

0

0

Programmer's Guide to Library Functions

IBM Personal Computer
XENIX™ Software
Development System

Programming Family

- - - - -

- -- ---

--- - -
---·-

Personal
Computer
Software

First Edition (December 1984)
The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this publication and
for technical information about IBM Personal Computer products should be made to your
authorized IBM Personal Computer dealer or your IBM Marketing Representative.

The following paragraph applies only to the United States and Puerto Rico: A Reader's
Comment Form is provided at the back of this publication. If the form has been removed,
address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C,
Boca Raton, Florida 33432. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligations whatever.

©Copyright International Business Machines Corporation 1984
© Copyright Microsoft Corporation 1983, 1984

II

0

0

0

IBM Personal Computer XENIX
Library Overview

The XENIX1 System has three available products. They are the:

• Operating System

• Software Development System

• Text Formatting System

The following pages outline the XENIX Software Development
System library.

1 XENIX is a trademark of Microsoft Corporation.

iii

XENIX Software Development System

XENIX
Software
Development
Guide •

The C-She!l

. A guide to the aVailable programming tools in the XENIX
..• ',envirorunerit:"'' ':"··

iv

XENIX
Programmer's
Guide To ·

Library Functions·

•

•

•

•

Using stream functions

Screen processing

Process controls

Creating and using pipes

Using signals and system
resources

A reference to system calls, subroutines, and file formats.
Use with the XENIX Software Command Reference.

0

()

0

XENIX
C Compiler
Reference
Manual

I For Experienced Lan��age 0;�;� I

Elements of the C
programming language

Preprocessor Directives

Declarations

Expressions and Assignments

Description of functions and
statements

A reference to the C programming language. Notational
conventions are described throughout the manual.

l�M

XENIX
Software
Command
Reference

___ , ___
_ , _____ - "" ---·----- '

For All Users 1 --- -- - '

• Software Development
commands (CP)

• Command definition
and syntax

• System calls and
subroutines (S)

• System call and library
function cross reference

A reference to Software Development System commands.
Describes system services in the Operating System kernel.

v

vi

' ' ""'-

1

()

0

0

About This Book

This manual explains how to use the functions given in the C
language libraries of the XENIX system. In particular, it
describes the functions of two C language libraries:

The standard C library

• The screen updating and cursor movement library, called
curses.

This manual assumes that you understand the C programming
language and that you are familiar with the XENIX shell, sh.
Nearly all programming examples in this guide are written in C
and all examples showing a shell use the sh shell.

If you have never used the C library functions before, read this
manual first. Then see the IBM Personal Computer XENIX
Software Command Reference if you need more information.

If you are familiar with the library functions, turn to the IBM
Personal Computer XENIX Software Command Reference to see
how these functions differ from the ones you already know;
return to this manual for examples of the functions.

This book is organized as follows:

Chapter 1. Introduction
Gives an overview of the C language libraries and
introduces the notational conventions used in this manual.

Chapter 2. Using the Standard I/0 Functions
Describes the standard input and output functions. These
functions enable a program to read and write to the files of
a XENIX file system.

vii

Chapter 3. Screen Processing
D escribes the screen processing functions. These
functions enable a program to use the screen processing
facilities of a user's terminal.

Chapter 4. Character and String Processing
Describes the character and string processing functions.
These functions enable a program to assign, manipulate, \,
and compare characters and strings.

Chapter 5. Using Process Control
Describes the process control functions. These functions
enable a program to execute other programs and create
multiple copies of itself.

Chapter 6. Creating and Using Pipes
Describes the pipe functions. These functions enable
programs to communicate with one another without
resorting to the creation of temporary files.

Chapter 7. Using Signals
Describes the signal functions. These functions enable a
program to process signals that are normally processed by
the system.

Chapter 8. Using System Resources
Describes system resource functions. These functions
enable a program to dynamically allocate memory, share
memory with other programs, lock files against access by
other programs, and use semaphores.

Chapter 9. Error Processing
Describes the error processing functions. These functions
enable a program to process errors while accessing the file
system or allocating memory.

Appendix A. Assembly Language Interface

viii

Describes the assembly language interface with C
programs and explains the calling and return value
conventions of C functions.

Appendix B. XENIX System Calls
Explains how to create and use new XENIX system calls.

Appendix C. A Common Library for XENIX and DOS
Lists the XENIX library routines that form the Common C
Library for the XENIX and DOS versions of the
Microsoft® C Compiler.

Related XENIX Publications

IBM Personal Computer XENIX Software Development
Guide

• IBM Personal Computer XENIX C Compiler Reference

IBM Personal Computer XENIX Software Command
Reference

IBM Personal Computer XENIX Assembler Reference

IBM Personal Computer XENIX Installation Guide

0 • IBM Personal Computer XENIX Visual Shell

0

IBM Personal Computer XENIX System Administration

• IBM Personal Computer XENIX Basic Operations Guide

• IBM Personal Computer XENIX Command Reference

Microsoft is a registered trademark of Microsoft Corporation.

ix

X

l
I Contents

n Chapter 1 . Introduction . 1-1
'----·" Using the C Library Functions 1-3

0

0

Notational Conventions 1-3

Chapter 2. Using the Standard 1/0 Functions 2-1
Introduction . 2-3

Preparing for the 1/0 Fnnctions 2-3
Special Names . 2-4
Special Macros . 2-4

Using Command Line Argnments 2-5
Using the Standard Files . 2-7

Reading from the Standard Input 2-8
Writing to the Standard Output 2-1 2
Redirecting the Standard Input 2-14
Redirecting the Standard Output 2-15
Piping the Standard Input and Output 2-15
Program Example . 2-1 6

Using the Stream Functions . 2-17
Using File Pointers . 2- 1 8
Openjng a File . 2-19
Reading a Single Character 2-20
Reading a String from a File 2-21
Reading Records from a File 2-22
Reading Formatted Data from a File 2-23
Writing a Single Character 2-24
Writing a String to a File 2-25
Writing Formatted Output 2-26
Writing Records to a File 2-27
Testing for the End of a File 2-28
Testing for File Errors . 2-28
Closing a File . 2-29
Program Example . 2-30

Using More Stream Functions 2-32
Using Buffered Input and Output 2-32
Reopening a File . 2-33
Setting the Buffer . 2-34
Putting a Character Back into a Buffer 2-35

xi

Flushing a File Buffer
Using the Low-Level Functions

Using File Descriptors
Opening a File
Reading Bytes from a File

Writing Bytes to a File
Closing a File

Program Examples , . . .
Using Random Access I/0

Moving the Character Pointer
Moving the Character Pointer in a Stream
Rewinding a File

Getting the Current Character Position

2-36
2-37
2-37
2-38
2-40
2-40
2-41
2-42
2-44
2-45
2-47
2-47
2-48

Chapter 3o Screen Processing o o o o o o o o o o o o o o o 0 0 o o o o o o 0 3-1

xii

Introduction 0 • 0 • 0 • • • • • 0 • • • • • • • • • • • 0 • 3-5
Screen Processing Overview 0 • • • • • • • • • • • • • • • • 3-5
Using the Library . 0 • • • • • • • • • • 0 • • • • • • 0 • • • • • 3-7

Screen Updating 0 • 0 0 • • • • • • 0 • 0 • • • • • • • • • • • 0 • • • • • 3-8
Naming Conventions 0 • • • • • • • • • • • 0 • 3-9
Terminology 0 • • 0 • • • • • • • 0 • • 0 • • • 3-10

Preparing the Screen 0 • 0 • • • • • • • 0 • • 0 • • • • • • • • • • • • 3-13
Initializing the Screen . . . 0 • • • • • • • • • • 0 • • 0 • • • 3-13
Starting Up 0 0 . 0 • 0 • • 0 3-14
Using Terminal Capability and Type . . . 0 • • 0 • • 3-15
Using Default Terminal Modes . 0 • • • • • • • • • • • • 3-17
Using Default Window Flags 0 • • • • • _ • • • • 3-17
Using the Default Terminal Size 0 • • • • • • • • 0 • • 0 3-18
Terminating Screen Processing 0 0 • • • • 3-18
How to Use the Screen Package 0 . 0 3-19
Input 0 • • • • • • • • • 0 0 • • • • • • • • • • 3-21

Using the Standard Screen 0 • • • • • • • • • • • • 0 • 3-21
The Functions . . . 0 • • 0 • • • • • • 0 • • • • • • • • • • • • 0 3-21
Adding a Character 0 • • • • • • • • • • • • • • • • • • 3-21
Adding a String . 0 0 • • • • • • • • • 0 • • • • • • • • • • • • 0 3-22
Printing Strings, Characters, and Numbers 0 • • • • 3-23
Reading a Character from the Keyboard 3-24
Reading a String from the Keyboard 3-25
Reading Strings, Characters, and Numbers . . . 0 • 3-26
Moving the Current Position . . 0 • • • • • • • • • • • • 3-27
Inserting a Character 0 0 • • • • • • • • • • 0 • • • 0 3-2 7
Inserting a Line 0 • • • • • • • • • • • • • • • 0 • • • • • • • • • 3-28
Deleting a Character 0 • • • • • • 0 • • 0 • 3-29

-1
I

()

0

Deleting a Line . 3-29
Clearing the Screen . 3-30
Clearing a Part of the Screen 3-30
Refreshing from the Standard Screen 3-31

Creating and Using Windows 3-32
Creating a Window . 3-32
Creating a Subwindow . 3-33
Adding and Printing to a Window . , 3-34
Reading and Scanning for Input 3-36
Moving the Current Position in a Window 3-38
Inserting Characters . 3-39
Deleting Characters and Lines 3-40
Clearing the Screen . 3-41
Refreshing from a Window 3-42
Overlaying Windows . 3-43
Overwriting a Screen . 3-44
Moving a Window . 3-44
Reading a Character from a Window 3-45
Touching a Window . 3-46
Deleting a Window . 3-47

Using Other Window Functions 3-47
Drawing a Box . 3-47
Displaying Bold Characters 3-48
Restoring Normal Characters 3-49
Getting the Current Position 3-50
Setting Window Flags . 3-51
Scrolling a Window . 3-52

The WINDOW Structure . 3-53
Examples . 3-54

Life . 3-58
Motion Optimization . 3-62

Combining Movement with Action 3-65
Controlling the Terminal . 3-66

Terminal Modes . 3-66
Setting a Terminal Mode 3-67
Clearing a Terminal Mode 3-68
Moving the Terminal's Cursor 3-69
Getting the Terminal Mode 3-70
Saving and Restoring the Terminal Flags 3-70
Setting a Terminal Type 3-71
Reading the Terminal Name 3-74

Chapter 4. Character and String Processing 4-1

xiii

Introduction . 4-3
Using the Character Functions 4-4

Testing for an ASCII Character 4-4
Converting to ASCII Characters 4-5

Testing for Alphanumerics . 4-6
Testing for a Letter . 4-6

T
Test!ng

f
for C

D
ontr?l c1 h

D
a;�cters

4
4-7 '"'. estmg or a ec1ma Igit -7

Testing for a Hexadecimal Digit 4-8
Testing for Printable Characters 4-8
Testing for Punctuation . 4-9
Testing for Whitespace . _ _ _ 4-9
Testing for Case in Letters 4-10
Converting the Case o f a Letter 4-1 1

Using the String Functions . 4-1 2
Concatenating Strings . 4-1 2
Comparing Strings . 4-13
Copying a String . 4-14
Getting a String's Length 4-14
Concatenating Characters to a String 4-15
Comparing Characters in Strings 4-16
Copying Characters to a String 4-17
Reading Values from a String 4-18
Writing Values to a String 4-19 <

Chapter 5. Using Process Control . 5-1
Introduction . 5-3
Using Processes . 5-3
Calling a Program . 5-4
Stopping a Program . 5-6
Starting a New Program . 5-7
Executing a Program Through a Shell 5-9
Duplicating a Process . 5-10
Waiting for a Process . 5-1 2
Inheriting Open Files . 5-1 3
Program Example . 5-1 3

Chapter 6 . Creating and Using Pipes . • 6-1

xiv

Introduction . 6-3
Opening a Pipe to a New Process 6-4
Reading and Writing to a Process 6-5
Closing a Pipe . 6-6
Opening a Low-Level Pipe . 6-7

Reading and Writing to a Low-Level Pipe 6-8
Closing a Low-Level Pipe . 6-9
Program Examples . 6-10

Chapter 7. Using Signals . 7-1
Introduction . 7-3
Using the Signal Function . 7-4

Disabling a Signal . 7-5
Restoring a Signal's Default Action 7-6
Catching a Signal . 7-7
Restoring a Signal . 7-8
Program Example . 7-9

Controlling Execution with Signals 7-1 1
Delaying a Signal's Action 7-1 1
Using Delayed Signals with System Functions . . 7-1 2
Using Signals in Interactive Programs 7-13

Using Signals in Multiple Processes 7-15
Protecting Background Processes 7-15
Protecting Parent Processes 7-16

Chapter 8. Using System Resources . 8-1
Introduction . 8-3
Allocating Space . 8-3

Allocating Space for a Variable 8-4
Allocating Space for an Array 8-5
Reallocating Space . 8-6
Freeing Unused Space . 8-7

Locking Files . 8-8
Preparing a File for Locking 8-8
Locking a File . 8-9
Program Example . 8-10

Using Semaphores . 8-1 1
Creating a Semaphore . 8-1 2
Opening a Semaphore . 8-13
Requesting Control of a Semaphore 8-14
Checking the Status of a Semaphore 8-15
Relinquishing Control of a Semaphore 8-16
Program Example . 8-17

Using Shared Data . 8-19
Creating a Shared Data Segment 8-20
Attaching a Shared Data Segment 8- 21
Entering a Shared Data Segment 8-2 2
Leaving a Shared Data Segment 8-23

XV

Getting the Current Version Number 8-24
Waiting for a Version Number 8-25
Freeing a Shared Data Segment 8-26

Program Example , . . . 8-26

Chapter 9. Error Processing • 9-1
Introduction . 9-3
Using the Standard Error File . 9-3 \�
Using the errno Variable . 9-4
Printing Error Messages . 9-6
Using Error Signals . 9-7
Encountering System Errors . 9-8

Appendix A. Assembly Language Interface A-5
Introduction A-5
C Calling Sequence A-5
Entering an Assembly Routine A-6
Return Values A-7
Exiting a Routine A-7
Program Example A-8

Appendix B. XENIX System Calls . B-1
Introduction . B-1
Executable File Format B-1 '�
Revised System Calls B-2
Version 7 Additions B-2
Changes to the ioctl Function B-3
Pathname Resolution B-3
Using the mount and chown Functions B-3
Super-Block Format B-4
Separate Version Libraries . B-4

Appendix C. A Common Library for XENIX and DOS . • C-1
Introduction . C-1
Common Include Files C-2
Differences between Common Routines C-3

abort C-3
access C-4
chdir C-4
chmod C-4
chsize C-5
creat C-5
exec . C-5

xvi

0

0

exit . C-6
fopen, fdopen, freopen C-7
fread . C-7
fseek . C-8
fwrite C-8
getpid . C-9
isatty . C-9
!seek . C-9
mktemp . C-9
open C-9
read C-10
sbrk C-10
signal . C-1 0
stat, fstat . C-1 1
system . C-13
umask . C-13
unlink . C-13
write C-13

Differences in Definitions C-14
DOS-specific Routines . C-15

eof . C-15
fcloseall . C-15
fgetchar . C-15
filelength . C-16
flushall . C-1 6
fputchar . C-16
itoa, ltoa, and ultoa . C-17
labs . C-17
mkdir . C-18
rmdir . C-18
spawn . C-18
strlwr and strupr C-22
strset and strnset C-22
strrev . C-23
tell . C-23

Index . lndex-1

xvii

xviii

Chapter 1. Introduction

0 Contents

Using the C Library Functions • . . • . . • . . • . . 1-3
Notational Conventions . 1-3

0

0

1-1

l-2

J

n
, ___ ____.

Using the C Library Functions

The C library functions may be called by any program that needs
the resources of the XENIX system to perform a task. The
functions let programs read and write to files in the XENIX file
system, read and write to devices such as terminals and line
printers, load and execute other programs, receive and process
signals, communicate with other programs through pipes, share
system resources, and process errors.

To use the C library functions, you must include the proper
function call and definitions in the program and specify the
corresponding library when the program is compiled. The
standard C library, contained in the file libc.a, is automatically
specified when you compile a C language program. Other
libraries, including the screen updating and cursor movement
library contained in the file libcurses.a, must be explicitly specified
when you compile a program with the -1 option of the cc
command (see "cc: a C Compiler" in the IBM Personal Computer
XENIX Software Development Guide).

0 Notational Conventions

This manual uses a number of special symbols to describe the
form of the library function calls. The following is a list of these
symbols and their meaning:

[l

SMALL

o italics

Brackets indicate an optional function argument.

Ellipses indicate that the preceding argument may
be repeated one or more times.

Small capitals indicate manifest constants. These
are system-dependent constants and are defined in
a variety of include files.

Italic characters indicate placeholders for function
arguments. These must be replaced with
appropriate values or names of variables.

1-3

1 -4

,f'\
__ /

0

Chapter 2. Using the Standard 1/0
Functions

Contents

Introduction . • 2-3
Preparing for the I/0 Fnnctions 2-3
Special Names . 2- 4
Special Macros . 2-4

Using Command Line Arguments . . • • • 2-5

Using the Standard Files . 2-7
Reading from the Standard Input 2-8
Writing to the Standard Output 2-12
Redirecting the Standard Input 2-1 4
Redirecting the Standard Output 2-15
Piping the Standard Input and Output 2-15
Program Example . 2-1 6

Using the Stream Functions . 2-17
Using File Pointers . 2-1 8
Opening a File . 2-19
Reading a Single Character . 2 -20
Reading a String from a File . 2-21
Reading Records from a File . 2-22
Reading Formatted Data from a File 2-23
Writing a Single Character . 2-2 4
Writing a String to a File . 2-25
Writing Formatted Output . 2-26
Writing Records to a File . 2-27
Testing for the End of a File . 2-28
Testing for File Errors . 2-28
Closing a File . 2-29
Program Example . 2-30

Using More Stream Functions . 2-32
Using Buffered Input and Output 2-32

2-1

Reopening a File . 2-33
Setting the Buffer . 2-34
Putting a Character Back into a Buffer 2-35
Flushing a File Buffer . 2-36

Using the Low-Level Functions . 2-37
Using File Descriptors . 2-37 "'
Opening a File . 2-38
·Reading Bytes from a File . 2-40
Writing Bytes to a File . 2-40
Closing a File . 2-41
Program Examples . 2-42
Using Random Access I/0 2-44
Moving the Character Pointer . 2-45
Moving the Character Pointer in a Stream 2-4 7
Rewinding a File . 2-4 7
Getting the Current Character Position 2-48

2-2

l

n ""--- -- "

Introduction

Nearly all programs use some form of input and output. Some
programs read from or write to files stored on a disk. Others
write to devices such as line printers. Many programs read from
and write to the user's terminal. The standard C library provides
several predefined input and output programming functions.

This chapter explains how to use the I/ 0 functions in the
standard C library. In particular, it describes:

• Command line arguments

• Standard input and output files

• Stream functions for ordinary files

• Low-level functions for ordinary files

• Random access functions

Ci Prepar'wg for the I/0 Functions

0

To use the standard I/0 functions, a program must include the
file stdio.h, which defines the needed macros and variables. To
include this file, place the following line at the beginning of the
program:

i ncl ude <stdi o . h>

The actual functions are contained in the library file libc.c. This
file is automatically read whenever you compile a program, so no
special argument is needed when you invoke the compiler. ·

2-3

Special Names

The standard I/0 library uses many names for special purposes.
In general, these names can be used in any program that has
included the stdio.h file. The special names are:

stdin The name of the standard input file.

stdout

stderr

EOF

The name of the standard output file.

The name of the standard error file.

The value returned by the read routines on end -of-file
or error .

NULL The null pointer, returned by pointer-valued functions,
to indicate an error.

FILE The name of the file type used to declare pointers to
streams.

BSIZE The size in bytes (usually 5 1 2) suitable for an I/0
buffer supplied by the user.

Special Macros

The functions getc, getchar, putc, put char, feof, ferror, and fi/eno
are actually macros, not functions. This means that you cannot
redeclare them or use them as targets for a breakpoint when
debugging.

2-4

0

(J

0

Using Command Line Arguments

The XENIX system lets you pass information to a program at the
same time you invoke it for execution. You can do this with
command line arguments.

A XENIX command Jjne is the line you type to invoke a program.
A command line argument is anything yon type in a XENIX
command line. A command line argument can be a filename, an
option, or a number. The first argument in any command line
must be the filename of the program you wish to execute.

When you type a command line, the system reads the first
argument and loads the corresponding program. It also counts the
other arguments, stores them in memory in the same order in
which they appear on the line, and passes the count and the
locations to the main function of the program. The function can
then access the arguments by accessing the memory in which they
are stored.

To access the arguments, the main function must have two
parameters: argc, an integer variable containing the argument
count, and argv, an array of pointers to the argument values. You
can define the parameters by using the lines:

ma i n (argc , argv)
i n t argc;
char *argv [J ;

at the beginning of the main program function. When a program
begins execution, argc contains the count, and each element in
argv contains a pointer to one argument.

An argument is stored as a null-terminated string (that is, a string
ending with a null character, \0). The first string (at argv[0]) is
the program name. The argument count is never Jess than 1,
because the program name is always considered the first
argument.

2-5

In the following example, command line arguments are read and
then echoed on the terminal screen. This program is similar to the
XENIX echo command:

mai n (argc , argv)
i n t argc ;
char *argv [J ;
{

i nt i ;

!* echo arguments *;

for (i=l ; i < argc ; i ++)
pr intf (' '%s%c'' , argv [i] , (i <argc-l) ? '
! : I \n I) ; }

In the example above, an extra space character is added at the end
o f each argument to separate it from the next argument. This is
required, because the system automatically removes leading and
trailing whitespace characters (that is, spaces and tabs) when it
reads the arguments from the command line. Adding a newline
character to the last argument is for convenience only; it causes
the shell prompt to appear on the next line a fter the program
terminates.

When typing arguments on a command line, make sure each
argument is separated from the others by one or more whitespace
characters. I f an argument must contain whitespace characters,
enclose that argument in double quotation marks. For example,
in the command line:

d i s pl ay 3 4 ' 'echo hel l o ''

the string "echo hello" is treated as a single argument. Also
enclose in double quotation marks any argument that contains
characters recognized by the shell (for example, <, >, I , and A).

You should not change the values of the argc and argv variables.
I f necessary, assign the argument value to another variable and
change that variable instead. You can give other functions in the
program access to the arguments by assigning their values to
external variables .

2-6

0

0

0

Using the Standard Files

Whenever you invoke a program for execution, the XENIX
system automatically creates a standard input, a standard output,
and a standard error file to handle a program's input and output
needs. Because the bulk of input and output of most programs is
through the user's own terminal, the system normally assigns the
user's terminal keyboard and screen as the standard input and
output, respectively. The standard error file, which receives any
error messages generated by the program, is also assigned to the
terminal's screen.

A program can read and write to the standard input and output
files with the getchar, gets, scan[, putchar, puts, and print!
functions. The standard error file can be accessed using the
stream functions described in the "Using the Stream Functions"
section later in this chapter.

The XENIX system lets you redirect the standard input and
output using the shell's redirection symbols (> and <). This
allows a program to use other devices and files as its chief source
of input and output in place of the terminal's keyboard and
screen.

The following sections explain how to read from and write to the
standard input and output. It also explains how to redirect the
standard input and output.

2-7

Reading from the Standard Input

You can read from the standard input with the getchar, gets, and
scanf functions.

The getchar function reads one character at a time from the
standard input. The function call has the form:

c = getchar()

where c is the variable to receive the character. It must have int
type. Int type implies that the variable listed is an integer. The
function normally returns the character read, but returns the
end-of-file value EOF if the end of the file or an error is
encountered.

The getchar function is used in a conditional loop to read a string
of characters from the standard input. For example, the following
function reads cnt number of characters from the keyboard:

readn (p , cnt)
char p [] ;
i n t cnt ;
(

}

i nt i , c ;

i = 0 ;
whi l e (i <cnt)

if ((p [i ++ J=getchar ()) ! =EOF) (
p [i] = 0 ;

}
return (O) ;

return (EOF) ;

If getchar is reading from the keyboard, it waits for characters to
be typed before returning.

2-8

' '-

()

0

0

The gets function reads a string of characters from the standard
input and copies the string to a given memory location. The
function call has the form:

gets(s)

where s is a pointer to the location to receive the string. The
function reads characters until it finds a newline character (\ n),
then replaces the newline character with a null character (\ 0),
and copies the resulting string to memory. The function returns
the null pointer value NULL if the end of the file or an error is
encountered. Otherwise, it returns the value of s.

The function is used to read a full line from the standard input.
For example, the following program fragment reads a line from
the standard input, stores it in the character array cmdln and calls
a function (called parse) if no error occurs:

char cmdl n [S I ZE J ;

i f (gets (cmdl n) ! =NUL L)
parse () ;

In this case, the length of the string is assumed to be less than
"SIZE".

The gets function cannot check the length of the string; therefore,
an overflow can occur.

2-9

The scan! function reads one or more values from the standard
input where a value may be a character string or a decimal, octal,
or hexadecimal number. The function call has the form:

scanf(format, argptr . . .)

where format is a pointer to a string that defines the format of the
values to be read and argptr is one or more pointers to the ·<
variables that will receive the values. There must be one argptr
for each format given in the format string. The format may be
"%s" for a string, "0/oc" for a character, and "0/od", "o/oo", or
"%x" for a decimal,.octal, or hexadecimal number, respectively.
(Other formats are described in scanf(S) in the IBM Personal
Computer XENIX Software Command Reference.) The function
normally returns the number of values it read from the standard
input, but it will return the value EOF if the end of the file or an
error is encountered.

Unlike the getchar and gets functions, scanf skips all whitespace
characters, reading only those characters that make up a value. It
then converts the characters, if necessary, into the appropriate
string or number.

The scanf function is used whenever formatted input is required, \'-
that is, input that must be typed in a special way or that has a
special meaning. For example, in the following program fragment
scanfreads both a name and a number from the same line:

c har name [20 J ;
i n t number ;

scanf(' '%s % d '' , name , &number) ;

In this example, the string "%s %d" defines what values are to
be read (a string and a decimal number). The string is copied to
the character array name and the number to the integer variable
number. Observe that pointers to these variables are used in the
call and not the actual variables themselves.

2-10

0

0

When reading from the keyboard, scan[waits for values to be
typed before returning. Each value must be separated from the
next by one or more whitespace characters, such as spaces, tabs,
or even newline characters. For example, for the function:

scanf(11 % S %d %c • • , name , &age,&sex) ;

an acceptable input is:

Jeni 22
F

If a value is a number, it must have the appropriate digits, that is,
a decimal number must have decimal digits, octal numbers octal
digits, and hexadecimal numbers hexadecimal digits.

If scan[detects an error, it immediately stops reading the standard
input. Before scanf can be used again, the illegal character that
caused the error must be removed from the input using the getchar
function.

You may use the getchar, gets, and scan[functions in a single
program. Just remember that each function reads the next
available character, making that character unavailable to the other
functions.

When the standard input is the terminal keyboard, the getchar,
gets, and scanf functions usually do not return a value until at least
one newline character has been typed. Thls is true even if only
one character is desired. If you wish to have immediate input on a
single keystroke, see the example in the section "Using the
Standard Screen" in Chapter 3.

2-1 1

Writing to the Standard Output

You can write to the standard output with the put char, puts, and
printf functions.

The putchar function writes a single character to the output
buffer. The function call has the form:

putchar(c)

where c is the character to be written. The function normally
returns the same character it wrote but returns the value EOF if an
error is encountered.

The function in a conditional loop writes a string of characters to
the standard output. For example, the function:

wri te (p , c n t)
char p [J ;
i nt cnt ;
{

i nt i ;

for (i =O ; i <=cn t ; i ++)
p u tc h a r .((i ! =en t) ?p [i J : ' \ n ') ;

}

writes cnt number of characters plus a newline character to the
standard output.

The puts function copies the string found at a given memory
location to the standard output. The function call has the form:

puts(s)

where s is a pointer to the location containing the string. The
string can be any number of characters, but must end with a null
character (\ 0). The function writes each character in the string
to the standard output and replaces the null character at the end
of the string with a newline character.

2-12

0

Since the function automatically appends a newline character, it is
used when writing full lines to the standard output. For example,
the following program fragment writes one of three strings to the
standard output:

i nt c ;

swi tch (c) (
case (' ! ') :

puts (' 'Conti n u i ng . . . '') ;
break ;

case (' 2 ') :

defau l t :

puts (''Al l done . ") ;
break ;

puts (' 'Sorry , there was an error . ") ;

The string to be written depends on the value of c.

The print[function writes one or more values to the standard
output where a value is a character string or a decimal, octal, or
hexadecimal number. The function automatically converts

C numbers into the proper display format. The function call has the
) form:

0

printf(format[, arg] . . .)

where format is a pointer to a string that describes the format of
each value to be written and arg is one or more variables
containing the values to be written. There must be one arg for
each format in the format string. The formats may be %s for a
string, %c for a character, and %d, %o, or %x for a decimal,
octal, or hexadecimal number, respectively. (Other formats are
described inprintf(S) in the IBM Personal Computer XENIX
Software Command Reference.) If a string is requested, the
corresponding arg must be a pointer. The function normally
returns zero, but returns a nonzero value if an error is
encountered.

2-13

The print! function is typically used when formatted output is
required, that is, when the output must be displayed in a certain
way. For example, you may use the function to display a name
and number on the same line as in the following example:

char name [] ;
i n t number ;

printf (' '%s %d ' ' , name , number) ;

In this example, the string "%s %d" defines the type of output to
be displayed (a string and a number separated by a space). The
output values are copied from the character array name and the
integer variable number.

You may use the put char, puts, and print! functions in a single
program. Just remember that the output appears in the same
order as it is written to the standard output.

Redirecting the Standard Input

You can change the standard input from the terminal keyboard to
an ordinary file by using the normal shell redirection symbol, <.
This symbol directs the shell to open for reading the file whose \;__
name immediately follows the symbol. For example, the following
command line opens the file phonelist as the standard input to the
program dial:

d i al <phonel i s t

The dial program may then use the getchar, gets, and scanf
functions to read characters and values from this file. If the file
does not exist, the shell displays an error message and stops the
program.

Whenever getchar, gets, or scan! read from an ordinary file, they
return the value EOF if the end of the file or an error is
encountered. It is useful to check for this value to make sure you
do not continue to read characters after an error has occurred.

2-14

0

0

0

Redirecting the Standard Output

You can change the standard output of a program from the
terminal screen to an ordinary file by nsing the shell redirection
symbol, >. The symbol directs the shell to open for writing the
file whose name immediately follows the symbol. For example,
the command line:

·

d i al >savephone

opens the file savephone not the terminal screen as the standard
output of the program dial. You may use the putchar, puts, and
print! functions to write to the file.

If the file does not exist, the shell antomatically creates it. If the
file exists, but the program does not have permission to change or
alter the file, the shell displays an error message and does not
execute the program.

Piping the Standard Input and Output

Another way to redefine the standard input and output is to
create a pipe. A pipe simply connects the standard output of one
program to the standard input of another. The programs may
then use the standard input and output to pass information from
one to the other. You can create a pipe by using the standard
shell pipe symbol, I .
For example, the command line:

d i a l I we
connects the standard output of the program dial to the standard
input of the program we. (The standard input of dial and standard
output of we are not affected.) If dial writes to its standard output
with the putchar, puts, or print/functions, we can read this output
with the get char and scan/ functions.

When the program on the output side of a pipe terminates, the
system automatically places the constant value EOF in the standard
input of the program on the input side. Pipes are described in
more detail in Chapter 6, "Creating and Using Pipes. "

2-15

Program Example

This section shows how to use the standard input and output files
to perform useful tasks. The ccstrip (for control character strip)
program defined below strips Ol!t all ASCII control characters
from its input except for newline and tab, This program displays
text or data files that contain characters that can dislUpt your
terminal screen. \...

i n c l ude <std i o . h>

mai n () /* ccstri p : stri p nth characters */
{

i n t c ;
wh i l e ((c = getchar ()) ! =EOF)

exi t (O) ;
}

i f ((c>= ' ' && c < 0 1 7 7) I I
c== ' \ t ' I I c== ' \ n ')

putchar (c) ;

You can strip and display the contents of a single file by changing
the standard input of the ccstrip program to the desired file. The
command line:

ccs t r i p <doc . t

reads the contents of the file doc.t, strips out control characters,
then writes the stripped file to the standard output.

To strip several files at the same time, you can create a pipe
between the cat command and ccstrip.

To read and strip the contents of the files file I , file2, and file3,
then display them on the standard output use the command:

cat fi l el fi l e2 fi l e3 I ccstri p

2-16

c

0

To save the stripped files, redirect the standard output of ccstrip.
For example, this command line writes the stripped files to the file
clean:

cat fi l el f i l e 2 fi l e3 I ccstri p >cl ean

The exit function at the end of the program ensures that any
program that executes the ccstrip program receives a normal
termination status (0) from the program when it ends. An
explanation of the exit function and how to execute one program
under control of another is given in Chapter 5 in the section
"Stopping a Program."

Using the Stream Functions

The functions described so far have all read from the standard
input and written to the standard output. The next step is to
show functions that access files not already connected to the
program. One set of standard 1/0 functions allows a program to
open and access ordinary files as if they were a stream of
characters. For this reason, the functions are called the stream
functions.

Unlike the standard input and output files, a file to be accessed by
a stream function must be explicitly opened with the fopen
function. The function can open a file for reading, writing, or
appending. A program can read from a file with the getc, fgetc,
fgets, fgetw, fread, and fscanf functions. It can write to a file with
the pule, fputc, fputs, fputw, !write, and fprintf functions. A
program can test for the end of the file or for an error with the
feof and ferror functions. A program can close a file with the
fclose function.

2-17

Using File Pointers

Every file opened for access by the stream functions has a unique
pointer associated witb it called a file pointer. This pointer,
defined with tbe predefined type FILE found in the stdio.h file,
points to a structure that contains information about the file, such
as the location of the buffer (tbe intermediate storage area <._ between the actual file and the program), the current character
position in the buffer, and whether the file is being read or
written. The pointer can be given a valid pointer value with the
fopen function as described in the next section. (The NULL value,
like FILE, is defined in tbe stdio.h file.) Thereafter, the file pointer
refers to that file until the file is explicitly closed witb the /close
function.

A file pointer is defined with the statement:

F ILE * i nfi l e ;

The standard input, output, and error files, like other opened files,
have corresponding file pointers. These file pointers are named
stdin for standard input, stdout for standard output, and stderr for
standard error. Unlike other file pointers, the standard file
pointers are predefined in the stdio.h file. This means a program
uses these pointers to read and write from the standard files
without first using the fopen function to open them.

The predefined file pointers are used when a program needs to
alternate between the standard input or output file and an
ordinary file. Although the predefined file pointers have FILE

type, they are constants, not variables. They must not be
assigned values.

2-18

1
'

0

0

0

Opening a File

The [open function opens a given file and returns a pointer (called
a file pointer) to a structure containing the data necessary to
access the file. The pointer, in subsequent stream functions, reads
from or writes to the file.

The function call has the form:

fp = fopen(filename, type)

where fp is the pointer to receive the file pointer, filename is a
pointer to the name of the file to be opened and type is a pointer
to a string that defines how the file is to be opened. The type
string may be r for reading, w for writing, and a for appending,
that is, open for writing at the end of the file.

A file can be opened for different operations at the same time if
separate file pointers are used. For example, the following
program fragment opens the file named I usr I accounts for both
reading and writing:

FILE *rp , *wp ;

rp fopen (1 1 /usr/accounts 11 , 11 r 11) ;
wp = fopen (11 /usr;accounts 11 , 11 a 11) ;

Opening an existing file for writing destroys the old contents.
Opening an existing file for appending leaves the old contents
unchanged and causes any data written to the file to be added to
the end.

Trying to open a nonexistent file for reading causes an error.
Trying to open a nonexistent file for writing or appending causes
a new file to be created. Trying to open any file for which the
program does not have appropriate permission causes an error.

The function normally returns a valid file pointer but will return
the value NULL if an error is encountered upon opening the file.
Check for the NULL valne after each call to the function to prevent
reading or writing after an error.

2-19

Reading a Single Character

The getc and fgetc functions return a single character read from a
given file, and return the value EOF if the end of the file or an
error is encountered. The function calls have the form:

c = getc(stream)

and

c = fgetc(stream)
where stream is the file pointer to the file to be read and c is the
variable to receive the character. The return value is always an
integer.

The functions are used in conditional loops to read a string of
characters from a file. For example, the foll.owing program
fragment continues to read characters from the file given to it by
infile until the end of the file or an error is encountered:

i nt i ;
char buf[MAX J ;
F ILE * i n fi l e ;

whi l e ((c=getc (i nfi l e)) ! = EOF)
buf[i++ J = c ;

The only difference between the functions is that getc is defined
as a macro, and fgetc is defined as a true function. This means
that unlike getc, fgetc may be passed as an argument in another
function, used as a target for a breakpoint when debugging, or
used to avoid any side effects of macro processing.

2-20

Reading a String from a File

The fgets function reads a string of characters from a file and
copies the string to a given memory location. The function call
has the fonn:

0 fgets(s,n,stream)

0

0

where s is a pointer to the location to receive the string, n is a
count of the maximum number of characters to be in the string,
and stream is the file pointer of the file to be read. The function
reads n-1 characters or up to the first newline character,
whichever occurs first. The function appends a null character (\ 0) to the last character read and then stores the string at the
specified location. The function returns the null pointer value
NULL if the end of the file or an error is encountered. Otherwise,
it returns the pointer s.

The function is used to read a full line from a file. For example,
the following program .fragment reads a string of characters from
the file given by myfile:

char cmdl n[MAX J ;
F ILE *myfi l e ;

i f (fgets (cmdl n , MAX , myfi l e) ! =NUL L)
pars e (cmdl n) ;

In this example, fgets copies the string to the character array
cmdln.

2-21

Reading Records from a File

The fread function reads one or more records from a file and
copies them to a given memory location. The function call has
the form:

fread(ptr, size, nitems, stream)

where ptr is a pointer to the location to receive the records, size is
the size (in bytes) of each record to be read, nitems is the number
of records to be read, and stream is the file pointer of the file to
be read. The ptr may be a pointer to a variable of any type (from
a single character to a structrure). The size, an integer, should
give the numbers of bytes in each item you wish to read. One
way to ensure this is to use the sizeof function on the pointer ptr
(see the example below). The function always returns the
number of records it read, regardless of whether the end of the
file or an error is encountered.

The function is used to read binary data from a file. For example,
the following program fragment reads two records from the file
given by database and copies the records into the structure person:

F I L E *databa s e ;
s truct record (

char n ame[20 l ;
i nt age ;

J person ;

frea d (&person , s i zeof(person) , 2 , database) ;

The fread function does not explicitly indicate errors, so the feof
and ferror functions should be used to detect end of the file and
errors. These functions are described later in this chapter.

(See "Testing for the End of a File" and "Testing for File
Errors.")

2-22

0

0

()

Reading Formatted Data from a File

The fscanf function reads formatted input from a given file and
copies it to the memory location given by the respective argument
pointers, just as the scanf function reads from the standard input.
The function call has the form:

fscanf(stream, format, argptr . . .)

where stream is the file pointer of the file to be read, format is a
pointer to the string that defines the format of the input to be
read, and argptr is one or more pointers to the variables that are
to receive the formatted input. There must be one argptr for each
format given in the format string. The format may be o/o s for a
string, o/oc for a character, and o/od, o/oo, or o/ox for a decimal,
octal, or hexadecimal number, respectively. (Other formats are
described in scanf(S) in the IBM Personal Computer XENIX
Software Command Reference.) The function normally returns the
number of arguments it read but returns the value EOF if the end
of the file or an error is encountered.

The function reads files that contain both numbers and text. For
example, this program fragment reads a name and a decimal
number from the file given by file:

FILE *fi l e ;
i nt pay;
char name[20 l ;

fs canf(fi l e , ' '%s%d\n '' , name ,&pay) ;

This program fragment copies the name to the character array
name and the number to the integer variable pay.

2-23

Writing a Single Character

The putc and fputc functions write single characters to a given file.
The putc function calls have the forms:

putc(c,stream)

and

fputc(c,stream)

where c is the character to be written and stream is the file pointer
to the file to receive the character. The function normally returns
the character written but returns the value EOF if an error is
encountered.

The function is defined as a macro and may have undesirable side
effects such as function calls or increment or decrement operators
resulting from argument processing. In such cases, the equivalent
function fputc should be used.

These functions are used in conditional loops to write a string of
characters to a file. For example, this following program
fragment writes characters from the array name to the file given \'-
by out:

F I L E *out ;
char name[MAX l ;
i nt i ;

for (i =O ; i <MAX ; i ++)
fputc (n ame[i] , out) ;

The only difference between the putc and fputc functions is that
putc is defined as a macro and fputc as an actual function. This
means that fputc, unlike putc, may be used as an argument to
another function, as the target of a breakpoint when debugging,
and to avoid the restriction of macro processing, that is, the
arguments of macro functions should not contain any side effects
such as function calls or increment or decrement operators.

2-24

0

0

Writing a String to a File

The [puts function writes a string to a given file. The function call
has the fonn:

fputs(s,stream)

where s is a pointer to the string to be written and stream is the
file pointer to the file.

The function copies strings from one file to another. For
example, in the following program fragment, gets and fputs are
combined to copy strings from the standard input to the file given
by out:

FILE *out ;
c har cmd l n [MAX] ;

i f (gets (cmdl n) ! oEOF)
fputs (cmdl n , out) ;

The function normally returns zero but returns EOF if an error is
encountered.

2-25

Writing Formatted Output

The [print[function writes formatted output to a given file, just as
the print[function writes to the standard output. The function
call has the form:

fprintf(stream, format, [arg] . . .)

where stream is the file pointer of the file to be written to, format
is a pointer to a string that defines the format of the output, and
arg is one or more arguments to be written. There must be one
arg for each format in the format string. The formats may be o/os
for a string, o/oc for a character, and o/od, o/oo, or o/ox for a
decilnal, octal, or hexadecilnal number, respectively. (Other
formats are described in printf(S) in the IBM Personal Computer
XENIX Software Command Reference.) If a string is requested,
the corresponding arg must be a pointer; otherwise, the actual
variable must be used. The function normally returns zero but
will return a nonzero number if an error is encountered.

The function writes output that contains both numbers and text.
For example, to write a name and a decilnal number to the file
given by outfile use the following program fragment:

F I L E *outfi l e ;
i nt pay;
char name [ZO J ;

fpri ntf(outfi l e , " %s%d\n " , name , pay) ;

The name is copied from the character array name and the
number from the integer variable pay.

2-26

(!

0

0

Writing Records to a File

The [write function writes one or more records to a given file.
The function call has the form:

fwrite(ptr, size, nitems, stream)

where ptr is a pointer to the first record to be written, size is the
size (in bytes) of each record, nitems is the nnmber of records to
be written, and stream is the file pointer of the file. The ptr may
point to a variable of any type (from a single character to a
structure) . The size should give the number of bytes in each item
to be written. One way to ensure this is to use the sizeo[function
(see the example below). The function always returns the
number of items actually written to the file whether the end of the
file or an error is encountered.

The function writes binary data to a file. For example, the
following program fragment writes two records to the file given
by database.

FILE *database ;
struct record [

char name[20] ;
i nt age ;

J perso n ;

fwri te (&person , s i zeof(person) , 2 , database) ;

The records are copied from the structure person.

Because the function does not report the end of the file or errors,
the feof and [error functions should be used to detect these
conditions.

2-27

Testing for the End of a File

The feof function returns the value -1 if a given file has reached
its end. The function call has the form:

feof(stream)
'

where stream is the file pointer of the file. The function returns '"

-1 only if the file has reached its end; otherwise it returns 0. The
return value is always an integer.

The feof function is used after those functions whose return value
is not a clear indicator of an end-of-file condition. For example,
in the following program fragment, the function checks for the
end of the file after each character is read. The reading stops as
soon as feof returns - 1 .

c h a r name [lO J ;
F I L E *stream;

do
fread(name , s i ze(name) , 1 , s tream) ;

whi l e (! feof(stream)) ;

Testing for File Errors

The ferror function tests a given stream file for an error. The
function call has the form:

ferror(stream)

where stream is the file pointer of the file to be tested. The
function returns a nonzero (true) value if an error is detected;
otherwise, it returns zero (false). The function returns an integer
value.

2-28

c

0

0

The function tests for errors before performing a subsequent read
or write to the file. For example, in the following program
fragment ferror tests the file given by stream.

char *buf ;
char x [5 J ;

whi l e (! ferror (s tream))
fread (bu f , s i zeof(x) , 1 0 , s tream) ;

If it returns zero, the next item in the file given by stream is
copied to buf. Otherwise, execution passes to the next statement.

Further use of a file after an error is detected may cause
undesirable results.

Closing a File

The fclose function closes a file by breaking the connection
between the file pointer and the structnre created by fopen.
Closing a file empties the contents of the corresponding buffer
and frees the file pointer for use by another file. The function call
has the form:

fclose(stream)
where stream is the file pointer of the file to be closed. The
function normally returns 0 but returns -1 if an error is
encountered.

The fclose function frees file pointers when they are no longer
needed. This is important because usually no more than 20 files
can be open at the same time. For example, the following
program fragment closes the file given by infile when the file has
reached its end:

FILE *i nfi l e ;

i f (feof (i n fi l e))
fcl ose (i nfi l e) ;

2-29

Whenever a program terminates normally, the [close function is
automatically called for each open file, so no explicit call is
niquired unless the program must close a file before its end. Also,
the function automatically calls [flush to ensure that everything
written to the file's buffer actually gets to the file.

Program Example

This section shows how you may use the stream functions you
have seen so far to perform useful tasks. The following program
counts the characters, words, and lines found in one or more files,

and uses the [open, [print[, getc, andfclose functions to open,
close, read, and write to the given files. The program
incorporates a basic design that is common to other XENIX
programs, namely it uses the filenames found in the command line
as the files to open and read, or If no names are present, it uses
the standard input. This allows the program to be invoked on its
own or to be the receiving end of a pipe.

#i ncl ude <stdi o . h>

mai n (argc , argv) ;* we : count l i nes , words , chars *;
i nt argc ;
char *argv[J ;
{

i nt c , i , i nward;
F ILE *fp , *fopen () ;
l ong l i nect , wordc t , charct ;
l ong tl i nect = 0 , twordct = 0 , tcharct 0 . '

i = 1 ;
fp = s tdi n ;
do
{

i f (argc > 1 &&
(fp=fopen (argv[i] , " r ''))
fpri ntf (s tderr , ''we : can ' t

argv [i J) ;
cont i n u e ;

}

(Example continues on next page.)

2-30

NULL) {
open %s \ n " ,

0

0

0

}

l i nect = wardct = charct = i nward 0 ;
whi l e ((c = getc (fp)) ! = EOF) I

charct++;

}

i f (c == ' \ n ')
l i nect++ ;

i f (c == ' ' I I c == ' \ t ' I I c == ' \ n ' l
i nward = 0 ;

e l s e i f (i nward == 0) {
i nward = I ;
wardct++ ;

}

pri ntf (' '%7 l d %7 ld %7l d '' , l i ne c t , wordct , charc t) ;
pri ntf (a rgc > I ? " %s \ n " : " \ n " , a rgv [i]) ;
fc l ase (fp) ;
t l i nect += l i nect;
twardct += wardct ;
tcharct + = charct ;

l wh i l e (++i < argc) ;
i f (argc > 2)

printf (" %7 l d %7 l d %7 l d tatal \ n " , tl i nect,
twardc t , tcharct) ;

exi t (O) ;

The program uses fp as the pointer to receive the current file
pointer. Initially, this is set to stdin in case no filenames are
present in the command line. If a filename is present, the
program calls fopen and assigns the file pointer to fp. If the file
cannot be opened (in which case fopen returns NULL), the
program writes an error message to the standard error file stderr
with the fprintf fnnction. The function prints the format string
"we: can't open o/os", replacing the o/o s with the name pointed to
by argv[i].

Once a file is opened, the program uses the getc function to read
each character from the file. As it reads characters, the program
keeps a count of the number of characters, words, and Jines. The
program continues to read until the end of the file is encountered,
that is, when getc returns the value EOF.

2-31

Once a file has reached its end, the program uses the print!
function to display the character, word, and line counts at the
standard output. The format string in this function causes the
counts to be displayed as decimal numbers with no more than
seven digits. The program then closes the current file with the
fclose function and examines the command line arguments to see
if there is another filename.

When all files have been counted, the program uses the print!
function to display a grand total at the standard output, then stops
execution with the exit function.

Using More Stream Functions

The stream functions allow more control over a file than just
opening, reading, writing, and closing. The functions also let a
program take an existing file pointer and reassign it to another file
(similar to redirecting the standard input and output files) as well
as manipulate the buffer that is used for intermediate storage
between the file and the program. \c

Using Buffered Input and Output

Buffered 1/0 is an input and output technique used by the
XENIX system to cut down the time needed to read from and
write to files. Buffered 1/0 lets the system collect the characters
to be read or written and then transfer them all at once rather
than one character at a time. This reduces the number of times
the system must access the 1/0 devices and consequently
provides more time for running user programs. Not all files have
buffers. For example, files associated with terminals, such as the
standard input and output, are not buffered. This prevents delays
when transferring the input and output. When a file does have a
buffer, the buffer size in bytes is given by the manifest constant
BSIZE, which is defined in the stdio.h file.

2-32

CJ

0

0

When a file has a buffer, the stream functions read from and write
to the buffer instead of the file. The system keeps track of the
buffer and when necessary fills it with new characters (when
reading) or flushes (copies) it to the file (when writing).
Normally, a buffer is not directly accessible to a program; 1
however a program can define its own buffer for a file with the
setbuf function. The function also lets a program change a
buffered file to be an unbuffered one. The ungetc function lets a
program put a character it has read back into the buffer, and the
[flush function lets a program flush the buffer before it is full.

Reopening a File

The freopen closes the file associated with a given file pointer,
then opens a new file, and gives it the same file pointer as the old
file. The function call has the form:

freopen(newfile, type, stream)

where newfile is a pointer to the name of the new file, type is a
pointer to the string that defines how the file is to be opened (r
for reading, w for writing, and a for appending), and stream is the
file pointer of the old file. The function returns the file pointer
stream if the new file is opened. Otherwise, it returns the null
pointer value NULL.

The [reopen function is used chiefly to attach the predefined file
pointers stdin, stdout, and stderr to other files. For example, the
following program fragment opens the file named by newfile as
the new standard output file:

char *newfi l e ;
F ILE *nfi l e ;

nfi l e • freopen (newfi l e , " r '' , s tdout) ;

This has the same effect as using the redirection symbols in the
command line of the program.

2-33

Setting the Buffer

The setbuf function changes the buffer associated with a given file
to the program's own buffer. It can also change the access to the
file to no buffering. The function call has the form:

setbuf(stream, buf)

where stream is a file descriptor and buf is a pointer to the new
buffer or is the null pointer value NULL if no buffering is desired.
If a buffer is given, it must be BSIZE bytes in length, where BSIZE is
a manifest constant found in stdio.h.

The function creates a buffer for the standard output when it is
assigned to the user's terminal, which intproves execution tinte by
eliminating the need to write one character to the screen at a tinte.
For example, the following program fragment changes the buffer
of the standard output to the location pointed at by p:

char *p ;

p=ma l l oc (BS I ZE) ;
setbuf (stdout , p) ;

The new buffer is BSIZE bytes long.

The function may also be used to change a file from buffered to
unbuffered input or output. Unbuffered input and output
generally increase the total tinte needed to transfer large numbers
of characters to or from a file but give the fastest transfer speed
for individual characters.

Call the setbuf function intmediately after opening a file and
before reading or writing to it. Furthermore, use the /close or
fflush function to flush the buffer before terminating the program.
If one of these functions is not used, some data written to the
buffer may not be written to the file.

2-34

,,

\"'-

--1
I

0

0

Putting a Character Back into a Buffer

The ungetc function puts a character back into the buffer of a
given file. The function call has the form:

ungetc(c, stream)

where c is the character to put back and stream is the file pointer
of the file. The function normally returns the same character it
put back but returns the value EOF if an error is encountered.

The function scans a file for the first character of a string of
characters. For example, the following program fragment puts
the first character that is not a whitespace character back into the
buffer of the file given by infile, allowing the subsequent call to
gets to read that character as the first character in the string:

F I L E *i nfi l e
char name [20] ;

whi l e (i s s pace(c=getc (infi l e)))
,

ungetc (c , stdi n) ;
gets (name , stdi n) ;

Putting a character back into the buffer does not change the
corresponding file; it only changes the next character to be read.

The function can put a character back only if one has been
previously read. The function cannot put more than one
character back at a time. This means if three characters are read,
then only the last character can be put back, never the first two.

The value EOF must never be put back in the buffer.

2-35

Flushing a File Buffer

The fflush function empties the buffer of a given file by
immediately writing the buffer contents to the file. The function
call has the form:

fflush(stream)
where stream is the file pointer of the file. The function normally
returns zero but returns the value EOF if an error is encountered.

The function guarantees that the contents of a partially filled
buffer are written to the file. For example, the following program
fragment empties the buffer for the file given by outtty if the
error condition given by errflag is 0:

FILE *outtty ;
i n t errfl ag ;

i f (errfl ag == 0)
ffl u s h (outtty) ;

The !flush function is automatically called by the /close function
to empty the buffer before closing the file. This means that no
explicit call to /flush is required if the file is also being closed.

The function ignores any attempt to empty the buffer of a file
opened for reading.

2-36

()

0

0

Using the Low-Level Functions

The low-level functions provide direct access to files and
peripheral devices. They are actually direct calls to the routines
used in the XENIX Operating System to read from and write to
files and peripheral devices. The low-level functions give a
program the same control over a file or device as the system,
letting it access the file or device in ways that the stream
functions do not. However, low-level functions, unlike stream
functions, do not provide buffering or any other useful services of
the stream functions. This means that any program that uses
low-level functions has the complete burden of handling input and
output.

The low-level functions, like the stream functions, cannot be used
to read from or write to a file until the file has been opened. A
program may use the open function to open an existing or a new
file. A file can be opened for reading, writing, or appending.

Once a file is opened for reading, a program can read bytes from
it with the read function. A program can write to a file opened
for writing or appending with the write function. A program can
close a file with the close function.

Using File Descriptors

Each file that has been opened for access by the low-level
functions has a unique integer called a file descriptor associated
with it. A file descriptor is similar to a file pointer in that it
identifies the file. A file descriptor, unlike a file pointer, does not
point to any specific structure. Instead, the descriptor is used
internally by the system to access the necessary information.
Because the system maintains all information about a file, the
only access to a file for a program is through the file descriptor.

2-37

There are three predefined file descriptors (just as there are three
predefined file pointers) for the standard input, output, and error
files . The descriptors are 0 for the standard input, 1 for the
standard output, and 2 for the standard error file. As with
predefined file pointers, a program can use the predefined file
descriptors without explicitly opening the associated files.

If the standard input and output files are redirected, the system
changes the default assignments for the file descriptors 0 and 1 to
the named files. This is also true if the input or output is
associated with a pipe. File descriptor 2 normally remains
directed to the terminal.

Opening a File

The open function opens an existing or a new file and returns a
file descriptor for that file. The function call has the form:

fd = open(name, access [, mode]) ;

where fd is the integer variable to receive the file descriptor, name
is a pointer to a string containing the filename, access is an integer
expression giving the type of file access, and mode is an integer \
number giving a new file's permissions. The function normally ""·

returns a file descriptor (a positive integer) but will return -1 if an
error is encountered.

2-38

(!

0

The access expression is formed by using one or more of the
following manifest constants: o RDONL Y for reading, o WRONLY

for writing, o RDWR for both reading and writing, o APPEND for
appending to the end of an existing file, and o CREAT for
creating a new file. (Other constants are described in open(S) in
the IBM Personal Computer XENIX Software Command
Reference.) The logical OR operator (I) may be used to combine
the constants. The mode is required only if o CREA T is given.
For example, in the following program fragment, the function
opens the existing file named /usr/accounts for reading and opens
the new file named /usr/tmp/scratch for reading and writing:

i n t i n , out ;

i n • open (''/usr;accounts '' , O_RDONLY) ;
out • open ("/usr/tmp/scratch " , O_WRONLY I O_CREAT , 0754) ;

In the XENIX system each file has a set of permissions associated
with it, that is, 9 bits of protection information that control who
can read, write, and execute the file. These 9 bits consist of 3 bits
that determine what permissions the owner of the file has, 3 bits
that determine what permissions the owner's group has, and 3 bits
that determine what permissions all others have. A 3-digit octal
number is the most convenient way to specify the permissions. In
the example above, the octal number 075 4 specifies read, write,
and execute permission for the owner, read and execute
permission for the group, and read for everyone else.
(Permissions are described in the IBM Personal Computer XENIX
Basic Operations Guide in the section "Using File and Directory
Permissions".)

If o CREAT is given and the file already exists, the function
destroys the file's old contents.

2-39

Reading Bytes from a File

The read function reads 1 or more bytes of data from a given file
and copies them to a given memory location. The function call
has the form:

n read = read(fd, buf, n);

where n read is the variable to receive the count of bytes
actually read, fd is the file descriptor of the file, buf is a pointer to
the memory location to receive the bytes read, and n is a count of
the desired number of bytes to be read. The function normally
returns the same number of bytes as requested but returns fewer
if the file does not have that many bytes left to be read. The
function returns 0 if the file has reached its end or - 1 if an error is
encountered.

When the file is a terminal, read normally reads only up to the
next newline.

The number of bytes to be read is arbitrary. The two most
common values are 1, which means one character at a time, and
5 1 2, which corresponds to the physical block size on many
peripheral devices.

Writing Bytes to a File

The write function writes 1 or more bytes from a given memory
location to a given file. The function call has the form:

n_written = write(fd, buf, n);

where n written is the variable to receive a count of bytes
actually written, fd is the file descriptor of the file, buf is the
name of the buffer containing the bytes to be written, and n is the
number of bytes to be written.

2-40

0

0

The function always returns the number of bytes actually written.
It is considered an error if the return value is not equal to the
number of bytes requested to be written.

The number of bytes to be written is arbitrary. The two most
common values are 1, which means one character at a time and
5 12, which corresponds to the physical block size on many
peripheral devices.

Closing a File

The close function breaks the connection between a file descriptor
and an open file and frees the file descriptor for use with some
other file. The function call has the form:

close(jcf)

where fd is the file descriptor of the file to close. The function
normally returns 0, but returns -1 if an error is encountered.

The function closes files that are not longer needed. For example,
the following program fragment closes the standard input if the
argument count is greater than 1 :
i nt fd ;

i f (argc >1)
c l ose (O) ;

All open files in a program are closed when a program terminates
normally or when the exit function is called, so no explicit call to
close is required.

2-41

Program Examples

This section shows how to nse the low-level functions to perform
useful tasks and presents three examples that incorporate the
functions as the sole method of input and output.

The first program copies its standard input to its standard output:

#define BUFSIZE BSIZE

ma i n () ;* copy i nput to output *;
{

}

char buf[BUFS I ZEJ ;
i n t n ;

wh i l e ((n = read (0 , buf, BUFSI Z E)) > 0)
wri te (l , buf, n) ;

exi t (O) ;

The program uses the read function to read BUFSIZE bytes from the
standard input (file descriptor 0). It then uses write to write the
same number of bytes it read to the standard output (file
descriptor 1) . If the standard input file size is not a multiple of
BUFSIZE, the last read returns a smaller number of bytes to be
written by write, and the next call to read returns zero.

This program can be used like a copy command to copy the
content of one file to another. You can do this by redirecting the
standard input and output files.

The second example shows how the read and write functions can
be used to construct higher level functions like getchar and
put char.

For example, the following is a version of getchar that performs
unbuffered input:

#def i ne CMASK 0377 !* for mak i ng c hars > 0 *!

getcha r ()/* unbuffered s i ng l e character i nput *;
{

char c ;
return ((read (O , &c , 1) > 0) ? c & CMASK : EOF) ;

}

2-42

0

0

0

The variable c must be declared char, because read accepts a
character pointer. In this case, the character being returned must
be masked with octal 0377 to ensure that it is positive; otherwise,
sign extension may make it negative.

The second version of getchar reads input in large blocks but
hands out the characters one at a time:

#defi ne CMASK 0377
#defi ne BUFSIZE

!* for mak i n g char '� > 0 *!
BSJZE

getchar() /* buffered vers ion */
[

stati c char
stati c char
stati c i ntn = 0 ;

buf[BUFS I ZE J ;
*bufp = buf ;

if (n == 0) [/* buffer is empty *;
n = read (O , buf , BUFS I ZE) ;
bufp = buf ;

}
return ((--n >= 0) ? *bufp++ & CMASK EOF) ;

Again, each character must be masked with the octal constant
0377.

The third example is a simplified version of the XENIX utility cp,
a program that copies one file to another.

The main simplification is that this version copies only one file,
and does not permit the second argument to be a directory:

#defi ne NULL 0
#defi ne BUFSJZE BSIZE
#define PMODE 0644 !* RW for owner , R for grou p ,
others */
mai n (argc , argv) ;* cp: copy fl to f2 */
i nt argc ;
char *argv[l ;
{

i n t fl , f2 , n ;
char buf[BUFS J ZE] ;

(Example continues on next page.)

2-43

}

i f (argc ! = 3)
error(" Us age : c p from to " , NULL) ;

i f ((f1 = open (argv [1] , O_RDONLY)) == - 1)
error('' c p : can ' t open %s '' , argv [1]) ;

i f ((f2 = open (argv [2] , O_CREAT I O_WRONLY ,
PMOD E)) == - 1)

erro r (" c p : can ' t create %s '' , argv[2 J) ;

wh i l e ((n = read (fl , b uf , BUFS IZE)) > 0)
i f (wri te (f2 , buf , n) ! = n)

error("cp : write error" , NULL) ;
exi t (O) ;

error (sl , s 2) / * p r i nt error mes sage and d i e */
char *sl , * s 2 ;
[

printf(s 1 , s 2) ;
pri ntf("\n ") ;
exi t (1) ;

There is a limit (usually 20) to the number of files that a program
may open simultaneously. Therefore, any program that intends to
process many files must be prepared to reuse file descriptors by
closing unneeded files.

Using Random Access II 0

Input and output operations on any file are normally sequential.
This means each read or write takes place at the character
position immediately after the last character read or written. The
standard library, however, provides a number of stream and
low-level functions that allow a program to access a file randomly,
that is, to exactly specify the position it wishes to read from or
write to next.

2-44

-1

0

The functions that provide random access operate on a file's
character pointer. Every open file has a character pointer that
points to the next character to be read from that file, or the next
place in the file to receive a character. Normally, the character
pointer is maintained and controlled by the system, but the
random access functions let a program move the pointer to any
position in the file.

Moving the Character Pointer

The /seek function, a low-level function, moves the character
pointer in a file opened for low-level access to a given position.
The function call has the form:

lseek(fd, offset, origin) ;

where fd is the file descriptor of the file, offset is the number of
bytes to move the character pointer, and origin is the number that
gives the starting point for the move. It may be 0 for the
beginning of the file, 1 for the current position, and ? for the end.

For example, this call forces the current position in the file whose
descriptor is 3 to move to the 5 1 2th byte from the beginning of
the file:

l seek (3 , (l on g) 5 1 2 , 0) ;

Subsequent reading or writing begins at that position. The value
of offset must be a long integer, and fd and origin must be
integers.

.

2-45

The function can be used to move the character pointer to the end
of a file to allow appending, or it can be used to reset the
indicated file back to the beginning of the file as in a rewind
function. For example, the call:

l seek (fd , (l on g) O , 2) ;

prepares the file for appending, and:

l seek (fd , (l on g) O , 0) ;

rewinds the file (moves the character pointer to the beginning).
Notice the (long)O argument; it could also be written as:

OL

Using !seek allows you to treat files more or less like large arrays,
but at the price of slower access. For example, the following
simple function reads any number of bytes from any arbitrary
place in a file:

get(fd , pas , buf , n) (* read n bytes from pos i ti on
pas */
i nt fd , n ;
l on g pas ;
char *buf;
{

}

2-46

l seek (fd , pas , 0) ; (* get to pas */
return (read (fd , buf , n)) ;

Moving the Character Pointer in a Stream

The fseek function, a stream function, moves
·
the character

pointer in a file to a given location. The function call has the
form:

0 fseek(stream, offset, ptrname)

0

0

where stream is the file pointer of the file, offset is the number of
characters to move to the new position (it must be a long integer),
and ptrname is the starting position in the file of the move (0 for
beginning, 1 for current position, or 2 for end o[the file). The
function normally returns zero but will return the value EOF if an
error is encountered.

For example, the following program fragment moves the character
pointer to the end of thB file given by stream:

FILE *stream;

fsee k (s tream, (l ong) O , 2) ;

The function can be used on either buffered or unbuffered files.

Rewinding a File

The rewind function, a stream function, moves the character
pointer to the beginning of a given file. The function call has the
form:

rewind(stream)

where stream is the file pointer of the file. The function is
equivalent to the following function call:

fsee k (s tream ,OL , O) ;

It is chiefly used as a more readable version of the call.

2-47

Getting the Current Character Position

The ftell function, a stream function, returns the current position
of the character pointer in the given file. The returned position is
always relative to the beginning of the file. The function call has
the form:

p = f tell(stream)
where stream is the file pointer of the file and p is the variable to
receive the position. The return value is always a long integer.
The function returns the value -1 if an error is encountered.

The function is used to save the current location in the file so that
the program can later return to that position. For example, the
following program fragment first saves the current character
position in oldp, then restores the file to this position if the
current character position is greater than 800.

F ILE *outfi l e ;
l ong o l d p ;

o l dp = ftel l (outfi l e) ;

i f ((ftel l (outfi l e)) > 800)
fseek (outfi l e , o l dp , 0) ;

The ftell is identical to the function call:

l seek (fd , (l ong) O , 1)

where fd is the file descriptor of the given stream file.

2-48

0

0

0

Chapter 3. Screen Processing

Contents

Introduction . 3-5
Screen Processing Overview . 3-5
Using the Library . 3-7

Screen Updating . 3-8
Naming Conventions . 3-9
Terminology . 3-10

Preparing the Screen . 3-13
Initializing the Screen . 3-13
Starting Up . 3-14
Using Terminal Capability and Type 3 - 1 5

Capabilities from tenncap . 3-16
Using Default Terminal Modes 3-17
Using Default Window Flags . 3-17
Using the Default Terminal Size 3-18
Terminating Screen Processing 3-18
How to Use the Screen Package 3-19

Output . 3-20
Input . 3-21

Using the Standard Screen . 3-21
The Functions . 3-21
Adding a Character . 3-21
Adding a String . 3-22
Printing Strings, Characters, and Numbers 3-23
Reading a Character from the Keyboard 3-24
Reading a String from the Keyboard 3-25
Reading Strings, Characters, and Numbers 3-26
Moving the Current Position . 3-27
Inserting a Character . 3-27
Inserting a Line . 3-28
Deleting a Character . 3-29
Deleting a Line . 3-29

3-1

Clearing the Screen . .

Clearing a Part of the Screen . .

Refreshing from the Standard Screen

Creating and Using Windows . .
Creating a Window . .

Creating a Subwindow . .

Adding and Printing to a Window

Reading and Scanning for Input

Moving the Current Position in a Window

Inserting Characters . .

Deleting Characters and Lines

Clearing the Screen . .

Refreshing from a Window . .

Overlaying Windows . .

Overwriting a Screen . .

Moving a Window . .

Reading a Character from a Window

Touching a Window . .

Deleting a Window . .

Using Other Window Functions . .
Drawing a Box . .

Displaying Bold Characters . .

Restoring Normal Characters

Getting the Current Position . .

Setting Window Flags . .

Scrolling a Window . .

The WINDOW Structure . .
Examples . .

Screen Updating . .

Twinkle . .

Life · ·

Motion Optimization . .

Twinkle . .

Combining Movement with Action

Controlling the Terminal . .
Terminal Modes . .

Setting a Terminal Mode . .

3-2

3-30
3-30
3-31

3-32
3-32
3-33 , ,
3-34 "
3-36
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-44
3-45
3-46
3-47

3-47
3-47
3-48 ''-':
3-49
3-50
3-51
3-52

3-53
3-54
3-54
3-55

3-58
3-63
3-63

3-66

3-67
3-67
3-68

0

0

Clearing a Terminal Mode . 3-69
Moving the Terminal's Cursor . 3-70
Getting the Terminal Mode . 3-7 1

Variables Set by gettmode () 3-7 1
Saving and Restoring the Terminal Flags 3-71
Setting a Terminal Type . 3-72

Variables Set by setterm() . 3-72
Reading the Terminal Name . 3-75

3-3

3-4

0

Introduction

This chapter explains how to use the screen updating and cursor
movement library named curses. The library provides functions to:

• Create screen windows

• Update screen windows

• Get input from the terminal in a screen-oriented way

• Optimize the motion of the cursor on the screen.

Screen Processing Overview

Screen processing gives a program a simple and efficient way to
use the capabilities of the terminal attached to the program's
standard input and output files. Screen processing does not rely
on the terminal's type. Instead, the screen processing functions
use the XENIX terminal capability file /etc/termcap to tailor their
actions for any given terminal. This makes a screen processing
program terminal-independent. The program can be run with any
terminal as long as that terminal is described in the /etc/termcap
file.

The screen processing functions access a terminal screen by
working through intermediate screens and windows in memory.
A screen is a representation of what the entire terminal screen
should look like. A window is a representation of what some
portion of the terminal screen should look like. A screen can be
made up of one or more windows. A window can be as small as a
single character or as large as an entire screen.

3-5

Before a screen or window can be used, it must be created by
using the newwin or subwin functions. These functions define the
size of the screen or window in terms of lines and columns. Each
position in a screen or window represents a place for a single
character and corresponds to a similar place on the terminal
screen. Positions are numbered according to line and column.
For example, the position in the upper-left corner of a screen or
window is numbered (0,0) and the position immediately to its "
right is (0,1) . A typical screen has 24 lines and 80 columns. Its
upper-left corner corresponds to the upper-left corner of the
terminal screen. A window, on the other hand, can be any size
(within the limits of the screen). Its upper-left corner can
correspond to any position on the terminal screen. For
convenience, the initscr function, which initializes a program for
screen processing, also creates a default screen, stdscr (for
standard screen). The stdscr may be used without first creating it.
The function also creates curser (for current screen), which
contains a copy of what is currently on the terminal screen.

To display characters at the terminal screen, a program must write
these characters to a screen or window using screen processing
functions such as addch and waddch. If necessary, a program can
move to the desired position in the screen or window by using the
move and wmove functions. Once characters are added to a screen "'
or window, the program can copy the characters to the terminal
screen by using the refresh or wrefresh function. These functions
update the terminal screen according to what has changed in the
given screen or window. Because the terminal screen is not
changed until a program calls refresh or wrefresh, a program can
maintain several different windows, each containing different
characters for the same portion of the terminal screen. The
program can choose which window should actually be displayed
before updating.

A program can continue to add new characters to a screen or
window as needed and edit these characters by using functions
such as insertln, deleteln, and clear. A program can also combine
windows to make a composite screen using the overlay and
overwrite functions. In each case, the refresh or wrefresh function
is used to copy the changes to the terminal screen.

3-6

0

Using the Library

To use the curses library in a program, you must add the line:

#i ncl ude <curses . h>

to the beginning of your program. The curses.h file contains
definitions for types and variables used by the library.

The screen processing functions are in the library files libcurses.a
and libtermcap.a. These files are not automatically read when you
compile your program, so you must include the appropriate library
switches in your invocation of the compiler. The command line
must have the form:

cc file . . . -!curses -ltenncap

where file is the name of the source file you wish to compile. You
may give more than one filename if desired. You may also use
other compiler options in the command line. For example, the
command:

cc mai n . c i n tf . c - l curses - l termcap -o samp l e

compiles the files main.c and intfc, and copies the executable
program to the file sample after linking the screen processing
library files to the program.

The curses.!! file automatically includes the file sgtty.h in your
program. This file must not be included twice.

3-7

Screen Updating

In order to update the screen optimally, it is necessary for the
routines to know what the screen currently looks like and what
the programmer wants it to look like next. For this purpose, a
data type (structure) named WINDOW is defined that describes a
window image to the routines, including its starting position on
the screen (the (y,x) co-ordinates of the upper-left hand corner)
and its size. One of these (called curser for current screen) is a
screen image of what the terminal currently looks like. Another
screen (called stdscr for standard screen) is provided by default to
make changes on.

A window is a purely internal representation. It is used to build
and store a potential image of a portion of the terminal. It doesn't
bear any necessary relation to what is really on the terminal
screen. It is more like an array of characters on which to make
changes.

When a window which describes what some part of the screen
should look like, and it is not part of the stdscr, the routine
refresh() or wrefresh is called. The refresh() routine makes the

'

'

terminal, in the area covered by the window, look like that 1'-

window. Note that changing something on a window does not
change the terminal. Actual updates to the terminal screen are
made only by calling refresh() or wrefresh(). This allows the
programmer to maintain several different ideas of what a portion
of the terminal screen should look like. Also, changes can be
made to windows in any order, without regard to motion
efficiency. Then, at will, the programmer can effectively say
"make it look like this," and let the package worry about the best
way to do this.

3-8

0

()

Naming Conventions

As hinted above, the routines can use several windows, but two
are automatically given: curser, which knows what the terminal
looks like, and stdscr, which is what the programmer wants the
terminal to look like next. The screen package also uses the
standard I/0 library, so <curses.h>, which includes <stdio.h>.
It is redundant, but harmless, for the programmer to do this, too.
The user should never really access curser directly. Changes
should be made to the appropriate screen, and then the routine
refresh() (or wrefresh()) should be called.

Many functions are set up to deal with stdscr as a default screen.
For example, to add a character to stdscr, call addch() with the
desired character. If a different window is to be used, the routine
waddch() (for window-specific addch()) is provided. Actually,
addch() is really a "#define" macro with arguments, as are most
of the "functions" that deal with stdscr as a default. This
convention of prepending function names with a "w" when they
are to be applied to specific windows is consistent. The only
routines that do not do this are those to which a window always
must be specified.

3-9

In order to move the current (y,x) co-ordinates from one point to
another, the routines move() and wmove() are provided.
However, it is often desirable to first move and then perform
some I/ 0 operation. In order to avoid clumsiness, most I/ 0
routines can be preceded by the prefix "mv" and the desired (y,x)
co-ordinates then can be added to the arguments to the function.
For example, the calls:

move (y , x) ;
addch (ch) ;

can be replaced by

mvaddch (y , x , ch) ;

and

wmove (wi n , y , x) ;
waddch (wi n , ch) ;

can be replaced by

mvwaddch (wi n , y , x , c h) ;

Note that the window description pointer (win) comes before the '-
added (y, x) co-ordinates. If such pointers are needed, they are
always the first parameters passed.

Terminology

In this chapter, the following terminology is used:

Term

window

3-10

Description

An internal representation containing an image of
what a section of the terminal screen may look like
at some point in time. This subsection can either
encompass the entire terminal screen, or any
smaller portion down to a single character within
that screen.

"�

Term Description

terminal Sometimes called terminal screen. The package's
idea of what the terminal's screen currently looks
like; in other words, what the user sees now. This is
a special screen.

(.
'--- � screen This is a subset of windows which are as large as

the terminal screen; in other words, they start at the
upper-left hand corner and encompass the
lower-right hand corner. One of these, stdscr, is
automatically provided for the programmer.

c

c

The screen processing library has a variety of predefined names.
These names refer to variables, manifest constants, and types that
can be used with the library functions. The names, types, and
descriptions of the variables are:

Name Type

curser WINDOW*

stdscr WINDOW*

Def term char

Variables

Description

A pointer to the current version
of the terminal screen.

A pointer to the default screen
used for updating when no
explicit screen is defined.

A pointer to the default terminal
type if the type cannot be
determined.

3-1 1

Name

My_term

ttytype

LINES

COLS

ERR

OK

Type

boo!

char

int

int

Description

The terminal type flag. If set, it
causes the terminal specification
in Def term to be used,
regardless of the real terminal
type.

A pointer to the full name of the
current terminal.

The number of lines on the
terminal.

The number of columns on the
terminal.

boolean false value (0)
The error flag. Returned by
functions on an error.

boolean true value (1)
The okay flag. Returned by
functions on successful
operation.

The names and descriptions of the types and constants are:

Name

boo!

FALSE

reg

3-12

Types and Constants

Description

A type. It is the same as char type.

The boolean false value (0).

A storage class. It is the same as register storage
class.

·,; '"'

()

0

Name

TRUE

WINDOW

Description

The boolean true value (1) .

A structure of short integers, characters and
pointers. This represents current, maximum, and
beginning x and y positions, clear, leave and scroll
toggles, and three pointers to first and last
characters and the y pointer.

Preparing the Screen

The initscr and endwin functions perform the operations required
to initialize and terminate programs that use the screen processing
functions. The following sections describe these functions and
how they affect the terminal.

Initializing the Screen

The initscr function initializes screen processing for a program by
allocating the required memory space for the screen processing
functions and variables and by setting the terminal to the proper
modes. The function call has the form:

initscr()

No arguments are required.

3-13

Starting Up

In order to use the screen package, the routines must know about
terminal characteristics, and the space for curser and stdscr must
be allocated. These functions are performed by initscr() . Since it
must allocate space for the windows, it can overflow core when
attempting to do so. On this rather rare occasion, initscr()
returns ERR. The initscr() function must always be called before
any of the routines which affect windows are used. If it is not,
the program will core dump as soon as either curser or stdscr are
referenced. However, it is usually best to wait to call it until after
you are sure you will need it, like after checking for startup errors.
Terminal status changing routines like nl () and crmode () should
be called after initscr().

The initscr function must be used to prepare the program for
subsequent calls to other screen processing functions and for use
of the screen processing variables. For example, in the following
program fragment initscr initializes the screening processing
functions:

i ncl ude <curses . h>
mai n ()
{
i n i tscr () ;
i f (cmps tr (ttytype , "dumb "))

fpr i nt f (s tderr , "Termi nal type can ' t displ ay screen . ") ;

In this example, the predefined variable ttytype is checked for the
current terminal type.

3-14

Using Terminal Capability and Type

The initscr function uses the terminal capability descriptions given
in the XENIX system's I etcltermcap file to prepare the screen
processing functions for creating and updating terminal screens.
The descriptions define the character sequences required to
perform a given operation on a given terminal. These sequences
are used by the screen processing functions to add, insert, delete,
and move characters on the screen. The descriptions are
automatically read from the file when screen processing is
initialized, so direct access by a program is not required. For
example, HO is a string which moves the cursor to the "home"
position. These names are identical to those variables used in the
I etcltermcap database to describe each capability. As there are
two types of variables involving ttys, there two routines. The
first, gettmode (), sets some variables based upon the tty modes
accessed by gtty (2). The second, setterm (), a larger task by
reading in the descriptions from the letcltermcap database. This
is the way these routines are used by initscr() :

i f (i s atty (0)) {
gettmode () ;

C11 i f (s p=getenv ("TERM ")

. s etterm (sp) ;
)

c

e l s e
setterm (Def_term) ;

_puts (T I) ;
_puts (VS) ;

The isattyd() function checks to see if file descriptor 0 is a
terminal. The isatty () function is defined in the default C library
function routines. It does a gtty (2) on the descriptor and checks
the return value. If it is, gettmode () sets the terminal description
modes from a gtty (2) getenv () is then called to get the name of
the terminal, and that value (if there is one) is passed to setterm
(), which reads in the variables from letcltermcap associated
with that terminal. (The getenv () function returns a pointer to a
string containing the name of the terminal, which we save in the
character pointer sp.) If isatty () returns false, the default
terminal Def term is used. The TI and VS sequences initialize
the terminal.The puts () routine is a macro which uses tputs
() . It is these things which endwin () undoes.

3-15

The initscr function uses the shell's TERM variable to determine
which terminal capability description to use. The TERM variable
is usually assigned an identifier when a user logs in. This
identifier defines the terminal type and is associated with a
terminal capability description in the /etc/termcap file.

If the TERM variable has no value, the functions use the default
terminal type in the library's predefined variable Def term. This
variable initially has the value "dumb" (for dumb terminal), but
the user may change it to any desired value. You must do this
before calling the initscr function.

In some cases, it is desirable to force the screen processing
functions to use the default terminal type. This can be done by
setting the library's predefined variable My term to the value ! .
The full name of the current terminal is stored in the predefined
variable ttytype.

Capabilities from termcap

Capabilities from termcap are of three kinds: string valued
options, numeric valued options, and boolean options. The string
valued options are the most complicated, since they may include "
padding information, which we describe now.

Intelligent terminals often require padding on intelligent
operatiorts at high (and sometimes even low) speed. This is
specified by a number before the string in the capability and has
meaning for the capabilities that have a P at the front of their
commertt. This normally is a number of milliseconds to pad the
operation. In the current system, which has no true
programmable delays, we do this by sending a sequence of pad
characters (normally nulls, but can be specified by PC).

In some cases, the pad is better computed as some number of
milliseconds times the number of affected lines (to the bottom of
the screen usually, except when terminals have insert modes that
shift several lines). This is specified as, for example, 12*. before
the capability, to say 1 2 milliseconds per affected whatever
(currently always line). Capabilities where this makes sense say
P*.

3-16

c

Terminal capabilities, types, and identifiers are described in detail
in termcap(F) in the IBM Personal Computer XENIX Command
Reference.

Using Default Terminal Modes

The initscr function automatically sets a terminal to default
operation modes. These modes define how the terminal displays
characters sent to the screen and how it responds to characters
typed at the keyboard. The initscr function sets the terminal to
ECHO mode, which causes characters typed at the keyboard to be
displayed at the screen, and RAw mode, which causes characters
to be used as direct input (no editing or signal processing is done).

The default terminal modes can be changed by using the
appropriate functions described in the section "Setting a Terminal
Mode" later in this chapter. If the modes are changed, they must
be changed immediately after calling initscr. Terminal modes are
described in detail in tty(M) in the IBM Personal Computer
XENIX Command Reference.

Note: Use terminal mode functions only with other screen
processing functions. Never use them alone.

Using Default Window Flags

The initscr function automatically clears the cursor, scroll, and
clear flags of the standard screen to their default values. These
flags, called the window flags, define how the refresh function
affects the terminal screen when refreshing from the standard
screen. When clear, the cursor flag prevents the terminal's cursor
from moving back to its original location after the screen is
updated, the scroll flag prevents scrolling on the screen, and the
clear flag prevents the characters on the screen from being cleared
before being updated. The flags may be changed by using the
functions described in the section "Setting Window Flags," in this
chapter.

3-17

Using the Default Terminal Size

The initscr function sets the terminal screen size to a default
number of lines and columns. The default values are given in the
predefined variables LINES and COLS. You can change the
default size of a terminal by setting the variables to new values.
This should be done before the first call to initscr. If it is done
after the first call, a second call to initscr must be made to delete
the existing standard screen and create a new one.

Terminating Screen Processing

In order to do certain optimizations, and, on some terminals, to
work at all, some things must be done before the screen routines
start up. These functions are performed in gettmode() and
setterm(), which are called by initscr(). In order to clean up after
the routines, the routine endwin() is provided. It restores tty
modes to what they were when initscr() was first called. Thus,
anytime after the call to initscr, endwin() should be called before
exiting.

The endwin function terminates the screen processing in a
program by freeing all memory resources allocated by the screen ·'-
processing functions and restoring the terminal to the state before
screen processing began. The function call has the form:

end win()

No arguments are required.

3-18

c

0

0

The endwin function must be used before leaving a program that
has called the initscr function to restore the terminal to its
previous state. The function is generally the last function call in
the program. For example, in the following program fragment
initscr and endwin form the beginning and end of the program:

#i ncl ude <curses . h>
mai n ()
[

}

i n i tscr () ;
;* Program body . *;

endwi n () ;

The endwin function must not be called if initscr has not been
called. Also, endwin should be called before any call to the exit
function. The endwin function must also be called if the gettmode
and setterm functions have been called, even if initscr has not.

How to Use the Screen Package

This is a description of how to actually use the screen package. In
it, we assume all updating, reading, and so forth. It applies to
stdscr. All instructions will work on any window, with changing
the function name and parameters, as mentioned earlier in the
"Naming Conventions" section.

Once the screen windows have been allocated by initscr(), you
can set them up for the run. If you want to, say, allow the
window to scroll, use scrollok(). If you want the cursor to be left
after the last change, use leaveok(). If this isn't done, refresh()
will move the cursor to the window's current (y,x) co-ordinates
after updating it. New windows of your own can be created, too,
by using the functions newwin() and subwin(). The delwin()
function allows you to get rid of old windows. If you wish to
change the official size of the terminal by hand, just set the
variables LINES and COLS to be what you want, and then call
initscr(). This is best done before, but can be done either before
or after, the first call to initscr(), as it will always delete any
existing stdscr and/ or curser before creating new ones.

3-19

Output

Now that we have set things up, we will want to actually update
the terminal. The basic functions used to change what will go on a
window are addch() and move(). The addch() function adds a
character at the current (y,x) coordinates, returning ERR if it
would cause the window to illegally scroll, that is, printing a
character in the lower right-hand corner of a terminal which
automatically scrolls if scrolling is not allowed. The move()
function changes the current (y,x) coordinates to whatever you
want them to be. It returns ERR if you try to move off the window
when scrolling is not allowed. As mentioned above, you can
combine the two into mvaddch() to do both things in one fell
swoop.

The other output functions, such as addstr() and printw(), all call
addch() to add characters to the window.

After you have put on the window what you want there, when
you want the portion of the terminal covered by the window to be
made to look like it, you must call refresh().

In order to optimize finding changes, refresh() assumes that any
part of the window not changed since the last refresh() of that \._
window has not been changed on the terminal, that is, that you
have not refreshed a portion of the terminal with an overlapping
window. If this is not the case, the routine touchwin() is provided
to make it look like the entire window has been changed, thus
making refresh() check the whole subsection of the terminal for
changes.

If you call wrefresh() with curser, it will make the screen look like
curser thinks it looks like. This is useful for implementing a
command which would redraw the screen in case it gets messed
up.

3-20

0

Input

Input is essentially a mirror image of output. The complementary
function to addch() is getch() which, if echo is set, will call
addch() to echo the character. Since the screen package needs to
know what is on the terminal at all times, if characters are to be
echoed, the tty must be in raw or cbreak mode. If it is not,
getch() sets it to be cbreak, and then reads in the character.

Using the Standard Screen

The following sections explain how to use the standard screen to
display and edit characters on the terminal screen.

The Functions

In the following definitions, "[*]" means that the "function" is
really a "#define" macro with arguments. This means that it will
not show up in stack traces in the debugger, or, in the case of
such functions as addch(), it will show up as it's "w" counterpart.

Adding a Character

The addch function acids a given character to the standard screen
and moves the character pointer one position to the right. The
function call has the form:

addch(ch)

where ch gives the character to be added and must have char type.
For example, if the current position is (0,0), the function call: ·

addch (' A ') ;

0 places the letter A at this position and moves the pointer to (0, 1) .

3-21

If a newline (' \ n') character is given, the function deletes all
characters from the current position to the end of the line and
moves the pointer one line down. If the newline flag is set, the
function deletes the characters and moves the pointer to the
beginning of the next line. If a return (' \ r') is given, the function
moves the pointer to the beginning of the current line. If a tab
('\ t') is given, the function moves the pointer to the next tab
stop, adding enough spaces to fill the gap between the current \.
position and the stop. Tab stops are placed at every eight
character positions.

The function returns ERR if it encounters an error, such as illegal
scrolling.

Adding a String

The addstr function adds a string of characters to the standard
screen, placing the first character of the string at the current
position and moving the pointer one position to the right for each
character in the string. The function call has the form:

addstr(str) [*]

where str is a character pointer to the given string. For example,
if the current position is (0,0), the function call:

addstr (" l i ne ") ;

places the beginning of the string line at this position and moves
the pointer to (0,4).

If the string contains newline, return, or tab characters, the
function performs the same actions as described for the addch
function. If the string does not fit on the current line, the string is
truncated.

The function returns ERR if it encounters an error, such as illegal
scrolling.

3-22

Printing Strings, Characters, and Numbers

The printw function prints one or more values on the standard
screen, where a value may be a string, a character, or a decimal,
octal, or hexadecimal number. The function call has the form:

L' printw(fmt [, arg] . . .)

0

where fint is a pointer to a string that defines the format of the
values, and arg is a value to be printed. If more than one arg is
given, each must be separated from the preceding argument with a
comma (,). For each arg given, there must be a corresponding
format given in fmt. A format may be o/os for string, o/o c for
character, and o/od, o/oo, or o/ox for a decimal, octal, or
hexadecimal number, respectively. (Other formats are described
inprintf(S) in the IBM Personal Computer XENIX Software
Command Reference.) If o/os is given, the corresponding arg must
be a character pointer. For other formats, the actual value or a
variable containing the value may be given.

The function copies both numbers and strings to the standard
screen at the same time. For example, if the current position is
(O,D), the function call:

pri ntw(11 %s %d 11 , name , 1 5 } ;

prints the name given by the variable name starting at position
(O,D). It then prints the number 15 immediately after the name.

The function returns ERR if it encounters an error, such as illegal
scrolling.

3-23

Reading a Character from the Keyboard

The getch function reads a single character from the terminal
keyboard and returns the character as a value. The function call
has the form:

c = getch() [*]

where c is the variable to receive the character.

The function reads a series of individual characters. For example,
in the following program fragment, characters are read and stored
until a newline or the end of the file is encountered or until the
buffer size has been reached:

char c , p [MAX J ;
i nt i ;

i = 0 ;
whi l e ((c=getch ()) 1 = ' \ n ' && c ! = EOF && <MAX)

p [i ++] = c ;

If the terminal is set to ECHO mode, getch copies the character to
the standard screen; otherwise, the screen remains unchanged. If
the terminal is not set to RAw or NOECHO mode, getch ·"

automatically sets the terminal to CBREAK mode, then restores the
previous mode after reading the character. Terminal modes are
described later in the chapter.

The function returns ERR if it encounters an error, such as illegal
scrolling.

3-24

--1
I Reading a String from the Keyboard

The getstr function reads a string of characters from the terminal
keyboard and copies the string to a given location. The function
call has the form:

(\ getstr(str) [*]
\,_

c

where str is a character pointer to the variable or location to
receive the string. When typed at the keyboard, the string must
end with a newline character or with the end-of-file character.
The extra character is replaced by a null character when the string
is stored. It is the programmer's responsibility to ensure that str
has adequate space to store the typed string.

The function reads names and other text from the keyboard. For
example, in the following program fragment getstr reads a
filename from the keyboard and stores it in the array name:

char name [20 l ;

getstr (name) ;

If the terminal is set to ECHO mode, getstr copies the string to the
standard screen. If the terminal is not set to RAw or NO ECHO

mode, the function automatically sets the terminal to CBREAK

mode, then restores the previous mode after reading the
character. Terminal modes are described later in the chapter.

The function returns ERR if it encounters an error, such as illegal
scrolling.

3-25

Reading Strings, Characters, and Numbers

The scanw function reads one or more values from the terminal
keyboard and copies the values to given locations. A value may
be a string, character, or decimal, octal, or hexadecimal number.
The function call has the form:

scanw(fmt,argptrl , argptr2 . . .

where fmt is a pointer to a string defining the format of the values
to be read, and argptr is a pointer to the variable to receive a
value. If more than one argptr is given, each must be separated
from the preceding item with a comma (,). For each argptr given,
there must be a corresponding format given in fmt. A format may
be 0/os for string, 0/oc for character, and 0/od, %o, or %x for a
decimal, octal, or hexadecimal number, respectively. (Other
formats are described in scanf(S) in the ffiM Personal Computer
XENIX Software Command Reference.)

The function reads a combination of strings and numbers from
the keyboard. For example, in the following program fragment
scanw reads a name and a number from the keyboard.

char name [20] ;
i nt i d ;

scanw(1'%s %d 11 , name , & i d) ;

In this example, the input values are stored in the character array
name and the integer variable ID.

If the terminal is set to ECHO mode, the function copies the string
to the standard screen. If the terminal is not set to RAW or
NOECHO mode, the function automatically sets the terminal to
CBREAK mode, then restores the previous mode after reading the
character.

The function returns ERR if it encounters an error, such as illegal
scrolling.

3-26

0

0

Moving the Current Position

The move function moves the pointer to the given position. The
function call has the form:

move(y, x)

where y is an integer value giving the new row position, and x is
an integer value giving the new column position. For example, if
the current position is (0,0), the function call:

move (5 ,4) ;

moves the pointer to line 5, column 4.

The function returns ERR if it encounters an error, such as illegal
scrolling.

Inserting a Character

The insch function inserts a character at the current position and
shifts the existing character (and all characters to its right) one
position to the right. The function call has the form:

insch(c)

where c is the character to be inserted.

3-27

The function inserts a series of characters into an existing line.
For example, in the following program fragment insch is used to
insert the number of characters given by cnt into the standard
screen at the current position:

i n t cnt ;
char *stri ng ;

whi l e (cnt ! = 0) {
i n s c h (stri ng[cntl) ;
cnt- - ;
}

The function returns ERR if it encounters an error, such as illegal
scrolling.

Inserting a Line

The insertln function inserts a blank line at the current position
and moves the existing line (and all lines below it) down one line,
causing the last line to move off the bottom of the screen. The
function call has the form:

insertln()

No arguments are required.

The function is used to insert additional lines of text in the
standard screen. For example, in the following program fragment
insert in is used to insert a blank line when the count in cnt is equal
to 79:

i n t cnt ;

if (cnt - - 79)
i nsertl n () ;

The function returns ERR if it encounters an error, such as illegal
scrolling.

3-28

0

Deleting a Character

The delch function deletes the character at the current position
and shifts all the characters to the right of the deleted character
one position to the left. The last character on the line is replaced
by a space. The function call has the form:

delch()

No arguments are required.

The function deletes a series of characters from the standard
screen. For example, in the following program fragment delch
deletes the character at the current position as long as the count
in cnt is not 0:

i n t cnt;

whi l e (cnt ! = 0) [
del ch () ;
cnt--
l

Deleting a Line

The deleteln function deletes the current line and shifts the line
below the deleted line (and all lines below it) one line up, leaving
the last line on the screen blank. The function call has the form:

deleteln()

No arguments are required.

The delete In function deletes existing lines from the standard
screen. For example, in the following program fragment deleteln
is used to delete a line from the standard screen if the count in cnt
is 79:

i n t cnt;

if (cnt - - 7 9)
del etel n () ;

3-29

Clearing the Screen

The clear and erase functions clear all characters from the
standard screen by replacing them with spaces. The functions
prepare the. screen for new text.

The function call:

c l ear ()

clears all characters from the standard screen, moves the pointer
to (0,0), and sets the standard screen's clear flag. The flag causes
the next call to the refresh function to clear all characters from the
terminal screen.

The function call:

erase

clears the standard screen, but does not set the clear flag. For
example, in the following program fragment clear clears the
screen if the input value is 12:

char c ;

i f ((c=getch ()) - - 1 2)
c l ear () ;

Clearing a Part of the Screen

The c/rtobot and clrtoeol functions clear one or more characters
from the standard screen by replacing the characters with spaces.
The functions prepare a part of the standard screen for new
characters.

The c/rtobot function clears the screen from the current position
to the bottom of the screen. For example, if the current position
is (10,0), the function call:

cl rtobot () ; [*]

clears all characters from line 10 and all lines below line 10.

3-30

0

G

The clrtoeol function clears the standard screen from the current
position to the end of the current line. For example, if the current
position is (1 0,10) , the function call:

cl rtoeo l () ; [*]

clears all characters from (10,10) to (10,79). The characters at
the beginning of the line remain unchanged.

Neither the clrtobot or clrtoeol functions change the current
position.

Refreshing from the Standard Screen

The refresh function updates the terminal screen by copying one
or more characters from the standard screen to the terminal. The
function effectively changes the terminal screen to reflect the new
contents of the standard screen. The function call has the form:

refresh() [*]

No arguments are required.

The function is used solely to display changes to the standard
screen. The function copies only those characters that have
changed since the last call to refresh and leaves any existing text
on the terminal screen. For example, in the following program
fragment refresh is called twice:

addstr ("The first time. \ n ") ;
refresh () ;
addstr ("The second time . \ n ") ;
refresh () ;

In this example, the first call to refresh copies the string "The first
time." to the terminal screen. The second call copies only the
string "The second time. "to the terminal, since the original string
has not been changed.

The function returns ERR if it encounters an error, such as illegal
scrolling. If an error is encountered, the function attempts to
update as much of the screen as possible without causing the
scroll.

3-31

Creating and Using Windows

The following sections explain how to create and use windows to
display and edit text on the terminal screen.

Creating a Window

The newwin function creates a window and returns a pointer that
can be used in subsequent screen processing functions. The
function call has the form:

win = newwin(lines, cols, begin_y, begin_x)

where win is the pointer variable to receive the return value, lines
and co/s are integer values that give the total number of lines and
columns, respectively, in the window, and begin_y and begin_x
are integer values that give the line and column positions,
respectively, of the upper left corner of the window when it is
displayed on the terminal screen. The win variable must have
type WINDOW.

The function is used in programs that maintain a set of windows,
displaying different windows at different times or alternating
between windows as needed. For example, in the following
program fragment newwin creates a new window and assigns the
pointer to this window to the variable midscreen:

W I NDOW *mi ds creen ;

m idscreen = newwi n (5 , 1 0 , 9 , 35) ;

The window has 5 lines and 10 columns. The upper left corner of
the window is placed at the position (9,35) on the terminal
screen.

3-32

\.,_

If either lines or co/s is zero, the function automatically creates a
window that has "LINES - begin y" lines or "COLS -
begin x" columns, where LINES and COLS are the predefined
constants giving the total number of lines and columns on the
terminal screen. For example, the function call: � newwi n (O , 0 , 0 , 0) ;

0

0

creates a new window whose upper left corner is at position (0,0)
and that has "LINES" lines and "COLS" columns.

Note: You must not create windows that exceed the
dimensions of the screen.

The newwin function returns the value (WINDOW*) ERR on an
error, such as insufficient memory for the new window.

Creating a Subwindow

The subwin function creates a subwindow and returns a pointer to
the new window. A subwindow is a window that shares all or
part of the character space of another window and provides an
alternate way to access the characters in that space. The function
call has the form:

swin = subwin(win, lines, cols, begin_y, begin_x)

where swin is the pointer variable to receive the return value, win
is the pointer to the window to contain the new subwindow, lines
and co/s are integer values that give the total number of lines and
columns, respectively, in the subwindow, and begin _y and
begin x are integer values that give the line and column position,
respectively, of the upper left corner of the subwindow when it is
dislayed on the terminal screen. The swin variable must have type
WINDOW*.

3-33

The function divides a large window into separate regions. For
example, in the following program fragment subwin creates the
subwindow named cmdmenu in the lower part of the standard
screen:

WI NDOW *cmdmenu ;

cmdmen u = subwi n (s tdsc r , 5 , 80 , 1 9 , 0) ;

In this example, changes to "cmdmenu" affect the standard
screen as well.

The subwin function returns the value (wiNDow*) ERR on an error,
such as insufficient memory for the new window.

Adding and Printing to a Window

The waddch, waddstr, and wprintw functions add and print
characters, strings, and numbers to a given window.

The waddch function adds a given character to the given window
and moves the character pointer one position to the right. The
function call has the form:

waddch(win, ch) [*]

where win is a pointer to the window to receive the character, and
ch gives the character to be added; ch must have char type. For
example, if the current position in the window midscreen is (0,0),
the function call:

waddc h (mi dscreen , ' A ') ;

places the letter A at this position and moves the pointer to (0,1) .

3-34

I
""

(1

()

c

The waddstr function adds a string of characters to the given
window, placing the first character of the string at the current
position and moving the pointer one position to the right for each
character in the string. The function call has the form:

waddstr(win, str)

where win is a pointer to the window to receive the string, and str
is a character pointer to the given string. For example, if the
current position is (0,0), the function call:

waddstr(mi dscreen , " l i ne '') ;

places the beginning of the string "line" at this position and
moves the pointer to (0,4) .

The wprintw function prints one or more values on the given
window, where a value may be a string, a character, or a decimal,
octal, or hexadecimal number. The function call has the form:

wprintw(win, fmt [, arg] . . .)

where win is a pointer to the window to receive the values, fmt is
a pointer to a string that defines the format of the values, and arg
is a value to be printed. If more than one arg is given, each must
be separated from the preceding with a comma (,). For each arg
given, there must be a corresponding format given in fmt. A
format may be o/os for string, o/o c for character, and o/od, o/oo, or
o/ox for a decimal, octal, or hexadecimal number, respectively.
(Other formats are described in printf(S) in the IBM Personal
Computer XENIX Software Command Reference.) If o/os is given,
the corresponding arg must be a character pointer. For other
formats, the actual value or a variable containing the value may
be given.

3-35

The function copies both numbers and strings to the standard
screen at the same time. For example, in the following program
fragment wprintw prints a name and then the number 1 5 at the
current position in the window midscreen:

char *name ;

wpri n tw(mids creen , "%s %d' ' , name , 1 5 } ;

When a newline, return, or tab character is given to a waddch,
waddstr, or wprintw function, the functions perform the same
actions as described for the addch function. The functions return
ERR if they encounter errors, such as illegal scrolling.

Reading and Scanning for Input

The wgetch, wgetstr, and wscanw functions read characters, strings,
and numbers from the standard input file and usually echo the
values by copying them to the given window.

The wgetch function reads a single character from the standard
input file and returns the character as a value. The function call
has the farm:

c = wgetch(win)

where win is a pointer to a window, and c is the character variable
to receive the character.

The function reads a series of characters from the keyboard. For
example, in the following program fragment wgetch reads
characters until a colon (:) is found:

char c , di r[MAX J ;
i nt i ;

i = 0 ;
whi l e ((c=wgetch (cmdmenu } } ! = ' · ' && <MAX }

dir[i ++] = c ;

3-36

I
"

0

0

The wgetstr function reads a string of characters from the terminal
keyboard and copies the string to a given location. The function
call has the form:

wgetstr(win, str)

where win is a pointer to a window, and str is a character pointer
to the variable or location to receive the string. When typed at
the keyboard, the string must end with a newline character or
with the end-of-file character. The extra character is replaced by
a null character when the string is stored. It is the programmer's
responsibility to ensure that str has adequate space for storing the
typed string.

The function reads names and other text from the keyboard. For
example, in the following program fragment wgetstr reads a string
from the keyboard and stores it in the array filename:

char fi l ename [20 l ;

wgetstr(cmdmenu , fi l ename) ;

The wscanw function reads one or more values from the standard
input file and copies the values to given locations. A value may
be a string, a character, or a decimal, octal, or hexadecimal
number. The function call has the form:

wscanw(win, fmt [, argptr] . . .)

where win is a pointer to a window, fmt is a pointer to a string
defining the format of the values to be read, and argptr is a
pointer to the variable to receive a value. If more than one argptr
is given, each must be separated from the preceding by a comma
(,). For each argptr given, there must be a corresponding format
given in fmt. A format may be %s for string, % c for character,
and %d, %o, or %x for a decimal, octal, or hexadecimal number,
respectively. (Other formats are described in scanf(S) in the IBM
Personal Computer XENIX Software Command Reference.)

3-37

The function reads a combination of strings and numbers from
the keyboard. For example, in the following program fragment
wscanw reads a name and a number from the keyboard:

char name[20l ;
i nt i d ;

wscanw(mi dscreen , 11 %5 %d 11 , name , & i d) ;

In this example, the name is stored in the character array name
and the number in the integer variable id.

If the terminal is set to ECHO mode, the function copies the string
to the given window. If the terminal is not set to RAW or NO ECHO

mode, the function automatically sets the terminal to CBREAK

mode, then restores the previous mode after reading the
character.

The functions return ERR if they encounter errors, such as illegal
scrolling.

Moving the Current Position in a Window

The wmove function moves the current position in a given
window. The function call has the form:

wmove(win, y, x)

where win is a pointer to a window, y is an integer value giving the
newline position, and x is an integer value giving the new column
position. For example, the function call:

wmove(mi dscreen , 4 , 4) ;

moves the current position in the window midscreen to (4,4).

The function returns ERR if it encounters an error, such as illegal
scrolling.

3-38

0

Inserting Characters

The winsch and winsertln functions insert characters and lines into
a given window.

The winsch function inserts a character at the current position and
shifts the existing character (and all characters to its right) one
position to the right. The function call has the form:

winsch(win, c)

where win is a pointer to a window, and c is the character to be
inserted.

The function edits the contents of the given window. For
example, the function call:

winsch (mi dscreen , ' X ') ;

inserts the character X at the em-rent position in the window
"1nidscreen."

The winsertln function inserts a blank line at the current position
and moves the existing line (and all lines below it) down one line,
causing the last line to move off the bottom of the screen. The
function call has the form:

winsertln (win)

where win is a pointer to the window to receive the blank line.

The function inserts lines into a window. For example, in the
following program fragment winsertln inserts a blank line at the
top of the window cmdmenu preparing it for a newline:

char l i ne[80 l ;

wmove (cmdmenu , 3 , 0) ;
wi nsertl n(cmdmenu) ;
waddstr(cmdmenu , l i ne) ;

Both functions return ERR if they encounter errors, such as illegal
scrolling.

3-39

Deleting Characters and Lines

The wdelch and wdeleteln functions delete characters and lines
from the given window.

The wdelch function deletes the character at the current position
and shifts the character to the right of the deleted character (and
all characters to its right) one position to the left. The last
character on the line is replaced with a space. The function call
has the form:

wdelch(win)

where win is a pointer to a window.

The function edits the contents of the standard screen. For
example, the function call:

wdel ch (mi ds creen) ;

deletes the character at the current position in the window
midscreen.

The wdeleteln function deletes the current line and shifts the line
below the deleted line (and all lines below it) one line up, leaving
the last line in the screen blank. The function call has the form:

wdeleteln(win)

where win is a pointer to a window.

The function deletes existing lines from a given window. For
example, in the following program fragment wdeleteln deletes the
lines in midscreen until cnt is equal to zero:

i nt cnt ;

whi l e (cnt ! = 0) {
wdel etel n (mi dscreen) ;
cnt-- ;
}

3-40

1
I
!

Clearing the Screen

The we/ear, werase, wclrtobot, and wclrtoeol functions clear all or
some of the characters from the given window by replacing them
with spaces. The functions prepare the window for new text.

The we/ear function clears all characters from the window, moves
the pointer to (0,0), and sets the standard screen's clear flag. The
flag causes the next wrefresh function call to clear all characters
from the window. The function call has the form:

wclear(win)

where win is the window to be cleared.

The werase function clears the given window, moves the pointer
to (0,0), but does not set the clear flag. It is used whenever the
contents of the terminal screen must be preserved. The function
call has the form:

werase(win)

o where win is a pointer to the window to be cleared.

0

The welrtobot function clears the window from the current
position to the bottom of the screen. The function call has the
form:

wclrtobot(win)

where win is a pointer to the window to be cleared. For example,
if the current position in the window "midscreen" is (1 0,0) , the
function call:

wcl rtobot(midscreen) ;

clears all characters from line 1 0 and all lines below line 10 .

3-41

The wclrtoeol function clears the standard screen from the current
position to the end of the current line. The function call has the
form:

wclrtoeol(win)

where win is a pointer to the window to be cleared. For example, 1
if the current position in midscreen is (10, 10), the function call: \,

wcl rtoeol (midscreen) ;

clears all characters from (10 , 10) to the end of the line. The
characters at the beginning of the line remain unchanged.

The wclrtobot and wclrtoeol functions do not change the current
position.

Refreshing from a Window

The wrefresh function updates the terminal screen by copying 1 or
more characters from the given window to the terminal. The
function effectively changes the terminal screen to reflect the new
contents of the window. The function call has the form:

wrefresh(win)

where win is a pointer to a window.

The function is used solely to display changes to the window. The
function copies only those characters that have changed since the
last call to wrefresh and leaves any existing text on the terminal
screen. For example, in the following program fragment wrefresh
is called twice:

wadds tr(cmdmenu , "Type a command name \ n ") ;
wrefres h (cmdmenu) ;
waddstr(cmdmenu , "Command : ") ;
wrefre s h (cmdmenu) ;

3-42

In the preceding example, the first call to wrefresh copies the
string "Type a command name" to the terminal screen. The
second call copies only the string "Command:" to the terminal,
because the original string has not been changed.

Note: If curser is given with wrefresh, the function restores
the actual screen to its most recent contents. This is useful
for implementing a redraw feature for screens that become
cluttered with unwanted output.

The function returns ERR if it encounters an error, such as illegal
scrolling. If an error occurs, the function attempts to update as
much of the screen as possible without causing the scroll.

Overlaying Windows

The overlay function copies all characters, except spaces, from
one window to another, moving characters from their original
positions in the first window to identical positions in the second.
The function effectively lays the first window over the second,
letting characters in the second window that would otherwise be
covered by spaces remain unchanged. The function call has the
form:

overlay(win], win2)

where win] is a pointer to the window to be copied, and win2 is a
pointer to the window to receive the copied text. The starting
positions of win] and win2 must match, otherwise an error occurs.
If win I is larger than win2, the function copies only those lines
and columns in win] that fit in win2.

The function builds a composite screen from overlapping
windows. For example, in the following program fragment overlay
builds the standard screen from two different windows:

WI NDOW *i nfo , *cmdmenu ;

overl ay(i nfo , stdscr) ;
overl ay(cmdmenu , stdscr) ;
refresh () ;

3-43

Overwriting a Screen

The overwrite function copies all characters, including spaces,
from their positions in the first window to identical positions in
the second. The function effectively writes the contents of the
first window over the second, destroying the previous contents of
the second window. The function call has the form:

overwrite(win], win2)

where win] is a pointer to the window to be copied, and win2 is a
pointer to the window to receive the copied text. If win I is larger
than win2, the function copies only those lines and columns in
winl that fit in win2.

The function displays the contents of a temporary window in the
middle of a larger window. For example, in the following
program fragment, overwrite copies the contents of a work
window to the standard screen:

WI NDOW *wo r k ;

overwr i te(work , s tds cr) ;
refresh () ;

Moving a Window

The mvwin function moves a given window to a new position on
the terminal screen, causing the upper left corner of the window
to occupy a given line and column position. The function call has
the form:

mvwin(win , y, x)

where win is a pointer to the window to be moved, y is an integer
value giving the line to which the corner is to be moved, and x is
an integer value giving the column to which the corner is to be
moved.

3-44

·."-

-1

r
\ .)

The function moves a temporary window when an existing
window under it contains information to be viewed. For example,
in the following program fragment mvwin moves the window
named work to the upper left corner of the terminal screen:

WI NDOW *work ;

mvwi n (work , 0 , 0) ;

The function retnrns ERR if it encounters an error, such as an
attempt to move part of a window off the edge of the screen.

Reading a Character from a Window

The inch and winch functions read a single character from the
current pointer position in a window or screen.

The inch function reads a character from the standard screen.
The function call has the form:

c = inch() [*]

C': where c is the character variable to receive the character read.

0

The winch function reads a character from a given window or
screen. The fnnction call has the form:

c = winch(win) [*]

where win is the pointer to the window containing the character
to be read.

3-45

The functions compare the actual contents of a window with what
is assumed to be there. For example, iu the following program
fragment inch and wirzch compare the characters at position (0,0)
in the standard screen and in the window named altscreen:

char c l , c 2 ;

c l i n ch () ;
c2 wi nch (a l tscreen) ;
i f (c l ! = c 2)

error () ;

Reading a character from a window does not alter the contents of
the window.

Touching a Window

The touchwin function makes the entire contents of a given
window appear to be modified, causing a subsequent refresh call
to copy all characters in the window to the terminal screen. The
function call has the form:

touchwin(win)

where win is a pointer to the window to be touched.

The function is used when two or more overlapping windows
make up the terminal screen. For example, the function call:

touchwi n (l eftscreen) ;

touches the window named leftscreen. A subsequent refresh
copies all characters in "leftscreen" to the terminal screen.

3-46

G

Deleting a Window

The de/win function deletes a given window from memory, freeing
the space previously occupied by the window for other windows
or for dynamically allocated variables. The function call has the
form:

delwin(win)

where win is the pointer to the window to be deleted.

The function removes temporary windows from a program to free
memory space for other uses. For example, the function call:

del win (midscreen) ;

removes the window named midscreen.

Using Other Window Functions

The following sections explain how to perform a variety of
operations on existing windows, such as setting window flags and
drawing boxes around the window.

Drawing a Box

The box function draws a box around a window using the given
characters to form the horizontal and vertical sides. The function
call has the form:

box(win, vert, hor)

where win is the pointer to the desired window, vert is the vertical
character, and hor is the horizontal character. Both ver and hor
must have char. type.

3-47

The function distinguishes one window from another when
combining windows on a single screen. For example, in the
following program fragment, box creates a box around the
window in the lower half of the screen:

W INDOW *cmdmenu ;

cmdmenu = subwi n (s tdscr , 5 , 80 , 1 9 , 0) ;
box (cmdmenu , 1 I ' , ' - ') ;

If necessary, the function leaves the corners of the box blank to
prevent illegal scrolling.

Displaying Bold Characters

The standout and wstandout functions set the standout character
attribute, causing characters subsequently added to the given
window or screen to be displayed as bold characters.

The standout function sets the standout attribute for characters
added to the standard screen. The function call has the form:

standout() [*]

No arguments are required.

The wstandout function sets the standout attribute of characters
added to the given window or screen. The function call has the
form:

wstandout(win)

where win is a pointer to a window.

3-48

,
\.

C! /

0

The functions make error messages or instructions clearly visible
when displayed at the terminal screen. For example, in the
following program fragment standout sets the standout character
attribute before adding an error message to the standard screen:

i f (code " 5) [
s tandout () ;
addstr ('' I l l egal character . \ n '') ;
)

The actual appearance of characters with the standout attribute
depends on the given terminal. This attribute is defined by the
SO and SE (or US and UE) sequences given in the terminal's
termcap entry (see tenncap(M) in the IBM Personal Computer
XENIX Command Reference).

Restoring Normal Characters

The standend and wstandend functions restore the normal
character attribute, causing characters subsequently added to a
given window or screen to be displayed as normal characters.

The standend function restores the normal attribute for the
standard screen. The function call has the form:

standend() [*]

No arguments are required.

The wstandend function restores the normal attribute for a given
window or screen. The function call has the form:

wstandend(win)

where win is a pointer to a window.

3-49

The functions are used after an error message or instructions have
been added to a screen using the standout attribute. For example,
in the following program fragment standend restores the normal
attribute after an error message has been added to the standard
screen:

i f (code = 5) (
standout () ;
addstr (" I l l egal character . \ n ") ;
standend () ;
}

Getting the Current Position

The getyx function copies the current line and column position of
a given window pointer to a corresponding pair of variables. The
function call has the form:

getyx(win, y, x)

where win is a pointer to the window containing the pointer to be
examined, y is the integer variable to receive the line position, and
x is the integer variable to receive the column position.

The function saves the current position so that the program can
return to the position at a later time. For example, in the
following program fragment getyx saves the current line and
column position in the variables line and column:

i nt l i ne , col umn ;

getyx (stdsc r , l i ne , col umn) ;

3-50

Cl /

c

Setting Window Flags

The leaveok, scrollok, and clearok functions set or clear the cursor,
scroll, and clear-screen flags. The flags control the action of the
refresh function when called for the given window.

The /eaveok function sets or clears the cursor flag, which defines
how the refresh function places the terminal cursor and the
window pointer after updating the screen. If the flag is set,
refresh leaves the cursor after the last character to be copied and
moves the pointer to the corresponding position in the window. If
the flag is cleared, refresh moves the cursor to the same position
on the screen as the current pointer position in the window. The
function call has the form:

leaveok(win, state)

where win is a pointer to the window containing the flag to be set,
and state is a Boolean value defining the state of the flag. If state
is TRUE the flag is set; if FALSE, the flag is cleared. For example,
the function call:

l eaveok (s tdsc r , TRUE) ;

sets the cursor flag.

The scrol/ok function sets or clears the scroll flag for the given
window. If the flag is set, scrolling through the window is
allowed. If the flag is clear, no scrolling is allowed. The function
call has the form:

scrollok(win, state)

where win is a pointer to a window, and state is a Boolean value
defining how the flag is to be set. If state is TRUE, the flag is set; if
FALSE, the flag is cleared. The flag is initially clear, making
scrolling illegal.

3-51

The c/earok function sets and clears the clear flag for a given
screen. The function call has the form:

clearok(win, state}

where win is a pointer to the desired screen, and state is a Boolean
value. The function sets the flag if state is TRUE, and clears the
flag if FALSE. For example, the function call: ,"-

cl earo k (s tdscr, TRUE) ;

sets the clear flag for the standard screen.

When the clear flag is set, each refresh call to the given screen
automatically clears the screen by passing a clear-screen sequence
to the terminal. This sequence affects the terminal only; it does
not change the contents of the screen.

If c/earok is used to set the clear flag for the current screen cursor,
each call to refresh automatically clears the screen, regardless of
which window is given in the call.

Scrolling a Window

The scroll function scrolls the contents of a given window upward
by one line. The function call has the form:

scroll(win)

where win is a pointer to the window to be scrolled. The function
should be used in special cases only.

3-52

I�
" '

�, u

0

The WINDOW Structure

The WINDOW structure is defined as follows:

define WINDOW struct_wi n_st

struct wi n st {
short _cury ,_curx ;
short _maxy ,_maxx ;
short _begy ,_begx ;
s hort _fl ags ;
bool _cl ear ;
bool _leave;
bool _scrol l ;
char **_y;
short *_fi rstch ;
short *_l astc h ;

} ;

defi ne SUBWIN 01
defi ne END L I NE 02
defi ne FULLWI N 04
defi ne SCROLLWIN 010
defi ne STANDOUT 0200

The cury and curx parameters are the current (y, x)
coordinates for the window. 1\ew characters added to the screen
are added at this point. The maxy and maxx parameters are
the maximum values allowed for (cury,

-
curx). The begy

and begx parameters are the starting (y,X) coordinate8on the
terminal for the window, in other words, the window's home. The

cury, curx, maxy, and maxx parameters are measured
relative to (_begy, _begx), not the terminal's home.

The clear parameter tells if a clear-screen sequence is to be
generated on the next refresh() call. This is only meaningful for
screens. The initial clear-screen for the first refresh() call is
generated by initially setting clear to be TRUE for curser, which
always generates a clear-screen if set, irrelevant of the dimensions
of the window involved. The leave parameter is TRUE if the
current (y, x) coordinates and the cursor are to be left after the
last character changed on the terminal, or not moved if there is no
change. The _scroll parameter is TRUE if scrolling is allowed,

3-53

The y parameter is a pointer to an array of lines which describe
the terminal. Thus:

_y[i J

is a pointer to the ith line, and

_y[i] [j]

is the jth character on the ith line.

The flags parameter can have one or more values or'd into it.
SUBWIN means that the window is a subwindow, which

indicates to delwin() that the space for the lines is not to be freed.
ENDLINE says that the end of the line for this window is also

the end of a screen. FULL WIN says that this window is a
screen. SCROLL WIN indicates that the last character of this
screen isat the lower right-hand corner of the terminal; in other
words, if a character was put there, the terminal would scroll.

STANDOUT says that all characters added to the screen are in
standout mode.

Examples

Here we present a few examples of how to use the package. They
attempt to be representative, though not comprehensive.

Screen Updating

The following examples are intended to demonstrate the basic
structure of a program using the screen updating sections of the
package. Several of the programs require calculation sections that
are irrelevant to the example and therefore are usually not
included. However, data structure definitions are provided to
help you understand what the relevant portions do. The rest is
left as an exercise for you.

3-54

Twinkle

This is a moderately simple program that prints patterns on the
screen. It switches between patterns of asterisks, putting them
on, one-by-one in random order, and then taking them off in the

,.. -\
same fashion. It is more efficient to write this using only the

(! motion optimization, which is demonstrated below.

c�

0

i ncl ude
i ncl ude

define
defi ne
define

struct l ocs (
char y , x ;

} ;

typedef s truct l acs

LOCS Layout[NCOLS *

i nt Pattern ,

Nums tars ;

rna i n () (

<curses . h>
< s i gnal . h>

NCOLS 80
NLI NES 24
MAXPATTERNS 4

LOC S ;

NLINES] ; !* current board
* l ayout

I* current pattern
* number * I

;* number o f stars
* i n pattern */

char *getenv () ;
i n t d i e () ;

*I

s rand (getpi d ()) ; !* i n i t i a l i ze random
* sequence *;

(Example continues on next page.)

3-55

)

i n i ts cr () ;
s i gnal (S I G I NT , d i e) ;
noecho () ;
nonl () ;
l eaveok (s tdscr , TRUE) ;
s crol l o k (stdsc r , FALSE) ;

for (; ;) {
makeboard () ;

puton(' * ') ;

puton (' ') ;

)

;*
*

!*

!*
*

make the board
setup */

put on ' * ' s *I

cover up
wi th ' I s *I

;*
* On program exi t , move the cursor to the l ower
* l eft corner by d i rect addres s i n g , s i nce current
* l ocati on i s not guaranteed .
*I

d i e () {

)

s i gnal (S I G I NT , S I G_IGN) ;
mvcu r (O , COLS-1 , L I NES-1 , 0) ;
endwi n () ;
exi t (O) ;

!*
* Make the current board setu p . I t pi cks a random
* pattern and cal l s i s on () to determine i f the
* c haracter i s on that pattern or not .
*I

makeboa rd () {

reg i nt y , x ;
reg LOCS *l p ;

(Example continues on next page.)

3-56

0

}

I*

Pattern = rand () % MAXPATTERNS ;
l p = Layout ;
for (y = 0 ; y < N L ! NES ; y++)

for (x = 0 ; x < NCOLS ; x++)
i f (i so n (y , x)) {

l p->y " y ;
l p++->x = x ;

}
Nums tars = l p - Layout;

* Return TRUE if (y , x) i s on t h e cu rrent p a ttern .
*I

i so n (y , x)
reg i n t y , x ; {

}

switch (Pattern) {

}

case 0 : I* a l terna t i n g l i nes *I
return ! (y & 01) ;

case 1 : I* box *I
i f (x >= L I NES && y >= NCOLS)

return FALSE ;
i f (y < 3 I I y >= NLI NES - 3)

return TRUE ;
return (x < 3 I I x >= NCOLS - 3) ;

case 2 : I* h o l y pattern ! *I
return ((x + y) & 01) ;

case 3 : ;* bar across center *I
return (y >= 9 && y <= 1 5) ;

!* NOTREACHED *I

puton (c h)
reg char c h ; {

reg LOCS
reg i n t
reg LOCS
LOCS

*l p ;
r ;
*en d ;
temp ;

CJ (Example continues on next page.)

3-57

}

end • &Layout[Numstars l ;
for (l p • Layout ; l p < end ; l p++) {

r • rand () % Numstars ;

}

temp • *l p ;
* l p • Layout[r J ;
Layout[rl • temp ;

for (l p • Layout ; l p < en d ; l p++) {
mvaddc h (l p->y, l p->x , ch) ;
refres h () ;

}

Life

Tills program plays the famous computer pattern game of Iifet .
The calculational routines create a linked list of structures
defining where each piece is. Nothing here claims to be optimal,
merely demonstrative. Tills program, however, is a very good
place to use the screen updating routines, as it allows them to
worry about what the last position looked like, so you don't have ·�

to. It also demonstrates some of the input routines.

i ncl ude
i ncl ude

I*

<curses . h>
< s i gnal . h>

* Run a l i fe game . Th i s i s a demonstration program for the
* Screen Updating section of the - l curses cursor package .
*I

struct l st_st {
i n t y , x ;

I* l i n ked l i s t el ement *I
I* (y , x) pos i ti on of pi ece *I

struct l s t_st *nex t , *last ; I* dou b l y l i nked *I
} ;

(Example continues on the next page.)

Scientific American, May, 1974

3-58

(\
\. !

0

i O

typedef s truct l s t_st L I ST ;

L IST *Head ; ;* head of l i nked l i s t *;

mai n (ac , a v)
i nt a c ;
char *av[J ;

}

i n t d i e () ;

eval arg s (a c , av) ;

i n i tscr () ;

;* eval uate arguments *;

!* i n i t i a l i ze s creen
* package *;

s i gnal (S I G I N T , di e) ;

crmode () ;

noecho () ;

nonl () ;

;* set to restore tty
* stats */

;* set for char-by-char */

;*i nput */

;* for optimi zation * ;

getstart () ; ;* get s tarting pos i ti on *;
(for ; ;) {

}

prboard () ;
;* print out current board *!

update () ;
;* update board pos i t i on */

!*
* Th i s i s the routine that i s cal l ed when rubout
* i s h i t . I t resets the tty stats to the i r
* ori g i na l val ues . T h i s i s the normal way of
* l eavi ng the program.
*I
di e () {

(Example continues on next page.)

3-59

}

s i gna l (SI G I N T , SIG_IGN) ;
!* i gnore rubouts */

mvcur (O , COLS- 1 , L I NES-1 , 0) ;
!* go to bottom of

* screen */
endwi n () ; /* set termi n a l to i n i ti a l

* state */
e x i t (O) ;

!*
* Get the starti ng pos i ti o n from the user . The
* keys u , i , o , j , 1 , m, , , and . are used for
* mov i n g thei r rel ati ve di rections from the k key .
* Thu s , u moves d i agonal l y up to the l eft , , moves
* di rectl y down , and so forth . x p l aces a p i ece
* at the current pos i ti o n , ' ' ' ' takes it away. The
* i nput can a l s o be from a fi l e . The l i st i s
* bui l t after the board setup i s ready.
*I

gets tart() {

reg char
reg i nt

c ;
X ' y ;

box (stds c r , , I , , , l . , - ,

move (l , 1) ;
!* box i n the screen */
!* move to upper l eft

* corner */

do {
refres h () ;

!* p r i nt current
* posi tion */

i f ((c=getch ()) == ' q ')
break ;

switch (c) {
case I u I :
case I i I :
case ' o ' :
case I j I :
case I 1 I :
case ' m ' :
case ' ' : ,

(Example continues on next page.)

3-60

, ,

\.

c

I*

}
}

case 1 • 1 :
adjustyx (c) ;
brea k ;

case 1 f 1 :
mvaddstr (O , 0 , " Fi l e name : ") ;
gets tr (buf) ;
readfi l e (buf) ;
break ;

case 1 x 1 :
addch (' X ') ;
break ;

case 1 1 :
addch (' ') ;
break ;

i f (Head ! = NUL L)
I * start new l i st *I

del l i s t (Head) ;
Head = mal l oc (s i zeof (L I ST)) ;

I*
* Loop through the s creen l oo k i ng for
* ' x ' s , and add a l i s t el ement for
* each one .
*I

for (y = 1 ; y < L I NE S - 1 ; y++)
for (x = 1 ; x < COLS - 1 ; x++)

move (y , x) ;

}

i f (i nc h () == ' x ')
addl i st (y , x) ;

* Print out the current board pos i ti on from the
* l i n ked l i s t .
*I

prboard () (

(Example continues on next page.)

3-61

}

reg L I ST

erase () ;

box (s tds c r ,

!*

*hp ;

!* c l ear out l as t
* po s i t i on */

, I , , , l . , - ,
!* box i n the screen */

* go through the l i s t add i ng each
* p i ece to the newly b l a n k board
*I

for (h p = Hea d ; h p ; hp = hp->next)
mvaddch (hp->y, hp->x , ' X ') ;

refres h () ;

Motion Optimization

The following example shows how motion optimization is written
on its own. Programs that flit from one place to another without
regard for what is already there usually do not need the overhead
of both space and time associated with screen updating. They
should instead use motion optimization.

Twinkle

The twinkle program is a good candidate for simple motion
optimization. Here is how it could be written (only the routines
that have been changed are shown) :

mai n () (

reg char
char
i n t

*sp ;
*getenv () ;
_putchar () , d i e () ;

s rand(getpi d ()) ; /* i n i ti al ize random sequence */

(Example continues on next page.)

3-62

(

0

}

i f (i satty (O)) [
gettmode () ;
i f (sp=getenv ("TERM "))

s etterm (sp) ;
s i gnal (S IG INT , di e) ;

}
e l s e {

}

pri ntf("Need a termi nal on %d\n " , _tty_ch) ;
exi t (!) ;

_puts (TI) ;
_puts (VS) ;

noecho () ;
nonl () ;
tputs (CL , NL INE S , _putchar) ;
for (; ;) [

}

makeboard () ; /* make the board s etup *;
puton (' * ') ; ;* put on ' * ' s *I
puton (' ') ; !* cover up w ith ' ' s * I

!*
* _putchar defi ned for tputs () (and_puts ())
*;_putcha r_putchar (c)

reg char c ; [

putchar (c) ;
}

puton (c h)
char c h ; {

s tati c i n t
reg LOCS
reg i nt
reg LOCS
LOCS

l as ty , l astx ;
*1 p ;
r ;
*end ;
temp ;

(Example continues on next page.)

3-63

}

end = &Layout[Numstars l ;
for (l p = Layout ; l p < end; l p+ +) {

r = rand () % Numstars ;

}

temp = *l p ;
* l p = Layout[r J ;
Layout[r] = temp ;

for (l p = Layou t ; l p < end; l p++)
!* prevent scrol l i ng */

i f (! AM I I (l p->y < NLINES - 1 I I

3-64

l p->x < NCOLS - 1)) {
mvcur (l asty , l astx , l p->y, l p- >x) ;
putcha r (ch) ;
l as ty = l p->y ;
i f ((l as tx = l p->x + 1) >= NCOL S)

i f (AM) {
l as tx = 0 ;
l as ty++ ;

}
el s e

l as tx = NCOLS - 1 ;
}

Combining Movement with Action

Many screen operations move the current position of a given
window before performing an action on the window. For
convenience, you can combine a number of functions with the
movement prefix. This combination has the form:

mvfunc([win,] y, x [, arg] . . .)

where june is the name of a function, win is a pointer to the
window to be operated on (stdscr used if none is given), y is an
integer value giving the line to move to, x is an integer value
giving the column to move to, and arg is a required argument for
the given function. If more than one argument is required, they
must be separated with commas (,). For example, the function
call:

mvaddc h (l O , 5 , ' X ') ;

moves the position to (1 0,5) and adds the character X. The
operation is the same as moving the position with the move

�\ L; function and then adding a character with addch.

c

A complete list of the functions that can be used with the
movement prefix is given in curses(S) in the IBM Personal
Computer XENIX Software Command Reference.

3-65

Controlling the Terminal

The following sections explain:

• How to set the terminal modes

• How to move the cursor

• How to access other aspects of the terminal.

Use these functions only when using other screen processing
functions.

Terminal Modes

COOKED (NORA W): Normal Mode (equivalent to stty sane).
In this mode, lines of input are collected and input editing is done.
The edited line is made available when it is completed by a
newline or when EDT (Ctrl-d) is entered. Carriage return is
usually synonymous with newline in this mode, and replace with a
newline whenever it is typed. All tty driver functions, (input
editing, interrupt generation, output processing such as delay ''
generation and tab expansion, and so forth) are available in this
mode.

CBREAK: This mode eliminates character and line editing input
facilities, making the input character available to the user as it is
typed. Flow control, and interrupt processing are still done in this
mode. Output processing is still done.

RAW: This mode eliminates all input processing and makes all
input characters available as they are typed. No output
processing is done.

3-66

Setting a Terminal Mode

The crmode, echo, nl, and raw functions set the terminal mode,
causing subsequent input from the terminal's keyboard to be
processed accordingly.

(- ' The crmode function sets the CBREAK mode for the terminal. The
"' mode preserves the function of the signal keys, allowing signals to

be sent to a program from the keyboard, but disables the function
of the editing keys. The function call has the form:

0

crmode() [*]

No arguments are required.

The echo function sets the ECHO mode for the terminal, causing
each character typed at the keyboard to be displayed at the
terminal screen. The function call has the form:

echo() [*]

No arguments are required.

The nl function sets a terminal to NEWLINE mode, causing all
newline characters to be mapped to a corresponding newline and
return character combination. The function call has the form:

nl() [*]

No arguments are required.

The raw function sets the RAW mode for the terminal, causing each
character typed at the keyboard to be sent as direct input. The
RAW mode disables the function of the editing and signal keys and
disables the mapping of newline characters into newline and
return combinations. The function call has the form:

raw() [*]

ci No arguments are required.

3-67

Clearing a Terminal Mode

The nocrmode, noecho, non!, and noraw functions clear the current
terminal mode, allowing input to be processed according to a
previous mode.

The nocrmode function clears a terminal from the CBREAK mode.
The function call has the form:

nocrmode()

No arguments are required.

The noecho function clears a terminal from the ECHO mode. This
mode prevents characters typed at the keyboard from being
displayed on the terminal screen. The function call has the form:

noecho() [*]

No arguments are required.

The non! function clears a terminal from NEWLINE mode, causing
newline characters to be mapped into themselves. This allows the
screen processing functions to perform better optimization. The '-'
function call has the form:

non!()[*]

No arguments are required.

The noraw function clears a terminal from RAw mode, restoring
normal editing and signal generating function to the keyboard.
The function call has the form:

noraw() [*]

No arguments are required.

3-68

��\ \

0

c

Moving the Terminal's Cursor

After getting gettmode() and settenn() to get the terminal
descriptions, the mvcur function moves the terminal's cursor from
one position to another in an optimal fashion. Its usage is simple;
yon tell it where you are now and where you want to go. The
function call has the form:

mvcur(last_y,last_x,new _y,new_x)

where last_y and last_x are integer values giving the last line
and column position of the cursor, and new_y and new_x are
integer values giving the new line and column position of the
cursor. For example, the function call:

mvcu r (I O , 5 , 3 , 0) ;

moves the cursor from (10,5) to (3,0) on the terminal screen.
mvcur (0,0, LINES/2, COLS 2); would move the cursor form the
home position (0,0) to the middle of the screen.

If you wish to force absolute addressing, you can just tell mvcur()
that you are impossibly far away. For example, to absolutely
address the lower-left hand corner of the screen from any where
just claim that you are il1 the upper-right hand corner:

mvcur (0 , COLS- 1 , L I NES-I , 0) ;

Note: The mvcur function should be used only in programs
that do not use other screen processing functions. This
means the function can be used to perform optimal cursor
motion without the aid of the other functions. For programs
that do use other functions, the move, wmove, refresh, and
wrefresh functions must be used to move the cursor.

3-69

Getting the Tenninal Mode

The gettmode function returns the current terminal mode. The
function call has the form:

s = gettmode()

where s is the variable to receive the status.

The function is normally called by the initscr function.

Variables Set by gettmode 0

If US and UE do not exist in the termcap entry, they are copied
from SO and SE in setterm ().

Type Name Description

boo! NONL Term cannot handle linefeeds doing
a CR

boo! GT Gtty indicates tabs

boo! UPPERCASE Terminal generates only uppercase
letters

Saving and Restoring the Tenninal Flags

The savetty function saves the current terminal flags, and the
resetty function restores the flags previously saved by the savetty
function. These functions are performed automatically by initscr
and endwin functions. They are not required when performing
ordinary screen processing.

3-70

i
"-.

f �\
' ' \

c�

0

Setting a Terminal Type

The setterm function sets the terminal type to the given type. The
function call has the form:

setterm (name)

where name is a pointer to a string containing the terminal type
identifier. The function is normally called by the initscr function
but setterm may be used in special cases.

Variables Set by setterm()

Type Name Pad D�scription

char * AL P* Add new blank line

boo! AM Automatic margins

char * BC Back cursor movement

boo! BS Back space works

char * BT p Back tab

boo! CA Cursor addressable

char * CD P* Clear to end of display

char * CE p Clear to end of line

char * CL P* Clear screen

char * CM p Cursor motion

char * DC P* Delete character

3-71

Type Name Pad Description

char * DL P* Delete line sequence

char * DM Delete mode (enter)

char * DO Down line sequence , ,
\.

char * ED End delete mode

boo! EO Can erase overstrikes with ' '

char * EI End insert mode

char * HO Home cursor

boo! HZ ' Hazeltine � braindamage

char * IC p Insert character

boo! IN Insert-null blessing

char * IM Enter insert mode (IC usually
set, too) "-

char * IP P* Pad after character inserted using
IM+IE

char * LL q*ick to last line, column 0

char * MA Ctrl character map for cmd mode

boo! MI Can move in insert mode

boo! NC No cr: /r sends /r/n then eats
/n

char * ND Non-destructive space

boo! OS Over strike works

3-72

Type Name Pad Description

char PC Pad character

char • SE Standout end (may leave space)

char • SF p Scrolls forward

char • so Stand out begin (may leave
space)

char * SR p Scrolls in reverse

char • TA p Tab (not A I or with padding)

char • TE Terminal address enable ending
sequence

char • TI Terminal address enable
initialization

char * uc Underline a single character

�) .___/ char * UE Underline ending seqnence

boo! UL Underlining works even thongh
!OS

char • UP Up line

char • us Underline starting sequence

char • VB Visible bell

char • VE Visual end sequence

char * vs Visual start sequence

0 boo! XN A newline is lost after wrap

Names starting with X are reserved for serious disturbances.

3-73

Reading the Terminal Name

The longname function converts a given termcap identifier into the
full name of the corresponding terminal. The function call has the
form:

longname(termbuf, name)

where termbuf is a pointer to the string containing the terminal
type identifier, and name is a character pointer to the location to
receive the long name. The terminal type identifier must exist in
the /etc/termcap file.

The function gets the full name of the terminal currently being
used. The current terminal's identifier is stored in the variable
ttytype, which may be used to receive a new name.

3-74

0

0

Chapter 4. Character and String
Processing

Contents

Introduction 4-3

Using the Character Functions . 4-4
Testing for an ASCII Character 4-4
Converting to ASCII Characters 4-5

Testing for Alphanumerics . • • • 4-6
Testing for a Letter . 4-6
Testing for Control Characters . 4-7
Testing for a Decimal Digit . 4-7
Testing for a Hexadecimal Digit 4-8
Testing for Printable Characters 4-8
Testing for Punctuation . 4-9
Testing for Whitespace . 4-9
Testing for Case in Letters . 4-10
Converting the Case of a Letter 4-1 1

Using the String Functions • . . . • • . . . 4-12
Concatenating Strings . 4-12
Comparing Strings . 4-13
Copying a String . 4-1 4
Getting a String's Length . 4-14
Concatenating Characters to a String 4-1 5
Comparing Characters in Strings 4-16
Copying Characters to a String 4-17
Reading Values from a String . 4-18
Writing Values to a String . 4-19

4-1

4-2

0

Introduction

Character and string processing is an important part of many
programs. Programs regularly assign, manipulate, and compare
characters and strings in order to complete their tasks. For this
reason, the standard library provides a variety of character and
string processing functions. These functions give a convenient
way to test, translate, assign, and compare characters and strings.

To use the character functions in a program, the file ctype.h,
which provides the definitions for special character macros, tnnst
be included in the program. The line:

i ncl ude <ctype . h>

must appear at the beginning of the program.

To use the string functions, no special action is required. These
functions are defined in the standard C library and are read
whenever you compile a C program.

4-3

Using the Character Functions

The character functions test and convert characters. Many
character functions are defined as macros, and as such cannot be
redefined or used as a target for a breakpoint when debugging.

Testing for an ASCII Character

The isascii function tests for characters in the ASCII character
set, that is, characters whose values range from 0 to 127. The
function call has the form:

isascii(c)

where c is the character to be tested. The function returns a
nonzero (true) value if the character is ASCII, otherwise it
returns zero (false). For example, in the following program
fragment, isascii determines whether the value in c read from the
file given by "data" is in the acceptable ASCII range:

F ILE *data ;
i nt c ;

c = fget c (data) ;
i f (! i s a s c i i (c))

notext () ;

In this example, a function named notext is called if the character
is not in range.

4-4

Converting to ASCII Characters

The toascii function converts non-ASCII characters to ASCII.
The function call has the form:

,.---\ c = toascii (i)

(.• '· · where c is the variable to receive the character, and i is the value
to be changed. The function creates an ASCII character by
truncating all but the low order 7 bits of the non-ASCII value. If
the i value is already an ASCII character, no change takes place.
For example, the function call:

0

asc i i = toas c i i (1 60) ;

converts value 160 to 32, the ASCII value of the space character.

The function prepares non-ASCII characters for display at the
standard output. For example, in the following program
fragment, toascii converts each character read from the file given
by "oddstrm" :

FILE *oddstrm;
i nt c ;

c = toasc i i (getc(oddstrm)) ;
i f (i s p r i nt (c) I I i sspace (c))

putchar (c) ;

If the resulting character is printable or is whitespace, it is written
to the standard output.

4-5

Testing for Alphanumerics

The isalnurn function tests for letters and decimal digits, that is,
the alphanumeric characters. The function call has the form:

isalnum(c)

where c is the character to test. The function returns a nonzero
(true) value if the character is an alphanumeric, otherwise it
returns zero (false) . For example, the function call:

i s a 1 n um (' 1 ') ;

returns a nonzero value, but the call:

i sal num(' > ') ;

returns zero.

Testing for a Letter

The isalpha function tests for uppercase or lowercase letters, that
is, alphabetic characters. The function call has the form:

isalpha(c)

where c is the character to be tested. The function returns a
nonzero (true) value if the character is a letter, otherwise it
returns zero. For example, the function call:

i sal pha (' a ') ;

returns a nonzero value, but the call:

i sa l pha (' 1 ') ;

returns zero.

4-6

Testing for Control Characters

The iscntrl function tests for control characters, that is, characters
whose ASCII values are in the range 0 to 3 1 or is 1 27. The
function can has the form:

c-, iscntrl(c)

()

where c is the character to be tested. The function returns a
nonzero (true) value if the character is a control character,
otherwise it returns zero (false). For example, in the program
following fragment, iscntrl determines whether or not the
character in c read from the file given by infile is a control
character:

F ILE *i nfi l e , *outfi l e ;
i n t c ;

c = fgetc (i nfi l e) ;
i f (! i scntrl (c))

fputc (c , outfi l e) ;

The fputc function is ignored if the character is a control
character.

Testing for a Decimal Digit

The isdigit function tests for decimal digits. The function can has
the form:

isdigit(c)

where c is the character to be tested. The function returns a
nonzero value if the character is a digit, otherwise it returns zero.
For example, in the fonowing program fragment each new
character in c is added to the running total if the character is a
digit:

F I L E *i nfi l e ;
i nt c , num;

whi l e (i sdi g i t (c=getc (i nfi l e)))
num = num*lO + c-48;

4-7

Testing for a Hexadecimal Digit

The isxdigit function tests for a hexadecimal digit, that is, a
character that is either a decimal digit or an uppercase or
lowercase letter in the range A to F. The function call has the
form:

isxdigit(c)

where c is the character to be tested. The function returns a
nonzero value if the character is a hexidecimal digit, otherwise it
returns zero. For example, in the following program fragment,
isxdigit tests whether a hexadecimal digit is read from the
standard input:

i nt c ;

c = getchar () ;
i f (i sx d i g i t (c))

hexmode () ;

In this example, a function named hexmode is called if a
hexadecimal digit is read.

Testing for Printable Characters

The isprint function tests for printable characters, that is,
characters whose ASCII values range from 32 to 126. The
function call has the form:

isprint(c)

where c is the character to be tested. The function returns a
nonzero value if the character is printable, otherwise it returns
zero.

4-8

Testing for Punctuation

The ispunct function tests for punctuation characters, that is,
characters that are neither control characters nor alphanumeric
characters. The function call has the form:

n ispunct(c)
"�

0

where c is the character to be tested. The function returns a
nonzero function if the character is a punctuation character,
otherwise it returns zero.

Testing for Whitespace

The isspace function tests for whitespace characters, that is, the
space, horizontal tab, vertical tab, formfeed, and newline
characters. The function call has the form:

isspace(c)

where c is the character to be tested. The function returns a
nonzero value if the character is a whitespace character, otherwise
it returns zero.

4-9

Testing for Case in Letters

The isupper and is/ower functions test for uppercase and lowercase
letters, respectively. The function calls have the form:

isupper(c)

and

islower(c)

where c is the character to be tested. The function returns a
nonzero value if the character is the proper case, otherwise it
returns zero. For example, the function call:

i supper(' b ') ;

returns zero (false), but the call:

i s 1 ower (' b ') ;

returns a nonzero (true) value.

4-10

'
"

(J

0

Converting the Case of a Letter

The to/ower and toupper functions convert the case of a given
letter. The function calls have the form:

c = tolower(i)

and

c = toupper(i)

where c is the variable to receive the converted letter, and i is the
letter to be converted. For example, the function call:

1 ower = to 1 ower (' B ') ;

converts B to b and assigns it to the variable lower, and the call:

upper = toupper (' b ') ;

converts b to B and assigns it to the variable upper.

The to/ower function returns the character unchanged if it is not
an uppercase letter. Similarly, the toupper function returns the
character unchanged if it is not a lowercase letter.

These functions make the case of the characters read from a file
or standard input consistent. For example, in the following
statement, to/ower changes the character read from the standard
input to lowercase before it is compared:

i f (to 1 ower (getcha r ()) ! = ' y ')
exi t (O) ;

This conversion allows the user to type either Y or y to prevent
the statement from executing the exit function.

4-1 1

Using the String Functions

The string functions concatenate, compare, copy, and count the
number of characters in a string. Two special string functions,
sscanf and sprint[, let a program read from and write to a string in
the same way the standard input and output can be read and
written. These functions are convenient when one reads or writes
whole lines containing values of several different formats.

Many string functions have two forms : a form that manipulates all
characters in the string and one that manipulates a given number
of characters. This gives programs very fine control over all or
parts of strings.

Concatenating Strings

The strcat function concatenates two strings by appending the
characters of one string to the end of another. The function call
has the form:

strcat(dst, src)

where dst is a pointer to the string to receive the new characters,
and src is a pointer to the string containing the new characters.
The function appends the new characters in the same order as
they appear in src, then appends a null character {\0) to the last
character in the new string. The function always returns the
pointer dst.

The function builds a string such as a full pathname from two
smaller strings. For example, in the following program fragment
strcat concatenates the string "temp" to the contents of the
character array dir:

char d i r [MAXJ = " /usr/ '' ;

s trcat (d i r , ••temp'•) ;

4-12

[,
\._

Comparing Strings

The strcmp function compares the characters in one string to
those in another and returns an integer value showing the result of
the comparison. The function call has the form:

0 strcmp(sl, s2)

where s 1 and s2 are the pointers to the strings to be compared.
The function returns zero if the strings are equal (that is, have the
same characters in the same order). If the strings are not equal,
the function returns the difference between the ASCII values of
the first nnequal pair of characters. The value of the second
string character is always subtracted from the first. For example,
the function call:

strcmp (''Character A' ' , ' 'Character A '') ;

returns zero because the strings are identical in every way, but the
function call:

strcmp(' 'Character A '' , "Character B '') ;

0 returns - 1 because the ASCII value of B is one greater than A.

0

The strcmp function continues to compare characters until a
mismatch is found. If one string is shorter than the other, the
function stops at the end of the shorter string. For example, the
function call:

s trcmp ('' Character A' ' , ' 'Character ' ') ;

returns 65, that is, the difference between the null character at
the end of the second string and the A in the first string.

4-13

Copying a String

The strcpy function copies a given string to a given location. The
function call has the form:

strcpy(dst, src)

where src is a pointer to the string to be copied, and dst is a ·"-
pointer to the location to receive the string. The function copies
all characters in the source string src to the dst and appends a null
character (\ 0l to the end of the new string. If dst contained a
string before the copy, that string is destroyed. The function
always returns the pointer to the new string.

For example, in the program fragment, strcpy copies the string
"not available" to the location given by "name":

char na[J = "not ava i l abl e '' ;
char name[20 l ;
mai n () (

s trcpy (n ame , na) ;
}

The location to receive a string must be large enough to contain
the string. The function cannot detect overflow.

Getting a String's Length

The strlen function returns the number of characters in a given
string. The function call has the form:

strlen(s)

where s is a pointer to a string. The count includes all characters
up to, but not including, the first null character. The return value
is always an integer.

4-14

In the following program fragment, strlen is used to determine
whether the contents of inname are short enough to be stored in
name:

char * i nname ;
char name[MAX] ;

i f (strl en (i nname) < MAX)
strcpy(name , i nname) ;

Concatenating Characters to a String

The strncat function appends one or more characters to the end of
a given string. The function call has the form:

strncat(dst, src, n)

where dst is a pointer to the string to receive the new characters,
src is a pointer to the string containing the new characters, and n
is an integer value giving the number of characters to be
concatenated. The function appends the given number of
characters to the end of the dst string, then returns the pointer dst.

In the following program fragment, strncat copies the first 3
characters in letter to the end of cover:

char cover [] = 11 cover 11 ;
char l etter [] = ' ' l etter '' ;

ma i n ()
strnca t (cover , l ette r , 3) ;
)

This example creates the new string coverlet in cover.

4-15

Comparing Characters in Strings

The strncmp function compares one or more pairs of characters in
two given strings and returns an integer value that gives the result
of the comparison. The function call has the form:

strncmp(sJ, s2, n)

where sl and s2 are pointers to the strings to be compared, and n
is an integer value giving the number of characters to compare.
The function returns zero if the first n characters are identical.
Otherwise, the function returns the difference between the ASCII
values of the first unequal pair of characters. The function
generates the difference by subtracting the second string
character from the first.

For example, the function call:

s trncmp (' 'Character A" , ' 'Character B " , 5) ;

returns zero because the first 5 characters are identical, but the
function call:

s trncmp (' 'Character A '' , ' 'Character B " , 1 1) ;

returns - 1 because the value of B is one greater than A.

The function continues to compare characters until a mismatch or
the end of a string is found.

4-16

-i
Copying Characters to a String

The strncpy function copies a given number of characters to a
given string. The function call has the form:

strncpy(dst, src, n)
where dst is a pointer to the string to receive the characters, src is
a pointer to the string containing the characters, and n is an
integer value giving the number of characters to be copied. The
function copies either the first n characters in src to dst, or if src
has fewer than n characters, copies all characters up to the first
null character. The function returns the address of dst.

In the following program fragment, strncpy copies the first three
characters in date to day:

char date[29] • { '' Fri Dec 29 09 : 3 5 : 44 EDT 1982 '' 1 ;
rna i n () {
char buf[MAX J ;
char *day • buf ;

C'! strncpy(day , date , 3) ;
/ pri nt f ("s/n " ,buf) ; J

In this example, day receives the string Fri.

4-17

Reading Values from a String

The sscanf function reads one or more values from a given
character string and stores the values at a given memory location.
The function is similar to the scan! function, which reads values
from the standard input. The function call has the form:

sscanf(s, format, argptr . . .)

where s is a pointer to the string to be read, format is a pointer to
the string defining the format of the values to be read, and argptr
is a pointer to the variable that is to receive the values read. If
more than one argptr is given, they must be separated with
commas. The format string may contain the same formats as
given for scan! (see scanf(S) in the IBM Personal Computer
XENIX Software Command Reference). The function always
returns the number of values read.

The function reads values from a string containing several values
of different formats, or reads values from a program's own input
buffer. For example, in the following program fragment, sscanf
reads two values from the string pointed to by datestr:

char datestr[] = ("THU MAR 29 1 1 : 04 : 40 EST 1983 " } ;
char month [4] ;
char year [5] ;
mai n () {

}

s scanf(datestr , "%*3s%3s%*2s%*8s%*3s%4 s '' ,month ,year) ;
pri ntf(' '%s ,%s \ n '' ,month ,year) ;

The first value (a 3-character string) is stored at the location
pointed to by month, the second value (a 4-character string) is
stored at the location pointed to by "year".

4-18

0

0

Writing Values to a String

The spriluf function writes one or more values to a given string.
The function call has the form:

sprintf(s, format [, arg] . . .)

where s is a pointer to the string to receive the value, format is a
pointer to a string that defines the format of the values to be
written, and arg is the variable or value to be written. If more
than one arg is given, they must be separated by commas (,). The
format string may contain the same formats as given for print!
(see printf(S) in the IBM Personal Computer XENJX Software
Command Reference). After all values are written to the string,
the function adds a null character (\ 0) to the end of the string.
The function normally returns zero, but will return a nonzero
value if an error is encountered.

The function builds a large string from several values of different
formats. For example, in the following program fragment, sprint!
writes three values to the string pointed to by cmd:

char cmd[lOO J ;
char *doc • ' '/us r/src;cmd/c p . c ' ' ;

i nt wi dth • 5 0 ;
i nt l ength • 60 ;

spri ntf(cmd , "pr -w%d - l %d %s \ n " ,wi dth , l ength,doc) ;
system(cmd) ;

In this example, the string created by sprint! is used in a call to the
system function. The first two values are the decimal numbers
given by width and length. The last value is a string (a filename)
and is pointed to by doc. The final string has the form:

pr -wSO -160 /usr/src/cmd/cp.c

The string to receive the values must have sufficient length to
store those values. The function cannot check for overflow.

4-19

4-20

Chapter 5. Using Process Control

(J Contents

Introduction 5-3

Using Processes o 0 0 0 0 0 0 0 0 0 0 o 5-3

Calling a Program o o o o o o o 0 0 0 0 o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 5-4

Stopping a Program o 0 0 0 o 0 o o o o o 5-6

Starting a New Program o o o 0 0 0 o o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 5-7

Executing a Program Through a SheU o o o o o o o o o 0 o o o o o o o o 5-9

Duplicating a Process o o o o o 0 0 o o o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 5-10

o Waiting for a Process o o o o o 0 0 0 0 0 0 o o 0 o o o o o o 0 0 0 0 0 0 0 0 0 0 5-12

Inheriting Open Files o o o o o 0 0 0 0 0 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 0 0 0 5-13

c

Program Example o 5-13

5-1

5-:2

()
\'-... __ -

0

Introduction

This chapter describes the process control functions of the
standard C library. The functions Jet a program call other
programs, using a method similar to calling functions.

There are a variety of process control functions. The system and
exit functions provide the highest level of execution control and
are used by most programs that need a straightforward way to call
another program or terminate the current one. The exec!, execv,
fork, and wait functions provide low-level control of execution
and are for programs that must have very fine control over their
own execution and the execution of other programs. Other
process control functions, such as abort and exec, are described in
detail in section S of the IBM Personal Computer XENIX
Software Command Reference.

The process control functions are a part of the standard C library.
Because this library is automatically read when compiling a C
program, no special library argument is required when invoking
the compiler.

Using Processes

Process is the term used to describe a program executed by the
XENIX system. A process consists of instructions and data and a
table of information about the program, such as its allocated
memory, open files, and current execution status.

You create a process whenever you invoke a program through a
shell. The system assigns a unique process ID to a program when
it is invoked, and uses this ID to control and manage the program.
The unique IDs are needed in a system running several processes
at the same time.

5-3

You can also create a process by directing a program to call
another program. This causes the system to perform the same
functions as when it invokes a program through a shell. In fact,
these two methods are actually the same method; invoking a
program through a shell is nothing more than directing a program
(the shell) to call another program.

The system handles all processes in essentially the same way, so "
the sections that follow should give you valuable information for
writing your own programs and an insight into the XENIX
System itself.

Calling a Program

The system function calls the given program, executes it, and then
returns control to the original program. The function call has the
form:

system(command-line)
"

where command-line is a pointer to a string containing a shell \._
command line. The command line must be exactly as it would be
typed at the terminal, that is, it must begin with the program name
followed by any required or optional arguments. For example,
the call:

system("date") ;

causes the system to execute the date command, which displays
the current time and date at the standard output. The call:

system ("cat •res ponse '') ;

causes the system to execute the cat command. In this case, the
standard output is redirected to the file response, so the command
reads from the standard input and copies this input to the file
response.

5-4

The system function operates the same way as a function call to
execute a program and return to the original program. For
example, in the fallowing program fragment, system calls a
program whose name is given in the string cmd:

char *name , *cmd;

printf(' 'Enter f i l ename : '') ;
scanf(' '%s '' , name) ;
spri ntf(cmd , ' 'cat %s '' , name) ;
system(cmd) ;

The string in cmd is built using the sprint! function and contains
the program name cat and an argument (the filename read by
scan!). The effect is to execute the cat command with the given
filename.

When you use the system function, remember that buffered input
and output functions, such as getc and putc, do not change the
contents of their buffer until it is ready to be read or flushed. If a
program uses one of these functions, then executes a command
with the system function, that command may read or write data
not intended for its use. To avoid tins problem, the program
should clear all buffered input and output before making a call to
the system function. You can do this for output with the fflush
function and for input with the setbuf function described in the
section "Using More Stream Functions" in Chapter 2.

5-5

Stopping a Program

The exit function stops the execution of a program by returning
control to the system. The function call has the form:

exit(status)
where status is the integer value to be sent to the system as the
termination status.

The function terminates a program before its normal end, such as
after a serious error. For example, in the following program
fragment, exit stops tbe program and sends the integer value 2 to
the system if the fopen function returns the null pointer value
NULL:

F I L E *ttyout ;

i f (fopen (ttyou t , '' r '')
exi t(2) ;

NULL)

The exit function automatically closes each open file in the
program before returning to the system. This means no explicit
calls to the fc/ose or close functions are required before an exit.

5-6

--1
I

I"\
\, _ _

Ci '

c\

Starting a New Program

The exec/ and execv functions cause the system to overlay the
calling program with the given one, allowing the calling program
to terminate while the new program continues execution.

The exec/ function call has the form:

execl(pathname, command-name, argptr . . .)

where pathname is a pointer to a string containing the full
pathname of the command you want to execute, command-name
is a pointer to a string containing the name of the program you
want to execute, and argptr is one or more pointers to strings that
contain the program arguments. Each argptr must be separated
from any other argument by a comma. The last argptr in the list
must be the null pointer value NULL. For example, in the call:

execl (' '/bi n/date'' , ' 'date '' , NULL) ;

the date command, whose full pathname is " /bin/ date," takes no
arguments, and in the call:

execl ('/bi n/cat' , 'cat '' , fi l e l , fi l e2 , NULL) ;

the cat command, whose full pathname is "/bin/ cat", takes the
pointers file 1 and file2 as arguments.

The execv function call has the form:

execv(pathname, ptr) ;

where pathname is the full pathname of the program you want to
execute, and ptr is pointer to an array of pointers. Each element
in the array must point to a string. The array may have any
number of elements, but the first element must point to a string
containing the program name, and the last must be the null
pointer, NULL.

5-7

The exec/ and execv functions are used in programs that execute in
two or more phases and communicate through temporary files
(for example a two-pass compiler). The first part of such a
program calls the second part by giving the name of the second
part and the appropriate arguments. For example, the following
program fragment checks the status of errflag, then either
overlays the current program with the program pass 2, or displays
an error message and quits:

char *tmpfi l e ;
i n t errfl a g ;

i f (errfl ag = = 0)
exec l (";usr/bi n/pass2 " , "pass 2 " , tmpfi l e , NULL) ;

el s e (

}

fpri n t f (s tderr , " Error %d : Qui tting " , errfl ag) ;
exi t (2) ;

The execv function passes arguments to a program when the
precise number of arguments is not known beforehand. For
example, the following program fragment reads arguments from
the command line (beginning with the third one), copies the
pointer of each to an element in cmd sets the last element in cmd.
to NULL, and executes the cat command:

i n c l u de <stdi o . h
mai n (argc argv)
i nt argc ;
char * argv [J ;
(

}

5-8

i nt i ;
char *cmd[] ;

cmd [O J = "cat " ;
for (i = l ; i <arg c ; i ++)

cmd[i] = argv[i] ;
cmd[argc] = NULL ;

execv ('' /b in/cat'' , cmd) ;

I
"

The exec/ and execv functions return control to the original
program only if there is an error in finding the given program (for
example, a misspelled pathname or no execute permission). This
allows the original program to check for errors and display an
error message if necessary. For example, the following program
fragment searches for the program display in the /usr/bin
directory:

execl ('' /usr/bin/disp l ay' ' , ' 'di spl ay '' , NULL) ;
fpri ntf(stder r , " Can ' t execute ' d i s p l ay ' \ n ") ;

lf the program display is not found or lacks the necessary
permissions, the original program resumes control and displays an
error message.

The exec/ and execv functions do not expand metacharacters (for
example, <, >, *, ? , and []) given in the argument list. If a
program needs these features, it can use exec/ or execv to call a
shell as described in the next section.

0 Executing a Program Through a Shell

One drawback of the exec/ and execv functions is that they do not
provide the metacharacter features of a shell. One way to
overcome this problem is to use exec/ to execute a shell and let the
shell execute the command you want.

The function call has the form:

exec!(" /bin/sh" , "sh", "-c", command-line, NULL);

where command-line is a pointer to the string containing the
command line needed to execute the program. The string must be
exactly as it would appear if typed at the terminal.

5-9

For example, a program can execute the command:

cat * . c

(which contains the metacharacter *) with the call:

In this example, the full pathname "/bin/sh " and command name
sh start the shell. The argument "-c" causes the shell to treat the
argument "cat * .c" as a whole command line. The shell expands
the metacharacter and displays all files that end with .c,
something that the cat command cannot do by itself.

Duplicating a Process

The fork function splits an executing program into two
independent and fully-functioning processes. The function call
has the form:

fork()

No arguments are required.

The function makes several copies of any program that must take
divergent actions as a part of its normal operation, for example, a
program that must use the exec! function yet still continue to
execute. The original program, called the "parent" process,
continues to execute normally, just as it would after any other
function call. The new process, called the "child" process, starts
its execution at the same point, that is, just after the fork call.
(The child never goes back to the beginning of the program to
start execution.) The two processes are in effect synchronized
and continue to execute as independent programs.

5-10

(\ "··

0

The fork function returns a different value to each process. To
the parent process, the function returns the process ID of the
child. The process ID is always a positive integer and is always
different than the parent's ID. To the child, the function returns
0. All other variables and values remain exactly as they were in
the parent.

The return value determines which steps the child and parent
should take next. For example, in the program fragment:

char *cmd;

i f (fork () ;; 0)
exec 1 (11 / b i n Ish 1 1

,
1 1 s h 1 1 , u -c 11

, cmd , NUL L) ;

The child's return value, 0, causes the expression fork() ==, to
be true, and therefore the exec/ function is called. The parent's
return value, on the other hand, causes the expression to be false,
and the function call is skipped. Executing the exec! function
causes the child to be overlayed by the program given by
command. This does not affect the parent.

If fork encounters an error and cannot create a child, it will return
the value - 1 . It is a good idea to check for this value after each
call.

5-1 1

Waiting for a Process

The wait function canses a parent process to wait until its child
processes have completed their execution before continuing its
own execution. The function call has the form:

wait(ptr)

where ptr is a pointer to an integer variable. It receives the
termination status of the child from both the system and the child
itself. The function normally returns the process ID of the
terminated child, so the parent may check it against the value
returned by fork.

The function synchronizes the execution of a parent and its child
and is especially useful if the parent and child processes access the
same files. For example, the following program fragment causes
the parent to wait while the program named by pathname (which
has overlaid the child process) finishes its execution:

i nt statu s ;
c;har *pathname ;
char *cmd[J;

i f (fork () == 0)
execv (pathname , cmd) ;

wai t (&s tatus) ;

The wait function always copies a status value to its argument.
The statns value is actually two 8-bit values combined into one.
The low-order 8 bits are the termination status of the child as
defined by the system. This status is zero for normal termination
and nonzero for other kinds of termination, such as termination
by an interrupt, quit, or hangup signal (see signal(S) in the IBM
Personal Computer XENIX Software Command Referencefor a
description of the various kinds of termination). The next 8 bits
are the termination status of the child as defined by its own call to
exit. If the child did not explicitly call the function, the status is
zero.

5-12

Inheriting Open Files

Any program called by another program or created as a child
process to a program automatically inherits the original program's

(� open files and standard input, output, and error files. This means

\ / if the file was open in the original program, it will be open in the
' '

0

c

new program or process.

A new program also inherits the contents of the input and output
buffers used by the open files of the original program. To prevent
a new program or process from reading or writing data not
intended for its use, these buffers should be flushed before calling
the program or creating the new process. A program can flush an
output buffer with the !flush function, and an input buffer with
setbuf.

Program Example

This section shows how to use the process control functions to
control a simple process. The following program starts a shell on
the terminal given in the command line. The terminal is assumed
to be connected to the system through a line that has not been
enabled for multiuser operation:

i ncl ude <stdi o . h>

mai n (argc , argv)
i nt argc ;
char *argv [J ;
{
i nt status ;

i f (argc < 2) {

}

fpr i ntf (s tderr , "No tty g i ven . \ n ") ;
exi t (l) ;

(Example continues on next page.)

5-13

i f (fork () = = 0) (
i f (freopen (argv [l] , " r '' , stdi n) == NULL)

exi t (2) ;
i f (freopen (argv[l] , "w'' , stdo u t) NULL)

exi t (2) ;
i f (freopen (argv[l] , "w'' , s tderr) NULL)

exi t (2) ;
execl (" /b i n/sh " , " sh" ,NULL) ;

}
wa i t (&s tatus) ;
i f (status = = 5 1 2)

fpri ntf(s tderr , " Bad tty name : %s/n " ,
argv [l]) ; J

In this example, the fork function creates a duplicate copy of the
program. The child changes the standard input, output, and error
files to the new terminal by closing and reopening them with the
/reopen function. The terminal name pointed to by argv must be
the name of the device special file associated with the terminal,
for example, I dev /ttyO 1 . The exec/ function then calls the shell,
which uses the new terminal as its standard input, output, and
error files.

The parent process waits for the child to terminate. The exit
function terminates the process if an error occurs when reopening '"
the standard files. Otherwise, the process continues until the
Ctrl-D key is pressed at the new terminal.

5-14

0

0

Chapter 6. Creating and Using Pipes

Contents

Introduction 6-3

Opening a Pipe to a New Process • . . • • . . • 6-4

Reading and Writing to a Process . 6-5

Closing a Pipe • 6-6

Opening a Low-Level Pipe • • . . • . . • • . • . 6-7

Reading and Writing to a Low-Level Pipe 6-8

Closing a Low-Level Pipe • • • . . . 6-9

Program Examples . • • . • 6-10

6-1

6-2

0

0

Introduction

A pipe is a way a program can pass information to other programs
withont any temporary file. A pipe connects the output of one
program to the input of another program. A pipe is similar to a
file in that it has a file pointer and/ or a file descriptor and can be
read from or written to using the input and output functions of
the standard library. Unlike a file, a pipe does not represent a
specific file or device. Instead a pipe represents temporary
storage in memory that is independent of the program's own
memory and is controlled entirely by the operating system.

Pipes are chiefly used to pass information among programs, just
as the shell pipe symbol (I) is used to pass the output of one
program to the input of another. This eliminates the need to
create temporary files to pass information to other programs. A
pipe can also be used as a temporary storage place for a single
program. A program can write to the pipe, then read that
information back at a later time.

The standard library provides several pipe functions. The popen
and pc/ose functions control both a pipe and a process. The popen
function opens a pipe and creates a new process at the same time,
making the new pipe the standard input or output of the new
process. The pclose function closes the pipe and waits for
termination of the corresponding process. The pipe function, on
the other hand, gives low-level access to a pipe. The function is
similar to the open function, but opens the pipe for both reading
and writing, returning two file descriptors instead of one. The
program can either use both sides of the pipe or close the one it
does not need. The low-level input and output functions read and
write can be used to read from and write to a pipe. Pipe file
descriptors are used in the same way as other file descriptors.

6-3

Opening a Pipe to a New Process

The popen function creates a new process and then opens a pipe
to the standard input or output file of that new process. The
function call has the form:

popen(command, type)

where command is a pointer to a string that contains a shell
command line, and type is a pointer to the string that defines
whether the pipe is to be opened for reading or writing by the
original process. It may be r for reading or w for writing. The
function normally returns the file pointer to the open pipe, but
returns the null pointer value NULL if an error is encountered.

The function is used in programs that call another program and
pass substantial amounts of data to that program. For example, in
the following program fragment popen creates a new process for
the cat command and opens a pipe for writing:

F I LE *pstrm ;
pstrm = popen (.. c a t >response 11 , 11W 11) ;

The new pipe given by pstrm links the standard input of the
command with the program. Data written to the pipe is used as
input by the cat command.

6-4

l
I

0

�

Reading and Writing to a Process

The fscanf, fprintf, and other stream functions can read from or
write to a pipe opened by the popen function. These functions
have the same form as described in Chapter 2, "Using the Stream
Functions."

The fscanf function can to read from a pipe opened for reading.
For example, in the following program fragment, fscanf reads
from the pipe given by pstnn:

F I L E *pstrm;
char name[20] ;
i nt number ;

pstrm :::: popen (1 1 cat 11 , 11 r 11) ;
fscanf(pstrm , 1 1%5 %d 11 , name , &number) ;

This pipe is connected to the standard output of the cat
command, so fscanf reads the first name and number written by
cat to its standard output.

() \.___/ The fprintf function can to write to a pipe opened for writing.

c

For example, in the following program fragment, fprintf writes the
string pointed to by buf to the pipe given by pstrm:

F I LE *pstrm;
char buf[MAX J ;
pstrm = popen (''wc'' , ' 'w'') ;
fpri ntf(pstrm , " %s '' , buf) ;

This pipe is connected to the standard input of the we colllllland,
so the command reads and counts the contents of buf.

6-5

Closing a Pipe

The pclose function closes the pipe opened by the popen function.
The function call has the form:

pclose(strearn)

where stream is the file pointer of the pipe to be closed. The
function normally returns the exit status of the command that was
issued as the first argument of its corresponding popen, but
returns the value - 1 if the pipe was not opened by popen.

For example, in the following program fragment, pclose closes the
pipe given by pstrm if the end-of-file value EOF has been found in
the pipe:

F I L E *pstrm;

i f (feof(pstrm))
pc lose (pstrm) ;

6-6

Opening a Low-Level Pipe

The pipe function opens a pipe for both reading and writing. The
function call has the form:

(\ pipe(fd)

0

0

where fd is a pointer to a two-element array. It must have int
type. Each element receives one file descriptor. The first element
receives the file descriptor for the reading side of the pipe, and
the other element receives the file descriptor for the writing side.
The function normally returns 0, but returns the value - I if an
error i�"encountered. For example, in the following program
fragment, pipe creates two file descriptors if no error is
encountered:

i nt chan [2] ;

i f (p i pe (chan) == - 1)
exi t (2) ;

The array element chan[OJ receives the file descriptor for the
reading side of the pipe, and chan[1] receives it for the writing
side.

The function opens a pipe in preparation for linking it to a child
process. For example, in the following program fragment, pipe
causes the program to create a child process if it successfully
creates a pipe:

i nt fd[2 J ;

i f (pi pe (fd) ! = - 1)
i f (fork () == 0)

c lose (fd[l]) ;

The child process closes the writing side of the pipe. The parent
can now pass data to the child by writing to the pipe; the child
can retrieve the data by reading the pipe.

6-7

Reading and Writing to a Low-Level
Pipe

The read and write input and output functions can read and write
characters to a low-level pipe. These functions have the same
form and operation described in Chapter 2. '-

The read function can read from the read side of an open pipe.
For example, in the following program fragment, read reads MAX

characters from the read side of the pipe given by chan:

i nt chan [2] ;
char buf[MAX J ;
i nt n umber ;

p i p e (c han) ;
number = read (chan[O] , buf, MAX) ;

In this example, read stores the characters in the array buf.

Unless the end-of-file character is encountered, a read call waits
for the given number of characters to be read before returning.

The write function can write to the write side of a pipe. For
example, in the following program fragment, write writes MAX

characters from the character array buf to the writing side of the
pipe given by chan:

i n t chan[2] ;
char buf[MAX J ;
i n t number ;

p i pe (chan) ;
number = wri te (chan[l J , buf, MAX) ;

If the write function finds that a pipe is too full, it waits until some
characters have been read before completing its operation.

6-8

0

Closing a Low-Level Pipe

The close function can be used to close the reading or the writing
side of a pipe. The function has the same form and operation as
described in Chapter 2. For example, the function call:

close(chan [OJ) ;

closes the reading side of the pipe given by chan, and the call:

c l os e (c han [l J) ;

closes the writing side.

The system copies the end-of-file value EOF to a pipe when the
process that made the original pipe and every process created or
called by that process has closed the writing side of the pipe. This
means, for example, that if a parent process is sending data to a
child process through a pipe and closes the pipe to signal the end
of the file, the child process will not receive the end-of-file value
unless it has already closed its own write side of the pipe.

6-9

Program Examples

This section shows how to use the process control functions with
the low-level pipe function to create functions similar to the popen
and pc/ose functions.

The first example is a modified version of the popen function. '
The modified function identifies the new pipe with a file
descriptor rather than a file pointer. It also requires a mode
argument rather than a type argument, where the mode is 0 for
reading or 1 for writing:

i ncl ude <stdio . h>
#define READ 0
#defi ne WRITE I
#defi ne tst (a , b) (mode == READ ? (b) : (a))
s tati c i n t popen_p i d ;

popen (cmd , mode)
char *cmd ;
i nt mode ;
{

}

6-10

i n t p [2 J ;

i f (p i p e (p) < 0)
return (NULL) ;

i f ((popen_p i d = fork ()) == 0) {
c l ose (tst (p[WRITE] , p [READ J)) ;
c l os e (ts t (O , !)) ;

}

dup (tst (p[READ J , p[WRITE J)) ;
c l o s e (tst (p [READJ , p [WRITE J)) ;
exec 1 (11 /bin/ s h 11 , 11 s h 11 , 1 1-c •• , cmd , 0) ;
exi t (!) ; /* sh cannot be found */

i f (popen_p i d == - !)
return (NULL) ;

c l ose (ts t (p [READ J , p [WRITE J)) ;
return (ts t (p [WRITE J , p[READ])) ;

0

0

The function creates a pipe with the pipe function first. It then
uses the fork function to create two copies of the original process.
Each process has its own copy of the pipe. The child process
decides whether it is supposed to read or write through the pipe,
then closes the other side of the pipe and uses exec/ to create the
new process and execute the desired program. The parent, on the
other hand, closes the side of the pipe it does not use.

The sequence of close functions in the child process links the
standard input or output of the child process to the pipe. The first
close determines which side of the pipe should be closed and
closes it. If mode is WRITE, the writing side is closed; if READ, the
reading side is closed. The second close closes the standard input
or output depending on the mode. If the mode is WRITE, the input
is closed; if READ, the output is closed. The dup function creates a
duplicate of the side of the pipe still open. Because the standard
input or output was closed immediately before this call, tllis
duplicate receives the same file descriptor as the standard file.
The system always chooses the lowest available file descriptor for
a newly opened file. Because the duplicate pipe has the same file
descriptor as the standard file, it becomes the standard input or
output file for the process. Finally, the last close closes the
original pipe, leaving only the duplicate.

The following example is a modified version of the pclose
function. The modified version requires a file descriptor as an
argument rather than a file pointer:

i ncl ude <s i gnal . h>

pclos e (fd)
i nt fd;

!* c l ose p i pe fd */

{
i n t r , status ;
i nt (*hstat) () , (* i s tat) () , (*qstat) () ;
extern i nt popen_p i d ;

c l o s e (fd) ;

i s tat s i gnal (S IGINT , S IG_IGN) ;
qstat • s i gnal (S IGQU I T , S JG_IGN) ;
hstat • s i gnal (S IGHU P , S IG_IGN) ;

(Example continues on next page.)

6-1 1

}

whi l e ((r = wai t (&status)) ! = popen_p i d && r ! = - 1)
'

i f (r == - 1)
s tatus = - 1 ;

s i gnal (SI G I N T , i stat) ;
s i gnal (SI GQU I T , qstat) ;
s i gnal (SI GHU P , hstat) ;

return (s tatus) ;

The function closes the pipe first. It then uses a while statement
to wait for the child process given by popen _pid. If other child
processes terminate while it waits, it ignores them and continues
to wait for the given process. It stops waiting as soon as the given
process termiuates or if no child process exists. The function
returns the termination status of the child, or the value -1 if there
was an error.

The signal function calls used in this example ensure that no
interrupts interfere with the waiting process. The first set of
functions causes the process to ignore the interrupt, quit, and
hangup signals. The last set restores the signals to their original
status. The signal function is described in detail in Chapter 7,
"Using Signals".

Both example functions use the external variable popen pid to
store the process ID of the child process. If more than OW pipe is
to be opened, the popen pid value must be saved in another

• variable before each call to popen, and this value must be restored
before calling pclose to close the pipe. The functions can be
modified to support more than one pipe by changing the
popen_pid variable to an array indexed by a file descriptor.

6-12

Chapter 7. Using Signals

(1 Contents

0

0

Introduction 7-3

Using the Signal Function . 7-4
Disabling a Signal . 7-5
Restoring a Signal's Default Action 7-6
Catching a Signal . 7-7
Restoring a Signal . 7-8
Program Example . 7-9

Controlling Execution with Signals . 7-11
Delaying a Signal's Action . 7-1 1
Using Delayed Signals with System Functions 7-12
Using Signals in Interactive Programs 7-13

Using Signals in Multiple Processes 7-15
Protecting Background Processes 7-15
Protecting Parent Processes . 7-16

7-1

7-2

0

0

Introduction

This chapter explains how to use C library functions to process
signals sent to a program by the XENIX system. A signal is the
system's response to an unusual condition that occurs during
execution of a program, such as the system detecting an illegal
operation or a user pressing the Interrupt (Del) key. The
Interrupt key is the Del key on your keyboard. A signal interrupts
uormal execution of the program and initiates an action such as
terminating the program or displaying an error message.

The signal function of the standard C library lets a program
define the action of a signal. The function can disable a signal to
prevent it from affecting the program. It can also give a signal a
user-defined action.

The signal function is often used with the setjmp and longjmp
functions to redefine and reshape the action of a signal. These
functions allow programs to save and restore the execution state
of a program, giving a program a means to jump from one state of
execution to another without a complex assembly language
interface.

To use the signal function, you must add the line:

i nc l u de <si gnal . h>

to the beginning of the program. The signal.h file defines the
various manifest constants used as arguments by the function. To
use the setjmp and longjmp functions you must add the line:

i nc l ude <setjmp . h>

to the beginning of the program. The setjmp.h file contains the
declaration for the type jmp buf, a template for saving a
program's current execution State.

7-3

Using the Signal Function

The signal function changes the action of a signal from its current
action to a given action. The function has the form:

signal(sigtype, ptr)

where sigtype is an integer or a mainfest constant that defines the
signal to be changed, and ptr is a pointer to the function defining
the new action or a manifest constant giving a predefined action.
The function always returns a pointer value. This pointer defines
the signal's previous action and may be used in subsequent calls to
restore the signal to its previous value.

The ptr may be SIG_IGN to indicate no action (ignore the
signal) or SIG DFL to indicate the default action. The sigtype
may be SIGINT (for interrupt signal) caused by pressing the
Interrupt (Del) key, SIGQUIT (for quit signal) caused by pressing
the QUIT key, or SIGHANG (for hangup signal) caused by
hanging np the line when connected to the system by modem.
(Other constants for other signals are given in signal(S) in the
IBM Personal Computer XENIX Software Command Reference.)

For example, the function call:

s i gnal (S I G I N T , S I G_IGN) ;

changes the action of the interrupt signal to no action. The signal
will have no effect on the program. The default action usually
terminates the program.

The following sections show how to use the signal function to
disable, change, and restore signals.

7-4

0

c

c

Disabling a Signal

You can disable a signal, that is, prevent it from affecting a
program, by using the SIG IGN constant with signal. The
function call has the form:

-

signal(sigtype, SIG_IGN)

where sigtype is the manifest constant of the signal you wish to
disable. For example, the function call:

s i gnal (S I GINT , S IG_IGN) ;

disables the interrupt signal.

The function call prevents a signal from terminating a program
executing in the background (for example, a child process that is
not using the terminal for input or output). The system passes
signals generated from keystrokes at a terminal to all programs
that have been invoked from that terminal. This means that
pressing the Del (Interrupt) key to stop a program running in the
foreground stops a program running in the background if it has
not disabled that signal. For example, in the following program
fragment signal disables the interrupt signal for the child:

i ncl ude <s igna l . h>

mai n ()
{

i f (fork () == 0) {
s i gna l (S !G INT , S I G_IGN) ;
!* Chi l d process . */

}

!* Parent process . */

}

This call does not affect the parent process, which continues to
receive interrupts as before. If the parent process is interrupted,
the child process continues to execute until it reaches its normal
end.

7-5

Restoring a Signal's Default Action

You can restore a signal to its default action by using the
SIG_DFL constant with signal. The function call has the form:

signal(sigtype, SIG_DFL)

where sigtype is the manifest constant defining the signal you wish ("
to restore. For example, the function call:

s i g na l (S IGINT, S I G_DFL)

restores the intenupt signal to its default action.

The function call restores a signal after it has been temporarily
disabled to keep it from interrupting critical operations. For
example, in the following program fragment the second call to
signal restores the signal to its default action:

i ncl ude < s i gnal . h>
i ncl ude <stdi o . h>

mai n ()
{

}

F ILE *fp ;
char *record[BUFJ , fi l ename[MAX J ;

s i gnal (S I G I N T , S IG_IGN) ;
fp = fopen (fi l ename , ' 'a' ') ;
fwr i t e (fp , B U F , record, 51 2) ;
s i gna l (S I G I N T , S I G_DFL) ;

In this example, the interrupt signal is ignored while a record is
read from the file given by fp.

7-6

Catching a Signal

You can catch a signal and define your own action for it by
providing a function that defines the new action and giving the
function as an argument to signal. The function call has the form:

o signal(sigtype, newptr)

c

c

where sigtype is the manifest constant defining the signal to be
caught, and newptr is a pointer to the function defining the new
action. For example, the function call:

s i gnal (S I G I NT , catch) ;

changes the action of the interrupt signal to the action defined by
the function named catch.

The function lets a program do additional processing before
terminating. In the following program fragment, the function
catch defines the new action for the interrupt signal:

i ncl ude <s i gnal . h>

main ()
{

i n t catch () ;

pri n tf (' 'Press I n terrupt (Del) key to stop . \ n '') ;
s i gnal (S I G I NT , catch) ;
whi l e () {

/* Body *I
}

}

catch ()
{

pri ntf("Program termi nated. \ n ") ;
ex i t (l) ;

The catch function displays the message "Program terminated"
before stopping the program with the exit function.

7-7

A program may redefine the action of a signal at any time. Thus,
many programs define different actions for different conditions.
For e)!:ample, in the following program fragment the action of the
interrupt signal depends on the return value of a function named
keytest:

i ncl ude <s igna l . h>

mai n ()
{

}

i n t catch! () , catch2 () ;

i f (keytes t () == 1)
s i gn a l (SI GINT, catch!) ;

e l s e
s i gn a l (SIGINT, catch 2) ;

Later the program may change the signal to the other action or
even a third action.

When using a function pointer in the signal call, you must make
sure that the function name is defined before the call. In the
program fragment shown above, catch] and catch2 are explicitly
declared at the beginning of !he main program function. Their
formal definitions are assumed to appear after the signal call.

Restoring a Signal

You can restore a signal to its previous value by saving the return
value of a signal call, then using this value in a subsequent call.
The function call has the form:

signal(sigtype, oldptr)

where sigtype is the manifest constant defining the signal to be
restored and oldptr is the pointer value returned by a previous
signal call.

7-8

(1

0

The function restores a signal when its previous action may be
one of many possible actions. For example, in the following
program fragment, the previous action depends solely on the
return valne of a function keytest:

i ncl ude <s i gna l . h>

mai n ()
[

}

i n t catchl () , catch2 () ;
i n t (*savesi g) () ;

i f (keytes t () o o 1)
s i gnal (S IGINT , catchl) ;

e l s e
s i gnal (S IGINT, catch2) ;

saves i g = s i gnal (S I G INT, S I G_IGN) ;
compute () ;
s i gnal (S I GINT , savesi g) ;

In this example, the old pointer is saved in the variable savesig.
This value is restored after the function compute returns.

Program Example

This section shows how to use the signal function to create a
modifed version of the system function. In this version, system
disables all interrupts in the parent process until the child process
has completed its operation. It then restores the signals to their
previous actions:

i ncl ude <stdi o . h>
i ncl ude <si gnal . h>

system (s)
char * s ;
[

!* run command s tr i ng s */

int status , p i d , w ;
reg i ster i nt (*i stat) () , (*qstat) () ;

(Example continues on next page.)

7-9

}

i f ((p i d = fork ()) == 0) (

}

execl ('' /bin/s h '' , '' s h '' , ' '-c '' , s , NULL) ;
exi t(1 27) ;

i s tat = s i gnal (S IG INT , S I G_IGN) ;
qs tat = s i gnal (S IGQU I T , S I G_I GN J ;
whi l e ((w = wait(&statu s)) ! = p i d && w ! = - 1)

,
i f (w == -1)

status = -1 ;
s i gnal (S IG INT , i stat) ;
s i gnal (S I GQUI T , qstat) ;
return (s tatus) ;

The parent uses the while statement to wait until the child's
Process IDENTIFICATION (PID) number is returned by wait. If wait
returns the error code " -1 " no more child processes are left, so
the parent returns the error code as its own status.

7-10

0

Controlling Execution with Signals

Signals do not need to be used solely as a means of immediately
terminating a program. Many signals can be redefined to delay
their actions or even cause actions that terminate a portion of a
program without terminating the entire program. The following
sections describe ways that signals can be caught and used to
provide control of a program.

Delaying a Signal's Action

You can delay the action of a signal by catching the signal and
redefining its action to be nothing more than setting a
globally-defined flag. Such a signal does nothing to the current
execution of the program. Instead, the program continues
uninterrupted until it can test the flag to see if a signal has been
received. It can then respond according to the value of the flag.

The key to a delayed signal is that all functions return execution
to the exact point at which the program was interrupted. If the
function returns normally, the program continues execution just
as if no signal occurred.

Delaying a signal is especially useful in programs that must not be
stopped at an arbitrary point. If, for example, a program up_dates
a linked list, the action of a signal is delayed to prevent the signal
from interrupting the update and destroying the list. For example,
in the following program fragment, the function delay, used to
catch the interrupt signal, sets the globally-defined flag sigflag
and returns immediately to the point of interruption:

i n c l ude < s i gnal . h>
i nt s i gfl a g ;

mai n ()
[

i n t de lay () ;
i n t (*saves i g) () ;
extern int s i gf l a g ;

(Example continues on next page.)

7-1 1

}
del ay ()
{

}

s i gnal (S I G I N T , del ay) ;
updatel i s t () ;
saves i g = s i gnal (S IGINT,

if (s i gf l a g)

/* Del ay the s i gnal . */

SIG I GN) ; /* D i sabl e the s i gnal . *I

!* Process del ayed s i gnal s i f any . *!

extern i nt s i gfl ag ;

s i gfl ag= l ;

In this example, if the signal is received while update/ist is
executing, it is delayed until after update/is! returns. The interrupt
signal is disabled before processing the delayed signal to prevent a
change to sigflag when it is being tested.

The system automatically resets a signal to its default action
immediately after the signal is processed. If your program delays
a signal, make sure that the signal is redefined after each
interrupt. Otherwise, the default action will be taken on the next
occurrence of the signal. \

Using Delayed Signals with System Functions

When a delayed signal is used to interrupt the execution of a
XENIX system function, such as read or wait, the system forces
the function to stop and return an error code. This action, unlike
actions taken during execution of other functions, causes all
processing performed by the system function to be discarded. A
serious error can occur if a program interprets a system function
error caused by delayed signals as a normal error. For example, if
a program receives a signal when reading the terminal, all
characters read before the interruption are lost, making it appear
as though no characters were typed.

7-12

�
I

CJ

0

Whenever a program intends to use delayed signals during caiis to
system functions, the program should include a check of the
function return values to ensure that an error was not caused by
an interruption. In the foiiowing program fragment, the program
checks the current value of the interrupt flag intflag to make sure
that the valne EOF returned by getchar actuaily indicates the end
of the file:

i f (getchar () == EOF)
if (i ntfl a g)

! * EOF caused by i nterrupt */
else

!* true end-of-fi l e */

Using Signals in Interactive Programs

Signals can be used in interactive programs to control the
execution of the program's various commands and operations.
For example, a signal can be used in a text editor to interrupt the
current operation (for example, displaying a file) and return the
program to a previous operation (for example, waiting for a
command).

To provide tins control, the function that redefines the signal's
action mnst be able to return execution of the program to a
meaningful location, not just to the point of interruption. The
standard C library provides two functions to do this: setjmp and
longjmp. The setjmp function saves a copy of a program's
execution state. The longjmp function changes the current
execution state to a previously saved state. The functions cause a
program to continue execution at an old location with old register
values and status as if no operations had been performed between
the time the state was saved and the time it was restored.

7-13

The setjmp function has the form:

setjmp(buffer)
where buffer is the variable to receive the execution state. It must
be explicitly declared with type jmpbuf before it is used in the
call. For example, in the following program fragment, setjmp
copies the execution of the program to the variable oldstate
defined with type jmpbuf:

jmpbuf ol dstate ;

setjmp (ol dstate) ;

After a setjmp call, the buffer variable contains values for the
program counter, the data and address registers, and the process
status. These values must not be modified in any way.

The longjmp function has the form:

\Qllgjmp(buffer)
where buffer is the variable containing the execution state. It
must contain values previously saved with a setjmp function. The
function copies the values in the buffer variable to the program
counter, data and address registers, and the process status table.
Execution continues as if it had just returned from the setjmp
function that saved the previous execution state. For example, in
the following program fragment, setjmp saves the execution state
of the program at the location just before the main processing
loop and longjmp restores it on an interrupt signal:

i ncl ude < s i gn a l . h>
i ncl ude <setjmp . h>

mai n ()
{

i n t on i ntr () ;

setjmp (s j buf) ;
s i gnal (SIGINT, onintr) ;

(Example continues on next page.)

7-14

, ,
"-

()

c

!* ma i n proces s i ng l oop */
)

oni ntr ()
{
printf ('' \ n lnterrupt \ n '') ;
l ongjmp (sjbuf) ;
)

In this example, the action of the interrnpt signal as defined by
onintr is to print the message Interrupt and restore the old
execution state. When an interrupt signal is received in the main
processing loop, execution passes to onintr which prints the
message, then passes execntion back to the main program
function, making it appear as though control is returning from the
setjmp fnnction.

Using Signals in Multiple Processes

The XENIX system passes all signals generated at a given
terminal to all programs invoked at that terminal. This means that
a program has access to a signal even if that program is executing
in the background or as a child to some other program.

Protecting Background Processes

Any program invoked using the shell's background symbol (&) is
execnted as a background process. Such programs usually do not
use the terminal for input or output. Also, they complete their
tasks without returning the prompt. Because these programs do
not need additional input, the shell automatically disables the
signals before executing the program. This means signals
generated at the terminal do not affect execution of the program.
This is how the shell protects the program from signals intended
for other programs invoked from the same terminal.

7-15

In some cases, a program that has been invoked as a background
process may also attempt to catch its own signals. If it succeeds,
the protection from interruption given to it by the shell is
defeated, and signals intended for other programs will interrupt
the program. To prevent this, any program intended to be
executed as a background process should test the current state of
a signal before redefining its action. A program should redefine a
signal only if the signal has not been disabled. For example, in ''-

the following program fragment the action of the interrupt signal
is changed only if the signal is not currently being ignored:

i nclude <s i gnal . h>

mai n ()
(

}

i n t catch () ;
i f (s i gna l (S I G I NT , S IG_IGN) ! = S IG_IG N)

s i gnal (S I G I NT , catch) ;

;* Program body. */

This step lets a program continue to ignore signals if it is already
doing so and change the signal if it is not.

Protecting Parent Processes

A program can create and wait for a child process that catches its
own signals only if the program protects itself by disabling all
signals before calling the wait function. By disabling the signals,
the parent process prevents signals intended for the child
processes from terminating its call to wait. This prevents serious
errors that may result if the parent process continues execution
before the child processes are finished.

7-16

l

0

0

For example, in the following program fragment the interrnpt
signal is disabled in the parent process immediately after the child
is created:

i ncl ude <si gnal . h>

rna i n ()
{

}

i n t (*savei ntr) () ;
i f (fork () • • 0)

execl (. . .) ;

saveintr • s i gnal { S I G I NT , S IG_IGN) ;
wai t (&s tatus) ;
s i gnal (S IG INT , saveintr) ;

The signal's action is restored after the wait function returns
normal control to the parent.

7-17

7-18

Chapter 8. Using System Resources

('1 Contents

0

Introduction 8-3

Allocating Space . 8-3
Allocating Space for a Variable . 8-4
Allocating Space for an Array . 8-5
Reallocating Space . 8-6
Freeing Unused Space . 8-7

Locking Files . 8-8
Preparing a File for Locking . 8-8
Locking a File . 8-9
Program Example . 8-10

Using Semaphores . 8-1 1
Creating a Semaphore . 8-12
Opening a Semaphore . 8-13
Requesting Control of a Semaphore 8-14
Checking the Status of a Semaphore 8-15
Relinquishing Control of a Semaphore 8-16
Program Example . 8-17

Using Shared Data . 8-19
Creating a Shared Data Segment 8-20
Attaching a Shared Data Segment 8-21
Entering a Shared Data Segment 8-22
Leaving a Shared Data Segment 8-23
Getting the Current Version Number 8-24
Waiting for a Version Number 8-25
Freeing a Shared Data Segment 8-26

Program Example . 8-26

8-1

S-2

c

Introduction

This chapter describes the standard C library functions that let
programs share the resources of the XENIX system. The
functions give a program the means to queue for the use and
control of a given resource and to synchronize this use with other
programs.

In particular, t!J.is chapter explains how to:

• Allocate memory for dynamically required storage

• Lock a file to ensure exclusive use by a program

• Use semaphores to control access to a resource

• Share data space to allow interaction between programs

(\ Allocating Space
['\........__ .. /

Some programs require significant changes to the size of their
allocated memory space during different phases of their
execution. The memory allocation functions of the standard C
library let programs allocate space dynamically. This means a
program can request a given number of bytes of storage for its
exclusive use at the moment it needs the space, then free this
space after it has finished using it.

There are four memory allocation functions: malloc, calloc, ralloc,
and free. The malloc and calloc functions are used to allocate
space for the first time. The functions allocate a given number of
bytes and return a pointer to the new space. The realloc function
reallocates an existing space, allowing it to be used in a different
way. The free function returns allocated space to the system.

8-3

Allocating Space for a Variable

The malloc function allocates space for a variable containing a
given number of bytes. The function call has the form:

malloc(size)

where size is an unsigned number which gives the number of bytes
to be allocated. For example, the function call:

tabl e = mal l oc (4) ;

allocates 4 bytes of storage. The function normally returns a
pointer to the starting address of the allocated space but will
return the null pointer value if there is not enough space to
allocate.

The function allocates storage for a group of strings that vary in
length. For example, in the following program fragment, mal/oc
allocates space for 10 strings, each of different length:

char * mal l oc () ;
i n t i ;
char *temp , *stri ngs [lO J ;
u n s i gned i s i ze ;

for (i =O ; i <l O ; i ++) {
scanf(11 %s •• , temp) ;
i s i ze = strl e n (temp) ;
s tri n gs [i] = mal l oc (i s i ze) ;
}

In this example, the strings are read from the standard input. The
strlen function is used to get the size in bytes of each string.

8-4

-1
Allocating Space for an Array

The calloc function allocates storage for a given array and
initializes each element in the new array to zero. The function
call has the form:

r! calloc(n, size)

()

where n is the number of elements in the array, and size is the
number of bytes in each element. The function normally returns
a pointer to the starting address of the allocated space but will
return a null pointer value if there is not enough memory. For
example, the function call:

tab l e = cal l oc (l 0 , 4) ;

allocates sufficient space for a I 0-element array. Each element
has 4 bytes.

The function is used in programs that must process large arrays
without knowing the size of an array in advance. For example, in
the following program fragment, calloc allocates storage for an
array of values read from the standard input:

char * cal l oc () ;
i nt i ;
char tabl e [lO J
u n s i gned i nurn;

s canf(11%d 11 , & i n um) ;
tabl e = cal l oc (i num,4) ;
for (i =O ; i < i num ; i ++)

scanf("%d '' , tabl e[i]) ;

The number of elements is read from the standard input before
the elements are read.

8-5

Reallocating Space

The rea/lac function reallocates the space at a given address
without changing the contents of the memory space. The
function call has the form:

realloc(ptr, size)

where ptr is a pointer to the starting address of the space to be
reallocated, and size is an unsigned number giving the new size in
bytes of the reallocated space. The function normally returns a
pointer to the starting address of the allocated space but returns a
null pointer value if there is not enough space to allocate.

This function keeps storage as compact as possible. For example,
in the following program fragment rea/lac removes table entries:

mai n ()
{

char * real l oc () ;
char *str i ngs=[lO]
i nt i ;
u n s i gned i nurn ;

for (i = i num ; i >-l ; i --) {
stri n g [i] = real l oc (s trings [i]*4) ;

In this example, an entry is removed after it has been printed at
the standard output by reducing the size of the allocated space
from its current length to the length given by i*4.

8-6

Freeing Unused Space

The free function frees unused memory space that had been
previously allocated by a malloc, ca/loc, or rea/lac function call.
The function call has the form:

(.'\, free(ptr)
\. ..

0

where ptr is the pointer to the starting address of the space to be
freed. This pointer must be the return value of a malloc, ca/loc, or
realloc function.

The function frees space that is no longer used or frees space to
be used for other purposes. For example, in the following
program fragment, free frees the allocated space pointed to by
table if the first element is equal to zero:

mai n ()
[
char tabl e [l O J ;

i f (ta b l e [O J == - 1)
free (tabl e) ;

8-7

Locking Files

Locking a file is a way to synchronize file use when several
processes may require access to a single file. The standard C
library provides one file locking function, locking. This function
locks any given section of a file, preventing all other processes < ..
that wish to use the section from gaining access. A process may
lock the entire file or only a small portion of it. In any case, only
the locked section is protected; all other sections can be accessed
by other processes as usual.

File locking protects a file from the damage caused by several
processes that try to read or write to the file at the same time.
File locking also provides unhindered access to any portion of a
file for a controlling process. Before a file can be locked,
however, it must be prepared using the open and !seek functions
described in Chapter 2, "Using the Standard I/0 Functions." To
use the locking function, you must add the line:

i ncl ude <sys/l ocki ng . h>

to the beginning of the program. The file sys/locking.h contains
definitions for the modes used with the function. \"

Preparing a File for Locking

Before a file can be locked, it must first be opened using the open
function, then properly positioned by using the /seek function to
move the file's character pointer to the first byte to be locked.

The open function is used once at the beginning of the program to
open the file. The /seek function can be used any number of times
to move the character pointer to each new section to be locked.
For example, the following statements locate the file pointer at
the byte position 1 024 from the beginning of the file reservations
for locking:

fd = open ("reservat i ons " , O_RDONLY) ;
l seek (fd , l024 ,0) ;

8-8

if\.
. \ ' I ,

Locking a File

The locking function Jocks one or more bytes of a given file. The
function call has the form:

Jocking(filedes, mode, size)

where filedes is the file descriptor of the file locked, mode is an
integer value which defines the type of Jock applied to the file, size
is a long integer value giving the size in bytes of the portion of the
file section locked or unlocked. The mode may be LOCK for
locking the given bytes, UNLOCK for unlocking them. For
example, in the following program fragment locking Jocks 100
bytes at the current character pointer position in the file given by
fd:

#i nclude <sys/ lock ing . h>

rna i n ()
{

i nt fct ,

O J
fd = open ("data " , O_ROWR) ;
l oc k i n g (fd ,LOCK, lOOL) ;

0

The function normally returns the number of bytes locked but
returns - 1 if it encounters an error.

8-9

Program Example

This section shows how to lock and unlock a small section in a file
using the locking function. Note that a seek to a specified position
is done immediately prior to the locking unlocking of the file
segment. It is always advisable to do this because the locking call
simply takes the current file pointer position as the starting point
of the segment to be locked. In the following program, a file ,
("data" is opened for reading and writing) is opened, a seek done
to set the file pointer correctly, and then a 100 bytes of the file
are locked. A seek is again done to the specified location and
then the locking call is used again to unlock the the file.

i n c l ude <sys l l ocki ng . h >

mai n ()
{
i nt fd , err ;
char *data ;

fd = open (" d a t a " ,O_RDWR) ;
i f (fd = = - 1)

perror (11 11) ;
el s e {

I* Open data for RIW *I

l seek (fd , 100L , O) ; I* Seek to pas 100 *1

8-10

err = l oc k i ng (fd , LK_LOCK , 1 0DL) ; I* Lock bytes 100-200 *I
i f (err -1) {

I* process error return */
}

I* read or wri te bytes 100 - 200 i n the fi l e *I

l s eek (f d , 100L , O) ;
l oc k i n g (fd , L K_UNLC K , 100L) ;

}

I* Seek to pas 100 * I
I * Unl ock bytes 100-200 * I

-1

0

0

0

Using Semaphores

The standard C library provides a group of functions, called the
semaphore functions, which can control the access to a given
system resource. These functions create, open, and request
control of "semaphores. " Semaphores are regular files that have
names and entries in the file system but contain no data. Unlike
other files, semaphores cannot be accessed by more than one
process at a time. A process that wishes to take control of a
semaphore away from another process must wait until that
process relinquishes control. Semaphores control a system
resource, snch as a data file, by requiring that a process gain
control of the semaphore before attempting to acce-ss the
resource.

There are five semaphore functions: creatsem, opensem, waitsem,
nbwaitsem, and sigsem. The creatsem function creates a
semaphore. The semaphore may then be opened and used by
other processes. A process can open a semaphore with the
opensem function and request control of a semaphore with the
waitsem or nbwaitsem function. Once a process has control of a
semaphore it can carry out tasks using the given resource. All
other processes must wait. When a process has finished accessing
the resource, it can relinquish control of the semaphore with the
sigsem function. This lets other processes get control of the
semaphore and use the corresponding resource.

8-1 1

Creating a Semaphore

The creatsem function creates a semaphore, returning a
semaphore number that may be used in subsequent semaphore
functions. The function call has the form:

creatsem(sem_name, mode)

where sem name is a character pointer to the name of the
semaphorGnd mode is an integer value that defines the access
mode of the semaphore. Semaphore names have the same syntax
as regular file names. The names must be unique. The function
normally returns an integer semaphore number, which may be
used in subsequent semaphore functions to refer to the
semaphore. The function returns -1 if it encounters an error, such
as creating a semaphore that already exists or using the name of
an existing regular file.

The function is used at the beginning of one process to define the
semaphores it shares with other processes. For example, in the
following program fragment, creatsem creates a semaphore named
ttyl before preceding with its tasks:

mai n ()
{
i n t ttyl ;
F ILE fttyl ;

ttyl = creatsem ("ttyl " , 0777) ;
fttyl fopen (" /dev /ttyOl " , "w") ;

;* Program body. */
)

The fopen function is used immediately after creatsem to open the
file /dev/ttyOJ for writing. This is one way to make the
association between a semaphore and a device clear.

8-12

The mode 0777 defines the semaphore's access permissions. The
permissions are similar to the permissions of a regular file. A
semaphore may have read permission for the owner, for users in
the same group as the owner, and for all other users. The write
and execution permissions have no meaning. Thus, 0777 means
read permission for all nsers.

No more than one process ever need create a given semaphore; all
other processes simply open the semaphore with the opensem
function. Once created or opened, a semaphore may be accessed
only by nsing the waitsem, nbwaitsem, or sigsem functions. The
creatsem function may be used more than once during execution
of a process. In particular, it can be used to reset a semaphore if
a process fails to relinquish control before terminating. Before
resetting a semaphore, you must remove the associated semaphore
file using the unlink function

Opening a Semaphore

The opensem function opens an existing semaphore for use by the
given process. The function call has the form:

() opensem(sem_name)

0

where sem name is a pointer to the name of the semaphore.
This must be the same name used when creating the semaphore.
The function returns a semaphore number that can be used in
subsequent semaphore functions to refer to the semaphore. The
function returns -1 if it encounters an error, such as trying to
open a semaphore that does not exist or using the name of an
existing regular file.

8-13

The function is used by a process just before it requests control of
a given semaphore. A process need not use the function if it also
created the semaphore. For example, in the following program
fragment, opensem opens the semaphore named semaphore]:

main ()
{

i nt seml ;

i f ((semi = opensem(''semaphorel '')) ! = - 1)
wai tsem(seml) ;

In this example, the semaphore number is assigned to the variable
seml. If the number is not -1 , then semi is used in the
semaphore function waitsem, which requests control of the
semaphore.

A semaphore must not be opened more than once during
execution of a process. Although the opensem function does not
return an error value, opening a semaphore more than once can
lead to a system deadlock.

Requesting Control of a Semaphore

The waitsem function requests control of a given semaphore for
the calling process. If the semaphore is available, control is given
immediately. Otherwise, the process waits. The function call has
the form:

waitsem(sem_num)

where sem num is the semaphore number of the semaphore to
be controlled. If the semaphore is not available (it is under
control of another process) , the function forces the requesting
process to wait. If other processes are already waiting for control,
the request is placed next in a queue of requests. When the
semaphore becomes available, the first process to request control
receives it. When this process relinquishes control, the next
process receives control, and so on. The function returns -1 if it
encounters an error, such as requesting a semaphore that does not
exist or requesting a semaphore that is locked to a dead process.

8-14

0

The function is used whenever a given process wishes to access
the device or system resource associated with the semaphore. For
example, in the following program fragment, waitsem signals the
intention to write to the file given by tty l :

ma i n ()
[

}

i nt ttyl ;
FILE fttyl ;

wai tsem(ttyl) ;
fpr i n t f (fttyl , " Chang i ng tty driver \ n ") ;

The function waits until the current controlling process
relinquishes control of the semaphore before returning to the next
statement.

Checking the Status of a Semaphore

The nbwaitsem function checks the current status of a semaphore.
If the semaphore is not available, the function returns an error
value. Otherwise, it gives immediate control of the semaphore to
the calling process. The function call has the form:

nbwaitsem(sem_num)

where sem_num is the semaphore number of the semaphore to
be checked. The function returns -1 if it encounters an error,
such as requesting a semaphore that does not exist. The function
also returns -1 if the process controlling the requested semaphore
terminates without relinquishing control of the semaphore.

The function is used in place of waitsem to take control of a
semaphore.

8-15

Relinquishing Control of a Semaphore

The sigsem function causes a process to relinquish control of a
given semaphore and to signal this fact to all processes waiting for
the semaphore. The function call has the form:

sigsem(sem_num)

where sem num is the semaphore number of the semaphore to
relinquish.The semaphore must have been previously created or
opened by the process. Furthermore, the process must have been
previously taken control of the semaphore with the waitsem or
nbwaitsem function. The function returns -1 if it encounters an
error, such as trying to take control of a semaphore that does not
exist.

The function is used after a process has finished accessing the
corresponding device or system resource. This allows waiting
processes to take control. For example, in the following program
fragment, sigsem signals the end of control of the semaphore ttyl :

rna i n ()
(

}

i n t ttyl ;
F I L E tem p , fttyl ; �

wai ts em (t tyl) ;
whi l e ((c=fgetc (temp)) ! = EOF)

fputc (c, fttyl) ;
s i g s em(ttyl) ;

This example also signals the end of the copy operation to the
semaphore's corresponding device, given by fttyl .

A semaphore can become locked to a dead process if the process
fails to signal the end of the control before terminating. In such a
case, the semaphore must be reset by using the creatsem function.

8-16

Program Example

This section shows how to use the semaphore functions to control
the access of a system resource. The following program creates
five processes that vie for control of a semaphore. Each process
requests control of the semaphore five times, holding control for
one second, then releasing it. Although the program performs no
meaningful work, the use of semaphores is clearly illustrated:

#defi ne NPROC 5

char s emf[l = "_kesemfXXXXX X " ;
i nt s em_num ;
i nt ho l dsem = 5 ;

ma i n [)
[

reg i s ter i , ch i d ;

mktemp [semf) ;
i f [[sem_num = creatsem[s emf ,0777)) < 0)

err (11 Creatsem'1) ;
for [i = l ; i < NPROC ; ++i) [

i f [[c h i d = fork [)) < 0)
err [" No fork ") ;

e l se i f [c h i d == 0) [
i f [(sem_num = opensem (s emf)) < 0)

err (11 0pens em 11) ; ,

doi t [i d)
[

}
doi t (O) ;

do i t (i) ;
exi t [O) ;

for [i = l ; i < NPROC ; ++i)
whi l e (wai t [(i nt *) O) < 0)

u n l i n k [semf) ;

Q (Example continues on next page.)

8-17

}

err (s)
char *s ;
{

}

whi l e (ho l dsem--) {
i f (wa itsem(sem num) < 0)

}

err(11wEii tsem 11) ;
pri ntf(" %d \ n " , i d) ;
s l eep (l) ;
i f (s i gsem (sem_num) < 0)

err(11 s i gsem 11) ;

perror (s) ;
exi t (l) ;

The program contains a number of global variables. The array
"semf" contains the semaphore name. The name is used by the
creatsem and opensem functions. The variable "sem num" is the
semaphore number. This is the value returned by creatsem and
opensem and eventually used in waitsem and sigsem. Finally, the
variable "holdsem" contains the number of times each process
requests control of the semaphore.

The main program function uses the mktemp function to create a
unique name for the semaphore and then uses the name with
creatsem to create the semaphore. Once the semaphore is created,
it begins to create child processes. These processes will
eventually vie for control of the semaphore. As each child
process is created, it opens the semaphore and calls the doit
function. When control returns from doit, the child process
terminates. The parent process also calls the doit function, then
waits for termination of each child process and finally deletes the
semaphore with the unlink function.

The doit function calls the waitsem function to request control of
the semaphore. The function waits until the semaphore is
available, it then prints the process ID to the standard output,
waits one second, and relinquishes control using the sigsem
function.

Each step of the program is checked for possible errors. If an
error is encountered, the program calls the err function. This
function prints an error message and terminates the program.

8-18

0

Using Shared Data

Shared memory is a method by which one process shares its
allocated data space with another. Shared memory allows
processes to pool information in a central location and directly
access that information without the burden of creating pipes or
temporary files.

The standard C library provides several functions to access and
control shared memory. The sdget function creates and/ or adds a
shared memory segment to a given process's data space. To
access a segment, a process must signal its intention with the
sdenter function. Once a segment has completed its access, it can
signal that it is finished using the segment with the sdleave
function. The sdfree function is used to remove a segment from a
process's data space. The sdgetv and sdwaitv functions are used to
synchronize processes when several are accessing the segment at
the same time.

To use the shared data functions, you must add the line:

#incl ude <sd . h>

at the beginning of the program. The sd.h file contains definitions
for the manifest constants and other macros used by the
functions.

8-19

Creating a Shared Data Segment

The sdget function creates a shared data segment for the current
process and attaches the segment to the process's data space. The
function call has the form:

sdget(path, flag [, size, mode])

where path is a character pointer to a valid pathname, flag is an
integer value which defines how the segment should be created,
size is an integer value which defines the size in bytes of the
segment to be created, and mode is an integer value which defines
the access permissions to be given to the segment. The flag may
be a combination of so_CREAT for creating the segment, and
so RDONL v for attaching the segment for reading only or
so

-
WRITE for attaching the segment for reading and writing. You

may also use so UNLOCK for allowing simultaneous access by
multiple processes. The values can be combined by logically
DRing them. The function returns the address of the segment if it
has been successfully created. The function returns -1 .

The function is typically used by just one process to create a
segment that it will share with several other processes. For
example, in the following fragment, the program uses sdget to
create a segment and attach it for reading and writing. The
address of the new segment is assigned to shared

i ncl ude <sd . h>

mai n ()
{

}

char *s hare d ;

s hared=sdget (" /tmp/s hare" , SD_CREAT I SD_WRITE ,
5 1 2 ,0777) ;

8-20

()

0

When the segment is created, the size "512" and the mode
"0777" are used to define the segment's size in bytes and access
permissions. Access permissions are similar to permissions given
to regular files. A segment may have read or write permission for
the owner of the process, for users belonging to the same group as
the owner, and for all other users. Execute permission for a
segment has no meaning. For example, the mode "0777" means
read and write permission for everyone, but "0660" means read
and write permissions for the owner and group processes only.
When first created, a segment is filled with zeroes.

Note that the so UNLOCK flag used on systems without hardware
snpport for shared data may severly degrade the execution
performance of the program.

Attaching a Shared Data Segment

The sdget function can also be used to attach an existing shared
data segment to a process's data space. In tllis case, the function
call has the form:

sdget (path,flag)
where path is a character pointer to the pathname of a shared data
segment created by some other process, and flag is an integer
value which defines how the segment should be attached. The
flag may be so RDONLY for attaching the segment for reading
only, or so WRITE for attaclling the segment for reading and
writing. Ifthe function is successful, it returns the address of the
new segment. Otherwise, it returns - 1 .

8-21

The function can be used to attach any shared data segment a
process may wish to access. For example, in the following
fragment, the program uses sdget to attach the segments
associated with the files /tmp/shareland/tmp/share2 for reading
and writing. The addresses of the new segments are assigned to
the pointer variables share 1 and share2.

#i nc l ude<s d . h>
mai n ()
(
char *sharel ,*share2 ;
s harel=sdget(''/tmp/sharel '' , SD_
WRI T E ;
s hare2=sdge t (" /tl1lp/share2 " ,SD_
WRITE ;
J

The sdget function returns an error value to any process that
attempts to access a shared data segment without the necessary
permissions. The segment permissions are defined when the
segments is created

Entering a Shared Data Segment

The sdenter function signals a process's intention to access the
contents of a shared data segment. A process cannot access the
contents of the segment unless it enters the segment. The
function call has the form:

sdenter(addr, flag)

where addr is a character pointer to the segment to be accessed,
and flag is an integer value that defines how the segment is to be
accessed. The flag may be so RDONLY for indicating read only
access to the segment, or so NO WAIT for returning an error if the
segment is locked and another process is cuuently accessing it.
These values may also be combined by logically ORing them.

The function normally waits for the segment to become available
before allowing access to it. A segment is not available if the
segment has been created without so UNLOCK flag and another
process is currently accessing it.

-

8-22

,,
\,_

c

In general, it is unwise to stay in a shared data segment any longer
than it takes to examine or modify the desired location. Use The
sdleave function after each access. When in a shared data
segment, a program should avoid using system functions. System
functions can disrupt the normal operations required to support
shared data and may cause some data to be lost. In particular, if a
program creates a shared data segment that cannot be shared
simultaneously, the program must not call the fork function when
it is also accessing that segment.

Leaving a Shared Data Segment

The sdleave function signals a process's intention to leave a shared
data segment after reading or modifying its contents. The
function call has the form:

sdleave(addr)

where addr is a pointer with type char to the desired segment.
The function returns - 1 if it encounters an error, otherwise it
returns 0. The return value is always an integer.

The function should be used after each access of the shared data
to terminate the access. If the segment's lock flag is set, the
function must be used after each access to allow other processes
to access the segment. For example, in the following program
fragment, sdleave terminates each access to the segment given by
shared:

#inc l ude <sd . h>

mai n ()
{
i nti =0
char c , *share ;

s hare=sdget(''/tmp/s hare '' , SD_RDONL Y) ;

sdenter (s hare , SD_RDONLY) ;
c = *share

sdl eave(s hare) ;

(Example continues on next page.)

8-23

wh i l e (c ! " 0) {

}
}

putcha r(c) ;
i + + ;
sdenter (s hare , SD_RDONLY) ;

C"share [i] ;
sd l eave (share) ;

Getting the Current Version Number

The sdgetv function returns the current version number of the
given data segment. The function call has the form:

sdgetv(addr)

where addr is a character pointer to the desired segment. A
segment's version number is initially zero, but it is incremented by
one whenever a process leaves the segment using the sdleave
function. Thus, the version number is a record of the number of
times the segment has been accessed. The function's return value
is always an integer. It returns - 1 if it encounters an error.

The function chooses an action based on the current version ,,
number of the segment. For example, in the following program
fragment, sdgetv determines whether sdenter should enter the
segment given by shared:

$ i ncl ude <sd . h>

ma i n ()
{

}

char *shared ;

i f (sdgetv (s hared) > 1 0)
sdenter(s hared) ;

In this example, the segment is entered if the current version
number of the segment is greater than 10.

8-24

Waiting for a Version Number

The sdwaitv function causes a process to wait until the version
number for the given segment is no longer equal to a given
version number. The function call has the form:

0 sdwaitv(addr, vnum)
where addr is a character pointer to the desired segment, and
vnum is an integer value that defines the version number to wait
for. The function normally returns the new version number. It
returns -1 if it encounters an error. The return value is always an
integer.

The function is typically used to synchronize the actions of two
separate processes. For example, in the following program
fragment, the program waits while the program corresponding to
the version number "vnum" performs its operations in the
segment:

i ncl ude < s d . h>

mai n ()
[

char *share ;
i nt change ;

vnum=sdgetv (s hare) ;
i =0 ;
i f (s dwa i tv (share ,vnum) = = - 1)

fpr intf (stderr , ' 'Cannot f ind segment/n '') ;

el se
sdenter (s hare) ;

If an error occurs wllile waiting, an error message is printed.

8-25

Freeing a Shared Data Segment

The sdfree function detaches the current process from the given
shared data segment. The function call has the form:

sdfree(addr)

where addr is a character pointer to the segment to be set free.
The function returns the integer value 0, if the segment is freed.
Otherwise, it returns - 1 .

If the process is currently accessing the segment, sdfree
automatically calls sdleave to leave the segment before freeing it.

The contents of segments that have been freed by all attached
processes are destroyed. To reaccess the segment, a process must
recreate it using the sdget function and so_CREAT flag.

Program Example

This section shows how to use the shared data functions to share
a single data segment between two processes. The following
program attaches a data segment named I tmp I share and then uses
it to transfer information to between the child and parent
processes.

i ncl ude <sd . h>

mai n ()

char *s hare ,message[l 2 l ;
int i , vnum;

share = sdget(" /tmp/s hare " , SD_CREAT I SD_WRITE , 12 ,0777) ;

(Example continues on next page.)

8-26

0

i f (fork () • • 0) [

}
for

}

for (i •O ; i <4 ; i ++) [

}

sdenter (s hare , SD_WR ITE) ;
strncpy (message , share , 1 2) ;
strncpy (s hare , "Shared data " , 12) ;
vnum • sdgetv (s ha re) ;

sdl eave (s hare) ;
sdwa i tv (s hare , vnum + 1) ;
pri ntf ('' C h i l d : %d - %s/n '' , i , mess age) ;

sdenter (s hared , SD_WRITE) ;
s trncpy (message , s ha r e , 1 2) ;
s trncpy (s hare , ' 'Shared data " , 1 2) ;

sdl eave (s hare) ;
printf ('' C h i l d : %d - %s\n'' , i , mess age) ;
exi t (0) ;

(i •O ; i < 5 ; i++) [
sdenter (s hare , SD_WRITE) ;

strncpy (message , s hare , 1 2) ;
s trncpy (s hare , ' 'Data s hared' ' , 12) ;
vnum • sdgetv (share) ;

sdl eave (s hare) ;
sdwai tv (s hare , vnum + 1) ;
printf (Parent : %d - %s\n " , i , mes sage) ;

sdfree (share) ;
}

In this program, the child process inherits the data segment
created by the parent process. Each process accesses the segment
5 times. During the access, a process copies the current contents
of the segment to the variable message and replaces the message
with one of its own. It then displays message and continues the
loop.

8-27

To synchronize access to the segment, both the parent and child
use the sdgetv and sdwaitv functions. While a process still has
control of the segment, it uses sdgetv to assign the current version
number to the variable vnum. It then uses this number in a call to
sdwaitv to force itself to wait until the other process has accesed
the segment. Note that the argument to sdwaitv is actually "vnum
+ 1 ". Since vnum was assigned before the sdleave call, it is exactly : ,
one less than the version number after the sdleave call. It is '
assigned before the sdleave call to ensure that the other process
does modify the current version number before the current
process has a chance to assign it to vnum

The last time the child process accesses the segment, it displays
the message and exits without calling the sdwaitv function. This is
to prevent the process from waiting forever, since the parent has
already exited and can no longer modify the current version
number.

8-28

Chapter 9. Error Processing

c� Contents

Introduction 9-3

0

Using the Standard Error File o o o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 9-3

Using the errno Variable

Printing Error Messages

• • • 0 • 9-4

9-6

Using Error Signals o 0 0 0 0 0 0 0 0 0 0 0 9-7

Encountering System Errors o o o o o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 9-8

9-1

\
'

9-2

0

Introduction

This chapter explains how to process errors and describes the
functions and variables a program may use to respond to errors.

The XENIX system antomatically detects and reports errors that
occnr when using standard C library functions. Errors range from
problems with accessing files to allocating memory. In most
cases, the system simply reports the error and lets the program
decide how to respond. The XENIX System terminates a
program only if a serious error occurs, such as an attempt to
access nnavailable or protected memory that results in a violation
of memory space.

Using the Standard Error File

The standard error file is a special output file to display error
messages. The standard error file is one of three standard files
(standard input, standard output, and standard error)
automatically created for the program when it is invoked.

The standard error file, like the standard output, is normally
assigned to the user's terminal screen. Thus, error messages
written to the file are displayed at the screen. The file can also be
redirected by using the shell's redirection symbol (>) For
example, the following command redirects the standard error file
to the file errorlist:

dia l 2>errorl i s t

In this case, subsequent error messages are written to the given
file.

The standard error file, like the standard input file and standard
output file, has predefined file pointer and file descriptor values.
The file pointer stderr is used in stream functions to copy data to
the error file. The file descriptor 2 is used in low-level functions
to copy data to the file. For example, in the following program
fragment, stderr is used to write the message "Unexpected end of
file" to the standard error file:

i f ((c=getchar ()) == EOF)
fpri ntf(stderr , "Unexpected end of fi l e . \ n ") ;

The standard error file is not affected by the shell's pipe symbol
(I) . This means that even if the standard output of a program is
piped to another program, errors generated by the program will
still appear at the terminal screen (or in the appropriate file if the
standard error is redirected).

Using the errno Variable

The errno variable is a predefined external variable that contains
the error number of the most recent XENIX system function
error. Errors detected by system functions, such as access
permission errors and lack of space, cause the system to set the
errno variable to a number and return control to the program.
The error number identifies the error condition. The variable can
be used in subsequent statements to process the error.

9-4

0

The errno variable is used immediately after a system function has
returned an error. In the following program fragment, errno
determines the course of action after an unsuccessful call to the
open function:

i f ((fd=open ('' accounts '' , O_RDONLY)) - - - 1)
switch (errno) (

}

case(EACCES) :
fd = open (" /usr/tmp/accounts " , O_RDONLY) ;
break ;

defau l t :
ex i t (errno) ;

In this example, if errno is equal to EACCES (a manifest constant
defined in errno.h), permission to open the file accounts in the
current directory is denied, so the file is opened in the directory
I usr I Imp instead. If the variable is any other value, the program
ends.

To use the errno variable in a program, you must explicitly define
it as an external variable with int type. The file errno. h contains
manifest constant definitions for each error number. These
constants can be used in any program in which the line:

i nc l ude <errno . h>

is placed at the beginning of the program. The meaning of each
manifest constant is described in Introduction(S) in the IBM
Personal Computer XENIX Software Command Reference.

9-5

Printing Error Messages

The perror function copies a short error message describing the
most recent system function error to the standard error file. The
function call has the form:

perror(s)

where s is a pointer to a string containing additional information
about the error.

The perror function places the given string before the error
message and separates the two with a colon (:) . Each error
message corresponds to the current value of the errno variable.
For example, in the following program fragment perror displays
the message:

accounts : Permi s s i on denied .

if errno is equal to the constant EACCES.

i f (e rrno = = EACCE S) {
perror(11 accounts 1 1) ;
fd = open (/u sr/tmp/accounts ,O_RDONLY) ;

}

All error messages displayed by perror are stored in an array
named sys errno, an external array of character strings. The
perror function uses the variable errno as the index to the array
element containing the desired message.

9-6

(') _j

0

Using Error Signals

Some program errors cause the XENIX system to generate error
signals. These signals are passed back to the program that caused
the error and normally terminate the program. The most common
error signals are SIGBUS, the bus error signal, SIGFPE, the
floating point exception signal, SIGSEGV, the segment violation
signal, SIGSYS, the system call error signal, and SIGPIPE, the
pipe error signaL Other signals are described in signal(S) in the
IBM Personal Computer XENJX Software Command Reference.

A program can catch an error signal and perform its own error
processing by using the signal function. Tllis function, as
described in Chapter 7, "Using Signals" can set the action of a
signal to a user-defined action. For example, the function call:

s i gnal (S IGBUS , f i xbus) ;

sets the action of the bus error signal to the action defined by the
user-supplied function fixbus. Such a function usually attempts to
remedy the problem, or at least display detailed information about
the problem before terminating the program.

For details about how to catch, redefine, and restore these signals,
see Chapter 7.

9-7

Encountering System Errors

This section briefly describes some aspects of XENIX system
errors and how they relate to user programs. For a complete list
and description of XENIX system errors, see messages(M) in the
IBM Personal Computer XENIX Command Reference.

Programs that encounter serious errors, such as hardware failures
or internal errors, generally do not receive detailed reports on the
cause of the errors. Instead, the XENIX system treats these
errors as "system errors," and reports them by displaying a
system error message on the system console.

Most system errors occur during calls to system functions. If the
system error is recoverable, the system returns an error value to
the program and sets the error variable to an appropriate value.
No other information about the error is available.

Although the system lets two or more programs share a given
resource, it does not keep close track of which program is using
the resource at any given time. When an error occurs, the system
returns an error value to all programs regardless of which one
caused the error. No information about which program caused '(_
the error is available.

System errors that occur during routine I/ 0 operations initiated
by the XENIX system itself generally do not affect user
programs. Such errors cause the system to display appropriate
system error messages on the system console.

Some system errors are not detected by the system until after the
corresponding function has returned successfully. Such errors
occur when data written to a file by a program has been queued
for writing to disk at a more convenient time, or when a portion
of data to be read from disk is found to already be in memory and
the remaining portion is not read until later. In such cases, the
system assumes that the subsequent read or write operation are
carried out successfully and passes control back to the program
along with a successful return value. If operation is not carried
out successfully it causes a delayed error.

9-8

0

0

When a delayed error occurs, the system usually attempts to
return an error on the next call to a system function that accesses
the same file or resource. If the program has already terminated
or does not make a suitable call, the error is not reported.

9-9

9-10

(',
\

c

Appendixes

Contents

Appendix A. Assembly Language Interface A-5

Introduction . A-5

C Calling Sequence . A-5

Entering an Assembly Routine A-6

Return Values . A-7

Exiting a Routine A-7

Program Example A-8

Appendix B. XENIX System Calls B-1

Introduction . B-1

Executable File Format . B-1

Revised System Calls . B-2

Version 7 Additions . B-2

Changes to tbe ioctl Function B-3

Pathname Resolution • B-3

Using the mount and chown Functions B-3

Super-Block Format . B-4

Separate Version Libraries . . • B-4

A-1

A-2

Appendix C. A Connnon Library for XENIX and
DOS . • C-1

Introduction . C-1

Connnon Include Files . C-2

Differences between Conunon Routines C-3
abort . C-3
access . C-4
chdir . C-4
chmod . C-4
chsize . C-5
creal . C-5
exec . C-5
exit . C-6
fopen, fdopen, freopen C-7
fread . C-7
fseek . C-8
fwrite . C-8
getpid . C-9
isatty . C-9
!seek . C-9
mktemp . C-9 ·'-
open . C-9
read . C-10
sbrk . C-10
signal . C-10
stat, fstat . C-1 1
system . C-13
umask . C-13
unlink . C-13
write . C-13

Differences in Definitions C-14

DOS-specific Routines . C-15
eof . C-15
fcloseall . C-1 5
fgetchar . C-15
filelength . C-16
flushall . C-16
fputchar . C-16

itoa, ltoa, and nltoa . C-17
labs . C-17
mkdir . C-18
nndir . C-18
spawn . C-18

Retnrn Values . C-21
strlwr and strupr . C-22
strset and stmset . C-22
strrev . C-23
tell . C-23

C!

0

A-3

A-4

0

0

Appendix A. Assembly Language
Interface

Introduction

This appendix explains how to use 8086/80286 assembly
language routines with C language programs and functions. In
particular, it explains how to call assembly language routines from
C language programs and how to call C language functions from
an assembly language routine.

This assembly language interface is especially useful for assembly
language programmers who wish to see the functions of the
standard C library and other C libraries.

C Calling Sequence

To receive values from C language function calls or to pass values
to C functions, assembly language routines must follow the C
argument passing conventions. C language function calls pass
their arguments to the given functions by pushing the value of
each argument onto the stack. The call pushes the value of the
last argument first and the first argument last. If an argument is
an expression, the call computes the expression's value before
pushing it onto the stack. The same number of bytes the variable
occupied in the main program is pushed onto the stack.

Arguments with char, int, or unsigned type occupy a single word
(16 bits) on the stack. Arguments with long type occupy a
doubleword (32 bits) with the value's high-order word occupying
the first word. Arguments with float type are converted to double
type (64 bits). Note that char type arguments are zero-extended
to int type before being pushed on the stack.

A-5

If the name of an array is used as an argument, the value passed
to the function is the address of the beginning of the array.

If an argument is a structure, the function call pushes the last
word of the structure first and each successive word in turn until
the first word is pushed. Note that when you want the called
routine to modify an argument (call-by-reference), you simply
pass the address of the argument by preceding it with an "&". ',"'
After a function returns control to a routine, the calling routine is
responsible for removing arguments from the stack.

Entering an Assembly Routine

Assembly language routines that receive control from C function
calls should preserve the contents of the bp, si, and di registers
and set the bp register to the current sp register value before
proceeding with their tasks. The following example illustrates the
recommended instruction sequence for entry to an assembly
language routine:

entry :
push bp
mov b p , s p
push di
push s i

This is the same sequence used by the C compiler.

If this sequence is used, the last argument passed by the function
call (which is also the first argument given in the call's argument
list) is at address 4(bp). Subsequent arguments begin at address
6 (bp) or 8 (bp), depending on the size of the first argument.

This sequence is strongly recommended even if the si and di
registers are not modified, because it allows backtracing with the
adb program during program debugging.

A-6

o .

Return Values

Assembly language routines that wish to return values to a C
language program or receive return values from C functions must
follow the C return value conventions. C functions place return
values that have int, char, or unsigned type in the ax register.
They place values with long type in the ax and dx registers, with
the high-order word in dx.

To return a strncture or a floating point value, C functions place
the address of the given value in the ax register. The structnre or
floating-point value must be in a static area in memory. Long
addresses are returned in the ax and dx registers, with the segment
selector in dx.

Exiting a Routine

Assembly language routines that return control to C programs
should restore the values of the bp, si, and di registers before
returning control. The following example illustrates the
recommended instruction sequence for exiting a routine:

pop s i
pop d i
mov s p , bp
pop bp
ret

This sequence does not change the ax, bx, ex, or dx registers or
any of the segment registers. The sequence does not remove
arguments from the stack. This is the responsibility of the calling
routine.

A-7

Program Example

To illustrate the assembly language interface, consider the
following example of a C function:

add (i , j)
i nt i , j ;
{
return (i +j) ;
}

If written as an assembly language routine, this function must:

• Save the proper registers

• Retrieve the arguments from the stack

• Add the arguments

• Place the return value in the ax register

• Restore registers

• Return control

The following is a example of how the routine can be written:

add :
push bp
mov bp , s p
push d i
push s i

mov a x , *4 (bp)
add ax ,*6 (bp)

pop s i
pop di
mov s p , bp
pop bp
ret

A-8

0

If this C function:

add (i , j)
i n t i , j ;
{
return (i +j) ;
}

is to be called by an assembly language routine, the routine must
contain instructions that push the arguments on the stack in the
proper order, call the function, and clear the stack. It may then
use the return value in the ax register. The following is an
example of the instructions that can do tllis:

push
. push

cal l
add

<j val ue>
<i val ue>

add
sp . *4

Note that the order in which you push and pop parameters on
stack is critical.

A-9

A-1 0

Appendix B. XENIX System Calls

L1 Introduction

This appendix lists some of the differences among XENIX,
XENIX 2.3, UNIX V7, and UNIX System 3.0. It is intended to
aid users who wish to convert system calls in existing application
programs for use on the XENIX system.

Executable File Format

Both XENIX and UNIX System 3.0 execute only programs with
the x.out executable file format. The format is similar to the old
a. out format, but contains additional information about the
executable file, such as text and data relocation bases, target
machine identification, word and byte ordering, and symbol table
and relocation table format. The x.out file also contains the
revision number of the kernel used during execution to control
access to system functions. To execute existing programs in a. out
format, you must first convert to the .x.out format. The format is
described in detail in a.out(F) in the IBM Personal Computer
XENIX Command Reference.

B-1

Revised System Calls

Some system calls in XENIX and UNIX System 3.0 have been
revised and do not perform the same tasks as the corresponding
calls in previous systems. To provide compatibilty for old
programs, XENIX and UNIX System 3.0 maintain both the new
and the old system calls and automatically check the revision '<_
information in the x.out header to determine which version of a
system call should be made. The following table lists the revised
system calls and their previous versions.

System Call # XENIX 2.3 function System 3.0 function

35 ftime unused
38 unused clocal
39 unused setpgrp
40 unused cxenix
57 unused utssys
62 clocal fcntl
63 cxenix ulimit

The cxenix function provides access to system calls unique to
XENIX 3.0. The clocal function provides access to all calls unique "
to an Original Equipment Manufacturer (OEM).

Version 7 Additions

XENIX maintains a number of UNIX V7 features that were
dropped from System 3.0. In particular, XENIX continues to
support the dup2 and ftime functions. The ftime function, used
with the ctime function, provides the default value for the time
zone when the TZ environment variable has not been set. This
means a binary configuration program can be used to change the
default time zone. No source license is required.

B-2

c

Changes to the ioctl Function

XENIX and UNIX System 3.0 have a full set of XENIX
2.3-compatible ioctl calls. Furthermore, XENIX has resolved
problems that previously hindered UNIX System 3.0
compatibility. For convenience, XENIX 2.3-compatible ioctl calls
can be executed by a UNIX System 3.0 program. The available
XENIX 2.3 ioct/ calls are: TIOCSETP, TIOCSETN, TIOCGETP, TIOCSETC,

TIOCGETC, TIOCEXCL, TIOCNXCL, TIOCHPCL, TIOCFLUSH, TIOCGETD, ·

and TIOCSETD.

Pathname Resolution

If a null pathname is given, XENIX 2.3 interprets the name to be
the current directory, but UNIX System 3.0 considers the name to
be an error. XENIX uses the version number in the x.out header
to determine what action to take.

If the symbol " .. " is given as a pathname when in a root directory
that has been defined using the chroot function, XENIX 2.3
moves to the next higher directory. XENIX also allows the " .. "
symbol, but restricts its use to the super-user.

Using the mount and chown Functions

Both XENIX and UNIX System 3.0 restrict the use of the mount
system call to the super-user. Also, both allow the owner of a file
to use chown function to change the file ownership.

B-3

Super-Block Format

Both UNIX System 3 .0 and UNIX System 5.0 have new
super-block formats. XENIX uses the UNIX System 5.0 format
but uses a different number for each revision. The XENIX
super-block has an additional field at the end, which can be used i
to distinguish between XENIX 2.3 and XENIX super-blocks. "'
XENIX checks this number at start time and during a mount. If a
XENIX 2.3 super-block is read, XENIX converts it to the new
format internally. Similarly, if a XENIX 2.3 super-block is
written, XENIX converts it back to the old format. This permits
XENIX 2.3 kernels to be run on file systems also usable by UNIX
System 3.0.

Separate Version Libraries

XENIX and UNIX System 3.0 support the construction of
XENIX 2.3 executable files. These systems maintain both the
new and old versions of system calls in separate libraries and
include files.

B-4

0

Appendix C. A Common Library for
XENIX and DOS

Introduction

This appendix lists the XENIX library routines that form the
Common C Library for the IBM Personal Computer XENIX and
IBM Personal Computer Disk Operating System (DOS) versions
of the Microsoft® C Compiler. These routines can be used by
programmers who wish to develop C programs for both the
XENIX and DOS environments. The routines provide an
identical interface to a set of operations that are useful on both
XENIX and DOS.

The following table contains the common routines:

abort * excel * freopen � islower puts strncat

abs execle * frexp isprint putw strncmp

access * execlp * fscanf ispunct rand strncpy

a cos execv * fseek * isspace read * strpbrk

asctime execve * fstat * isupper realloc strrchr

a sin execvp * ftell isxdigit rewind strspn

assert exit * flime jO sbrk * strtok

a tan exp fwrite * jl scanf swab

atan2 fabs gcvt jn setbuf system *

at of fclose getc ldexp setjmp tan

atoi fcvt getchar localtime signal * tanh

atol fdopen * getcwd Jog sin time

calloc feof getenv Jog!O sinh toascii

ceil ferror getpid * longjmp sprintf tolower

chdir * fflush gets Jseek * sqrt toupper

chmod * fgetc getw malloc srand to lower

chsizc * fgcts gmtime mktemp * sscanf to upper

c\cnrcrr filcno hypot strcat "' stat * umask *

close floor isalmiin modf strchr ungctc

(Table continues on next page.)

C-1

cos fmod isalpha open * strcmp unlink *

cosh fopen * isascii perror pow utime

creat * fprintf isatty * strcspn strcpy write *

ctime fputc iscntrl printf strdup yO

dup fputs isdigit putc strlen yl

dup2 fread * is graph putchar yn

ecvt free

Routines marked by an asterisk (*) have a slightly different
operation or meaning in the DOS environment than they do under
XENIX. These differences are fully described in the following
sections. Routines which are not marked function exactly the
same in DOS as they do in XENIX. Complete descriptions are
given in section S of the ffiM Personal Computer XENIX
Software Command Reference.

Common Include Files

Structure definitions, return value types, and manifest constants
used in the descriptions of some of the common routines may vary
from environment to environment and are therefore fully defined \,
in a set of include files for each environment. There are the
following include files:

errno . h
math . h
s tat . h
s td i o . h
type s . h

The errno.h file contains definitions of the error values returned in
the global variable, errno. Whenever a library routine or system
call detects an error, a general error indicator is returned from the
call. The indicator is defined to be some otherwise illegal return
value, usually -1. This method is used to avoid possible conflicts
between an error return and a legitimate return value. When an
error return is detected, the actual error value can be determined
by looking at the value of errno. The value of errno is undefmed if
the function returned a non-error result.

C-2

(';

c

The math. h file defines some of the floating point math routine
interfaces and some standard constants.

The stat.h file defines the format, fields, and constant values for
the file status structure returned by the stat and fstat routines.

The stdio. h file contains the definitions of the basic system file
structure, FILE, some of the basic operations available of files,
such as the putc, getc, putchar, and getchar routines, as well as the
standard pointer constant NULL.

The types.h file defines some of the types used in defining system
structures, such as the time, date, and file status structures.

Differences between Common Routines

The following sections explain how the DOS routines of the
common library differ from their XENIX counterparts. These
descriptions are intended to be used in con junction with the more
detailed descriptions of XENIX functions provided in section S of
the IBM Personal Computer XENIX Software Command
Reference.

abort

The abort routine terminates the process and returns control to
the operating system without creating a core file.

C-3

access

The access routine checks the access to a given file. Access does
not depend on real and effective IDs as it does in the XENIX
environment. Under DOS, the real and effective IDs are ignored.
The amode parameter can be any combination of the values:

04 Read
02 Write
00 Check for exi stence

The "Execute" access mode (01) is not allowed.

The EROFS and ETXTBSY error values are not used.

chdir

The chdir routine causes the named directory to become the
current working directory just as it does in the XENIX
environment. The only difference is that the directory pathname
under DOS must use the backslash separator (\) and not the
slash (/).

chmod

The chmod routine can set the "owner" access permissions for a
given file, but all other permissions settings are ignored. The
mode parameter can be:

00400
00200
00600

Read by owner
Write by owner
Read and wri te by owner

If write permission is not given, the file is treated as a read-only
file.

The chmod routine under DOS is not affected by real or effective
IDs.

The EPERM and ETXTBSY error values are not used.

C-4

(j \ .

chsize

The chsize routine changes the size of the given file just as it does
in the XENIX environment. However, the maximum size of a file
is not affected by the limit defined by the ulimii(S) routine.
There is no ulimit routine for the DOS environment.

creat

The creal routine creates a new file or prepares an existing file for
writing. If the file is created, the access permissions are set as
defined by mode. Only "owner" permissions are allowed (see
"chmod" above). Ownership of the file is not affected by the real
and effective user and group IDs. (These are ignored under
DOS).

The EROFS and ETXTBSY error values are not used by creal
under DOS.

As in the XENIX environment, use of the open routine is
preferred over creal when creating or opening files in the DOS
environment.

exec

The exec!, execle, execlp, execv, execve, and execvp routines do not
overlay the calling process as in the XENIX environment.
Instead they cause the named process file to be copied into
whatever memory is currently available. If there is not enough
memory for the new process, the exec routine will fail and return
to the calling process. Otherwise, the new process begins
execution.

C-5

Under DOS, the exec routines do not:

• Use the close-on-exec flag to determine open files for the
new process.

• Use the set user and group ID access permissions of the new
process file to determine effective user and group IDs.

• Set up signal processing for the new process.

• Disable profiling for the new process (profiling is not allowed
under DOS).

• Give the new process attributes inherited from the calling
process.

• Use the ETXTBSY error value.

The combined size of all arguments in an exec routine under DOS
must not exceed 128 bytes.

exit

The exit function terminates the current process and makes the
low order byte of status available to the parent process. When the
process is terminated, all buffers are flushed and released. Also,
all open files in the calling process are closed. If the parent
process was not waiting on the current process, the status value is
lost.

C-6

c

fopen, fdopen, freopen

The fopen, fdopen, and freopen routines open stream files just as
they do in the XENIX environment. However, there are the
following additional values for the type string:

Opens the file in text mode. Opening a file in this
mode causes the low-level I/ 0 routines to translate
carriage return/linefeed (CR-LF) character
combinations into a single Jinefeed (LF) on input.
Similarly on output, linefeeds are translated into
CR-LF combinations.

b Opens the file in binary mode. This mode suppresses
translation.

For example, the call:

opens a file for reading in .text mode.

If "t" or "b" is not given in the type string, then the mode is
defined by the default mode variable _fmode. If _fmode is 0,
the default mode is text. If the higher order bit of _fmode is 1 ,
the default mode is binary.

fread

The fread routine removes carriage returns (CR) in all CR-LF
pairs read from the input stream if the stream was opened in text
mode. See "fopen" above.

C-7

fseek

The fseek routine moves the file pointer to the given position just
as in the XENIX environment. However, since DOS uses the
carriage return/linefeed (CR-LF) character combinations for
newline characters (XENIX uses only an LF), an fseek call which
moves the file pointer a specific number of bytes past newline
characters will not move the pointer to same place in the DOS file
as it does in the XENIX file. For example, if a file contains the
characters:

abcdef\n09123

(where \n is the newline character) and the file pointer is
currently at the letter "a," then the call:

fsee k (s tream , 8 , 1) ;

moves the pointer to the digit "0," if the file is a DOS file; or to
the digit "9," if the file is a XENIX file.

Note that some fseek calls treat DOS and XENIX files identically.
For example:

fseek (stream, 0 , 2)

always moves the file pointer to the end of the file.

fwrite

The fwrite routine replaces every linefeed (LF) character written
to the output stream with a carriage return/linefeed (CR-LF) pair
if the stream was opened in text mode. See "fopen" above.

C-8

(\
"·

getpid

The getpid routine returns a unique number. Although the
number may be used to uniquely identify the process, it does not
have the same meaning as the process ID returned by getpid in the
XENIX environment.

is a tty
The isatty routine indicates whether or not the given file
descriptor is associated with any character device not just a
terminal. A character devices can be a console, printer, or serial
port.

I seek

The /seek routine is similar to the [seek routine under DOS
whenever the given file descriptor has been opened in text mode.
In other words, /seek must move the file pointer one additional
byte for each newline character in the DOS file in order to move
the file pointer to the same position in the XENIX file. See
"fseek" for more details.

mktemp

The mktemp routine creates a temporary filename, using a unique
number instead of a process ID. The number is the same as
returned by getpid (see "getpid" above).

open

The open routine opens a file descriptor for a named file, just as in
the XENIX environment. However, there is one additional oflag
value, 0 BINARY, and two values, 0 NDELA Y and
O_SYNCW, have been removed.

-

C-9

The 0 BINARY flag causes the file to be opened in the
opposite mode specified by the _jmode variable (see "fopen"
above). For example, if the default mode is text (_jmode is 0),
then using 0 BINARY opens the file in binary mode. If not
used, the file is opened in text mode.

The EISDIR, EROFS, ETXTBSY, and ENXIO error values are
not used. <

read

The read routine reads characters from the file given by a file
descriptor just as in the XENIX environment. However, if the
file has been opened in text mode (see "Open" above), read will
replace each CR-LF pair read from the file with a single LF
character. The number of bytes returned is the number of bytes
remaining after the the CR-LF pairs have been replaced. Thus,
the return value may not always correspond with the actual
number of bytes read. This is considered normal and has no
implications as far as detecting the end of the file.

sbrk

The sbrk routine performs the same task as in the XENIX
environment. However, sbrk is not affected by the limits imposed
by ulimit(S), since no ulimit routine exists for DOS.

signal

The signal routine can only handle the SIGINT signal. In DOS,
SIGINT is defined to be INT 23H (the Ctrl-C signal).

C-10

stat, fstat

The stat and fstat routines return a structure defining the current
status of given the file. The structure members have the following
names and meaning:

(\ st mode
\,

User read/write/ execute bits are set. The execute
bit is inferred from the filename extension. These
are copied into the group and other bits. All files
have either the S IFREG or S IFDIR bits set.
See stat.h in "Common Include Files" above.

st ino Not used.

st dev Drive number of the disk containing the file.

st rdev Drive number of the disk containing the file.

st nlink Always L

st uid Not used.

0 st_gid

st size

Not used.

Size of the file in bytes.

st a time Time of last modification of file.

st mtime Time of last modification of file.

st ctime Time of last modification of file.

st dosattr Contains DOS file attributes.

0

C-11

The [stat routine returns less useful information since DOS does
not make as much information available for file descriptors as it
does full pathnames. The [stat routine can detect device files, but
it must not be used with directories. The structure returned by
[stat has the following members:

st mode

st ino

st dev

st rdev

st nlink

st uid

st _gid

st size

st a time

st mtime

st ctime

st dosattr

C-12

Always read and write for everyone. The
S IFCHR flag is set if this is a device.
Otherwise, the S IFREG bit is set. See stat. h in
"Common Include Files" above.

Not used.

Either drive number of the disk contain1ng the file,
or file descriptor if this file is a device.

Either drive number of the disk containing the file,
or file descriptor if this file is a device.

Always 1 .

Not used.

Not used.

Size of the file in bytes.

Time of last modification of file.

Time of last modification of file.

Time of last modification of file.

Contains DOS file attributes.

system

The system routine passes the given string the the operating
system for execution. In order to execute this string, the full
pathname of the directory containing the DOS
"COMMAND. COM" program must be assigned to the COMSPC
environment variable, or assigned to the PATH environment
variable. The call will return an error if "COMMAND. COM"
cannot be found using these variables.

umask

The umask routine can set a mask for "owner" read and write
access permissions only. All other permissions are ignored.

unlink

The unlink routine always deletes the given file. Since DOS does
not allow multiple "links" to the same file, unlinking a file is the
same as deleting it.

C! The EBUSY, ETXTBSY, and EROFS error values are not used.

(_)

write

The write routine writes a specified number of characters to the
file named by the given file descriptor just as in the XENIX
environment. However, if the file has been opened in text mode
(see "Open" above), every LF character in the output is replaced
by a CR-LF pair before being written. This does not affect the
return value.

C-13

Differences in Definitions

Many of the special definitions given in Introduction(S) in the
IBM Personal Computer XENIX Software Command Reference do
not apply to the co=on routines when used in the DOS
environment. The following is a list of the differences.

The process ID is still a unique integer, but does not have the same
meaning as in the XENIX environment.

The parent process, process group, tty group, real user, real group,
effective user and effective group IDs are not used by the co=on
routines when run under DOS. Furthermore, there is no
super-user or special processes in the DOS environment.

Filenames in DOS have two parts: a filename and a filename
extension. Filenames may be any combination of upto eight
letters or digits. Filename extensions may be any combination of
upto three letters or digits, preceded by a period (.).

Pathnames in DOS may be any combination of directory names
separated by a backslash { \). The slash (/) used in the XENIX
environment is not allowed. Directory names may be any <
combination of upto eight letters or digits. The special names " . "
and " .. " refer to the current directory and the parent directory,
respectively.

Drive names may be used at the begin of a pathname to specify a
specific disk drive or device. Drives names are generally a letter
or combination of letters and digits followed by a colon (:).

Access permissions in DOS are restricted to read and write by the
owner of the file. Since all users own all files in DOS, access
permissions do little more than define whether or not the file is a
read-only file or can be modified. Execution permission and
other permissions defined for files in the XENIX environment do
not apply the files in the DOS environment.

C-1 4

r. 1\._
_

_ I

c

DOS-specific Routines

The DOS-specific routines are intended for programs being
compiled in the XENIX environment, but which are to be
executed in the DOS environment only. These routines are not
available for use in the XENIX enviromnent. The following
sections describe the routines in detail.

eof
i n t eof (f i l de s)
i nt t i l des ;

The eof function returns the value 1 if the current position of the
file associated with fi/des is at the end-of-file, otherwise the
function returns 0. The return value - 1 indicates an error.

fcloseall
i n t fcloseal l (

The fc/oseall function closes all currently open streams, except
stdin, stdout, and stderr. The function flushes all file buffers
before closing, and although it releases system-allocated buffers,
it does not release buffers allocated using setbuf.

The fcloseall function returns the total number of streams closed.
The return value -1 indicates an error.

fgetchar

i ncl ude <stdio . h>

i n t fgetchar ()

The fgetchar function reads a single character from the standard
input stream stdin. The fgetchar function is the function version of
the macro getchar.

C-15

The fgetchar function returns the character read, or EOF when
end-of-file is reached.

filelength

l ong fi l e l ength (fi l de s)
i n t fi l des ;

The filelength function returns the length, in bytes, of the file
associated with fildes. The return value -1 indicates an error.

flushall

i n t fl u s h a l l ()

The flushall function flushes the buffers of all currently open
output streams. All streams remain open after the call.

The flushall function returns the total number of open streams
(both input and output streams) . There is no error return.

Note that buffers are automatically flushed when they are full,
when the associated files are closed, or when a program
terminates without closing the files.

fputchar

i ncl ude <stdi o . h>

i nt fputchar (c)
char c ;

The fputc function writes the single character c to the output
stream stdout. The fputchar function is the function version of the
macro putchar.

The fputchar function returns the character written. The return
value EOF indicates an error.

C-1 6

-I

C) �

0

itoa, ltoa, and ultoa

c har * i to a (va l u e , stri ng , rad i x)
i n t v a l u e ;
c har *str i n g ;
i n t radi x ;

c har * l toa (va l u e , stri n g , radi x)
l ong va l u e ;
c h a r *stri n g ;
i n t rad i x ;

char *u l to a (val ue , stri ng , rad i x)
unsi gned l ong val ue ;
c har *str i n g ;
i n t radi x ;

The itoa, ltoa, and toa fnnctions convert the given value to a
character string that represents that valne. The resulting string is
stored in string, and consists of one or more digits from the
numeric base given by radix.

The itoa function converts type int values into Strings, ltoa
converts type long values, and toa converts type unsigned long
values. The radix can be any in the range 2-36. If radix equals
10 and value is negative, the first character of the stored string is
the minus sign (-) .

All functions return a pointer to the new string. There is no error
return, and no overflow checking is performed.

labs

l ong l ab s (v a l u e)
l ong va l u e ;

The labs function returns the absolute value of the type long
number given by value . There is no error return.

C-17

mkdir

i n t mkd i r (pathname)
char *pathname ;

The mkdir function creates a new directory with the specified
pathname. The last component of pathname names the new
directory; the preceding components must identify an existing
directory.

The mkdir function returns the value 0 if the new directory was
created. The return value -1 indicates an error.

rmdir

i n t rmd i r (pathname)
char *pathname ;

The rmdir function deletes the directory specified by pathname.
The directory must be empty, and it must not be the current
working directory or the root directory.

The rmdir function returns the value 0 if the directory is \,
successfully deleted. The return value -1 indicates an error.

spawn

i nc l ude <spawn . h>
i n c l ude <std i o . h>

i n t spawnl (modefl ag , pathname, argO , . . , argn , NULL}
int modefl a g ;
char *pathname , *arg O , . . . , *argn;

int spawn l e (modef l a g , pathname,
i n t modefl a g ;

argO, . . . ' arg n , NUL L , envp}

char *pathname , *arg O , . . . , *argn , *envp[\] ;

(Example continues on next page.)

C-18

-1
I

0

i n t spawn l p (modefl ag , fi l ename , argO , . . . , arg n , NUL L)
i n t modefl a g ;
char *fi l ename , *argO , . . . , *arg n ;

i n t s pawn v (modefl ag , pathname , argv)
i nt modefl ag ;
char *pathnam e , *argv[\ l ;

i n t s pawnve (modefl ag , pathname , argv , envp)
i nt modefl a g ;
char *pathname , *argv[\] , *envp[\ l ;

i nt spawnvp (modefl ag , fi l ename , argv)
i n t modefl a g ;
char *fi l ename , *arv[\ l ;

The spawn functions load and execute new child processes. The
pathname or filename argument names the executable file to be
loaded. The arg n or argv arguments contain pointers to character
strings to be passed to the new process. The modeflag argument
defines the execution of the parent process after placing a call to a
spawn function. The envp argument allows the user to alter the
environment for the child process by passing a list of environment
settings. The spawn/, spawnle and spawn/p functions are typically
used in cases where the number of arguments is known in
advance. The spawnv, spawnve, and spawnvp functions are useful
when the number of arguments to the new process is variable.
Pointers to the arguments are passed as an array, argv, which
accommodates any number of elements.

The mode flag values are defined in the include file spawn. h. The
following lists the meaning of each value:

Modeflag

P WAIT

P NOWAIT

P OVERLAY

Meaning

Suspend parent process until execution of
child process is complete.

Continue to execute parent process
concurrently with child process.

Overlay parent process with child
process.

C-19

When P WAIT or P NOW AIT is specified, there must be
sufficient memory available for loading and executing the child
process. If P OVERLAY is specified, the parent process is
destroyed and control cannot be returned to it. This is similar to
the effect of the exec routines. Only P WAIT and
P OVERLAY may be used under DOS 2.0. P NOW AIT is
reserved for future implementations, and use of this flag with
DOS 2.0 will produce an error. '\._
The pathname argument must be the full directory pathname for
the file to be loaded. The filename argument (in tbe spawnlp and
spawnvp functions) may be just the filename or a partial pathname
for the file; the current value of the environment variable PATH
is used to determine which directories are searched for this file.

The arg n arguments in the spawn/ , spawnle , and spawnlp
functions must be pointers to null-terminated character strings.
These strings form the argument list for the child process. Their
combined length must not exceed 128 bytes. (Terminating nnll
characters (\ 0) are not counted.) Thus, any number of arg n
arguments may be given, as long as the character count of the
corresponding strings does not exceed 1 28 . The NULL pointer
value must mark the end of the arg n argument list.

The argv arguments in the spawnv, spawnve, and spawnvp functions \,_
must be pointers to a single array of pointers to the character
strings. The combined length of the strings must not exceed 1 28
bytes. The NULL pointer value must be placed in the array
element immediately following the element containing tbe last
character string.

By convention, the argO and argv [0] arguments shonld be a copy
of the pathname or filename argument. A different value will not
produce an error.

C-20

-;

The envp argument in the spawnle and spawnve functions must be
an array of character pointers, each element of which points to a
null-terminated string defining an environment variable. An
environment setting has the following form:

name=value

where name is the name of an environment variable and value is
the string value to which that variable is set. Notice that value is
not enclosed in double quotes. When envp is NULL, the child
process inherits the environment settings of the parent process.

Files that are open when a call to a spawn function is made remain
open in the new process. In the spawn!, spawnlp, spawnv, and
spawnvp functions, the child process inherits the environment of
the parent.

Return Values

If the P WAIT is specified, the return value is the exit status of
the child process. The exit status is 0 if the process terminated
normally. A positive exit status indicates an abnormal exit
through an abort function call or an interrupt. The exit status may
also be set to a non-zero value if the child process specifically
calls the exit function with a non-zero argument.

If P OVERLAY is specified and the child is successfully loaded,
the routine never returns a value.

The return value - 1 indicates an error (the child process is not
started}. The value -1 is also returned when P NOW AIT is
specified under DOS 2.0.

-

C-21

strlwr and strupr

char *strl wr (s tr i n g)
c h a r *str i ng ;

char *strupr (str ing)
char *stri n g ;

The strlwr function converts any uppercase letters in the given
string to lowercase.

The strupr function converts any lowercase letters in the given
string to uppercase.

The strlwr and strupr functions return a pointer to the converted
string. There is no error return.

strset and strnset

char *strset (stri ng , c)
char *str i n g , c ;

char *strnset (str ing , c , n)
char *str i ng , c ;
uns i gned i n t n ;

The strset function sets all characters in the given string (except
the terminating null character) to the character c and returns a
pointer to the altered string.

The strnset function sets the first n characters of string to the
character c and returns a pointer to the altered string. If n is
greater than the length of a given string, the string length is used
instead.

C-22

C' .

Ci
.

strrev

char *strrev (s t r i n g)
char *stri ng ;

The strrev function reverses the order of the characters in the
given string. The terminating null character (\ 0) remains in place.

The strrev function returns a pointer to the altered string. There is
uo error return.

tell

l ong tel l (fi l des)
i nt fi l des ;

The tell function returns the current position of the file associated
with filedes. The position is the number of bytes from the
beginning of the file. The return value of -1 indicates an error.

C-23

C-24

Index

8 Special Characters

c

/ etc/termcap file 3-5

A

addch function 3-21
addstr function 3-22
argc, argument count variable

defining 2-5
described 2-5

argv, argument value array
defining 2-5
described 2-5

assembly language interface,
described A-5

B

box function 3-4 7
BSIZE, buffer size value 2-4
buffered T/0

character pointer 2-45
creating 2-34
described 2-32
flushing a buffer 2-36
returning a character 2-35

bytes
reading from a file 2-40

c

reading from a pipe 6-8
writing to a file 2-40
writing to a pipe 6-8

C calling conventions
described A-5

C language libraries
described 1-3
use in program 1-3

call sequence A-5
calloc function 8-5
CBREAK mode 3-67
character functions,

described 4-4
character pointer

described 2-45
moving 2-45, 2-4 7
moving to stan 2-4 '7
reporting position 2-48

characters
alphabetic 4-6
alphanumeric 4-6
ASCII 4-4
control 4-7
converting to ASCII 4-5
converting to

lowercase 4-1 1
converting to

uppercase 4-1 1
decimal digits 4-7
hexadecimal digit 4-8

lndex-1

lowercase 4-10
printable 4-8 , 4-9
processing, described 4-3
punctuation 4-9
reading from a file 2-20
reading from standard

input 2-8
uppercase 4-10
writing to a file 2-24
writing to standard

output 2-1 2
child process, described 5-10
clear function 3-30
cleatok function 3-52
close function 2-41
clrtobot function 3-30
clrtoeol function 3-30
command line

described 2-5
command line arguments 2-5
command line arguments,

storage order 2-5
compilation

cc program 1-3
creatsem function 8-12
crmode function 3-67
ctype.h file 4-3
curses.h file 3-7
curses, the screen processing

library viii

D

debugging, restrictions 2-4
delch function 3-29
deleteln function 3-29
del win function 3-4 7
dup function 6-1 1

Index-2

E

echo function 3-67
ECHO mode 3-17, 3-67
end-of-file

testing 2-28
end-of-file value, EOF 2-4
endwin function 3-18
EOF, end-of-file value 2-4
erase function 3-30
errno variable

defined 9-5
described 9-4

errors
catching signals 9-7
delayed 9-8
errno variable 9-4
error constants 9-5
error numbers 9-4
printing error messages 9-6
processing 9-3
routine system 1/0 9-8
sharing resources 9-8
signals 9-7
standard error file 9-3
system 9-8
testing files 2-28

execl function 5-7
execv function 5-7
exit function 5-6

F

fclose function 2-29
feof function 2-28

c)

c�

ferror function 2-28
fflush function 2-36
fgetc function 2-20
fgets function 2-21
file descriptors

creating 2-38
described 2-37
freeing 2-41
pipes 6-3
predefined 2-38

file pointers
creating 2-19
defining 2-18
described 2-1 8
file descriptors 2-38
FILE type 2-18
freeing 2-29
NULL value 2-18
pipes 6-3
predefined 2-18
recreating 2-3 3

FILE, file pointer type 2-4
files

buffers 2-32, 2-34, 2-35,
2-36

closing 2-29
closing low-level

access 2-41
inherited by processes 5-13
locking 8-8
opening 2-1 9
opening for low-level

access 2-38
random access 2-44
reading bytes 2-40
reading characters 2-20
reading formatted

data 2-23
reading records 2-22
reading strings 2-21
reopening 2-33
testing end-of-file

condition 2-28

testing for errors 2-28
writing bytes 2-40
writing characters 2-24
writing formatted

output 2-26
writing records 2-27
writing strings 2-25

fopen function 2-1 9
fork function 5-10
formatted input

reading from a file 2-23
reading from a pipe 6-5
reading from standard

input 2-1 0
formatted output

writing to a file 2-26
writing to a pipe 6-5
writing to standard

output 2-13
fprintf function 2-26
fputc function 2-24
fputs function 2-25
fread function 2-22
free function 8-7
freopen function 2-33
fscanf function 2-23
fseek function 2-4 7
ftell function 2-48
fwrite function 2-27

G

getc function 2-20
getch function 3-24
getchar function 2-8
gets function 2-9
getstr function 3-25
gettmode ()

used as ttys routine 3-15
variables set by 3-70

Index-3

gettmode function 3-70
getyx function 3-50

I

inch function 3-45
initscr function 3-13
insch function 3-27
insertln function 3-28
isalnum function 4-6
isaplha function 4-6
isascii function 4-4
iscntrl function 4-7
isdigit function 4-7
is! ower function 4-10
isprint function 4-8
ispunct function 4-9
isspace function 4-9
isupper function 4-10
isxdigit function 4-8

L

leaveok function 3-51
libc.a, standard C library

file 1-3
libcurses.a, screen processing

library file 1-3
libcurses.a, the screen

processing library 3-7
libtermcap.a, the terminal

library 3-7
locking files

described 8-8
preparation 8-8
sys/locking.h file 8-8

lndex-4

locking function 8-9
longjmp function 7-14
longname function 3-7 4
low-level functions

accessing files 2-3 7
described 2-37
file descriptors 2-37
random access 2-44

!seek function 2-45

M

macros, special 1/0
functions 2-4

malloc function 8-4
memory

allocating arrays 8-5
allocating dynamically 8-3
allocating variables 8-4
freeing allocated space 8-7
reallocating 8-6

memory allocation functions,
described 8-3

move function 3-27
mvcur function 3-69
mvwin function 3-44

N

nbwaitsem function 8-15
NEWLINE mode 3-67
newwin function 3-32
nl function 3-67
nocrmode function 3-68
noecho function 3-68
non! function 3-68

noraw function 3-68
notational conventions,

described 1-3
NULL, null pointer value 2-4

r ·. 0

0

0

open function 2-38
opensem function 8-13
overlay function 3-43
overwrite function 3-44

p

parent process, described 5-10
pclose function 6-6
perror function 9-6
pipe function 6-7
pipes

closing 6-6
closing low-level access 6-9
described 6-3
file descriptor 6-7
file descriptors 6-3
file pointer 6-4
file pointers 6-3
low-level between

processes 6-1 1
opening for low-level

access 6-7
opening to a new
process 6-4

reading bytes 6-8
reading from 6-5
shell pipe symbol 6-3
writing bytes 6-8

writing to 6-5
popen function 6-4
printf function 2-13
printw function 3-23
process

described 5-3
process control functions,

described 5-3
process ID

ID 5-3
termination status 5-6

processes
background 7-15
calling a system

program 5-4
child 5-10
communication by pipe 6-4
described 5-3
multiple copies 5-10
overlaying 5-7
parent 5-10
restoring an execution

state 7-14
saving the execution

state 7-14
splitting 5-10
terminating 5-6
termination status 5-12
under shell control 5-9
waiting 5-12

programs, invoking 2-5
putc function 2-24
putchar function 2-12
puts function 2-12

R

random access functions
character pointer 2-45
described 2-44

lndex-5

raw function 3-67
RAW mode 3-17, 3-67
read function 2-40
realloc function 8-6
records

reading from a file 2-22
writing to a file 2-27

redirection symbol
input 2-14
output 2-15
pipe 2-1 5

refresh function 3-31
restty function 3-70
return values A-7
rewind function 2-4 7
routine entry sequence A-6
routine exit sequence A-7

s

savetty function 3-70
scanf function 2-10
scanw function 3-26
screen

described 3-5
position 3-6

screen processing
/etc/termcap file 3-5
adding characters 3-21,

3-34
adding strings 3-22, 3-34
adding values 3-23, 3-34
bold characters 3-48
clearing a screen 3-30,

3-41
creating subwindows 3-33
creating windows 3-32
current position 3-6, 3-50
curses.h file 3-7
default terminal 3-16

lndex-6

deleting a window 3-4 7
deleting characters 3-29,

3-40
deleting lines 3-29, 3-40
described 3-5
initializing 3-13
inserting characters 3-2 7,

3-39
inserting lines 3-28, 3-39
libcurses.a file 3-7
libtermcap.a file 3-7
movement prefix 3-65
moving a window 3-44
moving the position 3-27,

3-38
normal characters 3-49
overlaying a window 3-43
overwriting a window 3-44
predefined names 3-1 1
reading characters 3-24,

3-36
reading strings 3-25, 3-36
reading values 3-26, 3-36
refreshing a screen 3-4 2
refreshing the screen 3-31
screen 3-5
sgtty.h file 3-7
standard screen 3-21
terminal capabilities 3-5
terminal cursor 3-69
terminal modes 3-17, 3-67
terminal size 3-18
terminating 3-18
using 3-13
window 3-5
window flags 3-17, 3-5 1

screen processing functions,
described 3-5

screen processing library,
described viii

scrollok function 3-5 1
sdenter function 8-22
sdfree function 8-26

0

c

sdget function 8-20
sdgetv function 8-24
sdleave function 8-23
sdwaitv function 8-25
semaphore functions,

described 8-11
semaphores

checking status 8-15
creating 8-12
described 8-1 1
opening 8-13
relinquishing control R-16
requesting control 8-14

setbuf function 2-34
setjmp function 7-14
setjmp.h file, described 7-3
setterm function 3-71
setterm()

used as ttys routine 3-15
variables set by 3-71

sgtty.h file 3-7
shared data

attaching segments 8-20
creating segments 8-20
described 8-19
entering segments 8-22
freeing segments 8-26
leaving segments 8-23
version number 8-24
waiting for segments 8-25

shell
called as a separate

process 5-9
signal function 7-4
signal.h file, described 7-3
signals

catching 7-7, 9-7
default action 7-6
delaying an action 7-11
described 7-3
disabling 7-5
on program errors 9-7
redefining 7-8

restoring 7-6, 7-8
SIG DFL constant 7-4
SIG

-
IGN constant 7-4

SIGHANG constant 7-4
SIGINT constant 7-4
SIGQUIT constant 7-4
to a child process 7-16
to background

processes 7-15
with interactive

programs 7-13
with multiple

processes 7-15
with system functions 7-12

sigsem function 8-16
sprintf function 4-19
sscanf function 4-1 8
stack order A-5
standard C library,

described viii
standard error

described 2-7
standard files

described 2-7
predefined file

descriptors 2-38
predefined file

pointers 2-18
reading and writing 2-7
redirecting 2-7, 9-3

standard I/ 0 file 2-3
standard 1/0 functions 2-3
standard input

described 2-7
reading 2-8
reading characters 2-8
reading formatted

input 2- 10
reading strings 2-9
redirecting 2-14, 2-1 5

standard output
described 2-7
redirecting 2-15

Index-7

writing 2-1 2
writing characters 2-12
writing formatted

output 2-1 3
writing strings 2-12

standend function 3-49
standout function 3-48
stderr, standard error file

pointer 2-4, 2-18
stderr, the standard error

file 9-3
stdin, standard input file

pointer 2-4, 2-1 8
stdio.h file

described 2-3
including 2-3

stdout, standard output file
pointer 2-4, 2-1 8

strcat function 4-12
strcmp function 4-13
strcpy function 4-14
stream functions

accessing files 2-17
accessing standard

files 2-18
file pointers 2-1 8
random access 2-44

stream functions,
described 2-17

string functions,
described 4-12

strings
comparing 4-1 3 , 4-16
concatenating 4-12, 4-15
copying 4-14, 4-17
length 4-14
printing to 4-1 9
processing, described 4-3
reading from a file 2-21
reading from standard

input 2-9
scanning 4-1 8
writing to a file 2-25

lndex-8

writing to standard
output 2-1 2

strlen function 4-14
stmcat function 4-15
strncmp function 4-16
strncpy function 4-17
subwin function 3-33
sys/locking.h file 8"8
sys errno array,

described 9-6
system

resources 8-3
system errors

described 9-8
reporting 9-8

system function 5-4
system programs

calling as a separate
process 5-4

system resource functions,
described 8-3

T

TERM variable 3-16
term cap

capabilities from 3-16
terminal

capabilities 3-5
capability description 3-15
cursor 3-69
modes 3-17, 3-67, 3-68
type 3-15

Terminal screen 3-5
termination status

processes 5-6
termination status,

described 5-12
toascii function 4-5
tolower function 4-1 1

0

touch win function 3-46
toupper function 4-1 1

u

unbuffered 1/0
creating 2-34
described 2-32
low-level functions 2-37

ungetc function 2-35

v

variables
allocating for arrays 8-5
memory allocation 8-4

w

waddch function 3-34
waddstr function 3-35
wait function 5-12
waitsem function 8-14

wclear function 3-41
wcirtobot function 3-41
wclrtoeol function 3-42
wdelch function 3-40
wdeleteln function 3-40
werase function 3-41
wgetch function 3-36
wgetstr function 3-3 7
winch function 3-45
window

border 3-47
deleting 3-4 7
described 3-5
flags 3-17
position 3-6

windows
creating 3-32
flags 3-5 1
moving 3-44
overlaying 3-43
overwriting 3-44
reading a character 3-45
updating 3-46

winsch function 3-39
winsertln function 3-39
wmove function 3-38
wprintw function 3-35
wrefresh function 3-42
write function 2-40
wscanw function 3-37
wstandend function 3-49
wstandout function 3-48

lndex-9

\.

Index-tO

(\,
\, '

0

- - - ---- -- - - - -- - -- - - - -- - - - - -- - - - -- - - · -

Reader's Comment Form

XENIX'"
Programmer's Guide to
Library Functions

The Personal Computer
Programming Family

6 1 3 8873

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:

I I I I I I

BUSI N ESS REPLY MAI L
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAG E WILL BE PAID BY ADDR ESSEE

I B M PERSONAL COMPUTER

SALES & SERVICE

P.O. BOX 1 328-C

BOCA RATON, FLOR I DA 33432

"· . .

aJelj PIO:I

" "

edej_ Bidets lOU op asee1d ade1.

