
VxWorks

APPL ICAT ION PROGRAMMER’S GUIDE

®

6.2

VxWorks Application Programmer's Guide

Copyright © 2005 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Application Programmer’s Guide, 6.2

9 Oct 05
Part #: DOC-15673-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

1.2 Related Documentation Resources ... 2

1.3 VxWorks Configuration and Build ... 2

2 Applications and Processes ... 5

2.1 Introduction ... 6

2.2 Configuring VxWorks For Real-time Processes ... 8

2.3 Real-time Processes .. 10

2.3.1 Real-time Process Life-Cycle .. 12

2.3.2 Processes and Memory .. 14

2.3.3 Processes and Tasks ... 15

2.3.4 Processes, Inheritance, and Resource Reclamation 16

2.3.5 Processes and Environment Variables ... 17

2.3.6 Processes and POSIX ... 18

2.4 Developing VxWorks Applications .. 18

2.4.1 Application Structure .. 18

VxWorks
Application Programmer’s Guide, 6.2

iv

2.4.2 VxWorks Header Files ... 19

2.4.3 Applications, Processes, and Tasks .. 22

2.4.4 Applications and VxWorks Kernel Component Requirements 23

2.4.5 Building Applications .. 23

2.4.6 C++ Applications ... 24

2.4.7 Processes and Hook Routines ... 24

2.4.8 Application APIs, System Calls, and Library Routines 25

System Calls .. 25
VxWorks Libraries .. 26
API Documentation ... 26

2.4.9 POSIX ... 26

2.5 Developing Application Libraries .. 27

2.5.1 Library Initialization .. 27

C++ Library Initialization ... 28
Handling Initialization Failures ... 29

2.5.2 Library Termination ... 29

Using atexit() for Termination Routines ... 30

2.5.3 Developing Static Libraries ... 30

2.5.4 Developing Shared Libraries .. 31

Configuring VxWorks for Shared Libraries .. 35
Building Shared Libraries and Dynamic Applications 36
VxWorks Run-time C Library libc.so ... 50
Using Plug-Ins .. 51
Using readelf to Examine Dynamic ELF Files 53
Getting Runtime Information About Shared Libraries 53
Debugging Shared Libraries ... 56
Working With Shared Libraries From a Windows Host 57

2.6 Creating and Managing Shared Data Regions ... 59

2.6.1 Configuring VxWorks for Shared Data Regions 60

2.6.2 Creating Shared Data Regions .. 60

2.6.3 Accessing Shared Data Regions ... 61

 Contents

v

2.6.4 Deleting Shared Data Regions .. 61

2.7 Executing Applications ... 62

2.7.1 Running Applications Interactively .. 63

Starting Applications ... 63
Stopping Applications ... 64

2.7.2 Running Applications Automatically ... 64

Startup Facility Options .. 65
Application Startup String Syntax ... 66
Specifying Applications with a Boot Loader Parameter 67
Specifying Applications with a VxWorks Shell Script 69
Specifying Applications with a Startup Configuration Parameter ... 70
Starting Applications with Custom Startup Routines 70

2.7.3 Applications and Symbol Registration ... 70

2.8 Bundling Applications with a VxWorks System using ROMFS 71

2.8.1 Configuring VxWorks with ROMFS .. 72

2.8.2 Building a System With ROMFS and Applications 72

2.8.3 Accessing Files in ROMFS .. 72

2.8.4 Using ROMFS to Start Applications Automatically 73

3 Multitasking .. 75

3.1 Introduction ... 75

3.2 Tasks and Multitasking ... 76

3.2.1 Task State Transition .. 77

3.2.2 Task Scheduling .. 80

Preemptive Priority Scheduling ... 81
Round-Robin Scheduling .. 82
Preemption Locks ... 84

3.2.3 Task Control .. 84

Task Creation and Activation ... 84
Task Stack .. 85
Task Names and IDs .. 86

VxWorks
Application Programmer’s Guide, 6.2

vi

Task Options .. 88
Task Information .. 88
Task Deletion and Deletion Safety ... 89
Task Execution Control .. 91

3.2.4 Tasking Extensions ... 92

3.2.5 Task Error Status: errno ... 94

A Separate errno Value for Each Task ... 94
Error Return Convention .. 94
Assignment of Error Status Values .. 94

3.2.6 Task Exception Handling .. 95

3.2.7 Shared Code and Reentrancy ... 95

Dynamic Stack Variables ... 96
Guarded Global and Static Variables ... 97
Task Variables .. 97
Multiple Tasks with the Same Main Routine 98

3.3 Intertask and Interprocess Communications .. 100

3.3.1 Public and Private Objects .. 100

Creating and Naming Public and Private Objects 101
Object Ownership and Resource Reclamation 101

3.3.2 Shared Data Structures .. 102

3.3.3 Mutual Exclusion ... 103

Preemptive Locks and Latency .. 103

3.3.4 Semaphores ... 104

Semaphore Control .. 105
Binary Semaphores .. 106
Mutual-Exclusion Semaphores ... 108
Counting Semaphores ... 112
Special Semaphore Options .. 113
Semaphores and VxWorks Events ... 115

3.3.5 Message Queues ... 115

VxWorks Message Queues .. 116
Displaying Message Queue Attributes ... 118
Servers and Clients with Message Queues ... 119
Message Queues and VxWorks Events ... 120

 Contents

vii

3.3.6 Pipes ... 120

3.3.7 VxWorks Events ... 121

Preparing a Task to Receive Events ... 122
Sending Events to a Task ... 123
Accessing Event Flags ... 125
Events Routines .. 126
Task Events Register .. 126
Show Routines and Events ... 127

3.3.8 Message Channels .. 127

Single-Node Communication with COMP ... 129
Multi-Node Communication with TIPC ... 132
Socket Name Service .. 133
Socket Application Libraries .. 136
onfiguring VxWorks for Message Channels ... 140
Comparing Message Channels and Message Queues 142

3.3.9 Network Communication ... 143

3.3.10 Signals .. 143

Configuring VxWorks for Signals ... 145
Basic Signal Routines ... 145
Signal Handlers .. 146

3.4 Timers ... 149

4 POSIX Standard Interfaces .. 151

4.1 Introduction ... 152

4.2 Configuring VxWorks with POSIX Facilities ... 153

4.3 General POSIX Support .. 154

4.4 POSIX Header Files ... 156

4.5 POSIX Process Support ... 158

4.6 POSIX Clocks and Timers .. 159

4.7 POSIX Asynchronous I/O ... 161

VxWorks
Application Programmer’s Guide, 6.2

viii

4.8 POSIX Page-Locking Interface .. 162

4.9 POSIX Threads .. 163

4.9.1 VxWorks-Specific Thread Attributes ... 166

4.9.2 Specifying Attributes when Creating pthreads 166

4.9.3 Thread Private Data ... 168

4.9.4 Thread Cancellation ... 168

4.10 POSIX Scheduling .. 170

4.10.1 Comparison of POSIX and VxWorks Scheduling 170

Native VxWorks Scheduler ... 170
POSIX Threads Scheduler ... 172

4.10.2 POSIX Scheduling Model .. 174

4.10.3 Getting and Setting Task Priorities .. 175

4.10.4 Getting and Displaying the Current Scheduling Policy 177

4.10.5 Getting Scheduling Parameters: Priority Limits and Time Slice 178

4.11 POSIX Semaphores .. 179

4.11.1 Comparison of POSIX and VxWorks Semaphores 180

4.11.2 Using Unnamed Semaphores ... 181

4.11.3 Using Named Semaphores ... 183

4.12 POSIX Mutexes and Condition Variables ... 186

4.13 POSIX Message Queues .. 188

4.13.1 Comparison of POSIX and VxWorks Message Queues 188

4.13.2 POSIX Message Queue Attributes ... 189

4.13.3 Displaying Message Queue Attributes ... 191

4.13.4 Communicating Through a Message Queue .. 192

4.13.5 Notifying a Task that a Message is Waiting .. 195

4.14 POSIX Queued Signals ... 200

 Contents

ix

5 Memory Management .. 207

5.1 Introduction ... 207

5.2 VxWorks Component Requirements .. 208

5.3 Heap and Memory Partition Management .. 208

5.4 Dynamic Memory Space Management for Applications 210

5.5 Memory Error Detection ... 212

5.5.1 Heap and Partition Memory Instrumentation 213

5.5.2 Compiler Instrumentation .. 220

6 I/O System ... 225

6.1 Introduction ... 226

6.2 Files, Devices, and Drivers ... 227

6.2.1 Filenames and the Default Device ... 228

6.3 Basic I/O ... 229

6.3.1 File Descriptors ... 229

6.3.2 Standard Input, Standard Output, and Standard Error 230

6.3.3 Standard I/O Redirection ... 231

6.3.4 Open and Close .. 232

6.3.5 Create and Remove .. 235

6.3.6 Read and Write ... 235

6.3.7 File Truncation .. 236

6.3.8 I/O Control ... 237

6.3.9 Pending on Multiple File Descriptors: The Select Facility 237

6.3.10 POSIX File System Routines ... 238

6.4 Buffered I/O: stdio .. 239

6.4.1 Using stdio .. 239

VxWorks
Application Programmer’s Guide, 6.2

x

6.4.2 Standard Input, Standard Output, and Standard Error 241

6.5 Other Formatted I/O: printErr() and fdprintf() ... 241

6.6 Asynchronous Input/Output .. 241

6.6.1 The POSIX AIO Routines .. 242

6.6.2 AIO Control Block .. 242

6.6.3 Using AIO .. 243

Alternatives for Testing AIO Completion ... 244

6.7 Devices in VxWorks ... 244

6.7.1 Serial I/O Devices: Terminal and Pseudo-Terminal Devices 244

tty Options ... 245
Raw Mode and Line Mode ... 246
tty Special Characters .. 246

6.7.2 Pipe Devices .. 248

Creating Pipes ... 248
I/O Control Functions ... 248

6.7.3 Pseudo Memory Devices ... 249

I/O Control Functions ... 249

6.7.4 Network File System (NFS) Devices .. 250

I/O Control Functions for NFS Clients ... 250

6.7.5 Non-NFS Network Devices .. 250

I/O Control Functions ... 251

6.7.6 Sockets .. 251

6.8 Transaction-Based Reliable File System Facility: TRFS 252

6.8.1 Configuring VxWorks With TRFS .. 252

6.8.2 Creating a TRFS Shim Layer ... 253

6.8.3 Using the TRFS in Applications ... 253

TRFS Code Example .. 253

 Contents

xi

7 Local File Systems ... 255

7.1 Introduction ... 256

7.2 File System Monitor ... 259

7.3 Highly Reliable File System: HRFS .. 259

7.3.1 Configuring VxWorks for HRFS .. 260

7.3.2 Creating an HRFS File System .. 260

7.3.3 Transactionality .. 261

7.3.4 Maximum Number of Files and Directories .. 261

7.3.5 Working with Directories .. 261

Creating Subdirectories ... 262
Removing Subdirectories .. 262
Reading Directory Entries ... 262

7.3.6 Working with Files ... 263

File I/O Routines .. 263
File Linking and Unlinking ... 263
File Permissions .. 263

7.3.7 Crash Recovery and Volume Consistency .. 263

7.3.8 I/O Control Functions Supported by HRFS .. 264

7.4 MS-DOS-Compatible File System: dosFs ... 265

7.4.1 Configuring VxWorks for dosFs .. 266

7.4.2 Creating a dosFs File System .. 267

7.4.3 Working with Volumes and Disks ... 268

Accessing Volume Configuration Information 268
Synchronizing Volumes ... 268

7.4.4 Working with Directories .. 268

Creating Subdirectories ... 268
Removing Subdirectories .. 269
Reading Directory Entries ... 269

7.4.5 Working with Files ... 270

File I/O Routines .. 270

VxWorks
Application Programmer’s Guide, 6.2

xii

File Attributes ... 270

7.4.6 Disk Space Allocation Options ... 272

Choosing an Allocation Method .. 273
Using Cluster Group Allocation .. 273
Using Absolutely Contiguous Allocation ... 274

7.4.7 Crash Recovery and Volume Consistency .. 276

7.4.8 I/O Control Functions Supported by dosFsLib 276

7.4.9 Booting from a Local dosFs File System Using SCSI 277

7.5 Raw File System: rawFs ... 278

7.5.1 Configuring VxWorks for rawFs .. 278

7.5.2 Creating a rawFs File System ... 278

7.5.3 Mounting rawFs Volumes ... 279

7.5.4 rawFs File I/O ... 279

7.5.5 I/O Control Functions Supported by rawFsLib 279

7.6 CD-ROM File System: cdromFs .. 280

7.6.1 Configuring VxWorks for cdromFs ... 282

7.6.2 Creating and Using cdromFs .. 282

7.6.3 I/O Control Functions Supported by cdromFsLib 282

7.6.4 Version Numbers .. 283

7.7 Read-Only Memory File System: ROMFS .. 284

7.7.1 Configuring VxWorks with ROMFS .. 284

7.7.2 Building a System With ROMFS and Files ... 285

7.7.3 Accessing Files in ROMFS ... 285

7.7.4 Using ROMFS to Start Applications Automatically 286

7.8 Target Server File System: TSFS .. 286

Socket Support .. 287
Error Handling .. 288
Configuring VxWorks for TSFS Use .. 288
Security Considerations .. 288

 Contents

xiii

Using the TSFS to Boot a Target ... 289

8 Error Detection and Reporting .. 291

8.1 Introduction ... 292

8.2 Configuring Error Detection and Reporting Facilities 293

8.2.1 Configuring VxWorks .. 293

8.2.2 Configuring the Persistent Memory Region .. 293

8.2.3 Configuring Responses to Fatal Errors ... 294

8.3 Error Records ... 294

8.4 Displaying and Clearing Error Records ... 296

8.5 Fatal Error Handling Options .. 297

8.5.1 Configuring VxWorks with Error Handling Options 298

8.5.2 Setting the System Debug Flag ... 299

Setting the Debug Flag Statically ... 299
Setting the Debug Flag Interactively ... 300

8.6 Other Error Handling Options for Processes ... 300

8.7 Using Error Reporting APIs in Application Code ... 300

8.8 Sample Error Record .. 301

9 C++ Development ... 303

9.1 Introduction ... 303

9.2 C++ Code Requirements ... 304

9.3 C++ Compiler Differences .. 304

9.3.1 Template Instantiation ... 305

9.3.2 Exception Handling ... 306

9.3.3 Run-Time Type Information ... 307

VxWorks
Application Programmer’s Guide, 6.2

xiv

9.4 Namespaces ... 307

9.5 C++ Demo Example ... 308

Index .. 309

1

 1
Overview

1.1 Introduction 1

1.2 Related Documentation Resources 2

1.3 VxWorks Configuration and Build 2

1.1 Introduction

This manual describes the VxWorks operating system, and how to use VxWorks
facilities in the development of real-time applications and systems. It covers the
following topics:

■ real-time process (RTP) applications and process management
■ multitasking facilities
■ POSIX standard interfaces
■ memory management
■ I/O system
■ local file systems
■ error detection and reporting
■ C++ development

NOTE: This book provides information about facilities available for real-time
processes. For information about facilities available in the VxWorks kernel, see the
the VxWorks Kernel Programmer’s Guide.

VxWorks
Application Programmer’s Guide, 6.2

2

1.2 Related Documentation Resources

The companion volume to this book, the VxWorks Kernel Programmer’s Guide,
provides material specific to kernel features and kernel-based development.

Detailed information about VxWorks libraries and routines is provided in the
VxWorks API references. Information specific to target architectures is provided in
the VxWorks BSP references and in the VxWorks Architecture Supplement.

For information about BSP and driver development, see the VxWorks BSP
Developer’s Guide and the VxWorks Device Driver Guide.

The VxWorks networking facilities are documented in the Wind River Network Stack
for VxWorks 6 Programmer’s Guide and the VxWorks PPP Programmer’s Guide.

For information about migrating applications, BSPs, drivers, and projects from
previous versions of VxWorks and the host development environment, see the
VxWorks Migration Guide and the Wind River Workbench Migration Guide.

The Wind River IDE and command-line tools are documented in the Wind River
compiler and GNU compiler guides, the Wind River Workbench user’s guide, and
the Wind River tools API and command line references.

1.3 VxWorks Configuration and Build

This document describes VxWorks features; it does not go into detail about the
mechanisms by which VxWorks-based systems and applications are configured
and built. The tools and procedures used for configuration and build are described
in the Wind River Workbench documentation.

1 Overview
1.3 VxWorks Configuration and Build

3

1NOTE: In this book, as well as in the VxWorks API references, VxWorks
components are identified by the names used in component description files,
which is in the form of INCLUDE_FOO. Similarly, configuration parameters are
identified by their configuration parameter names, such as NUM_FOO_FILES.

Component and parameter names can be used directly to identify components and
configure VxWorks if you work with the command-line configuration facilities.

Wind River Workbench provides fuller descriptions of the components and their
parameters in the GUI. But you can also use a simple search facility to locate a
component based on its component name. Once you have located the component,
you can access the component’s parameters through the GUI.

VxWorks
Application Programmer’s Guide, 6.2

4

5

 2
Applications and Processes

2.1 Introduction 6

2.2 Configuring VxWorks For Real-time Processes 8

2.3 Real-time Processes 10

2.4 Developing VxWorks Applications 18

2.5 Developing Application Libraries 27

2.6 Creating and Managing Shared Data Regions 59

2.7 Executing Applications 62

2.8 Bundling Applications with a VxWorks System using ROMFS 71

VxWorks
Application Programmer’s Guide, 6.2

6

2.1 Introduction

VxWorks real-time processes (RTPs) are in many respects similar to processes in
other operating systems—such as UNIX and Linux—including extensive POSIX
compliance. The ways in which they are created, execute applications, and
terminate will be familiar to developers who understand the UNIX process model.
The VxWorks process model is designed for use with real-time embedded systems
and VxWorks processes:

■ Occupy continuous blocks of virtual memory.

■ Are started with a spawn model, in which the instantiation of the process is
separate from the loading of the application.

■ Load applications in their entirety; there is no demand paging.

■ Maintain the VxWorks task scheduling model, in which all tasks are scheduled
globally (processes themselves are not scheduled).

■ Include traditional VxWorks APIs in addition to POSIX APIs.

All of these differences are designed to make VxWorks particularly suitable for
hard real-time applications by ensuring determinism, as well as providing a
common programming model for systems that run with an MMU and those that
do not. As a result, there are differences between the VxWorks process model and
that of server-style operating systems such as UNIX and Linux. The reasons for
these differences are discussed as the relevant topic arises throughout this chapter.

VxWorks real-time processes provide the means for executing applications in user
mode. Each process has its own address space, which contains the executable
program, the program’s data, stacks for each task, the heap, and resources
associated with the management of the process itself (such as memory-allocation
tracking).

Many processes may be present in memory at once, and each process may contain
more than one task (sometimes known as a thread in other operating systems). Each
VxWorks process has its own region of virtual memory; processes do not overlap
in virtual memory. This flat virtual-memory map provides advantages in speed, in
a programming model that accommodates systems with and without an MMU,
and in debugging applications.

There is no limit to the number of processes in a system, or to the number of tasks
in a process, other than the limit imposed by the amount of available memory.

Each real-time process (RTP) application can be created as a fully linked or
partially linked (for use with shared libraries), relocatable executable with

2 Applications and Processes
2.1 Introduction

7

2

cross-development tools on a host system. Applications are built as single
executable files independent of the operating system, with the user code being
linked to the required VxWorks application API libraries.

During development, processes can be spawned to execute applications from the
VxWorks shell or various host tools. Processes can also be spawned
programmatically, and systems can be configured to start processes automatically
at boot time for deployed systems. For systems with multiple applications, not all
need to be started at boot time. They can be started later by other applications, or
interactively by users. Developers can also implement their own application
startup managers.

The VxWorks operating system is configured and built independently of any
applications that it might execute. Applications are built separately, and they can
either be stored separately or bundled with VxWorks in an additional build step
that combines the operating system and applications into a single system image
(using the ROMFS file system). VxWorks need only be configured with the
appropriate components for real-time process support and any other facilities
required by the application (for example, message queues). This independence of
operating system from applications allows for development of a variety of
systems, using differing applications, that are based on a single operating system
configuration. That is, a single variant of the operating system can be combined
with different sets of applications to create different systems. The operating system
does not need to be aware of what applications it will run before it is configured and
built, as long as its configuration includes the components required to support the
applications in question.

The isolation of applications in processes effectively prevents symbol name clashes
during integration. As processes are completely linked, they never import
functions from outside the process even when external functions have the same
name. The name and symbol spaces of the kernel and processes are isolated.

Executable application files can be stored on disks, in RAM, flash, or ROM. They
can be stored on the target or anywhere else that is accessible over a network
connection. The executables are loaded from a file system; and any file system for
which the kernel has support (ROMFS, NFS, ftp, and so on) can be used. The
ROMFS file system technology is particularly useful for deployed systems. It
allows developers to bundle application executables with the VxWorks image into
a single file that the boot loader can load from ROM. Unlike other operating
systems, no root file system—such as on NFS or a diskette—is required to hold
application binaries, configuration files, and so on.

VxWorks
Application Programmer’s Guide, 6.2

8

2.2 Configuring VxWorks For Real-time Processes

In order to run RTP applications on a hardware target, VxWorks must be
configured with the INCLUDE_RTP component and rebuilt.

Note that if a system is configured with INCLUDE_RTP the MMU components
required for memory protection are included by default. To create a system with
processes, but without MMU support, the MMU components must be removed
from the VxWorks configuration.

The default image provided for the VxWorks simulator includes all the necessary
components.

Additional Components Options

The following components provide useful facilities for both development and
deployed systems:

■ INCLUDE_ROMFS for the ROMFS file system.

NOTE: The default configuration of VxWorks for hardware targets does not
include support for running applications in real-time processes (RTPs). VxWorks
must be re-configured and rebuilt to provide these process facilities. The default
configuration of the VxWorks simulator does, however, include full support for
running applications in processes.

The reason that the default configuration of VxWorks (for hardware targets) does
not include process support, is that it facilitates migration of VxWorks 5.5
kernel-based applications to VxWorks 6.x by providing functionally the same basic
set of kernel components, and nothing more.

VxWorks 6.x systems can be created with kernel-based applications and without
any process-based applications, or with a combination of the two. Kernel
applications, however, cannot be provided the same level of protection as those
that run in processes. When applications run in kernel space, both the kernel and
those applications are subject to any misbehavior on the part application code.

For more information about kernel-based applications, see the VxWorks Kernel
Programmer’s Guide: Kernel.

2 Applications and Processes
2.2 Configuring VxWorks For Real-time Processes

9

2

■ INCLUDE_RTP_APPL_USER, INCLUDE_RTP_APPL_INIT_STRING,
INCLUDE_RTP_APPL_INIT_BOOTLINE, and
INCLUDE_RTP_APPL_INIT_CMD_SHELL_SCRIPT for various ways of
automatically starting applications at boot time.

■ INCLUDE_SHARED_DATA for shared data regions.

■ INCLUDE_SHL for shared libraries.

■ INCLUDE_RTP_HOOKS for the programmatic hook facility, which allows for
registering kernel routines that are to be executed at various points in a
process’ life-cycle.

■ INCLUDE_POSIX_PTHREAD_SCHEDULER and INCLUDE_POSIX_CLOCK for
POSIX thread support. This replaces the native VxWorks scheduler with a
scheduler handling user threads in a manner conformant with POSIX.1.
VxWorks tasks and well as kernel POSIX threads are handled as usual. Note
that the INCLUDE_POSIX_PTHREAD_SCHEDULER is compulsory when
pthreads are used in processes.

■ INCLUDE_PROTECT_TASK_STACK for user stack exception stack protection.
This component enables stack protection for kernel tasks as well as for user
task exception stacks for system calls into the kernel. For deployed systems
this component may be omitted to save on memory usage. See Task Stack, p.85
for more information on stack protection.

The following components provide facilities used primarily in development
systems, although they can be useful in deployed systems as well:

■ The various INCLUDE_SHELL_feature components for the kernel shell, which,
although not required for applications and processes, are needed for running
applications from the command line, executing shell scripts, and on-target
debugging.

■ The INCLUDE_WDB component for using the host tools.

■ Either the INCLUDE_NET_SYM_TBL or the
INCLUDE_STANDALONE_SYM_TBL component, which specify whether
symbols for the shell are loaded or built-in.

■ The INCLUDE_DISK_UTIL and INCLUDE_RTP_SHOW components, which
include useful shell routines.

For information about the kernel shell, symbol tables, and show routines, see the
VxWorks Kernel Programmer’s Guide: Target Tools. For information about the host
shell, see the VxWorks Command-Line Tools User’s Guide.

VxWorks
Application Programmer’s Guide, 6.2

10

Component Bundles

The VxWorks configuration facilities provide component bundles to simplify the
configuration process for commonly used sets of operating system facilities. The
following component bundles are provided for process support:

■ BUNDLE_RTP_DEPLOY is designed for deployed systems (final products), and
is composed of INCLUDE_RTP, INCLUDE_RTP_APPL, INCLUDE_RTP_HOOKS,
INCLUDE_SHARED_DATA, and the BUNDLE_SHL components.

■ BUNDLE_RTP_DEVELOP is designed for the development environment, and is
composed of BUNDLE_RTP_DEPLOY, INCLUDE_RTP_SHELL_CMD,
INCLUDE_RTP_SHOW, INCLUDE_SHARED_DATA_SHOW,
INCLUDE_SHL_SHOW, INCLUDE_RTP_SHOW_SHELL_CMD,
INCLUDE_SHL_SHELL_CMD, components.

Configuration and Build

For information about configuring and building VxWorks, see the Wind River
Workbench User’s Guide and the VxWorks Command-Line Tools User’s Guide.

Note that the VxWorks simulator includes all of the basic components required for
processes by default.

2.3 Real-time Processes

A common definition of a process is “a program in execution,” and VxWorks
processes are no different in this respect. VxWorks processes, however, are called
real-time processes precisely because they are designed to support the
determinism required of real-time systems. They do so in various ways:

■ Processes are not scheduled—tasks are scheduled globally throughout the
system.

■ Processes can be preempted in kernel mode as well as in user mode. Every task
has both a user more and a kernel mode stack. (The VxWorks kernel is fully
preemptive.)

■ Process creation takes place in two phases—each with a separate task
priority— which separates instantiation from loading the application. The

2 Applications and Processes
2.3 Real-time Processes

11

2

second task, therefore, bears the cost of instantiation itself, at its own task
priority level. The calling task is not impacted, unless it is coded to wait.

■ Processes load applications in their entirety; there is no demand paging.

The primary way in which VxWorks processes support determinism is that they
themselves are simply not scheduled. Only tasks are scheduled in VxWorks
systems, using a preemptive, priority-based algorithm. Based on the strong
preemptibility of the VxWorks kernel, this ensures that at any given time, the
highest priority task in the system that is ready to run will execute, regardless of
whether the task is in the kernel or in any process in the system.

By way of contrast, the scheduling algorithm for non-real-time systems is based on
time-sharing, as well as a dynamic determination of process priority that ensures
that no process is denied use of the CPU for too long, and that no process
monopolizes the CPU. Each Linux process is allocated its own time quantum,
which it expends on its own tasks, regardless of the priorities of tasks in other
processes. Thus, for example, a high priority task in process A may pend for a
significant amount of time while processes B and C use up their time quantum on
their own (lower priority) tasks. By way of analogy, it is something like spending
small and equal amounts of time on each plate in a gourmet prix fixe meal in
rotation—without regard to whether the hot ones get cold or the cold ones warm,
and without regard to the gastronomic intentions of the chef’s artistry.

VxWorks does provide an optional time-sharing capability—round-robin
scheduling—but it does not interfere with priority-based preemption, and is
therefore deterministic. Round-robin scheduling simply ensures that when there is
more than one task with the highest priority ready to run at the same time, the CPU
is shared between those tasks. No one of them, therefore, can usurp the processor
until it is blocked. (For more information about VxWorks scheduling see 3.2.2 Task
Scheduling, p.80.)

The manner in which VxWorks processes are created also supports the
determinism required of real-time systems. The creation of a VxWorks process
takes place in two distinct phases, and the executable is loaded in its entirety when
the process is created. In the first phase, the rtpSpawn() call creates the process
object in the system, allocates virtual and physical memory to it, and creates the
initial process task (see 2.3.3 Processes and Tasks, p.15). In the second phase, the
initial process task loads the entire executable and starts the main routine.

This approach provides for system determinism in two ways:

■ First, the work of process creation is divided between the rtpSpawn() task and
the initial process task—each of which has its own distinct task priority. This
means that the activity of loading applications does not occur at the priority,

VxWorks
Application Programmer’s Guide, 6.2

12

or with the CPU time, of the task requesting the creation of the new process.
Therefore, the initial phase of starting a process is discrete and deterministic,
regardless of the application that is going to run in it. And for the second
phase, the developer can assign the task priority appropriate to the
significance of the application, or to take into account necessarily
indeterministic constraints on loading the application (for example, if the
application is loaded from networked host system, or local disk). The
application is loaded with the same task priority as the priority with which it
will run. In a way, this model is analogous to asynchronous I/O, as the task
that calls rtpSpawn() just initiates starting the process and can concurrently
perform other activities while the application is being loaded and started.

■ Second, the entire application executable is loaded when the process is created,
which means that the determinacy of its execution is not compromised by
incremental loading during execution. This feature is obviously useful when
systems are configured to start applications automatically at boot time—all
executables are fully loaded and ready to execute when the system comes up.

Note that rtpSpawn() has an option that provides for synchronizing for the
successful loading and instantiation of the new process.

Note that the creation of VxWorks processes involves no copying or sharing of the
parent processes page frames (copy-on-write), as is the case with some versions of
UNIX and Linux. The flat virtual-memory model provided by VxWorks prohibits
this approach. For information about the issue of inheritance of attributes from
parent processes, see 2.3.4 Processes, Inheritance, and Resource Reclamation, p.16.

2.3.1 Real-time Process Life-Cycle

The life-cycle of VxWorks real-time processes is largely consistent with the POSIX
process model.

VxWorks processes can be started in a variety of ways:

■ interactively from the kernel shell

■ interactively from the host shell and debugger

■ automatically at boot time, using a startup facility

■ programmatically from applications or the kernel

VxWorks can run many processes at once, and any number of processes can run
the same application executable. That is, many instances of an application can be
run concurrently.

2 Applications and Processes
2.3 Real-time Processes

13

2

Each process can execute one or more tasks. When a process is created, the system
spawns a single task to initiate execution of the application. The application may
then spawn additional tasks to perform various functions.

The creation of a process includes several phases, as described in 2.3 Real-time
Processes, p.10. For information about what operations are possible on a process in
each phase of its instantiation, see the API reference for rtpLib.

Processes are terminated under the following circumstances:

■ When the last task in the process exits.

■ If any task in the process calls exit(), regardless of whether or not other tasks
are running in the process.

■ If the process’ main() routine returns.

This is because exit() is called implicitly when main() returns. An application
in which main() spawns tasks can be written to avoid this behavior—and to
allow its other tasks to continue operation—by including a taskExit() call as
the last statement in main(). See 2.4 Developing VxWorks Applications, p.18.

■ If the kill() routine is used to terminate the process.

■ If rtpDelete() is called on the process—from a program, a kernel module, the
C interpreter of the shell, or from the host IDE. Or if the rtp delete command
is used from the shell’s command interpreter.

■ If a process takes an exception during its execution.

This default behavior can be changed for debugging purposes. When the error
detection and reporting facilities are included in the system, and they are set
to debug mode, processes are not terminated when an exception occurs.

Note that if a process fails while the shell is running, a message is printed to the
shell console. Error messages can be recorded with the VxWorks error detection
and reporting facilities (see 8. Error Detection and Reporting).

For information about attribute inheritance and what happens to a process’
resources when it terminates, see 2.3.4 Processes, Inheritance, and Resource
Reclamation, p.16.

VxWorks
Application Programmer’s Guide, 6.2

14

2.3.2 Processes and Memory

Each process has its own address space, which contains the executable program,
the program’s data, stacks for each task, the heap, and resources associated with
the management of the process itself (such as local heap management).

Many processes may be present in memory at once. Each VxWorks process has its
own region of virtual memory; processes do not overlap in virtual memory. This
flat virtual-memory map provides the following advantages:

■ Speed—Context switching is fast.

■ Ease of debugging.

■ A flexible programming model that provides the same process-model
orientation regardless of MMU support. VxWorks’ application memory model
allows for running the same applications with and without an MMU. Hard
real-time determinism can be facilitated by using the same programming
model, but disabling the MMU.

Systems can be developed and debugged on targets with an MMU, and then
shipped on hardware that does not have one, or has one that is not enabled for
deployment. The advantages of being able to do so include facilitating
debugging in development, lower cost of shipped units, as well as footprint
and performance advantages of targets without an MMU (or with one that is
not enabled).

Each process is protected from any other process that is running on the system,
whenever the target system has an MMU, and MMU support has been configured
into VxWorks. Operations involving the code, data, and memory of a process are
accessible only to code executing in that process. It is possible, therefore, to run
several instances of the same application in separate processes without any
undesired side effects occurring between them.

As processes run a fully linked image without external references, a process cannot
call a routine in another process, or a kernel routine that is not exported as a
function call—whether or not the MMU is enabled. However, if the MMU is not
enabled, a process can read and write memory external to its own address space,
and could cause the system to malfunction.

While the address space of each process is invisible to tasks running in other
processes, tasks can communicate across process boundaries through the use of
various IPC mechanisms (including public semaphores, public message queues,
and message channels) and shared data memory regions. See 3.3 Intertask and
Interprocess Communications, p.100 and 2.6 Creating and Managing Shared Data
Regions, p.59 for more information.

2 Applications and Processes
2.3 Real-time Processes

15

2

At startup time, the resources internally required for the process (such as the heap)
are allocated on demand. The application's text is guaranteed to be
write-protected, and the application's data readable and writable, as long as an
MMU is present and the operating system is configured to manage it. While
memory protection is provided by MMU-enforced partitions between processes,
there is no mechanism to provide resource protection by limiting memory usage of
processes to a specified amount.

For more information, see 5. Memory Management.

2.3.3 Processes and Tasks

Each VxWorks process may contain more than one task. When a process is created,
an initial task is spawned to begin execution of the application. The name of the
process’s initial task is based on the name of the executable file, with the following
modifications:

■ The letter i is prefixed.
■ The first letter of the filename capitalized.
■ The filename extension is removed.

For example, when foobar.vxe is run, the name of the initial task is iFoobar.

The initial task provides the execution context for the program’s main() routine,
which it then calls. The application itself may then spawn additional tasks.

Task creation includes allocation of space for the task's stack from process memory.
As needed, memory is automatically added to the process as tasks are created from
the kernel free memory pool.

Heap management routines are available in user-level libraries for tasks in
processes. These libraries provide the various ANSI APIs such as malloc() and
free(). The kernel provides a pool of memory for each process in user space for
these routines to manage.

Providing heap management in user space provides for speed and improved
performance because the application does not incur the overhead of a system call
for memory during its execution. However, if the heap is exhausted the system
automatically allocates more memory for the process (by default), in which case a
system call is made. Environment variables control whether or not the heap grows
(see 5.3 Heap and Memory Partition Management, p.208).

For more information, see 3. Multitasking.

VxWorks
Application Programmer’s Guide, 6.2

16

2.3.4 Processes, Inheritance, and Resource Reclamation

VxWorks has a process hierarchy made up of parent/child relationships. Any
process spawned from the kernel (whether programmatically, from the shell or
other development tool, or by an automated startup facility) is a child of the kernel.
Any process spawned by another process is a child of that process. As in human
societies, these relationships are critical with regard to what characteristics
children inherit from their parents, and what happens when a parent or child dies.

VxWorks processes inherit certain attributes of their parent. The child process
inherits the file descriptors of its parent, which means that they can access the same
files (if they are open), signal masks, and environment variables.

By default, when a process is terminated, and its parent is not the kernel, it
becomes a zombie process.1 The parent process can then use wait() or waitpid()
to get the exit status of the child process. After it has done so, the zombie entity is
deleted automatically. The default behavior of zombie creation can be prevented
by either of these two methods:

■ By ignoring the SIGCHLD signal. That is, by setting the SIGCHLD signal
handler to SIG_IGN with sigaction().

■ By hooking a SIGCHLD handling with SA_NOCLDSTOP | SA_NOCLDWAIT
sa_flag set with sigaction().

The getppid() routine returns the parent process ID. If the parent is the kernel, or
the parent is dead, it returns NULL.

While the signal mask is not actually a property of a process as such—it is a
property of a task—the signal mask for the initial task in the process is inherited
from the task that spawned it (that is, the task that called the rtpSpawn() routine).
If the kernel created the initial task, then the signal mask is zero, and all signals are
unblocked.

When a process terminates, all resources owned by the process (objects, data, and
so on) are returned to the system. The resources used internally for managing the
process are released, as are all resources owned by the process. All information
about that process is eliminated from the system (with the exception of any
temporary zombie process information). Resource reclamation ensures that all

1. A zombie process is a “process that has terminated and that is deleted when its exit status
has been reported to another process which is waiting for that process to terminate.” (The
Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition.)

2 Applications and Processes
2.3 Real-time Processes

17

2

resources that are not in use are immediately returned to the system and available
for other uses.

Note, however, that there are exceptions to this general rule:

■ Public objects—which may be referenced by tasks running in other processes
that continue to run—must be explicitly deleted.

■ Socket objects can persist for some time after a process is terminated. They are
reclaimed only when they are closed, which is driven by the nature of the
TCP/IP state machine. Some sockets must remain open until timeout is
reached.

■ File descriptors are reclaimed only when all references to them are closed. This
can occur implicitly when all child processes—which inherit the descriptors
from the parent process—terminate. It can also happen explicitly when all
applications with references to the file descriptors close them.

For information about object ownership, and about public and private objects, see
3.3.1 Public and Private Objects, p.100.

2.3.5 Processes and Environment Variables

By default, a process is created without environment variables. However, the
creator of a process can pass an environment array to the application (for example,
when a process is started from the shell’s command interpreter, it always passes
the SHELL_INTERPRETER variable). See the rtpSpawn() API reference and
2.4.1 Application Structure, p.18 for details.

In addition, if the creator is a kernel task, the contents of that task’s environment
array can be duplicated in the application’s environment array using the getenv()
routine.

A task in a process (or in an application library) can create, reset, and remove
environment variables in a process. The getenv() routine can be used to get the
environment variables, and the setenv() and unsetenv() routines to change or
remove them. They environment array can also be manipulated directly.

In conformance with the POSIX standard, all tasks in a process share the same
environment variables—unlike kernel tasks, which each have their own set of
environment variables.

VxWorks
Application Programmer’s Guide, 6.2

18

2.3.6 Processes and POSIX

The overall behavior of the application environment provided by the real-time
process model is close to the POSIX 1003.1 standard, while maintaining the
embedded and real-time characteristics of the VxWorks operating system. The key
areas of deviation from the standard are that VxWorks does not provide the
following:

■ an overlapping virtual memory model
■ process creation with fork() and exec()
■ memory-mapped files
■ file ownership and file permissions

For information about POSIX conformance, see 4. POSIX Standard Interfaces.

2.4 Developing VxWorks Applications

VxWorks RTP applications are created as a fully linked, relocatable executables.
They are built independently of the VxWorks operating system, using
cross-development tools on the host system. When an application is built, user
code is linked to the required VxWorks application API libraries, and an ELF
executable is produced. By convention, VxWorks RTP executables are named with
a .vxe file-name extension. The extension draws on the vx in VxWorks and the e in
executable to indicate the nature of the file.

A VxWorks application can be loaded from any file system for which the kernel has
support (NFS, ftp, and so on). In addition, applications can be bundled into a single
image with the operating system (see 2.8 Bundling Applications with a VxWorks
System using ROMFS, p.71). Executable application files can be stored on disks, in
RAM, flash, or ROM.

2.4.1 Application Structure

VxWorks applications have a simple structural requirement that is common to C
programs on other operating systems—they must include a main() routine. The
main() routine can be used with the conventional argc and argv arguments, as
well as two additional optional arguments, envp and auxp:

int main

2 Applications and Processes
2.4 Developing VxWorks Applications

19

2

 (
 int argc, /* number of arguments */
 char * argv[], /* null-terminated array of argument strings */
 char * envp[], /* null-terminated array of environment variable strings */
 void * auxp /* implementation specific auxiliary vector */
);

The envp and auxp arguments are usually not required by the application code.

The envp argument is used for passing VxWorks environment variables to the
application. These can be set by a user and are typically inherited from the calling
environment. Note that the getenv() routine can be used to get the environment
variables programmatically, and the setenv() and unsetenv() routines to change
or remove them. (See 2.3.5 Processes and Environment Variables, p.17.)

Environment variables are general properties of the running system, such as the
default path—unlike argv arguments, which are passed to a particular invocation
of the application, and are unique to that application. The system uses the auxp
vector to pass system information to the new process, including page size, cache
alignment size and so on.

The argv[0] argument is typically the relative path to the executable.

2.4.2 VxWorks Header Files

RTP applications often make use of VxWorks operating system facilities or utility
libraries. This usually requires that the source code refer to VxWorks header files.
The following sections discuss the use of VxWorks header files.

VxWorks header files supply ANSI C function prototype declarations for all global
VxWorks routines. VxWorks provides all header files specified by the ANSI
X3.159-1989 standard.

VxWorks system header files for RTP applications are in the directory
installDir/vxworks-6.x/target/usr/h and its subdirectories (different directories are
used for kernel applications).

POSIX Header Files

Traditionally, VxWorks has provided many header files that are described by
POSIX.1, although their content was only partially that described by POSIX.1. For
user-mode applications the POSIX header files are more strictly compliant with the

! CAUTION: Do not reference header files that are for kernel code (which are in and
below installDir/vxworks-6.x/target/h) in application code.

VxWorks
Application Programmer’s Guide, 6.2

20

POSIX.1 description, in both in their content and in their location. See 4.4 POSIX
Header Files, p.156 for more information.

VxWorks Header File: vxWorks.h

It is often useful to include header file vxWorks.h in all application modules in
order to take advantage of architecture-specific VxWorks facilities. Many other
VxWorks header files require these definitions. Include vxWorks.h with the
following line:

#include <vxWorks.h>

Other VxWorks Header Files

Applications can include other VxWorks header files as needed to access VxWorks
facilities. For example, an application module that uses the VxWorks linked-list
subroutine library must include the lstLib.h file with the following line:

#include <lstLib.h>

The API reference entry for each library lists all header files necessary to use that
library.

ANSI Header Files

All ANSI-specified header files are included in VxWorks. Those that are
compiler-independent or more VxWorks-specific are provided in
installDir/vxworks-6.x/target/usr/h while a few that are compiler-dependent (for
example stddef.h and stdarg.h) are provided by the compiler installation. Each
toolchain knows how to find its own internal headers; no special compile flags are
needed.

ANSI C++ Header Files

Each compiler has its own C++ libraries and C++ headers (such as iostream and
new). The C++ headers are located in the compiler installation directory rather
than in installDir/vxworks-6.x/target/usr/h. No special flags are required to enable
the compilers to find these headers. For more information about C++
development, see 9. C++ Development.

NOTE: In releases prior to VxWorks 5.5 Wind River recommended the use of the
flag -nostdinc. This flag should not be used with the current release since it prevents
the compilers from finding headers such as stddef.h.

2 Applications and Processes
2.4 Developing VxWorks Applications

21

2

The -I Compiler Flag

By default, the compiler searches for header files first in the directory of the source
code and then in its internal subdirectories. In general,
installDir/vxworks-6.x/target/usr/h should always be searched before the
compilers’ other internal subdirectories; to ensure this, always use the following
flag for compiling under VxWorks:

-I %WIND_BASE%/target/usr/h %WIND_BASE%/target/usr/h/wrn/coreip

Some header files are located in subdirectories. To refer to header files in these
subdirectories, be sure to specify the subdirectory name in the include statement,
so that the files can be located with a single -I specifier. For example:

#include <vxWorks.h>
#include <sys/stat.h>

VxWorks Nested Header Files

Some VxWorks facilities make use of other, lower-level VxWorks facilities. For
example, the tty management facility uses the ring buffer subroutine library. The
tty header file tyLib.h uses definitions that are supplied by the ring buffer header
file rngLib.h.

It would be inconvenient to require you to be aware of such include-file
interdependencies and ordering. Instead, all VxWorks header files explicitly
include all prerequisite header files. Thus, tyLib.h itself contains an include of
rngLib.h. (The one exception is the basic VxWorks header file vxWorks.h, which
all other header files assume is already included.)

Generally, explicit inclusion of prerequisite header files can pose a problem: a
header file could get included more than once and generate fatal compilation
errors (because the C preprocessor regards duplicate definitions as potential
sources of conflict). However, all VxWorks header files contain conditional
compilation statements and definitions that ensure that their text is included only
once, no matter how many times they are specified by include statements. Thus,
an application can include just those header files it needs directly, without regard
to interdependencies or ordering, and no conflicts will arise.

VxWorks Private Header Files

Some elements of VxWorks are internal details that may change and so should not
be referenced in your application. The only supported uses of VxWorks facilities
are through the public definitions in the header file, and through the public APIs.
Your adherence ensures that your application code is not affected by internal
changes in the implementation of a VxWorks facility.

VxWorks
Application Programmer’s Guide, 6.2

22

Some header files mark internal details using HIDDEN comments:

/* HIDDEN */
...
/* END HIDDEN */

Internal details are also hidden with private header files that are stored in the
directory installDir/vxworks-6.x/target/usr/h/private. The naming conventions for
these files parallel those in installDir/vxworks-6.x/target/usr/h with the library
name followed by P.h. For example, the private header file for semLib is
installDir/vxworks-6.x/target/usr/h/private/semLibP.h.

2.4.3 Applications, Processes, and Tasks

A process is an instance of an application in execution. A process must be spawned
in order to initiate execution of an application; when the application exits, the
process terminates.

VxWorks can run one or more applications simultaneously. Each application can
spawn multiple tasks, as well as other processes. Application tasks are scheduled
by the kernel, independently of the process within which they execute—processes
themselves are not scheduled. In one sense, processes can be viewed as containers
for tasks.

Processes, which provide the execution environment for applications, are started
with rtpSpawn(). The initial task for any application is created automatically in
the create phase of the rtpSpawn() call. This initial task provides the context
within which main() is called.

By default, a process is terminated when the main() returns, because the C
compiler automatically inserts an exit() call at the end of main(). This is
undesirable behavior if main() spawns other tasks, because terminating the
process deletes all the tasks that were running in it. To prevent this from
happening, any application that uses main() to spawn tasks can call taskExit()
instead of return() as the last statement in the main() routine. When main()
includes taskExit() as its last call, the process’ initial task can exit without the
kernel automatically terminating the process.

A process can explicitly be terminated when a task does either of the following:

■ Calls exit() to terminate the process in which it is are running, regardless of
whether or not other tasks are running in the process.

■ Calls the kill() routine to terminate the specified process (using the process
ID).

2 Applications and Processes
2.4 Developing VxWorks Applications

23

2

Terminating processes—either programmatically or by interactive user
command—can be used as a means to update or replace application code. Once the
process is stopped, the application code can be replaced, and the process started
again using the new executable.

If the application is multi-threaded (has multiple tasks), the developer must ensure
that the main() routine task starts all the other tasks.

In developing systems in which multiple applications will run, developers should
consider:

■ the priorities of tasks running in all the different processes

■ any task synchronization requirements between processes as well as within
processes

For information about task priorities and synchronization, see 3.2 Tasks and
Multitasking, p.76 and 3.3 Intertask and Interprocess Communications, p.100.

2.4.4 Applications and VxWorks Kernel Component Requirements

VxWorks is a highly configurable operating system. Because RTP applications are
built independently of the operating system, the build process cannot determine if
the instance of VxWorks on which the application will eventually run has been
configured with all of the components that the application requires (for example,
networking and file systems).

It is, therefore, important for application code to check for errors indicating that
kernel facilities are not available (that is, check the return values of API calls) and
to respond appropriately. If an API requires a facility that is not configured into the
kernel, an errno value of ENOSYS is returned when the API is called.

The syscallPresent() routine can also be used to determine whether or not a
particular system call is present in the system.

2.4.5 Building Applications

The VxWorks cross-development environment provides simple mechanisms for
building applications, including a useful set of default makefile rules. Both the IDE
and command line can be used to build applications.

For command line use, the VxWorks Development Shell or wrenv utility program
can be used to open a command shell with the appropriate environment variables
set. See the VxWorks Command-Line Tools User's Guide.

VxWorks
Application Programmer’s Guide, 6.2

24

An application can then be compiled for VxWorks by creating a simple makefile
and executing a make command in the directory that contains the application C
file. Makefile macros allow for compiling the same source code for different
architectures, with different compilers, and so on. For example, assuming that
c:\vxApp\myVxApp.c has been created, a makefile with the following macro
assignments and include statement could be used to generate the executable:

EXE = myVxApp.vxe
OBJS = myVxApp.o
include $(WIND_USR)/make/rules.rtp

When make is run, the executable is created in
installDir\vxworks-6.x\target\usr\root\cpuTool\bin. As the defaults in this
regard are PowerPC and the Wind River (Diab) compiler, the path and filename
would be as follows:

c:\myInstallDir\vxworks-6.x\target\usr\root\PPC32diab\bin\myVxApp.vxe

Macro assignments can be used at the command line to identify other architectures
and compilers. For example, the command used to build the application with the
GNU compiler for Pentium 2 would be as follows:

make CPU=PENTIUM2 TOOL=gnu

Note that applications that make use of share libraries or plug-ins must be built as
dynamic executables. See Building Shared Libraries and Dynamic Applications, p.36
for information about dynamic executables and additional make macros.

For information about build options, see the VxWorks Architecture Supplement for
the target architecture in question. For information about using makefiles to build
applications, see the Wind River Command Line User’s Guide.

2.4.6 C++ Applications

For information about developing C++ applications, see 9. C++ Development.

2.4.7 Processes and Hook Routines

For information about hook routines, see the VxWorks API reference for
rtpHookLib and 3.2.4 Tasking Extensions, p.92.

2 Applications and Processes
2.4 Developing VxWorks Applications

25

2

2.4.8 Application APIs, System Calls, and Library Routines

VxWorks provides an extensive set of APIs for developing RTP applications. As
with other operating systems, these APIs include both system calls and library
routines.

System calls provide access to kernel facilities that are otherwise inaccessible in
user space, such as APIs that involve interaction with the hardware, I/O, and the
processor itself. Some library routines include system calls, and others execute
entirely in user space.

Note that a few APIs operate on the process rather than the task level—for
example, kill() and exit().

System Calls

Because kernel mode and user mode have different instruction sets and MMU
settings, RTP applications—which run in user mode—cannot directly access
kernel routines and data structures (as long as the MMU is on). System calls
provide the means by which applications request that the kernel perform a service
on behalf of the application, which usually involves operations on kernel or
hardware resources.

System calls are transparent to the user, but operate as follows: For each system
call, an architecture-specific trap operation is performed to change the CPU
privilege level from user mode to kernel mode. Upon completion of the operation
requested by the trap, the kernel returns from the trap, restoring the CPU to user
mode. Because they involve a trap to the kernel, system calls have higher overhead
than library routines that execute entirely in user mode.

Note that if VxWorks is configured without a component that provides a system
call required by an application, ENOSYS is returned as an errno by the
corresponding user-mode library API.

Also note that if a system call has trapped to the kernel and is waiting on a system
resource when as signal is received, the system call may be aborted. In this case the
errno EINTR may be returned to the caller of the API.

System calls are identified as such in the VxWorks API references.

The set of system calls provided by VxWorks can be extended by kernel
developers. They can add their own facilities to the operating system, and make
them available to processes by registering new system calls with the VxWorks

VxWorks
Application Programmer’s Guide, 6.2

26

system call infrastructure. For more information, see the VxWorks Kernel
Programmer’s Guide: Kernel.

VxWorks Libraries

VxWorks distributions include libraries of routines that provide APIs for RTP
applications. Some of these routines execute entirely in the process in user mode.
Others are wrapper routines that make one or more system calls, or that add
additional functionality to one or more system calls. For example, printf() is a
wrapper that calls the system call write(). The printf() routine performs a lot of
formatting and so on, but ultimately must call write() to output the string to a file
descriptor.

Library routines that do not include system calls execute in entirely user mode, and
are therefore more efficient than system calls, which include the overhead of a trap
to the kernel.

The standard C and C++ libraries for VxWorks applications are provided by
Dinkumware, Ltd.

Note that the user-mode libraries provided for RTP applications are completely
separate from kernel libraries.

For information about creating custom user-mode libraries for applications, see
2.5 Developing Application Libraries, p.27.

API Documentation

For detailed information about the routines available for use in applications, see
the VxWorks application API references and Dinkumware library references.

2.4.9 POSIX

For information about POSIX APIs available with VxWorks, and a comparison of
native VxWorks and POSIX APIs, see 4. POSIX Standard Interfaces.

2 Applications and Processes
2.5 Developing Application Libraries

27

2

2.5 Developing Application Libraries

Developers can create their own custom libraries to support their RTP
applications. These libraries can be developed for either static or dynamic
(run-time) linking. See 2.5.4 Developing Shared Libraries, p.31 for a discussion of the
differences between static and shared libraries.

As with applications, libraries should check for errors indicating that kernel
facilities are not available (see 2.4.4 Applications and VxWorks Kernel Component
Requirements, p.23).

The subsections 2.5.1 Library Initialization, p.27 and 2.5.2 Library Termination, p.29
provide information relevant to both static and shared libraries.

2.5.1 Library Initialization

An application library requires an initialization routine only if its operation
requires that resources be created (such as semaphores, or a data area) before its
routines are called.

If an initialization routine is required for the library, its prototype should follow
this convention:

void fooLibInit (void);

The routine takes no arguments and returns nothing. It can be useful to use the
same naming convention used for VxWorks libraries; nameLibInit(), where name
is the basename of the feature. For example, fooLibInit() would be the
initialization routine for fooLib.

The code that calls the initialization of application libraries is generated by the
compiler. The _WRS_CONSTRUCTOR compiler macro must be used to identify the
library’s initialization routine (or routines), as well as the order in which they
should be called. The macro takes two arguments, the name of the routine and a
rank number. The routine itself makes up the body of the macro:

_WRS_CONSTRUCTOR (fooLibInit, rankNumInteger)
 {

/* body of the routine */
 }

VxWorks
Application Programmer’s Guide, 6.2

28

The following example is of a routine that creates a mutex semaphore used to
protect a scarce resource, which may be used in a transparent manner by various
features of the application.

_WRS_CONSTRUCTOR (scarceResourceInit , 101)
 {
 /*
 * Note: a FIFO mutex is preferable to a priority-based mutex
 * since task priority should not play a role in accessing the scarce
 * resource.
 */

 if ((scarceResourceMutex = semMCreate (SEM_DELETE_SAFE | SEM_Q_FIFO |
 SEM_USER)) == NULL)
 EDR_USR_FATAL_INJECT (FALSE,

"Cannot enable task protection on scarce resource\n");
 }

(For information about using the error detection and reporting macro
EDR_USR_FATAL_INJECT, see 8.7 Using Error Reporting APIs in Application Code,
p.300.)

The rank number is used by the compiler to order the initialization routines. The
rank number is referred to somewhat misleadingly as a priority number by the
toolchain. Rank numbers from 100 to 65,535 can be used—numbers below 100 are
reserved for VxWorks libraries. Using a rank number below 100 does not have
detrimental impact on the kernel, but may disturb or even prevent the
initialization of the application environment (which involves creating resources
such as the heap, semphores, and so on).

Initialization routines are called in numerical order (from lowest to highest). When
assigning a rank number, consider whether or not the library in question is
dependent on any other application libraries that should be called before it. If so,
make sure that its number is greater.

If initialization routines are assigned the same rank number, the order in which
they are run is indeterminate within that rank (that is, indeterminate relative to
each other).

C++ Library Initialization

Application libraries written in C++ may require initialization of static
constructors for any global objects the library might use, in addition to the library
initialization required for libraries written in C (described in 2.5.1 Library
Initialization, p.27).

2 Applications and Processes
2.5 Developing Application Libraries

29

2

By default, static constructors are called last, after the library's initialization
routine. In addition, there is no guarantee that the library’s static constructors will
be called before any static constructors in the associated application’s code.
(Functionally, they both have the default rank of last, and there is no defined
ordering within a rank.)

If you require that the initialization of static constructors be ordered, explicitly
rank them by using the _WRS_CONSTRUCTOR macro. However, a well-written
C++ library should not need a specific initialization routine if the objects and
methods defined by the library are properly designed (using lazy initialization).

Handling Initialization Failures

Libraries should be designed to respond gracefully to initialization failures. In
such cases, they should do the following:

■ Check whether the ENOSYS errno has been set, and respond appropriately. For
system calls, this errno indicates that the required support component has not
been included in the kernel.

■ Release all the resources that have been created or obtained by the
initialization routine.

■ Use the EDR_USR_FATAL_INJECT macro to report the error. If the system has
been configured with the error detection and reporting facility, the error is
recorded in the error log (and the system otherwise responds to the error
depending on how the facility has been configured). If the system has not been
configured with the error detection and reporting facility, it attempts to print
the message to a host console by way of a serial line. It is best to use the macro
for this purpose without tracing. For example:

if (mutex = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE)) == NULL)
 {
 EDR_USR_FATAL_INJECT (FALSE, "myLib: cannot create mutex. Abort.");
 }

For more information, see 8.7 Using Error Reporting APIs in Application Code,
p.300.

2.5.2 Library Termination

When the last task in a process exits, or the application’s main() routine returns,
or any task in the process explicitly calls the POSIX exit() routine, the process will
be terminated. When a process terminates, the operating system performs the

VxWorks
Application Programmer’s Guide, 6.2

30

default cleanup actions (see 2.3.1 Real-time Process Life-Cycle, p.12 for information
about process termination).

These default actions include: all existing destructors are called in the reverse order
of the related constructors, all registered cleanup routines are called in the reverse
order of their registration (see Using atexit() for Termination Routines, p.30), any
remaining process tasks are deleted, the process’ memory pages are returned to the
general pool, and any objects created by the process’ tasks in the kernel are deleted
(if they are owned by the terminated process).

Additional cleanup work can be stipulated by using atexit() or
taskDeleteHookAdd(), and if pthreads are used, pthread_cleanup_push() can be
employed.

Using atexit() for Termination Routines

While there is no library termination routine facility comparable to that for
initialization routines (particularly with regard to ranking), a library can register
cleanup routines to be executed using the POSIX atexit() routine. These routines
are executed in reverse order of their registration when a process is being
terminated.

Using atexit() is useful for cleanup activities that are not handled automatically by
the operating system, such as shutting down a device. The call to atexit() can be
made at anytime during the life of the process, although it is preferably done by
the library's initialization routine.

Cleanup routines registered with atexit() are called when exit() is called. Note that
if a process’ task directly calls the POSIX _exit() routine, none of the cleanup
routines registered with atexit() will be executed.

2.5.3 Developing Static Libraries

The VxWorks development environment provides simple mechanisms for
building libraries, including a useful set of default makefile rules. Both the IDE and
command line can be used to build libraries.

At the command line, a application library can be compiled for VxWorks by
creating a simple makefile and executing a make command in the directory that
contains the library’s C file. Makefile macros allow for compiling the same source
code for different architectures, with different compilers, and so on.

2 Applications and Processes
2.5 Developing Application Libraries

31

2

For example, to create a static archive called libfoobar.a from various foo and bar
modules, a makefile might look like this:

This file contains make rules for building the foobar library
LIB_BASE_NAME = foobar
OBJS = foo1.o foo2.o \

bar1.o bar2.o
include $(WIND_USR)/make/rules.library

The makefile includes the default rules defined in rules.library. By default, static
libraries are created in installDir/vxworks-6.x/target/usr/lib/arch/CPU/common.

The makefile defaults are for the PowerPC architecture and the Wind River
Compiler (Diab). Variable assignments can be used at the command line to identify
other architectures and compilers. For example, the command used to build the
application with the GNU compiler for Pentium2 would be as follows:

make CPU=PENTIUM2 TOOL=gnu

For more information about using the VxWorks command-line build environment,
see the VxWorks Command-Line Tools User’s Guide: Building Applications and
Libraries.

Also see 2.5.4 Developing Shared Libraries, p.31, and particularly Using the VxWorks
CLI Build Environment, p.36, which includes information about creating makefiles
to build both static and shared versions of libraries.

For information about using the IDE, see the Wind River Workbench User’s Guide.

2.5.4 Developing Shared Libraries

Shared libraries are made up of routines and data that can be used by applications,
just like static (archive) libraries. However, when an application is linked to a
shared library, the linker does not copy object code from the library into the
executable—they are not statically linked. Instead it copies information about the
name of the shared library (its shared object name) and its run-time location (if the
appropriate compiler option is used).

Conceptually, shared libraries do the same job as static libraries. The key
differences in their utility are that:

■ Statically-linked applications link only those elements of a static library that
they need. The entire library does not necessarily become part of the system. If
multiple applications in a system use the same library elements, it means that
there is replication of library code in the system.

VxWorks
Application Programmer’s Guide, 6.2

32

■ Dynamically-linked applications require the presence of the entire shared
library in the system, even if they only use a small set of its features. If multiple
applications in a system need the shared library, however, they share a single
copy. The library code is not duplicated.

Applications that make use of shared libraries must be built as dynamic
executables, which includes a dynamic linker that carries out the binding of the
shared library and application at run time.

Once loaded into memory by the dynamic linker, shared libraries are held in
sections of memory (shared data areas) that are accessible to all applications. Each
application that uses the shared library gets its own copy of the private data, which
is stored in its own memory space. When the last application that references a
shared library exits, the library is removed from memory.

Plug-ins (also referred to as dynamically linked libraries, or DLLs) are another
class of shared object similar to shared libraries. An application can load or unload
a plug-in using a special set of routines. Plug-ins allow for dynamic modification
of an application at run time. They can also be used to modify the functionality of
a deployed application by loading replacement plug-ins rather than replacing the
entire application. (See Using Plug-Ins, p.51.)

Dynamic Linking

The dynamic linking feature in VxWorks is based on equivalent functionality in
UNIX and related operating systems. It uses features of the UNIX-standard ELF
binary executable file format, and it uses many features of the ELF ABI standards,
although it is not completely ABI-compliant for technical reasons. The source code
for the dynamic linker comes from NetBSD, with VxWorks-specific modifications.
It provides dlopen() for plug-ins, and other standard features.

An application that is built as a dynamic executable is statically linked with a
dynamic linker library that contains code to locate, read and edit shared objects at
run-time (unlike UNIX, in which the dynamic linker is itself a shared library). The
dynamic linker contains a constructor function that schedules its initialization at a
very early point in the execution of process (during its instantiation phase). It reads
a list of shared libraries and other information about the executable file and uses
that information to make a list of shared libraries that it will load. As it reads each
shared library, it looks for more of this dynamic information, so that eventually it
has loaded all of the code and data that is required by the program and its libraries.
The dynamic linker makes special arrangements to share code between processes,
placing shared code in a shared memory region and using special kernel locks to
make sure that the shared memory region is only initialized once. The dynamic

2 Applications and Processes
2.5 Developing Application Libraries

33

2

linker allocates its memory resources from shared data regions and additional
pages of memory allocated on demand—and not from process memory—so that
the use of process memory is predictable.

Shared objects are compiled in a special way, into position-independent code
(PIC). This type of code is designed so that it requires relatively few changes to
accommodate different load addresses. A table of indirections called a global offset
table (GOT) is used to access all global functions and data. Each process that uses
a given shared object has a private copy of the library’s GOT, and that private GOT
contains pointers to shared code and data, and to private data. When PIC needs to
use the value of a variable, it fetches the pointer to that variable from the GOT and
de-references it. This means that when code from a shared object is shared across
processes, the same code can fetch different copies of the analogous variable. The
dynamic linker is responsible for initializing and maintaining the GOT.

Because VxWorks uses a flat (that is, not overlapped) virtual memory space, the
NetBSD version of the dynamic linker was modified so that the code and data
segments of a shared library can have different relative addresses at run time. In
standard PIC, the code can locate its GOT by computing the offset from the code’s
load address; overlapped memory allows each private copy of the GOT to have the
same virtual address. With VxWorks PIC, an RTP (process) variable is used instead
to locate a private table of GOTs; each resident shared object reserves a fixed offset
in this GOT table, with which a program can recover the GOT address for a given
shared object.

Advantages and Disadvantages of Shared Libraries

Shared libraries can provide advantages of footprint reduction, flexibility, and
efficiency:

■ The storage requirements of a system can be reduced because the applications
that rely on a shared library are smaller than if they were each linked with a
static library. Only one set of the required library routines is needed, and they
are provided by the run-time library file itself. The extent to which shared
libraries make efficient use of mass storage and memory depends primarily on
how many applications are using how much of a shared library, and if the
applications are running at the same time.

■ Plug-ins (DLLs) provide flexibility in allowing for dynamic configuration of
applications.

■ Shared libraries are efficient because their code requires fewer relocations than
standard code when loaded into RAM. Moreover, lazy binding allows for
linking only those functions that are required.

VxWorks
Application Programmer’s Guide, 6.2

34

At the same time, shared libraries use PIC code, which is slightly larger than
standard code, and PIC accesses to data are usually somewhat slower than
non-PIC accesses because of the extra indirection through the GOT. This has more
impact on some architectures than on others. Usually the difference is on the order
of a fraction of a percent, but if a time-sensitive code path in a shared library
contains many references to global functions, global data or constant data, there
may be a measurable performance penalty.

If deferred binding is also used, it introduces non-deterministic behavior.

The startup cost of shared libraries makes up the largest efficiency loss (as is the
case on UNIX). It is also greater because of more complex memory setup and more
I/O (file accesses) than for static executables.

Shared libraries are therefore most useful when:

■ Many programs require a few libraries.

■ Many programs that use libraries run at the same time.

■ Libraries are discrete functional units with little unused code.

■ Library code represents a substantial amount of total code.

Conversely, it is not advisable to use shared libraries when only one application
runs at a time, or when applications make use of only a small portion of the
routines provided by the library.

Additional Considerations

There are a number of other considerations that may affect whether to use shared
libraries:

■ Assembly code that refers to global functions or data must be converted by
hand into PIC in order to port it to a shared library.

■ In shared libraries, the relocation process only affects the data segment.
Read-only data identified with the const C keyword are therefore gathered
with the data segment and not with the text segment to allow a relocation per
executable. This means that read-only data used in shared libraries are not
protected against erroneous write operations at run-time.

■ Code that has not been compiled as PIC will not work in a shared library. Code
that has been compiled as PIC does not work in an executable program, even
if the executable program is dynamic. The dynamic linker does not edit any
PIC prologues in the executable program therefore PIC does not work there.

2 Applications and Processes
2.5 Developing Application Libraries

35

2

■ All constructors in a shared library are executed together, hence a constructor
with high priority in one shared library may be executed after a constructor
with low priority in a shared library that was loaded later than the first one.
All shared library constructors are executed at the priority level of the dynamic
linker’s constructor from the point of view of the executable program. (The
constructor for the dynamic linker has a priority of 6.)

■ Shared objects are not cached (they do not linger) if no currently executing
program is using them. There is, therefore, extra processor overhead if a shared
library is loaded and unloaded frequently.

■ There is a limit on the number of concurrent shared libraries, which is 1024.
This limit is imposed by the fact that the GOT table has a fixed size, so that
indexing can be used to look up GOTs (which makes it fast).

Configuring VxWorks for Shared Libraries

While shared libraries can only be used with applications in user mode (not in the
kernel), they do require kernel support for managing their use by different
processes.

Shared library support is not provided by VxWorks by default. The operating
system must be configured with the INCLUDE_SHL main component.

Doing so automatically includes these components as well:

■ INCLUDE_RTP, the main component for real-time process support

■ INCLUDE_SHARED_DATA for storing shared library code

■ INCLUDE_RTP_HOOKS for shared library initialization

■ and various INCLUDE_SC_XYZ, the relevant system call components

It can also be useful to include support for relevant show routines with these
components:

■ INCLUDE_RTP_SHOW
■ INCLUDE_SHL_SHOW
■ INCLUDE_SHARED_DATA_SHOW

! CAUTION: There is no support for so-called far PIC on PowerPC. Some shared
libraries require the global offset table to be larger than 16,384 entries; since this is
greater than the span of a 16-bit displacement, specialized code must be used to
support such libraries.

VxWorks
Application Programmer’s Guide, 6.2

36

Note that if you use the INCLUDE_SHOW_ROUTINES component, all of the above
are automatically added.

Configuration can be simplified through the use of component bundles. Both
BUNDLE_RTP_DEVELOP or BUNDLE_RTP_DEPLOY provide support for shared
libraries (see Component Bundles, p.10).

Building Shared Libraries and Dynamic Applications

There are three alternative approaches to building shared libraries and the
dynamic applications that make use of them:

■ Use Wind River Workbench. All of the build-related elements are created
automatically as part of creating and associating shared library and
application projects. For information in this regard, see the Wind River
Workbench User’s Guide: Shared Library Projects.

■ Use the make build rules and macros provided with the VxWorks installation
to create the appropriate makefiles, and execute the build from the command
line. See Using the VxWorks CLI Build Environment, p.36 and the VxWorks
Command-Line Tools User’s Guide: Building Applications and Libraries.

■ Write makefiles and rules from scratch, or make use of a custom or proprietary
build environment. See Using a Custom Build Environment, p.42, which
includes information about the compiler flags used for shared libraries and
dynamic applications.

Using the VxWorks CLI Build Environment

Using the command-line interface (CLI) build environment provided with the
VxWorks installation allows you to take advantage of a set of default makefile
rules to build dynamic executables and shared libraries.

It can be useful to set up a project with a top-level directory with subdirectories for
the application and for each shared library. The makefiles would be:

■ A top-level makefile that identifies the application and library subdirectories
to build.

■ A makefile for each shared library.

■ A makefile for each application.

The directory structure might look like the one in Figure 2-1. The grey boxes
indicate directories created automatically by the default build rules.

2 Applications and Processes
2.5 Developing Application Libraries

37

2

If you do not use a top-level makefile for the whole project, and you build libraries
and applications separately, you must of course build libraries first.

Top-Level Makefile

The top level makefile requires only two elements. For example:

SUBDIRS = libA libB app
include $(WIND_USR)/make/rules.rtp

The SUBDIRS variable indicates what subdirectories to build. In this case, there are
two library subdirectories (libA and libB) and an application subdirectory (app)
identified.

The include statement references rules.rtp, which is the make fragment holding
build rules for application (.vxe) files.

The $(WIND_USR) element is an environment variable pointing to the user-side of
the target tree: installDir/vxworks-6.x/target/usr.

Library Makefile

Only four elements are required for a library makefile. For example:

LIB_BASE_NAME = MyFoo
OBJS = foo1.o foo2.o foo3.o
EXTRA_INCLUDE += -I/home/moimoi/proj/h
include $(WIND_USR)/make/rules.library

The LIB_BASE_NAME variable specifies the library’s basename. It takes a stripped
version of the library name; that is, without the lib prefix and without the filename
extension. The LIB_BASE_NAME variable is required for generating the shared
object name (soname) information, which is necessary for identifying the run-time

Figure 2-1 Example of CLI Build Directory Structure

VxWorks
Application Programmer’s Guide, 6.2

38

location of the shared library. See Shared Object Names, Library Versions, and
Run-time Locations, p.47.

The OBJS variable identifies the object files that make up the library.

The EXTRA_INCLUDE variable appends additional search paths for the include
files (using the += operator).

The include statement references rules.library, which is the make fragment
holding build rules for libraries.

The $(WIND_USR) element is an environment variable pointing to the user-side of
the target tree: installDir/vxworks-6.x/target/usr.

Additional makefile macros and conditional statements can be used to build either
shared or static libraries, to specify a location other than the default in which to
create the library, and so on. A more useful makefile would look like this:

SL_INSTALL_DIR = /home/moimoi/proj/ppc32/lib
ifeq ($(EXE_FORMAT),dynamic)
LIB_FORMAT = shared
endif
ifeq ($(LIB_FORMAT),shared)
LOCAL_CLEAN += $(OBJ_DIR)/*.sho $(OBJ_DIR)/libMyFoo.so
else
LOCAL_CLEAN += $(OBJ_DIR)/*.o $(OBJ_DIR)/libMyFoo.a
endif
LIB_BASE_NAME = MyFoo
LIBNAME = lib$(LIB_BASE_NAME)
SL_VERSION = 2
OBJS = module1.o module2.o
OBJ_DIR = (CPU)(TOOL)
EXTRA_INCLUDE += -I/home/moimoi/proj/h
include $(WIND_USR)/make/rules.library
LIBDIR = $(OBJ_DIR)

The SL_INSTALL_DIR variable specifies a non-default location for the library file.
It is often useful to keep project work outside of the installation directory. Note that
if you are generating code for different processor architectures, you could use the
$(CPU) variable to define the architecture-specific subdirectory (which would then
use the Wind River naming conventions—PPC32 instead of ppc32, as in this case).

The LIB_FORMAT variable specifies whether the library must be generated as a
static library (the default if not specified) or a shared library. It can be set to static,
shared, or both. See Library Build Commands, p.39.

The LOCAL_CLEAN variable specifies what must be deleted when non-default
directories are used.

The OBJ_DIR variable specifies a non-default directory in which the object
modules are generated.

2 Applications and Processes
2.5 Developing Application Libraries

39

2

The LIBNAME variable specifies a non-default directory for the static library.

The SL_VERSION variable is used to create a version number for a shared library.
By default, the shared library version number is one (libName.so.1), so the variable
is not needed unless you want to build an alternate version of the shared library.
For more information about shared library versions, see Shared Object Names,
Library Versions, and Run-time Locations, p.47.

The LIBDIR variable prevents the creation of an unused directory in
installDir/vxworks-6.x/target/usr/lib when set to $(OBJ_DIR), as it is in this
example. This variable must be the last one used; that is, it must be listed after the
inclusion of rules.library in order to take precedence.

Library Build Output

By default, a library is created as a static archive file (libName.a) in
installDir/target/usr/lib/arch/cpu/common. For example,
installDir/target/usr/lib/ppc/PPC32/common.

When a library is built as a shared library:

■ The reference file (libName.so) is created by default in the same default
directory as a static library file. The reference file is used by the linker when a
dynamic application is built.

■ The runtime version of the shared library (libName.so.n) is created by default
in the same default directory as the application executable.

That is, all the runtime executables are created in the same binary directory by
default: installDir/target/usr/root/cpuTool/bin. For example,
installDir/target/usr/root/PPC32diab/bin.

As noted in Library Makefile, p.37, the SL_INSTALL_DIR makefile variable can be
used to specify a non-default location for the library file.

Library Build Commands

The first conditional statement in the example above allows for building both a
shared library and dynamic application using the top-level makefile. For example:

make EXE_FORMAT=dynamic

NOTE: The rather cumbersome usage of LIBNAME, OBJ_DIR and LIBDIR is
required by the library rules. The three must be specified if one does not want to
clutter the distribution’s installDir/vxworks-6.x/target/usr/lib/arch/cpu/common
directory with unnecessary directories and user application-specific files.

VxWorks
Application Programmer’s Guide, 6.2

40

builds the dynamic executable and related shared libraries for the PPC32
architecture with the Wind River Compiler (the default architecture and compiler).

The following command is similar, but uses the GNU compiler to build for the
Pentium architecture:

make CPU=PPC32 TOOL=gnu EXE_FORMAT=dynamic

Static libraries are created by default, so the EXE_FORMAT variable need not be
used to create them.

You can also build libraries by executing make in the directory containing the
library makefile. The LIB_FORMAT variable allows you to create static, shared, or
both sets of libraries. For example:

make LIB_FORMAT=static
make LIB_FORMAT=shared
make LIB_FORMAT=both

Static libraries are created by default, so that option is superfluous in this context.

Application Makefile

Only four elements are required for an application makefile when the application
is a dynamic executable that uses a shared library. For example:

EXE = myVxApp.vxe
OBJS = myVxApp.o
ADDED_LIBS += -L../lib/(CPU)(TOOL) –lMyFoo
include $(WIND_USR)/make/rules.rtp

The EXE variable defines the name of the application executable.

The OBJS variable identifies the constituent object modules. If more than one is
used, they are listed in a space-separated string. For example:

OBJS = bar1.o bar2.0 bar3.0

The ADDED_LIBS variable appends the search paths and stripped names of any
custom libraries that the application requires (with the += operator). This option
can be used for creating either static or dynamic applications. See Compiler Flag For
Shared Objects and Dynamic Applications, p.44 for a discussion of the -l flag.

The include statement and $(WIND_USR) element are described in Top-Level
Makefile, p.37.

Additional makefile macros can (and often should) be used to specify a different
location for the application executable, the runtime location of the shared libraries
upon which it depends, conditional compilation of either a dynamic or static
application, and so on. A more useful makefile would look like this:

EXE = myVxApp.vxe

2 Applications and Processes
2.5 Developing Application Libraries

41

2

OBJS = myVxApp.o
VXE_DIR = (CPU)(TOOL)/bin
LIB_DIR = ../lib/(CPU)(TOOL)
ADDED_LIBS += -L $(LIB_DIR) –lMyFoo
ifeq ($(EXE_FORMAT),dynamic)
ADDED_DYN_EXE_FLAGS += -Wl,-rpath /romfs/lib
else
ADDED_LIB_DEPS += $(LIB_DIR)/libMyFoo.a
endif
include $(WIND_USR)/make/rules.rtp

The VXE_DIR variable identifies an alternative to the default directory in which the
application executable is created. It is often useful to keep project work outside of
the installation tree.

The LIB_DIR variable is simply a local make variable that can be used conveniently
to identify where a library is located (if it is not in the default location) in the
ADDED_LIBS and ADDED_LIB_DEPS lines without repeating the literal path
information.

The ADDED_DYN_EXE_FLAGS variable is used to pass additional compiler flags
specific to the generation of dynamic executables. It is used here with the
-Wl,-rpath flag to specify the run-time location of any shared libraries upon which
the application depends. In this example, the location is in a lib subdirectory of the
ROMFS file system on the VxWorks target:

ADDED_DYN_EXE_FLAGS += -Wl,-rpath /romfs/lib

In this next example, the location is on the host system:

ADDED_DYN_EXE_FLAGS += -Wl,-rpath c:/myProj/lib/SIMPENTIUMdiab

For information about the -Wl,-rpath flag, see Compiler Flag For Shared Objects and
Dynamic Applications, p.44. Also see Shared Object Names, Library Versions, and
Run-time Locations, p.47.

Note that some types of connections between the target and host require modifiers
to the pathname (NFS is transparent; FTP requires hostname: before the path if it
is not on the same system from which VxWorks was booted; the VxWorks
simulator requires a host: prefix; and so on).

The ADDED_LIB_DEPS specifies the dependencies between the application and
the application’s static libraries (with the += operator). For static linkage, this
variable forces a rebuild of the application if the static library has been changed
since the last build.

VxWorks
Application Programmer’s Guide, 6.2

42

Application Build Output

By default, the executable is created in installDir/target/usr/root/cpuTool/bin, as are
the run-time shared object files (libraries and plug-ins). For example,
installDir/target/usr/root/PPC32diab/bin.

As noted in Application Makefile, p.40, the VXE_DIR variable can be used to identify
an alternative output directory.

Application Build Commands

In the example provided in Application Makefile, p.40, the conditional
ifeq/else/endif statement allows for generating either a static executable or a
dynamic executable, depending on the value given the EXE_FORMAT variable
when make is executed at the command line. The EXE_FORMAT variable can take
one of two values, dynamic or static. For example:

make EXE_FORMAT=dynamic

As a static build is the default, setting EXE_FORMAT to static is not necessary.

Using a Custom Build Environment

If you do not use Wind River Workbench or the CLI VxWorks build environment
to create shared libraries and dynamic executables, follow the guidelines provided
in this section (including the compiler flags listed in Compiler Flag For Shared Objects
and Dynamic Applications, p.44).

To create a dynamically linked program or shared object, you must run the static
linker (dld or ld) with specific flags. These flags cause the linker to mark the output
as dynamically linked, and to include various data structures for later dynamic
linking.

Shared objects are compiled as position-independent code (PIC). Note that all code
that you compile for a shared object must be PIC. Do not use PIC options to
compile modules that will be statically linked into an executable program.

A shared library must be built before any dynamic application that makes use of
it, in two steps:

1. Generate the PIC object modules that are to be assembled into a shared object
file. The modules are created with the .sho filename extension.

2. Generate the shared object (with the .so filename extension) based on the PIC
object modules.

The dynamic application can then be built, in two more steps:

2 Applications and Processes
2.5 Developing Application Libraries

43

2

1. Generate the object modules that will be assembled into an executable file. The
application’s object modules are created with a .o filename extension.

2. Generate the executable file based on the object modules. By convention, the
application is created with the .vxe filename extension.

Generating PIC Object Modules

The following examples illustrate compiler commands used to generate a library’s
PIC modules. The compiler flags are the same as those used by the default makefile
system.

Using the Wind River Compiler:

dcc -tPPCEH:rtp -Xansi -XO -I$(WIND_BASE)/target/usr/h -I/home/moimoi/proj/h
-DCPU=PPC32 -DTOOL_FAMILY=diab -DTOOL=diab -Xpic -Xswitch-table-off -c foo1.c
-o PPC32diab/foo1.sho

Using the GNU Compiler:

ccppc -mhard-float -mstrict-align -mregnames -ansi -mrtp -O2
-fstrength-reduce -fno-builtin -I$(WIND_BASE)target/usr/h
-I/home/moimoi/proj/h -DCPU=PPC32 -DTOOL_FAMILY=gnu -DTOOL=gnu -fpic -c
foo1.c -o PPC32gnu/foo1.sho

Generating the Shared Library

The following examples illustrate compiler commands used to generate a library
from PIC modules. The compiler flags are the same as those used by the default
makefile system.

Using the Wind River Compiler:

dplus -tPPCEH:rtp -Xansi -XO -DCPU=PPC32 -DTOOL_FAMILY=diab -DTOOL=diab -Xpic
-Xswitch-table-off -Wl, -Xshared -Wl, -Xdynamic -soname=libMyFoo.so.1
-L$(WIND_BASE)/target/usr/lib/ppc/PPC32/common/PIC -lstlstd
PPC32diab/foo1.sho PPC32diab/foo2.sho -o libMyFoo.so

! CAUTION: The combination of PIC modules generated by the Wind River
Compiler and the GNU compiler is not supported and is not expected to work.
Doing so may lead to unpredictable results.

VxWorks
Application Programmer’s Guide, 6.2

44

Using the GNU Compiler:

c++ppc -mhard-float -mstrict-align -mregnames -ansi -mrtp -O2
-fstrength-reduce -fno-builtin -DCPU=PPC32 -DTOOL_FAMILY=gnu -DTOOL=gnu -fpic
-shared -Wl,-soname,libMyFoo.so.1
-L$(WIND_BASE)/target/usr/lib/ppc/PPC32/common/PIC -lstdc++ PPC32gnu/foo1.sho
PPC32gnu/foo2.sho -o libMyFoo.so

Generating the Application’s Object Modules

The following examples illustrate compiler commands used to generate an
application’s object modules. The compiler flags are the same as those used by the
default makefile system.

Using the Wind River Compiler:

dcc -tPPCEH:rtp -Xansi -XO -I$(WIND_BASE)/target/usr/h -I/home/moimoi/proj/h
-DCPU=PPC32 -DTOOL_FAMILY=diab -DTOOL=diab -c main.c -o PPC32diab/main.o

Using the GNU Compiler:

ccppc -mhard-float -mstrict-align -mregnames -ansi -mrtp -O2
-fstrength-reduce -fno-builtin -I$(WIND_BASE)/target/usr/h
-I/home/moimoi/proj/h -DCPU=PPC32 -DTOOL_FAMILY=gnu -DTOOL=gnu -c main.c -o
PPC32gnu/main.o

Generating the Application Executable

The following examples illustrate compiler commands used to generate the
application executable. The compiler flags are the same as those used by the
default makefile system.

Using the Wind River Compiler:

dplus -tPPCEH:rtp -Xansi -XO -DCPU=PPC32 -DTOOL_FAMILY=diab -DTOOL=diab
PPC32diab/main.o PPC32diab/secondary.o -Xdynamic -L
$(WIND_BASE)/target/usr/lib/ppc/PPC32/common/ -L../lib/PPC32diab -lMyFoo
-lstlstd -Wl,-rpath /romfs/lib -o myVxApp.vxe

Using the GNU Compiler:

c++ppc -mhard-float -mstrict-align -mregnames -ansi -mrtp -O2
-fstrength-reduce -fno-builtin -DCPU=PPC32 -DTOOL_FAMILY=gnu -DTOOL=gnu -mrtp
PPC32gnu/main.o PPC32gnu/secondary.o -non-static -L
$(WIND_BASE)/target/usr/lib/ppc/PPC32/common -Wl,--start-group
-L../lib/PPC32gnu -lMyFoo -lstdc++ -Wl,--end-group -Wl,-rpath /romfs/lib -o
tmPthreadLib.vxe

Compiler Flag For Shared Objects and Dynamic Applications

The most important compiler flags used in generating shared objects (shared
libraries and plug-ins) and dynamic applications are described below. Note that no
specific flags are required for generating the application modules (the .o files), but

2 Applications and Processes
2.5 Developing Application Libraries

45

2

that special flags are required for generating an application executable (the .vxe
file).

Flags for Shared Objects

To generate position-independent code (PIC), suitable for use in a shared library,
use:

■ -Xpic with the Wind River Compiler
■ -fpic with the GNU Compiler

To link shared library PIC modules, use:

■ -Xshared with the Wind River Compiler
■ -shared with the GNU Compiler

To name a shared object (and optionally provide a version number), use:

■ -soname= sharedLibraryName with the Wind River Compiler
■ -Wl,-soname,sharedLibraryName with the GNU Compiler

Note that gcc does not recognize -soname so it must be passed to ld with -Wl.

The -soname flag specifies a shared object name for a shared library. This information
is used both for locating shared libraries at run-time, as well as for creating
different versions of shared libraries. See Defining Shared Object Names and Shared
Library Versions, p.49

To force the object to use its own definitions for global functions and data even if
some other shared object, or the dynamic executable, would otherwise override
those definitions, use:

■ -Bsymbolic with either compiler

Note that the compilers do not recognize -Bsymbolic, so it must be passed to
their linker with -Wl.

Normally when the dynamic linker looks for a definition for a function or some
data, it chooses the first one that it sees, even if some later module has its own
definition.

Flags for Application Executables

To allow an application to dynamically link with a shared library, use:

■ -Xdynamic with the Wind River Compiler
■ -non-static with the GNU Compiler

VxWorks
Application Programmer’s Guide, 6.2

46

To identify the runtime path to shared libraries, use the following when building
the application’s dynamic executable:

■ -Wl,-rpath sharedLibDirPath with either compiler

Provide a semicolon-separated list of directory names (the run path), which the
dynamic linker uses as one of the means to locate shared libraries at runtime. See
Shared Object Names, Library Versions, and Run-time Locations, p.47 for more
information in this regard. The runtime dynamic linker can only make use of this
information if the shared library is created with a shared object name (see the
-soname flag description in Flags for Shared Objects, p.45).

The paths provided with the -Wl,-rpath linker flag must, of course, be accessible
to the VxWorks target system. If the paths reference files on the host’s file system,
make sure that they are identified in a way that is appropriate for the host-target
connection (NFS is transparent; FTP requires hostname: before the path if it is not
on the same system from which VxWorks was booted; the VxWorks simulator
requires a host: prefix; and so on).

For example, the following example identifies a lib subdirectory in the ROMFS file
system in VxWorks, the c:\proj\lib on a Windows host system, and
/home/moimoi/proj on an NFS file system as the locations for shared libraries:

-Wl,-rpath /romfs/lib;c:/proj/lib;/home/moimoi/proj

When using Wind River Workbench to create a dynamic executable, the linker
option for a dynamic executable must be selected. The -Wl,-rpath option can be
used to identify shared library locations, if necessary.

To indicate which shared libraries will be used by the dynamic application, use:

■ -l with either compiler

The -l flag takes a stripped version of the library name. By convention, libraries
referred to by the -l flag are named libname.so or libname.a. Both the lib part
of the name and the filename extension (.so or .a) are omitted when specified
with -l. For example, both libMyFoo.so and libMyFoo.a could be identified
with -l MyFoo. This facility is particularly useful for conditional compilation
of either static or dynamic applications (see Application Makefile, p.40).

To have the dynamic linker to look up and bind functions only when the function
is first called, use:

■ -Xbind-lazy with either compiler

By default, the dynamic linker computes the addresses of all functions and data to
which a shared object refers at the time that it loads the shared object. The dynamic
linker can save some work when computing function addresses by delaying the

2 Applications and Processes
2.5 Developing Application Libraries

47

2

computation until a function is called for the first time. If a function is never called,
the dynamic linker does not need to compute its address. This feature can improve
performance for large libraries when an application uses only a subset of the
functions in the library. However, it can cause non-real-time latencies, so it is not
enabled by default.

Note that you can also select or disable lazy function binding using environment
variables when you start an application. If the variable LD_BIND_NOW is
non-null, the dynamic linker uses immediate binding. If the variable
LD_BIND_LAZY is non-null, then the dynamic linker uses lazy binding.

Shared Object Names, Library Versions, and Run-time Locations

Shared libraries can be created with shared object names. These names can be used
to identify different versions of shared libraries. They can also be used in
conjunction with a variety of mechanisms to identify the runtime locations of
shared libraries, so that the application’s dynamic linker can find them.

A shared object name is defined when the library is built, and is incorporated into
the executable file. It is independent of the library’s run-time filename, but is often
the same. A shared object name is often referred to as an soname (after the -soname
compiler flag), and is effectively the run-time name of the shared library.

When a shared library is built with a shared object name, the name is stored in an
ELF SONAME record. When a dynamic application is linked against that shared
library, the soname information is recorded in an ELF NEEDED record for use at
run-time by the dynamic linker.

Locating Shared Libraries at Run-time

If a shared library is created without soname information, the application’s
dynamic linker only looks for the run-time shared library file in same directory as
the one in which the application executable is located.

By default, the VxWorks makefile system creates both the application executable
and run-time shared library files in the same directory (Application Makefile, p.40),
which facilitates running the application during the development process. For a
deployed system, shared libraries created without version information will work
only if they are stored in the same directory as the application that requires them
(for example, if they are both stored in the same ROMFS directory). However, if the
dynamic library files are stored somewhere else on the host or target system, as
will often be the case, the application’s dynamic linker will not be able to find
them.

VxWorks
Application Programmer’s Guide, 6.2

48

If a shared library is created with shared object name information, the dynamic
linker can use environment variables, configuration files, compiled location
information, and a default location to find the shared libraries required by its
applications. The linker checks the directories provided by the following
mechanisms, in this order:

1. The environment variable LD_LIBRARY_PATH, which can be set to a
semicolon-separated list of directories. (See below for more information.)

2. The configuration file ld.so.conf. By default the dynamic linker looks for this
file in the same directory as the one in which the application executable
resides. The location can also be specified with the LD_SO_CONF environment
variable. The ld.so.conf file simply lists paths, one per line with the pound sign
(#) at the left margin for comment lines.

3. The run paths identified at build time with the –rpath option.

See Compiler Flag For Shared Objects and Dynamic Applications, p.44 and the
discussion of the ADDED_DYN_EXE_FLAGS variable in Application Makefile,
p.40.

4. The same directory as the application file itself.

In addition, the LD_PRELOAD environment variable can be used to identify a set
of libraries to load at startup time, before loading any other shared libraries. The
variable can be set to a semicolon-separated list of library files. For example:

/romfs/lib/libMyFoo.so.1;c:/proj/lib/libMyBar.so.1;/home/moimoi/proj/libMoreStuff.so.1

The LD_LIBRARY_PATH environment variable can be used when the application is
started. Using the shell’s command interpreter, for example, the syntax would be
as follows:

rtp exec -e "LD_LIBRARY_PATH=libPath1;libPath2" exePathAndName arg1 arg2...

Note in particular that there are no spaces within the quote-enclosed string, but
that there is a comma separating the paths in the quoted string; and that there is
one space between the string and the executable argument to rtp exec.

If, for example, the application and shared libraries were stored in ROMFS on the
target in app and lib subdirectories, the command would look quite tidy:

rtp exec -e "LD_LIBRARY_PATH=/romfs/lib" /romfs/app/myVxApp.vxe one two three

In this next example, the command (which would be entered all on one line, of
course), identifies the location of libc.so.1 as well as a custom shared library on the
host system:

2 Applications and Processes
2.5 Developing Application Libraries

49

2

rtp exec -e
"LD_LIBRARY_PATH=host:c:/myInstallDir/vxworks-6.1/target/usr/root/SIMPENTIUMdiab/bin;
host:c:/wrwb_demo/RtpAppShrdLib/lib/SIMPENTIUMdiab"
host:c:/wrwb_demo/RtpAppShrdLib/app/SIMPENTIUM/bin/myVxApp.vxe one two three

Note that some types of connections between the target and host require modifiers
to the pathname (NFS is transparent; FTP requires hostname: before the path if it
is not on the same system from which VxWorks was booted; the VxWorks
simulator requires a host: prefix; and so on).

Also note that even on Windows hosts you must use forward slashes (or double
backslashes) as path delimiters, This is the case even when the executable is stored
on the host system.

Using Different Versions of Shared Libraries

In addition to being used by the dynamic linker to locate shared libraries at run-
time, shared object names (sonames) can be used create different versions of
shared libraries for use by different applications.

For example, if you need to modify libMyFoo to support new applications, but in
ways that would make it incompatible with old ones, you can merely change the
version number and link the new programs against the new version. If the original
version of the run-time shared library was libMyFoo.so.1, then you would build
the new version with the soname libMyFoo.so.2 and link the new applications
against that one (which would then add this soname to the ELF NEEDED list). You
could then, for example, install libMyFoo.so.1, libMyFoo.so.2, and both the old
and new applications in a common ROMFS directory on the target, and they
would all behave properly.

Defining Shared Object Names and Shared Library Versions

Shared object name and version information can be defined with the following:

■ The SHARED_LIB_VERSION build macro for Wind River Workbench.

■ The LIB_BASE_NAME and SL_VERSION make macros for the default build
system (see Library Makefile, p.37).

■ The compiler’s -soname flag (see Compiler Flag For Shared Objects and Dynamic
Applications, p.44).

By default, the VxWorks CLI build environment create version one instances of
dynamic shared libraries (that is, libName.so.1). With Wind River Workbench, the
user must set the SHAREDLIB_VERSION build macro explicitly.

VxWorks
Application Programmer’s Guide, 6.2

50

VxWorks Run-time C Library libc.so

The VxWorks distribution provides a run-time shared library that is similar to the
UNIX C run-time library. The VxWorks shared library libc.so includes all of the
user-side libraries except for the following:

■ aioPxLib (see 6.6 Asynchronous Input/Output, p.241)

■ memEdrLib (see 5.5 Memory Error Detection, p.212)

■ message channel libraries (see 3.3.8 Message Channels, p.127)

■ networking libraries (see the Wind River Network Stack for VxWorks 6
Programmer’s Guide)

The libc.so shared library provides all of the basic facilities that an executable
might need. It is the shared library equivalent of libc.a. All dynamic executables
require libc.so.1 at run time.

Note that the default shared library is intended to facilitate development, but may
not be suitable for production systems because of its size.

When generating a dynamic executable, the GNU and Wind River toolchains
automatically use the corresponding build-time shared object, libc.so, which is
located in installDir/vxworks-6.x/target/usr/lib/arch/cpu/common (where arch is a
the architecture such as ppc, pentium, or mips). If required, another location can
be referred to by using the linker's -L option.

The run-time version of the library is libc.so.1, which is located in the directory
installDir/vxworks-6.x/target/usr/root/cpuTool/bin, where cpu is the name of the
target CPU (such as PPC32, or PENTIUM4) and Tool is the name of a toolchain—
including modifiers indicating the endianness and the floating point attributes
applied when generating the code (for example diab, sfdiable, gnu, or gnule). For
example:

installDir/vxworks-6.x/target/usr/root/SIMPENTIUMdiab/bin/libc.so.1

For a development environment, various mechanisms can be used for providing
the dynamic linker with information about the location of the libc.so.1 file.

For deployed systems, the libc.so.1 file can be copied manually to whatever
location is appropriate. The most convenient way to make the dynamic linker
aware of the location of libc.so.1 is to store the file in the same location as the
dynamic application, or to use the -Wl,-rpath compiler flag when the application
is built. See Locating Shared Libraries at Run-time, p.47 for more information.

2 Applications and Processes
2.5 Developing Application Libraries

51

2

Using Plug-Ins

A plug-in is a shared object that can be loaded by an application at run-time to
modify or add functionality. It is functionally equivalent to a dynamically linked
library (DLL) in other operating systems. A plug-in is built in exactly the same way
as a shared library, except that it does not need a shared object name.

Applications that use plug-ins must include the dlfcn.h header file (as in the
example provided below). They must also be compiled as dynamic executables,
even if they do not use shared libraries. Static executables cannot load plug-ins
because they do not have a dynamic symbol table.

The location of the plug-in is coded into the application itself. The application
makes API calls to the dynamic linker to load the plug-in and to access its functions
and data. The libdl library, which provides the APIs for these calls, is
automatically linked into a dynamic executable.

As an example, assume that you have a networking application and you want to
be able to add support for new datagram protocols. You can put the code for
datagram protocols into plug-ins, and you can load them on demand, using a
separate configuration protocol. In the application, you might write the following:

#include <dlfcn.h>
[...]

typedef void *PROTO;
const char plugin_path[] = "/romfs/plug-ins";

PROTO attach(const char *name)
{

void *handle;
char *path;
size_t n;

n = sizeof plugin_path + 1 + strlen(name) + 3;
if ((path = malloc(n)) == -1) {

fprintf(stderr, "can't allocate memory: %s",
 strerror(errno));
return NULL;

sprintf(path, "%s/%s.so", plugin_path, name);

if ((handle = dlopen(path, RTLD_NOW)) == NULL)
fprintf(stderr, "%s: %s", path, dlerror());

free(path);

return handle;
}

void detach(PROTO handle)

VxWorks
Application Programmer’s Guide, 6.2

52

{
dlclose(handle);

}

[...]

int
send_packet(PROTO handle, struct in_addr addr, const char *data, size_t len)
{

int (*proto_send_packet)(struct in_addr, const char *, size_t);

if ((proto_send_packet = dlsym(handle, "send_packet")) == NULL) {
fprintf(stderr, "send_packet: %s", dlerror());
return -1;

}

return (*proto_send_packet)(addr, data, len);
}

Assume you implement a new protocol named reliable. You would compile the
code as PIC, then link it using the -Xdynamic -Xshared flags (with the Wind River
compiler) into a shared object named reliable.so (the comparable GNU flags
would be -non-static and -shared). You install reliable.so as
/romfs/plug-ins/reliable.so on the target.

When a configuration request packet arrives on a socket, the application would
take the name of the protocol (reliable) and call attach() with it. The attach()
routine uses dlopen() to load the shared object named
/romfs/plug-ins/reliable.so. Subsequently, when a packet must be sent to a
particular address using the new protocol, the application would call
send_packet() with the return value from attach(), the packet address, and data
parameters. The send_packet() routine looks up the protocol-specific
send_packet() routine inside the plug-in and calls it with the address and data
parameters. To unload a protocol module, the application calls detach().

If a plug-in must make calls into the application, it may be necessary to link the
application with the -E flag (with either the Wind River Compiler or the GNU
compiler) to force the dynamic linker to register all the necessary symbols for the
plug-ins before they are loaded. Otherwise, the plug-in may not have access to all
the symbols to which it should link. The only case in which you would not need to
use the -E flag is when the process’ shared libraries require all of the same symbols
as the plug-in.

Dynamic Linking Routines for Plug-Ins

The routines used with plug-ins are:

void *dlopen(const char *path, int mode)
Load the shared object from the given pathname.

2 Applications and Processes
2.5 Developing Application Libraries

53

2

void *dlsym(void *handle, const char *name)
Look up the function or data identified by name in the shared object that is
described by handle, and return its address.

int dlclose(void *handle)
Remove a reference to the shared object that is described by handle. If this is the
last reference, dlclose() unloads the shared object.

char *dlerror(void)
Return the error string after an error in dlopen(), dlclose() or dlsym().

For more information, see the libdl API references.

Using readelf to Examine Dynamic ELF Files

The readelf tool can be used to extract dynamic records from an executable or a
shared object, such as a shared object name and path.

Use the version that is appropriate for the target architecture; for example, use
readelfppc on a PowerPC file. The various versions of the tool are provided in
installDir/gnu/3.3.2-vxworks6x/hostType/bin.

The -d flag causes readelf to list dynamic records by tag type, such as:

NEEDED
A required shared library. There is one NEEDED record for every library that a
given dynamic ELF file depends on. The NEEDED record instructs the dynamic
linker to load the given library at run time, in order to include definitions that
are needed by the given ELF file. Both dynamic executable programs and
shared objects may use NEEDED records. The dynamic linker loads shared
libraries in the order in which it encounters NEEDED records. (It is useful to
know that the dynamic linker executes the constructors in each shared library
in reverse order of loading.)

SONAME
The shared object name.

RPATH
The run path.

Getting Runtime Information About Shared Libraries

This section illustrates how to get information about shared libraries from the
shell, using command interpreter commands.

VxWorks
Application Programmer’s Guide, 6.2

54

The two commands below starts the tmPthreadLib.vxe application in the
background, so that the shell is available for other commands:

[vxWorks *]# tmPthreadLib.vxe 2 &
Launching process 'tmPthreadLib.vxe' ...
Process 'tmPthreadLib.vxe' (process Id = 0x8109a0) launched.
Attachment number for process 'tmPthreadLib.vxe' is %1.

[vxWorks *]# rtp exec -e "LD_LIBRARY_PATH=/romfs/lib" tmPthreadLib.vxe 2 &
Launching process 'tmPthreadLib.vxe' ...
Process 'tmPthreadLib.vxe' (process Id = 0x807c90) launched.
Attachment number for process 'tmPthreadLib.vxe' is %1.

The rtp command can then be used to display information about processes. In this
case it shows information about the process started with the first of the two
commands above.

[vxWorks *]# rtp

 NAME ID STATE ENTRY ADDR OPTIONS TASK CNT
-------------------- ---------- --------------- ---------- ---------- --------
./tmPthreadLib.vxe 0x8109a0 STATE_NORMAL 0x10002360 0x1 1

The shl command displays information about shared libraries. The REF CNT
column provides information about the number of clients per library. The <
symbol to the left of the shared library name indicates that the full path is not
displayed. In this case, libc.so.1 is not in the same place as threadLibTest.so.1; it is
in the same directory as the executable.

[vxWorks *]# shl

 SHL NAME ID TEXT ADDR TEXT SIZE DATA SIZE REF CNT
-------------------- ---------- ---------- ---------- ---------- -------
< threadLibTest.so.1 0x30000 0x10031000 0x979c 0x6334 1
./libc.so.1 0x40000 0x10043000 0x5fe24 0x2550c 1

Note that the shl info command will provide the full path.

The sd command provides information about shared data regions. In this case the
regions are used by the two shared libraries (one region for each shared library and
one for the GOT).

[vxWorks *]# sd

 NAME ID VIRT ADDR PHYS ADDR SIZE CLIENT CNT
------------ ---------- ---------- ------------------ ---------- ----------
/dl-text-s > 0x95e158 0x10031000 0x183b000 0xa000 1
/dl-text-s > 0x95e428 0x10042000 0x18e4000 0x1000 1
/dl-text-s > 0x95e1d0 0x10043000 0x184c000 0x60000 1

2 Applications and Processes
2.5 Developing Application Libraries

55

2

You can get information about a specific shared data region with the sd info
command. In this case, information is displayed about the region with ID
0x95e158.

Note that in the dl-text-segments. part of the full name is the convention for shared
data. The forward slash indicates that it is public. And this shared data region
holds the shared library libPthreadLibTest.so.1.

[vxWorks *]# sd info 0x95e158

 NAME ID VIRT ADDR PHYS ADDR SIZE CLIENT CNT
------------ ---------- ---------- ------------------ ---------- ----------
/dl-text-s > 0x95e158 0x10031000 0x183b000 0xa000 1

Full Name: /dl-text-segments./libPthreadLibTest.so.1

Default MMU Attributes (0x87f):

 ACCESS CACHE
 ----------------------- ---------
 RWX / RWX DEFAULT --

Clients:

 NAME ID ACCESS CACHE
 ------------ ---------- ----------------------- ----------
 ./tmPthrea > 0x80a4f0 R-X / R-X CB-/--/- --

In this next example, the application is started in stopped mode. The job number is
1.

[vxWorks *]# rtp exec -s tmPthreadLib.vxe 2 &
Launching process 'tmPthreadLib.vxe' ...
Process 'tmPthreadLib.vxe' (process Id = 0x808510) launched.
Attachment number for process 'tmPthreadLib.vxe' is %1.

Here, the job number is used (with the ampersand sign) to switch to the process
address space, as indicated by the prompt. A breakpoint is set on main() with bp,
and execution is continued with rtpc.

[vxWorks *]# %1
[tmPthreadLib]# bp &main

[tmPthreadLib]# rtpc
Break at 0x10002500: main Task: 0x813088 (tInitTask)

VxWorks
Application Programmer’s Guide, 6.2

56

Then a new breakpoint is set, all breakpoints listed, and execution continued.

[tmPthreadLib]# bp &tmPthreadTest1

[tmPthreadLib]# bp
 # Breakpoint Address Ctx Ctx Id Cnt Stops N Hard
--- ----------------------------- ----- ---------- --- ------- - ------------
 2 0x10038e34: tmPthreadTest1 RTP 0x808510 0 task y
 1 0x10002500: main RTP 0x808510 0 task y

[tmPthreadLib]# rtpc
Break at 0x10038e34: tmPthreadTest1 Task: 0x813088 (tInitTask)

The l alias for mem list provides disassembly from address 0x10038e34, and one
instruction is executed using the s alias for task step.

[tmPthreadLib]# l 0x10038e34
 tmPthreadTest1:
0x10038e34 9421fff0 stwu r1,-16(r1)
0x10038e38 93c1000c stw r30,12(r1)
0x10038e3c 3fc01004 lis r30,0x1004 # 4100
0x10038e40 83de2000 lwz r30,8192(r30)
0x10038e44 7c0802a6 mfspr r0,LR
0x10038e48 83de002c lwz r30,44(r30)
0x10038e4c 90010014 stw r0,20(r1)
0x10038e50 38600001 li r3,0x1 # 1
0x10038e54 4bfff38d bl 0x100381e0 # 0x100381e0
0x10038e58 2c030000 cmpi crf0,0,r3,0x0 # 0

[tmPthreadLib]# s
r0 = 0x10003524 sp = 0x1001def0 r2 = 0x10013790
r3 = 0x00b560fa r4 = 0x00000000 r5 = 0x00000000
r6 = 0x00000000 r7 = 0x00000000 r8 = 0x00000000
r9 = 0x00000000 r10 = 0x00000000 r11 = 0x00000000
r12 = 0x10038e34 r13 = 0x10014924 r14 = 0x00000000
r15 = 0x00000000 r16 = 0x00000000 r17 = 0x00000000
r18 = 0x00000000 r19 = 0x00000000 r20 = 0x00000000
r21 = 0x00000000 r22 = 0x1000cd50 r23 = 0x1000cc50
r24 = 0x43300000 r25 = 0x00b55c0b r26 = 0x000008b0
r27 = 0x00000000 r28 = 0x00000000 r29 = 0x00000000
r30 = 0x00b560fa r31 = 0x000004ef msr = 0x0000f032
lr = 0x1000352c ctr = 0x10038e34 pc = 0x10038e38
cr = 0x42000280 xer = 0x00000000 pgTblPtr = 0x006b3000
scSrTblPtr = 0x0180b2e4 srTblPtr = 0x0180b2a4
0x10038e38 93c1000c stw r30,12(r1)

Debugging Shared Libraries

Failures related to the inability of the application to locate libc.so.1 or some other
run-time share library would manifest themselves from the shell as follows:

[vxWorks *]# tmPthreadLib.vxe 2 &
Launching process 'tmPthreadLib.vxe' ...

2 Applications and Processes
2.5 Developing Application Libraries

57

2

Process 'tmPthreadLib.vxe' (process Id = 0x811000) launched.
Attachment number for process 'tmPthreadLib.vxe' is %1.
Shared object "libc.so.1" not found

When a shared library cannot be found, make sure that its location has been
correctly identified or that it resides in the same location as the executable (Locating
Shared Libraries at Run-time, p.47). If the shared libraries are not stored on the target,
also make sure that they are accessible from the target.

If an application is started with the incorrect assignment of argv[0], or no
assignment at all, the behavior of any associated shared libraries can be impaired.
The dynamic linker uses argv[0] to uniquely identify the executable, and if it is
incorrectly defined, the linker may not be able to match the executable correctly
with shared libraries. For example, if an application is started more than once
without argv[0] being specified, a shared library may be reloaded each time; or if
the paths are missing for executables with the same filename but different
locations, the wrong shared library may be loaded for one or more of the
executables.

Note that shared library symbols are not visible if an application is started in
stopped mode. Until execution of _start() (the entry point of an application
provided by the compiler) calls the dynamic linker, shared library symbols are not
yet registered. (For information about symbol registration, see 2.7.3 Applications
and Symbol Registration, p.70.)

Working With Shared Libraries From a Windows Host

Loading shared libraries from a Windows host system with ftp (the default
method) can be excessively slow. As an alternative, shared libraries can be
included in the VxWorks system image with the ROMFS file system, or NFS can be
used to provide the target system with access to shared libraries on the host.

While ROMFS is useful for deployed systems, using it for development means
long edit-compile-debug cycles, as you need to rebuild the system image and
reboot the target whenever you want to use modified code. During development,
therefore, it is better to maintain shared libraries on the host file system and have
the target load them from the network. The NFS file system provides for much
faster loading than ftp or the Target Server File System.

To make use of NFS, you can either install an NFS server on Windows or make use
of remote access to a UNIX machine that runs an NFS server. If you have remote
access, you can use the UNIX machine to boot your target and export its file
system. In this case you need to set up your Workspace with a VxWorks File

VxWorks
Application Programmer’s Guide, 6.2

58

System Project on the remote UNIX machine's file system, which in turn exports it
to the target.

If you choose to install an NFS server, you can use the one that Microsoft provides
free of charge as part of its Windows Services for UNIX (SFU) package. It can be
downloaded from http://www.microsoft.com/. The full SFU 3.5 package is a
223MB self-extracting executable to download, but if you only install the NFS
Server, it only takes about 20MB on your hard disk.

To install the Microsoft NFS server, run the SFU setup.exe and select NFS Server
only. The setup program prompts you to install NFS User Synchronization as
well, which you should do. The corresponding Windows services are installed and
started automatically.

To configure the Windows NFS server for use with a VxWorks target:

1. In Windows Explorer, select your Workspace and use the context menu to
select Share...

2. Select the NFS Sharing tab.

3. Enter Share this folder, Share name = Workspace

4. Enable Allow anonymous access. This provides the VxWorks target with
read-only access to the share without having to set up user mappings or access
permissions.

Before you can use NFS to load shared libraries, VxWorks also must be
reconfigured with NFS facilities.

Adding the INCLUDE_NFS_MOUNT_ALL component provides all the necessary
features. (Using Wind River Workbench, the
VxWorks Image Configuration Editor can be used to add the component from the
following node:
Network Components > Network Applications > NFS Components >
NFS mount all.) Make sure the target the target connection is disconnected before
you rebuild your kernel image.

When you reboot the target it automatically mounts all NFS shares exported by the
host. To verify that VxWorks can access your NFS mount, use the devs and
ls "/Workspace" commands from the kernel shell.

2 Applications and Processes
2.6 Creating and Managing Shared Data Regions

59

2

2.6 Creating and Managing Shared Data Regions

Shared data regions provide a means for RTP applications to share a common area
of memory with each other. Processes otherwise provide for full separation and
protection of all processes from one another.

The shared data region facility provides no inherent facility for mutual exclusion.
Applications must use standard mutual exclusion mechanisms—such as public
semaphores—to ensure controlled access to a shared data region resources (see
3.3 Intertask and Interprocess Communications, p.100).

For systems without an MMU enabled, shared data regions simply provide a
standard programming model and separation of data for the applications, but
without the protection provided by an MMU.

A shared data region is a single block of contiguous virtual memory. Any type of
memory can be shared, such as RAM, memory-mapped I/O, flash, or VME.

Multiple shared data regions can be created with different characteristics and
different users.

Common uses of a shared data region would include video data from buffers.

The sdLib shared data region library provides the facilities for the following
activities:

■ Creating a shared data region.

■ Opening the region.

■ Mapping the region to a process’ memory context so that it can be accessed.

■ Changing the protection attributes of a region that has been mapped.

■ Un-mapping the region when a process no longer needs to access it.

■ Deleting the region when no processes are attached to it.

Operations on shared data regions are not restricted to applications—kernel tasks
may also perform these operations.

Shared data regions use memory resources from both the kernel’s and the
application’s memory space. The kernel's heap is used to allocate the shared data
object. The physical memory for the shared data region is allocated from the global
physical page pool.

When a shared data region is created, it must be named. The name is global to the
system, and provides the means by which applications identify regions to be
shared.

VxWorks
Application Programmer’s Guide, 6.2

60

Shared data regions can be created in systems with and without MMU support.

Also see 3.3.2 Shared Data Structures, p.102.

2.6.1 Configuring VxWorks for Shared Data Regions

For applications to be able to use shared data region facilities, the
INCLUDE_SHARED_DATA component must be included in VxWorks.

2.6.2 Creating Shared Data Regions

Shared data regions are created with sdCreate(). They can be created by an
application, or from a kernel task such as the shell. The region is automatically
mapped into the creator’s memory context. The sdOpen() routine also creates and
maps a region—if the region name used in the call does not exist in the system.

The creation routines take parameters that define the name of the region, its size
and physical address, MMU attributes, and two options that govern the regions
persistence and availability to other processes.

The MMU attribute options define access permissions and the cache option for the
process’ page manager:

■ read-only
■ read/write
■ read/execute
■ read/write/execute
■ cache write-through, cache copy-back, or cache off

By default, the creator process always gets read and write permissions for the
region, regardless of the permissions set with the creation call, which affect all
client processes. The creator, can however, change its own permissions with
sdProtect(). See Changing Shared Data Region Protection Attributes, p.61.

! WARNING: If the shell is used to create shared data regions, the optional physical
address parameter should not be used with architectures for which the
PHYS_ADDRESS type is 64 bits. The shell passes the physical address parameter as
32 bits regardless. If it should actually be 64 bits, the arguments will not be aligned
with the proper registers and unpredictable behavior will result. See the VxWorks
Architecture Supplement for the processor in question for more information.

2 Applications and Processes
2.6 Creating and Managing Shared Data Regions

61

2

The SD_LINGER creation option provides for the persistence of the region after all
processes have unmapped from it—the default behavior is for it to cease to exist,
all of its resources being reclaimed by the system. The second option, SD_PRIVATE,
restricts the accessibility of the region to the process that created it. This can be
useful, for example, for restricting memory-mapped I/O to a single application.

2.6.3 Accessing Shared Data Regions

A shared data region is automatically opened and mapped to the process that
created it, regardless of whether the sdCreate() or sdOpen() routine was used.

A client process must use the region’s name with sdOpen() to access the region.
The region name can be hard-coded into the client process’ application, or
transmitted to the client using IPC mechanisms.

Mutual exclusion mechanisms should be used to ensure that only one application
can access the same shared data region at a time. The sdLib library does not
provide any mechanisms for doing so automatically. For more information about
mutual exclusion, see 3.3 Intertask and Interprocess Communications, p.100.

Changing Shared Data Region Protection Attributes

The MMU attributes of a shared data region can be changed with sdProtect(). The
change can only be to a sub-set of the attributes defined when the region was
created. For example, if a region was created with only read and write permissions,
these can only be changed to read-only and no access, and not expanded to other
permissions. In addition, the changes are made only for the caller’s process; they
do not affect the permissions of other processes.

A set of macros is provided with the library for common sets of MMU attribute
combinations.

2.6.4 Deleting Shared Data Regions

Shared data regions can be deleted explicitly and automatically. However, deletion
of regions is restricted by various conditions, including how the region was
created, and if any processes are attached to it.

If a shared data region was created without the SD_LINGER option, the region is
deleted if:

■ Only one process is mapped to the region, and its application calls
sdUnmap().

VxWorks
Application Programmer’s Guide, 6.2

62

■ Only one process is mapped to the region, and the process exits.

If a shared data region is created with the SD_LINGER option, it is never deleted
implicitly. The region is only deleted if sdDelete() is called on it after all clients
have unmapped it.

2.7 Executing Applications

Because a process is an instance of a program in execution, starting and
terminating an application involves creating and deleting a process. An RTP
application can be started and terminated interactively, programmatically, and
automatically with various facilities that act on processes.

An application can be started by:

■ a user from the shell or debugger with rtpSp (for the shell C interpreter) or
rtp exec (for the shell command interpreter)

■ other applications or from the kernel with rtpSpawn()

■ one of the startup facilities that runs applications automatically at boot time

An application can be stopped by the same means as those that terminate
processes—a process is an instance of an application in execution after all. See
2.3.1 Real-time Process Life-Cycle, p.12 for information about all the ways in which
processes can be terminated.

Application executables can be stored in the VxWorks ROMFS file system on the
target system, on the host development system, or on any other file system
accessible to the target system (another workstation on a network, for example).

Various combinations of startup mechanisms and storage locations can be used for
developing systems and for deployed products. For example, storing application
executables on the host system and using the kernel shell to run them is ideal for
the early phases of development because of the ease of application re-compilation
and of starting applications. Final products, on the other hand, can be configured
and built so that applications are bundled with the operating system, and started
automatically when the system boots, all independently of humans, hosts, and
hard drives.

2 Applications and Processes
2.7 Executing Applications

63

2

2.7.1 Running Applications Interactively

Running applications interactively is obviously most desirable for the
development environment, but it can also be used to run special applications on
deployed systems that are otherwise not run as part of normal system operation
(for diagnostic purposes, for example). In the latter case, it might be advantageous
to store auxiliary applications in ROMFS; see 2.8 Bundling Applications with a
VxWorks System using ROMFS, p.71.

Starting Applications

From the shell, applications can be started with shell command variants of the
rtpSpawn() routine.

Using the traditional C interpreter, the rtpSp command is used as follows:

rtpSp "host:c:/myInstallDir/vxworks-6.1/target/usr/root/PPC32diab/bin/myVxApp.vxe first
second third"

In this example, a process is started to run the application myVxApp.vxe, which is
stored on the host system in
c:\myInstallDir\vxworks-6.x\target\usr\root\PPC32diab\bin. The
application takes command-line arguments, and in this case they are first, second,
and third. Additional arguments can also be used to specify the initial task priority,
stack size, and other rtpSpawn() options.

Note that some types of connections between the target and host require modifiers
to the pathname (NFS is transparent; FTP requires hostname: before the path if it
is not on the same system from which VxWorks was booted; the VxWorks
simulator requires a host: prefix; and so on).

Using the shell’s command interpreter, the application can be started in two
different ways, either directly specifying the path and name of the executable file
and the arguments (like with a UNIX shell):

host:c:/myInstallDir/vxworks-6.1/target/usr/root/PPC32diab/bin/myVxApp.vxe first second third

Or, the application can be started with the rtp exec command:

rtp exec host:c:/myInstallDir/vxworks-6.1/target/usr/root/PPC32diab/bin/myVxApp.vxe first
second third

Note that you must use forward-slashes as path delimiters with the shell, even for
files on Windows hosts. The shell does not work with back-slash delimiters.

Regardless of how the process is spawned, the application runs in exactly the same
manner.

VxWorks
Application Programmer’s Guide, 6.2

64

Note that you can switch from the C interpreter to the command interpreter with
the cmd command; and from the command interpreter to the C interpreter with the
C command. The command interpreter rtp exec command has options that
provide more control over the execution of an application.

Stopping Applications

An application can be stopped by terminating the process in which it is running.

Using the shell’s command interpreter, a process can be killed with the full
rtp delete command, or with either of the command shell aliases kill and rtpd. It
can also be killed with CTRL+C if it is running in the foreground (that is, it has not
been started using an ampersand after the rtp exec command and the name of the
executable—which is similar to UNIX shell command syntax for running
applications in the background).

With the shell’s C interpreter, a process can be terminated with kill() or
rtpDelete().

For a description of all the ways in which a process can be terminated, see
2.3.1 Real-time Process Life-Cycle, p.12.

And, of course, rebooting the system terminates all processes that are not
configured to restart at boot time.

2.7.2 Running Applications Automatically

Running applications automatically—without user intervention—is required for
many deployed systems. VxWorks applications can be started automatically in a
variety of ways. In addition, application executables can be stored either on a host
system—which can be useful during development even when a startup facility is
in use—or they can be stored on the target itself.

The VxWorks application startup facility is designed to serve the needs of both the
development environment and deployed systems.

For the development environment, the startup facility can be used interactively to
specify a variety of applications to be started at boot time. The operating system
does not need to be rebuilt to run different sets of applications, or to run the same
applications with different arguments or process-spawn parameters (such as the
priority of the initial task). That is, as long as VxWorks has been configured with
the appropriate startup components, and with the components required by the
applications themselves, the operating system can be completely independent and

2 Applications and Processes
2.7 Executing Applications

65

2

ignorant of the applications that it will run until the moment it boots and starts
them. One might call this a blind-date scenario.

For deployed systems, VxWorks can be configured and built with statically
defined sets of applications to run at boot time (including their arguments and
process-spawn parameters). The applications can also be built into the system
image using the ROMFS file system. And this scenario might be characterized as
most matrimonial.

In this section, use of the startup facility is illustrated with applications that reside
on the host system. For information about using ROMFS to bundle applications
with the operating system, and for examples illustrating how applications in the
ROMFS file system are identified for the startup facility, see 2.8 Bundling
Applications with a VxWorks System using ROMFS, p.71.

Startup Facility Options

Various means can be used to identify applications to be started, as well as to
provide their arguments and process-spawn parameters for the initial application
task. Applications can be identified and started automatically at boot time using
any of the following:

■ a boot loader parameter

■ a VxWorks shell script

■ an application startup configuration parameter

■ custom startup routines written by the user

The components that support this functionality are, respectively:

■ INCLUDE_RTP_APPL_BOOTLINE

■ INCLUDE_RTP_APPL_INIT_CMD_SHELL_SCRIPT (for the command
interpreter; the C interpreter can also be used with other components)

■ INCLUDE_RTP_APPL_INIT_STRING

■ INCLUDE_RTP_APPL_USER

The boot loader parameter and the shell script methods can be used both
interactively (without modifying the operating system) and statically. Therefore,
they are equally useful for application development, and for deployed systems.

VxWorks
Application Programmer’s Guide, 6.2

66

The startup configuration parameter and custom startup methods require that the
operating system be re-configured and rebuilt if the developer wants to change the
set of applications, application arguments, or process-spawn parameters.

There are no speed or initialization-order differences between the various means
of automatic application startup. All of the startup facility components provide
much the same performance.

Application Startup String Syntax

A common string syntax is used with both the boot loader parameter and the
startup facility configuration parameter for identifying applications. The basic
syntax is as follows:

#progPathName^arg1^arg2^arg3#progPathName...

This syntax involves only two special characters:

#
A pound sign identifies what immediately follows as the path and name of an
application executable.

^
A caret delimits individual arguments (if any) to the application. A caret is not
required after the final argument.

The carets are not required—spaces can be used instead—with the startup
configuration parameter, but carets must be used with the boot loader
parameter.

The following examples illustrate basic syntax usage:

#c:/apps/myVxApp.vxe
Starts c:\apps\myVxApp.vxe

#c:/apps/myVxApp.vxe^one^two^three
Starts c:\apps\myVxApp.vxe with the arguments one, two, three.

#c:/apps/myOtherVxApp.vxe
Starts c:\apps\myOtherVxApp.vxe without any arguments.

#c:/apps/myVxApp.vxe^one^two^three#c:/apps/myOtherVxApp.vxe
Starts both applications, the first one with its three arguments.

The startup facility also allows for specification of rtpSpawn() routine parameters
with additional syntax elements:

2 Applications and Processes
2.7 Executing Applications

67

2

%p=value
Sets the priority of the initial task of the process. Priorities can be in the range
of 0-255.

%s=value
Sets the stack size for the initial task of the process (an integer parameter).

%o=value
Sets the process options parameter.

%t=value
Sets task options for the initial task of the process.

When using the boot loader parameter, the option values must be either decimal
or hexadecimal numbers. When using the startup facility configuration parameter,
the code is preprocessed before compilation, so symbolic constants may be used as
well (for example, VX_FP_TASK).

The following string, for example, specifies starting c:\apps\myVxApp.vxe with
the arguments one, two, three, and an initial task priority of 125; and also starting
c:\apps\myOtherVxApp.vxe with the options value 0x10 (which is to stop the
process before running in user mode):

#c:/apps/myVxApp.vxe p=125^one^two^three#c:/apps/myOtherVxApp.vxe %o=0x10

If the rtpSpawn() options are not set, the following defaults apply: the initial task
priority is 220; the initial task stack size is 64 Kb; the options value is zero; and the
initial task option is VX_FP_TASK.

The maximum size of the string used in the assignment is 160 bytes, inclusive of
names, parameters, and delimiters. No spaces can be used in the assignment, so
application files should not be put in host directories for which the path includes
spaces.

Specifying Applications with a Boot Loader Parameter

The VxWorks boot loader includes a parameter—the s parameter—that can be
used to identify applications that should be started automatically at boot time, as
well as to identify shell scripts to be executed.2 (For information about the boot
loader, see the VxWorks Kernel Programmer’s Guide: Kernel.)

2. In versions of VxWorks 5.x, the boot loader s parameter was used solely to specify a shell
script.

VxWorks
Application Programmer’s Guide, 6.2

68

Applications can be specified both interactively and statically with the s
parameter. In either case, the parameter is set to the path and name of one or more
executables and their arguments (if any), as well as to the applications’
process-spawn parameters (optionally). The special syntax described above is
used to describe the applications (see Application Startup String Syntax, p.66).

This functionality is provided with the INCLUDE_RTP_APPL_BOOTLINE
component.

Note that the boot loader s parameter serves a dual purpose: to dispatch script file
names to the shell, and to dispatch application startup strings to the startup facility.
Script files used with the s parameter can only contain C interpreter commands;
they cannot include startup facility syntax (also see Specifying Applications with a
VxWorks Shell Script, p.69).

If the boot parameter is used to identify a startup script to be run at boot time as
well as applications, it must be listed before any applications. For example, to run
the startup script file myScript and myVxApp.vxe (with three arguments), the
following sequence would be required:

myScript#c:/apps/myVxApp.vxe^one^two^three

The assignment in the boot console window would look like this:

startup script (s) : myScript#c:/apps/myVxApp.vxe^one^two^three

The interactively-defined boot-loader parameters are saved in the target’s boot
media, so that the application is started automatically with each reboot.

For the VxWorks simulator, the boot parameter assignments are saved in a special
file on the host system, in the same directory as the image that was booted, for
example,
installDir/vxworks-6.x/target/proj/simpc_diab/default/nvram.vxWorks0. The
number appended to the file name is processor ID number—the default for the first
instance of the simulator is zero.

For a hardware target, applications can be identified statically. Using the host IDE,
the DEFAULT_BOOT_LINE parameter of the INCLUDE_RTP_APPL_BOOTLINE
component can be set to an identification string using the same syntax as the
interactive method. Of course, the operating system must be rebuilt thereafter.

2 Applications and Processes
2.7 Executing Applications

69

2

Specifying Applications with a VxWorks Shell Script

Applications can be started automatically with a VxWorks shell script. Different
methods must be used, however, depending on whether the shell script uses
command interpreter or C interpreter commands.

If the shell script is written for the command interpreter, applications can be
identified statically with the host IDE. The RTP_APPL_CMD_SCRIPT_FILE
parameter of the INCLUDE_RTP_APPL_INIT_CMD_SHELL_SCRIPT component can
be set to the location of the shell script file.

A startup shell script for the command interpreter might, for example, contain the
following line:

rtp exec c:/apps/myVxApp.vxe first second third

Note that for Windows hosts you must use either forward-slashes or double
back-slashes instead of single back-slashes as path delimiters with the shell.

If a shell script is written for the C interpreter, it can be identified interactively
using the boot loader s parameter— in a manner similar to applications—using a
sub-set of the same string syntax. A shell script for the C interpreter can also be
identified statically with the DEFAULT_BOOT_LINE parameter of the
INCLUDE_RTP_APPL_BOOTLINE component in the host IDE. (See Specifying
Applications with a Boot Loader Parameter, p.67 and Application Startup String Syntax,
p.66.)

The operating system must be configured with the kernel shell and the C
interpreter components for use with C interpreter shell scripts (see the VxWorks
Kernel Programmer’s Guide: Target Tools).

A startup shell script file for the C interpreter could contain the following line:

rtpSp "c:/apps/myVxApp.vxe first second third"

With the shell script file c:\scripts\myVxScript, the boot loader s parameter
would be set interactively at the boot console as follows:

startup script (s) : c:/scripts/myVxScript

Note that shell scripts can be stored in ROMFS for use in deployed systems (see
2.8 Bundling Applications with a VxWorks System using ROMFS, p.71).

VxWorks
Application Programmer’s Guide, 6.2

70

Specifying Applications with a Startup Configuration Parameter

Applications can be specified with the RTP_APPL_INIT_STRING parameter of the
INCLUDE_RTP_APPL_INIT_STRING component in the host IDE.

The identification string must use the syntax described in Application Startup String
Syntax, p.66. And the operating system must be rebuilt thereafter.

Starting Applications with Custom Startup Routines

The VxWorks application startup facility can be used in conjunction with custom
routines written by developers. In order to use this method, VxWorks must be
configured with the INCLUDE_RTP_APPL_USER component.

Developers then add custom code to the usrRtpAppInit() routine in
installDir/vxworks-6.x/target/src/config/usrRtpAppInit.c.

2.7.3 Applications and Symbol Registration

Symbol registration is the process of storing symbols in a symbol table that is
associated with a given process. Symbol registration depends on how an
application is started:

■ When an application is started from the shell, symbols are registered
automatically, as is most convenient for a development environment.

■ When an application is started programmatically—that is, with a call to
rtpSpawn()—symbols are not registered by default. This saves on memory at
startup time, which is useful for deployed systems.

The registration policy for a shared library is, by default, the same as the one for
the application that loads the shared library.

The default symbol-registration policy for a given method of starting an
application can be overridden, whether the application is started interactively or
programmatically.

The shell’s command interpreter provides the rtp exec options –g for global
symbols, -a for all symbols (global and local), and –z for zero symbols. For
example:

rtp exec -a /folk/pad/tmp/myVxApp/ppc/myVxApp.vxe one two three &

2 Applications and Processes
2.8 Bundling Applications with a VxWorks System using ROMFS

71

2

The rtp symbols override command has the options –g for global symbols, -a for
all symbols (global and local), and –c to cancel the policy override.

The rtpSpawn() options parameter RTP_GLOBAL_SYMBOLS (0x01) and
RTP_ALL_SYMBOLS (0x03) can be used to load global symbols, or global and local
symbols (respectively).

The shell’s C interpreter command rtpSp() provides the same options with the
rtpSpOptions variable.

Symbols can also be registered and unregistered interactively from the shell, which
is useful for applications that have been started without symbol registration. For
example:

rtp symbols add –a –s 0x10000 –f /romfs/bin/myApp.vxe
rtp symbols remove –l –s 0x10000
rtp symbols help

Note that symbols should not be stripped from executable files (.vxe files) because
they are relocatable. And while symbols may be stripped from run-time shared
library files (.so files), it makes debugging them more difficult.

2.8 Bundling Applications with a VxWorks System using ROMFS

The ROMFS facility provides the ability to bundle RTP applications—or any other
files for that matter—with the operating system. No other file system is required to
store applications; and no storage media is required beyond that used for the
system image itself.

RTP applications do not need to be built in any special way for use with ROMFS.
As always, they are built independently of the operating system and ROMFS itself.
When they are added to a ROMFS directory on the host system and VxWorks is
rebuilt, however, a single system image is that includes both the VxWorks and the
application executables is created. ROMFS can be used to bundle applications in
either a system image loaded by the boot loader, or in a self-loading image (for
information about VxWorks image types, see the VxWorks Kernel Programmer’s
Guide: Kernel).

When the system boots, the ROMFS file system and the application executables are
loaded with the kernel. Applications and operating system can therefore be
deployed as a single unit. And coupled with an automated startup facility (see

VxWorks
Application Programmer’s Guide, 6.2

72

2.7 Executing Applications, p.62), ROMFS provides the ability to create fully
autonomous, multi-process systems.

This section provides information about using ROMFS to store process-based
applications with the VxWorks operating system in a single system image. For
general information about ROMFS, see 7.7 Read-Only Memory File System: ROMFS,
p.284.

2.8.1 Configuring VxWorks with ROMFS

VxWorks must be configured with the INCLUDE_ROMFS component to provide
ROMFS facilities.

2.8.2 Building a System With ROMFS and Applications

Configuring VxWorks with ROMFS and applications involves several simple
steps. A ROMFS directory must be created in the BSP directory on the host system,
application files must be copied into the directory, and then VxWorks must be
rebuilt. For example:

cd c:\myInstallDir\vxworks-6.1\target\proj\wrSbc8260_diab
mkdir romfs
copy c:\myInstallDir\vxworks-6.1\target\usr\root\PPC32diab\bin\myVxApp.vxe romfs
make TOOL=diab

The contents of the romfs directory are automatically built into a ROMFS file
system and combined with the VxWorks image.

The ROMFS directory does not need to be created in the VxWorks project directory.
It can also be created in any location on (or accessible from) the host system, and
the make ROMFS_DIR macro used to identify where it is in the build command.
For example:

make TOOL=diab ROMFS_DIR="c:\allMyVxAppExes"

Note that any files located in the romfs directory are included in the system image,
regardless of whether or not they are application executables.

2.8.3 Accessing Files in ROMFS

At run time, the ROMFS file system is accessed as /romfs. The content of the
ROMFS directory can be browsed using the traditional ls and cd shell commands,

2 Applications and Processes
2.8 Bundling Applications with a VxWorks System using ROMFS

73

2

and accessed programmatically with standard file system routines, such as open()
and read().

For example, if the directory
installDir/vxworks-6.x/target/proj/wrSbc8260_diab/romfs has been created on the
host, myVxApp.vxe copied to it, and the system rebuilt and booted, then using ls
from the shell looks like this:

[vxWorks]# ls /romfs
/romfs/.
/romfs/..
/romfs/myVxApp.vxe

And myVxApp.vxe can also be accessed at run time as /romfs/myVxApp.vxe by
any other applications running on the target, or by kernel modules (kernel-based
applications).

2.8.4 Using ROMFS to Start Applications Automatically

ROMFS can be used with any of the application startup mechanisms simply by
referencing the local copy of the application executables. See 2.7.2 Running
Applications Automatically, p.64 for information about the various ways in which
applications can be run automatically when VxWorks boots.

VxWorks
Application Programmer’s Guide, 6.2

74

75

 3
Multitasking

3.1 Introduction 75

3.2 Tasks and Multitasking 76

3.3 Intertask and Interprocess Communications 100

3.4 Timers 149

3.1 Introduction

Modern real-time systems are based on the complementary concepts of
multitasking and intertask communications. A multitasking environment allows a
real-time application to be constructed as a set of independent tasks, each with its
own thread of execution and set of system resources.

Tasks are the basic unit of scheduling in VxWorks. All tasks, whether in the kernel
or in processes, are subject to the same scheduler. VxWorks processes are not
themselves scheduled.

Intertask communication facilities allow tasks to synchronize and communicate in
order to coordinate their activity. In VxWorks, the intertask communication
facilities include semaphores, message queues, message channels, pipes,
network-transparent sockets, and signals.

For interprocess communication, VxWorks semaphores and message queues,
pipes, and events (as well as POSIX semaphores and events) can be created as

VxWorks
Application Programmer’s Guide, 6.2

76

public objects to provide accessibility across memory boundaries (between the
kernel and processes, and between different processes). In additions, message
channels provide a socket-based inter-process communications mechanism.

VxWorks provides watchdog timers, but they can only be used in the kernel (see
VxWorks Kernel Programmer’s Guide: Multitasking. However, process-based
applications can use POSIX timers (see 4.6 POSIX Clocks and Timers, p.159).

This chapter discusses the tasking, intertask communication, and interprocess
communication facilities that are at the heart of the VxWorks run-time
environment.

For information about VxWorks and POSIX, see 4. POSIX Standard Interfaces.

3.2 Tasks and Multitasking

VxWorks tasks are the basic unit of code execution in the operating stem itself, as
well as in applications that it executes in processes. In other operating systems the
term thread is used similarly.

Multitasking provides the fundamental mechanism for an application to control
and react to multiple, discrete real-world events. The VxWorks real-time kernel
provides the basic multitasking environment. Multitasking creates the appearance
of many threads of execution running concurrently when, in fact, the kernel
interleaves their execution on the basis of a scheduling algorithm.

Each task has its own context, which is the CPU environment and system resources
that the task sees each time it is scheduled to run by the kernel. On a context switch,
a task’s context is saved in the task control block (TCB).

A task’s context includes:

■ a thread of execution; that is, the task’s program counter

■ the tasks’ virtual memory context (if process support is included)

■ the CPU registers and (optionally) coprocessor registers

NOTE: This chapter provides information about facilities available for real-time
processes. For information about facilities available in the VxWorks kernel, see the
corresponding chapter in the VxWorks Kernel Programmer’s Guide.

3 Multitasking
3.2 Tasks and Multitasking

77

3

■ stacks for dynamic variables and function calls

■ I/O assignments for standard input, output, and error

■ a delay timer

■ a time-slice timer

■ kernel control structures

■ signal handlers

■ task variables

■ error status (errno)

■ debugging and performance monitoring values

Note that in conformance with the POSIX standard, all tasks in a process share the
same environment variables (unlike kernel tasks, which each have their own set of
environment variables).

For more information about virtual memory contexts, see the VxWorks Kernel
Programmer’s Guide: Memory Management.

3.2.1 Task State Transition

The kernel maintains the current state of each task in the system. A task changes
from one state to another as a result of kernel function calls made by the
application. When created, tasks enter the suspended state. Activation is necessary
for a created task to enter the ready state. The activation phase is extremely fast,
enabling applications to pre-create tasks and activate them in a timely manner. An
alternative is the spawning primitive, which allows a task to be created and
activated with a single function. Tasks can be deleted from any state.

Table 3-1 describes the state symbols that you see when working with development
tools. Example 3-1 shows output from the i() and taskShow() shell commands
containing task state information.

NOTE: The POSIX standard includes the concept of a thread, which is similar to a
task, but with some additional features. For details, see 4.9 POSIX Threads, p.163.

VxWorks
Application Programmer’s Guide, 6.2

78

The STOP state is used by the debugger facilities when a breakpoint is hit. It is also
used by the error detection and reporting facilities when an error condition occurs
(see 8. Error Detection and Reporting).

Table 3-1 Task State Symbols

State Symbol Description

READY The task is not waiting for any resource other than the CPU.

PEND The task is blocked due to the unavailability of some resource.

DELAY The task is asleep for some duration.

SUSPEND The task that is unavailable for execution (but not pended or
delayed). This state is used primarily for debugging. Suspension
does not inhibit state transition, only execution. Thus,
pended-suspended tasks can still unblock and
delayed-suspended tasks can still awaken.

STOP The task is stopped by the debugger.

DELAY + S The task is both delayed and suspended.

PEND + S The task is both pended and suspended.

PEND + T The a task is pended with a timeout value.

STOP + P Task is pended and stopped by the debugger.

STOP + S Task is stopped by the debugger and suspended.

STOP + T Task is delayed and stopped by the debugger.

PEND + S + T The task is pended with a timeout value and suspended.

STOP+P+S Task is pended, suspended and stopped by the debugger.

STOP+P+T Task pended with a timeout and stopped by the debugger.

STOP+S+T Task is suspended with a timeout and stopped by the debugger

ST+P+S+T Task is pended with a timeout, suspended, and stopped by the
debugger.

state + I The task is specified by state (any state or combination of states
listed above), plus an inherited priority.

3 Multitasking
3.2 Tasks and Multitasking

79

3

Example 3-1 Task States in Shell Command Output

-> taskShow

 NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
 ---------- ------------ -------- --- ---------- -------- -------- ------- -----
 tShell0 shellTask 455720 1 READY 214118 5db390 0 0
 value = 0 = 0x0
 -> i

 NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
 ---------- ------------ -------- --- ---------- -------- -------- ------- -----
 tExcTask excTask 437460 0 PEND 209fac 484e40 0 0
 tJobTask jobTask 437910 0 PEND 20c6dc 487dd0 0 0
 tLogTask logTask 437c80 0 PEND 209fac 48a190 3d0001 0
 tShell0 shellTask 455720 1 READY 214118 5db390 0 0
 tWdbTask wdbTask 517a98 3 PEND 20c6dc 5c7560 0 0
 tNetTask netTask 43db90 50 PEND 20c6dc 48d920 0 0
 value = 0 = 0x0
 ->

Figure 3-1 illustrates task state transitions. The routines listed are examples of ones
that would cause the associated transition. For example, a task that called
taskDelay() would move from the ready state to the delayed state.

VxWorks
Application Programmer’s Guide, 6.2

80

3.2.2 Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.
The default algorithm is priority-based preemptive scheduling. You can also select
to use round-robin scheduling for your applications (see Round-Robin Scheduling,
p.82). Both algorithms rely on the task’s priority.

See 2.11 Kernel Schedulers, p.149 for information about implementing custom
schedulers, and about using a POSIX threads scheduler for processes (RTPs).

The kernel has 256 priority levels, numbered 0 through 255. Priority 0 is the highest
and priority 255 is the lowest.

All application tasks should be in the priority range from 100 to 255.

Figure 3-1 Task State Transitions

suspended

pended

taskInit()

The highest-priority ready task is executing.

ready delayed

ready pended
ready delayed
ready suspended

pended ready
pended suspended
delayed ready
delayed suspended

suspended ready
suspended pended
suspended delayed

semTake() / msgQReceive()
taskDelay()
taskSuspend()
semGive() / msgQSend()
taskSuspend()
expired delay
taskSuspend()
taskResume() / taskActivate()
taskResume()
taskResume()

3 Multitasking
3.2 Tasks and Multitasking

81

3

Tasks are assigned a priority when created. You can also change a task’s priority
level while it is executing by calling taskPrioritySet(). The ability to change task
priorities dynamically allows applications to track precedence changes in the real
world.

The routines that control task scheduling are listed in Table 3-2.

POSIX also provides a scheduling interface. For more information, see 4.10 POSIX
Scheduling, p.170.

Preemptive Priority Scheduling

A preemptive priority-based scheduler preempts the CPU when a task has a higher
priority than the current task running. Thus, the kernel ensures that the CPU is
always allocated to the highest priority task that is ready to run. This means that if
a task—with a higher priority than that of the current task—becomes ready to run,
the kernel immediately saves the current task’s context, and switches to the context
of the higher priority task. For example, in Figure 3-2, task t1 is preempted by
higher-priority task t2, which in turn is preempted by t3. When t3 completes, t2
continues executing. When t2 completes execution, t1 continues executing.

The disadvantage of this scheduling algorithm is that, when multiple tasks of
equal priority must share the processor, if a single task is never blocked, it can
usurp the processor. Thus, other equal-priority tasks are never given a chance to
run. Round-robin scheduling solves this problem.

Table 3-2 Task Scheduler Control Routines

Routine Description

taskPrioritySet() Changes the priority of a task.

taskRtpLock() Disables task context switching within a process.
Prevents any other task in the process from preempting
the calling task.

taskRtpUnLock() Enables task context switching within a process.

VxWorks
Application Programmer’s Guide, 6.2

82

Round-Robin Scheduling

A round-robin scheduling algorithm attempts to share the CPU fairly among all
ready tasks of the same priority. Round-robin scheduling uses time slicing to achieve
fair allocation of the CPU to all tasks with the same priority. Each task, in a group
of tasks with the same priority, executes for a defined interval or time slice.

It may be useful to use round-robin scheduling in systems that execute the same
application in more than one process. In this case, multiple tasks would be
executing the same code, and it is possible that a task might not relinquish the CPU
to a task of the same priority running in another process (running the same binary).
Note that round-robin scheduling is global, and controls all tasks in the system
(kernel and processes); it is not possible to implement round-robin scheduling for
selected processes.

Round-robin scheduling is enabled by calling kernelTimeSlice(), which takes a
parameter for a time slice, or interval. This interval is the amount of time each task
is allowed to run before relinquishing the processor to another equal-priority task.
Thus, the tasks rotate, each executing for an equal interval of time. No task gets a
second slice of time before all other tasks in the priority group have been allowed
to run.

In most systems, it is not necessary to enable round-robin scheduling, the
exception being when multiple copies of the same code are to be run, such as in a
user interface task.

Figure 3-2 Priority Preemption

t1

KEY: = preemption

time

HIGH

LOW

pr
io

rit
y

t3

t2

= task completion

t1

t2

3 Multitasking
3.2 Tasks and Multitasking

83

3

If round-robin scheduling is enabled, and preemption is enabled for the executing
task, the system tick handler increments the task’s time-slice count. When the
specified time-slice interval is completed, the system tick handler clears the
counter and the task is placed at the tail of the list of tasks at its priority level. New
tasks joining a given priority group are placed at the tail of the group with their
run-time counter initialized to zero.

Enabling round-robin scheduling does not affect the performance of task context
switches, nor is additional memory allocated.

If a task blocks or is preempted by a higher priority task during its interval, its
time-slice count is saved and then restored when the task becomes eligible for
execution. In the case of preemption, the task will resume execution once the
higher priority task completes, assuming that no other task of a higher priority is
ready to run. In the case where the task blocks, it is placed at the tail of the list of
tasks at its priority level. If preemption is disabled during round-robin scheduling,
the time-slice count of the executing task is not incremented.

Time-slice counts are accrued by the task that is executing when a system tick
occurs, regardless of whether or not the task has executed for the entire tick
interval. Due to preemption by higher priority tasks or ISRs stealing CPU time
from the task, it is possible for a task to effectively execute for either more or less
total CPU time than its allotted time slice.

Figure 3-3 shows round-robin scheduling for three tasks of the same priority: t1, t2,
and t3. Task t2 is preempted by a higher priority task t4 but resumes at the count
where it left off when t4 is finished.

Figure 3-3 Round-Robin Scheduling

t1

KEY: = preemption

time

HIGH

LOW

pr
io

rit
y

t2 t3 t1

t4

t2 t2

= task completion

time slice

t3

VxWorks
Application Programmer’s Guide, 6.2

84

Preemption Locks

The scheduler can be explicitly disabled and enabled on a per-task basis—within
a process—with the routines taskRtpLock () and taskRtpUnLock (). When a task
disables the scheduler by calling taskRtpLock(), no priority-based preemption
can take place by other tasks running in the same process while that task is
running. Using a semaphore is, however, preferable to taskRtpLock() as a means
of mutual exclusion, because preemption lock-outs add preemptive latency to the
process.

If the task that has disabled the scheduler with taskRtpLock() explicitly blocks or
suspends, the scheduler selects the next highest-priority eligible task to execute.
When the preemption-locked task unblocks, and begins running again,
preemption is again disabled.

If mutual exclusion between tasks in different processes is required, use a public
semaphore. For information about global objects, see 3.3.1 Public and Private
Objects, p.100.

Note that preemption locks prevent task context switching, but do not lock out
interrupt handling.

Preemption locks can be used to achieve mutual exclusion; however, keep the
duration of preemption locking to a minimum. For more information, see
3.3.3 Mutual Exclusion, p.103.

3.2.3 Task Control

The following sections give an overview of the basic VxWorks task routines, which
are found in the VxWorks library taskLib. These routines provide the means for
task creation and control, as well as for retrieving information about tasks. See the
VxWorks API reference for taskLib for further information.

For interactive use, you can control VxWorks tasks with the host tools or the kernel
shell; see the Wind River Workbench User’s Guide, the VxWorks Command-Line Tools
User’s Guide, and VxWorks Kernel Programmer’s Guide: Target Tools.

Task Creation and Activation

The routines listed in Table 3-3 are used to create tasks.

3 Multitasking
3.2 Tasks and Multitasking

85

3

The arguments to taskSpawn() are the new task’s name (an ASCII string), the
task’s priority, an options word, the stack size, the main routine address, and 10
arguments to be passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, arg1, …arg10);

The taskSpawn() routine creates the new task context, which includes allocating
the stack and setting up the task environment to call the main routine (an ordinary
subroutine) with the specified arguments. The new task begins execution at the
entry to the specified routine.

The taskOpen() routine provides a POSIX-like API for creating a task (with
optional activation) or obtaining a handle on existing task. It also provides for
creating a task as either a public or private object (see Task Names and IDs, p.86).
The taskOpen() routine is the most general purpose task-creation routine.

The taskSpawn() routine embodies the lower-level steps of allocation,
initialization, and activation. The initialization and activation functions are
provided by the routines taskCreate() and taskActivate(); however, we
recommend you use these routines only when you need greater control over
allocation or activation.

Task Stack

It can be difficult to know exactly how much stack space to allocate without
reverse-engineering the configuration of the system. To help avoid a stack
overflow, and task stack corruption, you can take the following approach: when
initially allocating the stack, make it much larger than anticipated (for example,
from 20KB to up to 100KB), depending upon the type of application; then
periodically monitor the stack with checkStack(), and if it is safe to make it
smaller, do so.

Table 3-3 Task Creation Routines

Call Description

taskSpawn() Spawns (creates and activates) a new task.

taskCreate() Creates, but not activates a new task.

taskOpen() Open a task (or optionally create one, if it does not exist).

taskActivate() Activates an initialized task.

VxWorks
Application Programmer’s Guide, 6.2

86

If the INCLUDE_RTP component (which provides process support) is included in
the system, all user tasks have overflow and underflow guard zones on the
execution stack. Tasks in processes do not have guard zone on the exception stack
by default. Kernel tasks also have no guard zones on the execution nor the
exception stack by default, nor if INCLUDE_RTP is configured. The component
INCLUDE_PROTECT_TASK_STACK must be configured to add overflow (no
underflow) protection for user task exception stacks and to enable overflow and
underflow protection for kernel task execution stacks. Note that kernel tasks have
no guard zones on the exception stack.

The protection provided by this component is, however, available only for tasks
that are created without the VX_NO_STACK_PROTECT task option. If tasks are
created with this option, no guard zones are created for their execution and
exception stacks.

Developers can also design and test their systems with the assistance of the
INCLUDE_PROTECT_TASK_STACK component. This component provides the
guard zone protection of stacks in the kernel, both for kernel task execution stacks
and for user task exception stacks. When this component is used, kernel tasks have
underflow and overflow protection on the execution stack (no protection on the
exception stacks for kernel tasks) and overflow protection (only) on the user task
exception stacks. Production systems can be shipped without the component to
save memory.

For more information about stack-protection facilities, see VxWorks Kernel
Programmer’s Guide: Memory Management.

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the
task name, and a task ID is returned.

Most VxWorks task routines take a task ID as the argument specifying a task.
VxWorks uses a convention that a task ID of 0 (zero) always implies the calling
task.

The following rules and guidelines should be followed when naming tasks:

■ The names of public tasks must be unique and must begin with a forward
slash; for example /tMyTask. Note that public tasks are visible throughout the
entire system—in the kernel and any processes.

■ The names of private tasks should be unique. VxWorks does not require that
private task names be unique, but it is preferable to use unique names to avoid

3 Multitasking
3.2 Tasks and Multitasking

87

3

confusing the user. (Note that private tasks are visible only within the entity in
which they were created—either the kernel or a process.)

To use the host development tools to their best advantage, task names should not
conflict with globally visible routine or variable names. To avoid name conflicts,
VxWorks uses a convention of prefixing any kernel task name started from the
target with the letter t, and any task name started from the host with the letter u.
In addition, the name of the initial task of a real-time process is the executable file
name (less the extension) prefixed with the letter i.

Creating a task as a public object allows other tasks from outside of its process to
send signals or events to it (with the taskKill() or the eventSend() routine,
respectively).

For more information, see 3.3.1 Public and Private Objects, p.100.

You do not have to explicitly name tasks. If a NULL pointer is supplied for the name
argument of taskSpawn(), then VxWorks assigns a unique name. The name is of
the form tN, where N is a decimal integer that is incremented by one for each
unnamed task that is spawned.

The taskLib routines listed in Table 3-4 manage task IDs and names.

Note that for use within a process, it is preferable to use taskName() rather than
taskNameGet() from a process, as the former does not incur the overhead of a
system call.

Table 3-4 Task Name and ID Routines

Call Description

taskName() Gets the task name associated with a task ID (restricted to
the context—process or kernel—in which it is called).

taskNameGet() Gets the task name associated with a task ID anywhere in
the entire system (kernel and any processes).

taskNameToId() Looks up the task ID associated with a task name.

taskIdSelf() Gets the calling task’s ID.

taskIdVerify() Verifies the existence of a specified task.

VxWorks
Application Programmer’s Guide, 6.2

88

Task Options

When a task is spawned, you can pass in one or more option parameters, which are
listed in Table 3-5. The result is determined by performing a logical OR operation
on the specified options.

You must include the VX_FP_TASK option when creating a task that:

■ Performs floating-point operations.

■ Calls any function that returns a floating-point value.

■ Calls any function that takes a floating-point value as an argument.

For example:

tid = taskSpawn ("tMyTask", 90, VX_FP_TASK, 20000, myFunc, 2387, 0, 0,
0, 0, 0, 0, 0, 0, 0);

Some routines perform floating-point operations internally. The VxWorks
documentation for each of these routines clearly states the need to use the
VX_FP_TASK option.

Task Information

The routines listed in Table 3-6 get information about a task by taking a snapshot
of a task’s context when the routine is called. Because the task state is dynamic, the

Table 3-5 Task Options

Name Description

VX_ALTIVEC_TASK Execute with Altivec coprocessor support.

VX_DSP_TASK Execute with DSP coprocessor support.

VX_FP_TASK Executes with the floating-point coprocessor.

VX_NO_STACK_FILL Does not fill the stack with 0xee (for debugging)

VX_NO_STACK_PROTECT Create without stack overflow or underflow guard
zones.

VX_PRIVATE_ENV Executes a task with a private environment.

VX_TASK_NOACTIVATE Used with taskOpen() so that the task is not
activated.

3 Multitasking
3.2 Tasks and Multitasking

89

3

information may not be current unless the task is known to be dormant (that is,
suspended).

Note that the task-local storage (TLS) facility and the routines provided by tlsLib
can be used to maintain information on a task basis.

Also note that each task has a VxWorks events register, which receives events sent
from other tasks, ISRs, semaphores, or message queues. See 3.3.7 VxWorks Events,
p.121 for more information about this register, and the routines used to interact
with it.

Task Deletion and Deletion Safety

Tasks can be dynamically deleted from the system. VxWorks includes the routines
listed in Table 3-7 to delete tasks and to protect tasks from unexpected deletion.

Table 3-6 Task Information Routines

Call Description

taskInfoGet() Gets information about a task.

taskPriorityGet() Examines the priority of a task.

taskIsSuspended() Checks whether a task is suspended.

taskIsReady() Checks whether a task is ready to run.

taskIsPended() Checks whether a task is pended.

Table 3-7 Task-Deletion Routines

Call Description

exit() Terminates the specified process (and therefore all tasks in it)
and frees the process’ memory resources.

taskExit() Terminates the calling task (in a process) and frees the stack and
any other memory resources, including the task control block.a

taskDelete() Terminates a specified task and frees memory (task stacks and
task control blocks only).a The calling task may terminate itself
with this routine.

VxWorks
Application Programmer’s Guide, 6.2

90

A process implicitly calls exit(), thus terminating all tasks within it, if the process’
main() routine returns. For more information see 2.4.3 Applications, Processes, and
Tasks, p.22.

Tasks implicitly call taskExit() if the entry routine specified during task creation
returns.

When a task is deleted, no other task is notified of this deletion. The routines
taskSafe() and taskUnsafe() address problems that stem from unexpected
deletion of tasks. The routine taskSafe() protects a task from deletion by other
tasks. This protection is often needed when a task executes in a critical region or
engages a critical resource.

For example, a task might take a semaphore for exclusive access to some data
structure. While executing inside the critical region, the task might be deleted by
another task. Because the task is unable to complete the critical region, the data
structure might be left in a corrupt or inconsistent state. Furthermore, because the
semaphore can never be released by the task, the critical resource is now
unavailable for use by any other task and is essentially frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an
outcome. Any task that tries to delete a task protected with taskSafe() is blocked.
When finished with its critical resource, the protected task can make itself available
for deletion by calling taskUnsafe(), which readies any deleting task. To support
nested deletion-safe regions, a count is kept of the number of times taskSafe() and
taskUnsafe() are called. Deletion is allowed only when the count is zero, that is,
there are as many unsafes as safes. Only the calling task is protected. A task cannot
make another task safe or unsafe from deletion.

taskSafe() Protects the calling task from deletion by any other task in the
same process. A task in a different process can still delete that
task by terminating the process itself with kill().

taskUnsafe() Undoes a taskSafe(), which makes calling task available for
deletion.

a. Memory that is allocated by the task during its execution is not freed when the task is
terminated.

Table 3-7 Task-Deletion Routines (cont’d)

Call Description

! WARNING: Make sure that tasks are not deleted at inappropriate times. Before an
application deletes a task, the task should release all shared resources that it holds.

3 Multitasking
3.2 Tasks and Multitasking

91

3

The following code fragment shows how to use taskSafe() and taskUnsafe() to
protect a critical region of code:

taskSafe ();
semTake (semId, WAIT_FOREVER); /* Block until semaphore available */
.
. /* critical region code */
.
semGive (semId); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example.
For convenience and efficiency, a special kind of semaphore, the mutual-exclusion
semaphore, offers an option for deletion safety. For more information, see
Mutual-Exclusion Semaphores, p.108.

Task Execution Control

The routines listed in Table 3-8 provide direct control over a task’s execution.

Tasks may require restarting during execution in response to some catastrophic
error. The restart mechanism, taskRestart(), recreates a task with the original
creation arguments.

Delay operations provide a simple mechanism for a task to sleep for a fixed
duration. Task delays are often used for polling applications. For example, to delay
a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet () / 2);

The routine sysClkRateGet() returns the speed of the system clock in ticks per
second. Instead of taskDelay(), you can use the POSIX routine nanosleep() to
specify a delay directly in time units. Only the units are different; the resolution of

Table 3-8 Task Execution Control Routines

Call Description

taskSuspend() Suspends a task.

taskResume() Resumes a task.

taskRestart() Restarts a task.

taskDelay() Delays a task; delay units are ticks, resolution in ticks.

nanosleep() Delays a task; delay units are nanoseconds, resolution in ticks.

VxWorks
Application Programmer’s Guide, 6.2

92

both delay routines is the same, and depends on the system clock. For details, see
4.6 POSIX Clocks and Timers, p.159.

As a side effect, taskDelay() moves the calling task to the end of the ready queue
for tasks of the same priority. In particular, you can yield the CPU to any other
tasks of the same priority by delaying for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A delay of zero duration is only possible with taskDelay(); nanosleep() considers
it an error.

System clock resolution is typically 60Hz (60 times per second). This is a relatively
long time for one clock tick, and would be even at 100Hz or 120Hz. Thus, since
periodic delaying is effectively polling, you may want to consider using
event-driven techniques as an alternative.

3.2.4 Tasking Extensions

To allow additional task-related facilities to be added to the system, VxWorks
provides hook routines that allow additional routines to be invoked whenever a
task is created, a task context switch occurs, or a task is deleted. There are spare
fields in the task control block (TCB) available for application extension of a task’s
context

These hook routines are listed in Table 3-9; for more information, see the VxWorks
API reference for taskHookLib.

Task create hook routines execute in the context of the creator task.

NOTE: ANSI and POSIX APIs are similar.

Table 3-9 Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd() Adds a routine to be called at every task create.

taskCreateHookDelete() Deletes a previously added task create routine.

taskDeleteHookAdd() Adds a routine to be called at every task delete.

taskDeleteHookDelete() Deletes a previously added task delete routine.

3 Multitasking
3.2 Tasks and Multitasking

93

3

Task create hooks need to consider the ownership of any kernel objects (such as
watchdog timers, semaphores, and so on) created in the hook routine. Since create
hook routines execute in the context of the creator task, new kernel objects will be
owned by the creator task's process. It may be necessary to assign the ownership
of these objects to the new task's process. This will prevent unexpected object
reclamation from occurring if and when the process of the creator task terminates.

When the creator task is a kernel task, the kernel will own any kernel objects that
are created. Thus there is no concern about unexpected object reclamation for this
case.

User-installed switch hooks are called within the kernel context and therefore do
not have access to all VxWorks facilities. Table 3-10 summarizes the routines that
can be called from a task switch hook; in general, any routine that does not involve
the kernel can be called.

Table 3-10 Routines Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet(), intLock(),
intUnlock()

lstLib All routines except lstFree()

mathALib All are callable if fppSave()/fppRestore() are used

rngLib All routines except rngCreate()

taskLib taskIdVerify(), taskIdDefault(), taskIsReady(),
taskIsSuspended(), taskTcb()

vxLib vxTas()

NOTE: For information about POSIX extensions, see 4. POSIX Standard Interfaces.

VxWorks
Application Programmer’s Guide, 6.2

94

3.2.5 Task Error Status: errno

By convention, C library functions set a single global integer variable errno to an
appropriate error number whenever the function encounters an error. This
convention is specified as part of the ANSI C standard.

A Separate errno Value for Each Task

In processes, there is no single global errno variable. Instead, standard application
accesses to errno directly manipulate the per-task errno field in the TCB
(assuming, of course, that errno.h has been included).

Error Return Convention

Almost all VxWorks functions follow a convention that indicates simple success or
failure of their operation by the actual return value of the function. Many functions
return only the status values OK (0) or ERROR (-1). Some functions that normally
return a nonnegative number (for example, open() returns a file descriptor) also
return ERROR to indicate an error. Functions that return a pointer usually return
NULL (0) to indicate an error. In most cases, a function returning such an error
indication also sets errno to the specific error code.

The global variable errno is never cleared by VxWorks routines. Thus, its value
always indicates the last error status set. When a VxWorks subroutine gets an error
indication from a call to another routine, it usually returns its own error indication
without modifying errno. Thus, the value of errno that is set in the lower-level
routine remains available as the indication of error type.

Assignment of Error Status Values

VxWorks errno values encode the module that issues the error, in the most
significant two bytes, and uses the least significant two bytes for individual error
numbers. All VxWorks module numbers are in the range 1–500; errno values with
a module number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501<<16,
and all negative values) are available for application use.

See the VxWorks API reference on errnoLib for more information about defining
and decoding errno values with this convention.

3 Multitasking
3.2 Tasks and Multitasking

95

3

3.2.6 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as
illegal instructions, bus or address errors, divide by zero, and so forth. The
VxWorks exception handling package takes care of all such exceptions (see 8. Error
Detection and Reporting).

Tasks can also attach their own handlers for certain hardware exceptions through
the signal facility. If a task has supplied a signal handler for an exception, the
default exception handling described above is not performed. A user-defined
signal handler is useful for recovering from catastrophic events. Typically,
setjmp() is called to define the point in the program where control will be restored,
and longjmp() is called in the signal handler to restore that context. Note that
longjmp() restores the state of the task’s signal mask.

Signals are also used for signaling software exceptions as well as hardware
exceptions. They are described in more detail in 3.3.10 Signals, p.143 and in the
VxWorks API reference for sigLib.

3.2.7 Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a subroutine or subroutine library to
be invoked by many different tasks. For example, many tasks may call printf(),
but there is only a single copy of the subroutine in the system. A single copy of
code executed by multiple tasks is called shared code. VxWorks dynamic linking
facilities make this especially easy. Shared code makes a system more efficient and
easier to maintain; see Figure 3-4.

Figure 3-4 Shared Code

SHARED CODE

...

taskTwo (void)
{
myFunc();

}

myFunc();

taskOne (void)
{

...
}

}

myFunc (void)
{
...

TASKS

VxWorks
Application Programmer’s Guide, 6.2

96

Shared code must be reentrant. A subroutine is reentrant if a single copy of the
routine can be called from several task contexts simultaneously without conflict.
Such conflict typically occurs when a subroutine modifies global or static
variables, because there is only a single copy of the data and code. A routine’s
references to such variables can overlap and interfere in invocations from different
task contexts.

Most routines in VxWorks are reentrant. However, you should assume that any
routine someName() is not reentrant if there is a corresponding routine named
someName_r() — the latter is provided as a reentrant version of the routine. For
example, because ldiv() has a corresponding routine ldiv_r(), you can assume
that ldiv() is not reentrant.

The majority of VxWorks routines use the following reentrancy techniques:

– dynamic stack variables
– global and static variables guarded by semaphores

We recommend applying these same techniques when writing application code
that can be called from several task contexts simultaneously.

Dynamic Stack Variables

Many subroutines are pure code, having no data of their own except dynamic stack
variables. They work exclusively on data provided by the caller as parameters. The
linked-list library, lstLib, is a good example of this. Its routines operate on lists and
nodes provided by the caller in each subroutine call.

Subroutines of this kind are inherently reentrant. Multiple tasks can use such
routines simultaneously, without interfering with each other, because each task
does indeed have its own stack. See Figure 3-5.

NOTE: Initialization routines should be callable multiple times, even if logically
they should only be called once. As a rule, routines should avoid static variables
that keep state information. Initialization routines are an exception; using a static
variable that returns the success or failure of the original initialization routine call
is appropriate.

3 Multitasking
3.2 Tasks and Multitasking

97

3

Guarded Global and Static Variables

Some libraries encapsulate access to common data. This kind of library requires
some caution because the routines are not inherently reentrant. Multiple tasks
simultaneously invoking the routines in the library might interfere with access to
common variables. Such libraries must be made explicitly reentrant by providing
a mutual-exclusion mechanism to prohibit tasks from simultaneously executing
critical sections of code. The usual mutual-exclusion mechanism is the mutex
semaphore facility provided by semMLib and described in Mutual-Exclusion
Semaphores, p.108.

Task Variables

Some routines that can be called by multiple tasks simultaneously may require
global or static variables with a distinct value for each calling task. For example,
several tasks may reference a private buffer of memory and yet refer to it with the
same global variable.

To accommodate this, VxWorks provides a facility called task variables that allows
4-byte variables to be added to a task’s context, so that the value of such a variable
is switched every time a task switch occurs to or from its owner task. Typically,
several tasks declare the same variable (4-byte memory location) as a task variable.

Figure 3-5 Stack Variables and Shared Code

TASKS COMMON SUBROUTINETASK STACKS

...
var = 1
...

...
var = 2
...

comFunc(1);

taskOne ()
{
...

...
}

comFunc(2);

taskTwo ()
{
...

...
}

}

comFunc (arg)
{
int var = arg;

VxWorks
Application Programmer’s Guide, 6.2

98

Each of those tasks can then treat that single memory location as its own private
variable; see Figure 3-6. This facility is provided by the routines taskVarAdd(),
taskVarDelete(), taskVarSet(), and taskVarGet(), which are described in the
VxWorks API reference for taskVarLib.

Use this mechanism sparingly. Each task variable adds a few microseconds to the
context switching time for its task, because the value of the variable must be saved
and restored as part of the task’s context. Consider collecting all of a module’s task
variables into a single dynamically allocated structure, and then making all
accesses to that structure indirectly through a single pointer. This pointer can then
be the task variable for all tasks using that module.

Multiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine.
Each spawn creates a new task with its own stack and context. Each spawn can also
pass the main routine different parameters to the new task. In this case, the same
rules of reentrancy described in Task Variables, p.97 apply to the entire task.

This is useful when the same function needs to be performed concurrently with
different sets of parameters. For example, a routine that monitors a particular kind
of equipment might be spawned several times to monitor several different pieces

Figure 3-6 Task Variables and Context Switches

OLD TCB

pTaskVar globDat

NEW TCB

pTaskVar

value saved
in old

task’s TCB

value restored
from new

task’s TCB

current value of
globDat

globDat

3 Multitasking
3.2 Tasks and Multitasking

99

3

of that equipment. The arguments to the main routine could indicate which
particular piece of equipment the task is to monitor.

In Figure 3-7, multiple joints of the mechanical arm use the same code. The tasks
manipulating the joints invoke joint(). The joint number (jointNum) is used to
indicate which joint on the arm to manipulate.

Figure 3-7 Multiple Tasks Utilizing Same Code

joint_1

joint_2

joint_3

joint
(
int jointNum
)
{
/* joint code here */
}

VxWorks
Application Programmer’s Guide, 6.2

100

3.3 Intertask and Interprocess Communications

The complement to the multitasking routines described in 3.2 Tasks and
Multitasking, p.76 is the intertask communication facilities. These facilities permit
independent tasks to coordinate their actions.

VxWorks supplies a rich set of intertask and interprocess communication
mechanisms, including:

■ Shared memory, for simple sharing of data.

■ Semaphores, for basic mutual exclusion and synchronization.

■ Mutexes and condition variables for mutual exclusion and synchronization using
POSIX interfaces.

■ Message queues and pipes, for intertask message passing within a CPU.

■ VxWorks events, for communication and synchronization.

■ Message channels, for socket-based interprocess communication.

■ Sockets and remote procedure calls, for network-transparent intertask
communication.

■ Signals, for exception handling, interprocess communication, and process
management.

In addition, the VxMP component provides for intertask communication between
multiple CPUs that share memory. See the VxWorks Kernel Programmer’s Guide.

3.3.1 Public and Private Objects

Kernel objects such as semaphores and message queues can be created as either
private or public objects. This provides control over the scope of their
accessibility—which can be limited to a virtual memory context by defining them
as private, or extended to the entire system (the kernel and any processes) by
defining them as public. There is no difference in performance between a public
and a private object.

An object can only be defined as public or private when it is created—the
designation cannot be changed thereafter. Public objects must be named when they
are created, and the name must begin with a forward slash; for example, /foo.
Private objects do not need to be named.

For information about naming tasks in addition to that provided in this section, see
Task Names and IDs, p.86.

3 Multitasking
3.3 Intertask and Interprocess Communications

101

3

Creating and Naming Public and Private Objects

Public objects are always named, and the name must begin with a forward-slash.
Private objects can be named or unnamed. If they are named, the name must not
begin with a forward-slash.

Only one public object of a given class and name can be created. That is, there can
be only one public semaphore with the name /foo. But there may be a public
semaphore named /foo and a public message queue named /foo. Obviously, more
distinctive naming is preferable (such as /fooSem and /fooMQ).

The system allows creation of only one private object of a given class and name in
any given memory context; that is, in any given process or in the kernel. For
example:

■ If process A has created a private semaphore named bar, it cannot create a
second semaphore named bar.

■ However, process B could create a private semaphore named bar, as long as it
did not already own one with that same name.

Note that private tasks are an exception to this rule—duplicate names are
permitted for private tasks; see Task Names and IDs, p.86.

To create a named object, the appropriate xyzOpen() API must be used, such as
semOpen(). When the routine specifies a name that starts with a forward slash,
the object will be public.

To delete public objects, the xyzDelete() API cannot be used (it can only be used
with private objects). Instead, the xyzClose() and xyzUnlink() APIs must be used
in accordance with the POSIX standard. That is, they must be unlinked from the
name space, and then the last close operation will delete the object (for example,
using the semUnlink() and semClose() APIs for a public semaphore).
Alternatively, all close operations can be performed first, and then the unlink
operation, after which the object is deleted. Note that if an object is created with the
OM_DELETE_ON_LAST_CLOSE flag, it is be deleted with the last close operation,
regardless of whether or not it was unlinked.

Object Ownership and Resource Reclamation

All objects are owned by the process to which the creator task belongs, or by the
kernel if the creator task is a kernel task. When ownership must be changed, for
example on a process creation hook, the objOwnerSet() can be used. However, its
use is restricted—the new owner must be a process or the kernel.

VxWorks
Application Programmer’s Guide, 6.2

102

All objects that are owned by a process are automatically destroyed when the
process dies.

All objects that are children of another object are automatically destroyed when the
parent object is destroyed.

Processes can share public objects through an object lookup-by-name capability
(with the xyzOpen() set of routines). Sharing objects between processes can only
be done by name.

When a process terminates, all the private objects that it owns are deleted,
regardless of whether or not they are named. All references to public objects in the
process are closed (an xyzClose() operation is performed). Therefore, any public
object is deleted during resource reclamation, regardless of which process created
them, if there are no more outstanding xyzOpen() calls against it (that is, no other
process or the kernel has a reference to it), and the object was already unlinked or
was created with the OM_DELETE_ON_LAST_CLOSE option. The exception to this
rule is tasks, which are always reclaimed when its creator process dies.

When the creator process of a public object dies, but the object survives because it
hasn't been unlinked or because another process has a reference to it, ownership of
the object is assigned to the kernel.

The objHandleShow() show routine can be used to display information about
ownership relations between objects in a process.

3.3.2 Shared Data Structures

The most obvious way for tasks executing in the same memory space (either a
process or the kernel) to communicate is by accessing shared data structures.
Because all the tasks in a single process or in the kernel exist in a single linear
address space, sharing data structures between tasks is trivial; see Figure 3-8.

Global variables, linear buffers, ring buffers, linked lists, and pointers can be
referenced directly by code running in different contexts.

For information about using shared data regions to communicate between
processes, see 2.6 Creating and Managing Shared Data Regions, p.59.

3 Multitasking
3.3 Intertask and Interprocess Communications

103

3

3.3.3 Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to
memory is crucial to avoid contention. Many methods exist for obtaining exclusive
access to resources, and vary only in the scope of the exclusion. Such methods
include disabling interrupts, disabling preemption, and resource locking with
semaphores.

For information about POSIX mutexes, see 4.12 POSIX Mutexes and Condition
Variables, p.186.

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.
While no other task is allowed to preempt the current executing task, ISRs are able
to execute:

funcA ()
{
taskLock ();
.
. /* critical region of code that cannot be interrupted */
.
taskUnlock ();
}

However, this method can lead to unacceptable real-time response. Tasks of higher
priority are unable to execute until the locking task leaves the critical region, even
though the higher-priority task is not itself involved with the critical region. While

Figure 3-8 Shared Data Structures

TASKS MEMORY

task 1

task 2

task 3

access
sharedData

access
sharedData

access
sharedData

sharedData

VxWorks
Application Programmer’s Guide, 6.2

104

this kind of mutual exclusion is simple, if you use it, be sure to keep the duration
short. Semaphores provide a better mechanism; see 3.3.4 Semaphores, p.104.

3.3.4 Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask
communication mechanism in VxWorks. Semaphores are the primary means for
addressing the requirements of both mutual exclusion and task synchronization,
as described below:

■ For mutual exclusion, semaphores interlock access to shared resources. They
provide mutual exclusion with finer granularity than either interrupt
disabling or preemptive locks, discussed in 3.3.3 Mutual Exclusion, p.103.

■ For synchronization, semaphores coordinate a task’s execution with external
events.

There are three types of VxWorks semaphores, optimized to address different
classes of problems:

binary
The fastest, most general-purpose semaphore. Optimized for synchronization
or mutual exclusion.

mutual exclusion
A special binary semaphore optimized for problems inherent in mutual
exclusion: priority inheritance, deletion safety, and recursion.

counting
Like the binary semaphore, but keeps track of the number of times a
semaphore is given. Optimized for guarding multiple instances of a resource.

VxWorks semaphores can be created as private objects, which are accessible only
within the memory space in which they were created (kernel or process); or as
public objects, which accessible throughout the system. For more information, see
3.3.1 Public and Private Objects, p.100.

VxWorks provides not only the semaphores designed expressly for VxWorks, but
also POSIX semaphores, designed for portability. An alternate semaphore library
provides the POSIX-compatible semaphore interface; see 4.11 POSIX Semaphores,
p.179.

! WARNING: The critical region code should not block. If it does, preemption could
be re-enabled.

3 Multitasking
3.3 Intertask and Interprocess Communications

105

3

The semaphores described here are for use on a single CPU. The optional product
VxMP provides semaphores that can be used across processors; see VxWorks Kernel
Programmer’s Guide: Shared Memory Objects.

Semaphore Control

Instead of defining a full set of semaphore control routines for each type of
semaphore, the VxWorks semaphores provide a single uniform interface for
semaphore control. Only the creation routines are specific to the semaphore type.
Table 3-11 lists the semaphore control routines.

The semBCreate(), semMCreate(), and semCCreate() routines return a
semaphore ID that serves as a handle on the semaphore during subsequent use by
the other semaphore-control routines. When a semaphore is created, the queue
type is specified. Tasks pending on a semaphore can be queued in priority order
(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

Table 3-11 Semaphore Control Routines

Call Description

semBCreate() Allocates and initializes a binary semaphore.

semMCreate() Allocates and initializes a mutual-exclusion semaphore.

semCCreate() Allocates and initializes a counting semaphore.

semDelete() Terminates and frees a semaphore.

semTake() Takes a semaphore.

semGive() Gives a semaphore.

semFlush() Unblocks all tasks that are waiting for a semaphore.

! WARNING: The semDelete() call terminates a semaphore and deallocates all
associated memory. Take care when deleting semaphores, particularly those used
for mutual exclusion, to avoid deleting a semaphore that another task still requires.
Do not delete a semaphore unless the same task first succeeds in taking it.

VxWorks
Application Programmer’s Guide, 6.2

106

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements
of both forms of task coordination: mutual exclusion and synchronization. The
binary semaphore has the least overhead associated with it, making it particularly
applicable to high-performance requirements. The mutual-exclusion semaphore
described in Mutual-Exclusion Semaphores, p.108 is also a binary semaphore, but it
has been optimized to address problems inherent to mutual exclusion.
Alternatively, the binary semaphore can be used for mutual exclusion if the
advanced features of the mutual-exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a flag that is available (full) or unavailable
(empty). When a task takes a binary semaphore, with semTake(), the outcome
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 3-9. If the semaphore is available (full), the semaphore
becomes unavailable (empty) and the task continues executing immediately. If the
semaphore is unavailable (empty), the task is put on a queue of blocked tasks and
enters a state of pending on the availability of the semaphore.

When a task gives a binary semaphore, using semGive(), the outcome also
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 3-10. If the semaphore is already available (full), giving
the semaphore has no effect at all. If the semaphore is unavailable (empty) and no
task is waiting to take it, then the semaphore becomes available (full). If the
semaphore is unavailable (empty) and one or more tasks are pending on its
availability, then the first task in the queue of blocked tasks is unblocked, and the
semaphore is left unavailable (empty).

Figure 3-9 Taking a Semaphore

no no
semaphore
available?

timeout =
NO_WAIT

yes yes

task continues;
semaphore

not taken

task continues;
semaphore

taken

task is
pended for

timeout
value

3 Multitasking
3.3 Intertask and Interprocess Communications

107

3

Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike
disabling interrupts or preemptive locks, binary semaphores limit the scope of the
mutual exclusion to only the associated resource. In this technique, a semaphore is
created to guard the resource. Initially the semaphore is available (full).

/* includes */
#include <vxWorks.h>
#include <semLib.h>

SEM_ID semMutex;

/* Create a binary semaphore that is initially full. Tasks *
* blocked on semaphore wait in priority order. */

semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. As long
as the task keeps the semaphore, all other tasks seeking access to the resource are
blocked from execution. When the task is finished with the resource, it gives back
the semaphore, allowing another task to use the resource.

Thus, all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

semTake (semMutex, WAIT_FOREVER);
.
. /* critical region, only accessible by a single task at a time */
.
semGive (semMutex);

Figure 3-10 Giving a Semaphore

no no
semaphore
available?

yes yes

task continues;
semaphore

remains
unchanged

tasks
pended?

task continues,
semaphore

made available

task at front of
queue made ready;
semaphore remains

unavailable

VxWorks
Application Programmer’s Guide, 6.2

108

Synchronization

When used for task synchronization, a semaphore can represent a condition or
event that a task is waiting for. Initially, the semaphore is unavailable (empty). A
task or ISR signals the occurrence of the event by giving the semaphore. Another
task waits for the semaphore by calling semTake(). The waiting task blocks until
the event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion
and those used for synchronization. For mutual exclusion, the semaphore is
initially full, and each task first takes, then gives back the semaphore. For
synchronization, the semaphore is initially empty, and one task waits to take the
semaphore given by another task.

Broadcast synchronization allows all processes that are blocked on the same
semaphore to be unblocked atomically. Correct application behavior often requires
a set of tasks to process an event before any task of the set has the opportunity to
process further events. The routine semFlush() addresses this class of
synchronization problem by unblocking all tasks pended on a semaphore.

Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to
address issues inherent in mutual exclusion, including priority inversion, deletion
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the
binary semaphore, with the following exceptions:

■ It can be used only for mutual exclusion.
■ It can be given only by the task that took it.
■ The semFlush() operation is illegal.

Note that mutex semaphores can be created as user-level objects. These are faster
than kernel-level semaphores as long as they are uncontested, which means that:

■ The mutex semaphore is available during a semTake() operation.
■ There is no task waiting for the semaphore during a semGive() operation.

The uncontested case should be the most common given the intended use of a
mutex semaphore. In the case when a mutex semaphore is contested, it will be
slower than a kernel-level semaphore because a system call needs to be made.

By, default, using the semMCreate() routine in a process creates a user-level mutex
semaphore. However, a kernel-level semaphore can be created when

3 Multitasking
3.3 Intertask and Interprocess Communications

109

3

semMCreate() is used with the SEM_KERNEL option. The semOpen() routine can
only be used in a process to create kernel-level semaphores.

Priority Inversion

Figure 3-11 illustrates a situation called priority inversion.

Priority inversion arises when a higher-priority task is forced to wait an indefinite
period of time for a lower-priority task to complete. Consider the scenario in
Figure 3-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively.
t3 has acquired some resource by taking its associated binary guard semaphore.
When t1 preempts t3 and contends for the resource by taking the same semaphore,
it becomes blocked. If we could be assured that t1 would be blocked no longer than
the time it normally takes t3 to finish with the resource, there would be no problem
because the resource cannot be preempted. However, the low-priority task is
vulnerable to preemption by medium-priority tasks (like t2), which could inhibit
t3 from relinquishing the resource. This condition could persist, blocking t1 for an
indefinite period of time.

The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which
enables a priority-inheritance algorithm. The priority-inheritance protocol assures
that a task that holds a resource executes at the priority of the highest-priority task
blocked on that resource. Once the task priority has been elevated, it remains at the
higher level until all mutual-exclusion semaphores that have contributed to the

Figure 3-11 Priority Inversion

t3

t1

t3

t2

HIGH

LOW

KEY: = preemption= take semaphore

= give semaphore

= own semaphore

pr
io

rit
y

= priority inheritance/release

= block

time

t1

t3

VxWorks
Application Programmer’s Guide, 6.2

110

tasks elevated priority are released. Hence, the inheriting task is protected from
preemption by any intermediate-priority tasks. This option must be used in
conjunction with a priority queue (SEM_Q_PRIORITY).

In Figure 3-12, priority inheritance solves the problem of priority inversion by
elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the
semaphore. This protects t3, and indirectly t1, from preemption by t2.

The following example creates a mutual-exclusion semaphore that uses the
priority inheritance algorithm:

semId = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical
region guarded by semaphores, it is often desirable to protect the executing task
from unexpected deletion. Deleting a task executing in a critical region can be
catastrophic. The resource might be left in a corrupted state and the semaphore
guarding the resource left unavailable, effectively preventing all access to the
resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,

Figure 3-12 Priority Inheritance

t3

t1 t3 t1

t2

HIGH

LOW

pr
io

rit
y

time

KEY: = preemption= take semaphore

= give semaphore

= own semaphore

= priority inheritance/release

= block

3 Multitasking
3.3 Intertask and Interprocess Communications

111

3

which enables an implicit taskSafe() with each semTake(), and a taskUnsafe()
with each semGive(). In this way, a task can be protected from deletion while it
has the semaphore. This option is more efficient than the primitives taskSafe()
and taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

semId = semMCreate (SEM_Q_FIFO | SEM_DELETE_SAFE);

Recursive Resource Access

Mutual-exclusion semaphores can be taken recursively. This means that the
semaphore can be taken more than once by the task that holds it before finally
being released. Recursion is useful for a set of routines that must call each other but
that also require mutually exclusive access to a resource. This is possible because
the system keeps track of which task currently holds the mutual-exclusion
semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be
given the same number of times it is taken. This is tracked by a count that
increments with each semTake() and decrements with each semGive().

Example 3-2 Recursive Use of a Mutual-Exclusion Semaphore

/* Function A requires access to a resource which it acquires by taking
* mySem;
* Function A may also need to call function B, which also requires mySem:
*/

/* includes */
#include <vxWorks.h>
#include <semLib.h>
SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */

init ()
{
mySem = semMCreate (SEM_Q_PRIORITY);
}

funcA ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcA: Got mutual-exclusion semaphore\n");
...
funcB ();
...
semGive (mySem);
printf ("funcA: Released mutual-exclusion semaphore\n");
}

VxWorks
Application Programmer’s Guide, 6.2

112

funcB ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcB: Got mutual-exclusion semaphore\n");
...
semGive (mySem);
printf ("funcB: Releases mutual-exclusion semaphore\n");
}

Counting Semaphores

Counting semaphores are another means to implement task synchronization and
mutual exclusion. The counting semaphore works like the binary semaphore
except that it keeps track of the number of times a semaphore is given. Every time
a semaphore is given, the count is incremented; every time a semaphore is taken,
the count is decremented. When the count reaches zero, a task that tries to take the
semaphore is blocked. As with the binary semaphore, if a semaphore is given and
a task is blocked, it becomes unblocked. However, unlike the binary semaphore, if
a semaphore is given and no tasks are blocked, then the count is incremented. This
means that a semaphore that is given twice can be taken twice without blocking.
Table 3-12 shows an example time sequence of tasks taking and giving a counting
semaphore that was initialized to a count of 3.

Counting semaphores are useful for guarding multiple copies of resources. For
example, the use of five tape drives might be coordinated using a counting
semaphore with an initial count of 5, or a ring buffer with 256 entries might be

Table 3-12 Counting Semaphore Example

Semaphore Call
Count

after Call Resulting Behavior

semCCreate() 3 Semaphore initialized with an initial count of 3.

semTake() 2 Semaphore taken.

semTake() 1 Semaphore taken.

semTake() 0 Semaphore taken.

semTake() 0 Task blocks waiting for semaphore to be available.

semGive() 0 Task waiting is given semaphore.

semGive() 1 No task waiting for semaphore; count incremented.

3 Multitasking
3.3 Intertask and Interprocess Communications

113

3

implemented using a counting semaphore with an initial count of 256. The initial
count is specified as an argument to the semCCreate() routine.

Special Semaphore Options

The uniform VxWorks semaphore interface includes three special options. These
options are not available for the POSIX-compatible semaphores described in
4.11 POSIX Semaphores, p.179.

Timeouts

As an alternative to blocking until a semaphore becomes available, semaphore take
operations can be restricted to a specified period of time. If the semaphore is not
taken within that period, the take operation fails.

This behavior is controlled by a parameter to semTake() that specifies the amount
of time in ticks that the task is willing to wait in the pended state. If the task
succeeds in taking the semaphore within the allotted time, semTake() returns OK.
The errno set when a semTake() returns ERROR due to timing out before
successfully taking the semaphore depends upon the timeout value passed.

A semTake() with NO_WAIT (0), which means do not wait at all, sets errno to
S_objLib_OBJ_UNAVAILABLE. A semTake() with a positive timeout value returns
S_objLib_OBJ_TIMEOUT. A timeout value of WAIT_FOREVER (-1) means wait
indefinitely.

Queues

VxWorks semaphores include the ability to select the queuing mechanism
employed for tasks blocked on a semaphore. They can be queued based on either
of two criteria: first-in first-out (FIFO) order, or priority order; see Figure 3-13.

VxWorks
Application Programmer’s Guide, 6.2

114

Priority ordering better preserves the intended priority structure of the system at
the expense of some overhead in semTake() in sorting the tasks by priority. A FIFO
queue requires no priority sorting overhead and leads to constant-time
performance. The selection of queue type is specified during semaphore creation
with semBCreate(), semMCreate(), or semCCreate(). Semaphores using the
priority inheritance option (SEM_INVERSION_SAFE) must select priority-order
queuing.

Interruptible

By default, a task that receives a signal while pending on a semaphore, executes
the associated signal handler, and then returns to pending on the semaphore.

The SEM_INTERRUPTIBLE option for counting binary and mutex semaphores
changes this behavior. When a task receives a signal while pending on a
semaphore that was created with the SEM_INTERRUPTIBLE option, the associated
signal handler is executed, as with the default behavior. However, the semTake()
call then returns ERROR with errno set to EINTR to indicate to the caller than a
signal occurred while pending on the semaphore.

Figure 3-13 Task Queue Types

TCB

110

TCB

200

PRIORITY QUEUE FIFO QUEUE

priority

TCB

120 TCB

80

TCB

110

TCB

90
TCB

100
TCB

140

3 Multitasking
3.3 Intertask and Interprocess Communications

115

3

Semaphores and VxWorks Events

Semaphores can send VxWorks events to a specified task when they becomes free.
For more information, see 3.3.7 VxWorks Events, p.121.

3.3.5 Message Queues

Modern real-time applications are constructed as a set of independent but
cooperating tasks. While semaphores provide a high-speed mechanism for the
synchronization and interlocking of tasks, often a higher-level mechanism is
necessary to allow cooperating tasks to communicate with each other. In VxWorks,
the primary intertask communication mechanism within a single CPU is message
queues.

For information about socket-based message communication across memory
spaces (kernel and processes), and between multiple nodes, see 3.3.8 Message
Channels, p.127.

Message queues allow a variable number of messages, each of variable length, to
be queued. Tasks and ISRs can send messages to a message queue, and tasks can
receive messages from a message queue.

Multiple tasks can send to and receive from the same message queue. Full-duplex
communication between two tasks generally requires two message queues, one for
each direction; see Figure 3-14.

Figure 3-14 Full Duplex Communication Using Message Queues

task 2task 1

message queue 1

message queue 2

message

message

VxWorks
Application Programmer’s Guide, 6.2

116

VxWorks message queues can be created as private objects, which accessible only
within the memory space in which they were created (process or kernel); or as
public objects, which accessible throughout the system. For more information, see
3.3.1 Public and Private Objects, p.100.

There are two message-queue subroutine libraries in VxWorks. The first of these,
msgQLib, provides VxWorks message queues, designed expressly for VxWorks;
the second, mqPxLib, is compatible with the POSIX standard (1003.1b) for
real-time extensions. See 4.10.1 Comparison of POSIX and VxWorks Scheduling, p.170
for a discussion of the differences between the two message-queue designs.

VxWorks Message Queues

VxWorks message queues are created, used, and deleted with the routines shown
in Table 3-13. This library provides messages that are queued in FIFO order, with
a single exception: there are two priority levels, and messages marked as high
priority are attached to the head of the queue.

A message queue is created with msgQCreate(). Its parameters specify the
maximum number of messages that can be queued in the message queue and the
maximum length in bytes of each message. Enough buffer space is allocated for the
specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend(). If no tasks
are waiting for messages on that queue, the message is added to the queue’s buffer
of messages. If any tasks are already waiting for a message from that message
queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If
messages are already available in the message queue’s buffer, the first message is
immediately dequeued and returned to the caller. If no messages are available,
then the calling task blocks and is added to a queue of tasks waiting for messages.

Table 3-13 VxWorks Message Queue Control

Call Description

msgQCreate() Allocates and initializes a message queue.

msgQDelete() Terminates and frees a message queue.

msgQSend() Sends a message to a message queue.

msgQReceive() Receives a message from a message queue.

3 Multitasking
3.3 Intertask and Interprocess Communications

117

3

This queue of waiting tasks can be ordered either by task priority or FIFO, as
specified in an option parameter when the queue is created.

Timeouts

Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, the timeout specifies how many ticks to wait for buffer space to become
available, if no space is available to queue the message. When receiving a message,
the timeout specifies how many ticks to wait for a message to become available, if
no message is immediately available. As with semaphores, the value of the timeout
parameter can have the special values of NO_WAIT (0), meaning always return
immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

Urgent Messages

The msgQSend() function allows specification of the priority of the message as
either normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal
priority messages are added to the tail of the list of queued messages, while urgent
priority messages are added to the head of the list.

Example 3-3 VxWorks Message Queues

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*/

/* includes */
#include <vxWorks.h>
#include <msgQLib.h>

/* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)

MSG_Q_ID myMsgQId;

task2 (void)
{
char msgBuf[MAX_MSG_LEN];

/* get message from queue; if necessary wait until msg is available */
if (msgQReceive(myMsgQId, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)

return (ERROR);

/* display message */
printf ("Message from task 1:\n%s\n", msgBuf);
}

VxWorks
Application Programmer’s Guide, 6.2

118

#define MESSAGE "Greetings from Task 1"
task1 (void)

{
/* create message queue */
if ((myMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY))

== NULL)
return (ERROR);

/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQId, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,

MSG_PRI_NORMAL) == ERROR)
return (ERROR);

}

Interruptible

By default, a task that receives a signal while pending on a message queue,
executes the associated signal handler, and then returns to pending.

The MSG_Q_INTERRUPTIBLE option for message queues changes this behavior.
When a task receives a signal while pending on a message queue that was created
with the MSG_Q_INTERRUPTIBLE option, the associated signal handler is
executed, as with the default behavior. However, the msgQSend() or
msgQReceive() call then returns ERROR with errno set to EINTR to indicate to the
caller than a signal occurred while pending on the message queue.

Queuing

VxWorks message queues include the ability to select the queuing mechanism
employed for tasks blocked on a message queue. The MSG_Q_FIFO and
MSG_Q_PRIORITY options are provided to specify (to the msgQCreate() and
msgQOpen() routines) the queuing mechanism that should be used for tasks that
pend on msgQSend() and msgQReceive().

Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue
attributes, for either kind of message queue. For example, if myMsgQId is a
VxWorks message queue, the output is sent to the standard output device, and
looks like the following from the shell (using the C interpreter):

3 Multitasking
3.3 Intertask and Interprocess Communications

119

3

-> show myMsgQId
Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0
Send timeouts : 0
Receive timeouts : 0

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this
model, server tasks accept requests from client tasks to perform some service, and
usually return a reply. The requests and replies are usually made in the form of
intertask messages. In VxWorks, message queues or pipes (see 3.3.6 Pipes, p.120)
are a natural way to implement this functionality.

For example, client-server communications might be implemented as shown in
Figure 3-15. Each server task creates a message queue to receive request messages
from clients. Each client task creates a message queue to receive reply messages
from servers. Each request message includes a field containing the msgQId of the
client’s reply message queue. A server task’s main loop consists of reading request
messages from its request message queue, performing the request, and sending a
reply to the client’s reply message queue.

VxWorks
Application Programmer’s Guide, 6.2

120

The same architecture can be achieved with pipes instead of message queues, or by
other means that are tailored to the needs of the particular application.

Message Queues and VxWorks Events

Message queues can send VxWorks events to a specified task when a message
arrives on the queue and no task is waiting on it. For more information, see
3.3.7 VxWorks Events, p.121.

3.3.6 Pipes

Pipes provide an alternative interface to the message queue facility that goes
through the VxWorks I/O system. Pipes are virtual I/O devices managed by the
driver pipeDrv. The routine pipeDevCreate() creates a pipe device and the
underlying message queue associated with that pipe. The call specifies the name
of the created pipe, the maximum number of messages that can be queued to it,
and the maximum length of each message:

Figure 3-15 Client-Server Communications Using Message Queues

reply queue 1

reply queue 2

server task

request queue

message

message

message

client 2

client 1

3 Multitasking
3.3 Intertask and Interprocess Communications

121

3

status = pipeDevCreate ("/pipe/name", max_msgs, max_length);

The created pipe is a normally named I/O device. Tasks can use the standard I/O
routines to open, read, and write pipes, and invoke ioctl routines. As they do with
other I/O devices, tasks block when they read from an empty pipe until data is
available, and block when they write to a full pipe until there is space available.

As I/O devices, pipes provide one important feature that message queues
cannot—the ability to be used with select(). This routine allows a task to wait for
data to be available on any of a set of I/O devices. The select() routine also works
with other asynchronous I/O devices including network sockets and serial
devices. Thus, by using select(), a task can wait for data on a combination of
several pipes, sockets, and serial devices; see 6.3.9 Pending on Multiple File
Descriptors: The Select Facility, p.237.

Pipes allow you to implement a client-server model of intertask communications;
see Servers and Clients with Message Queues, p.119.

3.3.7 VxWorks Events

VxWorks events provide a means of communication and synchronization between
tasks and other tasks, interrupt service routines (ISRs) and tasks, semaphores and
tasks, and message queues and tasks.1

Events can be used as a lighter-weight alternative to binary semaphores for
task-to-task and ISR-to-task synchronization (because no object needs to be
created). They can also be used to notify a task that a semaphore has become
available, or that a message has arrived on a message queue.

The events facility provides a mechanism for coordinating the activity of a task
using up to thirty-two events that can be sent to it by other tasks, ISRs, semaphores,
and message queues. A task can wait on multiple events from multiple sources.
Events thereby provide a means for coordination of complex matrix of activity
without allocation of additional system resources.

Each task has 32 event flags, bit-wise encoded in a 32-bit word (bits 25 to 32 are
reserved for Wind River use). These flags are stored in the task’s event register. Note
that an event flag itself has no intrinsic meaning. The significance of each of the 32
event flags depends entirely on how any given task is coded to respond to their
being set. There is no mechanism for recording how many times any given event

1. VxWorks events are based on pSOS operating system events. VxWorks introduced func-
tionality similar to pSOS events (but with enhancements) with the VxWorks 5.5 release.

VxWorks
Application Programmer’s Guide, 6.2

122

has been received by a task. Once a flag has been set, its being set again by the same
or a different sender is essentially an invisible operation.

Events are similar to signals in that they are sent to a task asynchronously; but
differ in that receipt is synchronous. That is, the receiving task must call a routine
to receive at will, and can choose to pend while waiting for events to arrive. Unlike
signals, therefore, events do not require a handler.

For a code example of how events can be used, see the eventLib API reference.

Configuring VxWorks for Events

To provide events facilities, VxWorks must be configured with the
INCLUDE_VXEVENTS component.

Preparing a Task to Receive Events

A task can pend on one or more events, or simply check on which events have been
received, with a call to eventReceive(). The routine specifies which events to wait
for, and provides options for waiting for one or all of those events. It also provides
various options for how to manage unsolicited events.

In order for a task to receive events from a semaphore or a message queue,
however, it must first register with the specific object, using semEvStart() for a
semaphore or msgQEvStart() for a message queue. Only one task can be
registered with any given semaphore or message queue at a time.

The semEvStart() routine identifies the semaphore and the events that it should
send to the task when the semaphore is free. It also provides a set of options to
specify whether the events are sent only the first time the semaphore is free, or each
time; whether to send events if the semaphore is free at the time of registration; and
whether a subsequent semEvStart() call from another task is allowed to take effect
(and to unregister the previously registered task).

Once a task has registered with a semaphore, every time the semaphore is released
with semGive(), and as long as no other tasks are pending on it, the semaphore
sends events to the registered task.

To request that the semaphore stop sending events to it, the registered task calls
semEvStop().

NOTE: VxWorks events, which are also simply referred to as events in this section,
should not be confused with System Viewer events.

3 Multitasking
3.3 Intertask and Interprocess Communications

123

3

Registration with a message queue is similar to registration with a semaphore. The
msgQEvStart() routine identifies the message queue and the events that it should
send to the task when a message arrives and no tasks are pending on it. It provides
a set of options to specify whether the events are sent only the first time a message
is available, or each time; whether a subsequent call to msgQEvStart() from
another task is allowed to take effect (and to unregister the previously registered
task).

Once a task has registered with a message queue, every time the message queue
receives a message and there are no tasks pending on it, the message queue sends
events to the registered task.

To request that the message queue stop sending events to it, the registered task
calls msgQEvStop().

Sending Events to a Task

Tasks and ISRs can send specific events to a task using eventSend(), whether or
not the receiving task is prepared to make use of them.

Semaphores and message queues send events automatically to tasks that have
registered for notification with semEvStart() or msgQEvStart(), respectively.
These objects send events when they are free. The conditions under which objects
are free are as follows:

Mutex Semaphore
A mutex semaphore is considered free when it no longer has an owner and no
task is pending on it. For example, following a call to semGive(), the
semaphore will not send events if another task is pending on a semTake() for
the same semaphore.

Binary Semaphore
A binary semaphore is considered free when no task owns it and no task is
waiting for it.

Counting Semaphore
A counting semaphore is considered free when its count is nonzero and no task
is pending on it. Events cannot, therefore, be used as a mechanism to compute
the number of times a semaphore is released or given.

Message Queue
A message queue is considered free when a message is present in the queue
and no task is pending for the arrival of a message in that queue. Events

VxWorks
Application Programmer’s Guide, 6.2

124

cannot, therefore, be used as a mechanism to compute the number of messages
sent to a message queue.

Note that just because an object has been released does not mean that it is free. For
example, if a semaphore is given, it is released; but it is not free if another task is
waiting for it at the time it is released. When two or more tasks are constantly
exchanging ownership of an object, it is therefore possible that the object never
becomes free, and never sends events.

Also note that when a semaphore or message queue sends events to a task to
indicate that it is free, it does not mean that the object is in any way reserved for the
task. A task waiting for events from an object unpends when the resource becomes
free, but the object may be taken in the interval between notification and
unpending. The object could be taken by a higher priority task if the task receiving
the event was pended in eventReceive(). Or a lower priority task might steal the
object: if the task receiving the event was pended in some routine other than
eventReceive(), a low priority task could execute and (for example) perform a
semTake() after the event is sent, but before the receiving task unpends from the
blocking call. There is, therefore, no guarantee that the resource will still be
available when the task subsequently attempts to take ownership of it.

Events and Object Deletion

If a semaphore or message queue is deleted while a task is waiting for events from
it, the task is automatically unpended by the semDelete() or msgQDelete()
implementation. This prevents the task from pending indefinitely while waiting
for events from an object that has been deleted. The pending task then returns to
the ready state (just as if it were pending on the semaphore itself) and receives an
ERROR return value from the eventReceive() call that caused it to pend initially.

If, however, the object is deleted between a tasks’ registration call and its
eventReceive() call, the task pends anyway. For example, if a semaphore is
deleted while the task is between the semEvStart() and eventReceive() calls, the
task pends in eventReceive(), but the event is never sent. It is important, therefore,
to use a timeout other than WAIT_FOREVER when object deletion is expected.

! WARNING: Because events cannot be reserved for an application in any way, care
should be taken to ensure that events are used uniquely and unambiguously. Note
that events 25 to 32 (VXEV25 to VXEV32) are reserved for Wind River’s use, and
should not be used by customers. Third parties should be sure to document their
use of events so that their customers do not use the same ones for their
applications.

3 Multitasking
3.3 Intertask and Interprocess Communications

125

3

Events and Task Deletion

If a task is deleted before a semaphore or message queue sends events to it, the
events can still be sent, but are obviously not received. By default, VxWorks
handles this event-delivery failure silently.

It can, however, be useful for an application that created an object to be informed
when events were not received by the (now absent) task that registered for them.
In this case, semaphores and message queues can be created with an option that
causes an error to be returned if event delivery fails (the
SEM_EVENTSEND_ERROR_NOTIFY and MSG_Q_EVENTSEND_ERROR_NOTIFY
options, respectively). The semGive() or msgQSend() call then returns ERROR
when the object becomes free.

The error does not mean the semaphore was not given or that the message was not
properly delivered. It simply means the resource could not send events to the
registered task. Note that a failure to send a message or give a semaphore takes
precedence over an events failure.

Accessing Event Flags

When events are sent to a task, they are stored in the task’s events register (see Task
Events Register, p.126), which is not directly accessible to the task itself.

When the events specified with an eventReceive() call have been received and the
task unpends, the contents of the events register is copied to a variable that is
accessible to the task.

When eventReceive() is used with the EVENTS_WAIT_ANY option—which means
that the task unpends for the first of any of the specfied events that it receives—the
contents of the events variable can be checked to determine which event caused the
task to unpend.

The eventReceive() routine also provides an option that allows for checking
which events have been received prior to the full set being received.

VxWorks
Application Programmer’s Guide, 6.2

126

Events Routines

The routines used for working with events are listed in Table 3-14.

For more information about these routines, see the VxWorks API references for
eventLib, semEvLib, and msgQEvLib.

Task Events Register

Each task has its own task events register. The task events register is a 32-bit field
used to store the events that the task receives from other tasks (or itself), ISRs,
semaphores, and message queues.

Events 25 to 32 (VXEV25 or 0x01000000 to VXEV32 or 0x80000000) are reserved for
Wind River use only, and should not be used by customers.

As noted above (Accessing Event Flags, p.125), a task cannot access the contents of
its events registry directly.

Table 3-15 describes the routines that affect the contents of the events register.

Table 3-14 Events Routines

Routine Description

eventSend() Sends specified events to a task.

eventReceive() Pends a task until the specified events have been received. Can
also be used to check what events have been received in the
interim.

eventClear() Clears the calling task’s event register.

semEvStart() Registers a task to be notified of semaphore availability.

semEvStop() Unregisters a task that had previously registered for
notification of semaphore availability.

msgQEvStart() Registers a task to be notified of message arrival on a message
queue when no recipients are pending.

msgQEvStop() Unregisters a task that had previously registered for
notification of message arrival on a message queue.

3 Multitasking
3.3 Intertask and Interprocess Communications

127

3

Show Routines and Events

For the purpose of debugging systems that make use of events, the taskShow,
semShow, and msgQShow libraries display event information.

The taskShow library displays the following information:

■ the contents of the event register
■ the desired events
■ the options specified when eventReceive() was called

The semShow and msgQShow libraries display the following information:

■ the task registered to receive events
■ the events the resource is meant to send to that task
■ the options passed to semEvStart() or msgQEvStart()

3.3.8 Message Channels

Message channels are a socket-based facility that provides for inter-process
communication across memory boundaries on a single node (processor), as well as
for inter-process communication between multiple nodes (multi-processor). That
is, message channel communications can take place between tasks running in the
kernel and tasks running in processes (RTPs) on a single node, as well as between
multiple nodes, regardless of the memory context in which the tasks are running.
For example, message channels can be used to communicate between:

Table 3-15 Routines That Modify the Task Events Register

Routine Effect on the Task Events Register

eventReceive() Clears or leaves the contents of the task’s events register intact,
depending on the options selected.

eventClear() Clears the contents of the task’s events register.

eventSend() Writes events to a tasks’s events register.

semGive() Writes events to the tasks’s events register, if the task is
registered with the semaphore.

msgQSend() Writes events to a task’s events register, if the task is registered
with the message queue.

VxWorks
Application Programmer’s Guide, 6.2

128

■ a task in the kernel and a task in a process on a single node

■ a task in one process and a task in another process on a single node

■ a task in the kernel of one node and a task in a process on another node

■ a task in a process on one node and a task in a process on another node

and so on.

The scope of message channel communication can be configured to limit server
access to:

■ one memory space on a node (either the kernel or one process)

■ all memory spaces on a node (the kernel and all processes)

■ a cluster of nodes in a system (including all memory spaces in each node)

Message channels provide a connection-oriented messaging mechanism. Tasks
exchange information in the form of messages that can be of variable size and
format. They can be passed back and forth in full duplex mode once the connection
is established. Message channels can also provide a connection-oriented
messaging mechanism between separate nodes in a cluster.

Message Channel Facilities

The message channel technology consists of the following basic facilities:

■ The Connection-Oriented Message Passing (COMP) infrastructure for single
node communication. See Single-Node Communication with COMP, p.129.

■ The Transparent Inter-Process Communication (TIPC) infrastructure for
multi-node communication. See Multi-Node Communication with TIPC, p.132.

■ The Socket Name Service (SNS), which provides location and interface
transparency for message channel communication between tasks on a single
node, and maintains communication between nodes for multi-node message
channel communications. In addition, it controls the scope of message channel
communication (to two memory spaces, a node, or a cluster of nodes). See
Socket Name Service, p.133.

■ The Socket Application Libraries (SAL), which provide APIs for using
message channels in applications, as well as the mechanism for registering the
tasks that are using a message channel with a Socket Name Service. See Socket
Application Libraries, p.136.

Also see Comparing Message Channels and Message Queues, p.142.

3 Multitasking
3.3 Intertask and Interprocess Communications

129

3

Single-Node Communication with COMP

The underlying transport mechanism for single-node message channels is based
on the Connection-Oriented Message Passing protocol (COMP), which provides a
fast method for transferring messages across memory boundaries on a single node.

COMP is designed for use with the standard socket API. Because it provides
connection-oriented messaging, the socket type associated with message channels
is the SOCK_SEQPACKET. The protocol is connection-based, like other
stream-based protocols such as TCP, but it carries variable-sized messages, like
datagram-based protocols such as UDP.

While COMP provides for standard socket support, it has no dependency on
TCP/IP networking facilities, which can be left out of a system if the facilities are
not otherwise needed.

In providing single-node local communications, COMP sockets are available as
part of the AF_LOCAL domain. Although this domain is traditionally related to the
UNIX file system, in VxWorks the addressing is completely independent of any file
system. Like UNIX sockets, COMP uses a string to define the address, and it has a
structure similar to a file path name, but this is the extent of the similarity in this
regard. The address is simply a logical representation of the end-point.

The transfer of data in message channels is based on an internal buffer
management implementation that allows for deterministic memory allocation,
which reduces the amount of copies needed to transfer the data whenever possible.
Only one copy is needed for the internal transfer; the data coming from the user is
directly moved into the receiver buffer space. Another copy is required to submit
and retrieve the data to and from the channel.

COMP supports the standard socket options, such as SO_SNDBUF or
SO_RECVBUF and SO_SNDTIMEO and SO_RCVTIME. For information about the
socket options, refer to the socket API references. For information about how
COMP uses them, see
installDir/vxworks-6.x/target/src/dsi/backend/dsiSockLib.c.

Express Messaging

Express messaging is also available for sending and receiving a message. An
express message is placed on a special queue on the sending side and placed at the
front of the normal queue at the receiving end. This allows for urgent messages to
be sent and received with a higher priority than the normal messages. In order to
send an express message, the flags parameter of the standard send() routine must
have the MSG_EXP bit set. (Also see the socket send() API reference).

VxWorks
Application Programmer’s Guide, 6.2

130

Show Routines

Because COMP is based on the standard socket API, traditional network show
routines can be used, such as netstat(). In addition, information on local sockets
can be retrieved with the unstatShow() routine.

COMP Socket Support with DSI

The COMP socket functional interface is provided by the DSI back end. The back
end provides the set of implementations of the standard socket functions for the
COMP protocol specific calls. The traditional network protocols in VxWorks, such
as TCP and UDP, use the BSD Internet Domain Socket back end and are described
in the Wind River Network Stack for VxWorks 6 Programmer’s Guide. The DSI back end
is a simplified version of the BSD back-end. It is designed for optimized
communications when both end points are in a single node (which is true for
COMP).

The DSI back end requires its own system and data memory pools, which are used
to handle the creation of sockets and the data transfers between two endpoints.
The pools are similar to those required for the network stack. In addition, the pools
are configured so as to enhance performance for the local transfers. The system
pool provides COMP with the memory it needs for its internal structures and data
types. The data pool provides COMP with the memory it needs for receiving data.
Because COMP is local, data transfer has been optimized so that data are put
directly in the receiver’s packet queue.

Both the DSI back end and DSI memory pools complement the BSD equivalent.
Therefore, both BSD and DSI sockets can coexist in the system. They do not depend
on each other, so that they can be added or removed, as needed.

COMP uses netBufLib to manage its internal system and data memory pools. For
detailed information on how buffers are configured, see the coverage of the similar
technology, netBufPool, in the Wind River Network Stack for VxWorks 6
Programmer’s Guide.

These pools are created automatically by the INCLUDE_DSI_POOL component.
The DSI parameters listed in Table 3-16 are used for memory pool configuration.
These parameters are used when usrNetDsiPoolConfig() routine is called, which
happens automatically when the system boots. The dsiSysPoolShow() and
dsiDataPoolShow() can be used to display related information (see the VxWorks
API reference for dsiSockLib).

3 Multitasking
3.3 Intertask and Interprocess Communications

131

3

The DSI pool is configured more strictly and more efficiently than the core network
pool since it is more contained, fewer scenarios are possible, and everything is
known in advance (as there is only the one node involved). The
DSI_NUM_SOCKETS parameter controls the size of the system pool. It controls the
number of clusters needed to fit a socket, for each family and each protocol
supported by the back end. Currently, only the AF_LOCAL address family is
supported by COMP.

The clusters allocated in the back end are of these sizes:

■ aligned sizeof (struct socket)
■ aligned sizeof (struct uncompcb)
■ aligned sizeof (struct sockaddr_un)

One cluster of size 328 and of size 36 are needed for each socket that is created since
currently, the COMP protocol is always linked to a DSI socket. Only one cluster of
sizeof (struct sockaddr_un) is required, therefore the size of the system pool is

Table 3-16 INCLUDE_DSI_POOL Component Parameters

Parameter Default Value

DSI_NUM_SOCKETS 200

DSI_DATA_32 50

DSI_DATA_64 100

DSI_DATA_128 200

DSI_DATA_256 40

DSI_DATA_512 40

DSI_DATA_1K 10

DSI_DATA_2K 10

DSI_DATA_4K 10

DSI_DATA_8K 10

DSI_DATA_16K 4

DSI_DATA_32K 0

DSI_DATA_64K 0

VxWorks
Application Programmer’s Guide, 6.2

132

basically determined by: (DSI_NUM_SOCKETS * (328 + 36) + 108)). Using these
sizes prevents any loss of space since they are the actual sizes needed.

All other parameters for the DSI pool are used to calculate the size of clusters in the
data pool, and at the same time, the size of the pool itself. The data pool is used as
packet holders during the transmissions between two sockets, between the time
the data is copied from the sender’s buffer to the receiver’s buffer. Each of them
represent a cluster size from 32 bytes to 64 kilobytes and the number of allocated
clusters of that specific size.

To set reasonable values for the parameters in this component, you need to know
how much memory your deployed application will require. There is no simple
formula that you can use to anticipate memory usage. Your only real option is to
determine memory usage empirically. This means running your application under
control of the debugger, pausing the application at critical points in its execution,
and monitoring the state of the memory pool. You will need to perform these tests
under both stressed and unstressed conditions.

Multi-Node Communication with TIPC

The underlying transport mechanism for multi-node message channels is based on
the Transparent Inter-Process Communication (TIPC) protocol, which provides a
fast method for transferring messages across node boundaries in a cluster
environment. TIPC can also be used within a single node.

TIPC is designed for use with the standard socket API. For connection-oriented
messaging, the socket type associated with message channels is the
SOCK_SEQPACKET.

The TIPC protocol is connection-based, like other stream-based protocols such as
TCP, but it carries variable-sized messages, like datagram-based protocols such as
UDP. In providing cluster and node based communications, TIPC sockets are
available in the AF_TIPC domain. TIPC provides several means of identifying end
points that are handled transparently through the SNS name server. In this release,
TIPC has a dependency on the TCP/IP stack. For more information about TIPC,
see the Wind River TIPC for VxWorks 6 Programmer's Guide.

TIPC Socket Support With BSD

The TIPC socket functionality is provided by the BSD socket back end. In a future
VxWorks release, the socket functionality will be provided by a new back end.

3 Multitasking
3.3 Intertask and Interprocess Communications

133

3

Socket Name Service

A Socket Name Service (SNS) allows a server application to associate a service
name with a collection of listening sockets, as well as to limit the visibility of the
service name to a restricted (but not arbitrary) set of clients.

Both Socket Application Library (SAL) client and server routines make use of an
SNS server to establish a connection to a specified service without the client having
to be aware of the address of the server's listening sockets, or the exact interface
type being utilized (see Socket Application Libraries, p.136). This provides both
location transparency and interface transparency. Such transparency makes it
possible to design client and server applications that can operate efficiently
without requiring any knowledge of the system's topology.

An SNS server is a simple database that provides an easy mapping of service
names and their associated sockets. The service name has this URL format:

[SNS:]service_name[@scope]

The [SNS:] prefix is the only prefix accepted, and it can be omitted. The scope can
have the following values: private, node, or cluster. These values designate an
access scope for limiting access to the same single memory space (the kernel or a
process), the same node (the kernel and all processes on that node), and a set of
nodes, respectively. A server can be accessed by clients within the scope that is
defined when the server is created with the salCreate() routine (see SAL Server
Library, p.137).

SNS provides a resource reclamation mechanism for servers created within
processes. If a process dies before salDelete() has been called on a SAL server, SNS
will be notified and will remove the entry from the database. Note, however, that
this mechanism is not available for tasks in the kernel. If a task in the kernel
terminates before salDelete() is called, the service name is not automatically
removed from SNS. In order to avoid stale entries that may prevent new services
with the same name from being created, the salRemove() routine should be used.

The SNS server can be configured to run in either kernel or user space. A node
should not be configured with more than one SNS server. The server starts at boot
time, and is named tSnsServer if it is running in the kernel, or iSnsServer if it is
running as a process. For a multi-node system, a monitoring task is automatically
spawned to maintain a list of all the SNS servers in the cluster. The monitoring task
is named tDsalMonitor, and it runs in the kernel.

The snsShow() command allows a user to verify that SAL-based services are
correctly registered with the SNS server from the shell (see snsShow() Example,
p.135).

VxWorks
Application Programmer’s Guide, 6.2

134

For more information, see theVxWorks API reference for snsLib.

Multi-Node Socket Name Service

For a multi-node system, a Socket Name Service (SNS) runs on each node that is
configured to use SAL. Note that VxWorks SNS components for multi-node use are
different from those used on single node systems (see onfiguring VxWorks for
Message Channels, p.140).

When a distributed SNS server starts on a node at boot time, it uses a TIPC bind
operation to publish a TIPC port name. This is visible to all other nodes in the
cluster. The other existing SNS servers then register the node in their tables of SNS
servers. A separate monitoring task (called tDsalMonitor) is started on each node
at boot time, which uses the TIPC subscription feature to detect topology-change
events such as a new SNS server coming online, or an existing SNS server leaving
the cluster.

Note that if the TIPC networking layer does not start up properly at boot time, the
distributed SAL system will not initialize itself correctly with TIPC, and the SNS
server will work strictly in local mode. The SNS server does not check for a
working TIPC layer after the system boots, so that it will not detect the layer if it is
subsequently started manually, and the SNS server will continue to run in local
mode.

When a new node appears, each SNS server sends a command to that node
requesting a full listing of all sockets that are remotely accessible. The SNS server
on the new node sends a list of sockets that can be reached remotely.

Each time a new socket is created with salCreate() on a node that has a server
scope greater than node, this information is sent to all known SNS servers in the
cluster. All SNS servers are thereby kept up to date with relevant information.
Similarly, when a socket is deleted using the salRemove() function, this
information is sent to all known SNS servers in the cluster. The addition and
removal of sockets is an infrequent occurrence in most anticipated uses and should
be of minimal impact on network traffic and on the performance of the node.

When the tDsalMonitor task detects that an SNS server has been withdrawn from
the system, the local SNS server purges all entries related to the node that is no
longer a part of the distributed SNS cluster.

Note that only information on accessible sockets is transmitted to remote SNS
servers. While it is acceptable to create an AF_LOCAL socket with cluster scope,
this socket will use the COMP protocol which can only be accessed locally. SNS
servers on remote nodes will not be informed of the existence of this socket.

3 Multitasking
3.3 Intertask and Interprocess Communications

135

3

On a local node, if a socket name exists in the SNS database in both the AF_LOCAL
and AF_TIPC families, when a connection is made to that name using salOpen(),
the AF_LOCAL socket will be used.

snsShow() Example

The snsShow() shell command provides information about all sockets that are
accessible from the local node, whether the sockets are local or remote. The
command is provided by the VxWorks INCLUDE_SNS_SHOW component.

The following examples illustrate snsShow() output from three different nodes in
a system.

From Node <1.1.22>

NAME SCOPE FAMILY TYPE PROTO ADDR
-------------------------- ----- ------ ------- ----- -------------------
astronaut_display clust LOCAL SEQPKT 0 /comp/socket/0x5
 TIPC SEQPKT 0 <1.1.22>,1086717967
ground_control_timestamp clust TIPC SEQPKT 0 * <1.1.25>,1086717965
ground_control_weblog clust TIPC SEQPKT 0 * <1.1.25>,1086717961
heartbeat_private priv LOCAL SEQPKT 0 /comp/socket/0x4
 TIPC SEQPKT 0 <1.1.22>,1086717966
local_temperature node LOCAL SEQPKT 0 /comp/socket/0x2
newsfeed clust TIPC SEQPKT 0 * <1.1.50>,1086717962
rocket_diagnostic_port clust TIPC SEQPKT 0 <1.1.22>,1086717964
rocket_propellant_fuel_level_interface
 ---- clust TIPC SEQPKT 0 <1.1.22>,1086717960
spacestation_docking_port clust TIPC SEQPKT 0 * <1.1.55>,1086717963

From Node <1.1.25>

NAME SCOPE FAMILY TYPE PROTO ADDR
-------------------------- ----- ------ ------- ----- -------------------
astronaut_display clust TIPC SEQPKT 0 * <1.1.22>,1086717967
ground_control_timestamp clust LOCAL SEQPKT 0 /comp/socket/0x3
 TIPC SEQPKT 0 <1.1.25>,1086717965
ground_control_weblog clust TIPC SEQPKT 0 <1.1.25>,1086717961
local_billboard node LOCAL SEQPKT 0 /comp/socket/0x2
 TIPC SEQPKT 0 <1.1.25>,1086717964
newsfeed clust TIPC SEQPKT 0 * <1.1.50>,1086717962
rocket_diagnostic_port clust TIPC SEQPKT 0 * <1.1.22>,1086717964
rocket_propellant_fuel_level_interface
 ---- clust TIPC SEQPKT 0 * <1.1.22>,1086717960
spacestation_docking_port clust TIPC SEQPKT 0 * <1.1.55>,1086717963

VxWorks
Application Programmer’s Guide, 6.2

136

From Node <1.1.55>

NAME SCOPE FAMILY TYPE PROTO ADDR
-------------------------- ----- ------ ------- ----- -------------------
astronaut_display clust TIPC SEQPKT 0 * <1.1.22>,1086717967
ground_control_timestamp clust TIPC SEQPKT 0 * <1.1.25>,1086717965
ground_control_weblog clust TIPC SEQPKT 0 * <1.1.25>,1086717961
newsfeed clust TIPC SEQPKT 0 * <1.1.50>,1086717962
rocket_diagnostic_port clust TIPC SEQPKT 0 * <1.1.22>,1086717964
rocket_propellant_fuel_level_interface
 ---- clust TIPC SEQPKT 0 * <1.1.22>,1086717960
spacestation_docking_port clust LOCAL SEQPKT 0 /comp/socket/0x2
 TIPC SEQPKT 0 <1.1.55>,1086717963

The output of the snsShow() command is fairly self-explanatory. The first field is
the name of the socket. If the name is longer than the space allocated in the output,
the entire name is printed and the other information is presented on the next line
with the name field containing several dashes.

The scope values are priv for private, node for node, and clust for cluster.

The family types can be TIPC for AF_TIPC or LOCAL for AF_LOCAL.

The socket type can be SEQPKT for SOCK_SEQPACKET, RDM.

The protocol field displays a numeric value and a location indicator. The numeric
value is reserved for future use, and currently only zero is displayed. The final
character in the field indicates whether the socket was created on a remote or local
node, with an asterisk (*) designating remote.

The address field indicates the address of the socket. All addresses of the form
/comp/socket belong to the AF_LOCAL family. All addresses of the form
<x.y.z>,refID belong to the AF_TIPC family. The TIPC address gives the TIPC
portID which consists of the nodeID and the unique reference number.

Socket Application Libraries

The Socket Application Libraries (SAL) simplify creation of both server and client
applications by providing routines to facilitate use of the sockets API.

SAL also provides an infrastructure for the development of location-transparent
and interface-transparent applications. By allowing SAL to handle the basic
housekeeping associated with a socket-based application, developers can focus on
the application-specific portions of their designs. Developers are free to use the
complete range of SAL capabilities in their applications, or just the subset that suits
their needs; they can even bypass SAL entirely and develop a socket-based

3 Multitasking
3.3 Intertask and Interprocess Communications

137

3

application using nothing but custom software. The SAL client and server APIs
can be used in both kernel and user space.

Several VxWorks components are available to provide SAL support in different
memory spaces, for single or multi-node systems, and so on (see onfiguring
VxWorks for Message Channels, p.140).

SAL-based applications can also utilize the Socket Name Service (SNS), which
allows a client application to establish communication with a server application
without having to know the socket addresses used by the server (see Socket Name
Service, p.133).

SAL Server Library

The SAL server routines provide the infrastructure for implementing a
socket-based server application. The SAL server allows a server application to
provide service to any number of client applications. A server application
normally utilizes a single SAL server in its main task, but is free to spawn
additional tasks to handle the processing for individual clients if parallel
processing of client requests is required. The SAL server library is made of the
following routines:

salCreate()
Creates a named socket-based server.

salDelete()
Deletes a named socket-based server.

salServerRtnSet()
Configures the processing routine with the SAL server.

salRun()
Activates a socket-based server.

salRemove()
Removes a service from the SNS by name.

A server application typically calls salCreate() to configure a SAL server with one
or more sockets that are then automatically registered with SNS under a specified
service identifier. The number of sockets created depends on which address
families, socket types, and socket protocols are specified by the server application.
AF_LOCAL and AF_TIPC sockets are supported.

If the address family specified is AF_UNSPEC, the system attempts to create sockets
in all of the supported address families (AF_LOCAL and AF_TIPC). The socket
addresses used for the server's sockets are selected automatically, and cannot be
specified by the server application with salCreate().

VxWorks
Application Programmer’s Guide, 6.2

138

A server can be accessed by clients within the scope that is defined when the server
is created with the salCreate() routine. The scope can have the following values:
private, node, or cluster. These values designate an access scope for limiting access
to the same task (kernel or process), the same node (the kernel and all processes on
that node), and a set of nodes, respectively. For example, the following call would
create a socket named foo with cluster scope:

salCreate("foo@cluster",1,5)

Once created, a SAL server must be configured with one or more processing
routines before it is activated. These routines can be configured by calling
salServerRtnSet().

Once the server is ready, salRun() is called to start the server activities. The
salRun() routine never returns unless there is an error or one of the server
processing routines requests it. You must call salDelete() to delete the server and
its sockets regardless of whether or not the routine has terminated. This is
accomplished with salDelete(). This routine can be called only by tasks in the
process (or the kernel) where the server was created. In order for tasks outside the
process to remove a service name from SNS, salRemove() must be used. The
salRemove() routine does not close sockets, nor does it delete the server. It only
deletes the SNS entry, and therefore access to any potential clients.

For more information, including sample service code, see the VxWorks API
reference for the salServer library.

SAL Client Library

The SAL client library provides a simple means for implementing a socket-based
client application. The data structures and routines provided by SAL allow the
application to easily communicate with socket-based server applications that are
registered with the Socket Name Service (see Socket Name Service, p.133).
Additional routines can be used to communicate with server applications that are
not registered with the SNS. The SAL client library is made of the following
routines:

salOpen()
Establishes communication with a named socket-based server.

salSocketFind()
Finds sockets for a named socket-based server.

salNameFind()
Finds services with the specified name.

3 Multitasking
3.3 Intertask and Interprocess Communications

139

3

salCall()
Invokes a socket-based server.

A client application typically calls salOpen() to create a client socket and connect
it to the named server application. The client application can then communicate
with the server by passing the socket descriptor to standard socket API routines,
such as send() and recv().

As an alternative, the client application can perform a send() and recv() as a single
operation using salCall(). When the client application no longer needs to
communicate with a server it calls the standard socket close() routine to close the
socket to the server.

A client socket can be shared between two or more tasks. In this case, however,
special care must be taken to ensure that a reply returned by the server application
is handled by the correct task.

The salNameFind() and salSocketFind() routines facilitate the search of the
server and provide more flexibility for the client application.

The salNameFind() routine provides a lookup mechanism for services based on
pattern matching, which can be used with (multiple) wild cards to locate similar
names. For example, if the names are foo, foo2, and foobar, then a search using
foo* would return them all. The scope of the search can also be specified. For
example, a client might want to find any server up to a given scope, or only within
a given scope. In the former case the upto_ prefix can be added to the scope
specification. For example, upto_node defines a search that look for services in all
processes and in the kernel in a node.

Once a service is found, the salSocketFind() routine can be used to return the
proper socket ID. This can be useful if the service has multiple sockets, and the
client requires use of a specific one. This routine can also be used with wild cards,
in which case the first matching server socket is returned.

For more information, including sample client code, see the VxWorks API
reference for the salClient library.

VxWorks
Application Programmer’s Guide, 6.2

140

onfiguring VxWorks for Message Channels

To provide the full set of message channel facilities in a system, configure VxWorks
with the following components:

■ INCLUDE_UN_COMP
■ INCLUDE_DSI_POOL
■ INCLUDE_DSI_SOCKET
■ INCLUDE_SAL_SERVER
■ INCLUDE_SAL_CLIENT

Note that INCLUDE_UN_COMP is required for both single and multi-node
systems, as it provides support for communication between SAL and SNS.

While COMP provides for standard socket support, it has no dependency on
TCP/IP networking facilities, which can be left out of a system if they are not
otherwise needed.

For multi-node systems, TIPC components must also be included. See the Wind
River TIPC Programmer’s Guide for more information.

SNS Configuration

In addition to the COMP, DSI, and SAL components, one of the four following
components is required for SNS:

■ INCLUDE_SNS to run SNS as a kernel daemon.

■ INCLUDE_SNS_RTP to start SNS as a process automatically at boot time.

■ INCLUDE_SNS_MP to run SNS as a kernel daemon supporting distributed
named sockets.

■ INCLUDE_SNS_MP_RTP to start SNS as a process automatically at boot time
supporting distributed named sockets.

Note that including a distributed SNS server will cause the inclusion of TIPC
which in turn will force the inclusion of other networking components.

Running SNS as a Process

In order to run SNS as a process (RTP), the developer must also build the server,
add it to ROMFS, configure VxWorks with ROMFS support, and then rebuild the
entire system:

a. Build installDir/vxworks-6.x/target/usr/apps/dsi/snsd/snsd.c (using the
makefile in the same directory) to create snsServer.vxe.

3 Multitasking
3.3 Intertask and Interprocess Communications

141

3

b. Copy snsServer.vxe to the ROMFS directory (creating the directory first, if
necessary.

The INCLUDE_SNS_RTP and INCLUDE_SNS_MP_RTP components need to
know the location of the server in order to start it at boot time. They expect
to find the server in the ROMFS directory. If you wish to store the server
somewhere else (in another file system to reduce the VxWorks image size,
for example) use the SNS_PATHNAME parameter to identify the location.

c. Configure VxWorks with the ROMFS component.

d. Rebuild VxWorks.

These steps can also be performed with Wind River Workbench (see the Wind River
Workbench User’s Guide). For information about ROMFS, see 7.7 Read-Only Memory
File System: ROMFS, p.284.

SNS Configuration

The following SNS component parameters can usually be used without
modification:

SNS_LISTEN_BACKLOG
This parameter defines the number of outstanding service requests that the
SNS server can track on the socket that it uses to service SNS requests from
SAL routines. The default value is 5. The value may be increased if some SAL
requests are not processed on a busy system.

SNS_DISTRIBUTED_SERVER_TYPE and SNS_DISTRIBUTED_SERVER_INSTANCE
These parameters are used in the multi-node configuration of SNS servers to
define the TIPC port name that all SNS servers use. The default is type 51 and
instance 51 in the TIPC name tables. If this type and instance conflict with
other usages in the network, they can be changed to values that are unique for
the network. Note that it is recommended to use a type of 50 or above (types 0
through 7 are reserved by TIPC).

The SNS server creates a COMP socket for local communication with the socket
address of 0x0405. All of the SAL routines send messages to the SNS server at this
socket address.

! CAUTION: It is recommended that you do not change the default values of the
SNS_PRIORITY and SNS_STACK_SIZE parameters. The default for SNS_PRIORITY
is 50 and the default for SNS_STACK_SIZE is 20000.

VxWorks
Application Programmer’s Guide, 6.2

142

Show Routines

The show routines related to COMP can be included by adding the
INCLUDE_UN_COMP_SHOW component. The snsShow()routine is included with
the INCLUDE_SNS_SHOW component. In order to use netstat() the network show
routines need to be included. Note that this will force the inclusion of networking
components.

For information about processes and applications, see 2. Applications and Processes.

Comparing Message Channels and Message Queues

Message channels can be used similarly to message queues, to exchange data
between two tasks. Both methods allow multiple tasks to send and receive from
the same channel. The main differences between these two mechanisms are:

■ Message channels can be used to communicate between nodes, but message
queues cannot.

■ Message channels are connection-oriented while message queues are not.
There is no way to establish a connection between two tasks with message
queues. In a connection-oriented communication, the two end-points are
aware of each other, and if one leaves the other eventually finds out. By way of
analogy, a connection-oriented communication is like a telephone call,
whereas a connection-less communication is like sending a letter. Both models
are valid, and the requirements of the application should determine their use.

Each message queue is unidirectional. In order to establish a bidirectional
communication, two queues are needed, one for each end-point (see
Figure 3-14). Each message channel is bidirectional and data can be sent from
both end-points at any time. That is, each message channel provides
connection-oriented full-duplex communication.

■ The messages communicated by message channels can be of variable size,
whereas those communicated by message queues have a maximum size that
is defined when the queue is created. Message channels therefore allow for a
better utilization of system resources by using exactly what is needed for the
message, and nothing more.

■ Message queues have a fixed capacity. Only a pre-defined number of messages
can be in a queue at any one time. Message channels, on the other hand, have
a flexible capacity. There is no limit to the number of messages that a message
channel can handle.

3 Multitasking
3.3 Intertask and Interprocess Communications

143

3

■ Message channels provide location transparency. An endpoint can be referred
to by a name, that is by a simple string of characters (but a specific address can
also be used). Message queues only provide location transparency for
interprocess communication when they are created as public objects.

■ Message channels provide a simple interface for implementing a client/server
paradigm. A location transparent connection can be established by using two
simple calls, one for the client and one for the server. Message queues do not
provide support for client/server applications.

■ Message channels use the standard socket interface and support the select()
routine; message queues do not.

■ Message channels cannot be used with VxWorks events; message queues can.

■ Message queues are based entirely on a proprietary API and are therefore
more difficult to port to a different operating systems than message channels,
which are based primarily on the standard socket API.

Message channels are better suited to applications that are based on a client/server
paradigm and for which location transparency is important.

3.3.9 Network Communication

To communicate peer on a remote networked system, you can use an Internet
domain socket or RPC. For information on working with Internet domain sockets
under VxWorks, see the Wind River Network Stack for VxWorks 6 Programmer’s
Guide: Sockets under the Wind River Network Stack. For information on RPC, see Wind
River Network Stack for VxWorks 6 Programmer’s Guide: RPC Components and the
VxWorks API reference for rpcLib.

3.3.10 Signals

VxWorks provides a software signal facility. Signals asynchronously alter the
control flow of a task or process.

Signals are the means by which processes are notified of the occurrence of
significant events in the system. Examples of significant events include hardware
exceptions, signals to kill processes, and so on. Each signal has a unique number,
and there are 31 signals in all. The value 0 is reserved for use as the null signal. Each
signal has a default action associated with itself. Developers can change the
default. Signals can either be disabled, so that they will not interrupt the process,
or enabled, which allows signals to be received.

VxWorks
Application Programmer’s Guide, 6.2

144

When a process starts running, it inherits a the signal mask of the process that
created it. If it was created by a kernel task, the initial task of the process has all
signals unblocked. It also inherits default actions associated with each signal. Both
can later be changed with routines that are provided by the sigLib library.

Most signals are sent to the process as a whole. Individual tasks in a process can
block out signals. Signals sent to a process are delivered to the task that has the
signal enabled.

By default, signals sent to a task in a process result in the termination of the
process.

Tasks in processes cannot raise signals for kernel tasks, but any task in a process
can raise a signal for:

■ itself
■ any other task in its process
■ any public task in the system
■ its own process
■ any other process in the system

For information about public tasks, see Task Names and IDs, p.86.

The process of delivering a signal involves setting up the signal context so that the
action associated with the signal is executed, and the return path after the signal
handler returns gets the target task back to its original execution context. Unlike
kernel signal generation and delivery, which runs in the context of the task or ISR
that generates the signal, process signal generation is performed by the sender
task, but the signal delivery actions take place in the context of the receiving task.

For information about POSIX queued signals extension from POSIX 1003.1, see
4.14 POSIX Queued Signals, p.200.

For information about using signals in processes, see VxWorks Application
Programmer’s Guide: Multitasking.

NOTE: The VxWorks implementation of sigLib does not impose any special
restrictions on operations on SIGKILL, SIGCONT, and SIGSTOP signals such as
those imposed by UNIX. For example, the UNIX implementation of signal()
cannot be called on SIGKILL and SIGSTOP.

3 Multitasking
3.3 Intertask and Interprocess Communications

145

3

Configuring VxWorks for Signals

By default, VxWorks includes the basic signal facility component
INCLUDE_SIGNALS. This component automatically initializes signals with
sigInit().

Basic Signal Routines

Signals are in many ways analogous to hardware interrupts. The basic signal
facility provides a set of 31 distinct signals. A signal handler binds to a particular
signal with sigvec() or sigaction() in much the same way that an ISR is connected
to an interrupt vector with intConnect(). A signal can be asserted by calling kill().
This is analogous to the occurrence of an interrupt. The routines sigsetmask() and
sigblock() or sigprocmask() let signals be selectively inhibited. Certain signals
are associated with hardware exceptions. For example, bus errors, illegal
instructions, and floating-point exceptions raise specific signals.

VxWorks also provides a POSIX and BSD-like kill() routine, which sends a signal
to a task.

For a list and description of the basic set of POSIX and BSD-compatible signal calls
provided by VxWorks for use with processes, see Table 3-17.

VxWorks
Application Programmer’s Guide, 6.2

146

For more information about signal routines, see the VxWorks API reference for
sigLib.

Signal Handlers

Signals are more appropriate for error and exception handling than as a
general-purpose intertask communication mechanism. And in general, signal
handlers should be treated like ISRs; no routine should be called from a signal
handler that might cause the handler to block. Because signals are asynchronous,
it is difficult to predict which resources might be unavailable when a particular
signal is raised.

Table 3-17 Basic Signal Calls

POSIX 1003.1b
Compatible
Call Description

signal() Specifies the handler associated with a signal.

kill() Sends a signal to a process.

raise() Sends a signal to the caller’s process.

sigaction() Examines or sets the signal handler for a signal.

sigsuspend() Suspends a task until a signal is delivered.

sigpending() Retrieves a set of pending signals blocked from delivery.

sigemptyset()
sigfillset()
sigaddset()
sigdelset()
sigismember()

Manipulates a signal mask.

sigprocmask() Sets the mask of blocked signals.

sigprocmask() Adds to a set of blocked signals.

sigaltstack() Set or get a signal’s alternate stack context.

3 Multitasking
3.3 Intertask and Interprocess Communications

147

3

To be perfectly safe, call only those routines listed in Table 3-18. Deviate from this
practice only if you are certain that your signal handler cannot create a deadlock
situation.

Most signals are delivered asynchronously to the execution of a program.
Therefore programs must be written to account for the unexpected occurrence of
signals, and handle them gracefully. Unlike ISR's, signal handlers execute in the
context of the interrupted task or process. And the VxWorks kernel does not
distinguish between normal task execution and a signal context, as it distinguishes
between a task context and an ISR. Therefore the system has no way of
distinguishing between a task execution context and a task executing a signal
handler. To the system, they are the same.

Table 3-18 Routines Called by Signal Handlers

Library Routines

bLib All routines

errnoLib errnoGet(), errnoSet()

eventLib eventSend()

logLib logMsg()

lstLib All routines except lstFree()

msgQLib msgQSend()

rngLib All routines except rngCreate() and rngDelete()

semLib semGive() except mutual-exclusion semaphores, semFlush()

sigLib kill()

taskLib taskSuspend(), taskResume(), taskPrioritySet(),
taskPriorityGet(), taskIdVerify(), taskIdDefault(),
taskIsReady(), taskIsSuspended(), taskTcb()

tickLib tickAnnounce(), tickSet(), tickGet()

VxWorks
Application Programmer’s Guide, 6.2

148

When you write signal handlers make sure that they:

■ Release resources prior to exiting:

– Free any allocated memory.
– Close any open files.
– Release any mutual exclusion resources such as semaphores.

■ Leave any modified data structures in a sane state.

Notify the parent process with an appropriate error return value. Mutual exclusion
between signal handlers and tasks must be managed with care. In general, users
should completely avoid the following activity in signal handlers:

■ Taking mutual exclusion (such as semaphores) resources that can also be taken
by any other element of the application code. This can lead to deadlock.

■ Modifying any shared data memory that may have been in the process of
modification by any other element of the application code when the signal was
delivered. This compromises mutual exclusion and leads to data corruption.

Both scenarios are very difficult to debug, and should be avoided. One safe way to
synchronize other elements of the application code and a signal handler is to set
up dedicated flags and data structures that are set from signal handlers and read
from the other elements. This ensures a consistency in usage of the data structure.
In addition, the other elements of the application code must check for the
occurrence of signals at any time by periodically checking to see if the
synchronizing data structure or flag has been modified in the background by a
signal handler, and then acting accordingly. The use of the volatile keyword is
useful for memory locations that are accessed from both a signal handler and other
elements of the application.

Taking a mutex semaphore in a signal handler is an especially bad idea. Mutex
semaphores can be taken recursively. A signal handler can therefore easily
re-acquire a mutex that was taken by any other element of the application. Since
the signal handler is an asynchronously executing entity, it has thereby broken the
mutual exclusion that the mutex was supposed to provide.

Taking a binary semaphore in a signal handler is an equally bad idea. If any other
element has already taken it, the signal handler will cause the task to block on
itself. This is a deadlock from which no recovery is possible. Counting semaphores,
if available, suffer from the same issue as mutexes, and if unavailable, are
equivalent to the binary semaphore situation that causes an unrecoverable
deadlock.

On a general note, the signal facility should be used only for notifying/handling
exceptional or error conditions. Usage of signals as a general purpose IPC

3 Multitasking
3.4 Timers

149

3

mechanism or in the data flow path of an application can cause some of the pitfalls
described above.

3.4 Timers

VxWorks provides watchdog timers, but they can only be used in the kernel (see
VxWorks Kernel Programmer’s Guide: Multitasking. However, process-based
applications can use POSIX timers (see 4.6 POSIX Clocks and Timers, p.159).

VxWorks
Application Programmer’s Guide, 6.2

150

151

 4
POSIX Standard Interfaces

4.1 Introduction 152

4.2 Configuring VxWorks with POSIX Facilities 153

4.3 General POSIX Support 154

4.4 POSIX Header Files 156

4.5 POSIX Process Support 158

4.6 POSIX Clocks and Timers 159

4.7 POSIX Asynchronous I/O 161

4.8 POSIX Page-Locking Interface 162

4.9 POSIX Threads 163

4.10 POSIX Scheduling 170

4.11 POSIX Semaphores 179

4.12 POSIX Mutexes and Condition Variables 186

4.13 POSIX Message Queues 188

4.14 POSIX Queued Signals 200

VxWorks
Application Programmer’s Guide, 6.2

152

4.1 Introduction

VxWorks POSIX support in user mode (real-time processes) aims at providing a
higher level of POSIX compatibility than in the kernel environment—the C library
support in particular is highly POSIX compliant. Various APIs which operate on a
task in kernel mode, operate on a process in user mode (such as kill(), exit(), and
so on). It is worthwhile noting that VxWorks' user-mode application environment
is similar to the Realtime Controller System Profile (PSE52) described by POSIX.13
(IEEE Std 1003.13), which is itself based on POSIX.1 (IEEE Std 1003.1).

For information about POSIX support in the kernel, see the VxWorks Kernel
Programmer’s Guide: POSIX Standard Interfaces.

For information about VxWorks real-time processes (RTPs), see 2. Applications and
Processes.

VxWorks provides many POSIX compliant APIs. However, not all POSIX APIs are
suitable for embedded and real-time systems, or are entirely compatible with the
VxWorks operating system architecture. In a few cases, therefore, Wind River has
imposed minor limitations on POSIX functionality to serve either real-time
systems or VxWorks compatibility. For example:

■ Swapping memory to disk is not appropriate in real-time systems, and
VxWorks provides no facilities for doing so. It does, however, provide POSIX
page-locking routines to facilitate porting code to VxWorks. The routines
otherwise provide no useful function—pages are always locked in VxWorks
systems (for more information see 4.8 POSIX Page-Locking Interface, p.162).

■ VxWorks tasks (threads) are scheduled on a system-wide basis; processes
themselves cannot be scheduled. As a consequence, while POSIX access
routines allow two values for contention scope (PTHREAD_SCOPE_SYSTEM
and PTHREAD_SCOPE_PROCESS), only system-wide scope is implemented in
VxWorks for these routines (for more information, see 4.9 POSIX Threads,
p.163).

Any such limitations on POSIX functionality are identified in this chapter, or in
other chapters of this guide that provide more detailed information on specific
POSIX APIs.

Note that this chapter uses the qualifier VxWorks to identify native non-POSIX
APIs for purposes of comparison with POSIX APIs. For example, you can find a
discussion of VxWorks semaphores contrasted to POSIX semaphores in
4.11.1 Comparison of POSIX and VxWorks Semaphores, p.180, although POSIX
semaphores are also implemented in VxWorks.

4 POSIX Standard Interfaces
4.2 Configuring VxWorks with POSIX Facilities

153

4

4.2 Configuring VxWorks with POSIX Facilities

Process-based applications are automatically linked with the appropriate
user-side POSIX libraries when they are compiled. The libraries are automatically
initialized at run time. User-side POSIX applications also require support from the
kernel—and if VxWorks is not configured with the POSIX components required by
an application, the calls lacking support return an ENOSYS error at run-time. To
include support for VxWorks real-time processes, the operating system must be
configured with the INCLUDE_RTP component. To include support for user-side
POSIX applications, the operating system may have to be configured with
additional components.

General POSIX support can be provided by configuring VxWorks with the
BUNDLE_POSIX component bundle. If memory constraints require a finer-grained
configuration, individual components can be used for selected features. See the
configuration instructions for individual POSIX features.

Table 4-1 provides an overview of the individual VxWorks components that must
be configured in the kernel to provide support for the specified POSIX facilities.

Note that the POSIX thread support in processes requires that the kernel be
configured with the component INCLUDE_POSIX_PTHREAD_SCHEDULER. This
component is not part of the BUNDLE_POSIX bundle.

Table 4-1 VxWorks Components Providing POSIX Facilities

POSIX Facility Required VxWorks Component

for Kernel for Processes

Asynchronous I/O
with system driver

INCLUDE_POSIX_AIO,
INCLUDE_POSIX_AIO_SYSDR
V and INCLUDE_PIPES

INCLUDE_POSIX_CLOCKS and
INCLUDE_POSIX_TIMERS

Clocks INCLUDE_POSIX_CLOCKS INCLUDE_POSIX_CLOCKS

dirLib directory
utilities

INCLUDE_POSIX_DIRLIB N/A

ftruncate INCLUDE_POSIX_FTRUNCATE N/A

Memory locking INCLUDE_POSIX_MEM N/A

Message queues INCLUDE_POSIX_MQ INCLUDE_POSIX_MQ

VxWorks
Application Programmer’s Guide, 6.2

154

4.3 General POSIX Support

Many POSIX-compliant libraries are provided for VxWorks. These libraries are
listed in Table 4-2; see the API references for these libraries for detailed
information.

Wind River advises that you do not combine use of the POSIX libraries with native
VxWorks libraries that provide similar functionality. Doing so may result in
undesirable interactions between the two, as some POSIX APIs manipulate
resources that are also used by native VxWorks APIs. For example, do not use
tickLib routines to manipulate the system's tick counter if you are also using
clockLib routines; do not use the taskLib API to change the priority of a POSIX
thread instead of the pthread API, and so on.

The following sections of this chapter describe the POSIX APIs available to
user-mode applications in addition to the native VxWorks APIs.

pthreads INCLUDE_POSIX_THREADS INCLUDE_POSIX_CLOCKS and
INCLUDE_POSIX_PTHREAD_SCHEDULER

Scheduler INCLUDE_POSIX_SCHED INCLUDE_POSIX_SCHED

Semaphores INCLUDE_POSIX_SEM INCLUDE_POSIX_SEM

Signals INCLUDE_POSIX_SIGNALS N/A

Timers INCLUDE_POSIX_TIMERS INCLUDE_POSIX_TIMERS

Table 4-1 VxWorks Components Providing POSIX Facilities (cont’d)

POSIX Facility Required VxWorks Component

for Kernel for Processes

Table 4-2 POSIX Libraries

Functionality Library

Asynchronous I/O aioPxLib

Buffer manipulation bLib

4 POSIX Standard Interfaces
4.3 General POSIX Support

155

4

Clock facility clockLib

Directory handling dirLib

Environment handling C Library

Environment information sysconf and uname

File duplication ioLib for user mode, and iosLib for the kernel

File management fsPxLib and ioLib

I/O functions ioLib

Options handling getOpt

POSIX message queues mqPxLib

POSIX semaphores semPxLib

POSIX timers timerLib

POSIX threads pthreadLib

Standard I/O and some ANSI C Library

Math C Library

Memory allocation memLib

Network/Socket APIs network libraries

String manipulation C Library

Wide character support C library

Table 4-2 POSIX Libraries (cont’d)

Functionality Library

VxWorks
Application Programmer’s Guide, 6.2

156

4.4 POSIX Header Files

The POSIX 1003.1 standard defines a set of header files as part of the environment
of development of applications. VxWorks’ user-side development environment
provides more POSIX header files than the kernel’s, and their content is also more
in agreement with the standard than the kernel’s header files.

Table 4-3 lists the POSIX header files available for both kernel and user
development environments.

! CAUTION: Currently the test macro _POSIX_C_SOURCE is not supported, so native
symbols (types, macros, routine prototypes) from the VxWorks namespace cannot
be hidden from the application and may conflict with its own symbols.

Some of the type definitions in user-side POSIX header files may conflict with the
native VxWorks types that are made visible via the vxWorks.h header file. This is
the case with stdint.h which should not be included if vxWorks.h is included. This
situation will be resolved in future releases

Table 4-3 POSIX Header Files

Header File Description

aio.h asynchronous input and output

assert.h verify program assertion

complex.h complex arithmetic (user-side only)

ctype.h character types

dirent.h format of directory entries

dlfcn.h dynamic linking (user-side only)

errno.h system error numbers

fcntl.h file control options

fenv.h floating-point environment (user-side only)

float.h floating types (user-side only)

inttypes.h fixed size integer types (user-side only)

iso646.h alternative spellings (user-side only)

4 POSIX Standard Interfaces
4.4 POSIX Header Files

157

4

limits.h implementation-defined constants

locale.h category macros

math.h mathematical declarations

mqueue.h message queues

pthread.h threads

sched.h execution scheduling

search.h search tables (user-side only)

semaphore.h semaphores

setjmp.h stack environment declarations

signal.h signals

stdbool.h boolean type and values (user-side only)

stddef.h standard type definitions (user-side only)

stdint.h integer types (user-side only)

stdio.h standard buffered input/output

stdlib.h standard library definitions

string.h string operations

strings.h string operations (user-side only)

sys/mman.h memory management declarations

sys/resource.h definitions for XSI resource operations

sys/select.h select types (user-side only)

sys/stat.h data returned by the stat() function

sys/types.h data types

sys/un.h definitions for UNIX domain sockets

Table 4-3 POSIX Header Files

Header File Description

VxWorks
Application Programmer’s Guide, 6.2

158

4.5 POSIX Process Support

VxWorks provides support for a user-mode process model. The POSIX APIs
described in Table 4-4 are present in user mode for manipulating processes, and
take a _pid_ argument (also known as an RTP_ID in VxWorks). Basic VxWorks
process facilities are provided with the INCLUDE_RTP component.

sys/utsname.h system name structure (user-side only)

sys/wait.h declarations for waiting (user-side only)

tgmath.h type-generic macros (user-side only)

time.h time types

unistd.h standard symbolic constants and types

utime.h access and modification times structure

wchar.h wide-character handling (user-side only)

wctype.h wide-character classification and mapping utilities (user-side
only)

Table 4-3 POSIX Header Files

Header File Description

Table 4-4 POSIX Process Routines

Routine Description

atexit() Register a handler to be called at exit().

_exit() Terminate the calling process (system call).

exit() Terminate a process, calling atexit() handlers.

getpid() Get the process ID of the current process.

getppid() Get the process ID of the parent's process ID.

4 POSIX Standard Interfaces
4.6 POSIX Clocks and Timers

159

4

4.6 POSIX Clocks and Timers

A clock is a software construct that keeps time in seconds and nanoseconds. The
software clock is updated by system-clock ticks. VxWorks provides a POSIX
1003.1b standard clock and timer interface.

See Table 4-5 for a list of the POSIX clock routines. The obsolete VxWorks-specific
POSIX extension clock_setres() is available for backwards-compatibility
purposes.

The POSIX standard provides a means of identifying multiple virtual clocks, but
only one clock is required: the system-wide real-time clock. Virtual clocks are not
supported in VxWorks.

The system-wide real-time clock is identified in the clock and timer routines as
CLOCK_REALTIME, and is defined in time.h. VxWorks provides routines to access

kill() Send a signal to a process.

raise() Send a signal to the caller's process.

wait() Wait for any child process to die.

waitpid() Wait for a specific child process to die.

Table 4-4 POSIX Process Routines (cont’d)

Routine Description

Table 4-5 POSIX Clock Routines

Routine Description

clock_getres() Get the clock resolution.

clock_setres() Set the clock resolution. Obsolete VxWorks-specific POSIX
extension.

clock_gettime() Get the current clock time.

clock_settime() Set the clock to a specified time.

VxWorks
Application Programmer’s Guide, 6.2

160

the system-wide real-time clock. For more information, see the kernel and
application API references for clockLib.

The POSIX timer facility provides routines for tasks to signal themselves at some
time in the future. Routines are provided to create, set, and delete a timer. For more
information, see the kernel and application API references for timerLib. When a
timer goes off, the default signal, SIGALRM, is sent to the task. To install a signal
handler that executes when the timer expires, use the sigaction() routine (see
3.3.10 Signals, p.143).

See Table 4-6 for a list of the POSIX timer routines. The VxWorks timerLib library
includes a set of VxWorks-specific POSIX extensions: timer_open(),
timer_close(), timer_cancel(), timer_connect(), and timer_unlink(). These
routines allow for an easier and more powerful use of POSIX timers on VxWorks.

Table 4-6 POSIX Timer Routines

Routine Description

timer_create() Allocate a timer using the specified clock for a timing base.

timer_delete() Remove a previously created timer.

timer_open() Open a name timer. VxWorks-specific POSIX extension.

timer_close() Close a name timer. VxWorks-specific POSIX extension.

timer_gettime() Get the remaining time before expiration and the reload
value.

timer_getoverrun() Return the timer expiration overrun.

timer_settime() Set the time until the next expiration and arm timer.

timer_cancel() Cancel a timer. VxWorks-specific POSIX extension.

timer_connect() Connect a user routine to the timer signal. VxWorks-specific
POSIX extension.

timer_unlink() Unlink a named timer. VxWorks-specific POSIX extension.

nanosleep() Suspend the current task until the time interval elapses.

sleep() Delay for a specified amount of time.

alarm() Set an alarm clock for delivery of a signal.

4 POSIX Standard Interfaces
4.7 POSIX Asynchronous I/O

161

4

Example 4-1 POSIX Timers

/* This example creates a new timer and stores it in timerid. */

/* includes */
#include <vxWorks.h>
#include <time.h>

int createTimer (void)
{
timer_t timerid;

/* create timer */
if (timer_create (CLOCK_REALTIME, NULL, &timerid) == ERROR)

{
printf ("create FAILED\n");
return (ERROR);
}

return (OK);
}

The POSIX nanosleep() routine provides specification of sleep or delay time in
units of seconds and nanoseconds, in contrast to the ticks used by the VxWorks
taskDelay() function. Nevertheless, the precision of both is the same, and is
determined by the system clock rate; only the units differ.

To include the timerLib library in the system, configure VxWorks with the
INCLUDE_POSIX_TIMERS component. To include the clockLib library, configure
VxWorks with the INCLUDE_POSIX_CLOCKS component.

Process-based applications are automatically linked with the timerLib and
clockLib libraries when they are compiled. The libraries are automatically
initialized when the process starts.

4.7 POSIX Asynchronous I/O

POSIX asynchronous I/O (AIO) routines are provided by the aioPxLib library, for
both kernel and user mode. The VxWorks AIO implementation meets the
specification of the POSIX 1003.1 standard. For more information, see
6.6 Asynchronous Input/Output, p.241.

VxWorks
Application Programmer’s Guide, 6.2

162

4.8 POSIX Page-Locking Interface

Many operating systems perform memory paging and swapping, which copy blocks
of memory to disk and back. These techniques allow you to use more virtual
memory than there is physical memory on a system. Because they impose severe
and unpredictable delays in execution time, paging and swapping are undesirable
in real-time systems. Consequently, VxWorks does not support this functionality.

The real-time extensions of the POSIX 1003.1 standard are used with operating
systems that do perform paging and swapping. On such systems, applications that
attempt real-time performance can use the POSIX page-locking facilities to protect
certain blocks of memory from paging and swapping.

To facilitate porting programs between other POSIX-conforming systems and
VxWorks, VxWorks therefore includes the POSIX page-locking routines. The
routines have no adverse effect in VxWorks systems, because all memory is
essentially always locked.

The POSIX page-locking routines are part of the memory management library,
mmanPxLib, and are listed in Table 4-7. When used in VxWorks, these routines do
nothing except return a value of OK (0), since all pages are always kept in memory.

To include the mmanPxLib library in the system, configure VxWorks with the
INCLUDE_POSIX_MEM component.

Process-based applications are automatically linked with the mmanPxLib library
when they are compiled.

Table 4-7 POSIX Page-Locking Routines

Routine Purpose on Systems with Paging or Swapping

mlockall() Locks into memory all pages used by a task.

munlockall() Unlocks all pages used by a task.

mlock() Locks a specified page.

munlock() Unlocks a specified page.

4 POSIX Standard Interfaces
4.9 POSIX Threads

163

4

4.9 POSIX Threads

POSIX threads (pthreads) are similar to VxWorks tasks, but with additional
characteristics. VxWorks implements POSIX threads on top of native tasks, and
maintains thread IDs that differ from the ID of the underlying task. POSIX threads
are provided primarily for code portability—to simplify using POSIX code with
VxWorks.

A major difference between VxWorks tasks and POSIX threads is the way in which
options and settings are specified. For VxWorks tasks these options are set with the
task creation API, usually taskSpawn(). On the other hand, POSIX threads have
characteristics that are called attributes. Each attribute contains a set of values, and
a set of access routines to retrieve and set those values. You have to specify all thread
attributes in an attributes object, pthread_attr_t, before thread creation. In a few
cases, you can dynamically modify the attribute values of a running thread.

Unlike VxWorks tasks and kernel pthreads, which are submitted to the system's
global scheduling policy, user-mode POSIX threads can be scheduled according to
the POSIX scheduling model. They can therefore be started with different policies,
or even have their scheduling policy changed during their lifetime. These policies
are as follows:

■ SCHED_FIFO is a preemptive priority scheduling policy. For a given priority
level threads scheduled with this policy are handled as peers of the VxWorks
tasks at the same level.

■ SCHED_RR is a per-priority round-robin scheduling policy. For a given
priority level all threads scheduled with this policy are given the same time of
execution before giving up the CPU.

■ SCHED_OTHER corresponds to the native VxWorks scheduling policy
currently in use, which is either preemptive priority or round-robin. Threads
scheduled with this policy are submitted to the system's global scheduling
policy, exactly like VxWorks tasks or kernel pthreads.

Using POSIX threads in processes (RTPs) requires the POSIX thread scheduler in
the kernel.

The POSIX attribute-access routines are described in Table 4-8. The
VxWorks-specific POSIX extension routines are described in section
4.9.1 VxWorks-Specific Thread Attributes, p.166.

For more information, see 4.10.1 Comparison of POSIX and VxWorks Scheduling,
p.170 and 4.10.4 Getting and Displaying the Current Scheduling Policy, p.177.

VxWorks
Application Programmer’s Guide, 6.2

164

Table 4-8 POSIX Thread Attribute-Access Routines

Routine Description

pthread_attr_getstacksize() Get value of the stack size attribute.

pthread_attr_setstacksize() Set the stack size attribute.

 pthread_attr_getstackaddr() Get value of stack address attribute.

pthread_attr_setstackaddr() Set value of stack address attribute.

pthread_attr_getdetachstate() Get value of detachstate attribute (joinable or
detached).

pthread_attr_setdetachstate() Set value of detachstate attribute (joinable or
detached).

pthread_attr_getscope() Get contention scope. (For VxWorks only
PTHREAD_SCOPE_SYSTEM is supported.)

pthread_attr_setscope() Set contention scope. (For VxWorks, only
PTHREAD_SCOPE_SYSTEM is supported.)

pthread_attr_getinheritsched() Get value of scheduling-inheritance attribute.

pthread_attr_setinheritsched() Set value of scheduling-inheritance attribute.

pthread_attr_getschedpolicy() Get value of the scheduling-policy attribute
(which is not used by default).

pthread_attr_setschedpolicy() Set scheduling-policy attribute (which is not
used by default).

pthread_attr_getschedparam() Get value of scheduling priority attribute.

pthread_attr_setschedparam() Set scheduling priority attribute.

pthread_attr_getopt() Get the task options applying to the thread.
VxWorks-specific POSIX extension.

pthread_attr_setopt() Set non-default task options for the thread.
VxWorks-specific POSIX extension.

pthread_attr_getname() Get the name of the thread. VxWorks-specific
POSIX extension.

4 POSIX Standard Interfaces
4.9 POSIX Threads

165

4

There are many routines provided with the POSIX thread functionality. Table 4-9
lists a few that are directly relevant to pthread creation or execution. See the API
reference for information about the other routines, and more details about all of
them.

pthread_attr_setname() Set a non-default name for the thread.
VxWorks-specific POSIX extension.

Table 4-8 POSIX Thread Attribute-Access Routines (cont’d)

Routine Description

Table 4-9 POSIX Thread Routines

Routine Description

pthread_create() Create a POSIX thread.

pthread_cancel() Cancel the execution of a thread

pthread_detach() Detach a running thread so that it cannot be joined
by another thread.

pthread_join() Wait for a thread to terminate.

pthread_getschedparam() Dynamically set value of scheduling priority
attribute.

pthread_setschedparam() Dynamically set scheduling priority and policy
parameter.

pthread_setschedprio() Dynamically set scheduling priority parameter.

sched_get_priority_max() Get the maximum priority that a thread can get.

sched_get_priority_min() Get the minimum priority that a thread can get.

sched_rr_get_interval() Get the time quantum of execution of the
Round-Robin policy.

sched_yield() Relinquishes the processor.

VxWorks
Application Programmer’s Guide, 6.2

166

4.9.1 VxWorks-Specific Thread Attributes

The VxWorks implementation of POSIX threads provides two additional thread
attributes (which are POSIX extensions)—thread name and thread options—and
routines for accessing them.

Thread Name

Although POSIX threads are not named entities, the VxWorks tasks upon which
they are constructed are (VxWorks tasks effectively impersonate POSIX threads). By
default these tasks are named pthrNumber (for example, pthr3). The number part
of the name is incremented each time a new thread is created (with a roll-over at
2^32 - 1). It is, however, possible to name these tasks using the thread name
attribute.

■ Attribute Name: threadname

■ Possible Values: a null-terminated string of characters

■ Default Value: none (the default naming policy is used)

■ Access Functions (VxWorks-specific POSIX extensions):
pthread_attr_setname() and pthread_attr_getname()

Thread Options

POSIX threads are agnostic with regard to target architecture. Some VxWorks
tasks, on the other hand, may be created with specific options in order to benefit
from certain features of the architecture. For example, for the Altivec-capable
PowerPC architecture, tasks must be created with the VX_ALTIVEC_TASK in order
to make use of the Altivec processor. The thread options attribute can be used to
set such options for the VxWorks task that impersonates the POSIX thread.

■ Attribute Name: threadoptions

■ Possible Values: the same as the VxWorks task options. See taskLib.h

■ Default Value: none (the default task options are used)

■ Access Functions (VxWorks-specific POSIX extensions):
pthread_attr_setopt() and pthread_attr_getopt()

4.9.2 Specifying Attributes when Creating pthreads

The following examples create a thread using the default attributes and use
explicit attributes.

4 POSIX Standard Interfaces
4.9 POSIX Threads

167

4

Example 4-2 Creating a pthread Using Explicit Scheduling Attributes

pthread_t tid;
pthread_attr_t attr;
int ret;

pthread_attr_init(&attr);

/* set the inheritsched attribute to explicit */
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

/* set the schedpolicy attribute to SCHED_FIFO */
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* create the pthread */
ret = pthread_create(&tid, &attr, entryFunction, entryArg);

Example 4-3 Creating a pthread Using Default Attributes

pthread_t tid;
int ret;

/* create the pthread with NULL attributes to designate default values */
ret = pthread_create(&tid, NULL, entryFunction, entryArg);

Example 4-4 Designating Your Own Stack for a pthread

pthread_t threadId;
pthread_attr_t attr;
void * stackaddr = NULL;
int stacksize = 0;

/* initialize the thread's attributes */

pthread_attr_init (&attr);

/*
 * Allocate memory for a stack region for the thread. Malloc() is used
 * for simplification since a real-life case is likely to use
memPartAlloc()
 * on the kernel side, or mmap() on the user side.
 */

stacksize = 2 * 4096 /* let's allocate two pages */ stackaddr = malloc
(stacksize);

if (stackbase == NULL)
 {
 printf ("FAILED: mystack: malloc failed\n");
 return (-1);
 }

/* set the stackaddr attribute */

pthread_attr_setstackaddr (&attr, stackaddr);

VxWorks
Application Programmer’s Guide, 6.2

168

/* set the stacksize attribute */

pthread_attr_setstacksize (&attr, stacksize);

/* set the schedpolicy attribute to SCHED_FIFO */

pthread_attr_setschedpolicy (&attr, SCHED_FIFO);

/* create the pthread */

ret = pthread_create (&threadId, &attr, mystack_thread, 0);

4.9.3 Thread Private Data

POSIX threads can store and access private data; that is, thread-specific data. They
use a key maintained for each pthread by the pthread library to access that data. A
key corresponds to a location associated with the data. It is created by calling
pthread_key_create() and released by calling pthread_key_delete(). The location
is accessed by calling pthread_getspecific() and pthread_setspecific(). This
location represents a pointer to the data, and not the data itself, so there is no
limitation on the size and content of the data associated with a key.

The pthread library supports a maximum of 256 keys for all the threads in a
process.

The pthread_key_create() routine has an option for a destructor function, which
is called when the creating thread exits or is cancelled, if the value associated with
the key is non-NULL.

This destructor function frees the storage associated with the data itself, and not
with the key. It is important to set a destructor function for preventing memory
leaks to occur when the thread that allocated memory for the data is cancelled. The
key itself should be freed as well, by calling pthread_key_delete(), otherwise the
key cannot be reused by the pthread library.

4.9.4 Thread Cancellation

POSIX provides a mechanism, called cancellation, to terminate a thread gracefully.
There are two types of cancellation: deferred and asynchronous.

Deferred cancellation causes the thread to explicitly check to see if it was cancelled.
This happens in one of the two following ways:

4 POSIX Standard Interfaces
4.9 POSIX Threads

169

4

■ The code of the thread executes calls to pthread_testcancel() at regular
interval.

■ The thread calls a function that contains a cancellation point during which the
thread may be automatically cancelled.

Asynchronous cancellation causes the execution of the thread to be forcefully
interrupted and a handler to be called, much like a signal.1

Automatic cancellation points are library routines that can block the execution of
the thread for a lengthy period of time. Note that although the msync(), fcntl(),
and tcdrain() routines are mandated POSIX 1003.1 cancellation points, they are
not provided with VxWorks for this release.

The POSIX cancellation points provided in VxWorks libraries (kernel and
application) are described in Table 4-10.

Routines that can be used with cancellation points of pthreads are listed in
Table 4-11.

1. Asynchronous cancellation is actually implemented with a special signal, SIGCNCL, which
users should be careful not to block or to ignore.

Table 4-10 Thread Cancellation Points in VxWorks Libraries

Library Routines

aioPxLib aio_suspend()

ioLib creat(), open(), read(), write(), close(), fsync(),
fdatasync()

mqPxLib mq_receive(), mq_send()

pthreadLib pthread_cond_timedwait(),
pthread_cond_wait(), pthread_join(),
pthread_testcancel()

semPxLib sem_wait()

sigLib pause(), sigsuspend(), sigtimedwait(),
sigwait(), sigwaitinfo(), waitpid()

Note: The waitpid() routine is available only in
user-mode. It is not available in the kernel.

timerLib sleep(), nanosleep()

VxWorks
Application Programmer’s Guide, 6.2

170

4.10 POSIX Scheduling

4.10.1 Comparison of POSIX and VxWorks Scheduling

VxWorks provides two different schedulers: the native VxWorks scheduler and
the POSIX thread scheduler. Only one of them can be used at a time and their
relationships and differences to POSIX are described below.

Also see the VxWorks Kernel Programmer’s Guide: Kernel, for information about
schedulers.

Native VxWorks Scheduler

■ The native VxWorks scheduler is the original VxWorks scheduler. POSIX and
the native VxWorks scheduling differ in the following ways:

Table 4-11 Thread Cancellation Routines

Routine Description

pthread_cancel() Cancel execution of a thread.

pthread_testcancel() Create a cancellation point in the calling thread.

pthread_setcancelstate() Enables or disables cancellation.

pthread_setcanceltype() Selects deferred or asynchronous cancellation.

pthread_cleanup_push() Registers a function to be called when the thread is
cancelled, exits, or calls pthread_cleanup_pop()
with a non-null run parameter.

pthread_cleanup_pop() Unregisters a function previously registered with
pthread_cleanup_push(). This function is
immediately executed if the run parameter is
non-null.

4 POSIX Standard Interfaces
4.10 POSIX Scheduling

171

4

■ POSIX supports a two-level scheduling model that supports the concept
known as contention scope, by which the scheduling of threads (that is, how
they compete for the CPU) can apply system wide or on a process basis. In
contrast, VxWorks scheduling is based system wide on tasks and pthreads—
in the kernel and in processes. VxWorks real-time processes cannot themselves
be scheduled.

■ POSIX applies scheduling algorithms on a process-by-process and
thread-by-thread basis. VxWorks applies scheduling algorithms on a
system-wide basis, for all tasks and pthreads, whether in the kernel or in
processes. This means that all tasks and pthreads use either a preemptive
priority scheme or a round-robin scheme.

■ POSIX supports the concept of scheduling allocation domain; that is, the
association between processes or threads and processors. VxWorks does not
support multi-processor hardware then there is only one domain on VxWorks
and all the tasks and pthreads are associated to it.

The VxWorks scheduling policies are very similar to the POSIX ones, so when the
native scheduler is in place the POSIX, the scheduling policies are simply mapped
on the VxWorks ones:

■ SCHED_FIFO is mapped on VxWorks' preemptive priority scheduling.

■ SCHED_RR is mapped on VxWorks' round-robin scheduling.

■ SCHED_OTHER corresponds to the currently active VxWorks scheduling
policy. This policy is the one used by default by all pthreads.

There is one minor difference between POSIX and VxWorks:

■ The POSIX priority numbering scheme is the inverse of the VxWorks scheme.
In POSIX, the higher the number, the higher the priority; in the VxWorks
scheme, the lower the number, the higher the priority, where 0 is the highest
priority. Accordingly, the priority numbers used with the POSIX scheduling
library, schedPxLib, do not match those used and reported by all other
components of VxWorks. You can override this default by setting the global
variable posixPriorityNumbering to FALSE. If you do this, schedPxLib uses
the VxWorks numbering scheme (a smaller number means a higher priority)
and its priority numbers match those used by the other components of
VxWorks.

VxWorks
Application Programmer’s Guide, 6.2

172

POSIX Threads Scheduler

Although it is possible to use the native scheduler for VxWorks tasks in a process
(RTP) as well as for POSIX threads in the kernel, the POSIX threads scheduler must
be used if pthreads are used in processes. Failure to configure the operating system
with INCLUDE_POSIX_PTHREAD_SCHEDULER makes it impossible to create
threads in a process.

The POSIX threads scheduler is conformant with POSIX 1003.1. This scheduler still
applies to all tasks and threads in the system, but only the user-side POSIX threads
(that is pthreads executing in processes) are scheduled accordingly to POSIX.
VxWorks tasks in the kernel and in processes, and pthreads in the kernel, are
scheduled accordingly to the VxWorks scheduling model.

When the POSIX threads scheduler is included in the system it is possible to assign
a different scheduling policy to each pthread and change a pthread's scheduling
policy dynamically. See Configuring VxWorks for POSIX Thread Scheduling, p.172.
for more information.

The POSIX scheduling policies are as follows:

■ SCHED_FIFO is first in, first out, preemptive priority scheduling.

■ SCHED_RR is round-robin, time-bound preemptive priority scheduling.

■ SCHED_OTHER strictly corresponds to the current native VxWorks
scheduling policy (that is, a thread using this policy is scheduled exactly like a
VxWorks task. This can be useful for backward-compatibility reasons).

■ SCHED_SPORADIC is preemptive scheduling with variable priority. It is not
supported on VxWorks.

Configuring VxWorks for POSIX Thread Scheduling

To enable the POSIX thread scheduling support for threads in processes, the
component INCLUDE_POSIX_PTHREAD_SCHEDULER must be included in
VxWorks. This configuration applies strictly to threads in processes and does not
apply to threads in the kernel. The INCLUDE_POSIX_PTHREAD_SCHEDULING
component has a dependency on the INCLUDE_RTP component since this POSIX
thread scheduling support only applies to threads in processes.

For the SCHED_RR policy threads, the configuration parameter
POSIX_PTHREAD_RR_TIMESLICE may be used to configure the default time
slicing interval. To modify the time slice at run time, the routine
kernelTimeSlice() may be called with a different time slice value. The updated
time slice value only affects new threads created after the kernelTimeSlice() call.

4 POSIX Standard Interfaces
4.10 POSIX Scheduling

173

4

INCLUDE_POSIX_PTHREAD_SCHEDULER is a standalone component that is not
depended on by other POSIX components. If POSIX threads are configured with
INCLUDE_POSIX_PTHREADS, the POSIX scheduler is not automatically included.
Explicit inclusion of INCLUDE_POSIX_PTHREAD_SCHEDULING must be done to
get the POSIX thread scheduling behavior. This enables VxWorks to support
processes with (for POSIX conforming-applications) or without POSIX thread
scheduling.

Once the POSIX thread scheduler is configured, all POSIX RTP applications using
threads will have the expected POSIX-conforming thread scheduling behavior.

The inclusion of the INCLUDE_POSIX_PTHREAD_SCHEDULER component does
not have an impact on VxWorks task scheduling since the VxWorks task
scheduling decision has not been changed to support POSIX threads in user space.

Scheduling Behaviors

VxWorks tasks and POSIX threads, regardless of the policy, share a single priority
range and the same priority based queuing scheme. Both VxWorks tasks and
POSIX threads use the same queuing mechanism to schedule threads and tasks to
run; and thus all tasks and threads share a global scheduling scheme.

The inclusion of the POSIX thread scheduling will have minimal impact on kernel
tasks, since VxWorks task scheduling behavior is preserved. However, minor side
effects may occur. When the POSIX scheduler is configured, the fairness
expectation of VxWorks tasks in a system configured with round robin scheduling
may not be achieved, because POSIX threads with the SCHED_FIFO policy, and at
the same priority as the VxWorks tasks, may potentially usurp the CPU. Starvation
of the VxWorks round robin tasks may occur. Care must be taken when mixing
VxWorks round robin tasks and threads using SCHED_RR and SCHED_FIFO
policies.

Threads with the SCHED_OTHER policy behave the same as the default VxWorks
system-wide scheduling scheme. In other words, VxWorks configured with round
robin scheduling means that threads created with the SCHED_OTHER policy will
also execute in the round robin mode. VxWorks round robin will not affect POSIX
threads created with the SCHED_RR and SCHED_FIFO policies but will affect
POSIX threads created with the SCHED_OTHER policy.

One difference in the scheduling behavior when the POSIX scheduler is configured
is that threads may be placed at the head of a priority list when the thread is
lowered by a call to the POSIX pthread_setschedprio() routine. The lowering of
the thread places the lowered thread at the head of its priority list. This is different
from VxWorks task scheduling when tasks are lowered using the
taskPrioritySet() routine, where the lowered task will be placed at the end of its

VxWorks
Application Programmer’s Guide, 6.2

174

priority list. The significance of this change is that threads that were of higher
priority, when lowered, are considered to have more preference than tasks and
threads in its lowered priority list.

The addition of the POSIX scheduler will change the behavior of existing POSIX
applications. For existing applications that require backward-compatibility, the
POSIX applications can change their scheduling policy to SCHED_OTHER for all
POSIX threads since the SCHED_OTHER threads defaults to the VxWorks
system-wide scheduling scheme as in previous versions of VxWorks.

Mixing POSIX thread APIs and VxWorks APIs in an application is not
recommended, and may make a POSIX application non-POSIX conformant.

For information about VxWorks scheduling, see 3.2.2 Task Scheduling, p.80.

4.10.2 POSIX Scheduling Model

The POSIX 1003.1b scheduling routines, provided by schedPxLib, are shown in
Table 4-12. These routines provide a portable interface for:

■ Getting and setting task priority.

■ Getting and setting scheduling policy.

■ Getting the maximum and minimum priorities for tasks.

■ If round-robin scheduling is in effect, getting the length of a time slice.

This section describes how to use these routines, beginning with a list of the minor
differences between the POSIX and VxWorks methods of scheduling.

! CAUTION: The API part of the _POSIX_PRIORITY_SCHEDULING option, and
provided by schedPxLib on VxWorks, does not currently support processes
(RTPs) and are simply meant to be used for VxWorks tasks or POSIX threads

Table 4-12 POSIX Scheduling Routines

Routine Description

sched_setparam() Sets a task’s priority.

sched_getparam() Gets the scheduling parameters for a specified task.

sched_setscheduler() Sets the scheduling policy and parameters for a task
(kernel-only routine).

4 POSIX Standard Interfaces
4.10 POSIX Scheduling

175

4

To include the schedPxLib library in the system, configure VxWorks with the
INCLUDE_POSIX_SCHED component.

Process-based applications are automatically linked with the schedPxLib library
when they are compiled.

4.10.3 Getting and Setting Task Priorities

The routines sched_setparam() and sched_getparam() set and get a task’s
priority, respectively. Both routines take a task ID and a sched_param structure
(defined in installDir/vxworks-6.x/target/h/sched.h for kernel code and
installDir/vxworks-6.x/target/usr/h/sched.h for user-space application code). A
task ID of 0 sets or gets the priority for the calling task.

The sched_setparam() routine writes the specified task’s current priority into the
the sched_priority member of the sched_param structure that is passed in.

Example 4-5 Getting and Setting POSIX Task Priorities

/* This example sets the calling task’s priority to 150, then verifies
* that priority. To run from the shell, spawn as a task:

sched_yield() Relinquishes the CPU.

sched_getscheduler() Gets the current scheduling policy.

sched_get_priority_max() Gets the maximum task priority.

sched_get_priority_min() Gets the minimum task priority.

sched_rr_get_interval() If round-robin scheduling, gets the time slice length.

Table 4-12 POSIX Scheduling Routines (cont’d)

Routine Description

! CAUTION: The sched_setparam() and sched_getparam() routines do not
currently support the POSIX thread scheduler with this release, and are simply
meant to be used with VxWorks tasks. POSIX threads have their own API which
should be used instead: pthread_setschedparam() and
pthread_getschedparam().

VxWorks
Application Programmer’s Guide, 6.2

176

* -> sp priorityTest
*/

/* includes */
#include <vxWorks.h>
#include <sched.h>

/* defines */
#define PX_NEW_PRIORITY 150

STATUS priorityTest (void)
{
struct sched_param myParam;

/* initialize param structure to desired priority */

myParam.sched_priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)

{
printf ("error setting priority\n");
return (ERROR);
}

/* demonstrate getting a task priority as a sanity check; ensure it
* is the same value that we just set.
*/

if (sched_getparam (0, &myParam) == ERROR)
{
printf ("error getting priority\n");
return (ERROR);
}

if (myParam.sched_priority != PX_NEW_PRIORITY)
{
printf ("error - priorities do not match\n");
return (ERROR);
}

else
printf ("task priority = %d\n", myParam.sched_priority);

return (OK);
}

The routine sched_setscheduler() is designed to set both scheduling policy and
priority for a single POSIX process. Its behavior is, however, necessarily different
for VxWorks because of differences in scheduling functionality.

All scheduling in VxWorks is done at the task level—processes themselves are not
scheduled—and all tasks have the same scheduling policy. Therefore, the
implementation of sched_setscheduler() for VxWorks only controls task priority,
and only when the policy specification used in the call matches the system-wide
policy. If it does not, the call fails. In other words:

4 POSIX Standard Interfaces
4.10 POSIX Scheduling

177

4

■ If the policy specification defined with a sched_setscheduler() call matches
the current system-wide scheduling policy, the task priority is set to the new
value (thereby acting like the sched_setparam() routine).

■ If the policy specification defined with a sched_setscheduler() call does not
match the current system-wide scheduling policy, it returns an error, and the
priority of the task is not changed.

In VxWorks, the only way to change the scheduling policy is to change it for all
tasks in the system. There is no POSIX routine for this purpose, and for security
reasons, the scheduling policy cannot be changed from user mode. To set a
system-wide scheduling policy, use the VxWorks kernel routine
kernelTimeSlice(), which is described in Round-Robin Scheduling, p.82.

4.10.4 Getting and Displaying the Current Scheduling Policy

The POSIX routine sched_getscheduler() returns the current scheduling policy.

There are the only two valid scheduling policies in VxWorks when the native
scheduler is active: preemptive priority scheduling (in POSIX terms, SCHED_FIFO)
and round-robin scheduling by priority (SCHED_RR).

Example 4-6 Getting POSIX Scheduling Policy

/* This example gets the scheduling policy and displays it. */

/* includes */

#include <vxWorks.h>
#include <sched.h>

STATUS schedulerTest (void)
{
int policy;

if ((policy = sched_getscheduler (0)) == ERROR)
{
printf ("getting scheduler failed\n");
return (ERROR);
}

/* sched_getscheduler returns either SCHED_FIFO or SCHED_RR */

VxWorks
Application Programmer’s Guide, 6.2

178

if (policy == SCHED_FIFO)
printf ("current scheduling policy is FIFO\n");

else
printf ("current scheduling policy is round robin\n");

return (OK);
}

4.10.5 Getting Scheduling Parameters: Priority Limits and Time Slice

The routines sched_get_priority_max() and sched_get_priority_min() return the
maximum and minimum possible POSIX priority, respectively.

User tasks and pthreads can use sched_rr_get_interval() to determine the length
of the current time-slice interval. This routine takes as an argument a pointer to a
timespec structure (defined in time.h), and writes the number of seconds and
nanoseconds per time slice to the appropriate elements of that structure.

Note that a non-null result does not imply that the POSIX thread calling this
routine is being scheduled with the SCHED_RR policy. To make this
determination, a pthread must use the pthread_getschedparam() routine.

Example 4-7 Getting the POSIX Round-Robin Time Slice

/*
 * The following example gets the length of the time slice,
 * and then displays the time slice.
 */

/* includes */

#include <time.h>
#include <sched.h>

STATUS rrgetintervalTest (void)
{
struct timespec slice;

if (sched_rr_get_interval (0, &slice) == ERROR)
{
printf ("get-interval test failed\n");
return (ERROR);
}
printf ("time slice is %l seconds and %l nanoseconds\n",
slice.tv_sec, slice.tv_nsec);
return (OK);
}

4 POSIX Standard Interfaces
4.11 POSIX Semaphores

179

4

4.11 POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same
properties, but which use slightly different interfaces. The POSIX semaphore
library provides routines for creating, opening, and destroying both named and
unnamed semaphores.

When opening a named semaphore, you assign a symbolic name,2 which the other
named-semaphore routines accept as an argument. The POSIX semaphore
routines provided by semPxLib are shown in Table 4-13.

To include the POSIX semPxLib library semaphore routines in the system,
configure VxWorks with the INCLUDE_POSIX_SEM component.

VxWorks also provides semPxLibInit(), a non-POSIX (kernel-only) routine that
initializes the kernel’s POSIX semaphore library. It is called by default at boot time
when POSIX semaphores have been included in the VxWorks configuration.

2. Some operating systems, such as UNIX, require symbolic names for objects that are to be
shared among processes. This is because processes do not normally share memory in such
operating systems. In VxWorks, named semaphores can be used to share semaphores
between real-time processes. In the VxWorks kernel there is no need for named semaphores,
because all kernel objects have unique identifiers. However, using named semaphores of
the POSIX variety provides a convenient way of determining the object’s ID.

Table 4-13 POSIX Semaphore Routines

Routine Description

sem_init() Initializes an unnamed semaphore.

sem_destroy() Destroys an unnamed semaphore.

sem_open() Initializes/opens a named semaphore.

sem_close() Closes a named semaphore.

sem_unlink() Removes a named semaphore.

sem_wait() Lock a semaphore.

sem_trywait() Lock a semaphore only if it is not already locked.

sem_post() Unlock a semaphore.

sem_getvalue() Get the value of a semaphore.

VxWorks
Application Programmer’s Guide, 6.2

180

Process-based applications are automatically linked with the semPxLib library
when they are compiled. The library is automatically initialized when the process
starts.

4.11.1 Comparison of POSIX and VxWorks Semaphores

POSIX semaphores are counting semaphores; that is, they keep track of the number
of times they are given. The VxWorks semaphore mechanism is similar to that
specified by POSIX, except that VxWorks semaphores offer these additional
features:

■ priority inheritance
■ task-deletion safety
■ the ability for a single task to take a semaphore multiple times
■ ownership of mutual-exclusion semaphores
■ semaphore timeouts
■ queuing mechanism options

When these features are important, VxWorks semaphores are preferable to POSIX
semaphores. (For information about these features, see 3. Multitasking.)

The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks
terms take and give, respectively. The POSIX routines for locking, unlocking, and
getting the value of semaphores are used for both named and unnamed
semaphores.

The routines sem_init() and sem_destroy() are used for initializing and
destroying unnamed semaphores only. The sem_destroy() call terminates an
unnamed semaphore and deallocates all associated memory.

The routines sem_open(), sem_unlink(), and sem_close() are for opening and
closing (destroying) named semaphores only. The combination of sem_close()
and sem_unlink() has the same effect for named semaphores as sem_destroy()
does for unnamed semaphores. That is, it terminates the semaphore and
deallocates the associated memory.

! WARNING: When deleting semaphores, particularly mutual-exclusion
semaphores, avoid deleting a semaphore still required by another task. Do not
delete a semaphore unless the deleting task first succeeds in locking that
semaphore. Similarly for named semaphores, close semaphores only from the
same task that opens them.

4 POSIX Standard Interfaces
4.11 POSIX Semaphores

181

4

4.11.2 Using Unnamed Semaphores

When using unnamed semaphores, typically one task allocates memory for the
semaphore and initializes it. A semaphore is represented with the data structure
sem_t, defined in semaphore.h. The semaphore initialization routine, sem_init(),
lets you specify the initial value.

Once the semaphore is initialized, any task can use the semaphore by locking it
with sem_wait() (blocking) or sem_trywait() (non-blocking), and unlocking it
with sem_post().

Semaphores can be used for both synchronization and exclusion. Thus, when a
semaphore is used for synchronization, it is typically initialized to zero (locked).
The task waiting to be synchronized blocks on a sem_wait(). The task doing the
synchronizing unlocks the semaphore using sem_post(). If the task that is blocked
on the semaphore is the only one waiting for that semaphore, the task unblocks
and becomes ready to run. If other tasks are blocked on the semaphore, the task
with the highest priority is unblocked.

When a semaphore is used for mutual exclusion, it is typically initialized to a value
greater than zero, meaning that the resource is available. Therefore, the first task
to lock the semaphore does so without blocking, setting the semaphore to 0
(locked). Subsequent tasks will block until the semaphore is released. As with the
previous scenario, when the semaphore is released the task with the highest
priority is unblocked.

When used in a user application, unnamed semaphores can be accessed only by
the tasks belonging to the process executing the application. Only named
semaphores can be shared between user applications (that is, different processes).

Example 4-8 POSIX Unnamed Semaphores

/* This example uses unnamed semaphores to synchronize an action between the
* calling task and a task that it spawns (tSyncTask). To run from the shell,
* spawn as a task:
* -> sp unnameSem
*/

/* includes */

#include <vxWorks.h>
#include <semaphore.h>

/* forward declarations */
void syncTask (sem_t * pSem);

VxWorks
Application Programmer’s Guide, 6.2

182

void unnameSem (void)
{
sem_t * pSem;

/* reserve memory for semaphore */
pSem = (sem_t *) malloc (sizeof (sem_t));

/* initialize semaphore to unavailable */
if (sem_init (pSem, 0, 0) == -1)

{
printf ("unnameSem: sem_init failed\n");
free ((char *) pSem);
return;
}

/* create sync task */
printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem);

/* do something useful to synchronize with syncTask */
/* unlock sem */
printf ("unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) == -1)

{
printf ("unnameSem: posting semaphore failed\n");
sem_destroy (pSem);
free ((char *) pSem);
return;
}

/* all done - destroy semaphore */
if (sem_destroy (pSem) == -1)
{
printf ("unnameSem: sem_destroy failed\n");
return;
}

free ((char *) pSem);
}

void syncTask
(
sem_t * pSem
)
{
/* wait for synchronization from unnameSem */
if (sem_wait (pSem) == -1)

{
printf ("syncTask: sem_wait failed \n");
return;
}

else
printf ("syncTask:sem locked; doing sync’ed action...\n");

/* do something useful here */
}

4 POSIX Standard Interfaces
4.11 POSIX Semaphores

183

4

4.11.3 Using Named Semaphores

The sem_open() routine either opens a named semaphore that already exists or,
as an option, creates a new semaphore. You can specify which of these possibilities
you want by combining the following flag values:

O_CREAT
Create the semaphore if it does not already exist. If it exists, either fail or open
the semaphore, depending on whether O_EXCL is specified.

O_EXCL
Open the semaphore only if newly created; fail if the semaphore exists.

The results, based on the flags and whether the semaphore accessed already exists,
are shown in Table 4-14. There is no entry for O_EXCL alone, because using that
flag alone is not meaningful.

Once initialized, a semaphore remains usable until explicitly destroyed. Tasks can
explicitly mark a semaphore for destruction at any time, but the system only
destroys the semaphore when no task has the semaphore open.

If VxWorks is configured with INCLUDE_POSIX_SEM_SHOW, you can use show()
from the shell (with the C interpreter) to display information about a POSIX
semaphore. 3

This example shows information about the POSIX semaphore mySem with two
tasks blocked and waiting for it:

-> show semId
value = 0 = 0x0

Table 4-14 Possible Outcomes of Calling sem_open()

Flag Settings If Semaphore Exists If Semaphore Does Not Exist

None Semaphore is opened. Routine fails.

O_CREAT Semaphore is opened. Semaphore is created.

O_CREAT and O_EXCL Routine fails. Semaphore is created.

O_EXCL Routine fails. Routine fails.

3. The show() routine is not a POSIX routine, nor is it meant to be used programmatically. It
is designed for interactive use with the shell (with the shell’s C interpreter).

VxWorks
Application Programmer’s Guide, 6.2

184

Semaphore name :mySem
sem_open() count :3
Semaphore value :0
No. of blocked tasks :2

For a group of collaborating tasks to use a named semaphore, one of the tasks first
creates and initializes the semaphore, by calling sem_open() with the O_CREAT
flag. Any task that needs to use the semaphore thereafter, opens it by calling
sem_open() with the same name, but without setting O_CREAT. Any task that has
opened the semaphore can use it by locking it with sem_wait() (blocking) or
sem_trywait() (non-blocking), and then unlocking it with sem_post() when the
task is finished with the semaphore.

To remove a semaphore, all tasks using it must first close it with sem_close(), and
one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink()
removes the semaphore name from the name table. After the name is removed
from the name table, tasks that currently have the semaphore open can still use it,
but no new tasks can open this semaphore. If a task tries to open the semaphore
without the O_CREAT flag, the operation fails. An unlinked semaphore is deleted
by the system when the last task closes it.

POSIX named semaphores may be shared between processes only if their names
start with a / (forward slash) character. They are otherwise private to the process
in which they were created, and cannot be accessed from another process.

Example 4-9 POSIX Named Semaphores

/*
* In this example, nameSem() creates a task for synchronization. The
* new task, tSyncSemTask, blocks on the semaphore created in nameSem().
* Once the synchronization takes place, both tasks close the semaphore,
* and nameSem() unlinks it. To run this task from the shell, spawn
* nameSem as a task:
* -> sp nameSem, "myTest"
*/

/* includes */
#include <vxWorks.h>
#include <semaphore.h>
#include <fcntl.h>

/* forward declaration */
int syncSemTask (char * name);

int nameSem
(
char * name
)
{
sem_t * semId;

4 POSIX Standard Interfaces
4.11 POSIX Semaphores

185

4

/* create a named semaphore, initialize to 0*/
printf ("nameSem: creating semaphore\n");
if ((semId = sem_open (name, O_CREAT, 0, 0)) == (sem_t *) -1)

{
printf ("nameSem: sem_open failed\n");
return;
}

printf ("nameSem: spawning sync task\n");
taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);

/* do something useful to synchronize with syncSemTask */

/* give semaphore */
printf ("nameSem: posting semaphore - synchronizing action\n");
if (sem_post (semId) == -1)

{
printf ("nameSem: sem_post failed\n");
return;
}

/* all done */
if (sem_close (semId) == -1)

{
printf ("nameSem: sem_close failed\n");
return;
}

if (sem_unlink (name) == -1)
{
printf ("nameSem: sem_unlink failed\n");
return;
}

printf ("nameSem: closed and unlinked semaphore\n");
}

int syncSemTask
(
char * name
)
{
sem_t * semId;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");
if ((semId = sem_open (name, 0)) == (sem_t *) -1)

{
printf ("syncSemTask: sem_open failed\n");
return;
}

VxWorks
Application Programmer’s Guide, 6.2

186

/* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (sem_wait (semId) == -1)

{
printf ("syncSemTask: taking sem failed\n");
return;
}

printf ("syncSemTask: has semaphore, doing sync’ed action ...\n");

/* do something useful here */

if (sem_close (semId) == -1)
{
printf ("syncSemTask: sem_close failed\n");
return;
}

}

4.12 POSIX Mutexes and Condition Variables

Thread mutexes (mutual exclusion variables) and condition variables provide
compatibility with the POSIX 1003.1c standard. They perform essentially the same
role as VxWorks mutual exclusion and binary semaphores (and are in fact
implemented using them). They are available with pthreadLib. Like POSIX
threads, mutexes and condition variables have attributes associated with them.
Mutex attributes are held in a data type called pthread_mutexattr_t, which
contains two attributes, protocol and prioceiling.

For information about VxWorks mutual exclusion and binary semaphores, see
3.3.4 Semaphores, p.104, as well as the API references for semBLib and semMLib.

Protocol

The protocol mutex attribute describes how the mutex variable deals with the
priority inversion problem described in the section for VxWorks mutual-exclusion
semaphores (Mutual-Exclusion Semaphores, p.108).

■ Attribute Name: protocol

■ Possible Values: PTHREAD_PRIO_INHERIT (default) and
PTHREAD_PRIO_PROTECT

4 POSIX Standard Interfaces
4.12 POSIX Mutexes and Condition Variables

187

4

■ Access Routines: pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol()

To create a mutual-exclusion variable with priority inheritance, use the
PTHREAD_PRIO_INHERIT value (which is equivalent to the association of
SEM_Q_PRIORITY and INHERITSEM_INVERSION_SAFE options with
semMCreate()). A thread owning a mutex variable created with the
PTHREAD_PRIO_INHERIT value inherits the priority of any higher-priority thread
waiting for this mutex and executes at this elevated priority until it releases the
mutex, at which points it returns to its original priority. The
PTHREAD_PRIO_INHERIT option is the default value for the protocol attribute.

Because it might not be desirable to elevate a lower-priority thread to a too-high
priority, POSIX defines the notion of priority ceiling, described below.
Mutual-exclusion variables created with priority protection use the
PTHREAD_PRIO_PROTECT value.

Priority Ceiling

The prioceiling attribute is the POSIX priority ceiling for mutex variables created
with the protocol attribute set to PTHREAD_PRIO_PROTECT.

■ Attribute Name: prioceiling

■ Possible Values: any valid (POSIX) priority value (0-255, with zero being the
lowest).

■ Access Routines: pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling()

■ Dynamic Access Routines: pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling()

Note that the POSIX priority numbering scheme is the inverse of the VxWorks
scheme. See 4.10.1 Comparison of POSIX and VxWorks Scheduling, p.170.

A priority ceiling is defined by the following conditions:

■ Any thread attempting to acquire a mutex, whose priority is higher than the
ceiling, cannot acquire the mutex.

■ Any thread whose priority is lower than the ceiling value has its priority
elevated to the ceiling value for the duration that the mutex is held.

■ The thread’s priority is restored to its previous value when the mutex is
released.

VxWorks
Application Programmer’s Guide, 6.2

188

4.13 POSIX Message Queues

The POSIX message queue routines, provided by mqPxLib, are shown in
Table 4-15.

Process-based applications are automatically linked with the mqPxLib library
when they are compiled. Initialization of the library is automatic as well, when the
process is started.

For information about the VxWorks message queue library, see the msgQLib API
reference.

4.13.1 Comparison of POSIX and VxWorks Message Queues

The POSIX message queues are similar to VxWorks message queues, except that
POSIX message queues provide messages with a range of priorities. The
differences between the POSIX and VxWorks message queues are summarized in
Table 4-16.

Table 4-15 POSIX Message Queue Routines

Routine Description

mq_open() Opens a message queue.

mq_close() Closes a message queue.

mq_unlink() Removes a message queue.

mq_send() Sends a message to a queue.

mq_receive() Gets a message from a queue.

mq_notify() Signals a task that a message is waiting on a queue.

mq_setattr() Sets a queue attribute.

mq_getattr() Gets a queue attribute.

Table 4-16 Message Queue Feature Comparison

Feature VxWorks Message Queues POSIX Message Queues

Message Priority Levels 1 32

4 POSIX Standard Interfaces
4.13 POSIX Message Queues

189

4

4.13.2 POSIX Message Queue Attributes

A POSIX message queue has the following attributes:

■ an optional O_NONBLOCK flag, which prevents a mq_receive() call from
being a blocking call if the message queue is empty

■ the maximum number of messages in the message queue

■ the maximum message size

■ the number of messages currently on the queue

Tasks can set or clear the O_NONBLOCK flag using mq_setattr(), and get the
values of all the attributes using mq_getattr(). (As allowed by POSIX, this
implementation of message queues makes use of a number of internal flags that
are not public.)

Example 4-10 Setting and Getting Message Queue Attributes

/*
* This example sets the O_NONBLOCK flag and examines message queue
* attributes.
*/

/* includes */
#include <vxWorks.h>
#include <mqueue.h>
#include <fcntl.h>
#include <errno.h>

/* defines */
#define MSG_SIZE 16

Blocked Task Queues FIFO or priority-based Priority-based

Receive with Timeout Optional Not available in VxWorks

Task Notification Not available Optional (one task)

Close/Unlink Semantics No Yes

Table 4-16 Message Queue Feature Comparison (cont’d)

Feature VxWorks Message Queues POSIX Message Queues

VxWorks
Application Programmer’s Guide, 6.2

190

int attrEx
(
char * name
)
{
mqd_t mqPXId; /* mq descriptor */
struct mq_attr attr; /* queue attribute structure */
struct mq_attr oldAttr; /* old queue attributes */
char buffer[MSG_SIZE];
int prio;

/* create read write queue that is blocking */

attr.mq_flags = 0;
attr.mq_maxmsg = 1;
attr.mq_msgsize = 16;
if ((mqPXId = mq_open (name, O_CREAT | O_RDWR , 0, &attr))

== (mqd_t) -1)
return (ERROR);

else
printf ("mq_open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */

attr.mq_flags = O_NONBLOCK;
if (mq_setattr (mqPXId, &attr, &oldAttr) == -1)

return (ERROR);
else

{
/* paranoia check - oldAttr should not include non-blocking. */
if (oldAttr.mq_flags & O_NONBLOCK)

return (ERROR);
else

printf ("mq_setattr turning on non-blocking succeeded\n");
}

/* try receiving - there are no messages but this shouldn't block */

if (mq_receive (mqPXId, buffer, MSG_SIZE, &prio) == -1)
{
if (errno != EAGAIN)

return (ERROR);
else

printf ("mq_receive with non-blocking didn’t block on empty queue\n");
}

else
return (ERROR);

/* use mq_getattr to verify success */

if (mq_getattr (mqPXId, &oldAttr) == -1)
return (ERROR);

else
{
/* test that we got the values we think we should */
if (!(oldAttr.mq_flags & O_NONBLOCK) || (oldAttr.mq_curmsgs != 0))

4 POSIX Standard Interfaces
4.13 POSIX Message Queues

191

4

return (ERROR);
else

printf ("queue attributes are:\n\tblocking is %s\n\t
message size is: %d\n\t
max messages in queue: %d\n\t
no. of current msgs in queue: %d\n",
oldAttr.mq_flags & O_NONBLOCK ? "on" : "off",
oldAttr.mq_msgsize, oldAttr.mq_maxmsg,
oldAttr.mq_curmsgs);

}

/* clean up - close and unlink mq */

if (mq_unlink (name) == -1)
return (ERROR);

if (mq_close (mqPXId) == -1)
return (ERROR);

return (OK);
}

4.13.3 Displaying Message Queue Attributes

The VxWorks shell command show() produces a display of the key message
queue attributes, for either POSIX or VxWorks message queues. VxWorks must be
configured with include the INCLUDE_POSIX_MQ_SHOW component to provide
this functionality.4

For example, if mqPXId is a POSIX message queue, the show() command can be
used from the shell (with the C interpreter) as follows:

-> show mqPXId
value = 0 = 0x0
Message queue name : MyQueue
No. of messages in queue : 1
Maximum no. of messages : 16
Maximum message size : 16

Compare this to the output for myMsgQId, a VxWorks message queue:

-> show myMsgQId
Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0
Send timeouts : 0
Receive timeouts : 0

4. The show() routine is not a POSIX routine, nor is it meant to be used programmatically. It
is designed for interactive use with the shell (with the shell’ C interpreter).

VxWorks
Application Programmer’s Guide, 6.2

192

4.13.4 Communicating Through a Message Queue

Before a set of tasks can communicate through a POSIX message queue, one of the
tasks must create the message queue by calling mq_open() with the O_CREAT flag
set. Once a message queue is created, other tasks can open that queue by name to
send and receive messages on it. Only the first task opens the queue with the
O_CREAT flag; subsequent tasks can open the queue for receiving only
(O_RDONLY), sending only (O_WRONLY), or both sending and receiving
(O_RDWR).

To put messages on a queue, use mq_send(). If a task attempts to put a message
on the queue when the queue is full, the task blocks until some other task reads a
message from the queue, making space available. To avoid blocking on
mq_send(), set O_NONBLOCK when you open the message queue. In that case,
when the queue is full, mq_send() returns -1 and sets errno to EAGAIN instead
of pending, allowing you to try again or take other action as appropriate.

One of the arguments to mq_send() specifies a message priority. Priorities range
from 0 (lowest priority) to 31 (highest priority); see 4.10.1 Comparison of POSIX and
VxWorks Scheduling, p.170.

When a task receives a message using mq_receive(), the task receives the
highest-priority message currently on the queue. Among multiple messages with
the same priority, the first message placed on the queue is the first received (FIFO
order). If the queue is empty, the task blocks until a message is placed on the
queue.

To avoid pending (blocking) on mq_receive(), open the message queue with
O_NONBLOCK; in that case, when a task attempts to read from an empty queue,
mq_receive() returns -1 and sets errno to EAGAIN.

To close a message queue, call mq_close(). Closing the queue does not destroy it,
but only asserts that your task is no longer using the queue. To request that the
queue be destroyed, call mq_unlink(). Unlinking a message queue does not
destroy the queue immediately, but it does prevent any further tasks from opening
that queue, by removing the queue name from the name table. Tasks that currently
have the queue open can continue to use it. When the last task closes an unlinked
queue, the queue is destroyed.

In VxWorks, POSIX message queues can be shared between processes only if their
names start with a / (forward slash) character. POSIX message queues are
otherwise private to the process in which they were created, and they cannot be
accessed from another process. See 3.3.1 Public and Private Objects, p.100.

4 POSIX Standard Interfaces
4.13 POSIX Message Queues

193

4

Example 4-11 POSIX Message Queues

/* In this example, the mqExInit() routine spawns two tasks that
* communicate using the message queue.
*/

/* mqEx.h - message example header */

/* defines */
#define MQ_NAME "exampleMessageQueue"

/* forward declarations */
void receiveTask (void);
void sendTask (void);

/* testMQ.c - example using POSIX message queues */

/* includes */
#include <vxWorks.h>
#include <mqueue.h>
#include <fcntl.h>
#include <errno.h>
#include <mqEx.h>

/* defines */
#define HI_PRIO 31
#define MSG_SIZE 16

int mqExInit (void)
{
/* create two tasks */
if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0) == ERROR)
{
printf ("taskSpawn of tRcvTask failed\n");
return (ERROR);
}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0) == ERROR)

{
printf ("taskSpawn of tSendTask failed\n");
return (ERROR);
}

}

void receiveTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */
char msg[MSG_SIZE]; /* msg buffer */
int prio; /* priority of message */

VxWorks
Application Programmer’s Guide, 6.2

194

/* open message queue using default attributes */

if ((mqPXId = mq_open (MQ_NAME, O_RDWR | O_CREAT, 0, NULL))
== (mqd_t) -1)
{
printf ("receiveTask: mq_open failed\n");
return;
}

/* try reading from queue */

if (mq_receive (mqPXId, msg, MSG_SIZE, &prio) == -1)
{
printf ("receiveTask: mq_receive failed\n");
return;
}

else
{
printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",

prio, msg);
}

}

/* sendTask.c - mq sending example */

/* includes */
#include <vxWorks.h>
#include <mqueue.h>
#include <fcntl.h>
#include <mqEx.h>

/* defines */
#define MSG "greetings"
#define HI_PRIO 30

void sendTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */\

/* open msg queue; should already exist with default attributes */

if ((mqPXId = mq_open (MQ_NAME, O_RDWR, 0, NULL)) == (mqd_t) -1)
{
printf ("sendTask: mq_open failed\n");
return;
}

/* try writing to queue */

if (mq_send (mqPXId, MSG, sizeof (MSG), HI_PRIO) == -1)
{
printf ("sendTask: mq_send failed\n");

4 POSIX Standard Interfaces
4.13 POSIX Message Queues

195

4

return;
}

else
printf ("sendTask: mq_send succeeded\n");

}

4.13.5 Notifying a Task that a Message is Waiting

A task can use the mq_notify() routine to request notification when a message it
arrives for it at an empty queue. The advantage of this is that a task can avoid
blocking or polling to wait for a message.

The mq_notify() routine specifies a signal to be sent to the task when a message is
placed on an empty queue. This mechanism uses the POSIX data-carrying
extension to signaling, which allows you, for example, to carry a queue identifier
with the signal (see 4.14 POSIX Queued Signals, p.200).

The mq_notify() mechanism is designed to alert the task only for new messages
that are actually available. If the message queue already contains messages, no
notification is sent when more messages arrive. If there is another task that is
blocked on the queue with mq_receive(), that other task unblocks, and no
notification is sent to the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for
notification at a time. Once a queue has a task to notify, no further attempts to
register with mq_notify() can succeed until the notification request is satisfied or
cancelled.

Once a queue sends notification to a task, the notification request is satisfied, and
the queue has no further special relationship with that particular task; that is, the
queue sends a notification signal only once for each mq_notify() request. To
arrange for one particular task to continue receiving notification signals, the best
approach is to call mq_notify() from the same signal handler that receives the
notification signals.

To cancel a notification request, specify NULL instead of a notification signal. Only
the currently registered task can cancel its notification request.

VxWorks
Application Programmer’s Guide, 6.2

196

Example 4-12 Notifying a Task that a Message Queue is Waiting

/*
*In this example, a task uses mq_notify() to discover when a message
* is waiting for it on a previously empty queue.
*/

/* includes */
#include <vxWorks.h>
#include <signal.h>
#include <mqueue.h>
#include <fcntl.h>
#include <errno.h>

/* defines */
#define QNAM "PxQ1"
#define MSG_SIZE 64 /* limit on message sizes */

/* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMqRead (mqd_t);

/*
* exMqNotify - example of how to use mq_notify()
*
* This routine illustrates the use of mq_notify() to request notification
* via signal of new messages in a queue. To simplify the example, a
* single task both sends and receives a message.
*/

int exMqNotify
(
char * pMess /* text for message to self */
)

{
struct mq_attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mqd_t exMqId /* id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))

{
printf ("exMqNotify: message too long\n");
return (-1);
}

/*
* Install signal handler for the notify signal and fill in
* a sigaction structure and pass it to sigaction(). Because the handler
* needs the siginfo structure as an argument, the SA_SIGINFO flag is
* set in sa_flags.
*/

4 POSIX Standard Interfaces
4.13 POSIX Message Queues

197

4

mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1, &mySigAction, NULL) == -1)
{
printf ("sigaction failed\n");
return (-1);
}

/*
* Create a message queue - fill in a mq_attr structure with the
 * size and no. of messages required, and pass it to mq_open().
 */

attr.mq_flags = O_NONBLOCK; /* make nonblocking */
attr.mq_maxmsg = 2;
attr.mq_msgsize = MSG_SIZE;

if ((exMqId = mq_open (QNAM, O_CREAT | O_RDWR, 0, &attr)) ==
 (mqd_t) - 1)
{
printf ("mq_open failed\n");
return (-1);
}

/*
* Set up notification: fill in a sigevent structure and pass it
 * to mq_notify(). The queue ID is passed as an argument to the
 * signal handler.
 */

sigNotify.sigev_signo = SIGUSR1;
sigNotify.sigev_notify = SIGEV_SIGNAL;
sigNotify.sigev_value.sival_int = (int) exMqId;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return (-1);
}

/*
* We just created the message queue, but it may not be empty;
 * a higher-priority task may have placed a message there while
 * we were requesting notification. mq_notify() does nothing if
 * messages are already in the queue; therefore we try to
 * retrieve any messages already in the queue.
 */

exMqRead (exMqId);

VxWorks
Application Programmer’s Guide, 6.2

198

/*
* Now we know the queue is empty, so we will receive a signal
 * the next time a message arrives.
 *
 * We send a message, which causes the notify handler to be invoked.
* It is a little silly to have the task that gets the notification
* be the one that puts the messages on the queue, but we do it here
* to simplify the example. A real application would do other work
* instead at this point.
*/

if (mq_send (exMqId, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mq_send failed\n");
return (-1);
}

/* Cleanup */
if (mq_close (exMqId) == -1)

{
printf ("mq_close failed\n");
return (-1);
}

/* More cleanup */
if (mq_unlink (QNAM) == -1)

{
printf ("mq_unlink failed\n");
return (-1);
}

return (0);
}

/*
* exNotificationHandle - handler to read in messages
*
* This routine is a signal handler; it reads in messages from a
* message queue.
*/

static void exNotificationHandle
(
int sig, /* signal number */
siginfo_t * pInfo, /* signal information */
void * pSigContext /* unused (required by posix) */
)
{
struct sigevent sigNotify;
mqd_t exMqId;

/* Get the ID of the message queue out of the siginfo structure. */
exMqId = (mqd_t) pInfo->si_value.sival_int;

4 POSIX Standard Interfaces
4.13 POSIX Message Queues

199

4

/*
* Request notification again; it resets each time
 * a notification signal goes out.
 */

sigNotify.sigev_signo = pInfo->si_signo;
sigNotify.sigev_value = pInfo->si_value;
sigNotify.sigev_notify = SIGEV_SIGNAL;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return;
}

/* Read in the messages */
exMqRead (exMqId);
}

/*
* exMqRead - read in messages
*
* This small utility routine receives and displays all messages
* currently in a POSIX message queue; assumes queue has O_NONBLOCK.
*/

static void exMqRead
(
mqd_t exMqId
)
{
char msg[MSG_SIZE];
int prio;

/*
* Read in the messages - uses a loop to read in the messages
 * because a notification is sent ONLY when a message is sent on
 * an EMPTY message queue. There could be multiple msgs if, for
 * example, a higher-priority task was sending them. Because the
 * message queue was opened with the O_NONBLOCK flag, eventually
 * this loop exits with errno set to EAGAIN (meaning we did an
 * mq_receive() on an empty message queue).
 */

while (mq_receive (exMqId, msg, MSG_SIZE, &prio) != -1)
{
printf ("exMqRead: received message: %s\n",msg);
}

if (errno != EAGAIN)
{
printf ("mq_receive: errno = %d\n", errno);
}

}

VxWorks
Application Programmer’s Guide, 6.2

200

4.14 POSIX Queued Signals

Signals are handled differently in the kernel and in real-time processes. In the
kernel the target of a signal is always a task; but in user space, the target of a signal
may be either a specific task or an entire process.

For user-mode applications (processes), all POSIX API that take a process
identifier as one of their parameters use a process ID (a pid_t mapping on a
RTP_ID) in the VxWorks implementation of the signal support for processes.

However, for the VxWorks kernel—for backward compatibility with prior
versions of VxWorks—these API continue to use a task identifier for the kernel
APIs. Also, in order to maintain functionality equivalent to that provided by
previous releases of VxWorks and to support signals between kernel and user
applications, additional non-POSIX APIs have been added: taskSigqueue(),
rtpSigqueue(), rtpTaskSigqueue(), taskKill(), rtpKill(), and rtpTaskKill().

In accordance with the POSIX standard, a signal sent to a process is handled by the
first available task in the process.

The sigqueue() family of routines provides an alternative to the kill() family of
routines for sending signals. The important differences between the two are:

■ sigqueue() includes an application-specified value that is sent as part of the
signal. You can use this value to supply whatever context your signal handler
finds useful. This value is of type sigval (defined in signal.h); the signal
handler finds it in the si_value field of one of its arguments, a structure
siginfo_t. An extension to the POSIX sigaction() routine allows you to register
signal handlers that accept this additional argument.

■ sigqueue() enables the queueing of multiple signals for any task. The kill()
routine, by contrast, delivers only a single signal, even if multiple signals
arrive before the handler runs.

Currently, VxWorks includes signals reserved for application use, numbered
consecutively from SIGRTMIN. The presence of a minimum of eight
(_POSIX_RTSIG_MAX) of these reserved signals is required by POSIX 1003.1, but
VxWorks supports only seven (RTSIG_MAX). The specific signal values are not
specified by POSIX; for portability, specify these signals as offsets from SIGRTMIN
(for example, write SIGRTMIN+2 to refer to the third reserved signal number). All
signals delivered with sigqueue() are queued by numeric order, with
lower-numbered signals queuing ahead of higher-numbered signals.

POSIX 1003.1 also introduced an alternative means of receiving signals. The
routine sigwaitinfo() differs from sigsuspend() or pause() in that it allows your

4 POSIX Standard Interfaces
4.14 POSIX Queued Signals

201

4

application to respond to a signal without going through the mechanism of a
registered signal handler: when a signal is available, sigwaitinfo() returns the
value of that signal as a result, and does not invoke a signal handler even if one is
registered. The routine sigtimedwait() is similar, except that it can time out.

Basic queued signal routines are described in Table 4-17. For detailed information
on signals, see the kernel and application (process) API references for sigLib.

Additional non-POSIX VxWorks queued signal routines are described in
Table 4-18. These routines are provided for assisting in porting VxWorks 5.x kernel
applications to processes. The POSIX routines described in Table 4-17 should be
used for developing new applications that execute as real-time processes.

Note that a parallel set of non-POSIX APIs are provided for the kill() family of
POSIX routines.

To include POSIX queued signals in the system, configure VxWorks with the
INCLUDE_POSIX_SIGNALS component. This component automatically initializes
POSIX queued signals with sigqueueInit(). The sigqueueInit() routine allocates
buffers for use by sigqueue(), which requires a buffer for each currently queued
signal. A call to sigqueue() fails if no buffer is available.

Table 4-17 POSIX 1003.1b Queued Signal Routines

Routine Description

sigqueue() Sends a queued signal to a task (kernel API) or to a process
(application API).

sigwaitinfo() Waits for a signal.

sigtimedwait() Waits for a signal with a timeout.

Table 4-18 Non-POSIX Queued Signal Routines

Routine Description

taskSigqueue() Sends a queued signal from a task in a process to another task
in the same process (user-space only).

rtpSigqueue() Sends a queues signal from a kernel task to a process
(kernel-space only).

rtpTaskSigqueue(
)

Sends a queued signal from a kernel task to a specified task
in a process (kernel-space only).

VxWorks
Application Programmer’s Guide, 6.2

202

The maximum number of queued signals in a process is set with the configuration
parameter RTP_SIGNAL_QUEUE_SIZE. The default value, 32, is set in concordance
with the POSIX 1003.1 standard (_POSIX_SIGQUEUE_MAX). Changing the value to
a lower number may cause problems for applications relying on POSIX guidelines.

Process-based applications are automatically linked with the application API
mqPxLib when they are compiled. Initialization of the library is automatic when
the process starts.

Example 4-13 Queued Signals

/* queSig.c - signal demo */
/*
DESCRIPTION
This demo program exhibits the following functionalities in queued signals.
1) Sending a queued signal to a kernel task
2) Sending a queued signal to a RTP task
3) Sending a queued signal to a RTP

For simplicity the sender is assumed to be a kernel task.

Do the following in order to see the demo.

Sending a queued signal to a kernel task

1) Build this file (queSig.c) alongwith the VxWorks image.
2) Spawn a task with main() as the entry address. For e.g. from the kernel
shell
 do "sp main".
3) sig (int id, int value) provided in this file is a helper function to send
 a queued signal. Where <id> is the kernel task Id and <value> is the
signal
 value to be sent.
4) Send a queued signal to the spawned kernel task. From kernel shell do
 sig <kernelTaskId> , <value>

Sending a queued signal to a RTP task

1) Build this file (queSig.c) as an RTP executable.
2) Spawn the queSig RTP.
3) From a kernel task, use the sig (int id, int value); helper routine to
send
 a queued signal to the RTP task. The <id> being the RTP task Id.

Sending a queued signal to a RTP

1) Build this file (queSig.c) as an RTP executable.
2) Spawn the queSig RTP.
3) From a kernel task, use the sig (int id, int value); helper routine to
send

4 POSIX Standard Interfaces
4.14 POSIX Queued Signals

203

4

 a queued signal to the RTP. The <id> being the RTP Id.

*/

#include <stdio.h>
#include <signal.h>
#include <taskLib.h>
#include "rtpLib.h"
#ifdef _WRS_KERNEL
#include "private/rtpLibP.h"
#include "private/taskLibP.h"
#endif

typedef void (*FPTR) (int);

void sigMasterHandler
 (
 int sig, /* caught signal */
#ifdef _WRS_KERNEL
 int code,
#else
 siginfo_t * pInfo , /* signal info */
#endif
 struct sigcontext *pContext /* unused */
);

/**
*
* main - entry point for the queued signal demo
*
* This routine acts the task entry point in the case of the demo spawned as a
* kernel task. It also can act as a RTP entry point in the case of RTP based
* demo
*/

STATUS main ()
 {
 sigset_t sig = sigmask (SIGUSR1);
 union sigval sval;
 struct sigaction in;

 sigprocmask (SIG_UNBLOCK, &sig, NULL);

 in.sa_handler = (FPTR) sigMasterHandler;
 in.sa_flags = 0;
 (void) sigemptyset (&in.sa_mask);

 sigaction (SIGUSR1, &in, NULL);

 printf ("Task 0x%x installed signal handler for signal # %d.\
 Ready for signal.\n", taskIdCurrent, SIGUSR1);

 for (;;);

VxWorks
Application Programmer’s Guide, 6.2

204

 }

/**
*
* sigMasterHandler - signal handler
*
* This routine is the signal handler for the SIGUSR1 signal
*/

void sigMasterHandler
 (
 int sig, /* caught signal */
#ifdef _WRS_KERNEL
 int code,
#else
 siginfo_t * pInfo , /* signal info */
#endif
 struct sigcontext *pContext /* unused */
)
 {
 printf ("Task 0x%x got signal # %d signal value %d \n", taskIdCurrent,
sig,
#ifdef _WRS_KERNEL
 code
#else
 pInfo->si_value.sival_int
#endif
);
 }

/**
*
* sig - helper routine to send a queued signal
*
* This routine can send a queued signal to a kernel task or RTP task or RTP.
* <id> is the ID of the receiver entity. <value> is the value to be sent
* along with the signal. The signal number being sent is SIGUSR1.
*/

#ifdef _WRS_KERNEL
STATUS sig (int id, int val)
 {
 union sigval valueCode;

 valueCode.sival_int = val;

 if (TASK_ID_VERIFY (id) == OK)
 {
 if (IS_KERNEL_TASK (id))
 {
 sigqueue (id, SIGUSR1, valueCode);
 }
 else

4 POSIX Standard Interfaces
4.14 POSIX Queued Signals

205

4

 {
 rtpTaskSigqueue ((WIND_TCB *)id, SIGUSR1, valueCode);
 }
 }
 else if (OBJ_VERIFY ((RTP_ID)id, rtpClassId) != ERROR)
 {
 rtpSigqueue ((RTP_ID)id, SIGUSR1, valueCode);
 }
 else
 {
 return (ERROR);
 }

 return (OK);
 }
#endif

VxWorks
Application Programmer’s Guide, 6.2

206

207

 5
Memory Management

in Processes

5.1 Introduction 207

5.2 VxWorks Component Requirements 208

5.3 Heap and Memory Partition Management 208

5.4 Dynamic Memory Space Management for Applications 210

5.5 Memory Error Detection 212

5.1 Introduction

This chapter describes the memory management facilities available to applications
that execute as real-time processes (see 2. Applications and Processes). Each process
has its own heap, and can allocate and free buffers from its heap with the routines
provided in the memLib and memPartLib libraries. User applications that need to
manage their memory space can do so with the mmanLib API. Applications can
request additional mapped memory, change the access permissions of these
mapped memory areas, or unmap them with the mmap() mprotect(), and
munmap() routines.

In addition, run-time error detection facilities provide the ability to debug memory
related errors in application code. For information about additional error detection
facilities useful for debugging software faults, see 8. Error Detection and Reporting.

VxWorks
Application Programmer’s Guide, 6.2

208

See VxWorks Kernel Programmer’s Guide: Memory Management for information
about:

■ Memory management facilities available to code running in the VxWorks
kernel.

■ The layout of memory for configurations of VxWorks that include processes
and related facilities.

■ Configuring VxWorks with process support, but without MMU support.

5.2 VxWorks Component Requirements

When VxWorks is configured with real-time process support, it includes the basic
memory management features required for process-based applications (see
2.2 Configuring VxWorks For Real-time Processes, p.8).

For the error detection features provided by heap and memory partition
instrumentation, the INCLUDE_EDR_RTP_SHOW component is also required
(5.5.2 Compiler Instrumentation, p.220).

5.3 Heap and Memory Partition Management

VxWorks provides support for heap and memory partition management in
processes. By default, the heap is implemented as a memory partition within the
process.

The heap is automatically created during the process initialization phase. The
initial size of the heap, and the automatic incrementation size, are configurable
with the environment variables HEAP_INITIAL_SIZE, HEAP_INCR_SIZE and
HEAP_MAX_SIZE. These environment variables only have effect if they are set
when the application is started. The application cannot change it's own values. For

NOTE: This chapter provides information about facilities available for real-time
processes. For information about facilities available in the VxWorks kernel, see the
corresponding chapter in the VxWorks Kernel Programmer’s Guide.

5 Memory Management
5.3 Heap and Memory Partition Management

209

5

more information on these environment variables, refer to the VxWorks API
reference for memLib.

Memory partitions are contiguous areas of memory that are used for dynamic
memory allocation by applications. Applications can create their own partitions
and allocate and free memory from these partitions.

The heap and any partition created in a process are private to that process, which
means that only that process is allowed to allocate memory to it, or free from it.

For more information, see the VxWorks API references for memPartLib and
memLib.

Alternative Heap Manager

The VxWorks process heap implementation can be replaced by a custom version
simply by linking the replacement library into the application (the replacement
library must precede vxlib.a in the link order).

The memory used as heap can be obtained with either one of the following:

■ A statically created array variable; for example:

char heapMem[HEAP_SIZE];

This solution is simple, but it creates a fixed sized heap.

■ Using the dynamic memory mapping function, mmap(). With mmap(), it is
possible to implement automatic or non-automatic growth of the heap.
However, it is important to keep in mind that subsequent calls to mmap() are
not guaranteed to provide memory blocks that are adjacent. For more
information about mmap() see 5.4 Dynamic Memory Space Management for
Applications, p.210.

In case of applications that are dynamically linked with libc.so (which by default
contains memLib.o), the default heap provided by memLib is automatically
created. To avoid creation of the default heap, it is necessary to create a custom
libc.so file that does not hold memLib.o. For information about creating a custom
shared library that provides this functionality, please contact Wind River Support.

To ensure that process initialization code has access to the replacement heap
manager early enough, the user-supplied heap manager must either:

■ Initialize the heap automatically the very first time malloc() or any other heap
routine is called.

■ Have its initialization routine linked with the application, and declared as an
automatic constructor using the _WRS_CONSTRUCTOR macro with an

VxWorks
Application Programmer’s Guide, 6.2

210

initialization order lower than 6 (for information about this macro, see
2.5.1 Library Initialization, p.27).

5.4 Dynamic Memory Space Management for Applications

A limited implementation of the POSIX memory mapped file API is provided to
allow processes to dynamically extend their own memory space. This API allows
an application to request pages of memory mapped into the process’ context, as
well as to un-map, or to change protection attributes of dynamically mapped
memory pages.

Dynamically-mapped memory is used to create the process heap, and to extend it
if necessary. It also can be used to create user memory partitions, or it can be
directly managed by an application. When an process is terminated or deleted, all
mapped pages are automatically unmapped.

The mmanLib library provides the following routines:

mmap()
Dynamically map pages of memory into the process’ memory context.

munmap()
Unmap pages of memory from the process memory context.

mprotect()
Change protection of memory pages.

Restrictions

The restrictions of the VxWorks memory-mapped file API implementation are:

■ Only private, anonymous mappings are supported (MAP_PRIVATE and
MAP_ANON flags must be used). Shared (MAP_SHARED) or fixed
(MAP_FIXED) mappings are not supported.

■ The unmap() routine cannot be used for a partial memory block obtained with
mmap(). It only accepts full blocks obtained with a single mmap() call.

■ The mprotect() routine only works for memory pages obtained with mmap().

5 Memory Management
5.4 Dynamic Memory Space Management for Applications

211

5

■ It is not possible to specify a specific virtual address to map. The addr
parameter must be NULL; the kernel will assign the virtual address from the
available address space.

■ The offset parameter off must be 0.

■ The address parameter for mprotect(), addr , must be page aligned.

■ The length of the block is rounded up to a multiple of the page size, and the
entire block must be within a block obtained with a single mmap() call.

The following application code illustrates the use of mmap(), mprotect(), and
unmap().

#include <sys/mman.h>
#include <sys/sysctl.h>

/**
* main - User application entry function
*
* This application illustrates the usage of the mmap(),mprotect(),and
munmap()
* API. It does not perform any other useful function.
*
* EXIT STATUS: 0 if all calls succeeded, otherwise 1.
*/

int main ()
 {
 int mib[3]; /*MIB array for sysctl() */
 size_t pgSize; /*variable to store page size */
 size_t sz = sizeof (pgSize); /* size of pgSize variable */
 size_t bufSize; /* size of buffer */
 char * pBuf; /* buffer */

 /* get "hw.mmu.pageSize" info */

 mib[0] = CTL_HW;
 mib[1] = HW_MMU;
 mib[2] = HW_MMU_PAGESIZE;

 if (sysctl (mib, 3, &pgSize, &sz, NULL, 0) != 0)
exit (1);

 /* buffer size is 4 pages */

 bufSize = 4 * pgSize;

 /* request mapped memory for a buffer */

 pBuf = mmap (NULL, bufSize, (PROT_READ | PROT_WRITE),
 (MAP_PRIVATE | MAP_ANON), MAP_ANON_FD, 0);

VxWorks
Application Programmer’s Guide, 6.2

212

 /* check for error */

 if (pBuf == MAP_FAILED)
 exit (1);

 /* write protect the first page */

 if (mprotect (pBuf, pgSize, PROT_READ) != 0)
 {

/*
 * no need to call unmap before exiting as all memory mapped for
 * a process is automatically released.
 */

exit (1);
}

 /*
 * Unmap the buffer; the unmap() has to be called for the entire buffer.
 * Note that unmapping before exit() is not necesary; it is shown here
 * only for illustration purpose.
 */

 if (munmap (pBuf, bufSize) != 0)
exit (1);

 printf ("execution succeded\n");
 exit (0);
 }

For more information see the VxWorksAPI reference for mmanLib.

5.5 Memory Error Detection

Support for memory error detection is provided by two optional instrumentation
libraries. The memEdrLib library performs error checks of operations in the user
heap and memory partitions in a process. The Run-Time Error Checking (RTEC)
feature of the Wind River Compiler can be used to check for additional errors, such
as buffer overruns and underruns, static and automatic variable reference checks.

Errors detected by these facilities are reported with the logging facility of the error
detection and reporting component; which must be included in the VxWorks
configuration to provide this functionality. For more information, see 8. Error
Detection and Reporting.

5 Memory Management
5.5 Memory Error Detection

213

5
5.5.1 Heap and Partition Memory Instrumentation

To supplement the error detection features built into memLib and memPartLib
(such as valid block checking), the memory partition debugging library,
memEdrLib, can be used to perform automatic, programmatic, and interactive
error checks on memLib and memPartLib operations. This is performed by
installing instrumentation hooks for memPartLib.

The instrumentation helps detect common programming errors such as
double-freeing an allocated block, freeing or reallocating an invalid pointer, and
memory leaks. In addition, with compiler-assisted code instrumentation, it helps
detect bounds-check violations, buffer over-runs and under-runs, pointer
references to free memory blocks, pointer references to automatic variables outside
the scope of the variable, and so on.

VxWorks Kernel Configuration

A VxWorks kernel configured for process support (with the INCLUDE_RTP
component) is sufficient for providing processes with heap instrumentation. The
optional INCLUDE_MEM_EDR_RTP_SHOW component can be used to provide
show routines for the heap and memory partition instrumentation. Note that the
kernel’s heap instrumentation component (INCLUDE_MEM_EDR) is not required.

Linking

In order to enable heap and memory partition instrumentation of a process, the
executable must be linked with the memEdrLib library support included. This can
be accomplished by using the following linker option:

-Wl,-umemEdrEnable

For example, the following makefile based on the provided user-side build
environment can be used:

EXE = heapErr.vxe
OBJS = main.o
LD_EXEC_FLAGS += -Wl,-umemEdrEnable
include $(WIND_USR)/make/rules.rtp

NOTE: The memory error detection facilities described in this section are not
included in any shared library provided by Wind River with this release. They can
only be statically linked with application code.

VxWorks
Application Programmer’s Guide, 6.2

214

Alternatively, adding the following lines to the application code can also be used:

extern int memEdrEnable;
memEdrEnable = TRUE;

The location of these lines in the code is not important.

Environment Variables

When executing an application, the following environment variables may be set to
override the defaults. The variables have to be set when the process is started (see
2.4.1 Application Structure, p.18).

MEDR_EXTENDED_ENABLE
Set to TRUE to enable saving trace information for each allocated block, but at
the cost of increased memory used to store entries in the allocation database.
Without this feature enabled the database entry for each allocated block is 32
bytes, with this feature enabled it is 64 bytes. Default setting is FALSE.

MEDR_FILL_FREE_ENABLE
Set to TRUE to enable pattern-filling queued free blocks. This aids detecting
writes into freed buffers. Default setting is FALSE.

MEDR_FREE_QUEUE_LEN
Maximum allowed length of the free queue. When a memory block is freed by
an application, instead of immediately returning it to the memory pool, it is
kept in a queue. When the queue reaches the maximum length allowed, the
blocks are returned to the memory pool in a FIFO order. Queuing is disabled
when this parameter is 0. Default setting is 64.

MEDR_BLOCK_GUARD_ENABLE
Enable guard signatures in the front and the end of each allocated block.
Enabling this feature aids in detecting buffer overruns, under-runs, and some
heap memory corruption. Default setting is FALSE.

MEDR_POOL_SIZE
Set the size of the memory pool used to maintain the memory block database.
Default setting in processes is 64 K. The database uses 32 bytes per memory
block without extended information enabled, and 64 bytes per block with
extended information enabled (call stack trace).

MEDR_SHOW_ENABLE
Enable heap instrumentation show support in the process. This is needed in
addition to configuring VxWorks with the INCLUDE_MEM_EDR_RTP_SHOW
component. When enabled, the kernel routines communicate with a dedicated
task in the process with message queues. The default setting is FALSE.

5 Memory Management
5.5 Memory Error Detection

215

5

Error Types

During execution, errors are automatically logged when the allocation, free, and
re-allocation functions are called. The following error types are automatically
identified and logged:

■ Allocation returns a block address within an already allocated block from the
same partition. This would indicate corruption in the partition data structures.

■ Allocation returns a block address which is in the task's stack space. This
would indicate corruption in the partition data structures.

■ Allocation returns a block address that is in the kernel's static data section. This
would indicate corruption in the partition data structures.

■ Freeing a pointer which is in the task’s stack space.

■ Freeing a memory that was already freed and is still in the free queue.

■ Freeing memory which is in the kernel’s static data section.

■ Freeing memory in a different partition than where it was allocated.

■ Freeing a partial memory block.

■ Freeing memory block with the guard zone corrupted, when the
MEDR_BLOCK_GUARD_ENABLE environment variable is TRUE.

■ Pattern in a memory block which is in the free queue has been corrupted, when
the MEDR_FILL_FREE_ENABLE environment variable is TRUE.

VxWorks
Application Programmer’s Guide, 6.2

216

Shell Commands

The show routines and commands described in Table 5-1 are available for use with
the shell’s C and command interpreters to display information.

Code Example

The following application code can be used to generate various errors that can be
monitored from the shell (line numbers are included for reference purposes). Its
use is illustrated in Shell Session Example, p.217.

Table 5-1 Shell Commands

C Interpreter Command Interpreter Description

edrShow() edr show Displays error records.

memEdrRtpPartShow() mem rtp part list Displays a summary of the
instrumentation
information for memory
partitions located in a given
process.

memEdrRtpBlockShow() mem rtp block list Displays information about
allocated blocks in a given
process. Blocks can be
selected using a
combination of various
querying criteria: partition
ID, block address, allocating
task ID, block type.

memEdrRtpBlockMark() mem rtp block mark

mem rtp block unmark

Marks or unmarks selected
blocks allocated at the time
of the call. The selection
criteria may include
partition ID and/or
allocating task ID.

Can be used to monitor
memory leaks by displaying
information of unmarked
blocks with
memEdrRtpBlockShow()
and mem rtp block list.

5 Memory Management
5.5 Memory Error Detection

217

5

1 #include <vxWorks.h>
2 #include <stdlib.h>
3 #include <taskLib.h>
4 int main ()
5
6 {
7 char * pChar;
8
9 taskSuspend(0); /* stop here first */
10
11 pChar = malloc (24);
12 free (pChar + 2); /* free partial block */
13 free (pChar);
14 free (pChar); /* double-free block */
15 pChar = malloc (32); /* leaked memory */
16
17 taskSuspend (0); /* stop again to keep RTP alive */
18 }

Shell Session Example

First set up the environment variables in the shell task. These variables will be
inherited by processes created with rtpSp(). The first environment variable
enables trace information to be saved for each allocation, the second one enables
the show command support inside the process.

-> putenv "MEDR_EXTENDED_ENABLE=TRUE"
value = 0 = 0x0
-> putenv "MEDR_SHOW_ENABLE=TRUE"
value = 0 = 0x0

Spawn the process using the executable produced from the example code:

-> rtp = rtpSp ("heapErr.vxe")
rtp = 0x223ced0: value = 36464240 = 0x22c6670

At this point, the initial process task (iheapErr), which is executing main(), is
stopped at the first taskSuspend() call (line 9 of the source code). Now mark all
allocated blocks in the process which resulted from the process initialization phase:

-> memEdrRtpBlockMark rtp
value = 27 = 0x1b

Next, clear all entries in the error log. This step is optional, and is used to limit the
number of events displayed by the edrShow() command that will follow:

-> edrClear
value = 0 = 0x0

Resume the initial task iheapErr to continue execution of the application code:

-> tr iheapErr
value = 0 = 0x0

VxWorks
Application Programmer’s Guide, 6.2

218

After resuming the process will continue execution until the second
taskSuspend() call (line 17). Now list all blocks in the process that are unmarked.
These are blocks that have been allocated since memEdrRtpBlockMark() was
called, but have not been freed. Such blocks are possible memory leaks:

-> memEdrRtpBlockShow rtp, 0, 0, 0, 5, 1

 Addr Type Size Part ID Task ID Task Name Trace
-------- ------ -------- -------- -------- ------------ ------------
30053970 alloc 32 30010698 22c8750 iheapErr main()

malloc()
0x30004ae4()

value = 0 = 0x0

Display the error log. The first error corresponds to line 12 in the test code, while
the second error corresponds to line 14.

-> edrShow
ERROR LOG
=========
Log Size: 524288 bytes (128 pages)
Record Size: 4096 bytes
Max Records: 123
CPU Type: 0x5a
Errors Missed: 0 (old) + 0 (recent)
Error count: 2
Boot count: 4
Generation count: 6

==[1/2]==
Severity/Facility: NON-FATAL/RTP
Boot Cycle: 4
OS Version: 6.0.0
Time: THU JAN 01 00:09:56 1970 (ticks = 35761)
Task: "iheapErr" (0x022c8750)
RTP: "heapErr.vxe" (0x022c6670)
RTP Address Space: 0x30000000 -> 0x30057000

freeing part of allocated memory block
 PARTITION: 0x30010698
 PTR=0x30053942
 BLOCK: allocated at 0x30053940, 24 bytes

<<<<<Traceback>>>>>

0x300001b4 _start +0x4c : main ()
0x300001e4 main +0x2c : free ()
0x30007280 memPartFree +0x5c : 0x30004a10 ()
0x30004ac8 memEdrItemGet+0x6e8: 0x30004514 ()
0x30003cb8 memEdrErrorLog+0x138: saveRegs ()

==[2/2]==
Severity/Facility: NON-FATAL/RTP
Boot Cycle: 4
OS Version: 6.0.0

5 Memory Management
5.5 Memory Error Detection

219

5

Time: THU JAN 01 00:09:56 1970 (ticks = 35761)
Task: "iheapErr" (0x022c8750)
RTP: "heapErr.vxe" (0x022c6670)
RTP Address Space: 0x30000000 -> 0x30057000

freeing memory in free list
PARTITION: 0x30010698
PTR=0x30053940
BLOCK: free block at 0x30053940, 24 bytes

<<<<<Traceback>>>>>

0x300001b4 _start +0x4c : main ()
0x300001f4 main +0x3c : free ()
0x30007280 memPartFree +0x5c : 0x30004a10 ()
0x30004ac8 memEdrItemGet+0x6e8: 0x30004514 ()
0x30003cb8 memEdrErrorLog+0x138: saveRegs ()
value = 0 = 0x0

Finally, resume iheapErr again to allow it to complete and to be deleted:

-> tr iheapErr
value = 0 = 0x0

VxWorks
Application Programmer’s Guide, 6.2

220

5.5.2 Compiler Instrumentation

Additional errors are detected if the application is compiled using the Run-Time
Error Checking (RTEC) feature of the Wind River Compiler. The following flag
should be used:

-Xrtc=option

Code compiled with the -Xrtc flag is instrumented for runtime checks such as
pointer reference check and pointer arithmetic validation, standard library
parameter validation, and so on. These instrumentations are supported through
the memory partition run-time error detection library. Table 5-2 lists the -Xrtc
options that are supported.

The errors and warnings detected by the RTEC compile-in instrumentation are
logged by the error detection and reporting facility (see 8. Error Detection and
Reporting). The following error types are identified:

■ Bounds-check violation for allocated memory blocks.
■ Bounds-check violation of static (global) variables.
■ Bounds-check violation of automatic variables.
■ Reference to a block in the free queue.
■ Reference to the free part of the task’s stack.
■ De-referencing a NULL pointer.

NOTE: This feature is not available with the GNU compiler.

Table 5-2 -Xrtc Options

Option Description

0x01 register and check static (global) variables

0x02 register and check automatic variables

0x08 pointer reference checks

0x10 pointer arithmetic checks

0x20 pointer increment/decrement checks

0x40 standard function checks; for example memset() and bcopy()

0x80 report source code filename and line number in error logs

5 Memory Management
5.5 Memory Error Detection

221

5

Configuring VxWorks for RTEC Support

Support for this feature in the kernel is enabled by configuring VxWorks with the
basic error detection and reporting facilities. See 8.2 Configuring Error Detection and
Reporting Facilities, p.293.

Shell Commands

The compiler provided instrumentation automatically logs errors detected in
applications using the error detection and reporting facility. For information about
using shell commands with error logs, see 8.4 Displaying and Clearing Error Records,
p.296.

Code Example

This application code generates various errors that can be recorded and displayed,
if built with the Wind River Compiler and its -Xrtc option (line numbers are
included for reference purposes). Its use is illustrated in Shell Session Example,
p.221.

1 #include <vxWorks.h>
2 #include <stdlib.h>
3
4 int main ()
5 {
6 char name[] = "very_long_name";
7 char * pChar;
8 int state[] = { 0, 1, 2, 3 };
9 int ix = 0;
10
11 pChar = (char *) malloc (13);
12
13 memcpy (pChar, name, strlen (name)); /* bounds check violation
*/
14 /* of allocated block */
15
16 for (ix = 0; ix < 4; ix++)
17 state[ix] = state [ix + 1]; /* bounds check violation */
18 /* of automatic variable */
19 free (pChar);
20
21 *pChar = '\0'; /* reference a free block */
22 }

Shell Session Example

In the following shell session example, the C interpreter is used to execute
edrClear(), which clears the error log of any existing error records. Then the
application is started with rtpSp(). Finally, the errors are displayed with
edrShow().

VxWorks
Application Programmer’s Guide, 6.2

222

First, clear the error log. This step is only performed to limit the number of events
that are later displayed, when the events are listed:

-> edrClear
value = 0 = 0x0

Start the process using the executable created from the sample code listed above:

-> rtpSp "refErr.vxe"
value = 36283472 = 0x229a450

Next, list the error log. As shown below, three errors are detected by the compiler
instrumentation:

-> edrShow
ERROR LOG
=========
Log Size: 524288 bytes (128 pages)
Record Size: 4096 bytes
Max Records: 123
CPU Type: 0x5a
Errors Missed: 0 (old) + 0 (recent)
Error count: 3
Boot count: 4
Generation count: 8

The first one is caused by the code on line 13. A string of length 14 is copied into a
allocated buffer of size 13:

==[1/3]==
Severity/Facility: NON-FATAL/RTP
Boot Cycle: 4
OS Version: 6.0.0
Time: THU JAN 01 01:55:42 1970 (ticks = 416523)
Task: "irefErr" (0x0229c500)
RTP: "refErr.vxe" (0x0229a450)
RTP Address Space: 0x30000000 -> 0x30058000
Injection Point: main.c:13

memory block bounds-check violation
PTR=0x30054940 OFFSET=0 SIZE=14
BLOCK: allocated at 0x30054940, 13 bytes

<<<<<Traceback>>>>>

0x300001b4 _start +0x4c : main ()
0x300002ac main +0xf4 : __rtc_chk_at ()

The second error refers to line 17. The local state array is referenced with index 4.
Since the array has only four elements, the range of valid indexes is 0 to 3:

==[2/3]==
Severity/Facility: NON-FATAL/RTP
Boot Cycle: 4
OS Version: 6.0.0

5 Memory Management
5.5 Memory Error Detection

223

5

Time: THU JAN 01 01:55:42 1970 (ticks = 416523)
Task: "irefErr" (0x0229c500)
RTP: "refErr.vxe" (0x0229a450)
RTP Address Space: 0x30000000 -> 0x30058000
Injection Point: main.c:17

memory block bounds-check violation
PTR=0x30022f34 OFFSET=16 SIZE=4
BLOCK: automatic at 0x30022f34, 16 bytes

<<<<<Traceback>>>>>

0x300001b4 _start +0x4c : main ()
0x300002dc main +0x124: __rtc_chk_at ()

The last error is caused by the code on line 21. A memory block that has been freed
is being modified:

==[3/3]==
Severity/Facility: NON-FATAL/RTP
Boot Cycle: 4
OS Version: 6.0.0
Time: THU JAN 01 01:55:42 1970 (ticks = 416523)
Task: "irefErr" (0x0229c500)
RTP: "refErr.vxe" (0x0229a450)
RTP Address Space: 0x30000000 -> 0x30058000
Injection Point: main.c:21

pointer to free memory block
PTR=0x30054940 OFFSET=0 SIZE=1
BLOCK: free block at 0x30054940, 13 bytes

<<<<<Traceback>>>>>

0x300001b4 _start +0x4c : main ()
0x30000330 main +0x178: __rtc_chk_at ()
value = 0 = 0x0

VxWorks
Application Programmer’s Guide, 6.2

224

225

 6
I/O System

6.1 Introduction 226

6.2 Files, Devices, and Drivers 227

6.3 Basic I/O 229

6.4 Buffered I/O: stdio 239

6.5 Other Formatted I/O: printErr() and fdprintf() 241

6.6 Asynchronous Input/Output 241

6.7 Devices in VxWorks 244

6.8 Transaction-Based Reliable File System Facility: TRFS 252

VxWorks
Application Programmer’s Guide, 6.2

226

6.1 Introduction

The VxWorks I/O system is designed to present a simple, uniform,
device-independent interface to any kind of device, including:

■ character-oriented devices such as terminals or communications lines

■ random-access block devices such as disks

■ virtual devices such as intertask pipes and sockets

■ monitor and control devices such as digital and analog I/O devices

■ network devices that give access to remote devices

The VxWorks I/O system provides standard C libraries for both basic and buffered
I/O. The basic I/O libraries are UNIX-compatible; the buffered I/O libraries are
ANSI C-compatible.

The diagram in Figure 6-1 illustrates the relationships between the different
elements of the VxWorks I/O system available to real-time processes (RTPs). All of
these elements are discussed in this chapter.

Figure 6-1 Overview of the VxWorks I/O System for Processes

fioLib
fioRead()
printf()

sprintf()

Basic I/O Routines
(device independent)

write()
read()

Buffered I/O: stdio

fread()
fwrite()

Network Sockets

send()
recv()

Interface

Application

VxWorks Kernel I/O Facilities

6 I/O System
6.2 Files, Devices, and Drivers

227

6

6.2 Files, Devices, and Drivers

In VxWorks, applications access I/O devices by opening named files. A file can
refer to one of two things:

■ An unstructured raw device such as a serial communications channel or an
intertask pipe.

■ A logical file on a structured, random-access device containing a file system.

Consider the following named files:

/usr/myfile
/pipe/mypipe
/tyCo/0

The first refers to a file called myfile, on a disk device called /usr. The second is a
named pipe (by convention, pipe names begin with /pipe). The third refers to a
physical serial channel. However, I/O can be done to or from any of these in the
same way. Within VxWorks, they are all called files, even though they refer to very
different physical objects.

Devices are handled by program modules called drivers. In general, using the I/O
system does not require any further understanding of the implementation of
devices and drivers. Note, however, that the VxWorks I/O system gives drivers
considerable flexibility in the way they handle each specific device. Drivers
conform to the conventional user view presented here, but can differ in the
specifics. See 6.7 Devices in VxWorks, p.244.

Although all I/O is directed at named files, it can be done at two different levels:
basic and buffered. The two differ in the way data is buffered and in the types of calls
that can be made. These two levels are discussed in later sections.

NOTE: This chapter provides information about facilities available for real-time
processes. For information about facilities available in the VxWorks kernel, see the
corresponding chapter in the VxWorks Kernel Programmer’s Guide.

VxWorks
Application Programmer’s Guide, 6.2

228

6.2.1 Filenames and the Default Device

A filename is specified as a character string. An unstructured device is specified
with the device name. In the case of file system devices, the device name is
followed by a filename. Thus, the name /tyCo/0 might name a particular serial I/O
channel, and the name DEV1:/file1 indicates the file file1 on the DEV1: device.

When a filename is specified in an I/O call, the I/O system searches for a device
with a name that matches at least an initial substring of the filename. The I/O
function is then directed at this device.

If a matching device name cannot be found, then the I/O function is directed at a
default device. You can set this default device to be any device in the system,
including no device at all, in which case failure to match a device name returns an
error. You can obtain the current default path by using ioDefPathGet(). You can
set the default path by using ioDefPathSet().

Non-block devices are named when they are added to the I/O system, usually at
system initialization time. Block devices are named when they are initialized for
use with a specific file system. The VxWorks I/O system imposes no restrictions on
the names given to devices. The I/O system does not interpret device or filenames
in any way, other than during the search for matching device and filenames.

It is useful to adopt some naming conventions for device and file names: most
device names begin with a slash (/), except non-NFS network devices, and
VxWorks HRFS and dosFs file system devices.

By convention, NFS-based network devices are mounted with names that begin
with a slash. For example:

/usr

Non-NFS network devices are named with the remote machine name followed by
a colon. For example:

host:

The remainder of the name is the filename in the remote directory on the remote
system.

File system devices using dosFs are often named with uppercase letters and digits
followed by a colon. For example:

DEV1:

NOTE: Filenames and directory names on dosFs devices are often separated by
backslashes (\). These can be used interchangeably with forward slashes (/).

6 I/O System
6.3 Basic I/O

229

6
6.3 Basic I/O

Basic I/O is the lowest level of I/O in VxWorks. The basic I/O interface is
source-compatible with the I/O primitives in the standard C library. There are
seven basic I/O calls, shown in Table 6-1.

6.3.1 File Descriptors

At the basic I/O level, files are referred to by a file descriptor. A file descriptor is a
small integer returned by a call to open() or creat(). The other basic I/O calls take
a file descriptor as a parameter to specify a file.

File descriptors are not global. The kernel has its own set of file descriptors, and
each process (RTP) has its own set. Tasks within the kernel, or within a specific
process share file descriptors. The only instance in which file descriptors may be
shared across these boundaries, is when one process is a child of another process
or of the kernel (processes created by kernel tasks share only the spawning kernel

! CAUTION: Because device names are recognized by the I/O system using simple
substring matching, a slash (/ or \) should not be used alone as a device name, nor
should a slash be used as any part of a device name itself.

Table 6-1 Basic I/O Routines

Routine Description

creat() Creates a file.

remove() Deletes a file.

open() Opens a file (optionally, creates a file if it does not already exist.)

close() Closes a file.

read() Reads a previously created or opened file.

write() Writes to a previously created or opened file.

ioctl() Performs special control functions on files.

VxWorks
Application Programmer’s Guide, 6.2

230

task's standard I/O file descriptors 0, 1 and 2), and it does not explicitly close a file
using the descriptors it inherits from its parent. For example:

■ If task A and task B are running in process foo, and they each perform a
write() on file descriptor 7, they will write to the same file (and device).

■ If process bar is started independently of process foo (it is not foo’s child) and
its tasks X and Y each perform a write() on file descriptor 7, they will be
writing to a different file than tasks A and B in process foo.

■ If process foobar is started by process foo (it is foo’s child) and its tasks M and
N each perform a write() on file descriptor 7, they will be writing to the same
file as tasks A and B in process foo. However, this is only true as long as the
tasks do not close the file. If they close it, and subsequently open file descriptor
7 they will operate on a different file.

When a file is opened, a file descriptor is allocated and returned. When the file is
closed, the file descriptor is deallocated.

The size of the file descriptor table, which defines the maximum number of files
that can be open simultaneously in a process, is inherited from the spawning
environment. If the process is spawned by a kernel task, the size of the kernel file
descriptor table is used for the initial size of the table for the new process.

The size of the file descriptor table for each process can be changed
programmatically. The rtpIoTableSizeGet() routine reads the current size of the
table, and the rtpIoTableSizeSet() routine changes it.

By default, file descriptors are reclaimed only when the file is closed for the last
time. However, the dup() and dup2() routines can be used to duplicate a file
descriptor. For more information, see 6.3.3 Standard I/O Redirection, p.231.

6.3.2 Standard Input, Standard Output, and Standard Error

Three file descriptors have special meanings:

■ 0 is used for standard input (stdin).
■ 1 is used for standard output (stdout).
■ 2 is used for standard error output (stderr).

All real time processes read their standard input—like getchar()—from file
descriptor 0. Similarly file descriptor 1 is used for standard output—like printf().
And file descriptor 2 is used for outputting error messages. You can use these
descriptors to manipulate the input and output for all tasks in a process at once by
changing the files associated with these descriptors.

6 I/O System
6.3 Basic I/O

231

6

These standard file descriptors are used to make an application independent of its
actual I/O assignments. If a process sends its output to standard output (where the
file descriptor is 1), then its output can be redirected to any file of any device,
without altering the application’s source code.

6.3.3 Standard I/O Redirection

If a process is spawned by a kernel task, the process inherits the standard I/O file
descriptor assignments of the spawning kernel task. These may be the same as the
global standard I/O file descriptors for the kernel, or they may be different,
task-specific standard I/O file descriptors. (For more information about kernel
standard I/O assignments, see the VxWorks Kernel Programmer’s Guide: I/O System.)

If a process is spawned by another process, it inherits the standard I/O file
descriptor assignments of the spawning process.

After a process has been spawned, its standard I/O file descriptors can be changed
to any file descriptor that it owns.

The POSIX dup() and dup2() routines are used for redirecting standard I/O to a
different file and then restoring them, if necessary. (Note that this is a very different
process from standard I/O redirection in the kernel).

The first routine is used to save the original file descriptors so they can be restored
later. The second routine assigns a new descriptor for standard I/O, and can also
be used to restore the original. Every duplicated file descriptor should be closed
explicitly when it is no longer in use. The following example illustrates how the
routines are used.

First use the dup() routine to duplicate and save the standard I/O file descriptors,
as follows:

/* Temporary fd variables */
int oldFd0;
int oldFd1;
int oldFd2;
int newFd;

/* Save the original standard file descriptor. */
oldFd0 = dup(0);
oldFd1 = dup(1);
oldFd2 = dup(2);

Then use dup2() to change the standard I/O files:

/* Open new file for stdin/out/err */
newFd = open ("newstandardoutputfile", O_RDWR, 0);

VxWorks
Application Programmer’s Guide, 6.2

232

/* Set newFd to fd 0, 1, 2 */
dup2 (newFd, 0);
dup2 (newFd, 1);
dup2 (newFd, 2);

If the process’ standard I/O needs to be redirected again, the preceding step can be
repeated with a another new file descriptor.

If the original standard I/O file descriptors need to be restored, the following
procedure can be performed:

/* When complete, restore the original standard IO */
dup2 (oldFd0, 0);
dup2 (oldFd1, 1);
dup2 (oldFd2, 2);

/* Close them after they are duplicated to fd 0, 1, 2 */
close (oldFd0);
close (oldFd1);
close (oldFd2);

This redirection only affect the process in which it is done. It does not affect the
standard I/O of any other process or the kernel. Note, however, that any new
processes spawned by this process inherit the current standard I/O file descriptors
of the spawning process (whatever they may be) as their initial standard I/O
setting.

For more information, see the VxWorks API references for dup() and dup2().

6.3.4 Open and Close

Before I/O can be performed on a device, a file descriptor must be opened to the
device by invoking the open() routine—or creat(), as discussed in the next section.
The arguments to open() are the filename, the type of access, and the mode (file
permissions):

fd = open ("name", flags, mode);

For open() calls made in processes, the mode parameter is optional.

The file-access options that can be used with the flags parameter to open() are
listed in Table 6-2.

6 I/O System
6.3 Basic I/O

233

6

Note the following special cases with regard to use of the file access and mode (file
permissions) parameters to open():

■ In general, you can open only preexisting devices and files with open().
However, with NFS network, dosFs, and HRFS devices, you can also create
files with open() by OR’ing O_CREAT with one of the other access flags.

■ HRFS directories can be opened with the open() routine, but only using the
O_RDONLY flag.

Table 6-2 File Access Options

Flag Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_CREAT Create a file if it does not already exist.

O_EXCL Error on open if the file exists and O_CREAT is also set.

O_SYNC Write on the file descriptor complete as defined by
synchronized I/O file integrity completion.

O_DSYNC Write on the file descriptor complete as defined by
synchronized I/O data integrity completion.

O_RSYNC Read on the file descriptor complete at the same sync level as
O_DSYNC and O_SYNC flags.

O_APPEND Set the file offset to the end of the file prior to each write, which
guarantees that writes are made at the end of the file. It has no
effect on devices other than the regular file system.

O_NONBLOCK Non-blocking I/O.

O_NOCTTY If the named file is a terminal device, don't make it the
controlling terminal for the process.

O_TRUNC Open with truncation. If the file exists and is a regular file, and
the file is successfully opened, its length is truncated to 0. It has
no effect on devices other than the regular file system.

VxWorks
Application Programmer’s Guide, 6.2

234

■ With both dosFs and NFS devices, you can use the O_CREAT flag to create a
subdirectory by setting mode to FSTAT_DIR. Other uses of the mode parameter
with dosFs devices are ignored.

■ With an HRFS device you cannot use the O_CREAT flag and the FSTAT_DIR
mode option to create a subdirectory. HRFS will ignore the mode option and
simply create a regular file.

■ The netDrv default file system does not support the F_STAT_DIR mode option
or the O_CREAT flag.

■ For NFS devices, the third parameter to open() is normally used to specify the
mode of the file. For example:

myFd = open ("fooFile", O_CREAT | O_RDWR, 0644);

■ While HRFS supports setting the permission mode for a file, it is not used by
the VxWorks operating system.

■ Files can be opened with the O_SYNC flag, indicating that each write should be
immediately written to the backing media. This flag is currently supported by
the dosFs file system, and includes synchronizing the FAT and the directory
entries.

■ The O_SYNC flag has no effect with HRFS because file system is always
synchronous. HRFS updates files as though the O_SYNC flag were set.

Refer to the VxWorks file system API references for more information about the
features that each file system supports.

The open() routine, if successful, returns a file descriptor. This file descriptor is
then used in subsequent I/O calls to specify that file. The file descriptor is an
identifier that is not task specific; that is, it is shared by all tasks within the memory
space. Within a given process or the kernel, therefore, one task can open a file and
any other task can then use the file descriptor. The file descriptor remains valid
until close() is invoked with that file descriptor, as follows:

close (fd);

At that point, I/O to the file is flushed (completely written out) and the file
descriptor can no longer be used by any task within the process (or kernel).
However, the same file descriptor number can again be assigned by the I/O system
in any subsequent open().

NOTE: Drivers or file systems may or may not honor the flag values or the mode
values. A file opened with O_RDONLY mode may in fact be writable if the driver
allows it. Consult the driver or file system information for specifics.

6 I/O System
6.3 Basic I/O

235

6

For processes, files descriptors are closed automatically only when a process
terminates. It is, therefore, recommended that tasks running in processes explicitly
close all file descriptors when they are no longer needed. As stated previously
(6.3.1 File Descriptors, p.229), there is a limit to the number of files that can be open
at one time. Note that a process owns the files, so that when a process is destroyed,
its file descriptors are automatically closed.

6.3.5 Create and Remove

File-oriented devices must be able to create and remove files as well as open
existing files.

The creat() routine directs a file-oriented device to make a new file on the device
and return a file descriptor for it. The arguments to creat() are similar to those of
open() except that the filename specifies the name of the new file rather than an
existing one; the creat() routine returns a file descriptor identifying the new file.

fd = creat ("name", flag);

Note that with the HRFS file system the creat() routine is POSIX compliant, and
the second parameter is used to specify file permissions; the file is opened in
O_RDWR mode.

With dosFs, however, the creat() routine is not POSIX compliant and the second
parameter is used for open mode flags.

The remove() routine deletes a named file on a file-system device:

remove ("name");

Files should be closed before they are removed.

With non-file-system devices, the creat() routine performs the same function as
open(). The remove() routine, however has no effect.

6.3.6 Read and Write

After a file descriptor is obtained by invoking open() or creat(), tasks can read
bytes from a file with read() and write bytes to a file with write(). The arguments
to read() are the file descriptor, the address of the buffer to receive input, and the
maximum number of bytes to read:

nBytes = read (fd, &buffer, maxBytes);

VxWorks
Application Programmer’s Guide, 6.2

236

The read() routine waits for input to be available from the specified file, and
returns the number of bytes actually read. For file-system devices, if the number of
bytes read is less than the number requested, a subsequent read() returns 0 (zero),
indicating end-of-file. For non-file-system devices, the number of bytes read can be
less than the number requested even if more bytes are available; a subsequent
read() may or may not return 0. In the case of serial devices and TCP sockets,
repeated calls to read() are sometimes necessary to read a specific number of bytes.
(See the reference entry for fioRead() in fioLib). A return value of ERROR (-1)
indicates an unsuccessful read.

The arguments to write() are the file descriptor, the address of the buffer that
contains the data to be output, and the number of bytes to be written:

actualBytes = write (fd, &buffer, nBytes);

The write() routine ensures that all specified data is at least queued for output
before returning to the caller, though the data may not yet have been written to the
device (this is driver dependent). The write() routine returns the number of bytes
written; if the number returned is not equal to the number requested, an error has
occurred.

The read() and write()routines are POSIX-conformant, both with regard to their
interface and the location of their declarations (target/usr/h/unistd.h).

6.3.7 File Truncation

It is sometimes convenient to discard part of the data in a file. After a file is open
for writing, you can use the ftruncate() routine to truncate a file to a specified size.
Its arguments are a file descriptor and the desired length of the file in bytes:

status = ftruncate (fd, length);

If it succeeds in truncating the file, ftruncate() returns OK.

If the file descriptor refers to a device that cannot be truncated, ftruncate() returns
ERROR, and sets errno to EINVAL.

If the size specified is larger than the actual size of the file, the result depends on
the file system. For both dosFs and HRFS, the size of the file is extended to the
specified size; however, for other file systems, ftruncate() returns ERROR, and
sets errno to EINVAL (just as if the file descriptor referred to a device that cannot
be truncated).

The ftruncate() routine is part of the POSIX 1003.1b standard. It is fully supported
as such by the HRFS. The dosFs implementation is, however, only partially
compliant: creation and modification times are not changed.

6 I/O System
6.3 Basic I/O

237

6

Also note that with HRFS the seek position is not modified by truncation, but with
dosFs the seek position is set to the end of the file.

6.3.8 I/O Control

The ioctl() routine provides an open-ended mechanism for performing I/O
functions that are not performed by the other basic I/O calls. Examples include
determining how many bytes are currently available for input, setting
device-specific options, obtaining information about a file system, and positioning
random-access files to specific byte positions. The arguments to the ioctl() routine
are the file descriptor, a code that identifies the control function requested, and an
optional function-dependent argument:

result = ioctl (fd, function, arg);

For ioctl() calls made in processes, the arg parameter is optional. Both of the
following are legitimate calls:

fd = ioctl (fd, func, arg);
fd = ioctl (fd, func);

For example, the following call uses the FIOBAUDRATE function to set the baud
rate of a tty device to 9600:

status = ioctl (fd, FIOBAUDRATE, 9600);

The ioctl() routine is POSIX-conformant, both with regard to its interface and the
location of its declarations (target/usr/h/unistd.h).

The discussion of specific devices in 6.7 Devices in VxWorks, p.244 summarizes the
ioctl() functions available for each device. The ioctl() control codes are defined in
ioLib.h. For more information, see the reference entries for specific device drivers
or file systems.

6.3.9 Pending on Multiple File Descriptors: The Select Facility

The VxWorks select facility provides a UNIX- and Windows-compatible method
for pending on multiple file descriptors. The library selectLib provides both
task-level support, allowing tasks to wait for multiple devices to become active,
and device driver support, giving drivers the ability to detect tasks that are pended
while waiting for I/O on the device. To use this facility, the header file selectLib.h
must be included in your application code.

Task-level support not only gives tasks the ability to simultaneously wait for I/O
on multiple devices, but it also allows tasks to specify the maximum time to wait

VxWorks
Application Programmer’s Guide, 6.2

238

for I/O to become available. An example of using the select facility to pend on
multiple file descriptors is a client-server model, in which the server is servicing
both local and remote clients. The server task uses a pipe to communicate with
local clients and a socket to communicate with remote clients. The server task must
respond to clients as quickly as possible. If the server blocks waiting for a request
on only one of the communication streams, it cannot service requests that come in
on the other stream until it gets a request on the first stream. For example, if the
server blocks waiting for a request to arrive in the socket, it cannot service requests
that arrive in the pipe until a request arrives in the socket to unblock it. This can
delay local tasks waiting to get their requests serviced. The select facility solves this
problem by giving the server task the ability to monitor both the socket and the
pipe and service requests as they come in, regardless of the communication stream
used.

Tasks can block until data becomes available or the device is ready for writing. The
select() routine returns when one or more file descriptors are ready or a timeout
has occurred. Using the select() routine, a task specifies the file descriptors on
which to wait for activity. Bit fields are used in the select() call to specify the read
and write file descriptors of interest. When select() returns, the bit fields are
modified to reflect the file descriptors that have become available. The macros for
building and manipulating these bit fields are listed in Table 6-3.

Applications can use select() with any character I/O devices that provide support
for this facility (for example, pipes, serial devices, and sockets).

6.3.10 POSIX File System Routines

The POSIX fsPxLib library provides I/O and file system routines for various file
manipulations. These routines are described in Table 6-4.

Table 6-3 Select Macros

Macro Description

FD_ZERO Zeroes all bits.

FD_SET Sets the bit corresponding to a specified file descriptor.

FD_CLR Clears a specified bit.

FD_ISSET Returns non-zero if the specified bit is set; otherwise returns 0.

6 I/O System
6.4 Buffered I/O: stdio

239

6

For more information, see the API reference for fsPxLib.

6.4 Buffered I/O: stdio

The VxWorks I/O library provides a buffered I/O package that is compatible with
the UNIX and Windows stdio package, and provides full ANSI C support.
Configure VxWorks with the ANSI Standard component bundle to provide
buffered I/O support.

6.4.1 Using stdio

Although the VxWorks I/O system is efficient, some overhead is associated with
each low-level call. First, the I/O system must dispatch from the
device-independent user call (read(), write(), and so on) to the driver-specific
routine for that function. Second, most drivers invoke a mutual exclusion or
queuing mechanism to prevent simultaneous requests by multiple users from
interfering with each other.

Table 6-4 File System Routines

Routine Description

unlink() Unlink a file.

link() Link a file.

fsync() Synchronize a file.

fdatasync() Synchronize a file data.

rename() Change the name of a file.

fpathconf() Determine the current value of a configurable limit.

pathconf() Determine the current value of a configurable limit.

access() Determine accessibility of a file.

chmod() Change the permission mode of a file.

VxWorks
Application Programmer’s Guide, 6.2

240

This overhead is quite small because the VxWorks primitives are fast. However, an
application processing a single character at a time from a file incurs that overhead
for each character if it reads each character with a separate read() call:

n = read (fd, &char, 1);

To make this type of I/O more efficient and flexible, the stdio package implements
a buffering scheme in which data is read and written in large chunks and buffered
privately. This buffering is transparent to the application; it is handled
automatically by the stdio routines and macros. To access a file with stdio, a file is
opened with fopen() instead of open() (many stdio calls begin with the letter f):

fp = fopen ("/usr/foo", "r");

The returned value, a file pointer is a handle for the opened file and its associated
buffers and pointers. A file pointer is actually a pointer to the associated data
structure of type FILE (that is, it is declared as FILE *). By contrast, the low-level I/O
routines identify a file with a file descriptor, which is a small integer. In fact, the
FILE structure pointed to by the file pointer contains the underlying file descriptor
of the open file.

A file descriptor that is already open can be associated belatedly with a FILE buffer
by calling fdopen():

fp = fdopen (fd, "r");

After a file is opened with fopen(), data can be read with fread(), or a character at
a time with getc(), and data can be written with fwrite(), or a character at a time
with putc().

The routines and macros to get data into or out of a file are extremely efficient.
They access the buffer with direct pointers that are incremented as data is read or
written by the user. They pause to call the low-level read or write routines only
when a read buffer is empty or a write buffer is full.

The FILE buffer is deallocated when fclose() is called.

! WARNING: The stdio buffers and pointers are private to a particular task. They are
not interlocked with semaphores or any other mutual exclusion mechanism,
because this defeats the point of an efficient private buffering scheme. Therefore,
multiple tasks must not perform I/O to the same stdio FILE pointer at the same
time.

6 I/O System
6.5 Other Formatted I/O: printErr() and fdprintf()

241

6

6.4.2 Standard Input, Standard Output, and Standard Error

As discussed in 6.3 Basic I/O, p.229, there are three special file descriptors (0, 1, and
2) reserved for standard input, standard output, and standard error. Three
corresponding stdio FILE buffers are automatically created when a task uses the
standard file descriptors, stdin, stdout, and stderr, to do buffered I/O to the standard
file descriptors. Each task using the standard I/O file descriptors has its own stdio
FILE buffers. The FILE buffers are deallocated when the task exits.

6.5 Other Formatted I/O: printErr() and fdprintf()

Additional routines in fioLib provide formatted but unbuffered output. The
routine printErr() is analogous to printf() but outputs formatted strings to the
standard error file descriptor (2). The routine fdprintf() outputs formatted strings
to a specified file descriptor.

6.6 Asynchronous Input/Output

Asynchronous Input/Output (AIO) is the ability to perform input and output
operations concurrently with ordinary internal processing. AIO enables you to
de-couple I/O operations from the activities of a particular task when these are
logically independent.

The benefit of AIO is greater processing efficiency: it permits I/O operations to
take place whenever resources are available, rather than making them await
arbitrary events such as the completion of independent operations. AIO eliminates
some of the unnecessary blocking of tasks that is caused by ordinary synchronous
I/O; this decreases contention for resources between input/output and internal
processing, and expedites throughput.

The VxWorks AIO implementation meets the specification in the POSIX 1003.1b
standard. Include AIO in your VxWorks configuration with the
INCLUDE_POSIX_AIO and INCLUDE_POSIX_AIO_SYSDRV components. The

VxWorks
Application Programmer’s Guide, 6.2

242

second configuration constant enables the auxiliary AIO system driver, required
for asynchronous I/O on all current VxWorks devices.

6.6.1 The POSIX AIO Routines

The VxWorks library aioPxLib provides POSIX AIO routines. To access a file
asynchronously, open it with the open() routine, like any other file. Thereafter, use
the file descriptor returned by open() in calls to the AIO routines. The POSIX AIO
routines (and two associated non-POSIX routines) are listed in Table 6-5.

6.6.2 AIO Control Block

Each of the AIO calls takes an AIO control block (aiocb) as an argument to describe
the AIO operation. The calling routine must allocate space for the control block,
which is associated with a single AIO operation. No two concurrent AIO
operations can use the same control block; an attempt to do so yields undefined
results.

NOTE: The asynchronous I/O facilities are not included in any RTP shared library
provided by Wind River for use with this release. They can only be statically linked
with application code. For information about creating a custom shared library that
provides this functionality, please contact Wind River Support.

Table 6-5 Asynchronous Input/Output Routines

Function Description

aio_read() Initiates an asynchronous read operation.

aio_write() Initiates an asynchronous write operation.

aio_listio() Initiates a list of up to LIO_MAX asynchronous I/O requests.

aio_error() Retrieves the error status of an AIO operation.

aio_return() Retrieves the return status of a completed AIO operation.

aio_cancel() Cancels a previously submitted AIO operation.

aio_suspend() Waits until an AIO operation is done, interrupted, or timed out.

aio_fsync() Asynchronously forces file synchronization.

6 I/O System
6.6 Asynchronous Input/Output

243

6

The aiocb and the data buffers it references are used by the system while
performing the associated request. Therefore, after you request an AIO operation,
you must not modify the corresponding aiocb before calling aio_return(); this
function frees the aiocb for modification or reuse.

The aiocb structure is defined in aio.h. It contains the following fields:

aio_fildes
The file descriptor for I/O.

aio_offset
The offset from the beginning of the file.

aio_buf
The address of the buffer from/to which AIO is requested.

aio_nbytes
The number of bytes to read or write.

aio_reqprio
The priority reduction for this AIO request.

aio_sigevent
The signal to return on completion of an operation (optional).

aio_lio_opcode
An operation to be performed by a lio_listio() call.

aio_sys_p
The address of VxWorks-specific data (non-POSIX).

For full definitions and important additional information, see the reference entry
for aioPxLib.

6.6.3 Using AIO

The routines aio_read(), aio_write(), or lio_listio() initiate AIO operations. The
last of these, lio_listio(), allows you to submit a number of asynchronous requests
(read and/or write) at one time. In general, the actual I/O (reads and writes)
initiated by these routines does not happen immediately after the AIO request. For
this reason, their return values do not reflect the outcome of the actual I/O

! CAUTION: If a routine allocates stack space for the aiocb, that routine must call
aio_return() to free the aiocb before returning.

VxWorks
Application Programmer’s Guide, 6.2

244

operation, but only whether a request is successful—that is, whether the AIO
routine is able to put the operation on a queue for eventual execution.

After the I/O operations themselves execute, they also generate return values that
reflect the success or failure of the I/O. There are two routines that you can use to
get information about the success or failure of the I/O operation: aio_error() and
aio_return(). You can use aio_error() to get the status of an AIO operation
(success, failure, or in progress), and aio_return() to obtain the return values from
the individual I/O operations. Until an AIO operation completes, its error status is
EINPROGRESS. To cancel an AIO operation, call aio_cancel(). To force all I/O
operations to the synchronized I/O completion state, use aio_fsync().

Alternatives for Testing AIO Completion

A task can determine whether an AIO request is complete in any of the following
ways:

■ Check the result of aio_error() periodically, as in the previous example, until
the status of an AIO request is no longer EINPROGRESS.

■ Use aio_suspend() to suspend the task until the AIO request is complete.

■ Use signals to be informed when the AIO request is complete.

6.7 Devices in VxWorks

The VxWorks I/O system is flexible, allowing specific device drivers to handle the
seven basic I/O functions. All VxWorks device drivers follow the basic
conventions outlined previously, but differ in specifics; this section describes those
specifics.

See the VxWorks Kernel Programmer’s Guide: I/O System for more detailed
information about I/O device drivers.

6.7.1 Serial I/O Devices: Terminal and Pseudo-Terminal Devices

VxWorks provides terminal and pseudo-terminal devices (tty and pty). The tty
device is for actual terminals; the pty device is for processes that simulate

6 I/O System
6.7 Devices in VxWorks

245

6

terminals. These pseudo terminals are useful in applications such as remote login
facilities.

VxWorks serial I/O devices are buffered serial byte streams. Each device has a ring
buffer (circular buffer) for both input and output. Reading from a tty device
extracts bytes from the input ring. Writing to a tty device adds bytes to the output
ring. The size of each ring buffer is specified when the device is created during
system initialization.

tty Options

The tty devices have a full range of options that affect the behavior of the device.
These options are selected by setting bits in the device option word using the
ioctl() routine with the FIOSETOPTIONS function. For example, to set all the tty
options except OPT_MON_TRAP:

status = ioctl (fd, FIOSETOPTIONS, OPT_TERMINAL & ~OPT_MON_TRAP);

For more information about I/O control functions, see VxWorks Kernel
Programmer’s Guide: I/O System.

Table 6-6 is a summary of the available options. The listed names are defined in the
header file ioLib.h. For more detailed information, see the API reference entry for
tyLib.

NOTE: For the remainder of this section, the term tty is used to indicate both tty
and pty devices

Table 6-6 Tty Options

Library Description

OPT_LINE Selects line mode. (See Raw Mode and Line Mode, p.246.)

OPT_ECHO Echoes input characters to the output of the same channel.

OPT_CRMOD Translates input RETURN characters into NEWLINE (\n);
translates output NEWLINE into RETURN-LINEFEED.

OPT_TANDEM Responds software flow control characters CTRL+Q and
CTRL+S (XON and XOFF).

OPT_7_BIT Strips the most significant bit from all input bytes.

VxWorks
Application Programmer’s Guide, 6.2

246

Raw Mode and Line Mode

A tty device operates in one of two modes: raw mode (unbuffered) or line mode. Raw
mode is the default. Line mode is selected by the OPT_LINE bit of the device option
word (see tty Options, p.245).

In raw mode, each input character is available to readers as soon as it is input from
the device. Reading from a tty device in raw mode causes as many characters as
possible to be extracted from the input ring, up to the limit of the user’s read buffer.
Input cannot be modified except as directed by other tty option bits.

In line mode, all input characters are saved until a NEWLINE character is input; then
the entire line of characters, including the NEWLINE, is made available in the ring
at one time. Reading from a tty device in line mode causes characters up to the end
of the next line to be extracted from the input ring, up to the limit of the user’s read
buffer. Input can be modified by the special characters CTRL+H (backspace),
CTRL+U (line-delete), and CTRL+D (end-of-file), which are discussed in tty Special
Characters, p.246.

tty Special Characters

The following special characters are enabled if the tty device operates in line mode,
that is, with the OPT_LINE bit set:

■ The backspace character, by default CTRL+H, causes successive previous
characters to be deleted from the current line, up to the start of the line. It does
this by echoing a backspace followed by a space, and then another backspace.

OPT_MON_TRAP Enables the special ROM monitor trap character, CTRL+X by
default.

OPT_ABORT Enables the special kernel shell abort character, CTRL+C by
default. (Only useful if the kernel shell is configured into the
system)

OPT_TERMINAL Sets all of the above option bits.

OPT_RAW Sets none of the above option bits.

Table 6-6 Tty Options (cont’d)

Library Description

6 I/O System
6.7 Devices in VxWorks

247

6

■ The line-delete character, by default CTRL+U, deletes all the characters of the
current line.

■ The end-of-file (EOF) character, by default CTRL+D, causes the current line to
become available in the input ring without a NEWLINE and without entering
the EOF character itself. Thus if the EOF character is the first character typed
on a line, reading that line returns a zero byte count, which is the usual
indication of end-of-file.

The following characters have special effects if the tty device is operating with the
corresponding option bit set:

■ The software flow control characters CTRL+Q and CTRL+S (XON and XOFF).
Receipt of a CTRL+S input character suspends output to that channel.
Subsequent receipt of a CTRL+Q resumes the output. Conversely, when the
VxWorks input buffer is almost full, a CTRL+S is output to signal the other side
to suspend transmission. When the input buffer is empty enough, a CTRL+Q
is output to signal the other side to resume transmission. The software flow
control characters are enabled by OPT_TANDEM.

■ The ROM monitor trap character, by default CTRL+X. This character traps to the
ROM-resident monitor program. Note that this is drastic. All normal VxWorks
functioning is suspended, and the computer system is controlled entirely by
the monitor. Depending on the particular monitor, it may or may not be
possible to restart VxWorks from the point of interruption.1 The monitor trap
character is enabled by OPT_MON_TRAP.

■ The special kernel shell abort character, by default CTRL+C. This character
restarts the kernel shell if it gets stuck in an unfriendly routine, such as one that
has taken an unavailable semaphore or is caught in an infinite loop. The kernel
shell abort character is enabled by OPT_ABORT.

The characters for most of these functions can be changed using the tyLib routines
shown in Table 6-7.

1. It will not be possible to restart VxWorks if un-handled external interrupts occur during the
boot countdown.

Table 6-7 Tty Special Characters

Character Description Modifier

CTRL+H backspace (character delete) tyBackspaceSet()

CTRL+U line delete tyDeleteLineSet()

VxWorks
Application Programmer’s Guide, 6.2

248

6.7.2 Pipe Devices

Pipes are virtual devices by which tasks communicate with each other through the
I/O system. Tasks write messages to pipes; these messages can then be read by
other tasks. Pipe devices are managed by pipeDrv and use the kernel message
queue facility to bear the actual message traffic.

Named pipes can be created in processes. However, unless they are specifically
deleted by the application they will persist beyond the life of the process in which
they were created. Applications should allow for the possibility that the named
pipe already exists, from a previous invocation, when the application is started.

Creating Pipes

Pipes are created by calling the pipe create routine:

status = pipeDevCreate ("/pipe/name", maxMsgs, maxLength);

The new pipe can have at most maxMsgs messages queued at a time. Tasks that
write to a pipe that already has the maximum number of messages queued are
blocked until a message is dequeued. Each message in the pipe can be at most
maxLength bytes long; attempts to write longer messages result in an error.

I/O Control Functions

Pipe devices respond to the ioctl() functions summarized in Table 6-8. The
functions listed are defined in the header file ioLib.h. For more information, see
the reference entries for pipeDrv and for ioctl() in ioLib.

CTRL+D EOF (end of file) tyEOFSet()

CTRL+C kernel shell abort tyAbortSet()

CTRL+X trap to boot ROMs tyMonitorTrapSet()

CTRL+S output suspend N/A

CTRL+Q output resume N/A

Table 6-7 Tty Special Characters (cont’d)

Character Description Modifier

6 I/O System
6.7 Devices in VxWorks

249

6

6.7.3 Pseudo Memory Devices

The memDrv driver allows the I/O system to access memory directly as a
pseudo-I/O device. Memory location and size are specified when the device is
created. This feature is useful when data must be preserved between boots of
VxWorks or when sharing data between CPUs. This driver does not implement a
file system, unlike ramDrv. The ramDrv driver must be given memory over which
it has absolute control; whereas memDrv provides a high-level method of reading
and writing bytes in absolute memory locations through I/O calls.

For information about the memDrv and ramDrv drivers, see the VxWorks Kernel
Programmer’s Guide: I/O System.

I/O Control Functions

The memory device responds to the ioctl() functions summarized in Table 6-9. The
functions listed are defined in the header file ioLib.h.

For more information, see the reference entries for memDrv, ioLib, and ioctl().

Table 6-8 I/O Control Functions Supported by pipeDrv

Function Description

FIOFLUSH Discards all messages in the pipe.

FIOGETNAME Gets the pipe name of the file descriptor.

FIONMSGS Gets the number of messages remaining in the pipe.

FIONREAD Gets the size in bytes of the first message in the pipe.

Table 6-9 I/O Control Functions Supported by memDrv

Function Description

FIOSEEK Sets the current byte offset in the file.

FIOWHERE Returns the current byte position in the file.

VxWorks
Application Programmer’s Guide, 6.2

250

6.7.4 Network File System (NFS) Devices

Network File System (NFS) devices allow files on remote hosts to be accessed with
the NFS protocol. The NFS protocol specifies both client software, to read files from
remote machines, and server software, to export files to remote machines.

The driver nfsDrv acts as a VxWorks NFS client to access files on any NFS server
on the network. VxWorks also allows you to run an NFS server to export files to
other systems; see Wind River Network Stack for VxWorks 6 Programmer’s Guide.

Using NFS devices, you can create, open, and access remote files exactly as though
they were on a file system on a local disk. This is called network transparency.

I/O Control Functions for NFS Clients

NFS client devices respond to the ioctl() functions summarized in Table 6-10. The
functions listed are defined in ioLib.h. For more information, see the reference
entries for nfsDrv, ioLib, and ioctl().

6.7.5 Non-NFS Network Devices

VxWorks also supports network access to files on a remote host through the
Remote Shell protocol (RSH) or the File Transfer Protocol (FTP).

These implementations of network devices use the driver netDrv, which is
included in the Wind River Network Stack. Using this driver, you can open, read,

Table 6-10 I/O Control Functions Supported by nfsDrv

Function Description

FIOFSTATGET Gets file status information (directory entry data).

FIOGETNAME Gets the filename of the file descriptor.

FIONREAD Gets the number of unread bytes in the file.

FIOREADDIR Reads the next directory entry.

FIOSEEK Sets the current byte offset in the file.

FIOSYNC Flushes data to a remote NFS file.

FIOWHERE Returns the current byte position in the file.

6 I/O System
6.7 Devices in VxWorks

251

6

write, and close files located on remote systems without needing to manage the
details of the underlying protocol used to effect the transfer of information. (For
more information, see the Wind River Network Stack for VxWorks 6 Programmer’s
Guide: Working With Device Instances.)

When a remote file is opened using RSH or FTP, the entire file is copied into local
memory. As a result, the largest file that can be opened is restricted by the available
memory. Read and write operations are performed on the memory-resident copy
of the file. When closed, the file is copied back to the original remote file if it was
modified.

In general, NFS devices are preferable to RSH and FTP devices for performance
and flexibility, because NFS does not copy the entire file into local memory.
However, NFS is not supported by all host systems.

I/O Control Functions

RSH and FTP devices respond to the same ioctl() functions as NFS devices except
for FIOSYNC and FIOREADDIR. The functions are defined in the header file
ioLib.h. For more information, see the API reference entries for netDrv and ioctl().

6.7.6 Sockets

In VxWorks, the underlying basis of network communications is sockets. A socket
is an endpoint for communication between tasks; data is sent from one socket to
another. Sockets are not created or opened using the standard I/O functions.
Instead, they are created by calling socket(), and connected and accessed using
other routines in sockLib. However, after a stream socket (using TCP) is created
and connected, it can be accessed as a standard I/O device, using read(), write(),
ioctl(), and close(). The value returned by socket() as the socket handle is in fact
an I/O system file descriptor.

VxWorks socket routines are source-compatible with the BSD 4.4 UNIX socket
functions and the Windows Sockets (Winsock 1.1) networking standard. Use of
these routines is discussed in Wind River Network Stack for VxWorks 6 Programmer’s
Guide.

NOTE: Within processes, there are limitations on RSH and FTP usage: directories
cannot be created and the contents of file systems cannot be listed.

VxWorks
Application Programmer’s Guide, 6.2

252

6.8 Transaction-Based Reliable File System Facility: TRFS

The transaction-based reliable file system (TRFS) component
(INCLUDE_XBD_TRANS) is an I/O facility that provides a fault-tolerant file system
layer for the dosFs file system.

TRFS provides both file system consistency and fast recovery for the dosFs file
system (DOS-compatible file systems are themselves neither reliable nor
transaction-based). It is designed to operate with XBD-compliant device drivers
for hard disks, floppy disks, compact flash media, TrueFFS flash devices, and so
on. It can also be used with the XBD wrapper component for device drivers that
are not XBD-compliant.

TRFS provides reliability in resistance to sudden power loss: files and data that are
already written to media are unaffected, they will not be deleted or corrupted
because data is always written either in its entirety or not at all.

TRFS provides additional guarantees in its transactional feature: data is always
maintained intact up to a given commit transaction. User applications set
transaction points on the file system. If there is an unexpected failure of the system,
the file system is returned to the state it was in at the last transaction point. That is,
if data has changed on the media after a commit transaction but prior to a power
loss, it is automatically restored to the its state at the last commit transaction to
further ensure data integrity. On mounting the file system, TRFS detects any failure
and rolls back data to the last secure transaction.

Unlike some facilities that provide data integrity on a file-by-file basis, TRFS
protects the medium as a whole. It is transactional for a file system, which means
that setting transaction points will commit all files, not just the one used to set the
transaction point.

For information about dosFs, see 7.4 MS-DOS-Compatible File System: dosFs, p.265.

6.8.1 Configuring VxWorks With TRFS

Configure VxWorks with the INCLUDE_XBD_TRANS component to provide TRFS
functionality for your dosFs file system.

NOTE: While TRFS is a I/O layer added to dosFs, it uses a modified on-media
format that is not compatible with other FAT-based file systems, including
Microsoft Windows and the VxWorks dosFs file system without the TRFS layer. It
should not, therefore, be used when compatibility with other systems is a
requirement

6 I/O System
6.8 Transaction-Based Reliable File System Facility: TRFS

253

6

6.8.2 Creating a TRFS Shim Layer

For information about creating TRFS, see VxWorks Kernel Programmer’s Guide: I/O
System.

6.8.3 Using the TRFS in Applications

Once TRFS and dosFs are created, the dosFs file system may be used with the
ordinary file creation and manipulation commands. No changes to the file system
become permanent, however, until TRFS is used to commit them.

It is important to note that the entire dosFs file system—and not individual files—
are committed. The entire disk state must therefore be consistent before executing
a commit; that is, there must not be a file system operation in progress (by another
task, for example) when the file system is committed. If multiple tasks update the
file system, care must be taken to ensure the file data is in a known state before
setting a transaction point.

To commit a file system from a process, call:

ioctl(fd, CBIO_TRANS_COMMIT, 0);

where fd is any file descriptor that is open.

TRFS Code Example

The following code example illustrates setting a transaction point.

void transTrfs
 (
 void
)
 {
 int fd;
 /* This assumes a TRFS with DosFs on "/trfs" */

 fd = open ("/trfs/test.1", O_RDWR | O_CREAT, 0);

 ... /* Perform file operations here */
 ioctl (fd, CBIO_TRANS_COMMIT, 0);

 ... /* Perform more file operations here */
 ioctl (fd, CBIO_TRANS_COMMIT, 0);

 close (fd);
 }

VxWorks
Application Programmer’s Guide, 6.2

254

255

 7
Local File Systems

7.1 Introduction 256

7.2 File System Monitor 259

7.3 Highly Reliable File System: HRFS 259

7.4 MS-DOS-Compatible File System: dosFs 265

7.5 Raw File System: rawFs 278

7.6 CD-ROM File System: cdromFs 280

7.7 Read-Only Memory File System: ROMFS 284

7.8 Target Server File System: TSFS 286

VxWorks
Application Programmer’s Guide, 6.2

256

7.1 Introduction

VxWorks provides a variety of file systems that are suitable for different types of
applications. The file systems can be used simultaneously, and in most cases in
multiple instances, for a single VxWorks system.

Most VxWorks file systems rely on the extended block device (XBD) facility for a
a standard I/O interface between the file system and device drivers. This standard
interface allows you to write your own file system for VxWorks, and freely mix file
systems and device drivers.

File systems used for removable devices make use of the file system monitor for
automatic detection of device insertion and instantiation of the appropriate file
system on the device.

The relationship between applications, file systems, I/O facilities, device drivers
and hardware devices is illustrated in Figure 7-1. Note that this illustration is
relevant for the HRFS, dosFs, rawFs, and cdromFs file systems. The dotted line
indicates the elements that need to be configured and instantiated to create a
specific, functional run-time file system.

7 Local File Systems
7.1 Introduction

257

7

This chapter discusses the following VxWorks file systems and how they are used:

■ HRFS

A transactional file system designed for real-time use of block devices (disks)
and POSIX compliant. Can be used on flash memory inconjuntion with
TrueFFS and the XBD block wrapper component.

See 7.3 Highly Reliable File System: HRFS, p.259.

Figure 7-1 File Systems in a VxWorks System

Application

I/O System

File System

XBD Facility

Block Device

Hardware

XBD Device

SCSI, ATA, RAM disk, Floppy, TrueFFS, and so on

HRFS. dosFs, rawFs, cdromFs

VxWorks
Application Programmer’s Guide, 6.2

258

■ dosFs

Designed for real-time use of block devices (disks), and compatible with the
MS-DOS file system. Can be used with flash memory in conjunction with the
TrueFFS. Can also be used with the transaction-based reliable file system
(TRFS) facility. See 7.4 MS-DOS-Compatible File System: dosFs, p.265.

■ rawFS

Provides a simple raw file system that treats an entire disk as a single large file.
See 7.5 Raw File System: rawFs, p.278.

■ cdromFs

Allows applications to read data from CD-ROMs formatted according to the
ISO 9660 standard file system. See 7.6 CD-ROM File System: cdromFs, p.280.

■ ROMFS

Designed for bundling applications and other files with a VxWorks system
image. No storage media is required beyond that used for the VxWorks boot
image. See 7.7 Read-Only Memory File System: ROMFS, p.284.

■ TSFS

Uses the host target server to provide the target with access to files on the host
system. See 7.8 Target Server File System: TSFS, p.286.

For information about the file system monitor, see the VxWorks Kernel
Programmer’s Guide: Local File Systems. For information about the XBD facility, see
the VxWorks Kernel Programmer’s Guide: I/O System.

File Systems and Flash Memory

VxWorks can be configured with file-system support for flash memory devices
using TrueFFS and the dosFs or HRFS file system. For more information, see
7.4 MS-DOS-Compatible File System: dosFs, p.265 and the VxWorks Kernel
Programmer’s Guide: Flash File System Support with TrueFFS.

NOTE: This chapter provides information about facilities available for real-time
processes. For information about creating file systems, and file system facilities
available in the kernel, see the VxWorks Kernel Programmer’s Guide: Local File
Systems.

7 Local File Systems
7.2 File System Monitor

259

7

7.2 File System Monitor

The file system monitor provides for automatic detection of device insertion, and
instantiation of the appropriate file system on the device. The monitor is required
for all file systems that are used with the extended block device (XBD) I/O facility.
It is provided with the INCLUDE_FS_MONITOR component.

The file systems that require both the XBD and the file system monitor components
are HRFS, dosFs, rawFs, and cdromFs.

For detailed information about how the file system monitor works, see the
VxWorks Kernel Programmer’s Guide: Local File Systems.

7.3 Highly Reliable File System: HRFS

The Highly Reliable File System (HRFS) is a transactional file system for real-time
systems. The primary features of the file system are:

■ Fault tolerance. The file system is never in an inconsistent state, and is
therefore able to recover quickly from unexpected loses of power.

■ Transactional operations on a file basis, rather than the whole disk.

■ Hierarchical file and directory system, allowing for efficient organization of
files on a volume.

■ Compatibility with a widely available storage devices.

■ POSIX conformance.

For more information about the HRFS libraries see the VxWorks API references for
hrfsFormatLib, hrFsLib, and hrfsChkDskLib.

HRFS and Flash Memory

For information about using HRFS with flash memory, see the VxWorks Kernel
Programmer’s Guide: Flash File System Support with TrueFFS.

VxWorks
Application Programmer’s Guide, 6.2

260

7.3.1 Configuring VxWorks for HRFS

To include HRFS support in VxWorks, configure the kernel with the appropriate
required and optional components.

Required Components

Either the INCLUDE_HRFS or the INCLUDE_HRFS_READONLY component is
required. As its name indicates, the latter is a read-only version of the main HRFS
component. The libraries it provides are smaller as it provides no facilities for disk
modifications.

In addition, you need to include the appropriate component for your block device;
for example, INCLUDE_SCSI or INCLUDE_ATA.

Optional HRFS Components

The INCLUDE_HRFS_FORMAT component (HRFS formatter) and the
INCLUDE_HRFS_CHKDSK (HRFS consistency checker) are optional components.

Optional XBD Components

Optional XBD components are:

For information about the XBD facility, see the VxWorks Kernel Programmer’s Guide:
I/O System.

7.3.2 Creating an HRFS File System

For information about creating an HRFS file system, see VxWorks Kernel
Programmer’s Guide: Local File Systems.

INCLUDE_XBD_PART_LIB disk partitioning facilities
INCLUDE_XBD_BLK_DEV XBD wrapper component for device drivers that

have not been ported to XBD.
INCLUDE_XBD_RAMDRV RAM disk facility

! CAUTION: If you are using a device for which the driver has not been ported to
XBD, you must use the INCLUDE_XBD_BLK_DEV wrapper component in addition
to INCLUDE_XBD. See the VxWorks Kernel Programmer’s Guide: I/O System for
more information.

7 Local File Systems
7.3 Highly Reliable File System: HRFS

261

7

7.3.3 Transactionality

HRFS is a transactional based file system. It is transactional on a file or directory
basis. This is unlike TRFS where the whole disk is considred.

Transactions are committed to disk automatically when modifying or deleting a
file or directory. That is, upon successful completion of a function that modifies the
disk means that the modifications are committed. There is no need for application
interaction to commit.

Example functions that cause modifications to disk:

■ write()
■ remove()
■ delete()
■ mkdir()
■ rmdir()
■ link()
■ unlink()
■ truncate()
■ truncated()
■ ioctl() where the supplied command requires modifying the disk.

7.3.4 Maximum Number of Files and Directories

Files and directories are stored on disk in data structures called inodes. During
formatting the maximum number of inodes is specified as a parameter to the
formatter. See API reference for more details. This means that the combination of
files and directories can never be more than there are inodes. It is fixed at the time
of formatting. Trying to create a file or directory when all the inodes are exhausted
will generate an error. Deleting a file or directory returns frees its corresponding
inode.

7.3.5 Working with Directories

This section discusses creating and removing directories, and reading directory
entries.

VxWorks
Application Programmer’s Guide, 6.2

262

Creating Subdirectories

You can create as many subdirectories as there are inodes. Subdirectories can be
created in the following ways

1. Using open(): To create a directory, the O_CREAT option must be set in the
flags parameter and the S_IFDIR or FSTAT_DIR option must be set in the mode
parameter. The open() calls returns a file descriptor that describes the new
directory. The file descriptor can only be used for reading only and should be
closed when no longer needed.

2. Use mkdir(), usrFsLib.

When creating a directory using any of the above methods, the new directory
name must be specified. This name can be either a full pathname or a pathname
relative to the current working directory.

Removing Subdirectories

A directory that is to be deleted must be empty (except for the “.” and “..” entries).
The root directory can never be deleted. Subdirectories can be removed in the
following ways:

■ Using ioctl() with the FIORMDIR function, specifying the name of the
directory. Again, the file descriptor used can refer to any file or directory on
the volume, or to the entire volume itself.

■ Using the remove() function, specifying the name of the directory.

■ Use rmdir(), usrFsLib.

Reading Directory Entries

You can programmatically search directories on HRFS volumes using the
opendir(), readdir(), rewinddir(), and closedir() routines.

To obtain more detailed information about a specific file, use the fstat() or stat()
routine. Along with standard file information, the structure used by these routines
also returns the file-attribute byte from a directory entry.

For more information, see the API reference for dirLib.

7 Local File Systems
7.3 Highly Reliable File System: HRFS

263

7

7.3.6 Working with Files

This section discusses file I/O and file attributes.

File I/O Routines

Files on an HRFS file system device are created, deleted, written, and read using
the standard VxWorks I/O routines: creat(), remove(), write(), and read(). For
more information, see 6.3 Basic I/O, p.229, and the ioLib API references.

Note that delete() and remove() are synonymous with unlink() for HRFS.

File Linking and Unlinking

When a link is created an inode is not used. Another directory entry is created at
the location specified by the parameter to link(). In addition, a reference count to
the linked file is stored in the file's corresponding inode. When unlinking a file, this
reference count is decremented. If the reference count is zero when unlink() is
called, the file is deleted except if there are open file descriptors open on the file. In
this case the directory entry is removed but the file still exists on the disk. This
prevents tasks and processes (RTPs) from opening the file. When the final open file
descriptor is closed the file is fully deleted freeing its inode.

Note that you cannot create a link to a subdirectory only to a regular file.

File Permissions

Unlike dosfs, files on HRFS do not have attributes. They instead have POSIX style
permission bits. You can change these bits using the chmod() and fchmod()
routines. See the API references for more information.

7.3.7 Crash Recovery and Volume Consistency

For detailed information about crash recovery and volume consistence, see
VxWorks Kernel Programmer’s Guide: Local File Systems.

VxWorks
Application Programmer’s Guide, 6.2

264

7.3.8 I/O Control Functions Supported by HRFS

The HRFS file system supports the ioctl() functions. These functions are defined
in the header file ioLib.h along with their associated constants.

For more information, see the API reference for for ioctl() in ioLib.

Table 7-1 I/O Control Functions Supported by HRFS

Function
Decimal

Value Description

FIODISKCHANGE 13 Announces a media change.

FIODISKFORMAT 5 Formats the disk (device driver function).

FIODISKINIT 6 Initializes a file system on a disk volume.

FIOFLUSH 2 Flushes the file output buffer.

FIOFSTATGET 38 Gets file status information (directory entry data).

FIOGETNAME 18 Gets the filename of the fd.

FIOMOVE 47 Moves a file (does not rename the file).

FIONFREE 30 Gets the number of free bytes on the volume.

FIONREAD 1 Gets the number of unread bytes in a file.

FIOREADDIR 37 Reads the next directory entry.

FIORENAME 10 Renames a file or directory.

FIORMDIR 32 Removes a directory.

FIOSEEK 7 Sets the current byte offset in a file.

FIOSYNC 21 Same as FIOFLUSH, but also re-reads buffered file
data.

FIOTRUNC 42 Truncates a file to a specified length.

FIOUNMOUNT 39 Un-mounts a disk volume.

7 Local File Systems
7.4 MS-DOS-Compatible File System: dosFs

265

7

7.4 MS-DOS-Compatible File System: dosFs

The dosFs file system is an MS-DOS-compatible file system that offers
considerable flexibility appropriate to the multiple demands of real-time
applications. The primary features are:

■ Hierarchical files and directories, allowing efficient organization and an
arbitrary number of files to be created on a volume.

■ A choice of contiguous or non-contiguous files on a per-file basis.

■ Compatible with widely available storage and retrieval media (diskettes, hard
drives, and so on).

■ The ability to boot VxWorks from a dosFs file system.

■ Support for VFAT (Microsoft VFAT long file names)

■ Support for FAT12, FAT16, and FAT32 file allocation table types.

FIOWHERE 8 Returns the current byte position in a file.

FIONCONTIG64 50 Gets the maximum contiguous disk space into a
64-bit integer.

FIONFREE64 51 Gets the number of free bytes into a 64-bit integer.

FIONREAD64 52 Gets the number of unread bytes in a file into a 64-bit
integer.

FIOSEEK64 53 Sets the current byte offset in a file from a 64-bit
integer.

FIOWHERE64 54 Gets the current byte position in a file into a 64-bit
integer.

FIOTRUNC64 55 Set the file's size from a 64-bit integer.

Table 7-1 I/O Control Functions Supported by HRFS (cont’d)

Function
Decimal

Value Description

VxWorks
Application Programmer’s Guide, 6.2

266

For information about dosFs libraries, see the VxWorks API references for
dosFsLib and dosFsFmtLib.

For information about the MS-DOS file system, please see the Microsoft
documentation.

dosFs and Flash Memory

For information about using dosFs with flash memory, see the VxWorks Kernel
Programmer’s Guide: Flash File System Support with TrueFFS.

dosFs and the Transaction-Based Reliable File System Facility

For information about using dosFs with the transaction-based reliable file system
(TRFS) facility, see 6.8 Transaction-Based Reliable File System Facility: TRFS, p.252.

7.4.1 Configuring VxWorks for dosFs

To include dosFs support in VxWorks, configure the kernel with the appropriate
required and optional components.

Required Components

The following components are required:

And, either one or both of the following components are required:

In addition, you need to include the appropriate component for your block device;
for example, INCLUDE_SCSI or INCLUDE_ATA.

Note that you can use INCLUDE_DOSFS to automatically include the following
components:

NOTE: The discussion in this chapter of the dosFs file system uses the term sector
to refer to the minimum addressable unit on a disk. This definition of the term
follows most MS-DOS documentation. However, in VxWorks, these units on the
disk are normally referred to as blocks, and a disk device is called a block device.

INCLUDE_DOSFS_MAIN dosFsLib
INCLUDE_DOSFS_FAT dosFs FAT12/16/32 FAT handler
INCLUDE_XBD XBD component

INCLUDE_DOSFS_DIR_VFAT Microsoft VFAT direct handler
INCLUDE_DOSFS_DIR_FIXED Strict 8.3 & VxLongNames directory handler

7 Local File Systems
7.4 MS-DOS-Compatible File System: dosFs

267

7

■ INCLUDE_DOSFS_MAIN
■ INCLUDE_DOSFS_DIR_VFAT
■ INCLUDE_DOSFS_DIR_FIXED
■ INCLUDE_DOSFS_FAT
■ INCLUDE_DOSFS_CHKDSK
■ INCLUDE_DOSFS_FMT

Optional dosFs Components

The optional dosFs components are:

Optional XBD Components

Optional XBD components are:

For information about the XBD facility, see the VxWorks Kernel Programmer’s Guide:
I/O System.

7.4.2 Creating a dosFs File System

For information about creating a dosFs file system, see VxWorks Kernel
Programmer’s Guide: Local File Systems.

INCLUDE_DOSFS_CACHE disk cache facility (for rotational media)
INCLUDE_DOSFS_FMT dosFs file system formatting module
INCLUDE_DOSFS_CHKDSK file system integrity checking
INCLUDE_DISK_UTIL standard file system operations, such as ls, cd,

mkdir, xcopy, and so on
INCLUDE_TAR the tar utility

INCLUDE_XBD_PART_LIB disk partitioning facilities
INCLUDE_XBD_BLK_DEV XBD wrapper component for device drivers that

have not been ported to XBD.
INCLUDE_XBD_TRANS TRFS support facility
INCLUDE_XBD_RAMDRV RAM disk facility

! CAUTION: If you are using a device for which the driver has not been ported to
XBD, you must use the INCLUDE_XBD_BLK_DEV wrapper component in addition
to INCLUDE_XBD. See the VxWorks Kernel Programmer’s Guide: I/O System for
more information.

VxWorks
Application Programmer’s Guide, 6.2

268

7.4.3 Working with Volumes and Disks

This section discusses accessing volume configuration information and
synchronizing volumes. For information about ioctl() support functions, see
7.4.8 I/O Control Functions Supported by dosFsLib, p.276.

Accessing Volume Configuration Information

The dosFsShow() routine can be used to display volume configuration
information from the shell. The dosFsVolDescGet() routine can be used
programmatically obtain or verify a pointer to the DOS_VOLUME_DESC structure.
For more information, see the API references for these routines.

Synchronizing Volumes

When a disk is synchronized, all modified buffered data is physically written to the
disk, so that the disk is up to date. This includes data written to files, updated
directory information, and the FAT. To avoid loss of data, a disk should be
synchronized before it is removed. For more information, see the API references
for close() and dosFsVolUnmount().

7.4.4 Working with Directories

This section discusses creating and removing directories, and reading directory
entries.

Creating Subdirectories

For FAT32, subdirectories can be created in any directory at any time. For FAT12
and FAT16, subdirectories can be created in any directory at any time, except in the
root directory once it reaches its maximum entry count. Subdirectories can be
created in the following ways:

1. Using ioctl() with the FIOMKDIR function: The name of the directory to be
created is passed as a parameter to ioctl().

2. Using open(): To create a directory, the O_CREAT option must be set in the
flags parameter to open, and the FSTAT_DIR option must be set in the mode
parameter. The open() call returns a file descriptor that describes the new

7 Local File Systems
7.4 MS-DOS-Compatible File System: dosFs

269

7

directory. Use this file descriptor for reading only and close it when it is no
longer needed.

3. Use mkdir(), usrFsLib.

When creating a directory using any of the above methods, the new directory
name must be specified. This name can be either a full pathname or a pathname
relative to the current working directory.

Removing Subdirectories

A directory that is to be deleted must be empty (except for the “.” and “..” entries).
The root directory can never be deleted. Subdirectories can be removed in the
following ways:

■ Using ioctl() with the FIORMDIR function, specifying the name of the
directory. Again, the file descriptor used can refer to any file or directory on
the volume, or to the entire volume itself.

■ Using the remove() function, specifying the name of the directory.

■ Use rmdir(), usrFsLib.

Reading Directory Entries

You can programmatically search directories on dosFs volumes using the
opendir(), readdir(), rewinddir(), and closedir() routines.

To obtain more detailed information about a specific file, use the fstat() or stat()
routine. Along with standard file information, the structure used by these routines
also returns the file-attribute byte from a directory entry.

For more information, see the API reference for dirLib.

VxWorks
Application Programmer’s Guide, 6.2

270

7.4.5 Working with Files

This section discusses file I/O and file attributes.

File I/O Routines

Files on a dosFs file system device are created, deleted, written, and read using the
standard VxWorks I/O routines: creat(), remove(), write(), and read(). For more
information, see 6.3 Basic I/O, p.229, and the ioLib API references.

File Attributes

The file-attribute byte in a dosFs directory entry consists of a set of flag bits, each
indicating a particular file characteristic. The characteristics described by the
file-attribute byte are shown in Table 7-2.

DOS_ATTR_RDONLY
If this flag is set, files accessed with open() cannot be written to. If the
O_WRONLY or O_RDWR flags are set, open() returns ERROR, setting errno to
S_dosFsLib_READ_ONLY.

DOS_ATTR_HIDDEN
This flag is ignored by dosFsLib and produces no special handling. For
example, entries with this flag are reported when searching directories.

Table 7-2 Flags in the File-Attribute Byte

VxWorks Flag Name Hex Value Description

DOS_ATTR_RDONLY 0x01 read-only file

DOS_ATTR_HIDDEN 0x02 hidden file

DOS_ATTR_SYSTEM 0x04 system file

DOS_ATTR_VOL_LABEL 0x08 volume label

DOS_ATTR_DIRECTORY 0x10 subdirectory

DOS_ATTR_ARCHIVE 0x20 file is subject to archiving

7 Local File Systems
7.4 MS-DOS-Compatible File System: dosFs

271

7

DOS_ATTR_SYSTEM
This flag is ignored by dosFsLib and produces no special handling. For
example, entries with this flag are reported when searching directories.

DOS_ATTR_VOL_LABEL
This is a volume label flag, which indicates that a directory entry contains the
dosFs volume label for the disk. A label is not required. If used, there can be
only one volume label entry per volume, in the root directory. The volume
label entry is not reported when reading the contents of a directory (using
readdir()). It can only be determined using the ioctl() function FIOLABELGET.
The volume label can be set (or reset) to any string of 11 or fewer characters,
using the ioctl() function FIOLABELSET. Any file descriptor open to the
volume can be used during these ioctl() calls.

DOS_ATTR_DIRECTORY
This is a directory flag, which indicates that this entry is a subdirectory, and
not a regular file.

DOS_ATTR_ARCHIVE
This is an archive flag, which is set when a file is created or modified. This flag
is intended for use by other programs that search a volume for modified files
and selectively archive them. Such a program must clear the archive flag, since
VxWorks does not.

All the flags in the attribute byte, except the directory and volume label flags, can
be set or cleared using the ioctl() function FIOATTRIBSET. This function is called
after the opening of the specific file with the attributes to be changed. The
attribute-byte value specified in the FIOATTRIBSET call is copied directly; to
preserve existing flag settings, determine the current attributes using stat() or
fstat(), then change them using bitwise AND and OR operations.

Example 7-1 Setting DosFs File Attributes

This example makes a dosFs file read-only, and leaves other attributes intact.

STATUS changeAttributes
(
void
)
{
int fd;
struct stat statStruct;

/* open file */

if ((fd = open ("file", O_RDONLY, 0)) == ERROR)
return (ERROR);

VxWorks
Application Programmer’s Guide, 6.2

272

/* get directory entry data */

if (fstat (fd, &statStruct) == ERROR)
return (ERROR);

/* set read-only flag on file */

if (ioctl (fd, FIOATTRIBSET, (statStruct.st_attrib | DOS_ATTR_RDONLY))
== ERROR)
return (ERROR);

/* close file */

close (fd);
return (OK);
}

7.4.6 Disk Space Allocation Options

The dosFs file system allocates disk space using one of the following methods. The
first two methods are selected based upon the size of the write operation. The last
method must be manually specified.

■ single cluster allocation

Single cluster allocation uses a single cluster, which is the minimum allocation
unit. This method is automatically used when the write operation is smaller
than the size of a single cluster.

■ cluster group allocation (nearly contiguous)

Cluster group allocation uses adjacent (contiguous) groups of clusters, called
extents. Cluster group allocation is nearly contiguous allocation and is the
default method used when files are written in units larger than the size of a
disk’s cluster.

■ absolutely contiguous allocation

Absolutely contiguous allocation uses only absolutely contiguous clusters.
Because this type of allocation is dependent upon the existence of such space,
it is specified under only two conditions: immediately after a new file is
created and when reading from a file assumed to have been allocated to a
contiguous space. Using this method risks disk fragmentation.

NOTE: You can also use the attrib() routine to change file attributes. For more
information, see the entry in usrFsLib.

7 Local File Systems
7.4 MS-DOS-Compatible File System: dosFs

273

7

For any allocation method, you can deallocate unused reserved bytes by using the
POSIX-compatible routine ftruncate() or the ioctl() function FIOTRUNC.

Choosing an Allocation Method

Under most circumstances, cluster group allocation is preferred to absolutely
contiguous file access. Because it is nearly contiguous file access, it achieves a
nearly optimal access speed. Cluster group allocation also significantly minimizes
the risk of fragmentation posed by absolutely contiguous allocation.

Absolutely contiguous allocation attains raw disk throughput levels, however this
speed is only slightly faster than nearly contiguous file access. Moreover,
fragmentation is likely to occur over time. This is because after a disk has been in
use for some period of time, it becomes impossible to allocate contiguous space.
Thus, there is no guarantee that new data, appended to a file created or opened
with absolutely continuous allocation, will be contiguous to the initially written
data segment.

It is recommended that for a performance-sensitive operation, the application
regulate disk space utilization, limiting it to 90% of the total disk space.
Fragmentation is unavoidable when filling in the last free space on a disk, which
has a serious impact on performance.

Using Cluster Group Allocation

The dosFs file system defines the size of a cluster group based on the media’s
physical characteristics. That size is fixed for each particular media. Since seek
operations are an overhead that reduces performance, it is desirable to arrange
files so that sequential portions of a file are located in physically contiguous disk
clusters. Cluster group allocation occurs when the cluster group size is considered
sufficiently large so that the seek time is negligible compared to the read/write
time. This technique is sometimes referred to as nearly contiguous file access
because seek time between consecutive cluster groups is significantly reduced.

Because all large files on a volume are expected to have been written as a group of
extents, removing them frees a number of extents to be used for new files
subsequently created. Therefore, as long as free space is available for subsequent
file storage, there are always extents available for use. Thus, cluster group
allocation effectively prevents fragmentation (where a file is allocated in small units
spread across distant locations on the disk). Access to fragmented files can be
extremely slow, depending upon the degree of fragmentation.

VxWorks
Application Programmer’s Guide, 6.2

274

Using Absolutely Contiguous Allocation

A contiguous file is made up of a series of consecutive disk sectors. Absolutely
contiguous allocation is intended to allocate contiguous space to a specified file (or
directory) and, by so doing, optimize access to that file. You can specify absolutely
contiguous allocation either when creating a file, or when opening a file previously
created in this manner.

For more information on the ioctl() functions, see 7.4.8 I/O Control Functions
Supported by dosFsLib, p.276.

Allocating Contiguous Space for a File

To allocate a contiguous area to a newly created file, follow these steps:

1. First, create the file in the normal fashion using open() or creat().

2. Then, call ioctl(). Use the file descriptor returned from open() or creat() as the
file descriptor argument. Specify FIOCONTIG as the function code argument
and the size of the requested contiguous area, in bytes, as the third argument.

The FAT is then searched for a suitable section of the disk. If found, this space is
assigned to the new file. The file can then be closed, or it can be used for further
I/O operations. The file descriptor used for calling ioctl() should be the only
descriptor open to the file. Always perform the ioctl() FIOCONTIG operation
before writing any data to the file.

To request the largest available contiguous space, use CONTIG_MAX for the size
of the contiguous area. For example:

status = ioctl (fd, FIOCONTIG, CONTIG_MAX);

Allocating Space for Subdirectories

Subdirectories can also be allocated a contiguous disk area in the same manner:

■ If the directory is created using the ioctl() function FIOMKDIR, it must be
subsequently opened to obtain a file descriptor to it.

■ If the directory is created using options to open(), the returned file descriptor
from that call can be used.

A directory must be empty (except for the “.” and “..” entries) when it has
contiguous space allocated to it.

7 Local File Systems
7.4 MS-DOS-Compatible File System: dosFs

275

7

Opening and Using a Contiguous File

Fragmented files require following cluster chains in the FAT. However, if a file is
recognized as contiguous, the system can use an enhanced method that improves
performance. This applies to all contiguous files, whether or not they were
explicitly created using FIOCONTIG. Whenever a file is opened, it is checked for
contiguity. If it is found to be contiguous, the file system registers the necessary
information about that file to avoid the need for subsequent access to the FAT table.
This enhances performance when working with the file by eliminating seek
operations.

When you are opening a contiguous file, you can explicitly indicate that the file is
contiguous by specifying the DOS_O_CONTIG_CHK flag with open(). This
prompts the file system to retrieve the section of contiguous space, allocated for
this file, from the FAT table.

To find the maximum contiguous area on a device, you can use the ioctl() function
FIONCONTIG. This information can also be displayed by dosFsConfigShow().

Example 7-2 Finding the Maximum Contiguous Area on a DosFs Device

In this example, the size (in bytes) of the largest contiguous area is copied to the
integer pointed to by the third parameter to ioctl() (count).

STATUS contigTest
(
void /* no argument */
)
{
int count; /* size of maximum contiguous area in bytes */
int fd; /* file descriptor */

/* open device in raw mode */

if ((fd = open ("/DEV1/", O_RDONLY, 0)) == ERROR)
return (ERROR);

/* find max contiguous area */

ioctl (fd, FIONCONTIG, &count);

/* close device and display size of largest contiguous area */

close (fd);
printf ("largest contiguous area = %d\n", count);
return (OK);
}

VxWorks
Application Programmer’s Guide, 6.2

276

7.4.7 Crash Recovery and Volume Consistency

For information about crash recovery and volume consistence, see VxWorks Kernel
Programmer’s Guide: Local File Systems.

7.4.8 I/O Control Functions Supported by dosFsLib

The dosFs file system supports the ioctl() functions. These functions are defined
in the header file ioLib.h along with their associated constants.

For more information, see the API references for dosFsLib and for ioctl() in ioLib.

Table 7-3 I/O Control Functions Supported by dosFsLib

Function
Decimal

Value Description

FIOATTRIBSET 35 Sets the file-attribute byte in the dosFs directory entry.

FIOCONTIG 36 Allocates contiguous disk space for a file or directory.

FIODISKCHANGE 13 Announces a media change.

FIODISKFORMAT 5 Formats the disk (device driver function).

FIODISKINIT 6 Initializes a dosFs file system on a disk volume.

FIOFLUSH 2 Flushes the file output buffer.

FIOFSTATGET 38 Gets file status information (directory entry data).

FIOGETNAME 18 Gets the filename of the fd.

FIOLABELGET 33 Gets the volume label.

FIOLABELSET 34 Sets the volume label.

FIOMKDIR 31 Creates a new directory.

FIOMOVE 47 Moves a file (does not rename the file).

FIONCONTIG 41 Gets the size of the maximum contiguous area on a
device.

FIONFREE 30 Gets the number of free bytes on the volume.

7 Local File Systems
7.4 MS-DOS-Compatible File System: dosFs

277

7

7.4.9 Booting from a Local dosFs File System Using SCSI

For information about booting from a local dosFs file system using SCSI, see
VxWorks Kernel Programmer’s Guide: Local File Systems.

FIONREAD 1 Gets the number of unread bytes in a file.

FIOREADDIR 37 Reads the next directory entry.

FIORENAME 10 Renames a file or directory.

FIORMDIR 32 Removes a directory.

FIOSEEK 7 Sets the current byte offset in a file.

FIOSYNC 21 Same as FIOFLUSH, but also re-reads buffered file
data.

FIOTRUNC 42 Truncates a file to a specified length.

FIOUNMOUNT 39 Un-mounts a disk volume.

FIOWHERE 8 Returns the current byte position in a file.

FIOCONTIG64 49 Allocates contiguous disk space using a 64-bit size.

FIONCONTIG64 50 Gets the maximum contiguous disk space into a
64-bit integer.

FIONFREE64 51 Gets the number of free bytes into a 64-bit integer.

FIONREAD64 52 Gets the number of unread bytes in a file into a 64-bit
integer.

FIOSEEK64 53 Sets the current byte offset in a file from a 64-bit
integer.

FIOWHERE64 54 Gets the current byte position in a file into a 64-bit
integer.

FIOTRUNC64 55 Set the file's size from a 64-bit integer.

Table 7-3 I/O Control Functions Supported by dosFsLib (cont’d)

Function
Decimal

Value Description

VxWorks
Application Programmer’s Guide, 6.2

278

7.5 Raw File System: rawFs

VxWorks provides a raw file system (rawFs) for use in systems that require only the
most basic disk I/O functions. The rawFs file system, implemented with
rawFsLib, treats the entire disk volume much like a single large file.

Although the dosFs file system provides this ability to varying degrees, the rawFs
file system offers advantages in size and performance if more complex functions
are not required.

The rawFs file system imposes no organization of the data on the disk. It maintains
no directory information; and there is therefore no division of the disk area into
specific files. All open() operations on rawFs devices specify only the device
name; no additional filenames are possible.

The entire disk area is treated as a single file and is available to any file descriptor
that is open for the device. All read and write operations to the disk use a
byte-offset relative to the start of the first block on the disk.

A rawFs file system is created by default if inserted media does not contain a
recognizable file system.

7.5.1 Configuring VxWorks for rawFs

To use the rawFs file system, configure VxWorks with the INCLUDE_RAWFS and
INCLUDE_XBD components.

Set the NUM_RAWFS_FILES parameter of the INCLUDE_RAWFS component to the
desired maximum open file descriptor count. For information about using
multiple file descriptors with what is essentially a single large file, see 7.5.4 rawFs
File I/O, p.279.

7.5.2 Creating a rawFs File System

For information about creating a rawFs file system, see VxWorks Kernel
Programmer’s Guide: Local File Systems.

! CAUTION: If you are using a device for which the driver has not been ported to
XBD, you must use the INCLUDE_XBD_BLK_DEV wrapper component in addition
to INCLUDE_XBD. See the VxWorks Kernel Programmer’s Guide: I/O System for
more information.

7 Local File Systems
7.5 Raw File System: rawFs

279

7

7.5.3 Mounting rawFs Volumes

A disk volume is mounted automatically, generally during the first open() or
creat() operation. (Certain ioctl() functions also cause the disk to be mounted.)
The volume is again mounted automatically on the first disk access following a
ready-change operation.

7.5.4 rawFs File I/O

To begin I/O operations upon a rawFs device, first open the device using the
standard open() routine (or the creat() routine). Data on the rawFs device is
written and read using the standard I/O routines write() and read(). For more
information, see 6.3 Basic I/O, p.229.

The character pointer associated with a file descriptor (that is, the byte offset where
the read and write operations take place) can be set by using ioctl() with the
FIOSEEK function.

Multiple file descriptors can be open simultaneously for a single device. These
must be carefully managed to avoid modifying data that is also being used by
another file descriptor. In most cases, such multiple open descriptors use FIOSEEK
to set their character pointers to separate disk areas.

7.5.5 I/O Control Functions Supported by rawFsLib

The rawFs file system supports the ioctl() functions shown in Table 7-4. The
functions listed are defined in the header file ioLib.h. For more information, see
the API references for rawFsLib and for ioctl() in ioLib.

! CAUTION: Because device names are recognized by the I/O system using simple
substring matching, file systems should not use a slash (/) alone as a name or
unexpected results may occur.

Table 7-4 I/O Control Functions Supported by rawFsLib

Function
Decimal

Value Description

FIODISKCHANGE 13 Announces a media change.

FIODISKFORMAT 5 Formats the disk (device driver function).

VxWorks
Application Programmer’s Guide, 6.2

280

7.6 CD-ROM File System: cdromFs

The VxWorks CD-ROM file system, cdromFs allows applications to read data from
CDs formatted according to the ISO 9660 standard file system with or without the
Joliet extensions. This section describes how cdromFs is organized, configured,
and used.

The cdromFs library, cdromFsLib, lets applications read any CD-ROMs, CD-Rs, or
CD-RWs (collectively called CDs) that are formatted in accordance with the ISO
9660 file system standard, with or without the Joliet extensions. ISO 9660
interchange level 3, implementation level 2, is supported. Note that multi-extent
files, interleaved files, and files with extended attribute records are supported.

The following CD features and ISO 9660 features are not supported:

■ Multi-volume sets
■ Record format files
■ CDs with a sector size that is not a power of two1

■ Multi-session CD-R or CD-RW2

FIOFLUSH 2 Same as FIOSYNC.

FIOGETNAME 18 Gets the device name of the fd.

FIONREAD 1 Gets the number of unread bytes on the device.

FIOSEEK 7 Sets the current byte offset on the device.

FIOSYNC 21 Writes out all modified file descriptor buffers.

FIOUNMOUNT 39 Un-mounts a disk volume.

FIOWHERE 8 Returns the current byte position on the device.

Table 7-4 I/O Control Functions Supported by rawFsLib (cont’d)

Function
Decimal

Value Description

1. Therefore, mode 2/form 2 sectors are not supported, as they have 2324 bytes of user data
per sector. Both mode 1/form 1 and mode 2/form 1 sectors are supported, as they have 2048
bytes of user data per sector.

7 Local File Systems
7.6 CD-ROM File System: cdromFs

281

7

After initializing cdromFs and mounting it on a CD-ROM block device, you can
access data on that device using the standard POSIX I/O calls: open(), close(),
read(), ioctl(), readdir(), and stat(). The write() call always returns an error.

The cdromFs utility supports multiple drives, multiple open files, and concurrent
file access. When you specify a pathname, cdromFS accepts both forward slashes
(/) and back slashes (\) as path delimiters. However, the backslash is not
recommended because it might not be supported in future releases.

cdromFs provides access to CD file systems using any standard BLK_DEV
structure. The basic initialization sequence is similar to installing a dosFs file
system on a SCSI or ATA device, with a few significant differences: Create the CD
file system device directly on the BLK_DEV. CBIO drivers are not used.

After you have created the CD file system device (7.6.2 Creating and Using cdromFs,
p.282), use ioctl() to set file system options. The files system options are described
below:

CDROMFS_DIR_MODE_SET/GET
These options set and get the directory mode. The directory mode controls
whether a file is opened with the Joliet extensions, or without them. The
directory mode can be set to any of the following:

MODE_ISO9660
Do not use the Joliet extensions.

MODE_JOLIET
Use the Joliet extensions.

MODE_AUTO
Try opening the directory first without Joliet, and then with Joliet.

CDROMFS_STRIP_SEMICOLON
This option sets the readdir() strip semicolon setting to FALSE if arg is 0, and
to TRUE otherwise. If TRUE, readdir() removes the semicolon and following
version number from the directory entries retrieved.

CDROMFS_GET_VOL_DESC
This option returns, in arg, the primary or supplementary volume descriptor
by which the volume is mounted. arg must be of type T_ISO_PVD_SVD_ID, as

2. The first session (that is, the earliest session) is always read. The most commonly desired
behavior is to read the last session (that is, the latest session).

! CAUTION: Changing the directory mode un-mounts the file system. Therefore,
any open file descriptors are marked as obsolete.

VxWorks
Application Programmer’s Guide, 6.2

282

defined in cdromFsLib.h. The result is the volume descriptor, adjusted for the
endianness of the processor (not the raw volume descriptor from the CD). This
result can be used directly by the processor. The result also includes some
information not in the volume descriptor, such as which volume descriptor is
in use.

For information on using cdromFs(), see the API reference for cdromFsLib.

7.6.1 Configuring VxWorks for cdromFs

To configure VxWorks with cdromFs, add the INCLUDE_CDROMFS and
INCLUDE_XBD components to the kernel. Add other required components (such
as SCSI or ATA) depending on the type of device).

If you are using an ATAPI device, make appropriate modifications to the ataDrv,
ataResources[] structure array (if needed). This must be configured appropriately
for your hardware platform.

7.6.2 Creating and Using cdromFs

For information about creating and using a CD block device, see VxWorks Kernel
Programmer’s Guide: Local File Systems.

7.6.3 I/O Control Functions Supported by cdromFsLib

The cdromFs file system supports the ioctl() functions. These functions, and their
associated constants, are defined in the header files ioLib.h and cdromFsLib.h.

Table 7-5 describes the ioctl() functions that cdromFsLib supports. For more
information, see the API references for cdromFsLib and for ioctl() in ioLib.

! CAUTION: If you are using a device for which the driver has not been ported to
XBD, you must use the INCLUDE_XBD_BLK_DEV wrapper component in addition
to INCLUDE_XBD. See the VxWorks Kernel Programmer’s Guide: I/O System for
more information.

7 Local File Systems
7.6 CD-ROM File System: cdromFs

283

7

7.6.4 Version Numbers

cdromFsLib has a 4-byte version number. The version number is composed of four
parts, from most significant byte to least significant byte:

■ major number
■ minor number
■ patch level
■ build

Table 7-5 ioctl() Functions Supported by cdromFsLib

Function Constant Decimal Description

CDROMFS_DIR_MODE_GET 7602176 Gets the volume descriptor(s) used to open files.

CDROMFS_DIR_MODE_SET 7602177 Sets the volume descriptor(s) used to open files.

CDROMFS_GET_VOL_DESC 7602179 Gets the volume descriptor that is currently in use.

CDROMFS_STRIP_SEMICOLON 7602178 Sets the readdir() strip version number setting.

FIOFSTATGET 38 Gets file status information (directory entry data).

FIOGETNAME 18 Gets the filename of the file descriptor.

FIOLABELGET 33 Gets the volume label.

FIONREAD 1 Gets the number of unread bytes in a file.

FIONREAD64 52 Gets the number of unread bytes in a file (64-bit
version).

FIOREADDIR 37 Reads the next directory entry.

FIOSEEK 7 Sets the current byte offset in a file.

FIOSEEK64 53 Sets the current byte offset in a file (64-bit version).

FIOUNMOUNT 39 Un-mounts a disk volume.

FIOWHERE 8 Returns the current byte position in a file.

FIOWHERE64 54 Returns the current byte position in a file (64-bit
version).

VxWorks
Application Programmer’s Guide, 6.2

284

The version number is returned by cdromFsVersionNumGet() and displayed by
cdromFsVersionNumDisplay().

7.7 Read-Only Memory File System: ROMFS

ROMFS is a simple, read-only file system that represents and stores files and
directories in a linear way (similar to the tar utility). It is installed in RAM with the
VxWorks system image at boot time. The name ROMFS stands for Read Only
Memory File System; it does not imply any particular relationship to ROM media.

ROMFS provides the ability to bundle VxWorks applications—or any other files
for that matter—with the operating system. No local disk or network connection
to a remote disk is required for executables or other files. When VxWorks is
configured with the ROMFS component, files of any type can be included in the
operating system image simply by adding them to a ROMFS directory on the host
system, and then rebuilding VxWorks. The build produces a single system image
that includes both the VxWorks and the files in the ROMFS directory.

When VxWorks is booted with this image, the ROMFS file system and the files it
holds are loaded with the kernel itself. ROMFS allows you to deploy files and
operating system as a unit. In addition, process-based applications can be coupled
with an automated startup facility so that they run automatically at boot time.
ROMFS thereby provides the ability to create fully autonomous, multi-process
systems.

ROMFS can also be used to store applications that are run interactively for
diagnostic purposes, or for applications that are started by other applications
under specific conditions (errors, and so on).

7.7.1 Configuring VxWorks with ROMFS

VxWorks must be configured with the INCLUDE_ROMFS component to provide
ROMFS facilities.

7 Local File Systems
7.7 Read-Only Memory File System: ROMFS

285

7

7.7.2 Building a System With ROMFS and Files

Configuring VxWorks with ROMFS and applications involves several simple
steps:

1. A ROMFS directory must be created in the project directory on the host
system, using the name /romfs.

2. Application files must be copied into the directory.

3. VxWorks must be rebuilt.

For example, adding a process-based application called myVxApp.vxe from the
command line would look like this:

cd c:\myInstallDir\vxworks-6.1\target\proj\wrSbc8260_diab
mkdir romfs
copy c:\allMyVxApps\myVxApp.vxe romfs
make TOOL=diab

The contents of the romfs directory are automatically built into a ROMFS file
system and combined with the VxWorks image.

The ROMFS directory does not need to be created in the VxWorks project
directory. It can also be created in any location on (or accessible from) the host
system, and the make utility’s ROMFS_DIR macro used to identify where it is in
the build command. For example:

make TOOL=diab ROMFS_DIR="c:\allMyVxApps"

Note that any files located in the romfs directory are included in the system image,
regardless of whether or not they are application executables.

7.7.3 Accessing Files in ROMFS

At runtime, the ROMFS file system is accessed as /romfs. The content of the
ROMFS directory can be browsed using the ls and cd shell commands, and
accessed programmatically with standard file system routines, such as open() and
read().

VxWorks
Application Programmer’s Guide, 6.2

286

For example, if the directory
installDir/vxworks-6.x/target/proj/wrSbc8260_diab/romfs has been created on the
host, the file foo copied to it, and the system rebuilt and booted; then using cd and
ls from the shell (with the command interpreter) looks like this:

[vxWorks *]# cd /romfs
[vxWorks *]# ls
.
..
foo
[vxWorks *]#

And foo can also be accessed at runtime as /romfs/foo by any applications running
on the target.

7.7.4 Using ROMFS to Start Applications Automatically

ROMFS can be used with various startup mechanisms to start process-based
applications automatically when VxWorks boots.

See 2.8.4 Using ROMFS to Start Applications Automatically, p.73 for more
information.

7.8 Target Server File System: TSFS

The Target Server File System (TSFS) is designed for development and diagnostic
purposes. It is a full-featured VxWorks file system, but the files are actually located
on the host system.

The TSFS provides all of the I/O features of the network driver for remote file
access (netDrv; see 6.7.5 Non-NFS Network Devices, p.250), without requiring any
target resources—except those required for communication between the target
system and the target server on the host. The TSFS uses a WDB target agent driver
to transfer requests from the VxWorks I/O system to the target server. The target
server reads the request and executes it using the host file system. When you open
a file with TSFS, the file being opened is actually on the host. Subsequent read()
and write() calls on the file descriptor obtained from the open() call read from and
write to the opened host file.

7 Local File Systems
7.8 Target Server File System: TSFS

287

7

The TSFS VIO driver is oriented toward file I/O rather than toward console
operations. TSFS provides all the I/O features that netDrv provides, without
requiring any target resource beyond what is already configured to support
communication between target and target server. It is possible to access host files
randomly without copying the entire file to the target, to load an object module
from a virtual file source, and to supply the filename to routines such as ld() and
copy().

Each I/O request, including open(), is synchronous; the calling target task is
blocked until the operation is complete. This provides flow control not available in
the console VIO implementation. In addition, there is no need for WTX protocol
requests to be issued to associate the VIO channel with a particular host file; the
information is contained in the name of the file.

Consider a read() call. The driver transmits the ID of the file (previously
established by an open() call), the address of the buffer to receive the file data, and
the desired length of the read to the target server. The target server responds by
issuing the equivalent read() call on the host and transfers the data read to the
target program. The return value of read() and any errno that might arise are also
relayed to the target, so that the file appears to be local in every way.

For detailed information, see the API reference for wdbTsfsDrv.

Socket Support

TSFS sockets are operated on in a similar way to other TSFS files, using open(),
close(), read(), write(), and ioctl(). To open a TSFS socket, use one of the
following forms of filename:

"TCP:hostIP:port"
"TCP:hostname:port"

The flags and permissions arguments are ignored. The following examples show
how to use these filenames:

fd = open("/tgtsvr/TCP:phobos:6164",0,0); /* open socket and connect */
/* to server phobos */

fd = open("/tgtsvr/TCP:150.50.50.50:6164",0,0); /* open socket and */
/* connect to server */
/* 150.50.50.50 */

The result of this open() call is to open a TCP socket on the host and connect it to
the target server socket at hostname or hostIP awaiting connections on port. The
resultant socket is non-blocking. Use read() and write() to read and write to the
TSFS socket. Because the socket is non-blocking, the read() call returns

VxWorks
Application Programmer’s Guide, 6.2

288

immediately with an error and the appropriate errno if there is no data available
to read from the socket. The ioctl() usage specific to TSFS sockets is discussed in
the API reference for wdbTsfsDrv. This socket configuration allows VxWorks to
use the socket facility without requiring sockLib and the networking modules on
the target.

Error Handling

Errors can arise at various points within TSFS and are reported back to the original
caller on the target, along with an appropriate error code. The error code returned
is the VxWorks errno which most closely matches the error experienced on the
host. If a WDB error is encountered, a WDB error message is returned rather than
a VxWorks errno.

Configuring VxWorks for TSFS Use

To use TSFS, configure VxWorks with the INCLUDE_WDB_TSFS component. This
creates the /tgtsvr file system on the target.

The target server on the host system must also be configured for TSFS. This
involves assigning a root directory on your host to TSFS (see the discussion of the
target server -R option in Security Considerations, p.288). For example, on a PC host
you could set the TSFS root to c:\myTarget\logs.

Having done so, opening the file /tgtsvr/logFoo on the target causes
c:\myTarget\logs\logFoo to be opened on the host by the target server. A new
file descriptor representing that file is returned to the caller on the target.

Security Considerations

While TSFS has much in common with netDrv, the security considerations are
different (also see 6.7.5 Non-NFS Network Devices, p.250). With TSFS, the host file
operations are done on behalf of the user that launched the target server. The user
name given to the target as a boot parameter has no effect. In fact, none of the boot
parameters have any effect on the access privileges of TSFS.

In this environment, it is less clear to the user what the privilege restrictions to
TSFS actually are, since the user ID and host machine that start the target server
may vary from invocation to invocation. By default, any host tool that connects to
a target server which is supporting TSFS has access to any file with the same

7 Local File Systems
7.8 Target Server File System: TSFS

289

7

authorizations as the user that started that target server. However, the target
server can be locked (with the -L option) to restrict access to the TSFS.

The options which have been added to the target server startup routine to control
target access to host files using TSFS include:

-R Set the root of TSFS.
For example, specifying -R /tftpboot prepends this string to all TSFS filenames
received by the target server, so that /tgtsvr/etc/passwd maps to
/tftpboot/etc/passwd. If -R is not specified, TSFS is not activated and no TSFS
requests from the target will succeed. Restarting the target server without
specifying -R disables TSFS.

-RW Make TSFS read-write.
The target server interprets this option to mean that modifying operations
(including file create and delete or write) are authorized. If -RW is not
specified, the default is read only and no file modifications are allowed.

Using the TSFS to Boot a Target

For information about using the TSFS to boot a targets, see VxWorks Kernel
Programmer’s Guide: Kernel.

NOTE: For more information about the target server and the TSFS, see the tgtsvr
command reference. For information about specifying target server options from
the IDE, see the host development environment documentation.

VxWorks
Application Programmer’s Guide, 6.2

290

291

 8
Error Detection and Reporting

8.1 Introduction 292

8.2 Configuring Error Detection and Reporting Facilities 293

8.3 Error Records 294

8.4 Displaying and Clearing Error Records 296

8.5 Fatal Error Handling Options 297

8.6 Other Error Handling Options for Processes 300

8.7 Using Error Reporting APIs in Application Code 300

8.8 Sample Error Record 301

VxWorks
Application Programmer’s Guide, 6.2

292

8.1 Introduction

VxWorks provides an error detection and reporting facility to help debug software
faults. It does so by recording software exceptions in a specially designated area of
memory that is not cleared between warm reboots. The facility also allows for
selecting system responses to fatal errors, with alternate strategies for
development and deployed systems.

The key features of the error detection and reporting facility are:

■ A persistent memory region in RAM used to retain error records across warm
reboots.

■ Mechanisms for recording various types of error records.

■ Error records that provide detailed information about runtime errors and the
conditions under which they occur.

■ The ability to display error records and clear the error log from the shell.

■ Alternative error-handing options for the system’s response to fatal errors.

■ Macros for implementing error reporting in user code.

For more information about error detection and reporting routines in addition to
that provided in this chapter, see the API reference for edrLib. Also see the
VxWorks Kernel Programmer’s Guide: Error Detection and Reporting for information
about facilities available only in the kernel.

For information about related facilities, see 5.5 Memory Error Detection, p.212.

NOTE: This chapter provides information about facilities available for real-time
processes. For information about facilities available in the VxWorks kernel, see the
corresponding chapter in the VxWorks Kernel Programmer’s Guide.

8 Error Detection and Reporting
8.2 Configuring Error Detection and Reporting Facilities

293

8

8.2 Configuring Error Detection and Reporting Facilities

To use the error detection and reporting facilities:

■ VxWorks must be configured with the appropriate components.

■ A persistent RAM memory region must be configured, and it must be
sufficiently large to hold the error records.

■ Optionally, users can change the system’s default response to fatal errors.

8.2.1 Configuring VxWorks

To use the error detection and reporting facility, the kernel must be configured
with the following components:

■ INCLUDE_EDR_PM
■ INCLUDE_EDR_ERRLOG
■ INCLUDE_EDR_SHOW
■ INCLUDE_EDR_SYSDBG_FLAG

8.2.2 Configuring the Persistent Memory Region

The persistent-memory region is an area of RAM at the top of system memory
specifically reserved for an error records. It is protected by the MMU and the
VxWorks vmLib facilities. The memory is not cleared by warm reboots, provided
a VxWorks 6.x boot loader is used.

A cold reboot always clears the persistent memory region. The pmInvalidate()
routine can also be used to explicitly destroy the region (making it unusable) so
that it is recreated during the next warm reboot.

The persistent-memory area is write-protected when the target system includes an
MMU and VxWorks has been configured with MMU support.

The size of the persistent memory region is defined by the PM_RESERVED_MEM
configuration parameter. By default the size is set to six pages of memory.

By default, the error detection and reporting facility uses one-half of whatever
persistent memory is available. If no other applications require persistent memory,
the component may be configured to use almost all of it. This can be accomplished
by defining EDR_ERRLOG_SIZE to be the size of PM_RESERVED_MEM less the size
of one page of memory.

VxWorks
Application Programmer’s Guide, 6.2

294

If you increase the size of the persistent memory region beyond the default, you
must create a new boot loader with the same PM_RESERVED_MEM value. The
memory area between RAM_HIGH_ADRS and sysMemTop() must be big enough
to copy the VxWorks boot loader. If it exceeds the sysMemTop() limit, the boot
loader may corrupt the area of persistent memory reserved for core dump storage
when it loads VxWorks. The boot loader, must therefore be rebuilt with a lower
RAM_HIGH_ADRS value.

The EDR_RECORD_SIZE parameter can be used to change the default size of error
records. Note that for performance reasons, all records are necessarily the same
size.

The pmShow() shell command (for the C interpreter) can be used to display the
amount of allocated and free persistent memory.

For more information about persistent memory, see the VxWorks Kernel
Programmer’s Guide: Memory Management, and the pmLib API reference.

8.2.3 Configuring Responses to Fatal Errors

The error detection and reporting facilities provide for two sets of responses to
fatal errors. See 8.5 Fatal Error Handling Options, p.297 for information about these
responses, and various ways to select one for a runtime system.

8.3 Error Records

Error records are generated automatically when the system experiences specific
kinds of faults. The records are stored in the persistent memory region of RAM in
a circular buffer. Newer records overwrite older records when the persistent
memory buffer is full.

! WARNING: If the boot loader is not properly configured (as described above), this
could lead into corruption of the persistent memory region when the system boots.

! WARNING: A VxWorks 6.x boot loader must be used to ensure that the persistent
memory region is not cleared between warm reboots. Prior versions of the boot
loader may clear this area.

8 Error Detection and Reporting
8.3 Error Records

295

8

The records are classified according to two basic criteria:

■ event type
■ severity level

The event type identifies the context in which the error occurred (during system
initialization, or in a process, and so on).

The severity level indicates the seriousness of the error. In the case of fatal errors,
the severity level is also associated with alternative system’s responses to the error
(see 8.5 Fatal Error Handling Options, p.297).

The event types are defined in Table 8-1, and the severity levels in Table 8-2.

The information collected depends on the type of events that occurs. In general, a
complete fault record is recorded. For some events, however, portions of the

Table 8-1 Event Types

Type Description

INIT System initialization events.

BOOT System boot events.

REBOOT System reboot (warm boot) events.

KERNEL VxWorks kernel events.

INTERRUPT Interrupt handler events.

RTP Process environment events.

USER Custom events (user defined).

Table 8-2 Severity Levels

Severity Level Description

FATAL Fatal event.

NONFATAL Non-fatal event.

WARNING Warning event.

INFO Informational event.

VxWorks
Application Programmer’s Guide, 6.2

296

record are excluded for clarity. For example, the record for boot and reboot events
exclude the register portion of the record.

Error records hold detailed information about the system at the time of the event.
Each record includes the following generic information:

■ date and time the record was generated
■ type and severity
■ operating system version
■ task ID
■ process ID, if the failing task in a process
■ task name
■ process name, if the failing task is in a process
■ source file and line number where the record was created
■ a free form text message

It also optionally includes the following architecture-specific information:

■ memory map
■ exception information
■ processor registers
■ disassembly listing (surrounding the faulting address)
■ stack trace

8.4 Displaying and Clearing Error Records

The edrShow library provides a set of commands for the shell’s C interpreter that
are used for displaying the error records created since the persistent memory
region was last cleared. See Table 8-3.

Table 8-3 Shell Commands for Displaying Error Records

Command Action

edrShow() Show all records.

edrFatalShow() Show only FATAL severity level records.

edrInfoShow() Show only INFO severity level records.

edrKernelShow() Show only KERNEL event type records.

8 Error Detection and Reporting
8.5 Fatal Error Handling Options

297

8

The shell’s command interpreter provides comparable commands. See the API
references for the shell, or use the help edr command.

In addition to displaying error records, each of the show commands also displays
the following general information about the error log:

■ total size of the log
■ size of each record
■ maximum number of records in the log
■ the CPU type
■ a count of records missed due to no free records
■ the number of active records in the log
■ the number of reboots since the log was created

See the edrShow API reference for more information.

8.5 Fatal Error Handling Options

In addition to generating error records, the error detection and reporting facility
provides for two modes of system response to fatal errors for each event type:

■ debug mode, for lab systems (development)
■ deployed mode, for production systems (field)

The difference between these modes is in their response to fatal errors in processes
(RTP events). In debug mode, a fatal error in a process results in the process being

edrRtpShow() Show only RTP (process) event type records.

edrUserShow() Show only USER event type records.

edrIntShow() Show only INTERRUPT event type records.

edrInitShow() Show only INIT event type records.

edrBootShow() Show only BOOT event type records.

edrRebootShow() Show only REBOOT event type records.

Table 8-3 Shell Commands for Displaying Error Records (cont’d)

Command Action

VxWorks
Application Programmer’s Guide, 6.2

298

stopped. In deployed mode, as fatal error in a process results in the process being
terminated.

The operative error handling mode is determined by the system debug flag (see
8.5.2 Setting the System Debug Flag, p.299). The default is deployed mode.

Table 8-4 describes the responses in each mode for each of the event types. It also
lists the routines that are called when fatal records are created.

The error handling routines are called response to certain fatal errors. Only fatal
errors—and no other event types—have handlers associated with them. These
handlers are defined in installDir/vxworks-6.x/target/config/comps/src/edrStub.c.
Developers can modify the routines in this file to implement different system
responses to fatal errors. The names of the routines, however, cannot be changed.

Note that when the debugger is attached to the target, it gains control of the system
before the error-handling option is invoked, thus allowing the system to be
debugged even if the error-handling option calls for a reboot.

8.5.1 Configuring VxWorks with Error Handling Options

In order to provide the option of debug mode error handling for fatal errors,
VxWorks must be configured with the INCLUDE_EDR_SYSDBG_FLAG
component, which it is by default. The component allows a system debug flag to
be used to select debug mode, as well as reset to deployed mode (see 8.5.2 Setting
the System Debug Flag, p.299). If INCLUDE_EDR_SYSDBG_FLAG is removed from
VxWorks, the system defaults to deployed mode (see Table 8-4).

Table 8-4 FATAL Error-Handling Options

Event Type Debug Mode

Deployed
Mode
(default) Error Handling Routine

INIT Reboot Reboot edrInitFatalPolicyHandler()

KERNEL Stop failed
task

Stop failed
task

edrKernelFatalPolicyHandler()

INTERRUPT Reboot Reboot edrInterruptFatalPolicyHandler()

RTP Stop process Delete
process

edrRtpFatalPolicyHandler()

8 Error Detection and Reporting
8.5 Fatal Error Handling Options

299

8

8.5.2 Setting the System Debug Flag

How the error detection and reporting facility responds to fatal errors, beyond
merely recording the error, depends on the setting of the system debug flag. When
the system is configured with the INCLUDE_EDR_SYSDBG_FLAG component, the
flag can be used to set the handling of fatal errors to either debug mode or
deployed mode (the default).

For systems undergoing development, it is obviously desirable to leave the system
in a state that can be more easily debugged; while in deployed systems, the aim is
to have them recover as best as possible from fatal errors and continue operation.

The debug flag can be set in any of the following ways:

■ Statically, with boot loader configuration.

■ Interactively, at boot time.

When a system boots, the banner displayed on the console displays information
about the mode defined by the system debug flag. For example:

ED&R Policy Mode: Deployed

The modes are identified as Debug, Deployed, or Permanently Deployed. The
latter indicates that the INCLUDE_EDR_SYSDBG_FLAG component is not included
in the system, which means that the mode is deployed and that it cannot be
changed to debug.

Setting the Debug Flag Statically

The system can be set to either debug mode or deployed mode with the f boot
loader parameter when a boot loader is configured and built. The value of 0x000 is
used to select deployed mode. The value of 0x400 is used to select debug mode. By
default, it is set to deployed mode.

To change the default behavior when configuring a new system, change the f
parameter in the DEFAULT_BOOT_LINE definition in
installDir/target/config/bspName/config.h, which looks like this:

#define DEFAULT_BOOT_LINE BOOT_DEV_NAME \
"(0,0)wrSbc8260:vxworks " \
"e=192.168.100.51 " \
"h=192.168.100.155 " \
"g=0.0.0.0 " \
"u=anonymous pw=user " \
"f=0x00 tn=wrSbc8260"

VxWorks
Application Programmer’s Guide, 6.2

300

For information about configuring and building boot loaders, see the VxWorks
Kernel Programmer’s Guide: Kernel.

Setting the Debug Flag Interactively

To change the system debug flag interactively, stop the system when it boots. Then
use the c command at the boot-loader command prompt. Change the value of the
the f parameter: use 0x000 for deployed mode (the default) or to 0x400 for debug
mode.

8.6 Other Error Handling Options for Processes

By default, any faults generated by a process are handled by the error detection
and reporting facility.

A process can, however, handle its own faults by installing an appropriate signal
handler in the process. If a signal handler is installed (for example, SIGSEGV or
SIGBUS), the signal handler is run instead of an error record being created and an
error handler being called. The signal handler may pass control to the facility if it
chooses to by using the edrErrorInject() system call.

For more information about signals, see 3.3.10 Signals, p.143.

8.7 Using Error Reporting APIs in Application Code

The edrLib.h file provides a set of convenient macros that developers can use in
their source code to generate error messages (and responses by the system to fatal
errors) under conditions of the developers choosing.

The macros have no effect if VxWorks has not been configured with error detection
and reporting facilities. Code does not, therefore, need to be conditionally
compiled to make use of these facilities.

The edrLib.h file is in installDir/vxworks-6.x/target/usr/h

8 Error Detection and Reporting
8.8 Sample Error Record

301

8

The following macros are provided:

EDR_USER_INFO_INJECT (trace, msg)
Creates a record in the error log with an event type of USER and a severity of
INFO.

EDR_USER_WARNING_INJECT (trace, msg)
Creates a record in the error log with event type of USER and a severity of
WARNING.

EDR_USER_FATAL_INJECT (trace, msg)
Creates a record in the error log with event type of USER and a severity of
FATAL.

All the macros use the same parameters. The trace parameter is a boolean value
indicating whether or not a traceback should be generated for the record. The msg
parameter is a string that is added to the record.

8.8 Sample Error Record

The following is an example of a record generated by a failed process task:

VxWorks
Application Programmer’s Guide, 6.2

302

==[1/1]==
Severity/Facility: FATAL/RTP
Boot Cycle: 1
OS Version: 6.0.0
Time: THU JAN 01 05:21:16 1970 (ticks = 1156617)
Task: "tInitTask" (0x006f4010)
RTP: "edrdemo.vxe" (0x00634048)
RTP Address Space: 0x10226000 -> 0x10254000
Injection Point: rtpSigLib.c:4893

Default Signal Handling : Abnormal termination of RTP edrdemo.vxe (0x634048)

<<<<<Memory Map>>>>>

0x00100000 -> 0x002a48dc: kernel
0x10226000 -> 0x10254000: RTP

<<<<<Registers>>>>>

r0 = 0x10226210 sp = 0x10242f70 r2 = 0x10238e30
r3 = 0x00000037 r4 = 0x102440e8 r5 = 0x10244128
r6 = 0x00000000 r7 = 0x10231314 r8 = 0x00000000
r9 = 0x10226275 r10 = 0x0000000c r11 = 0x0000000c
r12 = 0x00000000 r13 = 0x10239470 r14 = 0x00000000
r15 = 0x00000000 r16 = 0x00000000 r17 = 0x00000000
r18 = 0x00000000 r19 = 0x00000000 r20 = 0x00000000
r21 = 0x00000000 r22 = 0x00000000 r23 = 0x00000000
r24 = 0x00000000 r25 = 0x00000000 r26 = 0x00000000
r27 = 0x00000002 r28 = 0x10242f9c r29 = 0x10242fa8
r30 = 0x10242fac r31 = 0x50000000 msr = 0x0000f032
lr = 0x10226210 ctr = 0x0024046c pc = 0x10226214
cr = 0x80000080 xer = 0x20000000 pgTblPtr = 0x00740000
scSrTblPtr = 0x0064ad04 srTblPtr = 0x0064acc4

<<<<<Disassembly>>>>>

 0x102261f4 48003559 bl 0x1022974c # strtoul
 0x102261f8 3be30000 addi r31,r3,0x0 # 0
 0x102261fc 3c601022 lis r3,0x1022 # 4130
 0x10226200 38636244 addi r3,r3,0x6244 # 25156
 0x10226204 389f0000 addi r4,r31,0x0 # 0
 0x10226208 4cc63182 crxor crb6,crb6,crb6
 0x1022620c 48002249 bl 0x10228454 # printf
 0x10226210 39800000 li r12,0x0 # 0
*0x10226214 999f0000 stb r12,0(r31)
 0x10226218 48000014 b 0x1022622c # 0x1022622c
 0x1022621c 3c601022 lis r3,0x1022 # 4130
 0x10226220 38636278 addi r3,r3,0x6278 # 25208
 0x10226224 4cc63182 crxor crb6,crb6,crb6
 0x10226228 4800222d bl 0x10228454 # printf
 0x1022622c 80010014 lwz r0,20(r1)
 0x10226230 83e1000c lwz r31,12(r1)

<<<<<Traceback>>>>>

0x102261cc _start +0x4c : main ()

303

 9
C++ Development

9.1 Introduction 303

9.2 C++ Code Requirements 304

9.3 C++ Compiler Differences 304

9.4 Namespaces 307

9.5 C++ Demo Example 308

9.1 Introduction

This chapter provides information about C++ development for VxWorks using the
Wind River and GNU toolchains.

! WARNING: Wind River Compiler C++ and GNU C++ binary files are not
compatible.

NOTE: This chapter provides information about facilities available for real-time
processes. For information about facilities available in the VxWorks kernel, see the
corresponding chapter in the VxWorks Kernel Programmer’s Guide.

VxWorks
Application Programmer’s Guide, 6.2

304

9.2 C++ Code Requirements

Any VxWorks task that uses C++ must be spawned with the VX_FP_TASK option.
By default, tasks spawned from host tools (such as the Wind Shell) automatically
have VX_FP_TASK enabled.

If you reference a (non-overloaded, global) C++ symbol from your C code you
must give it C linkage by prototyping it using extern "C":

#ifdef __cplusplus
extern "C" void myEntryPoint ();
#else
void myEntryPoint ();
#endif

You can also use this syntax to make C symbols accessible to C++ code. VxWorks
C symbols are automatically available to C++ because the VxWorks header files
use this mechanism for declarations.

9.3 C++ Compiler Differences

The Wind River C++ Compiler uses the Edison Design Group (EDG) C++ front
end. It fully complies with the ANSI C++ Standard. For complete documentation
on the Wind River Compiler and associated tools, see the Wind River C/C++
Compiler User's Guide.

The GNU compilers provided with the host tools and IDE support most of the
language features described in the ANSI C++ Standard. In particular, they provide
support for template instantiation, exception handling, run-time type information,
and namespaces. For complete documentation on the GNU compiler and on the
associated tools, see the GNU ToolKit User’s Guide.

The following sections briefly describe the differences in compiler support for
template instantiation, exception handling, and run-time type information.

! WARNING: Failure to use the VX_FP_TASK option when spawning a task that uses
C++ can result in hard-to-debug, unpredictable floating-point register corruption
at run-time.

9 C++ Development
9.3 C++ Compiler Differences

305

9

9.3.1 Template Instantiation

In C, every function and variable used by a program must be defined in exactly one
place (more precisely one translation unit). However, in C++ there are entities
which have no clear point of definition but for which a definition is nevertheless
required. These include template specializations (specific instances of a generic
template; for example, std::vector int), out-of-line bodies for inline functions, and
virtual function tables for classes without a non-inline virtual function. For such
entities a source code definition typically appears in a header file and is included
in multiple translation units.

To handle this situation, both the Wind River Compiler and the GNU compiler
generate a definition in every file that needs it and put each such definition in its
own section. The Wind River compiler uses COMDAT sections for this purpose,
while the GNU compiler uses linkonce sections. In each case the linker removes
duplicate sections, with the effect that the final executable contains exactly one
copy of each needed entity.

It is highly recommended that you use the default settings for template
instantiation, since these combine ease-of-use with minimal code size. However it
is possible to change the template instantiation algorithm; see the compiler
documentation for details.

Wind River Compiler

The Wind River Compiler C++ options controlling multiple instantiation of
templates are:

-Xcomdat
This option is the default. When templates are instantiated implicitly, the
generated code or data section are marked as comdat. The linker then
collapses identical instances marked as such, into a single instance in memory.

-Xcomdat-off
Generate template instantiations and inline functions as static entities in the
resulting object file. Can result in multiple instances of static member-function
or class variables.

For greater control of template instantiation, the -Ximplicit-templates-off option
tells the compiler to instantiate templates only where explicitly called for in source
code; for example:

template class A<int>; // Instantiate A<int> and all member functions.
template int f1(int); // Instantiate function int f1{int).

VxWorks
Application Programmer’s Guide, 6.2

306

GNU Compiler

The GNU C++ compiler options controlling multiple instantiation of templates
are:

-fimplicit-templates
This option is the default. Template instantiations and out-of-line copies of
inline functions are put into special linkonce sections. Duplicate sections are
merged by the linker, so that each instantiated template appears only once in
the output file.

-fno-implicit-templates
This is the option for explicit instantiation. Using this strategy explicitly
instantiates any templates that you require.

9.3.2 Exception Handling

Both compilers support thread-safe exception handling by default.

Wind River Compiler

To turn off support for exception handling, use the -Xexceptions-off compiler flag.

The Wind River Compiler exception handling model is table driven and requires
little run-time overhead if a given exception is not thrown. Exception handling
does, however, involve a size increase.

GNU Compiler

To turn off support for exception handling, use the -fno-exceptions compiler flag.

Unhandled Exceptions

As required by the ANSI C++ Standard, an unhandled exception ultimately calls
terminate(). The default behavior of this routine is to suspend the offending task
and to send a warning message to the console. You can install your own
termination handler by calling set_terminate(), which is defined in the header file
exception.

9 C++ Development
9.4 Namespaces

307

9

9.3.3 Run-Time Type Information

Both compilers support Run-time Type Information (RTTI), and the feature is
enabled by default. This feature adds a small overhead to any C++ program
containing classes with virtual functions.

For the Wind River Compiler, the RTTI language feature can be disabled with the
-Xrtti-off flag.

For the GNU compiler, the RTTI language feature can be disabled with the -fno-rtti
flag.

9.4 Namespaces

Both the Wind River and GNU C++ compilers supports namespaces. You can use
namespaces for your own code, according to the C++ standard.

The C++ standard also defines names from system header files in a namespace
called std. The standard requires that you specify which names in a standard
header file you will be using.

The following code is technically invalid under the latest standard, and will not
work with this release. It compiled with a previous release of the GNU compiler,
but will not compile under the current releases of either the Wind River or GNU
C++ compilers:

#include <iostream.h>
int main()

{
cout << "Hello, world!" << endl;

}

The following examples provide three correct alternatives illustrating how the
C++ standard would now represent this code. The examples compile with either
the Wind River or the GNU C++ compiler:

// Example 1
#include <iostream>
int main()

{
std::cout << "Hello, world!" << std::endl;

}

VxWorks
Application Programmer’s Guide, 6.2

308

// Example 2
#include <iostream>
using std::cout;
using std::endl;
int main()

{
cout << "Hello, world!" << endl;

}

// Example 3
#include <iostream>
using namespace std;
int main()

{
cout << "Hello, world!" << endl;

}

9.5 C++ Demo Example

For a sample C++ application, see
installDir/vxworks-6.x/target/usr/apps/samples/cplusplus/factory.

309

Index

A
access routines (POSIX) 163
aio_cancel() 242
aio_error() 244

testing completion 244
aio_fsync() 242
aio_read() 242
aio_return() 244

aiocb, freeing 243
aio_suspend() 242

testing completion 244
aio_write() 242
aiocb, see control block (AIO)
ANSI C

function prototypes 19
header files 20
stdio package 239

application libraries 27
applications

APIs 25
building 23
development 18
executing 62
library routines 25
main() routine 22
ROMFS, bundling applications with 71
starting with rtpSpawn() 22
structure 18

system calls 25
VxWorks component requirements 22, 23

archive file attribute (dosFs) 271
asynchronous I/O (POSIX) 241

see also control block (AIO)
see online aioPxLib
cancelling operations 244
control block 242
multiple requests, submitting 243
retrieving operation status 244
routines 242

attribute (POSIX)
prioceiling attribute 187
protocol attribute 186

attributes (POSIX) 163
specifying 166

B
backspace character, see delete character
binary semaphores 106
block devices

file systems, and 256–289
naming 228

building
applications 23

VxWorks
Application Programmer’s Guide, 6.2

310

C
C library 50
C++ development

C and C++, referencing symbols between 304
exception handling 306
Run-Time Type Information (RTTI) 307

C++ support 303–308
see also iostreams (C++)

cancelling threads (POSIX) 168
CD-ROM devices 280
cdromFs file systems 280

see online cdromFsLib
character devices

naming 228
characters, control (CTRL+x)

tty 246
client-server communications 119
CLOCK_REALTIME 159
clocks

see also system clock; clockLib(1)
POSIX 159–161
system 91

close()
using 234

closedir() 262, 269
clusters

cluster groups 272
disk space, allocating (dosFs) 272

absolutely contiguous 272
methods 273
nearly contiguous 272
single cluster 272

extents 272
code

pure 96
shared 95

code examples
asynchronous I/O completion, determining

signals, using 244
dosFs file systems

file attributes, setting 271
maximum contiguous areas, finding 275

message queues
attributes, examining (POSIX) 189–191

checking for waiting message (POSIX)
196–199

POSIX 193–195
VxWorks 117

mutual exclusion 107
semaphores

binary 107
named 184
recursive 111
unnamed (POSIX) 181

tasks
deleting safely 91
round-robin time slice (POSIX) 178
scheduling (POSIX) 177
setting priorities (POSIX) 175–176
synchronization 108

threads
creating, with attributes 167–168

COMP 129
components

application requirements 22, 23
configuration

event 122
signals 145

configuration and build
components 3
tools 2

configuring
dosFs file systems 266
HRFS file systems 260
TSFS 288

contexts
task 76

CONTIG_MAX 274
control block (AIO) 242

fields 243
control characters (CTRL+x)

tty 246
conventions

device naming 228
file naming 228
task names 87

counting semaphores 112, 180
creat() 235
CTRL+C kernel shell abort) 247

 Index

311

Index

CTRL+D (end-of-file) 247
CTRL+H

delete character
tty 246

CTRL+Q (resume)
tty 247

CTRL+S (suspend)
tty 247

CTRL+U (delete line)
tty 247

CTRL+X (reboot)
tty 247

D
data structures, shared 102–103
debugging

error status values 94
delayed tasks 78
delayed-suspended tasks 78
delete character (CTRL+H)

tty 246
delete-line character (CTRL+U)

tty 247
devices

see also block devices; character devices; direct-
access devices; drivers and specific
device types

accessing 227
creating

pipes 248
default 228
dosFs 228
naming 228
network 250
NFS 250
non-NFS 250
pipes 248
pseudo-memory 249
serial I/O (terminal and pseudo-terminal) 244
sockets 251
working with, in VxWorks 244–251

disks

see also block devices; dosFs file systems; rawFs
file systems

changing
dosFs file systems 268

file systems, and 256–289
mounting volumes 279
organization (rawFs) 278
synchronizing

dosFs file systems 268
displaying information

disk volume configuration, about 268
DLL, see plug-ins
documentation 2
DOS_ATTR_ARCHIVE 271
DOS_ATTR_DIRECTORY 271
DOS_ATTR_HIDDEN 270
DOS_ATTR_RDONLY 270
DOS_ATTR_SYSTEM 271
DOS_ATTR_VOL_LABEL 271
DOS_O_CONTIG 275
dosFs file systems 265

see also block devices; CBIO interface; clusters;
FAT tables

see online dosFsLib
blocks 266
code examples

file attributes, setting 271
maximum contiguous area on devices,

finding the 275
configuring 266
devices, naming 228
directories, reading 269
disk space, allocating 272

methods 273
disk volume

configuration data, displaying 268
disks, changing 268
file attributes 270
ioctl() requests, supported 264, 276
open(), creating files with 233
sectors 266
starting I/O 270
subdirectories

creating 268
removing 269

VxWorks
Application Programmer’s Guide, 6.2

312

synchronizing volumes 268
dosFsFmtLib 266
dosFsLib 266
dosFsShow() 268
drivers 227

see also devices and specific driver types
file systems, and 256–289
memory 249
NFS 250
non-NFS network 250
pipe 248
pty (pseudo-terminal) 244
tty (terminal) 244
VxWorks, available in 244

DSI 130

E
ED&R, see error detection and reporting 292
end-of-file character (CTRL+D) 247
environment variables 17
errno 94

return values 94
error

memory error detection 212
error detection and reporting 292

APIs for application code 300
error records 294
fatal error handling options 297
persistent memory region 293

error handling options 297
error records 294
error status values 94
errors

run-time error checking (RTEC) 220
eventClear() 126, 127
eventReceive() 126, 127
events 121

accessing event flags 125
and object deletion 124
and show routines 127
and task deletion 125
configuring 122
defined 121

receiving 122
from message queues 123
from semaphores 122
from tasks and ISRs 122

routines 126
sending 123
task events register 126

eventSend() 126, 127
exception handling 95

C++ 306
signal handlers 95

executing
applications 62

exit() 89

F
fclose() 240
fd, see file descriptors
FD_CLR 238
FD_ISSET 238
FD_SET 238
FD_ZERO 238
fdopen() 240
fdprintf() 241
FIFO

message queues, VxWorks 116
file descriptors (fd) 229

see also files
see online ioLib
pending on multiple (select facility) 237
reclaiming 230
redirection 231
standard input/output/error 230

file pointers (fp) 240
file system monitor 259
file systems

see also ROMFS file system;dosFs file systems;
TRFS file system;rawFs file systems;
tapeFs file systems; Target Server File
System (TSFS); TrueFFS flash file
systems

block devices, and 256–289
drivers, and 256–289

 Index

313

Index

files
attributes (dosFs) 270
closing 234
contiguous (dosFs)

absolutely 272
nearly 272

creating 235
deleting 235
exporting to remote machines 250
hidden (dosFs) 270
I/O system, and 227
naming 228
opening 232
reading from 235

remote machines, on 250
read-write (dosFs) 270
system (dosFs) 271
truncating 236
write-only (dosFs) 270
writing to 235

-fimplicit-templates compiler option 306
FIOATTRIBSET 271
FIOCONTIG 276
FIODISKCHANGE 279
FIODISKFORMAT 279
FIOFLUSH 264, 276, 280

pipes, using with 249
FIOFSTATGET 264, 276

FTP or RSH, using with 251
NFS client devices, using with 250

FIOGETNAME 264, 276
FTP or RSH, using with 251
NFS client devices, using with 250
pipes, using with 249

FIOLABELGET 276
FIOLABELSET 276
FIOMKDIR 268
FIOMOVE 264, 276
FIONCONTIG 276
FIONFREE 264, 276
FIONMSGS 249
FIONREAD 264, 277

FTP or RSH, using with 251
NFS client devices, using with 250
pipes, using with 249

FIOREADDIR 264, 277
FTP or RSH, using with 251
NFS client devices, using with 250

FIORENAME 264, 277
FIORMDIR 262, 269
FIOSEEK 279

FTP or RSH, using with 251
memory drivers, using with 249
NFS client devices, using with 250

FIOSETOPTIONS
tty options, setting 245

FIOSYNC
FTP or RSH, using with 251
NFS client devices, using with 250

FIOTRUNC 273
FIOWHERE 265, 277

FTP or RSH, using with 251
memory drivers, using with 249
NFS client devices, using with 250

floating-point support
task options 88

flow-control characters (CTRL+Q and S)
tty 247

-fno-exceptions compiler option (C++) 306
-fno-implicit-templates compiler option 306
-fno-rtti compiler option (C++) 307
fopen() 240
fread() 240
fstat() 262, 269
FSTAT_DIR 268
FTP (File Transfer Protocol)

ioctl functions, and 251
ftruncate() 236, 273
fwrite() 240

G
getc() 240
global variables 97

VxWorks
Application Programmer’s Guide, 6.2

314

H
header files 19

ANSI 20
function prototypes 19

hiding internal details 21
nested 21
private 21
searching for 21

hidden files (dosFs) 270
Highly Reliable File System 259
hook routines 24
hooks, task

routines callable by 93
HRFS file systems

configuring 260
directories, reading 262
starting I/O 263
subdirectories

removing 262
HRFS, see Highly Reliable File System 259

I
-I compiler option 21
I/O system

see also I/O, asynchronous I/O 241
include files

see also header files
INCLUDE_ATA

configuring dosFs file systems 260, 266
INCLUDE_CDROMFS 282
INCLUDE_DISK_UTIL 267
INCLUDE_DOSFS 266
INCLUDE_DOSFS_CHKDSK 267
INCLUDE_DOSFS_DIR_FIXED 266
INCLUDE_DOSFS_DIR_VFAT 266
INCLUDE_DOSFS_FAT 266
INCLUDE_DOSFS_FMT 267
INCLUDE_DOSFS_MAIN 266
INCLUDE_POSIX_FTRUNCATE 236
INCLUDE_POSIX_MEM 162
INCLUDE_POSIX_MQ_SHOW 191
INCLUDE_POSIX_SCHED 175

INCLUDE_POSIX_SEM 179
INCLUDE_POSIX_SIGNALS 201
INCLUDE_RAWFS 278
INCLUDE_SCSI

configuring dosFs file systems 260, 266
INCLUDE_SIGNALS 145
INCLUDE_TAR 267
INCLUDE_VXEVENTS 122
INCLUDE_WDB_TSFS 288
INCLUDE_XBD 266
INCLUDE_XBD_BLKDEV 260, 267
INCLUDE_XBD_PARTLIB 260, 267
INCLUDE_XBD_RAMDISK 260, 267
INCLUDE_XBD_TRANS 267
instantiation, template (C++) 306
interrupt service routines (ISR)

and signals 145
interruptible

message queue 118
semaphore 114

intertask communications 100–145
network 143

I/O system 226
asynchronous I/O 241
basic I/O (ioLib) 229
buffered I/O 239
control functions (ioctl()) 237
memory, accessing 249
redirection 231
serial devices 244
stdio package (ansiStdio) 239

ioctl() 237
dosFs file system support 264, 276
functions

FTP, using with 251
memory drivers, using with 249
NFS client devices, using with 250
pipes, using with 248
RSH, using with 251

non-NFS devices 251
raw file system support 279
tty options, setting 245

ioDefPathGet() 228
ioDefPathSet() 228

 Index

315

Index

K
kernel

and multitasking 76
POSIX and VxWorks features, comparison of

message queues 188
scheduling 174

priority levels 80
kernel shell

aborting (CTRL+C)
tty 247

kernelTimeSlice() 82
keyboard shortcuts

tty characters 246
kill() 145, 200

L
latency

preemptive locks 103
libc 50
libraries

application 27
shared 31

line mode (tty devices) 246
selecting 245

lio_listio() 242
locking

page (POSIX) 162
semaphores 179
task preemptive locks 84, 103

longjmp() 95

M
main() 22
memory

driver (memDrv) 249
error detection 212
locking (POSIX) 162

see also mmanPxLib(1)
management, seememory management

paging (POSIX) 162
persistent memory region 293
pool 97
pseudo-I/O devices 249
swapping (POSIX) 162

memory management
dynamic, for applications 210
error detection 212
heap and partition 208

memory managment
component requirements 208

message channels 127
message queue

interruptible 118
message queues 115

see also msgQLib(1)
and VxWorks events 120
client-server example 119
displaying attributes 118, 191
POSIX 188

see also mqPxLib(1)
attributes 189–191
code examples

attributes, examining 189–191
checking for waiting message 196–

199
communicating by message queue

193–195
notifying tasks 195–199
unlinking 192
VxWorks facilities, differences from 188

priority setting 117
queuing 118
VxWorks 116

code example 117
creating 116
deleting 116
queueing order 116
receiving messages 116
sending messages 116
timing out 117
waiting tasks 116

mlock() 162
mlockall() 162
mmanPxLib 162

VxWorks
Application Programmer’s Guide, 6.2

316

mounting volumes
rawFs file systems 279

mq_close() 188, 192
mq_getattr() 188, 189
mq_notify() 188, 195–199
mq_open() 188, 192
mq_receive() 188, 192
mq_send() 188, 192
mq_setattr() 188, 189
mq_unlink() 188, 192
mqPxLib 188
MS-DOS file systems, see dosFs file systems
msgQCreate() 116
msgQDelete() 116
msgQEvStart() 126
msgQEvStop() 126
msgQReceive() 116
msgQSend() 116
msgQSend() 127
multitasking 76, 95

example 99
munlock() 162
munlockall() 162
mutexes (POSIX) 186
mutual exclusion 103–104

see also semLib(1)
code example 107
counting semaphores 112
preemptive locks 103
and reentrancy 97
VxWorks semaphores 108

binary 107
deletion safety 110
priority inheritance 109
priority inversion 109
recursive use 111

N
named semaphores (POSIX) 179

using 183
nanosleep() 91

using 161
netDrv

compared with TSFS 288
netDrv driver 250
network devices

see also FTP; NFS; RSH
NFS 250
non-NFS 250

Network File System, see NFS
networks

intertask communications 143
transparency 250

NFS (Network File System)
devices 250

naming 228
open(), creating files with 233

ioctl functions, and 250
transparency 250

nfsDrv driver 250
NUM_RAWFS_FILES 278

O
O_CREAT 268
O_NONBLOCK 189
O_CREAT 183
O_EXCL 183
O_NONBLOCK 192
open() 232

access flags 232
files asynchronously, accessing 242
files with, creating 233
subdirectories, creating 268

opendir() 262, 269
operating system 162
OPT_7_BIT 245
OPT_ABORT 246
OPT_CRMOD 245
OPT_ECHO 245
OPT_LINE 245
OPT_MON_TRAP 246
OPT_RAW 246
OPT_TANDEM 245
OPT_TERMINAL 246

 Index

317

Index

P
page locking 162

see also mmanPxLib(1)
paging 162
pended tasks 78
pended-suspended tasks 78
persistent memory region 293
pipeDevCreate() 120
pipes 120–121

see online pipeDrv
ioctl functions, and 248
select(), using with 121

plug-ins 51
POSIX

see also asynchronous I/O
asynchronous I/O 241
clocks 159–161

see also clockLib(1)
file truncation 236
memory-locking interface 162
message queues 188

see also message queues; mqPxLib(1)
mutex attributes 186

prioceiling attribute 187
protocol attribute 186

page locking 162
see also mmanPxLib(1)

paging 162
priority limits, getting task 178
priority numbering 171
scheduling 174

see also scheduling; schedPxLib(1)
semaphores 179

see also semaphores; semPxLib(1)
signal functions 200

routines 146
swapping 162
task priority, setting 175–177

code example 175–176
thread attributes 163–168

specifying 166
threads 163
timers 159–161

see also timerLib(1)

VxWorks features, differences from
scheduling 174

posixPriorityNumbering global variable 171
preemptive locks 84, 103
preemptive priority scheduling 81, 82, 177
printErr() 241
prioceiling attribute 187
priority

inheritance 109
inversion 109
message queues 117
numbering 171
preemptive, scheduling 81, 82, 177
task, setting

POSIX 175–177
VxWorks 80

processes
application development 18
configuring VxWorks for 8
definition 10, 12
environment variables 17
inheritance and resource reclamation 16
initial task 15
life cycle 12
memory and 14
POSIX and 18, 171
real time 6
tasks and 15

protocol attribute 186
pthread_attr_getdetachstate() 164
pthread_attr_getinheritsched() 164
pthread_attr_getschedparam() 164
pthread_attr_getscope() 164
pthread_attr_getstackaddr() 164
pthread_attr_getstacksize() 164
pthread_attr_setdetachstate() 164
pthread_attr_setinheritsched() 164
pthread_attr_setschedparam() 164
pthread_attr_setscope() 164
pthread_attr_setstackaddr() 164
pthread_attr_setstacksize() 164
pthread_attr_t 163
pthread_cancel() 170
pthread_cleanup_pop() 170
pthread_cleanup_push() 170

VxWorks
Application Programmer’s Guide, 6.2

318

pthread_getspecific() 168
pthread_key_create() 168
pthread_key_delete() 168
pthread_mutex_getprioceiling() 187
pthread_mutex_setprioceiling() 187
pthread_mutexattr_getprioceiling() 187
pthread_mutexattr_getprotocol() 187
pthread_mutexattr_setprioceiling() 187
pthread_mutexattr_setprotocol() 187
pthread_mutexattr_t 186
PTHREAD_PRIO_INHERIT 186
PTHREAD_PRIO_PROTECT 186
pthread_setcancelstate() 170
pthread_setcanceltype() 170
pthread_setspecific() 168
pthread_testcancel() 170
pty devices 244

see online ptyDrv
public objects

tasks 86
pure code 96
putc() 240

Q
queued signals 200
queues

see also message queues
ordering (FIFO vs. priority) 113
semaphore wait 113

queuing
message queues 118

R
-R option (TSFS) 289
raise() 146
raw mode (tty devices) 246
rawFs file systems 278–280

see online rawFsLib
disk organization 278
disk volume, mounting 279

ioctl() requests, support for 279
starting I/O 279

read() 235
readdir() 262, 269
ready tasks 78
real-time processes, see processes 6
reboot character (CTRL+X)

tty 247
redirection 231
reentrancy 96–99
regions, shared data 59
remove() 235

subdirectories, removing 262, 269
resource reclamation

processes 16
restart character (CTRL+C)

tty 247
resume character (CTRL+Q)

tty 247
rewinddir() 262, 269
ROM monitor trap (CTRL+X)

tty 247
ROMFS

bundling applications 71
ROMFS file system 284
round-robin scheduling

defined 82
round-robin scheduling POSIX 177
routines

hook 24
scheduling, for 174

RSH (Remote Shell protocol)
ioctl functions, and 251

RTEC, seerun-time error checking 220
RTP, see processes
rtpSpawn() 22
running

applications 62
run-time error checking (RTEC) 220
Run-Time Type Information (RTTI) 307
-RW option (TSFS) 289

 Index

319

Index

S
SAL 136
SCHED_FIFO 177
sched_get_priority_max() 175
sched_get_priority_max() 178
sched_get_priority_min() 175
sched_get_priority_min() 178
sched_getparam() 174
sched_getscheduler() 175, 177
SCHED_RR 177
sched_rr_get_interval() 175
sched_setparam() 174, 177
sched_setscheduler() 174, 176
sched_yield() 175
schedPxLib 171, 174
scheduling 80

POSIX 174
see also schedPxLib(1)
algorithms 171
code example 177
policy, displaying current 177
preemptive priority 177
priority limits 178
priority numbering 171
routines for 174
VxWorks facilities, differences from 174

POSIX, FIFO 177
POSIX, round-robin 177
VxWorks

preemptive locks 84, 103
preemptive priority 81, 82
round-robin 82

security
TSFS 288

select facility 237
see online selectLib
macros 238

select()
and pipes 121

select() 238
sem_close() 179, 184
SEM_DELETE_SAFE 110
sem_destroy() 179
sem_getvalue() 179

sem_init() 179, 181
SEM_INVERSION_SAFE 109
sem_open() 179, 183
sem_post() 179
sem_trywait() 179
sem_unlink() 179, 184
sem_wait() 179
semaphores 104

and VxWorks events 115
see also semLib(1)
counting 180

example 112
deleting 105, 180
giving and taking 106–107, 179
interruptible 114
locking 179
POSIX 179

see also semPxLib(1)
named 179, 183

code example 184
unnamed 179, 180, 181–182

code example 181
posting 179
recursive 111

code example 111
synchronization 104, 112

code example 108
unlocking 179
VxWorks 104

binary 106
code example 107

control 105
counting 112
mutual exclusion 107, 108
queuing 113
synchronization 108
timing out 113

waiting 179
semBCreate() 105
semCCreate() 105
semDelete() 105
semEvStart() 126
semEvStop() 126
semFlush() 105, 108
semGive() 105

VxWorks
Application Programmer’s Guide, 6.2

320

semGive() 127
semMCreate() 105
semPxLib 179
semPxLibInit() 179
semTake() 105
serial drivers 244
set_terminate() (C++) 306
setjmp() 95
shared code 95
shared data regions 59
shared data structures 102–103
shared libraries 31
shared memory

see also shared data regions 59
show() 118, 183, 191
sigaction() 145, 146, 200
sigaddset() 146
sigblock() 145
sigdelset() 146
sigemptyset() 146
sigfillset() 146
sigInit() 145
sigismember() 146
signal handlers 145
signals 143–145

configuring 145
and interrupt service routines 145
POSIX 200

queued 200
routines 146

signal handlers 145
sigpending() 146
sigprocmask() 145, 146
sigqueue() 200
sigqueue()

buffers to, allocating 201
sigqueueInit() 201
sigsetmask() 145
sigsuspend() 146
sigtimedwait() 201
sigvec() 145
sigwaitinfo() 200
SNS 133
socket() 251
sockets

I/O devices, as 251
TSFS 287

spawning tasks 84–85, 98–99
stacks

no fill 88
standard input/output/error

basic I/O 230
buffered I/O (ansiStdio) 241

starting
applications 62

stat() 262, 269
stdio package

ANSI C support 239
stopped tasks 78
subdirectories (dosFs)

creating 268
file attribute 271

suspended tasks 78
swapping 162
synchronization (task) 104

code example 108
counting semaphores, using 112
semaphores 108

synchronizing media
dosFs file systems 268

system calls 25
system clock 91
system files (dosFs) 271

T
Target Server File System (TSFS) 286

configuring 288
error handling 288
file access permissions 288
sockets, working with 287

task control blocks (TCB) 76, 92, 98
taskActivate() 85
taskCreate() 85
taskCreateHookAdd() 92
taskCreateHookDelete() 92
taskDelay() 91
taskDelete() 89
taskDeleteHookAdd() 92

 Index

321

Index

taskDeleteHookDelete() 92
taskExit() 89
taskIdSelf() 87
taskIdVerify() 87
taskInfoGet() 89
taskIsPended() 89
taskIsReady() 89
taskIsSuspended() 89
taskName() 87
taskNameGet() 87
taskNameToId() 87
taskPriorityGet() 89
taskPrioritySet() 81
taskRestart() 91
taskResume() 91
taskRtpLock() 81
taskRtpUnLock() 81
tasks

blocked 84
contexts 76
control blocks 76, 92, 98
creating 84–85
delayed 78
delayed-suspended 78
delaying 77, 78, 91
deleting safely 89–91

code example 91
semaphores, using 110

displaying information about 88
environment variables 17
error status values 94

see also errnoLib(1)
exception handling 95

see also signals; sigLib(1); excLib(1)
executing 91
hooks

see also taskHookLib(1)
extending with 92–93

IDs 86
inital process task 15
names 86

automatic 87
private 86
public 86

option parameters 88

pended 78
pended-suspended 78
priority, setting

application tasks 80
VxWorks 80

processes and 15
public 86
ready 78
scheduling

POSIX 174
preemptive locks 84, 103
preemptive priority 81, 82, 177
priority limits, getting 178
round-robin 82

see also round-robin scheduling
VxWorks 80

shared code 95
and signals 95, 143–145
spawning 84–85, 98–99
stack allocation 85
states 77–78
stopped 78
suspended 78
suspending and resuming 91
synchronization 104

code example 108
counting semaphores, using 112

task events register 126
API 127

variables 97–98
see also taskVarLib(1)
context switching 98

taskSafe() 90
taskSpawn() 85
taskSuspend() 91
taskUnsafe() 90
taskVarAdd() 98
taskVarDelete() 98
taskVarGet() 98
taskVarSet() 98
terminate() (C++) 306
threads (POSIX) 163

attributes 163–168
specifying 166

keys 168

VxWorks
Application Programmer’s Guide, 6.2

322

private data, accessing 168
terminating 168

time slicing 82
timeout

message queues 117
semaphores 113

timeouts
semaphores 113

timers
see also timerLib(1)
message queues, for (VxWorks) 117
POSIX 159–161
semaphores, for (VxWorks) 113

tools
configuration and build 2

Transaction-Based Reliable File System, see TRFS
252

TRFS file system 252
truncation of files 236
tty devices 244

see online tyLib
control characters (CTRL+x) 246
line mode 246

selecting 245
options 245

all, setting 246
none, setting 246

raw mode 246
X-on/X-off 245

tyBackspaceSet() 247
tyDeleteLineSet() 247
tyEOFSet() 248
tyMonitorTrapSet() 248

U
unnamed semaphores (POSIX) 179, 180, 181–182
usrRtpAppInit() 70

V
variables

global 97
static data 97
task 97–98

volume labels (dosFs)
file attribute 271

VX_ALTIVEC_TASK 88
VX_DSP_TASK 88
VX_FP_TASK 88, 304
VX_FP_TASK option 88
VX_NO_STACK_FILL 88
VX_PRIVATE_ENV 88
VxWorks

components 3
configuration and build 2
header files 19
message queues 116
real-time processes, see processes 6

VxWorks events, see events
VxWorks facilities

POSIX, differences from
message queues 188
scheduling 174

scheduling 80
vxWorks.h 20

W
WAIT_FOREVER 113
write() 235

	VxWorks Application Programmer's Guide
	Contents
	1 Overview
	1.1 Introduction
	1.2 Related Documentation Resources
	1.3 VxWorks Configuration and Build

	2 Applications and Processes
	2.1 Introduction
	2.2 Configuring VxWorks For Real-time Processes
	2.3 Real-time Processes
	2.3.1 Real-time Process Life-Cycle
	2.3.2 Processes and Memory
	2.3.3 Processes and Tasks
	2.3.4 Processes, Inheritance, and Resource Reclamation
	2.3.5 Processes and Environment Variables
	2.3.6 Processes and POSIX

	2.4 Developing VxWorks Applications
	2.4.1 Application Structure
	2.4.2 VxWorks Header Files
	2.4.3 Applications, Processes, and Tasks
	2.4.4 Applications and VxWorks Kernel Component Requirements
	2.4.5 Building Applications
	2.4.6 C++ Applications
	2.4.7 Processes and Hook Routines
	2.4.8 Application APIs, System Calls, and Library Routines
	System Calls
	VxWorks Libraries
	API Documentation

	2.4.9 POSIX

	2.5 Developing Application Libraries
	2.5.1 Library Initialization
	C++ Library Initialization
	Handling Initialization Failures

	2.5.2 Library Termination
	Using atexit() for Termination Routines

	2.5.3 Developing Static Libraries
	2.5.4 Developing Shared Libraries
	Configuring VxWorks for Shared Libraries
	Building Shared Libraries and Dynamic Applications
	VxWorks Run-time C Library libc.so
	Using Plug-Ins
	Using readelf to Examine Dynamic ELF Files
	Getting Runtime Information About Shared Libraries
	Debugging Shared Libraries
	Working With Shared Libraries From a Windows Host

	2.6 Creating and Managing Shared Data Regions
	2.6.1 Configuring VxWorks for Shared Data Regions
	2.6.2 Creating Shared Data Regions
	2.6.3 Accessing Shared Data Regions
	2.6.4 Deleting Shared Data Regions

	2.7 Executing Applications
	2.7.1 Running Applications Interactively
	Starting Applications
	Stopping Applications

	2.7.2 Running Applications Automatically
	Startup Facility Options
	Application Startup String Syntax
	Specifying Applications with a Boot Loader Parameter
	Specifying Applications with a VxWorks Shell Script
	Specifying Applications with a Startup Configuration Parameter
	Starting Applications with Custom Startup Routines

	2.7.3 Applications and Symbol Registration

	2.8 Bundling Applications with a VxWorks System using ROMFS
	2.8.1 Configuring VxWorks with ROMFS
	2.8.2 Building a System With ROMFS and Applications
	2.8.3 Accessing Files in ROMFS
	2.8.4 Using ROMFS to Start Applications Automatically

	3 Multitasking
	3.1 Introduction
	3.2 Tasks and Multitasking
	3.2.1 Task State Transition
	3.2.2 Task Scheduling
	Preemptive Priority Scheduling
	Round-Robin Scheduling
	Preemption Locks

	3.2.3 Task Control
	Task Creation and Activation
	Task Stack
	Task Names and IDs
	Task Options
	Task Information
	Task Deletion and Deletion Safety
	Task Execution Control

	3.2.4 Tasking Extensions
	3.2.5 Task Error Status: errno
	A Separate errno Value for Each Task
	Error Return Convention
	Assignment of Error Status Values

	3.2.6 Task Exception Handling
	3.2.7 Shared Code and Reentrancy
	Dynamic Stack Variables
	Guarded Global and Static Variables
	Task Variables
	Multiple Tasks with the Same Main Routine

	3.3 Intertask and Interprocess Communications
	3.3.1 Public and Private Objects
	Creating and Naming Public and Private Objects
	Object Ownership and Resource Reclamation

	3.3.2 Shared Data Structures
	3.3.3 Mutual Exclusion
	Preemptive Locks and Latency

	3.3.4 Semaphores
	Semaphore Control
	Binary Semaphores
	Mutual-Exclusion Semaphores
	Counting Semaphores
	Special Semaphore Options
	Semaphores and VxWorks Events

	3.3.5 Message Queues
	VxWorks Message Queues
	Displaying Message Queue Attributes
	Servers and Clients with Message Queues
	Message Queues and VxWorks Events

	3.3.6 Pipes
	3.3.7 VxWorks Events
	Preparing a Task to Receive Events
	Sending Events to a Task
	Accessing Event Flags
	Events Routines
	Task Events Register
	Show Routines and Events

	3.3.8 Message Channels
	Single-Node Communication with COMP
	Multi-Node Communication with TIPC
	Socket Name Service
	Socket Application Libraries
	onfiguring VxWorks for Message Channels
	Comparing Message Channels and Message Queues

	3.3.9 Network Communication
	3.3.10 Signals
	Configuring VxWorks for Signals
	Basic Signal Routines
	Signal Handlers

	3.4 Timers

	4 POSIX Standard Interfaces
	4.1 Introduction
	4.2 Configuring VxWorks with POSIX Facilities
	4.3 General POSIX Support
	4.4 POSIX Header Files
	4.5 POSIX Process Support
	4.6 POSIX Clocks and Timers
	4.7 POSIX Asynchronous I/O
	4.8 POSIX Page-Locking Interface
	4.9 POSIX Threads
	4.9.1 VxWorks-Specific Thread Attributes
	4.9.2 Specifying Attributes when Creating pthreads
	4.9.3 Thread Private Data
	4.9.4 Thread Cancellation

	4.10 POSIX Scheduling
	4.10.1 Comparison of POSIX and VxWorks Scheduling
	Native VxWorks Scheduler
	POSIX Threads Scheduler

	4.10.2 POSIX Scheduling Model
	4.10.3 Getting and Setting Task Priorities
	4.10.4 Getting and Displaying the Current Scheduling Policy
	4.10.5 Getting Scheduling Parameters: Priority Limits and Time Slice

	4.11 POSIX Semaphores
	4.11.1 Comparison of POSIX and VxWorks Semaphores
	4.11.2 Using Unnamed Semaphores
	4.11.3 Using Named Semaphores

	4.12 POSIX Mutexes and Condition Variables
	4.13 POSIX Message Queues
	4.13.1 Comparison of POSIX and VxWorks Message Queues
	4.13.2 POSIX Message Queue Attributes
	4.13.3 Displaying Message Queue Attributes
	4.13.4 Communicating Through a Message Queue
	4.13.5 Notifying a Task that a Message is Waiting

	4.14 POSIX Queued Signals

	5 Memory Management
	5.1 Introduction
	5.2 VxWorks Component Requirements
	5.3 Heap and Memory Partition Management
	5.4 Dynamic Memory Space Management for Applications
	5.5 Memory Error Detection
	5.5.1 Heap and Partition Memory Instrumentation
	5.5.2 Compiler Instrumentation

	6 I/O System
	6.1 Introduction
	6.2 Files, Devices, and Drivers
	6.2.1 Filenames and the Default Device

	6.3 Basic I/O
	6.3.1 File Descriptors
	6.3.2 Standard Input, Standard Output, and Standard Error
	6.3.3 Standard I/O Redirection
	6.3.4 Open and Close
	6.3.5 Create and Remove
	6.3.6 Read and Write
	6.3.7 File Truncation
	6.3.8 I/O Control
	6.3.9 Pending on Multiple File Descriptors: The Select Facility
	6.3.10 POSIX File System Routines

	6.4 Buffered I/O: stdio
	6.4.1 Using stdio
	6.4.2 Standard Input, Standard Output, and Standard Error

	6.5 Other Formatted I/O: printErr() and fdprintf()
	6.6 Asynchronous Input/Output
	6.6.1 The POSIX AIO Routines
	6.6.2 AIO Control Block
	6.6.3 Using AIO
	Alternatives for Testing AIO Completion

	6.7 Devices in VxWorks
	6.7.1 Serial I/O Devices: Terminal and Pseudo-Terminal Devices
	tty Options
	Raw Mode and Line Mode
	tty Special Characters

	6.7.2 Pipe Devices
	Creating Pipes
	I/O Control Functions

	6.7.3 Pseudo Memory Devices
	I/O Control Functions

	6.7.4 Network File System (NFS) Devices
	I/O Control Functions for NFS Clients

	6.7.5 Non-NFS Network Devices
	I/O Control Functions

	6.7.6 Sockets

	6.8 Transaction-Based Reliable File System Facility: TRFS
	6.8.1 Configuring VxWorks With TRFS
	6.8.2 Creating a TRFS Shim Layer
	6.8.3 Using the TRFS in Applications
	TRFS Code Example

	7 Local File Systems
	7.1 Introduction
	7.2 File System Monitor
	7.3 Highly Reliable File System: HRFS
	7.3.1 Configuring VxWorks for HRFS
	7.3.2 Creating an HRFS File System
	7.3.3 Transactionality
	7.3.4 Maximum Number of Files and Directories
	7.3.5 Working with Directories
	Creating Subdirectories
	Removing Subdirectories
	Reading Directory Entries

	7.3.6 Working with Files
	File I/O Routines
	File Linking and Unlinking
	File Permissions

	7.3.7 Crash Recovery and Volume Consistency
	7.3.8 I/O Control Functions Supported by HRFS

	7.4 MS-DOS-Compatible File System: dosFs
	7.4.1 Configuring VxWorks for dosFs
	7.4.2 Creating a dosFs File System
	7.4.3 Working with Volumes and Disks
	Accessing Volume Configuration Information
	Synchronizing Volumes

	7.4.4 Working with Directories
	Creating Subdirectories
	Removing Subdirectories
	Reading Directory Entries

	7.4.5 Working with Files
	File I/O Routines
	File Attributes

	7.4.6 Disk Space Allocation Options
	Choosing an Allocation Method
	Using Cluster Group Allocation
	Using Absolutely Contiguous Allocation

	7.4.7 Crash Recovery and Volume Consistency
	7.4.8 I/O Control Functions Supported by dosFsLib
	7.4.9 Booting from a Local dosFs File System Using SCSI

	7.5 Raw File System: rawFs
	7.5.1 Configuring VxWorks for rawFs
	7.5.2 Creating a rawFs File System
	7.5.3 Mounting rawFs Volumes
	7.5.4 rawFs File I/O
	7.5.5 I/O Control Functions Supported by rawFsLib

	7.6 CD-ROM File System: cdromFs
	7.6.1 Configuring VxWorks for cdromFs
	7.6.2 Creating and Using cdromFs
	7.6.3 I/O Control Functions Supported by cdromFsLib
	7.6.4 Version Numbers

	7.7 Read-Only Memory File System: ROMFS
	7.7.1 Configuring VxWorks with ROMFS
	7.7.2 Building a System With ROMFS and Files
	7.7.3 Accessing Files in ROMFS
	7.7.4 Using ROMFS to Start Applications Automatically

	7.8 Target Server File System: TSFS
	Socket Support
	Error Handling
	Configuring VxWorks for TSFS Use
	Security Considerations
	Using the TSFS to Boot a Target

	8 Error Detection and Reporting
	8.1 Introduction
	8.2 Configuring Error Detection and Reporting Facilities
	8.2.1 Configuring VxWorks
	8.2.2 Configuring the Persistent Memory Region
	8.2.3 Configuring Responses to Fatal Errors

	8.3 Error Records
	8.4 Displaying and Clearing Error Records
	8.5 Fatal Error Handling Options
	8.5.1 Configuring VxWorks with Error Handling Options
	8.5.2 Setting the System Debug Flag
	Setting the Debug Flag Statically
	Setting the Debug Flag Interactively

	8.6 Other Error Handling Options for Processes
	8.7 Using Error Reporting APIs in Application Code
	8.8 Sample Error Record

	9 C++ Development
	9.1 Introduction
	9.2 C++ Code Requirements
	9.3 C++ Compiler Differences
	9.3.1 Template Instantiation
	9.3.2 Exception Handling
	9.3.3 Run-Time Type Information

	9.4 Namespaces
	9.5 C++ Demo Example

	Index

