

.

OVERVIEW OF THE

XENIX* 286 OVERVIEW SYSTEM

Order Num ber: 174385-002

*XENIX is a trademark of Microsoft Corporation.

"'

Copyright \5> 1984, 1986 Intel CorporatiOn. All rights reserved.

1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property oflntel Corporation. Use, duplication or disclosure is
subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks oflntel Corporation and its affiliates and may be used only to identify Intel products:

Above iCEL in tel iPDS Megachassis QUEST
BITBUS iCS intelBOS iPSC MICROMAINFRAME Que X

COMMputer iDBP Intelevision iRMX MULTIBUS Ripplemode

CREDIT iDIS inteligent Identifier iSBC MULTICHANNEL RMX/80
Data Pipeline iLBX inteligent Programming iSBX MULTIMODULE RUPI
.!{en ius im Intellec iSDM ONCE Seamless
i iMDDX Intellink iSXM OpenNET SLD
i

iMMX iOSP Library Manager
Plug-A-Bubbl�

UPI
I2ICE PROMPT

ICE
Insite MCS

Prom ware
VLSiCEL

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a trademark of Bell
Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a trademark of Centronics Data Computer
Corporation. Chassis Trak is a trademark of General Devices Company, Inc. VAX is a trademark of Digital Equipment
Corporation. Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc.

REV. REVISION HISTORY DATE

-001 Original issue 11/84

-002 Revision 1186

i i 7/?,5

CONTENTS

CHAPTER 1
INTRODUCTION TO XENIX
Audience
Chapters
The Basic System and the Extended System

The B asic System
The Extended System

What Is an Operating System?
Hardware Devices
The K ernel
Utility Programs
A Command Interpreter

What Is the XENIX Operating 286 System?
The XENIX K ernel
Utility Programs
Command Interpreters

Who Uses the XENIX Operating System?
The History of XENIX

UNIX
XENIX

CHAPTER 2
FILES AND FILE SYSTEMS
Ordinary Files

The Content of an Ordinary File
The Structure of an Ordinary File
The N arne of an Ordinary File
The Size of an Ordinary File

Directories
Login Directories
Subdirectories
Subtrees
The P arent Directory
The /usr Directory
Full Path Names
Relat ive P ath Names
Moving from Directory to Directory
The Working Directory
The Root Directory

Special Files
Block Special Files
Character Special Files

TABLE OF CONTENTS

PAGE

1-1
1-1
1-2
1-2
1-3
1-4
1-4
1-5
1-6
1-6
1-7
1-7
1-8
1-8
1-9

1 - 1 0
1 - 1 0
1-12

2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-5
2-6
2-6
2 -7
2-7
2 -8
2-8
2-9
2-9

2-1 1
2 -1 1
2- 1 1

iii

Table of Contents

CONTENTS

File Access Permissions
Access Permissions for Ordinary Files

Read P ermission for Ordinary Files
W rite Permission for Ordinary Files
Execute Permission for Ordinary Files
Set UID and G I D
Representing Permissions
Default Permissions

Access Permissions for Directories
Read P ermission for D irectories
Write Permission for Directories
Search Permission for Directories

Access Permissions for Special Files
Read P ermission for Special Files
Write Permission for Special Files

Links to Files
Working with Files
Logical Files and Physical Locations

Logical Files
Finding the Physical Location of File Data

The Structure of a File System
Cylinder Groups
File Allocation
The Root File System and the Root Directory

CHAPTER 3
RUNNING PROGRAMS
Programs and Processes

Programs
Processes

What Happens During System Startup
How You Gain Access to the System

The I etc/passwd File
What Happens During Login
The Login Shell

The Standard Input, Output, and Error Files
Default Variables Set by the Login Shell
The • profile Files

Executing Commands with the Shell
Executing Simple Commands·
Using Options

iv

Using Arguments
Using Metacharacters

The ? Metacharacter
The * Metacharacter
The [and] Metacharacters
The - Metacharacter
The ! Metacharacter

Redirecting Input and Output
P ipes
Filters

XENIX 2 86 Overview

PAGE

2-1 2
2- 1 2
2- 1 2
2- 1 2
2- 12
2 - 1 2
2 - 1 3
2-1 5
2-1 5
2 - 1 5
2-16
2-16
2- 1 7
2 - 1 7
2- 1 7
2- 1 8
2 - 1 9
2-2 0
2-2 0
2-2 1
2-23
2-2 5
2-2 5
2-2 5

3-1
3-1
3-1
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-9
3-9

3-1 0
3- 1 0
3- 1 1
3-11
3- 1 1
3-11

3- 1 1
3-12
3-13

XENIX 2 86 Overview

CONTENTS

XENIX Shells
Bourne Shell
Restricted Shell
Visual Shell
C Shell

CHAPTER 4
TEXT PROCESSING
Tools for Text Processing

Tools for Creating a Draft Docu m ent
Tools for Checking a Draft Docu ment
Tools for Revising a Docu ment
Tools for Producing the F inal Version
Sum mary

CHAPTER 5
PROGRAMMING
C Program m ing Language
C Function L ibraries
Support ing Tools
Shell Program m ing
Modifying and Extending XENIX

APPENDIX A
BASIC SYSTEM COMMANDS
B asic Syste m Com mands by Category
Alphabet ical L ist of Co m m ands

APPENDIX B
TEXT FORMATTING COMMANDS
Text Formatting Co m mands

APPENDIX C
PROGRAMMING TOOLS
Program m ing Com mands
Standard C Libraries

The Standard C Library -- libc
The XENIX-Specific Syste m Calls Library -- libx
The Standard Math Library -- lib m
The Default lex Library -- libl
The Default yacc Library -- liby
The Term inal Capabilit ies Library -- libtermcap (libter mlib)
The Screen Manipulation Library -- libcurses
The Data Base Manage ment Library -- libdbm

System Calls

Table of Contents

PAGE

3 - 1 5
3 - 1 5
3 - 1 5
3 - 1 5
3 - 1 5

4 - 1
4-1
4-3
4-3
4-3
4-4

5-2
5-4
5-5
5-6
5-6

A-1
A-2

B- 1

C-1
C-2
C-3
C-5
C-5
C-6
C-6
C-6
C-6
C-6
C-7

v

Table of Cont ents XENIX 286 Overview

CONTENTS

APPENDIX D
RELATED PUBLICATIONS
Intel Publicat ions

INDEX

FIGURES

FIGURE TITLE

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-1 0
2-1 1
2-12
2-13
2-1 4
2-1 5
2-1 6
2-1 7
2-1 8
2-1 9
2-20
2-21
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
4-5
4-6
4-7
A-1

vi

Hardware Devices
Sample Ordinary File
Sample Hierarchy of Login D irectory w ithout Subdirectories
Sam ple Contents of Login Directory without Subdirectories
Sample Hierarchy for Login Directory with Subdirectories
Sam ple D irect ory List
Sample Subtree
Sample /usr Directory with Subdirectories
Sample Path Names
P ath Names with Co m mands
The Root D irectory
Sample Device Names in the /dev Directory
Represent ing Permissions with Characters
Sample Perm issions for Ordinary Files
Representing Perm issions
Reading a D irectory
Searching Directories
L inks to a F ile
Sample File
Logical F iles and Physical Locations
The Structure of a 40-Megabyte W inchester Disk
The Structure of a File Syste m
Using exec and fork System Calls
Sample Entry in the /etc/passwd File
Sample .profile File
Shell Metacharacters
Com mon F ilters
Sample nroff/troff Code
Sample For m atted L ine
Sample Use of Macros
Sample For m atted L ist
Docu ment Production Phases and Tools
Sample Docu ment with Formatt ing Instruct ions
Sample Formatted Docu ment
Su m mary of Basic Syste m Co m mands by Category

PAGE

D- 1

PAGE

1-4
2-1
2-4
2-4
2-5
2-5
2-6
2-7
2-8
2-9

2-1 0
2-1 1
2-13
2-13
2-1 4
2-1 6
2-1 7
2-1 8
2-20
2-22
2-23
2-24

3-2
3-5
3-7

3 - 1 0
3 - 1 4

4-2
4-2
4-3
4-2
4-4
4-5
4-6
A-1

CHAPTER 1

INTRODUCTION TO XENIX

Aud ience

This overview is intended for new XENIX users who want a basic knowledge of XENIX
and for experienced users who want a list of commands and programming tools. This
overview is the XENIX manual you should read first. It introduces you to the XENIX
operating system and to the full set of XENIX manuals. After you have read this
manual, you should understand what an operating system is, be familiar with basic
XENIX concepts and terminology, have an overall view of what is included in the
system, and understand what information is presented in each manual in the set of
XENIX manuals.

Chapters

This overview has these chapters and appendixes:

1. Introduction to XENIX - - an introduction to the Overview of the XENIX 286
Operating System. It describes the book's intended audience and chapters,
presents operating system concepts, and briefly describes the history and features
of the XENIX operating system.

2. Files and File Systems -- description of ordinary files, directories for organizing
files, special files (devices), file protections, tools for working with files, and the
new file system.

3. Running Programs -- introduction to programs and processes. This chapter
explains what happens when you run programs, from system startup to login to
executing commands.

4. Text Processing -- brief description of tools for people who prepare documents for
printing or typesetting.

5. Programming -- introduction to XENIX programming concepts, including the C
programming language, standard function libraries, system calls, supporting tools,
shell programming, and customizing XENIX.

A. Basic System Commands -- brief definitions of the commands in the Basic System.

B. Text Formatting Commands -- brief definitions of the text formatting commands
in the Extended System.

C. Programming Tools -- brief definitions of the commands, libraries, and system
calls in the Extended System.

D. Related Publications -- a list of related Intel publications.

Rev. A, 8/87 1-1

Introduction to XENIX XENIX 286 Overview

The Basic System and the Extended System

Intel has divided the XENIX operating system into two different products to satisfy
different user requirements. These products are the Basic System and the Extended
System.

The Basic System

The Basic System is intended for all users. It has all of the things needed to run
application software and to administer the system. It also has general-purpose tools
such as the ed and vi text editors, electronic com munications, and many commands.
These manuals accompany the Basic System:

VOLUME 1

• Overview of the XENIX 286 Operating System. This manual briefly describes
operating systems in general and XENIX in particular, briefly covering important
concepts such as files and file systems, the shell, and com mands. Program ming
tools and text processing features are introduced.

• XENIX 286 User's Guide. The user's guide has a brief survey of co m mon
com mands plus full chapters on the ed text editor, vi text editor, electronic mail,
Bourne shell (sh), and be calculator.

• XENIX 286 Visual Shell User's Guide. This guide explains how to use the visual
shell, which is a user interface based on menus. The menus list com mon functions
and application software programs that the system administrator has added.

VOLUME 2

• XENIX Installation and Configuration Guide. This manual, for the system
administrator, gives complete instructions for installing XENIX software from
streaming tape or 51-inch or 8-inch flexible disks. The section on configuration
explains how to add devices to the system and remove devices from it.

• XENIX 286 System Administrator's Guide. This manual, for the syste m
administrator, describes the procedures to perform on a regular basis, such as
administering users, making back-up copies of files, and monitoring system use.

• XENIX 286 Communications Guide. This manual, for the syste m administrator,
explains how to set up and administer a Micnet or uucp com munications network.

• XENIX System Backup and Restore Operations iBR. This manual, for the system
administrator, describes in detail the backup and restore operations.

VOLUME3

• X EN IX 286 Reference Manual. This manual is intended for users who want
technical information about commands, files, devices, and error messages in the
Basic System. The manual also has a master index for the entire manual set (Basic
and Extended Systems).

1-2 Rev. A, 8/87

XENIX 286 Overview Introduct ion to XENIX

The Extended Syste m

The Extended Syste m is made up of software develop ment and text form att ing tools.
The software development tools include utility programs, standard C l ibraries, syste m
calls, a C compiler, a n asse m bler, a linker, a loader, a debugger, a lexical analyzer, and
a compiler-compiler (a program that generat es a co mpiler). The text form att ing tools
include com mands for improving writing, mm (m e morandu m) macros, and standard nroff
and troff programs. The m m macros are codes you use to prepare m e mos, letters,
reports, and other docu ments. The nroff program formats docu ments for a printer, and
the troff program formats docu ments for a phototypesetter.

These manuals are part of the Extended System:

VOLUME 4

• XENIX 286 Programmer's Guide. This m anual is intended for appl icat ions
program mers. It describes these i mportant program ming tools: cc (C compiler),
lint (C program checker), make (a program maintainer), SCCS (a source code
control syste m), adb (a program debugger), as (an asse m bler) , lex (a lexical
analyzer generator), yacc (a co mpiler-co mpiler), and m4 (a m acro processor).
Appendixes d iscuss C langu age port ab i l i ty and give r e f er e n c e pages for
program ming co mmands.

VOLUME 5

• XENIX 286 C Library Guide. This manual is intended for program m ers. It
describes syste m calls and standard l ibraries of C subroutines. It covers standard
1/0 funct ions, screen processing, character and string processing, process control,
pipes, signals, system resources, and error processing. Appendixes give reference
information, including reference pages for individual subrout ines, syste m calls, and
file form ats.

VOLUME 6

o XENIX 286 Device Driver Guide. This manual is intended for a program mer who
writes device drivers. Chapters cover the kernel, s im ple character device drivers,
terminal device drivers, block device drivers, instructions for adding drivers to the
configuration, designing and debugging hints, and drivers supplied w ith XENIX.
Appendixes give related reference informat ion.

VOLUME 7

• XENIX 286 Text Formatting Guide. This manual is intended for writers who want
to prepare manuscripts for printing or phototypesett ing. It gives an overview of
text processing, describes writ ing and editing tools, explains how t o use m acros,
nroff, and troff, and shows how to for mat tables and m athe m atics.

DOCUMENTATION DISK

• XENIX Macro Assembler User's Guide. This manual is intended for program mers.
It has instruct ions for using the macro assembler.

• XENIX Macro Assembler Reference Manual . This m anual is i nt e nded for
programmers. It has reference information about the macro asse m bler.

1-3

Introduct ion to XENIX XENIX 2 86 O verview

What Is an Operat ing System?

An operat ing system is a set of programs that manage the resources of a computer and
provide useful services. It has three basic components: the kernel, a set of ut il ity
programs, and a command interpreter.

When you want to work on a computer, you need to send data from one device to
another. For example, if you are writing a letter at your terminal, you need to store it
on a disk. Later, you may want to print it on a printer. To complicate matters,
someone else may want to use the printer at the same t i m e. Clearly, the resources of
the comput er system have to be shared. These are some of the reasons that the
computer has an operat ing system.

Hardware D evices

Since the operat ing system coordinates the activities of the hardware, it i s useful to
ident ify the functions that different pieces of hardware perform.

A typical computer system has a C P U (central processing unit) plus several hardware
devices, such as terminals, d isks, memory, printers, and tape drives (see F i gure 1-1).

1-4

CPU

�
F l ex ib le
D i skette

1©©1
Tape

Figure 1-1 . Hardware Devices

Term i n a l

F-032 I

XENIX 2 86 Overview Introduct ion to XENIX

The hardware devices serve these funct ions:

• CPU. The CPU does all of the processing. It reads instructions one by one and
executes the m, performs necessary logic operat ions, and m akes m athe m at ical
calculat ions.

• Term inal. The terminal is the device you use to co m municate w ith the co m puter.
It has a keyboard so that you can enter informat ion and a screen that d isplays
what you type.

• Disks. D isks store program s and data for fast and easy retrieval.

• Memory. M e mory is an area where data is stored while it is processed.

• Printers. Printers produce a copy of data on paper.

• Tape drives. Tape drives store copies of programs and data on tape.

The Kernel

The kernel is a software program that interacts d irectly with co mputer hardware. When
the syste m adm inistrator starts the computer, the kernel is loaded into m e m ory from
disk storage. It remains there as long as the computer is running and oversees all of the
act ivities of the co mputer syste m. When you give com m ands or run appl icat ion
software, these programs may use syste m calls to ask for services from the kernel. For
example, each t i m e a program wants to read a file, i t sends a read syste m call t o the
kernel.

In a mult iuser computer syst e m, several people share me mory, printers, and other
computer resources. It is the kernel that gives each person exclusive use of a resource
for a period of t i m e. The kernel's funct ion is to do this so eff ic iently that users are
unaware that the resources are being shared.

A kernel typically performs these funct ions:

• Mass storage manage ment. A co mputer system stores a large amount of data on
disks. The kernel maintains some form of file syste m on disks to keep track of all
this data so that it can be located and used.

• Process manage ment. A process is a program being executed. In a co mputer
syste m , many processes m ay be running at the same t i m e. The kernel gives each
process a share of processing t ime and keeps track of each process.

• Me mory manage ment. Any computer syste m has a certain amount of m e m ory and
that memory often has to be shared by several processes. The kernel gives each
process an area in m e mory and keeps one process fro m. interfering with another.
If a process needs more m e mory than is available, the kernel t e mporarily m oves
the process out of m e mory and onto disk. When the process is scheduled to run
again, it is copied back i nto m e mory and allocated the space it needs. This
technique is called swapping.

1-5

Introduction t o XENIX XENIX 2 86 Overview

• D e v i c e m a n age m e nt . E ach d e v i c e i n a c o m pu t e r syst e m h a s s p e c i al
characterist ics that the kernel has to understand to send inform ation to and fro m
devices. In the kernel, software programs called device drivers com m unicate w ith
devices. When a program uses a syste m call, the kernel selects the appropriate
device driver.

• Error checking. The kernel constantly checks the operat ion of the syste m and
displays error messages when problems occur.

• Account ing. A multiuser operat ing syste m norm ally keeps so m e kind of records of
how resources have been used. These records m ay be the basis for billing for
computer t i m e or for evaluating co mputer use.

Uti l ity Pro g rams

Some people speak of the kernel as the operat ing syst e m, but the kernel is usually
accompanied by a set of utility programs that you can run to create files, copy files, and
perform other useful funct ions. Throughout this m anual, these programs are considered
part of the operat ing system.

One type of program that comes with an operat ing syste m is a text editor, which is a
tool that you use to type programs, reports, and other text. A text editor has com mands
for adding, changing, and delet ing lines of text.

Other programs that are usually available are program m ing tools, such as standard
software libraries, co mpilers, linkers, loaders, and asse mblers. Tools for checking and
debugging code are so meti mes included.

A Command Interprete r

You request services from the operat ing syste m b y giving co m mands. Every operat ing
syste m has at least one com m and interpreter that takes your com m ands so programs
can be executed.

1-6

XENIX 2 86 Overview Introduction to XENIX

What Is the X E N IX 286 Operati n g System?

XENIX 2 86 is Intel's value-added vers ion of the XENIX operating syste m released by
Microsoft Corporat ion. M icrosoft's XENIX, in turn, is a value-added version of the
Syste m III UNIX operat ing syste m developed by Bell Laboratories at AT&T. X E NIX 2 86
also includes features developed by the University of California at Berkeley. XENIX
286 supports multiple users and multiple tasks. It has all of the co mponents of standard
operating syste m s--a kernel, ut il ity programs, and a c o m mand i nt erpret er-- w ith
features that many others do not have.

The XENIX Kernel

The XENIX kernel performs all of the funct ions that a typical operating syste m kernel
performs. It manages mass storage, processes, m e mory, and devices, and it checks for
errors during operat ion. The system ad m inistrator can turn process account ing logs on
or off and clear the m as desired.

The XENIX kernel has these i mportant features:

• Standard syste m calls. Program mers can use over 6 0 different syst e m calls to
request services fro m the kernel. These syste m calls include all those provided by
UNIX Syste m III.

• Speed. The speed of the kernel is driven by the speed of the processor, and the
XENIX 286 system runs on Intel's iAPX 2 86 m icroprocessor.

• Small size. The XENIX kernel has only 1 0 , 0 0 0 or so lines of code.

• High-level language. Most of the kernel is written in the C program m ing language
rather than in asse mbly language, so the operating syst e m can run on many
different co mputers.

• Hierarchical file syst e m. XENIX has a h ierarchical file syst e m so you can
organize your files of informat ion. Intel has redesigned the file syst e m to increase
processing speed. Chapter 2 describes the new file system.

• Devices treated like f iles. You can send data to devices and take dat a fro m the m
j ust as if they were ordinary f iles. This is called device independence.

• Separate code and data. Program code and data are kept in separate areas of
memory, which is efficient since several users may share one copy of the code.

• Buffer manage ment. Buffers are areas where data is stored when it is brought
fro m a disk. W ith M icrosoft's exported buffer managem ent technique, the kernel
has access to buffers that are outside its pri mary dat a segment. W ith Intel's
enhancements, programs are loaded directly i nto memory, and buffer contents are
left undisturbed. Programs are thus loaded faster and inform ation in the buffers
can continue to be used.

• Device drivers. Intel releases XENIX 2 86 with device drivers for term inals,
W inchester d isks, flexible disks, and tapes, plus a guide to writ ing device drivers so
you can add appropriate hardware devices to your system.

1-7

Introduction to XENIX XENIX 2 86 Overview

Uti l ity Pro g rams

Together, the Basic System and the Extended Syste m offer over 2 0 0 ut il ity programs.
You can create additional functions without writ ing C progra ms if you t ake advantage
of tools called pipes (they connect the output of one program w ith the input of another)
or write shell programs using a shell com mand int erpreter.

The utility program s are all stored on a disk, and you run the m by giving co m m ands to a
com mand interpreter called a shell. In m any d iscussions of XENIX, the terms
"co m mand", "program", and "ut ility" are used interchangeably.

The utility programs for the Basic Syste m are listed in Appendix A, and the utility
programs for the Extended Syste m are listed in Appendix B and Appendix C.

Command Inte rp reters

A XENIX command interpreter is called a shell. You com municate with the operat ing
syste m by typing com mands that the shell interprets. For example, if you want the
operating syste m to print a calendar, you give the cal com mand and the shell responds
to it.

In some operat ing syste ms, the co m mand interpreter is part of the kernel and cannot be
changed easily, but in XENIX it is a separate C program that can be m odified or
replaced by another C program . The Basic Syste m has three different shells: the
Bourne shell, restricted shell, and visual shell. The Extended Syste m adds the C shell.
These shells are d iscussed in Chapter 3.

1-8

XENIX 2 86 Overview Introduct ion t o XENIX

Who U ses the X E N IX Operati ng System?

Everyone on the computer uses the operat ing system, but people w ork with i t i n
d ifferent ways. Users typically fall into o n e of these categories: users w h o run
application software, the syste m ad m inistrat or, appl icat ion progra m m ers, syst e m s
program m ers, and writers and text processors. XENIX 2 86 gives each of these types of
users tools to m ake their work easier and to i mprove their f inal products.

• Users who run applicat ion software. M any users run application softw are, such as
word processing or a spreadsheet program. These users may be a ware of the
operating syste m only when logging on the computer (logging on is typing your
name and giving your password). This is especially true if you use a visual shell
that lists applications and funct ions on a menu. Users who run applic at ion
software often use XENIX's off ice tools, such as electron ic m a il, p ersonal
calendars, and a desktop calculator. These tools are i n the Basic Syst e m .

• Syste m ad m inistrators. The syste m ad m inistrator is the person responsible for
maintaining the computer and its soft ware. The syste m ad m inistrator needs to
understand syste m operations very well and to kno w how to install XENIX, add
devices, add users, monitor system use, make duplicate copies of d at a, tailor the
environment, solve syste m proble m s, and set up co m municat ions networks.
Ad mi nistering the syste m has been s implified by new co m m ands for adding users,
re moving users, making syste m backups, and other com mon tasks. Procedures for
the syst e m ad m inistrator are outl ined in the XENIX 286 Installation and
Configuration Guide, the XENIX 286 System Administrator's Guide, and the
XENIX 286 Communications Guide. All of these manuals are in the Basic Syste m.

• Application program mers. Applicat ion program me rs write soft w are such as
general ledgers and spreadsheets. Applicat ion program mers norm ally use the
operating system's text editors and com mands for working with f iles. To do
program m ing other than shell program m ing they need the Extended Syste m, which
has com mands for developing software, libraries of standard funct ions, syste m
calls, and program m ing tools. Program m ers who develop software o n one XENIX
syste m can usually put it on several machines w ith only m inor changes.

• Syste ms program m ers. Systems program m ers change the operat ing syste m to
meet the require ments of a particular product. They add device drivers and add or
change uti lity programs. The XENIX 286 Device Driver Guide i n the Extended
Syste m has instruct ions for writing device drivers plus examples of d ifferent
drivers.

• Writers and text processors. Writers and text processors produce docu m ents such
as programs, me mos, letters, and books. These users can create docu m ents with
the XENIX text editors. They need the Extended Syste m to print or typeset
docu m ents w ith standard features such as cent ering and holding.

1-9

Introduct ion to XENIX XENIX 2 8 6 Overview

The H isto ry of X E N I X

XENIX has evolved over m ore than a decade and has been used successfully in many
different environments.

UNIX

The history of XENIX begins w ith the develop m e nt o f U NI X at AT&T's B ell
Laboratories.

In the late 1 9 6 0s, Ken Tho mpson and others at Bell Laboratories were part icipating in a
proj ect that involved a large, sophisticated, multiuser operat ing syste m called Mult ics
on a large mainframe computer fro m G eneral E lectr ic Corporat ion . When B ell
Laboratories left the proj ect, Tho mpson wanted to m ove a part icular program called
Space Travel fro m the mainframe to a dedicated P D P-7 co mputer, so he created a new
operat ing syste m for it. Since the new operat ing syste m was for single users, it was
named UNIX as a play on the nam e Mult ics.

The f irst version of U NIX was written in asse m bly language. It was a personal effort by
a program mer who wanted a syste m that made it easy to write, test, and run programs.
He also favored elegance of design, and the l im ited size of his development co mputer
encouraged economy and elegance. By 1 9 7 1 , the new operating syste m was being used
w ithin B ell L aboratories on D igit al Equip m ent C orporat ion's P D P- 7 and P D P -9
computers.

The second version of UNIX included software written in a program m ing language called
B. This language was used when U NIX was moved to D igital Equipment Corporat ion's
PDP- 1 1/2 0 fam ily of minico mputers in 1 9 7 1 . The PDP-1 1/2 0 was purchased to support
the develop ment of a text formatt ing package.

The third version of UNIX came in 1 973. It was a co mplete rewrit ing of the operat ing
syste m in C, which was a revision of B. C was a good choice for an operat ing syste m
because it was a high-level, structured language and y e t i t was able to manipulate s m all
units of data efficiently. This version incorporated mult iprogram m ing, a technique that
keeps several programs in memory at once so that the central process ing unit is used to
advantage. The syste m ran on several computers in the P D P-1 1 fam ily.

S ince C was a high-level language, U NIX could run on more than one computer. The
fourth version of UNIX eli minated all code that was specific to the P D P- 1 1 fam ily of
computers. This new version was produced in 1 9 7 7 and was moved onto the Interdata
8/32 , which was quite different fro m the PDP-1 1 s.

Through the 197 0s, U NIX was used mostly within Bell Laboratories, but by 1 97 5 AT&T
began to l icense it, and other research agenc ies began to work w ith it. M any colleges
have licenses to use UNIX, and m any computer scient ists have become famil iar with it.

Today, several versions of UNIX are in c irculat ion. The first UNIX syste m to be
l icensed com mercially was Version 7, a multiuser syste m released in 1978 . An update
was introduced in 1 9 8 1 as Syste m III. A subsequent version, Syste m V, was released in
1 983 . There was no System IV. The name UNIX re m ains, even though the syst e m now
supports mult iple users.

1-10

UNIX became popular at Bell Laboratories, then gained supporters in research
centers and universities, then attracted the attention of software developers and
computer manufacturers. It has become popular because of m any valuable
features, including

• Portability. One feature of UNIX that truly sets it apart from traditional
operating systems is portability. Most operating systems have been tied to a
specific computer or family of computers because they were written in assembly
language that only those computers could use. The UNIX operating system is
written almost entirely in C, a high-level language that can run on many different
computers. Application software developed on one computer can run on many
computers. It is so metimes necessary to make minor changes to the software, but
it is not necessary to rewrite much of it.

• Multiuser support. UNIX is a multiuser system, which means that several users
can work on a system at one time.

• Multitasking system. UNIX is a multitasking syste m, which means that several
users can run processes simultaneously, and that an individual user can run several
processes in the background while working at the terminal. For example, you can
edit a program at the terminal while you print a report on the printer.

• UNIX tools. The UNIX philosophy is to provide many small tools that can be
changed or combined to perfor m new functions. You can create new tools without
writing C programs by writing shell scripts (files of shell com mands, which can
include statements from the shell program ming language) or by using pipes. Pipes
are tools that connect the output of one program with the input of another.

• Office tools. Office tools such as individual calendars, u ser-to-u ser
communications, and a desktop calculator are all part of the UNIX system.

• Program ming tools. UNIX tools have evolved over time in response to specific
needs of programmers. As program mers have worked with the system, they have
corrected errors, added new features, and created new utility programs.

• Networking. Several UNIX syste ms can be linked together so that data, including
electronic mail, can be sent fro m one system to another.

• Access to status information. UNIX makes status information readily available so
any user can check who is on the system, what processes are running, and what
printers are busy.

• Groups. When people work on the same projects, they often need to share files.
With UNIX this is encouraged because files can be assigned to groups of users.

o Device independence. Devices, such as printers and terminals, are accessed like
files, so you can send data to a device just as you send it to any file. Likewise,
you can bring data from a device.

Rev. A, 8/87 1-11

Introduction to XENIX XENIX 286 Overview

XENIX

Intel's XENIX Release 3.4 (and higher) product is an enhanced version of the XENIX
operating system produced by Microsoft, Inc. This operating system is derived from
UNIX System III and includes features developed by researchers at the University of
California at Berkeley.

Intel has entered the XENIX market as a technological leader. Intel invented the
microprocessor and offers XENIX on systems that have microprocessors that are among
the fastest on the market.

Intel gives its OEMs (original equipment manufacturers) the opportunity to put their
XENIX-based products on the best technology at every level of integration--from
components to boards to complete systems.

Intel's goal is to combine the latest technology, effective operating system software, a
full reference library, networking software, and qualified application software.

• Latest technology. Intel's strategy is to combine UNIX-based technology with the
latest silicon technology. Its microprocessors are among the fastest
microprocessors available and memory management has been integrated into the
chips.

• Effective operating system software. Intel provides a complete XENIX operating
system, which is enhanced by a file system that reduces the amount of time spent
searching for data (see Chapter 2).

1-12

The compiler is based on Microsoft's emerge technology and includes support for
small, middle, large, and huge models of segmentation. Support for MS-DOS cross
development is also included.

A dynamic bad block handling scheme has been developed by Intel to deal with bad
blocks as defective surface spots on hard disk media degrade over time. As bad
blocks are encountered, they are recorded in an error partition. When the system
administrator uses the fixbb command, the error partition is searched for all bad
block entries for a specific special device file, all bad blocks are listed in
.Badblocks, and files and directories affected by the bad blocks are removed.

Intel has developed three new commands to simplify procedures for the system
administrator. The instlupdate command makes it easier to install updates. A
menu-driven, interactive system configuration program, scp, automates the
configuration process for all supported configurations. The sysadmin command has
been replaced by a new command of the same name that includes support for
multiple disks.

Rev. A, 8/87

XENIX 286 Overview Introduct ion to XENIX

• Full reference library. Intel recognizes that users need a basic understanding of
XENIX plus spec ific information about funct ions they perfor m on their jobs. As a
result, the m anual set includes books that give the big picture as well as books
that are oriented toward part icular users.

Three manuals have informat ion for all XENIX users. This manual attempts to
help you und erstand the operat i n g sys t e m and learn bas ic c o ncepts and
ter m i nology. The XENIX 286 Reference Manual has reference pages for
com mands, f iles, and devices. It also has a master index of reference entries for
the entire m anual set. This index lists reference entries alphabet ically, ident ifies
the type of entry (such as co m mand, l ibrary funct ion, or syste m call), points to the
manuals that describe the entry, and gives a brief definition of the entry. This
index points users to the appropriate manuals. Those manuals have detailed
indexes that point to specific pages. The XENIX 286 User's Guide covers com mon
com m ands and has detailed instruct ions for using the ed and vi editors, electronic
mail, the Bourne shell, and the be calculator. The XENIX 286 Visual Shell User's
Guide provides an introduct ion to the visual shell, a menu-based interface to
XENIX.

F ive m anuals are oriented spec i f ically to program m ers. The XENIX 286
Programmer's Guide has instruct ions for the C co mpiler and other program m ing
tools. The XENIX 286 C Library Guide describes syst e m calls, standard l ibraries
of C subrout ines, file form ats, standard 1/0 funct ions, screen control, pipes,
signals, syste m resources, and error processing. The XENIX 286 Device Driver
Guide gives syste ms program m ers instruct ions and examples so that they can
create their own device drivers. The XENIX Macro Assembler User's Guide and
the XENIX Macro Assembler Reference Manual explain how to use the macro
asse mbler (these two manuals are shipped on disk).

One manual, the XENIX 286 Text Formatting Guide, has informat ion for those who
need to prepare m anuscripts for printing or phototypesetting.

Three books give the syst e m ad m inistrator detailed infor mation. The XENIX 286
Installation and Configuration Guide walks the ad ministrator through installing the
syste m and adding and re m oving devices such as printers, term inals, and disk
drives. The XENIX 286 System Administrator's Guide o u t l i n e s a sys t e m
ad m inistrator's responsibilit ies and has how-to instruct ions for overseeing daily
operations and solving syste m proble ms. The XENIX 286 Communications Guide
explains how to set up and ad m inister M icnet and uucp co m municat ions networks.

• Networking products. Intel provides a Local Area Network {OpenNET) based on
the Ethernet standard. It provides file transparency, distributed j ob control, and
virtual terminal capability that greatly enhance the ut ility of the ind ividual
XENIX syste ms.

1-13

Introduct ion to XENIX XENIX 286 O verview

• Applicat ion Soft ware. Intel provides a wide spectru m of co m m erc ial and
developmental products for the XENIX operat ing syste m . The iDIS Dat abase
Infor m at ion System is a com prehensive software package that provides a w ord
processor, spread sheet, relat ional database, host c o m municat ion, and other
features in an easy-to-use menu system for mat. Developmental tools i nclude
compilers and software toolboxes for both business and engineering environm ents.
In addit ion, a growing list of independent software vendors provides general
business products, as well as specific applicat ions for a w ide spectru m of business
and co m mercial needs.

1 - 14

Ordi n a ry F i les

CHAPT E R 2

FI L E S AN D FI LE SYST EMS

All of the data that you and other users produce is kept in f iles. Technically, an
ordinary XENIX file is just a series of bytes stored on a mass storage device under a
specific name. The bytes are regular ASCII text (letters, nu mbers, and characters such
as punctu at ion marks), or they are binary codes (codes representing inform at ion in a
form that cannot be displayed directly on a screen).

The Content of an O rd ina ry F i l e

You create an ordinary file by using a text editor, compiling a program, or running an
application program that creates files. It contains only what you put in it. For
example, an ordinary file may have a source program, an executable program, a letter,
or payroll data. XENIX does not keep record counts or use a special marker to show the
end of a file. F igure 2-1 has an example of an ordinary file. Not ice that it has nothing
but text.

M E M O

TO
FROM
SU BJ ECT

Team
M ary
Revi sed Sched u l es

Pl ease g i ve me you r revi sed sched u l es by Friday.

Figure 2-1 . Sample Ordinary File

2-1

Files and File Syste ms XENIX 2 8 6 Overview

T h e Stru ctu re o f an O rd inary F i l e

XENIX does not expect data to be stored in any particular form at. It is just text. When
you create a file, you may give it a form at, then use that form at when you write
programs. For example, the /etc/passwd file has one record for each user. The record
has seven fields of information and they are separated by colons. The sam ple line below
illustrates the form at of the file. (If you are curious about the m eaning of the fields,
see Chapter 3.)

mary : j 9Hz 1 FzBYSOVw : 20 1 : 200: M Day,Rm 2 1 , x5006,273-5543 :/usr/ma ry:/b i n/sh

The XENIX kernel is not aware of this format , but programs that read the /etc/passwd
file need to understand it.

The Name of an O rd ina ry F i l e

These are the rules and conventions that apply to file names in XENIX:

• When you want to work with a file, you ident ify it by nam e. The kernel keeps
track of each file by assigning it a unique nu m ber, called an inode nu m ber, but it is
not necessary for you to use the nu mber.

o The name of a file can have 1 to 1 4 characters.

o The name can include any keyboard character except a slash {/). However, the
reco m m ended procedure is to avo id blanks , invis i ble charact ers such as
BAC KSPACE, and these special characters, which have a special m eaning to the
co m mand interpreter:

? *

o Both uppercase and lowercase lett ers c an be used, and they are d ifferent
characters. For example, "Me mo. to.Jack" is not the same as " m e mo. to.jack".

• If a file name begins with a dot, it will not appear on your list of f iles unless you
use a special opt ion of the com m and that lists files (Is -a).

2-2

You m ay use dots in file names. For example, " me m o. to. j ack" uses dots. To
XENIX, these dots in a nam e are just characters, but so m e characters with dots
are meaningful. XENIX uses several co m binations of a dot and a character at the
end of a file name to ident ify a part icular kind of file. These combinations are
called suffixes. For example, program m ers should use a ".c" suffix for programs
they write in the C progra m m ing language. These are so m e of the suffixes that
are meaningful to XENIX:

. a A l i bra ry a rch ive

. c A program written i n t h e C progra m m i ng l anguage
.h An i nc l ude fi l e for the C progra m m i ng l ang uage
. I I nput for lex
. o The obj ect code created by a com pi l er or assemb ler
. s A program written in assembly l anguage
.y I nput for yacc

XENIX 286 Overview F iles and File Syste m s

• In any directory, a file name must be unique. For exa mple, if you have a directory
named " m e mos", it can have only one file named " m e m o.to.j ack". However, you or
so meone else could have a file na med " m e mo.to.jack" in so m e other directory.
Directories will be explained in detail later in this chapter.

The S ize of an O rd inary Fi l e

When you create a file, you cannot define its m axi mum size. The file can cont inue t o
grow u p t o a li m it o f four megabytes as long a s the disk has space for more data. The
system ad m inistrator can increase this maxi mu m size with the ulim it com m and built
into the Bourne shell, and anyone can decrease the m axi mu m size with that co m mand.

D i recto r ies

As the nu mber of files increases, it becomes i mportant for you to have so m e way of
organizing the m so that you can locate the m easily. The XENIX solution is to let you
organize your own files by creat ing a hierarchical structure of directories.

A directory is just a list of files and their unique file nu mbers, which are called inode
nu mbers. The organization of directories is discussed in this sect ion. !node nu m bers are
explained later in the chapter.

Log in Directo ries

When the system ad m inistrator adds you to the system, a login directory is created for
you. This is the directory where you will begin each t i m e you work on the comput er. It
is so met imes called the ho m e directory.

I magine that the system ad m inistrator adds a new user named Kay, gives her the login
na me "kay", and defines "kay" as her login directory. When she logs in, she is placed in
her "kay" directory.

You may place files of infor mation in your login directory, or define subdirectories so
that you can organize your files, or both. For example, K ay expects to create few files
so she sees no reason to use subdirectories. Since she w ill have few files, she w ill keep
all of the m in her login directory and scan the l ist when she wants to w ork w ith one.
Suppose that she creates two memos, " m ary.4.6" and "sue.4. 8", in her login directory�
Figure 2-2 shows what her hierarchy would look like. Figure 2-3 shows what K ay sees
when she uses the directory listing com mand (Is) to look at her login directory. The "$"
is a standard pro mpt that m eans you can give co m mands.

A hierarchy is often referred to as a tree structure because it looks like an inverted tree
with branches.

2-3

Files and File Systems XENIX 2 8 6 O verview

$ I s
mary.4.6
sue.4.8
$

2-4

mary.4. 6 sue .4 .8

F-030 7
Figure 2-2. Sample Hierarchy of Login D irectory without Subdirectories

Figure 2-3. Sample Contents of Login D irectory without Subdirectories

XENIX 286 Overview F iles and F ile Systems

S u bd i recto ries

If you have a large nu mber of files, you may use subdirectories to group relat ed files. A
subdirectory is a directory within a directory. For example, i m agine that M ary plans to
create me mos, letters, and programs. She can create three separat e d irectories ,
" me mos", "letters", and "programs" in her login directory, then place f i les i n the
appropriate subdirectory. Figure 2-4 shows her hierarchy aft er she has created t wo
me mos, two letters, and a program called "fc. c". Figure 2-5 shows what M ary actually
sees when she uses the Is (list) com m and and the lc -R com mand to look at her login
directory. The Is co mmand shows only the contents of the directory that you are in.
The lc -R co m mand shows the contents of that d irectory plus the contents of each
subdirectory. Not ice that the shorthand name (.) is used for the working d irectory.

team. 5 . 1 5
tea m . 5.20

Figure 2-4. Sample Hierarchy for Login Directory with Subdirectories

$ Is
l etters
memos
prog rams

$ 1c -R
letters

./letters:
a.jones

./m emos:
team .5. 1 5 .

./programs:
fc.c
$

memos programs

k.brown

tea m . 5 .20

Figure 2-5 . Sa mple Directory List

F-0308

2-5

Files and F ile Systems XENIX 2 8 6 O verview

S u btrees

A subtree begins at a directory and includes all of the files and directories under it. For
example, i m agine that Jack is added to the syste m and that he creates d irectories for
letters, m e mos, and newsletters. He wants to keep e m ployee newsletters separat e fro m
customer newsletters, so he creates subdirectories for the m under his "newsletters"
d irectory. Figure 2-6 shows the "newsletters" subtree of the "jack" hierarchy.

F-0309
Figure 2-6. Sample Subtree

The Parent D i rectory

The directory i m mediately above another directory is called its parent. For exam ple, in
Figure 2-6, "j ack" is the parent to the "newsletters" directory, and the "newsletters"
directory is the parent to the "employee" and "custo m er" d irectories. A shorthand na me
for the parent of a directory is " • • ", which is pronounced "dot dot".

2-6

XENIX 286 Overview F iles and F ile Systems

The /u sr D i re cto ry

As you have seen, each user is allowed to organize files into meaningful hierarchies.
These user hierarchies, in turn, are part of a bigger hierarchy that begins with the root
directory (which is represented by /). Under root are several d irectories, including one
called /usr. The /usr directory is tradit ionally the parent of all user directories. F igure
2-7 shows a sample hierarchy for the /usr directory.

F-0310
Figure 2-7. Sample /usr D irectory with Subdirectories

Fu II Path Names

Each file in the syste m has a path nam e that begins at root and goes through the full
path of directories to the file itself. For example, the full path nam e of M ary's letter to
A. Jones is

/usr/mary/l etters/a .j ones

Slashes separate the directories when you give a full path na me.

Notice that both Mary and Jack have directories with the names " me mos" and "letters".
In XENIX that is acceptable because each file has a different path name. W ithin a
directory, each name has to be unique. For example, Mary can have only one "a.jones"
file in her "letters" directory.

2-7

Files and File Syste ms XENIX 286 Overview

Re lative Path Names

A full path name may seem like a lot to type. Fortunately, you usually do not have to
�ype the full path name. You can start where you are and give the re m ainder of the
path, which is called the relative path name. F i gure 2-8 illustrates full and relat ive
path nam es.

Fu l l path name from root{!) : /usr/ma ry/l etters/a . jones

Relative path name from / : usr/ma ry/1 etters/a . jones

Rel ati ve path name from /usr: mary/1 etters/a .j ones

Rel ati ve path name from /usr/mary : I etters/a .j ones

Rel ati ve path name from /usr/mary/l etters: a .jones

Figure 2-8. Sample P ath Names

M oving from D i recto ry to D i recto ry

When you log in, you begin in your login d irectory. If you want to work on a file, you
have these choices:

• G ive the full path nam e fro m r.oot.

• G ive the relat ive path name.

• Use the cd (change directory) co m mand to go to the d irectory that has the file,
then give the file name.

For example, when M ary logs in, she is in her " mary" login directory. If she wants to go
to her "letters" directory and use the ed line editor to edit the "a.jones" file, she can use
the com mands in Figure 2-9.

2-8

XENIX 286 Overview Files and F ile Syste ms

$ ed /usr/ma ry/letters/a.jones Fu l l path name

$ ed letters/a.jones

$ cd letters
ed a.jones

Relative path name from /usr/ma ry

Change to l etters d i rectory
I nvoke ed to ed it a .jones fi l e

Figure 2-9. P ath Names w ith Co m mands

The Work i n g D i recto ry

The directory you are in is called your working directory or your current d irectory. For
example, when M ary goes to her "letters" d irectory to write a letter, "letters" is her
working directory.

If you forget what directory you are in, you can use the pwd (print working d irectory)
com mand. For example, if M ary uses the pwd com mand when she is in her "letters"
directory, this results:

$ pwd
/usr/ma ry/1 etters

A shorthand name for the working directory is "." , which is pronounced "dot".

The Root D i rectory

Before leaving the subject of d irectories, you should be aware of the root directory (/) ,
which has these subdirectories and files:

• /bin

• /boot

• /dev

This d irectory has the XENIX co m mands that users execute most •

This file has the code for a program that is needed to start the
syste m.

This d irectory contains special device files •

2-9

F iles and File Syste ms

•

•

•

•

•

•

•

•

•

/etc

/lib

/lost+found

/mnt

/sys

/tmp

/usr

/xenix

/xenix.f

XENIX 2 86 O verview

This d irectory has co m m ands that are usually reserved for the
syste m ad m inistrator plus files that the system ad m inistrator
uses.

This d irectory has libraries of subroutines •

This d irectory l ists d irectories that are not linked int o the file
syst e m because of some proble m. The entries are placed in this
d irectory automat ically by the fsck co m m and that the syste m
ad m inistrator uses regularly t o check the integrity o f the file
system.

This d irectory is norm ally used for file syst e m s that are m ounted
on the root file system.

This d irectory has the code for the XENIX kernel •

This directory is used for t e mporary files that are created by
programs. These files m ay be removed during nor m al operat ions
and they are usually re moved each t i m e the syste m is started.

This d irectory is used for all login directories. It is the ancestor
of all user files and directories.

This file has executable code for the XENIX kernel for the hard
d isk syste m.

This file has executable code for the XENIX kernel for the
flexible disk system.

Figure 2-1 0 illustrates the contents of the root directory.

bin boot dev etc l ib lost + found mnt sys tmp usr xen ix xen ix.f

F-0311
Figure 2-1 0 . The Root Directory

2-1 0

XENIX 286 Overview F iles and File Syst e ms

Special F i l es

In a XENIX syste m , every hardware device is accessed using a special file. Printers,
term inals, disks, tapes, and com municat ion l ines are all regarded as f i les. The
significance of this is that you can send d ata to a device or read data fro m a device just
as you would read dat a fro m an ordinary file or write data to it. For program mers, this
is one of the most i mportant features of XENIX.

Special files are contained in the /dev directory and only the syste m ad m inistrator can
add special files. D evice names are fixed by the syste m ad m inistrator, but they are
treated like the nam es of other f iles. F igure 2-1 1 gives sample entries for the /dev
directory. Not ice that even me mory is i ncluded in the list of special files, although it is
rarely accessed as a file.

Devi ce Name

/dev/conso le
/dev/mem
/dev/kmem
/dev/n u l l
/dev/rwOa
/dev/rwOb
/dev/tty
/dev/ttya 1
/dev/ttya2

Descr i pti on

the system ad m i n i strator's term i na l
an i mage of physi cal ma in memory
an i mage of kernel d ata
a d u m my d evi ce; output sent to it is d i scarded
a d i sk
a d i sk
a term i na l
a term i na l
a term i na l

F igure 2- 1 1 . Sample Device Names in the /dev D irectory

XENIX has two kinds of special files, block and character.

B lock Speci a l F i les

Block special files work with one block of data (1 , 0 24 bytes) at a t i m e. Examples are
disks and tapes. A block special file m ay also be called a structured device. It often
has a character special interface, called a raw interface, which is used by programs that
perform syste m maintenance funct ions.

Characte r S peci a l F i l es

A character special file is any spec ial file that does not work w ith a block of data at a
t i me. Examples are terminals, co m municat ion l ines, printers, and m ain me mory. A
character special file may also be called an unstructured device.

2-11

Files and File Syste ms XENIX 2 8 6 Overview

F i l e Access Perm iss ions

In XENIX, every file belongs to an owner and a group. The o wner i s the person who
creates the file, and the group is the group the owner belongs to when the file is
created. The owner can give or deny access to anyone except the syste m ad m inistrator,
who has access to all f iles on the syste m. The owner or the syste m ad m inistrator can
assign a file to a new owner.

Access Permiss i o n s fo r O rd i n a ry F i l e s

For each file that you create, you can give or deny read, write, and execute per m ission
for three d ifferent categories of users: yourself, others in your group, and all others.

Read Permission for Ordinary Files

Reading a f ile means looking at its contents. Displaying a file on the term inal, print ing
it, co mpiling it, and copying it are all examples of reading a f ile.

Write Per mission for Ordinary Files

Writ ing a file m eans changing it in so me way. Adding and changing inform at ion are
examples of writing a file. Deleting a file is not considered writ ing it , so you do not
need write perm ission on a file to delete it.

Execute Permission for Ordinary Files

Executing a file means running it as a program. Most executable files are co mpiled
programs, and you need execute perm ission to run them. So me executable programs are
shell scripts (programs using XENIX com m ands and the shell progra m m ing language).
You need read permission to execute a shell script. If you also have execute perm ission,
you can execute it w ith the program name. For exa1J1ple, you can run a shell script
named "check" w ith this com mand if you have read and execute perm ission:

$ check

If you have read perm ission, but not execute perm ission, you can run a shell script w ith
the sh co m mand. For example:

$ sh check

Set UID and GID

As a user, you have a user ID nu m ber (UID) and a group ID nu mber (GID). Whenever you
try to use a f ile, your IDs and perm issions are checked. Occasionally you need so meone
else's I D t o use a file. For example, you need root's ID to change your password in the
/etc/passwd file, because only root can change that file. Set UID perm ission on the
passwd co m m and gives you root's ID when you use the co m m and. Any executable file,
except a shell script, can set the UID or the GID so that anyone who executes the file
has the effect ive ID of the owner or the group owner.

2-12

XENIX 2 8 6 Overview F iles and File Syst e ms

Representing Permissions

For each file that you create, you can give or deny read, write, and execute per m ission
for three different categories of users: yourself, other m e mbers of your group, and all
others. These per m issions may be referred to as the file mode, protection b its, or
permission bits.

Perm issions can be represented in two different ways. One way is to show the m with
characters: r for read perm iss ion, w for write per m ission, x for execute perm ission, s
for set UID or GID perm ission, and a dash (-) for per m ission denied. These perm issions
are show n for the owner, other members of the group, and all others. For exa mple,
read, write, and execute perm ission for the owner, other members of the group, and all
others, are represented in Figure 2-12 . Perm issions are often called the file mode.
Examples of permissions are shown in Figure 2-13 .

F i l e M ode

r-x--x--x

rwxrwxr-x

rwxr-x---

rwsr-sr-x

r w x r w x r w x

Owner G roup Others

Figure 2 - 1 2 . Represent ing Perm issions w ith Characters

Mean i ng

read a nd execute perm i ssi on for the owner
execute perm i ss ion for the g roup
execute perm i ssi on for others

read , write, and execute perm i ss ion for the owner
read , wr ite , and execute perm i ss ion for the gro u p
read a nd execute perm i ssi on for others

read , write, and execute perm i ssi on for the owner
read a nd execute permi ssi on for the group
no permissi on for others

read , wr ite, and execute perm i ssi on for the owner
owner's perm i ssi ons for a nyone executi ng the fi l e
read perm i ssi on for the group
grou p's perm i ssi ons for anyone executi ng the fi l e
read a nd execute perm i ss ion for others

Figure 2-13 . Sample Permissions for Ordinary Files

F-03 1 2

2 - 1 3

Files and File Syste ms XENIX 2 8 6 Overview

Perm issions can also be represented with these octal nu mbers:

4 = read
2 = write
1 = execute
0 = deny perm i ss ion

Octal nu mbers are part of a nu m ber syste m whose base is 8 , just as deci m al nu m bers are
part of a nu mber syste m whose base is 1 0 . You add these octal nu mbers for perm issions.
The total is 7 for read , writ e, and execute per m ission. The tot al is 5 for read and
execute perm ission. The owner, others in the group, and all others have separate totals.
For example, 7 7 7 m eans full perm issions for the owner, others in the group, and all
others.

If the UID or GID perm ission is set, a fourth digit precedes the series. It has one of
these meanings:

4 = set U I D perm i ssi on
2 = set G I D perm i ss ion
6 = set U I D a nd G ID perm i ss i on

For example, 6 7 1 1 gives UID and GID per m iss ion to anyone executing the file, gives full
perm ission to the owner, and d enies per m ission to others in the group and all others.

F igure 2-14 shows how the two different methods represent the sa me per m iss ions.

Characters N u m bers

rwxr-x r-x 755

rwxr-x--- 750

r-x--x--x 5 1 1

rw-rw-rw- 666

rwsr-x--- 4750

2-14

Mea n i ng

read , write, a nd execute perm i ssi on for th e owner
read and execute perm i ss ion for the gro u p
read a nd execute perm i ss ion for others

read , write, and execute perm i ssi on for the owner
read and execute perm i ssi on for the gro u p
no perm i ssi on for others

read and execute perm i ss ion for the owner
execute perm i ssi on for the group
execute perm i ssi on for others

read and write perm i ss ion for the owner
read and write perm i ss ion for the g roup
read and write perm i ss ion for others

read , write, and execute perm i ssi on for the owner
owner' s perm i ssi on for a nyone executi ng the fi l e
read a n d execute perm i ss ion for the grou p
no perm i ss ion for others

Figure 2-14. Represent ing Permissions

XENIX 2 8 6 Overview Files and File Syst ems

Default Permissions

When you first receive your syste m, these perm issions are de.fined for all ordinary files
created in the /'}sr directory:

rw-r--r---

These perm issions give read and write perm ission to the owner, read perm ission to the
group, and read perm ission to all others. They are called default per m issions because
they will be assigned auto matically each t i m e you create a file.

The defaults are set with the u m ask co m m and, which you use to def ine which
perm issions are to be re moved fro m a base. The typical base is read and write
perm ission for the owner, others in the group, and all others. This is represented in
octal nu m bers as 666, and you subtract from 666 to get the appropriate defaults. For
example, the original default re m oves write permission for the group and others because
this com mand is in the /etc/profile file:

$ u mask 022

The resulti ng octal nu m ber is 644 (666-02 2). It is often desirable to change the defaults.
For example, the syste m ad m inistrator may change the default so files are created with
read and write perm ission for the owner, read perm ission for others in the group, and no
permission for others. The octal representation for these perm issions is 640 and the
default is created with this co m mand:

$ umask 026

The syste m adm inistrator m ay place the umask command in the /etc/profile file, or you
m ay place it in your own .profile file.

You can specify per m issions for your exist ing files with the chmod (change mode)
com mand. For example, when M ary creates her "a.jones" letter, it has the default
perm issions (644). If she wants to include write perm ission for others in her group, she
can specify the appropriate per m issions with this co m mand:

$ chm od 664 a.jones

Access Permissi o n s fo r D i re cto r ies

D irectories can be read, written, or searched.

Read Permission for Directories

Reading a directory means looking at the contents of the d irectory file itself. Since a
directory contains only a list of file names and their inode nu mbers, reading it m eans
using the ls co m mand to look at the list. F igure 2- 1 5 shows what kind of infor m at ion is
available to you if you have read perm ission on a directory. The -i option of the Is
com mand shows inode nu mbers and file nam es.

2-15

Files and F ile Syste ms

$ Is -i /usr/mary
450 l etters
460 memos
475 programs
$

K eep these rules in m ind:

F igure 2-1 5 . Readi ng a D irectory

XENIX 2 8 6 Overview

• Read per mission on a directory does not give you access to the contents of the
files in the d irectory. You can only read the names of the files in the d irectory.

• If you know a file's name and have read perm ission on it, you can see its contents
provided you have search perm ission on its d irectory. You do not need read
perm ission on its directory.

Write Permission for Directories

Writing to a directory means creating a new file (including a subd irectory) in it or
deleting a file from it. It may help to picture the actual contents of the directory file.
Writing to a d irectory means adding a nam e to the list of files or removing a nam e from
the list.

K eep these rules in m ind:

• You do not need write permission on a file to delete it. You just need write
perm ission on the d irectory that contains the file. You will be warned if you try
to delete a file w ithout having writ e permission, but you can st ill delete it.

• You can change the contents of a file if you have write perm ission on the file. You
do not need write perm ission on the d irectory.

Search Permission for Directories

D irectories have search per mission instead of execute perm ission. It is m eaningless to
execute a directory, since it is not a program. The "x" is st ill used as the sym bol for
search permission.

Searching a directory means going to the directory w ith the cd (change directory)
com mand or searching through its list of files when a file name is given. You cannot use
a file name successfully unless you have search permission for every directory in the
path. Figure 2-16 shows how directories are searched when the full path name is
"/usr/mary/ m em os/team. 5 .2 0".

2-16

XENIX 286 Overview

Contents of
I (Root)

bi n
boot
d ev
etc
l i b

usr
xen i x
xen ix .f

Contents of Contents of
I usr lusrlm ary

j ack l etters
kay � memos
mary programs

F igure 2-16 . Searching Directories

Access Permissio n s for Speci a l F i l es

Files and File Systems

Contents o f
lusrlmary/me m os

tea m . 5. 1 5
tea m . 5 .20

F -03 1 3

Syste m owners, such as root and bin, own all of the special files. Others usually have
write perm ission for term inals and printers and no perm ission for other devices.

Special files for terminals are usually owned by root when they are not being used. When
you log in, you beco m e the owner t e mporarily and can set the access perm issions on the
terminal. When you log off, ownership reverts to root.

Trying to execute a special file is meaningless.

Read Permission for Special Files

Read ing a special file means looking at its contents. For example, if you deny others
read permission for your term inal, they cannot read what you are typing. Read
perm ission for a printer is meaningless.

Write Permission for Special Files

Writing a special file means sending data to it. For example, if you give others write
perm ission on your terminal, they can send m essages to your screen. P eople usually
give others write permission on their terminals by using the mesg co m mand to permit or
prevent messages from reaching the terminal. The mesg y co m mand perm its others to
send m essages to your term inal and the mesg n co m mand prevents others fro m sending
m essages to your terminal.

2 - 1 7

Files and F ile Syst e ms XENIX 2 8 6 Overview

Li n ks to F i l es

A file exists somewhere on a disk and you use its name to work with it. This nam e is for
your convenience and it is stored in the d irectory, not in the file itself. XENIX knows
each file by a unique nu m ber called an inode nu mber. These facts make it possible for
you to have names for a file in more than one directory and to give a file m ore than one
name. This is called linking.

Imagine that M ary and Jack are writing a joint letter to R. Smith. They both want to
list the file in their own d irectories so that they can use the short, relat ive path names.
They acco m plish this by having Mary create the file and having Jack use the In
co m m and to create a link to it. He can use the sam e name for the file or use a
d ifferent name. F igure 2- 1 7 illustrat es links.

Contents of M a ry's
l etters D i rectory

530 a .j ones
546 k. brown
575 r.sm ith
y

L These fi l es have the same i nod e
n u mber , w h i c h m ea ns they a re
the same fi l e.

Figure 2-17 . L inks to a F ile

Contents of Jack's
l ette rs D i rectory

575 r .sm i th . l etter
y

F -03 1 4

A linked file is just one file (not two copies of the sam e file). If Jack changes
"r. s mith.letters", those changes are made to the file Mary calls "r.sm ith".

These rules apply to l inks form ed by ln:

• You need search perm ission on a directory to link to files named in it .

• No one can link across file syste ms.

• All d irectories have at least two links, because they have the shortcut name " · " in
addition to their full name.

• If you delete a linked file fro m your directory, the file itself is not deleted unless
no l inks re main.

2 - 1 8

XENIX 286 Overview F iles and File Systems

Wo rki n g with F i l es

XENIX offers many co m mands for working with files. For example, XENIX gives you
co mmands to

• Create and edit files (ed, ex, vi, view)

• Compare files (bdiff, cmp, diff, diff3)

• Ident ify file types (file)

• Display files (cat, more)

• Display the first few or last few lines of a file (head, tail)

• D ivide files (split)

• Find f iles (find)

• Join files (cat)

• Sort f i les (sort)

• Copy files (copy, cp)

• Renam e files (mv)

• Delete files (rm)

• Count the characters, words, and l ines in a file (we)

Appendix A includes a su m m ary of the Basic Syste m's co m mands for working with files.

2-19

Files and File Systems XENIX 286 Overview

Log ica l F i l es a n d Physica l Locatio n s

A s a user, you work only with files and d irectories. You d o not have t o b e concerned
with finding a place for the m on the disk or locat ing the m after they have been stored.
Those are proble ms that the kernel solves and it solves them by imple m enting a file
system.

A disk i s a m ass storage device that holds millions of characters called bytes. A file
syste m is a physical partit ion of a disk. It treats the physical area of a disk as a series
of blocks (each block equals 1 , 0 2 4 bytes) and imposes a logical organization upon the m.
A f i le syste m stores data as efficiently as i t can, then finds i t as quickly as possible
when you want to use it.

Log ica l F i l es

Logically, a file is a series of bytes, as illustrated in Figure 2-18 .

MEMO

TO
FROM
DATE
S U BJ ECT

Tea m
Mary
M ay 1 5
Revi sed Sched u l es

Pl ease g i ve m e you r revi sed sched u l es by Fr iday.

Figure 2-18 . Sa mple File

Not ice that the file has nothing but the text of a me mo. It does not even have the file
name. You see it here as one cont inuous series of charact ers, but parts of a large file
are in different blocks on the d isk.

It is the file syste m that makes the connect ion between the logical file that you create
and the physical blocks that it occupies on the disk.

2-20

XENIX 2 86 Overview Files and F ile Syste ms

F ind i n g the Physica l Locat ion of Fi le Data

The file syste m keeps several pieces of inform at ion that the kernel needs to find a file
on the disk:

• The name. You ident ify a file by nam e when you want to use it.

• The directory. When you give a file name, the kernel searches the directories
listed in your search path until it finds the file name. Along with the file name,
the d irectory has the inode nu m ber that the kernel has assigned to identify the
f ile.

• The inode list. The kernel uses the inode nu m ber in the directory to find the inode
nu mber in the inode l ist, which has all of the inode nu mbers in the file system. For
each inode, an index entry gives this inform ation about the file:

• F ile type. This ident ifies the file as an ordi nary file, a directory, a special
file, a semaphore, or a named pipe. (Se m aphores and named pipes are
d iscussed in the XENIX 286 C Library Guide.)

• P er m issions. This ident ifies read, write, execute, and set UID and GID
perm issions.

• O wner. This gives the UID of the owner of the file.

• Group. This gives the GID of the group the file belongs to.

• Nu m ber of links. This identifies the nu mber of t imes the file is listed in
directories.

• F ile size in bytes.

• D ate the file was created.

• D ate the file was last read.

• D ate the file was last modified.

• Location of the file on the disk. This entry lists up to 1 3 blocks. The first
ten blocks of the file are listed here. Three addit ional entries give the
addresses of the blocks that tell where the rest of the file is located. For
example, if the file has more than ten blocks, an entry points to a block that
lists the next 1 2 8 blocks of the file. These blocks that point to other blocks
are called indirect blocks.

Figure 2- 19 illustrates how the kernel uses the file nam e, directory, and in ode list to
f ind file data when Mary goes into her "me mos" directory and asks to print "team.5 . 1 5".
The kernel finds the name of the file in the directory, uses the inode nu m ber to find the
file on the inode list, then uses the locat ion in the inode l ist to find the file on the disk.

2-2 1

Files and Fi le Systems

memos Di rectory

A
50 1 tea m. 5 . 1 5

520 team .5 .20

XENIX 286 Overview

l node L i st D i sk

500 B l ock 2443

50 1 B i ock 2446 � B l ock 2444

502 � B l ock 2445

503 B l ock 2446

F-03 1 5
Figure 2 - 1 9. Logical F iles and Physical Locat ions

2-22

XENIX 286 Overview F iles and F ile Syste ms

Th e Str u ct u re of a F i l e System

A file syste m i s a part it ion of a disk. Each Winchester disk sold b y Intel has o n e root
file syste m . If it has 20 megabytes or more, it also has a separate user file syste m for
all user files. Very large disks may have even more file syste ms. If the disk has fewer
than 2 0 megabytes, there is only one file system, the root file syste m , and the user files
are part of it.

Figure 2-2 0 illustrates the root file syste m and user file syste m as part it ions of a
40-megabyte Winchester disk.

Root F i l e Swa p User F i l e
Syste m Area System

L B oot
Tra ck

Bad
T k rae l
D ata

Alte r n ate
T ra c k s

D i a g nost i c J
Track

F-03 1 6
Figure 2-2 0 . The Structure of a 40-Megabyte Winchester D isk

Boot Track

Root F ile Syste m

Swap Area

User F ile Syste m

Alternate Tracks

Bad Track Data

Diagnost ic Track

The boot track has a program that loads the XENIX kernel into
me mory when the syste m ad ministrator starts the co mputer.

The root f ile syste m is the first file syste m on the disk.

By convent ion, the swap area follows the root file syste m. It is
the area where processes can be placed while they wait for their
turn to execute.

A disk with more than 20 megabytes has a separate user file
system.

If a regular disk track is bad, an alternate is assigned.

If test ing shows that a track is marginal, it is l isted here as a bad
track. During disk form att ing, the bad track infor mat ion is read
and alternate tracks are assigned.

.This is used for hard ware diagnost ics.

2-23

F iles and File Systems XENIX 286 Overview

A f i le syste m is m ade up of a super block and a series of cylinder groups. These cylinder
groups are m ade up of a cylinder group block, inodes, and data. The nu mber of cylinder
groups depends on the size of the disk and the needs of the installat ion. You may check
the XENIX 286 Installation and Configuration Guide for details.

F igure 2-2 1 illustrates the structure of a file syste m.

S u p e r
- B lock

Cy l i n d e r
� G r o u p

B lo c k

I n o d e

List

Super Block

Data

Cyl i nd er
G roup

Cylinder Group Block

Inode L ist

Data

2-24

Cyl i n d e r

..-- G ro u p
B lo c k

I

I node

L ist
Data

Cyl i nder
G roup

"

. . .

M ore Cyl i nder
G roups (opti ona l)

Figure 2-2 1 . The Structure of a F ile Syste m

)

F-03 1 7

The f irst block o f a file system i s the super block. I t gives the
locat ion of each cylinder group.

The cylinder group block gives the location of the inode blocks
and data blocks in the group. It includes a bit map that shows
which data blocks have been allocated and which ones have not.

The inode list has informat ion for each file.

The data area is used for files.

XENIX 286 Overview Files and File Syste ms

Cyl i n d e r G ro u p s

Cylinder groups have been introduced to enhance the perfor mance of the operat ing
syste m. How they work is not d iscussed in detail here because nor m ally only the person
who installs the syst e m is aware of the m. One of XENIX's assets is that most users do
not have to be aware of the physical organization of data.

What is i mportant to most users is that the kernel spends less t ime looking for file data
when the f i le syste m is divided into cylinder groups. This is because

• The inodes are closer to the data; less disk head m ove ment is required, so it takes
less t i m e to access data after the inode is located.

• As much as possible, contiguous blocks are used for files. It is faster to access
blocks that are together than blocks that are scattered over the d isk.

F i l e A l l ocat ion

Each cylinder group block has a bit map that shows whether the data blocks in the
cyl inder group have been allocated to a file. The map is a series of bits, one for each
block. If the block has been allocated, the bit is set to 0. If the block is free, the bit is
set to 1 .

In earlier vers ions of the file syste m , a free list of blocks was used instead o f a b i t map.
When a block was needed, the first block on the list was allocated. When a block was no
longer used, it went to the top of the free list. The result was that the list of free
blocks became random eventually. It was unlikely that files would have cont iguous
blocks because only one block was allocated at a t i me and the blocks were not in order
on the free list.

W ith the bit map, blocks are always listed in order and the kernel can more often find
contiguous blocks for a file. This leads to more consistent perfor mance over t i m e.

Th e Root F i l e Syste m a n d the Root D i re cto ry

The root file syste m is not the same as the root directory. The root file syste m is a
physical partition of the disk. It is created by the syst e m ad m inistrator during
installat ion, and it usually includes all of the syste m directories.

The root directory is the parent of all files. This means that even files in other file
syste ms have to have a path back to root to be used. For example, if you have a 40-
megabyte W inchester disk, you have two file syste ms, root and user, which occupy two
separate part itions of the disk. The user file syst e m has to be attached to some e mpty
directory on root's hierarchy of directories before you can work with files in its file
syste m. Attaching file systems is called mounting the m and it is nor mally done when
the syste m ad ministrator starts the system.

2-2 5

Prog ra ms a n d Processes

CHAPT E R 3

R U NNI NG P R OG RAMS

Programs and processes are t wo i mport ant concepts in XENIX. You use the computer to
run programs, and the co mputer runs the m by start ing processes. Running a program i s
a m atter of starting a process, but a process and a program are not the same. For
example, if four users execute the Is co m mand, only one copy of the program is used,
but four different processes begin.

Pro g ra ms

Programs are instruct i ons that perform so m e function. They f all i nt o several
categories:

• XENIX co m mands. M ost XENIX co m mands are executable programs.

• Shell progra m s. A shell is a XENIX co m m and int erpret er. I t i s also a
program m ing language with variables, argu m ents, condit ional stat e m ents, case
statements, for state ments, while statements, and co m m ents. You m ay write
shell progra m s that use both XENIX co m m ands and features of the shell
program m ing language. These programs are called shell scripts.

• Source programs. A source program is a set of instruct ions that so m eone has
written in a high-level language such as C.

• O bj ect programs. An object program is a source program that has been compiled
and is ready to be executed.

Executable programs are usually stored in the /bin directory, the /usr/bin directory, the
/etc directory, or a user's directory. Several different users may execute the same
program at the same t i m e. For efficiency, only one copy of the program is brought into
me mory to be executed.

Processes

Processes are programs being executed. Each time a program is executed, a process
begins. It is unique and is identified by a nu mber called a PID {process ID). L ike
directories, processes are organized into hierarchies. The f irst �process (PID 1) begins
when the system ad m inistrator starts the syste m, and all processes descend fro m
process 1 in parent-child relat ionships. For example, when process 1 starts process 2 ,
process 1 is the parent and process 2 is the child.

3-1

Running Programs XENIX 2 86 O verview

A new process begins as a result of a fork syste m call, which starts a child process and
continues to let the parent process run. The child process inherits all of the open files
of the parent but is separate fro m the parent and has its own PID. The parent process
either waits unt i l the child process ends, or the parent continues to run while the child is
running.

A process can replace one running program w ith another and take its P ID if an exec
syste m call is given. An exec is used when one program is finished and will not be
needed again.

Figure 3-1 illustrates the hierarchical structure of processes and the d ifference between
an exec and a fork.

EXEC FORK

P I D = 1 50 PI D = 250
Before Pa rent P I D = 1 00 Pa rent P I D = 200

- - - - - - - - - - - - - -

After
P I D = 1 50
Pa rent P I D = 1 00

P I D = 280
Parent P ID = 2 50

P I D = 250
Parent P I D = 200

F-03 1 8
F igure 3 - 1 . Using exec and fork Syste m Calls

The kernel keeps track of all processes in a process table and a user table. The num ber
of processes that can run at one t ime depends on the size of the tables, and the size is
defined by the syst e m ad m inistrator during configurat ion.

3-2

XENIX 286 Overview Running Programs

What H a p p e n s D u r i n g Syste m Sta rtu p

The syste m ad m inistrator starts the syste m by turning on the hardware and loading the
XENIX kernel. The kernel starts a program called init, which runs as process 1. Process
1 is at the top of the process hierarchy and it runs as long as the syste m is up. All
processes are its descendants.

The syste m ad m inistrator usually brings the syste m up in s ingle-user mode, does syst em
maintenance, then puts the syste m in multiuser mode. Several processes need to be
started before users are allowed on the syste m.

F irst, a shell script called /etc/rc is executed. This script contains co m m ands to

• Mount file syst e ms on the root directory tree.

• Clear t e mporary files.

• Start dae mons. (Dae mons are programs that run cont inuously. For example, lpd is
a dae m on for the line printer. It is always ready for a print co m mand. Another
dae m on, cron, checks the com mands in the /etc/crontab file and execut es the m at
the assigned t i m e.)

Next, the kernel checks the /etc/ttys file. This f i le has a l ist of ter m i nals with these
seven characters that describe each term inal:

• One character that tells whether the term inal is enabled { 1 for enabled, 0 for
disabled).

• One character that gives the term inal's baud rate to a program called getty.

• Five characters that give the term inal name in the /dev directory (for example,
ttyal, ttya2).

A getty process is started for each enabled term inal. Once getty has init ialized the
terminal characteristics and determ ined the correct baud rate (the rate at which
characters are trans m itted), the getty process replaces itself with a login process. This
is an example of an exec. The getty process is no longer needed, so it is replaced by the
login process. This m eans that if the getty process had PID 5 in the process t able, the
login process takes its place and has PID 5. The result is a login process for each
enabled ter m inal. When a user logs in, login execs a shell to accept com mands. Fro m
this point on, the shell i s responsible for executing com mands.

3-3

Running Programs XENIX 2 86 Overview

H ow Yo u G a i n Access to t h e System

You cannot do anything unt il the system ad ministrator has created an account for you
on the syste m. The syste m ad m inistrator uses a co m mand called mkuser, which pro mpts
for informat ion about the account, places information in the etc/passwd file and the
/etc/group file, and creates a ho me directory and files that you will need.

The /etclpa sswd F i l e

The /etc/passwd file controls t h e login procedure that you must co mplete to gain access
to the computer. The /etc/passwd file has this inform at ion:

• A login name. This is the name that you will type when you want to log on the
syst e m. On m any syste ms, it is your f irst name in lowercase letters.

• Your password in encrypted form . The syste m ad m inistrator assigns a password
when you are added to the syste m, but you may change it at any t ime with the
passwd co m mand.

• A unique user ID nu m ber (UID). This nu mber ident ifies you in the syste m . UIDs
for regular users start w ith 2 0 0 . Nu m ber 0 is reserved for root. Numbers 1-199
are reserved for special "users" who own syste m files. Examples are bin and cron.

• A group ID nu m ber (GID). If people at your installat ion need to share certain f iles,
the syste m adm inistrator may define groups. You can be a m e m ber of several
groups, but you can work in only one group at a t i m e. This nu mber identifies the
group you are in when you log on.

• A com ment that can be used for reference information. The finger com m and that
displays informat ion about users expects this field to have a user's full name,
office, phone extension, and home phone nu mber. It is not necessary to include all
of these pieces of informat ion, but if you do, separate the m with co m m as, as
shown in Figure 3-2. Another name for this field is GCOS. (The init ials have
historical significance only.)

• The name of your login directory. The login directory becomes your working
directory i m mediately after login.

• Your login shell. Your login shell is the com mand interpreter you use. It can be
the Bourne shell, the C shell, the restricted shell, or the visual shell. It can even
be a specif ic program. For example, if you use the syst e m only for word
processing, the word process ing program can be listed as your login shell so you
w ill go into it i m mediately after login. If no shell is specified, the Bourne shell is
used.

E ach piece of infor mation in the /etc/passwd file is separated by a colon. Figure 3-2
shows a sample entry from the file.

3-4

XENIX 2 8 6 Overview Running Programs

m a ry : j 9 H z 1 FzBYSOVw : 2 0 1 : 200 : M Day, Rm 2 1 0 ,x5006, 273-5543 : /usr/m ary:/b i n/sh

'--v-' '--y--A--y-' '---v----' '-yJ

� t Us:r G:o u p t t t
Log i n
Name

E ncrypted
Password

I D I D
(U I D) (G I D)

Com ment
(GCOS)

Log i n
D i rectory

Figure 3-2. Sample Entry in the /etc/passwd File

W h a t H a p p e n s D u ri n g Lo g i n

Log i n
She l l

F - 0 3 1 9

Logging in is the procedure that you follow to gain access to the computer. It involves
typing a login name and giving a password.

You can log in when you see this pro mpt on the screen:

l og i n :

You type the login na me that the syste m ad ministrator has given you. The screen
displays a prom pt for the password, and you have about one m inute to give your
password. The login process checks the /etc/passwd file for your login name, encrypts
the password you typed, and compares it to the encrypted password in the file.

If there is m ail in your mail box, you are not ified that you have mail when you log in.

The Log i n S h e l l

If your login n a m e and password are valid, the login process moves you t o your login
directory and uses an exec to start your login shell. Since an exec is used, the shell has
the same PID that your login process had.

At the same t i m e, the name of the login directory is stored 1n a variable called HOME.
Variables have values that vary fro m user to user. So me variable names, like HOME,
are predefined and are always entirely in capital letters. Later in this chapter, some
variables w ill be discussed in more detail.

The login shell cont inues to run until you log off by pressing the CONTROL key and the
D key at the same ti me. This key com bination is referred to as CONTROL-D.

The following d iscussion of the login shell is based upon the Bourne shell, which is
referred to s imply as the shell. The C shell, restricted shell, and visual shell d iffer in
some ways and are described later in this chapter.

3-5

Running Program s XENIX 286 Overview

The Standard Input, Output, and Error Files

When the login shell is started, several things happen internally. The terminal is opened
as the standard input file, the standard output file, and the standard error file. This
m eans that all input will come fro m the ter m inal, all output will be displayed on the
terminal, and all error messages will be displayed on the terminal unless you specifically
open other files for the m. In XENIX, each open file has a nu m ber, called a file
descriptor, assoc iated with it. The standard input is opened w ith file descriptor 0 , the
standard output is opened with file descriptor 1, and the standard error is opened with
file descriptor 2 .

Default Variables Set by the Login Shell

The shell is a program that you use to execute co m m ands. It stores several pieces of
information that it needs in variables. The HOME variable, for example is defined at
login so that the shell will know your login d irectory. Other variables are given default
values when the login shell starts. A variable is always defined by giving the name of
the variable, an equal sign, and the value of the variable.

The variables set by the login shell and their values are defined below:

• PATH. When you give a com m and, the shell searches through the d irectories
named by the PATH variable unt il it f inds the program to be executed. You define
a variable by giving its name, an equal sign, and its value. The default search path
is

PATH =lbi n :/usr/b i n : $HOME/bi n : .

The d irectories are separated by colons, so the search path is through the /bin
directory, then the /usr/bin directory, then the /bin directory in your ho m e
directory (this /bin directory i s opt ional) , then your working d irectory (.) .
Programs for com mands that most users can execute are usually stored in one of
these directories.

Notice the $HOME/bin directory in the path. When the nam e of a variable begins
with a dollar sign, it means to use the value of the variable. $HOME m eans to use
the value of the HOME variable. I m agine that

HOM E =/usr/mary

In this case, the directory is "/usr/ mary/bin".

• PSI. PSI stands for pro mpt string 1 , which is the main pro mpt that the shell
displays when it is ready to accept co m m ands. The default is

3-6

PS 1 = I I $ I I

The pro mpt is shown in quotes here because it includes a space. When the pro mpt
itself appears on the screen, it is a dollar sign followed by a blank space. If you
want some other pro mpt, you redefine the variable. For example, if you want to
be pro mpted with "Ready ", you use this definition:

PS 1 = I I Ready
I I

XENIX 286 Overview Running Programs

• PS2. PS2 stands for pro mpt string 2 , which is the pro mpt that the shell displays if
you need to give more infor mat ion. The default is

P52 = " > II

• IFS. IFS stands for internal field separators, which the shell recognizes as
characters that separate fields. The defaults are a space, a tab, and a newline
character.

You should use this variable only if you are doing shell program m ing.

The .profile Files

A fter the shell has set default variables, it reads the /etc/profile file, which has
i nformation that applies to all users, then reads the .profile file in your login directory,
which has inform at ion that applies only to you. The informat ion in your .profile file is
usually a co mbinat ion of co m mands and definit ions of variables that your login shell
needs each t ime it starts. It is placed in your login directory when the syst e m
ad m inistrator adds you to the system, and you may change the infor mat ion i n the file at
any t i me. Sample entries in the .profile file are shown in Figure 3-3.

PATH = lb i n :/usr/b i n : .
TERM CAP = /etc/term cap
TERM = h8020e
MAI L = /usr/spool/m a i l/ ' l ogname
export TERMCAP TERM PATH MAI L

Figure 3-3. Sample .profile File

I n Figure 3-3, the PATH variable is be ing redefined. The new value replaces the default
value that the shell had set.

Three other variables are usually defined in your .profile file:

• TERMCAP ident ifies the file that has descript ions of ter m inals. The default is
/etc/termcap, and the variable is rarely redefined.

• TERM identifies the ter minal by a short code name. For example, h8 0 2 0 e is the
name for the Hazeltine Executive model 2 0 .

• MAIL ident ifies the file that keeps your mail. When ' logna m e ' is used as the last
part of the path name, it m eans to use the result of the logname co m m and. If it
were "mary", the mail box would be the "/usr/spool/mail/mary" file.

You use the .profile file for co m m ands that you want to execute at login as well as
variables that you want to define. The most co m m on co m mand in this f ile is the export
com man d. It is included so that the variables that are named will be defined in any new
shells that the login shell starts. W ithout the export com mand, the variables would be
defined only in the login shell.

3-7

Running Programs XE NIX 286 O verview

Execut i n g C o m ma nds with th e S h e l l

When the shell i s ready for com m ands, the shell pro mpt appears o n the screen. This i s a
dollar sign unless you have changed the PSl variable. When you give com mands, the
shell interprets the m and forks a new process to execute each one. The general term
for a program that does these things is a com mand interpreter. Som e operat ing syst e ms
have only one co m m and interpreter because it is in the kernel. XENIX has several
different co m m and interpreters to provide maxi m u m flexibility. Each one is a C
program that can be changed or replaced with another C program.

Execut ing S imple Comma n d s

At the shell pro mpt, you can type a co m m and and press the RETURN k>ey. For example,
i f you want to see who is on the system, you can use this com mand:

$ who

This sequence of events follows:

• The shell interprets the co m m and line.

• The shell searches for an executable program w ith the sam e na m e as the
co m m and. It looks in each directory listed in the search path defined by the PATH
variable. I magine that this is the search path:

/bi n :/usr/bi n : ma ry/bi n : .

The shell searches the /bin directory for the who program and f inds it there. (If
/bin had not been in the search path, the program could not have been found with
who alone; the full path name, /bin/who, would have been required.)

• The shell forks a child process for the who process and waits.

• The child attempts to exec (load) the /bin/who program.

• The kernel finds these per m issions on the /bin/who file:

rwx--x--x

Mary belongs to the category of others, so she has execute perm ission.

• The kernel executes the /bin/who program and the output is displayed on the
term inal. This sample d isplay lists the users who are logged on and identifies their
terminals and login t imes:

mary
j ack

ttya 1
ttya2

J u l 1 2 1 0 : 1 5
J u l 1 2 1 1 : 03

• The kernel signals to the shell that the child process has finished execut ing the
/bin/who program.

• The shell wakes up and pro mpts for the next co m mand.

3-8

XENIX 286 Overview Running Programs

U s i n g O pti o n s

Many com mands have opt ions. F o r example, the ls com mand can be used w ith o r without
opt ions. If you use it as a si mple c o m m and, the contents of your working d irectory are
displayed. For example, Is would produce this alphabetical list of files in M ary's
" m e mos" directory:

$ Is
team . 5 . 1 5
tea m . 5 . 20
$

The ls co m mand has several opt ions. The -I option, for example, gives this infor mation
about f iles: the per m issions, nu mber of links, owner, group, size in bytes, and t i m e of
last modification. When you use options, you give the m after the co m mand name. For
example:

$ Is - 1
tota l 2
-rw- r--r--
-rw- r-- r--
$

m a ry
m a ry

200
200

The total refers to the num ber of blocks.

59 May 1 5 1 0 : 1 5 team . 5 . 1 5
30 May 20 1 0 : 1 5 tea m . 5 .20

Another opt ion, -s, shows the nu m ber of blocks for each file:

$ I s -s
1 tea m . 5. 1 5
1 tea m . 5 .20
$

When a co m mand has several opt ions, you can often use more than one at a t i me. For
example, this command uses two opt ions, -I and -s:

$ I s - Is
tota l 2
1 - rw- r-- r--
1 - rw- r--r--
$

Using Arg u ments

mary
mary

200
200

59 May 1 5 1 0 : 1 5 team . 5 . 1 5
30 May 20 1 0 : 1 5 tea m . 5 . 2 0

With so me co m mands, you name the files or directories to be used. These files or
directories are called argu m ents to the co m mand and they appear on the co m mand line
after any options.

This is an example of the Is co m m and with the " me mos" d irectory as an argu m ent:

$ I s memos
tea m . 5 . 1 5
tea m . 5 . 20
$

3 -9

Running Progra ms XENIX 286 Overview

This is an example of the ls co m mand with an opt ion and an argu ment:

$ I s -s memos
tota l 2
1 tea m . S . 1 5
1 tea m . 5 . 20
$

U si n g M eta ch a ra cte rs

Before the shell sends co m mands, opt ions, and argu m ents to a program to be executed,
it interprets the m, paying special attention to special characters called metacharacters
or wildcards. These characters are described in Figure 3-4.

? M atches any one character

* M atches any stri ng of cha racters

[] Defi nes a set of cha racters

Defi nes a ra nge of cha racte rs with i n a set

Negates a set of characters

Figure 3-4. Shell M etacharacters

The shell interprets these characters, generates complete file names, and sorts the m
alphabetically before it sends the argu ments to the program being executed. The
significance of this is that you can give files names that w ill let you take advantage of
metacharacters.

·

The ? Metacharacter

The ? metacharacter matches any one character. For example, suppose that you are
writing a book with five chapt ers. If you follow a pattern in nam ing files, such as
"chap l", "chap2", "chap3", "chap4", and "chap5", you can use the ? metacharacter when
you want to print all five chapters:

$ 1 pr chap?

The shell interprets the co m mand and generates co mplete file names before sending the
arguments to the program, so the program never sees the metacharacters. It always
rece ives complete argu ments. In this example, the shell generates these file names and
sends the m to the lpr progra m:

chap 1 chap2 chap3 chap4 chapS

3-10

XENIX 286 Overview Running Progra ms

The * Metacharacter

The * metacharacter matches any string of characters. For example, this co m mand
displays the contents of all of the files whose names begin with " me mo" and end with
any series of characters:

$ cat memo*

The [and 1 Metacharacters

The [and] metacharacters define a set of characters. For example, this co m m and
prints "chap l " , "chap4", and "chap5":

$ 1 pr chap[1 45]

The co m m and does not print "chap2 " or ".chap3" because they are not identified in the
set.

The - Metacharacter

The - metacharacter defines a range of characters. For example, this command prints
"chapl", "chap2", "chap3", and "chap4":

$ l pr chap [1 -4]

The ! Metacharacter

The ! metacharacter defines the characters that are not included in a set. For example,
you can use this com m and to print all chapters except 1-4:

$ l pr chap [! 1 -4]

Red i recti n g I n p u t a n d O u tp u t

All o f the programs that you run assu m e that the input i s com ing fro m the standard
input and that the output is going to the standard output, so they do not have to be
concerned w ith input and output devices. If you want to take input from so me source
other than the t erminal or send it to so me other dest inat ion, you can have the shell
redirect input or output.

For example, if you use the Is co m m and to print a list of files, the list appears on the
terminal. If you want to place the list in a file, you use an output redirection sy mbol (>)
to have the shell redirect it. This co m m and places the list in a file called "list":

$ Is > l i st

If the file does not exist, it is created. If the file does exist, the new contents overwrite
it unless you use > > to add to the end of the file instead. For example, this com mand
adds the output of the ls co mmand to the end of the "list" file:

$ Is > > l i st

3 - 1 1

Running Program s XENIX 286 Overview

Input can also be redirected. The shell expects input to come fro m the terminal, but
you can use the input redirection sy m bol (<) to bring input fro m som e other source. For
exam ple, when you use the mail co m mand, the input (message) norm ally comes fro m the
term inal. If you want to send a message to Jack, for example, you use the mail
com mand w ith Jack's login name as an argu ment, then begin typing the message on the
next line. After you have completed the message, you go to a new line and press
CONTROL-D. This is an example:

$ mai l jack
Please send your draft proposal to Mark.
CONTROL-0

The mail co m mand also takes input fro m a file if you use input redirection. For
example, Jack can send his "proposal" file to Mark by giving this co m mand:

$ ma i l mark < proposa l

Pipes

You often need to perform more than one operat ion on data. For example, you m ay
want to get data, then sort it. You can do this most effic iently with a pipe, which is a
tool that connects the standard output of one co m mand to the standard input of another
co m mand. The sy mbol for a pipe is 1 .

Suppose that you want an alphabetical list o f users who are o n the system. The who
co m mand supplies a list of users who are logged on, but it lists the m by ter m inal,
beginning w ith the console, which is the syste m ad m inistrator's terminal. For example:

$ who
sarah
j ack
mary

consol e
tty 1
tty2

J u ne 29 09 : 2 5
J u ne 29 1 0 : 1 5
J u ne 29 1 1 : 45

I f you use a pipe, you can write one com mand line that sends the output of the who
co m m and to the sort co m m and and displays the sorted, alphabetical list on the ter minal.
For example:

$ who I sort
j ack
mary
sarah

tty 1
tty2
conso le

J u ne 29 1 0 : 1 5
J u n e 29 1 1 : 45
J u ne 29 09 : 2 5

I f you want to print the alphabet ical list on a printer, you can add another pipe:

$ who I sort l l pr

In this case, the list does not appear on the terminal. It goes d irectly to the printer.

3 - 1 2

XENIX 286 Overview Running Progra ms

W ith pipes, you need fewer co m mand lines because you do not have to create temporary
files and move data fro m one file to another. This series of com m ands illustrates the
steps you would have to co mplete to print an alphabetical list of logins if you did not use
pipes:

$ who > log i ns
$ sort log ins > pri ntl og i ns
$ 1 pr pri ntlog i ns

The list of users logged on is redirected to the "logins" file, then the contents of the
"logins" file are sorted and redirected to the "printlogins" file, then the "printlogins" file
is printed. The sort co m mand does not change the contents of the "logins" file itself. It
just takes those contents and sorts the m for the standard output. In this case, the
output is redirected to another file.

F i l te rs

Som e co m mands take data fro m the standard input, use or change the data, and display
the result on the standard output . These co m mands are called filters and they are often
used w ith p ipes.

Suppose that you want to co mbine and sort two l ists of names and phone nu m bers. The
eas iest way is to use pipes and filters. The first list, "list l", has these lines:

Mary 445 1
Jack 4452
Sharon 4563
Mark 544 1

The second list, "list2", has these lines:

Dan 7787
Jan 7733
Kent 6765

The cat co m mand joins files and the sort com mand sorts them. This co m m and line
co m bines the lines of "list l" and "list2", sorts the m, and displays the output on the
term inal:

$ cat l i st1 l i st2 1 sort
Dan 7787
Jack 4452
Jan 7733
Kent 6765
Mark 544 1
Mary 445 1
Sharon 4563

The input files, "list l" and "list2", are unchanged.

Figure 3-5 l ists the f ilt ers used most.

3- 1 3

Running Programs

awk

dd

grep , egrep , fgrep

head

n l

sed

sort

ta i l

tr

un iq

we

3 - 1 4

XENIX 2 86 Overview

change I i nes that match patterns

convert a nd copy a fi l e (to process other systems' data)

sel ect l i nes that m atch or rej ect patterns

pr i nt the fi rst few l i nes of a fi l e

add l i ne n u m bers to a fi l e

ed it a fi l e accord i ng t o a scri pt o f com mands

sort a fi l e

pr i nt t h e l ast part o f a fi l e

copy a nd transl ate characters

remove repeated l i nes from a fi l e

cou nt the l i nes, words, and characters i n a fi l e

Figure 3 - 5 . Com mon F ilters

XENIX 286 Overview Running Programs

X E N I X S h e l ls

This chapter has explained how the standard Bourne shell interprets your com mands and
passes information to the programs you want to execute. The Bourne shell is powerful
and works well for many users. The Bourne shell is supple mented by the restricted shell,
visual shell, and C shell for this release so you can choose the command interpreter that
works best for you. Addit ional shells are available fro m other sources.

B o u rn e S h e l l

The shell that has been discussed in this chapter i s the standard Bourne shell (named
after its creator, S. R. Bourne). Its program name is sh and its standard pro mpt is a
dollar sign ($). The Bourne shell is able to redirect input and output, int erpret
metacharacters, use pipes with filters, use variables, and serve as a progra m m ing
language.

Restricted S h e l l

The restricted shell is a subset of the Bourne shell. Its program nam e is rsh. If your use
of the syste m is l im ited, the syste m adm inistrator may give you this shell and define the
co m mands you can execute. The restricted shell has the features of the Bourne shell,
but it does not allow you to change directories with the cd com mand, define your own
search path, use any co m mand names that have slashes (typically co m m ands in the /etc
directory, which are reserved for the syste m ad ministrator), or redirect output.

Visu a l S h e l l

The visual shell i s a menu that l ists the most co m mon com mands plus the application
programs your installation uses. Its program name is vsh and it is s i milar to the user
interface for M icrosoft's Multiplan software. The syste m ad m inistrator m ay give you a
visual shell if you spend most of your t ime running applicat ion software.

C S h e l l

The C shell is a variation of the Bourne shell developed at the University of California
at Berkeley. Its program name is csh and its standard pro mpt is a percent s ign (%). The
name is C shell because it has features in com mon with the C program m ing language.
L ike the Bourne shell, the C shell is able to redirect input and output, interpret
metacharacters, use pipes with f ilters, and use variables. It also has these features:

• A history function that keeps a list of co m mands you have used recently (you
define the nu m ber to be kept) so that you can reuse the m without retyping the m

• Ability to process arrays

• An alias function that you can use to change co m mand names and create new
com mands

3 - 1 5

Tools fo r Text Processi n g

CHAPT E R 4

T E XT P ROCE S S I NG

XENIX has a full set of tools for working with text files. This is partly because
docu ment product ion programs were among the first tools developed for the U NIX
system and partly because program m ers and writers use many of the same tools. XENIX
offers assistance at each of these stages of a typical writing proj ect: create a draft,
check it, revise it, and produce a final version. You need the Extended Syste m to check
a docu ment and format it w ith standard options such as centering and belding.

Too l s fo r C reati n g a D raft D ocu ment

First you type a draft docu m ent w ith a text editor. The vi editor is a popular choice
because you can work with an entire screen of material at a t i m e when you use it, but
you can also use the ed or ex l ine editor and work with one line or a series of lines at a
t i me.

The text you type is a series of l ines without paragraph divisions, centering, or other
features of a finished docu m ent. As you type the lines, or at so me t i m e before
producing the final version, you put for matting instructions in the docu m ent. These
instruct ions are codes that tell how to treat text. For example, there are codes for
centering, for start ing paragraphs, for belding words, and for creat ing lists.

The different code types are

• nroff/troff codes. The term nroff stands for new runoff, which refers to printing
on a printer, and troff stands for typeset runoff. E ach nroff/troff code
accomplishes one specific thing, such as just ifying a line, printing a page header,
print ing mult iple colu m ns, nu mbering colu m ns, sett ing the line length, or indent ing
a line. The nroff codes format text for a printer and the troff codes for m at text
for a phototypesetter. The basic nroff and troff codes are the same, but troff has
so me extra options, such as proport ional spacing, d ifferent fonts (including ro man,
italic, and bold), Greek and mathe m at ical characters, and d ifferent type s izes.

Each nroff/troff code begins with a dot and has lowercase letters. It goes on the
line above the text to be for matted.

• m m m acros. A macro represents a series of nroff or troff instruct ions that
acco mplishes so me routine function such as starting a paragraph or creat ing a list.
With the mm macros in the Extended Syste m you can prepare letters, me m os, and
other office docu ments. You can also create your own m acros.

4- 1

Text Processing XENIX 286 Overview

• eqn/neqn codes. You use eqn/neqn codes for mathe matical equat ions. The eqn
progra m int erprets the codes for a phot otypesetter and the neqn program
interprets the m for a printer.

• tbl codes. You use tbl codes for tables.

The following f igures illustrate nroff/troff codes and mm macros. F igure 4-1 illustrates
an nroff/troff code and Figure 4-2 illustrates the formatted line. F i gure 4-3 illustrates
how mm macros can be used to produce a list w ith bullets and F i gure 4-4 shows the
result ing list. Notice that the macros begin w ith a dot and are capitalized. The .BL
macro stands for bullets, the . LI macro marks each l ist item, and the .LE macro marks
the end of the list •

. ce
This sentence w i l l be centered .

4-2

. B L

. L I
Thi s i s the fi rst i tem .

. L I
Th i s i s the second i tem .
. LE

Figure 4-1. Sample nroff/troff Code

This sentence wi l l be centered .

Figure 4-2 . Sample For m atted L ine

Figure 4-3 . Sample Use of Macros

• Thi s i s the f i rst i tem .

• Th is i s the second item .

Figure 4-4 . Sample Form atted List

XENIX 286 Overview Text Processing

Too l s for Checki n g a D ra ft Docu ment

After you have created a docu ment, you can check it w ith several different XENIX
co m m ands. The spell co m m and, for example, checks a docu ment for spelling errors,
the diction com mand checks language usage, and the explain co m mand reco m m ends
alternate phrasing to i mprove your style.

Too l s fo r Revi s i n g a D ocu ment

Since your docu m ent is stored on a disk, you can use a text editor such as vi to bring it
into a work area, called a buffer, and change it. For example, you may add words,
delete words, change words, or move text fro m one place to another. When you are
f inished, you save the docu m ent on the d isk again.

Other commands, such as cut and paste, are useful if you want to m ove colu m ns of text
and the awk com mand is nice if you want to replace one word or phrase with another.
The awk co mmand is one whose name gives no clue to its funct ion. It was named after
the program mers who created it. Their last init ials were a, w, and k.

In some cases, you m ay decide to use the sed stream editor to run an entire series of
c o m mands on a docu m ent.

Tool s fo r Prod u ci n g the Fi n a l Ve rs ion

In this step, the instruct ions in the text are used to for mat a docum ent. When you are
ready to print a docu m ent on a printer, you use the m m co m m and (or the nroff -mm
com mand) and redirect the output to another file or p ipe it directly to a printer. The
m m command auto matically executes the nroff co m mand. For example, either of these
c o m m and l ines causes the "a.jones" file to be formatted and printed on the line printer:

$ mm a.jones l l pr
$ nroff -mm a .jones l l pr

When you are ready to print a docu ment on a phototypesetter, you use the m mt
c o m mand (or the troff - m m co m mand). For exa mple, either of these co m m and lines
causes the "a.jones" file to be formatted and printed on a phototypesetter:

$ mmt a .jones
$ troff -mm a .jones

I f you have used tbl, neqn, or eqn codes in a docu ment, you include tbl, neqn, and eqn
c o m mands in the co m mand l ine. The tbl co m mand formats tables, and the eqn co m mand
for m ats mathe mat ical equations with special sy mbols for a phototypesetter. The neqn
c o m mand for mats m athe mat ical equat ions for a printer. These co m m ands are often
called preprocessors because you for mat tables and equat ions before form atting the rest
of the docu ment. This sample com mand line formats a report with tables and equations
and prints the report on a printer:

$ tbl math report I neqn I n roff I I pr

4-3

Text Processing XENIX 286 Overview

S u mmary

F igure 4-5 su m m arizes the phases of a docu ment production project and shows so me of
the tools you can use.

Phase

F i rst d raft

Check i ng

Revi s ions

F ina l vers ion

4-4

Too l s

ed , ex , v i

d i ct ion
eqncheck
expla i n
hyphen
m mcheck
spe l l
sty le
we

ed , ex , v i
awk
sed
cut
paste

eqn
mm
neqn
nroff
troff
tbl
l pr
mmt

Pu rpose

Type a docu ment

Check l anguage usage
Check i nstructi ons for equat ions
Prov ide a l ternati ve ph ras i ng
F i nd hyphenated words
Check use of mm macros
Check spel l i ng
Ana lyze sty le
Cou nt characters, words , I i nes

Ed it a document
Search for patterns a nd replace them
Ru n a batch of ed it i ng com mands
Cut out sel ected fi e lds of each l i ne
Merge l i nes of f i l e_s

Format mathemati ca l text for phototypesetter
Convert format i nstructi ons for pri nter
Format mathemati ca l text for pr i nter
Format document for pr i nter
Format document a nd pr int on phototypesetter
Format tab les
Pr i nt document
Pri nt mm documents on phototypesetter

Figure 4-5 . Docu ment Product ion Phases and Tools

XENIX 2 8 6 Overview

Figure 4-6 gives a sample docu ment with formatting instruct ions .

. ce

.B MEMO

.sp 2

. P

Text Processing

Please plan to attend a team meet ing on Friday, October 19. The agenda includes these
ite ms:
.AL 1
. LI
Introduct ion of new members
.LI
Schedules
.LI
New equ ipment
. LI
Open ite ms
.LE
. P
The m eeting will begin at 9 A. M. and will last approxi mately one hour.

Figure 4-6. Sample Docu m ent w ith Formatting Instruct ions

The docu m ent has two nroff/troff codes:

• .ce Center the follow ing text .

• .sp 2 Space down two lines .

The remaining codes are mm macros:

• • B Print the following text in boldface .

• . P Begin a new paragraph •

• • AL 1 Turn the following l ines into a nu mbered l ist •

• • LI Treat as a list ite m •

• • LE End a list .

4-5

Text Processing XENIX 286 Overview

Figure 4-7 shows a docu ment formatted according to the i nstruct ions in Figure 4-6. The
com mand used to format the sa mple docu m ent (named " m e m o.s") and place it in a file
called " m e mo. m m" is

$ nroff -mm memo.s > memo .mm

MEMO

Please plan to attend a team meet ing on Friday, October 19 .
The agenda includes these ite ms:

1. Introduction of new members

2 . Schedules

3 . N e w equipm ent

4. Open ite ms

The meeting w ill begin at 9 A. M. and w ill last
approxi mately one hour.

Figure 4-7. Sample Formatted Docu ment

4-6

CHAPT E R 5

P R O G RAMMI NG

This chapter describes how XENIX supports users writ ing programs. The XENIX
features described are included in the XENIX 286 Extended Syste m (except for the shell
sh) and are not provided with the XENIX 2 8 6 Basic Syste m. The shell sh is part of the
Basic Syste m . The XENIX program m ing environ ment includes

• The C program m ing language, a s i mple, flexible, effic ient, and powerful tool for
writing portable programs.

• Standard funct ion l ibraries that provide standard ways for C progra ms to handle a
variety of tasks, fro m I/0 to co mplex computat ions.

• Support ing tools, a co mplete program m ing environment that includes a program
checker, and a debugger, and also tools for automated translat ion, vers ion control,
and building new languages.

• XENIX shells that provide a structured program m ing language that can use all the
shell's special capabilities for controlling files and processes.

• XENIX features that allow users to modify or extend XENIX to meet the ir special
require ments.

More inform at ion on these topics is contained in the following publicat ions:

• The C Programming Language by Brian W. Kernighan and Dennis M. R itchie
describes C.

• XENIX 286 C Library Guide describes the standard funct ion libraries, including all
kernel syste m calls.

• XENIX 286 Programmer's Guide describes the support ing tools for program mers
and the csh shell program.

• XENIX 286 User's Guide and XENIX 286 Reference Manual describe the sh shell
program.

• XENIX 286 Installation and Configuration Guide and XENIX 286 Device Driver
Guide describe how users can mod ify and extend XENIX.

Appendix D gives ordering infor mation for all these publications.

5 - 1

Program m ing XENIX 286 Overview

C Prog ra m m i n g La ng u a g e

This section describes the C progra m m ing language, a si mple, flexible, efficient, and
powerful tool for writ ing portable programs. C and the UNIX operat ing syste m were
designed together; al m ost all of XENIX {and UNIX) is writt en in C. Before UNI X, most
operat ing syst e ms w ere written in m achine-dependent asse mbly language. So m e widely­
used systems, such as CP/M-8 0 , st ill are. C is a major reason for the relat ively high
quality of the XENIX and UNIX operat ing syste ms, and for the availability of XENIX or
UNIX on so many different processors.

A C program is largely made up of a nu m ber of funct ions. A function takes zero or
more param eters and may return a result to its caller. P arameters or results can be
either values or addresses of variables in m e mory. For example, a funct ion to co mpute
square roots would take a single value parameter and return the square root as a
result ing value. A function to search a string for an occurrence of a substring would
take two address param eters, the addresses of the string to be searched and the string
to be searched for; this funct ion would return the address of the first occurrence of the
substring in the string being searched, or return a special NULL value i f no occurrence
was found. A function can also have a variable nu m ber of param eters. For example, a
function that writes formatted output can accept as param eters any nu m ber of values to
be formatted.

A very powerful but s i mple feature of C is that it allows variables and param eters to
hold function addresses and to be used to call functions. For example, a plotting
funct ion can be defined that draws a graph of so me other arbitrary funct ion, e.g., any
function with a s ingle real argu m ent and a single real result. The address of the
funct ion to be plotted can be passed as a param eter to the plott ing funct ion.

C provides a range of data types including char {a single byte, often used to hold a
character), s igned and unsigned int egers of various lengths, single-precision and double­
precision float ing-point nu mbers, and pointers to any other dat a type. A value that is a
pointer to another type either contains the address of a value of the other type or has
the special value NULL.

C dat a structures are constructed using pointers, arrays, unions, and structures. A
structure is a record containing a nu mber of fields. Each field has a dist inct na me and
its own type. For example, a structure defining a data type "date" could include fields
named "year", " month", and "day", w ith types int, char, and char respect ively. (The char
dat a type is used because only a byte of storage is needed for each of " month" and
"day".) A union can contain values of different types at different t i m es. For example, a
union can be defined that will contain e ither an integer or a float ing-point value, but not
both at the same t i me.

An array in C contains a nu mber of ele ments of the same data type. All arrays are
indexed fro m 0 to {N- 1), where N is the nu mber of ele ments. An array reference in C
consists of the address of the beginning of the array; because of this, C funct ions
naturally can handle dynamic arrays (in which the nu mber of ele m ents is not known until
run-t i me) as well as static arrays (in which the nu mber of ele m ents is know n at compile­
t i me). However, C programmers should take care to check array operat ions to prevent
array addressing errors, as the C compiler does not generate such checking for you.
Array operat ions in C are very si mple and effic ient because of the explicit use of
pointers to i mple m ent arrays. For example, accessing all ele m ents of an array in turn
can be done by si mply incre ment ing a pointer that init ially references the first ele ment
of the array.

5-2

XENIX 286 Overview Program m ing

C's control structures include if and switch condit ional state ments (switch is s im ilar to
the "case" statement of so m e other languages), loops w ith tests at top or botto m of the
loop, and a for looping statem ent for more co mplex loops, such as those w ith index
variables. These structures provide complete support for "structured program m ing"
m ethods. C also provides statem ents for exiting or continuing a loop fro m within a
nested stat e ment. The goto statement is also provided.

C provides many operators for for m ing expressions, one source of its power. Operators
include arithmetic, relat ional, and logical operators. Also provided are b it-wise Boolean
operators, left and right shift operators, and incre m ent and decre ment operators.
Assignment is treated as an operator, allowing ass ign m ents to be e m bedded in
expressions. A condit ional operator evaluates one of two expressions based on the value
of a third, eli m inat ing the need for many conditional statements and often generat ing
m ore efficient and m ore readable code.

Several capabilit ies are added to C by the C preprocessor, the f irst pass of a C
compiler, which allows the user to define sy mbolic constants and macros and to include
separate files of declarations or procedures. A m acro can be used like a funct ion but
generates faster (but potentially space-consu m i ng) " in-line" cod e rather than a
subrout ine call when it is invoked.

Despite all these features, C is s impler than many other high-level languages. A
comparison to one competing language, Pascal, may be of interest. C does not provide
the set structures, file structures, or variant records of P ascal, though equivalent
constructs can be created in C. C also does not provide built- in funct i ons for
input/output, which are provided by Pascal. However, C does have several advantages.
C supports dynam ic arrays. C supports independent compilation, not originally part of
P ascal. C 1/0, via l ibrary functions, is more flexible than P ascal's bu ilt-in 1/0 funct ions.
C supports syste m progra m m ing w ith m ore flexible type convers ions, low- level
operators, and m ore flexible m anipulat ion of pointers. Finally, many aspects of C's
design enable C programs to be very efficient, including incre m ent, decre ment, and
assign ment operators; cond i t ional express ions; and the use of point ers for array
operations. On the plus side for Pascal, its type checking is stricter, array operat ions
can be safer (if the compiler generates subscript-checking code), and it has a richer set
of data structures.

One goal of C is to support the writ ing of portable, machine-independent programs.
However, some C features do behave differently on different machines. A style of C
program ming has evolved that i mposes a few restrict ions in order to m ake C programs
much more portable. These restrictions are described in "C Language P ortability" in the
XENIX 286 Programmer's Guide.

C does not provide any built-in statem ents for input/output, dynam ic storage allocat ion,
string manipulation, concurrency, or exception handling. However, all these capabilit ies
are provided by the XENIX l ibraries, described in the next sect ion.

5-3

P rogram m i ng XENIX 2 8 6 Overview

C F u n ct i o n Li b ra r ies

The machine-independence provided by the C language would do little good i f d ifferent
syst e ms provided different functions for basic tasks such as input/output. In addit ion to
the definition of the C language, there is a standard 1/0 l ibrary that is provided as part
of almost every C language system. XENIX and UNIX provide these standard 1/0
functions that support opening, reading, writ ing, closing, and random access for files and
devices; form atted 1/0; and stream 1/0 that provides a level of buffer'ing between the
program and the operat ing syste m.

Addit ional standard functions have been defined over a period of several years for UNIX
syst e ms and are provided w ith XENIX as well. Som e of these functions correspond to
syst e m calls, functions i mple mented by calling the XENIX kernel. The syste m call
interface m akes the transit ion between user code and privileged kernel code, for
sensitive operat ions that involve processes, files, devices, or other obj ects m anaged by
the kernel. The details of the syste m call interface are not visible to the l ibrary user,
who uses a syste m call like any other C library funct ion. Facil it ies other than 1/0
provided by the function libraries include

• Process control operat ions

• File syste m operat ions

• Interprocess com. munication

• Exception-handling and error-handling operat ions

• Character and string funct ions

• Dynam ic m e m ory allocat ion

• Co mputat ion and numeric for matt ing

• Screen operations, including window operat ions

• Data base record retrieval

• Searching and sorting

All these funct ions are described in the XENIX 286 C Library Guide.

5-4

XENIX 286 Overview Program m ing

S u pport i n g Too l s

A program m ing langu age, co mpiler, and function l ibraries are only some o f the useful
program m ing tools provided by XENIX. Other tools of interest are

lint

adb

make

sees

lex, yacc

a e program checker. lint exam ines e source files and warns of
constructs that can c ause run-t i m e errors in C progra ms. Such
c o nstructs includ e u nk n o w n v a l u e s in v a r i a b l e s , u nr e ac h a b l e
stat e m ents, infinite loops, inconsistent types, and several others.

a s i mple machine-level debugger. You can use breakpoints or single
stepping to interrupt your program and read and write memory when
your program is stopped.

auto mates program creation (co m piling, asse m bling, l inking) us ing
" makefiles" that you create. A makefile lists the output files to be
created, the com mands that create the m, and the input files from
which to create the m. make can use such a m akefile to update an
entire program m ing project with a single co m mand. make checks file
dates and only updates those files that must be changed.

Source Code Control Syste m. Controls multiple versions of programs
or other docu ments. Mult iple versions can be stored in a single file,
with SCCS able to recreate any version on com m and.

tools for building langu age translators. lex builds a lexical analyzer
fro m user-supplied rules. yacc (yet another co mpiler-co mpiler) takes
as input a set of syntactic rules along with se mantic actions to be
performed on recogniz ing the associated syntactic construct. yacc
generates a parser to recognize the syntactic product ions and perfor m
the appropriate se m ant ic actions. This yacc output is itself a language
co mpiler. A co mpiler- co mpiler is thus a program that generates a
compiler fro m a set of rules describing the language to be compiled.

All of these tools and the C compiler cc are described in the XENIX 286 Programmer's
Guide.

5-5

Program ming XENIX 286 Overview

S h e l l Prog ra m m i n g

XENIX provides two shell programs that incorporate program m ing capabili t i es, sh
(Bourne shell) and csh (C shell). These shells give you a high-level procedural langu age
in which to com municate w ith XENIX, allowing you to easily perform tasks that are
d iff icult in m any operat ing syst e ms. W ith the shell progra m m ing capabil i t ies ,
com m ands can be

• Co mbined to form new commands

• Passed param eters

• Added or renamed by the user

• Arranged in series, i n cond it ional control structures , or i n looping control
structures

The shells provide special support for patt ern matching in file names (recogniz ing
patterns such as "*.c"), for process control, and for 1/0 control. Co m mands can redirect
input and output to and fro m files, term inals, other devices, or other com m ands. These
special shell capabilities often make it easier for you to write a com m and as a shell
procedure instead of as a C program.

sh is described in the XENIX 286 User's Guide and the XENIX 286 Reference Manual.
csh is described in the XENIX 286 Programmer's Guide.

Mod ify i n g a nd Exte n d i n g X E N I X

XENIX i s designed as an "open system," one that allows users t o include and exclude
modules and features w ith great flexibility. The only part of the syste m that cannot be
easily changed by a user is the XENIX kernel, which i mple m ents a standard set of
syste m calls that perform operat ing syste m tasks. Syste m ad m inistrators can delete,
replace, or add com m and programs on their syste ms. New co m mand programs can be
written using a shell, C , or so me other program ming langu age. Even the shell program
that co m municates with users can be replaced, and XENIX users can choose between
different shells.

Though the kernel should not be changed directly, many aspects of the kernel are
configurable, as described in the XENIX 286 Installation and Configuration Guide. For
example, a new kernel can be created that allows for a lesser or greater nu mber of
various types of kernel obj ects, such as processes and locks, or that allows for a lesser
or greater nu mber of d isk buffers in main memory.

Cust o mers interfacing new hardware to XENIX syste ms can add device drivers, as
described in the XENIX 286 Device Driver Guide. XENIX defines a standard and
relat ively s imple funct ional interface for device drivers. As much of the work as
possible is done by the kernel, with the driver supplying the device-dependent funct ions
for init ializat ion, opening, reading, writ ing, closing, and interrupt-handling for the
device. The kernel also provides several ut ility routines that help the device driver
perform com mon tasks, such as buffering charact ers or sort ing d isk requests t o
m ini m iz e access t ime.

5-6

APPENDIX A

BASIC SYSTEM COM MANDS

Basic System Commands by Category

The Basic System has many com mands. These are organized by category in Figure A-1
and defined in the following pages.

SYSTEM SYSTEM SYSTEM FILE FILE MS-DOS FILE OFFICE
ADMINISTRATION STATUS COMMUNICATION DISPLAY MANAGEMENT MANAGEM ENT TOOLS

acctcom atq cu ban ner cd doscat be
accton date netuti l cat chgrp doscp cal
asktime finger rep hd chmod dosd i r ca lendar
blogin gs remote head chown dosls de
cfg i 1 88 ps u uclea n look cleave dosm kdir mai l
cfg i2 1 5 pstat u ucp m ore copy dosrm ra ndom
cfgi226 setclock u ulog n l c p dosrmd i r u n its
cfg i534 u n a m e u u n a m e od cpio write
cfgi544 who u u pick peat dd
cfg l p whodo uustat pr d i rname USER
chroot uusub ta i l fi le PROGRAM ACCESS
con fig DEVICES uuto find EXECUTION

d u m p uux FILE icpio
at

id
d u m pd i r ass ign MANIPULATION I

atrm
log i n

fixperm deassign FILE lc log name
fsck devnm COMPARISON awk If cron newg rp
g rpcheck df base name I n

echo
passwd

haltsys d isa ble bdiff bfs Is env

ibr dtype cm p csp l it make expr

icp d u com m ed mkdir fa lse

i nstlu pdate enable diff ex m v getopt
k i l l kdevs format d iff3 join pack
l ine k pa ra m s lpd restart d i rcm p red pwd
n ice kvectors l pq egrep sed rm
nohup m kbf lpr fgrep sort rmdir
rsh

m kfs l prm g rep spl it setti m e
s h

m knod m esg sdiff tr touch
sleep

m k user mount uniq v i umask
ncheck setm nt what view unpack

tee
test

pwadmin stty we
true

pwcheck ta r
vsh

quat tset
wa it

restor tty
xa rgs

rm user u m ou nt
scp

yes

sddate
shutdown
su
sum
sync
sysadmin
uuconfig
wa l l

F-0320
Figure A-1. Summary of Basic Syste m Commands by Category

Rev. A, 8/87 A- 1

Basic System Commands XENIX 286 Overview

Alphabetical List of Commands

The com mands in the Basic System are listed below in alphabetical order.

acctcom
accton
aliashash
asktime
assign
at
atq
atrm
awk
banner
base name
be
bdiff
blogin
bfs
cal
calendar
cat
cd
cfgi188
cfgi215
cfgi226
cfgi534
cfgi544
cfglp
chgrp
chmod
chown
chroot
cleave
cmp
comm
config
copy
cp
cpio
cron
csplit
cu
date
de
dd
deassign
devnm
df
diff
diff3
dircmp
dirname
disable

A-2

search and print accounting files
turn system accounting on and off
Micnet alias hash table generator
set system date and time
assign a device to a user
execute com mands at a later time
examine the "at" job queue
remove a job from the "at" job queue
pattern scanning and processing language
print large letters
strip file name affixes
arbitrary-precision arithmetic language
compare very large files
system backup/restore
scan big files
print calendar
invoke a reminder service
concatenate and print files
change working directory
configure the 188/48 terminal device driver
configure the 2 1 5/2 14 disk device driver
configure the 226 disk device driver
configure the 534 terminal device driver
configure the 544 terminal device driver
configure for line printer(s)
change group
change mode (change access permissions)
change file owner
change the process root directory
arranges input file list into smaller collections
compare two files (any type)
select or reject lines com mon to two sorted files
configures a XENIX system.
copy groups of files
copy
copy file archives in and out
execute com mands at specified t imes
split files according to context
call the XENIX system
print and set the date
desk calculator
convert and copy a file
deassign a device
identify device name
report the number of free disk blocks
compare two text files
co mpare three text files
compare directories
deliver the directory part of a path name
turn terminal use of

Rev. A, 8/87

XENIX 286 Overview Basic System Commands

doscat
doscp
dosdir
dosls
dosmkdir
dosrm
dosrmdir
dtype
du
dump
dumpdir
echo
ed
edit
egrep
enable
env
ex
expr
false
fgrep
file
find
finger
fixbb
fixperm
format
fsck
getopt
grep
gs
grpcheck
haltsys
hd
head
ibr
icp
icpio
id
instlupdate
join
kdevs
kill
kparams
kvectors
1
lc
If

line
In
login
logname
look
lpdrestart
lpq
lpr

Rev. A, 8/87

concatenate a file on an MS-DOS flexible disk
copy files to or from MS-DOS flexible disks
list the files of an MS-DOS flexible disk
list the directory of an MS-DOS flexible disk
create an MS-DOS directory on an MS-DOS flexible disk
delete an MS-DOS file
delete an MS-DOS directory
print disk type (such as xenix, msdos, tar)
sum marize disk use
perform incremental file system backup
print the names of files on a dump tape
echo arguments
invoke text editor (line editor)
invoke a text editor
search a file for a pattern
turn terminal use on
set or print the environment for command execution
text editor (line editor)
evaluate arguments as an expression
provide truth value by returning with a nonzero exit code
search a file for a pattern
determine file type
find files
find information about users
fix bad blocks
set file permissions
format a disk
check file system for consistency and repair if necessary
parse com mand options
search a file for a pattern
get and display system information
check group file
shut system down
give hex dump of a file
give first few lines of a file
Intel syste m backup/restore facility
interactive configuration program
copies file archives in and out
print user and group ID and name
install XENIX updates
join two relations
edit device configurations
terminate a process
edit kernel configuration
assign interrupt vectors
list directory contents in long form (equivalent to Is -1)
list directory contents in columns
list directory contents in columns indicating executable files with "*"
and directories with "/"
read one line
make a link to a file
give access to the system
get login name
find files in a sorted list
restart the line printer daemon
examine the print queue
send files to the line printer queue for printing

A-3

Basic Syste m Com mands XENIX 2 86 Overview

lprm
Is
mail
make
mesg
mkbf
mkdir
mkfs
mknod
mkuser
more
mount
mv
ncheck
netutil
newgrp
nice
nl
nohup
od
pack
passwd
peat
pr
printenv
ps
pstat
pwadmin
pwcheck
pwd
quot
random
rep
red
remote
retension
restor
rm
rmdir
rmuser
rsh
scp
sddate
sdiff
sed
set clock
setmnt
settime
sh
shutdown
sleep
sort
split
stty
su
sum

A-4

remove jobs fro m the print queue
list the contents of a directory
send, receive, or dispose of mail
maintain, update, and regenerate groups of programs
permit or deny messages sent to a terminal
make a set of boot diskettes
make a directory
make a file system
make a special file
add a new user account
display a file one screen at a time
attach a file system to a directory on the root subtree
move or rename files and directories
generate path names from inode numbers
administer a Micnet network
log into a new group
run a com mand at a different priority
add line numbers to a file
run background process after user logs off
display files in octal format
com press files
change login password
look at packed files
print a file
display environment variables
report process status
print system information
administer aging of passwords
check the password file
print the name of the working directory
summarize file syste m ownership
generate a random number
copy files between machines
invoke a restricted version of ed
execute com mands on a Micnet network
retension a t-inch tape cartridge
invoke incremental file syste m restorer
re move a file
re move a directory
re move a user
invoke a restricted shell
system configuration program
print and set backup dates
compare two files side by side
invoke stream editor
print and set the date in the iSBC 546 board
establish a mount table (/etc/mnttab)
change file access and modification dates
invoke the Bourne shell
brings the system down gracefully
suspend execution for an interval
sort or merge files
split a file into pieces
set terminal options
make the user root or another user temporarily
calculate checksu m and count blocks in a file

Rev. A, 8/87

XENIX 286 Overview Basic System Commands

sync
sysadmin
tail
tar
tee
test
touch
tr
true
tset
tty
umask
umount
uname
uniq
units
unpack
update
uuclean
uucp
uulog
uuname
uustat
uusub
uuto
uux
vi
view
vsh
wait
wall
we
what
who
whodo
write
xargs
yes

Rev. A, 8/87

update the super block
perform file syste m backup and restore
deli ve� last part of a file
archive files
create a tee in a pipe to save intermediate output
test conditions
update file access and modification times
translate characters
return with a zero exit value
set terminal type
get terminal name
set default file creation mask
detach a file system from the root directory
print the current XENIX name
report repeated lines in a file
convert units
unpack packed files
update the super block periodically
clean up uucp spool directory
copy files from XENIX to XENIX
maintains a sum mary log of uucp and uux transactions
list uucp names of known systems
provide uucp status inquiries and control
monitor uucp network
copy files between XENIX systems
execute commands on re mote XENIX
invoke a screen-display editor based on ex
invoke vi with the read-only option set
invoke the visual shell
wait for background jobs to finish
write to all users
count lines, words, and characters
identify files
list users currently logged on
show who is doing what
send a message to a user's terminal
construct argument lists and execute com mands
print string repeatedly

A-5

/

APP E N D I X B

T E XT F O RMATTI NG COMMAN D S

Text Formatt ing Co m ma n d s

This section has an alphabetical list o f the com mands that are part o f t h e Text
Formatting package included in the Extended Syste m.

col
cut
cw
cwcheck
deroff
diction
diffmk
eqn
eqncheck
hyphen
m m
m mcheck
m mt
neqn
nroff
paste
prep
ptx
soelim
spell
style
tbl
troff

approxi m ate vert ical m otions
cut out selected fields of each line
prepare constant-width text for troff
check cw macro text
re move nroff, troff, tbl, and eqn constructs
com ment on writing style
mark differences between two versions of a file
format mathe m atical text for nroff or troff
check m athe matical text for nroff or troff
find hyphenated words
print docum ents for matted with the mm macros
check use of m m macros
typeset docu ments for troff
for mat mathe m atical text for nroff or troff
for mat text for a line printer or daisy wheel printer
merge lines of files
prepare text for statist ical processing
generate a per muted index
expands nroff .so state ments
find spell ing errors
co m m ent on writing style
for mat tables for nroff or troff
print docu ment on a phototypesetter

8- 1

APP E N D I X C

PROG RA M M I NG T O O LS

Pro g ra m m i n g Co m ma n ds

This sect ion has an alphabetical list of the co m m ands that are part of the Software
Develop ment package included in the Extended System.

adb
ad min
ar
as
cb
cc
cdc
comb
cref
csh
ctags
delta
dmesg
dosld
get
gets
hdr
help
ld
lex
lint
I order
m4
mas m
mkstr
nm
prof
prs
ranlib
ratfor
regcmp
rmdel
sact
sccsdiff
size
spline

invoke a general-purpose debugger
create and ad m inister sees files
maintain archives and libraries
invoke the XENIX asse m bler
beaut ify e programs
invoke the e co mpiler
change the delta co m m entary of an sees delta
combine sees deltas
make a cross-reference list
invoke the e shell (a co m mand interpreter with e-like syntax)
create a tags file
make a delta (change) to an sees file
collect syste m diagnost ic messages to form error log
cross-link XENIX to MS-DOS
get a version of an sees file
get a string fro m the standard input
display selected parts of obj ect files
ask for help about sees co m m ands
invoke the link editor
generate programs for lexical analysis
check e language usage and syntax
find ordering relat ion for an object library
invoke a macro processor
XENIX macro asse mbler
create an error message file fro m e source
print a nam e list
display profile data
print an sees file
convert archives to random libraries
convert rat ional FORTRAN into standard FORTRAN
compile regular expressions
remove a delta fro m an sees file
print current sees file edit ing act ivity
compare two versions of an sees file
print the size of an object f ile
interpolate a smooth curve

e - 1

Program m ing Tools XENIX 2 8 6 Overview

stackuse
strings
strip
t ime
tsort
unget
val
xref
xstr
yacc

determine stack requ ire ments for e programs
find the printable strings in a binary file
re move symbols and relocat ion bits from an obj ect file
t ime a com mand
sort a file topologically
undo a previous get of an sees file
validate an sees file
cross-reference C programs
extract strings fro m e programs
invoke a compiler-co mpiler (yet another co mpiler-co m piler)

Sta n d a rd C Li bra r ies

The following l ibraries are provided with the Extended System. In so me cases, versions
for small, m iddle, and large model programs are included, and in other cases only the
version for the small model is provided. These are the standard libraries:

libc

libx

libm

libl

liby

libtermcap

libtermlib

libcurses

libdbm

libcfp

This is the standard library that contains all standard syste m call
interfaces, standard 1/0 routines, and other general purpose services.
Vers ions for small, m iddle, and large models are provided.

This library contains interfaces for all XENIX-specific syste m calls.
Versions for small, m iddle and large models are provided.

This is the standard math library. Versions for s m all, m iddle, and large
models are provided.

This library is for use with programs produced by lex. A version for the
s mall model is provided.

This library is for use with programs produced by yacc. A version for
the small model is provided.

This library has rout ines for accessing the ter mcap data base of
term inal characterist ics. Versions for small, m iddle, and large models
are provided.

This library is the same as libtermcap. Both libtermcap and libtermlib
link to the same file. Both names are kept for historical reasons.
Versions for small, m iddle, and large models are provided.

This l ibrary has rout ines for manipulat ing the screen and cursor.
Versions for small, m iddle, and large models are provided.

This library has data base manage ment routines. Versions for s m all,
m iddle, and large models are provided.

This l ibrary has float ing point routines that are used by other library
routines. Versions for small, middle, and large models are provided
(Slibcfp.a, Mlibcfp.a, Llibcfp.a) .

The funct ions provided with the standard e libraries are listed below.

e-2

XENIX 286 Overview Program m ing Tools

The Sta nda rd C Li b ra ry -- l i b c

This library also includes all standard system functions (see "Syste m Calls" a t the end of
this appendix).

a641
abort
abs
asctime
assert
at of
atoi
atol
bsearch
calloc
clearerr
crypt
ctermid
ctim e
cuserid
defopen
defread
ecvt
encrypt
endgrent
endpwent
fclose
fcvt
fdopen
feof
ferror
fflush
fgetc
fgets
file no
fopen
fprintf
fputc
fputs
fread
free
freopen
frexp
fscanf
fseek
ftell
fwrite
fxlist
gcvt
getc

convert base-64 ASCII to long integer
generate an lOT fault
integer absolute value
convert t ime data to ASCII
program verification
convert ASCII str ing to floating nu m ber (in libcfp)
convert ASCII string to integer
convert ASCII string to long integer
binary search
allocate memory
clear error
DES (Data Encryption Standard) encryption
generate file name for terminal
convert t ime to ASCII string
character login name of user
open default para meter file
read default param eters
format conversion
DES (Data Encrypt ion Standard) encrypt ion
close group file
close password file
close a stream
for mat conversion
reopen a stream
test for end of file
test for error
flush a stream
get character fro m a stream
get a string fro m a stream
convert a stream nu mber to a f i le descriptor
open a stream
formatted output routine
write a character to a stream
write a string to a stream
buffered input
free me mory
reopen a stream
return mant issa
formatted input conversion
seek within a stream
obtain f i le pointer position
buttered output
get name list entries fro m a file
format convers ion
get a character fro m a stream

C-3

Program m ing Tools

get char
getcwd
getenv
getgrent
getgrgid
getgrnam
getlogin
getopt
get pass
getpw
getpwent
getpwnam
getpwuid
gets
getw
gmtime
gsignal
isalnum
isalpha
is ascii
isatty
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
13tol
164a
ldexp
local time
logname
longj mp
!search
ltol3
malloc
mktemp
modf
monitor
nlist
pclose
perror
pop en
printf
putc
put char
putpwent
puts
putw
qsort
rand

C-4

get a character fro m a stream
get path nam e of current working d irectory
get a value for an environment variable
get group file entry
get group file entry
get group file entry
get login name
parse com mand line opt ions
read a password
get a nam e fro m the user ID
get a password file entry
get a password file entry
get a password file entry
get a string fro m a stream
get a word fro m a stream _

obtain Greenwich Mean Ti me infor mation
raise a software signal
test for alphanu meric
test for alphabet ic character
t est for ASCII character
check for term inal
t est for control character
test for d igit
test for print ing character
t est for lowercase
test for print ing character
test for punctuat ion
t est for space
test for uppercase
test for hex d igit
convert 3-byte integer to long
convert a long integer to base-64 ASCII
load exponent of float ing point nu mber
obtain local t ime infor mation
get login name of a user
nonlocal goto
linear search and update
convert long to 3-byte intege r
allocate memory
make a temporary file
return a fract ional part
prepare an execut ion profile
get entries fro m the name list
close pipe to process
print syste m error messages
initiate 1/0 to or from a proc ess
formatted output routine
write a character to a stream
write a character to a stream
write a password file entry
write a string to a stream
write a word to a stream
quick sort rout ine
random nu mber generator

XENIX 2 8 6 Overview

XENIX 286 Overview

realloc
regcmp
regex
rewind
scanf
setbuf
setgrent
setj mp
setpwent
sleep
sprintf
srand
sscanf
ssignal
stdio
strcat
strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strtok
swab
system
tmpfile
tmpnam
toascii
tolower
to upper
ttyname
tzset
ungetc
xlist

reallocate memory
regular expression compile
regular expression execute
seek to the beginning of a file
formatted input conversion
assign buffering to a stream
rewind a group file pointer
nonlocal goto
rewind password file pointer
suspend execut ion for an interval
formatted output routine
seed random nu mber generator
formatted input conversion
software signal
process standarg buffered input and output
concatenate strings
find a character in a string
compare strings
copy strings
find the length of a substring
get string length
concatenate strings
co mpare strings
copy strings
find a string in a string
find a character in a string
find the length of a substring
find a token within a string
swap bytes
execute a shell com mand
create a temporary file
create a te mporary file name
convert to ASCII
convert to lowercase
convert to uppercase
find the name- of a ter m inal
set external t ime variables
push a character back onto a stream
get name list entries fro m a file

The X E N I X-Specific System Ca l ls Li b ra ry -- l i b x

Progra m m ing Tools

Funct ions for this l ibrary are listed under "Syste m Calls" at the end of this chapter.

Th e Stand a rd M ath Li b ra ry -- l i bm

a cos
as in
a tan
atan2
cabs
ceil

arc cosine function
arc sine funct ion
arc tangent function
arc tangent function
Euclidean d istance
ceiling value

C-5

Program m ing Tools

cosine function
hyperbolic cosine
exponent iat ion
returns l x l

XENIX 2 8 6 Overview

cos
cosh
exp
fabs
floor
fmod
gam ma
hypot
jO

whole nu mber at or i m mediat ely below its argu ment
remainder function

jl
jn
log
loglO
pow
sin
sinh
sqrt
tan
tanh
yO
yl
yn

log gamma function
sqrt(x*x + y*y)
Bessel function
Bessel funct ion
Bessel function
natural logarithm
log base 10
power funct ion
sine funct ion
hyperbolic sine
square root funct ion
tangent function
hyperbolic tangent
Bessel funct ion
Bessel function
Bessel function

The Defa u lt lex Li b ra ry -- l i b l (sma l l model o n l y)

main
yyless
yywrap

lex program entry
lex routine to "unget" source characters
lex end of file rout ine

The Defa u lt yacc Li b ra ry -- l i by (sma l l mod el on l y)

main
yyerror

yacc program entry
yacc error handler

The Termi n a l Ca pa b i l it ies Li b ra ry - - l i btermca p (l i bte rml i b)

tgetent
tgetflag
tgetnum
tgetstr
tgoto
tputs

get term inal capability entry
test for presence of capability
get nu meric value of capability
get string value of capability
get cursor addressing string
decode padding infor mation

The Screen M a n i p u lat ion Li b ra ry -- l i bcu rses

The library has many screen and cursor manipulat ion routines.

C-6

XENIX 286 Overview Program m ing Tools

Th e Data B a se M a n a gement Li b ra ry -- l i bd b m

dbminit
delete
fetch
first key
nextkey
store

System Cal ls

open data base
delete key in data base
access key in data base
get first key in data base
get next key in data base
store key in data base

The Software Develop ment package includes the following syste m calls. The syst e m
calls marked with a n asterisk (*) reside in the libx library (Slibx.a, Mlibx.a, and Llibs.a).
The other system calls reside in libc.

access
acct
alarm
brk
brkctl
chdir

· chmod
chown
chroot
chsize*
close
creat
creatsem*
dup
dup2*
execl
execle
execlp
execv
execve
execvp
exit
fcntl
fork
fstat
fti me*
getegid
geteuid
getgid
getpgrp
getpid
getppid
getuid
ioctl
kill
link

determine accessibility of a file
enable or d isable process account ing
set a process's alarm clock
change data segm ent space allocat ion
expand current d ata segment or allocate new data segment
change working d irectory
change mode of a file
change the owner and group of a file
change the root d irectory
change the s ize of a file
close a file descriptor
create a new file or rewrite an exist ing one
create an instance of a b inary semaphore
duplicate an open file descriptor
duplicate an open file descriptor
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
term inate a process
file control
create a new process
get file status
get syste m t ime
get effect ive group ID
get effect ive user ID
get group ID
get process group
get process ID
get parent process ID
get real user ID
control character device
send a signal to a process or a group of processes
link to a file

C-7

Program ming Tools XENIX 2 8 6 Overview

lock*
locking*
lseek
mknod
mount
nap*
nbwaitsem
nice
open
opensem*
pause
pipe
profil
ptrace
rdchk*
read
sbrk
sdenter*
sdfree*
sdget*
sdgetv*
sdleave*
sdwaitv*
setgid
setpgrp
setuid
shutdn
signal
sigsem
stat
stime
sync
time
times
ulimit
urn ask
umount
una me
unlink
us tat
uti me
wait
waitsem*
write

C-8

lock a process in memory
lock or unlock a file region for read ing or writing
move a read/write file pointer
make a directory, or a special or ordinary file
mount a file system
sleep for a short t i m e
non-blocking wait for a semaphore
change the priority of a process
open a file for reading or writ ing
open a se maphore
suspend process unt il signal
create an interprocess channel
execut ion t ime profile
trace a process
check if there is data to be read
read fro m a file
change data segment space allocat ion
enter a shared data region
release a shared data region
attach a shared data segment to the data space of the current process
synchronize the use of shared data
leave a shared data region
synchronize use of shared data
set group ID
set process group ID
set user ID
flush block 1/0 and halt syste m
specify what to do on receipt of a signal
signal a process wait ing on a semaphore
get file status
set t i me
update the super block
get t i me
get process and child process t i mes
get and set user l i m its
get and set file creat ion mask
un mount a file syste m
get name o f current XENIX syste m
remove a directory entry
get file syste m statist ics
set file access and modification t i m es
wait for a child process to stop or terminate
wait for a semaphore
write on a file

I ntel Pub l icat ions

APP E N D I X D

R E LATE D PU B LI CATI O N S

Copies of the following publicat ions can be ordered fro m

Literature Depart m ent
Intel Corporat ion
3 0 6 5 Bowers A venue
Santa Clara, CA 9 5 0 5 1

X E N I X R . 3 . 4 Refe re n ce Li b ra ry : Bas ic Syste m

Overview of the X EN IX 286 Operating System, Order Nu mber 1 7 4 3 8 5 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

XENIX 286 User's Guide, Order Nu mber 1 74387 -- a brief survey of com mon com mands
plus full chapters on the ed text editor, the vi text editor, electronic mail, the Bourne
shell (sh), and the be calculator.

X EN IX 286 Visual Shell User's Guide, Order Nu m ber 17 4388 -- a XENIX com mand
interface ("shell") that replaces the standard com mand syntax with a m enu-driven
com mand interpreter.

X EN IX 286 Installation and Configuration Guide, Order Nu mber 1 7 4386 -- how to install
XENIX .. on your hardware and tailor the XENIX configurat ion to your needs.

X EN IX 286 System Administrator's Guide, Order Nu mber 17 4389 -- how to perform
system ad m inistrator chores such as adding and re moving users, backing up f i le syste ms,
and troubleshoot ing syste m proble ms.

X EN IX 286 Communications Guide, Order Number 17 446 1 -- installing, using, and
ad ministering XENIX net working software.

XENIX 286 Reference Manual, Order Number 1 74390 -- all co m m ands in the XENIX 2 8 6
Basic System, with a m aster index t o the XENIX Basic Syste m and Extended Syste m.

D- 1

Related Publicat ions XENIX 286 Overview

X E N IX R . 3 . 4 Refe re n ce L i b ra ry : E xtended Syste m

XENIX 286 Programmer's Guide, Order Number 1 7 4 3 9 1 - - XENIX 286 Extended Syste m
com m ands used for developing and maintaining programs.

X EN IX 286 C Library Guide, Order Number 1 7 4542 - - standard subroutines used in
program ming with XENIX 2 86, including all syste m calls.

XENIX 286 Device Driver Guide, Order Nu mber 1 7 4 3 9 3 -- how to write device drivers
for XENIX 286 and add them to your system.

XENIX 286 Text Formatting Guide, Order Nu m ber 1 7 4 5 4 1 - - XENIX 2 8 6 Extended
Syste m co m mands used for text formatt ing.

Oth e r X E N I X Pu b l i cati ons

XENIX Networking Software Installation and Configuration Guide, Order Nu m ber
1 3 5 1 46 - - installing, configuring, and adm inistering the XENIX OpenNET TM net work.

XENIX Networking Software User's Guide, Order Nu m ber 1 3 5 1 4 7 - - user 's and
program mer's reference to the XENIX OpenNETTM network.

D-2

I N D E X

Note: For a master index to the XENIX reference l ibrary, see the XENIX 286
Reference Manual.

Account ing, 1-6, 1-7
adb, 5-5
.AL, 4-5
Aliases, 3-15
Alternate tracks, 2-23
Applicat ion,

programmer, 1-9
software, 1-9, 1-1 1 , 3-15

Argu ment, 3-9 thru 3-10
Array, 3-15 , 5-2, 5-3
ASCII, 2-1
Asse mbly language, 1- 1 1 , 2-2 , 5-2
Audience, 1-1
awk, 3- 14, 4-3 thru 4-4

B program m ing language, 1-10
.B, 4-5
Background processing, 1-1 1
Bad tracks, 2-23
Basic Syste m, 1-2 , 1-8 thru 1-9, 2-19

com mands, A-1 thru A-4
publications, 1-2

Baud rate, 3-3
be, 1-2
Bell Laboratories, 1-7 , 1-10 thru 1-1 1
Berkeley features, 1-7, 3-1 5
bin, 2-1 7, 3-4
/bin, 2-9, 3-1 , 3-6
/bin/who, see who
Bit map, 2-24 thru 2-25
.BL, 4-2
Block(s), 1 - 12 , 2-2 0 thru 2-2 1

contiguous, 2-25
cylinder group, 2-24
indirect, 2-2 1
size, 2-2 0
special file, 2- 1 1
super, 2-24

/boot, 2-9
Boot track, 2-23
Bourne shell, see shell

Buffer manage ment, 1-7 , 4-3 , 5-6
Byte, 2-1

C,
compiler, 1-3, 5-2 , 5-5
l ibrary, 1-3, C-2 thru C-6
preprocessor, 5-3
program ming, 1-7, 1 -1 0 thru 1-1 1 ,

2-2, 3-15 , 5-1 , 5-2, 5-5
shell, see shell

Calculator, 1-2 , 1- 1 1
Calendar, 1- 1 1
cat, 3-13
cc, 5-5
cd, 2-8, 2-1 6, 3- 1 5
.ce, 4-5
char, 5-2
Character special file, 2- 1 1
Child process, 3-1 thru 3-2 , 3-8
chmod, 2- 1 5
Com mand(s),

adding, 5-6
argument, 3-9 thru 3 - 1 0
Basic Syste m , A - 1 thru A -4
execut ion, 3-8, 3- 1 5
interpreter, 1-6, 1-8, 3-4, 3-8
option, 3-9 thru 3 - 1 0
program m ing, C- 1 thru C-2
text formatt ing, B-1

Com ment field, 3-4
Com municat ion,

line, 2-1 1
network, 1-2
user-to-user, 1- 1 1

Compiler, 1-3
Co m piler-co mpiler, 1-3, 5-5
Configurat ion, 1-2 , 3-2 , 5-6
Console, 2-1 1 , 3-12
Control structure, 5-3
CONT ROL-D, 3-5, 3-12

Index- 1

Index

CPU, 1-4 thru 1-5
cron, 3-3 thru 3-4
csh, 3-15 , 5- 1 , 5-6
cut, 4-3 thru 4-4
Cylinder group, 2-24 thru 2-2 5

Dae mon, 3-3
Data,

structure, 5-2
type, 5-2

dd, 3-14
Debugger, 5-1
/dev, 2-9, 2-1 1 , 3-3
Device,

driver, 1-3 , 1-7, 1-9, 5-6
du m my, 2-1 1
file, 2-9
hardware, 1-4 , 1-5, 2-1 1
independence, 1-7, 1-1 1
manage m ent, 1-6
null, 2- 1 1
special file, 2-9, 2- 1 1 , 2-17
structured, 2- 1 1
unstructured, 2- 1 1

Diagnostic track, 2-23
diction, 4-3 , 4-4
D irectory, 2-3, 2-2 1, 3-8

/bin, 2-9, 3-1 , 3-6, 3-8
changing, 2-8, 2-16 , 3-15
current, 2-9
home, 2-3
links, 2 - 1 8
login, 2 - 3 thru 2 - 5 , 2-8, 2 - 1 0 , 3-4

3-7
parent, 2-6
root, 2-7, 2-9, 2-10 , 2-25 , 3-3
/usr, 2-7
working, 2-5, 2-9, 3-6

Disk, 1-4, 1-5, 2 - 1 0 thru 2- 1 1 , 2-2 0 ,
2-23 , 2-25

Disk docu m entation, 1-3
Dot (.), 2-2, 2-6, 2-9, 2-18 , 3-6
Dot dot (. •), 2-6

ed, 1-2, 2-8 thru 2-9, 4-4
Editor, see t ext editor
egrep, 3-1 4
Electronic m ail, s e e mail
encryption, 5-4
eqn, 4-2 thru 4-4
eqncheck, 4-4

Index-2

XENIX 2 8 6 Overview

Equation for m att ing, 4-2 thru 4-4
Error,

checking, 1-6
handling, 5-4

/etc, 2-10 , 3-1 , 3 - 1 5
/etc/crontab, 3-3
/etc/passwd, 2-2, 3-4 thru 3-5
/etc/profile, 2 - 1 5 , 3-7
/etc/rc, 3-3
/etc/termcap, 3-7
/etc/ttys, 3-3
ex, 4- 1 , 4-4
exec, 3-2, 3-3
Execute per m ission, 2 - 1 2 thru 2-14,

3-8
explain, 4-3 , 4-4
export, 3-7
Extended Syste m, 1-2 thru 1-3, 1-8 thru

1-9, 4-1 , 5-1
commands, B-1 , C-1 thru C-2
publicat ions, 1-3
standard C libraries, C-2 thru C-6
syste m calls, C-8

fgrep, 3-14
F ield separators, internal, 3-7
F ile(s) , 2-1

access perm issions, 2- 1 2 thru 2-17
allocation, 2-2 5
block special, 2- 1 1
character spec ial, 2-1 1
com mands for, 2 - 1 9, A -1
dat e created, 2-2 1
date last modified, 2-2 1 , 3-9
dat e last read, 2-2 1
delete, 2-18
descriptor, 3-6
format, 2-2
link, 2-18, 3-9
location, 2-2 0 thru 2-22
logical, 2-2 0, 2-22
mode, 2-13
nam e, 2-2 , 2-1 1 , 2 - 1 8 , 2-20 thru

2-2 1 , 3- 1 0 , 5-6
open, 3-2, 3-6
ordinary, 2-1, 2-2, 2-3, 2 - 1 2 , 2- 1 3
owner, 2- 1 2 , 2 - 1 7 , 2-2 1 , 3-9
size, 2-3, 2-2 1 , 3-9
sorting, 3- 1 3
special, 2-9, 2-1 1 , 2- 1 7
structure, 2-2

XENIX 286 Overview

syste m , 1-5, 1-7, 2-10 , 2-18 , 2-2 0
thru 2-2 5 , 3-3, 5-4

te mporary, 2- 1 0 , 3-3, 3-13
text, 2-1 , 4-1
type, 2-2 1

Filter, 3-13 thru 3-14
finger, 3-4

num ber, 5-2
fixbb, 1-12
for, 5-3
fork, 3-2, 3-8
Free list, 2-25
fsck, 2-1 0
Function, 5-2

G COS, 3-4
getty, 3-3
GID, 2- 1 2 thru 2-14
goto, 5-3
grep, 3-14
Group, 1 - 1 1 , 2-12 thru 2-15 , 2-2 1 , 3-4,

3-9

Hardware,
device, 1-4 thru 1-5
diagnost ics, 2-23

head, 3-14
Hierarchy,

directory, 2-3 , 2-5, 2-7
process, 3-1, 3-3

History funct ion, 3-1 5
$HOME, 3-6
HOME, 3-5 thru 3-7
hyphen, 4-4

iAPX 286 , 1-7
icp, 1- 1 2
if, 5-3
IFS, 3-7
I node

list, 2-2 1 , 2-24
nu mber, 2-2 thru 2-3 , 2 - 1 5 , 2-2 1 ,

2-24 thru 2-2 5
instl, 1 -12
Installation, 1-2
int, 5-2
Internal f ield separators, 3-7
lnterprocess com municat ion, 5-4
1/0, 5-1, 5-3 thru 5-4, 5-6

Index

Kernel, 1-3, 1-5 thru 1-8, 2-2 , 2 - 1 0 ,
2-2 0 thru 2-2 1 , 2-2 5, 3 - 2 thru 3-3 ,

3-8, 5-4, 5-6

.LI, 4-2, 4-5
/lib, 2- 1 0
lc, 2-5
.LE, 4-2 , 4-5
lex, 2-2, 5-5
Lexical analyzer, 5-5
Library, 1-3 , 1-6, 2-2 , 2-1 0 , 5-1 ,

5-3 thru 5-5, C-2 thru C-6
Link to a file, 2 - 1 8, 2-2 1 , 3-9
lint, 5-5
In, 2-18
Log off, 3-5
Log on, 1-9, 3-4 thru 3-5, 3-8, 3-12
Login,

directory, 2-3 thru 2-5, 2-8, 2 - 1 0 ,
3-4 thru 3-5, 3-7

name, 3-4 thru 3-5, 3 - 1 2
process, 3 - 3 , 3-5
shell, 3-4 thru 3-6
t i m e, 3-8

logname, 3-7
Loop, 5-3
/lost+found, 2- 1 0
lpd, 3-3
lpr, 3-1 0 thru 3 - 1 3 , 4-3 thru 4-4
Is, 2-5, 2-1 5 thru 2-16 , 3-9, 3- 1 1

Macro, 4-1 thru 4-4, 5-3
MAIL, 3-7
Mail, 1-1 1 , 3 - 1 2
mail, 3 - 1 2
make, 5-5
Makefile, 5-5
Mass storage,

device, 2 - 1 , 2-2 0
manage ment, 1-5

Me mory, 1-4 thru 1-5 , 2-1 1
allocat ion, 5-4
manage m ent, 1-5

mesg, 2 - 1 7
Metacharacter, 3 - 1 0 thru 3 - 1 1 , 3-1 5
Micnet, 1-2 , 1- 1 5
Microsoft Corporat ion, 1-7
mkuser, 3-4
m m, 1-3, 4- 1 thru 4-5

Index-3

Index

m mcheck, 4-4
m mt, 4-3 thru 4-4
/mnt, 2-1 0
Mounting file syste m, 2-2 5 , 3-3
Mult ics, 1-10
Multiprogram m ing, 1- 1 0
Mult itasking syste m, 1-1 1
Multiuser syste m , 1-10 thru 1- 1 1

neqn, 4-2 thru 4-4
Network, 1-1 1
nl, 3-14
nroff, 1-3 , 4-1 thru 4-5
NULL, 5-2

Octal representation of perm issions,
2-14 thru 2 - 1 5

Office tools, 1- 1 1
Operat ing syste m , 1-4
Operators, 5-3
Option, com mand, 3-:-9 thru 3 - 1 0
Overview of the XENIX 286 Operating

System, 1-2, D-1

.P, 4-5
Parent,

directory, 2-6 thru 2-7
process, 3-1 thru 3-2

Pascal, 5-3
passwd, 3-4
Password,

changing, 3-4
encrypted, 3-5
entry, 3-5
file, see /etc/passwd

paste, 4-3 thru 4-4
PATH, 3-6
Path,

name, full, 2-7 thru 2-8
name, relative, 2-8, 2-18
search, 3-6 , 3-15

Perm issions, 2-12 thru 2-18, 2-2 1 ,
3-8

Phototypesetter/phototypesett ing, 1-3,
4- 1 thru 4-4

PID, 3-1, 3-2

Index-4

XENIX 2 8 6 O verview

P ipe, 1-8, 1-1 1, 3-12 thru 3 - 1 3
named, 2-2 1

Pointer, 5-2 thru 5-3
P ortability, 1-1 1, 1-14, 5-3
Printer, 1-4, 1-5, 1-1 1 , 2-1 1 , 2 - 1 7 , 4-3

thru 4-4
Process, 1-5, 1 - 1 1 , 3-1 thru 3-3 ,

3-5 , 3-8 , 5-4 , 5-6
.profile, 2-15 , 3-7
Program,

executable, 2-12 , 3-1, 3-8
shell, see shell script
source, 3-1

P rogram mer, 1-3, 1-9
Program m ing shell, see shell script
PSl, 3-6, 3-8
PS2, 3-7
Publications,

Basic System, 1-2
Extended System, 1-3
Related, D- 1

pwd, 2-9

Raw interface, 2-1 1
Read perm ission, 2-12 thru 2 - 1 3 , 2 - 1 5

thru 2 - 1 7
Redirect ion,

input, 3- 1 1 thru 3- 1 2 , 3 - 1 5
output, 3-1 1 , 3 - 1 5 , 4-3

Relat ive path name, 2 - 1 8
Restricted shell, s e e shell
Root,

as o wner, 2-17 , 3-4
directory, 2-7, 2-9 thru 2 - 1 0 , 2-2 5

3-3
file system, 2-2 3 , 2-2 5

rsh, 3-15

se es, 5 -5
Search,

path, 2-2 1, 3-6, 3-15
perm ission, 2-16

sed, 3-14 , 4-3 thru 4-4
Sem aphore, 2-2 1
Set GID, 2-12 thru 2-13
Set UID, 2-12 thru 2-13
sh, 1-2 , 2-12 , 3-15 , 5-1 , 5-5 thru 5-6

XENIX 286 Overview

Shell,
Bourne, 1-2, 1-8 , 3-4 thru 3-5, 3- 1 5

5-1, 5-6
C, 1-8, 3-4, 3-5, 3- 1 5 , 5-6
co m mand interpreter, 1-8, 3-4, 3-8
login, 3-4 thru 3-7
metacharacters, 3- 1 0 thru 3-1 1
program ming, see shell script
pro mpt, 3-6, 3-8
restricted, 1-8, 3-4 thru 3-5, 3-15
script, 1-1 1 , 2-12 , 3-1 , 3-3 , 3-6
visual, 1-2, 1-8, 1-1 2 , 3-4 thru 3-5

5-6, D-1
sort, 3-1 2 thru 3-14
.sp, 4-5
Special files, 2-9, 2-1 1 , 2- 1 7
spell, 4-3 thru 4-4
Standard,

error, 3-6
input, 3-6, 3-1 1 thru 3-12 , 3-13
libraries, 1-3 , 5-1 , C-2 thru C-6
output, 3-6, 3-1 1 thru 3-13
pro mpt, 2-3, 3-1 5

Strings, 5-4
style, 4-4
Subdirectory, 2-3 thru 2-5
Subtree, 2-5 thru 2-6
Suffix, 2-2
Swap,

area, 2-23
process, 1-5

switch, 5-3
/sys, 2-1 0
sysadmin, 1-12
System,

ad ministrator, 1-2, 1-9, 2-3 , 2- 1 0
thru 2-12 , 2-2 5 , 3-2 thru 3-4, 3-7,
3-12, 3-15 , 5-6

call, 1-5, 1-7, 5-4, 5-6

Table formatt ing, 4-2 thru 4-4
tail, 3-14
Tape drive, 1-4 thru 1-5, 2-1 1
tbl, 4-2 thru 4-4
TERM, 3-7
TERM CAP, 3-7
Terminal, 1-4 thru 1-5, 1-1 1 , 2 - 1 1 ,

2-17' 3-3, 3-6, 3-8, 3-12

Text,
editor, 1-6, 4- 1
file, 2-1, 4- 1
formatting, 1-3 , 1- 1 0 , 4- 1
processing, 4-1
processor, 1-9

/tmp, 2-10
tr, 3-14
Tracks, 2-2 3
Tree structure, 2-3
troff, 1-3, 4- 1 thru 4-5

UID, 2-12 thru 2-14, 3-4
u mask, 2- 1 5
Union, 5-2
uniq, 3-14
U NIX, 1-7, 1 -10 , 4-1 , 5-2
User,

file syste m , 2-23
table, 3-2
UID, 2-1 2 thru 2 - 1 4, 3 -4
XENIX, 1-9

/usr, 2-10, 2-15
/usr/bin, 3-1 , 3-6
Utility programs, 1-6, 1-8
uucp, 1-2, 1-13

Variable,
function, 5-2 , 5-5
shell, 3-5 thru 3-6, 3-8, 3- 1 5 ,

4-1, 4-3 thru 4-4
vi, 1-2
Visual shell, see shell
vsh, 3-5, 3-15

we, 3-14 , 4-4
who, 3-8, 3-12 thru 3- 1 3
W ildcard, 3-1 0
W indow operations, 5-4
Working directory, 2-5, 2-9, 3 -6

Index

Write permission, 2 - 1 2 thru 2 - 1 3 , 2- 1 6

/xenix, 1-12 thru 1-13 , 2- 1 0
XENIX Macro Assembler Reference

Manual, 1-3, 1 - 1 3

I ndex-5

Index

XENIX Macro Assembler User's Guide
1-3, 1-13

XENIX 286 C Library Guide, 1-3 , 5-1 ,
5-4, D-1

XENIX 286 Communications Guide, 1-2,
1-9, 1-13 , D-1

XENIX 286 Device Driver Guide, 1-3,
1-9, 1 - 1 3 , 5-6, D-1

XENIX 286 Installation and

Configuration Guide, 1-2, 1-9,
1-13, 5-1 , 5-6, D-1

XENIX 286 Programmer's Guide, 1-3,
1-13, 5-1 , 5-3, 5-5 thru 5-6, D- 1

XENIX 286 Reference Manual, 1-2 ,
1-13 , 5-1 , D-1

XENIX 286 System Administrator's

Guide, 1-2, 1-9, 1-13 , D-1
XENIX 286 Text Formatting Guide, 1-3 ,

1 - 1 3 , D-1
XENIX 286 User's Guide, 1-2, 1-13 , 5-1 ,

5-6 , D-1
XENIX 286 Visual Shell User's Guide,

1-2, 1-13 , D-1
/xenix.f, 2-1 0

yacc, 2-2, 5-5

Index-6

XENIX 286 Overvie w

I
I
I
I
I
I
I
I

��

Overview of the
X E N IX 286 Operati ng System

1 74385-002

R E Q U E ST F O R R EA D E R'S COM M E NTS

I nte l 's Techn i ca l Pu b l i cations Departments attem pt to prov ide pu b l i cati ons that m eet the needs of a l l
I ntel prod uct users. Th i s form l ets you parti c i pate d i rectl y i n the pub l i cati on p rocess. You r com ments
wi l l hel p us correct and i m prove our pu b l i cati ons. Pl ease take a few m i n utes to respond .

Pl ease restri ct you r com ments to the usabi l i ty, accu racy, organ i zat i o n , a n d c o m p l eten ess of th i s
publ i cati on. I f you have any com m ents o n the product that th is p u bl i cati on d escri bes, p l ease contact
your I ntel representati ve. I f you wish to order pub l i cati ons, contact the Literature Department.

1 . Pl ease descri be any errors you fou nd i n th i s publ i cati on { i nc l ude page n u m ber) .

2 . Does th i s pub l i cati on cover the i nformation you expected or requ i red ? P l ease m a ke suggesti ons
for i m provement.

3. Is this the ri ght type of pub l i cati on for you r needs? Is i t at the ri g ht l evel ? What other types of
pub l i cati ons a re needed?

4. Did you have any d i ffi cu lty u nderstand i ng descri pti ons or word i ng ? Where?

5 . Pl ease rate th i s pu b l i cation on a sca l e of 1 to 5 (5 bei ng the best rati n g) .

NAM E __ DATE

TITLE

COM PANY NAM 8DEPARTM ENT--�

ADD RESS

CITY STATE

(COU NTRY)

Pl ease check here i f you req u i re a written rep ly . 0

Z I P CODE

WE'D LIKE YOUR COMMENTS . . .

This document is one of a series describing Intel products. Your comments on the back of this form wil l
help us produce better man uals. Each reply will be carefully reviewed by the responsible person . All
comments and suggestions become the property of Intel Corporation.

BUSI N ESS REPLY MAI L
FIRST CLASS PERMIT NO. 79 H ILLSBORO, OR

POSTAG E WILL BE PAID BY ADDRESSEE

Intel Corporation
OMS Technical Publications, MS: HF2-52
5200 N . E . Elam Young Parkway
Hi l lsboro, Oregon 971 24-9987

l l . l u lu . l u • l l • • l • l • l u l l . l • • l . l • • l •• l . l • • • l . l •• l l

N O POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

I
I
I
I
I
I
I
I

F

;

