
·.'

I

XENIX* 286

USER'S GUIDE

Order Number: 174387-003

*XENIX is a trademark of Microsoft Corporation.

Copyright © 1985 Intel Corporation. All rights reserved.

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors

that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No

other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is
subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 <a) <9>.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks oflntel Corporation and its affiliates and may be used only to identify Intel products:

Above iCEL in tel iPDS Megachassis QUEST

BITBUS iCS intelBOS iPSC MICROMAINFRAME Que X

COMMputer iDBP Intelevision iRMX MULTIBUS Ripplemode

CREDIT iDIS inteligent Identifier iSBC MULTICHANNEL RMX/80

Data Pipeline iLBX inteligent Programming iSBX MULTIMODlJLE RUPI
jfenius im Intellec iSDM ONCE Seamless
i iMDDX Intellink iSXM OpenNET SLD
i

iMMX iOSP Library Manager
Plug-A-Bubble

UPI
I2ICE PROMPT

ICE
Insite MCS

Prom ware
VLSiCEL

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a trademark of Bell

Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a trademark of Centronics Data Computer
Corporation. Chassis Trak is a trademark of General Devices Company, Inc. VAX is a trademark of Digital Equipment

Corporation. Smart modem 1200 and Hayes are trademarks ofHayes Microcomputer Products, Inc.

REV. REVISION HISTORY DATE

-001 Original issue 11/84

-002 Revision 08/85

-003 Revision 12/85

i i 7/85

CONTENTS

CHAPTER 1
INTRODUCTION
Overview
Audience
Notat ion
The XENIX 2 8 6 Working Environ ment
Us ing This Manual

CHAPTER 2
TASKS
Introduct ion
Logging In
Logging Out
Entering and Erasing a Co m mand Line
Changing Your Password
M anipulat ing Files

Creat ing a Fi le
Displaying File Contents
Combining F iles
Moving a File
Renaming a File
Copying a File
Delet ing a File
Finding a File
L inking Files

M anipulat ing Directories
L ist ing D irectory Contents
Creating a D irectory
Removing a Directory
Renam ing D irectories
Copying Directories

Moving in the F ile Syste m
Where You Are
Changing D irectories

Using File and D irectory Perm issions
Changing Permissions
Changing Directory Search Perm issions

TABLE OF CONTENTS

PAGE

1 - 1
1 - 1
1 - 1
1-2
1-3

2-1
2 - 1
2-2
2-2
2-2
2-3
2-3
2-4
2-6
2-6
2-6
2-7
2-7
2-8
2-8
2-9
2-9

2- 1 0
2 - 1 0
2-1 1
2 - 1 1
2 - 1 2
2 - 1 2
2- 1 2
2-13
2- 1 5
2- 1 5

i i i

Table of Contents

CONTENTS

Processing Information
Com paring Files
Echoing Argu ments
Sort ing a File
Searching for a Pattern in a File
Count ing Lines, Words, and Characters

Controlling Processes
Determ ning Who Is on the Syste m
Determ ining What Processes Are Running
Plac ing a Process in the Background
Killing a Process

Using the Line Printer
Sending a File to the Line Printer
G ett ing Line Printer Information

Com municating with Other Users
Sending mail
Receiving mail
Writing to a Term inal

Using the Syst e m Clock and Calendar
F inding Out the Date and Ti me
D isplaying a Calendar

Using the Auto matic Rem inder Service
Calculat ing

CHAPTER 3
THE SHELL
Introduction
Basic Concepts

The Shell
Com mands
How the Shell Finds Co m m ands
Generat ing Argument Lists
Quoting M echanis ms

Redirecting Input and Output
Standard Input and Output
Diagnost ic and Other Outputs
Com mand L ines and P ipelines
Co m m and Subst itut ion

Shell Variables
Positional Param eters
User-Defined Variables
Predefined Special Variables

The Shell State

iv

Changing D irectories
The .profile File
Execut ion Flags

XENIX 2 8 6 User's G u ide

PAGE

2 - 1 6
2 - 1 6
2 - 1 7
2 - 1 7
2 - 1 8
2 - 1 8
2 - 1 9
2 - 1 9
2-20
2-2 0
2-2 1
2-2 1
2-2 1
2-22
2-22
2-22
2-23
2-23
2-24
2-24
2-24
2-25
2-26

3-1
3- 1
3 - 1
3-2
3 -2
3-3
3-3
3-4
3-4
3-5
3-6
3-7
3 -8
3-9

3-1 1
3- 14
3- 15
3- 15
3- 16
3- 16

XENIX 2 8 6 User's Guide

CONTENTS

Com mand Environ m ent
Invoking the Shell
Passing Argu ments to Shell Procedures
Direct ing the Flow of Control

Using the if Statement
Using the case Statem ent
Condit ional Looping
Looping Over a List
Loop Control
End-of- File and exit
Com mand Grouping
Input/Output Redirection and Control Co mmands
Transfer to Another File and Back: the Dot (.) Com mand
Interrupt Handling

Special Shell Co m m ands
Creating and Organizing Shell Procedures
M ore about Execut ion Flags
Support ing Commands and Features

Condit ional Evaluat ion
Echoing Argu ments
Expression Evaluat ion
True and False
In-Line Input Docu ments
Input/Output Redirect ion Using File Descriptors
Condit ional Subst itut ion
Invocat ion Flags

Effective and Effic ient Shell Program m ing
Nu mber of Processes Generated
Nu mber of Data Bytes Accessed
Shortening Directory Searches
Directory-Search Order and the PATH Variable
Good W ays to Set Up Directories

Shell Procedure Examples
binuniq
copypairs
copyto
distinct!
draft
edfind
edlast
fsplit
list fields
mkfiles
null
phone
textfile
write mail

Metacharacters and Reserved Words

Table of Contents

PAGE

3- 1 6
3 - 1 7
3- 1 7
3- 1 9
3-2 1
3-22
3-23
3-23
3-24
3-24
3-25
3-26
3-2 7
3-27
3-3 0
3-3 1
3-33
3-33
3-3 3
3-3 5
3-3 5
3-36
3-3 6
3-3 7
3-38
3-4 0
3-4 1
3-4 1
3-43
3-43
3-43
3-44
3-44
3-45
3-45
3-4 5
3-46
3-47
3-47
3-47
3-48
3-48
3-49
3-49
3-49
3-50
3-5 0
3-5 0

v

Table of Contents

CONTENTS

CHAPTER 4
ed: A LINE-ORIENTED TEXT EDITOR
Introduction
Basic Concepts

Entering and Exiting ed
Line Nu mbers
The Editing Buffer

Call ing a File
Writ ing Out the Editing Buffer
W rit ing Out Part of a File
Changing File Name to Write Out to

Co m mands
Undoing Co m mands

Displaying L ines
D isplaying Tabs and Control Characters
Int errupt ing ed
Escaping to the Shell

Creat ing and Appending Text
Delet ing Lines
Searching

Searching with the Se micolon
Searching and Replacing

Subst ituting Text
Metacharacters

Backslash
P eriod
Caret
Dollar Sign
Star
Brackets
A mpersand

P erform ing G lobal Commands
Copying Lines
Moving Lines

Marking Your Spot in a File
Splitt ing L ines
Joining L ines
Co mbining F iles
Insert ing One File into Another

Edit ing Scripts
Speeding Up Edit ing
Su m mary of ed Co m mands

vi

XENIX 2 86 User's Gu ide

PAGE

4-1
4- 1
4- 1
4-2
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-4
4-6
4-6
4-6
4-7
4-7
4-8
4-9

4- 1 1
4- 1 2
4- 1 3
4- 1 3
4- 1 4
4- 1 4
4- 1 5
4- 1 5
4- 1 6
4- 1 6
4- 1 7
4- 1 8
4- 1 9
4-20
4-2 1
4-22
4-22
4-2 3
4-23
4-24
4-2 6

XENIX 2 8 6 User's Guide

CONTENTS

CHAPTER 5
vi: A VISUAL TEXT EDITOR
Introduct ion
D e monstrat ion
Basic Concepts

Entering vi
Specifying a Single File
Specifying a Series of Files

Calling a File without Leaving vi
Exit ing vi

Leaving vi Temporarily
Line· Nu mbers
The Edit ing Buffer

Writ ing Out the Edit ing Buffer
Co m mands

Repeat ing Com mands
Undoing Commands
P erfor m ing a Series of Line-Oriented Com mands

M oving in a F ile
Moving the Cursor
Scrolling

Insert ing Text
Insert ing Control Characters into Text

D elet ing Text
Copying Text

Copying Text fro m Other Files
Copy Text fro m Elsewhere in the File

M oving Text
Joining and Breaking Lines

Searching
Searching and Replacing

Substitut ing Text
M etacharacters

Backslash
P eriod
Caret
Dollar Sign
Star
Brackets
A mpersand

Solving Com mon Proble ms
Su m mary of vi Co m m ands

Table of Contents

PAGE

5 - 1
5 - 1
5-2
5-2
5-2
5-3
5-4
5-4
5-5
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-8
5-8
5-8
5-9
5-9

5- 1 0
5- 1 1
5-1 1
5 - 1 3
5-14
5 - 1 5
5 - 1 5
5 - 1 6
5 - 1 8
5-2 0
5-2 0
5-2 0
5-2 0
5-2 1
5-2 2
5-2 2
5-2 3
5-2 3
5-25

vi i

Table of Contents XENIX 2 8 6 User's Guide

CONTENTS

CHAPTER 6
mail: THE XENIX MAIL SYSTEM
Introduction
Basic Concepts

Mailboxes
Modes of Operat ion
Getting Help
Message Format
Entering and Exit ing mail
Message Headers
Com mand Syntax

Specifying Messages
Executing Shell Co m mands

Determ ining the Nu mber of the Current Message
Counting the Nu mber of Characters in a M essage
Changing Working Directories
Reading Com mands fro m a File

R e ading mail
Displaying the F irst Five Lines
Edit ing a M essage
Displaying the Next Message
L isting M essages in Chronological Order
Replying to mail
Saving mail
Deleting M essages
Undeleting M essages
Forwarding m ail
Printing mail

Send ing mail

v i i i

Composing M essages
Displaying Messages
Edit ing M essages
Edit ing Headers
Adding a F ile to a Message
Enclosing Another M essage
Saving M essages in a File
Escaping to the Shell
Escaping to mail Command Mode
Placing an Escape Character at the Beginning of a Line

Sending Network mail

PAGE

6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-4
6-4
6-5
6-5
6-5
6-5
6-5
6-6
6-7
6-7
6-8
6-8
6-8
6-8
6-9
6-9
6-9

6- 1 0
6- 1 0
6-1 1
6-1 1
6-1 1
6- 1 2
6-13
6-13
6-13
6-14
6-14
6-14
6-15

XENIX 2 8 6 User's Guide

CONTENTS

Sett ing Up Your m ail Environment: the . mailrc F ile
Sett ing Opt ions

askcc
dot
m etoo
nosave
autoprint
chron
mchron
quiet
E DITO R
VISUAL
SHELL
escape
page
record
toplines
ignore
alias

Using Advanced Features
Co m mand Line Options

Using m ail as a R e minder Service
Handling Large A mounts of mail

Quick Reference
mail F iles and Programs
Com m and Su m m ary
Compose Escape Su m mary
Option Su m mary

CHAPTER 7
be: A CALCULATOR
Introduction
Invoking be and Exit ing
Scaling Quant ities
Basic Arithm et ic Operat ions

Operators
Expressions
Registers

Advanced Features of be
Specifying Input and Output Bases
Using Funct ions
Using Subscripted Variables
Using Control Stat e ments
Using Other Language Features

Table of Contents

PAGE

6-1 5
6 - 1 5
6 - 1 6
6 - 1 6
6- 1 6
6 - 1 6
6 - 1 6
6 - 1 7
6- 1 7
6- 1 7
6 - 1 7
6 - 1 7
6 - 1 7
6 - 1 8
6 - 1 8
6- 1 8
6 - 1 8
6 - 1 8
6 - 1 9
6-1 9
6-1 9
6-2 0
6-2 0
6-2 1
6-2 1
6-2 1
6-24
6-2 6

7- 1
7- 1
7-2
7-3
7-3
7-4
7-5
7-6
7-6
7-7
7-9
7-9

7- 1 2

ix

Table of Contents

CONTENTS

Language Reference
Tokens
Expressions
Funct ion Calls
Unary Operators
Exponent iat ion Operators
Mult iplicat ive Operators
Addit ive Operators
Assign ment Operators
R elat ional Operators
Storage Classes
Stat em ents

APPENDIX A
RELATED PUBLICATIONS
Intel Publicat ions

INDEX

X

XENIX 2 8 6 User's Guide

PAGE

7-13
7-1 3
7- 1 4
7-1 5
7 - 1 6
7 - 1 6
7 - 1 6
7 - 1 7
7 - 1 7
7 - 1 7
7 - 1 8
7 - 1 8

A-1

CHAPTER 1
INTRODUCTION

Overview

This manual introduces the XENIX 286 Operat ing Syste m and explains the fundamental
concepts needed to use it effect ively. Unless otherwise noted, this manual discusses the
Basic Syste m and the Bourne shell only.

The XENIX 2 8 6 syste m is an i mproved and enhanced version of the U NIX Syste m III
fro m Bell Laboratories. It is int ended for use in schools, corporat ions, laboratories, and
small office environm ents. XENIX is well known as a productive environ ment for
software development and as a text processing e nvironm ent.

A u d ien ce

Because XENIX 2 8 6 is designed to be used in a variety of environments, users of the
syste m have a wide range of computer experience and educat ion. Inexperienced users
should read the Overview of the X EN IX 286 Operating System first and progress to more
advanced docu mentat ion. Experi enced XENIX users will very likely be able to begin
using the XENIX 2 8 6 syste m i m m ediately, using the reference manual and user's guides
as necessary.

Notation

These notational convent ions are used in this manual:

• Literal nam es are bolded where they occur in text, e .g. , /sys/include, printf,
dev_tab, EOF.

• Syntactic categories are i talicized where they occur and indicate that you must
subst itute an instance of the category, e .g. , fi lenam e.

• In examples of d ialogu e with the XENIX 2 8 6 syste m, characters e ntered by the
user are bolded.

• In syntax descript ions, opt ional i tems are enclosed in brackets ([]).

• Items that can be repeated one or more t i m es are followed by an ellipsis (•••) .

• Items that can be repeat ed zero or more t i m es are enclosed i n brackets and
followed by an ellipsis ([] •••).

• A choice between items is indicated by separating the ite ms w ith vert ical bars
< I).

1 - 1

Introduct ion XENIX 2 8 6 User's Guide

Th e XE NIX 286 Working E n vi ron m e nt

An operat ing syste m efficiently organizes and controls the resources of a computer.
These resources include m e mory, disks, line printers, terminals, and any other peripheral
devices connected to the syste m. The heart of XENIX 2 8 6 is a multiuser, mult itasking
operat ing syste m . A mult iuser syste m enables several users to use a com puter
si multaneously, thus providing lower cost in computing power per user. In a
multitasking syste m , several programs can run si multaneously, thereby increasing
productivity.

Because UNIX and XENIX have been accepted as standards for "high-end" operat ing
syste ms, a great deal of software is available for this environ m ent. In addit ion, XENIX
286 is a bridge to the MS-DOS operat ing syst e m . For syste ms that support MS-DOS,
XENIX 2 8 6 provides com mands that enable you to access MS-DOS format files and
disks. The XENIX 286 system also includes several widely praised enhance ments
developed at the University of C alifornia at Berkeley and a visual interface si m ilar to
other product ivity tool interfaces.

Other characterist ics of the XENIX 286 syste m include

• A powerful com mand language for program m ing XENIX 286 co m mands. Unlike
other interact ive com m and languages, the XENIX 2 8 6 shell is a full program m ing
language.

• Simple and consistent nam ing convent ions. Nam es can be used absolut ely, or
relative to any directory in the file syste m.

• D evice-independent input and output. Each physical device, fro m interact ive
terminals to main m e mory, is treated l ike a file, allowing unifor m file and device
input and output.

• A set of related text editors, including a full screen editor.

• Flexible text processing facil it ies. XENIX 2 8 6 includes co m mands that find and
extract patterns of text fro m files, co mpare and f ind differences between f iles,
and search through and co mpare directories. Text formatt ing, typesett ing, and
spelling-error-detection facil it ies, as well as a· facility for formatting and
typesett ing complex tables and equat ions, are also available.

• A sophist icated desk calculator program .

• Mountable and dismountable file syste ms that facilit ate add ition of flexible d isk
drives to the syste m.

• A co mplete set of flexible directory and f ile protect ions that util izes all
com binat ions of read, write, and execute access for the owner of each file or
directory, as well as for groups of users.

• Facili t ies for creating, accessing, moving, and processing files and directories in a
s imple and uniform way.

1-2

XENIX 2 8 6 User's Guide Introduct ion

Usin g This M a n u a l

This manual is organized as follows:

Chapter 1: Introduct ion
This chapter gives an introduction and overview of the XENIX 2 8 6 syst e m and this
manual.

Chapter 2: Tasks
This chapter explains how to perform basic tasks using appropriate XENI X 2 8 6
com mands.

Chapter 3: The Shell
This chapter describes use of the shell co m m and interpreter and how to write
procedures that can be executed by the shell interpreter.

Chapter 4: ed: A Line-Oriented Text Editor
This chapter explains how to use the line editor, ed.

Chapter 5 : vi: A Visual Text Editor
This chapter explains how to use the screen editor, vi.

Chapter 6 : mail: The XENIX Mail Syste m
This chapter describes the XENIX 2 8 6 mail facility and explains how t o send and
receive mail.

Chapter 7 : be: A Calculator
This chapter explains how to use be, a sophisticated calculator program.

Appendix A: Related Publicat ions
Lists Intel publications containing informat ion related to the X ENIX operat ing
syste m.

This manual does not atte mpt to give informat ion about installing, m anaging, and
maintaining the syste m, nor does it discuss docu m ent preparat ion, software
developm ent, or any of the specialized ut ilities available in other XENIX 2 86 syste m
products. Appendix A contains a l ist o f manuals relating t o these subj ects.

1-3

CHAPTER 2

TASKS

I nt rodu ction

This chapter is designed to fam iliarize you with some basic XENIX com mands and to
show you how to perform such co m mon tasks as logging in and out, manipulat ing files
and directories, and processing data. The XENIX 286 Reference Manual contains a
detailed entry for each of the co m mands discussed in this chapter. The Overview of the
Xenix 286 Operating System contains a detailed description of the XENI X file syste m
discussed i n this chapter.

N OTE

This chapter m akes reference to a DELETE key on your terminal. If your
term inal does not have a DEL ETE key and you do not know which key on your
term inal corresponds to a DELETE key, get help fro m the syste m
administrator.

Logg i n g I n

Before you can log in t o the syst e m, you must b e given a system account, your nam e
must be added t o the user list, and you must b e given a password and a mailbox. See
your syst e m adm inistrator to get an account. This section assu m es your account has
already been set up.

Norm ally, the syste m sits idle and the pro mpt "login:" is displayed on the terminal
screen. If your screen is blank or displays "garbage," press the RETU R N key.

When the login pro mpt appears, follow these steps:

1. Type your login name, then press RETU RN. If you make a m istake, press the
B ACKSPACE key to erase character by character. After you press R ETU RN, the
word "Password:" appears on your screen.

2. Type your password carefully, then press RETU RN. The letters do not appear on
the screen as you type, and the cursor does not m ove. If you make a m istake,
press RETU RN to restart the login procedure.

If you have typed your login name and password correctly, a pro mpt or a menu appears
on the screen. The pro mpt tells you that the XENIX syste m is ready to accept
com mands fro m the keyboard. When you log in, you are placed in an area called the
login, or hom e, directory.

2-1

Tasks XENIX 2 8 6 User's Guide

If you m ake a m istake while logging in, the syste m d isplays the m essage

Login incorrect
login:

If you get this m essage, log in again. You must type all the letters of your user name
and password correctly before you can access the system.

Logg i n g Out

The logout process depends on the syst e m interface, called a shell in XENIX syste ms,
that was activated when you logged in to the syste m . The standard shell is the Bourne
shell. The XENIX syste m also has t wo other shells, the C shell and the Visual shell. You
might be using one of these or a custom shell.

To log out of the syste m you must be in your login shell (act ivated when you logged in).
If your login shell is a menu shell, there should be a menu select ion or key to exit or
quit. If your login shell is a prompting shell, type

exit

and press R ETU R N to log out . If another pro mpt appears after you enter exit, it m eans
that the current shell was not your login shell. Continue entering exit unt il the prompt
disappears and the login message is displayed.

E nteri n g a nd E ra sing a Co m ma n d Lin e

Entering a com mand line consists o f typing characters a t a term inal, then pressing
RETU RN. When you press R ETU RN, the co mputer reads the com mand line and
executes com mands specified on that line. You may type as many co m mand lines as you
want without waiting for the m to execute, because XENIX supports type-ahead of
characters.

When ent ering com mands, typing errors are bound to occur. To erase the errors
character by character, use the BACKSPACE key.

C h a n g i n g Yo u r Password

To prevent unauthorized users fro m gaining access to the syste m, each authorized user
must have a password. When first given an account on a XENIX syste m, you are
assigned a password by the syste m ad m inistrator. Som e XENIX systems require you to
change your password at regular intervals. Whether yours does or not, it is a good idea
to change your password regularly to maintain syste m security.

2-2

XENIX 286 User's Guide

Use the passwd com mand to change your password. Follow these steps:

1 . Type

passwd

and press RETU RN. The following m essage appears:

Changing password for user name
Old password:

Tasks

2. C arefully type your old password and press RETU R N. Your password is not echoed
on the screen. If you make a mistake, press RETU RN. The m essage "Sorry"
appears, then the syste m pro mpt. Begin again with step 1 .

3. When you have typed your old password, this m essage appears:

Enter new password (minimum of 5 characters)
Please use a combination of upper and lowercase letters and numbers
New password:

Type in your new password and press RETU RN.

4. The m essage

Re-enter new password:

appears. Type your new password and press RETURN again. If you make a
m istake, press RETURN. The m essage

They don't match; try again.
New password:

appears, and you rnust begin again with step 3. When you have co mpleted the
procedure, the system pro mpt appears.

M a n i p u latin g Files

F ile manipulat ion (e .g. , creat ing, displaying, co mbining, copying, moving, nam ing, and
deleting files) is one of the most important capabilities an operating syste m provides.
The XENI X com mands that perform these funct ions are described in the following
sect ions.

Creati n g a F i le

To create a file and place t ext in i t , use one of the text editors described in Chapters 4
and 5. After you save the file and exit the text editor, use the lc co m m and to see the
file nam e listed in the directory.

2-3

Tasks XENIX 2 8 6 User's Guide

D isplayin g F i le Contents

The more co m mand displays the contents of a file one screen at a t i m e and has the form

more options fil enam e

more i s useful for looking at a file when you don't want t o make changes to it. For
example, to display the contents of the file memos, type

more memos

You can also invoke more with a nu m ber of opt ions that control where the d isplay begins
and how the file is displayed. These opt ions include

+linenumber

+/text

-c

-r

Begins the display at the line in the file designated by linenumber.

Begins the display t wo lines before text, where text is a word or
nu m ber in the file. If text is two or more words, they must be enclosed
in double quotation marks.

Redraws the screen instead of scrolling.

Displays control characters, which are normally ignored by more.

For example, to begin looking at the file memo at the first occurrence of the words "net
gain" type

more + /" net ga i n " memo

If the file is more than one screen long, the percentage of the file that remains is
displayed on the bottom line of the screen. To look at more of the file, use the
following scrolling co m mands:

R ETU RN Scrolls down one line.

d Scrolls down one-half screen.

SPACE BAR Scrolls down one full screen.

nSPACE BAR Scrolls down n l ines.

Repeats the previous co m mand.

CONTROL-S Stops screen output unt il another key is pressed.

You cannot scroll backward, toward the beginning of the file.

2-4

XENIX 286 User's Guide Tasks

You can search forward for patterns in more with the slash (/) com mand. For example,
to search for the pattern "net gain", type

/net gai n

and press RETU RN. The message

... skipping

appears, XENIX displays the f ile fro m two lines before the line where "net gain" is, and
the file scrolls up fro m the bottom of the screen.

If you use more to look at a file and decide you want to change the f i le , you can invoke
the vi editor by typing

v

and pressing RETU RN. The file must be large enough to requ ire more than one screen
to display i t , otherwise more exits and the editor will not open the d isplayed file.

See Chapter 5, "vi : A Visual Text Editor," for information on using vi.

more quits automat ically when it reaches the end of a file. To exit more before the end
of a file, type

q

The co m mands head and tail display the first and last ten lines of a file respectively.
They are useful for checking the contents of a part icular file. For exa mple, to look at
the first ten lines of the f ile memo, type

head memo

You can also specify how many l ines the head and tail co m m ands d isplay. For exa mple,
typing

ta i l-4 memo

displays the last four lines of memo.

Like more, cat also displays the contents of a file, but cat scrolls to the end of the file
unless you press CONTROL-S to stop it. Press another key to continue the scrol ling. If
you wish to abort the display before the end of the file, press the DELETE key. For
example, to display the contents of filel, type

cat fi le1

To display the contents of filel, file2, and file3, type

cat f i le1 file2 f i l e3

2-5

Tasks XENIX 286 User's G u ide

Combi n i n g F i les

The cat co m mand is frequently used to co mbine files into so m e other new file. The
greater-than sign (>) is used to redirect the output of cat to the new file. Thus, to
combine the two files named filel and file2 in a new file nam ed bigfile, type

cat f i le1 fi l e2 > bigfi l e

You can also use cat to append one f i le to the end of another file. For example, to
append file 1 to file2, type

cat fi l e 1 > > fi l e2

Note that after appending filel to file2, filel st ill exists as a separat e f ile.

M ovi n g a Fi l e

The m v com mand moves a file into another file i n the same directory, o r into a file in
another directory. For exa mple, to m ove a file na med text to a new file nam ed book,
type

mv text book

After this move is co mplet ed, no file named text exists in the working directory,
because the file has been renamed book.

To move a file into another directory, give the name of the dest inat ion directory as the
final name in the mv co m mand. For instance, to move filel and file2 into the directory
nam ed /t mp, type

mv f i le 1 f i l e2 /tmp

The moved files are no longer i n your working directory but are now i n the directory
/tmp.

The mv com mand always checks to see if the last argu m ent is the nam e of a directory
and, if so, all files designat ed are moved into that directory.

Renaming a F i le

To rename a file, s imply move it to a file with the new name; the old name of the file is
auto m at ically re moved. Thus, to renam e the file anon to johndoe, type

mv anon johndoe

2-6

XENIX 2 8 6 User's Guide Tasks

Co pying a Fi le

The cp com mand is used for copying and has two for ms: one to copy files into a
directory and one to copy a file to another file. Thus, to copy three files into an
exist ing directory named filedir, type

cp f i le1 f i le2 f i le3 f i led i r

The original versions of the three f iles st ill reside in the working directory, and the file
names are identical in the two directories. L ike mv, cp always checks to see i f the last
argu ment in the co m m and line is the name of a d irectory and, if so, all designated files
are copied into that directory.

To create two copies of a file in your working directory, you must renam e the copy. To
do this, cp can be invoked as follows:

cp f i le f i l ecopy

After the above co m mand has executed, two files with identical cont ents reside in the
working d irectory. To learn how to copy directories, see "Copying a Directory" later in
this chapt er.

Deleti ng a F i le

To delete or re move files fro m your working directory, type

rm filename

Using the com mand

rm - i filename

causes XENIX to display the file name and wait for a yes or no response. To re move it ,
type

y

for "yes" and press RETU R N. To leave it , type

n

for "no" and press RETU RN. This co m m and is use ful when cleaning up a directory that
contains many files.

2-7

Tasks XENIX 286 User's Guide

Fi n d in g a F i le

The find com mand searches for a specified f i le and i s useful for locat ing files with
ident ical na mes or for finding a file when you don't know which directory i t is in. The
com mand has the form

find pathnam e -name filename -print

where pathnam e is the path nam e of the d irectory you want to search and filenam e is
the name of the file you are searching for. find searches recursively, that is, it starts at
the named directory and searches downward through all files and subdirectories under
the directory spec ified in pathnam e.

The -name option indicates that you are searching for a file w ith a specific file name.
(Other search condit ions used with find are described in the XENIX 286 Reference
Manual.)

The -print option d isplays the path na mes of all files that match filenam e. By using the
output redirect ion sy mbol (>), you can direct the output of find to a file rather than to
the screen.

For example, the following com mand finds every file nam ed memo in the directory
/usr/joe and all its subdirectories:

find /usr/joe -name memo -pri nt

The output might look like this:

/usr/joe/memo
/usr/joe/accounts/memo
/usr/joe/meeti ngs/memo
/usr/joe/mail/memo

Lin ki n g F i les

The In co m mand links two files in different directories so that when a f i le is changed in
one directory, it is also changed in the other directory. This can be useful if several
users need to share informat ion, or if you want a file to appear in more than one
directory. This co m mand has the form

ln file newfile

where fi le is the original file, and newfile is the new, l inked f i le . For example, the
follow ing co m mand l inks memos in /usr/joe to joememos in usr/mary:

I n /us r/joe/memos /usr/mary/joememos

Whenever usr/joe/memos is updated, the file /usr/mary/joememos is also changed.

When you link files, a file nam e is associated with an inode. An inode is a nu mber that
spec if ies a unique set of data on the d isk. One or more f ile names may be associated
with this data. Thus, the above co m mand assures that the files /usr/joe/memos and
/usr/mary/joememos have identical cont ents.

2-8

XENIX 286 User's Guide

Three rules to re me mber about l inking files:

1 . Linking large sets o f files to other parallel files can save disk space.

Tasks

2 . L inking files used b y more than one person i s risky, because anyone can alter the
file and thus affect the contents of all files l inked to it.

3 . Removing a file fro m a directory does not re move other links t o the file. Thus the
file is not truly deleted fro m the syst e m. For example, if you delete a file that has
four links, three l inks remain. For more infor mat ion about linking files, see ln in
the XENIX 286 Reference Manual.

M a n i p u latin g Directo ries

Because of the hierarchical organizadon of its file syste m , XENIX has many directories
and subdirectories. The file syste m contains directories for each user. Within your user
d irectory you can create, delete, and copy directories. Com mands that facilitate
d irectory manipulat ion are described in the following sect ions. The Overview of the
Xenix 286 Operating System contains a detailed descript ion of the XENIX file syste m.

List in g D i rectory Conte nts

You can list the contents of a directory with the lc co m mand. This co m mand sorts and
lists the nam es of files and subdirectories in a given directory in colu m ns. If no
d irectory name is given, lc lists the contents of the working directory. The lc co m m and
has the form

lc options directorynam e

For example, to list the contents of the directory work, type

lc work

Your output might look like this:

accounts meetings notes mail memos todo

The following options control the sort order and the informat ion displayed by lc:

-a Lists all files in the directory, including the "hidden" files (file nam es that begin
w ith a dot, such as .profile and .mailrc).

-r Lists names in reverse alphabetical order.

-t Lists names in order of last modificat ion, the latest (most recently modified) first.
When used with the -r opt ion, lists the oldest first.

-R Lists all files and d irectories in the current directory, plus each file and directory
below the current one. The "R" stands for "recursive."

-F Marks directories w ith a slash{/) and executable files with an asterisk (*).

2 -9

Tasks XENIX 2 8 6 User's Guide

-1 G ives an expanded list ing of a directory, producing an output that looks s imilar to
the fallowing:

total 5 0 1
drwxr-x--- 2 boris grp1 2 7 2 Apr 5 14 :33 d ir1
drwxr-x--- 2 enid grp1 2 7 2 Apr 5 14: 3 3 d ir2
drwxr-x--- 2 iris grp1 5 92 Apr 6 1 1: 1 2 d ir3
-rw-r----- 1 olaf grp2 282 Apr 7 1 5 : 1 1 f ile 1
-rw-r----- 1 olaf grp2 7 2 Apr 7 1 3 : 5 0 f ile2
-rw-r----- 1 olaf grp2 1 4 0 3 Apr 1 13 :22 file3

Reading from left to right, the information given for each file or d irectory
includes

• Permissions

• Nu mber of links

• Owner

• Group

• Size in bytes

• Date and t i me of last modificat ion

• File or directory name

The informat ion in this l ist ing and how to change permissions are d iscussed in the
sect ion "Using File and Directory Perm issions" later in this chapter.

Creati n g a D i rectory

To create a subdirectory in your working directory, use the mkdir com m and. For
example, to create a new directory named phonenumbers, type

mkd i r phonenumbers

After this co m m and has been executed, a new empty d irectory will exist in your working
d irectory.

Removin g a D i rectory

To remove a directory located in your working directory, use the rmdir com mand. For
instance, to re move the directory named phonenumbers fro m the current directory, type

rmd i r phonenumbers

The directory phonenumbers must be e mpty before it can be re moved; this prevents
acc idental delet ions of files and directories.

2 - 1 0

XENIX 286 User's Guide Tasks

Ren am in g D i rectories

The mv co m mand is used to renam e directories. To renam e the directory little.dir in
your current directory to big.dir, type

mv l ittl e .d i r b ig .d i r

This is a s imple renam ing operat ion; no files are moved. The directory big.dir must not
already exist or XENIX will give you an error m essage.

Copying D i rectories

The copy com mand copies directories.

CAUTI O N

D o not att e mpt to copy the root, or /, directory because you are request ing
that the ent ire file syste m be copied and it is unlikely that there is enough
disk space for two copies of the entire file system.

This com mand has the form

copy options olddirectory newdirectory

To copy all the files in the directory /usr/joe/memos into /usr/joe/notes, enter

copy /usr/joe/memos /usr/joe/notes

The copy co m m and has the following opt ions:

-1 Links the copied files to the original.

-m G ives the copied files the sa me modificat ion dates as the original files.

-r Copies all the files and subdirectories under the nam ed directory (recursively}.

To copy all the files and subdirectories in the directory /usr/joe/accts/30days into
/usr/joe/accts/overdue, ent er

copy - r /usr/joe/accts/30days /usr/joe/accts/overdue

and the directory 30days beco m es the directory.

2 - 1 1

Tasks XENIX 2 8 6 User's Guide

M ovin g in t h e File System

When using t h e XENIX syste m, i t helps to i magine a large tree structure o f files and
directories. Each directory should be thought of as a place that you can move into or
out of. At all t i m es you are "so m e place" in the tree structure. This place is called
your working or current directory. The com m ands used to find out where you are and to
m ove around in the tree structure are discussed in the following sect ions. The Overview
of the Xenix 286 Operating System contains a detailed description of the XENIX file
system.

Where You Are

All com mands are executed relat ive to the working directory. You can find out the
name of this directory by using the pwd com mand, which stands for "print working
directory. " For instance, if your working directory is /usr/joe, when you type

pwd

you will get the output

/usr/joe

You should always think of yourself as residing "in" your working directory.

C ha n g i n g D i rectories

To move to any other directory in the syste m , use the cd ("change directory") com mand
and specify that directory as an argu m ent to cd. For example, the co m mand

cd /usr

moves you to the /usr directory.

To ascend the directory tree structure one level, type

cd ..

For exam ple, if you are in the directory /usr/joe/work and issue the above com mand,
you would move from /usr/joe/work to /usr/joe. Si milarly, the co m mand ·

cd .. / . .

moves you fro m /usr/joe/work to /usr, ascending two levels in the structure.

To return to your hom e directory from anywhere, type

cd

2-12

XENIX 286 User's Guide Tasks

U sin g File a nd Di recto ry Permissio n s

The XENIX syste m enables the owner t o restrict access t o files and directories, l imit ing
who can read, write, and execute files owned by hi m or her. To determ ine the
perm issions associated with a given file or directory, use the 1 co m m and. The output
fro m the 1 co m m and should look so mething like this:

total 5 0 1
drwxr-x--- 2 boris grp1 272 Apr 5 14 :33 d ir1
drwxr-x--- 2 enid grp1 272 Apr 5 14 :33 dir2
drwxr-x--- 2 iris grp1 592 Apr 6 1 1 : 1 2 dir3
-rw-r----- 1 olaf grp2 282 Apr 7 1 5 : 1 1 file 1
-rw-r----- 1 olaf grp2 72 Apr 7 1 3 : 5 0 file2
-rw-r----- 1 olaf grp2 1403 Apr 1 1 3 : 2 2 file3

P er m issions are indicated by the first ten characters of the output. The perm iss ions for
the first file in the above list are

drwxr-x---

The first character indicates the type of file and must be one of the following:

Indicates an ordinary file.

d Indicates a directory.

c Indicates a character special device such as a line printer or term inal.

b Indicat es a block special d evice such as a hard or flexible disk.

n Indicates a name special file (i .e. , a semaphore used for controlling access to som e
resource).

s Indicates a shared data file.

p Indicates a named pipe.

Fro m left to right, the next nine characters are interpreted as three sets of three
perm issions each. Each set of three indicates the following perm issions:

• Owner perm issions

• Group perm issions

• All other user permissions

2- 1 3

Tasks XENIX 2 86 User's Guide

W ithin each set, the three characters indicate permission to read, write, and execute
the file as a com mand respectively. For a directory, "execute" per mission means
perm ission to search the directory for files or subdirectories.

O rdinary file perm issions have the following m eanings:

r read perm ission

w write perm ission

x execute perm ission

no perm ission

F or directories, per m issions have the following m eanings:

r F iles may be listed in the directory; the directory must have execute per mission.

w Files may be created or deleted in the directory; as with "r", the directory itself
must also have execute permission.

x The directory may be searched. A directory must have execute perm ission before
you can move to it, access a file within it, or l ist the files in it.

The following are so me typical directory perm ission combinations:

d---------

drwx------

drwxr-x---

drwx--x--x

No access at all. This mode denies directory access to all users except
root (a spec ial account controlled by the syste m ad ministrator.

Allows access by the owner to use lc, create files, delete files, access
files (subj ect to file per missions), and use cd. This is the typical
per m ission for the owner of a directory.

Allows access by me mbers of the group to use lc and access files
subj ect to file perm issions. Group members can use cd to move to this
directory but cannot create or delete files in it. This is the typical
perm ission an owner gives to others who need access to files in his
directory.

W ith these permission sett ings, users other than the owner cannot use
lc but can use cd to change to the directory. Other users can only
access a file within this directory by its exact name; they cannot
search for a file by using metacharacters. Files cannot be created or
deleted in the directory by anyone except the owner. This mode is
rarely used, but it can be useful if you want to give so meone access to
a specific file in a directory without perm itt ing access to other files in
the same directory.

This chapter discusses ordinary files, executable files, and directories only. For
infor mat ion about other types of files, see Is in the XENIX 286 Reference Manual.

2 - 1 4

XENIX 286 User's Guide Tasks

Chang ing Permissions

The chmod co m mand changes the read, write, execute, and search perm issions o f a file
or directory. This co m mand is useful if you have created a file in one mode, but want to
give others perm ission to read, write, or execute it. The chmod co m m and has the form

chmod instruction filenam e

The instruction segment of the co m m and indicates which permissions you want to
change for which class of users. There are three classes of users, and they are indicated
as follows:

u User, the owner of the file or directory

g Group, the group the owner of the file belongs to

o Other, all users of the syste m

All three classes o f users may b e designated by using the character "a" for "all".

For example, assu m e filet exists with the following perm issions:

-rw-r-----

The owner of this file has read and write perm ission, group m e m bers have read
perm ission, and all others have no access.
To give filet execute perm ission for all classes of users, type

chmod a+x filet

In the instruct ion segm ent of the co m m and (a+x), the "a" stands for "all classes of users"
and the "x" stands for execute perm iss ion. The resulting per missions are

-rwxr-x--x

To re move the owner's write and execute perm iss ions and the group's execute per mission
on the above file, type

chmod ug-wx f i le1

Chang ing D i rectory Sea rch Permiss ions

Directories also have an "x" (execute) per m ission. Since directories cannot be executed
however, this attribute signifies search perm ission. If execute permission is denied to a
user, then that user cannot even list the names of the files in the directory.

2 - 1 5

Tasks XENIX 2 8 6 User's Gu ide

For example, the directory dirl has the following perm issions:

drwxr-xr-x

To change perm issions so that the group of "other" users can't exam ine dirl, type

chmod o-rx d i r1

The new attributes for dirl are now

drwxr-x---

Processi n g I nfo rmation

The following sect ions describe a nu mber of XENIX ut ilit ies available for processing
data.

Compari n g F i les

To compare two text files, use the diff com mand to print out those lines that differ
between specified files. For example, suppose that a file named men has the contents

Now is the t i me for all good men to
Come to the aid of their party.

and that a file named women has the following contents:

Now is the t i me for all good wo men to
Come to the aid of their party.

The co m mand

d iff men women

produces the following results:

1c1
< Now is the time for all good men to

> Now is the time for all good women to

The 1 c 1 means that line 1 in the file men and line 1 in the file women must be changed
to m ake the files the same. The second and fourth lines of the diff output are the l ines
that are different in the two files. The < indicates the line in the file men that is
different fro m any line in the file women. The > indicates the l ine in the file women
that is different fro m any line in the file men. The ---separates the lines fro m the file
men fro m the lines fro m the file women.

2 - 1 6

XENIX 2 8 6 User's Guide Tasks

Ech o i n g Arg u ments

The echo com mand echoes argu ments to the standard output. For example, typing

echo he l lo

produces

he l lo

on the screen. To output several lines of text, surround the echoed argu m ent in double
quotat ion marks and press RETU R N between lines. A secondary prompt (>) will appear
until you type the final double quotation mark. For example, type

echo " Now is the time
For a l l good men
To come to the
Aid of the i r pa rty. "

This produces the output

Now is the time
For all good men
To come to the
Aid of their party.

Sorti n g a Fi le

One of the most useful file processing co m m ands is sort. By default, sort sorts the lines
of a file according to the ASCII collat ing sequence (i .e. , it alphabetizes the m). For
example, to sort a file nam ed phonelist, type

sort phonel i st

In the above case, the sorted contents of the file are displayed on the screen. To create
a sorted version of phonelist named phonesort, type

sort phonel i st > phonesort
Note that sort is useful for sorting the output fro m other co m mands. For example, to
sort the output from execution of a who com mand, type

who I sort > whosort

This com m and takes the output fro m who, sorts it, and then sends the sorted output to
the file whosort.

2 - 1 7

Tasks XENIX 2 86 User's Guide

Search i n g for a Pattern i n a F i le

The grep (global search for regular expressions and print) co m mand selects and extracts
lines fro m a file, print ing only those lines that match a given pattern. For example, to
print out all lines in a file containing the word "tty3 8", type

grep 'tty38' filename

where filename is the nam e of the file that you want searched.

In general, you should always enclose the pattern you are searching for in single
quotation marks (') so that special characters are not expanded unexpectedly by the
shell.

As another example, assu m e that you have a file na med phonelist that contains a nam e
followed b y a phone number o n each line. Assume also that there are several thousand
lines in this list. You can use grep to find the phone nu mber of so m eone nam ed Joe,
whose phone nu m ber prefix is 822 , as follows:

grep 'joe' phonelist I grep '822-' > joes.number

grep finds all occurrences of lines containing the word "joe" in the file phonelist. The
output fro m this co m mand is then filtered through another grep co m m and, which
searches for an "82 2-" prefix, thus re moving any unwanted Joes. Finally, assu ming that
a unique phone nu m ber for Joe exists with the "82 2-" prefix, that name and nu m ber are
placed in the file joes.number.

For more infor mation about grep, its related forms fgrep and egrep, and the types of
patterns (regular expressions) it can be used to search for, see grep in the XENIX 286
Reference Manual.

Cou nti n g Lines, Words, a n d Characters

we ("word count") is a co m mand for counting lines, words, and characte�s in a file; all
three counts are reported by default. For example, to count the nu mber/of lines, words,
and charact ers in the file textfile, type

we textfile

Typical output describing lines, words, and characters might be

4432 18188 97808 textfile

2-18

XENIX 286 User's Guide Tasks

To specify a count of characters, words, or lines only, you must use an appropriate
opt ion. To illustrate, exa m ine the follo wing three com mands and the output produced
by each:

we -e textf i l e
97808 text fi l e

we -w textf i l e
1 8 1 88 text fi l e

we -1 textfi l e
4432 text fi l e

The first example prints out the nu mber o f characters in textfile, the second prints out
the nu mber of words, and the third prints out the nu mber of lines.

Co ntrol lin g Processes

In XENIX, several processes can run at the same t i me. For example, you m ay run the
sort program on a file in the "background" and edit another file in the "foreground"
while the sort program is running. Foreground processes are processes that you directly
control fro m the keyboard. Processes you can init iate but otherwise have little control
over are called background processes. At any one t ime you can have only one
foreground process executing, but multiple background processes may execute
si multaneously. Background processes may be run at any t ime; you must be logged in to
initiat e a background process, but once the process has started running you may log out.

Occasionally, you may need to know who is on the system or what processes are running
before you can perform a task; this sect ion includes procedures to deter m ine this
inform at ion.

Determ i n i n g Who Is on th e System

The who co m mand lists the names, term inal line nu mbers, and login t i m es of all users
currently logged on to the system. For example, type

who

The who com m and produces output si milar to the following:

arno ld tty02 Apr 7 1 0 : 02
daphne tty2 1 Apr 7 07 : 47
e l l i ot tty23 Apr 7 1 4 : 2 1
e l l en tty25 Apr 7 08 : 36
gus tty26 Apr 7 09 : 55
adri an tty28 Apr 7 1 4 : 2 1

2- 1 9

Tasks XENIX 286 User's Guide

Determin i n g What Processes Are R u n n i n g

Because com mands can b e placed i n the background for processing, i t i s not always
obvious which processes you are responsible for. The ps com m and stands for "process
status" and displays inform ation about currently running processes associated w ith your
term inal. For instance, the output from a ps co m m and m ight look like this:

PI D
3459
483 1
5 1 85

TTY
c3
c3
c3

TI M E
0 : 1 5
1 : 52
0 : 00

CM D
-sh
cc program.s
ps

The PID colu mn gives a unique Process IDent ificat ion nu mber that can be used to kill a
particular process. The TTY colu mn shows the term inal that the process is associated
with. The TIM E colu mn shows the cu mulative execution t ime for the process.

To find out all the processes running on the syst e m , use the -e option:

ps -e

To find out about the processes running on another t erminal, use the -t opt ion and
specify the term inal. For exa mple, to find out what processes are associated with
ter m inal c3 , type

ps -tc3

Placi n g a Process in the B ackg round

Norm ally, co m mands sent fro m the keyboard are executed i n strict sequence; one
co m mand must finish executing before the next can begin. These are called foreground
processes. A background process, in contrast, need not finish executing before you give
the next co m mand. Background com mands are especially useful for co m m ands that m ay
take a long t i m e to complete.

To place a process in the background, type an ampersand (&) at the end of the co m m and.
For exam ple, to count the nu m ber of words in several large files while si multaneously
cont inuing with whatever else you have to do, type

we f i l e 1 f i le2 f i l e3 >count&

The nu mber of the process is displayed on the screen and output is collected in the file
count. If output were not put in count, it would appear on the screen at unpredictable
t i m es as you worked.

When processes are placed in the background, you have no control of the m as they
execute. For instance, press ing the DELETE key does not abort a background process.
Instead, you must use the kill com mand described in the following sect ion.

2-2 0

XENIX 2 86 User's Guide Tasks

K i l l i n g a Process

To stop execution of a foreground process, press the DELETE key. This kills whatever
foreground com mand is currently running. By using the ps co m m and, you can deter mine
the PID nu mber of all foreground and background processes that you have running and
then selectively kill any processe that you by using the the kill co m m and and the process
ident ification nu mber (PID). To use the kill com m and in this way, first invoke the ps
co m m and and determ ine PID nu mbers. Select the processes you wish to kill, not e the
PID nu mber, and issue the kill co m mand by using the following for mat:

k i l l PID

If a subsequent ps shows that the process is still alive, use the -9 opt ion in the follo wing
for mat for a sure kill:

k i l l -9 PID

K illing a process associated with the vi editor may leave the term inal in a strange mode.
Also, te mporary files nor mally created when a command starts and deleted when the
co m m and finishes m ay be left in the directory after a kill co m m and. Temporary files
are nor mally kept in the directory /tmp. This directory should be checked periodically
and old files deleted.

U sin g t h e Lin e Prin ter

The follow ing sections describe the co m mands to help you use a line printer effect ively
and effic iently.

Send i n g a Fi le to the Li ne Printer

One of the most co m mon operations that you will want to perfor m is print ing files on
the line printer. The most straightforward method for doing this is to type

I pr filename

for a single file, or

l pr filename 1 filename2 filename3

for mult iple files. Other com mon uses of lpr involve pipes. For exa mple, to paginate
and print a file of raw text, type

pr textf i le I l pr

The pr {print to screen) and lpr {print to line printer) co m m ands are very often used
together. As another exa mple, to sort, paginate, and print a file, type

sort datafi l e I pr I l pr

2-2 1

Tasks XENIX 286 User's Guide

Getti n g Li ne Pr inter I nformation

At t imes it m ay be necessary to know the status of your print requests. You c an view
this inform ation by using the lpq com mand. Type

l pq

and press R ETU RN.

Co m m u n icat i n g with Other Users

Because XENIX supports mult iple users, com municating with other users is easy and
convenient. The various com municat ions facilities are described in the following
sect ions.

Send i n g ma i l

The XENIX mail program i s a syst e m wide facility that enables syste m users t o send and
receive mail. To send mail to another user on the system, type

ma i l username

where usernam e is the name of any syste m user. You may be asked to enter a subject
for the message. If so type a brief (less than one line) subject and press R ETURN.
Enter the t ext of the message you want to send. Term inate text entry and send the
m essage by typing a CONTROL-D on a blank line at the end of the message.

A co mplete mail session m ight go like this:

mai l joe
There wi l l be a meeti ng at 2 :00 today to revi ew recent developments with the new system.
CONTROl-D

Note that your XENIX syste m m ight ask for a subj ect before you enter the message.

For pract ice, send m ail to yourself. {This isn't as strange as it might sound-- m ail to
yourself is a handy re m inder mechanism.) You can also send a previously prepared
letter, and you can send m ail to a nu mber of people all at once. For more det ails, see
Chapter 6 , " mail: The XENIX Mail Syste m," and the mail entry in the XENIX 286
R eference Manual.

2-2 2

XENIX 286 User's Guide Tasks

Receiving ma i l

When you log in, you m ay so met imes get the message

you have m a i l

T o read your m ail, type

mai l

A heading for each m essage is then displayed. To read the messages, press RETU R N.
The syste m displays one message at a t i m e; the most recent m essage is displayed first.
After reading each m essage, press R ETU R N again to read the next m essage.

Aft er each message is displayed, mail waits for you to tell it what to do with the
m essage. The two basic responses are d, which deletes the message, and RETU RN,
which stores the m essage in your mbox file or in your syst em mailbox, depending on how
you exit mail. To exit mail, type q for "quit", exit, or CONTRO L-D. Other responses
are described in Chapter 6 of this manual and in the XENIX 286 Reference Manual under
mail.

Writin g to a Termina l

T o write directly t o another user's terminal, use the write co m m and. For example, to
write to Joe's term inal, type

write joe

and press R ETU R N. If you get the reponse "perm ission denied", it m eans that joe has
used the mesg co m m and to deny other users access to his term inal. Otherwise, after
you have executed the co m mand by pressing R ETU RN, each subsequent line that you
type is displayed both on your screen and on Joe's. When the message appears on Joe's
screen, it is m ixed with any other text or fi les currently being displayed, but the
m essage does not affect the file itself. To term inate writ ing to Joe, enter a
CONTROL-D alone on a line. The procedure for a two-way write is for each party to
end each m essage with a dist inct ive signal, norm ally (o) for "over"; when a conversat ion
is about to be term inated, use the signal (oo) for "over and out" .

2-23

Tasks XENIX 286 User's Guide

U sin g the System C lock a n d Ca len d a r

Several XENIX com m ands will tell you the date and t ime or display a calendar for any
month or year you choose. The following sections explain these com m ands.

Fin d i n g Out the Date and Time

To display the t i me and date, type

date

Disp lay ing a Ca lendar

The cal co m m and displays the calendar o f any month o r year you specify and has the
for m

cal month year

For example, to d isplay a calendar for March 1 9 5 2 , type

ca l 3 1 9 52

The month m ay be expressed as a digit or as a month name. If you decide to use the
specific nam e rather than a digit, you may abbreviate the month, using standard three
letter abbreviations. To display the calendar for an ent ire year, leave out the month.
The year must be expressed in full; the co m mand cal 84 displays the calendar for the
year 84, not 1 9 84.

2-24

XENIX 2 86 User's Guide Tasks

U sin g t h e A uto m atic Remin der Service

An automatic re m inder service is available for all XENIX syste m users. You can use the
service by creating a file named calendar in your home or login directory. Each line in
the file should have the following for m:

date text

Where date must be so m e for m of month followed by day (e.g. Sep 7, Sept. 7, September
7 , 9/7) and text can be any combination of characters. A typical calendar file might look
like this:

8/ 1 6 Status Reports Due Today
9/20 Revi ew meeti ng at 2 : 00 in conference room 200
9/ 1 Karen's b i rthday
1 0/3 Li cense renewa l
8/22 Pack ca m p i ng gear for th i s weekend
9/ 1 6 Tri p and expense reports a re due

Each day your calendar file is exam ined and all of the lines whose dates m atch the
current syste m date are placed in a message and m ailed to you.

If you w ant to display the lines in your calendar file whose dates match the current
syst e m date, type

cal endar

and press RETU RN.

2-2 5

Tasks XENIX 2 8 6 User's Guide

Ca lcu latin g

The be com mand invokes an interact ive desk calculator that can be used as if it were a
hand-held calculator. A pract ice session with be is shown below. While be does allow
you to enter co m ments in the form /* t ext */, it is not necessary to type the m in if you
are going to try the operat ions shown below. If you make a m istake typing something
while in be, use the BAC KSPACE key to erase character by character.

!* Th is is a comment. be wi l l not attempt to process anyth ing enclosed l i ke this comment. *I
I* Be su re to enter "sca l e = 0 " , otherwise the resu lts wi l l d iffer from those shown here. *I

sca le = 0
1 23 .456789 + 987.65432 1 I* Add and output *I
1 1 1 1 . 1 1 1 1 1 0
9.0000000 - 9.0000001 I* Subtract and output *I
-.000000 1
6418 I* Div ide and output *I
8
1 . 1 2345678934 * 2 .3 !* Multi p ly and output; note precis ion *I
2 . 5839506 1 548
1 9 % 4 I* Fi nd remainder *I
3
3 "4 I* Exponentiat ion *I
8 1
211 * 2 I* Note precedence *I
4
21(1 *2) I* Note precedence aga in *I
1
x = 46. 5 I* Ass ign va l ue to x *I
y = 52. 5 I* Ass ign va l ue to y *I
x + y + 1 .0000 I* Add and output *I
1 00.0000
abase = 16 I* Set hex output base *I
1 5 I* Convert to hex *I
F
1 6 I * Convert to hex *I
1 0
64 I* Convert to hex *I
40
255 I* Convert to hex *I
FF
256 I* Convert to hex *I
1 00
51 2 !* Convert to hex *I
200

q uit I* Must type whole word *I

F or more infor mation, see Chapter 7, "be: A Calculator."

2-26

CHAPTER 3

THE SHELL

I ntroduction

W h e n first logging into XENIX, you com municate with the shell com mand interpreter,
sh. This interpreter is a XENIX program that supports a very powerful co m mand
langu age. Each invocation of this interpreter is called a shell, and each shell has one
funct ion: to read and execute co mmands from the user.

Because the shell provides users with a high-level language to co m municate w ith the
operating syste m , XENIX can perform complex tasks not possible with less sophist icated
operating syste ms. Com mands that would nor mally be written in a traditional
program ming language can be written with just a few lines in a shell procedure. In other
operating syste ms, co m mands are executed in strict sequence. W ith XENIX and the
shell, co mmands can be

• Combined to form new co mmands

• Passed positional parameters

• Added or renamed by the user

• Executed within loops or executed conditionally

• Created for local execution without conflict with other user com mands

• Executed in the background without interrupting a session at a terminal

Furthermore, co m mands can "redirect" com m and input fro m one source to another and
redirect co m mand output to a file, term inal, printer, or another com m and. This
provides flexibility in t ailoring a task for a part icular purpose.

Basic Concepts

The shell itself (that is, the program that reads your com mands when you log in or that
is invoked with the sh com m and) is a program written in the C language; it is not part of
the operating syste m proper, but an ordinary user program.

The S h e l l

In X ENIX, a process i s a n executing task complete with instruct ions, data, input, and
output. All processes have lives of their own and may even start (or "fork") new
processes. Thus, at any given moment several processes m ay be executing, som e of
which are "children" of other "parent" processes.

3 - 1

The Shell XENIX 2 86 User's Guide

Users log in to the operat ing syste m and are assigned a shell fro m which they execute.
This shell is a personal copy of the shell com m and interpreter that is reading co m m ands
fro m the keyboard; in this context, the shell is s imply another process.

In XENIX, files m ay be created in one phase and then processed in the "background,"
enabling the user to cont inue working while programs run.

Commands

The most com mon way of using the shell is by typing si mple co m mands at the keyboard.
A "si mple co m mand" is any sequence of argu m ents separated by spaces or tabs. The
first argum ent (nu mbered zero) specifies the name of the co m mand to be executed. Any
remaining argu m ents, with a few except ions, are passed as argu m ents to that com mand.
For example, the follo wing com mand line might be typed to print the files allan, barry,
and calvin:

$ 1 pr a l l an barry ca l vi n

The dollar sign ($) i s the standard Bourne shell prompt. The Bourne shell presents you
with its pro mpt when it is wait ing for input. Do not type the $. Note that in this
chapter, user input {what you type) is shown in bold. Output fro m the computer is in
regular type.

If the first argu m ent of a com mand (in the above example, lpr) names an executable file
(as indicated by an appropriate set of perm ission bits associated with that file) and is
actually a compiled program, the shell as parent creates a child process that
i m mediately executes that program . If the file is m arked as being executable but is not
a compiled program, it is assu med to be a shell procedure, that is, a file of ordinary text
containing shell com m and lines. In this case, the shell spawns another instance of itself
(a subshell) to read the file and execute the com m ands inside it.

Fro m the user's viewpoint, compiled programs and shell procedures are invoked in
exactly the same way. The shell determ ines which i mple mentation has been used,
rather than requiring the user to do so. This provides uniformity of invocation.

H ow the She l l F inds Comma nds

The shell normally searches for com mands in three dist inct locat ions in the f i le system:
comm and nam e, /bin/command name, and jusr/binjcommand name. First, the shell
atte mpts to use the com mand name as given; i f this fails, it prepends the string /bin to
the com mand name; and if this fails, it prepends /usr/bin to the co m m and name. The
effect is to search, in order, the current directory, then the directory /bin, and finally,
the directory /usr/bin.

For example, the pr com mand is actually the file /bin/pr. A more complex path nam e
m ay b e given, e ither t o locate a file relat ive to the user's current directory o r t o access
a co m mand with an absolute path name. If a given co mmand name begins with a slash
(for example, /bin/sort or /cmd), the prepending is not perfor med. Instead, a single
att e mpt is made to execute the command as named.

This mechanism gives the user a convenient w ay to execute public co m mands and
co m mands in or near the current directory, as well as the ability to execute any

3-2

XENIX 2 86 User's Guide The Shell

accessible com mand, regardless of its location in the file structure. Because the
current directory is usually searched first, anyone can possess a private version of a
public co m mand without affecting other users. Si milarly, the creation of a new public
co m mand does not affect a user who already has a private com m and with the same
name. The part icular sequence of directories searched m ay be changed by resetting the
shell PATH variable. (Shell variables are discussed later in this chapter.)

Generati ng Arg u ment Lists

The argu ments to com mands are very oft en file names. So metimes, these file names
are s imilar, but not ident ical. To take advantage of this s im ilarity in nam es, the shell
enables the user to specify patterns that m atch the file names in a directory. If a
pattern is m atched by one or more file nam es in a directory, then those file names are
automatically generated by the shell as argu ments to the com m and.

Most characters in such a pattern match the mselves, but there are also XENIX special
characters (m etacharacters) that may be included in a pattern. These m etacharacters
are the following.

* M atches any string regardless of length or content.

? M atches any single character.

[] Matches any of the enclosed characters or range of characters.

Here are so m e examples of metacharacter usage.

*
te mp
[a-f]*
* .c
/usr/bin/?

Matches all names in the current directory
M atches all names containing temp
M atches all names beginning with a through f
M atches all names ending in .c
Matches all single-character names in /usr/bin

This pattern- matching capability saves typing and, more i mportantly, m akes it possible
to organize inform ation in large collections of files named in a structured fashion, using
com mon characters or extensions to ident ify related files.

Pattern-matching has som e restrict ions. If the first character of a file name is a period
(.), it can be matched only by an argu ment that literally begins with a period. If a
pattern does not m atch any file names, then the pattern itself is printed out as the
result of the match.

Note that directory names should not contain any of the following characters: * ? [] . If
these characters are used, then infinite recursion may occur during pattern m atching
attempts.

Qu oti n g Mechan isms

The characters < , > , * , ? , [, and] have special meanings to the shell. Removing the
special meaning of these characters requires so me form of quot ing. This is done by
using single quotat ion m arks (') or double quotat ion marks (") to surround a string. A
backslash {\} before a s ingle character also provides this funct ion.

3-3

The Shell XENIX 2 8 6 User's Guide

All characters within single quotat ion marks are taken literally. Thus,

$ echostuff = 'echo $? $* ; Is * I we'

$ echo $echostuff
echo $? $* ; ls * I we

The specified string is assigned to the variable echostuff, but it does not result in any
other com mands being executed.

W ithin double quotation marks, the special m eaning of certain characters does persist,
while all other characters are taken literally. The characters that retain their special
meaning are the dollar sign ($), the backslash {\), the single quotation mark ('), and the
double quotation mark (") itself. Thus, within double quotat ion marks, variables are
expanded and co m mand subst itut ion takes place (both topics are discussed in later
sections). However, any com m ands in a com m and subst itution are unaffected by double
quotation marks, so that characters such as star (*) retain their special m eaning.

To hide the special meaning of the dollar sign and single and double quotation marks
within double quotation m arks, precede these characters with a backslash {\} . Outside
of double quotation marks, preceding a character with a backslash is equivalent to
placing single quotat ion m arks around that character. A backslash followed by a
RETU RN causes that RETURN to be ignored and is equivalent to a space. The
backslash-RETU RN pair is therefore useful in allowing continuat ion of long c o m m and
lines.

Redi rectin g I n p u t a n d O utput

In general, most commands cannot determine whether their input or output i s com ing
from or going to a terminal or a file. Thus, a co m mand can be used conveniently e ither
at a term inal or in a pipeline. A few com m ands vary their act ions depending on the
nature of their input or output, either for efficiency or to avoid useless act ions (such as
atte mpting random access 1/0 on a term inal or a pipe).

Standard I n put and Outpu t

When a co m mand begins execution, i t usually expects that three files are already open:
a "standard input", a "standard output", and a "diagnost ic output" (also called "standard
error"). A nu mber called a file descriptor is associat ed with each of these files. By
convention, file descriptor 0 is associated with the standard input, file descriptor 1 with
the standard output, and file descriptor 2 with the diagnostic output. A child process
norm ally inherits these files fro m its parent; all three files are initially connected to the
ter m inal (0 to the keyboard, 1 and 2 to the screen). The shell enables the files to be
redirected elsewhere before control is passed to an invoked com man d.

An argu m ent to the shell of the form <file or >file opens the specified file as the
standard input or output (in the case of output, destroying the previous contents of file,
if any). An argu m ent of the form > >file directs the standard output to the end of file,
thus providing a way to append data to the file without destroying its exist ing contents.
In e ither case, the shell creates file if it did not already exist.

3-4

XENIX 286 User's Guide The Shell

Thus,

> output

alone on a line creates a zero-length file. The following appends to file log the list of
users who are currently logged on.

$ who > > log

Such redirection argu ments are only subject to variable and com m and subst itution;
neither blank interpretation nor pattern matching of file names occurs after these
subst itut ions. This means that

$ echo 'th i s i s a test' > * .ga l

produces a one-line file named *.gal. Similarly, an error m essage is produced by the
following com mand, unless you have a file with the name ?.

$ cat < 7

Not e that special characters are not expanded in redirection argu m ents, because
redirection argu ments are scanned by the shell before pattern recognition and expansion
takes place.

Diag nosti c and Other O utputs

Diagnost ic output fro m XENIX co m m ands is nor mally directed to the file associated
with file descriptor 2 . (You m ay often need an error output file d ifferent from standard
output so that error messages are not lost down pipelines.) You can redirect this error
output to a file by i m mediately prepending the nu mber of the file descriptor (2 in this
case) to e ither output redirect ion symbol (> or > >) . The following line appends error
m essages fro m the cc com mand to the file named ERRORS.

$ cc testf i l e .c 2 > > ERRORS

Note that the file descriptor nu mber must be prepended to the redirection symbol
without any intervening spaces or tabs; otherwise, the nu m ber will be passed as an
argu m ent to the co m mand.

This m ethod m ay be generalized to allow redirection of output associat ed with any of
the first ten file descriptors (nu m bered 0-9). For instance, if cmd puts output on file
descriptor 9, then the following l ine will direct that output to the file savedata. (cmd is
used in a generic sense here; there is no shell co m mand called c md.)

$ cmd 9 > savedata

A co m mand often generates standard output and error output and m ight even have so m e
other output, perhaps a data file. I n this case, one can redirect independently all the
d ifferent outputs. Suppose, for example, that cmd directs its standard output to file
descriptor 1 and its error output to file descriptor 2 and builds a data file on file
descriptor 9. The following would direct each of these three outputs to a different file.

$ cmd > standard 2 > error 9 > data

3-5

The Shell XENIX 2 8 6 User's Guide

Comma nd Lines a nd Pipe l i nes

A sequence of commands separated by the vert ical bar (I } m akes up a pipeline. In a
pipeline consisting of more than one co m mand, each co m mand is run as a separate
process connected to its neighbors by pipes; that is, the output of each com m and (except
the last one) becom es the input of the next co m mand in line.

A "filter" is a co m mand that reads its standard input, transforms it in som e way, then
writes it as its standard output. A pipeline normally consists of a series of filters.
Although the processes in a pipeline can execute in parallel, each program needs to read
the output of its predecessor. For example, many co m m ands operate on individual lines
of t ext, reading a line, processing it, writing it out, and looping back for more input.
So m e must read large amounts of data before producing output; sort is an example of
the extre me case that requires all input to be read before any output is produced.

The following is an example of a typical pipeline.

$ nroff -mm text I col I l pr

nroff is a text form atter available in the XENIX 286 Extended Syste m that allows
reverse line motions within its output; col converts these motions to a for m that can be
printed on a term inal lacking reverse- mot ion capability, and lpr does the actual print ing.

The flag -mm indicates one of the com monly used formatt ing opt ions, and text is the
nam e of the file to be for matted. The nroff program provides a set of pri mit ive
co m mands as well as the capability of writing macros (sequences of pri m it ive co m mands
that can be called as a unit). The XENIX operating system provides a l ibrary of such
macros. The flag -mm tells nroff to use the m m macro package. Another macro
package is ms, and you could invoke nroff with this macro package by issuing the
co m mand,

$ nroff -ms text I co l I l pr

The following examples illustrate som e effects obtainable by combining co m mands.

who

who > > log

who I we -1

who I pr

who I sort

who I grep bob

3-6

Prints the list of logged-in users on the screen.

Appends the list of logged-in users to the end of file log.

Prints the nu mber of logged-in users.

Prints a paginated list of logged-in users.

Prints an alphabet ized list of logged-in users.

Prints the list of logged-in users whose user nam es contain the
string "bob". Note that the string consists of the following three
letters: bob. The string does not include the double quotes. The
convention followed by most XENIX docu m entat ion is to set off a
string with double quotes.

XENIX 286 User's Guide The Shell

who I grep bob I sort I pr
Prints an alphabetized, paginated list of logged-in users whose
login nam es contain the string "bob".

{ date; who I we -1 ; } > > log
Appends (to file log) the current date followed by the count of
logged-in users. Be sure to place a space after the left brace and
a se m icolon before the right brace or the XENIX operat ing
syste m could misinterpret the co m mand line.

who I sed 'sl • *II' I sort I uniq -d
Prints only the login names of all users who are logged in more
than once. Note the use of sed as a filter to re m ove characters
trailing the login name fro m each line. (The ". *" in the sed
co m m and is preceded by a space.)

sed is the XENIX stream editor. It reads files and performs
certain specified editor co m m ands on each line of those files. In
this example, the standard output of the com m and who is piped
into sed. sed then runs the editing script 'sl .*II' on that output.
This script saves only the first word of each line of who's output,
so that the input to sort is a file consist ing of user names, one to
a line. The program sort then arranges those lines in ASCII order
and provides its output as input to the program uniq. W ith the -d
opt ion, this program saves only those lines that are repeated.
The result is that you have a list of only those users that are
logged in more than once.

The who co m mand does not by itself provide options to yield all these results--they are
obtained by combining who with other co m mands. Note that who just serves as the data
source in these examples. As an exercise, replace who I with <letclpasswd in the above
examples to see how a file can be used as a data source in the same way. Notice that
redirection argu ments may appear anywhere on the co m mand line, even at the start.
This m eans that

$ < i nfi l e > outf i l e sortl pr

is the same as

$ sort lpr < i nf i l e > outf i l e

Command Su bstitution

Any command can be placed within back quotation m arks (so met i m es called grave
accents, not to be confused with single quotes) so that the output of the com m and
replaces the backquoted co m m and line itself. This concept is known as command
substitution. The com mand or co m mands enclosed within back quotat ion m arks are first
executed by the shell and then their output replaces the whole expression, back
quotat ion marks and all. This feature is often used to assign shell variables. (Shell

3-7

The Shell XENIX 2 8 6 User's Guide

variables are described in the next sect ion.) For exam ple, to assign the outpu t of the
date co m m and to the shell variable today, type

$ today = · date ·

The result is that the shell variable today has a value such as "Tue Nov 27 16 : 0 1 : 09 EST
1 982". To display today, use the echo co m mand.

$ echo $today
Tue Aug 14 1 6 : 0 1 : 09 PDT 1 985

Any co m mand that writes to the standard output can be enclosed in back quotat ion
marks. Back quotation marks m ay be nested, but the inside sets must be escaped with
backslashes. For example,

$ logmsg = · echo Your log in d i rectory is \ · pwd\ · ·
$ echo $1ogmesg
Your l og i n d i rectory i s /u sr/vrs

Shell variables can also be given values indirectly by using the read and line co m mands.
The read co m m and takes a line fro m the standard input (usually your term inal) and
assigns consecutive words on that line to any variables nam ed.

For example,

$ read first init last

takes an input line of the form

G. A. Snyder

and has the same effect as typing

$ fi rst = G. in it = A . last = Snyder

The read com m and assigns any excess "words" to the last variable.

The line com m and reads a line of input fro m the standard input and then echoes it to the
standard output.

S h e l l Va ria b les

The shell has several m echanis ms for creat ing variables. A variable is a name
representing a string value. Certain variables are referred to as posit ional parameters;
these are the variables set only on the co m m and line. Other shell variables are s imply
names to which the user or the shell itself m ay assign string values.

3-8

XENIX 286 User's Guide The Shell

Positiona l Pa ra meters

When a shell procedure is invoked, the shell i mplicitly creates posit ional param et ers.
The name of the shell procedure itself is in position zero on the com m and line and is
assigned to the positional param eter $0. The first co m mand argu ment is called $1, and
so on. W ithin a shell script, the shift co m mand may be used to access argu m ents in
posit ions nu mbered higher than nine. For example, the following shell script might be
used to cycle through com mand line switches and then process all succeeding files.

If you are unclear about how to enter and run a shell script, read the following indented
text.

Before runing this example, here are so m e basics on how to create an executable
shell script. To create a she ll script, invoke a text editor such as vi. Call the file
you are creating whatever you want. This exam ple assu mes the na me myfile.
Enter the com m and,

$ vi myfi le

The screen clears and t ildes appear on the left. Press the i key for insert. The i
does not appear on the screen, but you are now in insert mode. Type the file, just
as you would on a typewriter. See Chapter 5 for a discussion of vi edit ing
com m ands. Use those editing co m m ands to correct any typing errors you m ight
make. Press the ESC key to exit insert mode and reenter co m mand mode. Then,
type a colon; a colon appears on the last line of your screen. Type x for exit and
follow it with a RETU RN.

Your script now exists in the file called myfile. To m ake it executable, enter the
co m mand,

$ chmod u + x myfi le

The co m m and chmod stands for change mode. The u stands for user (that's you},
and the +x means that you are adding execution mode. Do not type spaces
bet ween the three characters, u+x.

The example shell script looks as follows.

whi l e test $# ! = 0
do

done

case $1 in
-a) echo -a ; sh ift ; ;
-b) echo -b ; sh ift ; ;
-c) echo -c ; sh ift ; ;
- *) echo bad option ; exit 1 ; ;
*) echo process the rest of the command; sh ift ; ;
esac

3-9

The Shell XENIX 2 8 6 User's Gu ide

Here's what the shell script does. First, it t ests whether the nu m ber of argu ments i s
zero. The nu mber of argu m ents i s represented by $#. The sym bol ! = m eans "not equal ."
While the nu m ber of argu ments is not zero, the state m ents within the do-done
deli m iters are executed.

In this exam ple, there is only one stat e m ent within the do-done deli m iters, a case
stat e m ent. The case statem ent begins w ith the word case and ends with the word esac
(case spelled backwards). If the first argu m ent (represented as $ 1) is -a, then the shell
script writes -a to the screen. (In a more realist ic example, you would probably want to
do so m ething more involved with that opt ion.) The shift stat e m ent shifts the numbering
of the argu m ents. $1 goes away and $2 beco mes $1, $3 beco m es $2, etc. As long as
there are argu ments, the case statement is executed.

The * stands for any character or characters, including no characters. For example, if
the argu ment were -d, the shell script would write "bad opt ion" to the screen and exit.
Options are ident ified by the minus sign. If the argu ment were def, the shell script
would write "process the rest of the co m m and" to the screen and shift. When the script
shifts beyond the last argu ment, $# beco m es zero, and the script term inates. Here's
how the screen looks if you run this script in a test case.

$ myfi l e -a -b def
-a
-b
process the rest of the com mand
$

One can explicitly force values into the positional param eters by using the set
co m mand. For example,

$ set abc def gh i
$ echo $*
abc def g h i

assigns the string "abc" to $ 1 (the first posit ional parameter), the string "def" to $2 , and
the string "ghi" to $3. Note that $0 m ay not be assigned a value in this way--it alw ays
refers to the nam e of the shell procedure, or in the login shell, to the name of the shell.
The echo co m mand displays those $ variables; $* means display all of the m.

Using the set co m m and requires so me background understanding. For example, if you
issue the com mand,

$ set -a -b def
-a : bad opti on(s)

you get an error m essage. That's because the set co m mand sees the minus sign in front
of the a and tries to interpret the a as one of its own opt ions. The set com m and has no
such opt ion, and an error message results. Read the set section under the sh entry in
the XENIX 286 Reference Manual to find out about valid set opt ions. To prevent set
from interpreting the -a as an opt ion, add another minus sign, separated by spaces.

3 - 1 0

$ set - - a -b def
$ echo $*
-a -b def

XENIX 286 User's Guide The Shell

Now you might think that if you invoke myfile without any options, you should get the
sa m e result as before. You set the dollar variables with set rather than providing the m
as argu ments to myfile. The result should be the same. That's not what happe ns,
though. If you execute myfile, the Bourne pro mpt returns with no act ion. $# was 0 ;
your myfile did not see any posit ional variables. The reason why is key to understand ing
how shell scripts work.

When you execute myfile, it runs as a shell underneath the present shell. Those dollar
variables set with the set co m m and are not export ed to myfiles's shell. Try the
following.

$ set - -a -b def
$ echo $*
-a -b def
$ sh
$ echo $*

$ exit
$ echo $*
-a -b def

The sh co m mand spawns a new Bourne shell. The positional variables are not defined in
this spawned shell. Hence, you see nothing when you execute echo $*. You can return
to the spawning shell with the exit co m m and. (A CONTROL- D works just as well.)
Note that your posit ional parameters are st ill defined.

When you execute a shell script, it runs in a spawned shell. It does not get the
positional parameters you set w ith a set co m mand executed in the spawning shell.

User-Defi ned Varia bles

The shell also recognizes alphanu m eric variables to which string values may be assigned.
A s i mple assignm ent has the syntax,

nam e= string

Thereafter, $name w ill yield the value string. A nam e is a sequence of letters, digits, or
underscores that begins with a letter or an underscore. No spaces surround the equal
s ign (=) in an assignment statem ent. Posit ional para meters may not appear on the left
side of an assign m ent and can only be set as described in the previous sect ion.

More than one assignment m ay appear in an assign ment statement, but note that the
shell performs the assignm ents from right to left . Thus, the following com mand line
results in the variable A acqu iring the value abc.

$ A = $8 B = abc

3- 1 1

The Shell XENIX 2 8 6 User's Guide

The following are examples of s imple assign m ents. Double quotat ion m arks around the
right-hand side allow spaces, tabs, se micolons, and RETU RNs to be included in a string,
while also allowing variable subst itut ion (also known as "parameter subst itution") to
occur. This means that references to posit ional parameters and other variable names
prefixed by a dollar sign are replaced by the corresponding values, i f any. Single
quotation marks inhibit variable subst itution.

$ MAI L = /u sr/mai l/gas
$ echovar = "echo $1 $2 $3 $4"
$ sta rs = ** * * *
$ asteri sks = 'sta rs'

In the previous example, the variable echovar has as its value the string consist ing of
the values of the first four pos it ional para meters, separated by spaces, plus the string
"echo". No quotat ion marks are needed around the string of asterisks being assigned to
stars because pattern matching (expansion of star, quest ion mark, and brackets) does not
apply in this cont ext. Note that the value of asterisks is the literal string "stars", not
the string "*** **", because the single quotation m arks inhibit substitut ion.

In assign m ents, spaces are not re interpreted after variable subst itut ion, so that the
follow ing example results in $first and $second having the sa me value.

$ fi rst = 'a stri ng with embedded spaces'
$ second = $fi rst

In accessing the values of variables, you may enclose the variable nam e in braces { • . • } to
deli m it the variable name fro m any follow ing string. In part icular, if the character
i m mediately following the name is a letter, digit, or underscore, then the braces are
required. For example, exam ine the following input.

$ a = 'Th i s is a str ing'
$ echo "${a}ent test of var iables."

Here, the echo co m m and prints

Th i s i s a stri ngent test of vari ab l es.

If no braces were used, the shell would subst itute a null value for $aent and print

test of vari abl es.

The following variables are maintained by the shell. So me of the m are set by the shell,
and all of the m can be reset by the user.

3 - 12

XENIX 286 User's Guide The Shell

HOME

IFS

MAIL

PATH

Initialized by the login program to the name of the user's login directory,
that is, the directory that beco mes the current directory upon co mpletion of
a login; cd without argu ments switches to the $HOME directory. Using this
variable helps keep full path names out of shell procedures. Th is is
beneficial when path names are changed, either to balance disk loads or to
reflect ad m inistrat ive changes.

The variable that spec ifies which characters are internal f ield separators.
These are the characters the shell uses during blank interpretat ion. (If you
want to parse some deli miter-separat ed data easily, you can set IFS to
include that del im iter.) The shell initially sets IFS to include the blank, tab,
and RETURN characters.

The path name of a file where your mail is deposited. If MAIL is set, then
the shell checks to see if anything has been added to the file it names and
announces the arrival of new mail each t ime you return to co m mand leve l
(for example, by leaving the editor). MAIL must be set by the user and
"exported". (The export co m m and is discussed lat er in this chapt er.) (The
presence of m ai l in the st andard mail file is also announced at login,
regardless of whether MAIL is set.)

The variable that speci fies the search path used by the shell when looking for
com mands. Its value is an ordered list of directory path names separated by
colons. The shell initializes PATH to the list :/bin:/usr/bin where a null
argum ent appears in front of the first colon. A null anywhere in the path list
represents the current directory. On so me syste ms, a search of the current
directory is not the default, and the PATH variable is init ialized inst ead to
/bin:/usr/bin. If you w ish to search your current directory last , rather than
first, use

P A TH=/bin:/usr/bin::

Here, the two colons together represent a colon followed by a null, followed
by a colon, thus nam ing the current directory. You could possess a personal
directory of com mands (for exa mple, $HOME/bin) and cause i t to be
searched before the other three directories by using

PATH=$HOME/bin::/bin:/usr/bin

PATH is normally set in your .profile file.

PSl The variable that specifies what string is to be used as the pri m ary pro mpt
string. If the shell is interact ive, it pro mpts with the value of PSl when it
expects input. The default value of PSl is "$ " (a dollar s ign followed by a
blank).

3 - 1 3

The Shell XENIX 2 8 6 User's Guide

PS2 The variable that specifies the secondary pro mpt string. I f the shell expects
more input when it encount ers a RETU RN in its input, it pro mpts w ith the
value of PS2. The default value for this variable is " > " (a greater-than
sy mbol followed by a space).

In general, you should be sure to export all of the above variables so that their values
are passed to all shells spawned fro m your login file. Use export at the end of your
.profile file. An example of an export statem ent follows.

export HOME I FS MAI L PATH PS1 PS2

R e m e mber that, unless you export the m, shell var iables are not recognized in spawned
shells. The export state ment ensures that the specified variables are recogn ized in all
spawned shells. XENIX progra m m ers would say that the variables are "export ed" to the
spawned shells. Use the set co m m and to view variables in the current shell. Use the
env co m mand to view variables that are exported.

Predefi ned Specia l Varia bles

Several variables have special meanings and are set only by the shell.

$ # Records the nu mber of argu m ents passed to the shell, not count ing the name of
the shell procedure itself. For instance, $# yields the number of the highest set
posit ional parameter. Thus

sh cmd a b c

automat ically sets $# to 3 . One of its pri mary uses is in checking for the presence
of the required nu mber of argu ments.

i f test $# - It 2
then

echo 'two or more a rgs requ i red' ; exit
fi

$? Contains the exit status of the last co m mand executed (also referred t o as "return
code", "exit code", or "value"). Its value is a deci m al string. Most XENIX
co m m ands return zero to indicate successful complet ion. The shell itself returns
the current value of $? as its exit status.

$ $ The process nu mber o f the current process. Because process nu mbers are unique
among all exist ing processes, this string is often used to generate unique nam es for
t e mporary files. XENIX provides no mechanism for the auto matic creat ion and
deletion of temporary files; a fi le exists unt il explicitly re moved. Te mporary files
are generally undesirable obj ects; the XENIX pipe mechanism is far superior for
many applicat ions. However, the need for uniquely-na med temporary files does
occasionally occur.

3- 14

The following example illustrates the reco m mended practice · of creat ing
te mporary files; note that the d irectories /tmp and /usr/tmp are cleared out if the
syste m is rebooted. A # indicates that what follows on that line is a co m me nt .

XENIX 286 User's Guide

use current process id
to form un ique temp fi le
temp = /usr/tmp/$$
Is > $temp
commands here, some of which use $temp
rm $temp
clean up at end

The Shell

$! The process nu mber of the last process run in the background (using the a mpersand
(&)). This is a string containing from one to five digits.

$- A string consisting of names of execution flags currently turned on in the shell.
For example, $- might have the value xv if you are trac ing your output.

Th e S h e l l State

The state of a given instance of the shell includes the values of posit ional param eters,
user-defined variables, environm ent variables, modes of execution, and the current
working directory.

The stat e of a shell may be altered in various ways. These include changing the working
directory with the cd co m m and, setting several flags, and reading co m m ands fro m the
special file, .profile, in your login directory.

Cha n g i n g D i rectories

The cd co m m and changes the current d irectory to the one specified as its argu m ent.
This can and should be used to change to a convenient place in the directory structure.
Not e that cd is often placed within parentheses to cause a subshell to change to a
different d irectory and execute some co m m ands without affecting the original shell.

For example, the first co m m and below copies the file /etc/passwd to
/usr/username/passwd; the second com m and changes directory to /etc and then copies
the file. usernam e represents your login directory. For the sake of this example,
assu m e that your usernam e (hence your login directory) is called vrs. People often use
the ir in it ials--first, middle, and last.

$ cp /etc/passwd /usr/vrs/passwd
$ (cd /etc ; cp passwd /usr/vrs/passwd)

Note the use of parentheses. Both com mands have the sam e effect. Note, however,
that the second line is executed as a separate shell. When it is done, you are st i ll in
your original d irectory.

3- 1 5

The Shell XENIX 2 8 6 User's Guide

The . profi le F i le

The file named .profile i s read each t ime you log in to XENIX. It is normally used to
execute special one-ti me-only com mands and to set and export variables to all later
shells. Only after co m mands are read and executed fro m .profile does the shell read
co m mands fro m the standard input--usually the keyboard.

Execution F lags

The set co m mand enables you to alter the behavior of the shell by setting certain shell
flags. In particular, the -x and -v flags may be useful when invoking the shell as a
co m mand fro m the term inal. The flags -x and -v m ay be set by typing

set -xv

The same flags m ay be turned off by typing

set + xv

These two flags have the following meanings.

-v Input lines are printed as they are read by the shell. This flag is part icularly
useful for isolating synt ax errors. The co m m ands on each input line are executed
after that input line is printed.

-x Com mands and their argu m ents are printed as they are executed. (Shell control
co m mands, such as for and while, are not printed, however.) Note that -x causes a
trace of only those co m mands actually executed, whereas -v prints each line of
input until a syntax error is detected.

The set co m m and is also used to set these and other flags within shell procedures.

Co m m a n d E n viro nment

All variables and their associated values known to a co m mand at the beginning of its
execution m ake up its environm ent. This environm ent includes variables that the
command inherits fro m its parent process and variables specified as keyword parameters
on the com mand line that invokes the co m mand.

The variables that a shell passes to its child processes are those that have been nam ed
as argu ments to the export co m mand. The export co m mand places the named variables
in the environm ents of both the shell and all its future child processes.

Keyword param eters are variable-value pairs that appear in the form of assign ments,
normally before the procedure name on a com m and line. Such variables are only placed
in the environm ent of the procedure be ing invoked.

For example, consider the following shell script. The shell variables a and b are
defined on the same line where keycom mand is invoked. The variables are defined in
keycommand 's environment, not the shell's.

3-16

XENIX 2 86 User's Guide

keycommand,
echo $a $b
$ a = key1 b = key2 keycommand
key 1 key2

The Shell

I f you issue the set com mand, you will not see a and b listed as a shell variable, and you
cannot display the m with the echo com mand. Keyword param eters are not counted as
argu ments to the procedure and do not affect $#.

A procedure may access the value of any variable in its environ ment. However, if
changes are made to the value of a variable, these changes are not reflect ed in the
environment; they are local to the procedure in question. In order for these changes to
be placed in the environment that the procedure passes to its child processes, the
variable must be named as an argu ment to the export co m mand within that procedure.
To obtain a list of variables that have been made exportable fro m the current shell, type
export. You will also get a list of variables that have been made read-only. To get a
list of name-value pairs in the current environ ment, type e ither printenv or env.

I n vo kin g the S h e l l

The shell i s a com mand and may b e invoked i n the same way as any other co m mand. Use
the following syntax, depending on your applicat ion:

sh process [argument • • •]
A new instance of the shell is explicitly invoked to read process. Argu ments, if
any, can be manipulated.

sh -v process [argum ent • • •]
This is equivalent to putting set -v at the beginning of process. It can be used in
the same way for the -x, -e, -u, and -n flags. Refer to the sh entry in the XENIX
286 R eference Manual for an explanat ion of these flags.

process [argum ent • • .]
If process is an executable file and is not a compiled executable program, the
effect is s im ilar to that of

sh process argument

An advantage of this for m is that variables that have been exported in the shell
will st ill be exported fro m process when this form is used (because the shell only
forks to read co m mands fro m process). Thus any changes made w ithin process to
the values of exported variables will be passed on to subsequent co m mands invoked
fro m process.

Passin g Argu ments to She l l Procedu res

When a co m mand line is scanned, any character sequence of the form $n is replaced by
the nth argu m ent to the shell, count ing the name of the shell procedure itself as $0. This
notat ion permits direct reference to the procedure name and to as m any as nine

3- 1 7

The Shell XENIX 2 8 6 User's G uide

posit ional param eters. Additional argu m ents can be processed using the shift com m and
or by using a for loop.

The shift com mand shifts posit ional parameters to the left; that is, the value of $1 is
thrown away, $2 . replaces $1, $3 replaces $2, and so on. The highest-nu mbered
posit ional param e

'
ter beco m es unset ($0 is never shifted). For example, in the shell

proc edure ripple below, echo writes its argu ments to the standard output. L ines that
begin with a nu mber sign (#) are com m ents.

ri pple command
wh i l e test $# ! = 0

done

do echo $1 $2 $3 $4 $5 $6 $7 $8 $9
sh ift

If the procedure were invoked with

r ipple a b c

it would print

a b c
b c
c

The special shell variable "star" ($*) causes subst itut ion of all positional param eters
except $0. Thus, the echo line in the ripple example above could be written m ore
compactly as

echo $*

These t wo echo com mands are not equivalent: the first prints at most nine posit ional
parameters; the second prints all of the current positional param eters. The shell star
variable ($*) is more concise and less error-prone. One obvious applicat ion is in passing
an arbitrary nu mber of arguments to a co m mand from within a shell script. For
example,

we $*

counts the words of each of the files named on the com m and line.

It is i mportant to understand the sequence of actions used by the shell in scanning
co m mand lines and substitut ing argu m ents. The shell first reads input up to a RETU R N
o r semicolon, and then parses that much o f the input. Variables are replaced by their
values and then co m m and subst itut ion (via back quotat ion marks) is atte mpted. 1/0
redirect ion argu m ents are detected, acted upon, and deleted fro m the com mand line.
Next, the shell scans the resulting co m m and line for internal field separators, that is,
for any characters specified by IFS to break the co m mand line into dist inct argu ments;
explicit null argu m ents (specified by "" or ") are retained, while i mplicit null argu m ents
result ing fro m evaluation of variables that are null or not set are re moved. Then, file
name generat ion occurs with all metacharact ers being expanded. The resulting
co m mand line is then executed by the shell.

3 - 1 8

XENIX 286 User's Guide The Shell

So m eti mes com mand lines are bu ilt inside a shell procedure. In this case, it is useful to
have the shell rescan the com m and line after all the initial subst itut ions and expansions
have been perfor med. The eval co m mand is available for this purpose. eval takes a
co m mand line as its argu ment and si mply rescans the line, perform ing any variable or
co m mand subst itutions specified. For example,

$ command = who output = ' we -1 '
$ eva l $command $output

results in the execution of the com mand l ine,

$ who I we - 1

The first word of a line is always evaluated. You want the shell to rescan the l ine to
evaluate the variable $output as well. I f you leave out the eval, just the who will be
executed. That's because who accepts an unevaluated $output. If you enter who
followed by any text string, you get login informat ion about yourself. Try it.

$ who junk morejunk
vrs ttyc2 Aug 1 5 1 0 : 2 5

The output o f eval cannot b e redirected. However, uses o f eval c a n be nested, s o that a
co m mand l ine can be evaluated several t i mes.

Directin g t h e F low of Control

The shell provides several com mands that i mple ment a variety of control structures
useful in controlling shell procedures. Before describing these structures, a few terms
need to be defined.

A simple command is any single irreduc ible com mand specified by the name of an
executable file. 1/0 redirection argu m ents can appear in a s i mple co m mand line and are
passed to the shell, not to the co m mand.

A comm and is a si mple co m m and or any of the shell control co m mands described below.

A pipeline is a sequence of one or more co m mands separated by vert ical bars (1) . In a
pipeline, the standard output of each co m mand is connected (by a pipe) to the standard
input of the next co m mand. Each co m mand in a pipeline is run separately; the shell
waits for the last co m mand to finish. The exit status of a pipeline is nonzero if the exit
status of e ither the first or last process in the pipeline is nonzero.

A command l ist is a sequence of one or more pipelines separated by a se m icolon (;), an
ampersand (&), an "and-if" sy mbol (& &), or an "or-if" (I I) sy m bol, and opt ionally
terminated by a se micolon or an ampersand. A se micolon causes sequential execution of
the previous pipeline, making the shell wait for the pipeline to f inish before reading the
next pipeline. On the other hand, the ampersand (&) causes asynchronous background
execution of the preceding pipel ine, allow ing sequent ial and background execut ion. A
background pipeline cont inues execut ion unt il it terminates.

3- 1 9

The Shell XENIX 2 8 6 User's Guide

Other uses of the ampersand include off-line print ing and background compilation. For
example, i f you type

nohup cc prog.c&

you may cont inue working while the C com piler runs in the background. A com mand
line ending with an ampersand is im mune to interrupts or quits that you m ight generate
by sending the interrupt or quit signals. The interrupt signal is usually sent by typing
the DEL or B REAK key. The quit signal is usually sent by typing a CONTROL-\.

CONTROL-D will log you out and abort the com mand. To prevent this from happening,
use the nohup com mand to make the co m m and i m mune to hangups and logouts. I f the
preceding example did not contain nohup and if you log out while cc is still execut ing,
cc will be killed and your output will disappear.

The ampersand operator should be used with restraint, especially on heavily-loaded
syste ms. The work of other users will be slowed down if you run a large nu mber of
background processes.

The and-if and or-if (& & and I I) operators cause conditional execution of pipelines. Both
of these are of equal precedence when evaluat ing co m mand lines (but both are lower
than the ampersand (&) and the vert ical bar (1)). In the com mand line,

$ cmd1 I I cmd2

the f irst co m m and, cmdl, is executed and its exit status exam ined. Only if cmdl fails
(that is, has a nonzero exit status) is cmd2 executed.

The and-if operator (&&) yields a co mple mentary test. For example, in the com mand
line,

$ cmd1 && cmd2

the second co m mand is executed only if the first succeeds (and has a zero exit status).
In the sequence below, each co mmand is executed in order until one fails.

$ cmd1 && cmd2 && cmd3 && . . . && cmdn

A si mple com mand in a pipeline may be replaced by a com mand list enclosed in e it her
parentheses or braces. The output of all the co m mands so enclosed is combined into one
stream that beco mes the input to the next co m mand in the pipeline. The following line
form ats and prints two separate docu ments.

$ { nroff -mm text1 ; nroff -mm text2 ; } I l pr

Note that a space is needed after the left brace and that a sem icolon must appear
before the right brace.

3-2 0

XENIX 2 86 User's Guide The Shell

Usi n g the if Statement

The shell provides structured condit ional capability with the if co m mand. The s implest
if co m mand has the following form.

if command-list
then command-list
fi

The word fi indicates the end of the if stat e m ent. (fi is if spelled backwards.) The
exam ple cmd1 I I cmd2 in the previous sect ion can be rewritten using an if stat e ment as
follows.

if

then
f i

cmd1
test $? ! = 0
cmd2

The co m m and list follow ing the if is executed, and i f the last com mand in the l ist has a
zero exit status, then the com mand list that follows then is executed.

To cause an alternative set of co m mands to be executed when there is a nonzero exit
status, an else clause can be given with the following structure.

if command-list
then command-list
else command-list
fi

Mult iple tests can be achieved in an if com mand by using the elif (else- if) clause,
although the case state ment is better for large nu mbers of tests. For example,

i f
then
e l if
then
else
fi

test -f "$1 " # is $1 a fi le?
pr $1
test -d "$1 " # el se, i s $ 1 a d i rectory?
(cd $ 1 ; pr *)
echo $1 is neither a f i le nor a d i rectory

The previous example is executed as follows: if the value of the first posit ional
parameter is a file name (-f), then print that file; if not, then check to see if i t is the
nam e of a directory (-d). If so, change to that d irectory (cd) and print all the files there
(pr *) . Otherwise, echo the error m essage.

if co m mands may be nested (but be sure to end each one w ith a fi) . The R ETU RNs in
the above examples of if may be replaced by se m icolons.

The exit status of the if co m mand is the exit status of the last co m mand executed in
any then clause or else clause. If no such com mand was executed, if returns a zero exit
status.

3-2 1

The Shell XENIX 2 8 6 User's Guide

Note that an alternat ive notat ion for the test co m m and uses brackets to enclose the
expression being tested. For example, the previous example might have been written as
follows.

if
then
e l if
then
else
fi

[-f "$1 " 1 # is $1 a f i l e?
pr $1
[-d "$1 " 1 # else, i s $ 1 a d i rectory?
(cd $1 ; pr *)
echo $1 i s neither a f i l e no r a d i rectory

Note that a space after the left bracket and one before the right bracket are essent ial
in this form of the syntax.

Usi n g the case Statement

A mult iple test condit ional is provided by the case co m mand. The basic form at of the
case stat e m ent is

case string in
pattern) command-list ;;

pattern) com mand-list ;;
esac

The shell tries to m atch string against each pattern in turn, using the same pattern
m at ching convent ions as in file name generat ion. I f a match is found, the co m m and list
follow ing the matched pattern is executed; the double se m icolon (; ;) serves as a break
out of the case and is required after each co m m and list except the last. Note that only
one pattern is ever m atched, and that matches are atte mpted in order, so that if a star
(*) is the first pattern in a case, no other patterns are looked at.

More than one pattern may be associated with a given com mand list by specifying
alternat ive patterns separated by vertical bars (1 } . For example,

case $i i n

esac

* .c)
* . h I * .sh)
*)

cc $i ; ;
: d o noth i ng ; ;
echo "$i of unknown type" ; ;

N o act ion i s taken for the second set o f patterns because the null, colon (:) co m mand is
specified. The star (*) is used as a default pattern, because it m atches any word.

The exit status of case is the exit status of the last co m m and executed in the case
co m m and. If no co m m ands are execut ed, then case has a z ero exit status.

3-2 2

XENIX 286 User's Guide The Shell

Conditiona l Loop ing

A while com m and has the general for m

while command-list do command-list done

The co m mands in the f irst command-list are executed, and if the exit status of the last
co m mand in that list is zero, then the co m mands in the second command-list are
executed. This sequence is repeated as long as the exit status of the first command-list
is zero. A loop can be executed as long as the first command-list returns a nonzero exit
status by replacing while with until.

Any RETURN in the above exa mple m ay be replaced by a se m icolon. The exit status of
a while {or until} co m mand is the exit status of the last com m and executed in the second
command-list . If no such co m m and is executed, while {or until} has a zero exit status.

Looping Over a List

Often, one w ishes to perform some set of operations for each file in a set of f iles, or
execute so m e co m mand once for each of several argu ments. The for co m m and can be
used to acco mplish this. The for co m mand has the format

for variable in word-list do command-list done

Here word-list is a list of strings separated by blanks. The co m mands in the command
list are executed once for each word in the word-list. The variable takes on as its value
each word fro m the word list, in turn. The word-list is fixed after it i s evaluated the
first t i m e. For example, the following for loop causes each of the C source files xec.c,
cmd.c, and word.c in the current directory to be compared with a file of the sam e name
in the d irectory /usr/src/cmd/sh:

for CFI LE i n xec cmd word
do d i ff ${CFI LE}.c /usr/src/cmd/sh/${CFI LE}.c
done

The first occurrence of CFILE i m m ediately after the word for has no preceding dollar
sign, because the name of the variable is wanted and not its value.

You can o m it the in word-list part of a for co m mand; this causes the current set of
positional param eters to be used in place of word-list. This is useful when writing a
co m mand that performs the sam e set of co m m ands for each of an unknown nu mber of
arguments. Creat e a file nam ed echo2 that contains the follow ing shell script.

for word
do echo $word$word
done

G ive echo2 e xecute status and execute it.

3-23

The Shell

$ chmod + x echo2
$ echo2 rna pa bo fi yo no
mama
papa
bobo
fifi
yo yo
no no

Loop Control

XENIX 286 User's G uide

The break co m mand can be used to term inate execution of a while or a for loop.
continue requests the execution of the next iterat ion of the loop. These com mands are
effect ive only when they appear between do and done.

The break co m mand term inates execution of the smallest (that is, innermost) enclosing
loop, causing execut ion to resu m e after the nearest following unmat ched done. Exit
fro m n levels is obtained by break n.

The continue com mand causes execution to resu m e at the nearest enclosing for, while,
or until stat e m ent, that is, the one that begins the innermost loop containing the
continue. You can also specify an argu ment n to continue, and execution w ill resu m e at
the nth enclosing loop.

Th i s procedure is i nteract ive .
" Break" a nd "conti nue" commands a re used
to a l low the user to control data entry.
wh i l e true #loop forever
do

done

echo Please enter data
read response
case "$response" i n
"done") break ; ;

" ")continue ; ;
*} echo $response ; ;

esac

no more data
just a carr iage return, keep on goi'ng
process the data here

End-of-Fi l e a n d exit

When the shell reaches the end-of-file in a shell procedure, it terminates execution,
returning to its parent the exit status of the last com m and executed prior to the
end-of-file. The top-level shell is term inated by typing a CONTROL-D, which is the
same as logging out.

The exit co m m and si mply reads to the end-of-file and returns, setting the exit status to
the value of its argu ment, if any. Thus, a procedure can be term inated norm ally by
placing "exit 0 " at the end of the file.

3-24

XENIX 2 8 6 User's Guide The Shell

Comma nd Grou p ing

T w o operators are used for grouping com mands i n the shell: parentheses and braces.
Parentheses cause the shell to creat e a subshell that reads the enclosed co m m ands.
Both the right and left parentheses are recognized wherever they appear in a co m m and
line--they can appear as literal parentheses only when enclosed in quotat ion marks. For
example, if you atte mpt to define a shell variable called var as garble(stuff), you get an
error m essage.

$ var = garble(stuff)
syntax e rror : ' (' unexpected

You must quote the parentheses. In the XENIX operating syst e m , preceding a character
with a backslash has the same effect as enclosing it in single quotes. The following
com m and lines have the sam e result.

$ var = garble'(' stuff')'
$ va r = 'garble(stuff)'
$ var = garble\(stuff\)

This capability of creating a subshell by grouping com m ands is useful when perform ing
operat ions w ithout affecting the values of variables in the current shell, or when
temporarily changing the working directory and execut ing co m mands in the new
direc tory without having to return to the current directory.

The current environm ent is passed to the subshell and variables export ed in the current
shell are also exported in the subshell. Thus

and

$ CURRENTDI R = ' pwd ' ; cd /usr/docs/otherd i r
$ nohup n roff doc.n l l pr& ; cd $CU RRENTD IR

$ (cd /usr/docs/otherd i r; nohup nroff doc.n l l pr&)

acco mplish the same result: a copy of /usr/docs/otherdir/doc.n is for m atted and sent to
the line printer.

Interpret the above co m m ands this way. The first example sets the shell variable
CURRENTDIR to the value of the pwd com m and (pwd stands for print-working
directory). Those are backquotes around the pwd, just l ike those enclosing the date
co m m and in a previous exam ple. The se micolon separates two co m mands on the same
l ine. The cd com m and changes the working directory to /usr/docs/otherdir. The cd
co m m and will not create that directory; it must already exist for you to change to it.

The next l ine invokes the nroff program on the file doc.n. Note that, in this case, no
macro package is used. A previous nroff example using a m acro package e m ployed the
flag - m m. The output of nroff is by de fault the term inal screen. The I lpr p ipes the
output to the line printer instead. (The I is the pipe sy mbol.) The ampersand puts the
process in the background. That means you can enter addit ional shell com m ands before

3-2 5

The Shell XENIX 2 86 User's Guide

the nroff process has f inished. This is oft en convenient because your term inal does not
"go away" on you. The nohup option ensures that the process does not die if you log out.
Finally, the second cd returns to your original working directory, whose pathna m e you
saved in the shell var iable CURRENTDIR.

The second example acco mplishes the same result. Enclosing a series of co m m ands in
parentheses ensures that they are executed in a subshell spawned fro m the invoking
shell. There is no need to save the pathname of the original shell. The second example
auto mat ically returns you to your original working directory. In the second exa mple,
blanks or RETU RNs surrounding the parentheses are allowed but not necessary. When
entering a co m m and line at the terminal, the shell will pro mpt with the value of the
shell variable PS2 if an end parenthesis is expected. PS2 is your secondary pro mpt,
defined in your .profile file.

Braces ({ }) m ay also be used to group co m m ands together. Both the left and the right
brace are recognized only if they appear as the first (unquoted) word of a co m mand. The
opening brace m ay be followed by a RET U RN (in which case the shell pro mpts for more
input). Unlike parentheses, no subshell is created for braces: the enclosed co m mands
are s imply read by the shell. The braces are convenient when you w ish to use the
(sequent ial) output of several co m m ands as input to one co m mand. Refer to the sh
entry in the XENIX 286 Reference Manual for more informat ion. Pay special attention
to the "Notes" sect ion.

The exit status of a set of co m m ands grouped by either parentheses or braces is the exit
status of the last enclosed executed co m m and.

I nput/Output Redi rection and Contro l Commands

The shell nor mally does not fork and create a new shell when it recognizes the control
com mands (other than parentheses) described above. However, each co m m and in a
pipeline is run as a separate process to d irect input to or output fro m each com mand.
Also, when redirect ion of input or output is specified explicitly to a control co m m and, a
separate process is spawned to execute that com mand. Thus, when if, while, until, case,
and for are used in a pipeline consist ing of more than one co m mand, the shell forks and
a subshell runs the control co m mand. This has two implicat ions:

• Any changes m ade to variables within the control co m mand are not effect ive once
that control co m m and finishes (this is si m ilar to the effect of using parentheses to
group co m mands).

• Control co m mands run slightly slower when redirected, because of the addit ional
overhead of creat ing a shell for the control co m mand.

3 -26

XENIX 286 User's Guide The Shell

Tra nsfer to Another F i le a nd Back : the Dot (.) Command

A command l ine of the form

• process

causes the shell to read co m mands fro m process without spawning a new shell. Changes
m ade to variables in process are in effect after the dot co m m and finishes. This is a good
way to gather a nu mber of shell variable init ializat ions into one file. A co m mon use of
this com mand is to reinitialize your login shell by reading the .profile file with

$. .profi l e

I n terru pt H a nd l i n g

Shell procedures can use the trap com mand t o disable a signal (cause i t t o b e ignored),
or redefine its act ion. The XENIX operat ing system provides a mechanis m called signals
to com municate with running processes. You have already come across the interrupt
and quit signals. Typically you can send an interrupt signal by pressing the DEL key on
your ter minal. A signal is ident ified by a nu mber. The nu mber of the int errupt signal is
2 . The form of the trap co m mand is

trap argum ent signal-list

H ere argum ent is a string to be int erpret ed as a com mand list and signal-list consists of
one or more signal nu mbers. The co m m ands in argum ent are scanned at least once,
when the shell first encounters the trap com mand. Because of this, it is usually wise to
use single rather than double quotation marks to surround these co m m ands. Single
quotation marks inhibit i m mediat e co m m and and variable substitution. This becomes
i mportant, for instance, when one wishes to re move temporary files and the na m es of
those files have not yet been determined when the trap co mmand is first read by the
shell. The following procedure wi ll print the name of the current directory in the file
errdirect when it is interrupted, thus giv ing the user infor mation as to how much of the
job was done.

trap 'echo ' pwd ' >errd i rect' 2 3 1 5
for i i n /bi n /usr/bi n
do

cd $i
I s - 1 # commands to be executed in d i rectory $i here

done

For the above shell script to work correctly the directories listed in the for stat e m ent
must exist and be accessible. The co m m and ls -1 is included so that the shell script puts
output on the screen.

Be ware that the same procedure with double quotation marks causes the shell to print
the name of the directory fro m which the procedure was first executed.

(trap "echo ' pwd ' > errd i rect" 2 3 1 5)

3-27

The Shell XENIX 286 User's Guide

A memory allocat ion signal (signal 1 1) can never be trapped, because the shell itself
n eeds to catch it to deal with me mory allocat ion. Zero is int erpreted by the trap
co m m and as a signal generated by exit ing fro m a shell. This occurs e ither with an exit
com mand, or by "falling through" to the end of a procedure. If argument is not
spec if ied, then the action taken upon receipt of any of the signals in the signal list is
reset to the default syst e m act ion. If argument is an explicit null string (" or ""), then
the signals in the signal list are ignored by the shell.

The trap com mand is most frequently used to ensure that t e mporary files are re moved
upon term inat ion of a procedure. Consider the following example, first without a trap
com mand. Be sure to create a direc tory called temp in your ho me directory. Use the
mkdir com mand. (It stands for m ake directory.)

$ mkd i r tmp

Then, construct an executable file with the following two lines. The first line sets a
shell variable to a pathna me for a file under tmp. $HOME is a shell variable defined in
.profile and contains the path na me of your login directory. $$ is the sy mbol for the
shell process id nu mber. This nu mber is a convenient one to use when you want a name
that stands a reasonable chance of being unique.

temp = $HOME/tmp/$$
Is > $temp #commands that use $temp here

The result of this script is that you create a file in tmp that contains the names of the
files in your working directory. The file's na m e is so me nu mber, the process id that the
script got when it ran.

Now, assu me that you want to delete that temporary file (it 's not temporary unless you
delete it) when you co mplete the script under certain conditions, na mely receiving one
of a list of signals. Edit the script to look as follows.

temp = $HOME/tmp/$$
trap 'rm $temp; trap 0; exit' 0 1 2 3 1 5
I s > $temp # commands that use $temp here

In this example, whenever signal 1 (hangup), 2 (int errupt), 3 (quit), or 1 5 (kill) is received
by the shell procedure, or whenever the shell procedure is about to exit, the com mands
enclosed between the single quotation m arks are executed. The exit com mand must be
included, or else the shell cont inues reading co m m ands where it left off when the s ignal
w as rece ived. The trap 0 in the above procedure turns off the original traps 1 , 2, 3 , and
15 on exits from the shell, so that the exit com mand does not reactivate the execut ion
of the trap co m m ands. When you execute the modified version of the script and look in
the d irectory tmp, you will not find a new file created.

So m et imes the shell cont inues reading com mands after executing trap com mands. The
following procedure takes each directory in the current directory, changes to that
directory, pro mpts with its name, and executes com mands typed at the term inal until an
end-of-file (CONTROL-D) or an interrupt is received. An end-of-file causes the read
co m mand to return a nonzero exit status, and thus the while loop terminates and the
next directory cycle is init iated. An interrupt is ignored while executing the requested
co m mands but causes ter m inat ion of the procedure when it is wait ing for input.

3 -2 8

XENIX 286 User's Guide

d =
' pwd '

for i i n *
do

done

if test -d $d/$i
then cd $d/$i

whi le

do
f i

echo "$i : "
trap exit 2
read x
tra p : 2; eva l $x ; done

The Shell

Here's an exam ple of the use of the above shell scr ipt . Assu m e that it is in an
executable file called scan. Assu m e that you execute scan fro m your login d irectory,
/usr/ted, and t hat this directory contains the directories, bin, dirl, and junk. The
directory bin cont ains one file called sl, and the directory called junk is e m pty.

$scan
bi n :
pwd
/usr/ted/bi n
b i n :
I s -1
tota l 0
-rw-r--r-- 1 ted xeni x
b i n :
enter a CONTROL-D
d i r 1 :
en ter a CONTROL-D
j u n k :
I s -1
tota l 0
j u n k :
en ter a CONTROL-D
$

40 Aug 1 3 1 7 : 0 1 s 1

Several traps may b e i n effect a t the sa m e t i me: i f mult iple signals are rece ived
s imultaneously, they are serviced in nu m erically ascending order. To det erm ine which
traps are currently set, type trap with no argu ments. For exa m ple,

$ tra p 'echo hel lo' 2 1 5
$ tra p
2 : echo hel l o
1 5 : echo hel l o

W h e n a s ignal (other than 1 1) i s received b y t h e shell, i t i s passed o n to whatever child
processes are currently execut ing. When these (synchronous) proc esses t er m inate,
norm ally or abnormally, the shell polls any traps that are set and executes the
appropriat e trap co m mands. This process is straightforward, except in the case of traps
set at the co m m and (outer most, or login) level. In this case, i t is poss ible that no child
process is running, so before the shell polls the traps, it waits for the ter m inat ion of the
first process spawned after the s ignal was received.

3-2 9

The Shell XENIX 2 8 6 User's Guide

When a signal is redefined in a shell script , this does not redefine the signal for
programs invoked by that script; the signal is m erely passed along. A disabled signal is
not passed.

For internal co m mands, the shell nor mally polls traps on complet ion of the com mand.
An except ion to this rule is made for the read co m m and, for which t raps are serviced
i m m ediately, so that read can be interrupt ed while wait ing for input .

S pecia l She l l Comma nds

The shell contains several internal special co m m ands, so me of which have already been
m entioned. The shell does not fork to e xecute these co m mands, so no addit ional
processes are spawned. These co m m ands should be used whenever possible, because
they are, in general, faster and more effic ient than other XENIX co m m ands. The
t rade-off for this efficiency is that redirect ion of input and output is not allowed for
most of these spec ial com mands.

Several of the special co m mands have alre ady been described because they affect the
flo w of control. They are dot (.) , break, continue, exit, and trap. The set com mand is
also a special co m m and. Descript ions of the re maining special co m m ands are given
here.

cd argum ent

exec argum ent • . .

3-30

The null co m m and. This co m m and does nothing and can be used
to insert co m m ents in shell procedures. I ts exit status is zero
(true). I ts ut ility as a co m ment character has largely been
supplanted by the nu m ber sign (#), which can be used to insert
co m m ents to the end-of-line. Note that any argu m ents to the
null co m m and are parsed for syntactic correctness; when in
doubt, quote such argu ments. Paramet er subst itut ion takes
place, just as i n other co m m ands.

Make argum ent the current directory. If argum ent is not a valid
d irectory, or the user is not authorized to access it, a nonzero
exit status is returned. Spec ifying cd w ith no argument is
equivalent to typing cd $HOME, which takes you to your ho m e
directory.

If argum ent is a com mand, then the shell executes the co m m and
without forking and returning to the current shell. This is
effectively a "goto" and no new process is created. Input and
output redirect ion argu m ents are allowed on the co m m and line. I f
only input and output redirect ion argu m ents appear, then the
input and output of the shell itself are modified accordingly.

XENIX 286 User's Guide The Shell

newgrp argument . • •

read variable • • •

readonly variable • • •

times

umask nnn

ulimit nnn

wait

eval argum ent

The newgrp com mand is executed, replacing the shell. newgrp in
turn creates a new shell. Note that only environm ent variables
will be known in the shell created by the newgrp com m and. Any
exported variables will no longer be marked as such.

One line (up to a RETU R N) is read fro m the standard input and
the first word is assigned to the first variable, the second word to
the second variable, and so on. All words left over are assigned
to the last variable. The exit status of read is zero unless an
end-of-file is read.

The specified variables are made read-only so that no subsequent
assign m ents may be made to the m. If no argu ments are given, a
list of all readonly and of all exported variables is given.

The accu mulated user and syste m ti mes for processes run fro m
the current shell are printed.

The user file creation mask is set to nnn. If nnn is o m itted, then
the current value of the m ask is printed. This bit- mask is used to
set the default perm issions when creat ing files. For example, an
octal umask of 1 3 7 corresponds to the following bit- mask and
per mission sett ings for a newly created file.

User

octal
bit-mask
perm issions

user

1
0 0 1
rw-

group

3
0 1 1
r--

other

7
1 1 1

See umask in the XENIX 286 R eference Manual for infor mation
on the value of nnn.

The process file size li m it is set to nnn; the value of nnn is in
units of 5 1 2 K-byte blocks.

The shell waits for all currently active child processes to
term inate. The exit status of wait is always zero.

Argu m ents are read as input to the shell and the result ing
com mand(s) executed.

C reatin g a n d Organ izin g S h e l l Proced u res

A shell procedure can be created in two simple steps. The first is building an ordinary
text file. The second is changing the mode of the file to make it executable, thus
perm itt ing it to be invoked by

process argum ent

rather than

sh process argument

3-3 1

The Shell XENIX 2 8 6 User's Guide

The second step may be o mitted for a procedure to be used once or t wice and then
discarded, but is recom mended for frequently-used ones. To set up a s imple procedure,
first create a file named mailall w ith the following contents:

LETTER = $1
sh ift
for i i n $*
do ma i l $ i < $LETTER
done

N ext, type

$ chmod + x ma i la l l

The new co m m and m ight then be invoked from within the current directory by typing

$ ma i l a l l letter joe bob

Here letter is the name of the file containing the m essage you want to send, and joe and
bob are people you want to send the message to. Note that shell procedures must
alw ays be at least readable, so that the shell itself can read co m mands fro m the file.

If mailall were thus created in a directory whose name appears in the user's PATH
variable, the user could change working directories and st ill use the mailall co m m and.

Shell procedures may be created dynam ically. A procedure may generate a file of
. com mands, invoke another instance of the shell to execute that file, and then re move it.

An alternat ive approach is that of using the dot com mand (.) to make the current shell
read co m m ands fro m the new file, allowing use of exist ing shell variables and avoiding
the spawning of an addit ional process for another shell.

M any users prefer writing shell procedures to writ ing C programs. This is true for
several reasons.

• A shell procedure is easy to create and maintain because it is only a file of
ordinary text.

• A shell procedure has no corresponding obj ect program that must be generated and
maintained.

• A shell procedure is easy to create quickly, use a few t i mes, and then remove.

• Because shell procedures are usually short in length, written in a high-level
program m ing language, and kept only in their source-language form, they are
generally easy to find, understand, and modify.

By convent ion, directories containing com m ands and shell procedures are na m ed bin.
The name bin is derived fro m the word "binary" and is used because compiled and
executable programs are often called "binaries" to dist inguish the m fro m source files.
Most groups of users sharing co m mon interests have one or more bin directories set up
to hold co m mon procedures. Som e users have their PATH variable l ist several
directories.

3-32

XENIX 2 86 User's Guide The Shell

Mo re a bout Executio n F lags

Several execut ion flags available in the shell can be useful in shell procedures.

-e This flag causes the shell to exit i m mediately if any com mand that it executes
exits with a nonzero exit status. This flag is useful for shell procedures composed
of si mple co m mand lines; it is not intended for use in conjunct ion with other
conditional constructs.

-u This flag causes unset variables to be considered errors when subst ituting variable
values. This flag can be used to effect a global check on variables, rather than
using conditional substitution to check each variable.

-t This flag causes the shell to exit after reading and executing the com m ands on the
re m ainder of the current input line. This flag is typically used by C programs that
call the shell to execute a single com mand.

-n This is a "don't execute" flag. On occasion, you m ay want to check a procedure
for syntax errors but not execute the com mands in the procedure. Using set -nv at
the beginning of a file will accomplish this.

-k This flag causes all argu ments of the form variable=value to be treated as keyword
param eters. When this flag is not set, only such argu m ents that appear before the
com mand name are treated as keyword para meters.

S u p po rtin g Co m ma nds a n d Featu res

Shell procedures can make use of any XENIX com man d. The com m ands described in this
section are e ither used frequently in shell procedures or explicitly designed for such use.

Conditiona l Eva l u ation

The test co m m and evaluates the expression specified by i ts argu ments and, if the
expression is true, test returns a zero exit status. Otherwise, a nonzero (false) exit
status is returned. test also returns a nonzero exit status if it has no argu m ents. O ften
i t i s convenient to use the test co m mand as the first com m and in the com m and list
following an if or a while. Shell variables used in test expressions should be enclosed in
double quotat ion m arks if they are possibly null or not set.

The square brackets may be used as an alias to test, so that

[expression]

has the same effect as

test expression

The spaces before and after the expression in brackets are essent ial.

3-33

The Shell XENIX 2 86 User's Guid e

The following i s a part ial list o f the opt ions that can b e used to construct a condit ional
expression; the XENIX 286 Reference Manual contains a complete list of the conditional
evaluation opt ions.

-r fi le

-w file

-x file

-s file

-d file

-f file

- z sl

- n sl

-t fi ldes

sl = s2

sl ! = s2

sl

nl -eq n2

True if the nam ed file exists and is readable by the user.

True if the nam ed file exists and is writeable by the user.

True if the named file exists and is executable by the user.

True if the nam ed file exists and has a size greater than zero.

True if the nam ed file is a directory.

True if the nam ed file is an ordinary file.

True if the length of string sl is zero.

True if the length of string sl is nonzero.

True if the open file w hose file descriptor nu mber is fildes is associated
w ith a term inal device. If fildes is not specified, file descriptor 1 is
used by default.

True if strings sl and s2 are identical.

True if strings sl and s2 are not ident ical.

True if sl is not the null string.

True if the integers nl and n2 are algebraically equal; other algebraic
co mparisons are indicated by -ne (not equal), -gt (greater than), -ge
(greater than or equal to), -lt (less than), and -le (less than or equal to).

The above opt ions may be combined with the following operators.

-a

-o

()

Unary negation operator.

Binary logical AND operator.

Binary logical OR operator; it has lower precedence than the logical
AND operator (-a).

Parentheses for grouping; they must be escaped to re move their
significance to the shell. In the absence of parentheses, evaluation
proceeds from left to right.

Note that all options, operators, file names, etc. are separate argu ments to test.

3-34

XENIX 2 86 User's Guide The Shell

Ech o in g Argu ments

The echo co m m and has the follow ing syntax.

echo [options] [argum ents]

echo copies its argu m ents to the standard output, each followed by a single space,
except for the last argu m ent, which is normally followed by a RETU RN. Often it is
used to pro mpt the user for input, to issue diagnostics in shell procedures, or to add a
few lines to an output strea m in the middle of a pipeline. Another use is to verify the
argu ment list generat ion process before issuing a com m and that may cause an error or
syste m crash.

The com m and ls is often replaced by echo * because the latter is faster and prints fewer
lines of output.

The -n option to echo re moves the RETU RN fro m the end of the echoed line. The
following two co m mands pro mpt for input and enable typing on the sam e line.

echo -n 'enter name : '
read name

The echo co m mand also recognizes several escape sequences described in echo in the
XENIX 286 Reference Manual.

Express ion Eva l u at ion

The expr co m m and provides arith metic and logical operat ions on integers and so m e
pattern- matching facilities o n its argu ments. I t evaluates a single expression and writes
the result on the standard output ; expr can be used inside backquotes to set a variable.
The most co m mon uses of expr are counting iterat ions of a loop and in using its pattern
m atching capability to pick apart strings. So m e typical examples follow. Create an
executable file with the follow ing lines in it. You can nam e the file anything you want,
but this example assu m es that you named it expeval.

a = 2 # defi ne the var iab le a
echo a = $a
A = · expr $a + 1 ' # add one to a and ca l l the answer A
echo A = $A
substri ng = · expr "$1 " : ' . . \{. *\) • ·

echo $substr i ng
c = ' expr "$1 "
echo c = $c

I * ' "

put th i rd thru last characters of $ 1
i nto substri ng

obta i n length of $1

Now, execute the script expeval with the argu m ent 1 23456. The output looks as follows.

$ expeval 1 23456
a = 2
A = 3
su bstri ng = 3456
C = 6

3-3 5

The Shell XENIX 2 8 6 User's Guide

Tru e and False

The true and false com m ands perform the funct ions of exit ing with z ero and nonzero
exit status respectively. The true and false co m mands are often used to i m plement
unconditional loops. For example, you might type

whi le true
do echo forever
done

This will echo "forever" on the screen until the shell receives an interrupt s ignal. W ith
most syste ms, you can provide an interrupt signal by pressing the DEL key.

I n-Line I n put Docu ments

Upon seeing a co m mand line of the form,

command < < eo fstring

where eofstring is any arbitrary string, the shell will take the subsequent lines as the
standard input to command until a line is read consisting only of eofstring. (By
appending a m inus sign to the input redirection symbol (< <-) , leading tabs are deleted
fro m each line of the input docu m ent before the shell passes the line to comm and.)

The shell creates a t e mporary fi le containing the input docu ment and perfor ms variable
and com mand subst itut ion on its contents before passing it to the co m m and. Pattern
m atching on file nam es is perform ed on the argu m ents of co m m and lines in co m mand
subst itut ions. To prohibit all subst itut ions, you m ay quote any character of eofstring.
R e m e mber fro m the example in the section called "Co m mand Grouping" that quoting a
character (enclosing it in single quotes) is equivalent to preceding it with a \.

command < < \eofstring

Here is an example of how the backslash in eofstring m ay be useful. Not ice that after
the cat com mand and before you enter eofstring, you see your secondary pro m pt. You
can define your secondary prompt by setting P S2 in your .profile, but be aware that your
new PS2 does not take effect until you log in again or until you source .profile w ith the
dot (.) com mand, as follows: • • profile. This example assu mes that your secondary
prompt is > .

$ a = va l ue
$ cat < < \xx
> hello
> $a
> XX
hello
$a
$

W ithout the backslash, you get the value of $ a, not the string $a. By the way, you could
have entered cat < <x\x as well as cat < <\xx.

3-36

XENIX 286 User's Guide

$ a = va lue
$ cat < < xx
> hel lo
> $a
> XX
hel l o
va l ue
$

The Shell

The in-line input docu m ent feature is especially useful for small a mounts of input data,
where it is more convenient to place the data in the shell procedure than to keep it in a
separate file. For instance, you could type

$ cat < < -x x

XX

Th i s message wi l l be pri nted on the
term ina l with leading ta bs removed

This in-line input docu m ent feature is most useful in shell procedures. Note that in-l ine
input docu m ents m ay not appear within backquotes.

I nput/O utput Red i rection Usi n g F i le Descri pto rs

W e mentioned above that a co m mand occasionally directs output to so m e file associated
with a file descriptor other than 1 or 2 . In languages such as C, you can associat e
output with any file descriptor by using t h e write syste m call {see t h e XENIX 286 C
Library Guide). The shell provides its own mechanism for creat ing an output file
associated w ith a particular file descriptor. By typing

fd 1 > &fd2

where fdl and fd2 are valid file descriptors, you can direct output norm ally associated
with file descriptor fdl to the file associated with fd2. The default value for fdl and
fd2 is 1. If, at run t i m e, no file is associated with fd2, then the redirection is void. The
most com mon use of this m echanis m is that of directing standard error output to the
same file as standard output.

Consider the following. If you try to delete a nonexistent file, you get an error m essage
sent to file descriptor 2. By default, this m essage appears on the screen. For example,

$ rm ba loney
rm : bal oney non-existent

Assu me that you want to redirect that error m essage to a file instead. Then, issue the
co m mand as

$ rm ba loney 2 > errf i l e

3-37

The Shell XENIX 286 User's Guide

The file errfile is created and it contains the error m essage. You can display this file
with the cat co m mand. Now assu m e that you've redirected file descriptor 1 to a file
called otherfile and you want to redirect file descriptor 2 to that same file. Issue the
com mand as follows.

$ rm ba loney 1 > otherfi l e 2 > &1

The order here is significant: first, file descriptor 1 is associated with otherfile; then,
file descriptor 2 is associated with the same file as is currently associated with file
descriptor 1 . If the order of the redirect ions were reversed, standard error output would
go to the t er m inal, and standard output would go to otherfile, because at the t i m e of the
error output redirection, file descriptor 1 would st ill have been associated with the
term inal.

This m echanism can also redirect standard input. You could type

fda < &fdb

to cause both file descriptors fda and {db to be associated with the sam e input file. If
fda or {db is not specified, file descriptor 0 is assu m ed. Such input redirect ion is useful
for a co m m and that uses two or more input sources.

Cond ition a l Su bstitution

Normally, the shell replaces occurrences of $variable by the string . value assigned to
variable, if any. However, a special notation allows condit ional subst itut ion, dependent
on whether the variable is set or not null. By definition, a variable is set if it has ever
been assigned a value. The value of a variable can be the null string, which m ay be
assigned to a variable in any one of the following ways.

A=
bed=""
efg="
set " ""

The first three examples assign null to each of the corresponding shell variables. The
last example sets the first and second positional param et ers to null. The following
conditional expressions depend on whether a variable is set and not null. Note that the
meaning of braces in these expressions differs fro m their meaning when used in grouping
shell com m ands. "Parameter" as used in the following definit ions refers to e ither a d igit
or a variable name.

${variable:-string}

${variable:=string}

3-38

If variable is set and is not null, then subst itute the value
$variable in place of this expression. Otherwise, replace the
expression with string. Note that the value of variable is not
changed by the evaluat ion of this expression.

If variable is set and is not null, then subst itute the value
$variable in place of this expression. Otherwise, set variable to
string, and then subst itute the value $variable in place of this
expression. Posit ional param eters m ay not be assigned values in
this fashion.

XENIX 286 User's Guide The Shell

${variable:+string} If variable is set and is not null, then subst itute string for this
expression. Otherwise, subst itute the null string. Note that the
value of variable is not altered by the evaluat ion of this
expression.

${variable: ? string} If variable is set and is not null, then substitute the value of
variable for the expression. Otherwise, print a m essage of the
form

variable: string

and exit fro m the current shell. (If the shell is the login shell, it
is not exited.) If string is om itted in this for m, then the m essage

variable: parameter null or not set

is printed instead.

These expressions may also be used w ithout the colon. In this variat ion, the shell does
not check whether the variable is null or not; it only checks whether the variable has
ever been set.

The following shell script illustrates the above rules for condit ional subst itut ion. The
part of the line after the # is a co m m ent that explains what happens on that line.

echo 'test ing ${va riab le : -stri ng}'
echo d = $d #you see that d i s nu l l
echo ${d : -hel lo} #you see hel lo
echo d = $d #note that the val ue of d is not changed
d = 'I am set and not nu l l ' #sett ing d
echo ${d : -hel lo} #you see d's va l ue
d = II #then set d back to nu l l

echo 'testi ng ${ variable : = str i ng}'
echo d = $d #you see that d is nu l l
echo ${d : = hel lo} #you see hel lo
echo d = $d #note that the va l ue of d is changed
d = II #then set d back to nu l l

echo 'test ing ${ variab le : + stri ng}'
d = 'I am set and not nu l l '
echo ${d : + hel lo}
echo d = $d
d = ll

#you see he l lo
#note that d i s unchanged
#then set d back to nu l l

echo 'testi ng ${variable : ?stri ng}'
echo d = $d #you see that d is nu l l
echo ${d : ?messagestring} #you see the message stri ng

3-3 9

The Shell XENIX 2 8 6 User's Guide

The two examples below further illustrate the use of this facility.

• This example performs an explicit assign m ent to the PATH variable.

"P ATH"=${P ATH:-':/bin:/usr/bin'}

If PATH has ever been set and is not null, then keep its current value; otherwise,
set it to the string ":/bin:/usr/bin".

• This example auto mat ically assigns the HO M E variable a value.

cd ${HOME:='/usr/gas'}

If HOME is set and is not null, then change directory to it; otherwise, set HO M E to
the given value and change directory to it.

I nvocation F lags

Four flags may be specified on the co m mand line when invoking the shell and may not be
turned on with the set co m mand.

-i If this flag is specified or if the shell's input and output are both attached to a
terminal, the shell is interact ive. In such a shell, INTE R R U PT (signal 2) is caught
and ignored, and TER MINATE (signal 1 5) and QUIT (signal 3) are ignored.

-s If this flag is specified or if no input/output redirect ion argu m ents are given, the
shell reads co m mands fro m standard input. Shell output is written to file
descriptor 2. Your login shell has the -s flag turned on.

-c When this flag is turned on, the shell reads co m mands fro m the first string
following the flag. Remaining argu m ents are ignored. Double quotation marks
should be used to enclose a multiword string for variable subst itut ion.

3-4 0

XENIX 286 User's Guide The Shell

Effective a n d Efficient S h e l l Progra m min g

This section outlines strategies for writing efficient shell procedures, ones that do not
waste resources in accomplishing their purposes. The pri m ary reason for choosing a
shell procedure to perfor m a specific function is to achieve a desired result at a
m inimum hu m an cost. Emphasis should always be placed on s implic ity, clarity, and
readability, but efficiency can also be gained through awareness of a few design
strategies. In many cases, an effective redesign of an exist ing procedure i mproves its
efficiency by reducing its size, and often increases its co mprehensibility. In any case,
you should not worry about opt imi zing shell procedures unless they are intolerably slow
or are known to consu me an inordinate amount of a syste m's resources.

The same kind of iteration cycle should be applied to shell procedures as to other
programs: write code, measure it, and opti m ize only the few i mportant parts. You
should beco me fam iliar with the time com m and, which can be used to measure both
entire procedures and parts thereof. Its use is strongly reco m m ended; hu man intu it ion is
unreliable when used to est imate t i m ings of progra ms, even when the style of
program ming is a fa m iliar one. E ach t i ming t est should be run several t imes, because
the results are easily disturbed by variat ions in syste m load.

N u mber of Processes Generated

When large nu mbers of short co m m ands are execut ed, the actual execut ion t i m e of the
co m mands may be do m inated by the overhead of creat ing processes. The procedures
that incur significant amounts of such overhead are those that perfor m much looping
and those that generate co m m and sequences to be interpreted by another shell.

If you are worried about efficiency, you should know which co m mands are built into the
shell and which are not . Here is the alphabetical list of bu ilt-in co m m ands.

break
export
shift
while

case
for
test

cd
if
t i mes

cont inue
newgrp
trap
D

eval
read
umask

exec
read only
unt il

exit
set
wait

Parentheses are built into the shell, but co m mands enclosed within the m are executed as
a child process, i .e . , the shell does a fork, but no exec. Any co m mand not in the above
list requires both fork and exec.

3-4 1

The Shell XENIX 286 User's Guide

You should always have an est i mate of the nu mber of processes generated by a shell
procedure. In the bulk of observed procedures, the nu m ber of processes created (not
necessarily s imultaneously) can be described by

processes = (k*n) + c

where k and c are constants, and n may be the nu mber of procedure argu ments, the
nu mber of lines in so me input file, the nu m ber of entries in so m e directory, or so m e
other obvious quantity. Efficiency i mprove ments are most com monly gained by
reducing the value of k, som et i m es to zero.

Any procedure whose co mplexity measure includes n2 terms or higher powers of n is
likely to be intolerably expensive.

As an example, here is an analysis of a procedure nam ed split, whose text is given
below.

spl it
trap 'rm temp$$; trap 0 ; ex it' 0 1 2 3 1 5
sta rt1 = 0 start2 = 0
b = ' [A-Za-z] '
cat > temp$$

i f test -s "$1 "
then start1 = ' we -1 < $1 '
f i
i f test -s "$2"
then start2 = ' we - I < $2 '
fi
g rep "$b" temp$$ > > $1

read std in i nto temp f i le
save orig i na l lengths of $1 , $2

l i nes with letters onto $1
grep -v "$b" temp$$ I g rep '[0-9] ' > > $2

tota l = " ' we -1 < temp$$ ' "
end1 = " ' we -1 < $1 ' "
end2 = " ' we -1 < $2 ' "

l i nes with on ly numbers onto $2

lost = " · expr $tota l - \(nd1 - tart 1 \) \ -\{ nd2 - ta rt2\) ' "
echo "$tota l read, $lost thrown away"

For each iterat ion of the loop, there is one expr plus e ither an echo or another expr. One
addit ional echo i s executed at the end. If n is the nu mber of lines of input, the nu m ber
of processes is 2 *n+ 1 .

So me types o f procedures should not be written using the shell. For example, if one or
more processes are generated for each character in so m e file, it is a good indication
that the procedure should be rewritten in C. Shell procedures should not be used to scan
or build files a character at a t i m e.

3-42

XENIX 286 User's Guide The Shell

N u mber of Data Bytes Accessed

Whenever you can, reduce the nu mber of processes running; XE NIX is more efficient
when it spends t ime passing data rather than creating m any s m all processes. So me
filters shrink output, others increase i t . Put the "shrinkers" first when the order is
irrelevant. For instance, the second example below is faster because the input to sort
will be much s maller.

sort f i le I g rep pattern
g rep pattern fi le I sort

Shorte n i n g. D i rectory Searches

Directory searching can consu me a great deal of t i me, especially in those appl ications
that use deep directory structures and long path na mes. Jud ic ious use of cd, the change
directory co m m and, can help shorten long path names and thus reduce the nu mber of
d irectory searches needed. As an exerc ise, try the following co m m ands.

I s -1 /usr/bi n/* >/dev/nu l l
cd /usr/bi n ; I s - 1 * > ldev/n u l l

The second co m m and will run faster because o f the fewer d irectory searches.

Directo ry-Sea rch Order and th e PATH Varia b l e

The PATH variable i s a convenient mechanis m for allowing organizat ion and sharing o f
procedures. However, i t must be used in a sensible fashion, o r the result may be a great
increase in syste m overhead.

The process of finding a co m m and involves reading every directory included in every
path na me that precedes the needed path na m e in the current PATH variable. As an
example, consider the effect of invoking nroff (i . e. , /usr/bin/nroff) when the value of
PATH is :/bin:/usr/bin. The sequence of directories read is

I
/bin
I
/usr
/usr/bin

The vast majority of co m mand execut ions are of co m m ands found in /bin and, to a
som ewhat lesser extent, in /usr/bin. Careless PATH setup may lead to a great deal of
unnecessary searching. The follow ing four exam ples are ordered fro m worst to best
with respect to the efficiency of co m m and searches.

:/usr/john/bin:/usr/localbin:/bin:/usr/bin
:/bin:/usr/john/bin:/usr/localbin:/usr/bin
:/bin:/usr/bin:/usr/john/bin:/usr/localbin
/bin: :/usr /bin:/ usr /j ohn/bin:/usr /localbin

3-43

The Shell XENIX 2 8 6 User's Guide

The first exa mple should be avoided. The others are acceptable and the choice among
the m is dictated by the rate of change in the set of com mands kept in /bin and /usr/bin.

A procedure that is expensive because it invokes m any short-lived co m mands may often
be speeded up by sett ing the PATH variable inside the procedure so that the fewest
poss ible directories are searched in an opt imu m order.

Good Ways to Set Up Di recto ries

Avoid excessively large directories. You should be aware of several special sizes. A
directory that contains entries for up to 3 0 files (plus the requ ired • and ••) fits in a
s ingle disk block and can be searched very e ff icient ly. One that has up to 286 entries is
st ill a small directory; anything larger is usually cu mberso m e when used as a working
directory. It is especially important to keep login directories small, preferably one
block at most. Note that, as a rule, directories never shrink. This is very i mportant to
understand, because if your directory ever exceeds either the 30 or 2 8 6 thresholds,
searches will be inefficient; furtherm ore, even if you delete files so that the nu mber of
files is less than e ither threshold, the syste m will still cont inue to treat the directory
inefficiently because the directory is st ill the same size.

S h e l l Proced u re E xa m p l es

The power of the X ENIX shell co m m and language is most readily seen by exam ining how
XE NIX's many labor-saving ut ilities can be co m bined to perform powerful and useful
co m m ands with . very little program m ing effort. This sect ion gives examples of
procedures that do just that. By studying these exa mples, you will gain insight into the
techniques and shortcuts that can be used in program m ing shell procedures (also called
"scripts") . Note the use of the nu mber sign (#) to introduce co m ments into shell
procedures.

Carry out the following steps for each procedure.

e Place the procedure in a file with the indicated name.

• G ive the file execute per mission with the chmod co m mand.

e Move the file to a directory where co m m ands are kept, such as your own bin
directory.

3-44

M ake sure that the path of the bin directory is specified in the P ATH variable
found in .profile.

Execute the named command.

XENIX 2 86 User's Guide The Shell

b i n u n i q

I s /bi n /usr/bi n I sort I u n i q -d

This procedure determines which files are in both /bin and /usr/bin. The files in /bin
will override those in /usr/bin during most searches, and duplicates need to be deleted.
If the /usr/bin file is obsolete, then space is being wasted; if the /bin file is outdated by
a corresponding entry in /usr/bin then the wrong version is being run and, again, space is
being wasted. This is also a good demonstrat ion of sort I uniq to find m atches and
duplications.

co pypa i rs

Usage: copypa i rs f i le1 f i le2 . . .
Copies f i le 1 to fi le2. fi le3 to fi l e4.
wh i le test "$2" ! =

do

done

cp $1 $2
sh ift; sh ift

if test "$1 " ! =

then echo "$0:
f i

odd number of a rguments "

This procedure illustrates the use of a while loop to process a list of relat ed posit ional
parameters. Here a while loop is much better than a for loop, because you can adjust
the posit ional parameters with the shift co m m and to handle related argu m ents.

copyto

Usage: copyto d i r fi le . . .
Copies argument fi les to "d i r " .
making sure that at least
two a rguments exist. that "d i r " i s a d i rectory.
and that each add iti onal arg u ment
is a readable f i le .
if test $# - I t 2

then echo "$0 : usage : copyto d i rectory f i le
e l if test ! -d $1

then echo "$0 : $1 i s not a d i rectory " ;
else d i r = $1 ; sh i ft

done
f i

for eachfi l e
do cp $eachfi l e $d i r

This procedure uses a n if co m mand with several parts to screen out i m proper usage. The
for loop at the end of the procedure loops over all of the argu m ents to copyto but the
first; the original $1 is shifted off.

3-45

The Shell XENIX 286 User's Guide

disti nct1

Usage : d ist inct1
Reads standard i nput and reports l i st of
a l pha numer ic stri ngs that d iffer on ly i n case,
g iv ing l owercase form of each.
t r -cs 'A-Za-z0-9' ' 1 2' lsort -u I \
tr 'A-Z' 'a-z' I sort I un iq -d

This procedure is an example of the kind of process created by the left-to-right
construct ion of a long pipeline. Note the use of the backslash at the end of the first
non-co m m ent program line as the line cont inuat ion character.

It may not be i m m ediately obvious how this co m m and works. You may wish to consult
tr, sort, and uniq in the XENIX 286 Reference Manual if you are co mplet ely unfa mil iar
with these com mands.

The tr co m mand translates all characters except lett ers and d igits into R ETU RN
characters, and then produces repeated RETU RN characters. This leaves each string (in
this case, any cont iguous sequence of lett ers and digits) on a separat e l ine. The sort
co m mand sorts the lines and e m its only one l ine fro m any sequence of one or more
repeated lines. The next tr converts everything to lowercase, so that identifiers
d iffering only in case beco me ident ical. The output is sorted again to bring such
duplicates together. The "uniq -d" prints (once) only those lines that occur more than
once, yield ing the desired l ist.

The process of building such a p ipeline relies on the _fact that p ipes and files can usually
be interchanged. The first line below is equivalent to the last two lines, assu m ing that
sufficient d isk space is available.

cmd1 I cmd2 I cmd3

cmd1 > temp1 ; < temp1 cmd2 > temp2; < temp2 cmd3
rm temp[1 23]

Start ing with a file of test data on the standard input and working fro m left to right,
each co m m and is executed, taking its input fro m the previous file and putt ing its output
in the next file. The final output is then exa m ined to make sure that it contains the
expected result. The goal is to create a series of transfor mat ions that will convert the
input to the desired output.

Although pipelines can give a concise notat ion for co mplex processes, you should
exercise so m e restraint, since such practice oft en yields incomprehensible code.

3-46

XENIX 2 8 6 User's Guide

draft

Usage : d raft fi le(s)
Pri nt manua l pages for D iab lo pri nter.
for in $*

do nroff -man I lp r
done

The Shell

Users often write this kind of procedure for convenience in dealing with co m mands
requiring distinct flags that cannot be given default values reasonable for all (or even
most) users.

edfi nd

Usage: edfi nd f i l e a rg
F inds the last occurrence i n "fi l e " of a l i ne
whose beg inn ing matches "a rg " , then pri nts
3 l i nes (the one before, the l i ne itse lf,
and the one after)
ed - $1 < < -EOF

EOF

? "$2?
- , + p
q

This illustrates the pract ice of using ed in-line input scripts into which the shell can
subst itute the values of variables.

ed last

Usage : ed last f i le
Pri nts the last l i ne of f i le,
then deletes that l i ne .
ed -$ 1 < < -\!

$p
$d
w
q

echo done

This procedure illustrates taking input fro m within the file itself up to the exclam at ion
point (!). Variable subst itut ion is prohibited w ithin the input text because of the
backslash.

3-47

The Shell

fsp l it

Usage : fspl it f i le 1 f i l e2
Reads standa rd i nput and d i vides it i nto 3 pa rts

XENIX 2 86 User's Guide

by append ing any l i ne conta i n i ng at least one l etter
to f i l e 1 , appending any l i ne conta in ing d ig its but
no l etters to f i le2, and by throwing the rest away.
count = 0 gone = 0
wh i l e read next
do

count = " ' expr $count + 1 ' "
case "$next" i n
* [A-Za-z] *)

echo "$next" > > $1 . .
I I

* [0-9] *)
echo "$next" > > $2 . .

I I
*)

gone = " · expr $gone + 1 · "
esac

done
echo "$count l i nes read, $gone thrown away"

Each iterat ion of the loop reads a line fro m the input and analyzes it. The loop
term inates only when read encounters an end-of-file. Note the use of the expr
com mand.

Don't use the shell to read a line at a t i m e unless you must-- it can be an extre m ely slow
process.

l i stfie lds

grep $* I tr ":" "\0 12"

This procedure lists lines containing any desired entry given to it as an argu m ent. It
places any field that begins with a colon on a new line. Thus, if given the input,

joe newman : 1 3509 NE 78th St :

listfields produces

j oe newma n
1 3509 N E 78th St
Red mond, Wa 98062

Redmond, Wa 98062

In the com mand l ine, note the use of the tr co m m and to convert colons to linefeeds.

3 -48

XENIX 286 User's Guide

mkfi les

Usage: mkfi les pref [quantity]
makes "q uantity" f i l es. named pref1 , pref2. . . .

defau l t i s 5 as determ i ned on fol l owing l i ne.
quantity = ${2-5}
i = 1
wh i le test "4i " = le "$quantity"
do

> $1 $i
i = " ' expr $i + 1 "

done

The Shell

The mkfile procedure uses output redirection to create zero-length files. The expr
co m m and counts iterat ions of the while loop.

n u l l

Usage : nu l l f i l es
create each of the na med f i l es as an empty fi le .
for each f i l e
d o

> $eachf i l e
done

This procedure uses the fact that output redirect ion creat es the e mpty file if a file does
not already exist.

phone

Usage : phone in it ia ls
Pri nts the phone numbers of the
people with the g iven i n itia l s .
echo ' i n its ext home'
g rep " "'$ 1 " < < -EN D

END

jfk 1 234 999-2345
l bj 2234 583-2245
hst 3342 988- 1 01 0
jqa 4567 555-1 234

This procedure is an example of using an in-line input script to maintain a s m all data
base.

3-49

The Shell XENIX 2 8 6 User's Guide

textfi le

To determine which files in a d irectory contain only text, textfile filters argu m ent lists
to other com mands. For example, the following co m mand line will print all the text .
files in the current d irectory.

pr 'textfile *' I lpr

This procedure also uses an -s flag that silently tests whether any of the files in the
argu ment list are t ext files.

write ma i l

Usage : writema i l message user
If user i s logged i n,
writes message to term ina l ;
otherwise, mai l s it to user.
echo "$1 " I { write "$2" II ma i l "$2" ; }

This procedure illustrates the use o f com mand grouping. The message spec ified by $ 1 is
piped to both the write com mand and, if write fails, to the mail com mand.

M etach a racters a n d Reserved Wo rds

Syntactic

P ipe symbol

&.&. And-if symbol

I I Or-if symbol

; Com mand separator

;; Case deli m it er

&. Background c o m m ands

() Co m mand grouping

< Input redirection

< < Input fro m a docu m ent

> Output creation

< Output append

Co m ment to end-of-line

3-50

XENIX 2 86 User's Guide The Shell

Patterns

*

?

[. . .]

Substitution

${ ••• }

Quoting

\fP

' '
. . .

" "
. . .

Reserved words

{ }
case
elif
else
do
done
esac
fi
for
if
in
then
until
while

Match any character(s) including none

M atch any single character

M atch any of enclosed characters

Subst itute shell variable

Subst itute co m m and output

Quote next character as literal w ith no spec ial meaning

Quote enclosed characters except the back quotat ion m arks (')

Quote enclosed characters except $ ' "

3-5 1

I n troductio n

CHAPTER 4
ed : A LIN E-ORIENTED TEXT EDITOR

ed is a general-purpose, full-screen, line-oriented editor used to create and modify text.
Rather than entering a stream of revisions to be made as in sed, or moving the through
the file as in vi, editing in ed is done by specifying a line nu m ber to be edited and then
making the revisions to that line.

Basic Co ncepts

This sect ion introduces the basic concepts of ed.

Entering and Exiting ed

To invoke ed, type

ed filename

where filenam e is the name of a new or exist ing file. When you enter ed, it pro mpts you
for co m mands with an ast erisk (*). To create or append text, see "Creating and
Appending Text" later in this chapter.

To exit the editor, type

q

I f you try to exit the editor without saving any changes to a file, ed returns the
following warning, telling you that the changes have been made and the file hasn't been
saved:

warn i n g : expect i ng 'w'

If you st ill want to exit without saving the changes, type another q. In most cases you
will want to exit by typing

w

q

The w co mmand (discussed in detail later in this chapter) saves the changes and enables
you to type q to quit ed.

4-1

ed XENIX 2 8 6 User's Guide

Line Nu mbers

Any t ime a com mand changes the nu mber of lines in the editing buffer, ed renu mbers
the lines. At all t i m es, every line in the editing buffer has a line nu mber. M any editing
co m mands will take either single line nu mbers or line nu mber ranges as prefixing
argu ments. These argu ments normally specify the lines in the editing buffer to be
affected by the given co m mand. The current line can be specified with a special l ine
number called "dot" and is represented by a period (.) . You can deter m ine the actual
line nu mber of the current line by entering

The Editing B uffer

Each t ime you invoke ed, an area in the memory of the computer is allocated where you
will perform all editing operat ions. This area is called the "editing buffer. " When you
edit a file, a copy of the original is placed in the editing buffer, where you will work on
it. Only when you write out the buffer (using the w com mand) do you change the
original file.

Calling a File

The edit com m and (e) places the entire cont ents of a file into the edit ing buffer. During
a single ed session you may need to edit a nu mber of files; e enables you to read files
into the buffer w ithout exiting ed. Once you enter ed, you can edit a file, writ e out the
buffer by using w, and read in the next file to edit by entering the co m m and

e filename

The specified file is read into the buffer and ed displays the nu mber of characters in the
file. Any data in the buffer is deleted before the new file is read in.

If you use e to read a file into the buffer, you don't need to use a file name after a
subsequent w co m mand; ed re m e mbers the last file name used in an e co m mand, so w
automatically writes to this file.

Writing Out the Editing Buffer

You will probably want to save your text for later use. To write out the contents of the
buffer into a file, use the write (w) co m m and followed by the nam e of the file you want
to write to. This copies the contents of the buffer to the specified file, destroying any
previous contents of the file. Leave a space between w and the file name. For
example, to save the buffer in a file na med text, type

w text

ed responds by printing the nu m ber of characters in the text. (Blanks and the RETU RN
character at the end of each line are included in the character count.) Writ ing out a file
makes a copy of the t_ext in the edit ing buffer--the buffer's contents are not disturbed,
so you can cont inue editing it. When. you invoke ed by using a fil enam e argu m ent, a w
com mand by itself writes the buffer out to fi lenam e.

4-2

XENIX 286 User's Guide ed

ed always works on a copy of a file, not the file itself. The contents of a file remain
unchanged until you write out the edit ing buffer. Writing out the editing buffer
occasionally as you work is an excellent safety m easure; if the syste m crashes all the
text in the buffer is lost, but any text written out is usually safe.

Writing Out Part of a File

During an editing session you may need to write out only part of the editing buffer. For
example, you may want to split a table out into a separate file so it can be formatted
and tested separately. Suppose that in the file being edited we have

.TS
[text for tab le]
.TE

which is the way a table is set up for the tbl program. To isolate the table in a separate
file called table, find the start of the table (the "· TS" line) and then write out the text
of the table.

First type

f" .TS/

This prints out the line

.TS

Next, type

. ,f" .TE/w ta b le

which means "write out fro m the current line (.) to the line beginning w ith . TE and put i t
in the file called table."

If you are confident, you can do it all at once with

f" .TSt;r .TE/w ta b le

By using the w co m mand, you can write out a group of lines inst ead of the whole file. In
fact, you can even write out a single l ine; just give one line nu mber instead of two.

Changing File Name to Write Out to

The ed file com mand (f) enables you to determ ine the nam e of the last file written to
and specify a new file nam e for the editing buffer to write to. Check the name of the
last file written to by entering f at the ed pro mpt (*).

To change the file name that the edit ing buffer should write to, enter f in the follow ing
format:

f newfilename

4-3

ed XENIX 286 User's Gu ide

Changing the f i le name can be very useful for docu m ents such as contracts, where
certain parts of the text may change but the original file serves as a master for m and
the new file is a record of the individual transact ion. You would invoke ed and specify
the original file name, use f to specify a new file name, edit the contents of the buffer,
and write out the revised text to the new file name. If you needed to make changes to
the copy of the individual transact ion, you could use the sam e process, ensuring that a
record of each change would be saved.

Comma nds

ed prompts for co m mands with an asterisk {*). Enter co m mands by typing the m at the
keyboard and then pressing RETU RN. Most com mands are s ingle characters that can be
preceded by a line nu mber or a line nu mber range. By default, most co m mands operate
on the current line (.). Many co m mands take file nam e or string argu ments used by the
com mand when it is executed.

Undoing Com mands

Occasionally you will make a subst itution in a line only to realize too late that it was a
mistake. The undo (u) co m mand enables you to "undo" the most recent co m mand. Thus,
the last line that was subst ituted can be restored to its previous state by typing

u

This co m mand does not work when global co m m ands are used in combination with the
substitution co m mand.

Displayin g lin es

The print (p) com mand displays the contents of the edit ing buffer. By using line
nu mbers, you can display the entire buffer or just port ions of it. The p com m and for m at
is

beginning line number, ending line numberp

Suppose you want to print the entire buffer; you could use " 1 , 3 p" as above if you know
there are exactly three lines in the buffer. Since it is unlikely that you know how m any
lines are in the buffer, ed provides a shorthand symbol for the line nu mber of the last
line in the buffer--the dollar sign ($). Use it this way:

1 ,$p

This will print the ent ire buffer (from l ine 1 to the last line). If you want to stop the
printing before it is finished, press the DELETE key. ed then displays

?
i nterru pt

and waits for the next co m mand.

4-4

XENIX 286 User's Guide ed

To print the last line in the buffer, type

$p

You can print any single line, including the current line (.), by typing the line nu m ber
followed by p. Typing

2p

displays the second line of the buffer. In fact, you can abbreviate even further by
delet ing the p from the co m mand line; at the co m mand

ed prints the current line. You can delete the p only when you are specifying a single
line. If you want to display mult iple lines, you must include the p. The current line m ay
also be displayed by entering

p

The next step is to use address arithm et ic to combine the line nu mbers like dot (.) and
dollar sign ($) with plus (+) and m inus (-). The co m mand

$-1

literally means "print the last line of the buffer ($) minus one (- 1)"; in other words, the
next to the last line in the buffer. For example, to view the last six lines of the buffer
when you don't know how many lines are in the buffer, type

$-5,$p

If the file has less than six lines you'll get an error m essage. Entering the co m mand

.-3,. + 3p

prints seven lines: the three l ines before the current l ine, the current l ine, and the
three lines after the current line.

You can also use plus and minus as line nu mbers by the mselves. For exam ple, entering

is a com mand to move back one line in the file. In fact, you can string several m inus
signs together to move back that many lines. Typing

moves back three lines, as does

-3

4-5

ed XENIX 2 8 6 User's Guide

Displaying Tabs a nd Control Characters

ed provides two com mands for printing the contents of the t ext you are editing: p
(described in the previous section) and 1 (list).

The 1 com mand m akes visible those characters normally invisible, such as t abs.. If you
list a line that contains tabs, 1 prints each tab as 1 1> 11• This makes it much easier to
correct extra spaces adjacent to tabs.

The 1 com mand also "folds" long lines for printing. Any line that exceeds 72 characters
is printed on mult iple l ines; each printed line except the last is term inated by a
backslash (\}, so you can tell it was folded. This is useful for printing lines longer than
the width of the screen.

Occasionally the 1 co m mand will print a string of nu mbers preceded by a backslash, such
as \7 or \16 . These combinat ions are used to make visible those characters that
normally don't print, like formfeed, vert ical tab, or bell. Each backslash-nu mber
co mbination represents a single ASCII character. (Note that nu mbers are octal and not
deci mal.) Such characters may cause unpredictable behavior when printed on so m e
terminals. Since they are rarely used, their presence usually indicates a n error.

I nterru pting ed

If you press the DELETE key while ed is execut ing a co mmand, your file is restored (as
much as possible) to what it was before the com mand began. However, some changes
are irrevocable. If you are reading in or writ ing out a file, making substitut ions, or
delet ing lines, these funct ions will be stopped in som e unpredictable state, so it is
unwise to stop the m. Dot may or may not be changed.

When using the print com mand, dot is not changed until the print ing is done. If you print
to a certain line and press DELETE to stop printing, dot will not be set to that line; it is
left where it was when the p co m m and was started.

Escap ing to the She l l

So metimes you m ay need t o temporarily escape from the editor to execute a XENIX
com mand. The shell escape co m m and (!) provides a way to do this.

If you type

! command

where command is a shell co m mand, your current edit ing state is suspended, and the
specified XENIX com mand is executed. When the com mand finishes, ed will signal you
by printing another exclamation point (!) ; at that point you can resu m e editing.

4-6

XENIX 286 User's Guide ed

Creatin g a n d Ap pendin g Text

Suppose that you want to create so me text starting fro m scratch. This sect ion shows
you how to create text in a file. Later we'll talk about how to edit exist ing files.

When you first invoke ed, it is like working with a blank piece of paper--there is no text
or infor mation present. These must be supplied by the person using ed, usually by typing
in the text or by reading it in from a file. We will start by typing in so me text and
discuss how to read files later.

The first co m m and we will discuss is append (a), entered as the letter "a" on a line by
itself. It means "append (or add) text lines to the buffer as they are typed in."
Appending is like writ ing new m aterial on a piece of paper.

To enter lines of text into the buffer, just type an "a" at the ed pro mpt (*) , followed by
a RETU RN, followed by the lines of text you want, like this:

a
Now is the t ime
for a l l good men
to come to the a id of thei r party.

To stop appending text, enter a period (.) or CONTROL-D on a blank line. If ed see m s
t o b e ignoring you, type a n extra line with just a period o n it.

After appending is completed, the buffer contains the following three lines:

Now i s the t ime
for a l l good men
to come to the a id of thei r party.

The a and • aren't there, because they are not text.

To add more text to what you already have, type another a co m m and and continue
typing your text.

If you make a mistake while ent ering a co m m and or use an incorrect co m mand, ed
displays an error message preceded by a quest ion mark.

Deletin g Lin es

The delete co m mand (d) deletes lines of text fro m the buffer. The lines to be deleted
are specified for d the same way as for p. Thus, entering the co m mand

2,$d

deletes lines 2 through the end. You can delete a single line by entering the line nu m ber
to be deleted, followed by d.

4-7

ed XENIX 2 86 User's Guide

Sea rch i n g

The search com mand (/ /) enables you t o search through a file for a part icular string; its
syntax is

/pa ttern!

This is also called a "context search expression." The slash and quest ion mark are the
only characters you can use to del im it a cont ext search. In their s implest form, all
context search expressions are like this--a string of charact ers surrounded by slashes.
Context searches are interchangeable with l ine nu mbers, so they can be used to find and
print a desired line.

Searching is useful for finding a single occurrence of a pattern when you don't know
what line it is on. Use the search co m m and to find the patt ern you need and then you
can make the necessary edit ing changes.

For example, the co m mand

/the i r/

will locate the "next occurrence" of the characters bet ween the slashes (i .e . , "their").
Note that you do not need to type the final slash. The above search com m and is the
same as typing

/thei r

"Next occurrence" means that ed starts looking for the string at l ine " .+ 1 11, searches to
the end of the buffer, then cont inues at line 1 and searches to line dot . (That is, the
search "wraps around" fro m $ to 1 .) If the given string of characters can't be found in
any line, ed prints the error message

?
sea rch stri ng not fou nd

The search co m mand sets dot to the line where the pattern is found and prints the line
for verificat ion.

You can also search a file in reverse by using quest ion marks instead of slashes. For
example

?th ing?

searches backward in the file for the word "thing" as does

?th ing

This is especially handy when you realize that the string you want is prior to the current
l ine.

4-8

XENIX 286 User's Gu ide

Suppose the buffer contains the three lines

Now is the t ime
for all good men
to co m e to the aid of their party.

The ed com mands

/Now/+1

/good/

/party/- 1

ed

are all context search expressions, and they all refer to the sa me line (line 2). The basic
rule is that a context search expression is the same as a line nu mber, so it can be used
wherever a line nu mber is needed.

Suppose you search for the pattern "the", and when the line is printed you discover that
it isn't the "the" you wanted; you must repeat the search. However, you don't have to
retype the search, because the construction

II

is a shorthand expression for "the previous pattern that was searched for". This can be
repeated as many t i mes as necessary. You can also go backward, since

??

searches for the same pattern, but in the reverse direct ion.

Search in g with th e Semico lon

Searches with / . . ./ and ? • • • ? start at the current line and move forward o r backward
respectively, unt il they e ither find the pattern or return to the current line. So met imes
this is not what you want. Suppose, for exa mple, that the buffer contains lines like this:

a b

be

4-9

ed XENIX 2 8 6 User's Guide

Start ing at line 1 , you would expect the co m mand

/a/,/b/p

to print all the lines from the "ab" to the "be" inclusive. This is not what happens. Both
searches (for "a" and for "b") start fro m the sam e point, and thus they both find the line
that contains "ab". As a result, a single line is printed. If there had been a line w ith a
"b" in it before the "ab" l ine, the print co m mand would return an error since the second
line nu mber would be less than the first and you can't print lines in reverse order.

This happens because the co m m a separator for line nu m bers doesn't set dot as each
address is processed; each search starts from the same place. In ed, the sem icolon (;)
may be used just like the co m m a, except the sem icolon forces dot to be set at the t i m e
the se m icolon i s encountered, as the line nu m bers are being evaluated. I n effect, the
se m icolon " moves" dot. Thus, in our exa mple above, the co m mand

/a/;/b/p

prints the range of lines fro m "ab" to "be", because after "a" is found, dot is set to that
line, and then "b" is searched for start ing at dot + 1 .

Suppose you want to find the second occurre nce of "thing". You could type

/th ing/

to find the first occurrence, then type

II

to find the second. However, you could find just the second by typing

/th i ng/; //

This says "find the first occurrence of 'thing', set dot to that line, then find the next
occurrence and print only that."

Closely related is searching for the second-to-last occurrence of a pattern, as in

?th ing?;??

To find the first occurrence of a pattern in a file, starting at an arbitrary place within
the file, use the co m mand

0;/th i ng/

which starts the search at line 1. This is one of the few places where 0 is a legal l ine
nu mber.

4- 1 0

XENIX 286 User's Guide ed

Search ing and Replaci n g

This sect ion discusses the change (c) co m mand, used to change o r replace one o r more
lines, and the insert (i) com mand, used for insert ing one or more lines.

The c com mand is used to replace a nu mber of lines with different lines that you type at
the terminal. For example, to change lines ".+ 11 1 through "$" to som ething else, type

. + 1 ,$c
type the l i nes of text you want here

The lines you type between the c co m m and and the period will replace the originally
addressed lines. This is useful in replacing a line or several lines that have errors in
the m.

If only one line is spec ified in the c com mand, then only that l ine is replaced. (You can
type in any nu mber of replacem ent lines.) Notice the use of a period to end the input.
This works just like the period in the append co m mand and must appear by itself on a
new line. If no line nu mber is given, the current line specified by dot is replaced. The
value of dot is set to the last line you typed in.

The insert (i) com m and is s im ilar to the append co m mand. The syntax for the insert
com mand is

i
text to be inserted

The search co m m and can be used in conjunct ion with i to locate the place to insert text.
For example

/stringli
text to be inserted

searches for the line containing the specified string and inserts the given text ahead of
that line. If no line nu mber is specified, the current line is used and dot is then set to
the last line inserted.

4- 1 1

ed XENIX 286 User's Gu ide

Su bstituting Text

One of the most i mportant ed com mands is the substitute (s) co m m and. This co m mand
is used to change phrases, words, or letters and correct spelling m istakes and typing
errors.

The syntax for the subst itute co m mand is

starting-line,ending-lines/pattern/replacement/

pattern is replaced by replacem ent, in all the lines between starting-line and
ending-line. Only the first occurrence on each line is changed, however. Changing
every occurrence is discussed later in this sect ion. The rules for line nu mbers are the
sam e as those for p, except that dot is set to the last line changed. If no subst itut ion
takes place, dot is not changed and the following error message is returned:

?
no match

Suppose, because of a typing error, line 4 reads

N ow is th t i m e

U s e s t o correct t h e m isspelling of "the" by entering

4s/th/the/

This subst itutes the characters "the" for the characters "th" in l ine 4. If no line nu mbers
are given, the s com mand assu m es you mean "make the subst itution on the current l ine."
This leads to the very com mon sequence

s/somethi ng/something e lse/p

which makes a correct ion on the current line, then prints it to make sure the correction
worked. If it d idn't, you can try again. (W ith few exceptions, p can follow any
co m mand; no other multiple com mand lines are legal.)

You can also type

sf string//

which means "change the first string of characters to nothing" or, in other words,
re move the m. This is useful for delet ing extra words in a line or re moving extra letters
from words. For instance, if you had

Nowww i s the ti me

you could type

s/ww//p

to produce

Now i s the ti me

4-1 2

XENIX 286 User's Guide ed

Note that two adjacent slashes m ean "no characters", not a space.

You can also use I I as the left side of a substitute com mand, to mean "the most recent
pattern." For example, if you type

/cou ntry/

ed prints the line containing "country." If you now type

s//conti nent/p

this changes "country" to "continent".

So far, the substitut ion patterns demonstrated have only changed the first occurrence in
each line. To change all occurrences of a pattern, you must add a g (for global) to the
end of the subst itution co m mand. The sect ion "Perfor ming Global Co m mands" later in
this chapter discusses the use of global com mands in detail.

M etach a ra cters

M etacharacters are a set of special characters used to describe patterns of text in
search and subst itute co m mands. These patterns are called "regular expressions" and
occur in several other i mportant XENIX co m mands and ut ilities, including grep and sed
(see the XENIX 286 Reference Manual). A complete list of the metacharacters follows:

\ $ * [] &

The following sections describe how to use these m etacharacters in search and
subst itute co m m ands.

B ackslash

The backslash (\} turns off any special meaning that the following character has. As an
example, the s equence

\.

in a search or substitute co m m and changes the meaning of the period fro m " match any
single character" to a literal period. When you are adding text with a, i, or c, the
backslash has no special meaning.

4- 1 3

ed XENIX 2 8 6 User's Guide

Period

When used in a search or on the left-side expression of a substitute com mand, the period
stands for any single character (this is frequently called a "wildcard" character). For
example, the search command

/x.y/

finds any line where "x" and "y" occur separated by any single character, as in

x+y
x-y
x y
xzy

If you use a period in the right-side expression of a subst itute co m mand, the period
assu mes its literal m eaning.

Ca ret

The caret (") s ignifies the beginning of a line; the first character of every line is a caret
(although it is invisible). To search for or subst itute an expression at the beginning of a
line, precede the expression with a caret. The search and subst itute co m mands have the
following form ats when using the caret:

r expression!

sr expression/expression/

For example, suppose you are looking for a line that begins with "the". If you si mply
type

/the/

you will probably find several lines containing "the" before arriving at the one you want.
But with

!"the/

you narrow the search context to "the" at the beginning of a line only, and thus arrive at
the desired line more quickly.

The caret (") also enables you to insert characters at the beginning of a line. For
example

s/"1 I

places a space at the beginning of the current l ine.

4-14

XENIX 286 User's Guide ed

Dol lar S ign

The dollar sign ($) signifies the end o f a line; the last character o f every line i s a dollar
sign (although it is invisible). To search for or substitute an expression at the end of a
line, follow the expression with a dollar sign. The search and substitute co m mands have
the following form ats when using the dollar sign:

/expression$/

s/ expression$/ expression/

For example, suppose you are looking for a line that ends with "the". If you si mply type

/the/

you will probably find several lines containing "the" before arriving at the one you want.
But with

/the$/

you narrow the search context to "the" at the end of a iine only, and thus arrive at the
desired line more quickly.

The dollar sign ($) also enables you to insert characters at the end of a line. For
example, this places a period at the end of the current line:

s/$1.1

Star

The star is useful for finding nu merous occurrences of a single character. Literally, it
means "find any nu mber of consecutive occurrences, including zero, of the character
that preceded the star followed by any designated text." For example, the com mand

/n *o

finds any num ber of occurrences of the letter "n" (including zero occurrences) followed
by the letter "o." When using the star in subst itut ion co m mand lines, be very careful; if
you specify the star with the wrong context, the file may be incorrectly changed.

Suppose that the line you want to edit is

text x • • • • • • • • • • • • • • • • • • y text

If you type

s/x . *y/x y/

the result is unpredictable. If no other x's or y's occur on the line, the subst itution can
work, but not necessarily. The period matches any single character, so " · *" matches as
many single characters as possible, and unless you are careful, it can re move more of
the line than you expected.

4- 1 5

ed XENIX 286 User's Guide

Brackets

Brackets are used in search and substitut ion com mands to specify a "character class". A
set of characters enclosed in square brackets matches any single character in the range
designated. For example, the search pattern

/[a-z]/

finds any lowercase letter. The search pattern

/[aA]pple/

finds all occurrences of "apple" and "Apple".

The pattern "[0 1 2 3456 78 9]*" matches zero or more digits (an entire nu mber), so

1 .$s/"' [0 1 23456789] *II

deletes all digits from the beginning of all lines. Any characters may appear w ithin a
character class, and only three special characters ("' ,], and -) appear inside the
brackets; even the backslash doesn't have a special m eaning. To search for any special
characters, for example, type

/[.\$ A []/

Digits can be abbreviated as [0-9] ; s imilarly, [a-z] stands for the lowercase lett ers, and
[A-Z] for uppercase.

Ampersand

The ampersand (&) can be used on the right s ide of a subst itute com m and to signify the
string of text found on the left side of a substitute co m mand. Using the ampersand
eli minates repeating the string on both sides of the com mand and is extre mely useful
when adding text within a line. The syntax of the ampersand com mand is

s/string/& new string/

For instance, if you are edit ing the line

Now i s the ti mes

and want to change it to read

N ow i s the best of ti mes

you would enter the com mand

s/the/& best of/

Here, the ampersand stands for "the", so that "the" is changed to "the best of".

The ampersand may be used more than once within the same co m mand line; it always
signifies the string on the left side of the substitution.

4-16

XENIX 286 User's Guide ed

Perfo rmin g G lobal Co m ma n ds

The global co m m ands g and v are used to execute one or more editing co m mands on all
lines that either contain (g) or don't contain (v) a specified pattern.

For example, the co m mand

g/XENIX/p

prints all lines that contain the word "XENIX". The pattern that goes between the
slashes can be anything that could be used in a line search or in a subst itute co m mand;
exactly the sam e rules and li m itations apply.

For example

g/" [0-9]/p

prints all lines in a file that begin with a nu mber (nu mbered lists for instance).

The v com mand is ident ical to g, except that it operates on those lines that do not
contain an occurrence of the patt ern. For example, this prints all lines that don't begin
with a nu mber.

v/" [0-9]/p

Any com mand can follow g or v. The following co m mand deletes all lines beginning with
a nu mber:

g/" [0-9]/d

The following co m mand deletes all e mpty lines:

g/" $/d

One of the m ost useful co m m ands that may be used in combination with the global
co m mand is the subst itute co m m and. For example, you could change the first
occurrence of " Xenix" on every line to "XENIX" by typing

g/Xenix/s//XENIX/

If you wanted to change every occurrence of "Xenix" to XENIX", you would type

g/Xenix/s//XENIX/g

The co m mand that follows a g or v com mand functions the same as a co m mand on a line
by itself. For example

g/"$/+

prints the line that follows each blank line (usually the first line in a paragraph). Plus
(+) means "one line past dot".

4 - 1 7

ed XENIX 2 86 User's Guide

The co m mand

g/"Item 2/+,/"ltem 8/-p

prints all lines that come just after the line beginning with "Ite m 2" and just before the
line beginning with "Ite m 8". M inus (-) m eans one line before dot.

The g and v com mands can also be preceded by line nu mbers, in which case the lines
searched are only those in the range specified. For example, this prints all lines
between 1 and 1 0 that have the word "Ite m":

l, lOg/ltem/p

You can give m ore than one com mand under the control of a global com mand. For
example, the following com mand will find all lines that contain "thing" and change the
first occurrence of "a" on the line to "b" and the first occurrence of "x" on the line to
"y":

g/thing/s/x/y/\
s/a/b/

The backslash (\} s ignals the g com mand that the com mands cont inue on the next line;
the g com mand t er m inates on the first line not ending with a backslash.

You can also execute a, c, and i com mands as part of a global com mand. As with other
multiline construct ions, add a backslash at the end of each line except the last. Thus, to
add two lines of ten asterisks before each line beginning with "Ite m", type

g/"Item/i\
**********\

There is no need for a final line containing a period (.) to term inate the i co m m and,
unless further co m mands are to be executed under the global com mand.

Copyin g lin es

ed provides a co m m and, t (for transfer), for copying a group of one or more lines. This
is often easier than writ ing and reading. The syntax for t is

starting-line, ending-linetdestination-line

The t com mand duplicates the specified lines after the destination-line. Thus

1 ,t

duplicates the entire contents of the buffer that you are edit ing and places the
duplication after the last line.

4- 18

XENI X 286 User's Guide ed

One use for t is to create a series of lines that differ only slightly. For example, type

a
Now is the time for all good men to come to the aid of their party.

t.
s/men/women/
t.
s/Now is/Yesterday was/

Your file will look like this:

[make a copy]
[change it]
[make second copy]
[change it]

Now is the t i m e for all good men to co me to the aid of their party.
Now is the t i m e for all good wo men to co m e to the aid of their party.
Yesterday was the t i m e for all good wo m en to co me to the aid of their party.

Movi n g Li n es

The move (m) co m m and enables you to move a group of lines from one place to another
in the buffer. The m co m mand syntax is

start-Zine,end-Zine mdestination-Zine

When specifying the destinat ion, reme mber that the text is moved to the line after the
destination-line.

Suppose you want to move the first three lines of the buffer to the end. The following
move com mand does it in a single step:

1 ,3 m$

The lines to be moved can also be specified by context searches. Suppose the buffer
contained the follow ing text:

F irst paragraph
end of first paragraph.
Second paragraph
end of second paragraph.

You could reverse the two paragraphs by using the following co m mand:

/Second/,/end of second/m/F i rst/-1

Notice the -1 . Because moved text is placed after the dest ination line, to place text
before a line you must specify the destinat ion line minus one. This is useful for moving
t ext to the beginning of a file.

4 - 1 9

ed XENIX 2 8 6 User's Guide

Dot is set to the last line moved. Your file will now look like this:

Second paragraph
end of second paragraph.
F irst paragraph
end of first paragraph.

As another example of a frequent operation, you can reverse the order of two adjacent
lines by moving the first line after the second line. If you are posit ioned on the first
line, the co m m and

m +

moves dot to one line after the current line. If you are on the second line, the co m mand

m--

moves dot to one line before the current line.

The m com mand is more succinct than writing, deleting, and rereading. The main
difficulty with the m co m mand is that if you use patterns to specify both the lines you
are moving and the target, you have to take care to specify the m properly, or you m ay
not move the lines you want. Doing the job one step at a t ime makes it easier to verify
at each step that you accomplished what you wanted. It is also a good idea to write out
the buffer before doing anything complicated; then if you make a mistake, it's easy to
back up to where you were.

M a rk ing You r Spot in a F i l e

The mark co m mand (k) enables you t o "mark" a line with a name and later reference the
line by its mark name, regardless of its line nu m ber. This can be handy for moving lines
and keeping track of them as they move. For example, typing

kx

marks the current line with the nam e "x". If a line nu mber precedes the k, that line is
marked. (The mark nam e must be a single lowercase letter.) You can refer to the
m arked line w ith the notat ion

'x

For example, find the first line of the block to be moved and mark it with

ka

Then find the last l ine and mark it with

kb

Go to the place where the t ext is to be inserted and type

'a,'bm.

4-2 0

XENIX 286 User's Guide ed

Spl itt ing Lines

ed provides a facility for splitt ing a single l ine into two or more shorter lines by
"subst ituting in a carriage return." For example, suppose a line has beco m e
unmanageably long because o f edit ing. I f it looks like

text xy text

you can break it between the "x" and the "y" by going to the line and typing:

s/xy/x\
y/

This is actually a single co m mand, although it is typed on two lines. Because the
backslash {\) turns off special m eanings, a backslash at the end of a line m akes the
carriage return there no longer special.

You can, in fact, make a single line into several lines with this sam e m echanis m. As an
example, consider italicizing the word "very" in a long line by putting "very" on a
separate line and preceding it with the for matt ing co m mand " . I". Assu m e the line in
quest ion looks l ike this:

text a very big t ext

The com mand

s/ very 1\
.1\
very\
I

converts the line into four shorter lines, preceding the word "very" w ith the line ". I" and
eli m inating the spaces around the "very" at the sa me t ime.

When a new l ine is substituted in a string, dot is left at the last line creat ed.

4-2 1

ed XENIX 2 8 6 User's Guide

Joi n i n g Lines

Lines may be jo ined together with the j com m and. Alone, j joins the lines signified by
dot and dot + 1 . For exam ple, suppose you have these two lines (with a space at the end
of the first line)

Now is
the t i m e

and you have just edited line 1 , s o dot i s set to t h e f irst line. The com m and j , on a l ine
by itself, joins the two lines together to produce

Now is the t ime

Any contiguous set of lines can be joined by specifying the starting and ending line
nu m bers. For example

1 ,$jp

joins all the lines in a f ile into one big line and prints it.

Combin i n g F i les

The read com m and (r), like the edit com m and (e) , enables you to read files into the
editing buffer. However, there is a m ajor difference between r and e; r appends the
file to the buffer contents while e clears the buffer out before reading in the file. This
factor m akes r a useful tool for co mbining files. When the file is written out, it is
written to the original file in the buffer.

One use of r would be composing a form letter. You could store a nu m ber of standard
clauses or paragraphs in separate files and as you co mpose the letter, use r to read in
the appropriate clauses and paragraphs and chain them together.

4-2 2

XENIX 286 User's Guide ed

Insertin g O n e F i le i nto Another

Suppose you have a file called memo, and you want the file called table to be inserted
just after a reference to Table 1. In memo is a line that says

Table 1 shows that • • •

and the data contained in table has to go there.

To put table into the correct place in the file, you must edit memo, find "Table 1", and
add the file table right there:

ed memo
/Table 1/
response from ed
.r table

The critical line is the last one. The r com mand reads a file; here you asked for it to be
read in right after line dot. An r co m mand without any address adds l ines at the end, so
it is the same as "$r".

Editing Scripts

If a fairly com pl icated set of edit ing operat ions is to be done on a set of files, create a
"script" (a file that contains the operat ions you want to perfor m) then apply this script
to each file in turn. For example, suppose you want to change every "Xenix" to
"XENIX" and every "USA" to "Am erica" in a large nu mber of files. Put the following
lines into the file script:

g/Xenix/s/ /XENIX/g
g/USA/s/ I America/g
w
q

Now you can type

ed - (ilel <script
ed - file2 < script

This causes ed to take its co m mands fro m the prepared file script. (In the example, " · · · "

represents addit ional ed com mand lines.) Notice that the whole job has to be planned in
advance, and that by using the XENIX shell co m mand interpreter, you can cycle through
a set of files automatically. The dash (-) suppresses unwanted m essages fro m ed.

When prepar ing editing scripts, you may need to place a period as the only character on
a l ine to indicate term ination of input fro m an a or i co m m and. This is difficult to do in
ed, because the period you type will term inate input rather than be inserted in the file.
Using a backslash to escape the period won't work e ither. One solut ion is to create the
script using a character such as the at sign (@) to indicate end of input. Then, later, use
the following c o m mand to replace the at sign with a period:

g/" f!$/s/ /./g

4-2 3

ed XENIX 286 User's Guide

Speed i n g U p Ed iti n g

One o f the most effect ive ways t o speed u p editing i s t o ent er com mands without
specifying line nu mbers. To do this, you must be able to determ ine what line a
co m mand w ill affect and what the current line will be after the com mand executes. If
you can edit without specifying unnecessary line nu m bers, you can save a lot of typing.

For example, if you issue a search co m mand l ike

/th ing/

you are left pointing at the next line that contains "thing". Then no address is required
with co m m ands like s to make a subst itut ion on that line, or p to print it, or 1 to list it,
or d to delete it, or a to append text after it, or c to change it, or i to insert text before
it.

What happens if there is no occurrence of "thing" ? Dot i s unchanged. This i s also true
if the cursor w as on the only occurrence of "thing" when you issued the com m and. The
same rules hold for searches that use ? • • • ? ; the only difference is the direct ion of the
search.

The delete co m m and, d, leaves dot pointing at the line that followed the last deleted
line. When the line dollar ($) is deleted, however, dot points at the new line $.

The line-changing co m mands a, c, and i , by default, all affect the current l ine. If you
give no line nu mber with the m, a appends text after the current line, c changes the
current l ine, and i inserts text before the current line.

The a, c, and i co m mands behave identically in one respect--when you stop appending,
changing, or insert ing, dot points at the last line entered. For example, you can type

a
text
botch

s/botch/correct/
a
more text

(m inor error)

(fi x botched l i ne)

without spec ifying any line nu mber for the subst itute com m and or for the second append
co m mand. Or you can type

4-24

a
text
horri b le botch

c
fixed up l i ne

(maj or error)

(replace enti re l i ne)

X ENIX 2 8 6 User's Guide ed

The r co m mand reads a file into the text being edited, at the end if you give no address,
or after the specified line if you do. In e ither case, dot points at the last line read in.
R e m e mber that you can even type

Or filename

to read a file in at the beginning of the text. (You can also type Oa or li to start adding
text at the beginning.)

The w co m m and writes out the ent ire file. If you precede the co m m and by one line
nu mber, that l ine is written out. If you precede it by a range of line nu mbers, that
range of lines is written out. The w com mand does not change dot; the current line
re mains the sam e, regardless of the l ines written out.

(Since the w co m mand is so easy to use, you should save what you are edit ing regularly
just in case the syste m crashes, or in case you accidentally delete what you're edit ing.)

The general rul e is s imple; you are left on the last line changed. If there were no
changes, then dot is unchanged. To illustrate, suppose that there are three l ines in the
buffer, and the l ine given by dot is the middle one:

x 1
x2
x3

Then the com mand

-, + s/x/y/p

prints the third l ine, which is the last one changed. But if the three lines had been

x 1
y2
y3

and the sam e co m mand had been issued while dot pointed at the second line, only the
first line would be changed and printed, and that is where dot would be set.

4-2 5

ed XENIX 286 User's Guide

S u m m a ry of ed Com m a n ds

The following is a list of all ed co m mands. The general form of ed co m m ands is the
co m m and nam e, preceded by one or two opt ional line nu mbers and, in the case of e, f, r,

and w, followed by a file na me. Only one co m m and is allowed per line, but a p com mand
may follow any other co m mand (except e, f, r, w, and q).

a Appends lines to the buffer after l ine dot, unless a different line is specified.
Appending cont inues until a period is typed on a new line. The value of dot is set
to the last line appended.

c Changes the specified lines to the new text that follows. The new lines are
term inated by a period on a new line, as with a. If no l ines are specified, replaces
line dot. Dot is set to the last line changed.

d Delet es the lines specified. If none are specified, deletes line dot. Dot is set to
the first undeleted l ine following the deleted lines unless dollar ($) is deleted, in
which case dot is set to dollar.

e Edits a new file. Any previous contents of the buffer are deleted, so be sure to
issue a w com mand first.

f Prints the reme mbered file nam e. If a na me follows f, then the re membered nam e
i s set to that name.

g Global search--the co m mand glstring/commands executes commands on those
lines that contain string, which can be any context search expression.

i Inserts lines before specified line (or dot) until a single period is typed on a new
line. Dot is set to the last l ine inserted.

1 Lists lines, making nonprinting characters and tabs visible. (Si m ilar to p.)

m Moves lines specified to after the l ine named after m. Dot is set to the last l ine
moved.

p Prints specified lines. If none are specified, prints the line specified by dot. A
single line nu m ber is equivalent to a l ine-numberp co m mand. A single RETU R N
prints " . + 1 " , the next line.

q Quits ed. Your work is not saved unless you first give a w com mand. Give q twice
in a row to abort edit.

r Reads a file into the buffer at the end unless specified elsewhere. Dot is set to the
last line read.

s Subst itute--the com mand sjstringl/string2/ substitutes the pattern matched by
string 1 with the string specified by string2 in the specified lines. If no lines are
specified, the subst itut ion takes place only on the line specified by dot. Dot is set
to the last line in which a subst itut ion took place, which means that if no
subst itution takes place, dot re mains unchanged. The s co m mand changes only the
first occurrence of stringl on a line; to change multiple occurrences on a line,
type a g after the final slash.

4-2 6

XENIX 2 8 6 User's Guide ed

t Transfers specified lines to the line na med after t. Dot is set to . the last line
moved.

u

v

w

. -

Undoes the last append, change, delete, insert, move, subst itute (except global), or
transfer co m mand.

Reverse of the g co m mand, the co m mand v/string/commands executes commands
on those lines that do not contain string.

W rites out the edit ing buffer to a file. Dot re mains unchanged.

Prints value of dot. (An equal sign by itself prints the value of $.)

!command
Causes command to be executed as a XENIX com mand.

/string/
Context search. Searches for the next line containing string and prints the line.
Dot is set to the line where string was found. The search starts at .+ 1 , wraps
around from $ to 1, and cont inues to dot, if necessary.

?string?
Context search in reverse direction. Starts search at .-1 , scans to 1, and wraps
around to $.

4 -2 7

I ntrod u ct ion

CHAPTER 5

vi : A VISUAL TEXT EDITOR

vi (which stands for "visual") combines l ine-oriented and screen-oriented features into a
powerful set of text edit ing operations that will satisfy any text edit ing need. M any of
the commands used in ed are part of the vi com mand set because vi is a superset of ed.
If you have already learned ed, you are well on your way to learning vi.

Begin by learning the features you w ill use most often. If you are an experienced user
of vi, you may choose to refer to the vi entry in the XENIX 286 Reference Manual; m ore
advanced features are covered there.

Demonstration

This section of the chapter walks you through creating a file when you invoke vi,
entering text into the file, and exiting vi.

To enter vi and create a file nam ed temp, type

vi temp

Your screen will look l ike this:

Note that only twelve lines are shown to save space. The tildes (-) w ill fill the edit ing
window on your screen.

The top line of the display is where you w ill begin to enter text into the file; t ildes
indicate lines on the screen only, not actual lines in the file.

5-1

vi XENIX 2 8 6 User's Guide

To begin, create som e text in the f i le by using the i (insert) co m mand. To do this, press

L ike most vi com mands, i doesn't appear on the screen. The com mand swit ches you
fro m com mand mode to insert mode. Type in the following t ext:

F iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text .

If you make a m istake while typing, si mply use the BAC KSPACE key to erase the error.
When you finish typing in this text, press the ESCAPE key. To exit vi, press and hold
the SHIFT key and press "ZZ".

Basic Conce pts

This section introduces the basic concepts of vi that you will need to use the editor
effectively and efficiently. H ere you will learn about the editing buffer, how to enter
editor co m mands, the syntax of vi com mands, and the i m portance of line nu m bers.

E nterin g vi

You can enter vi in several ways, depending on what you are planning to do. This section
describes the different methods of entering vi.

Specifying a Single File

The most co m mon way to enter vi is to type "vi" and the nam e of the file you wish to
edit:

vi filename

If filename does not already exist, a new, empty file with the specified name is created.

You can also enter the editor at a particular place in a file. For example, if you wish to
start edit ing a file at line 1 0 0, type

vi + 1 00 filename

The cursor is placed at line 1 0 0 of fi lenam e.

If you wish to begin edit ing at the first occurrence of a part icular word, type

vi + /word filename

5-2

XENIX 286 User's Guide vi

The cursor is placed at the beginning of the line containing word. For exa mple, to begin
editing the file temp at the the first occurrence of "contain", type

vi + /conta i n temp

Specifying a Series of Files

If you have many files to edit in one session, you can invoke vi and specify more than
one file name. In this way you can edit multiple files without leaving the editor to call
each file. The co m m and syntax for entering vi with mult iple files is

vi fi le1 fi l e2 fi l e3 fi le4 fi l eS fi leG

Typing out many file names is tedious, and you may make a m istake. If you m istype a
file name, you must e ither backspace and correct the typing error, or kill the whole line
and retype it. A more convenient m ethod is to invoke vi and use the m etacharacters as
abbreviat ions. To invoke vi on the above files without typing each name, type

vi fi le [0-9]

This invokes vi on all files that begin with the letters "file" followed by a single digit .
You could also use the metacharaters • and * , which would call any files beginning w ith
"file" followed by a single character and any characters, respect ively. You can plan
your file nam es to save t ime in later editing. For example, if you are writ ing a
document that consists of many files, it would be wise to give each file the sam e file
name extension, such as ".s". Then you can invoke vi on the ent ire docu ment:

vi * .s

You can also invoke vi on a selected range of files:

vi [3-S] * . s

or

vi [a-h] .txt

When you invoke vi and specify more than one file name, you will see the following
m essage when the first file is displayed on the screen:

x fi l es to ed it

where x is the nu mber of files to be edited.

After you have finished editing a file, save it with the write co m m and (:w), then go to
the next file w ith the next co m mand:

: n

The next file appears, ready t o edit. You need not spec ify a file name; the files are
invoked in alphabetical order (or nu merical, if the file names begin w ith nu mbers).

If you forget what files you specified when you invoked vi, type :args and vi displays the
names of the files with the current file enclosed in brackets. You can determ in e the
name of the file you are currently editing by typing :file, :f, or CONTROL-G.

5-3

vi XENIX 2 8 6 User's Guide

To edit a file out of order, such as file4 after file2, type

:e f i l e4

instead of the next com mand. Type

: n

after you finish edit ing file4 and you will go back t o file3.

If you wish to start again fro m the beginning of the list, type

: rew

To discard all the changes you made and start again at the beginning, type

: rew!

Calling a File without Leaving vi

Occasionally you may find that changes you have made to one file affect another, so you
need to edit the second file. Rather than exit ing vi and re-entering, the :e co m mand
enables you to call the second file fro m within vi. The syntax of :e is

:e filename

Before calling the second file to the screen, be sure to save the original file because the
edit ing buffer will be cleared before reading in the second file.

Exitin g vi

There are several ways to exit the editor and save any changes you m ay have made to
the file. One way is to type

:x

and press RETURN. This com mand replaces the old copy of the file with the new one
you have j ust edited, quits the editor, and returns you to the XENIX shell.

S imilar:ly, if you type

zz

the same thing happens, except the old copy of the file is written out only if you have
made any changes. Note that the ZZ com mand is not preceded by a colon and is not
echoed on the screen.

5-4

XENIX 286 User's Guide vi

To leave the editor without saving any changes made to the file, type

: q !

The exclamat ion point tells vi to quit uncondit ionally. If you leave out t h e exclamat ion
point, as in

: q

vi will not let you quit. You will see the error message

No write si nce l ast change (: qu i t ! overri des)

This m essage tells you to use :q! to leave the editor without saving your file.

Leaving vi Temporarily

While in vi, you may find it necessary to execute a XENIX co m mand or a sequence of
XENIX com mands. Entering the com mand fro m vi and preceding it with an exclamat ion
point (!) enables you to do this. The syntax for executing XENIX com m ands from vi is

: !command

For example, to determ ine the date, enter the co m mand

: !date

XENIX responds with the current date and t ime and the m essage

[H i t return to conti n ue]

Press RETU RN to return to vi and the file you are editing.

To issue a series of XENIX co m mands, enter the com m and

: ! sh

XENIX places you in the shell and displays the shell pro m pt (%) and the m essage

[H i t return to conti nue]

Issue any XENIX com mands necessary and then enter CONTROL-D to exit the shell; the
message

[H i t retu rn to conti n ue]

is again displayed. Press RETU RN to get back to vi and the file you are edit ing.

It is a good idea to save your file before executing any XENIX com mands, just in case
som ething goes wrong.

5-5

vi XENIX 2 8 6 User's Guide

Line Nu mbers

As stated earli er, vi is a combination l ine-oriented and screen-oriented text editor.
M any editing com mands will take e ither single line nu m bers or line nu mber ranges as
prefixing argu m ents. These argu ments normally specify the lines in the editing buffer to
be affected by the given com mand. Any t i m e a com mand changes the nu m ber of lines in
the editing buffer, vi renu mbers the lines. At all t i m es, every line in the edit ing buffer
has a line nu mber. In vi, the current line, word, or character is the line, word, or
character where the cursor is positioned. You can determ ine the actual line nu mber of
the current line by entering

: nu

vi will print the current line nu mber and then display the line.

vi also enables you to turn on a function that displays the line nu mber next to each line.
To turn on the number funct ion, type

: set number

To turn off this function, type

: set nonumber

The Editing Buffer

Each t ime you invoke vi, an area in the m e mory of the co mputer is allocated where you
will perform all editing operations. This area is called the "editing buffer." When you
edit a file, a copy of the original is placed in the editing buffer, where you will work on
it. Only when you write out the buffer do you change the original file.

Writing Out the Editing Buffer

You will probably want to save your text for later use. To write out the cont ents of the
buffer into a file, use the write (:w) co m m and followed by the name of the file you want
to write to. This copies the contents of the buffer to the specified file, destroying any
previous contents of the file. For example, to save the buffer in a file nam ed text, type

: w text

Leave a space between :w and the file name. vi responds by displaying the file name,
nu mber of l ines, and nu mber of characters. (Blanks and the RETURN character at the
end of each line are included in the character count.) Writ ing out a file makes a copy of
the text in the editing buffer--the buffer's contents are not disturbed, so you can
continue editing it. W hen you invoke vi by using a filenam e argu ment, a :w com mand by
itself writes the buffer out to filename.

Writing out the edit ing buffer occasionally as you work is an excellent safety measure;
if the syste m crashes all the text in the buffer is lost, but any text written out is safe.

5-6

XENIX 286 User's Guide vi

Commands

Enter commands by typing the m at the keyboard and then pressing R ETU RN. Most
co m mands are single characters, although so m e require a preceding colon to signify a
special operat ion such as writ ing out the buffer. Unless otherwise specified, vi
com mands operate on the line where the cursor is positioned; this is called the "current
line." Many com m ands take file nam es or string argu ments that are used by the
co m mand when it is executed.

Repeating Commands

The repeat co m mand (.) enables you to repeat the last executed screen-oriented vi
com mand. Cursor move ment does not affect the repeat com mand, so you m ay repeat a
com mand as many t i m es and in as many places in a file as you wish.

Undoing Commands

Any editing co m m and can be negated with the undo (u) co m mand. If you have deleted a
line and then decide you wish to keep it, press u and the line reappears. Use the
following line as an example:

Text conta i ns l i nes.

Place the cursor over the c in "contains", then delete the word with the dw co m m and.
Your screen should look like this:

Text l i nes.

Press u to undo the dw com mand. The word "contains" reappears:

Text conta i ns l i nes.

If you press u again, "contains" is deleted again:

Text l i nes.

Note that u negates only the previous com mand. For example, if you m ake a global
search and replace, then delet e a few characters, pressing u will undo the last character
deletion but not the global search and replace.

Performing a Series of Line-Oriented Commands

If you have several line-oriented co m mands to perform, you can place yourself
te mporarily in line-oriented mode by typing

Q

while you are in vi. A colon pro mpt appears on the status line.

Com mands executed in this mode cannot be undone with the u co m mand, nor do they
appear on the screen until you re-enter norm al vi mode. To re-enter vi, type

VI

5 -7

vi XENIX 286 User's Guide

M oving in a Fi l e

v i provides two methods o f moving around i n file: moving the cursor and scrolling. The
following sect ions describe these methods.

Moving the Cursor

When editing a file, the cursor shows your position in the file. You can move the cursor
in t wo ways: use the keyboard direct ion arrows or enter com mands that t ell the cursor
where to move to. The direction arrows move the cursor one character at a t i m e. The
cursor control co m mands enable you to move the cursor to a specific location. The
cursor control co m mands are

h

SPACE BAR

b

w

k

j

RETU RN

}

{

CONTROL-W

Scrolling

Moves cursor 1 space left

Moves cursor 1 space right

Moves cursor 1 space right

Moves cursor 1 word left

Moves cursor 1 word right

Moves cursor 1 line up

Moves cursor 1 line down

Moves cursor 1 line down

Moves cursor to end of sentence

Moves cursor to beginning of sentence

Moves cursor to beginning of paragraph

Moves cursor to end of paragraph

Moves cursor to first character of insertion

The following com mands move the file so .d ifferent parts are displayed on the screen.
The cursor is placed on the first letter of the last line scrolled.

CONTROL-U

CONTROL-S

CONTROL-D

CONTROL-F

z + RETU RN

5-8

Scrolls up one-half screen

Scrolls up a full screen

Scrolls down one-half screen

Scrolls down a full screen

Scrolls the current line to the top of the screen

XENIX 2 8 6 User's Guide vi

To place a specific line at the top of the screen, precede the "z" with the line nu mber,
as in

3 3 z

Press RETUR N, and line 3 3 scrolls to t h e top o f t h e screen.

Inserti n g Text

vi has six co m mands that enable you to insert text into a file. Any t i m e you place text
in a file, whether it is a new, e m pty file or an existing file, you w ill use one of these six
com mands:

a Begins text insertion after the cursor

A Begins t ext insert ion after the last character on a line

i Begins t ext insertion before the cursor

I Begins text insertion before the first character on a line

o Begins text insert ion on next line down

0 Begins text insertion on the line above

All insert co m m ands are terminated by pressing the ESCAPE key.

While most of the com mands are self-explanatory, the o and 0 co m mands can be
confusing and require more explanation. o and 0 are l ine edit ing com mands and are
used to insert lines of text rather than just a word or character. Regardless of where
the cursor is on the current line when you enter one of the "o" co m mands, a blank line is
inserted between the current line and e ither the line above or below. When the blank
line appears on the screen, begin entering the new text. When you are finished entering
text, press ESCAPE. At the end of the text, do not press R ETUR N unless you want a
blank line to appear in the text.

Occasionally while you are editing a file, you may find that you need to repeat so m e
text frequently. Typing the same text repeatedly i s tedious, t i m e-consu m ing, and
error-prone. vi has a feature that enables you to repeat the last insert ion, to a
maximu m of 1 2 8 characters. To repeat the last text insertion, follow these steps:

1 . Position the cursor at the next location where the text i s to b e inserted.

2. Type i to enter insert mode.

3. Enter CONTROL-@.

I nsertin g Contro l Cha racters i nto Text

Many control characters have special meaning in vi, even when typed in insert mode. To
remove their special significance, press CONTROL-V before typing the control
character. CONTROL-J, CONTROL-Q, and CONTROL-S cannot be inserted as text.
(CONTROL-J is a carriage return and CONTROL-Q and CONTROL-S are meaningful to
the operating syste m and are trapped before they are interpreted by vi.)

5-9

vi XENIX 2 86 User's Guide

Deleti ng Text

You can delete characters, words, or lines from a file by using the following delete
com mands:

x Deletes a single character at the cursor position

nx Deletes forward from the current cursor posit ion, n nu mber of characters

X Deletes the character i m m ediat ely preceding the current cursor posit ion

nX Deletes backward from the current cursor posit ion, n nu mber of charact ers

dw Deletes the single word where the cursor is posit ioned

dO Deletes all text from the cursor posit ion to the beginning of the current line

d$ Deletes all text from the cursor posit ion to the end of the current line

D Deletes all text from the cursor posit ion to the end of the current line

ndw Deletes forward from the current cursor posit ion, n nu m ber of words

dd Deletes the current line

ndd Deletes forward from the current cursor posit ion, n nu mber of lines

The x and X com mands delete a specified nu mber of characters. The x co m mand
deletes the character above the cursor; the X com mand deletes the character
i m mediately before the cursor. If no nu m ber is given, one character is deleted. For
example, to delete three characters following the cursor (including the character above
the cursor), type

3x

To delete three characters preceding the cursor, type

3X

The dw com mand deletes a specified nu m ber of words. If no nu mber is given, one word is
deleted. A word is interpreted as nu m bers and letters separated by white space. When a
word is deleted, the space after it is also deleted. To delete three words, type

3dw

The d$ and D com mands delete all t ext following the cursor on the current line,
including the character the cursor is resting on. The dd com mand deletes a specified
number of lines and closes up the space . If no nu mber is given, only the current l ine is
deleted. To delete three lines, type

3dd

Another way to delete several lines is to use a line-oriented com mand. To use this
com mand, you need to know the line nu mbers of the text you wish to delete.

5-10

XENIX 286 User's Guide vi

To delete lines 2 0 0 through 250 , type

: 200,250d

Press RETU RN. When the co m mand finishes, the message

50 l i nes

appears on the vi status line, indicating how many lines w ere deleted.

You can re move lines without displaying line nu m bers by using shorthand addresses. For
example, to re move all l ines fro m the current line (the line the cursor rests on) to the
end of the file, type

: . ,$d

The dot (.) represents the current line, and the dollar sign stands for the last line in the
file. To delete the current line and 3 lines following it, type

: . , + 3d

To delete the current line and 3 l ines preceding it, type

: . ,-3d

For more infor mation on using addresses in line-oriented co m m ands, see vi in the XENIX
286 R eference Manual.

If you wish to delete all of the text you just typed, press CONTRO L-U while you are in
insert mode. The cursor returns to the beginning of the insert ion. The text of the
original insertion is still displayed, and any text you type replaces it. When you press
ESCAPE, any t ext re maining from the original insertion disappears.

Co pying Text

Com mands in vi enable you to copy text fro m other files and fro m the file you are
editing and place it in a designated loact ion within the current file. The next t wo
sect ions describe these procedures.

Copyin g Text from Other F i les

To insert the contents of another file into the file you are currently edit ing, use the
read com mand. Move the cursor to the line i m mediately above the place you want the
new material to appear, then type

:r fi lename

where filename is the file containing the material to be inserted. The text of filenam e
appears on the line below the cursor, and the cursor moves to the first character of the
new t ext. This t ext is a copy; the original filename st ill exists.

5- 1 1

vi XENI X 2 8 6 User's Guide

A derivative of the :r co m mand enables you to execute a XENIX com mand and place the
result into the editing buffer at a designated location. Position the cursor anywhere on
the line above the position where you want the result placed and type

:r!command

Inserting lines from another file is more co mplicated. The selected lines are copied fro m
the source file into a buffer and then inserted into the destination file. To select the
lines to be copied, save your original file with the write co m mand (:w), but do not exit
vi.

Type

: e filenam e

where filename is the file that contains the text you want to copy.

Move the cursor to the first line you wish to select.

Type

mk

This " m arks" the first line of text to be copied into the dest ination file with the letter
"k".

Move the cursor to the last line of the selected text and type

"ay'k

The lines fro m your first " m ark" to the cursor are placed into buffer a. They will
re main in buffer a until you replace the m with other lines or exit the editor.

Type

:e#

to return to your destinat ion file. Move the cursor to the line above the place you want
the new text to appear, then type

"ap

This inserts a copy of the lines in buffer a into the dest ination file and places the cursor
on the first letter of this new text. Buffer a still contains the original lines.

You may have a maxi mum of 26 buffers, named with the single lowercase letters a-z. To
nam e and select different buffers, replace the a in the above examples w ith whatever
letter you wish.

5-12

XENIX 286 User's Guide vi

Copyin g Text from E lsewhere i n the F i le

To copy text from one place in a file to another place in the sam e file, use the copy (co)
co m m and. co is a line-oriented com mand, and to use it you must know the line nu mbers
of the text to be copied and the destinat ion. The "Basic Concepts" sect ion of this
chapter describes how to determine line nu mbers in vi. The syntax of the co co m mand
is

:beginning-line, ending-line co destination-line

where beginning-line is the line nu m ber of the first line of text you want copied, ending
line is the line nu mber of the last line of text you want copied, and destination-line is
the line nu m ber of the line of text that precedes the locat ion where you want the text
copied to. You m ay specify either a single line nu mber or a range of line nu m bers for
the beginning and ending line nu mbers. If you specify a range of line nu mbers, the
nu mbers must be separated by a com ma.

For example, to copy lines 1 0 , 1 1 , 1 2 , 13 , and 14 of a file to a position between lines 3 0
and 3 1, use the following com mand

: 1 0, 1 4 co 30

If you have t ext that is to be inserted several ti mes in different places, you can save it
in a buffer and insert it whenever it is needed. For example, to repeat the first line of
the following t ext after the last line

F i l es conta i n text.
Text conta i ns l i nes.
Li nes conta i n characters.
Characters form words.
Words form text.

move the cursor over the "F" in "Files". Type the following line, which will not be
echoed on your screen:

"ayy

This places a copy of the first line into buffer a. Move the cursor over the "W'' in
"Words".

Type the following line:

"ap

This inserts a copy of the line in buffer a into the file and places the cursor on the first
letter of the new t ext. The buffer still contains the original copy of the line.

Your screen looks like this:

F i l es conta i n text.
Text conta i ns l i nes .
Li nes conta i n characters.
Characters form words.
Words form text.
F i l es conta i n text.

5 - 1 3

vi XENI X 286 User's Guide

If you wish to copy several consecut ive lines, indicate the nu mber of lines you wish to
copy after the name of the buffer. For example, to place three lines of a file into the
buffer a, type

"a3yy

Movi n g Text

To move a block of text from one place in a file to another, use the move (m) com mand.
The m com mand is a line-oriented com mand, which means you must know the l ine
nu mbers of file to use this co m mand. The syntax of the m co m mand is

:beginning-line, ending-line m destination-line

For example, to move lines 1 0 , 1 1 , 1 2 , 13 , and 14 of a file to a posit ion between lines 3 0
and 3 1 , use the following com mand

: 1 0, 1 4 m 30

vi also enables you to re move text fro m a file, store the text in a special buffer called a
"delete buffer, " and reinsert the text at any nu mber of locations in the file. There are a
total of nine delete buffers. The nine most recent text delet ions are stored in the
delete buffers, with the most recent being stored in buffer 1 and the least recent stored
in buffer 9 .

In other words, the first delet ion in an editing session goes into buffer 1 . The second
deletion goes into buffer 1 and pushes the original cont ents of buffer 1 into buffer 2; the
third deletion goes into buffer 1 , pushing the contents of buffer 2 into buffer 3 and the
contents of buffer 1 into buffer 2 ; and so on until all nine buffers are used. When a
tenth delet ion is made, the deleted text is placed in buffer 1 , the contents of the
remaining buffers are shifted, and the original contents of buffer 9 are deleted.

Text re mains in the delete buffers unt il it is pushed off the stack or until you exit the
editor, making it possible to delete text fro m one file, change files without leaving the
editor, and place the deleted t ext in another file.

Using the follow ing text as an example

F i l es conta i n text.
Text conta i ns l i nes.
L ines conta i n characters.
Characters form words.
Words form text.

delete the first line by typing

dd

Move the cursor to the second line and delete it, then move the cursor to the last line of
t ext, and type

" 1 p

5-14

XENIX 286 User's Guide

The line fro m the second deletion appears:

Text conta i ns l i nes.
Characters form words.
Words form text.
Li nes contai n characters.

Now type

.. 2p

The line fro m the first delet ion appears:

Text conta i ns l i nes.
Characters form words.
Words form text.
Li nes conta i n characters.
Fi l es conta i n text.

vi

Insert ing text fro m a delete buffer does not remove the text fro m the buffer. Since the
text re mains in a buffer unt il it is e ither pushed off the stack or until you quit the
editor, you m ay use it as m any t i m es as you wish. You can also place text in named
buffers.

Jo in ing and B reak ing Lines

To j oi n two l ines press

J

while the cursor is on the first of the two lines you wish to join. Notice that this is an
uppercase J.

To break one l ine into two l ines, position the cursor on the space preceding the f irst
letter of what wi ll be the second l ine, press

r

then press R ETU RN.

Sea rch i n g

You can search forward and backward for patterns in vi. The syntax for searching
forward is

/pattern

and the syntax for searching backward is

?pattern

5 - 1 5

vi XENIX 286 User's Guide

If the specified pattern exists, the cursor moves to the first character of the pattern.
For example, to search forward in the file for the word "account", type

/account

The cursor is placed on the first character of the pattern. To place the cursor at the
beginning of the line above "account", for example, type

/account/-

To place the cursor at the beginning of the line two lines above the line that contains
"account", type

/account/-2

To place the cursor t wo lines below "account", type

/account/ + 2

To search backward through a file, use ? instead of I to start the search. For example,
to find all occurrences of "account" above the cursor, type

?account

To search for a pattern containing any of the m etacharacters {. * [] $ \ and "'), each
metacharacter must be preceded by a backslash. For example, to find the pattern
"U.S.A.", type

/U\. S\.A \./

You can continue to search for a pattern by pressing

n

The pattern is unaffected by intervening vi co m mands, and you can use n to search for
the pattern until you type in a new pattern or quit the editor.

vi searches for exactly what you type. For instance, if the pattern you are searching for
begins with an uppercase letter, vi ignores all occurrences of the pattern that begin with
a lowercase letter.

By d efault, searches " wrap around" the file. That is, if a search starts in the m iddle of a
file, when vi reaches the end of the file it will "wrap around" to the beginning and
continue until it returns to where the search began. Searches will be co mpleted faster
if you specify forward or backward searches, depending on where you think the pattern
is.

Search ing a nd Replacing

The search and replace com mands enable you to perform complex changes to a file in a
single com mand. Learning how to use these com mands is a must for the serious vi user.

The syntax of a search and replace co m mand is

g/patternl /s/[pattern2]/[options]

5-16

XENIX 2 8 6 User's Guide vi

Brackets indicate optional parts of the co m m and line. The g t ells the co mputer to
execute the replacement on every line in the file. Otherwise the replacement would
occur only on the current line. The options are explained in the following sections.

To explain these com m ands we will use the following file:

F i l es conta i n text.
Text conta i ns l i nes.
Li nes contai n characters.
Characters form words.
Words form text.

To replace the word "contain" with the word "are" throughout the file, type the
following com mand:

: g/contain /sl/are /g

This co m mand says "find every occurrence of the pattern 'contain' on each line in the
file and subst itute for that pattern the word 'are' everywhere it occurs." Note that a
space is included in the search pattern for "contain"; w ithout the space "contains" would
becom e "ares".

After the com mand executes, the screen should look like this:

F i l es are text.
Text conta i ns l i nes.
Li nes are characters.
Characters form words.
Words form text.

To replace "contain" with "are" throughout the file and print every line changed, use the
p com m and:

: g/contain /sl/are /gp

After the com mand executes, each line in which "contain" was replaced by "are" is
printed on the lower part of the screen. To remove these lines, redraw the screen by
pressing CONTROL-L.

Somet imes you may not want to replace every instance of a given pattern. The c option
displays every occurrence of pattern and waits for you to confirm that you want to
make the subst itut ion. If you press y the substitut ion takes place; if you press R ETU R N
t h e next instance o f pattern i s displayed.

To run this com mand on the example file, type

: g/contain/sl/are/gc

vi responds with the following display:

Text conta i ns l i nes .

5- 1 7

vi XENIX 2 8 6 User's Guide

Press "y", then R ETU RN. The line with the next occurrence of "contain" appears. vi
always displays the whole line, but the pattern being searched for is underscored with
carets. If you do not want the pattern to be replaced, enter "n" or RETURN.

Su bstitut ing Text

When using vi, you m ay subst itute by using the following co m mands:

r

R

nsstring

nStext

cw

new

c

cc

nee

B egins text insertion on current character, replaces one character only

Begins text insertion on current charact er, replaces until ESCAPE

Replaces n characters, from the cursor forward, with string

Replaces n l ines, from the cursor forward, w ith text

Changes 1 word

Changes n words

Replaces text from the cursor to the end of the line

Changes current line

Changes n l ines

The r com mand replaces the character under the cursor w ith the next character typed.
To replace the character under the cursor with a "b", for example, type

rb

If a nu mber is given before r, that number of characters is replaced with the next
character typed. For example, to replace the character above the cursor, plus the next
three characters, with the letter "b", type

4rb

Note that you now have four "b's" in a row.

The s com m and replaces a specified number of charact ers, beginning w ith the character
under the cursor, w ith t ext you type in. For example, to subst itute xyz for the cursor
and t wo characters following it, type

3sxyz

The S com m and deletes a specified nu mber of lines and replaces the m w ith t ext you
type in. You m ay type in as m any new lines of text as you wish; S affects only how
m any lines are deleted. If no nu m ber is given, one line is deleted. For example, to delete
four l ines, including the current line, type

4S

This differs from the R com mand. The S com m and deletes the ent ire current line; the R
com mand deletes text from the cursor onward.

5-18

XENIX 286 User's Guide vi

The cw co m mand replaces a word with text you type in. For exam ple, to replace the
word "bear" w ith the word "fox", move the cursor over the "b" in "bear". Enter

cw

A dollar sign appears after the "r" in "bear", m arking the end of the text that is being
replaced. Type

fox

The rest of "bear" disappears and only "fox" remains.

The C co m m and replaces t ext from the cursor to the end of the line. For example, to
replace the t ext of the sentence

Who's afra i d of the b ig bad wolf?

from "big" to the end, move the cursor over the "b" in "big" and type

c

A dollar sign ($) replaces the quest ion mark (?) at the end of the line. Type the
following:

l ittl e l amb?

Press ESCAPE. The result is

Who's afra i d of the l i ttl e l am b ?

The cc com mand deletes a specified nu mber of lines, regardless of the location of the
cursor, and replaces them with t ext you type in. If no nu mber is given, the current line
is deleted.

If a word occurs several t i m es on one line, it is often convenient to use a line-oriented
com mand to replace it . For exam ple, to replace the word "re m oving" with "delet ing" in
the sentence

In vi , rem ovi ng a l i ne is as easy as remov ing a l etter.

m ove the cursor to the beginning of the line and type

: s/removi ng/de l eti ng/g

This line-oriented co m mand means "subst itute (s) the word 'delet ing' for the word
're moving', everywhere 'removing' occurs on the current line (g)". If you don't include a
g at the end of the com m and line, only the first occurrence of "re moving" is changed.

5- 1 9

vi XENIX 2 8 6 User's Guide

Metacharacters

Metacharacters are a set of special characters used to describe t ext patterns in search
and substitute com mands. These patterns are called "regular expressions" and occur in
several other i mportant XENIX co m mands and utilities, including grep and sed (see the
XENIX 286 R eference Manual). A complete list of the m etacharacters follows:

\ $ * [] &

The following sect ions describe how to use these metacharacters in search and
substitute com mands.

Backslash

The backslash {\) turns off any special meaning that the following charact er has. As an
example, the sequence

\.

in a search or substitute co m mand changes the meaning of the period from " match any
single character" to a literal period. When you are adding text with a, i, or c, the
backslash has no special meaning.

Period

When used in a search or on the left-side expression of a substitute com mand, the period
stands for any s ingle character {this is frequently called a "wildcard" character). For
exam ple, the search com mand

/x.y/

finds any line where "x" and "y" occur separated by any single character, as in

x + y
x-y
x y
xzy

If you use a period in the right-side expression of a substitute com mand, the period
assu m es its l iteral m eaning.

Caret

The caret (") s ignifies the beginning of a line; the first character of every line is a caret
(although it is invisible). To search for or substitute an expression at the beginning of a
line, precede the expression w ith a caret. The search and substitute com mands have the
following for m at s when using the caret:

/" expression/

s/" expression/expression/

5-2 0

XENIX 286 User's Guide vi

For example, suppose you are looking for a line that begins with "the". If you si mply
type

/the/

you will probably find several lines containing "the" before arriving at the one you want.
But with

r the/

you narrow the search context to "the" at the beginning of a line only, and thus arrive at
the desired line more quickly.

The caret (") also enables you to insert characters at the beginning of a line. For
example

sri I

places a space at the beginning of the current l ine.

Dol lar S ign

The dollar sign ($) signifies t h e end o f a line; t h e last character of every line is a dollar
sign (although it is invisible). To search for or substitute an expression at the end of a
line, follow the expression with a dollar sign. The search and substitute com mands have
the following formats when using the dollar sign:

I expression$/

s/ expression$/ expression/

For example, suppose you are looking for a line that ends with "the". If you s imply type

/the/

you will probably find several lines containing "the" before arriving at the one you want.
But with

/the$/

you narrow the search context to "the" at the end of a line only, and thus arrive at the
desired line more quickly.

The dollar sign ($) also enables you to insert characters at the end of a line. For
example

s/$1.1

places a period at the end of the current line.

5-2 1

vi XENIX 2 8 6 User's Guide

Star

The star is useful for finding nu merous occurrences of a single character. Literally, it
m eans "find any nu m ber of consecutive occurrences, including z ero, of the character
that preceded the star followed by any designated text." For example, the com mand

/n*o

finds any nu m ber of occurrences of the letter "n" (including zero occurrences) followed
by the letter "o." W hen using the star in substitution co m mand lines, be very careful; if
you specify the star with the wrong cont ext, the file may be incorrectly changed.

Suppose that the line you want to edit is

text x y text

If you type

s/x . *y/x y/

the result is unpredictable. If no other x's or y's occur on the line, the substitution will
work, but not necessarily. The period matches any single character, so " · *" matches as
m any single characters as possible, and unless you are careful, it can re move more of
the line than you expected.

B rackets

Brackets are used in search and substitut ion com mands to specify a "character class". A
set of characters enclosed in square brackets matches any single character in the range
designated. For example, the search pattern

/[a-z]/

finds any lowercase letter. The search pattern

/[aA] pple/

finds all occurrences of "apple" and "Apple".

The pattern 1 1 [0 1 2 3 4 5 6 7 89]*" m atches z ero or more digits (an entire nu mber), so

1 ,$s/" [0 1 23456789] *II

deletes all digits fro m the beginning of all lines. Any characters m ay appear within a
character class, and only three special characters (" ,], and -) appear inside the
brackets; even the backslash doesn't have a special meaning. To search for any special
characters, for example, type

/[.\$"' []/

D igits can be abbreviated as [0-9]; s i milarly, [a-z] stands for the low ercase letters, and
[A-Z] for uppercase.

5-2 2

XENIX 286 User's Guide vi

Ampersand

The ampersand (&) can b e used o n the right side o f a substitute com mand t o signify the
string of text found on the left side of a subst itute com mand. Using the a mpersand
elim inates repeating the string on both sides of the com m and and is extre m ely useful
when adding t ext within a line. The syntax of the ampersand com mand is

s/ string/ & new string/

For instance, if you are edit ing the line

Now i s the ti mes

and want to change it to read

Now i s the best of t imes

you would enter the co m mand

s/the/& best of/

Here, the ampersand stands for "the", so that "the" is changed to "the best of".

The ampersand may be used more than once within the sam e com mand line; it always
signifies the string on the left side of the substitution.

Solving Co m mo n Prob lems

The following is a list of com mon proble ms that you may encounter when using vi, along
w ith the probable solut ion.

• I don't know which mode I'm in.

Press ESCAPE until the bell rings. When the bell rings you are in com mand mode.

• I can't get out of a subshell.

Press CONTROL-D to exit any subshell. If you have created more than one
subshell (not a good idea, usually), keep pressing CONTROL-D until you see the
message:

[H it retu rn to cont i nu e]

• I made an inadvertent deletion (or insertion).

Press u to undo the last delete or insert co m mand.

• There are extra characters on my screen.

Press CONTROL-L to redraw the screen.

5-2 3

vi XENIX 2 8 6 User's Guid e

• When I type, nothing happens.

vi has crashed and you are now in the shell w ith your terminal characteristics set
incorrectly. To reset the keyboard, type

stty sane

then press CONTROL-J or LINEFEED. Pressing CONTROL-J instead of R ETU RN
is important here, since the RETURN key may not work as a newline character. To
make sure that other term inal characteristics have not been altered, log off, turn
your term inal off, turn your terminal back on, and then log back in. This should
guarante e that terminal characteristics are back to normal. This procedure may
vary so mewhat depending on the terminal.

• The syste m crashed while I was editing.

Normally, vi will inform you (by sending you mail) that your file has been saved
before a crash. The file can be recovered by typing

vi -r filename

If vi was unable to save the file before the crash, the file is irretrievably lost.

• I keep getting a colon on the status line when I press RETURN.

You are in l ine-oriented com mand mode. Return to normal vi com mand mode by
typing

vi

• I get the error message "Unknown terminal type [Using open mode]" when I invoke
vi.

Your terminal type is not set correctly. Press ESCAPE, then type

:wq

and press R ETURN.

5-24

XENIX 2 86 User's Guide

S u m ma ry of vi Co m m a n d s

vi fi lename

vi +n filename

vi + filenam e

vi +/pattern filenam e

vi -r filename

h

1

SPACE BAR

b

w

k

R ETURN

)

(

{

}

CONTROL-W

CONTROL-U

CONTROL-D

CONTROL-F

CONTROL-S

I

a

Enters vi and starts edit of filenam e at line 1

Enters vi and starts edit of fi lenam e at line n

Enters vi and starts edit of filenam e at last line

Enters vi and st arts edit of filenam e at pattern

Recovers fi lename after a syste m crash

Moves cursor 1 space left

Moves cursor 1 space right

Moves cursor 1 space right

Moves cursor 1 word left

Moves cursor 1 word right

Moves cursor 1 line up

Moves cursor 1 line down

Moves cursor 1 line down

Moves cursor to end of sentence

Moves cursor to beginning of sentence

Moves cursor to beginning of paragraph

Moves cursor to end of paragraph

Moves cursor to first character of insertion

Scrolls up one-half screen

Scrolls down one-half screen

Scrolls down one screen

Scrolls up one screen

Begins text insertion before the cursor

Begins text insertion before first character on the line

Begins text insert ion after the cursor

vi

5-2 5

vi

A

0

0

r

R

dw

dO

d$

ndw

dd

ndd

cw

new

cc

nee

/pattern

?pattern

/[tT]ext/

n

:s/x/y/g

: 1 , $s/fi le/directory

:g/one/s/ /1/g

5-26

XENIX 286 U ser's Guide

Begins t ext insertion after last character on the line

Begins text insert ion on next line down

Begins t ext insert ion on the line above

Begins t ext insert ion on current character, replaces one
character only

Begins text insertion on current character, replaces unt il
ESCAPE

Deletes a word

Deletes to beginning of line

Deletes to end of line

Deletes n words

Deletes the current line

Deletes n l ines

Changes 1 word

Changes n words

Changes current line

Changes n lines

Finds the next occurrence of pattern, including the pattern found
within other words

Finds the previous occurrence of pattern, including the pattern
found within other words

Finds next line that starts with pattern, including words beginning
with that pattern

Finds the next occurrence of "text" or "Text"

Repeats the most recent search, in the same direction

All occurrences of "x" beco m e "y" on the current line

Replaces file with directory fro m line 1 to the end; filenam e
becom es directorynam e

Replaces every occurrence of "one" with 1 (one becom es 1 ,
oneself beco mes 1 self, som eone beco mes som e 1)

XENIX 2 8 6 User's Guide vi

*

$

[]

: w

: x

: q !

: ! command

: !sh

! !command

:e file

:nu

:f ile

: f

Matches any nu m ber o f consecut ive occurrences (including 0) of
the character preceding it

Matches beginning of line spec ial character

Matches end-of-line special character

Matches any single character

Matches a range of characters

Writes out the file

Writes out the file, quits vi

Quits vi without saving changes

Executes comm and

Forks a new shell

Executes comm and and places output on current line

Edits fi le (save current file with :w first)

Displays the current line

Displays the name of the current file

Displays the nam e of the current file

5-2 7

I ntrod u ct ion

CHAPT E R 6
m a i l : TH E XE NIX M AIL SYST E M

The XENIX mail syst e m is a versatile co m municat ion faci l ity that enables XENIX users
to compose, send, receive, forw ard, and reply to mail. Users can also create
distribution groups and send copies of messages to m ult iple users. These funct ions are
integrated into XENIX so that all users can quickly and easily co m municat e with each
other.

This chapter is organized to sat isfy the needs of both the beginning and the advanced
user. The first sect ions discuss basic concepts, tasks, and com mands. Later sect ions
discuss advanced topics and provide quick reference to the mai l progra m's many
functions.

Basic Co ncepts

This sect ion introduces the basic concepts of mail that you wil l need to use mail
effect ively and efficiently. Here you will learn about gett ing help, using mailboxes,
writ ing messages, entering and exit ing mail, and perfor ming s imple funct ions.

M a i l boxes

Think of the mail syste m as a small-scale postal syste m . The "post office" is called the
"syste m mailbox" in XENIX. The system mailbox contains a file for each user in the
directory /usr/spooVmail. Your personal mailbox, or "user mailbox, " is the file mbox
located in your ho m e directory. Mail sent to you is held in the syste m m ai lbox unti l the
next t i m e you log in; when you log in, the syst e m not ifies you that you h ave mail. After
reading your mail, i t is saved in your user mailbox (mbox) if you do not delete it. Note
that the u�er m ailbox differs fro m a real m ailbox in several respects:

• The user m ai lbox is not the place where m ail is in it ially rout ed--that place is the
system m ailbox in the directory /usr/spooVmail.

• Mail is not p icked up fro m your user mailbox; it is picked up fro m the syste m
mailbox.

M odes of Operati o n

XENIX mail has three modes o f operation: reading mail (co m mand mode), sending mail
(co mpose mode), and editing messages (edit mode).

6-1

mail XENIX 286 User's Guide

Co m mand mode is the mode you enter when there is mail wait ing to be read. It i s
accessed by using the mail com mand w ith no user nam e. Fro m co m mand m ode you read
mail, execute shell com mands, change mail opt ions, and send m ail to other users. You
can access both compose mode and edit mode from com mand mode.

If you invoke mail with a user name, you are placed in the mail co mpose m ode when
mail co m es up. Compose mode enables you to write m essages. Special co m mands
within compose mode enable you to save port ions of messages being co mposed, display
messages being composed, and even read in other files. You can access edit m ode from
compose mode.

You can enter edit mode fro m either compose mode or co m mand mode. In edit mode,
you edit the body of a message, using the full capabilit ies of one of the text editors. To
enter edit mode fro m co m mand mode, use either the e (edit) co m mand to ent er ed, or
the v (visual) co m m and to ent er vi. To enter edit mode from compose mode, use the
co m mands -e (ed) or -v (vi).

Getting H elp

The help (?) com mand displays a brief su m mary o f all mail co m mands, so if you ever get
stuck while in co m mand mode, type

?

or

hel p

To get help while you are in compose mode, use -?. Edit mode has no help facility.

Message Format

In mail, the m essage is the basic unit of exchange bet ween users. Messages consist of
two parts: a heading and a body. The heading contains the follow ing fields:

To:

Subject:

Cc:

Bee:

Return-receipt-to:

This field is m andatory and contains the na m es of the users you're
sending mail to.

This opt ional field contains text describing the m essage.

The opt ional carbon copy field contains the names of those users
who w ill receive copies of a m essage. M essage recipients see
these na m es in the received message.

The opt ional blind carbon copy field contains the names of users
who will receive copies of a message. Recipients do not see
these names in the received messages.

This opt ional field contains the names of those users who w ill
receive an auto mat ic acknowledge m ent of the message.

The body of a m essage contains text exclusive of the heading and can be e m pty.

6-2

XENIX 286 User's Guide mail

Entering and Exiting ma i l

You can enter mail i n two ways. If you have mail waiting t o be read, just type

mai l

and press RETU RN to enter the mail syste m in co m mand mode and read your messages.
If you don't have any mail wait ing, the syste m displays the m essage

No messages.

and returns to the shell.

The second way to enter mail is to use the syntax

mail us ern am e

where usernam e is the nam e of a user that you want to send m ail to (this can even be
yourself). This m ethod gets you into the mail syste m in co mpose mode.

To leave mail from co m mand mode, you have a choice of three co m m ands: x (for exit), q
(for quit), and CONTROL-D, which funct ions the same as q.

When you exit mail by using x, the syste m returns to the shell without making any
changes to the syste m or user mailbox; no messages are saved or deleted. The next t i m e
you log in, you will have the same m essages waiting as well a s any n e w m essages that
have been received.

Exit ing mail with q or CONTROL-D will alter the syste m and user m ailboxes. Deleted
messages are discarded and saved messages are stored in their designated files.

To leave mail fro m compose mode, use CONTROL-D at the start of a new line. The
message is sent to the user(s) specified when you entered mail.

Message H eaders

When you enter mail without a user name and there is mail w ait ing, a list of nu mbered
message headers is displayed. A header is a single line of t ext containing descriptive
information about a message. (Note that the word "heading" describes the first part of
a message, and "header" describes mail's one-line description of a m essage.) The header
information includes

o The message nu mber

• The sender's name

o The date sent

• The num ber of lines and characters

• The subj ect (if the m essage contains a Subject: field)

6-3

mail XENIX 2 8 6 User's Guide

M essage headers are displayed in "windows" with the headers co m mand. A header
window contains no more than 18 headers. If fewer than 1 8 m essages are in the
mailbox, all are displayed in one header window. If there are more than 18 m essages,
then the list is divided into an appropriat e nu m ber of windows. You can move forward
and backward one window at a t i m e with the headers + and headers - co m mands.

Comma nd Syntax

Each mail com mand has its own syntax. Som e co m mands take no argu m ents, so m e take
only one, and others take several argu ments. The more flexible co m mands, such as
print, accept combinat ions of lists of m essage nu mbers (message-lists) and user names.
For these co m mands, mail first gathers all m essage nu mbers and ranges fro m the
m essage headers, then finds all messages fro m any specified user nam es. The full
m essage-list is the intersection of these two sets of messages. Thus, the m essage-list
"4-1 5 m iller" matches all m essages nu mbered fro m 4 to 15 that are fro m " m iller."

Each mail com m and is typed on a line by itself, and any argu m ents follow the com mand
word. The co m mand need not be typed in its ent irety--the first co m mand that matches
the typed prefix is used. For example, you can type "h" instead of "headers" for the
headers co m mand.

After the com mand itself is typed, one or more spaces should be entered to separate the
co m mand fro m its argum ents. If a mail com mand does not take argu ments, any
argu ments you give are ignored and no error occurs. If no m essage-list is specified for a
co m mand that requires a message-list argu m ent, the mail co m mand uses the nu mber of
the last message displayed as the message-list argu m ent. If that message does not
sat isfy the require ments of the co m mand, the search proceeds forward. If there are no
messages forward of the current message, the search proceeds backward, and if there
are no good messages at all, mail types

No appl i ca b l e messages

Specifying Messages

Com mands such as print and delete can be given a m essage-list argu m ent to apply to
several m essages at once. Thus delete 2 3 deletes messages 2 and 3 , while delete 1-5
deletes m essages 1 through 5 . A star (*) addresses all messages, and a dollar s ign ($)
addresses the most recent (highest nu mbered) message. The top (t) co m mand prints the
first five l ines of a m essage; hence, you can type

top *

to print the first five lines of every message. M essage-lists can contain co mbinat ions of
lists, ranges, and nam es. For example, the following co m mand prints out all m essages
fro m Tom or Bob and with the header nu mbers 2, 4, 1 0 , 1 1 , or 12 :

p tom bob 2 4 1 0-1 2

6-4

XENIX 286 User's Guide mail

Executing Shell Commands

To execute a shell com mand from co m mand mode, precede the co m mand with an
exclamation point. For example

! date

prints out the current date without leaving mail. You can also execute shell co m mands
fro m co mpose mode with the syntax

-!command

Determin ing the N u mber of the Cu rrent Message

The nu mber com mand {=) prints out t h e header nu mber o f t h e current m essage. It takes
no argu ments.

Cou ntin g the N u mber of Cha racters in a Messa ge

The size {si) co m mand prints out the nu mber of charact ers in each m essage in a
message-list. For example, the com m and

si 1 -4

m ight print out

4: 234
3 : 1 000
2 : 23
1 : 456

Chan g i ng Workin g D irecto ries

The cd co m mand changes t h e working directory t o the name of t h e directory given as
an argu ment. If no argu ment is given, the directory is changed to your ho m e directory.
This co m mand works just like the normal XENIX cd co m mand. {Note that exiting mail
returns you to the directory from which you entered mail; thus the mail cd co m m and
works only within mail.) You m ay want to place a cd co m mand in your . mailrc file so
that you always begin executing mail fro m within the sam e directory.

Read i n g Commands from a F i le

The source {so) command reads in mail co m mands fro m the specified file. This enables
you to write a file to perform routine mail functions, run the file while you are away
from your work area, and review your messages at any t i me. The syntax for the so
com mand is

so filename

6-5

mail XENIX 286 User's Guide

Read i ng m a i l

T o read messages sent t o you, type

mai l

mail then brings your mail from the syste m mailbox and prints out a one-line header for
each message. The most recent m essage is the first message listed and may be printed
by entering

p

You can move forward one message by pressing R ETUR N or by typing "+". To move
forward n messages, use +n. You can move backward one message with the - co m m and
or move backward n m essages with -n. You can also move to any message and display it
by typing its nu mber.

If new messages arrive while you are in mail, the following m essage appears:

New mai l has a rri ved -- type ' restart' to read .

Type

restart

and the headers of the new messages are displayed.

Suppose you have a header-list that looks like this:

3 j ohn
2 sam

tom

Wed Sep 2 1 09 : 2 1 26/782 " Noti ce "
Tue Sep 20 22 : 55 6/83 " Meeti ng "
M on Sep 1 9 1 : 23 6/84 " I nv ite "

and you want to read the second message, type

2

and press RETU RN. This causes mail to respond with

From sam Tue Sep 20 22 : 55 1 983
To : john
Su bj ect : Meeti ng

(text of message)

To look at message 3, type

or to look at m essage 1, type

+

6-6

XENIX 286 User's Guide mail

The com mands + and - execute relat ive to the last message referred to, which in our
example was 2. For large numbers of messages, you can skip forward and backward by
the nu mber of messages specified as an argu m ent to + and -. For exam ple, typing

+ 3

skips forward three m essages. If you type

p *

then all messages are displayed, since the star (*) m atches all messages.

Pressing RETURN prints out the next m essage in the header-list. You can can always
go to a message and print it by giving its message num ber or one of the special
characters, dot (.), caret ("), or dollar sign ($). In the example where m essage 2 is the
current message, the com mand

prints the current message. The com mand

prints message 1. The co m mand

$

prints message 3.

D isp laying the Fi rst Five Lines

The top (t) co m m and prints the first five lines of each specified message. M essage
nu mbers may be specified individually, collectively, or as a range. For example

top 2-1 2

prints out the first five lines of each of the m essages 2 through 1 2 . In the example

top 2,4,6,8

the first five lines of messages 2, 4, 6, and 8 are displayed.

Editing a Message

T o edit individual m essages using the text editor ed, use the edit (e) co m mand. I t takes
a message-list and processes each message in turn by writ ing it to a temporary buffer.
The editor ed is then automatically invoked so that you can edit the t e mporary file.
When you finish edit ing the message, write the m essage out, then quit the editor. The
mail syste m then reads the message back into the m essage buffer and re moves the
temporary file.

6-7

mail XENIX 2 8 6 User's Guide

It is often useful to be able to invoke either a line or visual editor, depending on the
type of term inal you are using. To invoke vi, you can use the visual (v) com mand. The
operation of the visual com mand is otherwise identical to that of the edit co m mand.

D isplayin g the Next Messag e

The autoprint switch (see description automat ically prints the next m essage i n the list
when you delete the current message. Also, the restored message is displayed
automatically after execution of an undelete co m mand.

Listing M essag es i n Chrono log ica l O rder

The chron sw itch causes m essages to be listed in chronological order. By default,
messages are listed with the most recent first. Set chron when you want to read a
series of m essages in the order they were received.

The mchron switch also prints messages in chronological order but lists the m in the
opposite order, i .e . , highest-nu mbered (most recent) first. This is useful if you keep a
large nu mber of messages in your mailbox and you wish to list the headers of the most
recently received mail first but read the messages the mselves in chronological order.

Replyin g to ma i l

Often you want t o deal with a message by responding t o its author right away. The
reply (r) com m and is useful for this purpose: it takes a m essage-list and sends mail to
the author of each message. The original message's subject field is copied as the reply's
subj ect. Each message is composed in co mpose mode and messages are term inated by
pressing CONTROL-D.

The Reply (R) co m mand works the same as r, except that copies of the reply are also
sent to everyone shown in the original m essage's To: and Cc: fields.

Saving ma i l

The save (s) com mand enables you t o save messages i n files other than mbox. B y using
save, you can organize your mail by putt ing messages in appropriate files. The save
co m mand writes out each message to the file given as the last argu ment on the
co m mand line. For example, the following com m and appends m essages 1-5 to the file
letters:

s 1 -5 letters

The file letters is created if it does not already exist. Each saved m essage is marked
with a star (*}.

save writes out the entire m essage, includ ing the To:, Subject:, and Cc: fields. In
co mparison, the write co m mand (discussed below) writes out only the bodies of the
specified m essages.

6-8

XENIX 286 User's Guide mail

The write (w) com m and writes out the body of each message to the file given as the last
argu ment on the co m m and line. Each written message is marked with a star (*) . The
syntax is si milar to that of the save com mand. For example

w 3-1 7 john e l l i ot book

writes out the bodies of all m essages from John and Elliot in the nu mber range 3-17 .
They are catenat ed to the end of the file named book.

The mbox (mb) co m mand marks each message specified in a m essage-list so that they
are saved in the user mailbox when a quit co m m and is executed. M essage headers are
marked with an "M" to show that they are to be saved in mbox.

The hold (ho) co m mand takes a message-list and m arks each m essage so that it is saved
in your syste m m ailbox instead of deleted or saved in mbox when you quit.

Delet ing Messages

Unless you indicate otherwise, each message you receive is auto mat ically saved in the
system mailbox when you quit mail. Often, however, you don't want to save m essages
you have received. To delete m essages, use the delete (d) co m mand. For exa m ple

delete 1

prevents mail fro m retaining message 1 in the syste m mailbox. The m essage and its
nu mber disappear; the re maining m essages in the queue are not renu mbered.

The dp co m m and deletes the current message and prints the next message. It is useful
for quickly reading and disposing of mail. Using dp is the sam e as using the d co m m and
with the autoprint option set.

Undeleti n g M essages

The undelete (u) com mand causes a m essage previously deleted with d or dp to reappear.
For example, to undelete message 3, type

u3

You cannot undelete messages fro m previous mail sessions; they are unrecoverable.

Forward ing mai l

To forward a copy of the current m essage t o another user, use the forward (f) co m mand.
The syntax of the f com mand is

f usernam es

6-9

mail XENIX 2 8 6 User's Guide

For example, to forward the current message to John, type

f john

John will receive the forwarded m essage, along with a heading showing that you are the
one who forwarded it. Inside the new message, the forwarded m essage is indented one
tab stop. An opt ional m essage nu mber can also be given. For example

f 2 john b i l l

forwards message 2 to john and bill.

The Forward (F) com mand works the sam e as the f com mand, except that the forwarded
message is not indented.

Printing ma i l

The lpr (1) com m and paginates and prints out m essages t o the line printer. I t takes a
message-list as Its argu ment, then paginates and prints out each message. For example

I doug

prints out each m essage from Doug.

Send ing m a i l

T o send a message, invoke mail with the nam es o f the people and groups you want t o
receive the m essage. Next, type i n your m essage. When you are finished, press
CONTROL-D on a blank line. The m essage is automatically sent to the specified
people. The section "Composing Messages" that follows describes som e mail features
that help you compose messages.

If you have a file named letter that contains a written message, you can send it to Sam,
Bob, and John by typing

mai l sam bob john < letter

Be very careful when mailing a file with the input redirect ion sy m bol (<). If you
accidentally type the output redirect ion sy mbol (>), you will overwrite the file,
destroying its contents.

To send mail from com mand mode, use the mail (m) co m mand. This sends m ail in the
manner described for the reply co m mand, except that you supply a list of recipients
e ither as an argu m ent or by entering the m in the To: field. Note that the mail co m mand
is in most ways identical to typing mail usernames at the XENIX co m mand level.

If mail cannot be delivered to a specified address, you will e ither be not ified
i m mediately, in which case a copy of the undeliverable message is appended to the file
dead.letter in your hom e directory, or be not ified via return mail, in which case a copy
is included in the return mail message.

6-1 0

XENIX 286 User's Guide mail

Composing Messages

To compose m essages, you must enter mail compose mode. Do this fro m XENIX
com mand level by typing

mai I username

where username is the nam e of a user to whom you want to send mail. Fro m mail
com mand mode, you can enter compose mode with the mail, reply, or Reply co m mands.
Once in co mpose mode, the text that you type is appended one line at a t i m e to the body
of the message you are sending. Normal line editing funct ions are available when
entering text , including CONTROL-U to kill a line and BACKSPACE to back up one
character. Not e that entering two interrupts in a row (i . e. , pressing INTE R R U PT twice)
aborts your composition.

In compose mode, mail treats lines beginning with the t ilde (-) in a special way. This
character introduces compose mode co m mands called compose escapes; co mpose
escapes enable you to enter co m mands and perform funct ions while composing
messages.

For example, typing

-m

by itself on a line places a copy of the most recently printed message inside the m essage
you are composing. The copy is shifted right one tab stop. Other compose escapes set
up heading fields, add and delete recipients to the message, enable you to escape to an
editor, enable you to revise the m essage body, or run XENIX com m ands. For a list of the
available compose escapes when in compose mode, type

- ?

The following sections contain more detail about the compose escapes.

Displaying Messages

To display the t ext of a message you are composing, type

- p

This prints a line o f dashes and t h e heading and body of the message s o far.

Editing Messages

If you are dissatisfied with a message as it stands, you can edit the m essage by invoking
ed with the editor escape, -e. This causes the message to be copied into a t e mporary
buffer so that you can edit it. Si m ilarly, the -v escape causes the m essage to be copied
into a temporary buffer so that you can edit it with vi. After modifying the m essage to
your sat isfact ion, write it out and quit the editor. mail responds by displaying

(conti nue)

after which you may continue co mposing your message.

6-1 1

mail XENIX 286 User's Guid e

Editing Headers

To add addit ional names to the list of m essage recipients, type

-t name 1 name2 . . .

naming as m any addit ional rec ipients as you wish. Note that users originally on the
recipient list will st ill receive the m essage: you cannot remove anyone fro m the
recipient list with -t. To remove a recipient, use the -h co m mand, discussed late r i n
this sect ion.

You can replace or add a subject field by using the -s escape:

� s line-of- text

This replaces any previous subject with line-of-text. The subj ect, if given, appears near
the top of the message, prefixed with the heading Subject:. You can look at the m essage
by typing -p, which prints out all heading fields and the body of the m essage.

You may occasionally prefer to list certain people as recipients of carbon copies of a
message rather than direct recipients. The escape

- c name 1 name2 . . .

adds the named people t o the Cc: list.

Similarly, the escape

..... b name 1 name2

adds the named people to the Bee: (Blind carbon copy) list. The people on this list
receive a copy of the message but their names do not appear in the header or message.

The escape

-R

adds or changes the person or persons named in the Return-receipt-to: field.

If you wish to edit any header fields in ways not possible with the -t, -s, -c, and -R
escapes, you can use

- h

The escape -h prints To: followed by the current list of recipients and leaves the cursor
at the end of the line. If you enter ordinary characters, they are appended to the end of
the current l ist of recipients. You can also use the norm al XENIX co m m and line editing
characters to edit these fields, so you can erase exist ing heading text by backspacing
over it. Press RETU RN to advance through the fields. Each of these fields can be
edited in the same way. A final RETU RN appends text to the end of the m essage body.
You can use -p to print the current text of the heading fields along with the body of the
message.

6-12

XENIX 286 User's Guide mail

Adding a File to a Message

You may want to include the contents of so me file in your m essage. The escape

-r filename

appends the named file to your current message. The syste m returns an error message
if the file doesn't exist or can't be read. If the read is successful, mail prints the
nu mber of l ines and characters appended to your message.

As a special case of -r, the escape

-d

reads in the f i le dead.letter fro m your ho me directory. This is often useful because mail
copies the text of your message buffer to dead.letter whenever you abort the creation
of a message by e ither typing t wo consecutive interrupts or ent ering a -q escape.

Enclosing Another Message

If you are sending mail from w ithin mail's com mand mode, you can insert a m essage sent
to you into the message you are currently composing. For example, you might type

- m 4

This reads m essage 4 into the m essage you are co mposing, shifted right one tab stop.

The escape

- M 4

performs the same function, but with no right shift. You can nam e any nondeleted
m essage or list of messages.

Saving Messages in a File

To save the current text of a m essage body in a file, use

- w filename

The mail syste m writes out the message body to the specified file, then prints the
nu mber of lines and characters written to the file. The -w escape does not write the
m essage heading to the f ile.

6 - 1 3

mail XENIX 2 8 6 User's Guide

Escaping to the Shell

To temporarily escape to the shell, use the escape

- ! command

This executes comm and and returns you to mail compose mode without altering your
message. To filter the body of your message through a shell co m mand, use

-I command

This pipes your message through the co m m and and uses the output as the new text of
your message. This escape is part icularly useful with the fmt co m mand that performs
si mple formatting operat ions on the text of your m essage. If the co m mand produces no
output, mail assu m es that so mething is wrong, retains the old version, and prints

(cont inue)

Escaping to mail Com mand Mode

To temporarily escape to mail com mand mode, use either of the following escapes:

- : ma i l-command

- mai l-command

You can then execut e any mail co m mand. Note that this escape does not work if you
enter compose mode from the XENIX shell. You will rece ive the m essage

May not execute cmd whi l e com posi ng

Placing an Escape Character at the Beginning of a Line

If you wish to send a message that contains a line beginning with an escape character
(e.g. , t ilde -) , you must type the escape character twice. For exa mple, typing

- -This l i ne beg i ns with a t i lde.

appends

-This l i ne beg i ns with a t i l de.

to your m essage.

6-14

XENIX 286 User's Guide mail

Send ing Network ma i l

Mail can b e sent between X E NIX machines connected with M icnet b y spec ifying a
machine nam e and the user name on that machine, separated by a colon:

machine:user

If appropriate gateways are known to the syste m, you can send m ail to s ites within the
uucp network using the syntax

machine!user

(Be sure to escape the exclamat ion point by preceding it with a backslash (\) when gi ving
it on a csh co m mand line.) mail may also interpret other charact ers in the mail path
when dealing with other networks. In most cases, aliases should be set up so that
specifying machine names is unnecessary. For more information about sending network
mail, see the XENIX 286 Communications Guide.

Setti ng Up Yo u r m a i l E n vi ro n ment : the . m a i l rc F i le

Whenever mail is invoked, it first reads the file /usr/lib/maiVmailrc then the file
. mailrc in the user's home directory. Syste m w ide aliases are defined in
/usr/lib/maiVmailrc. Personal aliases and set options are defined in . mailrc. The
following is a sa m ple .mailrc file:

pound s ign introduces co m m ents
personal aliases office and cohorts are defined below
alias office bill steve karen
alias cohorts john mary bob beth m ike
set dot lets m essages be term inated by period on new line
set askcc says to pro mpt for Cc: list after composing message
set dot askcc
cd changes d irectory to different current directory
cd

Settin g Options

mail has several opt ions that can b e spec ified from mail com mand mode o r in t h e file
.mailrc in your ho me directory.

When you use the mail com mand mode to set and unset mail opt ions, the sett ings that
you specify during a session are in effect only during that session. If you want to change
opt ions permanently, you must edit the .mailrc file.

The com mand

set ?

prints out a list of the available opt ions.

6-1 5

mail XENIX 2 86 User's Guide

mail switch and string options are set with the com mands set and unset. A switch
option is either on or off (set or unset). String options are strings of characters assigned
values with the syntax option=string. Mult iple opt ions m ay be specified on a line. It is
most useful to place set and unset co m mands in the file .mailrc in your ho m e d irectory,
where they beco me your own personal default opt ions when you invoke mail. For
example, you might have a set com mand that looks like this:

set dot metoo top l i nes = 10 SH ELL = /usr/bi n/sh

The opt ions dot and metoo are switch opt ions; toplines and SHELL are string opt ions.
The following sect ions describe the opt ions available for the mail syste m.

askcc

The askcc switch causes pro mpt ing for additional carbon copy recipients when you f inish
composing a message. Press RETU RN to accept the current list . Pressing the
INTE R RU PT key prints

i nterru pt (conti nue)

to cont inue edit ing the message.

dot

The dot switch enables you to use a period (.) as an end-of-trans m ission character, as
well as CONTROL-D. This option is available for those who are used to this convention
when ed it ing with ed.

me too

When you use an alias to send a m essage to a group and the alias contains your name,
you usually do not rece ive a copy of the message. Sett ing the metoo option causes the
sender to receive a copy of the message.

nosave

By default, when you abort a message you are composing, it is saved i n dead.letter in
your ho me directory. Setting the nosave opt ion prevents aborted messages fro m being
saved.

autoprint

Sett ing the autoprint opt ion causes the delete com mand to behave like dp. After
delet ing (or undelet ing) a message, the next message in the list is auto m atically
displayed.

6-16

XENIX 286 User's Guide mail

chron

The chron switch causes messages to be l isted in chronological order. By default,
messages are listed with the most recent first. Set chron when you want to read a list
of m essages in the order they were received.

mchron

Setting mchron displays messages in chronological order but lists the m in the opposite
order, i .e . , most recent first. This is useful if you keep a large nu m ber of messages in
your mailbox and w ish to list the headers of the messages most recently received but
read them in chronological order.

quiet

The quiet switch suppresses the print ing of " < n > messages:" before the header list and
suppresses print ing of the version header when mail is first invoked.

EDITOR

The EDITOR string contains the path name of the text editor to use in the edit
co m m and and -e escape. If not defined, then ed is used. For example

set EDITOR = /bi n/ed

escapes to ed.

VISUAL

The VISUAL string contains the path name of the text editor used in the visual co m m and
and -v escape. By default vi is the editor used. For exam ple

set VI SUAL = /bi n/vi

escapes to vi.

SHELL

The SHELL string contains the name of the she ll to use in the ! co m m and and the - '
escape. A default shell (sh) i s used if th is opt ion is not defined. For example

set SH ELL = /bi n/sh

escapes to the Bourne shell (sh).

6-1 7

mail XENIX 2 8 6 User's Gu ide

escape

The escape string defines the character t o use in place of the t ilde (-} to denote
compose escapes. For example, typing

set escape = *

causes the ast erisk to beco me the new compose escape character.

page

The page string causes messages to be displayed in pages of s ize n lines. For exam ple,
to set the page length to 10 l ines, type

set page = 1 0

You are pro mpted with a quest ion m ark between pages. Pressing RET U R N causes the
next page of the current message to be printed. By default this paging feature is turned
off.

record

The record string sets the path name of the file used to record all outgoing m ail. I f not
defined, then outgoing mail is not copied and saved. For exam ple

set record = /usr/john/recordfi l e

causes all outgoing m ail t o b e automat ically appended to t h e file /usr/john/recordfile.

toplines

The toplines string sets the nu mber of lines of a message to be printed out with the top
co m mand. By default, this value is 5. For exam ple

set topl i nes = 1 0

causes 1 0 l ines of each m essage to be printed out when the top com m and is used.

ignore

The ignore switch causes interrupt signals fro m your t erm inal to be ignored and echoed
as at signs (@}. This switch is used when using mail over telephone lines.

6-18

XENIX 2 86 User's Guide mail

alias

The alias (a) com mand links a group of names with the single name given by the first
argu ment, thus creating a mailing list. For example, you could type

a l ias beatles john pau l george r i ngo

so that whenever you used the name "beatles" in a destinat ion address (as in mail
beatles), any mail would be sent to John, Paul, George, and Ringo. W ith no argu m ents,
alias prints out all currently-defined aliases. W ith one argu m ent, it prints out the users
defined by the given alias.

You will probably want to define aliases in the .mailrc file so that you don't have to
redefine the m each t ime you invoke mail.

Usi n g Ad va n ced Featu res

This sect ion discusses advanced features of mail useful to those users already fam iliar
with the XENIX mail system.

Comma nd Lin e Options

One very useful com mand line option is the -s "subject" switch. W ith this switch, you
can specify a subj ect on the co m mand line. For example, you could send a file nam ed
letter with the subj ect line, "I mportant Meet ing at 1 2 : 0 0", by typing the following:

mai l -s " I mportant Meet ing at 1 2 : 00" john bob m i ke < letter

To include other header fields in your message, you can use the following opt ions:

-R Makes the mail session "read-only", preventing alterat ion of the mail being read.

-b Adds the blind carbon copy field to the message header.

-c Adds the carbon copy field to the m essage header.

-r Adds the return-receipt to field to the message header.

-u Reads in user's mail.

The XENIX mail system also enables you to edit files of messages by using the -f switch
on the com mand line. For example

ma i l -f filename

causes mail to edit fi lenam e, and

mai l -f

causes mail to read mbox in your ho me directory. All the mail co m m ands except hold
are available to edit the messages. When you type the quit com mand, mail writes the
updated file back.

6- 1 9

mail XENIX 2 8 6 User's Guide

Using ma i l as a Reminder Service

Besides sending and receiving mail, you can use mail as a re minder service. Several
XENIX co m mands have this idea built in to them . For example, the XENIX lpr
com mand's -m switch causes mail to be sent to the user after files have been printed on
the line printer. XENIX auto matically exam ines the file named "calendar" in each user's
home directory and looks for lines containing e ither today or tomorrow's date. These
lines are sent by mail as a rem inder of i mportant events.

When program m ing in the shell co m mand language, you can use mail to signal j ob
co mplet ion. For example, you might place the following line in a shell procedure:

big longjob echo "big longjob done" I mai l self

You can also create a logfile that you want to mail to yourself. For exa mple, you m ight
have a shell procedure that looks like this:

dosometh ing > logfi l e mail self < logfi l e

Handl ing La rge Amou nts o f ma i l

Eventually, you will face the proble m of dealing with an accu mulation of messages in
your user mailbox. You can e mploy a nu mber of strategies to handle this. If your
mailbox file beco m es large, periodically exam ine its contents to decide whether
m essages are still relevant. For long m essages, consider using su m maries.

Even the above measures are usually not enough to organize the many m essages you are
l ikely to receive. One effect ive approach is to save mail in files organized by sender, by
topic, or by a combinat ion of the two. Create these files in a separate mail directory;
you can access these mailbox files with the mail -f fi lename switch.

6-2 0

XENIX 286 User's Guide mail

Q u ick Reference

The following sect ions provide quick reference to the available mail files, programs,
co m m ands, compose escapes, and opt ions.

ma i l F i les and Progra ms

The following is a list of the programs and files that make up the XENIX mail syste m :

/usr/bin/ mail

/usr/lib/maiVmailrc

/usr/spooVmaiV*

/usr/name/mbox

/usr/name/. mailrc

/usr/lib/ maiV mailhelp.cmd

/usr/lib/ maiV mailhelp.esc

/usr/lib/ maiV mailhelp.set

/usr/lib/ maiV aliases

/usr/lib/ maiV aliashash

M ail program

M ail syste m init ializat ion file

Syst e m mailbox files

User m ailbox

User m ail initializat ion file

M ail com mand help file

M ail compose escape help file

M ail option help file

Syste m w ide aliases

Program to produce the /usr/lib/main/alias.hash
file fro m the /usr/lib/maiValiases file.

A system wide distribution list is kept in /usr/lib/maiValiases. A syste m ad m inistrator is
usually in charge of this list. These aliases are specified in a much different syntax
fro m . mailrc and are expanded when mail is sent. You will nor mally need special
per m ission to change syste m wide aliases.

Comma nd Su mmary

Given below are the name and syntax for each com m and, its abbreviated form (in
brackets), and a short description. M any co m mands have opt ional argu ments; most can
be executed w ithout any argu m ents at all. In particular, com m ands that take a
message-list argu ment will default to the current message if no message-list is given. In
the following descriptions, italics indicate argu m ents to co m mands or compose escapes.
The vert ical bar indicates selection and is used to separate the argu m ents fro m which
you may select. All other text should be read literally.

6-2 1

mail

RETU R N

+n

-n

$

=

?

!shell cmd

Alias

alias nam e users

cd directorynam e

delete m esg-list

dp m esg-list

echo

edit m esg-list

exit [!]

file

XENIX 2 8 6 User's Guide

Prints the next message.

[+] W ith no n argu ment, goes to the next message and prints it. If
given a nu m eric argu m ent n, goes to the nth message and prints
it.

[-] W ith no n argu m ent, goes to the previous m essage and prints
it . I f given a nu meric argum ent n, goes to the nth previous
message and prints it.

Prints the first message.

Prints the last m essage.

Prints the m essage nu mber of the current message.

Prints the su m mary
/usr/lib/ mail/ mailhelp.cmd.

of mail co m mands in

Executes the shell co m m and that follows. No space is needed
after the excla m ation point.

Prints syste m wide aliases for users.

[a] Uses name as an alias for the group of users. W ith no name
argu m ents, prints all currently defined aliases. W ith one
argu m ent, prints the users aliased by the given nam e argu m ent.

[c] Changes the user's working d irectory to the specified
directory. If no directory is given, then changes to the user's
hom e directory.

[d] Deletes each message in the given message-list.

Deletes the current message and prints the next message.

Expands shell m etacharacters.

[e] Takes the given message-list and points the text editor at
each m essage in turn. On return to co m m and mode, the edited
message is read back in. See also the visual co m mand.

[x] I m m ediately returns to the shell without modifying the syste m
mailbox, the user mailbox, or a file specif ied with the -f switch.

[fi] Prints the name of the m ailbox file.

forward m esg-num user-list
[f] Takes a user-l ist argu ment and forwards the current message
to each name. The message sent to each is indented and shows
that the sender has passed it on. The mesg-num argu m ent is
opt ional and is used to forward the nu m bered m essage instead of
the default m essage.

Forward m esg-num user-list
[F] Same as forward except that the message is not indented.

6-22

XENIX 286 User's Guide mail

headers +n I -n I m esg-list

hold m esg-list

list

lpr m esg-list

mail user-list

mbox mesg-list

[h] W ith no argu ment, lists the current range of headers, which is
an 1 8-message group. If a plus (+) argu ment is given, then the
next 18-message group is printed, and if a m inus (-) argu ment is
given, the previous 18-m essage group is printed. Both plus and
m inus accept an opt ional nu meric argu ment indicat ing the
nu m ber of header w indows to move forward or backw ard. If a
message-list is given, then the message header for each message
in the l ist is printed.

[ho] Takes a message-list and m arks each m essage to be saved in
the user's syst e m mailbox instead of in mbox.

Prints list of mail co m m ands.

[1] Prints each of the messages in the required m essage-list on the
line printer. Messages are p iped through pr before being printed.

[m] Takes an opt ional user-list argu ment and sends mail to each
nam e after entering compose mode.

[mb] M arks messages given in the message-list argument to be
saved in the user mailbox when a quit is executed. Message
headers contain an init ial letter "M" to show that they are to be
saved.

move m esg-list m esg-num

print m esg-list

quit

reply m esg-list

Reply m esg-list

Places the messages specified in mesg-list after the m essage
speci fied in m esg-num . If m esg-num is 0, m esg-list moves to the
top of the mailbox.

[p] Takes a m essage-list and prints each message on the user's
terminal.

[q] Term inates the mail session, retaining all nondeleted, unsaved
m essages in the system m ailbox. Examined m essages are saved in
the user mailbox, deleted m essages are discarded, and all
m essages marked with the hold co m mand are retained in the
syst e m mailbox. If execut ing a quit while editing a mailbox file
with the -f flag, the m ailbox file is rewritten and the user returns
to the shell.

[r] Takes a m essage-list and sends mail to each m essage author
just like the mail com m and.

[R] Identical to the reply com mand except that repl ies are . also
sent to other users in the To: and those named in the Cc: field.

save m esg-list fi lenam e
[s] Takes an opt ional m essage-list and a file name and appends
each m essage in turn to the end of the file. The default m essage
is the current message.

6-2 3

mail

set

set option-list

shell

size m esg-list

source file

top

string string m esg-list

undelete m esg-list

unset options

visual m esg-list

XENIX 2 86 User's Guide

[se] Prints l ist of available opt ions.

[se] W ith no argu ments, prints all variable values. Otherwise,
sets opt ion. Argu ments are of the form option=value, if the
opt ion is a string opt ion, or just option, if the option is a switch.
Mult iple opt ions may be set on one line.

[sh] Invokes an interact ive version of the shell.

[si] Takes a m essage-list and prints the size in characters of each
m essage.

[so] R eads and executes mail com mands fro m the given file.

[t] Takes a m essage-list and prints the top five lines. The nu mber
of lines printed is set by the variable toplines.

Searches for string in m esg-list . Ignores case in search.

[u] Takes a m essage-list and marks each one as not being deleted.
Each m essage in the list must have been previously deleted.

[uns] Takes a list of opt ion names and discards their re m e mbered
values; this is the opposite of set.

[v] Takes a m essage-list and invokes the vi editor on each one.

write m esg-list filenam e
[w] Writes the message bodies of messages given by the m essage
list to the file given by file na m e.

Compose E scape Su mmary

The compose escapes listed below are used when composing messages to perform special
funct ions. They are only recognized at the beginning of lines. The escape character can
be set with the escape string opt ion. Abbreviations for each escape are in brackets.

--string

-?

- !command

- I command

6-24

Inserts string in a m essage, prefaced by a s ingle tilde (-}.

Displays help screen for co mpose escapes.

Ter m inates text entry and mails message.

Executes a shell co m mand, then returns to compose mode.

Pipes the m essage body through the com mand as a filter.
Replaces the m essage body with the output of the filter. If the
com mand gives no output or term inates abnormally, retains the
original message body.

XENIX 286 User's Guide mail

- mail-command Executes a mail co m mand, then returns to compose mode.

-:mail-command Executes a mail co m mand, then returns to compose mode.

-alias [-a] Prints list of private aliases.

-alias aliasnam e [-a] Prints nam es included i n private aliasnam e.

-alias aliasnam e users -
[-a] Adds users to private aliasnam e list.

-Alias

-Alias users

-bee nam e . . •

-cc nam e . . .

-dead

-editor

-headers

- message m esg-list

- Message m esg-list

-print

-quit

-read filenam e

-Return nam e • . .

-shell

-subject string

-to nam e . . .

-visual

-write filename

[-A] Prints l ist o f syste m wide aliases.

[-A] Prints syste m wide aliases for users.

[-b] Adds the given nam e(s) to the Bee: field.

[-c] Adds the given name(s) to the Cc: field.

[-d] Reads the f i le dead.letter fro m your ho me directory into the
message.

[-e] Invokes the line editor on the m essage being sent. Exit ing
the editor returns the user to compose mode.

[-h] Edits the message heading fields by print ing each one in turn
and allowing the user to modify each field.

[- m] Reads the named messages into the m essage being sent,
shifted right one t ab. If no messages are specified, reads the
current m essage.

[-M] Sa m e as -message except with no right shift.

[-p] Prints the m essage buffer prefaced by the m essage heading.

[-q] Aborts the m essage being sent and copies the message to
dead.letter in your ho me directory i f the save option is set.

[-r] Reads the named file into the message.

[- R] Adds the given nam e(s) to the Return-receipt-to: field.

[-sh] Invokes the Bourne shell.

[-s] Causes the named string to beco me the current subj ect field.

[-t] Adds the given name(s) to the To: field.

[-v] Invokes the vi editor to edit the message buffer. Exit ing the
editor returns the user to co mpose mode.

[-w] Writes the m essage body to the nam ed file.

6-2 5

mail XENIX 2 8 6 User's Guide

Option Su mma ry

Options are controlled with the set and unset com mands. An opt ion is either a switch or
a string. A switch is e ither on or off, while a string opt ion has a value that is a path
name, a nu mber, or a s ingle character. Options are su m marized below.

askcc

autoprint

chron

dot

EDITO R=

escape char

ignore

mchron

me too

nosave

page=n

quiet

record=

SHELL=

toplines=

VISUAL=

6-26

Causes prompt ing for addit ional carbon copy recipients at the end of
each message. Pressing RETU R N retains the current l ist.

Causes the delete com m and to behave like dp. After delet ing (or
undelet ing) a message, the next one is printed auto m atically.

Causes messages to be listed in chronological order.

Causes a single period on a blank line to act as the end-of-transm ission
character; CONTROL-D also works.

P ath name of the text editor to use in the edit com m and and -e escape.
If not defined, then ed is used.

Sets char as the character to use as co mpose escape character.

Causes interrupt signals from the term inal to be ignored and echoed as
at signs (@).

Causes messages to be listed in nu m erical order (m ost recently
received first) but displayed in chronological order.

Causes senders nam e to be included in alias expansions.

Prevents saving of the message buffer in the file dead.letter in the
ho m e directory, after two interrupts or a -q escape.

Specifies nu m ber of lines per page (n) when displaying messages.

Suppresses the print ing of the version when mail is first invoked.

Sets the path nam e of the file used to record all out going m ail. If not
defined, then outgoing m ail is not copied.

P ath name of the shell to use in the ! com m and and the - ! escape. The
Bourne shell is used if this opt ion is not defined.

Sets the nu mber of lines of a message to be printed with the top
co m mand. Default is five lines.

Path name of the text editor to use in the visual co m mand and -v
escape. The default is for the vi editor.

C H APT E R 7
b e : A CALC U LATO R

I ntrod u ction

be is a program that can be used as an arbitrary precision arithmet ic calculator. be's
output is int erpret ed and executed by a collect ion of routines that can input, output, and
perfor m calculat ions on indefinitely large integers and on scaled fixed-point nu mbers.
Although you can write substant ial programs with be, it is often used as an interact ive
tool for perfor ming calculator-like co mputations. The language supports a co mplete set
of control structures and funct ions that can be defined and saved for later execution.

The syntax of be has been deliberately selected to be compatible with the C language. A
small collect ion of l ibrary funct ions is also available, including sine, cosine, arctangent,
log, exponent ial, and Bessel functions of integer order.

Com mon uses for be are

• Co mputation with large int egers.

• Computat ions accurate to many deci mal places.

• Conversions of nu mbers fro m one base to another base.

A scaling provision enables use of decimal point notat ion. Provision is also made for
input and output in bases other than decimal. Nu mbers can be convert ed from dec imal
to octal si mply by sett ing the output base equal to 8 .

The actual li m it on the nu mber of digits handled depends on the amount of storage
available on the machine, so manipulation of nu mbers with many hundreds of digits is
possible.

I n voki n g be a n d Exiti n g

To invoke the be calculator, type

be

and press RETU RN. You can perfor m calculat ions as described in this chapter.

When you are ready to exit fro m be, press CONTROL-D unti l the co m m and prompt
appears {$ is the default for the standard Bourne shell).

7-1

be XENIX 2 86 User's Guide

Sca l i n g Q u a ntit ies

Before you begin to do calculations, you need to understand how be deals with the
nu mber of decimal places. Nu mbers can have up to 99 decimal digits after the deci mal
point and the fract ional part is retained in further computat ions. The nu m ber of d igits
after the dec imal point is referred to as its scale.

A special internal quantity called scale is used to determ ine the scale of calculated
quantities (as opposed to input quant it ies). The contents of scale can be no greater than
99 and no less than 0. To check scale, type

scale

and press RETU RN. To see how scale affects output, consider this example:

scale=O
64/8

In this example, scale is set to 0, then 64 is divided by 8. The output has no dec imal
places and is displayed as

8

For co mparison, consider this example:

scale=5
64/8

In this example, scale is set to 5, then 64 is divided by 8. The output has five dec i mal
places and is displayed as

8 . 0 0 0 0 0

When two nu m bers are combined by means of one o f the arithmetic operat ions, the
result has a scale deter mined by the following rules:

Addition, subtraction

Multiplication

Division

Modulo

7-2

The scale of the result is the larger of the scales of the t wo
operands; the result is never truncated.

The scale of the result is never less than the maxi mu m of
the two scales of the operands, never more than the su m of
the scales of the operands. Subject to these two
restrictions, the scale of the result is set as close to the
contents of scale as possible.

The scale of a quot ient is the contents of the int ernal
quant ity, scale.

The scale of a re mainder is the scale of the result of

a-a/b*b

XENIX 286 User's Guide be

Exponentiation The result of an exponentiation is scaled as if the i mplied
multiplicat ions were perfor m ed. An exponent must be an
integer or you get a warning message and the exponent is
treated as 1.

Square Root The scale of a square root is set to the maxi m u m of the
scale of the argu m ent and the contents of scale.

Basic Arith m et ic Operatio n s

This sect ion d iscusses basic arithmetic operat ions.

Operators

The following operators are used in making calculations:

0Qerator Meaning ExamQle Result
(with scale=O)

+ addition 142857 + 2 8 5 7 1 4 428 5 7 1
subtraction 4765 - 3 2 5 4 4 4 0

* mult iplication 1 2 5 * 2 2 5 0
I division 5 0 0 0/5 1 0 0 0
% modulo [a%b is a-a/b* b] 1 5 % 7 1

exponent iat ion 2 " 4 1 6

Division produces a result truncated toward zero i n the specified scale. D ivision by zero
produces a warning message and a result of 0 .

There is also a built-in square root function whose result is truncated to match scale. In
this example, scale is 0 , and the l ines

scale=O
sqrt(191)

produce the output

13

In this example, scale i s 4, and the lines

scale=4
sqrt(191)

produce the output

13 .82 0 2

7-3

be XENIX 286 User's Guide

Expressions

The s implest kind o f stat e m ent is a n arithm et ic expression o n a line by itself. For
instance, if you type

142857 + 285714

and press RETU RN, be responds i m mediately with the l ine

428 5 7 1

Any term i n an expression can b e prefixed w ith a minus sign t o indicat e that i t i s t o be
negated (this is the "unary" minus sign). For example, the expression

7 + -3

is interpreted to mean that - 3 is to be added to 7 .

More co mplex expressions w i t h several operators and with parentheses are interpreted
just as in FO RTRAN, with exponent iat ion ("' } being perform ed first, then multiplicat ion
(*), division (/} , modulo (%), and finally, addition (+) and subtraction (-) . The contents of
parentheses are evaluated before expressions outside the parentheses. All of the above
operat ions are perfor med from left to right, except exponent iat ion, which is perform ed
fro m right to left. be shares w ith FORTRAN and C the convent ion that a/b*c is
equivalent to (a/b}*c. Thus the t wo expressions

a" b"c

a" (b"c)

are equ ivalent, as are the t wo expressions

a*b*c

(a*b)*c

All of the internal operat ions are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncat ion is
performed without rounding.

The internal quant ity scale can be used in expressions just like other variables. The l ine

scale = scale + 1

increases the value of scale by one.

7-4

XENIX 286 User's Guide be

Reg i sters

You may use 26 internal storage registers to hold nu m bers. The na me of a register must
be a single lowercase letter, a-z.

This stat e m ent gives a register named "x" a value of 1 0 :

X = 10

The result is not displayed on the screen, but you can see it by giv ing the register's
nam e; in this case

X

causes this to appear:

1 0

You can also ass ign the value o f a n express ion t o a register. I n this exa mple, a register
named "k" is given a value of 5, then 10 is added to the regist er:

k = 5
k = k + 5

In these lines, the value of the expression on the right of the equals sign is computed and
stored in the register na med on the left of the equals sign. Again, the result is not
displayed, but you can see the regist er's conte nts by giv i ng the register's name.

Regist ers may also be referred to as si mple variables.

7 - 5

be XENIX 2 8 6 User's Guide

Adva n ced Featu res of be

Specifyi n g I n p u t a nd Outp u t Bases

be has special internal quant it ies called ibase (input base) and obase (output base). ibase
(base can be used in its place and m eans the sa m e thing) is init ially set to 1 0 and
determ ines the base used for interpreting nu mbers read by be. For exam ple,

ibase = 8
1 1

produces

9

be will now do octal-to-deci mal convers ions. However, recognize that you can't change
the input base back to deci mal by typing

ibase = 10

because t h e nu m ber 1 0 i s interpret ed a s octal. For those who deal in hexadeci m al
notation, the characters A-F are per m itted in num bers no m at t er what base is in effect
and are interpreted as digits having values 1 0- 1 5 respectively. These characters must
be uppercase and not lowercase. Thus, the stat e m ent

ibase = A

changes the base back to dec i m al, regardless of the current input base. Negat ive and
large posit ive input bases can be used; however, no m echanism has been provided for the
input of arbitrary num bers in bases less than 1 and greater than 16 .

obase is used as the b ase for output nu m bers. The value of obase i s in it ially set to
dec i m al 10. The lines

obase = 16
1000

produce

3 E8

This is interpreted as a three-digit hexadec imal nu mber.

7-6

XENIX 286 User's Gu ide be

Very large output bases may be used. In this case, each digit is expressed as a deci mal
nu mber and the dec i m al numbers are separated by a space. For example, large nu m bers
can be output in groups of five d igits by sett ing obase to 1 0 0 0 0 0 . Even strange output
bases, such as negat ive bases, 1, and 0, are handled correctly.

Very large nu m bers are automat ically split across lines with 70 characters per l ine. A
split line that cont i nues on the next l ine ends with a backslash (\) . Deci mal output
conversion is fast, but output of very large nu mbers (i .e . , more than 1 0 0 digits) with
other bases is rather slow.

The internal quantit ies ibase and obase can be used in expressions just like other
variables. R e m e m ber that ibase and obase do not affect the course of internal
computation or the evaluat ion of expressions; they affect only input and output
conversion.

Any fractional part of ibase or obase is truncated. For exam ple, if you specify
ibase=3.5, then ask for ibase, the response is 3 .

The value o f scale retains its meaning a s a nu mber o f deci mal digits to b e ret ained i n
internal computat ion even when ibase o r obase i s not equal to 10 . The int ernal
co m putat ions (which are st ill conducted in deci mal, regardless of the input and output
bases) are perfor med to the specified nu m ber of dec imal digits, never hexadec i m al or
octal or any other kind of digits.

Using Fun ctions

You can define 26 funct ions, nam ed a-z , and you can use t h e sam e na m e for a function
and a register. For example, you can have a funct ion na m ed " m" and a register named
" m" .

The line

define a(x){

begins the definit ion of a function nam ed " a" with one argu m ent. This line must be
followed by one or more stat e m ents, which make up the body of the function, ending
with a right brace (}) . A fu nction returns control when a return stat e m ent is executed
or when the end of the funct ion is reached. The return stat e m ent can take either of the
two forms

return

return(expression)

In the first for m , the returned value of the funct ion is 0; in the second, it is the value of
the expression in parentheses. For exa mple, this statement returns the value of "r+4":

return(r+4)

7-7

be XENIX 286 User's Guide

Variables used in funct ions can be declared as auto matic by a statement of the form

auto x,y,z

Funct ions may contain only one auto stat e m ent, and it must be the first statement in
the definit ion. These automat ic variables are allocated space and init ialized to zero on
entry to the function and thrown away on return. The values of any variables w ith the
same names outside the funct ion are not d isturbed. Functions can be called recursively,
and the automatic variables at each call level are protected. The para meters named in
a funct ion definit ion are treated in the sam e way as the automat ic variables of that
function, except that they are given a value on entry to the funct ion.

This exa mple defines a funct ion named "a":

define a(x,y){

}

auto z
z = x*y
return(z)

The value of this function, when called, w ill be the product of its two argu m ents, "x"
and "y".

To call a funct ion, give its name followed by a string of argu m ents enclosed i n
parentheses and separated b y co m mas. The result i s unpredict able if t h e wrong nu mber
of argu m ents is used. For example, if funct ion "a" is defined as shown above, then the
line

a(7,3. 14)

would produce

2 1 . 98

S im ilarly, the l ine

x = a(a(3,4),5)

would cause the value of "x" to beco m e 6 0 .

Funct ions can require n o argum ents but st ill perfor m so m e useful operat ion or return a
useful result. Such functions are defined and called using parentheses with nothing
between the m . For exa mple, if you have defined a funct ion named "b" with no
argu ments, you would call it with

b ()

7-8

XENIX 286 User's Guide be

Usi ng Su bscri pted Va riables

A single lowercase variable na m e followed by an expression in brackets is called a
subscripted variable and indicates an array ele ment. The variable na me is the name of
the array, and the express ion in brackets is called the subscript. Only one-di m ensional
arrays can be used in be. The names of arrays can be the same as the names of s imple
variables and function nam es. Any fractional part of a subscript is discarded before use.
Subscripts must be greater than or equal to zero and less than or equal to 2 0 4 7 .

Subscripted variables can b e freely used in expressions, i n funct ion calls, and in return
state ments.

An array name can be used as an argu ment to a funct ion, as in

f(a[])

Array names can also be declared as automatic in a funct ion definit ion with the use of
e mpty brackets:

define f(a[])
auto b[]

When an array name is so used, the ent ire contents of the array are copied for the use of
the function, then thrown away on exit fro m the funct ion. Array names that refer to
whole arrays cannot be used in any other cont ext.

Usi n g Contro l Statements

The if, while, and for stat e m ents are used to alter the flow within programs or to cause
iterat ion. The range of each of these statements is a following state m ent or compound
stat e m ent (a collect ion of stat e m ents enclosed in braces) . They are written as follows:

if (relation) statement
while (relation) statem ent
for (expression l ; relation; expression2) statem ent

if (relation) {statem ents}
while (relation) {statem ents}
for (expressionl ; relation; expression2) {statem ents}

7-9

be XENIX 286 User's Guide

A relation in one of the control stat e m ents is an expression of the for m

expressionl rel-op expression2

where the two expressions are related by one of the six relat ional operators:

< > <= > = == ! =

Note that a double equal sign (= =) stands for "equal to" and a n exclamat ion-equal sign
(!=) stands for "not equal to". The meaning of the remaining relat ional operators is their
normal arithm etic and logical meaning.

The if stat e m ent causes execut ion of its range only if the relat ion is true. Then control
passes to the next statement in the sequence.

The while state m ent causes execut ion of its range repeatedly as long as the relat ion is
true. The relation is tested before each execution of its range, and if the relation is
false, control passes to the next state m ent beyond the range of the while stat e m ent.

The for stat e m ent begins by execut ing expressionl . Then the relation is tested and, if
true, the stat e m ents in the range of the for are executed. Then expression2 is executed.
The relat ion is tested, and so on. The typical use of the for state ment is for a
controlled iterat ion, as in the stat e m ent

for(i=l; i<=lO; i=i+ 1) i

which w ill print the integers fro m 1 to 1 0 .

7-10

XENIX 286 User's Guide

The following exam ples illustrate the use of the control statements.

define f(n){

}

auto i, x
x=l
for(i=l; i<=n; i=i+ 1) x=x*i
return(x)

The line f(5) produces 1 2 0 , which is the factorial of 5 .

be

The following is the definit ion of a function that comput es values of the bino m ial
coefficient (" m" and "n" are assu med to be posit ive integers):

define b(n, m){
auto x, i
x=l

}

forG=l; j <= m; j=j+ 1) x=x*(n-j+ 1)/j
return(x)

The following function computes values of the exponent ial funct ion by su m ming the
appropriate series without regard to possible truncat ion errors:

scale = 20
define e(x){

}

auto a, b, c, d, n
a = l
b = 1
c = 1
d = O
n = l
while(l==l){

}

a = a*x
. b = b*n

c = c + alb
n = n + l
if(c==d) return(c)
d = c

W ith funct ion "e" defined as shown, the line e(O) produces

1 . 0

and the line e(l) produces

2 . 7 1828 1 8 2 84 5 9 0 4 5 2 3 5 2 6

7-1 1

be XENIX 2 86 User's Guide

Usi n g Other La nguage Featu res

So m e i mportant language features are listed below.

• Stat e m ents are usually typed one to a line, but you can type several state ments on
a line if they are separated by se micolons.

• If an assignment stat e m ent is in parentheses, it has a value and can be used
anywhere an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

The following uses the value of an assign ment statement even when it is not in
parentheses:

x = a[i=i+ 1]

This causes a value to be assigned to "x" , and also incre ments " i" before it is used
as a subscript. (Note: nothing is displayed if you just type this line by itself, since
it is a partial example.)

• The following construct ions can be used in be:

Construction

x=y=z
x=+y
x=-y
x=*y
x=/y
x=%y
x= " y
x++
x-
++x
--x

Equivalent

x=(y=z)
x=x+y
x=x-y
x=x*y
x=x/y
x=x%y
x=x"y
(x=x+ 1)- 1
(x=x- 1)+ 1
x=x+1
x=x- 1

Even if you don't intend to use these constructions, if you type one inadvertently,
som ething legal but unexpected may happen. Be aware that in so m e of these
constructions spaces are s ignificant. For example, in the construct ions "x=-y" and
"x= -y", the first replaces "x" by "x-y" and the second by "-y".

• The co m ment convention is ident ical to the C com m ent convent ion. Co m m ents
begin with "/*" and end with "* /". They may span lines.

7-12

XENIX 286 User's Guide be

• When you invoke be, you can load a library of math funct ions by using the -1 option
as follows:

be -1

This library sets scale to 2 0 by default. The l ibrary funct ions are

s(x)
c(x)
a(x)
l(x)
e(x)
j(n,x)

• If you type

Compute the sine of x (x is input in radians).
Compute the cosine of x (x is input in radians).
Compute the arctangent of x (x is input in radians) .
Compute the natural logarithm of x.
Compute the expone nt of x (eX).
Compute the Bessel funct ion of n and x.

be filename

be will read and execute the na med file or files before accept ing co m mands fro m
the keyboard. In this way, you can load your own programs and function
definit ions.

la n g u age Refere n ce

This sect ion is a comprehensive reference to the be language. It contains a more concise
descript ion of the features m entioned in earlier sect ions.

To kens

Tokens are keywords, ident ifiers, constants,
separators can be blanks, tabs, or com ments.
separate stat e m ents.

operators, and separators. Token
Ne wline characters or semicolons

Co m ments

Ident ifiers

Com ments are introduced by /* and are term inated by */. They
may span lines.

There are three kinds of identifiers: ordinary ident ifiers, array
identifiers, and function ident ifiers. All three types consist of
s ingle lowercase letters. Array identifiers are followed by square
brackets, enclosing an optional expression describing a subscript.
Arrays are singly dim ensioned and can contain up to 2 048
ele ments. Indexing begins at 0 so an array can be indexed fro m 0
to 2 0 4 7 . Subscripts are truncated to integers. Funct ion
ident ifiers are followed by parentheses, enclosing opt ional
argu m ents. The three types of identifiers do not conflict; a
program can have a variable named "x", an array named "x", and
a funct ion na m ed "x", all of which are separate and distinct.

7 - 1 3

be

Keywords

Constants

Expressions

XENIX 286 User's Guide

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for base

Constants are arbitrarily long nu m bers with an opt ional deci mal
point. The hexadecimal digits A-F are also recognized as digits
with deci mal values 1 0 - 1 5 respectively.

All expressions can be evaluated to a value. The value of an expression is always
printed unless the main operator is an assignment. The order in which they are
evaluated is as follows:

Function calls
Unary operators
Exponentiation operators
Multipl icat ive operators
Addit ive operators
Assign me nt operators
Relational operators

There are several types of expressions:

nam ed expressions

ident ifiers

array-name [expression]

scale, ibase, and obase

7-14

Named expressions are places where values are stored.
Si mply stated, named expressions are legal on the left side
of an assign m ent. The value of a named expression is the
value stored in the place named.

Si mple ident ifiers are named expressions. They have an
initial value of zero.

Array ele ments are named expressions. They have an init ial
value of zero.

The internal registers scale, ibase, and obase are all na med
expressions. scale is the nu mber of digits aft er the dec imal
point to be retained in arith m etic operat ions. ibase and
obase are the input and out put nu mber radixes respectively.
Both ibase and obase have init ial values of 1 0 .

XENIX 286 User's Guide be

constants Constants are pri m it ive expressions that evaluate to
the mselves.

parenthetic expressions An expression surrounded by parentheses is a parenthetic
expression. The parentheses may be used to alter nor mal
operator precedence.

funct ion calls Function calls are expressions that return values.

Function Ca l l s

A function call consists o f a funct ion nam e followed by parentheses containing a
com ma-separated list of expressions, which are the funct ion argu m ents. The syntax is
as follows

function-nam e ([expression [, expression • • •]])

A whole array passed as an argu m ent is specified by the array nam e followed by e mpty
square brackets. All function argu m ents are passed by value. As a result, changes made
to the formal param eters have no effect on the actual argu ments. If the function
terminates by execut ing a return statement, the value of the funct ion is the value of the
expression in the parentheses of the return state ment, or 0 if no expression is provided
or if there is no return state ment. Three built-in functions are listed below:

sqrt(expr)

length(expr)

scale(expr)

The result is the square root of the expression and is truncated in the
least significant dec imal place. The scale of the result is the scale of
the expression or the value of scale, whichever is larger.

The result is the total nu m ber of significant dec i m al digits in the
expression. The scale of the result is zero.

The result is the scale of the expression. The scale of the result is
zero.

7 - 1 5

be XENIX 286 User's Guide

Unary O perators

The unary operators bind right to left.

-expr

++named_expr

--named_ expr

nam ed_ expr++

nam ed_ expr--

The result is the negative of the expression.

The nam ed expression is incre mented by one. The result is the value
of the na m ed expression after incre m enting.

The nam ed expression is decre m ented by one. The result is the value
of the nam ed expression after decre ment ing.

The nam ed expression is incre m ented by one. The result is the value
of the named expression before incre m enting.

The nam ed expression is decre m ent ed by one. The result is the value
of the nam ed expression before decre m ent ing.

Exponentiati o n Operators

expr" expr The exponentiat ion operator binds right to left. The result is the first
expression raised to the power of the second expression. The second
expression must be an integer. If "a" is the scale of the left expression
and "b" is the absolute value of the right expression, then the scale of
the result is

m in(a * b, max(scale, a))

M u lt ip l icative O perators

The mult iplicat ive operators (*, /, and %) bind fro m left to right.

expr*expr

expr/expr

expr%expr

7 - 1 6

The result is t h e product o f the t wo expressions. If "a" and "b" are the
scales of the t wo expressions, then the scale of the result is

m in(a+b, m ax(scale,a,b))

The result is the quot i ent of the t wo expressions. The scale of the
result is the value of scale.

The modulo operator (%) produces the re mainder of the division of the
t wo expressions. More precisely,

a%b is a-a/b*b

The scale of the result is the su m of the scale of the divisor and the
value of scale.

XENIX 286 User's Guide be

Add itive Operators

The addit ive operators bind left to right.

expr+expr The result is the sum of the two expressions. The scale of the result is
the m axi m u m of the scales of the expressions.

expr-expr The result is the difference of the two expressions. The scale of the
result is the max i mu m of the scales of the expressions.

Assig n ment Operators

The assign ment operators listed below assign values to the named expression on the left
side.

named_ expr=expr

named_ expr=+expr

nam ed_ expr=-expr

nam ed_ expr=* expr

named_ expr=/expr

named_ expr=%expr

named_ expr= A expr

Relationa l Operators

This expression results in assigning the value of the expression on
the right to the named expression on the left.

The result of this expression is equivalent to
nam ed_ expr=nam ed_ expr+expr.

The result of this expression is equivalent to
named_ expr=nam ed _ expr-expr.

The result of this expression is equivalent to
nam ed_ expr=nam ed _ expr* expr.

The result of this expression is equivalent to
nam ed_ expr=nam ed _ expr I expr.

The result of this expression is equ ivalent to
nam ed_ expr=nam ed _ expr%expr.

The result of this expression is equivalent to
nam ed_ expr=nam ed _ expr A expr.

Unlike all other operators, the relat ional operators are only valid as the object of an if
or while stat e m ent, or inside a for state ment. These operators are listed below:

expr< expr The first expression is less than the second.

expr> expr The first expression is greater than the second.

expr< =expr The first expression is less than or equal to the second.

expr> =expr The first expression is greater than or equal to the second.

expr==expr The first expression is equal to the second.

expr!=expr The first expression is not equal to the second.

7 - 1 7

be XENIX 2 8 6 User's Guide

Storage Classes

be has only two storage classes: global and automat ic (local). Only identifiers local to a
funct ion need to be declared with the auto co m mand. The argu me nts to a funct ion are
local to the function. All other identifiers are assu m ed to be global and available to all
funct ions.

All identifiers, global and local, have init ial values of zero. Identifiers declared as auto
are allocated on entry to the funct ion and released on returning from the function.
Therefore, they do not retain values between funct ion calls. Note that auto arrays are
specified by the array nam e, followed by e mpty square brackets.

Automatic variables in be do not work the same way as in C. On entry to a funct ion,
the old values of the names that appear as parameters and as aut o m at ic variables are
pushed onto a stack. Until return is m ade fro m the function, reference to these names
refers only to the new values.

Statements

Stat e m ents must be separated by a sem icolon or a newline. Except where altered by
control stat e m ents, execut ion is sequent ial. There are four types of stat e m ents:
expression stat e m ents, compound stat e m ents, quoted string stat e m ents, and built-in
stat e m ents. Built-in state ments include auto, break, define, for, if, quit, return, and
while. Each kind of statem ent is discussed below:

Expression stat e m ents

Compound stat e m ents

Quoted string stat e ments

Built-in stat e m ents

auto

7-1 8

When a stat e ment i s an expression, unless the main
operator is an assign m ent, the value of the expression is
printed, followed by a newline character.

State m ents can be grouped together and used when one
stat e m ent is expected by surrounding the m with curly
braces ({ }).

For example

"string"

prints the string inside the quotat ion m arks. A carriage
return is allowed within the quotation m arks.

The syntax for each built-in stat e m ent is given below:

The auto state m ent causes the values of the ident ifiers
to be pushed down. The ident ifiers can be ordinary
ident ifiers or array ident ifiers. Array identifiers are
specified by following the array nam e by e mpty square
brackets. The auto stat e m ent must be the first
stat e m ent in a funct ion definit ion. Syntax of the auto
stat e m ent is

auto identifier [, identifier]

XENIX 286 User's Guide

break

define

for

if

quit

return

while

be

The break state m ent causes term ination of a for or
while state ment. Syntax for the break state ment is

break

The define stat e m ent defines a funct ion; para meters to
the function can be ordinary identifiers or array names.
Array names must be followed by e mpty square
brackets. The syntax of the define stat e m ent is

define ([param eter [, param eter . • •]]} {statem ents}

The for statement is the same as

first-expression
while (relation) {

statem ent
last-expression

}

All three expressions must be present. Syntax of the for
stat e ment is

for (expression; relation; expression) statem ent

The if statement is executed if the relation is true. The
syntax is

if (relation) statement

The quit statem ent stops execut ion of a be program and
returns control to XENIX when first encountered.
Because it is not treated as an executable stat e m ent, it
cannot be used in a funct ion definition or in an if, for, or
while statement. Note that entering a CONTROL-D is
the same as typing quit. The synt ax of the quit
stat e m ent is

quit

The return stat e m ent ter m inates a funct ion, pops its
auto variables off the stack, and specifies the result of
the funct ion. The result of the function is the result of
the expression in parentheses. The first form is
equivalent to return(O). The syntax of the return
stat e m ent is

return(expr)

The while stat e m ent is executed while the relation is
true. The test occurs before each execution of the
state m ent. The syntax of the while stat e ment is

while (relation) statement

7- 1 9

I ntel Pu b l icat ions

APP E N DI X A
R E lATE D P U B li CATI O N S

Copies of the following publicat ions can be ordered fro m

L iterature Depart m ent
Intel Corporat ion
3 0 6 5 Bowers Avenue
Santa Clara, CA 9 5 0 5 1

XEN IX R. 3 .4 Reference L ibra ry : Bas ic System

Overview of the X EN IX 286 Operating System, Order Nu mber 1 7 4 3 8 5 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

XENIX 286 User's Guide, Order Nu mber 1 7 4 3 8 7 -- a brief survey of com mon co m m ands
plus full chapters on the ed text editor, the vi text editor, electronic mail, the Bourne
shell (sh), and the be calculator.

XENIX 286 Visual Shell User's Guide, Order Nu mber 1 7 4 3 8 8 -- a XENIX co m m and
interface ("shell") that replaces the standard com mand syntax with a m enu-driven
co m m and interpreter.

XENIX 286 Installation and Configuration Guide, Order Nu mber 1 7 4 3 8 6 -- how to install
XENIX on your hardware and tailor the XENIX configuration to your needs.

XENIX 286 System Administrator's Guide, Order Nu mber 1 7 4 3 8 9 -- how to perform
syste m ad m inistrator chores such as adding and removing users, backing up file syste ms,
and troubleshooting syste m proble ms.

XENIX 286 Com munications Guide, Order Nu mber 1 7 44 6 1 -- installing, using, and
ad m inistering XENIX networking soft ware.

XENIX 286 Reference Manual, Order Nu mber 1 7 43 9 0 -- all co m m ands in the XENIX 286
Basic System.

A- 1

Related Publications XENIX 2 86 User's Guide

X E N IX R. 3 .4 Reference Library : Extended System

XENIX 286 Programm er's Guide, Order Nu m ber 1 74 3 9 1 - - XENIX 2 8 6 Extended Syste m
co m mands used for developing and maintaining programs.

X EN IX 286 C Library Guide, Order Nu mber 17 4 5 42 - - standard subroutines used in
program ming with XENIX 2 8 6, including all syste m calls.

XENIX 286 Device Driver Guide, Order Nu m ber 1 7 4393 -- how to write device drivers
for XENIX 2 86 and add the m to your syste m.

X EN IX 286 Text Formatting Guide, Order Nu m ber 17 45 4 1 -- XENIX 286 Extended
Syste m co m mands used for text for m atting.

Other XEN IX P u b l i cat ions

X EN IX N etworking Software Installation and Configuration Guide, Order Nu mber
1 3 5 146 - - installing, configuring, and ad m inistering the XENIX OpenNET 'M network.

XENIX N etworking Software User's Guide, Order Nu mber 1 3 5 1 4 7 - - user's and
program m er's reference to the XENIX OpenNET 'M network.

A-2

A, vi co m mand, 5-9, 5-2 6
a,

ed co m mand, 4-7, 4-2 6
vi co m mand, 5 - 9 , 5-2 5

Abort ing a co m mand, 3-2 0
alias, in mail, 6-1 9, 6-22
Append,

data, 3-5
file,

using cat, 2-6
in ed, 4-2 2 thru 4-2 3
in vi, 5-1 1

text,
in ed, 4-7, 4-2 6
in vi, 5-9, 5- 1 1 , 5-2 5

:args, vi co m mand, 5-3
Argu m ent, passing, 3 - 1 7
askcc, in mail, 6 - 1 6 , 6-2 6
Assign ment stat e ments, 3- 1 1 , 7-1 2
auto, in be, 7-8
autoprint, in mail, 6-8 thru 6-9, 6-16 ,

6-2 6

Background processes, 2-1 9 thru 2-2 1 ,
3-2

be, 2-2 6 , 7- 1 t hru 7-1 9
arith metic operat ions, 7-3 thru 7-5
exit ing, 7- 1
expressions, 7-14
funct ions, 7-7 thru 7-8 , 7-1 3 , 7- 1 5
ibase {input base), 7-6 thru 7-7
invoking, 7-1
operators, 7-14, 7- 1 6 thru 7-1 7
obase {output base), 7-6 thru 7-7
scaling, 7-2
statem ents, 7-7 thru 7-1 1 , 7 - 1 8
storage classes, 7 - 1 8
subscripted variables, 7-9
tokens, 7- 1 3

Bee:, in mail, 6-2, 6-2 5
/bin, 3-2
Bourne shell, 1-1, 2-2 , 3-1 thru 3-5 1

I N D E X

break, 3-24
Breaking lines,

in ed, 4-2 1
in vi, 5-1 5

c, ed co m mand, 4-1 1 , 4-2 6
C, v i com mand, 5-1 8 thru 5 - 1 9
cal, 2-24
calendar, 2-2 5
case, 3-2 1 thru 3-22
cat, 2-5 thru 2-6
Cc:, in mail, 6-2, 6-2 5
cc, vi co m m and, 5-18 thru 5- 1 9
cd, 2- 12 , 3 - 15 , 3-3 0, 6-5
Change,

d irectory, 2-12 , 3 - 15 , 6-5
password, 2-2

Child processes, 3-1 , thru 3-2,
3 - 1 6 , 3-2 9

chmod, 2 - 1 5 thru 2 - 1 6
chron, mail co m mand, 6-8, 6 - 1 7 , 6-2 6
co, vi co m m and, 5-13
Co m bining files, 2-6, 4-22
Co m mand Line, 3-6, 3-18 thru 3- 1 9

entering, 2-2
erasing, 2-2
opt ions, in mail, 6-1 9 , 6-2 6
subst itut ion, 3-7

Co m m and{s), 3-1 9
abort ing, 3-20
argu ments, 3-3
ed, su m mary of, 4-26 thru 4-2 7
grouping of, 3-2 5 thru 3-26
shell, 3-1 thru 3-5 1
vi, su m m ary of, 5-2 5 thru 5-27

Co m m ents, in be, 2-2 6 , 7- 1 2
Comparing f iles, 2 - 1 6
Condit ional,

evaluat ion, 3-33 thru 3-34
looping, 3-23
state ments, 3-2 1 thru 3-22
subst itut ions, 3-3 8 thru 3 -40

Index- 1

Index

Construct ions, 7-1 2
continue, 3-24
Control-D, 3-2 0 , 3-24, 6-3 , 7-1
Control-G, vi co m m and, 5-3
Control-S, 2-5
copy, 2-1 1
Copy,

file, 2-7
directory, 2-1 1
lines, in ed, 4- 1 8 thru 4-1 9
text, i n vi, 5-1 1 thru 5-14

Count,
characters, 2-18
lines, 2 - 1 8
words, 2-18

cp, 2-7
Create,

directory, 2 - 1 0
file, 2-3, 3-14

in ed, 4- 1
in vi, 5-1

cw, v i com m and, 5 - 1 8 thru 5-1 9, 5-26

D, vi co m mand, 5- 1 0
d, mail co m m and, 6-4, 6-9, 6-2 2
date, 2-24
dO, vi co m m and, 5 - 1 0 , 5-26
d$, vi com mand, 5-10 , 5-26
dd, vi co m mand, 5-10 , 5-26
dead.letter, in mail, 6- 1 0 , 6-25 thru

6-2 6
define, be co m mand, 7-7, 7-1 1
D elete,

directory, 2 - 1 0
file, 2-7 , 2-9, 3 - 2 8
lines, i n ed, 4-7
text, in vi, 5-1 0 thru 5-1 1

Diagnost ic output, 3 -4 thru 3-5
diff, 2 - 1 6
D irectory,

changing, 2 - 1 2 , 3 - 1 5 , 6-5
copying, 2-1 1
current, 2-12
creat ing, 2 - 1 0
delet ing, 2-1 0
list ing, 2-9
login, 2-1, 2-2 5
per m issions, 2 - 1 3
renaming, 2-1 1

Index-2

XENIX 286 User's Guide

re moving, 2-10
searching, 3-43 thru 3-44
setting up, 3-44
working, 2-12

Displaying a file, 2-4 thru 2-5
do, 3-23 thru 3-24
done, 3-23 thru 3-24
• (dot), 3-27, 3-3 0, 3-32

in ed, 4-2 , 4-2 7
in mail, 6-16 , 6-26
in vi, 5-7, 5-2 7

dp, mail co m m and, 6-9, 6-22
dw, vi co m mand, 5-7, 5- 1 0 , 5-26

e, ed co m mand, 4-2, 4-22 , 4-2 6
:e, vi co m m and, 5-4, 5-2 7
ed, 4-1 thru 4-2 7

appending text, 4-7, 4-26
calling files, 4-2, 4-2 6
co m bining files, 4-22 , 4-2 6
co m m and su m m ary, 4-26 thru 4-2 7
copying lines, 4-18 thru 4-1 9, 4-2 7
creat ing text, 4-7, 4-2 6
displaying lines, 4-4 thru 4-5, 4-26
displaying tabs and control

characters, 4-6
delet ing lines, 4-7, 4-26
ent ering, 4-1
escaping to the shell, 4-6
exit ing, 4-1, 4-6, 4-26
global com mands, 4-1 7 , 4-26 thru

4-27
int errupt ing, 4-6
joining lines, 4-22
m arking your spot, 4-2 0
m erging files, 4-2 2 thru 4-2 3
m etacharacters, 4- 13 thru 4-16
m oving lines, 4- 1 9 thru 4-2 0 , 4-26
replacing text, 4- 1 1 thru 4-1 3
saving changes, 4-1 thru 4-3, 4-2 7
searching, 4-8 thru 4- 1 1 , 4-2 6 thru

4-2 7
splitt ing lines, 4-2 1
undoing co m mands, 4-4, 4-2 7
use,

with mail, 6-7, 6-17 , 6-2 2 , 6-2 5
thru 6-2 6

with vi, 6-8, 6-17 , 6-24 thru 6-26
EDITOR, in mail, 6-17 , 6-2 6

XENIX 286 User's Guide

Editors,
visual, vi, 5-1 thru 5-2 7
line oriented, ed, 4-1 thru 4-2 7

echo, 2- 1 7 , 3-3 5
elif, 3-2 1
else, 3-2 1
End-of-file, 3-24
Entering a co m mand l ine, 2-2
env, 3-14 , 3 - 17
Erasing a co m mand line, 2-2
escape, in mail, 6- 18 , 6-2 6
eval, 3-19 , 3-3 1
exec, 3-3 0, 3-41
expressions, in be, 7-14 thru 7- 1 5
exit, 3 - 1 1 , 3-24
export, 3-14, 3-16 thru 3- 1 7
expr, 3-35

f , mail co m mand, 6-9 thru 6- 1 0 , 6-22
:f, vi co m m and, 5-3, 5-2 7
false, 3-36
fi, 3-2 1
:file, vi co m mand, 5-3 , 5-27
F ile(s),

appending,
in ed, 4-22 thru 4-2 3
in vi, 5-1 1
through redirect ion, 3-4 thru 3-5

calling fro m ed, 4-2, 4-2 6
co mbining, 2-6, 4-2 2 , 4-2 6
co mparing, 2-1 6
copying, 2-7
creat ing, 2-3 , 3 - 14 , 4- 1 , 5- 1
deleting, 2-7, 3 -2 8
descriptors, 3-4 thru 3-5 , 3-37
displaying, 2�4
edit ing, 2-5, 4-1 thru 4-2 7 , 5- l

thru 5-27
finding, 2-8
in mail, 6-2 1
l inking, 2-8 thru 2-9
m erging,

in ed, 4-22
in vi, 5-1 1

moving, 2-6
perm issions, 2 - 1 3
renaming, 2-6
re moving, 2-7, 3-28

saving,
fro m ed, 4-2 thru 4-4
fro m vi 5-6, 5-2 7

sort ing 2 - 1 7
structure, 2-12
temporary, 3-14, 3-2 8

F ilter , 3-6
find, 2-8
Finding a file, 2-8
Flags, 3-3 3 , 3-40
for, 3 -23 , 7-9
Foreground processes, 2- 1 9
fork, 3 -4 1
Funct ions, i n be, 7-7, 7 - 1 5

Index

g, ed com mand, 4- 1 7 thru 4-1 8, 4-2 6
g, :g, vi co m mand, 5-16 thru 5- 1 7 , 5 - 1 9 ,

5-2 6
global,

search, 2-18
co m mands, i n ed, 4- 1 , 4- 18 , 4-26
co m m ands in vi, 5-16 thru 5- 1 7 ,

5 - 1 9, 5-2 6
grep, 2- 18

head, 2-5
ho, mail co m m and, 6-2 3
HO M E, 3 - 1 3

I, vi co m m and, 5-9, 5-2 5
i,

ed co m mand, 4- 1 1 , 4-26
vi com m and, 5-9, 5-2 5

ibase (input base), 7-6 thru 7-7
if, 3-2 1 , 3-33, 7-10
IFS, 3-13 , 3-18
ignore, in mail, 6-18 , 6-2 6
in, 3-23
Inode, 2-8
Input,

redirect ing, 3-4, 3-26 , 3-37
standard, 3-4

Insert ing text,
in ed, 4-7, 4- 1 1 , 4-2 6
in vi, 5-9, 5-2 5

Int errupt handling, 3-2 7

Index-3

Index

J, vi com mand, 5-1 5
j, ed co m m and, 4-2 2
Joining lines,

in ed, 4-22
in vi, 5- 1 5

k, ed co m mand, 4-2 0
kill, 2-2 0 thru 2-2 1
K illing processes, 2-2 0 thru 2-2 1

I, ed com mand, 4-6, 4-2 6
I, mail co m mand, 6-10 , 6-23
Ic, 2-3, 2-9
Line nu mbers, in ed, 4-2 , 4-27
Line printer, 2-2 1 thru 2-22
Link ing files, 2-8 thru 2-9
Listing a directory, 2-9
In, 2-8 thru 2-9
Logging in, 2-1
Logging out, 2-2 , 3 -20
Login directory, 2-1
Looping, 3-23 thru 3-24, 3-3 5
Ipq, 2-2 2
Ipr, 2-2 1

m,
ed co m m and, 4-19 thru 4-2 0 , 4-26
vi co m m and, 5-14

MAIL, 3-13
mail, 2-22 thru 2-2 3 , 6-1 thru 6-26

com mand line opt ions, 6 - 1 9
co m mands, 6-2 1 thru 6-24
composing, 6- 1 1 thru 6-14
deleting, 6-9, 6-2 2
editing headers, 6-12
editing m essages, 6-7 thru 6-8, 6- 1 1 ,

6 - 1 7 ' 6-2 2 , 6-24, 6-2 6
environ ment, 6 - 1 5 thru 6 - 1 9
entering, 6-3
exiting, 6-3
files, 6-2 1
forwardi ng, 6-9, 6-2 2
help, 6-2
m essage format, 6-2
m essage headers, 6-3 thru 6-4
modes, 6-1 thru 6-2
options, 6-1 5 thru 6 - 1 9 , 6-2 6
reading, 6-6 thru 6-1 0

Index-4

XENIX 2 8 6 User's Guide

receiving, 2-23
re m inder service, 6-2 0
replying, 6-8, 6-23
saving, 6-8, 6-23
sending, 2-2 2 , 6- 1 0 thru 6 - 1 5
writ ing, 2-23 , 6- 1 1

Mailboxes, 6-1
• mailre, 2-9 , 6- 1 5
Marking a spot i n a file,

in ed, 4-2 0
in vi, 5- 12

mbox, 6-1
mesg, 2-2 3
Messages,

sending, 2-22
receiving, 2-23
writ ing, 2-23

Met acharacters, 3-3 thru 3-4,
3-50 thru 3-5 1
in ed, 4-1 3 thru 4-1 6
i n vi, 5-2 0 thru 5-24

mk, vi co m mand 5-12
mkdir, 2- 1 0
more, 2 -4
Move,

file, 2-6
l ines, in ed, 4-1 9 thru 4-2 0, 4-2 6
text, in vi, 5-14 thru 5- 1 5

mv, 2-6 , 2-1 1

n, vi co m mand 5-16, 5-2 6
:n, vi c o m m and, 5-3 thru 5-4
newgrp, 3-3 1
nohup, 3-2 0
nosave, in mail, 6-16 , 6-2 6
:nu, vi co m mand, 5-6, 5-2 7

0, vi com mand, 5-9, 5-2 6
o, v i com mand, 5-9, 5-26
obase (output base), 7-6 thru 7-7
Operators, in be, 7-3 , 7 - 1 5 thru 7-1 7
Output,

d iagnostic, 3-4 thru 3-5
redirect ing, 3-4, 3-26 , 3-3 7
standard, 3-4

XENIX 2 8 6 User's Guide

p,
in ed, 4-4, 4-26
in mail, 6-4, 6-6, 6-2 3

page, in mail, 6 - 18 , 6-2 6
Parent processes, 3 - 1 thru 3-2
Param eters,

keyword, 3 - 1 6 thru 3 - 1 7
positional, 3 - 8 thru 3-1 1

password, 2-2 thru 2-3
PATH, 3 - 1 3 , 3-43
Pattern- matching, 2-5 , 2-16, 2-18 ,

3-3 , 3-3 5 thru 3-36
in ed, 4-8 thru 4-1 1
in vi, 5- 1 5 thru 5 - 1 8

Per m ission, 2-1 0 , 2-23
changing, 2-1 0 , 2-15 thru 2-16

P ipeline, 3-4 , 3-6 , 3-19 , 3-46
Posit ional para meters, 3-8 thru 3- 1 1
pr, 2-2 1
printenv, 3 - 1 7
Print,

files, 2-2 1
lines, from ed, 4-4 thru 4-5

.profile, 2-9, 3 - 14 thru 3 - 1 6
Processes, 2 - 1 9 thru 2-2 1 , 3-14 thru

3-1 5 , 3-4 1 thru 3-42
child, 3-1 thru 3-2 , 3-16 , 3-2 9
killing, 2 -2 0 thru 2-2 1
parent, 3-1 thru 3-2

ps, 2-2 0
PS1, 3 - 1 3
PS2, 3 - 1 4
pwd, 2 - 1 2

Q, v i com m and, 5-7
q,

ed co m m and, 4-1 , 4-26
mail co m mand, 6-3, 6-23

:q, vi co m m and, 5-5, 5-2 7
quiet, in mail, 6 - 1 7 , 6-26

R,

r,

mail co m mand 6-8, 6-2 3
vi co m mand 5-18 , 5-26

ed co m mand, 4-2 2 thru 4-23 , 4-2 6
mail co m mand, 6-8, 6-23
vi co m m and, 5-18 , 5-2 6

:r, vi co m m and, 5-1 1 thru 5 - 1 2
read, 3-3 0 thru 3-3 1
Reading files,

in ed, 4-22 thru 4-2 3, 4-2 6
in vi, 5- 1 1 thru 5-12 , 5-2 7

readonly, 3-3 1
record, in mail, 6-18 , 6-26
Redirect ing,

input, 3-4, 3-26 , 3-3 7
output, 3-4 thru 3-5, 3-2 6 , 3-3 7

Registers, in be, 7-5
Re m inder service, 6-2 0
Re m ove,

d irectory, 2- 1 0
file, 2-7, 2-9, 3-2 8

Rename,
d irectory, 2-1 1
file, 2-6

Renu mber lines, in ed, 4-2
Replace text, in ed, 4- 12 thru 4- 1 3
Reserved words, 3-5 1

Index

restart, mail co m mand, 6-6
Return-receipt-to: , in mail, 6-2 , 6-2 5
:rew, vi com mand, 5-4, 5-2 7
rm, 2-7 , 3-28
rmdir, 2 - 10

S, v i com mand, 5-1 8
s,

ed co m mand, 4-1 2 , 4-2 6
mail com m and, 6-8, 6-2 3
vi co m mand, 5-16 thru 5 - 1 8

Saving edits,
in ed, 4- 1 thru 4-3
in vi, 5-6

scale, in be, 7-2, 7-14
Searching,

for patterns, 2-5, 2-16 , 2 - 1 8 , 3-3,
3-3 5 thru 3-36

in ed, 4-8 thru 4-1 1
in vi, 5- 1 5 thru 5- 18

set, 3 - 1 0 thru 3- 1 1 , 3 - 1 6 , 3 - 17
mail co m mand, 6-15 , 6-24

:set, vi co m m and, 5-6

Index-5

Index

sh, 3- 1, 3 - 1 1 , 3 -1 7 , 6-2 4
SHELL, in mail, 6-17 , 6-26
Shell, 3-1 thru 3-5 1

built-in co m mands, 3-3 0 thru 3-3 1
com mand interpreter, 3-1
co m m ands, 3 -2 thru 3-5 1
invoking, 3 - 1 7
passing argu ments to, 3 - 1 7 thru 3 - 1 9
procedures, 3-3 1 thru 3-50
program m ing strategies, 3-4 1 thru

3-44
scripts, 3-9 thru 3-1 1
special co m mands, 3-3 0 thru 3-3 1
stat e, 3 - 1 5
variables, 3 -8 thru 3-1 5

shift, 3 - 1 8
si, mail co m mand, 6-5, 6-24
so, mail co m mand, 6-5, 6-24
sort, 2 - 1 7 , 3-45
Sorting a f ile, 2 - 1 7
Splitting lines

in ed, 4-2 1
in vi, 5 - 1 5

Square root, i n be, 7-3
Standard error, 3-4
Standard input, 3-4
Standard output, 3-4
Stat e m ents, in be, 7-7 thru 7-1 1 ,

7- 1 8
Subscripted variables, 7-9
Subshell, creat ing, 3- 1 1 , 3 - 1 7 , 3-25
Subst itut ing text, in vi, 5 - 1 8 thru 5-19 ,

5-26

t,
ed co m mand, 4-1 8, 4-27
mail co m m and, 6-4, 6 -7 , 6-24

tail, 2-5
Te mporary f iles, 2-2 1 , 3-28, 3-36
test, 3-3 3
then, 3-2 1
time, 3-4 1
times, 3 -3 1
/tmp, 2-2 1
To:, in mail, 6-2
Tokens, in be 7-13 thru 7-14
Toplines, in mail, 6-18 , 6-26
tr, 3-46
trap, 3 -2 7

Index-6

XENIX 286 User's Guide

Traps, 3-2 7 thru 3-3 0
true, 3-3 6

u, 4-4, 4-2 7 ' 5-7
ulimit, 3-3 1
umask, 3-3 1
undelete, mail com mand, 6-9, 6-24
undo, 4-4 , 4-2 7 , 5-7
Undoing co m m ands,

in vi, 5-7
in ed, 4-4 , 4-27

uniq, 3-45
until, 3-23 thru 3-24
/usr/bin, 3-2

v, in more, 2-5
v, ed com mand, 4- 1 7 thru 4-1 8
Variables,

predefined special, 3-14 thru 3 - 1 5
shell, 3-8 thru 3 - 1 5
user-defined, 3- 1 1 thru 3-14

vi, 2-5 , 5 - 1 thru 5-2 7
breaking lines, 5-1 5
co m mands, 5-7

repeating, 5-7
sequence of, 5-7
su m mary, 5-2 5 thru 5-2 7
undoing, 5-7

copying text, 5-1 1 thru 5 - 1 4
creating files, 5-1 thru 5-2
deleting words, 5-10 , 5-2 6
delet ing text 5-10 , 5-2 6
entering, 5-2 thru 5-3
exit ing, 5-4, 5-2 7
insert ing text, 5-9, 5-2 5 thru 5-26
j oining lines, 5 - 1 5
marking, 5 - 1 2
m etacharacters, 5-2 0 thru 5-24
moving in, 5-8 thru 5-9, 5 -25
moving text , 5-14 thru 5- 1 5
replacing text, 5-18
saving edits, 5-6 , 5-27
searching, 5 - 1 5 thru 5- 18
subst itut ing text, 5-18
VISUAL, in mail, 6-17 , 6-2 6

XENIX 2 8 6 User's Guide

w,
ed co m mand, 4-1 thru 4-3 , 4-2 7
mail co m mand, 6-9, 6-24

:w, vi co m mand, 5-3, 5-6, 5-27
wait, 3-3 1
we, 2 - 1 8 thru 2-20
while, 3-23 thru 3-24 , 3-33 , 7-9

thru 7-1 0
who, 2 - 1 9
Working directory, 2 - 1 2
write, 2-23

X, vi com mand, 5-10
x,

mail command, 6-3, 6-22
vi com mand, 5 - 1 0

:x, vi co m mand, 5-4

ZZ, vi co m mand, 5-2 , 5-4

. , 3-27 ' 3 -3 0 , 3-3 2
in ed, 4-2, 4-2 7

?
. '

in mail, 6-16 , 6-2 6
in vi, 5-7, 5-2 7

in ed , 4-8
in mail, 6-2
in shell, 3-3
in vi, 5 - 1 5 thru 5-16 , 5-26

??, ed co m mand, 4-9 thru 4-1 0 , 4-2 7
'
.,

in ed, 4-6, 4-2 7
in m ail, 6-5, 6-24
in vi, 5-5 , 5-2 7

:, 3-30
; , 3-19
' , 3 -3 thru 3-4
", 3-3 thru 3-4
I , 3-6
> , 2-6, 3-4
> > , 2-6, 3-4
= , in mail, 6-5 , 6-22
It, 3 - 1 8
/,

in ed, 4-8 thru 4-1 1 , 4-2 7
in more, 2-5
in vi, 5- 1 5 thru 5-16, 5-26

Index

//, ed com mand, 4-8 thru 4-1 1 , 4-1 3 ,
4-27

*, 3-3, 3- 1 0
[], 3-3
$, 3-2
$It, 3-14
$?, 3-14
$!, 3 - 1 5
$-, 3- 1 5
$*, 3 - 1 8
$$, 3 - 14
&, 2-20 , 3 - 1 9
&&, 3-19
I I , 3-1 9
-, i n mail, 6-1 1 , 6-24

Index-7

R E Q U E ST F O R R EA D E R'S CO M M E NTS

X E N IX
User's G L
1 74387-

Inte l 's Techn i ca l Pu b l i cati ons Departments attem pt to provi d e p u b l i cat ions that meet the needs of .
I ntel produ ct users. Th i s form l ets you parti c i pate d i rectly i n the p u b l i cati on process. Your com m er

· wi l l he l p us correct and i m prove ou r pu b l i cations. Pl ease take a few m i nutes to respond.

Pl ease restri ct you r com m ents to the usa b i l i ty, accu racy, organ izati on, and com p l eteness of t t
publ i cation . I f you have a ny comments on the prod u ct that th i s p u b l i cati on d escri bes, p l ease contc;
you r I ntel representat ive . If you wish to order p u b l i cations, contact the Li teratu re Department.

1 . Pl ease descr i be any errors you fou nd i n th i s pub l i cati on (i ncl ude page n u m ber) . .

2 . Does th is pub l i cat ion cover the i nformati on you expected or req u i red ? P lease make suggesti o
for i m provement.

3. Is th i s the r ight type of pub l icati on for you r needs? I s i t at the r i g ht l eve l ? What other types
p u b l i cati ons a re n eeded ?

4. Did you have any d i ffi cu l ty u nd ersta nd i ng d escri ptions or word i ng? Where?

5. P l ease rate this p u bl i cati on on a sca l e of 1 to 5 (5 being the best rati ng) .

NAM E ___ DATE

TITLE

COM PANY NAM �D E PARTM ENT __ �

ADD RESS ---

CITY STATE -------------------------

(CO U NTRY)

Pl ease check here i f you req u i re a written reply . D

_________________ Z IP CODE

rE ' D LIKE YOUR COMMENTS o o o

1is document is one of a series describing Intel products. Your comments on the back of th is form wil l
1 lp us prod uce better manuals. Each reply wil l be careful ly reviewed by the responsible person. All
1mments and suggestions become the property of Intel Corporation.

BUSI N ESS REPLY MAI L
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAI D BY ADDRESSEE

I ntel Corporation .
OMS Technical Publ ications, MS: HF2-52
5200 N .E. Elam Young Parkway
Hil lsboro, Oregon 971 24-9987

1 1 . 1 .. 1 • • • 1 . . . 11 • • 1 . 1 . 1 •• 1 1 . 1 •• 1 . 1 •• 1 •• 1 . 1 • • • 1 . 1 • • 1 1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

. . - . u:fll • • I t I • • er1
·� � · ' ' 'Pfl!l�'l:t:l'' '

