk(dll"p); 

return FOUND; 

return NOT_FOUND; 

This hllnuy is accessed by specifying '' -lndir'' as the last argument to the com­
pile line, e.g.: 

cc -o prog prog.c -lndir 

SEE ALSO 
/usr/include/syslndir.h, open(2), close(2), read(2),lseek(2) 

AUTHOR 
Kirk McKusick 

September 28, 1987 Page2 



DPRODOF) 

NAME 
dprod - double precision product intrinsic function 

SYNOPSIS 
real al,al 
double precision a3 
aJ - dprod (al,al) 

DESCRIPTION 

DPROD(JF) 

Dprod returns the double precision product or its real arguments. 

- I -



DRAND41 {3C) DRAND41 (JC) 

NAME 
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, 
lcong48 - generate uniformly distributed pseudo-random numbers 

SYNOPSIS 
douhle drand48 ( ) 

double erand48 (xsubi) 
uasiaaed short xsubil3l; 

Ioaa Irand48 ( ) 

loag nrand48 (xsubi) 
unslaned short xsubil3l; 
long mraad48 ( ) 

long jrand48 (xsubi) 
nnslsned short xsubiiJI; 
void sraad48 (seedval) 
Ions seedval; 
uasigned short •seed48 (seed16v) 
uaslgaed short seed16viJI; 

void Icona48 (param) 
unsigned short paraml71; 

DESCRIPTION 
This family of functions generates pseudo-random numbers using the well­
known linear congruential algorithm and 48-bit integer arithmetic. 

Functions drand48 and erand48 return non-negative double-precision ---
floating-point values uniformly distributed over the interval [0.0, 1.0). 

Functions lrand48 and nrand48 return non-negative long integers uniformly 
distributed over the interval [0, 231 ). 

Functions mrand48 and jrand48 return signed long integers uniformly dis­
tributed over the interval [-231 , 231). 

Functions srand48, seed48, and /cong48 are initialization entry points, one 
of which should be invoked before drand48, frand48, or mrand48 is called. 
(Although it is not recommended practice, constant default initializer 
values are supplied automatically if drand48, lrand48, or mrand48 is called 
without a prior call to an initialization entry point.) Functions erand48, 
nrand48, and jrand48 do not require an initialization entry point to be 
called first. 
All the routines work by generating a sequence of 48-bit integer values, X;, 
according to the linear congruential formula 

X,+t- (aXn+c)modm n~O. 
The parameter m- 248; hence 48-bit integer arithmetic is performed. 
Unless /cong48 has been invoked, the multiplier value a and the addend 
value c are given by 

a - 5DEECE66D 16 = 273673163155 8 ___.-
c = B 16- 13g. 

The value returned by any of the functions drand48, erand48, /rand48, 
nrand48, mrand48, or jrand48 is computed by first generating the next 48-

- I -



DRAND48(3C) DRAND48(3C) 

NOTES 

bit X1 in the sequence. Then the appropriate number of bits, according to 
the type of data item to be returned, are copied from the high-order (left­
most) bits of X; and transformed into the returned value. 

The functions drand48, lrand48, and mrand48 store the last 48-bit X; gen· 
erated in an internal buffer; that is why they must be initialized prior to 
being invoked. The functions erand48, nrand48, and jrand48 require the 
calling program to provide storage for the successive X1 values in the array 
specified as an argument when the functions are invoked. That is why 
these routines do not have to be initialized; the calling program merely has 
to place the desired initial value of .t/ into the array and pass it as an argu­
ment. By using different arguments, functions erand48, nrand48, and 
jrand48 allow separate modules of a large program to generate several 
inde{J{'ndenl streams of pseudo-random numbers, i.e., the sequence of 
numbers in each stream does not depend upon how many times the rou­
tines have been called to generate numbers for the other streams. 

The initializer function srand48 sets the high-order 32 bits of X1 to the 32 
bits contained in its argument. The low-order 16 bits of X1 are set to the 
arbitrary value 330Et6· 
The initializer function seed48 sets the value of X1 to the 48-bit value 
specified in the argument array. The previous value of X1 is copied into a 
48-bit internal buffer, used only by seed48. A pointer to this buffer is the 
value returned by seed48. The returned pointer, which can be ignored if not 
needed, is useful if a program is to be restarted from a given point at some 
future time. Use the pointer to get and store the last X1 value; then use 
this value to reinitialize via seed48 when the program is restarted. 
The initialization function /cong48 allows the user to specify the initial XI> 
the multiplier value a, and the addend value c. Argument array elements 
param[0-2] specify X,, elements param[J-5} specify the multiplier a, and 
param[6} specifies the 16-bit addend c. After fcong48 has been called, a 
subsequent call to either srand48 or seed48 will restore the "standard" 
multiplier and addend values, a and c, specified on the previous page. 

The routines are coded in portable C. The source code for the portable 
version can even be used on computers which do not have ftoaling-point 
arithmetic. In such a situation, functions drand48 and erand48 do not 
exist; instead, they are replaced by the following two functions: 

long lrand48 (m) 
unsigned short m; 
long krand48 (xsubl, m) 
unsigned short xsuhiiJI, m; 

Functions irand48 and krand48 return non-negative long integers uniformly 
distributed over the interval {0, m-Il. 

SEE ALSO 
rand(3C). 

• 2 • 



ECVT(lC) ECVT(JC) 

NAME 
ecvt, fcvt, gcvt - convert floating-point number to string 

SYNOPSIS 
char •ecvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, •decpt, •sign; 

char •fcvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, •decpt, •sign; 

char •gcvt (value, ndigit, buf) 
double value; 
int ndigit; 
char •buf; 

DESCRIPTION 
Ecvt converts m/ue to a null-terminated string of ndigit digits and returns a 
pointer to this string. The high-order digit is non-zero, unless the value is 
zero. The low-order digit is rounded. The position of the decimal point 
relative to the beginning of the string is stored indirectly through decpt 
(negative means to the left of the returned digits). The decimal point is not 
induded in the returned string. If the sign of the result is negative, the 
word pointed to by sign is non-zero; otherwise it is zero. 

Fc~t is identical to ecvt, except that the correct digit has been rounded for 
printf "%f" (Fortran F-format) output of the number of digits specified by 
ndigit. 

Gcvt converts the m/ue to a null-terminated string in the array pointed to 
by buf and returns buf. It attempts to produce ndigit significant digits in 
Fortran F-format, ready for printing; E-format is produced when F-format is 
not possible. A minus sign, if there is one, or a decimal point is included 
as part of the returned string. Trailing zeros are suppressed. 

SEE ALSO 
printf<JS). 

BUGS 
The values returned by ecvt and )Cvt point to a single static data array. 

- I -



END(JC) END(JC) 

NAME 
end, etext, edata - last locations in program 

SYNOPSIS 
extern end; 
es.tern etext; 
extern edata; 

DESCRimON 
These names refer neither to routines nor to locations with interesting con­
tents. The address of etext is the first address above tbe program text, 
edata above the initialized data region, and end above the uninitialized data 
region. 

When ellecution begins, the program break {the first location beyond the 
data) coincides with end, but the program break may be reset by the rou­
tines of brk(2), malloc(3C), standard input/output {stdio(3S)), the profile 
(-p) option of cc{l), and so on. Thus, the current value of the program 
break should be determined by sbrk(O) (see brk(2)). 

These symbols are accessible from assembly language if it is remembered 
that they should be prefixed by_. 

SEE ALSO 
ceO), brk(2), malloc{3C), stdio(3S) . 

. I . 



ERF(JM) 

NAME 
erf, erfc - error function and complementary error function 

SYNOPSIS 
#include <math.b> 

double erf (x) 
double x; 

doubl"' erfc (x) 
double x; 

DESCRIPTION 

Er/returns the error function of x, defined as 

ERF(JM) 

Er/c, which returns 1.0 - erf(x), is provided because of the extreme loss of 
relative accuracy if erf(x) is called for large x and the result subtracted from 
1.0 (e.g. for x = 5, 12 places are lost). 

SEE ALSO 
exp(JM). 

- I -



EXP(JF) 

NAME 
exp, dexp, cexp - Fortran exponential intrinsic function 

SYNOPSIS 
real rl, r:Z 
double precision dpl, dp2 
complex ex I, cx2 

r2 - exp(rl) 
dp2 dexp(dpl) 
dp2 exp(dpl) 

cx2 cloK(cxD 
cx2 exp(cxl) 

DESCRIPTION 

EXP(JF) 

Exp returns the real exponential function c'' of its real arsument. Dexp 
returns the double-precision exponential !unction of its double-precision 
arsument. Cexp returns the complex exponential function of its complex 
argument. The generic function exp b~omes a call to dexp or ,·exp, as 
required, depending on the type of its argument. 

SEE ALSO 
exp(lM). 

- I -



EXP(3M) EXP(3M) 

NAME 
exp, log, log!O, pow, sqrt - exponential, logarithm, power, square root 
functions 

SYNOPSIS 
#include <math.h> 
double exp (x) 
double x; 

double log (x) 
double x; 
double loglO (x) 
double x; 

double pow (x, y) 
double x, y; 

double sq_rt (x) 
double x; 

DESCRIPTION 
Exp returns ?. 
Log returns the natural logarithm of x. The value of x must be positive. 

LogJO returns the logarithm base ten of x. The value of x must be posi­
tive. 

Pow returns J!l. If x is zero, y must be positive. If x is negative, y must 
be an integer. 

Sqrt returns the non-negative square root of x. The value of x may not be 
negative. 

DIAGNOSTICS 
Exp returns HUGE when the correct value would overfiow, or 0 when the 
correct value would underflow, and sets errno to ERANGE. 

Log and /agiO return -HUGE and set errno to EDOM when x is non­
positive. A message indicating DOMAIN error (or SING error when xis 0) 
is printed on the standard error output. 

Pow returns 0 and sets errno to EDOM when xis 0 andy is non-positive, or 
when xis negative andy is not an integer. In these cases a message indi­
cating DOMAIN error is printed on the standard error output. When the 
correct value for pow would overflow or underflow, pow returns %HUGE or 
0 respectively, and sets errno to ERANGE. 

Sqrl returns 0 and sets errno to EDOM when x is negative. A message indi­
cating DOMAIN error is printed on the standard error output. 

These error-handling procedures may be changed with the function 
matherr(3M). 

SEE ALSO 
intro(2), hypot(JM), matherr(JM), sinhOM). 

- I -



FCWSE(3S} FCLOSE(3S) 

NAME 
fclose, mush - close or flush a stream 

SYNOPSIS 
#iDclude <stdio.b> 
tnt fclose (stream} 
FILE •stream; 

lat mush (stream) 
nLE •stream; 

DESCRIPTION 
Fc/O$e causes any buffered data for the named strf!tlm to be written out and 
the stream to be closed. 
Fc/O$e is performed automatically for aJI open files upon caiUng a/t(2). 

F./lush causes any buffered data [or the named stream to be written to that 
file. The strf!tlm remains open. 

DIAGNOSTICS 
These functions return 0 for success, and EOF if any error (such as tryina: 
to write to a file that has not been opened for writing) was detected. 

SEE ALSO 
close(2), exit(2), £open(3S), setbuf(3S) . 

. I . 



PEltROR (lS) PERROR (3S) 

NAME 
ferror, feof, clearerr, fileno - stream status inquiries 

SYNOPSIS 
#include <stdlo.b> 

iut feef (stream) 
FILE •stream; 

int ferror (stream) 
FILE •stream; 

l'oid clearerr (stream) 
FILE •stream; 
int lileno (stream) 
FILE •stream; 

DESCRIPTION 

NOTE 

Feof returns non-zero when EOF has previously been detected reading the 
named input stream; otherwise, it returns zero. 

Ferror returns non-zero when an 110 error has previously occurred reading 
from or writing to the named stream; otherwise, it returns zero. 

C/earerr resets the error indicator and EOF indicator to zero on the named 
stream. 
Fileno returns the integer file descriptor associated with the named stream; 
see open(2). 

All these functions are implemented as macros; they cannot be declared or 
redeclared. 

SEE ALSO 
open(2), fopen(3S). 

- I -



FLOOR(3M) FLOOR(3M) 

NAME 
floor, ceil, fmod, fabs- floor, ceiling, remainder, absolute value functions 

f'- SYNOPSIS 
#include <m•th,h> 

double Boor (x) 
double x; 

double cell b;) 
double x; 
double fmod (x, y) 
double x, y; 

double fabs (x) 
double x; 

DESCRIPTION 
Floor returns the largest integer (as a double-precision number) not greater 
than x. 
Ceil returns the smallest integer not Jess than x. 

Fmod returns the floating-point remainder of the division of x by y. zero if 
y is zero or if x.(v would overflow; otherwise the number f with the same 
sign as x, such that x - iy + ffor some integer I, and Lt1 < IYI. 
Fobs returns the absolute value of lxl. 

~ SEE ALSO 
abs(3C). 

. I . 



FOPEN()S) FOPBN(3S) 

NAME 
fopen, freopen, fdopen - open a stream 

SYNOPSIS 
#include < stdio. b > 
FILE •fopen (filename, tYI>C ) 
char •filename, •tYI>Ci 

FILE •freopen (filename, type, stream) 
char •filename, •tYI>Ci 
FILE •stream; 

FILE •fdopen (tildes, type) 
lnl tildes; 
char •type; 

DESCRIPTION 

Page 1 

Fopen opens the file named by ji/l'name and associates a ~Heam with it. 
Fope11 returns a pointer to the FILE structure associated with the stream. 

Filename points to a character string that contains the name of the file to be 
opened. 

Type is a character string having one of the following values; 
r open for reading 

w truncate or create for writing 

a append; open for writing at end of file, or create for 
writing 

r+ open for update (reading and writing) 

w + truncate or create for update 

a+ append; open or create for update at end-of-file 

Freotlf'n substitutes the named file in place of the open Mrmm. The original 
stream is closed, regardless of whether the open ultimately succeeds. fiwt­
flt'll returns a pointer to the FILE structure associated with Slrt·am. 

Freopen is typically used to attach the preopened strmms associated with 
stdin, stdout, and stderr to other files. 

Fc/rJf/f'/1 associates a stream with a file descriptor by formatting a file struc­
ture from the file descriptor. Thus, jilopen can be used to access the file 
descriptors returned by IIJ1<'11(2), dup{J), aeat(2), or pipe(2). (These calls 
open files but do not return pointers to a FILE structure.) The /_l'f"' of 
Mream must agree with the mode of the open file. 

When a file is opened for update, both input and output may be done on 
the resulting stream. However, output may not be directly followed by 
input without an intervening ht•ek or n•wind, and input may not be directly 
followed by output without an intervening jkek, rewind, or an input opera­
tion which encounters end-of-file. 

When a file is opened for append (i.e., when type is "a" or '"a+"'), it is 
impossible to overwrite information already in the file. F!>t'l'k may be used 
to reposition the file pointer to any position in the file, but when output is 
written to the file the current file pointer is disregarded. All output is 

July 22, 1985 



r 

FOPEN (3S) FOPEN (35) 

written at the end of the file and causes the file pointer to be repositioned 
at the end of the output. If two separate processes open the same file for 
append, each process may write freely to the file without fear of destroying 
output being written by the other, The output from the two proce$$e!il will 
be intermixed in the file in the order in which it is written. 

SEE ALSO 
creat(2), dup(J), open(2), pipe(2), fclose(JS), fseek(JS). 

DIAGNOSTICS 
Fopen and jfeopen return a NULL pointer on failure. 

July 22, 1985 Page 2 



FREAD(JS) FREAD(JS) 

NAME 
fread, fwrite - binary input/output 

SYNOPSIS 
#include <stclio.b> 
lnt fread (ptr, size, nit ems, stream) 
cbar •ptr; 
lnt size, nitems; 
FILE •stream; 

lnt fwrlte (ptr, size, nitems, stream) 
ebar •ptr; 
int size, nitems; 
FILE •stream; 

DESCRIPTION 
Fread copies nilems items of data from the named input ~Heam into an 
array beginning at ptr. An ilem of data is a sequence of bytes (not neces­
sarily terminated by a null byte) of length size. Fread stops appending 
bytes if an end-of-file or error condition is encountered while reading 
stream or if nilems items have been read. Fread leaves the file pointer in 
stream, if defined, pointing to the byte following the last byte read if there 
is one. Fread does not change the contents of slf.-am. 

Fwrile appends at most nitf'ms items of data from the the array pointed to 
by ptr to the named output strmm. Fwritf' stops appending when it has 
appended nitems items of data or if an error condition is encountered on 
slrfflm. Fwritf' does not change the contents of the array pointed to by ptr. 

The variable siu is typically siuqf"(•ptrJ where the pseudo-function sizeqf" 
specifies the length of an item pointed to by ptr. If {)If points to a data type 
other than char it should be cast into a pointer to dwr. 

SEE ALSO 
read{2), write(J), fopen(3S), getc(JS), getsOSl, printf(3S), putdJS), 
puts(JS), scanf(3S). 

DIAGNOSTICS 

Page I 

Fr.-ad and )Writ!' return the number of items read or written. If siz.- or 
nitems is non-positive, no characters are read or written and 0 is returned 
by both jfead and fwrite. 

July 29, 1985 



PREXP(3C) FREXP(3C) 

NAME 
frexp, ldexp, modf- manipulate parts of floating-point numbers 

SYNOPSIS 
double frn:p (value, eptr) 
double value; 
lnt •eptr; 

double ldexp (value, exp) 
double value; 
lnt exp ; 

double modf (value, iptr) 
double value, •iptr; 

DESCRIPTION 
Every non-zero number can be written uniquely as x• 2n, where the 
"mantissa" (fraction) x is in the range 0.5 ~ lxl < 1.0, and the 
"exponent" " is an integer. Frexp returns the mantissa of a double value, 
and stores the exponent indirectly in the location pointed to by eptr. If 
value is zero, both results returned by frexp are zero. 
Ldexp returns the quantity value• 2exp_ 

Mod/ returns the signed fractional part of value and stores the integral part 
indirectly in the location pointed to by iptr. 

DIAGNOSTICS 
Ir ldexp would cause overflow, ±HUGE is returned (according to the sign of 
value), and errno is set to ERANGE. 
Ir ldexp would cause underflow, zero is returned and errno is set to 
ERRANGE. 

. I . 



FSEEK(JS) FSEEK(JS) 

NAME 
fseek, rewind, ftell - reposition a file pointer in a stream 

SYNOPSIS 
#include <stdio.h> 

int fseek (stream, offset, ptrname) 
FILE •stream; 
long offset; 
lnt ptrname; 

Yold rewind (stream) 
FILE •stream; 

long ftell (stream} 
FILE •stream; 

DESCRIPTION 
Fseek sets the position of the next input or output operation on the stream. 
The new position is at the signed distance offiet bytes from the beginning, 
the current position, or the end of tbe file, when the value of ptmame is 0, 
I, or 2, respectively. 

Rewind( stream) is equivalent to fseek(stream, OL, 0), except that no value 
is returned. 

Fseek and rewind undo any effects of ungetc(JS). 

After fteek or rewind, the next operation on a file opened for update may 
be either input or output. 

Fte/1 returns the offset of the current byte relative to the beginning of the 
file associated with the named stream. 

SEE ALSO 
Jseek(2), fopenOS), popen(JS), ungetc(JS). 

DIAGNOSTICS 
Fseek returns non-zero for improper seeks; otherwise it returns zero. An 
improper seek can be, for example, an fseek done on a file that has not 
been opened via fopen; in particular, fseek may not be used on a terminal 
or on a file opened via popen(JS). 

WARNING 
On an offset returned by fte/1 is measured in bytes, and it is permissible to 
seek to positions relative to that offset; however, portability to systems 
other than requires that an offset be used by fseek directly. Arithmetic may 
not meaningfully be performed on such an offset, which is not necessarily 
measured in bytes. 

- I -



FrOK(3C) 

NAMB 
.r ftok - standard inteiprocess communication package 

SYNOPSIS 
#iadode <&y&/types.h:> 
#iDdude <S)'&IIpc.ID 

key_t ftok(palb, id) 
char ..,mh; 
char id; 

DESCRIPTION 

Fr0K(3C) 

All inter:pf'OCeSS communication facilities require the user to supply a key to be 
used by the msgget(J.), semget(2), and shmget(2) system calls 10 obtain inter­
process communication identifiers. One method for forming a key is to nse the 
ftok subroutine described below. Another' way to compose keys is to include 
the project ID in the most significant byte and to use the remaining portion as a 
sequence number. There are many otba ways to form keys, but it is necessary 
fOf' each system to define standards for forming them. If a standard is not 
adhered to, WU"CJated processes may interfere with each other's operation. 
Therefore, it is strongly suggested that the most significant byte of a key in 
som.e sense refer to a project so that Jreys do not conflict across a given system. 

Ftok returns a key based on path and id that is usable in subsequent msgget, 
semget, and shmget system caDs. Path must be the padmame of an existing file 
that is accessible to the process. ld is a character that uniquely identifies a pro­
ject. Ftok returns the same key for linked files when called with the same id; it 
returns different keys when called with the same filename but different ids. 

SEE ALSO 
inlro(2). ~2), semget(2), -gel(2). 

DIAGNOSTICS 
Ftok retmns (key_ t) -1 if path does not exist cr if it is not accessible to the pro­
cess. 

WARNlNG 
H the file whose path is passed to ftok is removed when keys still refer to the 
file., future calls to ftok wilh the same path and id will return an error. If the 
same file is recrealed,.ftok is likely to return a different key than it did the origi­
nal time it was called. 

Page I September 28, 1987 



FTW(lC) FTW(lC) 

NAME 
ftw - walk a file tree 

SYNOPSIS 
#Include <ftw.b> 

lnt flw (path, fn, Qepth) 
char •path; 
lnt (•fn) ( ) ; 
int depth; 

DESCRIPTION 
Ftw recursively descends the directory hierarchy rooted in path. For each 
object in the hierarchy, .ftw calls fn, passing it a pointer to a null-terminated 
character string containing the name of the object, a pointer to a stat struc­
ture (see stat(2)) containing information about the object, and an integer. 
Possible values of the integer, defined in the <ftw.b> header file, are 
FTW F for a file, FTW D for a directory, FTW DNR for a directory that can­
not be read, and FTW _::-Ns for an object for which stat could not be executed 
successfully. If the integer is FTW DNR, descendants of that directory will 
not be processed. If the integer is-FrW_NS, the stat structure will contain 
garbage. An example of an object that would cause FTW_NS to be passed 
to fn is a file in a directory with read permission but not execute (search) 
permission. 

Ftw visits a directory before visiting any of its descendants. 

The tree traversal continues until the tree is exhausted, an invocation of fn 
returns a nonzero vaJue, or an error is detected within .ftw (such as an 110 
error). If the tree is exhausted, .ftw returns zero. If fn returns a nonzero "--' 
value, ftw stops its tree traversal and returns whatever value was returned 
by fn. If .ftw detects an error, it returns -1, and sets the error type in 
errno. 
Ftw uses one file descriptor for each level in the tree. The depth argument 
limits the number of file descriptors so used. If depth is zero or negative, 
the effect is the same as if it were 1. Depth must not be greater than the 
number of file descriptors currently available for use. Ftw runs more 
quickly if depth is at least as large as the number of levels in the tree. 

SEE ALSO 

BUGS 

stat(2), malloc(JC). 

Because ftw is recursive, it is possible for it to terminate with a memory 
fault when applied to very deep file structures. 
Ftw could be made to run faster and use less storage on deep structures at 
the cost of considerable complexity. 
Ftw uses ma/foc(3C) to allocate dynamic storage during its operation. If ftw 
is forcibly terminated, such as by longjmp being executed by fn or an inter­
rupt routine, .ftw does not have a chance to free that storage, so it remains 
permanently allocated. A safe way to handle interrupts is to store the fact 
that an interrupt has occurred, and arrange to have fn return a nonzero 
value at its next invocation. 

- I -



·---

FTYPE{JF) FTYPE(lF) 

NAME 
int, ifix, idint, real, float, sngl, dble, em pix, dcmplx, ichar, char - explicit 
Fortran type conversion 

SYNOPSIS 
integer i, j 
real r, s 
double precision dp, dq 
complex ex 
double complex dCJ~ 
character •I ch ,_ IDt(r) 

int<dp) 
iDt(CJ~) - lnt(dcx) 
ifl.x(r) 
ldlnt(dp) 

' - real(i) 

' -reaHdp) 
' ~ real(CJ~) 

' - real(dcx) 
Ooal(i) 
sncHdp) 

dp dble(i) 
dp -dble(r) 
dp dble(ex) 
dp dble(dcx) 

ox cmplx(i) 
ox cmplx(i, j) 
ox -cmplx(r) 
ox cmplx(r, s) 
ox emplx(dp) 

" emplx(dp, dq) 
ox emplx(dcx) 

dox dcmplx(i) 
dox dcmpb:(i, j) 
dox demplx(r) 
dox demplx(r, s) 
dox demplx(dp) 
dox demplx(dp, dq) 

''" • dcmplx(cx) ,_ lchar(eh) 
eh = ehar(i) 

DESCRIPTION 
These functions perform conversion from one data type to another. 

Int converts to integer form its real, double precision, complex, or double 
complex argument. If the argum-ent is real or double precision, IDt returns 
the integer whose magnitude is the largest integer that does not exceed the 
magnitude of the argument and whose sign is the same as the sign of the 
argument (i.e., truncation). For complex types, the above rule is applied to 

. I . 



FTYPE(lF) FTYPE(3F) 

the real part. Ifix and ldlnt convert only real and double precision argu­
ments respectively. 

Real converts to real form an integer, double precision, complex, or double 
complex argument. If the argument is double precision or double complex, as 
much precision is kept as is possible. If the argument is one of the complex 
types, the real part is returned. Float and sngl convert only integer and 
double precision arguments, respectively. 

Dble converts any integer, real, complex, or double complex argument to dou­
ble precision form. If the argument is of a complex type, the real part is 
returned. 

Cmplx converts its Integer, real, double precision, or double complex 
argument(s) to complex form. 

Dcmph; converts its integer, rea~ double precision, or complex argument(s) 
to double complex form. 

Either one or two arguments may be supplied to emplx and dcmplx . If 
there is only one argument, it is taken as the real part of the complex type 
and a imaginary part of zero is supplied. If two arguments are supplied, the 
first is taken as the real part and the second as the imaginary part. 
Iebar converts from a character to an integer depending on the character's 
position in the collating sequence. 

Char returns the character in the ith position in the processor collating 
sequence, where I is the supplied argument. 

For a processor capable of representing n characters, 

lchar(char(i)) = i for 0 <- i < n, and 

char(lchar(ch)) = ch for any representable character ch. 

- 2-



GAMMA(JM) OAMMA(JM) 

NAME 
gamma - log gamma function 

SYNOPSIS 
#Include <matb.b> 

extern int si1n1am; 
double gamma (x) 
double x; 

DESCRIPTION 
G4mma returns the natural log of gamma as a function of the absolute 
value of a given value. G4mma returns In(lf(x)l), where f(x) is 
defined as 

-f e-tr-1dt. 

" 
The sign of f(x) is returned in the external integer signgam. The argu· 
ment xmay not be a non·positive integer. 

The following C program fragment might be used to calculate r: 
if ((y - gamma(x)) > LN MAXDOUBLE) 

error(); -
y - signgam • exp(y); 

where LN_MAXDOUBLE is the least value that causes exp(3M) to return a 
range error, and is defined in the < values.h> header file. 

DIAGNOSTICS 
For non·negative inte&er arguments HUGE is returned, and errna is set to 
EDOM. A message indicating SING error is printed on the standard error 
output. 

If the correct value would overflow, gamma returns HUGE and sets errno to 
ERANGE. 

These error·handling procedures may be changed with the function 
matherr(3M). 

SEE ALSO 
exp(3M), matherr(3M), values(S). 

- I -



OETAR0(3F) 

NAME 
getarg - return Fortran command-line argument 

SYNOPSIS 
eharacter•N e 
Integer i 

getarc (i, c) 

DESCRIPTION 

OETARG(3F) 

Getarg returns the /-th command-line argument of the current process. 
Thus, if a program were invoked via 

foo argl arg2 arg3 

getargU, e) would return the string arg} in the character variable c. 

SEE ALSO 
getopt(3C). 

- I -



OETC (3S) OETC(3S) 

NAME 
getc, getchar, fgetc, getw - get character or word from a stream 

,r SYNOPSIS 
#include <sldlo.h> 

lnt getc (stream) 
FILE •stream; 

lot r;etchar () 

int faetc (stream) 
FILE •stream; 

lot getw (stream) 
FILE •stream; 

DESCRIPTION 
Getc returns the next character (i.e., byte) from the named input stream, as 
an integer. It also moves the file pointer, if defined, ahead one character in 
stream. Getfhar is defined as gel!" (stdin). Getc and Kt'ldwr are macros. 

FKelt" behaves like xerc, but is a function rather than a macro. Fxe1c runs 
more slowly than Ketc, but takes less space per invocation and its name can 
be passed as an argument to a function. 
Getw returns the next word (32-bit integer on a 68000) from the named 
input stream. Getw increments the associated file pointer, if defined, to 
point to the next word. Getw assumes no special alignment in the file. 

SEE ALSO 
fclose(JS), ferror<JS), fopen(JS), fread(JS), gets(JS), putc(JS), scanf(JS), 
ungetc<JS). 

DIAGNOSTICS 
These functions return the constant EOF at end-of-file or upon an error. 
Because EOF is a valid integer, .fi>rror(JS) should be used to detect xe1w 
errors. 

WARNING 

BUGS 

Page I 

If the integer value returned by getc, gelchar, or .fi:eu· is stored into a char· 
acter variable and then compared against the integer constant EOF, the 
comparison may never succeed, because sign-extension of a character on 
widening to integer is machine-dependent. 

Because it is implemented as a macro, Kt'IC treats incorrectly a s/reum argu· 
ment with side effects. In partkular, getd•f++) does not work sensibly. 
Fr:etc should be used instead. 
Because of possible differences in word length and byte ordering, files writ· 
ten using 1111tw are machine-dependent, and may not be read using xe1w on 
a different processor. 

July 22, 1985 



GETCWD(3C) GETCWD(3C) 

NAME 
getcwd - get pathname of current working directory 

SYNOPSIS 
cbar •getewd (buf, size) 
cbar •buf; 
lnt size; 

DESCRIPTION 
Getcwd returns a pointer to the current directory pathname. The value of 
size must be at least two greater than the length of the pathname to be 
returned. 

If lnif is a NULL pointer, getcwd obtains size bytes of space using 
malloc(3C). In this case, the pointer returned by getcwdmay be used as the 
argument in a subsequent call to free. 

The function is implemented by using popen(3S) to pipe the output of the 
pwd(l) command into the specified string space. 

EXAMPLE 

SEE ALSO 

if ((cwd = getcwd((char •)NULL, 64)) = = NULL) { 
perror("pwd"); 
exit(l); 

printf("%s\n", cwd); 

pwd(l), malloc(3C), popen(3S). 

DIAGNOSTICS 
Returns NULL with errno set if size is not large enough, or if an error 
occurs in a lower-level function . 

. I . 



GETDTABLESIZE (3N) UoiSoft 

NAME 
getdtablesize - get descriptor table size 

SYNOPSIS 
nds "' getdtablesizeO 
int nds; 

cc •.• -lnet 

DESCRIPTION 

GETDTABLESIZE(3N) 

Each process has a fixed size descriptor table which is guaranteed to have at 
least 20 slots. The entries in the descriptor table are numbered with small 
integers starting at 0. The call getdtableslze returns the size of this table. 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

cc -o prog preg.c -lnet 

SEE ALSO 
close(2), dup(l), open(2) 

Page l July 22, 1985 



OETENV{JC) 

NAME 
getenv - return value for environment name 

SYNOPSIS 
char •;etenv (name) 
char •name; 

DESCIUPTION 

OETENV{JC) 

Getenv searches the environment list (see envlron(S)) ror a string of the 
form name= value, and returns a pointer to the value in the current 
environment if such a string is present; otherwise a NULL pointer is 
returned. 

SEE ALSO 
exec(2), putenv(3C), environ(S) . 

. I . 



GETENV(3F) 

NAME 
getenv - return Fortran environment variable 

SYNOPSIS 
character •N c 
getenl'(TMPDIR, c) 

DESCRimON 

GETENV(3F) 

Geten~ returns the character-string value of the environment variable 
represented by its first argument into the character variable of its second 
argument. If no such environment variable exists, all blanks are returned. 

SEE ALSO 
getenv(3C), environ(S). 

- I -



GETGRENT(JC) GETGRENTOC) 

NAME 
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - obtain group 
file entry from a group file 

SYNOPSIS 
#Include <grp.h> 
struct group •getgrent ( ) 

struct group •getgrgid (gid) 
int gid; 

struct group •getgrnam (name) 
char •name; 

void setgrent ( ) 

struct group •fgetgreut (f) 
FILE •f; 

void endgrent ( ) 

DESCRIPTION 

FILES 

Getgrent, getgrgid, and getgrnam each return pointers to an object with the 
following structure containing the broken-out fields of a line in the 
/etc/group file. Each line contains a group structure, defined in the 
<grp.b> header file. 
struct group ( 

char 

}; 

char 
int 
char 

•gr_name; 
•gr passwd; 
gr_iid; 
ugr_mem; 

I• the name of the group •I 
I• the encrypted group password •I 
I• the numerical group ID •I 
I• vector of pointers to member names •I 

When first called, getgrent returns a pointer to the first group structure in 
the file; thereafter, it returns a pointer to the next group structure in the 
file; therefore, successive calls may be used to search the entire file. GeT­
grgld searches from the beginning of the file until a numerical group id 
matching gid is found; it returns a pointer to the particular structure in 
which the match was found. Getgmam searches from the beginning of the 
file until a group name matching name is found; it returns a pointer to the 
particular structure in which the match was found. If an end-of-file or an 
error is encountered on reading, these functions return a NULL pointer. 

A call to setgrem has the effect of rewinding the group file to allow repeated 
searches. Endgrenl may be called to close the group file when processing is 
complete. 

Fgetgrent returns a pointer to the next group structure in the stream ;; 
which matches the format of /etc/group. 

/etc/group 

SEE ALSO 
getloginOC), getpwentOC), group(4). 

DIAGNOSTICS 
A NULL pointer is returned on EOF or error. 

WARNING 
The above routines use < stdio.h>. This causes them to increase the size 

- I -



OBTGRENT(JC) GETORENT(JC} 

,r- BUGS 

of programs not otherwise using standard 110 more than might be 
expected. 

AU information is contained in a static area, so it must be copied if it is to 
be saved. 

• 2 • 



GETHOSTENT (JN) UniSoft OETHOSTENT(JN) 

NAME 
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get 
network host entry 

SYNOPSIS 
#Include <netdb.h> 
struct hostent *gethostentO 

struct hostent *gethostbyname(name) 
char *name; 

strud hostent *getbostbyaddr(addr, len, type) 
char *addr; lot len, type; 

setbostent {stay open) 
int stayopen 

endhostentO 
cc ... -lnet 

DESCRIPTION 

FILES 

Page I 

Gethostent, gethostbynamf!, and gf!thostbyaddr each return a pointer to an 
object with the following structure containing the broken-out fields of a line 
in the network host data base, lndhos/s. 

struct hostent { 
char *h name; 
char **il aliases· 
int h addrtype~ 

1: 

int h length; 
char *il_addr; 

I* official name of host *I 
J* alias list */ 
I* address type*/ 
;• length of address •; 
I* address *I 

The members of this structure are: 

h_name 

h_aliases 

Official name of the hosl. 

A zero terminated array of alternate names for the host. 

h_addrtype The type of address being returned; currently always 
AF_INET. 

h_length 

h_addr 

The length, in bytes, of the address. 

A pointer to the network address for the host. Host addresses 
are returned in network byte order. 

Gelhoslel/l reads the next line of the file, opening the file if necessary. 

Sethostent opens and rewinds the file. If the stayopm flag is non-zero, the 
host data base will not be closed after each call to Kt'thostt'nt (either directly, 
or indirectly through one of the other gethost calls). 

Endhostellt closes the file. 
Gethostbyname and gefhostbyaddr sequentially search from the beginning of 
the file until a matching host name or host address is found, or until EOF 
is encountered. Host addresses are supplied in network order. 

/etc/hosts 

July 22, 1985 



GETHOSTENT(JN) UniSofi GETHOSTENT(JN} 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 

.f compile line, e.g.: 

ce-o Prot: prog.c -lnet 

SEE ALSO 
hosts(4N) 

DIAGNOSTICS 
Null pointer (0) returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to 
be saved. Only the Internet address format is currently understood. 

July 22, 1985 Page 2 



GETLOGIN(JC) GETLOGINOC) 

NAME 
getlogin - get login name 

SYNOPSIS 
char •gellogin ( ) ; 

DESCRIPTION 

FILES 

Getlogln returns a pointer to the login name as found in /etc/utmp. It may 
be used in conjunction with getpwnam to locate the correct password file 
entry when the same user ID is shared by several login names. 

If getlogin is called within a process that is not attached to a terminal, it 
returns a NULL pointer. The correct procedure for determining the login 
name is to call cuserid or get/ogin. If getlogln fails, call getpwuid. 

/etc/utmp 

SEE ALSO 
cuserid(JS), getgrent(JC), getpwent(JC), utmp(4). 

DIAGNOSTICS 

BUGS 

Getfogin returns the NULL pointer if name is not found. 

The return values point to static data whose content is overwritten by each 
call. 

. I . 



GETMNTENT(3) GETMNTENT(3) 

NAME 
setmnlent. getmntent. addmntent, endmntent - get file system descriptor file 
entty 

SYNOPSIS 
#include <Stdio.h> 
#include <mntentJp. 

FILE •setmntent(lilep, type) 
char *fi/ep; 
char *t)pt!'; 
struct mntent •getm.ntent(fi/ep) 
FILE •ftlep; 

int addmntent(lilep, mnt) 
FILE •ftlep; 
slruct mntent •mnt; 

int endmntent(/ilep) 
FILE *ftlep; 

DESCRIPTION 
These routines access the file system description file /ek/fstab, and the 
mounled file system desaiptioo file /etc/nmttab. 

Setmntent opens a file system descriptioo file and returns a file pointer for use 
with getmntent , addmnlent , or endmntent . The type argument is the same as in 
fop61 (3). Getmntent reads the next line from filep and returns a pointer to an 
object with the following stmctore containing broken-out fields of a line in the 
file system description file, mlllUib.h . The fields have meanings described in as 
follows: 

strlldlll•tent{ 

" 
dlar 4om•t_r.mne; /*llle llfltenl -e "'/ 
char "'m•l_dlr; I* fie IY'tem palb pl'll!ftl: */ 

Addmntent adds the mntent structwe mnt to the end of the open file filep . Note 
that filep has to be opened for writing if this is to woik. Endmntent closes the 
file. 

RETURN V ALUB 
NULL pointer (0) returned on EOF or error. 

Page 1 September 28, 1987 



GEI'MNTENT(3) 

FILES ,_ 
SBB ALSO 

mnuab(4) 

BUGS 

GETMNTENT(3) 

1be returned mntent structure points to static information that is overwritten in 
each call. 

September 28, 1987 Page2 



GETNETENT(JN) UniSoft GETNETENT(JN) 

NAME 
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get net­
work entry 

SYNOPSIS 
#include < netdb. h > 
struct netent *aetnetentO 

struct netent *getnetbyname(name) 
ehar *name; 

struct netent *getnetbyaddr(net) 
long net; 

setnetent (stay open) 
int stayopen 

endnetentO 

~ -·- -lnet 
DESCRIPTION 

FILES 

Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object 
with the following structure containing the broken-out fields of a line in the 
network data base, /etdnetworks. 

struct netent { 
char *n name; 
char **il_aliases; 
int n_addrtype; 

); 
long n_net; 

The members of this structure are: 

I* official name of net*/ 
!* alias list •1 
/* net number type*/ 
I* net number*/ 

n_name The official name of the network. 

n_aliases A zero terminated list of alternate names for the network. 

n_addrtype The type of the network number returned; currently only 

n_net 

AF_INET. 

The network number. Network numbers are returned in 
machine byte order. 

Gewete/11 reads the next line of the file, opening the file if necessary. 

Sewete/11 opens and rewinds the file. If the stayope11 flag is non-zero, the 
net data base will not be closed after each call to getnetem (either directly, 
or indirectly through one of the other getnet calls). 

£ndnetelll closes the file. 

Getm!tbyname and getuetbyaddr sequentially search from the beginning of 
the file until a matching net name or net address is found, or until EOF is 
encountered. Network numbers are supplied in host order. 

/etc/networks 

LINKING 

Page 1 July 22, 1985 



GETNETENT(JN) UniSort GETNETENT(lN) 

This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

cc - o prog prog.c -lnet 

SEE ALSO 
networks(4N) 

DIAGNOSTICS 
Null pointer (0) returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to 
be saved. Only Internet network numbers are currently understood. 
Expecting network numbers to fit in no more than 32 bits is probably naive. 

July 22, 1985 Page 2 



··-· 

GETOPTOC) GETOPT(JC) 

NAME 
getopt - get option letter from argument vector 

SYNOPSIS 
lnt getopt large, argv, optstring) 
lot argc; 
char uarav ; •optstring ; 

extern char •optarg; 
extern lnl optlnd, opterr; 

DESCRIPTION 
GeiOpt returns the next option Jetter in argY that matches a letter in opt­
string. Optstring is a string of recognized option letters; if a letter is fol­
lowed by a colon, the option is expected to have an argument that may or 
may not be separated from it by white space. Optarx is set to point to the 
start of the option argument on return from getopt. 

Getopt places in optind the argv index of the next argument to be processed. 
Because optind is external, it is normally initialized to zero automatically 
before the first call to gelopt. 

When all options have been processed (i.e., up to the first non-option argu­
ment), getopt returns EOF. The special option -- may be used to delimit 
the end of the options; EOF will be returned, and - - will be skipped. 

DIAGNOSTICS 
Getopt prints an error message on stderr and returns a question mark (!) 
when it encounters an option letter not included in optstring. This error 
message may be disabled by setting opterr to 0. 

EXAMPLE 
The following code fragment shows how one might process the arguments 
for a command that can take the mutually exclusive options a and b, and 
the options f and o, both of which require arguments; 

main (argc, argv) 
int argc; 
char uargv; 
I 

int c; 
extern int optind; 
extern char •optarg; 

while ((c = getopt (argc, argv, "abf;o;")) != EOF) 
switch (c) ( 
case 'a'; 

if (bflg) 
errflg+ +; 

,...-. aflg++; 
break; 

case 'b': 
if (aflg) 

errflg+ +; 

Page 1 July 22, 198S 



GETOPT(3C) 

SEE ALSO 
getoptO). 

July 22, 1985 

bprod ); 
break; 

case •r: 

case 'o': 

case '?': 

I 
if {errflg) { 

ifile - optarg; 
break; 

ofile - optarg; 
break; 

errflg. + +; 

Cprintr {stderr, "usage: . "); 
exit (2); 

for ; optind < argc; optind + + l I 
if (access (argv(optindl, 4)) ( 

GETOPT(JC) 

Page 2 



r 
' 

GETP ASS ( JC) GETPASS(JC) 

NAME 
getpass - read a password 

SYNOPSIS 
cb.r •getpass (proltlpt) 
cUr •prompt; 

DESCRIPTION 

FILES 

Getposs reads up to a newline or EOF from the file /dev/tly, after prompt· 
ing on the standard error output with the null-terminated string prompt and 
disabling echo. A pointer is returned to a null-terminated string or at most 
8 characters. If /dev/lty cannot be opened, a NULL pointer is returned. 
An interrupt terminates input an<l sends an interrupt signal to the calling 
program before returning. 

/dev/tty 

SEE ALSO 
crypt(3C). 

WARNING 

BUGS 

The above routine uses <sldJo.h>. This causes the size or programs not 
otherwise using standard 1/0 to increase more than might be expected. 

The return value points to static data whose content is overwritten by each 
call. 

- I -



GETPROTOENT(3N) UniSofi GETPROTOENT ON) 

NAME 
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent 
- get protocol entry 

SYNOPSIS 
#indude <neidb.h> 
struct protoent *getprotoentO 

struet protoent *getprotobyname(name) 
char *name; 

struct protoent *getprotobynumber(proto) 
int proto; 

setprotoent (stay open) 
lot stayopen 

endprotoentO 
ce ••• -!net 

DESCRIPTION 

FILES 

Getprotoem, getprotobyname, and getprowbynumber each return a pointer to 
an object with the following structure containing the broken-out fields of a 
line in the network protocol data base, /etc/protm·o/s. 

struct protoent I 
char *p name; 
char *"P_aliases: 

}; 
long p_proto; 

The members of this structure are: 

!* official name of protocol */ 
t• alias list •t 
r protocol number*/ 

p_name The official name of the protocol. 

p_aliases A zero terminated list of alternate names for the protocol. 

p_proto The protocol number. 

Getprotoem reads the next line of the file, opening the file if necessary. 

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the 
net data base will not be closed after each call to Kf?/proto<'l/1 (either directly, 
or indirectly through one of the other getproto calls). 

Endprotoe/11 closes the file. 

Ge!pro/obyname and gf'/proiObynumber sequentially search from the beginning 
of the file until a matching protocol name or protocol number is found, or 
until EOF is encountered. 

/etc/protocols 

LINKING 

Page I 

This library is accessed by specifying -!net as the last argument to the 
compile line, e.g.: 

ce - o prog prog.c - lnet 

July 22, 1985 



G ETPROTOENT ( lN} 

SEE ALSO 
protocols(4N) 

DIAGNOSTICS 

UaiSoft 

Null pointer (0) returned on EOF or error. 

BUGS 

GETPROTOENT(lN) 

All information is contained in ·a static area so it must be copied if it is to 
be saved. Only the Internet protocols are currently understood. 

July 22, 1985 Page 2 



GETPW(lC) GETPW(lC) 

NAME 
getpw - get name from UID 

SYNOPSIS 
int getpw (uid, bufl 
lnt uid; 
thar •buf; 

DESCRIPTION 

FILES 

Getpw searches the password file for a user id number that equals uid, 
copies the line of the password file in which uid was found into the array 
pointed to by buf. and returns 0. The line is null terminated. Getpw 
returns non-zero if uid cannot be found. 

This routine is included only for compatibility with prior systems and 
should not be used; see getpwent(3C) for routines to use instead. 

/etc/passwd 

SEE ALSO 
getpwent(JC), passwd(4). 

DIAGNOSTICS 
Getpw returns non-zero on error. 

WARNING 
The above routine uses <stdlo.h>. Therefore, the size of programs not 
otherwise using standard I/0 is increased more than might be expected. 

- I -



c 

GETPWENT(3C) G ETPWENT ( 3C) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get pass· 
word file entry 

SYNOPSIS 
#include < plt'd. h > 

stnct passwd •getpwenl () 

slruct passwd •getpwuld (uid) 
lot uid; 

slruct puswd •1etpwnam (name) 
daar •name; 

void setp•ent () 

void endp•ent ( ) 

struct passwd •fgetpwent (f) 
t'ILE •f; 

DESCRIPfiON 
Getpwent, getpwuid, and getpwnam each return a pointer to an object with 
the following structure containing the broken-out fields of a line in the 
/etc/pas11'd file. Each line in the file contains a passwd structure, declared 
in the <pwd.h> header file: 

struct passwd [ 
char 
char 

}; 

int 
int 
char 
char 
char 
char 
char 

•pw name; 
*PW-passwd; 
pw Uid; 
pwJ;id; 
•pw_age; 
•pw_comment; 
•pw_gecos; 
•pw dir; 
•pw=shell; 

Because this structure is declared in <pwd.h>, it is not necessary to rede­
clare it. 

The pw comment field is unused; the others have meanings described in 
passwdt4). 

When first called, ge/pwent returns a pointer to the first passwd structure in 
the file; thereafter, it returns a pointer to the ne:llt passwd structure in the 
file; therefore, successive calls can be used to search the entire file. 
Getpwuid searches from the beginning of the file until a numerical user id 
matching uid is found; it returns a pointer to the particular structure in 
which the match was found. Getpwnam searches from the beginning of the 
file until a login name matching name is found; it returns a pointer to the 
particular structure in which the match was found. If an end-of-file or an 
error is encountered on reading, these functions return a NULL pointer. 

A call to setpwent has the elfect of rewinding the password file to allow 
repeated searches. Endpwent may be called to close the password file when 
processing is complete. 

- I -



OETPWENT(JC) OETPWENT(3C) 

FILES 

Fgetpwent returns a pointer to the next passwd structure in the stream /, 
which matches the format of /etc/pa-sswd. 

/etc/passwd 

SEE ALSO 
cuserid(3S), getloginOC), getgrent(3C), passwd(4). 

DIAGNOSTICS 
A NULL pointer is returned on EOF or error. 

WAR.NING 

BUGS 

The above routines use < stdio.h>. Therefore the size of programs not 
otherwise using standard 110 is increased more than might be expected. 

All information is contained in a static area, so it must be copied if it is to 
be saved. 

- 2 -



GETS(JS) GETS(JS) 

NAME 
gets, fgets - get a string from a stream 

,...---.-. SYNOPSIS 
#include <stdio.h> 
ehar •gets (s) 
ehar •s; 

ehar •fgets (s, n, stream) 
char •s; 
int n; 
FILE •stream; 

DESCRIPTION 
Gets reads characters from the standard input stream, stdin, into the array 
pointed to by s, until a new-line character is read or an end-of-file condition 
is encountered. The new-line character is discarded and the string is ter­
minated with a null character. 
Fgets reads characters from the stream into the array pointed to by s until 
n-1 characters are read, or a new-line character is read and transferred to 
s, or an end-of-file condition is encountered. The string is then terminated 
with a null character. 

SEE ALSO 
ferror(3S), fopen(3S), freadOS), getc(3S), scanf(3S). 

DIAGNOSTICS 

NOTE 

If end-of-file is encountered and no characters have been read, no charac­
ters are transferred to s and a NULL pointer is returned. If a read error 
(e.g., trying to use these functions on a file that has not been opened for 
reading) occurs, a NULL pointer is returned. Otherwise s is returned. 

Gets deletes the new-line ending its input, but fgets keeps it . 

• 1 • 



GETSERVENT(lN} UniSon GETSERVENT(lN) 

NAME 
getservent, getservbyport, getservbyname, setservent, endservent - get 
service entry 

SYNOPSIS 
#include <netdb.h> 
struct servent •getserventO 

struct servent •aetservbyname(name, proto) 
char •name, •proto; 

struct servent •getservbyport(port, proto} 
int port; char •proto; 

setservent (stay open) 
lnt st•yopen 

endserventO 
cc •.• -lnet 

DESCRIPTION 

FILES 

Getservem, getsen•bynamt', and gt'tservbyport each return a pointer to an 
object with the following structure containing the broken-out fields of a line 
in the network services data base, lt'tdst'n•ict's. 

struct servent [ 
char •s name; 
char nS_aliases; 
long s port; 
char •S_proto; 

}; 

The members of this structure are: 

I* official name of service 0
/ 

/* alias list *I 
I* port service resides at *I 
I* protocol to use •1 

s_name The official name of the service. 
s_aliases A zero terminated list of alternate names for the service. 

s_port The port number at which the service resides. Port numbers are 
returned in network byte order. 

s_proto The name of the protocol to use when contacting the service. 

Gt'tsaw/11 reads the next line of the file, opening the file if necessary. 

Setst'n"rrll opens and rewinds the file. If the sta.votn•n Dag is non-zero, the 
net data base will not be closed after each call to gt'/St'fl"t'/11 (either directly, 
or indirectly through one of the other getserv calls). 

Endserwnt closes the file. 

Getservbyname and getservbyporl sequentially search from the beginning of 
the file until a matching protocol name or port number is found, or until 
EOF is encountered. If a protocol name is also supplied (non-NULL), 
searches must also match the protocol. 

I etc/ services 

LINKING 

Page I July 22, 1985 



GETSERVENTON) UniSoft GETSERVENT ( 3N) 

This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

« -o prog prog.c -lnet 

SEE ALSO 
getprotoent(JN), services(4N) 

DIAGNOSTICS 

BUGS 

Null pointer (0) returned on EOF or error. 

All information is contained in a static area so it must be copied if it is to 
be saved. Expecting port numbers to fit in a 32 bit quantity is probably 
naive. 

July 22, 1985 Page2 



GETUT(3C) GETUT(3C) 

NAME 
getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access 
utmp file entry 

SYNOPSIS 
#include .aysftypes.h:> 
#include <Utm.p.h> 

struct utmp •getutent ( ) 

struct utmp •getutid (id) 
struct utmp •id; 

struct otmp •getutline (line) 
struct utmp •line; 

void pututline (utrnp) 
struct utmp •utmp; 

void setutent ( ) 

void endutent ( ) 

void utmpname (file ) 
char •file; 

DESCRIPI10N 
Getutent, getu.tid, and getutline each return a pointer to a structure of the fol­
lowing type: 

struct utm.p { 

); 

---"'ort 
Mort 
•truct 

"'ort 
"'"" } ut_exit; 

time_t 

ut_user[8]; 
ut_id[4]; 
uUine[12]; 
ut_pid; 
uuype; 
exiLstatus ( 

e_termination; 
e_exit; 

ut_time; 

I• User login name •I 
l*letc/inittab id (usually line#) •I 
I• device name (console,lnxx) •I 
I* process id •/ 
I* type of entry •I 

I• Process termination status •I 
I• Process exit status •I 
I• The exit status of a process 
!• marked as DEADYROCESS. •! 
I• time entry was made •/ 

Getutent reads in the next entry from a utmp-like file. If the file is not already 
open, it opens it. If it reaches the end of lhe file, it fails. 

Pagel September 24, 1987 



GETUT(3C) GETUT(3C) 

Getutid searches forward from the caurent point in the utmp file until it finds an 
entry with a ut_type matching id->ut_type if the type specified is RUN_LVL, 
BOUT_TIME. OLD_TIME, or NEW _TIME. If the type specified in id is 
D"m'_FROCESS, LOOIN..YROCESS. USER_PROCBSS, or DEAD_PROCESS, getu­
tid will return a pointer to the first entry whose type is ooe of these four and 
whose ut_id field matches id->ut_id. Getutid fails if the end offile is reached 
without a match. 

Getu.tline searches forward from the current point in the uJmp file until it finds 
an entry of the type LOGINJ'ROCESS or USER..YROCESS which also has a 
u.t_line string matching the line->ut_line string. If the end of file is reached 
without a match, it fails. 

PututliM writes out the supplied utmp structure into the ulmp file. It uses getu­
tid to search forward for the proper place if it finds that it is not already at the 
proper place, It is assumed that the user of pututline has searebed for the 
proper entry using one of the getut routines. If this has been dooe, pllllltliu 
will not search. If putUJlilte does not find a matching slot for the new entry, it 
will add a new entry to the end of the file. 

Setutent resets the input stream to the beginning of the file. This should be 
done before each search for a new entry if it is desired that the entire file be 
examined. 

Endatent closes the cwrently open file. 

Utmprrame allows the user to change the name of the file examined from 
/etc/utmp to any other filename. It is expected that most often this other file 
will be /eklwtmp. If the file doesn't exist. this will not be apparent until the 
first attempt to reference the file is made. Utmpname does not open the file. It 
just closes the old file, if it is currendy open, and saves the new filename. 

FILES 
/et£/unnp 
/efl;/wtm.p 

SEE ALSO 
ttySio<(3C), utmp(4). 

DIAGNOSTICS 
A NULL pointer is retwned upon failure to read or write. Failure to read may 
be due to permissions or because end-of-file ha<~ been reached. 

September 24, 1987 Page2 



GETUT(3C) GETUT(3C) 

COMMENTS 
The most current enlry is saved in a static structure. Multiple accesses require 
that it be copied before further accesses are made. Each call to either getutid or 
getutline sees the routine examine the static structure before perfonning more 
IJO, If the search of the static structure results in a match, no further search is 
performed. To use getutline to search for multiple occurences, zero out the 
static structure after each success; otherwise getutline will just return the same 
poinlel' over and over again. There is one exception to the rule about removing 
the structure before further reads are done. If the implicit read done by putu.t­
line finds that it isn't already at the correct place in the file, the contents of the 
static structure returned by the getu.tent, getutid, or getutline routines are not 
harmed, if the user bas just modified those contents and passed the pointer back 
1o pututline. 

These routines use buffered standard I/0 fix input. but pututline nses an unbuf­
fered non-standard write to avoid race conditions between processes ttying to 
modify the utmp and wtmp files. 

Page3 September 24, 1987 



,,.­
' 

HSEARCH (JC) HSEARCH(3C) 

NAME 
hsearch, hcreate, hdestroy - manage hash search tables 

SYNOPSIS 
#Include <searcb.b> 
ENTRY •bsearcb (item, •ction) 
ENTRY item; 
ACTION action; 

int bcreate (nell 
unsigned nel; 

void bdestroy ( ) 

DESCRIPTION 

NOTES 

HYarch is a hash-table search routine generalized from Knuth (6.4) Algo­
rithm D. It returns a pointer into a hash table indicating the location at 
which an entry can be found. Item is a structure of type ENTRY (defined in 
the < search.h> header file) containing two pointers: item. key points to the 
comparison key, and item.data points to any other data to be associated 
with that key. (Pointers to types other than character should be cast to 
pointer-to-character.) Action is a member of an enumeration type ACTION 
indicating the disposition of the entry if it cannot be found in the table. 
ENTER indicates that the item should be inserted in the table at an 
appropriate point. FIND indicates that no entry should be made. Unsuc­
cessful resolution is indicated by lhe return of a NULL pointer. 

Hcreate allocates sufficient space for the table, and must be called before 
hsearch is used. Nel is an estimate of the maximum number of entries that 
the table will contain. This number may be adjusted upward by the algo­
rithm in order to obtain certain mathematically favorable circumstances. 

Hdestroy destroys the search table, and may be followed by another call to 
he reate. 

Hsearch uses open addressing with a multiplicative hash function. However, 
its source code has many other options available which the user may select 
by compiling the hsearch source with the following symbols defined to the 
preprocessor: 

DIV 

USCR 

Use the remainder modulo table size as the hash function 
instead of the multiplicative algorithm. 

Use a User Supplied Comparison Routine for ascertain­
ing table membership. The routine should be named 
hcompar and should behave in a mannner similar to 
strcmp (see string(3C)). 

t::HAINED Use a linked list to resolve collisions. If this option is 
selected, the f-ollowing other -options become available. 

START Place new entries at the beginning of the 
linked list (default is at the end). 

SORTUP Keep the linked list sorted by key in 
ascending order. 

SORTDOWN Keep the linked list sorted by key in des­
cending order . 

. I . 



HSEARCH (3C) HSEARCHOC) 

Additionally, there are preprocessor flags for obtaining debugging printout 
(- DDEBUG) and for including a test driver in the calling routine 
(- DDRIVER). The source wde should be consulted for further details. 

EXAMPLE 
The following example will read in strings followed by two numbers and 
store them in a hash table, discarding duplicates. It will then read in strings 
and find the matching entry in the hash table and print it out. 

#include <stdio.h> 
#include < search.h> 

struct info [ I• this is the info stored in the table •I 
int age, room; I• other than the key. •I 

#define NUM_EMPL 5000 I• # of elements in search table •/ 

main( 
I 

I• space to store strings •I 
char string_space(NUM_EMPL•20]; 
I• space to store employee info •/ 
struct info info_space[NUM_EMPL]; 
I• next avail space in string_space •I 
char •str_ptr - string_space; 
I• next avail space in info_space •I 
struct info •info_ptr - info_space; 
ENTRY item, •found_item, •hsear~;h( l: 
I• name to look for in table •I 
char name_to_find(JO]; 
int i - 0; 

I• ~;reate table •I 
(void) hcreate(NUM_EMPL); 
while (S<:anf("%s%d%d", str_ptr, &info_ptr->age, 

&info_ptr->room) != EOF && i++ < NUM_EMPL) 
I• put info in structure, and structure in item •I 
item.key - str_ptr; 
item.data = (char •)info ptr; 
str_ptr +- strlen(str_ptrl + I; 
info_ptr++; 
I• put item into table •I 
(void) hsearchHtem, ENTER); 

I• access table •I 
item.key = name_to_fi.nd; 
while (scanf('%s", item.k.ey) !- EOF) [ 

if ((found_item = hsearchOtem, FIND)) != NULL) [ 
I• if item is in the table •I 
(void)printf('found %s, age = %d, room = %d\n', 

found ttem->k.ey, 
((struct info •)found_item->data)->age, 
((struct info •)found_item->datal->room); 

- 2-



HSEARCH(3C) 

SEE ALSO 
bsearch(JC), 
tsearch(JC). 

DIAGNOSTICS 

else ( 
(void)printf("no such employee %s\n", 

name_ to_ find) 

HSEARCH (3C) 

lsearch(JC), malloc(JC), malloc(JX), string(JC), 

Hsearch returns a NULL pointer if either the action is FIND and the item 
could not be found or the action is ENTER and the table is full. 
Hcreate returns zero if it cannot allocate sufficient space for the table. 

WARNING 
Hsearch and hcreate use mal/oc(JC) to allocate space. 

BUGS 
Only one hash search table may be active at any given time . 

• 3 • 



HYPOT(3M} HYPOT(3M) 

NAME 
hypot ~ Euclidean distance function 

SYNOPSIS 
#Include <malb.h> 

double hypol b, y) 
double x, y; 

DESCRIPTION 
Hypot returns the foUowing, taking precautions against unwarranted 
overflows: 

sqrt(x•x+y•y) 

DIAGNOSTICS 
When the correct value would overflow, hypot returns HUGE and sets errno 
to ERANGE. 

These error-handling procedures may be changed with the function 
matherr(JM). 

SEE ALSO 
matherr(JM). 

- 1 -



IAR.GC (3F) 

NAME 
iargc 

.r-- SYNOPSIS 
lnte!ler i 
I = ial'!:e0 

DESCRIPTION 

IAR.GC(3F} 

The iargc function returns the number or command line arguments passed 
to the program. Thus, i£ a program were Invoked via 

roo argl arg2 arg3 

iaraeO would return "3". 

SEE ALSO 
getarg(3F). 

- I -



INDEX (3F) 

NAME 
index - return location of Fortran substring 

SYNOPSIS 
charaeler •Nt chl 
eharaeier • N 1 ch2 
inleger i 

i - lndex(chl, ch2) 

DESCRIPTION 

INDEX OF) 

Index returns the location of sub-string chl in string chl. The value 
returned is either the position at which substring ch2 starts or 0 if chl is 
not present in string ch 1. 

- I -



, ___ _ 

I~ 

INET{lN) UniSoft INET(JN) 

NAME 
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof 
- Internet address manipulation routines 

SYNOPSIS 
#include <sys/soeket.h> 
#include <netlnet/ln.h> 
#Include <arpa/lnet.h> 

strud in addr !net addr(ep) 
char •cp; -

int inet_network(cp) 
char •cp; 

char *lnet ntoa(in) 
struct ine-=.addr in; 

struct In addr inet makeaddr(net, Ina) 
int net, fna; -

int inet_lnaof(ln) 
strud in _addr In; 
inl inet_netof(in) 
struet In_ addr in; 

ee ... -lnet 

DESCRIPTION 
The routines lnet_addr and inet_network each interpret character strings 
representing numbers expressed in the Internet standard "." notation, 
returning numbers suitable for use as Internet addresses and Internet net­
work numbers, respectively. The routine /net moo takes an Internet 
address and returns an ASCII string representing -the address in "." nota­
tion. The routine /net makeaddr takes an Internet network number and a 
local network address ilnd constructs an Internet address from it. The rou­
tines inet netofand inet lnao/break apart Internet host addresses, returning 
the netwOrk number and local network address part, respectively. 

All Internet address are returned in network order (bytes ordered from left 
to right). All network numbers and local addreSI' parts are returned as 
machine format integer values. 

INTERNET ADDRESSES 

Page I 

Values specified using the "." notation take one of the following forms: 
a.b.c.d 
a.b.c 
,.b 

' When four parts are specified. each is interpreted as a byte of data and 
assigned, from left to right, to the four bytes of an Internet address. 

When a three part address is specified, the last part is interpreted as a 16-bit 
quantity and placed in the right most two bytes of the network address. 
This makes the three part address format convenient for specifying Class B 
network addresses as '"128.net.host". 

July 22, 1985 



INET(31'f) UoiSoft INET(JN) 

When a two part address is supplied, the last part is interpreted as a 24-bit 
quantity and placed in the right most three bytes of the network address. 
This makes the two part address format convenient for specifying Class A 
network addresses as "net. host". 

When only one part is given, the value is stored directly in the network 
address without any byte rearrangement. 

All numbers supplied as "parts" in a"." notation may be decimal, octal, 
or hexadecimal, as specified in the C language G.e. a leading Ox or OX 
implies hexadecimal; otherwise, a leading 0 implies octal; otherwise, the 
number is interpreted as decimal). 

LINKING 
This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

ec -o pros prog.c -lnet 

SEE ALSO 
gethostent(JN), getnetent(3N), hosts(4N), networks{4N), 

DIAGNOSTICS 

BUGS 

The value -I is returned by inet_addr and inet_network for malformed 
requests. 

The problem of host byte ordering versus network byte ordering is confus­
ing. A simple way to specify Class C network addresses in a manner simi­
Jar to that for Class B and Class A is needed. The string returned by 
inet_ntoa resides in a static memory area. 

July 22, 1985 Page 2 



INSQUE(3N) UniSoft INSQUEON) 

NAME 
insque, remque - insert/remove element from a queue 

SYNOPSIS 
struct qelem { 

}; 

struct qelem *q_forw; 
struct qelem *q_baek; 
cbar q_datall; 

lnsque(elem, precl) 
slrud qelem *elem, *pred; 

remque(elem) 
struct qelem *elem; 

cc •.• -lnet 

DESCJlJPTION 
Jnsque and remque manipulate queues built from doubly linked lists. Each 
element in the queue must in the form of "struct qelem". Jnsque inserts 
elem in a queue immediately after pred: remque removes an entry elem from 
a queue. 

LINKING 

Page I 

This library is accessed by specifying -lnet as the last argument to the 
compile line, e.g.: 

ex - o proe: proe.e -lnet 

July 22, 1985 



KILLPGON} UniSort' KILLPG(3N} 

NAME 
killpg - send signal to a process group 

SYNOPSIS 
killpg(pgrp, slg) 
int pgrp, sig; 

~ ••• -!net 

DESCRIPTION 
Kil/pg sends the signal sig to the process group PK'P-

The sending process and members of the process group must have the 
same effective user ID, otherwise this call is restricted to the super-user. 
As a single special case the continue signal SIGCONT may be sent to any 
process which is a descendant of the current process. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value 
of -I is returned and the global variable nnw is set to indicate the error. 

ERRORS 
Kif/pg will fail and no signal will be sent if any of the following occur: 

(EINVALI Sig is not a valid signal number. 

IESRCHI No process can be found corresponding to that specified by 
pid. 

IEPERM] The sending process is not the super-user and one or more 
of the target processes has an effective user ID different 
from that of the sending process. 

LINKING 
This library is accessed by specifying -!net as the last argument to the 
compile line, e.g.: 

ce-o prog prog.e -lnet 

SEE ALSO 
ki11(2), getpid(2) 

Page I July 22, 1985 



, ____ _ 

LJTOL (JC} LJTOL{JC} 

NAME 
IJtol, lto13 - convert between 3-byte integers and Ions integers 

SYNOPSIS 
l'oid 13tol (lp, cp, n) 
long •lp; 
char •cp; 
tnt n; 

l'Oid UoiJ (cp, lp, n) 
char •cp; 
long •lp; 
inl n; 

DESCRIPTION 
LJtol converts a list of n 3-byte integers (packed into a character string 
pointed to by cp) into a list of Ions integers pointed to by lp. 

Lto/3 performs the reverse conversion from long integers (/p) to 3-byte 
integers (cp). 

These functions are useful for file system maintenance where the block 
numbers are 3 bytes Ions. 

SEE ALSO 
fs(4). 

BUGS 
Because of possible differences in byte ordering, the numerical values of 
the long integers are machine-dependent. 

. I . 



LDAHREAD(JX) LDAHREAD (JX) 

NAME 
ldahread - read the archive header of a member of an archive file 

SYNOPSIS 
#Include < stdlo.h> 
#include <ar.h> 
#Include <fi.Iehdr.h> 
#Include <ldfcn.h> 

lut Ida bread (ldptr, arhead) 
LDFILE •ldptr; 
ARCHDR •arhead; 

DESCRIPTION 
If TYPE(fdptr) is the archive file magic number, fdahread reads the archive 
header of the common object file currently associated with fdptr into the 
area of memory beginning at urhead. 

Ldahread returns SUCCESS or FAILURE. Ldahread fails if TYPE(fdptr) 
does not represent an archive file or if it cannot read the archive header. 

The program must be loaded with the object file access routine library 
Ubld.a. 

SEE ALSO 
ldclose(3X), ldopen(JX), ar(4), ldfcn(4) . 

. I . 



LDCLOSE (]X) LDCLOSE(JX) 

NAME 
ldclose, ldaclose - close a common object file 

;-- SYNOPSIS 
#indude <stdlo.h> 
#Include <fl.lebdr.b> 
#Include <ldfcn.b> 

iol ldelose (Jdptr) 
LDFILE •ldptr; 

tot ldaclose (ldptr) 
LDFILE •ldptr; 

DESCRIPTION 
Ldopen(3X) and ldcloseare designed to provide unirorm access to both sim­
ple object files and object files that are members or archive files. Thus an 
archive or common object files can be processed as if it were a series or 
simple common object files. 

Ir TYPE(fdptr) does not represent an archive file, ldc/ose closes the file and 
frees the memory allocated to the LDFILE structure associated with /dptr. 
Ir TYPE(/dptr) is the magic number or an archive file, and ir there are any 
more files in the archive, fdcfose reinitializes OFFSET(/dptr) to the file 
address or the next archive member and returns FAILURE. The LDFILE 
structure is prepared ror a subsequent ldopen(JX). In all other cases, 
fdc/ose returns SUCCESS. 

Ldoc/ose closes the file and rrees tbe memory allocated to the LDFILE struc­
ture associated with /dptr regardless or the value or TYPE (/dptr). Ldaclose 
always returns SUCCESS. The runction is orten used in conjunction with 
/do open. 

The program must be loaded with the object file access routine library 
libld.a. 

SEE ALSO 
rclose(JS), ldopen(JX), ldrcn(4) . 

. I . 



LDFHREAD(JX) LDFHitEAD(lX) 

NAME 
ldfhread - read the file header of a common object file 

SYNOPSIS 
#lndude <stdio.b> 
#Include <filebdr.b> 
#lndude <Idfen.b> 

int ldfhread (ldptr, filebead) 
LDFILE •ldptr; 
FILHDR •filehead; 

DESCRIPTION 
14fhread reads the file header of the common object file currently associ­
ated with ldptr into the area of memory beginning at filehead. 

Ldjhreadreturns SUCCESS or FAILURE. Ldjhreadfails if it cannot read the 
file header. 

In most cases the use of ld.fhread can be avoided by using the macro 
HEADER(fdptr) defined in <ldfcn.h> (see /dfcn(4)). The information in 
any field, fieldname, of the file header may be accessed using 
HEADER ( /dptr) .fie/dna me. 

The program must be loaded with the object file access routine library 
llbld ••. 

SEE ALSO 
ldclose(JX), ldopen(JX), ldfcn(4). 

- I -



. ___ . 

LDOETNAME(3X) LDOETNAME(3X) 

NAME 
ldgetname - retrieve symbol name for object file symbol table entry 

SYNOPSIS 
#Include <stdlo.h> 
#Include <ftlehdr.h> 
#include <syms.h> 
#Include <ldfcn.h> 

eh•r ldsetn•me (ldptr, symboD 
LDFILE ldptr; 
SYMENT symbol; 

DESCRIPriON 
Ldgetname returns a pointer to the name associated with symbol as a string. 
The string is contained in a static buffer local to fdgetname. Because the 
buffer is overwritten by each call to /dgetname, it must be copied by the 
caller if the name is to be saved. 

The common object file format has been extended to handle arbitrary 
length symbol names with the addition of a "strilttl table". Ldgetname 
returns the symbol name associated with a symbol table entry for either an 
object file or a pre-object file. Thus, fdgetname can be used to retrieve 
names from object files without any backward compatibility problems. 
Ldgetname returns NULL (defin-ed in <stdlo.h>) for an object file if the 
name cannot be retrieved. This occurs when: 

the string table cannot be found. 

not enoush memory can be aJlocated for the string table. 
the string table appears not to be a string table (e.g., if an auxiliary 
entry is banded to fdgetname that looks like a reference to a name 
in a non-existent string table). 

the name's offset into the string table is beyond the end of the 
striq table. 

Typically, fdgetname is called immediately after a successful call to ldthTead 
to retrieve the name associated with the symbol table entry filled by 
fdtbread 

The pro8J"am must be loaded with the object file access routine library 
llbld.a. 

SEE ALSO 
ldclose(JX), ldopen(JX), ldtbscek(3X), ldtbtead(JX), ldfen(4) . 

- I -



LDLREAD (JX) LDLREAD {JX) 

NAME 
ldlread, ldlinit, ldlitem - manipulate line number entries of a common 
object fl.le function 

SYNOPSIS 
#iodude <stdio.h> 
#loclude <fl.lehllr.h> 
#lndude <llnenum.h> 
#loclude <ldfcn.h> 

lot ldlread Udptr, fcnindx, linenum, linent> 
LD¥ILE •ldptr; 
loq fcnindx; 
unslt:ned short linenum; 
UNENO linent; 

lnl ldUnlt (ldptr, fcnindx) 
LDFILE •Jdptr; 
loq fcnindx; 

IDI ldUtem (ldptr, linenum, linent) 
LDFILE •ldptr; 
unsla;ned short linenum; 
UNENO linent; 

DESCRIPTION 
Ld/read searches the line number entries of the common object file 
currently associated with ldptr. Ldlread begins its search with the line 
number entry for the beginning of a function and confines its search to the 
line numbers associated with a single function. The function is identified 
by fcnindx, the index of its entry in the object file symbol table. Ldlread 
reads the entry with the smaUest line number equal to or greater than line· 
num into llnent. 

Ldlinit and ldlitem together perform exactly the same function as ldlread. 
After an initial caU to ldlread or ld/init, ldlitem may be used to retrieve a 
series of line number entries associated with a single function. Ldllnlt sim· 
ply locates the line number entries for the function identified by fcnindx. 
Ldlttem finds and reads the entry with the smallest line number equal to or 
greater than linenum into finent. 

Ldlread, /dlinit, and ldlitem each return either SUCCESS or FAILURE. 
Ldlread fails if there are no line number entries in the object file, if fcnindx 
does not index a function entry in the symbol table, or if it finds no line 
number equal to or greater than linenum. Ldlinit fails if there are no line 
number entries in the object file or if fcnindx does not index a function 
entry in the symbol table. Ldlltem fails if it finds no line number equal to 
or greater than /inenum. 

The programs must be loaded with the object file access routine library 
Ubld.a. 

SEE ALSO 
ldclose(JX), ldopen(JX), ldtbindex(3X), ldfcn(4) . 

. I . 



LDLSEEK(lX) LDLSEEK(lX) 

NAME 
ldlseek, ldnlseek - seek to line number entries of a section of a common 
object file 

SYNOPSIS 
#include <stdlo.h> 
#Include <BJehdr.h> 
#include <ldfcn.h> 

int ldlseek (ldptr, sectindx) 
LDFILE •Jdptr; 
unslaned short sectindx; 

inl ldnlseek (ldptr, sectname) 
LDFILE •Jdptr; 
char •sectname; 

DESCRIPTION 
Ld/seek seeks to the line number entries of the section specified by sect/mix 
of the common object file currently associated with ldptr. 

Ldnlseek seeks to the line number entries of the section specified by 
sectname. 

Ldlseek and ldnlseek return SUCCESS or F AlLURE. Ldlseek fails if sectindx 
is greater than the number of sections in the object file; fdnfseek fails if 
there is no section name corresponding to •sectname. Either function fails 
if the specified section has no line number entries or if it cannot seek to the 
specified line number entries. 

Note that the first section has an index of one. 

The program must De loaded with the object file access routine library 
llbld.a. 

SEE ALSO 
ldclose(JX), ldopen(3X), ldshread(3X), ldfcn(4) . 

. I . 



LDOHSEEK(JX) LDOHSEEK(lX) 

NAME 
ldohseek - seek to the optional file header of a common object file 

SYNOPSIS 
#Include <stdlo.b> 
#Include <Hiebdr.h> 
#include <ldfcn.b> 
lot ldobseek (ldptr) 
LDFILE •ldptr; 

DESCRIPTION 
Ldohseek seeks to the optional file header or the common object file 
currently associated with ldptr. 

Ldohseek returns SUCCESS or FAILURE. Ldohseek fails if the object file 
has no optional header or if it cannot seek to the optional header. 

The program must be loaded with the object file access routine library 
llbld.a. 

SEE ALSO 
ldclose(JX), ldopen(3X), ldfhread(JX), ld£cn(4). 

- I -



LDOPEN(lX) LDOPEN(lX) 

NAME 
ldopen, ldaopen - open a common object file for reading 

SYNOPSIS 
#include '< sldlo.h> 
#include <filehdr.h> 
#Include <Idfcn.h> 

LDFILE •ldopen (filename, Jdptr) 
char •filename; 
LDFILE •ldptr; 

LDFILE •ldaopen (filename, oldptr) 
char •filename; 
LDFILE •oldptr; 

DESCRIPTION 
Ldopen and /ck/ose(3X) are designed to provide uniform access to both 
simple object files and object files that are members of archive files. Thus, 
an archive of common object files can be processed as if it were a series of 
simple common object files. 

If /dptr has the vaJue NUll, ldopen opens filename, allocates and initializes 
the LDFILE structure, and returns a pointer to the structure to the calling 
program. 

If ldptr is valid and TYPE(/dptr) is the archive magic number, /dopen reini­
tializes the LDFILE structure for the next archive member of filename. 

Ldopen and /dc/ose are designed to work in concert. Ldt:lose returns 
FAILURE only when TYPE(/dptr) is the archive mq:ic number and there is 
another file in the archive to be processed. Only then should ldopen be 
called with the current value of ldptr. In an other cases, in particular when­
ever a new filename is opened, ldopen should be called with a NULL ldptr 
argument. 

The following is a prototype for the use of ldopen and lcklose. 

I• for each filename to be processed •I 
ldptr - NULL; 
do 

if ( (Jdptr'"" ldopen(filename,ldptr)) 1= NULL) 

I . 

I• check mq:ic number •/ 
I• process the file •/ 

) while (Jdclose(idptr) --FAILURE); 

If the vaJue of oldptr is not NULL, fdoopen opens filename anew and allo­
cates and initializes a new LDFILE structure, copying the TYPE, OFFSET, 
and HEADER fields from oldptr. Ldoopen returns a pointer to the new 
LDFJLE structure. This new pointer is independent of the old pointer, 
o/dptr. The two pointers may be used concurrently to read separate parts of 
the object file. For example, one pointer may be used to step sequentially 
through the relocation information, while the other is used to read indexed 
symbol table entries. 

- 1 -



LDOPEN(lX) LDOPEN(JX) 

Both /dopen and ldoopen open filename for reading. Both functions return 
NULL if filename cannot be opened or if memory for the LDFILE structure 
cannot be allocated. A successful open does not insure that the given file is 
a common object file or an archived object file. 

The program must be loaded with the object file access routine library 
llbld .•. 

SEE ALSO 
fopen(JS), ldclose(3X), ldfcn(4) . 

. 2. 



LDRSEEK(JX) LDRSEEK(JX) 

NAME 
ldrseek, ldnrseek - seek to relo-cation entries of a section of a common 
object file 

SYNOPSIS 
#Include <stdio.b> 
#Include <fllebdr.b> 
#Include <ldfcn.b> 
int ldrseek (idptr, sectindx) 
LDFILE •ldptr; 
unslr;ned short sectindx; 

int ldnrseek (ldptr, sectname) 
LDFILE •ldptr; 
char •sectname; 

DESCRIPTION 
Ldrseek seeks to the relocation entries of the section specified by sectlndx of 
the common object file currently associated with ldptr. 

Ldnrseek seeks to the relocation entries of the section specified by sectname. 

Ldrseek and ldnrseek return SUCCESS or FAILURE. Ldrseek fails if sectindx 
is greater than the number of sections in the object file; ldnrseek fails if 
there is no section name corresponding with sectname. Either function fails 
if the specified section has no relocation entries or if it cannot seek to the 
specified relocation entries. 

Note that the first section has an index of one. 
The program must be loaded with the object file access routine library 
libld.a. 

SEE ALSO 
ldclose(JX), ldopen(JX), ldshread(JX), ldfcn(4) . 

. I . 



LDSHREAD (lX) LDSHREAD(lX) 

NAME 
ldshread, ldnshread - read an indeKed/named section header of a common 
object file 

SYNOPSIS 
#include <stdio.h> 
#Include <lilehdr.h> 
#include <senhdr.h> 
#include <ldfen.h> 

inl ldshread Hdptr, sectindx, secthead) 
LDFILE •ldptr; 
unsigned short sectindx; 
SCNHDR •secthead; 

int ldnshread (ldptr, sectname, sectbead) 
LDFILE •ldptr; 
ehar •sectname; 
SCNHDR •secthead; 

DESCRIPTION 
Ld11hread reads the section header specified by sectindx of the common 
object file ~;:urrent!y associated with /dptr into the area of memory beginning 
at secthead. 

Ldnshread reads the section header specified by gectname into the area of 
memory beginning at secthead. 

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshread fails if 
sectindx is greater Ulan the number of sections in the object file; fdnshread 
fails if there is no section name corresponding with sectname. Either func­
tion fails if it cannot read the specified section header. 

Note that the first section header has an index of one. 

The program must be loaded with the object file access routine library 
libld.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), ldfcn(4) . 

. I . 



LDSSBBK ( JX) LDSSBBK(JX) 

NAME 
ldsseek, ldnsscek - seek to an indexed/named section of a common object .,, 

SYNOPSIS 
#Include <stdlo.b> 
#ln~lude <tllebdr.b> 
#ln~lude <ldf~n.b> 

int ldsseek (Idptr, sectindx) 
LDFILE •ldptr; 
unslr;ned short sectindx; 

int ldnsseek (Idptr, sectname) 
LDFILE •ldptr; 
~bar •sectname; 

DESCRIPTION 
Ldsseek seeks to the section specified by sectlndx of the common object file 
currently associated with /dptr. 
Ldnsseek seeks to the section specified by sectname. 
Ldsseek and ldnsseek return SUCCESS or FAILURE. Ldsseek fails if sectlndx 
is greater than the number of sections in the object file; ldnsseek fails if 
there is no section name corresponding with sectname. Either function fails 
if there is no section data for tbe specified section or if it cannot seek to the 
specified section. 

Note that the first section has an index of one. 
The program must be loaded with the object file access routine library 
Ubld.a. 

SEE ALSO 
ldclose(3X), ldopen(JX), ldshread(JX), ldfcn(4). 

- I -



LDTBINDEX(JX) LDTBINDEXOX) 

NAME 
ldtbindex - compute the index of a symbol table entry of a common object .,, 

SYNOPSIS 
#lnelude <stdio.h> 
#lnelude <lilehdr.h> 
#Include <syms.h> 
#include <ldfcn.h> 
long ldtbindex Udptr) 
LDFILE •ldptr; 

DESCRIPTION 
Ldtblndex returns the (lonr;) index of the symbol table entry at the current 
position of the common object file associated wilh ldptr. 

The index returned by ldtblndex may be used in subsequent calls to 
ldtbread(3X). However, since ldtbindex returns the index of the symbol 
table entry that begins at the current position of the object file, if ldtbindex 
is called immediately after a particular symbol table entry has been read, il 
returns the the index of the next entry. 

Ldtbindex fails if there are no symbols in the object file or if the object file 
is not positioned at the beginning of a symbol table entry. 

Note that the first symbol in the symbol table has an index of zero. 
The program must be loaded with the object file access routine library 
llbld.a. 

SEE ALSO 
ldclose(JX), ldopen(JX), ldtbread(3X), ldtbseek(3X), ldfcn(4). 

- I -



LDTBREAD (3X) LDTBREAD(3X) 

NAME 
ldtbread - read an indexed symbol table entry of a common object file 

( SYNOPSIS 

·---

#inelude <stdio.h> 
#include <Webdr.h> 
#include <syms.h> 
#include <ldfcn.b> 
tnt ldtbread (ldptr, symindex, symbol) 
LDFILE •ldptr; 
long symindex; 
SYMENT •symbol; 

DESCRIPTION 
Ldtbread reads the symbol table entry specified by symindex of the common 
object file currently associated with /dptr into the area of memory beginning 
at symlxJ/. · 

Ldtbread returns SUCCESS or fAILURE. Ldtbread fails if symindex is 
greater than the number of symbols in the object file or if it cannot read 
the specified symbol table entry. 

Note that the first symbol in the symbol table has an index of zero. 

The program must be loaded with the object file access routine library 
llbld.a. 

SEE ALSO 
ldclose(JX), ldgetname(JX), ldopen(JX), ldtbseek(JX), ldgetname(JX), 
ldfcn(4). 

- I -



LDTBSEEK(3X) LDTBSEEKOX) 

NAME 
ldtbseek - seek to the symbol table of a common obje~;t file 

SYNOPSIS 
#Include <stdlo.h> 
#include <fllebdr.b> 
#Include <ldfen.h> 

int ldtbseek Odptr) 
LDFILE •ldptr; 

DESCRIPTION 
Ldtbseek seeks to the symbol table of the object file currently associated 
with /dptr. 

LJtbseek returns SUCCESS or FAILURE. Ldtbseek fails if the symbol table 
has been stripped from the object file or if it cannot seek to the symbol 
table. 

The program must be loaded with the object file access routine library 
libld.a. 

SEE ALSO 
ldclose(JX), ldopen(JX), ldtbreadOX), ldfcn(4). 

- I -



LEN(JF) 

NAME 
len - return length of Fortran string 

SYNOPSIS 
tharacter•N ch 
integer i 

i = len(ch) 
DESCRIPTION 

Len returns the length of string ch . 

. I . 

LEN(JF) 



LOCKF(3C) LOCKF(3C) 

NAME 
· lock£ - recon:llocking on files 

SYNOPSIS 
# include <UDistd.b> 

loekf (flldes, function, size) long size; 
fnDctloo.; 

DESCRIPI10N 
The loclif call will allow sections of a file to be locked (advisory write locks; 
mandatory or enfoccement mode record locks are not currently available). 
Locking calls from other processes which attempt to lock the locked file section 
will either return an enor value or be put to sleep until the resource becomes 
unlocked All the locks for a process are removed when the process renninates. 
[Seefcntl(2) for more infonnation about record locking.] 

Fildes is an open file descriptor. The file descriptor must have 0_ WRONLY or 
0 _RDWR permission in order to establish lock with this function call. 

Function is a control value which specifies the action to be taken. The permissi­
ble values for [UII.ction are defined in cunistd.h> as follows: 

#define F_ULOCK 
#define F _LOCK 
#define F _1LOCK 
#define F _TEST 

0 
I 
2 
3 

/*Unlock a previously locked section*/ 
/* Lock a section for exclusive use *I 
!* Test and lock a section for exclusive use *I 
/* Test section for other processes locks *I 

All other values of/unction are reserved for future extensions and will result in 
an error return if not implemented. 

F _TEST is used to detect if a lock by another process is present on the specified 
section. F _LOCK and F _ 'ILOCK both lock a section of a file if the section is 
available. F _ ULOCK removes locks from a section of the file. 

Size is the number of contiguous bytes 10 be locked or unlocked. The resource 
to be locked starts at the current offset in the file and extends forward for a posi­
tive size and backward for a negative size. If size is zero, the section from the 
current offset through the largest file offset is locked (i.e., from the current 
offset through the present or any future end-of-file). An area need not be allo­
cated to the file in order to be locked. as such locks may exist past the end-of­
file. 

Pagel September 28, 1987 



LOCKF(3C) LOCKF(3C) 

The sections locked with F _LOCK or F _TI..OCK may, in whole or in part, con­
tain or be contained by a previously locked section for lbe same process. When 
this occurs. or if adjacent sections occur, abe sections are combined into a single 
section. If the request requires that a new element be added to the table of 
active locks and this table is already full, an error is returned, and the new sec­
tion is not locked. 

F _LOCK and F _TLOCK. requests differ only by the action taken if the resource 
is not available. F _LOCK will cause the calling process to sleep until the 
resomce is available. F _ TI..OCK win cause the function to return a -1 and set 
e"no to [EACCESJ eii'OI' if the section is already locked by another process. 

F_ULOCK requests may, in whole or in part, release one or more locked sec­
tions controlled by the process. When sections are not fully released, the 
remaining sections are still locked by the process. Releasing the center section 
of a locked section requires an additional element in the table of active locks. If 
this table is full, an [EDEADLK] error is retmned and the requested section is 
not released 

A JX)1eJUial for deadlock occurs if a process conuolling a locked resource is put 
to sleep by accessing another process's locked resomce. Thus calls to lock or 
fcntl scan for a deadlock prior to sleeping on a locked resource. An error return 
is made if sleeping on the locked resource woukl cause a deadlock. 

Sleeping on a resource is interrupted with any signal. The alarm(2) command 
may be used to provide a timeout facility in applications which require this 
facility. 

ERRORS 
The loclrf utility will fail if one or more of the following are &rue: 

[EBADF] Fildes is not a valid open descriptOr, 

[EACCES) Cmd is F_TLOCK or F_1EST and the section is already 

locked by """""" """"""" 
[EDEADLK] 

RETURN V ALUB 

Cmd is F _LOCK or F _'ILOCK and a deadlock would 
occur. Also the cmd is either of the above or F _ULOCK 
and the nmnber of entries in the lock table would exceed 
the number allocated on the system. 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 
is returned and emw is set to indicate the error. 

September 28, 1987 Page2 



LOCKF(3C) LOCKF(3C) 

CAVEATS 
Unexpected results may occur in processes that do buffering in the user address 
space. The process may later read/write data which is/was locked. The stan­
dard IJO package is the most common source of unexpected buffering. 

SBB ALSO 
close(2), creat(2), fcntl(2), intro(2), open(2), read(2), write(2). 

Page3 September 28, 1987 



,-
' 

LOG (3F) 

NAME 
log, a1og, dlog, clog - Fortran naturaJ!ogarithm intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 
complex cxl, cx2 

r2 - alol(rl) 
r2 - log(rl) 

dp2 - dlog(dpl) 
dp2 = log(dpO 

cx2 = elog(cxl) 
cx2 = log (ex 1) 

DESCRIPTION 

LOGUF} 

A/og returns the real natural logarithm of its real argument. Dfog returns 
the double-precision natural logarithm of its double-precision argument. 
Clog returns the complex logarithm of its complex argument. The generic 
function log becomes a ca11 to afog, d/og, or clog depending on the type of 
its argument. 

SEE ALSO 
exp(JM). 

- I -



LOGIO(JF) LOGIO(JF) 

NAME 
JoglO, aloglO, dloglO - Fortran common logarithm intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 

r2 = alot:HHrl) 
r2 • loglO(rl) 

dp2 = dloa;lO(dpl) 
dp2 • IoalO(dpl) 

DESCRIPTION 
AloglO returns the real common logarithm of its real argument. DloglO 
returns the double-precision common logarithm of its double-precision 
argument. The generic function loglO becomes a call to aloglO or dloglO 
dependins on the type of its argument. 

SEE ALSO 
exp(lM). 

. I . 



LOONAME(JX) 

NAME 
logname - return login name of user 

SYNOPSIS 
char •loaname( ) 

DESCRIPTION 

LOGNAME(JX) 

iAJgname returns a pointer to the null-terminated login name; it extracts the 
SLOGNAME variable from the user's environment. 

This routine is kept in /llb/llbPW .a. 

FILES 
/etc/profile 

SEE ALSO 

BUGS 

env(l), login (I), proftle(4), environ(S). 

The return values point to suitic -data whose content is overwritten by each 

""'· This method of determining a los in name is subject to forgery . 

. I . 



LSEARCH (3C) LSEARCH OC) 

NAME 
!search, !find - linear search and update 

SYNOPSIS 
#Include <stdio.h> 
#Include <search.h> 

char •!search ({char •)key, (char •)base, nelp, width, compar) 
unsigned •nelp, width; 
int (•comparH ); 

char •!find ((char •)key, (char •)base, nelp, width compar) 
unsigned •nelp, width; 
lot (•compar)( ); 

DESCRIPTION 

NOTES 

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm 
S. It returns a pointer into a table indicating where a datum may be found. 
If the datum does not occur, it is added at the end of the table. Key points 
to the datum to be sought in the table. Base points to the first element in 
the table. Nelp points to an integer containing the current number of ele­
ments in the table. The integer is incremented if the datum is added to the 
table. Width is the width of an element in bytes; sizeof (*key) should be 
used. Compar is the name of the comparison function which the user 
must supply (strcmp, for example). It is called with two arguments that 
point to the elements being compared. The function must return zero if 
the elements are equal and non-zero otherwise. 

l.Jind is the same as /search except that if the datum is not found, it is not 
added to the table. Instead, a -I pointer is returned. 

The pointers to the key and the element at the base of the table should be 
of type pointer-to-element, and cast to type pointer-to-character. 
The comparison function need not compare every byte, so arbitrary data 
may be contained in the elements in addition to the values being compared. 
Although declared as type pointer-to-character, the value returned should 
be cast into type pointer-to-element. 

EXAMPLE 
This fragment will read in ::;;; T ASSIZE strings of length ::;;; ELSIZE and store 
them in a table, eliminating duplicates. 

#include <stdio.h> 
#include <search.h> 

#define TABSIZE 50 
#define EL.SIZE 120 

char line[ELStZE], tab[TABSIZEl!ELSIZE], •!search( ); 
unsigned nel - 0; 
int strcmp( ); 

while (fgets0ine, ELSIZE, stdin) != NULL && 
nel < T ABSIZE) 

(void) lsearchUine, (char *)tab, &nel, 
ELSIZE, strcmp); 

- I -



LSEARCH (JC) LSEAR.CH(JC) 

SEE ALSO 
bsearchOC), hsearch(JC), tsearch(3C). 

DIAGNOSTICS 

BUGS 

If the searched for datum is found, both lsearth and (find return a pointer 
to it. Otherwise, /find returns NULL and fsearc:h returns a pointer to the 
newly added element. 

Undefined results can occur if there is not enough room in the table to add 
a new item. 

. 2. 



MALLOC(lC) MALLOC(lC) 

NAME 
malloc, free, realloc, calloc - main memory allocator 

SYNOPSIS 
char •malloc (size) 
unsiJned Size; 
Yoid free (ptr) 
char •ptr; 

char •realloc (ptr, size) 
char •ptr; 
unsigned size; 

char •calloc (nelem, elsize) 
unsigned nelem, elsize; 

dree (ptr, nelem, elsize) 
char *plr, 
unsigned nelem, elsize; 

DESCRIPTION 
Mafloc and free provide a simple general-purpose memory allocation pack­
age. Mal/oc returns a pointer to a block of at least size bytes suitably 
aligned for any use. 

The argument to free is a pointer to a block previously allocated by malloc; 
after free is performed this space is made available for further allocation, 
but its contents are left undisturbed. 

Undefined results occur if the space assigned by malloc is overrun or if 
some random number is handed to free. 
Ma//oc allocates the first contiguous reach of free space of sufficient size 
found in a circular search from the Iaiit block allocated or freed; it coalesces 
adjacent free blocks as it searches. It calls sbrk (see brk(2)) to get more 
memory from the system when there is no suitable space already free. 

Reaf/oc changes the size of the block pointed to by ptr to 1>ize bytes and 
returns a pointer to the (possibly moved) block. The contents are 
unchanged up to the lesser of the new and old sizes. If no free block of 
~>ize bytes is available in the storage arena, rea/Joe asks malfoc to enlarge the 
arena by size bytes and then moves the data to the new space. 

Reafloc also works if ptr points to a block freed since the last call of malloc, 
realloc, or calfoc; thus sequences of free, malloc, and real/oc can exploit the 
search strategy of mal/oc to do storage compaction. 

Calfoc allocates space for an array of nefem elements of size efsize. The 
space is initialized to zeros. 

The arguments to cfree are the pointer to a block previously allocated by 
caffoc plus the parameters to calfoc. 
Each of the allocation routines returns a pointer to space suitably aligned 
(after possible pointer coercion) for storage of any type of object. 

DIAGNOSTICS 
Malfoc, rea/Joe, and ca/foc return a NULL pointer if there is no available 
memory or if the arena has been delectably corrupted by storing outside the 
bounds of a block. When this happens the block pointed to by ptr may be 
destroyed. 

. I . 



r 

MALLOC(JC) MALLOC(JC) 

NOTE 
Search time increases when many objects have been aJlocated; i.e., if a pro­
sram allocates space but never frees it, each successive allocation takes 
longer. 

SEE ALSO 
brk(2), malloc(3X). For an alternate, more flexible implementation, see 
malloc(3X). 

- 2-



MALLOC(JX) MALLOC(3X) 

NAME 
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory alloca­
to• 

SYNOPSIS 
#Include <malloc.h> 

char •malloe (size) 
unsigned size; 

void free (ptr) 
ehar •ptr; 

ehar •reaUoe (ptr, size) 
char •ptr; 
unsigned size; 

ehar •calloe (nelem, elsize) 
unsigned nelem, elsize; 

lot mallopt (emd, value) 
lot cmd, Yalue; 

struet malliufo malllnfo (max) 
tnt max; 

DESCRIPTION 
Maffoc and free provide a simple general-purpose memory allocation pack­
age, which runs considerably faster than the maf/oc(3C) package. It is 
found in the library "malloc", and is loaded if the option "-Jmalloc" is 
used with cc(l) or fd(l). 

Maffoc returns a pointer to a block of at least size bytes suitably aligned for 
any use. 

The argument to free is a pointer to a block previously allocated by maffoc; 
after free is performed this space is made available for further allocation, 
and its contents have been destroyed (but see malfopt below for a way to 
change this behavior). 

Undefined results will occur if the space assigned by ma/foc is overrun or if 
some random number is handed to free. 

Reaffoc changes the size of the block pointed to by ptr to size bytes and 
returns a pointer to the (possibly moved) block. The contents will be 
unchanged up to the lesser of the new and old sizes. 

Calloc allocates space for an array of nelem elements of size e/size. The 
space is initialized to zeros. 

Maflopt provides for control over the allocation algorithm. The available 
values for cmd are; 

M_MXFAST 

M_NLBLKS 

M_GRAIN 

Set mtv;{asr to value. The algorithm allocates all blocks 
below the size of ma:!(/'ast in large groups and then doles 
them out very qui~kly. The default value for ma:!(/'astis 0. 

Set numlblks to value. The above mentioned "large 
groups" each contain numlblks blocks. Numlblks must be 
greater than 0. The default value for numlblks is 100. 

Set grain to value. The sizes of all blocks smaller than max· 
fast are considered to be rounded up to the nearest multiple 



,~ 

' 

MALLOC(JX) MALLOC(lX) 

of grain. Grain must be greater than 0. The default value 
of grain is the smaUest number of bytes which will allow 
alignment of any data type. Value will be rounded up to a 
multiple of the default when grain is set. 

M_KEEP Preserve data in a freed block until the next ma/foc, realloc, 
or ca/loc. This option is provided only for compatibility 
with the old version of ma/loc and is not recommended. 

These values are defined in the < malloc.h> header file. 

Mallopt may be caUed repeatedly, but may not be called after the first small 
block is allocated. 

Mallirifo provides 
structure: 

instrumentation describing space usage. It returns the 

struct mallinfo { 
int arena; 
int ordblks; 
int smblks; 
int hblkhd; 
int hblks; 
int usmblks; 
int fsmblks; 
int uordblks; 
int fordblks; 
int keepcost; 

r total space in arena "I 
I" number of ordinary blocks"/ 
r number of small blocks"/ 
r space in holding block headers ., 
I" number of holding blocks"/ 
r space in small blocks in use "/ 
I" space in free small blocks"/ 
r space in ordinary blocks in use "/ 
r space in free ordinary blocks., 
r space penalty if keep option., 
I" is used"/ 

This structure is defined in the <malloc.h> header file. 

Each of the aUocation routines returns a pointer to space suitably aligned 
(after possible pointer coercion) for storage of any type of object. 

SEE ALSO 
brk(2), malloc(JC). 

DIAGNOSTICS 
Malloc, reallot: and cafloc return a NULL pointer if there is not enough 
available memory. When reallot: returns NULL, the block pointed to by ptr 
is left intact. If mal/opt is called after any allocation or if cmd or value are 
invalid, non·zero is returned. Otherwise, it returns zero. 

WARNINGS 
This package usually uses more data space than malloc(lC). 
The code size is also bigger than maffoc(]C). 
Note that unlike ma/foc(JC), this package does not preserve the contents of 
a block when it is freed, unless the M KEEP option of maffopt is used. 
Undocumented features of mafloc(JC) have not been duplicated. 

- 2-



MATHERR(3M) MATHERR(lM) 

NAME 
matherr - error-handling function 

SYNOPSIS 
#include <mltb.b> 
int m•therr (:d 
struct ell:eeption •x; 

DESCRIPTION 
Matherr is invoked by functions in the Math Library when errors are 
detected. Users may define their own procedures for handling errors, by 
including a function named matherr in their programs. Motherr must be of 
the form described above. When an error occurs, a pointer to the excep­
tion structure x will be passed to the user-supplied motherr function. This 
structure, which is defined in the < moth.h> header file, is as follows: 

struct exception I 
int type; 
char •name; 

); 
double argl, arg2, retval; 

The element type is an integer describing the type of error that has 
occurred, from the following list of constants (defined in the header file): 

DOMAIN argument domain error 
SING argument singularity 
OVERFLOW overflow range error 
UNDERFLOW underflow range error 
TLOSS total Joss of significance 
PLOSS partial loss of significance 

The element name points to a string containing the name of the function 
that incurred the error. The variables argl and org] are the arguments 
with which the function was invoked. Retva/ is set to the default value that 
will be returned by the function unless the user's matherr sets it to a 
different value. 

If the user's matherr function returns non-zero, no error message will be 
printed, and errno will not be set. 
If matherr is not supplied by the user, the default error-handling pro­
cedures, described with the math functions involved, will be invoked upon 
error. These procedures are also summarized in the table below. In every 
case, errno is set to EDOM or ERANGE and the program continues. 

EXAMPLE 

Page 1 

#include < math.h> 

int 
matherr(x) 
register struct exception •x; 
I 

switch (x->type) ( 
(:115e DOMAIN: 

I• change sqrt to return sqn( -argl), not 0 •I 

Augustl9, 1985 



MATHERR(JM) MATHERR(3M) 

"" ''""" 
HESSll: 

y!l, yl, yn 1•1'11.:; OJ 

UP: 

LO{;, LOU llr. 

(arg < OJ 

1•1'11- OJ 

I'IJW: 

ne~ •• non-im 
n •• non-pos 

SQKT: 

UAMMA: 

IIYI~rf: 

51]1;11: 

UJ~II: 

51]1;, {'OS, 'IAr<: 

i\Mr<, ,\(l)$, ,\l',\!';2: 

• 
M 
H 

-H 
±H 

' 

Auaust 19, 1985 

if (!strcmp(x- >name, "sqrt')) { 
x- >ret val - sqrt( -x- >argl); 
return (0); r print message and set erroo •t 

case SING: 
I• all other domain or sing errors. print message and abort •/ 
fprintf(stderr, "domain error in %s\n', x- >name); 
abort(); 

case PLOSS: 
I• print detailed error message •/ 
fprintf(stderr, "loss of significance in %s(%g) = %g\n', 

x->name, x->argl, x->retval); 
return U); r lake no other action •t 

return (0); I• all other errors, execute_ default procedure •I 

DEfAULT ERROR HANDLING PROCEDURES 
Types of Errors 

DOMAIN SING OVERFLOW UNDERFLOW TLOSS 

EJJOM El}{)M lKANGl HANG[ ERM<l•l 

"·' M, " -

" ' -

M,-H - - - -
- M,-H - - -... ' -

M,O - - - -

M,O 

M,H H 

H 

±H 

H 

"·' M. 0 

ABBREVIATIONS 
As much as possible of the value is returned . 
Message is printed (EDOM error). 
HUGE is returned. 
-HUGE is returned. 
HUGE or -HUGE is retumed. 
0 is returned. 

PlOSS 

ERIINGE . 
-

-
-

-

. 

Page 2 



MAX(lF) MAX(lF) 

NAME 
max, maxO, amaxO, maxi, amaxl, dmaxl - Fortran maximum-value 
functions 

:SYNOPSIS 
lntqer i, j, k, I 
real a, b, c, d 
double ptel.':ision dpl, dp2, dp3 

I - max(i, j, k) 
c = max(a, b) 
dp - max(a, b, c) 
k - maxO(i, j) 
a = amaxO(i, j, k) 
i = maxi (a, b) 
d - amaxl (a, b, c) 
dp3 "" dmaxHdpl, dp2) 

DESCRIPTION 
The maximum-value functions return the largest of their arguments; there 
may be any number of arguments. Max is the generic form which can be 
used for all data types and takes its return type from that of its arguments. 
AU arguments must be of the same type. MaxO returns the integer fonn of 
the maximum value of its integer arguments; amaxO, the real form of its 
integer arguments; maxi, the integer form of its real arguments; amaxl, 
the real form of its real arguments; and dmaxl, the double-precision form 
of its double-precision arguments. 

SEE ALSO 
min(3F). 

. I . 



MCLOCKUF} 

NAME 
mcJock - return Fortran time accounting 

.f SYNOPSIS 
Integer i 
i .., mclock() 

DESCRIPTION 

MCLOCKUF) 

Mclock returns time accounting information about the current process and 
its child processes. The value returned is the sum or the current process's 
user time and the user and system times or all child processes. 

SEE ALSO 
times(2), clock(3C), system(3F). 

- 1 -



MEMORY(JC) MEMORY(JC) 

NAME 
memccpy, memchr, memcmp, memcpy, memset- memory operations 

SYNOPSIS 
#iaclade <memory.b> 

char •memcepy (sl, s2, c, n) 
char •sl, •s2; 
inl c, n; 

char •memchr (s, c, n) 
char •s; 
lnt c, n; 
lnt memernp (sl, s2, n) 
ehar •sl, •sl; 
tnt n; 
char •memepy (sl, sl, n) 
char •sl, •sl; 
tnt n; 

ebar •rnernsel (s, e, n) 
ebar •s; 
lot e, n; 

DESCRIPTION 

NOTE 

BUGS 

These functions operate efficiently on memory areas (arrays of charaeters 
bounded by a count, not terminated by a null character). They do not 
check for the overflow of any receivins memory area. 

Memccpy copies characters from memory area s2 into s!, stopping after the 
first occurrence of character c has been copied or after n characters have 
been copied, whichever comes first. It returns either a pointer to the char­
acter after the copy of c in sl or a NULL pointer if c was not found in the 
first n characters of s2. 
Memchr returns either a pointer to the first occurrence of character c in the 
first n characters of memory area s or a NULL pointer if c does not occur. 

Memcmp compares its arguments, looking at the first n characters only. It 
returns an integer less than, equal to, or greater than 0, depending on 
whether sl is lexicographically less than, equal to, or greater than s2. 
Memcpy copies n characters from memory area s2 to sl. It returns sl. 
Memset sets the first n characters in memory area s to the value of charac­
ter c. It returns s . 

For user convenience, all these functions are declared in the optional 
<memory .h > header file. 

Memcmp uses native character comparison. 

Because character movement is performed differently in different imple­
mentations, overlapping moves may yield unexpected results. 

- I -



r-
1 

MINUF} MIN (3F) 

NAME 
min, minO, aminO, mini, aminl, dminl - Fortran minimum-value func­
tions 

SYNOPSIS 
intecer i, j, k, I 
real a, b, c, d 
double precision dpl, dp2, dpJ 

I - mln<i, j, k) 
c = min(a, b) 
dp • mln(a, b, c) 
k - minO(i, j) 
a = aminO (i, j, k} 
i • mint (a, b) 
d "" aminl (a, b, c) 
dp) = dmlnl (dpl, dp2) 

DESCRIPTION 
The minimum-value functions return the mm1mum of their arguments. 
There may be any number of arguments. Min is tbe generic form which 
can be used for all data types. It takes its return type from that of its argu­
ments, which must aU be of the same type. MlnO returns the integer form 
of the minimum value of its integer arguments; aminO, the real form of its 
integer arguments; mini, the integer form of its real arguments; aminl, the 
real form of its real arsuments; and dmln I, the double-precision form of its 
double-precision arguments. 

SEE ALSO 
max(3F). 

- I -



MKTEMP(JC) 

NAME 
mktemp - make a unique filename 

SYNOPSIS 
char •mktemp (template) 
char •template; 

DESCRIPTION 

MKTEMP(JC) 

Mktemp replaces the contents of the string pointed to by template with a 
unique filename; it returna the address of template. The string in template 
should look like a filename with six trailing Xs; mktemp replaces the Xs 
with a letter and the current process 10. The letter is chosen so that the 
resulting name does not duplicate an existing file. 

SEE ALSO 
getpid(2), tmpfile(JS), tmpnam(JS). 

BUGS 
It is possible to run out of letters . 

. I . 



MOD(3F) MOD(3F) 

NAME 
mod, amod, dmod - Fortran remainderins intrinsic functions 

SYNOPSIS 
lntqer i, j, k 
real rl, r2, r3 
double precision dpl, dp2, dpl 
k • mod{i, j) 

r3 - amod(rl, r2) 
rl • mod(rl, r2) 

dp3 - dmod(dpl, dp2) 
dpl - mod(dpl, dp2) 

DESCRIPTION 
Mod returns the inteser remainder of its first argument divided by its 
second argument. Amod and dmod return, respectively, the real and 
double-precision whole number remainder of the integer division of their 
two arguments. The generic version mod returns the data type of its argu­
ments. 

. I . 



MONITORUC) MONITOR (3C) 

NAME 
monitor - prepare execution profile 

SYNOPSIS 
#inelude <mon.b> 

l'oid monitor Uowpc, bigbpc, buffer, bufsize, nfunc> 
lnt (•iowpc)( ), (•higbpc)( ); 
WORD •buffer; 
int bufsize, nfunc; 

DESCRiPTION 

FILES 

An executable program created by ce -p automatically includes calls for 
monitor with default parameters; monitor needn't be called explicitly except 
to gain fine control over profiling. 

Monitor is an interface to projif(2). Lowpc and highpc are the addresses of 
two functions; buffer is the address of a (user supplied) array of bufstze 
WORD (defined in the <mon.h> header file). Monitor arriUIJes to record a 
histogram in the buffer. This histogram shows periodically sampled values 
of the program counter and counts of calls of certain functions. The lowest 
address sampled is that of fowpc; the highest address is just below highpc. 
Wwpc may not equal 0 for this use of monitor. Njunc is the maximum 
number of call counts that can be kept; only calls of functions compiled 
with the profiling option - p of cc(l) are recorded. (The C Library and 
Math Library supplied when ce -p is used also have call counts recorded.) 
For the results to be significant, especially where there are small, heavily 
used routines, it is suggested that the buffer be no more than a few times 
smaller than the range of locations sampled. 

To profile the entire program, it is sufficient to use 

extern etext; 

monitor ((int (•)0)2, etext, buf, bufsize, nfunc); 

Etext lies just above aU the program text; see end(3C). 

To stop execution monitoring and write the results on the file mon.out, use 
monitor ((int (•)())0, 0, 0, 0, 0); 

Prqj{l) can then be used to examine the results. 

mon.out 
/lib/libp/libc.a 
/lib/libp/libm.a 

SEE ALSO 
cc(l), prof(I), profil(2), end{JC). 

- I -



NLISTOC} NLIST(JC) 

NAME 
nlist - get entries from name list 

( SYNOPSIS 
#inc:lude < a.out.h> 
lot nlist (filename, nO 
ch•r •filename; 
struet nllst nl 

DESCRIPTION 
Nlisl examines the name list in the executable file whose name is pointed to 
by filename; it selectively extracts a list of values and puts them in the array 
of nllsl structures pointed to by nJ. The name list nf consists of an array of 
structures containing names of variables, types, and values. The list is ter­
minated with a null name; i.e., a null string is in the name position of the 
structure. Each variable name is looked up in the name list of the file. If 
the name is found, the type a'nd value of the name are inserted in the next 
two fields. The type filed will be set to 0 unless the file was compiled with 
the -g option. If the name is not found, both entries are set to 0. See 
a.out(4) for a discussion of the symbol table structure. 

This function is useful for examining the system name list kept in the file 
/unix. In this way programs can obtain system addresses that are up to 
date. 

SEE ALSO 
.~ a.out(4). 

DIAGNOSTICS 
All value entries are set to 0 if the file cannot be read or if it does not con­
tain a valid name list. 

Nlist returns -I upon error; otherwise it returns 0 . 

. I . 



PERROR(3C) PERROR(3C) 

NAME 
perror, errno, sys_errlist, sys_nerr - system error messages 

SYNOPSIS 
void perror (s) 
char •s; 

extern iDt errno; 

extern char •sys_errllstl I; 

extern int sys_nerr; 

DESCRIPTiON 
Perror produces a message on the standard error output, describing the last 
error encountered during a call to a system or library function. The argu­
ment string s is printed first, then a colon and a blank, then the message 
and a new-line. To be of most use, the argument string should include the 
name of the program that incurred the error. The error number is taken 
from the external variable errno, which is set when errors occur but not 
cleared when non-erroneous calls are made. 
To simplify variant formatting of messases, the array of message strings 
sys errfist is provided; errno can be used as an index in this table to get the 
meSsage string without the new-line. Sys nerr is the largest message 
number provided for in the table; it should be checked because new error 
codes may be added to the system before they are added to the table. 

SEE ALSO 
intro(2). 

- 1 -



PLO'I'(lX} PLOT(lX} 

NAME 
plot - graphics interface subroutines 

,r- SYNOPSIS 
openpl 0 

erase 0 
label (s) 
char •s; 

line (xl, yl, x2, y2) 
lot xi, yl, x2, y2; 

circle (x, y, r} 
int x, y, r; 
arc (x, y, xO, yO, xi, yl) 
int x, y, xO, yO, xl, yl; 

move (x, y) 
lot x, y; 

coot (x, y) 
lot x, y; 

point (x, y) 
int x, y; 

linemod (s) 
char •s; 
space (xO, yO, xl, yl) 
lot xO, yO, xi, yl; 

closepl 0 

DESCRIPTION 

FILES 

These subroutines generate graphic output in a relatively device­
independent manner. Space must be used before any of these functions to 
declare the amount of space necessary; see p/ot(4). Openpf must be used 
before any of the others to open the device for writing. Closep/ flushes the 
output. 
Circle draws a circle of radius r with center at the point (x, y). 

Arc draws an arc of a circle with center at the point (x, y) between the 
points (xO, yO) and (xl, yl). 

String arguments to label and finemod are terminated by nulls and do not 
contain new-lines. 

See p/ot(4) for a description of the effect of the remaining functions. 

The library files listed below provide several variations of these routines. 

/usr/lib/libplot.a 
/usr/lib/libJOO.a 
/usr/lib/libJOOs.a 
/usr/lib/lib4SO.a 
I usr /lib/lib401 4.a 

produces output for tplot(IG) filters 
for DASI300 
for DASI JOOs 
for DASI 450 
for Tektronix 4014 

WARNINGS 
To compile a program containins these functions in .file.c, use cc./ile.c-lplot 

. I . 



PLOT(JX) PLOT(JX) 

To execute it, use a.out I tplot. 

The above routines use <stdlo.h>. Therefore, the size or programs not 
otherwise using standard 1/0 is increased more than might be expected. 

SEE ALSO 
tplot(IG), plot(4). 

. 2. 



POPEN()S) POPEN(JS) 

NAME 
popen, pclose - initiate pipe to/from a process 

SYNOPSIS 
#indude <stdio.b> 
FILE •popen (command, type) 
th•r •command, •type; 

lot pclose (stream) 
FILE •stream; 

DESCRIPTION 
The arguments to popen are pointers to null-terminated strings; one string 
contains a shell command line and the other contains an 110 mode. The 
mode may be either r for reading or w for writing. Popen creates a pipe 
between the calling program and the command to be executed. The value 
returned is a stream pointer. If the 1/0 mode is w, one can write to the 
standard input of the command by writing to the file stream; if the 110 
mode is r, one can read from the standard output of the command, by 
reading from the file stream. 

A stream opened by popen should be closed by pclose, which waits for the 
associated process to terminate and returns the exit status of the command. 
Because open files are shared, a type r command may be used as an input 
filter and a type w as an output filter. 

SEE ALSO 
pipe(2), wait(2), fclose(JS), fopen(JS), systemUS). 

DIAGNOSTICS 

BUGS 

Popen returns a NULL pointer if files or processes cannot be created or if 
the shell cannot be accessed. 

Pclose returns -I if stream is not associated with a command opened by 
popen. 

If the original processes and processes opened by popen concurrently read 
or write a common file, neither should use buffered 1/0, because the 
buffering gets all mixed up. Problems with an output filter may be fores­
talled by careful buffer flushing, e.g., by using jffush; see }Ciose(3S). 

If an illegal type is passed, popen will fork and exec the command line 
passed to it before it discovers that the type was illegal. This will result in a 
NULL pointer being returned and a broken pipe (with the command execut­
ing in the background). 

. I -



PRINTF(3S) PR.INTF(3S) 

NAME 
print!, fprintf, sprint!- print formatted output 

SYNOPSIS 
#Include <stdlo.h> 

lnt prlntf (format I , arg I .•. ) 
char •format; 

lnt fprlntf (stream, format I , arg I •.• J 
FILE •stream; 
char •format; 

int sprintf (s, format I , arg I ••• ) 
char •s, format; 

DESCRIPTION 
Prinif places output on the standard output stream stdout. Fprlnif places 
output on the named output stream. Sprinif places "output," followed by 
the null character (\ 0) in consecutive bytes starting at •s; it is the user's 
responsibility to ensure that enough storage is available. Each function 
returns the number of characters transmitted (not including the \ 0 in the 
case of sprint/), or a negative value if an output error was encountered. 

Each of these functions converts, formats, and prints its args under control 
of the format. The format is a character string that contains two types of 
objects: plain characters, which are simply copied to the output stream, and 
conversion specifications, each of which results in fetching zero or more 
args. The results are undefined if there are insufficient args for the format. 
If the format is exhausted while args remain, the excess args are simply 
ignored. 

Each conversion specification is introduced by the character %. After the 
%, the following appear in sequence: 

Zero or more flags, which modify the meaning of the conversion 
specification. 

An optional decimal digit string specifying a minimum field width. 
If the converted value bas fewer characters than the field width, it 
will be padded to the field width on the left (default) or rijht (if the 
left-adjustment flag '-' has been given); see below for flag 
specification. If the field width for an s conversion is preceded by a 
0, the string is right adjusted with zero padding on the left. 

A precision that gives the minimum number of dij:its to appear for 
the d, o, u, :r.:, or X conversions, the number of digits to appear 
after the decimal point for the e and f conversions, the maximum 
number of significant digits for the g conversion, or the maximum 
number of characters to be printed from a string in s conversion. 
The format of the precision is a period (.) followed by a decimal 
dijit string; a null digit string is treated as zero. 

An optional I (ell) specifying that a following d, o, u, x, or X 
conversion character applies to a long integer arg. An I before any 
other conversion character is ignored. 

A character that indicates the type of conversion to be applied. 

A field width or prC~;:ision may be indicated by an asterisk (•) instead of a 
digit string. In this case, an integer arg supplies the field width or 

- I -



'---

(~ 

PRINTF(JS) PRINTF(JS) 

preciSion. The arg that is actually converted is not fetched until the 
conversion letter is seen; therefore, the args specifying field width or preci­
sion must appear Wore the org (if any) to be converted. 

The flag characters and their meanings are: 

+ 

blank 

The result of the conversion wi11 be left-justified within the field. 

The result of a signed conversion will always begin with a sign 
(+or-). 

If the first character of a signed conversion is not a sign, a blank 
will be prefixed to the result. This implies that if the blank and 
+ flags both appear, the blank flag wiD be ignored. 

# This flag specifies that the value is to be converted to an "alter­
nate form." For e, d, s, and n conversions, the flag has no 
effect. For o conversion, it increases the precision to force the 
first digit of the result to be a zero. For x (X) conversion, a 
non-zero result wiD have Ox (OX) prefixed to it. For e, E, f, g, 
and G conversions, the result wi11 always contain a decimal 
point, even if no digits follow the point (normally, a decimal 
point appears in the result of these conversions only if a digit 
follows it). For 1 and G conversions, trailing zeroes will not be 
removed from the result (which they normally are). 

The conversion characters and their meaninss are: 

d,o,u,x,X The integer org is converted to signed decimal, unsigned octal, 
decimal, or hexadecimal notation (x and X), respectively; the 
letters abcdef are used for x conversion and the letters ABCDEF 
for X conversion. The precision specifies the minimum number 
of digits to appear; if the value being converted can be 
represented in fewer digits, it will be expanded with leading 
zeroes. (For compatibility with older versions, padding with 
leading zeroes may alternatively be specified by prepending a 
zero to the field width.) This does not imply an octal value for 
the field width. The default precision is I. The result of con­
verting a zero value with a precision of zero is a null string. 

f The float or double arg is converted to decimal notation in the 
style "(-]ddd.ddd", where the number of digits after the 
decimal point is equal to the precision specification. If the preci­
sion is missing, 6 digits are output; if the precision is explicitly 
0, no decimal point appears . 

••• The float or double arg is converted in the style 
"[ -ld.ddde± dd", where there is one digit before the decimal 
point and the number of digits after it is equal to the precision; 
when the precision is missing, 6 digits are produced; if the preci­
sion is zero, no decimal point appears. The E format code pro­
duces a number with E instead of e introducing the exponent. 
The exponent always contains at least two digits. 

- 2-



PRINTF(JS) 

g,G 

PRINTF(3S) 

The float or double arg is printed in style f or e (or in style E in 
the case of a G format code), with the precision specifying the 
number of significant digits. The style used depends on the 
value converted: style e is used only if the exponent resulting 
from the conversion is less than -4 or greater than the preci­
sion. Trailing zeroes are removed from the result; a decimal 
point appears only if it is followed by a digit. 

c The character arg is printed. 

s The arg is taken to be a string (character pointer) and characters 
from the string are printed until a null character (\ 0) is encoun­
tered or the number of characters indicated by the precision 
specification is reached. If the precision is missing, it is taken to 
be infinite, so all characters up to the first null character are 
printed. A NULL value for arg yields undefined results. 

% Print a %; no argument is converted. 

In no case does a non-existent or small field width cause truncation of a 
field; if the result of a conversion is wider than the field width, the field is 
simply expanded to contain the conversion result. Characters generated by 
prlnif and fprlnif are printed as if putc(3S) bad been called. 

EXAMPLES 
To print a date and time in the form "Sunday, July 3, 10:02", where week­
day and month are pointers to null-terminated strings: 

printf(•%s, %s 'i4d, %.Zd:%.Zd•, weekday, month, day, hour, min); 

To print pi to 5 decimal places: 

prlnlf("pl • %.5f", 4•atan(t.O)); 

SEE ALSO 
ecvt(JC), putc(JS), scanf(JS), stdio(JS). 

- 3 -



PUTC(3S) PUTC OS) 

NAME 
putc, putchar, fputc, putw - put character or word on a stream 

( SYNOPSIS 

~ 

I 

#Include <sldio.h> 

int putt (c, stream) 
int c; 
FILE •stream; 

int putdln (c) 
int c; 

int fpute (c, stream) 
lot c; 
FILE •stream; 
int putw (w, stream) 
lot w; 
FILE •stream; 

DESCRIPTION 
Putc writes the character c onto the output Mream at the position where the 
file pointer, if defined, is pointing. Putchar(c) is defined as putc(c. stdout). 
Putc and putchar are macros. 

Fputc behaves like putc, but is a function rather than a macro. Fputc runs 
more slowly than pure, but it takes less space per invocation and its name 
can be passed as an argument to a function. 

Putw writes the word (32-bit integer on the 68000) w to the output stream 
at the position at which the file pointer, if defined, is pointing. Putw nei­
ther assumes nor causes special alignment in the file. 

Output streams, with the exception of the standard error stream stderr, arc 
by default buffered if the output refers to a file and line-buffered if the out­
put refers to a terminal. The standard error output stream stderr is by 
default unbuffered, but use of freopen(see fopen(JS)) causes it to become 
buffered or line-buffered. When an output stream is unbuffered informa­
tion, it is queued for writing on the destination file or terminal as soon as 
written; when it is buffered, many characters are saved up and written as a 
block; when it is line-buffered, each line of output is queued for writing on 
the destination terminal as soon as the line is completed (i.e., as soon as a 
new-line character is written or terminal input is requested). Setbiif(JS) 
may be used to change the stream's buffering strategy. 

SEE ALSO 
fclose(JS), ferror(JS), fopen(JS), fread(JS), printf(JS), puts(JS), 
setbuf(JS). 

DIAGNOSTICS 

BUGS 

On success, these functions each return the value they have written. On 
failure, they return the constant EOF. This occurs if the file stream is not 
open for writing or if the output file cannot be grown. Because EOF is a 
valid integer, jerror(JS) should be used to detect putw errors. 

Because it is implemented as a macro, putc treats incorrectly a stream argu­
ment with side effects. In particular, putdc, •f+ + ); doesn't work sensi­
bly. Fputc should be used instead. 

- I -



PUTC (]S) PUTC(JS) 

Because of possible differences in word length and byte ordering, files writ­
ten using pulw are machine-dependent and may not be read using getw on a 
different processor. 

• 2 • 



PUTENV(JC) PUTENV(JC) 

NAME 
putenv - change or add value to environment 

,f' SYNOPSIS 
lnt putenl' (strlna) 
eh•r •string; 

DESCRIPTION 
String points to a string of the form "name- value." Putenv makes the 
value of the environment variable name equal to value by altering an exist­
ing variable or creating a new one. In either case, the string pointed to by 
string becomes part of the environment, so altering the string wi11 change 
the environment. Tbe space used by string is no longer used once a new 
string-defining name is passed to putenv. 

DIAGNOSTICS 
Putenv returns non-zero if it was unable to obtain enough space via malloc 
for an expanded environment, otherwise zero. 

SEE ALSO 
exec(2), getenv(JC), malloc(JC), environ(S). 

WARNINGS 
Putenv manipulates the environment pointed to by environ, and can be used 
in conjunction with getenv. However, envp (the third argument to main) is 
not changed. 
This routine uses malloc(3C) to enlarge the environment. 
After putenv is called, environmental variables are not in alphabetical order. 
A potential error is to call putenv with an automatic variable as the argu­
ment, then exit the calling function while string is still part of the environ­
ment. 

- I -



PUTPWENT ( 3C) 

NAME 
putpwent - write password file entry 

SYNOPSIS 
#Include <pwd.b> 
int putpwent (p, 0 
struct passwd •p; 
FILE •f; 

DESCRIPTION 

PUTPWENT ( 3C ) 

Putpwent is the inverse of getpwent(JC). Given a pointer to a passwd struc· 
ture created by getpwent (or getpwuid or getpwnam), putpwuid writes a line 
on the stream fwhich matches the format of /ete/passwd. 

The <pwd.b> header file is described in getpwent(3C). 

SEE ALSO 
getpwent(JC). 

DIAGNOSTICS 
Putpwent returns non·zero if an error was detected during its operation; 
otherwise it returns zero. 

SEE ALSO 
getpwentOC). 

WARNING 
The above routine uses < stdlo.h>. Therefore, the size of programs not 
otherwise using standard 1/0 is increased more than might be expected. 

- I -



PUTS (3S) PUTS (3S) 

NAME 
puts, fputs - put a string on a stream 

SYNOPSIS 
#Include <stdio.b> 
int puts (s) 
char •s; 

lnt fputs (s, stream) 
char •s; 
FILE •stream; 

DESCRIPTION 
Puts writes the null-terminated string pointed to by s, followed by a new· 
line character, to the standard output stream stdout. 
Fputs writes the null-terminated string pointed to by s to the named output 
stream. 
Neither function writes the terminating null character. 

SEE ALSO 
ferror(3S), fopen(]S), fread(JS), printf(JS), putc(3S). 

DIAGNOSTICS 

NOTES 

Both routines return EOF on error. This occurs if the routines try to write 
on a file that has not been opened for writing. 

Puts appends a new-line character while !Puts does not. 

- I -



QSORT(JC) QSORT(lC) 

NAME 
qsort - quicker sort 

SYNOPSIS 
void qsort ((char •) base, nel, width, compar) 
unsigned nel, width; 
lot ( •compar )( ) ; 

DESCRIPTION 

NOTES 

Q$ort is an implementation of the quicker-sort algorithm. It sorts a table of 
data in place. 

Ba$e points to the element at the base of the table. Nel is the number of 
elements in the table. Width is the width of an element in bytes; $izeo/ 
(base) should be used. Compar is the name of the comparison function, 
which is called with two arguments that point to the elements being com­
pared. The function must return an integer less than, equal to, or greater 
than zero according as the first argument is to be considered leas than, 
equal to, or greater than the second. 

The pointer to the base of the table should be of type pointer-to-element, 
and cast to type pointer-to-character. 
The comparison function need not compare every byte, so arbitrary data 
may be contained in the elements in addition to the values being compared. 
The order in the output of the two items which compare as equal is 
unpredictable. 

EXAMPLE 

SEE ALSO 

struct entry { , . ., •name; 
flags; int 

); 

mainO 
I 

struct entry hp[IOO]; 
int entcmpO; 
int i, count; 
for (i- 0; i <(count- 100); i++) { 

I• fill the structure with the name and flags •/ 

I 
qsort( (char •) hp, count, sizeof (hp(OJ), entcmp); 

entcmp(ep,ep2) 
struct entry •ep, •ep2; 
I 

return (strcmp(ep->name, ep2->name)); 

will sort a set of names with associated flags in ASCII order. 

sort(!), bsearch(JC), lsearch(JC), string(JC). 

- I -



JlAND(JC) JlAND(JC} 

NAME 
rand, srand - simple random-number generator 

( SYNOPSIS 
tnt rand ( ) 

l'Oid srand (seed) 
UDSIIDed seed; 

DESCRIPTION 

NOTE 

Rand u~ a multiplicative congruential random-number geaerator with 
period 2 f!utt returns successive pseudo-random numbers in the range 
from0to2 -1. 

Srand can be called at any time to reset the random-number generator to a 
random starting point. Tbe generator is initially seeded with a value of 1. 

The spectral properties of rand leave a sreat deal to be desired. 
Drand48(3C) provides a much better, though more elaborate, random­
number generator. 

SEE ALSO 
drand48(3C). 



R.AND(3F) RAND(3F) 

NAME 
irand, srand, rand - Fortran uniform random-number generator 

SYNOPSIS 
all srand (iseed) 

I • lrandO 
x • rand( ) 

DESCRIPTION 
/rand generates successive pseudo-random numbers in the range from 0 to 
2**15-1. Rand generates pseudo-random numbers distributed in (0, 1.0). 
Srand uses its integer argument to rc-initiaJize the seed for successive invo­
cations of irand and rand. 

SEE ALSO 
rand(3C). 

- I -



( 
' 

RCMDON) UniSoft RCMD(3N) 

NAME 
rcmd, rresvport, ruserok - routines for returning a stream to a remote 
command 

SYNOPSIS 
rem • remd(ahost, lnport, locuser, remuser, emd, fd2p); 
char **ahost; 
u_short inporl; 
char *locuser, •remuser, *emd; 
tnt *fd2p; 

s ,.. rresl'port(port); 
int *port; 

ruserok <rhost, superuser, ruser, luser}; 
char *rhost; 
int superuser; 
char *ntser, *luser; 

«' ••• -lnet 

DESCRIPTION 

Page I 

Rcmd is a routine used by the super-user to execute a command on a 
remote machine using an authentication scheme based on reserved port 
numbers. Rres~110rt is a routine which returns a descriptor to a socket with 
an address in the privileged port space. Ruserok is a routine used by 
servers to authenticate clients requesting service with rcmtf. All three func­
tions are present in the same file and are used by the remshd{8N) server 
(among others). 

Rmrd looks up the host *a host using swthostem(JN), returning -1 if the 
host does not exist. Otherwise *alwst is set to the standard name of the 
host and a connection is established to a server residing at the well-known 
Internet port inporl. 

If the call succeeds, a socket of type SOCK STREAM is returned to the 
caller, and given to the remote command aS stdln and stdout. If jil2p is 
non-zero, then an auxiliary channel to a control process will be set up, and 
a descriptor for it will be placed in ''.fd2p. The control process will return 
diagnostic output from the command {unit 2) on this channel, and will also 
accept bytes on this channel as being UNIX signal numbers, to be for­
warded to the process group of the command. If jil2p is 0, then the stderr 
(unit 2 of the remote command) will be made the same as the stdout and 
no provision is made for sending arbitrary signals to the remote process, 
although you may be able to get its attention by using out-of-band data. 

The protocol is described in detail in rem.IIIJ(SN). 
The m•n•pofl routine is used to obtain a socket with a privileged address 
bound to it. Tli:is socket is suitable for use by rcmd and several other rou­
tines. Privileged addresses consist of a port in the range 0 to 1023. Only 
the super-user is allowed to bind an address of this sort to a socket. 

Ruseruk takes a remote host's name, as returned by a b-ethosteni(3N) rou­
tine, two user names and a flag indicating if the local user's name is the 
super-user. It then checks the files l!'ldlwsll.!'qUil' and, possibly, .r/wsls in 
the current working directory {normally the local user's home directory) to 

July 22, 1985 



RCMDON) UniSoft RCMD(3N) 

see if the request for service is allowed. A I is returned if the machine 
name is listed in the "hosts.equiv" file, or the host and remote user name 
are found in the ".rhosts" file; otherwise ruserok returns 0. If the :;uperuser 
flag is I, the checking of the "host.equiv" file is bypassed. 

LINKING 
This library is accessed by specifying -!net as the last argument to the 
compile line, e.g.: 

cc - o proe prog.e -lnct 

SEE ALSO 
rloginON), remsh(lN), rexec(JN), rexecd(8N), rlogind(SN), remshd(SN) 

BUGS 
There is no way to specify options to the socket call which rcmd makes. 

July 22, 1985 Page 2 



r-­
' 

READV(3N) UniSoft READV(3N) 

NAME 
readv - read from file 

SYNOPSIS 
#indulle <sys/types.h> 
#include <sys/ulo.b> 

cc • ready(d,iol',lonnd 
lnt ce, d; 
strtn:t ion1c *lov; 
lnt lonnt; 

DESCRIPTION 

Page I 

Fildes is a file descriptor obtained from a creal, open, dup, .fCntl, pipe, or 
socket system call. 

Readv attempts to read nbyte bytes from the file associated with ji/tfes and 
scatters the input data into the iow:m bulfers specified by the members of 
the iovec array: iov(O], iovUl, ...• iov(iovcnt -1]. 

The iol'f'(" structure is defined as: 

struct iovec { 
caddr_t iov _base; 
int iov _len; 

Each io~ec entry specifies the base address and lengtll or an area in memory 
where data should be placed. Readv will always fill an area completely 
Defore proceedifti to the next. 

On devices capable of seekifti, the read•• starts at a position in the file given 
by the file pointer associated with .fildes. Upon return from readv, the file 
pointer is incremented by the number of bytes actually read. 

Devices that are incapable or seeking always read from the current position. 
The value of a file pointer associated with such a file is undefined. 

Upon successful completion, readv returns the number or bytes actually 
read and placed in the buffer; this number may be less than nby1e if the file 
is assa<:iated with a communication line (see ioct/(2), SOi"ket(2N), and ter­
mio(1)), or if the number of bytes left in the file is less than 11byt" bytes. 
A value of 0 is returned when an end·of·file has been reached. 
When attempting to read from an empty pipe (or FIFO): 

lfO_NDELAY is set, the read will return a 0. 

lfO_NDELAY is clear, the read will block until data is written to the 
file or the file is no longer open for writing. 

When attempting to read a file assa<:iated with a tty that has no data 
currently available: 

Ir O_NDELAY is set, the read will return a 0. 

Ir o NDELAY is clear, the read will block until data becomes avail· 
able~ 

July 26, 1985 



READV{3N) UniSort READV{3N) 

Read1• will fail if one or more of the following are true: 

[EBADFI Fildes is not a valid file descriptor open for reading. 

[EFAULT] 

[EINTR] 

Buf points outside the allocated address space. 

A signal was caught during the /W1d system calL 

In addition, readv may return one of the following errors: 

(EINVAL] Jovt11twas less than or equal to 0, or greater than 16. 

IEINVAL] 

IEJNVAL] 

One of the iol"_lell values in the io1•array was negative. 

The sum of the iov le11 values in the iov array overflowed a 
32-bil integer. -

RETURN VALUE 
Upon successful completion a non-negative integer is returned indicating 
the number of bytes actually read. Otherwise, a -I is returned and ermo 
is set to indicate the error. 

SEE ALSO 
creat(2), fcntl<2), ioctl(2), open(2), "ipe(2), socket(2N). 
termio(7) in the Admi11istrator Reji!rence Manual. 

July 26, 1985 Page 2 



'·--

REGCMPUX} RBGCMP(JX} 

JrfAMB 
regcmp, regex - compile and execute a regular expression 

SYNOPSIS 
char •retcmp(stringl I, string2, ... 1, (char •JO)} 
char •string!, •stringl, ••• ; 

char •regex(re, subject!, retO, •• .)} 
char •re, •subject, •retO, ••• ; 

extern char •Joel; 

DESCRIPTION 
Regcmp compiles a regular expression and returns a pointer to the compiled 
form. Ma/foc(3C) is used to create space for the vector. It is the user's 
responsibility to free unneeded space that has been allocated by malloc. A 
NULL return from regcmp indicates an incorrect argument. Regcmp(l) has 
been written to generally preclude the need for this routine at execution 
time. 

Regex executes a compiled pattern against the subject string. Additional 
arguments are passed to receive values back. Regex returns NULL on 
failure or a pointer to the next unmatched character on !lllccess. A global 
character pointer foe 1 points to where the match began. Regcmp and regex 
were mostly borrowed from the editor, ed(l); however, .the syntax and 
semantics have been changed slightly. The following are the valid symbols 
and their associated meanings. 

II*.~ These symbols retain their current meaning. 

$ This symbol matches the end of the.string; \n matches the new­
line. 
Within brackets the minus means "through". For example, la-zl 
is equivalent to (abed .•. xyz). The - can appear as itself only if 
used as the last or first character. For example, the character 
class expression II- I matches the characters I and -. 

+ A regular expression followed by + means "one or more times•. 

{m) {m,} 
For example; I0-9)+ is equivalent to I0-9110-91•. 

{m,u} Integer values enclosed in I} indicate the number of times 
the preceding regular expression is to be applied. The minimum 
number is m and the maximum number is u, which must be less 
than 256. If only m is present (e.g., (m)J, it indicates the exact 
number of times the r~ular expression is to be applied. {m,} is 
analogous to {m,inflnlty), The plus ( +) and star (•) operations 
are equivalent to (1,) and (0,}, respectively. 

( , , , )$n The value of the enclosed regular expression is to be returned. 
The value will be stored in the (n + Vth argument following the 
subject argumenl At present. at most 10 enclosed regular 
expressions are allowed. Regex makes its assignments uncondi­
tionally. 

( ... ) Parentheses are used for grouping. An operator (e.g., •, +, {)) 
can work on a single character or a regular expression enclosed in 
parentheses. For example, (a•(cb+ )•)$0 . 

. I . 



REGCMP(3X} REOCMP(JX) 

By necessity, all the above defined symbols are special. They must, there­
fore, be escaped to be used as themselves. 

EXAMPLES 
Example 1: 

char •cursor, •newcursor, •ptr; 

newcursor- regex((ptr- regcmp("'\n", 0)), cursor); 
free(ptr); 

This example will match a leading new-line in the subject string pointed at 
by cursor. 

Example 2: 
char ret0(9); 
char •newcursor, •name; 

name- regcmp("([A-Za-zliA-za-z0-9 H0,7))SO", 0); 
newcursor = regex(name, "123Testing321", retO); 

This example will match through the string "Testing3" and wiD return the 
address of the character after the last matched character (cursor+ II). The 
string ''Testing)" will be copied to the character array retO. 

Example 3: 
#include "file.i" 
char •string, •newcursor; 

newcursor - regex(name, string); 

This example applies a precompiled regular expression in llle.i (see 
regcmp(l)} against string. 

This routine is kept in /Ub/llbPW.a. 

SEE ALSO 

BUGS 

ed(l), regcmp(l), malloc(3C). 

The user propam may run out of memory if regcmp is called iteratively 
without freeing the vectors no longer required. The foUowing user-supplied 
replacement for mo//oc(3C) reuses the same vector, saving time and space: 

I• user's program •/ 

char • 
malloc(n) 
unsigned n; 
I 

static char rebuf[Sl2); 
return (n < = sizeof rebuO ? rebuf : NULL; 

- 2-



-----

REXEC(JN) UoiSoft REXEC(JN) 

NAME 
rexec - return stream to a remote command 

SYNOPSIS 
rem "" rexee(ahost, inport, user, passwd, emd, fd2p); 
char ••ahost; 
u short lnport; 
char •user, •passwd, *cmd; 
int *fdlp; 
ce •.• -!net 

DESCRIPTION 
Rexer looks up the host *ahost using gethostent(3N), returning -I if the 
host does not exist. Otherwise "'ahost is set to the standard name of the 
host. If a username and password are both specified, then these are used 
to authenticate to the foreisn host; otherwise the environment and then the 
user's .netrc file in his home directory are searched for appropriate informa· 
tion. If all this fails, the user is prompted for the information. 
The port inporl specifies which well-known OARP A Internet port to use for 
the connection; it will normally be the value returned from the call 
"getservbyname("exec", "tcp")" (see gelserwnt(3N)). The protocol for 
connection is described in detail in rexecd(8N). 

If the call succeeds, a socket of type SOCK STREAM is returned to the 
caller, and given to the remote command ai stdin and stdoot. If }dlp is 
non-zero, then a auxiliary channel to a control process will be setup, and a 
descriptor for it will be placed in •fdlp. The control process will return 
diagnostic output from the command (unit 2) on this channel, and will also 
accept bytes on this channel as being UNIX signal numbers, to be for· 
warded to the process group of the command. If jdlp is 0, then the stden 
(unit 2 of the remote command) will be made the same as the stdout and 
no provision is made for sending arbitrary sis;nals to the remote process, 
although you may be able to get its attention by using out-of-band data. 

LINKING 
This library is accessed by specifying -!net as the last argument to the 
compile line, e.g.: 

«" - o prog prog.e -!net 

SEE ALSO 
rcmd(3N), rexecd(SN) 

BUGS 
There is no way to specify options to the sucker call which rexec makes. 

Page I July 22, 1985 



R.OUND(3F} llOUND (3F) 

NAME 
anint, dnint, nint, idnint - Fortran nearest integer functions 

SYNOPSIS 
Integer i 
real rl, r2 
double precision dpl, dp2 

r2 = anlnt<rD 
i - nlnl(rl) 
dp2 = anlnt<dpll 
dp2 • dnlnt(dpl) 

i • nlnt(dpl) 
i = idnint<dpl} 

DESCRIPTION 
A.nlnt returns the nearest whole real number to its real argument (i.e., 
int(a+O.S) if a ;;.. 0, int(a-0.5) otherwise). Dnint docs the same for its 
double-precision argument. Nlnt returns the nearest integer to its real 
argument. ldnint is the double-precision version. Anini is the generic form 
of anint and dntnt, performin& the same operation and returning the data 
type of its argument. Nint is also the generic form of ldnlnt . 

. I . 



SCANF(JS) SCANF(JS) 

NAME 
scanf, fscanf, sscanf - convert formatted input 

SYNOPSIS 
#Include <stdlo.h> 
int seanf (format I , pointer I ... ) 
ehar •format; 

int fseaof (stream, format I , pointer I ... ) 
FILE •stream; 
ehar •format; 
lnt sseanf (s, format I , pointer I ••. ) 
ehar •s, •format; 

DESCRIPTION 

Page I 

Scan.f reads from the standard input stream stdi11. Fscut!f reads from the 
named input strrom. Ssconf teads from the eharacter string s. Each func­
tion reads characters, interprets them according to }Ormor, and stores the 
results in its arguments. Each function expects two arguments: a control 
string .fOrmat (described below) and a set of J1Qillla arguments indicating 
where the converted input should be stored. 

The control string usually contains conversion specifications, which are 
used to direct interpretation of input sequences. The control string may 
contain: 
I. White-space characters (blanks and tabs) which, except in two cases 

described below, cause input to be read up to the next non-white-space 
character. 

2. An ordinary character (not%), which must match the next character of 
the input stream. 

3. Conversion specifications, consisting of the character %, an optional 
assignment suppression character •, an optional numerical maximum 
field width, an optional I (ell) or h indicating the size of the receiving 
variable, and a conversion code. 

A conversion specification directs the conversion or the next input field; 
the result is placed in the variable pointed to by the corresponding argu­
ment, unless assignment suppression has been indicated by •. The 
suppression of assignment provides a way of describing an input field which 
is to be skipped. An input field is defined as a string of non-white-space 
characters; it extends to the next inappropriate character or until the field 
width, if specified, is exhausted. For all descriptors except"(" and "c", 
white space leading an input field is ignored. 

The conversion code indicates the interpretation of the input field; the 
corresponding pointer argument must usually be of a restricted type. For a 
suppressed field, no pointer argument should be given. The following 
conversion codes are legal: 
% A single % is expected in the input at this point; no assignment is 

done. 
d A decimal integer is expected; the corresponding argument should 

be an integer pointer. 

July 22, 1985 



SCANF(]S) SCANF(JS) 

u An unsigned decimal integer is expected; the corresponding argu­
ment should be an unsigned integer pointer. 

o An octal integer is expected; the corresponding argument should be 
an integer pointer. 

x A hexadecimal integer is expected; the corresponding argument 
should be an integer pointer. 

e,f,g A floating point number is expected; the next field is converted 
accordingly and stored through the corresponding argument, which 
should be a pointer to a .float. The input format for floating point 
numbers is an optionally signed string of digits, possibly containing 
a decimal point, followed by an optional exponent field consisting 
of an E or an e, followed by an optional+,-, or space followed by 
an integer. 

s A character string is expected; the corresponding argument should 
be a character pointer to an array of characters large enough to 
accept the string and a terminating \0, which will be added 
automatically. The input field is terminated by a white-space char­
acter. 

c A character is expected; the corresponding argument should be a 
character pointer. The normal skip over white space is suppressed 
in this case; to read the next non-space character, use '!Ills. If a 
field width is given, the corresponding argument should refer to a 
character array; the indicated number of characters is read. 
String data and the normal skip over leading white space is 
suppressed. The left bracket is followed by a set of characters (the 
si·anst't) and a right bracket; the input field is the maximal sequence 
of input characters consisting entirely of characters in the ~canset. 
The circumflex, ("), when it appears as the first character in the 
.~canst'!, serves as a complement operator and redefines the .n·an~et 

as the set of all characters not contained in the remainder of the 
smi/Set string. There are some conventions used in the construc­
tion of the smnsi'l. A range of characters may be represented by 
the construct .first-laM; thus, 1012345417891 may be expressed I0-91. 
Using this convention, _first must be lexically less than or equal to 
fast, or else the dash will stand for itself. The dash will also stand 
for itself whenever it is the first or the last character in the snwset. 
To include the right square bracket as an element of the .Km1.1et, it 
must appear as the first character (possibly preceded by a 
circumflex) of the .n·ansi'/:, otherwise it will be interpreted syntacti­
cally as the closing bracket. The corresponding argument must 
point to a character array large enough to hold the data field and 
the terminating \0, which will be added automatically. At least one 
character must match for this conversion to be considered success­
fuL 

The conversion characters d, u, o, and x may be preceded by I or h to indi­
cate that a pointer to long or short, rather than lnt, is in the argument list. 
Similarly, the conversion characters e, f, and g may be preceded by I to 
indicate that a pointer to double, rather than Boat, is in the argument Jist. 

The I or h modifier is ignored for other conversion characters. Smt!f 
conversion terminates at EOF, at the end of the control string, or when an 

July 22, 1985 Page 2 



SCANF(3S} SCANF(3S} 

input character conflicts with the control string. In the latter case, the 
offending character is left unread in the input stream. 

Scan)" returns the number of successfully matched and assigned input 
items; this number can be zero when an early conflict between an input 
character and the control string occurs. If the input ends before the first 
conflict or conversion, EOF is returned. 

EXAMPLES 
The call 

int i; n; float x; ehar namei50I; 
n - scanf (•%d%f%s•, &1, Ax, name); 

with the input line 
25 S4.32E-1 thompson 

will assign the value 3 to n, the value 25 to i, and the value 5.432 to x; 
name will contain lhompson\0. 

The call 
lnt I; Boat x; char namel501; 
(void} seanf (•%2d.%1%ood %10-91•, AI, &x, name}; 

with input 

56789 0123 56a72 
will assign 56 to I, 789.0 to x, skip 0123, and place the string 56\0 in name. 
The next call to getchar (see geld3S)) will return a. 

SEE ALSO 
getcOS), printf(JS), strtod(JC), strtoi(3C). 

NOTE 
Trailing white space is left unread unless matched in the control string. 

DIAGNOSTICS 

BUGS 

Page 3 

These functions return EOF on end of input and a short count for missing 
or illegal data items. 

The success of literal matches and suppressed assignments is not directly 
determinable. 

July 22, 1985 



SETBUF(3S) 

NAME 
setbuf, setvbuf- assign buffering to a stream 

SYNOPSIS 
#indude <Stdio.h> 

void setbul (stream, buf) 
FILE •stream; 
char •bur; 

int setvbul (stream, but, type, size) 
FILE •stream; 
char •but; 
int type, size; 

DESCRIPTION 

SETBUF(3S) 

Setbuf may be used after a stream has been opened but before it is read or writ­
ten. It causes the array pointed to by buf to be used instead of an automatically 
allocated buffer. If buf is the NUU pointer input/output will be completely 
unbuffered. 

A constant BUFSIZ, defined in the c:stdio.h> header file, tells how big an array 
is needed: 

char buf[BUFSIZ]; 

St!tllbuf may be used after a stream bas been opened but before it is read or 
written. Type determines how stream will be buffered. Legal values for type 
(defined in stdio.h) are: 

_IOFBF 

_IOLBP 

_IONBF 

causes input/output to be fully buffered. 

causes output to be line buffered; the buffer will be flushed when 
a newline is written, the buffer is full, or input is requested. 

causes input/output to be completely unbuffered. 

If buf is not the NULL pointer, the array it points to will be used for buffering, 
instead of an automatically allocated buffer. Size specifies the size of the buffer 
to be used. The constant BUFSIZ in <Stdio.ID is suggested as a good buffer 
size. If input/output is unbuffered, buf and size are ignored. 

By default. output to a tenninal is line buffered and all other input/output is 
fully buffered. 

SEE ALSO 
fopen(3S), getc(3S), malloo(3C), put£(35), •tdio(3S). 

Page I September 24, 1987 



SETBUF(3S) SETBUF(3S) 

DIAGNOSTICS 
If an illegal value for type or size is provided. setvbuf returns a non-zero value. 
Otherwise. the value returned will be zero. 

NOTE 
A common source of enor is allocating buffer space as an "automatic" vari­
able in a code block. and chen failing to close the stream in the same block. 

Setbuf allows assignment of a new 1/0 buffer after the stream bas been read 
(written), and if unflushed data remains in the original buffer. This could lead to 
a loss of data enor. 

--24, 1987 Page2 



SBTJMP(lC) SBTJMP(JC) 

NAME 
setjmp, lonr,jmp - non-local goto 

SYNOPSIS 
#include <setjmp.h> 

lot setjmp (env) 
jmp_buf env; 

l'oid iongJmp (env, vaO 
jmp_buf env; 
tat val; 

DESCRIPTION 
These functions are useful for dealing with errors and interrupts encoun­
tered in a low-level subroutine of a program. 

Seljmp saves its stack environment in env for later use by /ongjmp. The 
environment type jmp_ fnif is defined in the <setjmp.h> header file. 
Seljmp returns the vaiuC 0. 

Longjmp restores the environment saved by the last call of se(jmp with the 
corresponding env argument. After longjmp is completed, program execu­
tion continues as if the corresponding call of seljmp (which must not itself 
have returned in the interim) had just returned the vaJue 110/. Longimp 
cannot cause sef}mp to return the vaJue 0. If /ongjmp is invoked with a 
second argument of 0, se(jmp wiD return I. All accessible data have values 
as of the time longjmp was called. 

SBE ALSO 
signal(2). 

WARNING 
Longjmp fails if it is called when env was never primed by a call to setjmp or 
when the last such call is in a function which has since returned. 

- I -



~ 

i 

SIGN (JF) SIGN(JF) 

NAME 
sign, isign, dsign - Fortran transfer-of-sign intrinsic function 

SYNOP5JS 
lnceger i, j, k 
real rl, r2, r3 
double precision dpl, dp2, dp3 

k - Isfan (i, j) 
k • sign {i, j) 

r3 .., sh:n<rl, r2) 

dp3 - dsign{dpl, dp2) 
dpJ = Si&n(dpl, dp2) 

DESCRIPTION 
!sign returns the magnitude of its first argument with the sign of its second 
argument. Sign and dsign are its real and double-precision counterparts, 
respectively. The generic version is sign, which devolves to the appropriate 
type depending on its arguments. 

. I . 



SIGNAL(3F) 

NAME 
si&nal - specify Fortran action on receipt of a system si&nal 

SYNOPSIS 
Integer i 
external ioteger intlnc 

eall sigoal(i, intfnc) 

DBSCRIPTION 

SIGNAL(3F) 

Signal allows a process to specify a function to be invoked upon receipt of a 
specific signal. The first argument specifies a fault or exception; tbe second 
argument specifies the function to be invoked. 

SEE ALSO 
kill(2), signa1(2). 

- I -



SIN(lF) 

NAME 
sin, dsin, csin - Fortran sine intrinsic function 

( SYNOPSIS 
real rl, r2 
double predsJoD dpl, dp2 
complex cxl, cx2 

r2 = siD(rl) 

dp2 dsiD(dpl) 
dp2 SiD(dpl) 

cx2 csiD(cxn 
cx2 SiD(CXI) 

DESCRIPTION 

SIN(lF) 

Sin returns the reaJ sine of its real argument. Dsin returns the double· 
precision sine of its double-precision argument. Csin returns the complex 
sine of its complex argument. The generic sin function becomes dsin or 
csln as required by argument type. 

SEE ALSO 
trig(3M). 

- I -



SINH(lP) SINH(JP) 

NAME 
sinh, dsinh - Fortran hyperbolic sine intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 

r2 = sinh(rlJ 

dp2 - dsinh(dpl) 
dp2 = sinh(dpl) 

DESCRIPTION 
Sinh returns the real hyperbolic sine or its real argument. Dsinh returns 
the double-precision hyperbolic sine or its double-precision argument. The 
generic form sinh may be used to return a double-precision value given a 
double-precision argument. 

SEE ALSO 
sinh OM). 

. I . 



SINH (3M} 

NAME 
sinh, cosh, tanh - hyperbolic functions 

-~· SYNOPSIS 
#Include <math.ll> 
double sinh (x) 
double x; 

double oosh (x) 
double x; 

double tanh (x) 
double x; 

DESCRIYilON 

SINH(lM} 

Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine, and 
tangent of their argument. 

DIAGNOSTICS 
Sinh and cosh return HUGE (and sinh may return -HUGE for negative x) 
when the correct value would overflow and set errno to ERANGE. 

These error-handling procedures may be changed with the function 
matherr(3M). 

SEE ALSO 
matherr(3M). 

. I . 



SLEEP{JC) SLEEP(lC) 

NAME 
sJeep - suspend execution for interval 

SYNOPSIS 
unsigned sleep (seconds} 
unsigned seconds; 

DESCRIPTION 
Sleep suspends the current process from execution for the number of 
seconds specified by the argument. The actual suspension lime may be less 
than that requested for two reasons: (I) scheduled wakeups occur at fixed 
!·second intervals, (on the second, according to an internal clock) and (2) 
any caught signal wiU terminate sleep following execution of the signal 
catching routine. The suspension time may be longer than requested by an 
arbitrary amount, due to the scheduling of other activity in the system. 
The value returned by sleep is the .. unslept" amount (the requested time 
minus the time actually slept) in case the caller had an alarm set to go off 
earlier than the end of the requested sleep time or in case there is prema· 
ture arousal due to another caught signal. 

The routine is implemented by setting an alarm signal and pausing until it 
(or some other signaO occurs. The previous state of the alarm signal is 
saved and restored. The calling program may have set up an alarm signal 
before callina sleep. If the sleep time exceeds the time before the alarm sig· 
nal, the process sleeps only until the alarm sisnal would have occurred and 
the caller's alarm catch routine is executed just before the sleep routine 
returns. If the sleep time is less than the time before the calling program's 
alarm, the prior alarm time is reset to go off at the same time it would have 
without the intervening sleep. 

SEE ALSO 
alarm(2), pause(2), sisnal(2). 

" 1 " 



SPUTL(lX) SPUTL(lX) 

NAME 
sputl, sgetl - access long integer data in a machine independent fashion. 

r SYNOPSIS 
, sputl (value, buffer) 

Ion1 value; 
char •buffer; 

IODI sgell (buffer) 
char •buffer; 

DESCRIPTION 
Sputl takes the 4 bytes of the long integer 11t1/ue and places them in 
memory, startifli at the address pointed to by bl4fer. The ordering of the 
bytes is the same across all machines. 

Sget/ retrieves the 4 bytes in memory, starting at the address pointed to by 
fndfer, and returns the long integer value in the byte ordering of the host 
machine. 

Use of sputl and sgetl provide a machine independent way of storing long 
numeric data in a file in binary form without conversion to characters. 

A program that uses these functions must be loaded with the object file 
access routine library llbld.a. 

SEE ALSO 
ar(4). 

- I -



SQRT(JF) 

NAME 
sqrt, dsqrt, csqrt - Fortran square root intrinsic function 

SYNOPSIS 
ret~l rl, r2 
double precision dpl, dp2 
complex cxl, cx2 

r2 - sqrt (r I) 
dp2 dsqrt(dpl) 
dp2 sqrt(dpl) 

cx2 esqrl(cxl) 
cx2 sqrt<cxl) 

DESCRIPTION 

SQRT(JF) 

Sqrt returns the real square root of its real argument. Dsqn returns the 
double-precision square root of its double-precision argument. Csqrt 
returns the complex square root of its complex argument. Sqrt, the generic 
form, will become dsqrt or csqrt as required by its argument type, 

SEE ALSO 
exp(lM). 

. I . 



SSIGNAL(3C) SSIGNAL(3C) 

NAME 
ssignal, gsigna1 - software signals 

SYNOPSIS 
#ioelude <signal.h> 

iot (•ssl&oal (sig, action))( ) 
tnt sig, (•action)( ); 

inl &signal (sig} 
tnt sig; 

DESCRIPTION 
Ssignal and gsignal implement a software facility similar to signa/(2). This 
facility is used by the Standard C Library to enable users to indicate the 
disposition of error conditions; it is also made available to users for their 
own purposes. 

Software signals made available to users are associated with intesers in the 
inclusive range I through 15. A ca11 to ssigml/ associates a procedure, 
action, with the software signal, sig; the software signal, slg, is raised by a 
caU to gsignal. Raising a software signal causes the action established for 
that signal to be taken. 

The first argument to ssignol is a number identifying the type of signal for 
which an action is to be established. The second argument defines the 
action; it is either the name of a user-defined action function or one of the 
manifest constants SIG_DFL (default) or SIG_IGN (ignore). Ssignal returns 
the action previously established for that signal type; if no action has been 
established or the signal number (s/JiJ is iUegal, sSignaf returns SIG_DFL. 

Gsignal raises the signal identified by its argument, sig: 

If an action function has been established for sig, then that action is 
reset to SIG_DFL and the action function is entered with argument sig. 
Gsignaf returns the value returned to it by the action function. 

If the action for sig is SIG_IGN, gslgnal retwns the value 1 and takes 
no other action. 
IC the action for sig is SIG_DFL, gsignal returns the value 0 and takes 
no other action. 
If slg bas an illegal value or no action was ever specified for slg, gsig­
nal returns the value 0 and takes no other action. 

SEE ALSO 
signa1(2). 

NOTES 
There are some additional signals with numbers outside the range 1 
through 15 which are used by the Standard C Library to indicate error con­
ditions. Thus, some signa] numbers outside the range I through IS are 
legal, a1though their use may interfere with the operation of the Standard C 
Library. 

- I -



STDIO(lS) STDJO(]S) 

NAME 
stdio - standard buffered input/output package 

SYNOPSIS 
#include <stdlo.h> 

FILE •stdin, •stdout, •stderr; 

DESCRIPTION 
The functions described in the entries of sub-class JS of this manual consti­
tute an efficient, user-level I/O buffering scheme. The input/output func­
tion may be grouped into the followiili categories: file access, file status, 
input, output, miscellaneous. For lists of the functions in each category, 
refer to the "Libraries" section of the Programming Guide. The in-line mac­
ros gete(JS) and pu/e(35) handle characters quickly. The macros getehar 
and putehar, and the higher-level routines Jkete, fgets, JPrintJ; JjJute, jjJUis, 
fread, }Seal{/; }Write, gets, geTw, prinrJ; puTs, pUiw, and seal{/' all use gete and 
pUle; they can be freely intermixed. 

A file with associated buft"ering is called a stream and is declared to be a 
pointer to a defined type FILE. Fopen(JS) creates certain descriptive data 
for a stream and returns a pointer to designate the stream in all further 
transactions. NormaHy, there are three open streams with constant pointers 
declared in the <stdio.h> header file and associated with the standard 
open files: 

stdln 
sldout 
stderr 

standard input file 
standard output file 
standard error file. 

A constant NULL (0) designates a nonexistent pointer. 

An integer constant EOF ( -1) is returned upon end-of-file or error by 
most integer functions that deal with streams (see the individual descrip­
tions for details). 

An integer constant BUFSIZ specifies the size of the buffers used by the 
particular implementation. 

Any program that uses this package must include the header file of per­
tinent macro definitions, as follows: 

#include <stdio.h> 
The functions and constants mentioned in the entries of sub-class JS of 
this manual are declared in that header file and need no further declaration. 
The constants and the following functions are implemented as macros: getc, 
getehar, pule, putehar, ji!o}; ji!rror, c/earerr, and ji/eno. Redeclaration of 
these names is perilous. 
The <stdio.b> file is illustrated in the "Libraries" section of the ProKram­
ming Guide. 

SEE ALSO 

Page I 

open(2), close(2), lseek(2), pipe(2), read(2), ctermid(JS), cuserid(JS), 
fclose(JS), ferror(JS), fopen(JS), fread(JS), fseek(JS), getc(JS), getsOSl, 
popen(JS), printf(JS), putc(JS), puts(JS), scanf{JS), setbuf(JS), 
system(JS), tmpfile(JS), tmpnam(JS), ungetc(JS), write(J). 

July 29, 1985 



STDIOOS) STDIO (3S) 

DIAGNOSTICS 
Invalid 5tream pointers cause serious errors, possibly including program ter­
mination. Individual function descriptions describe the possible error con­
ditions. 

July 29, 1985 Page 2 



STDIPC(JC) STDIPC(JC) 

NAME 
ftok - standard interprocess communication package 

SYNOPSIS 
#Include <sys/types.h> 
#include <sys/ipc.h> 

key_t ftok(path, id) 
char •path; 
char id; 

DESCRIPTION 
All interprocess communication facilities require the user to supply a key to 
be used by the msgget(2), semget(2), and shmget(2) system calls to obtain 
interprocess communication identifiers. One method for forming a key is 
to use the ftok subroutine described below. Another way to compose keys 
is to include the project ID in the most significant byte and to use the 
remaining portion as a sequence number. There are many other ways to 
form keys, but it is necessary for each system to define standards for form· 
ing them. If a standard is not adhered to, unrelated processes may inter· 
fere with each other's operation. Therefore, it is strongly suggested that 
the most significant byte of a key in some sense refer to a project so that 
keys do not conflict across a given system. 

Ftok returns a key based on path and id that is usable in subsequent msgget, 
semget, and shmget system calls. Path must be the pathname of an existing 
file that is accessible to the process. ld is a character that uniquely 
identifies a project. Ftok returns the same key for linked files when called 
with the same id; it returns different keys when called with the same 
filename but different ids. 

SEE ALSO 
intro(2), msgget(2), semget(2), shmget(2). 

DIAGNOSTICS 
Ftok returns (key _t) -1 if path does not exist or if it is not accessible to 
the process. 

WARNING 
If the file whose path is passed to ftok is removed when keys still refer to 
the file, future calls to jlok with the same path and id will return an error. 
If the same file is recreated, jlok is likely to return a different key than it 
did the original time it was called . 

. I . 



STRCMP(lF) 

NAME 
Jge, lgt, lie, lit - string comparision intrinsic functions 

SYNOPSIS 
character*N at, a2 
lolical I 

• lge (al,a2) 
la;t (al,a2) 
Ue (al,a2) 
lit {al,a2) 

DESCRIPTION 

STRCMP(lF) 

These functions return .TRUE. if the inequality holds and .FALSE. other· 
wise. 

- I -



STRING(3C} STRING(lC) 

NAME 
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, 
strpbrk, strspn, strcspn, strtok - string operations 

SYNOPSIS 
#include <string.h> 

char •strcat (sl, s2) 
char •sl, •s2; 

char •stmcat (sl, s2, n) 
char •sl, •sl; 
int n; 

int strcmp (sl, s2) 
char •sl, •sl; 
lnt stmcmp (sl, s2, n) 
char •sl, •s2; 
lot n; 

char •strcpy (sl, s2) 
char *Sl, *!12; 

char •strncpy (sl, s2, n) 
char •sl, •s2; 
lot n; 

int strlen (s) 
char •s; 

char •strchr (s, c) 
char •s; 
int c; 

char •strrchr {s, c) 
char •s; 
int c; 

char •strpbrk (sl, s2) 
char •sl, •sl; 
int strspn (sl, sl} 
char •sl, •sl; 
lat strcspn (sl, s2) 
char •sl, •sl; 

char •strtok (sl, sl) 
char •sl, •sl; 

DESCIUPTION 
The arguments sl, s2, and s point to strings (arrays of characters ter­
minated by a null character). The functions strcat, strncat, strcpy, and 
strncpy all alter sl. These functions do not check for overflow of the array 
pointed to by sl. 
Strcat appends a copy of string s2 to the end of string sl. Strncat appends 
at most n characters. Each function returns a pointer to the null­
terminated result. 

Strcmp performs a lexicographical comparison of its arguments and returns 
an integer less than, equal to, or greater than 0, when sl is less than, equal 

- I -



STRING(lC) STRINO(lC) 

NOTE 

BUGS 

to, or greater than 52, respectively. Strncmp makes the same comparison 
but looks at a maximum of n characters. 

Strcpy copies string sl to string sl, stopping after the null character has 
been copied. Strncpy C<lpies exactly n characters, truncating sl or adding 
null characters to sf if n~ssary. The result is not null-terminated if the 
length of sl is nor more. Each function returns sf. 

Strlen returns the number of characters in s, not including the terminating 
null character. 

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c 
in string s, or a NULL pointer if c does not occur in the string. The null 
character terminating a string is considered to be part of the string. 

Strpbrk returns a pointer to the first occurrence in string sf of any character 
from string sl, or a NULL pointer if no character from sl exists in sf. 

Strspn (strcspn) returns the length of the initial segment of string sf which 
consists entirely of characters from (not from) string sl. 

Strtok considers the string sf to consist of a sequence of zero or more text 
tokens separated by spans of one or more characters from the separator 
string sl. The first call (with pointer sf specified) returnS a pointer to the 
first character of the first token, and writes a null character into sf immedi· 
ately following the returned token. The function keeps track of its position 
in the string between separate calls, so that on subsequent calls (which 
must be made with a NULL pointer as the first argument) it works through 
the string sf immediately following that token. This can be continued until 
no tokens remain. The separator string sl may be different from call to 
call. When no token remains in sl, a NULL pointer is returned. 

For user convenience, all these functions are declared in the optional 
<strlng.b> header file. 

Strcmp use native character comparison. Thus the sign of the value 
returned when one of the characters has its high-order bit set is 
implementation-dependent. 

All string movement is performed character by character starting at the left. 
Thus overlapping moves toward the left will work as expected, but overlap­
ping moves to the right may yield surprises. 

- 2-



STRTOD(JC) STRTOD(JC) 

NAME 
strtod, atof- convert string to double-precision number 

SYNOPSIS 
double strtod (str, ptr) 
char •str, .. plr; 

double atof (str) 
char •str; 

DESCRIPTION 
Strtod returns as a double-precision floating-point number the value 
represented by the character string pointed to by str. The string is scanned 
up to the first unrecognized character. 

Strtod recognizes an optional string of "white-space" characters (as defined 
by isspace in ctype(JC)), then an optional sign, then a string of dij];its 
optionally containing a decimal point, then an optional e or E followed by 
an optional sign or space, followed by an integer. 

If the value of ptr is not (char ••)NULL, a pointer to the character ter­
minating the scan is returned in the location pointed to by ptr. If no 
number can be formed, •ptr is set to str, and zero is returned. 
Atof(str) is equivalent to strtod(str, (char., )NULL). 

SEE ALSO 
ctype(JC), scanf(JS), strtoHJC). 

DIAGNOSTICS 
If the correct value would cause overftow, ±HUGE is returned (according to 
the sign of the value), and errno is set to ERANGE. ~' 
If the correct value would cause underflow, zero is returned and errno is set 
to ERA.NGE. 

- I -



STRTOL(JC) STRTOL{JC) 

NAME 
strtol, atol, atoi - convert string to integer 

SYNOPSIS 
loq strtol (str, ptr, base) 
ehar •str, •• ptr; 
lot base; 

long atol (str) 
ehar •str; 

lot atol (str) 
ehar •str; 

DESCRIPTION 
Strtol returns as a long integer the value represented by the character string 
pointed to by str. The string is scanned up to the first character incon­
sistent with the base. Leading white-space characters (blanks and tabs) are 
ignored. 

If the value of ptr is not (char u)NULL, a pointer to the character ter­
minating the scan is returned in the location pointed to by ptr. If no 
integer can be formed, zero is returned. 

If bose is positive (and not greater than 36), it is used as the base for 
conversion. After an optional leadilli sign, leading zeros are ignored; a 
leadilli Ox or OX is ignored if bose is 16. 

If bose is zero, the strilli itself determines the base. After an optionallead­
illi sign, a leading zero indicates octal conversion and a leading 0:~: or OX 
indicates hexadecimal conversion; otherwise, decimal conversion is used. 

Truncation from long to int can take place upon assignment or by an expli­
cit cast. 
AtoHstr} is equiva1ent to strtoHrtr, (ehar u)NULL, 10). 
Atoi(str) is equivalent to (/nt) strtoHstr, (ehar u)NULL, 10). 

SEE ALSO 
ctype(JC), scanf(JS), strtod(JC). 

DUOS 
Overflow conditions are ignored. 

- I -



SWABUC) SWAB(JC) 

NAME 
swab - swap bytes 

SYNOPSIS 
void swab (from, to, nbytes) 
char •from, •to; 
lnt nbytes; 

DESCRIPTION 
Swab copies nbytes bytes pointed to by from to the array pointed to by to, 
exchanging adjacent even and odd bytes. It is useful for carrying binary 
data between PDP-lis and other machines. Nbytes should be even and 
non-negative. If nbytes is odd and positive, swab uses nbytes-1 instead. If 
nbytes is negative, swab does nothing . 

. I . 



SYSTEM(JF} 

NAME 
system - issue a shell command from Fortran 

SYNOPSIS 
eharacler • N c 
eall system(e) 

DESCRIPTION 

SYSTEM(JF) 

System causes its ebaracter argument to be given to sh(l) as input, as if the 
string had been typed at a terminal. The current process waits until the 
shell has completed. 

SEE ALSO 
sh(l), exec(2), system(JS). 

- I -



SYSTEM(]S) 

NAME 
system - issue a shell command 

SYNOPSIS 
#include <stdio.h> 

lot system (string) 
char •string; 

DESCRIPTION 

SYSTEM(JS) 

System causes string to be given to sh(l) as input, as if the string had been 
typed as a command at a terminal. The current process waits until the shell 
has completed, then returns the exit status of the shell. 

FILES 
/bin/sh 

SEE ALSO 
sh(i), exec(2). 

DIAGNOSTICS 
System forks to create a child process that in turn performs exec(2) on 
lbln/sh in order to execute string. If the fork or exec fails, system returns a 
negative value and sets errno. 

. I . 



TAN(JF) 

NAME 
tan, dtan - Fortran tangent intrinsic function 

/-- SYNOPSIS 
real rl, r2 
double precision dpl, dp2 
r2 = lan(rl) 

dp2 • dtan(dpl) 
dp2 "" tan(dpl) 

DESCRIPTION 

TAN(JF) 

Tan returns the real tangent of its real argument. Dtan returns the 
double-precision tangent of its double-precision argument. The generic tan 
function becomes dtan as required with a double--precision argument. 

SEE ALSO 
trig(3M). 

. I . 



TANH(lF) 

NAME 
tanh, dtanh - Fortran hyperbolic tangent intrinsic function 

SYNOPSIS 
real rl, r2 
doable predslon dpl, dp2 

r2 - tanh(rl) 

dp2 - dlanb(dpll 
dp2 - tanh(dpl) 

DESCRIPTION 

TANH(lF) 

Tanh returns the real hyperbolic tangent of its real argument. Dtanh 
returns the double-precision hyperbolic tangent of its double precision argu­
ment. The generic form tanh may be used to return a double-precision 
value given a double-precision argument. 

SEE ALSO 
s.inhOM). 

- 1 -



TERMCAP(3X) TERMCAP(3X) 

NAME 
_,.-- tgetent, tgetnum, tgedlag. tgetstr, tgoto, tputs -1enninal independent operation 

roudnes 
-- SYNOPSIS 

char PC; 
char •BC; 
char •UP; 
short ospeed; 

tgetent(bp. name) 
char •bp, •name; 

taetnum(id) 
char •id; 

tgetftag(id) 
char •id; ...... 
tgetslr(id, .,..) 
char •id, .. area; 

( ...... 
tgoto(om, desk:<>~ destline) 
char •em; 
tpnts(cp, aft'clll, outc) 
register char •cp; 
int affcnt; 
int •outc)(); 

DESCRIPnON 
These functions exttact and use capabilities from the lei'JilinaJ. capability data 
base tumcap(S). Noce that these are low-level routines. 

Tgetem extracts Che entry for tennin.al name into the buffer at bp. Bp should be 
a character buffer of size 1024 and must be retained through all subsequent 
cans to tgetnum, tgetjlag, and tgetstr. Tgetent returns -1 if it cannot open the 
term.cap tile, 0 if the terminal name given does not have an entry, and 1 if sue· 
cessful. It looks in the environment for a 'IERMCAP variable. If a variable is 
found whose value does not begin with a slash and the tenninal type name is 
the same as the environment string TERM, the TERMCAP suing is used r instead of reading the termcap file. If the value does begin with a slash, the 

Page 1 Septemb<> 24, 1987 



TERMCAP(3X) TERMCAP(3X) 

string is used as a pathname rather than /ett/termcap. This can speed up entry 
into programs that call tgeunt, It can also help debug new terminal descrip­
tions or be used to make one for your terminal if you can't write the file 
/ete/termcap. 

Tgetnwn gets the numeric value of capability id, returning -1 if is not given for 
the terminal. Tgetflag returns 1 if the specified capability is present in the 
terminal's entry, 0 if it is not. Tgetstr gets the sbing value of capability id, 
placing it in the buffer at area, advancing the tJTea pointer. It decodes the 
abbreviations for this field described in termcap(5), except for cursor address­
ing and padding infonnatioo. 

Tgoto returns a cursor addressing string decoded from em to go to colunm 
destcol in line destlin.e. It uses the external variables UP (from the up capabil­
ity) and BC (if be is given rather than bs) if necessary to avoid placing \n, AD or 
A@ in the returned string. (Programs that call tgoto should be sure to turn off 
the XTABS bit(s), since tgoto may now output a tab. Note that programs using 
tunv:ap should in general tum off XT ADS anyway since some terminals use 
control-1 fcl' other functions, such as nondestructive space.) If a % sequence is 
given which is not understood. then tgoto returns OOPS. 

Tputs decodes the leading padding information of the string cp; affcnt gives the 
number of lines affected by the operation, or 1 if this is not applicable; outc is a 
routine that is called with each character in turn. The external variable ospeed 
should contain the output speed of the terminal as encoded by stty ( 1 ). The 
external variable PC should contain a pad character to be used (from the pc 
capability) if a null C@) is inappropriate. 

FILilS 
/usrllibllibtermcap.a -ltermcap library 
/etc/tenncap data base 

SEE ALSO 
ex(l), termcap(S) 

Septembe< 24, 1987 Page2 



,--

TMPFILE(JS) TMPFILE(JS) 

NAME 
tmpfile - create a temporary file 

SYNOPSIS 
#Include <sldlo.b> 
FILE •tmpfl.le () 

DESCRIPTION 
Tmpfi/e creates a temporary file using a name generated by tmpnam(3S), 
and returns a oorrespondins FILE pointer. If the file cannot be opened, an 
error message is printed using perror(3C), and a NULL pointer is returned. 
The file is automatically deleted when the process using it terminates. The 
file is opened for update ("w+"). Tmpfile calls fopen and so returns any 
error code passed to it from fopen. 

SEE ALSO 
creat(2), unlink(2), fopen(JS), mktemp(3C), perror(JC), tmpnamOS). 

- I -



TMPNAM(]S) TMPNAM(3S) 

NAME 
tmpnam, tempnam ~ create a name for a temporary file 

SYNOPSIS 
#indnd.e <std.lo.b> 
char •tmpnam (s) 
char •s; 

cbar •tempnam (dir, pfx} 
char •dir, •pfx; 

DESCRIPTION 

NOTES 

These functions generate filenames that can safely be used for a temporary 
file. 

Tmpnam always generates a filename using the pathname defined as 
P tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves its 
reilult in an internal static area and returns a pointer to that area. The next 
call to tmpnam will destroy the contents or the area. If s is not NULL, it is 
assumed to be the address or an array of at least L tmpnam bytes, where 
L_tmpnam is a constant defined in <stdio.b>; tmpnQm places its result in 
that array and returns s. 

Tempnam aJlows the user to control the choice or a directory. The argu­
ment dir points to the pathname or the directory in which the file is to be 
created. If dir is NULL or points to a string which is not a pathname for an 
appropriate directory, the pathname defined asP tmpdir in the <stdio.h> 
header file is used. If that pathname is not accesSible, /Imp will be used as 
a last resort. This entire sequence can be upstaged by providing an 
environment variable TMPDIR in the user's environment, whose vaJue is a 
pathname for the desired temporary-file directory. 

Many applications prefer that names of temporary files contain favorite ini­
tial letter sequences. Use the pfx arg.ument for this. This argument may be 
NULL or point to a string of up to S characters to be used as the first few 
characters of the name or the temporary file. 

Tempnam uses ma/loc(3C) to get space for the constructed filename and 
returns a pointer to this area. Thus, any pointer value returned from temp­
nom may serve as an argument to free (see mallocOC)). If tempnam can­
not return the expected result for any reason (i.e., molloc failed or attempts 
to find an appropriate directory were unsuccessful), a NULL pointer will be 
returned. 

These functions generate a different filename each time they are called. 

Files created using these functions and either jilpen{JS) or aeat(2) are 
temporary only in the sense that they reside in a directory intended for 
temporary use and their names are unique. It is the user's responsibility to 
use un/ink(2) to remove the file when its use is ended. 

SEE ALSO 
creat(2), unlink(2), fopen(JS), malloc(JC), mktemp(JC), tmpfile(JS). 

BUGS 
If called more than 17,576 times in a single process, tmpnam and tempnam 

Page 1 July 22, 1985 



TMPNAM(lS) TMPNAM(lS) 

will start recycling previously used names. 
Between the time a filename is created and the file is opened, it is possible 
for some other process to create a file with the same name. This can never 
happen if that other process is using tmp11am, tempnam, or mktemp(3C) and 
the filenames are chosen carefully to avoid duplication by other means. 

July 22, 1985 Page 2 



TRIG(3M) TRIG(3M) 

NAME 
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions 

SYNOPSIS 
#include < matb.b> 

double sin (x) 
double x; 

double cos (x) 
double x; 

double tan (x) 
double x; 

double asln ,,, 
double x; 

double acos ,,, 
double x; 

double alan ,,, 
double x; 

double atan2 (y, 
double x, y; 

DESCRIPTION 

,, 
Sin, cos, and ton return, respectively, the sine, cosine, and tangent of their 
argument, which is in radians. 

Asin returns the arcsine or x, in the range --rr/2 to 'tl'/2. 

A cos returns the arccosine or x, in the range 0 to -rr. 

Atan returns the arctangent of x, in tbe range --rr/2 to -rr/2. 

Atan2 returns the arctangent of y/ x, in the range - '11' to '11', using the signs 
or both arguments to determine the quadrant or the return value. 

DIAGNOSTICS 
Sin, cos, and tan lose accuracy when their argument is far from zero. For 
arguments sufficiently large, these functions return 0 when there would 
otherwise be a oomplete loss or significance. In this case a message indicat­
ing TLOSS error is printed on the standard error output. For Jess extreme 
arguments, a PLOSS error is generated but no message is printed. In both 
cases, errno is set to ERANGE. 

If the magnitude of the argument of asin or acos is greater than one, or if 
both arguments or atan2 are zero, zero is returned and errno is set to 
EDOM. In addition, a message indicating DOMAIN error is printed on the 
standard error output. 

These error-handling procedures may be changed with the function 
matherr(3M). 

SEE ALSO 
matberr(JM). 

. I . 



TSEARCH(JC) TSEARCH (3C) 

NAME 
tsearch, tfind, tdelete, twalk - manage binary search trees 

SYNOPsiS 
#include < searcb.h> 
char •tseareh ((char •) key, (char .. ) rootp, compar) 
int (•compar)( ); 

char •tflnd ((char •) key, (char .. ) rootp, compar) 
int (•compar)( ); 

char •tdelete ({char •) key, (char .. ) roolp, compar) 
int (•compar)( ); 

void 11.-.lk ((char •) root, action) 
void (•action)( ); 

DESCRIPTION 
Tsearch, (find, tdelete, and twalk are routines for manipulating binary search 
trees. They are generalized from Knuth (6.2.2) Algorithms T and D. AU 
comparisons are done with a user-supplied routine. This routine is called 
with two arguments, the pointers to the elements being compared. It 
returns an integer less than, equal to, or greater than 0, accordifti to 
whether the first argument is to be considered less than, equal to or greater 
than the second argument. The comparison function need not compare 
every byte, so arbitrary data may be contained in the elements in addition 
to the values being compared. 

Tsearch is used to build and access the tree. Key is a pointer to a datum to 
be accessed or stored. If there is a datum in the tree equal to •key (the 
value pointed to by key), a pointer to this found datum is returned. Other· 
wise, •key is inserted, and a pointer to it returned. Only pointers are 
copied, so the calling routine must store the data. Rootp points to a vari· 
able that points to the root of the tree. A NULL value for the variable 
pointed to by roolp denotes an empty tree; in this case, the variable will be 
set to point to the datum which will be at the root of the new tree. 

Like tsearch, tfind will search for a datum in the tree, returning a pointer to 
it if found. However, if it is not found, (find will return a NULL pointer. 
The arguments for tfind are the same as for tsearch. 

Tde/ete deletes a node from a binary search tree. The arguments arc the 
same as for tsearch. The variable pointed to by rootp will be changed if the 
deleted node was the root of the tree. Tdefete returns a pointer to the 
parent of the deleted node, or a NULL pointer if the node is not found. 

Twafk traverses a binary search tree. Root is the root of the tree to be 
traversed. (Any node in a tree may be used as the root for a walk below 
that node.) Action is the name of a routine to be invoked at each node. 
This routine is, in turn, called with three arguments. The first argument is 
the address of the node beifti visited. The second argument is a value 
from an enumeration data type typedef enum { preorder, postorder, endorder, 
leaf l VISIT; (defined in the < search.h> header file), depending on 
whether this is the first, second or third time that the node has been visited 
(durifti a depth-first, left-to-right traversal of the tree), or whether the 
node is a leaf. The third argument is the level of the node in the tree, with 
the root being level zero. 

. I . 



TSEARCH(JC) TSEARCH(3C) 

The pointers to the key and the root of the tree should be of type pointer­
to-element, and cast to type pointer-to-character. Similarly, although 
declared as type pointer-to-character, the value returned should be cast into 
type pointer-to-element. 

EXAMPLE ---
The following code reads in strings and stores structures containing a 
pointer to each string and a count of its length. It then walks the tree, 
printing out the stored strings and their lengths in alphabetical order. 

#include < search.h> 
#include < stdio.h> 

struct node I I• pointers to these are stored in the tree •I 

), 

char •string; 
int length; 

char string_space[IOOOO]; I• 
struct node nodes[SOO]; 
struct node •root - NULL; 

space to store strings •I 
I• nodes to store •I 
I• this points to the root •I 

main( ) 

I 

I• 

•I 
int 

char •strptr - string_space; 
struct node •nodeptr = nodes; 
void print node( ), twalk( ); 
int i - 0~ node_compare( ); 

while (gets(strptr) !=NULL && i++ < 500) 
I• set node •I 
nodeptr- >string = strptr; 
nodeptr-> length - strlen(strptr); 
I• put node into the tree •I 
(void) lliearchHchar •)nodeptr, &root, 

node_oompare); 
I• a!ljust pointers, so we don't overwrite tree •I 
strptr +~ nodeptr->length + I; 
nodeptr++; 

twalk(root, print_node); 

This routine oompares two nodes, based on an 
alphabetical ordering of the string field. 

node_compare(nodel, node2) 
struct node •node!, •node2; 
I 

I• 

return strcmp(nodel->string, node2- >string); 

This routine prints out a node, the first time 
twalk encounters it . 

• 2 • 



TSI!ARCH (JC) TSEARCH (lC) 

•I 
void 
print_node{node, order, level) 
struct node .. node; 
VISIT order; 
int level; 
I 

if {order = = preorder II order = = leaf') [ 
(voidlprintf{"string = %20s, length - %d\n", 

(~node)-> string, {•node)-> length); 

SEE ALSO 
bsearch(3C), hsearch(JC), lsearch(JC). 

DIAGNOSTICS 
A NULL pointer is returned by tsearch if there is not enough space available 
to create a new node. 
A NULL pointer is returned by tsearch, tjind and tde/ete if rootp is NULL on 
entry. 
If the datum is found, both tsearch and tjind return a pointer to it. If not, 
tjind returns NULL, and tsearch returns a pointer to the inserted item. 

WARNINGS 

BUGS 

The root argument to twalk is one level of indirection less than the rootp 
arguments to tsearch and tde/ete. 
There are two nomenclatures used to refer to the order in which tree nodes 
are visited. Tsearch uses preorder, postorder and endorder to respectively 
refer to visting a node before any of its children, after its left child and 
before its right, and after both its children. The alternate nomenclature 
uses preorder, inorder and postorder to refer to the same visits, which 
could result in some confusion over the meaning of postorder. 

U the calling function alters the pointer to the root, results are unpredict­
able. 

- 3 -



TIYNAMEOC) TTYNAME(JC) 

NAME 
ttyname, isatty - find name of a terminal 

SYNOPSIS 
char •ttyname (tildes) 
inl tildes; 
inl isaUy (tildes) 
inl tildes; 

DESCRIPTION 

PILES 

Ttyname returns a pointer to a string ~;:ontainiog the null-terminated path­
name of the terminal device associated with file descriptor ji/des. 

lsatty returns 1 if jifdes is associated with a terminal device; otherwise, it 
returns 0. 

/dev/• 

DIAGNOSTICS 

BUGS 

Ttyname returns a NULL pointer if jildes does not describe a terminal device 
in directory /deY. 

The return value points to static data whose content is overwritten by ea~;:b 
call. 

- I -



TTYSLOT ( 3C) 

NAME 
ttyslot - find the slot in the utmp file of the current user 

SYNOPSIS 
int ttyslot ( ) 

DESCRIPTION 

TTYSLOT UC) 

Ttysfot returns the index of the current user's entry in the /etc/ulmp file. 
This is accomplished by scanning the file /etc/lnlttab for the name of the 
terminal device associated with the standard input, the standard output, or 
the error output (0, I, or 2). 

FlLES 
/etc/inittab 
/etc/utmp 

SEE ALSO 
getut(3C), ttyname(3C). 

DIAGNOSTICS 
A value of 0 is returned if an error is encountered while searchiDJ for the 
terminal name or if none of the above file descriptors is associated with a 
terminal device. · 

- I -



UNGETC(3S) UNGETC(JS) 

NAME 
ungetc - push character back into input stream 

SYNOPSIS 
#Include <stdlo.b> 

lat unaetc (c, stream) 
ch•r c; 
FILE •stream; 

DESCRIPTION 
Ungetc inserts the character c into the bulfer associated with an input 
stream. That character, c, will be returned by the next getc call on that 
stream. Ungetc returns c and leaves the file stream unchanged. 

One character of pushback is guaranteed provided something has been read 
from the stream and the stream is actually buffered. In the case that stream 
is stdln, one character may be pushed back onto the buffer without a previ­
ous read statement. 
If c equaJs EOF, ungetc does nothing to the buffer and returns EOF. 

Fseek(JS) erases all memory of inserted characters. 

SEE ALSO 
fseek(JS), getc(3S), setbuf(JS). 

DIAGNOSTICS 
Ungetc returns EOF if it can't insert the character. 

~ I ~ 



VPRINTF (JS ) VPRINTF ( 35) 

NAME 
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument 
list 

SYNOPSIS 
#Include <sldlo.b> 
#lnelude < val'llrp.h> 

lot Tprintf (format, ap) 
ehar •formal; 
va_llst ap; 

bll Tfprlnlf (stream, format, ap) 
FILE •stream; 
char •format; 
va_llsl ap; 

inl vsprlnlf (s, format, ap). 
char •s, •formal; 
..-a_lisl ap; 

DESCRIPTION 
vprlnt/, vfprlnif, and vsprint/ are the same as print/, /print/, and sprint/ 
respectively, except that instead of being called with a variable number of 
arguments, they are called with an argument list as defined by varargs(S). 

EXAMPLE 
The following demonstrates how vfprlnt/ could be used to write an error 
routine. 

#include < stdio.h> 
#include <varargs.h> 

I• 
error should be called like 

error(function_name, format, argl, arg2 .. J; 
•I 

/•VARARGSO•/ 
void 
error(va a!ist) 
I• Note -that the function_name and format arguments cannot be 
* separately declared because of the definition of varargs. 
•I 

r--dcl 
va list args; 
chiir •fmt; 

va start(args); 
I• -print out name of function causing error •/ 
(void)fprintf(stderr, "ERROR in %s: •, va_arg(args, char •)); 
fmt = va arg(args, char •); 
I• print oUt remainder of message •/ 
(void)vfprintr<fmt, args); 
va_end(args); 

- I -



VPRINTF(JS) VPRINTF ( 3S) 

(void)abort( ); 

SEE ALSO 
vprintf(JX), varargs(S). 

- 2 -



VPRINTF(3X) VPRINTF ( 3X) 

NAME 
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument 
list 

SYNOPSIS 
#indude <stdio.b> 
#indude <varaq:s.b> 

int vprlnlf (format, ap) 
char •format; 
va_llst ap; 

lnt vfprintf <stream, format, ap) 
FILE •stream; 
char •format; 
va_llst ap; 

lnt vsprind (s, format, ap) 
char •s, •format; 
va_llst ap; 

DESCRIPTION 
~rinif, vfprinif, and vsprinif are the same as prinif. fprinif. and sprlnif 
respectively, except that instead of being called with a variable number of 
arguments, they are caJicd with an argument list as defined by ~rargs(S). 

EXAMPLE 
The following demonstrates how ~fprinif could be used to write an error 
routine. 

#include <stdio.h> 
#include < varargs.h> 

I• 
• error should be called like 
• error(function_name, format, argl, arg2 ... ); 
•I 

/•VARARGSO•I 
void 
error(va alist) 
I• Note -that the function name and format arguments cannot be 
• separately declaied because of the definition of varargs. 
•I 

va del I -
va list args; 
chir •fmt; 

va start(args); 
I• -print out name of function causing error •/ 
(void)fprintf(stderr, "ERROR in %s: •, va_arg(args, char •)); 
fmt - va_arg(args, char •); 
I• print out remainder of message •/ 
(void)vfprintf(fmt, args); 
va_end(args); 

. I . 



VPRINTF(3X) VPRlNTF(lX) 

(void)abort( ); 

SEE ALSO 
printf(JS), varargs(5). 

- 2-



WRITE(J) WRITE(J) 

NAME 
write - write on a file 

SYNOPSIS 
int write (ftldes, buf, nbyte) 
lnt tildes; 
char •buf; 
unsigned nbyte; 

DESCRIPTION 

Page I 

Fildes is a file descriptor obtained from a creal, opeu, dup, ji:utl, pipe, or 
socket system calL 

Write attempts to write ubyte bytes from the buffer pointed to by bufto the 
file associated with the .tildes. 

On devices capable of seeking, the actual writing of data proceeds from the 
position in the file indicated by the file pointer. Upon return from write, 
the file pointer is incremented by the number of bytes actually written. 

On devices incapable of seeking. writing always takes place starting at the 
current position. The value of a file pointer associated with such a device is 
undefined. 
If the o_APPENO ftag of the file status flags is set, the file pointer will be 
set to the end of the file prior to each write. 
Write will fail and the file pointer will remain unchanged if one or more of 
the following are true: 

[EBADFI Fildei is not a valid file descriptor open for writing. 

[EPIPE and SIGPIPE signal] 

[EPIPE] 

[EFBtG] 

[EFAULT] 

[EFAULT] 
[EINTRI 

An attempt is made to write to a pipe that is not open for 
reading by any process. 

An attempt is made to write to a pipe that is not open for 
reading by any process. 

An attempt was made to write a file that exceeds the 
process's file size limit or the maximum file size. See 
ulimir(2). 

Part of iov or data to be written to the file points outside 
the process's allocated address space. 

81(/'points outside the process's allocated address space. 

A signal was caught during the 1wite system call. 

If a wriw requests that more bytes be written than there is room for (e.g., 
the ulimit (see u/imit(2)) or the physical end of a medium), only as many 
bytes as there is room for will be written. For example, suppose there is 
space for 20 bytes more in a file before reaching a limit. A write of 512 
bytes will return 20. The next write of a non-zero number of bytes will 
give a failure return (except as noted below). 

If the file being written is a pipe (or FIFO) and the o NDELAY flag of the 
file flag word is set, then write to a full pipe (or FIFO) Wm return a count of 
0. Otherwise (O NDELA Y clear). writes to a full pipe (or FIFO) will block 
until space beconles available. 

July 26, 1985 



WRITE(3) WRITE()) 

RETURN VALUE 
Upon successful completion the number of bytes actually written is 
returned. Otherwise, -I is returned and t'mlu is set to indicate the error. 

SEE ALSO 
creat(2), lseek(2), open(2), pipe(2), socket(2N), ulimit(2). 

July 26, 1985 Page 2 



( 
~-

WRITEV(lN) UoiSoft WRITEV(3N) 

NAME 
writev - write on a file 

SYNOPSIS 
#include <sys/types.b> 
#lndude <sys/ulo.h> 

wrltel'(d, lol', ioTeclen} 
lot d; 
struct iol'ee *loT; 
int londen; 

DESCRIPTION 

Page I 

Fildes is a file descriptor obtained from a creal, open, dup, fcnll, pipe, or 
socket system call. 
Wrilev attempts to write nbyle bytes to the file associated with the jildes and 
gathers the output data from the /ov/en buffers specified by the members of 
the iollt'catray: iov[O], iov[l], etc. 

On devices capable of seeking, the actual writing of data proceeds from the 
position in the file indicated by the file pointer. Upon return from writev, 
the file pointer is incremented by the number of bytes actually written. 
On devices incapable of seeking. writilli always takes place starting at the 
current position. The value of a file pointer associated with such a device is 
undefined. 
If the o_APPEND flag of the file status flags is set, the file pointer will be 
set to the end of the file prior to each write. 

Wrilev will fail and the file pointer will remain unchanged if one or more of 
the following are true: 
(EBADF] Fildes is not a valid file descriptor open for writing. 

(EPIPE and SJGPIPE signall 

[EPIPE] 

(EFBIG] 

(EFAULT] 

[EFAULT] 

[ElNTRI 

An attempt is made to write to a pipe that is not open for 
reading by any process. 
An attempt is made to write to a pipe that is not open for 
reading by any process. 

An attempt was made to write a file that exceeds the 
process's file size limit or the maximum file size. See 
u/imi1(2). 

Part of io1• or data to be written to the file points outside 
the process's allocated address space. 

Bit( points outside the process's allocated address space. 

A signal was caught during the wrilt•r system call. 

If a wrirt•v requests that more bytes be written than there is room for (e.g., 
the u/imil (see u/imi/(2)) or the physical end of a medium), only as many 
bytes as there is room for will be written. For example, suppose there is 
space for 20 bytes more in a file before reaching a limit. A write of 512 
bytes will return 20. The next write of a non-zero number of bytes will 
give a failure return (except as noted below). 

July 26, 1985 



WRITEV(JN) UoiSoft WRITEV(JN) 

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the 
file flag word is set, then write to a full pipe (or FIFO) will return a count of 
0. Otherwise (O NDELAY clear), writes to a full pipe (or FIFO) will block 
until space becorii"es available. 

RETURN VALUE 
Upon successful completion the number of bytes actually written is 
returned. Otherwise, -1 is returned and errno is set to indicate the error. 

SEE ALSO 
creat(2), lseek(2), open(2), pipe(2), socket(2N), ulimit(2). 

July 26, 1985 Page 2 



INTR0(4) INTR0(4) 

NAME 
intro - introduction to file formats 

DESCRIPTION 
This section outlines the formats of various files. The C struct declarations 
for the file formats are given where applicable. Usually, these structures 
can be found in the directories /usr/inelude or /usr/lnclude/sys. 

References of the type name(IM} refer to entries found in Section I of the 
UniP/u5+ Administrator's Manual. 

- I -



ACCT{4) ACCT(4) 

NAME 
acct - per-process accounting file format 

SYNOPSIS 
#Include <sys/aect.b> 

DESCRIPTION 
Files produced as a result of calling acct(2) have records in the form 
defined by <sys/•cet.b>, whose contents are: 

cypedef ushorl comp~t; I• "floating point" •I 
I• 13-bit fraction, 3-bit exponent •/ 

struct occt I 

'""' ac~tlag; 

'""' ac~stat; 

ushorl ac~uid; 

ushort OCJid; 
dev~t ac~ny; 

time~\ ac~blime; 

romp~t ac~utime: 

romp~t ac~stime; 

comp~t ac~elime; 

romp~t ac~mem; 

romp~t ac~io; 

comp~t ""~""' char ac~romml81; ,, 
extern struct '"' acctbuf; 
extern su-uct inode •acctp; 

#define AfOkK 01 
#define ASU 02 
#define ACCTI 0300 

I• Accounting flag •I 
I• Exit status •I 
I• Accounting user ID •I 
I• Accounting group ID •I 
I• control typewriter •f 
I• Beginning time •I 
I• acctng user time in dock tkks •I 
I• IICCIJ\8 system lime in clock licks •I 
I• acctng elapsed time in clock tlcks •I 
I• memory usage in clicks •I 
I• chaJ'll trnsfrd by readfwrite •I 
I• number of block reads/writes •I 
I• command name •I 

I• inode of accounting file •I 

I• has executed fork, but no exec •I 
I• used super-user privileJes •I 
I• record type: 00 ~ ace! •I 

In ac_jfag, the AFORK flag is turned on by each }Ork(2) and turned off by 
an rxec(2). The ac comm field is inherited from the parent process and is 
reset by any exec. Each time the system charges the process with a clock 
tick, it also adds to ac_mem the current process size, computed as follows: 

(data size) + (text size) I (number of in-core processes using text) 

The value of ac meml(ac slime+ ac utime) can be viewed as an approxi­
mation to the mean procesS size, as :nlodified by text-sharing . 

. I . 



ACCT(4) ACCT(4) 

The structure tacet, which resides with the source files of the accounting 
commands, represents the total accounting format used by the various 
accounting commands: 

I• 
• total accoun1in11 (for ace\ period), also for day 

•I 

SlrUCI tacct I 
uid_l ta_uid; I• userid •/ 

'"" ta_name[8); I• login name •I 
noal ta_cpul2l; I• cum. cpu lime, plop (minsl •I 
noat ta_kcore[1]; I• cum kcore-minu\es, plop •I 
Ooo< ta_conl21; I• cum. connect time, plnp, mins •/ 

Ooo< ta_du; I• cum. disk usqe •/ 

<ooo ta_pc; I• COUOI of proeuses •/ 

unsi&ned shurt ta_sc; f • count of lo&in sessions •/ 

unsianed short la_dc; f • count of disk samples •I 
unsl8ned short ta_fee; f• fee for special services •I ,, 

SEE ALSO 

BUGS 

acctOM), acctcom(l), acct(2), exec(2), fork(2). 

The ac_mem value for a short-lived command gives little information about 
the actual size of the command, because oc mem may be incremented while 
a different command (e.g., the sheD) is beiii"g executed by the process . 

• 2 • 



ALIASES(4) (UniSoft) AUASES(4) 

NAMH 
aliases- aliases file for delivennail 

SYNOPSIS 
/usrlliblallases 

DESCRIPnON 
This file describes user ID aliases that will be used by /ete/delivermail. It is 
formatted as a series of lines of the form 

name:addrl ,addr2., ... addrn 

The name is the name to alias. and the aJdri are the addresses to send the mes­
sage to. Lines beginning with white space are continuation lines. Lines begin­
ning with ' # ' are comments. 

Aliasing occurs only on local names. Loops cannot occur since no message 
will be sent to any person more than once. 

SHH ALSO 
delivennail(SN). 

Page I September 28, 1987 



ALTBLK:(4) UniSon ALTBLK(4) 

NAME 
altblk - alternate block information for bad block handling 

SYNOPSIS 
#include <altblk.b> 

DESCRIPTION 
Aftblk is the data structure used by bodbfk(IM) to handle bad blocks for 
disk drives that support soft sector bad block remapping. 

The layout of this structure is as follows: 

#define Mo\XALT SO r max alternale disk blocks*/ 
#define ALTMAUK- OxDBDF I* bad block Information is valid fl~~¥ */ 

,. 
structure for alternate block mappil$ ., 

strue\ a_mop l 
lon1 a_altbk; I* bad block*/ 
lon[l a_index; I* relative bad block Index*/ 

,. 
disk header block Format for alternate l>lock mappinJ ., 

struct altblk l 
char a_~IIIIISil~-sizeof(struct a_ map) -4*sizeofUonJ) I; 

), 

struct a_map a_map[l); 
lorq: a_mqic; 
lonl!l a_count; 
long a_nicbad; 
lorq:a_maxalt; 

I* fill to make structure IISU~ bytes long*/ 
I* mapplnl!l*l 
I* verification code (ALTMAGICI */ 
t• bad block count *I 
I* max number of bad blocks • f 
I* max alt block used so Far •1 

This structure describes the upper portion of block 0 of each physical disk. 
The array a map is inverted (i.e., it is indexed backwards). The specific 
fields in alt&k are: 

a maxalt - the next usable block in bad block area relative to the start of 
- the bad block area 

a_nicbad the maximum number of elements in the a map structure 
a_ count the number of bad blocks currently remapp&i on the disk 
a_magic a magic number for verification 
a_map bad block remap information 

SEE ALSO 
badblk0M) 

- I -



A.OUT(4) A.OUT(4) 

NAME 
a.out - common assembler and link editor output 

DESCRIPTION 
A.out is the output file from the assembler as(l) and the link editor ld(l). 
A.out can be executed on the target machine if there were no errors in ~· 
assembling or linking and no unresolved external references. 

The object file format supports user-defined sections and contains extensive 
information for symbolic software testing. A common object file cons.ists of 
a file header, an optional aout header, a table of section headers, relocation 
information, (optionaJ) line numbers, and a symbol table. The order is 
given below. 

File header. 
Optional aout header. 
Section I header. 

Section n header. 
Section 1 data. 

Section n data. 
Section 1 relocation. 

Section n relocation. 
Section 1 line numbers. 

Section n line numbers. 
Symbol table. 
String table. 

The last four sections (relocation, line numbers, symbol table, and string 
table) may be missing if the program was linked with the -s option of 
/d(l) or if the symbol table and relocation bits were removed by strip(!). 
Also note that if the program was linked without the -r option, the reloca­
tion information will be absent. The string table exists only if necessary. 

When an •• ollt file is loaded into memory for execution, three logical seg­
ments are set up: the text segment. the data segment (initialized data fol­
lowed by uninitialized data, the latter actuaUy being initialized to all O's), 
and a stack. The text segment begins at location 0 in the core image; the 
header is not loaded. If the magic number (the first field in the optional 
aout header) is 407 (octal), it indicates that the text segment is not to be 
write-protected or shared, so the data segment will be contiguous with the 
text segment. If the magic number is 410 (octal), the data segment begins 
at the next segment boundary following the text segment, and the text seg­
ment is not writable by the program. If other processes are executing the 
same •.out file, they wiU share a single text segment. 

On the M68000 family of processors the stack begins at the end of memory 
and grows toward lower addresses. The stack is automatically extended as 
required. The data segment is extended only as requested by the brk(2) 
and sbrk(2) system calls. 

The vaJue of a word in the text or data portions that is not a reference to 
an undefined external symbol is exactly the value that will appear in 

- I -



.r-

··-· 

A.OUT(4} A.OUT(4} 

memory when the file is executed. If a word in the text involves a refer­
ence to an undefined external symbol, the storage class of the symbol-table 
entry for that word will be marked as an "externaJ symbol", and the sec­
tion number wiD be set to 0. When the file is processed by the link editor 
and the externaJ symbol becomes defined, the vaJue of the symbol will be 
added to the word in the file. 

See aouthdr(4), filehdr(4), linenum(4), scnhdr(4), re/oc(4), and syms(4) for 
descriptions of the individuals parts. Every section created by as(l) con­
tains a multiple-of-four number of bytes; directives to /d{l) can create a 
section with an odd number of bytes. 

SEE ALSO 
asO), cc(l), !dO), aouthdr(4), filehdr(4), ldfcn(4), linenum(4), reloc(4), 
scnbdr(4), syms(4). 

- 2 -



A.OUTS.0(4) s,atcm v a.out format 

NAME 
a.outS.O - assembler and link editor output 

SYNOPSIS 
#lnelude <•.out.h> 

DESCRIPTION 

A.OUTS.0(4) 

A.out5.0 is the output file of the assembler as5.0(1) and the link loader 
/d5.0(1). Ld5.0(1) makes a.out5.0 ex~utable if there were no errors and 
no unresolved external references. Layout information as given in the 
include file for the 68000 is: 

' . 

., 

Layout of m.out file: 

helllier of 8 lo!lliS mq.ic number 405, 407, 4 JO, 4 J J 
text size 

header: 
text: 
data: 
symbol table: 
text relOCIItion: 
datil relo<:ation: 

ds.tasize 
bss size 
symbol table size 
text reloe~~tion size 
data relocation size 
enUy point 

0 

" 32 + textsizc 
32 + textslze~ dataslze 
32+ textsize +datasize + symsizc 
32 + texlsize + datasize + symsize + rtexlsize 

I' various parameters 'I 

) in bytes 
) 

) 

) 

#define SYMLENGTH 50 I' maximum tensth of a symbol 'I 

I' types of files 'I 
#define ARCMAGIC 0177545 I* ~diles 'I 
#define FMAGJC ''"' t• standard executable 'I 

#define NMAGJC '"' I" shared text executable'/ 

I" symbol types 0 / 

#define EXTERN ""' I' external '/ 

#define UNDEF 00 I' undeftned 0
/ 

#define "' " I' absolute"/ 

#define TEXT 02 /'tut 'I 
#define DATA 02 /'data'/ 

#define "" " l'bss"l 

#define COMM 05 I' internal use only "I 
#define R~G "' I' register name'/ 

I' relocation regions"/ 
#define RTEXT 00 
#define RDATA " #define """ 02 

#<kline REXT 02 

. I . 



A.OUT5.0(4) System V a.out rormat 

I' relo~a!lon sizes 'I 
#define ltBYH 00 
#deftne RWORD 
#define ~LONG " " 
I' miiCJ'Oil whi~h define various posi!ions in file baso:<l on a bhdr. filhdr 'I 
#define TEXTP!JS Wolli\) sizeof(filhdr)) 

#define DATAI'I.IS 
#define SYMI'OS 

#define MTI:XTPOS 
#define ltDATAP<JS 
#define EJ~;UPOS 

I' header of a.out files'/ 
slrucl bhdr l 

long fmaai~; 

·~· 
!Size; 

(on& dsize; 

lona blize; 

"'"' ssize; 
(on& rlsize; ... rdsize; 

"'"' entry; 

I' 

I" symbol management'/ 
struel sym l 

I' 

... , 
'"" ""' 

stype; 
sympad; 
svalue; 

I' relocotion ~<>mmands 'I 
struct reloc l 

(HXTPOS + lilktdr.ISizc) 
(UATAP!JS + lilhdr.dsizc) 
lsYMI'OS + fllhdr.ssize) 
(II.TEXTPOS + fi(hdr.nsizc) 
(JlUATAPOS + fl(hdr.rdsize) 

I" symbol type 'I 
I" pad«> short ali&n 'I 
/'value'/ 

unsigned rseament:2; I' MHXT. tlUATA.ltDSS. Of Rt:XTI:JtN '/ 
/' JI.8YTic, RWORJJ. or RLOJ~;G '/ unsi11ned rsize:2; 

unsi@ned rdisp:l: 
unsi&ned relpadl:3; 

char relpad2; 

<>M rsymbol: 
lon11 "'" I. 

I" symbol table entry 'I 
stru~t nllst l 

I' I-> a displa~ement '/ 
/'pad('/ 

I' po.d2'/ 
I' id of the symbol of nlerlllll relooations 'I 
I" position o:>f relo<alio:>n In sqment 'I 

ohar n_namel8l; I' symbol name 'I 
int n_type; 

unsi11ned n_value: 

I. 

t• type flaa. 'I 
/'value'/ 

- 2 -

A.OUT5.0(4) 



A.OUT5.0(4) System V a.out rormat A.OUTS.0(4) 

I* values for type Rag 'I 
#<kline N.l'Nlll' ' I* undellned "/ 
#di:llne N_ABS " I* absolute 'I 
#define r->_T~XT " r text symbol 'I 
#define N_llAT,\ " I* data symbol 'I 
#<kline N_IISS " I* bss symbol */ 
#define N_TYP\0 "' #dllfine N_~EG '" I* rqister name 'I 
#define N_J-N "' I* file name symbol 'I 
#define N_J:XT '" I' external bit. or"ed in 'I 
#dllfine HlRMAT "'ll.06o" I' to print a value •1 

The file has four sections; a header, the program and data text, a symbol 
table, and relocation information. The last two may be empty if the pro­
gram was loaded with the - s option of fd5.0 or if the symbols and reloca­
tion have been removed by s/rip(l). 

In the header the sizes of each section are given in bytes, but are even. 
The size of the header is not include<! in any of the other sizes. 

When an a.our5.0 file is loaded into core for execution, three logical seg­
ments are set up; the text segment, the data segment (with uninitialized 
data, which starts off as all 0, following initialized data), and a stack. The 
text segment begins at the user program start address in the core image; 
the header is not loaded. If the magic number in the header is FMAGIC, 
it indicates that the text segment is not to be write-protected and shared, so 
the data segment is immediately contiguous with the text segment. If the 
magic number is NMAGIC, the data segment begins at the next segment -_./ 
boundary following the text segment, and the text segment is not writable 
by the program; if other processes are executing the same file, they will 
share the text segment. 

The stack will occupy the highest possible user program locations in the 
core image and will grow downwards. The stack is automatically extended 
as required. The data segment is only extended as requested by brk(2). 

The start of the text segment in the file is 32(10); the start of the data seg­
ment is 32+St (the size of the text) the start of the relocation information 
is 32+St+Sd; the start of the symbol table is 32+2(St+Sd) if the reloca­
tion information is present, 32+St+Sd if not. 

The layout of a symbol table entry and the principal flag values that distin­
guish symbol types are given in the include file. 

If a symbol's type is undefined external, and the value field is non-zero, 
the symbol is interpreted by the loader fd as the name of a common region 
whose size is indicated by the value of the symbol. 

The value of a word in the text or data portions which is not a reference to 
an undefined external symbol is exactly that value which will appear in core 
when the file is executed. If a word in the text or data portion involves a 
reference to an undefined external symbol, as indicated by the relocation 
information for that word, then the value of the word as stored in the file is 
an offset from the associated external symbol. When the file is processed 
by the link editor and the external symbol becomes defined, the value of 
the symbol will be added into the word in the file . 

• 3 . 



A.OUT5.0(4) Syatem V a.out format A.OUTS.0(4) 

If relocation information is present, it will appear in the form or the struc· 
ture shown above. 

;---- SEE ALSO 
asS.O(l), ld5.0(1), nmS.O(l) 

. 4. 



AOUTHDR{4) AOUTHDR{4) 

NAME 
aouthdr.h • a.out header for common object files 

DESCRIPTION 
Optional a.out header for common object files. 
below. 

The C structure appears 

,. 
• static char lD aouthll - '@(#)aouthdr.h 2.1 "· ., -

typedef struct 
short 
short 
long 

long 
long 

#ifdef u3b 
long 
long 

#endif 
long 
long 
loog 

} AOUTHDR; 

aouthdr [ 
magic; 
vstamp: 
tsize; 

dsize; 
bsize; 

dum!; 
dum2; 

entry; 
text start; 
data-=_start; 

I* see magic.h */ 
I* version stamp */ 
/* text size in bytes, padded to FW 

bdry ., 
I* initialized data • "*I 
I* uninitialized data" "*I 

/""Pad to entry point*/ 

,.-entry pt. •1 
I" base of text used for this file*/ 
r- base of data used for this file•/ 

SEE ALSO 
a.out(4). 

Page I July 22, 1985 



f 
' 

AR(4) AR(4) 

NAME 
ar - common archive file format 

DESCRIPTION 
The archive command ar is used to combine several files into one. 
Archives are used mainly as libraries to be searched by the link editor 
Jd(l). 

Each archive begins with the archive magic string. 

#define ARMAG •!<an:b>\n• I• magic strina: •I 
#define SARMAG 8 /• length of magic string •/ 

Each archive which contains common object files (see a.out(4)) includes an 
archive symbol table. This symbol table is used by the link editor /d{l) to 
determine which archive members must be loaded durins the link edit pro­
cess. The archive symbol table (if it exists) is always the first file in the 
archive (but is never listed) and is automatically created and/or updated by 

"· 
Following the archive magic string are the archive file members. Each file 
member is preceded by a file member header which is of the following for­
mat: 

#define ARFMAG "\n" I• header trailer string •I 

struct ar_hdr I• file member header •/ 
{ 

}; 

'"'' char ..... 
char 
char 
char 

"'" 

ar_namell6); 
ar_datellZI; 
ar_nidl61; 
ar_aidlfil; 
ar_mode(81; 
ar_slzellO); 
ar_fmaal21; 

I• 'I' terminated file member name •/ 
I• file member date •/ 
I• file member user identification •/ 
f* file member group identification •/ 
I• file member mode •/ 
I• file member size •/ 
I• header trailer string •/ 

All information in the file member headers is in printable ASCII. The 
numeric information contained in the headers is stored as decimal numbers 
(except for ar_mode which is in octal). Thus, if the archive contains print­
able files, the archive itself is printable. 

The ar name filed is blank-padded and slash (/) terminated. The ar date 
field is !.he modification date of the file at the time of its insertion intO the 
archive. Common format archives can be moved from system to system as 
Ions as the portable archive command ar(l) is used. 

Each archive file member begins on an even byte boundary; a newline is 
inserted between files if necessary. Nevertheless, the size given reflects the 
actual size of the file exclusive of padding. 

Notice there is no provision for empty areas in an archive file. 

If the archive symbol table exists, the first file in the archive has a zero 
length name (i.e., ar_nameiOI = '/'). The contents of this file are as fol­
lows: 

• The number of symbols. Length: 4 bytes . 

. I . 



AR(4) AR(4) 

• The array of offsets into the archive file. Length: 4 bytes • "the 
number of symbols". 

• The name string table. LeilJtb: ar_ size - (4 bytes • ("the number of 
symbols" +1)). The number of symbols and the array of offsets are 
managed with sgetl and sputl. The string table contains exactly as many 
nuU terminated strings as there are elements in the offsets array. Each 
offset from the array is associated with the corresponding name from 
the string table (in order). The names in the string table are all the 
defined global symbols found in the common object files in the archive. 
Each offset is the location of the archive header for the associated sym­
bol. 

SEE ALSO 
ar(l), ld(l), strip(l), sputl(3X), a.out(4). 

WARNINGS 
Strip(I) will remove all archive symbol entries from the header. The 
archive symbol entries must be restored via the s option of the arO) com­
mand before the archive can be used with the Unk editor /d(l) . 

. 2. 



··--

AR5.0(4) System V a.out format only AR5.0(4) 

NAME 
ar5.0 - archive (library) file format 

SYNOPSIS 
#Include <ar.b> 

DESCRIPTION 
The archive command ar5.0 is used to combine several files into one. 
Archives are used mainly as libraries to be searched by the link-editor ld5.0. 

A file produced by ar5.0 has a magic number at the start, followed by the 
constituent files, each preceded by a file header. The magic number and 
header layout as described in the include file are: 

#define ARFMAG 0177545 

struct ar_hdr { 

'"'" long 

I; 

short 
short 
short 
long 

ar namell4]; 
ar=date; 
ar uid; 
ar=gid; 
ar_mode; 
ar_size; 

The "ar fmag• field contains the 32-bit number ARFMAG to help verify the 
presenOO of a header. The name is a blank padded string. The other fields 
are left-adjusted, blank-padded numbers. They are decimal except for 
"ar mode", which is octal. The date is the modification date of the file at 
the-time of its insertion into the archive. 

Each file begins on an even (0 mod 2) boundary; a new-line is inserted 
between files if necessary. Nevertheless the size given reftects the actual 
size of the file exclusive of padding. 

There is no provision for empty areas in an archive file. 

SEE ALSO 

BUGS 

ar5.00), ldS.O(l), nmS.O(l) 

File names lose trailing blanks. Most software dealing with archives takes 
even an included blank as a name terminator. 

- I -



CHECKLIST ( 4} CHECKLIST ( 4} 

NAME 
checklist - list of file systems processed by fsck 

DESCRIPTION 
Checklist resides in directory /elc and contains a list of at most 15 special 
filenames. Each special filename is contained on a separate line and --
corresponds to a file system. If no file-system argument is provided to 
ftck(IM), each file listed in /etc/checklist is automatically read and 
checked for inconsistencies. 

SEE ALSO 
fsck(IM). 

• 1 • 



COR1!(4) CORI!(4) 

NAME 
core - format of core image file 

DESCRIPTION 
The UNIX System writes out a core image of a terminated process when any 
of various errors occur. See signa/(2) for the Jist of reasons; the most com­
mon are memory violations, iUegal instructions, bus errors, and user­
generated quit signals. The core image is called core and is written in the 
process's working directory (provided it can be; normal access controls 
apply). A process with an effective user ID different from the real user ID 
will not produce a core image. 

The first section of the core image is a copy of the system's per-user data 
for the process, including the registers as they were at the time of the fault. 
The size of this section depends on the parameter USIZE , which is defined 
in /uu/include/sys/param.b. The remainder represents the actual coo­
tents of the user's core area when the core image was written. If the text 
segment is read-only and shared, or separated from data space, it is not 
dumped. 
The format of the information in the first section is described by the user 
structure of the system, defined in /usr/lnelude/sys/user.h. The impor­
rant stuff not detailed therein is the locations of the registers, which are 
outlined in /usr/luclude/sys/ret;.b. 

SEE ALSO 
setuid(2), signaH2). 

- I -



CPI0(4) CPI0(4) 

NAME 
cpio - format of cpio archive 

DESCRIPTION 
The header structure, when the -c option of cpio(l) is not used, is: 

struct { 

I Hdr; 

short h magic, 
h-dev; 

ushort h)no, 
h mode, 
h=uid, 
h_gid; 

short h nlink, 
h-rdev, 
h-mtime(2], 
h-namesize, 
h)ilesize(2]; 

char h_name(h_namesize rounded to word]; 

When the -c option is used, the header information is described by: 

sscanf( Chdr ,"%6o%6o%6o%6o%6o%6o%6o%6o% lllo%6o% lllo%s", 
&Hdr.h magic, &Hdr.h dev, &Hdr.h ino, &Hdr.h mode, 
&Hdr.h-uid, &Hdr.h_gid, &Hdr.h nlfnk, &Hdr.h rdev, 
&Longtime, &Hdr.h_namesize,&Congfile,Hdr.h_iiame); 

Longtime and Longji/e are equivalent to Hdr.h_mtime and Hdr.h_jilesize, 
respe~;:tively. The contents of each file are recorded in an element of the 
array of varying length structures, archive, together with other items 
describing the file. Every instance of h magic contains the constant 070707 
(octal). The items h_dev through h_lntime have meanings explained in 
S/a/(2). The length of the null-terminated path name h name, including 
the null byte, is given by h_namesize. -

The last record of the archive always contains the name TRAILER!!!. Special 
files, directories, and the trailer are re<:orded with h_jilesize equal to zero. 

SEE ALSO 
cpio(l), IindO), stat(2). 

. I . 



·---

DIR(4} DIR(4) 

NAME 
dir - format of directories 

SYNOPSIS 
#Include <sys/dlr.h> 

DESCRIPI'ION 
A directory behaves exactly like an ordinary file, save that no user may 
write into a directory. The fact tbat a file is a directory is indicated by a bit 
in the flag word of its i-node entry (see j$(4)). The structure of a directory 
entry as given in the include file is: 

#ifndef DIRSIZ 
#define DIRSIZ 14 
#endif 

struct 
d_ino; 

direct { 
ino_t 
char d _ name{DIRSIZ] ; 

I; 
By convention, the first two entries in each directory are for . and • .. The 
first is an entry for the directory itself. The second is for tbe parent direc­
tory. The meaning of •• is modified for the root directory of the master file 
system; there is no parent, so .• bas the same meaning as .. 

SEE ALSO 
fs(4). 

- I -



EJUtPILE { 4) ERRFILE(4} 

NAME 
errfi.Je - error-Jog file format 

DESCRIPTION 
When hardware errors are detected by the system, an error record is gen­
erated and passed to the error-Jogging daemon for recording in the error Jog 
for later analysis. The default error log is /usr/adm/errlile. 

The format of an error record depends on the type of error that was 
encountered. Every record, however, has a header with the following for­
mat: 
struct errhdr [ 

,, 
short 
short 
time_! 

e_type; 
e_len; 
e_time; 

f• record type •f 
f• bytes in record line hdr) •f 
/•timeofday•f 

The permissible record types are as follows: 

#deftne L_UIJTS '" f• start for the UNJlliTS•I 

#deftne E_GIIII.T "' I• start for the UNilliii.T*I 

#define E _STOP "' I• stop •/ 

#define ~.TCHG '" I• time change •I 
#deline E _ n-nu '" f• conft,uration chanae •/ 
#define E_BlK '" f• block device error •I 
#define E_HII.AY '" I• stray interrupt•/ 

#define E]IIT\' "' I• memmy parity •f 

Some records in the error file are of an administrative nature. These 
include the startup record that is entered into the file when logging is 
activated, the stop record that is written if the daemon is terminated 
"gracefully", and the time-change record that is used to account for 
changes in the system's time-of-day. These records have the following for­
mats: 
struct estart [ 

short 
struct utsname 

I. 

#define eend errhdr 

struct etimchg [ 
time_! ,, 

e_cpu; 
e_name; 

e_ntime: 

I• CPU type •I 
I• system names •I 

I• record header •I 

I• new time •I 

Stray interrupts cause a record with the following format to be logged: 

struct estray [ 
ulnt e_saddr; I• stray loc or device addr •I ,, 

Generation of memory subsystem errors is not supported in this release. 

Error records for block devices have the following format: 

- I -



DIR(4) DIR(4) 

NAME 
dir - format of directories 

SYNOPSIS 
#indude <sys/dir.h> 

DESCRIPTION 
A directory behaves exactly like an ordinary file, save that no user may 
write into a directory. The fact that a file is a directory is indicated by a bit 
in the flag word of its i-node entry (see /s(4)). The structure of a directory 
entry as given in the include file is: 

#ifndef DIRSIZ 
#define DIRSIZ 14 
#endif 

struct 

}; 

direct { 
ino_t , . ., d_ino; 

d_name(DIRSIZ); 

By convention, the first two entries in each directory arc for • and • •. The 
first is an entry for the directory itself. The second is for the parent direc· 
tory. The meaning of •• is modified for the root directory of the master file 
system; there is no parent, so •• has the same meaning as •. 

SEE ALSO 
fs(4). 

. I . 



ERRFILE(4) ERRFILE(4} 

NAME 
errfile - error-Jog file format 

DESCRIPTION 
When hardware error$ are detf;lcted by thf;l system, an error record is gen­
erated and passed to the error-logging daemon for recording in the error los 
for later analysis. The default error los is /usr/adm/errfl.le. 

The format of an error record depends on the type of error that was 
encountered. Every record, however, has a header with the following for­
mat; 

struct errhdr [ 

,, 
sltort 

'""" lime_ I 

e_type; 
e_len; 
e_time; 

I• record t~pe •I 
I• bytes in reaml Hnc ltdr) •I 
I• time of d~ •I 

The permissible record types are as follows; 

#de6ne l_UOT5 "'' I• start for the Ut<t~ln•l 
#define E_GURT '" I• start for Ute UNIX/RT*I 

#define E_STOP "" I• stop •/ 

#define l_Tntu '" I• time chanae •I 
#define E_('(ltG '" I• configuration change •I 
#define E_BLK '" I• block device error •I 
#define E_~TRA\ '" I• stray interrupt •I 
#define ~_PRTY "' I• memor~ parity •I 

Some records in the error file are of an administrative nature. These 
include the startup record that is entered into the file when logging is 
activated, the stop record that is written if the daemon is terminated 
"gracefully", and the time-change record that is used to account for 
changes in the system's time-of-day. These records have the following for­
mats: 

struct estart [ 

short 
struct utsn11me ,, 

#define eend crrhdr 

struct etimchg ( 
time_! ,, 

e_cpu; 
e_noiiM!; 

e_ntime; 

f• ('PU type •I 
I• system names •f 

I• record header •I 

I• new time •I 

Stray interrupts cause a record with the following format to be logged: 

struct estray ( 
uint e_saddr; I• stray Inc or device addr •/ ,, 

Generation of memory subsystem errors is not supported in this release. 

Error records for block devices have the following format: 

. I . 



~-( 

-

ERilFILE ( 4) 

struct eblock [ 

,, 

dev_te_dev; 
ph~sadr 

shon e_bocty; 

struct iostat l 
long 

""' ushort 

short e_bflags; 
short e_ c~lolf; 
daddr_t 
ushort 
paddr_t 
ushort 
short e_nreg; 

EllRFILE ( 4) 

I• 'true' mlljor + minor dev no •I 

e_reale<:; I• controller address •I 
I• other block 110 activity •I 

io_ops; 
io_misc; 
io_unlog; 
e_stats; 

I• number read/writes •/ 
I• number 'other' operations •I 
I• number unlossed errors •I 

I• read/write, error, etc •I 
I• IO&kal dev s!Brt cyl •I 
e_bnum; I• logical block number •/ 
e_b)'tes; 
e_memadd; 

e_rtry; 

I• number bytes to transfer •I 
I• buffer mem<>ry address •/ 
I• number retries •I 

I• number device re11isters •I 

The following values are used in lhe e_bjlags word: 

#dellne ~_WiltTI' ' I• write <>peration •I 
#define l_llloAJJ I• read operation •I 
#define l_NOI<! " I• no 110 pendiO& •/ 
#define E_PilYS "' I• physical I/O •I 
#define l_IOMMAT "" I• Formatlina Dist•/ 
#define tc_~llllOil "" I• J/o failed •/ 

SEE ALSO 
errdemon(IM). 

- 2 -



FILBHDR(4) FILEHDR(4) 

NAME 
filehdr - file header for common object files 

SYNOPSIS 
#include <filebdr.b> 

DESCRIPTION 
Every common object file begins with a 20-byte header. The following C 
struet declaration is used: 

struct filehdr 
I 

I; 

unsigned short 
unsigned short 
long 
long 
long 
unsigned short 
unsigned short 

f magic; 
f-nscns; 
(timdat; 
f symptr; 
f-nsyms; 
(opthdr; 
f_flags; 

I• magic number •/ 
I• number of sections •I 
I• time & date stamp •I 
I• file ptr to symtab •I 
I• # symtab entries •I 
I• sizeof(opt hdr) •I 
I• flags •I 

F_symptr is the byte offset into the file at which the symbol table can be 
found. Its value can be used as the offset in fteek(JS) to position an 1/0 
stream to the symbol table. See aouthdr(4) for the structure of the optional 
aout header. The valid magic number is: 

#define MC68MAGIC 0520 I• magic number •I 
The value in f timdat is obtained from the time(2) system call. Flag bits 
currently defined are: 

SBE ALSO 

#define F _RELFLG 00001 
#define F EXEC 00002 
#define F-LNNO 00004 
#define F=LSYMS 00010 
#define F MINMAL 00020 
#define F-UPDATE 00040 
#define F=SWABD 00100 
#define F_AR16WR 00200 
#define F AR32WR 00400 
#define F=AR32W 01000 
#define F_PATCH 02000 

I• relocation entries stripped •I 
I• file is executable •I 
I• line numbers stripped •I 
I• local symbols stripped •I 
I• minimal object file •I 
I• update file, ogen produced •I 
I• file is "pre-swabbed" •I 
I• 16-bit DEC host •/ 
I• 32-bit DEC host •I 
I• non-DEC host •I 
I• "patch" list in opt hdr •I 

time(2), fseek(JS), a.out(4), aouthdr(4) . 

. I . 



( 

FS(4) FS (4} 

NAME 
file system - format of system volume 

SYNOPSIS 
#ladude <s)'s/ftls)'s.h> 
#include <sys/lypes.h> 
#Include <sys/param.b> 

DESCRIPTION 
Every file system storage volume has a common format for certain vital 
information. Every such volume is divided into a certain number of 512-
byte long sectors. Sector 0 is unused and is available to contain a bootstrap 
program or other information. 

Sector I is the :;uperb/ock. The format of a superblock is: ,. 
• Structure of the superblock ., 
·~· 

filsys 

ushon s_isi•e; I• size in blocks of i·list •/ 
daddr_l s_fslu; I• size in bloclts of entire volume •I 

'""" s_nfree; I• number of addresses in s_free •I 
daddr_t s_freeiNtCFREEJ; I• free block list •I 
short s_ninode; I• number uf inodeo in s_inode •I 
ino_t s_lnodeiNKJNOD]; /• free inode list •/ 
chor s_Roclt; I• Jock during free list monipuholiun •I 
.~. s_ilol:k: I• loclt during 1-llst rnanipulollun •I 
char s_frnod; I• superblock modified 0&& •I 
.~. s_ronly; I• mounled read-only Ros •/ 
time_! s_lime; /•last superblock update •/ 
short s_dinfo[4]; I• device infurmaliun •I 
daddr_t s_lfree; I• tolal free blockr/ 
lno_t s_linode; I• tolal free inodes •I 
cbor s_fname[6]; I• file system name •I 

·~· 
s_fpack[6]; I• file system pack name •/ 

·~ 
s_ftllll4]; I• ADJUST size of IIJsys tu S 12 •I 

ino_t s_tasli; I• slart place for ci"'ular su"'ll •I 
ino_t s_nbehind; I• est# free inodes befure s_lasli •I 

"'"' s_magic; I• rnasic number to indicate newllle system •I 

""' s_type; I• type of new file system •I ,, 
#define l's~lAGlt" Oxfdl87e20 I• ~_mallie number •/ 
#deline Fslb ' I• 512·byte block •/ 
#delirre Fs2b 2 I• 1024-byte bloc~ •I 
#deline Fs4b ' I• 2048·byte block •/ 

S type indicates the file system type. Currently, two types of file systems 
are supported: the original 512-byte oriented and the new improved 1024-
byte oriented. S magic is used to distinguish the original 512-byte oriented 
file systems from the newer file systems. If this field is not equal to the 
magic number, F:;MAGIC, the type is assumed to be Fslb, otherwise the 
s type field is used. In the following description, a block is then determined 
bY the type. For the original 5 12-byte oriented file system, a block is 512 

. I . 



FS(4) FS (4) 

bytes. For the 1024-byte oriented file system, a block is 1024 bytes or two 
sectors. The operating system takes care of all conversions from logical 
block numbers to physical sector numbers. 

S isge is the address of the first data block after the i-list; the i-list starts 
jUst after the super-block, namely in block 2; thus the i-list is s~isize-2 
blocks long. SJsize is the first block not potentially available for allocation 
to a file. These numbers are used by the system to check for bad block 
numbers; if an "impossible" block number is allocated from the free list or 
is freed, a diagnostic is written on the on-line console. Moreover, the free 
array is cleared, so as to prevent further allocation from a presumably cor­
rupted free list. 

The free list for each volume is maintained as follows. The s_free array 
contains, in sJree[IJ, ... , sJree[s_nfree-IJ, up to 49 numbers of free 
blocks. SJree(OJ is the block number of the head of a chain of blocks con­
stituting the free list. The first long in each free-chain block is the number 
{up to SO) of free-block numbers listed in the next SO longs of this chain 
member. The first of these SO blocks is the link to the next member of the 
chain. To allocate a block: decrement s rifree, and the new block is 
sJreeis_rifreeJ. If the new block number is-0, there are no blocks left, so 
give an error. If s 17/ree became 0, read in the block named by the new 
block number, replice s rifree by its first word, and copy the block numbers 
in the next SO longs intO the sJree array. To free a block, check if s_njree 
is SO; if so, copy s_rifree and the sJree array into it, write it out, and set 
s rifree to 0. In any event set sJreels nfreel to the freed block's number 
aDd increment s_nfree. -

S_tfree is the total free blocks available in the file system. 

S_ninode is the number of free i-numbers in the s_inode array. To allocate 
an inode: if s ninode is greater than 0, decrement it and return 
s lnodels nlnode[ If it was 0, read the i-list and place the numbers of all 
ffee inocies (up to 100) into the s inode array, then try again. To free an 
inode, provided s nlnode is teSs than 100, place its number into 
s inode(s ninodeJ aild increment s ninode. If s ninode is already 100, do 
nOt both'Cr to enter the freed inode into any table. This list of inodes is 
only to speed up the allocation process; the information as to whether the 
inode is really free or not is maintained in the inode itself. 

S_tinode is the total free inodes available in the file system. 

S..Jiock and s_ilock are flags maintained in the core copy of the file system 
while it is mounted and their values on disk are immaterial. The value of 
s_)mod on disk is likewise immaterial; it is used as a flag to indicate that the 
S!,!per-block has changed and should be copied to the disk during the next 
periodic update of file system information. 

S_ronly is a read-only flag to indicate write-protection. 

S time is the last time the super-block of the file system was changed, and 
is-the number of seconds that have elapsed since 00:00 Jan. I, 1970 (GMT). 
During a reboot, the ·s time of the super-block for the root file system is 
used to set the system's-idea of the time. 

S_fname is the name of the file system and s_jjmck is the name of the pack. 

1-numbers begin at I, and the storage for inodes begins in block 2. Also, 
inodes are 64 bytes long. Inode I is reserved for future use. Inode 2 is 

• 2 . 



FS (4) 

FILES 

FS(4) 

reserved for the root directory of the file system, but no other i-number 
has a built-in meanilll!- Each inode represents one file. For the format of 
an inode and its flags, see lnode(4). 

I usr/include/sys/fi.lsys. h 
/usr/ include/ sys/ stat.h 

SEE ALSO 
fsck(IM), fsdb(IM), mkfs(IM), inode(4) . 

. 3. 



FSPEC (4) FSPEC(4) 

NAME 
fspec - format specification in text files 

DESCRIPTION 
It i$ $0metimes convenient to maintain text files on the UNIX System with 
non-standard tabs, (i.e., tabs which are not set at every eighth column). 
Such files must generally be converted to a standard format, frequently by 
replacing all tabs with the appropriate number of spaces, before they can be 
processed by UNIX System commands. A format specification occurring in 
the first line of a text file specifies how tabs are to be expanded in the 
remainder of the file. 
A format specification consists of a sequence of parameters separated by 
blanks and surrounded by the brackets <: and :>. Each parameter con­
sists of a key letter, possibly followed immediately by a value. The follow­
ing parameters are recognized: 

tlabs The t parameter specifies the tab settings for the file. The value 
of tabs must be one of the following: 
I. a list of column numbers separated by commas, indicating 

tabs set at the specified columns; 
2. a - followed immediately by an integer n, indicating tabs at 

intervals of n columns; 
3. a - followed by the name of a "canned" tab specification. 

Standard tabs are specified by t-8, or equivalently, 
t1,9,17,25,etc. The canned tabs which are recognized are defined 
by the tabs(l) command. 

uize The s parameter specifies a maximum line size. The value of size 
must be an integer. Size checking is performed after tabs have 
been expanded, but before the margin is prepended. 

mmargln Them parameter specifies a number of spaces to be prepended to 
each line. The value of margin must be an integer. 

d The d parameter takes no value. Its presence indicates that the 
line containing the format specification is to be deleted from the 
converted file. 

e The e parameter takes no value. Its presence indicates that the 
current format is to prevail only until another format specification 
is encountered in the file. 

Default values, which are assumed for parameters not supplied, are t- 8 
and mO. If the s parameter is not specified, no size checking is performed. 
If the first line of a file does not contain a format specification, the above 
defaults are assumed for the entire file. The following is an example of a 
line containing a format specification: 

• <:tS,IO,IS s72:> • 
If a format specification can be disguised as a comment, it is not necessary 
to code the d parameter. 
Several UNIX System commands correctly interpret the format specification 
for a file. Among them is gath which may be used to convert files to a 
standard format acceptable to other UNIX System commands. 

SEE ALSO 
ed(l), newformO), tabs(!). 

- I -



GEITYDEFS(4) GETTYDEFS (4) 

NAME 
gettydefs - speed and terminal settings used by getty 

DESCRIPTION 
The /elc/gettydefs file contains information used by gerry(lM) to set up 
the speed and terminal settinp for a line. It supplies information on what 
the login prompt should look like. It also supplies the speed to try next if 
the user indicates the current speed is not correct by typilli a <break> 
character. 
Each entry in /ete/gettydefs has tile followilli format: 

label# initial-flags # finaL-flags # login-prompt #next-label 

Each entry is followed by a blank line. The various fields can contain 
quoted characters of the form \b, \n, \c, etc., as well as \nnn, where nnn is 
the octal value of the desired character. The various fields are; 

label 

initial-flags 

jlnal-flags 

This is the string against which getty tries to match its second 
argument. It is often the speed, such as 1200, at which the 
terminal is supposed to run, but it need not be (see below). 

These flags are the initial ioctf(2) settings to which the ter­
minal is to be set if a terminal type is not specified to getty. 
The flags that getty understands are the same as the ones 
listed in /asr/include/sys/lermlo.h (see termlo(1)). Nor­
mally only the speed flag is required in the initio/-jfogs. 
Getty automatically sets the terminal to raw input mode and 
takes care of most of the other flags. The lniria/-flog settings 
remain in elfect until getty executes log/nO). 

These flags take the same values as the Initial-flags and are 
set just prior to getty executes login. The speed flag is again 
required. The composite flags SANE or SANEl take care of 
most of the other flags that need to be set so that the pro­
cessor and terminal are communicating in a rational fashion. 
The other two commonly specified final-flags are T ABJ, so 
that tabs are sent to the terminal as spaces, and HUPCL, so 
that the line is hulli up on the final close. Flag attributes 
are added from le{t to right, flags that start with a - are sub­
tracted, e.g., SANE "PARENB. SANE is defined to be 
BRKINT IGNPAR ISTRIP ICRNL IXON OPOST ONLCR 
CS7 PARENB CREAD ISIG ICANON ECHO ECHOK. 
SANE2 is the same as SANE but with eight bits and no par­
ity, e.g., SANE2 - SANE ·cs7 CS8 "PARENB. 

login·pN)111pt This entire field is printed as the logln·prompt. Unlike the 
above fields where white space is ignored (a space, tab or 
new-line), they are included in the /ogln·prompt field. 

If this entry does not specify the desired speed, indicated by 
the user typing a <break> character, then gelty will search 
for the entry with next-lobef as its Iobel field and set up the 
terminal for those settings. Usually, a series of speeds are 
linked together in this fashion, into a closed set; For 
instance, 2400 linked to 1200, which in turn is linked to 
300, which finally is linked to 2400. 

- I -



GETTYDEFS(4} GETTYDEFS(4) 

FILES 

If getty is called without a second argument, then the first entry of 
/etc/gettydds is used, thus making the first entry of /etc/gett)·defs the 
default entry. It is also used if getty can not find the specified label. If 
/etc/gettydefs itself is missing, there is one entry built into the command 
which will bring up a terminal at 300 baud. 

It is strongly recommended that after making or modifying /etc/gettydefs, 
it be run through getty with the check option to be sure there are no errors. 

The following four symbols define the state. 

#define ISANE (BRKINTIIGNPARIISTRIPIICRNLIIXON) 
#define OSANE (OPOSTIONLCR) 

#define CSANE (CS7IPARENBICREAD) 

#define LSANE (ISIG IICANON I ECHO IECHOK) 

/etc/gettydefs 

SEE ALSO 
login()), ioctl(2). 
getty (1M), termio(7) in the Administmtor Rejf>rence Manual. 

- 2 -



GROUP(4) GROUP(4) 

NAME 
group - group file 

DESCRIPTION 

FILES 

Group contains for each gro1,1p the following information: 

group name 
encrypted password 
numerical group ID 
comma-separated list of all user allowed in the group 

This is an ASCII file. The fields are separated by colons; each group is 
separated from the next by a new-line. If the password field is null, no 
password is demanded. 

This file resides in directory /etc. Because of the encrypted passwords, it 
can and does have general read permission and can be used, for example, 
to map numerical group ID's to names. 

/etc/group 

SEE ALSO 
newgrp(l), passwd(l), crypt(3C), passwd(4). 

- I -



HOSTS(4N) UniSoft HOSTS(4N) 

NAME 
hosts - host name data base 

DESCRIPTION 

FILES 

The has/s file contains information regarding the known hosts on the 
DARPA Internet. For each host a single line should be present with the 
following information: 

official host name 
Internet address 
aliases 

Items are separated by any number of blanks and/or tab characters. A 
"#" indicates the beginning of a comment; characters up to the end of the 
line are not interpreted by routines which search the file. This file is nor­
mally created from the official host data base maintained at the Network 
Information Control Center (NIC), though local changes may be required 
to bring it up to date regarding unofficial aliases and/or unknown hosts. 

Network addresses are specified in the conventional"." notation using the 
inet addr{) routine from the Internet address manipulation library, 
inei(JN). Host names may contain any printable character other than a 
field delimiter, newline, or comment character. 

/etc/hosts 

SEE ALSO 
gethostent(JN) 

BUGS 
A name server should be used instead of a static file. A binary indexed file 
format should be available for fast access. 

- I -



INITIAB(4) INITTAB(4) 

NAME 
inittab - script for the init process 

DESCRIPTION 
The i11ittab file 91,1pplies the $Cript to i11it's role as a general process 
dispatcher. The process that constitutes the majority of /nit's process 
dispatching activities is the line process /etd1etty that initiates individual 
terminal lines. Other processes typically dispatched by i11it are daemons and 
the shell. 
The i11itwh file is composed of entries that are position dependent and have 
the following format: 

id:rstate:action:process 

Each entry is delimited by a newline, however, a backslash (\)preceding a 
newline indicates a continuation of the entry. Up to 512 characters per 
entry are permitted. Comments may be inserted in the prQCest~ field using 
the sh(l) convention for comments. Comments for lines that spawn genys 
are displayed by the who(!) command. It is expected that they will contain 
some information about the line such as the location. There are no limits 
(other than maximum entry size) imposed on the number of entries within 
the lnlttah file. The entry fields are: 
ld This is one or two characters used to uniquely identify an entry. 

rstate This defines the run-level in which this entry is to be processed. 
Run-levels effectively correspond to a configuration of processes in 
the system. That is, each process spawned by init is assigned a 
run-level or run-le~~els in which it is allowed to exist. The run-levels 
are represented by a number ranging from 0 through Ci. As an 
example, if the system is in run-level 1, only those entries having 
a 1 in the rstare field will be processed. When /nit is requested to 
change run-levels, all processes which do not have an entry in the 
rstote field for the target run-level will be sent the warning signal 
(SIGTERM) and allowed a 20-sccond grace period before being 
forcibly terminated by a kill signal (SIGKILL). The rskltefield can 
define multiple run-levels for a process by selecting more than one 
run-level in any combination from 0- Ci. If no run-level is 
specified, then the process is assumed to be valid at all run-levels 
0-Ci. There are three other values, a, band c, which can appear 
in the rstate field, even though they are not true run-levels. 
Entries which have these characters in the rstate field are pro­
cessed only when the telinit (see initOM)) process requests them 
to be run (regardless of the current run-level of the system). They 
differ from run-levels in that init can never enter run-level a, b or c. 
Also, a request for the execution of any of these processes does 
not change the current run-level. Furthermore, a process started 
by an a, b or c command is not killed when init changes levels. 
They are only killed if their line in /etc/lnlttab is marked olf in 
the action field, their line is deleted entirely from /elc/iniltab, or 
inil goes into the SINGLE USER state. 

action Key words in this field tell init how to treat the process specified in 
the process field. The actions recognized by init are as follows: 

res pawn If the process does not exist then start the process, 
do not wait for its termination (continue scanning 

- I -



INITTA8(4) 

wait 

onu 

.... 

bootwalt 

powerfail 

powerwait 

off 

ondemand 

INITTAB(4) 

the inittob file), and when it dies restart the process. 
If the process currentJy exists then do nothing and 
continue scanning the inittob file. 

Upon init's entering the run-/eve/ that matches the 
entry's rstate, start the process and wait for its termi­
nation. All subsequent reads of the inittab file while 
init is in the same run-level wiU cause init to ignore 
this entry. 

Upon init's entering a run-level that matches the 
entry's rstote, start the process, do not wait for its 
termination. When it dies, do not restart the pro­
cess. If upon entering a new run-level, where the 
process is still running from a previous run-level 
change, the program will not be restarted. 

The entry is to be processed only at /nit's boot-time 
read of the lnittab file. !nit is to start the process, not 
wait for its termination; and when it dies, not restart 
the process. In order for this instruction to be mean­
ingful, the rslate should be the default or it must 
match init's run-level at boot time. This action is use­
ful for an initialization function following ·a hardware 
reboot of the system. 
The entry is to be processed only at init's boot-time 
read of the inittab file. /nit is to start the process, 
wait for its termination and, when it dies, not restart 
the process. 

Execute the process associated with this entry only 
when init receives a power fail signal (SIGPWR see 
signa/(2)). 

Execute the process associated with this entry only 
when init receives a power fail signal (SIGPWR) and 
wait until it terminates before continuing any pro­
cessing of inittob. 

If the process associated with this entry is currently 
running, send the warning signal (SIGTERM) and 
wait 20 seconds before forcibly terminating the pro­
cess via the kill signal (SIGKILL). If the process is 
nonexistent, ignore the entry. 

This instruction is really a synonym for the respawn 
action. It is functionally identical to respawn but is 
given a different keyword in order to divorce its asso­
ciation with run-levels. This is used only with the a, 
b or c values described in the rstate field. 

lnltdefault An entry with this oct/on is only scanned when init 
initially invoked. /nit uses this entry, if it exists, to 
determine which run-level to enter initially. It does 
this by taking the highest run-level specified in the 
rstate field and using that as its initial state. If the 
rstate field is empty, this is interpreted as 0123456 
and so /nit will enter run-level 6. Also, the 

- 2 -



INITTAB(4) INITTAB(4) 

FILES 

Sf sin it 

lnitdefault entry cannot specify that /nit start in the 
SINGLE USER state. Additionally, if initdoes not find 
an initdefauU entry in /etc/inittab, then it wiU 
request an initial run-level from the user at reboot 
time. 
Entries of this type are executed before init tries to 
access the console. It is expected that this entry will 
be only used to initialize devices on which lnlt might 
try to ask the run-le~~ef question. These entries are 
executed and waited for before continuing. 

process This is a sh command to be executed. The entire JR'o«Ss field is 
prefixed with exec and passed to a forked sh as sh -e 'exec com. 
momf. For this reason, any legal sh syntax can appear in the pro­
cess field. Comments can be inserted with the ; #comment syntax. 

/etc/inittab 

SEE ALSO 
sh(l), who(l), exec(2), open(2), signal(2). 
gettyUM), initOM) in the Administrotor Manual. 

- 3-



INODE(4) 

NAME 
inode - format of an inode 

SYNOPSIS 
#indude <s)'slt)'pes.h> 
#include <s)'s/lno.h> 

DESCRIPTION 

INODE(4) 

An i-node for a plain file or directory in a file system has the following 
structure defined by <sys/lno.b>. 

FILES 

I• !node structure as it appears on a disk block. •/ 
struct dinode { 

}; 

I• 

ushort 
short 
ushort 
ushort 
off I 
chir 
time t 
time=t 
time_t 

di_mode; 
di_nlink; 
di uid; 
dCgid: 
di size; 
dr addr[40l; 
dCatime; 
di mtime; 
dCctime; 

• the 40 address bytes: 

•I 

39 used; 13 addresses 
of J bytes each. 

I• mode and type of file •I 
I• number of links to file •/ 
I• owner's user id •I 
I• owner's group id •/ 
I• number of bytes in file •/ 
I• disk block addresses •/ 
I• time last accessed •/ 
I• time last modified •I 
I• time created •/ 

For the meaning of the defined types ojf_t and lime_/ see lypes(5). 

I usr I include/ sys/ ino.h 

SEE ALSO 
stat{2), fs(4), types(5). 

. I . 



ISSUE(4) ISSUE(4) 

NAME 
issue - issue identification file 

(' DESCRIPTION 
The file /etc/Issue contains the Issue or project identification to be printed 
as a login prompt This is an ASCU file which is read by program getty and 
then written to any terminal spawned or respawned from the lines file. 

PILES 
/etc/issue 

SEE ALSO 
login<O. 

. I . 



LDFCN(4) LDFCN(4) 

NAME 
ldfcn - common object file access routines 

SYNOPSIS 
#laclnde <stdio.h> 
#laclnde <lilehdr.h> 
#im:lnde <ldfcn.h> 

DESCRIPTION 
The common object file access routines are a collection of functions for 
reading an object file that is in common object file form. Although the cal· 
ling program must know the detailed structure of the parts of the object file 
that it processes, the routines effectively insulate the calling program from 
knowledge of the overall structure of the object file. 

The interface between the calling program and the object file access rou· 
tines is based on the defined type LDFILE (defined as struct ldfile), which 
is declared in the header file < ldfca.h>. The primary purpose of this 
structure is to provide uniform access to both simple object files and object 
files that are members of an archive file. 

The function /dopen(3X) allocates and initializes the LDFILE structure and 
returns a pointer to the structure to the calling program. The fields of the 
LDFILE structure may be accessed individually through macros defined in 
<ldfcn.h> and contain the following information: 
LDFILE •ldptr; 

TYPE(Idptr) 

IOPTR(idptr) 

The file magic number, used to distinguish between 
archive members and simple object files. 

The file pointer returned by fopen(3S) and used by the 
standard input/output functions. 

OFFSET(Idptr) The file address of the beginning of the object file; the 
offset is non-zero if the object file is a member of an 
archive file. 

HEADER(Idptr) The file header structure of the object file. 

The object file access functions may be divided into four categories: 

(I) functions that open or close an object file 

ldopen(3X) and ldaopen 
open a common object file 

/ddose(JX) and /dac/o:;e 
close a common object file 

(2) functions that read header or symbol table information 
ldahread(3X) 

read the archive header of a member of an archive 
filo 

/qfhread(3X) 
read the file header of a common object file 

fdshread(JX) and /dnshread 
read a section header of a common object file 

ldtbread(3X) 
read a symbol table entry of a common object file 

. I . 



LDFCN(4) LDFCN(4) 

fdgetname(3X) 
retrieve a symbol name from a symbol table entry 
or from the string table 

(3) fum;tions that position an objCCI file at (seek to) the start of 
the section, relocation, or line number information for a particular 
section. 

/dohseek(3X) 
seek to the optional file header of a common object 
fil• 

/dsseek(3X) and ldnsseek 
seek to a section of a common object file 

ldrseek(3X) and fdnrseek 
seek to the relocation information for a section of a 
common object file 

fdlseek(3X) and ldnlseek 
seek to the line number information for a section of 
a common object file 

fdtbseek(3X) 
seek to the symbol table of a common object file 

(4) the function fdtblndex(3X) which returns the index of a particu­
lar common object file symbol table entry 

These functions are described in detail in the manual pages identified for 
each function. 
AU the functions except fdopen, ldgetname(3X), fdaopen, and ldtbindex 
return either SUCCESS or FAILURE, which are constants defined in 
<ldfcn.h>. Ldopen and fdaopen both return pointers to a LDFILE struc­
ture. 

MACROS 
Additional access to an object file is provided throUJh a set of macros 
defined in <ldfca.b>. These macros paraDe! the standard input/output 
file reading and manipulating functions, translating a reference of the 
LDFJLE structure into a reference to its file descriptor field. 

The following macros are provided: 

GETC(ldptr) 
FGETC(ldptr) 
GETW{Jdptr) 
UNGETC(c, ldptr) 
FGETS(s, n, Jdptr) 
FREAD((char •) ptr, sizeof (•ptr), nitems, ldptr) 
FSEEK(idptr, offset, ptrname) 
FTELL (ldptr) 
REWIND(Idptr) 
FEOF(Idptr) 
FERRQR(Jdptr) 
FILENO(ldptr) 
SETBUF(Idptr, buO 
STROFFSET(Idptr) 

The STROFFSET macro calculates the address of the string table in a 
object file. See the manuaJ entries for the corresponding standard 
input/output library functions for details on the usc of these macros. (The 

. 2. 



LDFCN(4} LDFCN(4} 

functions are identified as JS in Section 3 of this manual.) 

The program must be loaded with the object file access routine library 
llbld.a. 

WARNINGS 
The macro FSEEK defined in the header file <ldfcn.h> translates into a 
call to the standard input/output function fseek(JS). FSEEK should not be 
used to seek from the end of an archive file since the end of an archive file 
may not be the same as the end of one of its object file members. 

SEE ALSO 
fopen(JS), fseek(JS), ldahread(JX), ldclose(JX), ldfbreadOX), 
ldgelname(JX), ldlread(JX), Jdlseek(3X), ldohseek(JX), ldopen(JX), 
ldrseek(JX), ldlseek(JX), ldshread(JX), ldtbindex(JX), ldtbreadOX), 
ldtbseekOX). 
COFFin the Programming Guide. 

- 3-



LINBNUM(4} LINENUM(4} 

NAME 
linenum - line number entries in a common object file 

SYNOPSIS 
#Include <llnenum.b> 

DBSCRIFI10N 
The C compiler generates an entry in the object file for each C source line 
on which a breakpoint is possible (when invoked with the -a option; see 
cc(l)). Users can then reference line numbers when using the appropriate 
software test system (see sdb(l)). The structure of these line number 
entries appears below. 

struct lineno 
I 

I ; 

union 
I 

long 
long 

unsitl;ned short 

l_symndx; 
l_paddr; 
I addr · 
Onno: 

Numbering starts with one for each function. The initial Une number entry 
for a function has f_fnno equal to zero, and the symbol table index of the 
function's entry is in f_symndx. Otherwise, f_fnno is non-zero, and f_paddr 
is the physical address of the code for the referenced line. Thus the overall 
structure is the following; 

f_ addr f_fnno 

function symtab index 0 
physical address Une 
physical address Une 

function symtab index 0 
physical address line 
physical address line 

SEE ALSO 
cc(l), sdb(l), a.out(4). 

. I . 



MASTER(4) MASTER(4) 

NAME 
master - master device information table 

DESCRIPTION 
This file is used by the confic(IM) program to obtain device information 
that enables it to generate the configuration files. The file consists of 3 
parts, each separated by a line with a dollar sign ($) in column I. Part 1 
contains device information; part 2 contains names of devices that have 
aliases; part 3 contains tunable parameter information. Any line with an 
asterisk (•) in column 1 is treated as a comment. 

Part I contains lines consisting of at least 7 fields and at most 10 fields, 
with the fields delimited by tabs and/or blanks: 

Field 1: device name (8 chars. maximum). 
Field 2: handlers (9 character string) 

Field 3: 

Field 4: 
Field 5: 

Field 6: 

Field 7: 
Fields 8-10: 

's', INIT, xxxxinitO 
'o', OPEN, xxxxopenO 
'c', CLOSE, xxxxcloseO 
'r', READ, xxxxread() 
'w', WRITE, xxxxwriteO 
'i', IOCTL, xxxxioctlO 
't', SELECT, xxxxselectO 
' ', No handlers 
device type indicator (9 character string): 
't', TTYS, a tty device 
'o', ONCE, can only be specified once 
's', NOCNT, suppress count & other stuff 
'r', REQ, required device 
'b', BLOCK, a block device 
'c', CHAR, a character device 
'k', CLOCK, the clock device 
'p', PECULIAR, peculiar (use devname, not prefix) 
•r, FORCE, 
'', No type indicators 
handler prefix (4 chars. maximum). 
ml\ior device number for block-type device (short 
decimal). 
mll,jor device number for character-type device (short 
decimal). 
maximum number of devices/lines (short decimaD. 
optional structure declarations (40 chars. maximum). 

Part 2 contains lines with 2 fields each: 

Field 1: 
Field 2: 

alias name of device (20 chars. maximum). 
reference name of device (20 chars. maximum; 
specified in part I). 

Part 3 contains lines with 2 or 3 fields each: 

Field I: parameter name (as it appears in description file; 20 
chars. maximum) 

Field 2: text form (as it appears in the conf.c file; 20 chars. 
maximum) 

Field 3: default parameter value (20 chars. maximum; 
specification in description file is required if this field 

- I -



MASTER{4) MASTER(4) 

is omitted) 

SEE ALSO 
,,--- config(IM). 

FILES 
/etc/master 

• 2 • 



MASTER(4) (Virtual) MASTER(4) 

NAME 
master - master device information table 

DESCRIPTION 
This file is used by the c01yig(IM) program to obtain device information that 
enables it to generate the configuration files. The file consists of 3 parts. each 
separated by a line wilb a dollar sign ($) in column I. Part I contains device 
information; pan 2 contains names of devices that have aliases; part 3 contains 
tunable parameter information. Any line with an asterisk (•) in column I is 
treated as a conunent. 

Pan I contains lines consisting of at least 7 fields and at most 10 fields, with the 
fields delimited by tabs and/or blanks: 

Field 1: 
Field 2: 

Field 3: 

Field4: 
Field 5: 
Field 6: 

Field 7: 
Fields 8-10: 

device name (8 chars. maximum). 
handlers (9 character string) 
's', INIT, xxxxinil() 
'o', OPEN, xxxxopen() 
'c', CLOSE, xxxxclose() 
'r', READ, xxxxread() 
'w', WRITE, xxxxwrite() 
'i', IOCTL, xxxxiocll() 
't', SELECT, xxxxselecl() 
' ', No handlers 
device type indicator (9 character string): 
'm', SEMAS. define semaphores 
't', TTYS, a tty device 
'o', ONCE, can only be specified once 
's', NOCNT, suppress COWl! & other stuff 
'r', REQ, required device 
'b', BLOCK. a block device 
'c', CHAR, a character device 
'k', CLOCK, the clock device 
'p', PECUUAR, peculiar (use devname, not prefiJ>) 
'f', FORCE, Define count if not a tty 
' ', No type indicators 
handler prefix (4 chars. maximum). 
major device number for block-type device (short decimal). 
major device number for character-type device (short 
decimal). 
maximum number of devices/lines (short decimal). 
optional structure declarations (40 chars. maximum). 

Pan 2 contains lines with 2 fields each: 

Field 1: 
Field 2: 

alias name of device (20 chars. maximum). 
reference name of device (20 chars. maximum; specified in 
part 1). 

Pan 3 contains lines with 2 or 3 fields each: 

Field 1: 

Field 2: 

Field 3: 

SEE ALSO 
config(IM). 

parameter name (as it appears in description file; 20 chars. 
maximum) 
text form (as it appears in the oonf.c file; 20 chars. max­
imum) 
default parameter value (20 chars. maximum; specification 
in description file is required if this field is omitted) 

- I -



MASIER(4) 

FILES 

(Virtual) 

. 2. 

MASTER.(4) 



MNTI'A8(4} MNTTAB(4} 

NAME 
mnttab - mounted file system table 

SYNOPSIS 
#include <mnttab.h> 

DESCRIPTION 
Mnttab resides in directory /etc and contains a table of devices, mounted by 
the maunr(lM) command, in the following structure as defined by 
<mnttab.h>: 

struct 

}; 

mnttab { 
char 
char 
short 
time_t 

mt dev(l2): 
mtfilsys[J2]; 
mt=ro_flg: 
mt_time; 

Each entry is 70 bytes in length; the first 32 bytes are the null-padded name 
of the place where the spedal file is mounted; the next 32 bytes represent 
the null-padded root name of the mounted special file; the remaining 6 
bytes contain the mounted special file's read/write permissions and the date 
on which it was mounted. 

SEE ALSO 
df(lM), mountOM), setmnt(IM) in the Administrator Reji!rence Manual. 

Page I July 23, 1985 



NETWORKS(4N) UBiSoft NETWORKS (4N) 

NAME 
networks - network name data b-ase 

DESCRIPTION 

FILES 

The networks file contains information regarding the known networks which 
comprise the DARPA Internet. For each network a single line should be 
present with the following information: 

official network name 
network number 
aliases 
Items are separated by any number of blanks and/or tab characters. A 
"#" indicates the beginning of a comment; characters up to the end of the 
line are not interpreted by routines which search the file. This file is nor­
mally created from the official network data base maintained at the Network 
Information Control Center (NIC), though local changes may be required 
to bring it up to date regarding unofficial aliases and/or unknown networks. 

Network number may be specified in-the conventional"." notation using 
the inel network() routine from the Internet address manipulation library, 
lnet(JN). Network names may contain any printable character other than a 
field delimiter, newline, or comment character. 

I etc/ networks 

SEE ALSO 
r' gctnetentON) 

BUGS 
A name server should be used instead of a static file. A binary indexed file 
format should be available for fast access . 

. I . 



PASSWD(4) PASSWD(4) 

NAME 
passwd - password file 

DESCRIPTION 

FILES 

Passwd contains for each user the followin~ information: 

login name 
encrypted password 
numerical user ID 
numerical ~roup ID 
GCOS job number, box number, optional GCOS user ID 
initial working directory 
program to use as Shell 

This is an ASCll file. Each field within each user's entry is separated from 
the next by a colon. The GCOS field is used only when communicating 
with that system, and in other installations can contain any desired infor­
mation. Each user is separated from the next by a new-line. If the pass­
word field is null, no password is demanded; if the Shell field is null, the 
Shell itself is used. 

This file resides in directory /etc. Because of the encrypted passwords, it 
can and does have general read permission and can be used, for example, 
to map numerical user IDs to names. 

The encrypted password consists of 13 characters chosen from a 64-
character alphabet (., /, 0-9, A-Z, a-z), except when the password is 
null, in which case the encrypted password is also null. Password aging is 
eft"ected for a particular user if his encrypted password in the password file 
is followed by a comma and a non-null string of characters from the above 
alphabet. (Such a string must be introduced in the first instance by the 
super-user.) 

The first character of the age, M say, denotes the maximum number of 
weeks for which a password is valid. A user who attempts to login after his 
password has expired will be forced to supply a new one. The next charac­
ter, m say, denotes the minimum period in weeks which must expire before 
the password may be changed. The remaining characters define the week 
(counted from the beginning of 1970) when the password was last changed. 
(A null string is equivalent to zero.) M and m have numerical values in the 
range 0-63 that correspond to the 64-character alphabet shown above (i.e., 
I = 1 week; z = 63 weeks). If m = M = 0 (derived from the string . or 
•• ) the user will be forced to change his password the next time he Jogs in 
(and the "age" will disappear from his entry in the password file). If m > 
M (signified, e.g., by the string ./) only the super-user wiU be able to 
change the password. 

/etc/passwd 

SEE ALSO 
loginO), passwd(l), a641(3C), crypt(3C), getpwent(JC), group(4). 

- 1 -



PLOT(4) PLOT(4) 

NAME 
plot - graphics interface 

.r--- DESCRIPTION 
Files of this format are produced by routines described in pf01(3X) and are 
interpreted for various devices by commands described in tpfor(lG). A 
graphics file is a stream of plotting instructions. Each instruction consists 
of an ASCII letter usually followed by bytes of binary information. The 
instructions are executed in order. A point is designated by four bytes 
representing the x and y values; each value is a signed integer. The last 
designated point in an I, m, n, or p instruction becomes the "current 
point" for the next instruction. 

Each of the following descriptions begins with the name of the correspond­
ing routine in pfot(3X). 

m move: The next four bytes give a new current point. 

n cont: Draw a line from the current point to the point given by the next 
four bytes. See tplot(IG). 

p point: Plot the point given by the next four bytes. 

I line: Draw a line from the point given by the next four bytes to the 
point given by the following four bytes. 

label: Place the following ASCII string so that its first character falls on 
the current point. The string is terminated by a new-line. 

e erase: Start another frame of output. 

f linemod: Take the following string, up to a new-line, as the style for 
drawing further lines. The styles are "dotted", "solid", "longdashed", 
"shortdashed", and "dotdashed". Effective only for the -T4014 and 
-Tnr options of tplot(lG) (TEKTRONIX 4014 terminal and Versatec 
plotter). 

s space: The next four bytes give the lower left corner of the plotting 
area; the following four give the upper right corner. The plot will be 
magnified or reduced to fit the device as closely as possible. 

Space settings that exactly fill the plotting area with unity scaling appear 
below for devices supported by the filters of tp/ot(lG). The upper limit is 
just outside the plotting area. In every case the plotting area is taken to be 
square; points outside may be displayable on devices whose face is not 
square. 

DASI300 
DASI 300s 
DAS1450 
TEKTRONIX 4014 
Versatec plotter 

space(O, 0, 4096, 4096); 
space(O, 0, 4096, 4096); 
space(O, 0, 4096, 4096); 
space(O, 0, 3120, 3120); 
space{O, 0, 2048, 2048); 

SEE ALSO 
tplot(IG), plotOX), term(S). 

WARNING 

Page I 

The plotting library f>/ot(3X) and the curses library curses(3X) both use the 
names erase() and move(). The curses versions are macros. If you need 

July 23, 1985 



PLOT(4) PLOT(4) 

both libraries, put the p/ot(3X) code in a different source file than the 
curses(3X) code, and/or #undcf move() and erase() in the plot(3X) code. 

July 23, 1985 Page 2 



PNCH(4) PNCH(4) 

NAME 
pnch - file format for card images 

( DESCRIPTION 
The PNCH format is a convenient representation for files consisting of card 
images in an arbitrary code. 

A PNCH file is a simple concatenation of card records. A card record con­
sists of a single control byte followed by a variable number of data bytes. 
The control byte specifies the number (which must lie in the range 0-80) of 
data bytes that follow: The data bytes are 8-bit codes that constitute the 
card image. If there are fewer than 80 data bytes, it is understood that the 
remainder of the card image consists or trailing blanks. 

SEE ALSO 
send(2N). 

Page I July 23, 1985 



PROFILE(4) PROFILE(4) 

NAME 
profile - setting up an environment at login time 

DESCRIPTION 

FILES 

If your login directory contains a file named .pJVftl~, that file will be exe­
cuted (via the shell's exec .profile) before your session begins; .profiles are 
handy for setting exported environment variables and terminal modes. If 
the file /ete/prolil~ exists, it will be executed for every user before the 
.profile. The following example is typical (except for the comments): 

# Make some environment variables global 
export MAIL PATH TERM 
# Set file creation mask 
umask 22 
# Tell me when new mail comes in 
MAIL= /usr/mail/myname 
# Add my /bin directory to the shell search sequence 
PATH =$PATH:SHOME/bin 
# Set terminal type 
echo "terminal: \c" 
read TERM 
case STERM in 

300) 
300s) 
450) 

esac 

hp) 
7451735) 
43) 
4014ltek) 
•) 

stty cr2 ntO tabs; tabs;; 
stty cr2 niO tabs; tabs;; 
stty cr2 nJO tabs; tabs;; 
stty crO niO tabs; tabs;; 
stty crl nil -tabs; TERM=745;; 
stty crl niO -tabs;; 
stty crO niO -tabs ffl; TERM=4014; echo "\33;";; 
echo "$TERM unknown";; 

$HOMEI.profile 
/etc/profile 

SEE ALSO 
env(l), loginO), mail(l), sh(l), stty(l), su(l), environ(5), term(5). 

- I -



r 
' 

PROTOCOLS (4N) UniSoft PROTOCOLS(4N) 

NAME 
protocols - protocol name data base 

DESCRIPTION 

FILES 

The pratoeals file contains information regarding tbe known protocols used 
in the DARPA Internet. For each protocol a single line should be present 
with the following information: 

official protocol name 
protocol number 
aliases 
Items are separated by any number of blanks and/or tab characters. A 
"#" indicates tbe beginning of a comment; characters up to the end of the 
line are not interpreted by routines which search the file. 

Protocol names may contain any printable character otber than a field del­
imiter, newline, or comment character. 

/etc/protocols 

SEE ALSO 
getprotoent(JN) 

BUOS 
A name server should be used instead of a static file. A binary indexed file 
format should be available for fast access. 

. I . 



RELOC (4) RELOC (4) 

NAME 
reloc - relocation information for a common object file 

SYNOPSIS 
#indu.de <reloc.h> 

DESCRIPTION 
Object files have one relocation entry for each relocatable reference in the 
text or data. If relocation information is present, it will be in the following 
format. 

struct reloc 
I 

long r_ vaddr ; I• (virtual) address of reference •I 
long r_symndx; I• index into symbol !able •I 
short r_type; I• relocation type •I 

L 

I• 
• All generics 
• reloc. already performed to symbol in the same section 
•I 

#define R_ABS 0 

I• 
• DEC Processors VAX 11/780 and VAX 11/750 

•I 
#define R_RELBYTE 017 
#define R_RELWORD 020 
#define R_RELLONG 021 
#define R_PCRBYTE 022 
#define R_PCRWORD 023 
#define R_PCRLONG 024 

I• 
*Motorola 68000 uses R RELBYTE, R RELWORD, R RELLONG, 
• R_PCRBYTE, and R_PCRWORD as fur DEC machin~ above. 
•I 

As the link editor reads each input section and performs relocation, the 
relocation entries are read. They direct bow references found within the 
input section are treated. 

R_ABS The reference is absolute, and no relocation is necessary. 
The entry will be ignored. 

R_RELBYTE A direct 8-bit reference to a symbol's virtual address. 

R_RELWORD A direct 16-bit reference to a symbol's virtual address. 

R_RELLONG 

R_PCRBYTE 

A direct 32-bit reference to a symbol's virtual address. 

A "PC-relative" 8-bit reference to a symbol's virtual 
address. 

- I -



r-' 
' 

RELOC(4) RELOC(4) 

R_PCRWORD A "PC-relative" 16-bit reference to ' symbol's virtual 
address. 

R_PCRLONG A "PC-relative" 32-bit reference to ' symbol's virtual 
address. 

On the VAX processors, relocation of a symbol index of -1 indicates that 
the relative difference between the current segment's start address and the 
program's load address is added to the relocatable address. 

Other relocation types will be defined as they are needed. 

Relocation entries are generated automatically by the assembler and 
automatically utilized by the link editor. A link editor option exists for 
removing the relocation entries from an object file. 

SEE ALSO 
ld(l), strip(l), a.out(4), syms(4). 

- 2-



SCCSFILE(4) SCCSFILE(4) 

NAME 
se<:sftle - format of sees file 

DESCRIPTION 

Page I 

An sees file is an ASCII file. It consisLS of six logical parLS; the ,·hr,·ksum, 
the della tablr (contains information about each delta), user 110mes (con­
tains login names and/or numerical group IDs of users who may add del­
tas), jfags (contains definitions of internal keywords), comments (contains 
arbitrary descriptive information about the file), and the body (contains the 
actual text lines intermixed with control lines). 

Throughout an sees file there are lines which begin with the ASCII SOH 
(start of heading) character (octal 000. This character is hereafter referred 
to as the contra/ character and will be represented graphically as@. Any 
line described below which is not depicted as beginning with the control 
character is prevented from beginning with the control character. 
Entries of the form DDDDD represent a five-digit string (a number between 
00000 and 99999). 

Each logical part of an sees file is described in detail below. 

Checksum 
The checksum is the first line of an sees file. The form of the line 
is: 

@hDDDDD 

The value of the checksum is the sum of all characters, except 
those of the first line. The @h provides a magk number of (octal) 
064001. 

Delta table 
The delta table consists of a variable number of entries of the form: 

@s DDDDD/DDOOD/OODDD 
@d <type> <SCCSID> yr/mo/da hr:mi:se <pgmr> DDDDD OOOOD 
@I DDDDD ••• 
@ll DDDDD ••• 
@a DDDDD ••• 
@m <MR number> 

@e <comments> ••• 

@o 

The first line (@s) contains the number of lines 
inserted/deleted/unchanged, respectively. The second line (@d) 
contains the type of the delta (currently, normal: D, and removed: 
R), the sees ID of the della, the date and time of creation of the 
delta, the login name corresponding to the real user ID at the time 

August 6, 1985 



SCCSFILE ( 4) SCCSFILE ( 4) 

the delta was created, and the serial numbers of the delta and its 
predecessor, respectively. 

The @I, @x, and @g lines contain the serial numbers of deltas 
included, excluded, and ignored, respectively. These lines are 
optional. 

The @m lines (optional) each contain one MR number associated 
with the delta; the @c lines contain comments associated with the 
delta. 

The @e line ends the delta table entry. 

User names 

Flags 

August 6, 1985 

The list of login names and/or numerical group IDs of users who 
may add deltas to the file, separated by new-lines. The lines con· 
taining these login names and/or numerical group IDs are sur­
rounded by the bracketing lines @u and @U. An empty Jist allows 
anyone to make a delta. Any line starting with a ! prohibits the 
succeedil!i sroup or user from makilli deltas. 

Keywords used internally (see adminO) for more information on 
their use). Each tlag line takes the form: 

@f <flag> <optional text> 

The following flags are defined: 
@f t <type of program> 
@f v <program name> 
@f i <keyword string> 
@fb 
@fm 
@If 
@fo 
@fd 
@fn 
@f j 
@fl 
@fq 
@h 

<module name> 
<floor> 
<ceiling> 
< default-sid> 

<lock-releases> 
<user defined> 
<reserved for use in interfaces> 

The t flag defines the replacement for the %Y% identification key­
word. The v flag controls prompting for MR numbers in addition to 
comments; if the optional text is present it defines an MR number 
validity checking program. The i flag controls the warning/error 
aspect of the "No id keywords" message. When the I flag is not 
present, this message is only a warning; when the i flag is present, 
this message will cause a "fatal" error (the file will not be gotten, 
or the della will not be made). When the b flag is present the -b 
keyletter may be used on the IU'I command to cause a branch in the 
delta tree. The m flag defines the first choice for the replacement 

Page 2 



SCCSFILE ( 4) SCCSFILE(4) 

text of the %M% identification keyword. The f Rag defines the 
"floor" release; the release below which no deltas may be added. 
Thee flag defines the "ceiling" release; the release above which no 
deltas may be added. The d flag defines the default SID to be used 
when none is specified on a get command. The n flag causes delta 
to insert a "null" delta (a delta that ap~lies no changes) in those 
releases that are skipped when a delta IS made in a new release 
(e.g., when delta 5.1 is made after delta 2.7; releases 3 and 4 are 
skipped). The absence of the n flag causes skipped releases to be 
completely empty. The j flag causes get to allow concurrent edits of 
the same base SID. The I flag defines a list of releases that are 
locked against editing (get(l) with the -e keyletter). The q flag 
defines the replacement for the %Q% identification keyword. The z 
flag is used in certain specialized interface programs. 

Comments 

Body 

Arbitrary text is surrounded by the bracketing lines @t and @T. 
The comments section typically will contain a description of the 
file's purpose. 

The body consists of text lines and control lines. Text lines do not 
begin with the control character, control lines do. There are three 
kinds of control lines: insert, delete, and end, represented by: 

@IDDDDD 
®DDDDDD 
@EDDDDD 

respectively. The digit string is the serial number corresponding to 
the delta for the control line. 

SEE ALSO 

Page 3 

admin(l), delta(l), get(l), prs(l). 
sees in the Programming Tools Guide. 

August 6, 1985 



SCNHDR.(4) SCNHDR(4) 

NAME 
scnhdr - section header for a common object file 

SYNOPSIS 
#Include < scnbdr .b > 

DESCRIPTION 
Every common object file bas a table of section headers to specify the lay­
out of the data within the file. Each section within an object file has its 
own header. The C structure appears below. 

struct scnhdr 
I 

I; 

, . ., 
long 
lone 
long 
long 
long 
long 
unsia;ncd short 
unsigned short , ... 

s name(SYMNMLEN); /• section name •/ 
s:paddr; /• physical address •/ 
s vaddr; /• virtual address •/ 
s:size; /• section size •/ 
s_scnptr; /• file ptr to raw data •/ 
s_relptr; /• file ptr to relocation •/ 
s lnnoptr; /• file ptr to line numbers •/ 
s-nreloc; /• # reloc entries •I 
s:nlnno; /• #line number entries •/ 
s_Oags; /• Oags •/ 

File pointers are byte offsets into the file; they can be used as the offset in 
a call to jseek(JS). If a section is initialized, the file contains the actual 
bytes. An uninitialized section is somewhat different. It has a size, sym­
bols defined in it, and symbols that refer to it, but it can have no relocation 
entries, line numbers, or data. Consequently, an uninitialized section has 
no raw data in the object file, and the values for s_scnptr, s_ re/ptr, s_fnnoptr, 
s_nrefoc, and s_nfnno are zero. 

SEE ALSO 
Jd(l}, fseek(JS), a.out<4). 

. I . 



SERVICES (4N) UniSon SERVICES(4N) 

NAME 
services ~ service name data base 

DESCRIPTION 

FILES 

The services file contains information regarding the kf\Qwn services available 
in the DARPA Internet. For each service a single line should be present 
with the following information: 

official service name 
port number 
protocol name 
aliases 

Items are separated by any number of blanks and/or tab characters. The 
port number and protocol name are considered a single item; a "/" is used 
to separate the port and protocol (e.g. "512/tcp"). A "#" indicates the 
beginning of a comment; characters up to the end of the line are not inter­
preted by routines which search the file. 

Service names may contain any printable character other than a field delim­
iter, newline, or comment character. 

I etc/ services 

SEE ALSO 
getservent(3N) 

BUGS 
A name server should be used instead of a static file. A binary indexed file 
format should be available for fast ae<:ess. 

- I -



SYMS(4) SYMS (4) 

NAME 
syms - common object file symbol table format 

SYNOPSIS 
#include <synu.h> 

DESCRIPTION 
Common object files contain information to support symbolic software test­
ing (see sdb(l). Line number entries, linenum(4), and extensive symbolic 
information permit testing at the C source level. Every object file's symbol 
table is organized as shown below. 

Filename I. 
Funclion l. 

Locol symbols for function I. 
Fune\ion 2 

Local symbols for funclion 2. 

Stotic exlerns for tile l. 

FlleMme 2. 
Function 1. 

Locol symbols for fune\ion I. 

Function 2. 
l..ocol symbols for funclion 2. 

Stolic e~\erns for :file 2. 

Defined glnbal symbols. 
Undefined 11lobal symbols. 

The entry for a symbol is a fixed-length structure. The members of the 
structure hold the name (null padded), its value, and other information. 
The C structure is given below. 

#!lertne SYMNMLEN 8 

#define fllNMLEN 14 

strucl symenl 

union I• ways to get 1 symbol name•/ 

)_n; 

, .. , 
struc:t 

Ions ... 
I n_n; 

"" ,00, 
""" unsijned short 
char 
char 

_n_namelsYMNMLENI ;/• R&mes less than 8 cMrs. •I 
I• names 8 char or more•/ 

_n_zeroes; I• -- OL when in strina toble•/ 
_n_oiTset; I• loc:alion of Mme in lable •/ 

•_n_nptrl2l; I• allows overloyin11 •I 

n_value; I• value of symbol•/ 
n_scnum; I• section number •/ 
n_type; I• type and derived type •I 
n_sclass; I• Stonge doss •I 
n_RUIIUIUX; I• number of aux entries •I 

- I -



SYMS(4) SYMS (4) 

I' 
#define n_name _n._n_name 
#define n_zeroes _n._n_n._n_zeroes 
#define n_offsol _n._n_n._n_offset 
#define n_nptr _n._n_nptrlll 

Meaningful values and explanations for them are given in both syms.h and 
Common Object File Formal. Anyone who needs to interpret the entries 
should seek more information in these sources. Some symbols require 
more information than a single entry; they are followed by auxiliary entries 
that are the same size as a symbol entry. The formal follows. 

union auxent 

S!rUCl 

struct 

S!rU<:( 

long 
union 

x_tagndx; 

S!rUC( 

I x_lrw:; 
long 

I x_misc; 
union 

S!rUCl 

S!rUCl 

unsigned short x_lnno; 
unsij:ned short x_size: 

x_fsize; 

long x_lnnoptr: 
long x_endndx: 
x_fcn: 

unsigned short x_dimen[mMNUM]; 
x_ary; 
x_fcnary: 

unsigned short x_tvndx; 
x_ll)'m; 

char x_fname[FILNMUON]; 
x_flle; 

long x_scnlen; 
unsigned short x_nreloc; 
un•igned short x_nlinno; 
x_scn; 

struct 

unsigned short x_Men; 

. 2. 



r 
' 

SYMS(4) 

,, 
unsigned short x_wranl21: 
x_tv; 

Indexes of symbol table entries begin at zero. 
SEE ALSO 

sdb(i), a.out(4), linenum(4). 
COFFin the Programming Guide. 

WARNING 

SYMS (4) 

In machines in which longs are equivaJent to ints (M68000 and VAX), the 
longs are converted to ints in the compiler to minimize the complexity of 
the compiler code generator. Thus, the information about which symbols 
are declared as longs and which as ints cannot be determined from the 
symbol table. 

• 3 • 



TERM(4) TERM(4) 

NAME 
term - format of compiled term file. 

SYNOPSIS 
term 

DESCRIPTION 
Compiled terminfo descriptions are placed under the directory 
/usr/Hb/terminfo. In order to avoid a linear search of a huge UNIX system 
directory, a two-level scheme is used: /usr/lib/terminfo/c/name where 
name is the name of the terminaJ, and c is the first character of name. 
Thus, act4 can be found in the file /usr/llb/terminfo/a/act4. Synonyms 
for the same terminal are implemented by multiple links to the same com­
piled file. 

The format has been chosen so that it will be the same on an hardware. 
An 8 or more bit byte is assumed, but no assumptions about byte ordering 
or sij];n extension are made. 

The compiled file is created with the compile program, and read by the rou­
tine setupterm. Both of these pieces of software are part of curses(3X). 
The file is divided into six parts: the header, terminal names, boolean flags, 
numbers, strings, and strini table. 
The header section begins the file. This section contains six short integers 
in the format described below. These integers are (I) the magic number 
(octaJ 0432); (2) the size, in bytes, of the names section; (3) the number 
of bytes in the boolean section; (4) the number of short integers in the 
numbers section; (5) the number of offsets (short integers) in the strings 
section; (6) the size, in bytes, of the string table. 

Short integers are stored in two 8-bit bytes. The first byte contains the 
least signifi~;:ant 8 bits of the value, and the second byte contains the most 
sij];nificant 8 bits. (Thus, the value represented is 2S6•second+first.) The 
value -I is represented by 0377, 0377, other negative value are illegal. 
The -I generally means that a capability is missing from this terminal. 
Note that this format corresponds to the hardware of the VAX and PDP-II. 
Machines where this does not correspond to the hardware read the integers 
as two bytes and compute the result. 

The terminal names section comes next. It contains the first line of the 
terminfo description, listing the various names for the terminal, separated 
by the 'f character. The section is terminated with an ASCII NUL character. 

The boolean flags have one byte for each flag. This byte is either 0 or 1 as 
the flag is present or absent. The capabilities are in the same order as the 
file <term.h>. 

Between the boolean section and the number section, a null byte will be 
inserted, if necessary, to ensure that the number section begins on an even 
byte. All short integers are aligned on a short word boundary. 

The numbers section is similar to the flags section. Each capability takes up 
two bytes, and is stored as a short integer. If the value represented is -1, 
the capability is taken to be missing. 

The strings section is also similar. Each capability is stored as a short 
integer, in the format above. A value of -1 means the capability is miss­
ing. Otherwise, the value is taken as an offset from the beginning of the 
string table. Special characters in ~X or \c notation are stored in their 

- I -



TEJtM (4) TERM(4) 

FILES 

interpreted form, not the printing representation. Padding information 
S<nn> and parameter information %x are stored intact in uninterpreted 
form. 

The final section is the string table. It contains all the values of string capa· 
bilities referenced in the string section. Each string is null terminated. 

Note that it is possible for setupterm to expect a different set of capabilities 
than are actually present in the file. Either the database may have been 
updated since setupterm has been recompiled (resulting in extra unrecog­
nized entries in the file) or the program may have been recompiled more 
recently than the database was updated (resulting in missing entries). The 
routine sewpterm must be prepar-ed for both possibilities - this is why the 
numbers and sizes are included. Also, new capabilities must always be 
added at the end of the lists of boolean, number, and string capabilities. 

As an example, an octal dump of the description for the Microterm ACT 4 
is included: 

microter-t41microterm act iv, 
cr-"M, cudl-"J, ind-"J, bel-"0, am, cubl-="H, 
ed-" , e1-··, clear-="L, cup="T%pl%c%p2%c, 
cols#iO, lines#24, cun -·x, cuut-·z, home-"], 

000 032 001 \0 02S \0 \b \0 212 \0 • \0 m i c 
020otermlact4lmicro 
040term act iv\0\0001\0\0 
~\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0 
100 \0 \0 p \0 377 377 030 \0 377 377 377 377 377 377 377 377 
rnmmmmww•wmmmm•w•w 
140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 311 311032 \0 
•mmmmmwmm•wmmmmmm 
•mmmmmmmmmmmmmmmm 

•mmmm wmmmmmmmmmm 
540 371 377 371377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0 
560024 'llo p I 'llo c % p 2 "" c \0 \n \0035 \0 
600 \b \0 030 \0 Ol2 \0 \n \0 

Some limitations: total compiled entries cannot exceed 4096 bytes. The 
name field cannot exceed 128 bytes. 

/usr/Jib/terminforr compiled terminal capability data base 

SEE ALSO 
curses(JX), terminfo(4). 

. 2. 



TERMINF0(4) 

NAMB ___ _, .......... 
SYNOPSIS 
/lw~l" 

DESCRIPI'IOM 

TERMINF0(4) 

Termilfo is a data base describing terminals, used. e.g . ., by ri(l) and 
cwses(3X). Tenninals are described in terminfo by giving a set of capabilities 
- they ..... and by ""'-rlbmg how opaatWns ... .,..r..- -
requirements and initialimtion sequences are included in termiff/o. 

Entries in wmbifo consisl:ofanwnbcrof',' scpa1atcd fields. Whbespaceafter 
each ·; is ignored. The first entry for each termiDal gives lhe IIIUDeiJ which are 
known for the tcrminal, separated by 'I' characters. The first name given is the 
most common abbreviation fer the terminal, the last name given should be a 
long name fully identifying the llemUnal, and all others are onderslood as 
synonyms for the lenninal name. All names but the last should be in lower case 
and contain no blanks; the last name may well contain upper case and blanks 
for mldability. 

Tenninal names (except £lr the last, verbose entry) should be chosen using the 
following conventions. The particular piece of hardware making up tbe termi­
nal should have a root name chosen, thus "hp2621". 'Ibis name should not 
contain hypbcns, except that synonyms may be chosen lhat do not con1lict with 
other names. Modes that the hardware can be in, or user prefenmcea, lbould be 
indicawd by appcncling a hyphen and 8D iruticalor of tbc mode. Thus. a vt100 
in 132 column mode would be vUOO-w. The following suffixes should be used 
where possible: --w 

-am 
-nom 

-· -na _..., 
_,. 

CAPABILli'IES 

......... 
W"lde mode (IIIOI'e lban 80 columns) 
With auto. margins (usually dcfadt) 
Wilhoot 8UIOmatic margins 
Number' of lines on the screen 
No arrow keys (leave them in local) 
Number of pages of memory 
Reverse video 

Examplo 
vtlOO-w 
vtlOO-am 
vtlOO-nam 
aaa-60 
clOO-na 
cl004p 
ciOO-rv 

The variable is the name by which the programmer (at lhe tenninfo level) 
accesses the capability. The capname is the short name used in the text of the 
dalabasc, and is used by a person updating the database. The i.codc is the two 

Poge I Septcmb« 24, 1987 



TERMINF0(4) TERMINF0(4) 

letter internal code used in the compiled database, and always corresponds to 
( the old termeap capability name • 

.._ ,_ Capability names have no hard length limit, but an infoonallimit of S charac­
ters bas been adopted to keep them short and 1o allow the tabs in ihe source file 
caps to line up nicely. Whenever possible, names are chosen to be the same as 
or similar to the ANSI X3.64-1979 standard. Semantics are also intended to 
match those of the specification. 

(P) indicates that padding may be specified 

(G) indicates that the string is passed through tpann withparms as given (#i). 

(•) indicates that padding may be based on the number of lines affected 

(#;) indicates the ,.th parameter •. 

Variable Cap· L Description 
Booleans namo Codo 

auto _left-margin. bw bw cubl wtaps fromcolunm 0 to last "'-auto_ right_ margin, ~ ~ Terminal baa automatic margins 

beehive _glitclt. "b xb Beehive (fl-cscape, 12-ctrl C) 
cool_ standout_glitcb. xhp "' Standout not cnsed by overwriting 

(hp) 

eat_ newline _glitch, """ xn DCWJine igrund afler 80 eols 

(Concept) 
erase_ overslrike, "' 00 can erase oVQS1rikes with a blank 

generic_ type. gn .. Generic liDc type (e.a ... dialup. 
awitch). 

hard-copy, he "" Hardcopy tennioal 

has-meta-key, km km Has a meta key (shift, sets parity 
biQ 

has-status-line, .. .. Has extra Matatus line" 

insert_ null _glitch, ., in Insert mode distinguishes nuns 
meiDOIY-above, da •• Display may be retained above 1be 

~ 

meiDOI)'_below, db db Display may be Idained below 1be ..... 
move _iasc:rt _mode, .., mi Safe to move while in insert mode 

move_ standout_ mode, - ~ Safe lo move in standout modes 

over_ strike, " " Terminal overstrikes 

S-24,1987 Page2 



TERMINF0(4) TERMINF0(4) 

status _line_ esc_ ok, ,., .. 
" Escape can be used on the status line 

teletay _glilclt. " xt Tabs ruin. magic so char (Teleiay 
1061) 

tilde _glitch, bz bz Hazeltine; can not print ·•s 
transparent_ underline, "' "' underline character overstrikes 

xon_xoff, xon xo TermiDal uses xonlxoff handshaking 

Numbers: 
oolwmu, "'" "' Number of columns iDa line 
init_tabs, it it Tabs initially evezy # spaces -' - li Number of lines on screen or page 
Jines_ or_ memory, 1m 1m Uoes of mem.ny if > lines. 0 means 

'"""' magic_ cookie _glitclJ, ·~ •• Number of blaok. chars left by smso or 

=o 
padding_ baud-rate, pb pb Lowest baud where crlnl padding is 

""""' virtual_ tenninal, "' "' Virtual terminal number (UNIX system) 
width_ status _line, "" "' No. colUJDD8 io status line 

........ 
back_tab, '" bt Back tab (P) 

"'' "" bl Audible sigDal (bell) (P) 

carriage-return. " " Carriage tetum (P+) 
change_ scroll_region, "' " cbange to Jines #1 through #2 (vt100} 

(PG) 
clear_ all_ tabs, "" " Clear all tab stops (P) 

clear_ screen. - " Clear screen and bome cursor (P*) 

clr_eol, ,, 
"' Clear to end of line (P) 

"'-""' .. "' Clear to end of display (P*) 
column_ address, ... ,. Set cursor column (PG) 

command_character, '"""" cc Term. aettable cmd char in prototype 
cursor_ addless, ""' om Screen rei. cUIIOI"motion row #1 

col#2 (PG) 

cursor_ down, cud! do 
Down ""' """ cursor_ bomc, ho~ bo Home cursor (if no cup) 

cursor_ invisible, civis ,, Make c11110r invisible 

~-loft, cubl ~ Move cUISOI" left one space 
cursor_ mem _address, -· CM MenDy relative cursor addressing 

-

Page3 September 24, 1987 



TERMINF0(4) TERMINF0(4) 

=-"""""- """"" ve Make CUIIOI' appear ncrmal (undo V8IVi) 

r cursor-rigbt. '"' .. Noa-4estructive space {CUIIOr right) 

ctmOt _10-11, ll ll Lut line, fintcolumn (if no cup) 
CUiliOt _up, ""'' up Up1iDe (cursor up) 

cursor_ visible, '""" .. Mate cunor very YiJible 
delete_ character, ""'' "' Delete chuaeta" (P*) 

delete _liac, dll dl Delete Hne (P*) 
dis_statua_line, "" •• Disable status line 

clown-half _line, bd .. Half-line clown (forward IJ2linefeed) 
enter_ alt_ cbarset_ mode, "'"" u Start altemale character set (P) 

enter-bliDk-mode. bUnt mb TUm on bfuJkioa: 
enter_ bold_ mode, bold md Tum on bold (exira bright) D.>de 
enter_ ca _mode, ..... • String to begin programs !hat use cup 
enter_ delete_ mode, """' dm Delete mode (enter) 

enter_ dim_ mode, dim mb Tum on balf-brigbt mode 
enter _insert_ mode, ... 1m Insert mode (enter); 

enter _protected._ mode, ""' ... Tum OD. pmtoolcd mode 
enter_ RVeiJe _mode, ,.., = Tum on reverse video mode 
enter_ secure_ mode, iavis mk Tum on blmt: mode (cbars iDvisible) ,- enter_ sumdout_ mode, .... .. BegiD staDd out mode 
enter_ undcrHne _mode, - .. .... """""""" """"' """-""" "" « Erase il eharactmi (PG) 

exit-alt_ cbarset-mode, -· E Eod allemate character set (P) 
exit_llllribute _mode, ...., mo Tum oft' all atlributes 
exit_ ca _mode, -· .. String to end programs that use cup 
exit_ delete-mode, - cd Eod delete mode 
exit_iDsert_mode. - ci End insert mode 
exit_standout_mode, - ~ End ltand out DJJde 

exit_ UDderliDe _mode, - .. 
""' """""""' mode 

8.asb-screen. ••• vb Visible bell (may not move eursor) 
foml_feed, ff (f Hardcopy tennioal. page eject (P*) 

fmm_stalWI_liDc. "' 
,, Retllrn from llatua line 

init_lstring, "' il Terminal inffia!jqlioollring 

init_2striDg, .. 12 Termillal ini1ializatl.on string 

init_ 3atriag, U3 " Terminal iDl.tfaJizatlon string 

init_file, if if Name of file contaiDiDg is 

iDsert-cbaracter, lob! ., huort-(P) 
insert _line, ill "' Add DeW blaok line (P*) 

(' ...... _. ....... ;p !p IDsert pad after cbaracter iDserled 

Se-24,1987 Page4 



TERMINFO( 4) TERMINF0(4) 

(p') 

.., -""""""· ... kb Sent by backspiCC key 

key_catab, """' ka Sent by clear-aU-tabs key 
key clear, ""' kC Sent by clear screen or erase key ~ .., __ 

"""" k1 Sent by clear-tab key ..,_..,, """'' kD Sent by delete character key 
tey_dl, lalll kL Sent by delete line key .., ..... """"' kd Sent by tenDina1 down arrow key 
key_cic, """" kM Sent by rmir or smir iD insert mode 
key_col. to! kE Sent by ctear.to-cnd.-of-line key 
key_eos, to! ts Sent by clear-to-end-of-!ICleeD. key ..,_m, t10 to Sent by function key ro 
key_fl, ttl tl Sent by function key fl 
tey_no, kfiO ka Sent by function key fl 0 
.., fl, tfl t2 SeDt by function key f2 
key_f3, kB "' Sent by function key f3 
key_f4, kf4 k4 Sent by function key f4 

.., "· ktS kS Sent by function key fS 
key_f6, ld6 '"' Sent by funetion key f6 
key_fl, ld7 k7 Sent by function key f1 
key_f8, tlll "' Sentbyfuuctionkeyf8 ..,_19, kl9 t9 Sent by function key t9 
key_bome, thomo th Sent by home key 
tey_io, kicbl tJ Sent by ins char/enter ins mode key 
key_il, ldll l<A Sent by iDsert line 

tey_kfl. l=bl tJ Sent by terminal left arrow key 

tey_U, kO kH Sent by home-down key 
key_npage. tnp tN Sent by next-page key 
key_ppage. kpp kP Sent by previous--page key .., __ 

l=fl "' Sent by tenninal right arrow key 

tey_st, ldnd tF Sent by scroll-forward/down key 
.., u, l<ri tR Sent by scroll-backward/up key ..,_ .... ... kT Sent by set-tab key ..,_ .... """'' .. Sent by terminal up arrow key 

teypol ""'"' - Ire Out of "keypad tmw:ni.t" tmde 
keypad-xmit, m>kx .. Put terminal in "keypad transmit:' mode 

lab_ro, liD 10 I.Jibels on function key ro if not ro 
Jab_fl, "' 11 Labels on function tey n if not fl 
lab_fiO. "'" " Labels on funetion key no if not no 

PageS September 24, 1987 



TERMINF0(4) TERMINF0(4) 

lab_fl, 112 12 Labels on function key f2 if not fl 

r lab_f3, "' 13 Labels on function key f3 if not f3 
lab_f4, ff4 14 Labels on function key f4 if not f4 

- lab_fS, lfS IS Labels on fuuction key f5 if not f5 
lab_f6, 1f6 16 Labels on functlon key f6 if not f6 
lab_f7, lf7 17 Labels on function key n if oot n 
lab_f8, lf8 18 Labels on function key f8 if not f8 
lab_f'9, 119 19 Labels on function key f9 if not f9 __ .., - = Tum on "meta mode" (Bth bit) 
meta_off, - ~ Tum off "meta mode" 

newline, ncl nw Newline (behaves lie cr followed 
bylf) 

""'-""'· P"' po Pad characrer (rather lhan nun) 
parm_dcb, '"" DC Delete #1 chars (PG*) 
parm _delete _line, dl DL Delete #I lines (PO*) 

pann down cursor, '"' [)() Move c= down #I lines (PG•) 
parm ich, rob IC Insert #I blank chan (PG•) 

parm-iDdcx, indn Sf Scroll forward #I lines (PG) 

parm-iDsert _liDe. • AL Add#l newblaDklines(PG+) 
,--~ parm_lcft_cursor, '"' LE Move CUISOI" left #1 :~paces (PG) 

' parm_right_cumor, '"' Rl Move cursor right #1 spaces (PG") 

parm rindex, rin SR Scroll backward #I lines (PG) 
parm_up_cursor, , .. UP Move cursor up #I linea (PG•) 
phy_koy, plkey pk Prog functkey #1 to type slrlDg #2 
pkey _local. pfi~ pi Pros functkcy #1 to exeeute siring #2 
pkey_xmit, piX •• Pmg functkey #l to xmitslrlng #2 
priot_sa=n. """ •• Print CODicDts of the screen 
pm_off, """ pf Tum off the printer 
prtr_oa, m<S po Tum on the printer --· "" 

., Repeat char II #2 times. (PG*) 
reset _hiring, nl ,, Reset terminal completely to sane modes. 

Ri&et-21llring, n2 a Reset terminal completely ID sane modes. 

reset _3string, "' " Reset terminal completely to sane modes. 

reset _file, " " Name of file wntaining react string 
restore_ cursor, re re Restore cursor to position of last sc 
row_ address, ""' cv Vertical position absolute 

(act row} (PG} 
save_ CUfii(X', ~ £ Save cursor position (P} ,-
scroll_torwant. ind ,, Scroll text up (P) 

September 24, 1987 Page6 



TERMINF0(4) TERMINF0(4) 

scroll_ reverse,. ri " Scroll text down (P) 

set-attributes, ... u Define the video attributes (PG9} 
set_ tab, •• " Set a tab in all rows, current columD 
set_window, wind wi Current window is lines #l-#2 

ools#3-#4 

••• ht 1a Tab to next 8 space hanlwue tab stop 
to_status_line, "' • Go to status line, column #I 

u.nderlioe-char, ~ ~ Underscore one char and move past it 
up_ half _liDc. hu hu Half-line up (reverse 1121inefeed) 

init_prog, iprog jp Path name of program for iDit 
key_al, "'' Kl Upper left of keypad 

key "· 
b3 K3 Upper right of keypad 

key_b2, kb2 K2 Center of keypad 

key_cl, ""' K4 LDwer left of keypad 

key "· 
Joo3 KS Lower right of keypad ... _ .... ""'• pO Tum on the printer for #1 bytes 

A Sample Entry 

The following entry, which describes the Concept-tOO, is among the more 
complex entries in the terminfo file as of this writing. 

eoocept!OO I cl~ COllCf:ptl el041 cl004pl CODCeptlOO, 
am, bela"G, blaat-IEH, blirlk-IEC, dear-'1.$<2• >, CIIOOIJoo\Ew, 

eolslt80, 1:1"" W<9>, c:ubl· ·u. cucll• "J, cufl•IE•, 
Qlp-\Ea%pl'.l' '*+'J.c~'l>' ''JH.'k, 
awl alE;. cvvis-\EW, db, debl•\E" A$<16•>, dim-lEE. dli•\E"B$<3•>, 

ed-\E"C$<16">, el-\lrlJ$<16>, eo, ftallh-\Bk$<20>\EK, bt-lt$<1>, 

ill•IE"R$<3•>, in, iDd-"J, .iDd• "JS&>, ip-$<16"'>, 

ia2-IEU\EN371BS\B8\EJ.\ENH\EK\B\200\Eo&uoo.Eo\47\E, 

kba-"h, taJbl•IE>, tcudi.\Jk. tmfla\E., b:uu.la\E;, 
tfla\ES, tf2-\E6. tf3a\E7, thomaoo\E?, 

liDe..U, mir, pb#9600. ~lEI, ~p-\Er<J,pt ~p2%' ''l>+'k$<.2•>, 
rev-\ED, IIIICUJI"<IEv $<6>\Ep\1\11, rmir-\E\200, nnb.•\Ex, 

rmso-\Ed'l&, nnul-\Ea. rmul-\EJ. BSftl-\EN\200, 
illllWp-IEU\Ev 8p1Eplr, amir-IB"P,IIIDitx-IEX, lllll!IO-IEEIED, 

uwi-IEG,IIbs, uJ, Yt.t8. xenJ, 

Entries may continue onto multiple lines by placing white space at the begin­
ning of each line except the firsL Comments may be included on lines begin­
ning with "#". Capabilities in terminfo are of three types: Boolean 

Page7 September 24, 1987 



TERMINF0(4) TERMINF0(4) 

capabilities which indicate that the terminal bas some particular feature, 
.r numeric capabilities giving the size of the tenninal or dte size of particular 
, delays, and string capabilities, whicll give a sequence which can be used 10 per­

form particular Cerminal operations. 

Types of Capabilities 

All capabililies have names. For instance, the fact lhat the Concept has 
automatic morgins (i.e., an automatic return and linefeed when the end of a line 
is reached) is indicated by the capability am. Hence the description of the Con­
cept includes am. Numeric capabilities are followed by the character '#' and 
then the value. Thus cols, which indicates the number of columns the terminal 
has. gives the value '80' for the ConcepL 

Finally, string valued capabilities, such as el (clear to end of line sequence) are 
given by the two-character code, an '•', and then a string ending at the next fol­
lowing ','. A delay in millisecoods may appear anywhere in such a capability, 
enclosed in S< .. :> brackets, as in el-\EK$<3>, and padding characters are sup­
plied by rputs to provide this delay. The delay can be either a number, e.g., 
'20', or a number followed by an •••, i.e., '3*'. A ••• indicates that the padding 
required is propot1ional to the number of lines affected by the operation. and the 
amount given is the per-affected-unit padding required. (In the case of insert 
character, the factor is still the number of lines affected. This is always one 
unless the terminal has xenl and the software nses it.) When a ••• is specified, 
it is sometimes useful to give a delay of lhe form '3.5' to specify a delay per 
unit to tenths of milliseconds. (Only one decimal place is allowed.) 

A number of escape sequences are provided in the string valued capabilities for 
easy encoding of characters there. Both \E and \e map to an ESCAPE character, 
·x maps to a conbOI-x fer' any appropriate x, and the sequences \a \1 \r \t \b \r\s 
give a newline, linefeed, return. tab, backspace, formfeed, and space. Other 
escapes include\" for·,\\ for\,\, for comma,\: for:, and \0 for null. (\0 will 
produce \200, which does not terminate a string but behaves as a null character 
on most terminals.) Finally, characters may be given as three octal digits after a 
I. 
Sometimes individual capabilities must be commented out. To do this, put a 
period before the capability name. Fm example, see the second lnd in the 
example above. 

S-24,1987 PageS 



TERMINFO( 4) TERMINF0(4) 

Preparing Descriptions 

We now outline bow 10 prepare descriptions of lmninals. The most effective 
way to prepare a terminal description is by imitating the description of a similar 
terminal in tenninfo and to build up a description gradually, using partial 
descriptions with vi co check that they are correct Be aware that a very unusual 
terminal may expose deficiencies in the ability of the terminfo :file to describe it 
01' bugs in vi. To easily test a new terminal description you can set the environ­
ment variable 1ERMINFO to a patbname of a directory containing the com­
pi1ed description you are working on and programs will look there rather than in 
Jusr!UbltermUtfo. To get the padding for insert line right (if the terminal 
manufacturer did not document it) a severe test is to edit /etcJpasswd at 9600 
baud. delete 16 or so lines from the middle of the screen, then hit the 'u' key 
several times quickly. If the terminal messes up, more padding is usually 
needed. A similar test can be used for insert character. 

Bask Capabilities 

The number ol columns on each line for the tenninal is given by the cols 
numeric capability. If the terminal is a CRT, then the number of lines on the 
screen is given by the lines capability. If the terminal wraps around to the 
beginning of the next line when it reaches the right margin, then it should have 
the am capability. H the lenninal can clear its screen, leaving the cursor in the 
home position, then this is given by the dear string capability. If the terminal 
overstrikes (rather than clearing a position when a character is struck over) then 
it should have the os capability. If the tenninal is a pinting terminal, with no 
soft copy unit, give it both he and os. (os applies to storage scope terminals, 
such as TEKTRONIX 4010 series, as well as hard copy and APL terminals.) If 
there is a code 10 move the cursor 10 the left edge of the current row, give this 
as cr. (Normally this will be carriage return, conttol M.) H there is a code 10 
produce an audible signal (bell, beep, etc) give this as bel. 

H there is a code 10 move the cutSOI' one position 10 the left (such as backspace) 
that capability should be given as cubl. Similarly, codes 10 move 10 the right, 
up, and down should be given as eun, euul, and cudl. These local cursor 
motions should not alter the text they pass over, for example, you would not 
normally use 'eufl .. ' because the space would erase the character moved over. 

A very important point here is that the local cursor motions encoded in terminfo 
are undefined at the left and top edges of a CRT terminal. Programs should 
never attempt to backspace around the left edge, unless bw is given, and never 
attempt to go up locally off the top. In on1er to scroll text up, a program will go 

Page9 September 24, 1987 



TERMINF0(4) TERMINF0(4) 

to the bottom left comer of the screen and send the ind (index) string. 

To scroll text down, a program goes to the top left comer of the screen and 
sends the ri (reverse index) string. The strings lod and rl are undefined when 
not on their respective comers of the screen. 

Parameterized versions of the scrolling sequences are indn and rin which have 
the same semantics as ind and ri except that they take one parameter, and scroll 
that many lines. They are also undefined except at the appropriate edge of the 
screen. 

The am capability tells whether the cursor sticks at the right edge of the screen 
when text is output. but this does not necessarily apply to a cun from the last 
column. The only local motion which is defined from the left edge is if bw is 
given. then a cubl from the left edge will move to the right edge of the previous 
row. If bw is not given, the effect is undefined This is useful for drawing a 
box around the edge of the screen, for example. If the terminal has switch 
selectable automatic margins, the terminfo file usually assumes that this is on; 
i.e .. am. If the terminal has a command which moves to the first colunm of the 
next line, that command can be given as nel (newline). It does not matter if the 
command clears the remainder of the current line, so if the terminal bas no cr or 
If it may still be possible to craft a working nel out of one or both of them. 

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus 
the model33 teletype is described as 

331 tty331 tty 1 model 33 teletype. 
bel="Q, C01s#72. CIMAM, Cud},..AJ, he, ind-"J, 01, 

while the Lear Siegler ADM-3 is described as 

adm3 1311si adm3, 
am, bel--a, clear-"Z, cols#SO, cr="M. cubl•"H. cudl-"J, 
ind-"J, lines#24, 

Parameterized Strings 

Cursor addressing and other strings requiring parameters in the terminal are 
described by a parameterized string capability, with pri'l.if(3S) like escapes %x 
in it. For example, to adtlms the cursor, the cup capability is given. using two 
parameters: the row and colunm to address to. (Rows and columns are num· 
bered from zero and refer to the physical screen visible to the user, not to any 
unseen memory.) If the tenninal has memory relati.ve cursor addressing, that 

1.--.. can be indicated by mrcup. 

September 24, 1987 Page 10 



TERMINFO( 4) TERMINF0(4) 

The parameter mechanism uses a stack and special % codes to manipulate it. 
Typically a sequence will push one of the parameters onto the stack and then 
print it in some fonnat. Often more complex operations are necessary. 

The % encodings have the following meanings: .... 
"" "'"' "'"' "'"" .. 03d 

"'' ... 
'K:.p[l-9] 
'J.P[a-z] 

'l>g[a-z] 
'J:,'c' 
'J:,{DD} 

'1>+%-'J.*'J:,/'J.m 

'J:,&%1%" 
%:%>%< 
%1%-

outputs'%' 
print pop0 as in printf 
print popO like %2d 
print popQ like %3d 

as in printf 
print popQ givc.s 'J:,c 

print pop0 givc.s 'l>s 

push ith parm 
set variable [a-z] lo popO 
get variable [a-z] and push it 
char eonstant c 
integer constant nn 

arithmetic ('Ibm is mod): push(pop() op popQ) 
bit opecations: push(popQ op popQ) 

logical operations: push(pop() op popO) 
unary operations push(op popO) 
add llo first two panns (for ANSI terminals) 

%? expr %t thenpart %e elsepart %; 
if-then-else, %e elsepart is optional. 
else-if's are possible ala Algol68: 

m~~~~~~~k~~~k~~~k­
c1 are conditions, bi are bodies. 

Binary operations are in postfix fonn with the operands in the usual order. That 
is, to getx-5 one would use •%gx%{5}%--H. 

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent 
\E&al2c03Y padded for 6 milliseconds. Note that the order of the rows and 
columns is inverted here, and that the row and colunm are printed as two digits. 
Thus its cup capability is cup.6\E& %p2%2dc%p l %2dY. 

Page 11 September 24, 1987 



I~ 

··--

TERMINF0(4) TERMINF0(4) 

The Microtenn Acr-IV needs the current row and column sent preceded by a 
"T, with the row and column simply encoded in binary, cup-"T%p1 %c%p2%c. 
Terminals which use 'kneed to be able to backspace the cursor (cubl), and to 
move the cursor up one line on the screen (cuul). This is necessuy because it 
is not always safe to transmit \n AD and \r, as the system may change 01' discard 
them. (The library routines dealing with terminfo set tty modes so that tabs are 
never expanded. so \t is safe to send This turns oot to be essential for the Ann 
Arbor 4080.) 

A final example is the LSI ADM-3a. which uses row and colunm offset by a 
blank chamcter, thus CUP=\E-%pl%' '%+%c%p2%' '%+%c. After sending 
'\E-', this pushes the first parameter, pushes the ASCII value for a space (32), 
adds them (pushing the sum on the stack in place of the two previous values) 
and outputs that value as a character. Then the same is done for the second 
parameter. More complex arithmetic is possible using the stack. 

If the terminal has row or column absolute cursor addressing. these can be 
given as single parameter capabilities hpa (horizontal position absolute) and 
vpa (vertical position absolute). Sometimes these are shorter than the more 
general two parameter sequence (as with the hp2645) and can be used in prefer­
ence to cup • If there are parameterized local motions (e.g., move n spaces to 
the right) these can be given as cud, cub, cuf, and cuu with a single panuneter 
indicating how many spaces to move. These are primarily useful if the terminal 
does not have cup, such as the TEKTRONIX 4025. 

Cursor Motions 

If the terminal has a fast way to home the cursor (to very upper left comer of 
screen) then this can be given as home; similarly a fast way of getting to the 
lower leftwhand comer can be given as U; this may involve going up with cuul 
from the home position, but a program should never do this itself (unless U 
does) because it can make no assumption about the effect of moving up from 
the home position. Note that the home position is the same as addressing to 
(0,0): to the top left corner of the screen, not of memory. (Thus, the \EH 
sequence on HP terminals cannot be used for home.) 

Area Clears 

If the terminal can clear from the current position to the end of the line. leaving 
the cursor where it is, this should be given as el. If the tenninaJ. can clear from 
the current position to the end of the display, lben this should be given as ed. 
Ed is only defined from the first column of a line. (Thus, it can be simulated by 
a request to delete a large number of lines, if a true ed is not available.) 

September 24, 1987 Page 12 



TERMINFO( 4) TERMINFO( 4) 

Iosert/delete Hoe 

If the tenninal can open a new blank line before the line where the cursor is, 
this should be given as ill; this is done only from the first position of a line. _.~ 
The cursor must then appear on the newly blank line. If the terminal can delete 
the line which the cursor is on. then this should be given as dll; this is done 
only from the first position on the line to be deleted. Versions of ill and dll 
which take a single parameter and insert or delete that rnany lines can be given 
as nand dl. If the terminal has a settabte·scrolling region (like the vt100) the 
command to set this can be described with the csr capability, which takes two 
parameters: the top and bottom lines of the scrolling region. The cursor posi-
tion is, alas, undefined after using this command. It is possible to get the effect 
of insert or delete line using this command - the sc and n= (save and restore 
cursor) commands are also useful. Inserting lines at the top or bottom of the 
screen can also be done using ri or ind oo many terminals without a true 
insert/delete line, and is often faster even on terminals with those features. 

If the terminal has the ability to define a window as part of memory, which all 
commands affect, it should be given as the parameterized string wind. The four 
parameters are the starting and ending lines in ntenl<X)' and the starting and 
ending columns in memory, in that order. 

If the terminal can retain display memory above, then the da capability should 
be given; if display memory can be retained below, then db should be given. 
These indicate that deleting a line or scrolling may bring non-blank lines up 
from below or that scrolling back with ri may bring down non-blank lines. 

lnsert!Delete Character 

There are two basic kinds of intelligent tenninals with respect to insert/delete 
character which can be described using U!rminfo. The most common 
inse:rtldelete character operations affect only the characters on the current line 
and shift characters off the end of the line rigidly, Other terminals, such as the 
Concept 100 and the Perkin Elmer Owl, make a distinction between typed and 
untyped blanks on the screen, shifting upon an insert or delete ortly to an 
untyped blank on the screen which is either eliminated, or expanded to two 
untyped blanks. You can determine the kind of terminal you have by clearing 
the screen and then typing text separated by cursor motions. Type abc def 
using lcx.:al cursor motioos (not spaces) between the abc and the def. Then posi­
tion the cursor before the abc and put the terminal in insert mode. If typing 
characters causes the rest of the line to shift rigidly and characters to fall off the 
end. then your terminal does not distinguish between blanks and untyped 

Page 13 September 24, 1987 



TERMINFO( 4) TERMINF0(4) 

positions. If the abc shifts over to the def which then move together around the 
end of the current line and onto the next as you insert, you have the second type 
of rennina1, and sbov.~ give l:be capability Ia, which sWlds for insert null. 
While these are two logically separate attributes (one line vs. multiline insert 
mode, and special tteaunent of untyped spaces) we have seen no terminals 
whose insert mode carmot be described with the single attribute. 

Tenninfo can describe both terminals which have an insert mode, and terminals 
whicb send a simple sequence to open a blank position on the current line. 
Give as smir the sequence to get into insert mode. Give as rmir the sequence 
to leave insert mode. Now give as ichl any sequence needed to be sent just 
before sending the character to be inserted. Most tenninals with a true insert 
mode will not give ichl; terminals which send a sequence to open a screen 
position should give it here. (H your terminal has both, insert mode is usually 
preferable to ichl. Do not give both unles~ the terminal actually requires both 
to be used In combination.) If post insert padding is needed,. give this as a 
number of milliseconds in lp (a string option). Any other sequence which may 
need to be sent after an insert of a single character may also be given in ip. If 
your terminal needs both to be placed into an 'insert mode' and a special code 
to precede each inserted chamcter, then both smir/rmir and ichl can be given. 
and both will be used. The ich capability, with one parameter, n, will repeat the 
effects of icbln times. 

It is occasionally necessary to move around while in insert mode to delete char­
acters on the same line (e.g., if there is a tab after the insertion position). If 
your terminal allows motion while in insert mode you can give the capability 
mir to speed up inserting in this case. Omitting mir will affect only speed. 
Some tenninals (notably Datamedia's) must not have mir because of the way 
their insert mode works. 
Finally, you can specify dchl to delete a single character, deb with one param­
eter, n, to delete n characters, and delete mode by giving smdc and rm.dc to 
enter and exit delete mode (any mode the terminal needs to be placed in for 
dchl to work). 

A command to erase n characters (equivalent to outputting n blanks without 
moving the cursor) can be given as eeb with one ~amec:er. 

Highlighting, Underlining, and VIsible Bells 

If your terminal has one or more kinds of display attributes, these can be 
represented in a number of different ways. You should choose one display 
form as standout mode, representing a good, high contrast, easy-on-the-eyes, 

September 24, 1987 Page 14 



TERMINF0(4) TERMINF0(4) 

format for highlighting error messages and other attention geuers. (If you have 
a choice. reverse video plus half-bright is good, or reverse video alone.) The 
sequences to enrer and exit standout mode are given as smso and rmso, respec­
tively. If the code to change into or out of standout mode leaves one or even 
two blank spaces on the screen. as the TVI 912 and Teleray 1061 do, then xmc 
should be given to tell bow many spaces axe left. 

Codes to begin underlining and end underlining can be given as smul and rmul 
respectively. If the terminal has a code to underline the current character and 
move the cursor one space to the right, such as the Microterm Mime, this can be 
given as uc. 

Other capabilities to enter various highlighting modes include blink (blinking) 
bold (bold or extra bright) dim (dim or half-bright) invis (blanking or invisible 
text) prot (protected) rev (reverse video) sgrO {tum off all attribute modes) 
smacs (enter alternate character set mode) and rmacs (exit alternate character 
set mode). Turning on any of these modes singly may or may not tum off other 
modes. 

If there is a sequence to set arbitrary combinations of modes, this should be 
given as sgr (set attributes), taking 9 parameters. Each parameter is either 0 or 
1, as the corresponding attribute is on or off. The 9 parameters are, in order: 
standout, underline, reverse. blink. dim, bold. blank, protect, alternate character 
set Not all modes need be supported by sgr, only those for which correspond­
ing separate attribute conunands exist 

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" 
when they receive mode-setting sequences, which affect the display algorithm 
rather than having extra bits for each character. Some terminals, such as the HP 
2621, automatically leave standout mode when they move to a new line or the 
cursor is addressed. Programs using standout mode should exit standout mode 
before moving the cursor or sending a newline, unless the msgr capability, 
asserting that it is safe to move in standout mode, is present 

If the tenninal has a way of tlashing the screen to indicate an error quiedy (a 
bell replacement) then this can be given as llash; it must not move the cursor. 

If the cursor needs to be made more visible than normal when it is not on the 
bottom line (to make, for example, a non-blinking underline into an easier to 
find block or blinking underline) give this sequenCe as cvvis. If there is a way 
to make the cursor completely invisible, give that as civis. The capability 
caorm should be given which undoes the effects of both of these modes. 

Page 15 September 24, 1987 



TERMINF0(4) TERMINFO( 4) 

If the tenninal needs to be in a special mode when running a program that uses 
these capabilities, the codes to enter and exit this mode can be given as smcup 
and rm.cup. This arises, for example, from tennina1s like lhe Concept with 
more than one page of memory. If the lerminal has only memory relative cur­
sor ackbessing and not screen relative cursor addressing, a one screen-sized 
window must be fixed into the terminal for cursor addressing to work properly. 
This is also used fOf' the TEKTRONIX 4025, where smcup sets the conunand 
character to be the one used by terminfo. 

If your terminal correctly generates underlined characters (with no special 
codes needed) even though it does not overstrike, then you should give the 
capability ul. If overstrikes are erasable with a blank, then this should be indi­
cated by giving eo. 

Keypad 

If the terminal has a keypad that transmits codes when the keys are pressed, this 
information can be given. Note that it is not possible to handle terminals where 
the keypad only works in local (this applies, for example, to the unshifled HP 
2621 keys). If the keypad can be set to transmit <r not transmit. give these 
codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit. 
The codes sent by the left arrow, right arrow, up arrow, down arrow, and home 
keys can be given as kcubl, kcun, kcuul, kcudl, and khome respectively. If 
there are function keys such as fO, fl, .. ., flO. the codes they send can be given 
as kfO, kll, _, kfiO. If these keys have labels other than the default fO through 
no. the labels can be given as 110, In, ..., 1110. The codes transmitted by cer­
tain other special keys can be given: kU (horne down), kbs (backspace), ktbc 
(clear all tabs), kctab (clear the tab stop in this column), kclr (clear screen or 
erase key), kdchl (delete character), kdll (delete line), krmir (exit insert 
mode-), kel (clear to end of line), ked (clear to end of screen), ldchl (insert 
character or enter insen mode), kill (insert line), knp (next page), kpp (previ· 
ous page), kind (scroll forward'down), krl (scroll backwanltup), khts (set a tab 
stop in this column). In addition, if the keypad has a 3 by 3 array of keys 
including the four arrow keys. the other five keys can be given as kal, ka3, 
kb2. kd, and kc3. These keys are useful when the effects of a 3 by 3 direc-­
tional pad are needed. 

Tabs and InWallmtioo 

If the terminal has hardware tabs, the conunand to advance to the next tab stop 
can be given as ht (usually control 1). A "backtab" command which moves 
leftward to the next tab stop can be given as cbt. By convention, if the teletype 

September 24, 1987 Page 16 



TERMINF0(4) TERMINF0(4) 

modes indicate Chat tabs are being expanded by the computer rather than being 
sent to the terminal, programs should not use ht or cbt even if they are present. 
since Che user may not have the tab stnps properly set. If the terminal has 
hardware tabs which are initially set every n spaces when the terminal is 
powered up, the numeric parameter it is given, showing the number of spaces 
the tabs are set to. This is normally used by the tset command to determine 
whether co set the mode for hardware tab expansion. and whether to set the tab 
stopS. If the terminal has tab stops that can be saved in nonvolatile memory, the 
tenninfo description can assume that they are properly set. 

Othec capabilities include isl. isl, and is3, initialization strings for the temrinal. 
iprog, the path name of a program to be run to initialize the terminal, and it, the 
name of a file containing long initialization strings. These strings are expected 
to set the renninal into modes consistent with the rest of the terminfo descrip­
tion. They are normally sent to the cerminal. by the tset program, each time the 
user logs in. They will be printed in the following ooier. isl; is2; setting tabs 
using tbe and bts; if; running the program iprog; and finally is3. Most initiali­
zation is done with is2. Special terminal modes can be set up without duplicat­
ing strings by putting the common sequences in is2 and special cases in isl and 
is3. A pair of sequences that does a hiUder reset from a totally unknown state 
can he analogously given as nl, rsl, rf, and rs3, analogous to is2 and it. 
These strings are outpllt by the reset p-ogram, which is used when the terminal 
gets into a wedged state. Commands are normally placed in n2 and rf only if 
they produce annoying effects on the screen and are not necessaxy when log· 
ging in, FOI' example, the command to set the vt100 into 80-column mode 
would normally be part of is2. but it causes an annoying glitch of the screen and 
is not nonnally needed since the terminal is usually already in 80 column mode. 

H there are commands to set and clear tab stops. they can be given as tbc (clear 
all tab stops) and hts (set a tab stop in the cmrent colunm of every row). H a 
InOie complex sequence is needed to set the tabs than can be described by this, 
the sequence can be placed in is2 or it. 

Delays 

Certain capabilities control padding in the teletype driver. These are primarily 
needed by hard copy terminals, and are used by the tset program to set teletype 
modes appropriately. Delays embedded in the capabilities cr, ind, eubl, tr, and 
tab will cause the appropriate delay bits to be set in the teletype driver. If pb 
(padding baud rate) is given, these values can be ignored at baud rates below 
the value of pb. 

Page 17 September 24, 1987 



I~ 

r-
' 

TERMINF0(4) TERMINF0(4) 

MisceUaneous 

If the tenninal requires other than a nun (zero) character as a pad, then this can 
be given as pad. Only the first character of the pad string is used. 

If the tenninal has an extra ''status line'' that is not normally used by software, 
this fact can be indicated. If the status line is viewed as an extra line below the 
bottom line, into which one can c:ursor address normally (such as the Heathkit 
h19's 25th line, or the 24th line of a vt100 which is set to a 23-line scrolling 
region), the capability hs should be given. Special strings to go to the begin­
ning of the status line and to return from the status line can be given as tsl and 
tsl. (tsl must leave the CUl'SOf' position in the same place it was before tsl. If 
necessary, the sc andre strings can be included in tsl and lsi to get this effect.) 
The parameter tsl takes one patameter, which is the colunm number of the 
status line the cursor is to be moved to. If escape sequences and other special 
commands, such as tab, wo:k while in the status line, the ftag eslok can be 
given. A string which turns off the status line (or otherwise erases its contents) 
should be given as- dsl. If the tenninaJ. has conunands to save and restore the 
posili.on of the cursor, give them as sc and rc. The status line is normally 
assumed to be the same width as the rest of the screen. e.g., c:ols. If the status 
line is a different width (possibly because the terminal does not allow an entire 
line to be loaded) the width, in columns, can be indicated with the numeric 
parameter wsl. 

If the terminal can move up or down half a line, this can be indicated with hu 
(half-line up) and hd (half-line down). This is primarily useful for superscripts 
and subscripts on hardcopy tenninals. If a hardcopy tenninal can eject to the 
next page (form feed), give this as rr (usually control L). 

If there is a command to repeat a given character a given number of times (to 
save time transmitting a large number of :identical characters) this can be indi­
cated with the parameterized string rep, The first parameter is the character to 
be repeated and the second is the number of times to repeat it. Thus, 
tparm(repeat_char, 'x', 10) is the same as 'xxxxxxxxxx'. 

H the terminal has a settable command character, such as the TEKTRONIX 
4025, this can be indicated with cmdch. A prototype command character is 
chosen which is used in all capabilities. This character is given in the cmdch 
capability to identify it. The following convention is supported on some UNIX 
systems: The environment is to be searched for a CC variable, and if found, all 
occurrences of the prototype character are replaced with the character in the 
environment variable. 

September 24, 1987 Page 18 



TERMINF0(4) TERMINF0(4) 

Terminal descriptions that do not represent a specific kind of known tenninal. 
such as switch, dialup, patch, and network, should include the go (generic) 
capability so that programs CiUI complain that they do not know how to talk to 
the terminal. (This capability does not apply to virtual tenninal descriptions for 
which the escape sequences are known.) 

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding 
information should still be included so that routines can make better decisions 
about costs, but actual pad characters will not be transmitted. 

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of 
any character transmitted. this fact can be indicated with km. Otherwise, 
software will assume that the 8th bit is parity and it will usually be cleared. If 
strings exist to tum this "meta mode" on and off, they can be given as smm 
andrmm. 

If the terminal has more lines of memory than will fit on the screen at once, the 
number of lines of memory can be indicated with lm. A value of Im#O indi­
cates that the number of lines is not fixed, but that there is still more memory 
than fits on the screen. 

·If the tenninal is one of those supported by the UNIX virtual tenninal protocol, 
the terminal number can be given as vt. 

Media copy strings which control an auxiliary printer connected to the terminal 
can be given as mcO: print the contents of the screen, mc4: tum off the printer, 
and mcS: tum on the printer. When the printer is on, all text sent to the termi­
nal will be sent to the printer. It is undefined whether the text is also displayed 
on the terminal screen when the printer is on. A variation mcSp takes one 
parameter, and leaves the printer on for as many characters as the value of the 
parameter, then turns the printer off. The parameter should not exceed 255. All 
text, including mc4, is transparently passed to the printer while an mcSp is in 
effocc 

Strings to program function keys can be given as pfkey, pftoc. and ptx. Each 
of these strings takes two parameters: the function key number to program 
(from 0 to 10) and the string to program it with. Function key numbers out of 
this range may program undefined keys in a terminal dependent manner. The 
difference between the capabilities is that pfkey causes pressing the given key 
to be the same as the user typing the given string; pftoc causes the string to be 
executed by the tenninal in local; and pfx causes the string to be transmitted to 
the computer. 

Page 19 September 24, 1987 



TERMINFO( 4) TERMINF0(4) 

GUtches and Brainclamage 

Hareltine terminals, which do not allow ,_, characters to be displayed should 
indicate bz. 

Terminals which ignore a Iinefeed immediately after an am wrap, such as the 
Concept and vt100, should indicate xenl. 

If ei is required to get rid of standout (instead of merely writing nonnai text on 
top of it), xhp should be given. 

Teleray terminals, where tabs tum all characters moved over to blanks, should 
indicate xt (destructive tabs). This glitch is also taken to mean that it is not pos­
sible to position the cursor on top of a ''magic cookie", that to erase standout 
mode it is instead necessary to use delete and insert line. 

The Beehive Superbee. which is unable to correctly transmit the escape or con· 
trol C characters, has xsb, indicating that the f1 key is used for escape and f2 
for control C. (Only certain Superbees have this problem. depending on the 
ROM.) 

Other specific terminal problems may be corrected by adding more capabilities 
of the form n. 

Simllar Terminals 

If there are two very similar terminals, one can be defined as being just like the 
other with certain exceptions. The string capability use can be given with the 
name of the similar terminal, The capabilities given before use override those 
in the tenninaJ. type invoked by use. A capability can be cancelled by placing 
XX@ to the left of the capability definition, where XX is the capability. For 
example, the entry 

2621-nl. smkx@,rmkx@, use=2621, 

defines a 2621-nl that does not have the smkx orrmkx capabilities, and hence 
does not tum on the function key labels when in visual mode. This is useful for 
different modes for a terminal, or for different user preferences. 

FllJ!S 
lusrllibltenninfGl'l,. files containing tenninal descriptions 

SEE. ALSO 
co•nes(3X), printf(JS), ....,(5). 
tic( 1M) in the System Administrator Reference Manual. 

Septembet 24, 1987 Page20 



TTYTYPE(4) UniSoft TTYTYPE(4) 

NAME 
ttytype - data base of terminal types by port 

DESCit.IPTION 
Ttytype is a database containing, for each tty port on the system, the kind of 
terminal that is attached to it. There is one line per port, containing the 
terminal kind (as a name listed in termcap(5)), a space, and the name of 
the tty, minus /dev/. 

This information is read by lser(l) and by login(!) to initialize the TERM 
environment variable at login time. 

EXAMPLE 

FILES 

dw console 
Ja ttyO 
hl9ttyl 
hl9 tty2 
du ttydO 

/etc/ttytype 

SEE ALSO 
tset(l), login(l). 

- I -



UTMP(4) 

NAME 
utmp, wtmp - utmp and wtmp entry formats 

SYNOPSIS 
#Include <s)'s/types.h> 
#Include <utmp.h> 

DESCRIPTION 

UTMP(4) 

These files, which hold user and accounting information for such com­
mands as who(l), write(l), and /ogin(l), have the following structure as 
defined by <utmp.h>: 

FILES 

#deline 1 'I MI'_IILL "lelc/utmp" 
#dellnc 11'1~11'_111.1 "lelc/Wimp" 
#delinc Ul_nomc ul_u~oer 

strucl utmp I 
char ut_u .. riB]; I• u..,r Lo~in name •I 

'"" ul_id[4]; I• /elclinitlab id !usually line #I •/ 
char ut_linel12); I• de~ice name <console, lnxxl •I 
shorl Ul_pid; I• proc:ess id •I 
shorl ut_lypc:; I• lypc: of enlry •/ 
•lrUCI cxit_staiU• ( 

•hurl e_lerminalion; I• Pro.:esslcrnlinlllion suuu• •I 
short c_uil; I• Process uil sial<>• •I 

I ut_c•il; I• The uil sllltos of a process 

• mar~cd •• 111.,\I>_I'I<OU ~'· ., 
1in1e_1 ul_lime; I• lime enll)' was made •/ 

char ot_hostll6); I• h<>l>l name if renmle •/ ,, 
I• l)eHnilion~ for ot_typc: •I 
#delincl~ll'll 0 

#dclinc Rl !'<_I I 1- I 
#dellne 1!111>"1_11~11 2 
#delinc ouJ_II~ll 3 
#define !'I.II_TIMI 4 
#define ll'>ll_I'HUI'I !>.~ I• Proo:ess spo.wned by "init" •I 
#define Ull.tt\_I'I<<K I!>.~ 6 
#tlc~ne 1'-~~II_I'R<K'I :>.~ 7 
#define JJLII>.I'R<KI!>.' 8 
#dcline Allm:ro;-IJM; 9 

I• A "1e11y" pro<~ w~iting for IOI!in •I 
I• A u.cr process •I 

#dcline 1 1 ~1.\ ~ 1 H'l ,111 o\ t\'11~'<<, I • Lurgest I<~• I v•loe of ul_lype • I 

I• Speciol sWiilg~ or limna~ used in the "ul_line" licld when •I 
I• K<'l:ounti~ for something other !hun a proo:css. •I 
I• No siring for the ot_line liekl can be more !han II charo + ·I 
I• a M 11 in lcnglh. •I 

#deline 111 M_\ 1 .. ~~~. "run-level %c" 
#dclinc ll<nn.~t.\1• ·~ystcm boot" 
#delinc 'rt 1~11 -~~~~. 'old 1in1c" 
#dcline ~'ll~ll_~l.'>lo "ne" time" 

I usr I include/ utmp. h 

- I -



UTMP(4) 

/etc/utmp 
/etc/wtmp 

SEE ALSO 
login(!), who(J), write(!), getut(JC). 

- 2 -

UTMP(4) 



r 

(' 

INTRO(S) 

NAME 
intro - introduction to miscellany 

DESCiliPTION 

INTRO(S) 

Tbis section describes miscellanevus facilities such as macro packases, char· 
acter set tables. etc. 

- I -



INTRO(SN) UniSoft INTRQ(SN) 

NAME 
networking - introduction to networking facilities 

SYNOPSIS 
#include <sys/socket.h> 
#inelude <net/route.h> 
#Include <net/lf.h> 

DESCRIPTION 
This section briefly describes the networking facilities available in the sys­
tem. Documentation in this part of section S is broken up into three areas: 
protocol-families, protocols, and network interji:lces. Entries describing a 
protocol-family are marked "SF", while entries describing protocol use are 
marked "5P". Hardware support for network interfaces are found among 
the standard "S" entries. 

All network protocols are associated with a specific pro/Ocoi-}Umily. A 
protocol-family provides basic services to the protocol implementation to 
allow it to function within a specific network environment. These services 
may include packet fragmentation and reassembly, routing, addressing, and 
basic transport. A protocol-family may support multiple methods of 
addressing, though the current protocol implementations do not. A 
protocol-family is normally comprised of a number of protocols, one per 
socket(2N) type. It is not required that a protocol-family support all socket 
types. A protocol-family may contain multiple protocols supporting the 
same socket abstraction. 
A protocol supports one of the socket abstractions detailed in socket(2N). 
A specific protocol may be accessed either by creating a socket of the 
appropriate type and protocol-family, or by requesting the protocol eJ~.plicitly 
when creating a socket. Protocols normally accept only one type of address 
format, usually determined by the addressing structure inherent in the 
design of the protocol-family/network architecture. Certain semantics of 
the basic socket abstractions are protocol specific. All protocols are 
eJ~.pected to support the basic model for their particular socket type, but 
may, in addition, provide non-standard facilities or eJ~.tensions to a mechan­
ism. For eJ~.ample, a protocol supporting the SOCK STREAM abstraction 
may allow more than one byte of out-of-band data -to be transmitted per 
out-of-band message. 

A network interface is similar to a device interface. Network interfaces 
comprise the lowest layer of the networking subsystem, interacting with the 
actual transport hardware. An interface may support one or more protocol 
families, and/or address formats. 

PROTOCOLS 
The system currently supports only the DARPA Internet protocols fully. 
Raw socket interfaces are provided to IP protocol layer of the DARPA 
Internet, to the IMP link layer (1822), and to XeroJl PUP-I layer operating 
on top of 3Mb/s Ethernet interfaces. Consult the appropriate manual pages 
in this section for more information regarding the support for each protocol 
family. 

ADDRESSING 
Associated with each protocol family is an address format. The following 
address formats are used by the system: 

- I -



INTRO (SN) Un.iSoft INTRO(SN) 

#deline AI'_ UNIX I' loalllo hose !pipes. portals) 'I 

#dclinc AI'_INET 2 I' int~rneework: UIJP, n·r. etc. 'I 

#deJinc M"_IMPLINK 

#dclinc M'_PUP 

ROUTING 

' 
' 

I' arpanct imp addresses 'I 
I' pup protoc:ols; c.11. BSP 'I 

The network facilities provided limited packet routing. A simple set of data 
structures comprise a "routing table" used in selecting the appropriate net­
work interface when transmitting packets. This table contains a single entry 
for each route to a specific network or host. A user process, the routing 
daemon, maintains this data base with the aid of two socket specific ioct/(2) 
commands, SIOCADDRT and SIOCDELRT. The commands allow the 
addition and deletion of a single routing table entry, respectively. Routing 
table manipulations may only be carried out by super-user. 

A routing table entry has the following form, as defined in < llrt!roult•.h>; 

struce reemry I 
u_lons 
seruct 
scruct 
sllurl 
shorl 
u_lons 
serucl 

I. 

rl_h ... h; 
sodaddr rt_dsl; 
sockaddr n_ptew11y; 
rt_flags; 
rt_rcfcne; 
rt_usc; 
ifnct •n_ifp; 

with rt_)loxs defined from, 

#dcline 
#dcline 
#dclinc 

RTI"_UP 
RTF_UATEWAY 
RU"_IIOST 

,,, ,,, ,,, 
I' rouee usable 'I 
f' dc~linalion is a 8"1Cway 'I 
I' hose entry I net otherwise) 'I 

Routing table entries come in three flavors: for a specific host, for all hosts 
on a specific network, for any destination not matched by entries of the 
first two types (a wildcard route). When the system is booted, each network 
interface autoronfigured installs a routing table entry when it wishes to 
have packets sent through it. Normally the interface specifies the route 
through it is a "direct" connection to the destination host or network. If 
the route is direct, the transport layer of a protocol family usually requests 
the packet be sent to the same host specified in the packet. Otherwise, the 
interface may be requested to address the packet to an entity different from 
the eventual recipient (i.e. the packet is forwarded). 

Routing table entries installed by a user process may not specify the hash, 
reference count, use, or interface fields; these are filled in by the routing 
routines. If a route is in use when it is deleted (rt_n:fi"m is non-zero), the 
resources associated with it will not be reclaimed until further references to 
it are released. 
The routing code returns EEXIST if requested to duplicate an existing 
entry, ESRCH if requested to delete a non-existant entry, or ENOBUFS if 
insufficient resources were available to install a new route. 

User processes read the routilli tables through the /dev/kmem device. 

- 2-



INTRO(SN) UoiSoft INTR.O(SN) 

The rt_uw field contains the number of packets sent along the route. This 
value is used to select among multiple routes to the same destination. 
When multiple routes to the same destination exist, the least used route is 
selected. 

A wildcard routing entry is specified with a zero destination address value. 
Wildcard routes are used only when the system fails to find a route to the 
destination host and network. The combination of wildcard routes and 
routing redirects can provide an economical mechanism for routing traffic. 

INTERFACES 
Each network interface in a system corresponds to a path through which 
messages may be sent and received. A network interface usually has a 
hardware device associated with it, though certain interfaces such as the 
Joopback interface, /o(5), do not. 
At boot time each interface which has underlying hardware support makes 
itself known to the system during the autoconfiguration process. Once the 
interface has acquired its address it is expected to install a routing table 
entry so that messages may be routed through it. Most interfaces require 
some part of their address specified with an SIOCSIFADDR ioctl before 
they will allow traffic to flow through them. On interfaces where the 
network-link layer address mapping is static, only the network number is 
taken from the ioctl; the remainder is found in a hardware specific manner. 
On interfaces which provide dynamic network-link layer address mapping 
facilities (e.g. IOMb/s Ethernets), the entire address specified in the ioctl is 
used. 
The following ioctl calls may be used to manipulate network interfaces. 
Unless specified otherwise, the request takes an i)h•qu,•st structure as its 
parameter. This structure has the form 

Mruo! ifrcq I 
ifr_namc(l6]: r name of inlcrl"a<.-c lc.g. "cdn 'I 

union I 
~trucl sochddr 1fru _ a<klr: 
strucl sockuddr ifru_dstaddr; 
~hurl ifru_llaso; 

I ifr_ifru; 
#dclinc ifr_addr ifr_ifru.ifru_addr I' address'/ 
#dclinc ifr_dsluddr ifr_ifru.ifru_dsl!lddr r olhcr end of p·lu-p lm~ 'I 
#dclinc ifr_nall" ifr_ifru.ifru_llai!S I' lla!!'> 'I 

" SIOCSIFADDR 
Set interfatX~ address. Following the address assignment, the "ini­
tialization" routine for the interface is called. 

SIOCGIFADDR 
Get interface address. 

SIOCSIFDSTADDR 
Set point to point address for interface. 

SIOCGIFDSTADDR 
Get point to point address for interface. 

SIOCSIFFLAGS 
Set interface flags field. If the interface is marked down, any 

- 3-



INTRO(SN) UuiSoft INTRO(SN) 

processes currently routing packets through the interface are 
notified. 

SIOCGIFFLAGS 
Get interface flags. 

SIOCGIFCONF 

SEE ALSO 

Get interface configuration list. This request takes an ifi:onf struc­
ture (see below) as a value-result parameter. The ifc len field 
should be initially set to lhe size or the buffer pointed to bY ifi.'_buf 
On return it will contain the length, in bytes, of the configuration 
list. 

I' 
• Structure uscd in SIOCUIFCONF requesl. 
' Uli<ld Lu rctrie~e interf..ce conligur•tion 
• ror machine (useful for proara.ms which 
• must know all networks oe<eOliible) . . , 

struct ifconf l 
int ifc_len; I' size uf usocialed buffer 'I 
uniun l 

CRddr_t ifcu_buf; 
struct ifreq 'ifcu_req; 

I ifc_ifcu; 
#define ifc_buf lfc_lfcu.ifcu_buf I' buffer llddress 'I 
#define ifc_req ifc_ifcu.ifcu_req I' arriQ' uf structures returned 'I ,, 

socket(2N), ioctl(2), routed(SN) 

. 4. 



ASCIHS) ASCII (S) 

NAME 
ascii - map of ASCII character set 

SYNOPSIS 
eat /usr/pub/ascll 

DESCRIPTION 

FILES 

Ascii is a map of the ASCII character set, giving both octal and hexadecimal 
equivalents of each character, to be printed as needed. It contains: 

1000 nu!IOOI sohl002 stxiOOJ etxl004 eotiOOS enql006 ackl007 bell 
1010 bs 1011 ht 1012 nl IOIJ vt 1014 np OIS cr 1016 so 1017 si I 
1020 dlel021 dcll022 del lOB dc3I024 dc4 02S nakl026 synl027 etbl 
IOJO can I OJ! em 1032 subl033 esc 1034 fs 03S gs 1036 rs 1037 us I 
1040 sp 1041 1042 1043 # 1044 $ 04S% 1046 & 1047 I 
IOSO ( lOS! IOS2 * IOSJ + IOS4 , OSS - 1056 . 1057 I I 
1060 o 1061 I 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7 I 
1010 s 1011 9 I on I on ; 1074 < 1075 = lo76 > 1077 I 
1100@ 1101 A 1102 B I!OJ C 1104 D 1105 E 1106 F 1107 G I 
1110 H Ill\ I 1112 J 1113 K 1114 L IllS M 1116 N 1117 0 I 
I120P 112\Q llllR I123S I124T I115U I126V I127W I 
l\30 X l\31 Y l\31 z 1133 I l\34 \ Ins I 1136 1137 I 
1140 • 1141 a 1142 b 1143 c 1144 d 1145 e 1146 f 1147 g I 
ltso h liS\ I!Sl j I!S3 k I1S4 I 1155 m ltS6 n Its? o I 
1160 P 1161 11 1162 1163 s 1164 t 1165 u 1166 v 1167 w I 
1170 x lnt y 1111 z lt73 I 1174 I 1175 J 1176 lt77 dell 

00 oul 01 soh I 02 stx I 03 etx 04 eot 05 enq I 06 ack I 07 be I 
08 bs 09 ht I ,, ol I Oh VI Oc np Od " I ,, " I Of ,, 
10 die II dell 11 '" 13 de) 14 dc4 15 nak I 16 syn I 17 "' 18 can 19 om I ,, "' lb esc lc fs ld " I I e rs I If " 20 sp 21 I 22 23# 24 • 15% I 26& I 27 
281 29) I ,, lb+ ,, . ld- I ,, . I lfl 
30 0 31 I I 32 2 33 3 34 4 35 5 I 36 ' I 37 7 
38 8 39 9 I " Jb ; 3o< 3d= I 3e >. I Jf ? 
40@ 41A I 428 43C 440 45E I 46F I 470 
48H 491 •• J 4bK 4d 4dM I 4o N I 4f0 
SOP 51Q 52R 53 s 54T 55U I 56V I S7W 
58 X 59Y 5• z 5b[ 5o I 5d] I 5o 

. I 5f 
60 " . " b 63 ' 64d 65 ' I " f I "' 
" b " 

,, 6b k ,, 6dm I ,, " I 6fo 
70 p 71 ' 72 73 ' 74 75 ' I '" I 77w I 

'"' 79 ' " ' 7b[ ,, 7d) I ,, . I 7f dell 

/usr/pub/ascii 

• 1 • 



ARP(SP) UniSort ARP(SP) 

NAME 
arp - Address Resolution Protocol 

DESCRIPTION 
ARP is a protocol used to dynamically map between DARPA Internet and 
IOMb/s Ethernet addresses on a local area network. It is used by all the 
IOMb/s Ethernet interface drivers and is not directly accessible to users. 

ARP caches lnternet-Ethernet address mappings. When an interface 
requests a mapping for an address not in the cache, ARP queues the mes­
sage which requires the mapping and broadcasts a message on the associ­
ated network requesting the address mapping. If a response is provided, 
the new mapping is cached and any pending messages are transmitted. 
ARP itself is not Internet or Ethernet specific; this implementation, how­
ever, is. ARP will queue at most one packet while waiting for a mapping 
request to be responded to; only the most recently "transmitted" packet is 
kept. 
ARP watches passively for hosts impersonating the local host (i.e. a host 
which responds to an ARP mapping request for the local host's address) 
and will, optionally, periodically probe a network looking for impostors. 

DIAGNOSTICS 
duplicate IP address!! sent from etbernet address: %x %x %x %x %x %x . 
ARP has discovered another host on the local network which responds to 
mapping requests for its own Internet address. 

- I -



ENVIRON(S) UniSoft ENVIRON(S) 

NAME 
environ - user environment 

SYNOPSIS 
extern cbar *"enl'iron; 

DESCRIPTION 
An array of strings called the 'environment' is made available by ext•d2) 
when a process begins. By convention these strings have the form 
'name= value'. The following names are used by various commands: 

PATH 

HOME 

The sequence of directory prefixes that sh, lilllt', nicdl), etc., 
apply in searching for a file known by an incomplete path name. 
The prefixes are separated by ':'. 
Login (I) sets: 

PATH- :/bin;/usr/bin. 

A user's login directory, set by loKin(l) from the password file 
J1(1SSWJ(4). 

TERM The kind of terminal for which output is to be prepared. This 
information is used by commands, such as nrqt!; more, or ri. 
which may exploit special terminal capabilities. See Mdtenncap 
or (termcap(S)) for a list of terminal types. 

SHELL The file name of the users login shell. 

TERMCAP The string describing the terminal in TERM, or the name of the 
termcap file, see termcap(S). 

EXlNIT A startup list of commands read by ex(l), edil(l), and riO). 

LOG NAME The login name of the user. 

TZ Time zone information. The format is XXXJIZZZ where xxx is 
standard local time zone abbreviation, n is the difference is 
hours from GMT, and zzz is the abbreviation for the daylight­
saving local time zone, if any; for example, ESTSEDT. 

Further names may be placed in the environment by the <'>.11Uf/ command 
and 'name=value' arguments in silO), or by the Sf'lf'J/l" oommand if you 
use csiJ(l). Arguments may also be placed in the environment at the point 
of an exe•·(2). It is unwise to conflict with cenain sh(l) variables that are 
frequently exported by •.profile" files: MAIL, PSI, PS2, lFS. 

SEE ALSO 
cshO), exOl, loginO), shOl, exed2), systemOS), termcap{S), tty{7). 

Page l July 23, 1985 



'·~.· 

-~-
' 

EQNCHAR(5) 

NAME 
eqnchar - special character definitions for eqn and neqn 

SYNOPSIS 
eqn /usr/pub/eqnchar [ files 11 trnff [ options I 
neqn /usr/pub/eqncbar I files 1 I nroff [ options 1 

DESCRIPTION 

EQNCHARU) 

Eqnchar contains troff'and nroffcharacter definitions for constructing char­
acters that are not available on the Wang Laboratories, Inc. C/A/T photo­
typesetter. These definitions are primarily intended for use with eqn and 
neqn; eqnchar contains definitions for the following characters: 

ciplus ., II II square D 

citimes " tangle ( circle 0 
wig rangle ) blot D 

-wig = hbm • bullet • 
>wig ~ ppd " prop « 

<wig s < -> - empty 0 
-wig ~ <-> - member E 

star • I< < nomem ~ 
bigstar * I> :> cup u 
-dot "' ang L cap n 
orslgn v rang L incl (;; 

andsign A Jdot subset c 
=del <!. tlif supset :;, 

appA v quarter 'A /subset <: 
opp£ 3 Jquarter l4 Jsupset ;;) 

angstrom A degree • scrL scrL 

==< --< --> --> 
FILES 

I usr/ pub/ eqnchar 

SEE ALSO 
eqn(l), nroff{l), troff(I). 

. I . 



FCNTL(.S) FCNTL(.S) 

NAME 
fcnll - file control options 

SYNOPSIS 
#include <fcntl.h> 

DESCRIPTION 
The }Cnt/(2) function provides for control over open files. The include file 
describes requests and arguments to }Cntl and opt>n(2). 

I• Flag values accessible to upenOJ and ,R"m/{2) •I 
I• (The first three can only be set by <Jf'<'riJ •I 
#define O_RDONLY 0 
#define O_WRONLY I 
#define O_RDWR 2 
#define O_NDELAY 04 
#define O_APPEND 010 

I• Non-blocking 1/0 •I 
I• append (writes guaranteed at the end) •I 

I• Flag values accessible only to Of>en(2) •I 
#define O_CREAT 
#define O_TRUNC 
#define O_EXCL 

00400 
01000 
02000 

I• .t<·m/(2) requests •f 
#define F _DUPFD 0 
#define F_GETFD I 
#define F_SETFD 2 
#define f _GETFL 3 
#define F_SETFL 4 
#define f_GETLK 5 
#define F _SETLK 6 
#define f _ SETLK W 7 
#define F_GETOWN 8 
#define F_SETOWN 9 

f• open wilh file create {uses third open arg) •/ 
I• open with truncation •I 
I• exclusive open •I 

I• Duplicate tildes •f 
I• Get .tildes flags •I 
I• Set tildes flags •f 
I• Get file flags •I 
I• Set file llags •I 
I• Get blocking file locks •I 
I• Set or clear file locks and fail on busy •I 
I• Set or clear file locks and wait on busy •I 
I• Get owner •I 
I• Set owner •I 

I* file segment locking control structure •t 
struct flock ( 
short 
short 
long 

'"'' int 

]_type; 
I_ whence; 
]_start; 
]_len; 
l_pid; 

r file segment locking types 01 

I" ifO tllen until EOF "I 
I* returned with F_GETLK •1 

#define F_RDLCK 01 1• Read lock •t 
#define F_WRLCK 02 !"Write lock •t 
#define F_UNLCK 03 !"Remove locks •1 

SEE ALSO 
fcntl(2), open(2). 

Page I August 8. 1985 



r 
' 

,~ 

-

OREEK(5) 

NAME 
greek - graphics for the e){ tended TTY -37 type-box 

SYNOPSIS 
eat /usr/pub/greek II greek ~ Tterminal I 

DESCRIPTION 

OREEK(5) 

Greek gives the mapping from ASCII to the "shift-out" graphics in elfect 
between SO and SI on TELETYPE~· Model 37 terminals equipped with a 
128-character type-bo){. These are the default greek characters produced by 
nro11: The filters of greek(l) attempt to print them on various other termi· 
nals. The file contains: 

alpha • A .... p B gamma y I 
GAMMA r G delta • D DELTA • w 
epsilon ' s .... ' Q "' • N 
THETA e T theta • 0 lambda ' L 
LAMBDA A E mu " M nu " @ ,, I X pi • J PI ll p ,,. p K sigma " 

y SIGMA I R 

"" 
, I phi • u PHI .. F 

psi • v PSI .. H omega • c 
OMEGA n z nabla " I not 
partial • 1 integral J 

FILES 
/usr/pub/greek 

SEE ALSO 
3000), 4014{1), 450{1), greek(]), tc{l), nrolf(l). 

- I -



INET(SF) UniSoft INET(SF} 

NAME 
inet - Internet protocol family 

SYNOPSIS 
#Include <sys/types.h> 
#include < netinet/ln.b> 

DESCRIPTION 
The Internet protocol family is a collection of protocols layered atop the 
Internet Protm:ol (IP) transport layer, and utilizing the Internet address for­
mat. The Internet family provides protocol support for the 
SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types; the 
SOCK_RA W interface provides access to the IP protocol. 

ADDRESSING 
Internet addresses are four byte quantities, stored in network standard for­
mat (on the VAX these are word and byte reversed). The include file 
< nelinetlin.h> defines this address as a discriminated union. 

Sockets bound to the Internet protocol family utilize the following address­
ing structure, 

struct sockaddr in l 
short -
u_short 
struct 
char 

}; 

sin _family; 
sin _port; 
in addr sin addr; 
siil_zero[S]; 

Sockets may be created with the address IN AD DR ANY to effect wildcard 
matching on incoming messages. -

PROTOCOLS 
The Internet protocol family is comprised of the IP transport protocol, 
Internet Control Message Protocol (ICMP), Transmission Control Protocol 
(TCP), and User Datagram Protocol {UDP). TCP is used to support the 
SOCK STREAM abstraction while UDP is used to support the 
SOCK=DGRAM abstraction. A raw interface to IP is available by creating 
an Internet socket of type SOCK RAW. The ICMP message protocol is 
not directly accessible. -

SEE ALSO 
tcp(SP), udp{SP), ip(SP) 

CAVEAT 
The Internet protocol support is subject to change as the Internet protocols 
develop. Users should not depend on details of the current implementa­
tion, but rather the services exported. 

- I -



,,.--

IP(SP) UniSort IP(SP) 

NAME 
ip - Internet Protocol 

SYNOPSIS 
#Include <~ys/socket.h> 
#include <netlnet/ln.h> 
s = socket(AF_INET, SOCK_RAW, 0); 

DESCRIPTION 
IP is the transport layer protocol used by the Internet protocol family. It 
may be accessed through a raw socket when developing new protocols, or 
special purpose applications. IP sockets are connectionless, and are nor· 
mally used with the 5rmdw and .rec~trom calls, though the cotmec1(2N) call 
may also De used to fix the destination for future packets On which case the 
reod(2) or rec1•(2N) and wrlte(3) or 5f'nd(2N) system calls may be used). 

Outgoing packets automatically have an IP header prepended to tbem 
(based on tbe destination address and the protocol number tbe socket is 
created with). Likewise, incoming packets have tbeir IP header stripped 
before being sent to the user. 

DIAGNOSTICS 
A socket operation may fail with one of the following errors returned: 
[EISCONN] when trying to establish a connection on a socket which 

already has one, or when trying to send a datagram with 
the destination address specified and the socket is already 
connected; 

[ENOTCONN] when trying to send a datagram, but no destination address 
is specified, and the socket hasn't been connected; 

[ENOBUFS] when the system runs out of memory for an internal data 
structure; 

[EADDRNOTAVAIL] 
when an attempl is made to create a socket with a network 
address for which no network interface exists. 

SEE ALSO 

BUGS 

Page I 

send(2N), recv(2N), intro(SN), inet(SF) 

One should be able to send and receive ip options. 

The protocol should be sellable after socket creation. 

July 29, 1985 



LO(S) UniSoft LO(S) 

NAME 
lo - software Joopback network interface 

SYNOPSIS 
pseudo-device loop 

DESCRIPTION 
The /oop interface is a software loopback mechanism which may be used for 
performance analysis, software testing, and/or local communication. By 
default, the loopback interface is accessible at address 127.0.0.1 (non­
standard); this address may be changed with the SIOCSIFADDR ioctl. 

DIAGNOSTICS 
lo%d: can't bandle af%d. The inlerface was handed a message with 
addresses formatted in an unsuitable address family; the packet was 
dropped. 

SEE ALSO 

BUGS 

intro(SN), inet(SF) 

It should handle all address and protocol families. An approved network 
address should be reserved for this interface . 

. I . 



MAN(S) MAN(S) 

NAME 
man - macros for fonnatting entries in this manual 

SYNOPSIS 
DrOtr -man files 

trorr -man [ -rsl ] files 

DESCRIPTION 
These troff(l) macros are used to lay out the format of the entries of this 
manual. 1bese macros are used by the man (I) command. 

The default page size is 8.5"xll", with a 6.5"xl0" ten area; the -rsl option 
reduces these dimensions to 6''><9" and 4.75"x8.375", respectively; this option 
(which is not effective in nroff) also reduces the default type size from 10-point 
to 9-point, and the vertical line spacing from 12-point to tO-point The -rV2 
option may be used to set certain parameters to values appropriate for certain 
Versatec printers: it sets the line length to 82 characters. the page length to 84 
lines, and it inhibits undedining; this option should not be confused with the 
- Tvp qnion of the man(l) command, which is available at some UNIX System 
sUes. 

Any text argument below may be one to six "words''. Double quotes ("")may 
be used to include blanks ina "word". If text is empty, the special treatment is 
applied to the next line that contains text to be printed. For example, .I may be 
used to italicize a whole line, or .sM followed by .B to make small bold text. 
By default, hyphenation is turned off for nrojJ, but remains on for trojf. 

Type font and size are reset to default values before each paragraph and after 
processing font- and size-setting macros. e.g., .I. .RB, .sM. Tab stopS are nei­
ther used nor set by any macro except .DT and .m. 

Default units for indents in are ens. When in is omitted, the previous indent is 
used. This remembered indent is set to its default value (7 .2 ens in troff, 5 ens 
in nroff-this corresponds to 0.5" in the default page size) by .Til, .P, and .RS, 
and restored by .RE . 

• TH t sc n Set the title and entry heading; t is the title, s is the section number, 
c is extra commentary. e.g., "locaJ", n is new manual name. 
Invokes .DT (see below) . 

.SH text Place subhead text, e.g., SYNOPSIS, here . 

. SS text Place sub-subhead text, e.g., Optious, here . 

. 8 text Make text bold. 

Pagel September 24, 1987 



MAN(S) MAN(5) 

.I text Make text italic . 

.sM text Make text 1 point smaller than default point size. 

.RI a b Concatenate roman a with italic b, and alternate these two fonts for 
up to six argmnents. Similar macros alternate between any two of 
roman, italic, and bold: 

.IR .RB .BR .IB .BI 
.P 
Begin a paragraph with normal font, point size, and indent. .PP is a synonym 
for.P . 
• HPin 
Begin paragraph with hanging indent. 
.TPin 
Begin indented paragraph with hanging tag. The next line that contains text to 
be printed is taken as the tag. If the tag does not fit, it is prinled on a separate 
tine • 
.IP tin 
Same as .TP in with tag t; often used to get an indented paragraph without a tag • 
.RSin 
Increase relative indent (initially zero). lndent all output an extra in units from 
the current left margin . 
.REt 
Return to the kth relative indent level (initially, k=l; k=O is equivalent to k=l); 
if k is omitted, return to the most recent lower indent level. 
.PMm 
Produces proprietary markings; where m may be P foe PRIVATE, N for 
NOTICE, BP for BELL LABORATORIES PROPRIETARY, or BR for BELL 
LABORATORIES RESTRICTED . 
• DT 
Restore default tab settings (every 7.2 ens in troff, 5 ens in nroff) • 
.PD• 
Set the interparagraph distance to v vertical spaces. If v is omitted, set the 
inteqmragraph distance to the default value (0.4v in trojf, l v in nroff). 

The following strings are defined: 

\•R ®in trof!, (Reg.) in nrolf. 
\•S Change to default type size. 
\•(Tm Trademark indicator. 

The following number registers are given default values by .TH: 

September 24, 1987 Page2 



r-, 

MAN(5) MAN(5) 

IN Left margin indent relative to subheads (default is 1:1 ens in troff, 5 
ens in nrojf). 

LL 
PO 

CAVEATS 

Line lmgth including IN. 
Current interparagraph distance. 

In addition to the macros, strings, and number registers mentioned above. there 
are defined a number of internal macros, strings, and number registers. Except 
for names predefined by troffand number registers d, m, andy, aD such internal 
names are of the form XA, where X is one of),), and}, and A stands for any 
alphanumeric character. 

If a manual entry needs to be preprocessed by cw(l), eqn(I) (or neqn), and/or 
tbl(l), it must begin with a special line (described in man(l)), causing the man 
command to invoke the appropriate p-eprocessor(s). 

The programs that prepare the Table of Contents and the Pennuted Index for 
this Manual assume the NAME section of each entry consists of a single line of 
input that has the fallowing fonnat: 

name{, name, name .•• ] \- explanatory text 

The macro package increases the inter-word spaces (to eliminate ambiguity) in 
the SYNOPSIS section d each entry. 

The macro package itself uses only the roman font (so that one can replace, for 
example. the bold font by the constant-width font-see cw(l)). Of course, if the 
input text of an entry contains requests for other fonl<l (e.g., .1, .RB, \ll), the 
corresponding fonts must be mounted. 

EXAMPU! 
nroff -man man.S 

to nroif this manual section. 

FILI!S 

/usc/lib/tmac/tmac.an 
/usr,llib{macroslcmp.[nt].[dt].an 
/usr/lib/macros/ucmp.[nt].an 

Page3 September 24, 1987 



MAN(S) MAN(S) 

SEE ALSO 
man(I), nroff(l), troff(l). 

BUGS 
If the argument to .TH contains any blanks and is not enclosed by double 
quotes(""), there will be bird-dropping-like things on the oulpUt. 

September 24, 1987 Page4 



MATH(S) MATH(S) 

NAME 
math - math functions and constants 

.~ SYNOPSIS 
#Include <math.b> 

DESCRIPTION 

FILES 

This file contains declarations of all the functions in the Math Library 
(described in Section 3M), as well as various functions in the C Library 
(Section 3C) that return floating-point values. 

It defines the structure and constants used by the malherr(JM) error­
handling mechanisms, including the following constant used as an error­
return value; 

HUGE The maximum value of a single-precision floating­
point number. 

The following mathematical constants are defined for user convenience: 

M_E The base of natural logarithms (e). 

M_LOG2E 

M_LOGIOE 

M_LN2 

M_LNIO 

M_PI 

M_SQRT2 

M_SQRT1_2 

The base-2 logarithm of e. 

The base-10 logarithm of e. 
The natural logarithm of 2. 

The natural logarithm of 10. 

The ratio of the circumference of a circle to its diam­
eter. <There are also several fractions of its recipro­
cal and its square root.l 

The positive square root of 2. 

The positive square root of 1/2. 

For the definitions of various machine-dependent "constants," see the 
description of the < va/ues.h> header file. 

I usr I include/ math.h 

SEE ALSO 
intro(3), matherr(3M), values(S). 



MM(S) MM(S) 

NAME 
mm - the MM macro package for formatting documents 

SYNOPSIS 
mm [ options l [ files [ 

nroff -mm [ options 1 [ files 1 

nroff -em [ options 1 [ files 1 

mmt [ options l [ files 1 

troff - mm I options l [ files 1 

troff -em [ options ] [ files I 

DESCRIPTION 

FILES 

This package provides a formatting eapability for a very wide variety of 
documents. It is the standard package used by the BTL typing pools and 
documentation centers. The manner in which a document is typed in and 
edited is essentially independent of whether the document is to be eventu­
ally formatted at a terminal or is to be phototypeset. See the references 
below for further details. 
The -mm option causes nro.ffand rro.ff{l) to use the non-compacted ver­
sion of the macro package, while the -em option results in the use of the 
compacted version, thus speeding up the process of loading the macro 
package. 

I usr/ lib/ tmacl tmac. m 

I usrllibl macros! mm Inti 
I usrllibl macros! cmp. [nt1. [dt1.m 
I usrllib/ macros! ucmp.(n tl. m 

pointer to the non-compacted version of 
the package 
non-compacted version of the package 
co-mpacted version of the package 
initializers for the compacted version of 
the package 

SEE ALSO 
mmO), mmtO), nroff(l), troff(l). 
MM in the Document Processing Guide. 

- I -



~--
( 

----

MOSD(S) MOSD(S) 

NAME 
mosd - the OSDD adapter macro package for formatting documents 

SYNOPSIS 
osdd I options 1 [ files 1 
mm - mosd [ options I I files ] 

nrolf -mm -mosd [options 1 I files 1 

nrolf -em -mosd I options] [files 1 

mmt - mosd I options 1 [ files I 

troll -mm -mosd [options I I files I 
trolf -em -mosd I options 1 [files] 

DESCRIPTION 
The OSDD adapter macro package is a tool used in conjunction with the MM 
macro package to prepare Operations Systems Deliverable Documentation. 
Many of the OSDD Standards are different than the default format provided 
by MM. The OSDD adapter package sets the appropriate MM options for 
automatic production of the OSDD Standards. The OSDD adapter package 
also generates the correct OSDD page headers and footers, headirlJ styles, 
Table of Contents format, etc. 

OSDD document (input) files are prepared with the MM macros. Additional 
information which must be given at the beginning of the document file is 
specified by the following string definitions: 

.ds HI document-number 

.ds H2 section-number 

.ds H3 issue-number 

.ds H4 date 

.ds HS rating 

The documelll-number should be of the standard 10 character format. The 
words "Section" and "Issue" should not be included in the string 
definitions: they will be supplied automatically when the document is 
printed. for example: 

.ds HI OPA-1P135-01 

.ds H2 4 

.ds H3 2 
automatically produces 

OPA·1P135-01 
Section 4 
Issue 2 

as the document page header. Quotation marks are not used in string 
definitions. 

If certain information is not to be included in a page header, then the string 
is defined as null; e.g., 

.ds H2 
means that there is no section-number. 
The OSDD Standards require that the Table of Contents be numbered begin­
ning with Page 1. By default, the first page of text will be numbered Page 
1. If the Table of Contents has more than one page, for example n, then 
either -rPn+J must be included as a command line option or .or P n 
must be included in the document file. for example, if the Table of 

. I . 



MOSD(S) MOSD(S) 

FILES 

Contents is four pages then use -rP5 on the command line or .nr P 4 in 
the document file. 
The OSDD Standards require that certain information such as the document 
rating appear on the Document Index or on the Table of Contents page if 
there is no index. By default, it is assumed that an index has been 
prepared separately. If there is no index, the following must be included in 
the document file: 

.nr Di 0 
This will ensure that the necessary information is included on the Table of 
Contents page. 

The OSOD Standards require that all numbered figures be placed at the end 
of the document. The .Fg macro is used to produce full page figures. This 
macro produces a blank page with the appropriate header, footer, and figure 
caption. Insertion of the actual figure on the page is a manual operation. 
The macro usage is 

.Fg page-count "figure caption" 
where page-count is the number of pages required for a multi-page figure 
(default I page). 

Figure captions are produced by the .Fg macro using the .BS/.BE macros. 
Thus the .BS/.BE macros are also not available for users. The .Fg macro 
cannot be used within the document unless the final .Fv; in a series of 
figures is followed by a .SK macro to force out the last figure page. 

The Table of Contents for OSDD documents (see Figure 4 in Section 4.1 of 
the OSDD Standards) is produced with: 

.T, 
System Type 
System Name 
Document Type 
.Td 

The • Tel. Td macros are used instead of the • TC macro from MM. 

By default, the adapter package causes the NOTICE disclosure statement to 
be printed. The .PM macro may be used to suppress the NOTICE or to 
replace it with the PRIVATE disclosure statement as follows: 

.PM none printed 

.PM P PRIVATE printed 

.PM N NOTICE printed (default) 

The .P macro is used for paragraphs. The Np register is set automatically 
to indicate the paragraph numbering style. It is very important that the .P 
macro be used correctly. At! paragraphs (including those immediately fol­
lowing a .H macro) must use a .P macro. Unless there is a .P macro, there 
will not be a number generated for the paragraph. Similarly, the .P macro 
should not be used for text which is not a paragraph. The .SP macro may 
be appropriate for these cases, e.g., for "parasraphs" within a list item. 

The page header format is produced automatically in accordance with the 
OSDD Standards. The OSDD Adapter macro packase uses the . TP macro 
for this purpose. Therefore the . TP macro normally available in MM is not 
available for users. 

/usr/lib/ tmac/ tmac.osd 

- 2 -



MOSD(S) MOSD(S) 

SEE ALSO 
mm(l), mmtO), nroffO), troff(l), mm(S). 

(· MM in the Dm:ument Processing Guide. 

- 3 -



MPTX(5) MPTX(S) 

NAME 
mptx - the macro package for formatting a permuted index 

SYNOPSIS 
nroff -mph: [ options 1 ( files 1 
troff -mph: [ options 1 [ files I 

DESCRIPTION 

FILES 

This package provides a definition for the .xx macro used for formatting a 
permuted index as produced by ptx(l). This package does not provide any 
other formatting capabilities such as headers and footers. If these or other 
capabilities are required, the mp/x macro package may be used in conjunc­
tion with the MM macro package. In this case, the -mptx option must be 
invoked a}ler the - mm call. For example: 

nrotf -em -mptx file ., 
mm - mptx file 

/usr/lib/tmac/tmac.ptx pointer to the non-compacted version of the 
package 

/usr/lib/macros/ptx non-compacted version of the package 

SEE ALSO 
mm(l), nrotf(l), ptx(I), troff(l), mm(S) . 

. I . 



MV(S) MV(S) 

NAME 
mv - a trotf macro package for typesetting view graphs and slides 

SYNOPSIS 
mvl [ -a 1 [ options 1 I files ] 

trolf I -a I I -rXI I -mv I options] [files I 
DESCRIPTION 

This package makes it easy to typeset view graphs and projection slides in a 
variety of sizes. A few macros (briefly described below) accomplish most 
of the formatting tasks needed in making transparencies. All of the facili· 
ties of troff(O, cw(l), eqn(I), and tb/(1) are available for more difficult 
tasks. 

The output can be previewed on most terminals, and, in particular, on the 
Tektronix 4014, as well as on the Versatec printer. For these two devices, 
specify the -rXI option (this option is automatically specified by the mvt 
command-q.v.-when that command is invoked with the -T4014 or 
-Tvp options). To preview output on other terminals, specify the -a 
option. 

The available macros are: 
.VS [n] [d [a] 

. Vw [n] [i] [JJ 

. Vh [n) [i] [JJ 

. VW In! [i] [JJ 
,VH [11] [i) [£11 
,Sw [n] [i] [JJ 
. Sh lui [i] [JJ 
,SW {n) [i] [,~ 
. SII (ui [i] [t~ 
. A h~ 

. 8 (m lsi] 

Foil-start macro; foil size is to be 7"x7"; n is the foil 
number, i is the foil identification, d is the date; the 
foil-start macro resets all parameters (indent, point 
size, etc.) to initial default values, except for the values 
of i and d arguments inherited from a previous foil­
start macro; it also invokes the .A macro (see below). 

The naming convention for this and the following eight 
macros is that the first character of the name (V or S) 
distinguishes between view graphs and slides, respec­
tively, while the second character indicates whether the 
foil is square (S), small wide (w), small high (h), big 
wide (W), or big high (H). Slides are "skinnier" than 
the corresponding view graphs: the ratio of the longer 
dimension to the shorter one is larger for slides than 
for view graphs. As a result, slide foils can be used for 
view graphs, but not vice versa; on the other hand, 
view graphs can accommodate a bit more tell I . 

Same as. VS, ellcept that foil size is 7" wide x 5" high . 
Same as .VS, except that foil size is 5"x7" . 
Same as. VS, ellcept that foil size is 7"x5.4". 
Same as. VS, ellcept that foil size is 7"x9", 
Same as, VS, ellcept that foil size is 7"x5" . 
Same as .VS, ellcept that foil size is 5"x7". 
Same as. VS, ellcept that foil size is 7"x 5.4" . 
Same as, VS, ellcept that foil size is 7"x9" . 
Place tell! that follows at the first indentation level (left 
margin); the presence of x suppresses the 'h line spac­
ing from the preceding tell! . 
Place tell! that follows at the second indentation level; 
lellt is preceded by a mark; m is the mark (default is a 
large bullet)~ .~ is the increment or decrement to the 
point size of the mark with respect to the {lrnaifinx 

-I-



MV(!i) 

FILES 

. C [m lsl I 

. D [m(s] J 

• T string 
.I [in] [a l.xll 

. s 1p1 rn 

• DF nf[nf .. .J 

MV(!;) 

point size (default is 0); if s is 100, it causes the point 
size of the mark to be the same as that of the defaufl 
mark . 
Same as .8, but for the third indentation level; default 
mark is a dash . 
Same as .8, but for the fourth indentation level; 
default mark is a small bullet. 
Siring is printed as an over-size, centered title . 
Change the current text indent (does not affect titles); 
in is the indent (in inches unless dimensioned, default 
is 0); if in is signed, it is an increment or decrement; 
the presence of a invokes the .A macro (see below) 
and passes x (if any) to it . 
Set the point size and line length; p is the point size 
(default is "previous"); if p is 100, the point size 
reverts to the iniliaf default for the current foil-start 
macro; if p is signed, it is an increment or decrement 
(default is 18 for .VS, .VH, and .SH, and 14 for the 
other foil-start macros); I is the line length (in inches 
unless dimensioned; default is 4.2" for .Vh, 3.8" for 
.Sh, 5" for .SH, and 6" for the other foil-start macros) . 
Define font positions; may not appear within a foil's 
input text (i.e., it may only appear after all the input 
text for a foil, but before the next foil-start macro); n 
is the position of font j; up to four "n J"' pairs may be 
specified; the first font named becomes the preWJiling 
font; the initial setting is (H is a synonym for G): 

.DF1H2IJB4S 
.DV {a) [b] [d [dl Alter the vertical spacing between indentation levels; a 

is the spacing for .A, b is for .B, c is for .C, and d is 
for .D; all non-null arguments must be dimensioned; 
null arguments leave the corresponding spacing 
unaffected; initial setting is: 

.DV .Sv .5v .5v Ov 
.U sir/ [slrJ] Underline Sir/ and concatenate s/r2 (if any) to it. 

The last four macros in the above list do not cause a break; the .1 macro 
causes a break only if it is invoked with more than one argument; all the 
other macros cause a break. 
The macro package also recognizes the following upper-case synonyms for 
the corresponding lower-case lro.O'requests: 

.AD .BR .CE .FI .HY .NA .NF .NH .NX .SO .SP .TA .TI 

The Tm string produces the trademark symboL 

The input tilde C) character is translated into a blank on output. 

/usr /lib/ tmac/ tmac. v 
I usr/lib/ macros/ vmca 

SEE ALSO 
cw(l), eqn(l), mmtO), tbl{l), troff(l). 

BUGS 
The . VW and .SW foils are meant to be 9" wide by 7" high, but because 

- 2 -



MV(S) MV(S) 

the typesetter paper is generally only 8" wide, they are printed 7" wide by 
5.4" high and have to be enlarged by a factor of 9/7 before use as view 

.~ graphs; this makes them less than totally useful. 

-3-



PROF(S) PROF(S) 

NAME 
prof - profile within a function 

SYNOPSIS 
#define MARK 
#include <prof.h> 
void MARK (name) 

DESCRIPTION 
MARK will introduce a mark called name that will be treated the same as a 
function entry point. Ellecution of the mark will add to a counter for that 
mark, and program·counter time spent will be accounted to the immedi~ 
ately preceding mark or to the function if there are no preceding marks 
within the active function. 

Name may be any combination of up to sill letters, numbers or under~ 
scores. Each name in a single compilation must be unique, but may be the 
same as any ordinary program symbol. 

For marks to be effective, the symbol MARK must be defined before the 
header file <prof.h> is included. This may be defined by a preprocessor 
directive as in the synopsis, or by a command line argument, i.e; 

cc -p -OM ARK foo.c 

If MARK is not defined, the MARK(name) statements may be left in the 
source files containing them and will be ignored. 

EXAMPLE 
In this example, marks can be used to determine bow much time is spent 
in each loop. Unless this ellample is compiled with MARK defined on the 
command line, the marks are ignored. 

#include <prof.b> 

foo( ) 
I 

SEE ALSO 

int i, j; 

MARK(Ioopl); 
for (i., 0; i < 2000; i++) I 

I 
MARK(ioop2); 
for (j- 0; j < 2000; j++) I 

prof(l), proftl(2), monitor(JC). 

- I -



PTY(S) UniSon PTY(S) 

NAME 
pty - pseudo terminal driver 

.r-- DESCRIPTION 
The ply driver provides support ror a device-pair termed a pseudo terminal. 
A pseudo terminal is a pair of character devices, a master device and a slave 
device. The slave device provides processes an interface identical to that 
described in termio(7). However, whereas all other devices which provide 
the interface described in termio<7) have a hardware device of some sort 
behind them, the slave device has, instead, another process manipulating it 
through the master half of the pseudo terminal. That is, anything written 
on the master device is given to the slave device as input and anything 
written on the slave device is presented as input on the master device. 

The following ioctl calls apply only to pseudo terminals: 

TIOCSTOP 
Stops output to a terminal (e.g. like typing "S). Takes no parame· 
ter. 

TIOCSTART 
Restarts output (stopped by TIOCSTOP or by typing "S). Takes no 
parameter. 

TIOCPKT 
Enable/disable packet mode. Packet mode is enabled by specifying 
(by reference) a nonzero parameter and disabled by specifying (by 
reference) a zero parameter. When applied to the master side of a 
pseudo terminal, each subsequent read from the terminal will 
return data written on the slave part of the pseudo terminal pre· 
ceded by a zero byte (symbolically defined as TIOCPKT DATA), 
or a single byte reflecting control status information. In lhe latter 
case, the byte is an inclusive-or of zero or more of the bits: 

TIOCPKT FLUSHREAD 
whenever the read queue for the terminal is flushed. 

TIOCPKT_FLUSHWRITE 
whenever the write queue for the terminal is flushed. 

TIOCPKT STOP 
whenever output to the terminal is stopped a Ia ·s. 

TIOCPKT START 
whenever output to the terminal is restarted. 

TIOCPKT DOSTOP 
whenever t_stopc is ·sand t_Marlcis "Q. 

TIOCPKT NOSTOP 
whenever the start and stop characters are not ·srQ. 

This mode is used by r/ogin(lN) and rlogind(8N) to implement a 
remote-echoed, locally "S/"Q flow-controlled remote login with 
proper back-flushing of output; it can be used by other similar pro­
grams. 

TIOCREMOTE 
A mode for the master half of a pseudo terminal, independent of 
TIOCPKT. This mode causes input to the pseudo terminal to be 
flow controlled and not input edited (regardless of the terminal 

- I -



PTY(S) 

FILES 

UniSoFt PTY(S) 

mode). Each write to the control terminal produces a record boun~ 
dary for the process reading the terminal. In normal usage, a write 
of data is like the data typed as a line on the terminal: a write of 0 
bytes is like typing an end-of-file character. TIOCREMOTE can be 
used when doing remote line editing in a window manager, or 
whenever flow controlled input is required. 

/dev/pty(p-r] [0-9a-fl 
/dev/tty[p-rl [0-9a-f] 

DIAGNOSTICS 

master pseudo terminals 
slave pseudo terminals 

None. 

BUGS 
It is not possible to send an EOT. 

- 2 -



REGEXP(S) REGEXP(S) 

NAME 
regexp - regular expression compile and match routines 

SYNOPSIS 
#define INIT <declarlllions> 
#define GETCO <getc code> 
#define PEEK<.'() <peekc code> 
#define UNGETC(d <ungetc code> 
#define RETURN(pointer) <return code> 
#define ERRORival) <error code> 

#include <regexp.b> 
char •oompile Unstring, expbuf, endbuf, eof) 
char •instring, •expbuf, •endbuf; 
lnt eof; 

lnt step (string, expbuf) 
char •string, •expbuf; 

extern char •lod, •Joel, •locs; 

extern int circf, sed, nbra; 

DESCRIPTION 
This page describes general-purpose regular expression matching routines in 
the form of ed{l), defined in /usr/include/regexp.h. Programs such as 
t'd(l), sed(l), grep(l), bs(l), expr(l), etc., which perform regular expres­
sion matching use this source file. In this way, only this file need be 
changed to maintain regular expression compatibility. 

The interface to this file is unpleasantly complex. Programs that include 
this file must have the following five macros declared before the 
"#include <regexp.h>" statement. These macros are used by the fompile 
routine. 
GETC() 

PEEKC() 

UNGETC(d 

RETURN(poinler) 

ERROR (val) 

Return the value of the next character in the regular 
expression pattern. Successive calls to GETCO 
should return successive characters of the regular 
expression. 

Return the next character in the regular expression. 
Successive calls to PEEKCO should return the same 
character (which should also be the next character 
returned by GETC()). 

Cause the argument ,. to be returned by the next call 
to GETC() (and PEEKCO). No more that one char· 
acter of pushback is ever needed and this character is 
guaranteed to be the last character read by GETC( J. 
The value of the macro UNGETC(d is always 
ignored. 

This macro is used on normal exit of the compill' rou· 
tine. The value of the argument pointn is a pointer 
to the character after the last character of the com­
piled regular expression. This is useful to programs 
which have memory allocation to manage. 

This is the abnormal return from the compile routine. 
The argument 1•o/ is an error number (see table 

- I -



JtEGEXPU) ltEGEXP(S) 

below for meaninp). This caJI should never return. 

ERROR MEANING 
II Range endpoint too large. 
16 Bad number. 
25 "\digit" out of rana:e. 
36 IUegal or missing delimiter. 
41 No remembered searcb string. 
42 \( \) imbalance. 
43 Too many\(. 
44 More than 2 numbers given in\{ \}. 
45 } expected .after \. 
46 First number exceeds second in\( \}. 
49 II imbalance. 
SO Regular expression overOow. 

The syntax of the compile routine is as follows: 

compile(instring, expbuf, endbuf, coO 

The first parameter lnstrlng is never used explicitly by the compile routine 
but is useful for programs that pass down different pointers to input charac­
ters. It is sometimes used in the !NIT declaration (sec below). Programs 
which call functions to input characters or have characters in an external 
array can pass down a value of ((char •) 0) for this parameter. 

The next parameter expb!if is a character pointer. It points to the place 
where the compiled regular expression will be placed. 

The parameter endbufis one more than the highest address where the com­
piled regular expression may be placed. If the compiled expression cannot 
fit in (endb!if-expbuj) bytes, a call to ERROR(SO) is made. 

The parameter eof is the character which marks the end of the regular 
expression. For example, in ed(l), this character is usually a/. 

Each program that includes this file must have a #define statement for 
INIT. This definition wiU be placed right after the declaration for the func­
tion compile and the opening curly brace ((). It is used for dependent 
declarations and initializations. Most often it is used to set a register vari­
able to point the beginning of the regular expression so that this register 
variable can be used in the declarations for GETCO, PEEKCO and 
UNGETCO. Otherwise it can be used to declare external variables that 
might be used by GETC(), PEEKC0 and UNGETC(). See the example 
below of the declarations taken from grep(l). 

There are other functions in this file which perform actual regular expres­
sion matching, one of which is the function step. The call to step is as fol­
lows: 

step(string, expbuO 

The first parameter to step is a pointer to a string of characters to be 
checked for a match. This string should be null terminated. 

The second parameter expbuf is the compiled regular expression which was ~ 
obtained by a call of the function compile. 

The function step returns non-zero if the given string matches the regular 
expression, and zero if the expressions do not match. If there is a match, 
two external character pointers are set as a side effect to the call to step. 

- 2 -



REOEXP(S) REOEXP(S) 

The variable set in step is foe 1. This is a pointer to the first character that 
matched the regular expression. The variable Joel, which is set by the 
function advance, points to the character after the last character that 
matches the regular expression. Thus if the regular expression matches the 
entire line, /od will point to the first character of string and loc2 will point 
to the null at the end of string. 

Step uses the external variable circf which is set by compile if the regular 
expression begins with -. If this is set then step will try to match the regu­
lar expression to the beginning of the string only. If more than one regular 
expression is to be compiled before the first is executed the value of eire/ 
should be saved for each compiled expression and circf should be set to 
that saved value before each call to step. 

The function advance is called from step with the same arguments as step. 
The purpose of step is to step through the string argument and call advance 
until advance returns non-zero indicating a match or until the end of string 
is reached. If one wants to constrain string to the beginning of the line in 
all cases, step need not be called~ simply call advance. 

When advance encounters a • or\{ \} sequence in the regular expression, 
it will advance its pointer to the string to be matched as far as possible and 
will recursively call itself trying to match the rest of the string to the rest of 
the regular expression. As long as there is no match, advance will back up 
along the string until it finds a match or reaches the point in the string that 
initially matched the • or\{ \}. It is sometimes desirable to stop this back­
ing up before the initial point in the string is reached. If the external char­
acter pointer /oes is equal to the point in the string at sometime during the 
backing up process, advance will break out of the loop that backs up and 
will return zero. This is used by ed(l) and sed(!) for substitutions done 
globally (not just the first occurrence, but the whole line) so, for example, 
expressions like s/y•//g do not loop forever. 

The additional external variables sed and nbra are used for special purposes. 

EXAMPLES 

FILES 

The following is an example of how the regular expression macros and calls 
look from grep(l): 

#define !NIT 
#define GETC() 
#define PEEKC() 
#define UNGETC(c) 
#define RETURN(c) 
#define ERROR(c) 

#include <regexp.h> 

register char •sp = instring; 
(•sp++) 
(•sp) 
(- -sp) 
return; 
regerrO 

(void) compile(•argv, expbuf, &expbuf[ESIZE], '\0'); 

if (stepOinebuf, expbuO) 
succeed(); 

I usr I include/ regexp. h 

SEE ALSO 
bsO), edO), exprO), grep(IJ, sed(!). 

- 3 -



REOEXP(S) REGEXP(S) 

BUGS 
The handling of circfis kludgy. 
The actuaJ code is probably easier to understand than this manuaJ pase. 



STAT(S) 

NAME 
stat - data returned by stat system call 

SYNOPSIS 
#lnelude <sys/types.h> 
#Include <sys/stat.h> 

DESCRIPTION 

STAT(S) 

The system calls slut and jStut return data whose structure is defined by this 
include file. The encoding of the field st_mode is defined in this file also. 

I • 
• Structure of the result of stat ., 

FILES 

struct stat { 

); 

dev_t 
ino t 
ushort 
short 
ushort 
ushort 
dev t 
off I 
tim-e t 

time::::t 
time_l 

st dev; 
s(ino; 
st mode; 
st-nlink; 
s(uid; 
st_gid; 
st_rdev: 
st size; 
st::::atime; 
st mtime; 
s(ctime; 

#define S IFMT 0170000 
#define S-IFDIR 0040000 
#define S-IFCHR 0020000 
#define S-IFBLK 0060000 
#define S-IFREG 0100000 
#define S-IFIFO 0010000 
#define S-ISUID 04000 
#define S-ISGID 02000 
#define S -ISVTX 01000 
#define S -!READ 00400 
#define S -!WRITE 00200 
#define s)EXEC 00100 

I usrl include/ sysl types.h 
I usr I include/ sys/ stat. h 

SI!E ALSO 
stat(2), types(S). 

I• type of file •I 
I• directory •I 
I• character special •I 
I• block special •I 
I• regular •/ 
I• :fifo •/ 
I• set user id on e)(ecution •/ 
I• set group id on e)(ecution •I 
I• save swapped te)(t even after use •I 
I• read permission, owner •I 
I• write permission, owner •I 
I• e)(ecutelsearch permission, owner •I 

- I -



TCP(SP) UniSoft TCP(SP) 

NAMI! 
tcp - Internet Transmission Control Protocol 

SYNOPSIS 
#include <srs/soeket.b> 
#include <netlnet/in.h> 
s = socket(AF_INET, SOCK_STREAM, 0); 

DI!SCRIPTION 
The TCP protocol provides reliable, flow-controlled, two-way transmission 
of data. It is a byte-stream protocol used to support the SOCK_STREAM 
abstraction. TCP uses the standard Internet address format and, in addi· 
tion, provides a per·host collection of port addresses. Thus, each address is 
composed of an Internet address specifying the host and network, with a 
specific TCP port on the host identifying the peer entity. 

Sockets utiiiling the tcp protocol are either active or passive. Active sock· 
ets initiate connections to passive sockets. By default TCP sockets are 
created active; to create a passive socket the listen(2N) system call must be 
used after binding the socket with the bind(2N) system call. Only passive 
sockets may use the atcept(2N) call to accept incoming connections. Only 
active sockets may use the co~tnel'I(2N) call to initiate connections. 

Passive sockets may underspecify their location to match incoming connec· 
tion requests from multiple networks. This technique, termed wildcard 
addressing, allows a single server to provide service to clients on multiple 
networks. To create a socket which listens on all networks, the Internet 
address INADDR ANY must be bound. The TCP port may still be 
specified at this tiffie; if the port is not specified the system will assign one. 
Once a connection has been established the socket's address is fixed by the 
peer entity's location. The address assigned the socket is the address asso· 
dated with the network interface through which packets are being transmit­
ted and received. Normally this address corresponds to the peer entity's 
network. 

DIAGNOSTICS 
A socket operation may fail with one of the following errors returned: 

IEISCONN) when trying to establish a connection on a socket 
which already has one; 

(ENOBUFS] when the system runs out of memory for an internal 
data structure; 

(ETIMEDOUT] when a connection was dropped due to excessive 
retransmissions; 

IECONNRESET] when the remote peer forces the connection to be 
closed; 

IECONNREFUSED] when the remote peer actively refuses connection 
establishment (usually because no process is listening 
to the port); 

IEADDRINUSE] when an attempt is made to create a socket with a 
port which has already been allocated; 

[EADDRNOT AVAIL] 
when an attempt is made to create a socket with a 
network address for which no network interface 

- I -



TCP(SP) UniSoft TCP(SP) 

exists. 

SEE ALSO 
( intro{SN), inet(SF) 

BUGS 
It should be possible to send and receive TCP options. The system always 
tries to negotiates the maximum TCP segment size to be 1024 bytes. This 
can result in poor performance if an intervening network performs exces­
sive fragmentation. 

• 2 • 



TERM(S) TERM(5) 

NAME 
term - conventional names for terminals 

DESCRIPTION 
These names are used by certain commands (e.g., nroJl; mm(J), man(!), 
tabs(l)) and are maintained as part of the shell environment (see sh(l), 
projile(4), and environ(5)) in the variable STERM; 

1520 Datamedia 1520 
1620 Diablo 1620 and others using the HyType II printer 
1620-12 same, in 12-pitch mode 
2621 Hewlett-Packard HP2621 series 
2631 Hewlett-Packard 2631 line printer 
2631-c Hewlett-Packard 2631 line printer - compressed mode 
2631- e Hewlett-Packard 2631 line printer - expanded mode 
2640 Hewlett-Packard HP2640 series 
2645 Hewlett-Packard HP264n series (other than the 2640 series) 
300 DASI/DTC/GSI 300 and others using the HyType I printer 
300-12 same, in 12-pitch mode 
300s DASIIDTC/GSI 300s 
382 DTC 382 
300s-12 same, in 12-pitch mode 
3045 Datamedia 3045 
33 TELETYPE<~> Terminal Model 33 KSR 
37 TELETYPE Terminal Model 37 KSR 
40-2 TELETYPE Terminal Model40/2 
40-4 TELETYPE Terminal Model40/4 
4540 TELETYPE Terminal Model 4540 
3270 IBM Model 3270 
4000a Trendata 4000a 
4014 Tektronix 4014 
43 TELETYPE Model 43 KSR 
450 DASI450 (same as Diablo 1620) 
450-12 same, in 12-pitch mode 
735 Texas Instruments TI735 and Tl725 
745 Texas Instruments Tl745 
dumb generic name for terminals that lack reverse 

line-feed and other special escape sequences 
generic name for synchronous TELETYPE 
4540-oompatible terminals 

sync 

hp 
lp 
tnl200 
tn300 

Hewlett-Packard (same as 2645) 
generic name for a line printer 
General Electric TermiNet 1200 
General Electric TermiNet 300 

Up to 8 characters, chosen from {-a-z0-9), make up a basic terminal 
name. Terminal sub-models and operational modes me distinguished by 
suffixes beginning with a -. Names should generally be based on original 
vendors, rather than local distributors. A terminal acquired from one ven­
dor should not have more than one distinct basic name. 

Commands whose behavior depends on the type of terminal should accept 
arguments of the form - T term where term is one of the names given 
above; if no such argument is present, such commands should obtain the 
terminal type from the environment variable STERM, which, in turn, 

. I . 



~-( 

TERM(S) TERM(S) 

should oontain term. 

See /etc/termcap on your system for a complete list. 

SEE ALSO 

BUGS 

mm(l), nroff(l), shO), sttyO), tabsO), tplot(lG), profile(4), environ(5). 

This is a small candle trying to illuminate a large, dark problem. Programs 
that ought to adhere to this nomenclature do so somewhat fitfully. 

• 2 • 



TERMCAP(S) TERMCAP(S) 

NAME 
termcap - terminal capability data base 

SYNOPSIS 
/etc/termcap 

DESCRIPTION 
Termcap is a data base describing tenninals used, e.g., by vi(l), Terminals are 
described in termcap by giving a set of capabilities which they have. and by 
describing how operations are pedonned. Padding requirements and initializa­
tion sequences are included in termcap. 

Entries in termcop consist of a number of ':' separated fields. The first entry for 
each tennina1 gives the names which are known for the cerminal, separated by 
'I' characters. The first name is always 2 characlel's long and is used by older 
version 6 systems which store the tenninal type in a 16 bit word in a system­
wide data base. The second name given is the most conunon abbreviation for 
the terminal, and the last name given should be a long name fully identifying 
the tenninal. The second name should contain no blanks; the last name may 
well contain blanks for readability. 

CAPABn.ITIES 
(P) indicates padding may be specified 
(P*) indicates that padding may be based on no. lines affected 

Name Type Pad? Description 
ae str (P) End alternate character set 
al str (P"') Add new blank line 
am boot Terminal has automatic margins 
as scr (P) Stan alternate character set 
be str Backspace if not ~H 
bs boot Terminal can backspace with AH 
bt scr (P) Back tab 
bw bool Backspace wraps from column 0 to last column 
CC stt Command character in pueotype if terminal settable 
cd str (P") Clear to end of display 
ce stt (P) Clear to end of line 
ch str (P) Like em but horizontal motion only, line stays same 
cl sir (P"') Clear screen 
em str (P) Cursor motion 
co num Number of columns in a line 
cr str (P") Carriage return, (default "M) 

Page 1 September 24, 1987 



TERMCAP(S) TERMCAP(S) 

cs ·~ (P) Change scrolling region (vtlOO), like em 

( cv ·~ (P) Like ch but vertical only. 
da bool Display may be -retained above 

'-·- dB num Number of mi1lisec of bs delay needed 
db bool Display may be -below 
dC num Number' of millisec of cr delay needed 
de ·~ (P') Delete c ........ 
dF num Number of millisec of ff delay needed 
dl stt (P•) Delete line 
dm ·~ Delete mode (enter) 
dN num Number of millisec of Ill delay needed 
do "' Down one line 
dT num Number of millisec of cab delay needed 
ed '" End delete mode 
ei ·~ End insert mode; give :ei-: if ic: 
eo ·~ Can eiaSe overstrikes with a blank 
ff "' (P"') Hardcopy terminal page eject (default -L) 
he bool llanlcopy letDUnal 
hd "' Half-line down (forward 1121inefeed.) 

r- ho ·~ Home cursor (if no em) 
( hu ·~ Half-line up (reveiSe 1121inefeed) 

•. -- hz '" Hazeltine; can't print ·•s 
ic '" (P) Insert character 
if str Name of file containing is 
im str Insertmode(enter); give :im=: ific 
in bool Insert mode distinguishes nulls on display 
ip '" (P') Insert pad after character inserted 
is '" Terminal initialization string 
k0-k.9 Sir Sent by other function keys 0-9 
kb '" Sent by backspace key 
kd '" Sent by terminal down arrow key .. ·~ Out of keypad transmit mode 
kh '" Sent by home key 
ld '" Sent by terminal left arrow key 
kn num Number of other keys 
ko '" Termcap entries for other non-function keys 
kr '" Sent by terminal right arrow key 
ks ·~ Put terminal in keypad transmit mode r- ku ·~ Sent by terminal up arrow key 

~ 

September 24, 1987 Page2 



TERMCAP(S) TERMCAP(S) 

10-19 "' Labels 00 other-keys 
li ..... Number of lines on screen or page 
ll •• Last line, first column (if no em) 
ma •• Arrow key map, used by vi versioo 2 only 
mi boot Safe to move while in insert mode 
m1 stt Memory lock on above cursor. 
ms boo! Safe to move while in standout and underline mode 
mu Itt Memo<y ...... (bun off""""""' lock). 
DC boo! No correctly working caniage teturn (DM2500,H2000) 
nd stt Non-descructive space (cursor right) 
n1 stt (P*) Newline character (default \n) .. boo! Terminal is a CRT but doesn't scroll 

"' boo! Terminal overstrikes .. ott Pad character (rather than null) 
pt boo1 Has hardware tabs (may need to be set with is) .. stt End stand out mode ... "' (P) Scroll-

•• ..... Number of blank chars left by so or se 

"" •• Begin stand out mode 

" "' (P) Saoll reverse (backwards) 
ta "' (P) Tab (other than AI or with padding) 

"' "' Entry of similar terminal - must be last .. "' String to end programs that use em 
ti "' String to begin programs that use em 
uc "' Underscore one char and move past it .. "' End underscore mode 
ug ..... Number of blank chars left by us or ue 
n1 boo! Terminal underlines even though it doesn't overstrike 
up "' Upline (CUISCX' up) .. Itt Start underscore mode 
vb stt Visible hell (may not move cursor) 
ve stt Sequence to end open/visual mode .. •• Sequence to start open/visual mode 
xb boo1 Beehive (fl-escape. fl=ctrl q 

"" boo! A newline is ignored after a wrap (Concept) 

"' boo1 Return acts like ce \r \n (Delta Data) 

"' boo1 Standout not erased by writing over it (HP 264?) 
xt boo1 Tabs are destructive, magic so char (Teleray 1061) 

Page3 September 24, 1987 



r 

I~ 

TERMCAP(S) TERMCAP(S) 

A Sample Entry 

The following entry, which describes the Concept-100, is among the more 
complex entries in the tenncap file as of this writing. (This particular concept 
entry is outdated and is used as an example only.) 

ell clOD I concepiiOO.is-\EU\Ef\E7\ESIE8\EIIENH\I!KIE\200\Eo&\200:\ 
:d·3•1E'R:am:bs»t6+1J!"C:ce-16\E'S:cl•2*"L:anoo\Ea%+ '.k :co#SO:\ 

:dc-16\E'A;dl-3*\E"B:ei-\E\200:eo:im-\E"'P:in:ipool6*:1ii24:mi:nd..\.E .. :\ 

:-\Ed\Be:so..\ED\EE:Ia-8\t."lll:up-IE;:vb-\Bk\EK:JUl: 

Enlries may continue onto multiple lines by giving a\ as the last character of a 
line. and that empty fields may be included for readability (here between the 
last field on a line and the first field on the next). Capabilities in termcap are of 
three types: Boolean capabilities which indicate that the tenni.nal has some par­
ticular feature, numeric capabilities giving the size of the terminal or the size of 
particular delays, and string capabilities, which give a sequence which can be 
used to perform particular terminal operations. 

Types ol Capabilities 

All capabilities have two letter codes. For instance, the fact that the Concept 
has automatic margins (i.e. an automatic return and linefeed when the end of a 
line is reached) is indicated by the capability am. Hence the description of the 
Concept includes am. Numeric capabilities are followed by the character '#' 
and then the value. Thus co which indicates the number of columns the termi­
nal has gives the value '80' for the Concept. 

Finally, string valued capabilities, such as ce (clear to end of line sequence) are 
given by the two character code. an '•', and then a string ending at the next fol­
lowing':'. A delay in milliseconds may appear after the'=' in such a capabil· 
ity, and padding characters are supplied by the editor after the remainder of the 
string is sent to provide this delay. The delay can be either a btteger, e.g. '20', 
or an integer followed by an '*', i.e. '3*'. A '*' indicates that the padding 
required is proportional to the number of lines affected by the operation, and the 
amount given is the per-affected-unit padding required, When a'*' is specified, 
it is sometimes useful to give a delay of the fonn '3.5' specify a delay per unit 
to tenths of milliseconds. 

A number of escape sequences are provided in the string valued capabilities for 
easy encoding of characters tbere. A \E maps to an ESCAPE character, "x maps 
to a control-x for any appropriate x. and the sequences \n \r \t \b V give a new­
line, return, tab, backspace and fonnfeed. Finally, characters may be given as 

..... 



TERMCAP(5) TERMCAP(5) 

three octal digits after a\. and the characters A and\ may be given as \A and\\. If 
it is necessary to place a : in a capability it must be escaped in octal as \072. If 
it is necessary to place a null character in a string capability it must be encoded 
as \200. The routines which deal with termcap use C strings, and strip the high 
bits of the output very late so that a \200 comes out as a \000 would 

Prepariog Descrlptioos 

We now outline how to prepare descriptions of lenninals. The most effective 
way to prepare a terminal description is by imitating the description of a similar 
terminal in termcap and to build up a description gradually, using partial 
descriptions with ex to check that they are correct Be aware that a very 
lll1USual terminal may expose deficiencies in the ability of the termcap file to 
describe it or bugs in ex. To easily test a new terminal description you can set 
the environment variable TERMCAP to a pathname of a file containing the 
description you are working on and the editor will look there rather than in 
letcltermcap. TERMCAP cao also be set to the terrncap entry itself to avoid 
reading the file when starting up the editor. (This only works on version 7 sys­
te>m.) 

Basic capabilities 

The number of columns on each line for the terminal is given by the co numeric 
capability. If the terminal is a CRT, then the number of lines on the screen is 
given by the 6 capability. If the terminal wraps around to the beginning d the 
next line when it reaches the right margin, then it should have the am capabil­
ity. If the terminal can clear its screen, then this is given by the d string capa­
bility. If the terminal can backspace, dten it should have the bs capability, 
unless a backspace is accomplished by a character other than AH (ugh) in which 
case you should give this character as the be string capability. If it overstrikes 
(rather than clearing a position when a character is struck over) dten it should 
have the os capability. 

A very important point here is that the local cursor motions encoded in termcap 
are undefined at the left and top edges of a CRT terminal. The editor will never 
attempt to backspace around the left edge, nor will it attempt to go up locally 
off the top. The editor assumes that feeding off the bottom of the screen will 
cause the screen to scroll up. and the am capability tells whether the cursoc 
sticks at the right edge of the screen. If the terminal has switch selectable 
automatic margins. the tenncap fi1e usually assumes that this is on, i.e. am. 

These capabilities suffice to describe hardcopy and glass-tty cenninals. Thus 
the model33 teletype is described as 

September 24. 1987 



TERMCAP(S) TERMCAP(S) 

t31331 tty33:co#72:os 

while the Lear Siegler ADM-3 is described as 

ell adm3131lsi adm3:am:bs:cl= "Z;li#24:co#80 

Cursor addressing 

Cursor addressing in the terminal is described by a em string capability, with 
prinlj(3s) like escapes %x in it. These substitute 10 encodings of the current 
line or column position, while other characters are passed through unchanged. 
H the em string is thought of as being a function, then its arguments are the line 
and then the column 10 which motion is desired. and the % encodings have the 
following meanings: 

%d as in prin:if, 0 origin 
%2 like%2d 
%3 like%3d 
%. like%c 
%+X addsA"IOvalue,then%. 
%>xy if value> x adds y, no output. 
%r reverses Older of line and column. no output 

!'- %i increments line/column (for 1 origin) 
i %% gives a single % 

%n exclusive orrow and colwnn with 0140 (DM2500) 
fJE>B BCD (16*(x110)) + (x%10), no ou!put. 
%D Reverse coding (x-2*(x%16)), no output. (Delta Data). 

Consider the HP2645, which, 10 get to row 3 and column 12, needs to be sent 
\E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and 
columns is inverted here, and that the row and column are printed as two digits. 
Thus its em capability is cm-6\E&%r%2c%2Y. The Microterm ACf-IV needs 
the current row and column sent preceded by a "T, with the row and column 
simply encoded in binary, em ... "'''%.% .. Terminals which use%. need to be 
able 10 backspace the cursor (bs or be), and to move the cursor up one line on 
the screen (up introduced below). This is necessary because it is not always 
safe to transmit \t, \n AD and \r, as the system may change or discard them. 

A final example is Cbe LSI ADM-3a, which uses row and column. offset by a blank 
character, thus cm-\E-%+ %+ • 

Cursor motions 

Se-24,1987 Page6 



TERMCAP(S) TERMCAP(S) 

If the terminal can move the cursor one position to the right, leaving the charac­
ter at the cunent position unchanged. then this sequence should be given as nd 
(non-destructive space). If it can move the cursor up a line on the screen in the __-' 
same column. this should be given as up. If the terminal has no cursor address-
ing capability, but can home the cursor (to very upper left comer of screen) then 
this can be given as ho; similarly a fast way of getting to the lower left hand 
comer can be given as U; this may involve going up with up from the home 
position, but the editor will never do this itseH (unless U does) because it makes 
no assumptioo about the effect of moving up from the home position. 

Area clears 

If the terminal can clear from the current position to the end of the line, leaving 
the cursoc where it is, this should be given as ee. If the terminal can clear from 
the current position to the end of the display, then this should be given as cd. 
1be editor only uses cd from the first colunm of a line. 

Insert/delete line 

If the letmina1 can open a new blank line before the line where the CUtSOl' is, 
this should be given as al; this is done only from the first position of a line. The 
cursor must then appear oo the newly blank. line. If the tennina1 can delete the 
line which the cursor is on, then this should be given as ell; this is done only 
from the first position on the line to be deleted. If the terminal can scroll the 
saeen backwan:ls, then this can be given as sb, butjustal suffices. If the termi­
nal can main display memmy above then the da capability should be given; if 
display memory can be retained below then db should be given. These let the 
editor understand that deleting a line on the screen may bring non-blank lines 
up from below or that scrolling back with sb may bring down non-blank lines. 

Iosert/delete character 

There are two basic kinds of intelligent tenninals with respect to insert/delete 
character which can be described using termcap. The most common 
insertldelele character operations affect only the characters on the current line 
and shift characters off the end of the line rigidly. Other terminals. such as the 
Concept 100 and the Peitin Elmer Owl. make a distinction between typed and 
untyped blanks on the screen, shifting upon an insert or delete only to an 
untyped blank on the screen which is either eliminated. or expanded to two 
untyped blanks. You can find out which kind of terminal you have by clearing 
the screen and then typing text separated by cursor motions. Type abc def 
using local cursor motions (not spaces) between the abc and the def. Then posi­
tion the conor before the abc and put the terminal in insert mode. If typing 

Page7 September 24. 1987 



·---

TERMCAP(S) TERMCAP(S) 

characters causes the rest of the line to shift rigidly and characters to fall off the 
end, then your terminal does not distinguish between blanks and untyped posi­
tions. If the abc shifts over to the def which then move together around the end 
of the cummt tine and onto the next as you insert. you have the second type of 
terminal, and should give the capability in, which stands for insert null. II your 
terminal does something different and unusual then you may have to modify the 
editor to get it to use the insert mode your tenninal defines. We have seen no 
terminals which have an insert mode not falling into one of these two classes. 

The editor can handle both tenninals which have an insert mode, and terminals 
which send a simple sequence to open a blank position on the current line. 
Give as im the sequence to get into insert mode, or give it an empty value if 
your terminal uses a sequence to insert a blank position. Give as ei the 
sequence to leave insert mode (give this, with an empty value also if you gave 
im so). Now give u k any sequence needed to be sent just before sending the 
character to be inserted. Most terminals with a true insert mode will not give ic, 
terminals which send a sequence to open a screen position should give it here. 
(Insert mode is preferable to the sequence to open a position on the screen if 
your terminal bas both.) II post insert padding is needed, give this as a number 
of milliseconds in ip (a string option). Any other sequence which may need to 
be sent after an insert of a single character may also be given in ip. 

It is occasionally necessary to move around while in insert mode to delete char­
acters on the same line (e.g. if there is a tab after the insertion position). II your 
terminal allows motion while in insert mode you can give the capability mi to 
speed up inserting in this cue. Omitting mJ will affect only speed. Some ter­
minals (notably Datamedia's) must not have mi because of the way their insert 
modewOlks. 

Finally, you can specify delete mode by giving dm and ed to enter and exit 
delete mode. and de to delete a single character while in delete mode. 

Highlighting, underlining, and visible bells 

II your terminal has sequences to enter and exit standout mode these can be 
given as so and se respectively. If there are several flavors of standout mode 
(such as inverse video, blinking, or underlining - half bright is not usually an 
acceptable standout mode unless the terminal is in inverse video mode con­
stantly) the preferred mode is inverse video by itself. II the code to change into 
or out of standout mode leaves one or even two blank spaces on the screen, as 
the TVI 912 and Teleray 1061 do. then ug should be given to tell bow many 
spaces are left. 

September 24, 1987 PageS 



TERMCAP(S) TERMCAP(S) 

Codes to begin underlinillg and end underlining can be given as us and ae 
respectively. If the terminal has a code to underline the current characcer and 
move tbe cursor ooe space to the right, such as the Microtenn Mime, this can be 
given as K. (If the underline code does not move the CUI'SOI' to tbe right. give 
the code followed by a nondestructive space.) 

Many tenninals, such as the HP 2621, automatically leave standout mode when 
they move to a new line or the CUI'S4X is addressed. Programs using standout 
mode sbould exit standout mode bebe moving the cursor or sending a newline. 

If the tenninal has a way of Bashing lhe screen to indicate an error quietly (a 
bell replacement) then this can be given as vb; it must not move the cursor. If 
the terminal should be placed in a different mode during open and visual modes 
of a:, Ibis can be given as vs and ve, sent at the start and end of these modes 
respectively. These can be used to change, e.g., from a undediDe to a bloclc: 
cursor and back. 

If the terminal needs to be in a special mode when running a program that 
addresses lhe cursot', the codes to enter and exit this mode c::m be given as ti 
and te. This arises, h example. from terminals like the Concept wilh more 
lhan one page of memoJY. If the terminal has ooly .tnenUy relative cursor 
addressing and not screen relative cursor addressing. a one screen--sized win­
dow must be fixed into the terminal for cursor addressing 1o wmt properly. 

Jf your lerminaJ. conectly generates underlined characters (with no special 
codes needed) even lbough it does not oveDtrite. 1hen you should give tbe 
capability nl. If overstrikes are erasable with a blank, then this should be indi· 
cated by giving eo. 

Keypad 

If the lerminal has a keypad that ttansmits codes wbell the keys are pressed. this 
infomwion can he given. Note that it is not possible to handle terminals where 
the keypad only works in local (this applies. for example, to the unsbifted HP 
2621 keys). If the keypad can be set 1o ttansmit « not tra:Dsmit, give these 
codes as band ke. Otherwise the keypad is assumed to always transmit. The 
codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys 
can be given as k.l, kr, ku, kd, and kh respectively. If there are function keys 
such as ro. n, .... f9, the codes tbey send can be given as kO, kl.-k9. Jflhese 
keys have labels other lhan the default fO Chrough f9. the labels can be given as 
10,11, _., 19. If there are other keys that transmit tbe same code as the terminal 
expects foe the corresponding function. such as clear screen, the t4nncap 2 
Ieuer codes can be given in the ko capability. for example, :lo=cl,ll,sf.sb:, 

Page9 September 24. 1987 



TERMCAP(5) TERMCAP(S) 

which says that the terminal bas clear, home down. scroll down, and scroll up 
.f' keys that transmit the same thing as the cl, U. sf, and sb entries. 

The ma entry is also used to indicate mow keys on terminals which have single 
character arrow keys. It is obsolete but still in use in version 2 of vi, which 
must be run on some minicomputers due to memory limitations. This field is 
redundant with kl, kr, ku, kd, and kh. It consists of groups of two characters. 
In each group. the first character is what an arrow key sends, the second charac­
ter is the corresponding vi command. These commands are h for kl, J for kd, k 
for ku, I for kr, and H for kb. Foe example, the mime would be 
:ma=AKfZk"XI: indicating arrow keys left ('11), down ('K), up ('Z), and right 
('X). (lbere is no borne key on the mime.) 

Miscellaneous 

If the tenninal requires other than a null (zero) character as a pad. then this can 
be given as pc. 

If tabs on the terminal require padding, or if the terminal uses a character other 
than "I to tab, then this can be given as ta. 

Hazeltine terminals, which don't allow •-• characters to be printed should indi­
cate bz. Datamedia terminals, which echo carriage-return linefeed for carriage 
return and then ignore a following linefeed should indicate oc. Early Concept 
terminals, which ignore a linefeed immediately after an am wrap. should indi­
cate J:D. If an erase-eol is required to get rid of standout (instead of merely 
writing on top of it), xs should be given. Teleray terminals, where tabs tum all 
characters moved over to blanks, should indicate xt. Other specific terminal 
problems may be corrected by adding more capabilities of the form u. 

Other capabilities include is, an initialization string for the terminal, and if, the 
name of a file containing long initialization strings. These strings are expected 
to properly clear and then set the tabs on the terminal, if the temrinaJ. has sett­
able tabs. If both are given, is will be printed before If. This is useful where if 
is tusrllibltabsetlstdbut is clears the tabs first. 

Similar Terminals 

If there are two very similar terminals, one can be defined as being just like the 
other with certain exceptions. The string capability te can be given with the 
name of the similar terminal. This capability must be last and the combined 
length of the two entries must not exceed 1024. Since tennlib routines search 
the entry from left to right. and since the tc capability is replaced by the 
corresponding entry, the capabilities given at the left override the ones in the 

September 24, 1987 Page 10 



TERMCAP(S) TERMCAP(S) 

similar terminal. A capability can be cancelled with xx@ where xx is the capa­
bility. For example, the entry 

1m 1262lnl:ks@:ko@:te-2621: 
defines a 2621nl that does not have the ks or ke capabilities, and hence does not 
tum on lhe function key labels when in visual mode. This is useful for different 
modes for a terminal, or for different user preferences. 

FILI!S 
letrltermcap file containing tenninal descriptions 

SEE ALSO 
ex(l), tset(l), ul(l), vi(l), tenncap(3X). 

BUGS 
Ex allows only 256 characters for string capabilities, and the routines in 
ID'mcap(3X) do not check for over8ow of this buffer. The total length of a sin­
gle entry (excluding only escaped newlines) may not exceed 1024. 

The ma, w, and ve entries are specific to 1he vi program. 

Not aD prog~ams support all entries. 1bere are entries that are not supported by 
any program. 

AurHOR 
William Joy 
Mark Horton added underlining and keypad support 

Page 11 September 24, 1987 



TYPES(S) TYPES(S) 

NAME 
types - primitive system data types 

,r-- SYNOPSIS 
#include <sys/types.h> 

DESCRIPTION 
The data types defined in the include file are used in UNIX System code; 
some data of these types are accessible to user code: 

typedef struct { int r[l]; ) • physadr; 
typedef long daddr t; 
typedef char • caddr~t; 
typedef unsigned int uint; 
typedef unsigned short ushort; 
typedef ushort ino_t; 
typedef short cnt t; 
typedef long time t; 
typedef int labeCtllOl; 
typedef short dev t; 
typedef long off j; 
typedef long paddr_t; 
typedef long key_ t; 

The form daddr I is used for disk addresses except in an i-node on disk, 
see jS{4). TimeS are encoded in seconds since 00:00:00 GMT, January I, 
1970. The major and minor parts of a device code specify kind and unit 
number of a device and are installation-dependent. Offsets are measured in 
bytes from the beginning of a file. The label 1 variables are used to save 
the processor state while another process is ruilning. 

SEE ALSO 
fs(4). 

- l -



UDP(!iP) UoiSoft UDP(SP) 

NAME 
udp - Internet User Datagram Protocol 

SYNOPSIS 
#include <sys/socket.b> 
#Include <oelioet/in.h> 

s - socket(AF_INET, SOCK_DGRAM, 0); 

DESCRIPTION 
UDP is a simple, unreliable datagram protocol which is used to support the 
SOCK_DGRAM abstraction for the Internet protocol family. UDP sockets 
are oonnectionless, and are normally used with the send1o and rec:~rom 

calls, though the conneci(2N) call may also be used to fix the destination 
for future packets On which case the rerv(2N) or send(2N) system calls 
may be used). 

UDP address formats are identical to those used by TCP. In particular UDP 
provides a port identifier in addition to the normal Internet address format. 
Note that the UDP port space is separate from the TCP port space (i.e. a 
UDP port may not be connected to a TCP port}. In addition broadcast 
packets may be sent (assuming the underlying network supports this) by 
using a reserved broadcast address; this address is network interface depen· 
dent. 

DIAGNOSTICS 
A socket operation may fail with one of the following errors returned: 

[EISCONN] when trying to establish a connection on a socket which 
already has one, or when trying to send a datagram with 
the destination address specified and the socket is already 
connected; 

[ENOTCONN] when trying to send a datagram, but no destination address 
is specified, and the socket hasn't been connected; 

[ENOBUFS] when the system runs out of memory for an internal data 
structure; 

IEADDRINUSE] 
when an attempt is made to create a socket with a port 
which has already been allocated; 

IEADDRNOT A VAIL) 

SEE ALSO 

when an attempt is made to create a socket with a network 
address for which no network interface exists. 

send(2N), recv(2N), intro(SN), inet(5F) 

- I -



VALUES(!;} VALUES(S) 

NAME 
values - machine-dependent values 

SYNOPSIS 
#include <nlues.b> 

DESCRIPTION 

FILES 

This file contains a set of manifest constants, conditionally defined for par­
ticular processor architectures. 

The model assumed for integers is binary representation (one's or two's 
complement), where the sijn is represented by the value of the high-order 
bit. 
BITS(type) 

HIBITS 

HIBITL 

HIBITI 

MAXSHORT 

MAXLONG 

MAXINT 

The number of bits in a specified type (e.g., int). 

The vaJue of a short integer with only the hit!;h-order 
bit set (in most implementations, Ox8000). 

The value of a long integer with only the high-order 
bit set (in most implementations, Ox80000000). 

The value of a regular integer with only the high­
order bit set (usually the same as HIBITS or HIBITL). 
The maximum value of a signed short integer (in 
most implementations, Ox7FFF = 32767). 

The maximum value of a 
most implementations, 
2147483647). 

sig.ned long integer 
Ox7FFFFFFF 

(in 

The maximum value of a signed regular integer (usu­
a]Jy the same as MAXSHORT or MAXLONG). 

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision 
floating-point number, and its natural log­
arithm. 

MAXDOUBLE, LN_MAXDOUBLE _ 
The maximum value of a double-precision 
floating-point number, and its natura] log­
arithm. 

MINFLOAT, LN_MINFLOAT The minimum positive value of a single­
-precision floating-point number, and its 
natura] logarithm. 

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double­
precision floating-point number, and its 
.natural logarithm. 

FSIGNIF 

DSIGNIF 

The number of significant bits in the mantissa of a 
single-precision floating-point number. 

The number of significant bits in the mantissa of a 
double-precision floating-point number. 

I usr/include/values.h 

SEE ALSO 
intro(3), math(S). 

- I -



VARARGS(S) VARARGS(S) 

NAME 
varargs - handle variable argument list 

SYNOPSIS 
#iDI:Iude <vararas.h> 

VB_Biist 

vB_dcl 

void VB_stBrHpvBr) 
n_list pvBr; 
type VB arg (pvBr, type) 
Ya_list-pvar; 

•old u_end(pvar) 
va_list p•ar; 

DESCRIPTION 
This set of macros allows portable procedures that accept variable argument 
lists to be written. Routines that have variable argument lists (such as 
printj(3S)) but do not use Wlrargs are inherently nonportable, as different 
machines use different argument-passilli conventions. 

Ya_alist is used as the parameter list in a function header. 

n_del is a declaration for va_afist. No semicolon should follow va_dcf. 

n_Ust is a type defined for the variable used to traverse the list. 

va_start is called to initialize pvar to the beginning of the list. 

va_ara; wiD return the next argument in the list pointed to by pvar. Type is ·--
the type the argument is expected to be. Different types can be mixed, but 
it is up to the routine to know what type of argument is expected, as it can-
not be determined at runtime. 
va_end is used to clean up. 

Multiple traversals, each bracketed by va_start ... va_end, are possible. 

EXAMPLE 
This example is a possible implementation of exec/(2). 

#include <varargs.h> 
#define MAXARGS 100 

I• exec! is called by 
execlffile, argl, arg2, ... ,(char •)0); 

•I 
execl( va aJist) r-dcl -

vB list BP; 
cbW- •file; 
char •args(MAXARGS); 
int argn.o = 0; 

va_start(ap); 
fl.le = va arg(ap, char •); 
while ((afgs(argno++l - va_arg(ap, char •)) !- (char •)0) 

-I -



VARARGS(S) VARARGS(S) 

va end(ap); 
reiUrn execv(file, args); 

SEE ALSO 

BUGS 

exec(2), printf(3S). 

It is up to the calling routine to specify how many arguments there are, 
since it is not always possible to determine this from the stack frame. For 
example, exec/ is passed a zero pointer to signal the end of the list. Printf 
can tell how many arguments are there by the format. 
It is non-portable to specify a second argument of char, short, or float to 
va urg, since arguments seen by the called function are not char, short, or 
]f0(u. C converts char and short arguments to lnt and converts ]foot argu­
ments to double before passing them to a function. 

- 2-





( 
' 

INTR0(6) INTR0(6) 

NAME 
intro ~ introduction to games 

DESCRIPTION 
This section describes the recreational and e4ucational programs found in 
the directory /usr/game~. The availability of these programs may vary 
from system to system. 

- I -



ADVEJrfTURE(6) Unison ADVENTURE (6) 

NAME 
adventure - an exploration game 

SYNOPSIS 
/usr/games/ad'lenlure 

DESCRIPTION 

BUGS 

The object of the game is to locate and explore Colossal Cave, find the 
treasures hidden there, and bring them back to the building with you. The 
program is self-describing to a point, but part of the game is to discover its 
rules. 

To terminate a game, type "quit"; to save a game for later resumption, 
type "suspend". 

Saving a game creates a large e~~:ecutable file instead of just the information 
needed to resume the game. 

- I -



ALIENS(6) UniSort ALIENS (6) 

NAME 
aliens - The aJien invaders attack the earth 

SYNJOPSJS 
/usr/games/aliens 

DESCRIPTION 

FILES 

BUGS 

This is a UNIX version of Space Invaders. The program is pretty much self 
documenting. 

/usr/games/lib/aliens.log Score file 

The program is a CPU hog. It needs to be re-written. It doesn't do well on 
terminals that run slower than 9600 baud . 

. I . 



ARITHMETIC(6) ARITHMETIC(6) 

NAME 
arithmetic - provide drill in number facts 

SYNOPSIS 
/usr/sames/arllbmetle I + -x/ J I range } 

DESCRIPTION 
Arilhmetic types out simple arithmetic problems, and waits for an answer to 
be typed in. If the answer is correct, it types back "Right!", and a new 
problem. If the answer is wrong, it replies "What?", and waits for another 
answer. Every twenty problems, it publishes statistics on correctness and 
the time required to answer. 

To quit the program, type an interrupt (delete). 

The first optional argument determines the kind of problem to be gen­
erated; +, -, x, and I respectively cause addition, subtraction, multiplica­
tion, and division problems to be generated. One or more characters can 
be given; if more than one is given, the different types of problems wiU be 
mixed in random order; default is +-. 
Range is a decimal number; all addends, subtrahends, differences, multipli­
cands, divisors, and quotients will be less than or equal 10 the value of 
range. Default range is IO. 

At the start, all numbers less than or equal to range are equally likely to 
appear. If the respondent makes a mistake, the numbers in the problem 
which was missed become more likely 10 reappear. 

As a matter of educational philosophy, the program will not give correct 
answers, since the learner should, in principle, be able to calculate them. 
Thus the program is intended to provide drill for someone just past the first 
learnin& stage, not to teach number facts de noWJ. For almost all users, the 
relevant statistic should be time per problem, not percent correct . 

. I . 



r 

AUTOROBOTS(6) UuiSoft AUTOROBOTS(6) 

NAME 
autorobots ~ Escape from the automatic robots 

SYNOPSIS 
/usr /!lames/ autorobots 

DESCRIPTION 
The object of the game au10robo1s is to move around inside of the box on 
the screen without getting eaten by the robots chasing you and without run­
ning into any robots or junk heaps. The robots move continuously. 

If a robot runs into another robot or junk heap while chasing you, they 
crash and leave a junk heap. 

You start out with 10 robots worth 10 points each. If you defeat all of 
them, you get 20 robots worth 20 points each. Then 30, etc. Until you get 
eaten! 

The game keeps track of the top ten scores and prints them at the end of 
the game. 

The valid commands are described on the screen. 

- I -



BACK(6) BACK (6) 

NAME 
back - the game of backgammon 

SYNOPSIS 
/usr/cames/back 

DESCRIPTION 

FILES 

BUGS 

Page I 

Back is a program which provides a partner for the game of backgammon. 
It is designed to play at three different levels of skill, one of which you 
must select. In addition to selecting the opponent's level, you may also 
indicate that you would like to roll your own dice during your turns <ror the 
superstitious players). You will also be given the opportunity to move first. 
The practice of each player rolling one die for the first move is not incor­
porated. 

The points are numbered l-24, with I being white's extreme inner table, 
24 being brown's inner table, 0 being the bar for removed white pieces and 
25 the bar for brown. For details on how moves are expressed, type y 
when back asks "Instructions?" at the beginning of the game. When ba,·k 
first asks "Move?", type? to see a list of move options other than enter­
ing your numerical move. 

When the game is finished, batk will ask you if you want postmortem 
statistics. If you respond withy, back will attempt to append to or create a 
file .b•cklog in your HOME directory. 

I usr/ games/lib/backrules 
SHOME/.backlog 

rules file 
log file 

The only level really worth playing is "expert", and it only plays the for­
ward game. 

Doubling is not implemented. 

July 23, 1985 



'. __ 

·---

BCD (6) UniSoft 

NAME 
bed - convert to antique media 

SYNOPSIS 
/usr/aamtslbcd text 

DESCRIPTION 
Bed converts the literal text into a form familiar to old-timers. 

This program works best on hard copy terminals. 

. I . 

BCD(6) 



BJ(6) 81(6) 

NAME 
bj - the game of black jack 

SYNOPSIS 
/asr/cames/bj 

DESCRIPTION 
Bj is a serious attempt at simulating the dealer in the game of black jack (or 
twenty-one) as might be found in Reno. The following rules apply: 

The bet is $2 every hand. 

A player "natural" (black jack) pays $3. A dealer natural loses $2. 
Both dealer and player naturals is a "push" (no money exchange). 

If the dealer has an ace up, the player is a1lowed to make an 
"insurance" bet against the chance of a dealer natural. If this bet is not 
taken, play resumes as normal If the bet is taken, it is a side bet where 
the player wins $2 if the dealer has a natural and loses $1 if the dealer 
does not. 

If the player is dealt two cards of the same value, be is allowed to "dou­
ble". He is allowed to play two hands, each with one of these cards. 
(The bet is doubled also; $2 on each hand.) 

If a dealt hand has a totaJ of ten or eleven, the player may "double 
down". He may double the bet ($2 to $4) and receive exactly one more 
card on that hand. 
Under normal play, the player may "bit" (draw a card) as long as his 
totaJ is not over twenty-one. If the player "busts" (goes over twenty­
one), the dealer wins the bet. 

When the player "stands" (decides not to hit), the dealer hits until he 
attains a total of seventeen or mo£e. If the dealer busts, the player wins 
the bet. 

If both player and dealer stand, the one with the largest total wins. A 
tie is a push. 

The machine deals and keeps score. The following questions will be asked 
at appropriate times. Each question is answered by y followed by a new­
line for "yes", or just new-line for "no". 

? (means, "do you want a hit?") 
Insurance? 
Double down? 

Every time the deck is shuftled, the dealer so states and the "action" <total 
bet) and "standing" (total won or lost) is printed. To exit, bit the inter­
rupt key (DEL) and the action and standing will be printed. 

- I -



CHASE(6) UoiSoft CHASE(6) 

NAME 
chase - Try to escape the killer robots 

SYNOPSIS 
/usr/aames/chase I nrobots I I tifences I 

DESCRIPTION 
The object or the game chase is to move around inside of the box on the 
screen without getting eaten by the robots chasing you and without running 
into anything. 

If a robot runs into another robot while chasing you, they crash and leave a 
junk heap. Jf a robot runs into a fence, it is destroyed. 

If you can survive until all the robots are destroyed, you have won! 

Ir you do not specify either nrolwts or tifences, chase will prompt you for 
them. 

The valid commands are described on the screen. 

- I -



CRAPS(6) CRAPS(6) 

NAME 
craps - the game of craps 

SYNOPSIS 
/asr/JaDRes/craps 

DESCRIYJ10N 
Craps is a form of the game of craps that is played in Las Vesas. The pro­
gram simulates the roller, while the user (the player) places bets. The 
player may choose, at any time, to bet with the roller or with the House. A 
bet of a negative amount is taken as a bet with the House. any other bet is 
a bet with the roller. 

The player starts off with a "bankroll" of $2,000. 

The program prompts with: 

bet? 

The bet can be all or part of the player's bankroll. Any bet over the total 
bankroll is rejected and the program prompts with bet? until a proper bet is 
made. 
Once the bet is accepted, the roUer throws the dice. The followina: rules 
apply (the player wins or loses depending on whether the bet is placed with 
the roller or with the House; the odds are even). The first roll is the roll 
immediately following a bet: 

1. On the first roll: 

7 or 11 
2,3,orl2 
any other number 

wins for the roller; 
wins for the House; 
is the point, roll again (Rule 2 applies). 

2. On subsequent rolls: 

point 
7 
any other number 

roller wins; 
House wins; 
roll again. 

If a player loses the entire bankroll, the House will offer to lend the player 
an additional $2,000. The program will prompt: 

marker? 

A yes (or y) consummates the loan. Any other reply terminates the game. 

If a player owes the House money, the House reminds the player, before a 
bet is placed, how many markers are outstanding. 

If, at any time, the bankroll of a player who has outstanding markers 
exceeds $2,000, the House asks: 

Repay marker? 

A reply of yes (or y) indicates the player's willingness to repay the loan. If 
only 1 marker is outstanding, it is immediately repaid. However, if more 
than 1 marker are outstanding, the House asks: 

How many? 

markers the player would like to repay. If an invalid number is entered (or 
just a carriage return), an appropriate message is printed and the program 
will prompt with How many? until a valid number is entered . 

. I . 



r 
' 

CRAPS (6) CRAPS(6) 

If a player accumulates 10 markers (a total of $20,000 borrowed from the 
House), the program informs the player of the situation and exits. 

Should the bankroll of a player who has outstanding markers exceed 
$50,000, the toto/ amount of money borrowed will be outomolico//y repaid 
to the House. 
Any player who accumulates $100,000 or more breaks the bank. The pro­
gram then prompts: 

New game? 

to give the House a chance to win back its money. 

Any reply other than yes is considered to be a no (except in the case of 
bet? or How many?). To exit, send an interrupt (break), DEL, or control­
D. The program will indicate whether the player won, lost, or broke even. 

MISCELLANEOUS 
The random number generator for the die numbers uses the seconds from 
the time of day. Depending on system usage, these numbers, at times, 
may seem strange but occurrences of this type in a real dice situation are 
not uncommon. 

• 2 • 



CRIBBAGE(6) UniSon CRIBBAGE(6) 

NAME 
cribbage - the card game cribbage 

SYNOPSIS 
/usr/aamn/crlbbaKe [ ·lrl!e][q] 1 name ... 

DESCRIPTION 
Cribbage plays the card game cribbage, with the program playing one hand 
and the user the other. The program will initially ask the user if the rules 
of the game are needed ·· if so, it will print out the appropriate section 
from According to Hoyle with more(/). 

Cribbage options include: -· 
-q 

-· 

When the player makes a mistake scoring his hand or crib, provide an 
explanation of the correct score. (This is especially useful for beginning 
players.) 

Print a shorter form of all messages ·- this is only recommended for 
users who have played the game without specifyin& this option. 

Instead of asking the player to cut the deck, the program will randomly 
cut the deck. 

Cribbage first asks the player whether he wishes to play a short game (once 
around, to 61) or a long game (twice around, to 121). A response of 's' 
will result in a short game, any other response will play a long game. 

At the start of the first game, the program asks the player to cut the deck 
to determine who gets the first crib. The user should respond with a 
number between 0 and 51, indicatiDJ how many cards down the deck is to 
be cut. The player who cuts the lower ranked card gets the first crib. If 
more than one game is played, the loser of the previous &arne gets the first 
crib in the current same. 
For each hand, the pro&ram first prints the player's hand, whose crib it is, 
and then asks the player to discard two cards into the crib. The cards are 
prompted for one per line, and are typed as explained below. 

After discarding, the program cuts the deck (if it is the player's crib) or 
asks the player to cut the deck Hr it's its crib); in the later case, the 
appropriate response is a number rrom 0 to 39 indicating how far down the 
remaining 40 cards are to be cut. 

After cutting the deck, play starts with the non-dealer (the person who 
doesn't have the crib) leading the first card. Play continues, as per crib­
biiJe, until all cards are exhausted. The program keeps track of the scoring 
of all points and the total of the cards on the table. 
After play, the hands are scored. The program requests the player to score 
his hand (and the crib, if it is his) by printing out the appropriate cards 
(and the cut card enclosed in brackets). Play continues until one player 
reaches the game limit (61 or 121). .__.-

A carriage return when a numerk input is expected is equivalent to typing 
the lowest legal value; when cutting the deck this is equivalent to choosiDJ 
the top card. 

- I -



CJliBBAGE(6} UniSoCt CJliBBAGE{6} 

FILES 

Cards are specified as rank foUowed by suit. The ranks may be specified as 
one of: 'a', '2', '3', '4', '5', '6', '7', '8', '9', 't', 'j', 'q', and 'k', or alterna­
tively, one of: ace, two, three, four, five, six, seven, eight, nine, ten, jack, 
queen, and king. Suits may be specified as: 's', 'h', 'd', and 'c', or alterna­
tively as: spades, hearts, diamonds, and clubs. A card may be specified as: 
<rank> <suit>, or: <rank> of <suit>. If the single letter rank and 
suit designations are used, the space separating the suit and rank may be 
left out. Also, if only one card of the desired rank is playable, typing the 
rank is sufficient. For example, if your hand was 2H, 40, 5C, 6H, JC, KD 
and it was desired to discard the king of diamonds, any of the following 
could be typed: k, king, kd, k d, k of d, king d, king of d, k diamonds, k of 
diamonds, king diamonds, or king of diamonds. 

I usr/games/ cribbage 

AUTHOJl 
Earl T. Cohen 



CUBIC (6) SEE TTT CUBIC(6) 

- I -



, __ _ 

FISH(6) UaiSoft FISH (6) 

NAME 
fish - play "Go Fish" 

SYNOPSIS 
/usr/games/fish 

DESCRIPTION 
Fish plays the game of Go Fish, a childrens' card game. The Object is to 
accumulate 'books' of 4 cards with the same face value. The players alter­
nate turns; each turn begins with one player selecting a card from his hand, 
and asking the other player for all cards of that face value. If the other 
player has one or more cards of that face value in his hand, he gives them 
to the first player, and the first player makes another request. Eventually, 
the first player asks for a card which is not in the second player's hand: he 
replies 'GO FISH!' The first player then draws a card from the 'pool' of 
undealt cards. If this is the card he had last requested, he draws again. 
When a book is made, either through drawing or requesting, the cards are 
laid down and no further action takes place with that face value. 

To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8, 
9, 10, j, q, or k when asked Hitting return gives you information about 
the size of my hand and the pool, and tells you about my books. Saying 'p' 
as a first guess puts you into 'pro' level; the default is pretty dumb. 

- I -



FORTUNE(6) UDiSoft FORTUNE(6) 

NAME 
fortune - print a random, bopefuUy interesting, adqe 

SYNOPSIS 
f•rtune 

DESCRIPTION 
Fortune prints out a random adage. 

FILES 
/usr/pmes/liblfortunes 

. I . 



··--· 

HANGMAN(6) 

NAME 
hangman - guess the word 

SYNOPSIS 
/usr/t:ames/btnaman I arg 1 

DESCRIPTION 

HANGMAN(6) 

Hangman chooses a word at least seven letters long from a dictionary. The 
user is to guess letters one at a time. 
The optional argument arg names an alternate dictionary. 

FILES 
/usr/lib/w2006 

BUGS 
Hyphenated compounds are run together. 



LIFE(6) UniSoft LIF£(6) 

NAME 
life - play the game of life 

SYNOPSIS 
ure I-rl 

DESCRIPTION 
Life is a pattern generating pme set up for interactive use on a video ter­
minal. The way it operates is: You use a series of commands to set up a 
pattern on the screen then let it generate further patterns from that pattern. 

The algorithm used is: For each square in the matrix, look at it and its 
eight adjacent neighbors. If the present square is not occupied and exactly 
three of its neiJhbor squares are occupied, then that square wiU be occupied 
in the next pattern. If the present square is occupied and two or three of 
its neighbor squares are occupied, then that square will be occupied in the 
next pattern. Otherwise, the present square will not be occupied in the 
next pattern. 

The edges of the screen are normally treated as an unoccupied void. If you 
specify the -r option on the command line, the screen is treated as a 
sphere; that is, the top and bottom lines are considered adjacent and the 
left and right columns are considered adjacent. 
The pattern generation number and the number of occupied squares are 
displayed in the lower left hand corner. 

Below is a list of commands available to the user. A # stands for any 
number. A- followed by a capital letter represents a control character. 

#,#a 

#< 

#,#d 

#f 

#,#g 

#b 
#i 
#k 

#I 
#n 

• 

Add a block of elements. The first number specifies the hor­
izontal width. The second number specifies the vertical width. 
If a number is not specified, the default is 1. 

Step throlljb the next # patterns. If no number is specified, 
step forever. The operation can be aborted by typing rubout 
(delete). 

Delete a block of elements. The first number specifies the hor­
izontal width. The second number specifies the vertical width. 
If a number is not specified, the default is I. 
Generate a little llier at the present location. The number 
(modulo 8) determines the direction. 

Move to absolute screen location. The first number specifies the 
horizontal location. The second number specifies the vertical 
location. If a number is not specified, the default is 0. 

Move left # steps. If no number is specified, the default is I. 
Move down # steps. The default is 1. 

Move up# steps. The default is 1. 

Move right # steps. The default is 1. 

Step through the next # patterns. If no number is specified, 
generate the next pattern. The operation can be aborted by typ­
ing rubout (delete). 
Put the last yanked or deleted block at the present location . 

- I -



--~-

LIFE(6) UaiSoft LIFE(6) 

BUGS 

• 
#,#y 

Quit. 
Yank a block of elements. The first number specifies the hor­
izontal width. The second number specifies the vertical width. 
If a number is not specified, the default is 1. 

C Clear the pattern. 

#F Generate a big flier at the present location. The number 
(modulo 8) determines the direction. 

#H Move to the left margin. 

#J Move to the bottom margin. 

#K Move to the top margin. 

#L Move to the right margin. 
#AH Move left# steps. If no number is specified, the default is I. 

#A J Move down # steps. The default is 1. 

#AK Move up # steps. The default is 1. 

#AL Move right # steps. The default is 1. 

AR Redraw the screen. This is used for those occasions when the 
terminal screws up. 
Repeat the last add (a) or delete (d) operation. 

Repeat the last move (h, j, k, I) operation. 

The following features are planned but not implemented: 

#,#S Save the selected area in a file. 

R Restore from a file. 

m Generate a macro command. 

Shell escape. 

e Edit a file. 

Input commands from a file. 

AUTHOR 
Asa Romberger 

• 2 • 



MAZE(6) 

NAME. 
maze - generate a maze 

SYNOPSIS 
/usr/gaumes/umaze 

DESCRIPTION 
Maze asks a few questions and then prints a maze. 

BUGS 
Some mazes (especiaUy small ones) have no solutions. 

- I -

MAZE.(6) 



M00(6J M00(6) 

NAME 
moo - guessing game 

SYNOPSIS 
/usr/games/moo 

DESCRIPTION 
Moo is a guessing game imported from England. The computer picks a 
number consisting of four distinct decimal digits. The player guesses four 
distinct digits being scored on each guess. A "cow" is a correct digit in an 
incorrect position. A "bull" is a correct digit in a correct position. The 
game continues until the player guesses the number (a score of four bulls) . 

. I . 



NUMBER(6) UniSon 

NAME 
number - convert Arabic numerals to English 

SYNOPSIS 
/usr/aames/number 

DESCRIPTION 

NUMBER(6) 

Number copies the standard input to the standard output, changing each 
decimal number to a fully spelled out version . 

. I . 



QUIZ(6) QUIZ(6) 

NAME 
quiz - test your knowledge 

SYNOPSIS 
/usr/eames/qulz ( -I file 1 [ -t 1 [category! category2 1 

DESCRIPTION 

FILES 

BUGS 

Quiz gives associative knowledge tests on various subjects. It asks items 
chosen from category/ and el(pects answers from category], or vice versa. 
If no categories are specified, quiz gives instructions and lists the available 
categories. 
Quiz tells a correct answer whenever you type a bare new-line. At the end 
of input, upon interrupt, or when questions run out, quiz reports a score 
and terminates. 
The -t flag specifies "tutorial" mode, where missed questions are repeated 
later, and material is gradually introduced as you learn. 

The -I flag causes the named file to be substituted for the default index 
file. The lines of these files have the syntax: 

line 
category 
alternate 
primary 
option 

category new-line I category :line 
alternate I category I alternate 
empty I alternate primary 
character II category I I option 
{category} 

The first category on each line of an index file names an information file. 
The remaining categories specify the order and contents of the data in each 
line of the information file. Information files have the same syntax. 
Backslash \ is used as with 5h0) to quote syntactically significant characters 
or to insert transparent new-lines: into a line. When either a question or its 
answer is empty, quiz will refrain from asking it. 

I usr/games/lib/ quiz/ index 
I usr I games/lib/ quiz/• 

The construct "alab" doesn't work in an information file. Use "a{b}". 

- I -



RAIN(6) UaiSort 

NAME 
rain - animated raindrops display 

SYNOPSIS 
rain 

DESCRIPTION 

RAIN(6) 

Rain's display is modeled after the VAX/VMS program of tbe same name. 
The terminal has to be set for 9600 baud to obtain the proper effect. 

As witb all programs tbat use termcap, the TERM environment variable 
must be set (and exported} to the type of the terminal being used. 

FILES 
/etc/termcap 

AUTHOR 
Eric P. Scott 

- I -



ROBOTS(6) UniSoft ROBOTS(6) 

NAME 
robots - Escape from the robots 

,.--, SYNOPSIS 
/usr /&ames/robocs 

DESCRIPTION 
The object of the game robals is to move around inside of the box on the 
screen without getting eaten by the robots chasirli you and without running 
into anything. 

If a robot runs into another robot while chasing you, they crash and leave a 
junk heap. 

You start out with 10 robots worth 10 points each. If you defeat all of 
them, you get 20 robots worth 20 points each. Then 30, etc. Until you get 
eaten! 

The game keeps track of the top ten scores and prints them at the end of 
the game. 

The valid commands are described on the screen . 

. I . 



TREK(6) UaiSoh TR.EK(6) 

NAME 
trek - trekkie game 

SYNOPSIS 
/usr/aames/trek ( ( -a I file I 

DESCRIPTION 
Trek is a game of space glory and war. Below is a summary of commands. 
For complete documentation, see Trek by Eric Allman. 

If a filename is given, a Jog of the game is written onto that file. If the -a 
flag is given before the filename, that file is appended to, not truncated. 

The same will ask you whatleqth pme you would like. Valid responses 
are short, medium, aad long. You may also type restart, which restarts a 
previously saved game. You will then be prompted for the skill, to which 
you must respond novice, fair, good, expert, commadore, or impossible. 
You should normally start out with a novice and work up. 

In general, throughout the game, if you forset what is appropriate the game 
will tell you what it expects if you just type in a question mark. 

COMMAND SUMMARY 
a•aadon 
cloak up/down 
eomputer request; ... 
destruct .... 
lrscan 
phasers automatic amount 
pbasers manual amtl course! spread! 
torpedo course (yes) angle/ no 
ram course distance 
sbell 
srscan [yes/aol 
status 
undock 
warp warpJactor 

AUTHOR 
Eric Allman 

. I . 

capture 

damages 
dock 
Impulse course distance 
move course distance 

rest time 
shields ap/down 

terminate yes/no 
visual course 



ITT(6) ITT(6) 

NAME 
Itt, cubic - tic-tac-toe 

SYNOPSIS 
/un/games/ttt 
/usrfl;ames/tubie 

DESCRIPTION 

FILES 

Ttl is the X and 0 game popular in the first grade. This is a learning pro­
gram that never makes the same mistake twice. 

Although it learns, it learns slowly. It must lose nearly 80 games to com­
pletely know the game. 

Cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are 
specified as a sequence of three coordinate numbers in the range 1-4. 

/usr/games/ttt.k learning file 



TWINKLE(6) UniSort TWINKLE(6) 

NAME 
twinkle - twinkle stars on the screen 

SYNOPSIS 
/usr/garnes/twinkle [-+ [ssavel I [density! I [density2] 

DESCRIPTION 
Twiukle causes a specified density of 'stars' to twinkle on the screen. The 
following options are available; 

print out the present screen density (the percentage of the screen 
that will be filled with stars) in the lower left hand corner of the 
screen. This number will change as stars go on and oW. 

+ do not 'randomize' before starting. The screen starts out com­
pletely blank and stars are added, bit by bit. In this case the density 
rises beyond the specified density, then falls to the required percen­
tage. 

s save binary density on file 'save', in case you want to see the den­
sity curve that a particular density specification produced during the 
life of the show. 

density If no density is specified, density is .5 (50% of the screen will be 
filled with stars). 
If only d1!11sity/ is given, density is 1/densityl 
If both density I and density2 are given, tkttsi{v is the resultant of 
densityl/(densityl +density2). 

EXAMPLE 
twinkle-+ 2 6 

would start from a blank screen and twinkle stars to a final density of 2/8, 
or 25%. The densities would be shown in the lower left hand corner, as a 
three-place decimal. 

AUTHOR 
Asa Romberger 

Pagel July 23, 1985 



WORM(6) UniSoft WORM(6) 

NAME 
worm - Play the growing worm game 

SYNOPSIS 
worm [ size 1 

DESCRIPTION 

BUGS 

In worm, you are a little worm, your body is the "o"'s on the screen and 
your head is the"@". You move with the bjkl keys (as in the game snake). 
If you don't press any keys, you continue in the direction you last moved. 
The upper case HJKL keys move you as if you had pressed several (9 for 
HL and 5 for JK) of the corresponding lower case key (unless you run into 
a digit, then it stops). 

On the screen you will see a digit; if your worm eats the digit, it will grow 
longer. The actual amount by which the worm will grow longer depends 
upon which digit was eaten. The object of the game is to see how long you 
can make the worm grow. 

The game ends when the worm runs into either the sides of the screen, or 
itself. The current score (how much the worm has grown) is kept in the 
upper left corner or the screen. 

The optional argument, if present, is the initial length of the worm. 

If the initial length of the worm is set to Jess than one or more than 75, 
various strange things happen. 

. I . 



WORMS(6) UaiSoft 

NAME 
worms - animate worms on a display terminal 

SYNOPSIS 
worms I -field ) [ -length # 1 [ -number # 1 [ -trail I 

DESCRIPTION 

WORMS(6) 

-field makes a "field" for the worm(s) to eat; -trail causes each worm to 
leave a trail behind it. You can figure out the rest by yourself. 

FILES 
/etc/termcap 

DIAGNOSTICS 
Invalid length 

BUGS 

Value not in range 2 < = length < = 1024 

Invalid number of worms 
VaJue not in range I < = number <- 40 

TERM: parameter not set 
The TERM environment variable is not defined. Do 

TERM= terminal type 
export TERM 

Unknown terminal type 
Your terminaJ type (as determined from the TERM environment vari­

able) is not 
defined in /etc/termeap. 

Terminal not capable of cursor motion 
Your terminaJ is too stupid to run this program. 

Out of memory 
This should never happen. 

The lowcr-risht-hand character pos.ition will not be updated properly on a 
terminal that wraps at the right margin. 
Terminal initialization is not performed. 

AUTHOR 
Eric P. Scott 

. I . 



WUMP(6) WUMP(6) 

NAME 
wump - the game of hunt-the-wumpus 

SYNOPSIS 
/usr/;ames/wump 

DESCRIPTION 

BUGS 

Wump plays the game of "Hunt the Wumpus." A Wumpus is a creature 
that lives in a cave with several rooms connC~;;ted by tunnels. You wander 
among the rooms, trying to shoot the Wumpus with an arrow, meanwhile 
avoiding being eaten by the Wumpus and falling into Bottomless Pits. 
There arc also Super Bats which are likely to pick you up and drop you in 
some random room. 
The program asks various questions which you answer one per line; it will 
give a more detailed description if you want. 
This program is based on one described in People's Complller Company, 2. 2 
(November 1973). 

It will never replace Adventure. 



- j 

- j 

- j 

j 

j 

j 

j 

j 

j 

j 

j 

j 



r' 
' 

Colophon 

Composed at U niSoft Systems Inc. 
on the UniPlus+ Operating System 
Designed by the Documentation Department 
Printed in Times Roman on Sequoia Matt 



' 


