

)

Information in this document is subject to change without notice and does not
represent a commitment on the part of The Santa Cruz Operation, Inc. nor
Microsoft Corporation. The software described in this document is furnished
under a license agreement or nondisclooure agreement. The software may be
used or copied only in accordance with the terms of the agreement. It is against
the law to copy this software on magnetic tape, disk, or any other medium for
any purpose other than the purchaser's personal use.

© 1983, 1984MicrosoftCorporation
© 1984, 1985TheSantaCruzOperation,Inc.

This document was typeset with an IMAGEN® 8/300 Laser Printer.

XENIX is a registered trademark of Microsoft Corporation.
MS is a trademark of Microsoft Corporation.
IMAGEN is a registered trademark of IMAGEN Corporation.

Document Number: G-2-14-85-1.3/1.0

c

(

(_)

)

Contents

1 Introduction

1.1 Overview 1-1
1. 2 Creating C Language Programs 1-1
1.3 Creating Other Programs 1-2
1.4 CreatingandMaintainingLibraries 1-2
1.5 Maintaining Program Source Files 1-2
1.6 Creating Programs With Shell Commands 1-3
1.7 Using This Guide 1-3
1.8 Notational Conventions 1-5

2 Cc: A C Compiler

2.1 Introduction 2-1
2.2 Invoking the C Compiler 2-1
2 .3 Creating Programs From C Source File 2-2
2 .4 Creating Small Middle and Large Programs 2-5
2.5 UsingObjectFilesandLibraries 2-7
2. 6 Creating Smaller and Faster Programs 2-9
2. 7 Preparing Programs for Debugging 2-11
2.8 Controlling the C Preprocessor 2-13
2.9 ErrorMessages 2-15
2.10 UsingAdvancedOptions 2-17
2.11 Compiler Summary 2-21

3 Lint: A C Program Checker

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Introduction 3-1
Invoking lint 3-1
Checking for Unused Variables and Functions 3-2
Checking Local Variables 3-3
Checking for Unreachable Statements 3-4
Checking for Infinite Loops 3-4
Checking Function Return Values 3-5
Checking for Unused Return Values 3-6
Checking Types 3-6
Checking Type Casts 3-7
Checking for Nonportable Character Use 3-7
Checking for Assignment of longs to in ts 3-7
Checking for Strange Constructions 3-8
Checking for Use of Older C Syntax 3-9

3.15 CheckingPointerAlignment 3-10
3.16 Checking Expression Evaluation Order 3-10
3.17 EmbeddingDirectives 3-11
3.18 Checking For Library Compatibility 3-12

4 Make: A Program Maintainer

4.1 Introduction 4-1
4.2 CreatingaMakefile 4-1
4.3 Invoking Make 4-3
4.4 UsingPseudo-TargetNames 4-4
4.5 UsingMacrai 4-5
4.6 Using Shell Environment Variables 4-8
4.7 UsingtheBuilt-InRules 4-9
4.8 ChangingtheBuilt-inRules 4-10
4.9 UsingLibraries 4-12
4.10 Troubleshooting 4-13
4.11 UsingMake:AnExample 4-13

5 SCCS: A Source Code Control System

5.1 Introduction 5-1
5. 2 Basiclnformation 5-1
5.3 Creating and Using S-files 5-5
5 .4 Using Identification Keywords 5-13
5.5 UsingS-fileFlags 5-15
5.6 ModifyingS-filelnformation 5-16
5.7 Printing from an S-file 5-20
5.8 Editing by Several Users 5-21
5.9 ProtectingS-files 5-23
5.10 Repairing secs Files 5-25
5.11 UsingOtherCommandOptions 5-26

6 Adb: A Program Debugger

6.1 Introduction 6-1
6.2 Starting and StoppingAdb 6-1
6.3 DisplayinglnstructionsandData 6-4
6.4 DebuggingProgramExecution 6-13
6.5 Displaying Memory Maps 6-24
6.6 MiscellaneousFeatures 6-25
6.7 PatchingBinaryFiles 6-30

7 As: An Assembler

7 .1 Introduction 7-1
7.2 CommandUsage 7-1
7.3 Characters,Numbers,andNames 7-1

(

(

)

7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Statements and Comments 7-5
Source Files 7-6
Segments 7-7
Labels, Variables, and Symbols 7-13
Operands 7-16
Expressions 7-19
InstructionMnemonics 7-26
Directives 7-33
ProgramListingFormat 7-52

8 Lex: A Lexical Analyzer

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

Introduction 8-1
Lex Source Format 8-2
Lex Regular Expressions 8-3
Invoking lex 8-4
Specifying Character Classes 8-5
Specifying an Arbitrary Character 8-6
Specifying Optional Expressions 8-6
Specifying Repeated Expressions 8-6
Specifying Alternation and Grouping 8-7
Specifying Context Sensitivity 8-7
Specifying Expression Repetition 8-8
SpecifyingDefinitions 8-8
SpecifyingActions 8-8
Handling Ambiguous Source Rules 8-12
Specifying Left Context Sensitivity 8-15
Specifying Source Definitions 8-17
Lex and Yacc 8-18
Specifying Character Sets 8-22
Source Format 8-23

9 Y ace: A Compiler-Compiler

9 .1 Introduction 9-1
9.2 Specifications 9-4
9.3 Actions 9-6
9.4 LexicalAnalysis 9-8
9.5 HowtheParserWorks 9-10
9.6 Ambiguity and Conflicts 9-14
9.7 Precedence 9-19
9.8 Error Handling 9-22
9.9 TheYaccEnvironment 9-24
9.10 PreparingSpecifications 9-25
9.11 InputStyle 9-25
9.12 LeftRecursion 9-26
9.13 Lexical Tie-ins 9-27
9.14 Handling Reserved Words 9-27

9.15
9.16
9.17
9.18
9.19
9.20
9.21

Simulating Error and Accept in Actions 9-28
Accessing Values in Enclosing Rules 9-28
Supporting Arbitrary Value Types 9-29
A Small Desk Calculator 9-30
YacclnputSyntax 9-32
An Advanced Example 9-34
OldFeatures 9-40

10 XENIXtoMS-DOS:ACrossDevelopmentSystem

10.1 Introduction 10-1
10.2 CreatingSourceFiles 10-1
10.3 Compiling an MS-DOS Source File 10-2
10.4 UsingAssemblyLanguageSourceFiles 10-3
10.5 CreatingLinkingObjectFiles 10-3
10.6 Running and Debugging an MS-DOS Program 10-3
10.7 TransferringProgramsBetweenSystems 10-4
10.8 CreatingMS-DOSLibraries 10-4

11 Writing Device Drivel'8

11.1 Introduction 11-1
11.2 KemeIEnvironment 11-4
11.3 Kernel Support Routines 11-9
11.4 Parameter Passing to Device Drivers 11-18
11.5 Naming Conventions 11-18
11.6 Device Drivers for Character Devices 11-18

12 SampleDeviceDrivel'8

12.1 Introduction 12-1
12.2 Sample Device Driver for Line Printer 12-2
12.3 Sample Device Driver for Terminal 12-8
12.4 SampleDeviceDriverforDiskDrive 12.25

A C Language Portability

A.l
A.2
A.3
A.4
A.5
A.6
A.7
A.8

Introduction A-1
Program Portability A-2
MachineHardware A-2
Compiler Differences A-7
Program Environment Differences A-13
Portability of Data A-13
Lint A-14
ByteOrderingSummary A-14

(

(

B M4: A Macro Proce880r

B.l Introduction B-1
B.2 Invoking ml B-1
B.3 DefiningMacroe B-2
B.4 Quoting B-3
B.5 UsingArguments B-4
B.6 UsingArithmeticBuilt-ins B-5
B.7 ManipulatingFiles B-5
B.8 Using System Commands B-6
B.9 Using Conditionals B-6
B.10 Manipulating Strings B-7
B.11 Printing B-8

C A Common Library For XENIX and MS-DOS

C.l Introduction C-1
C.2 CommonlncludeFiles C-2
C.3 Differences Between Common Routines C-3
C. 4 Differences in Definitions C-9
C.5 MS-DOS Specific Routines C-10

D Compiler,Asaembler, and Linker Measa.ges

D.l Introduction D-1
D.2 CompilerErrorMessages D-1
D.3 CompilerRequirementsandLimits D-16
D.4 AssemblerErrorMessages D-17
D.5 LinkerErrorMessages D-24

(

)

J

Chapterl

Introduction

1.1 Overview 1-1

1.2 Creating C Language Programs 1-1

1.3 Creating Other Programs 1-2

1.4 Creating and Maintaining Libraries 1-2

1.5 Maintaining Program Source Files 1-2

1.6 Creating Programs With Shell Commands

1.7 Using This Guide 1-3

1.8 Notational Conventions 1-5

1-3

(

(

()

)

)

introduction

1.1 Overview

This guide explains how to use the XENIX Development System to create and
maintain C language and assembly language programs. The system provides a
broad spectrum of programs and commands to help you design and develop
applications and system software. These programs and commands enable you
to create C and assembly language programs for execution on the XENIX
system. They also let you debug these programs, automate their creation, and
maintain different versions of the programs you develop.

The following sections introduce the programs and commands of the XENIX
Development System, and explain the steps you can take to develop programs
for the XENIX system. Most of the programs and commands in these
introductory sections are fully explained later in this guide. Some commands
mentioned here are part of the XENIX Operating System. These are explained
in theXENIX User's Guide and XENIX Operations Guide.

1.2 Creating C Language Programs

All C language programs start as a collection of C program statements in a
source file. The XENIX system provides a number of text editors that let you
create source files easily and efficiently. The most convenient editor is the
screen-oriented editor vi. Vi provides many editing commands that let you
easily insert, replace, move, and search for text. All commands can be invoked
from command keys or from a command line. Vi also has a variety of options
that let you modify its operation.

Once a C language program has been written to a source file, you can create an
executable program by using the cc command. The cc command invokes the
XENIX C compiler which compiles the source file. This command also invokes
other XENIX programs to prepare the compiled program for execution.

You can debug an executable C program with the XENIX debugger adb. Adb
provides a direct interface to the machine instructions that make up an
executable program.

If you wish to check a program before compiling it, you can use lint, the XENIX
C program checker. Lint checks the content and construction of C language
programs for syntactical and logical errors. It also enforces a strict set of
guidelines for proper C programming style. Lint. is normally used in the early
stages of program development to check for illegal and improper usage of the C
language.

Another way to check a program is with ch, the XENIX C program beautifier.
Cb improves readability of C programs, making detection of logical errors
easier.

1-1

XENIX Programmer's Guide

1.3 Creating Other Programs

The C programming language can meet the needs of most programming
projects. In cases where finer control of execution is required, you may create I
assembly language programs using the XENIX assembler as. AB assembles \
source files and produces relocatable object files that can be linked to your C
language programs with Id. The Id program is the XENIX linker. It links
relocatable object files created by the C compiler or assembler to produce
executable programs. Note that the cc command automatically invokes the
linker and the assembler, so use of either as or Id is optional.

You can create source files for lexical analyzers and parsers using the program
generators lex and yacc. Lexical analyzers are used in programs to pick
patterns out of complex input and convert these patterns into meaningful
values or tokens. Parsers are used in programs to convert meaningful sequences
of tokens and values into actions. The lex program is the XENIX lexical
analyzer generator. It generates lexical analyzers, written in C program
statements, from given specification files. The yacc program is the XENIX
parser generator. It generates parsers, written in C program statements, from
given specification files. Lex and yacc are often used together to make
complete programs.

You can preprocess C and assembly language source files, or even lex and yacc
source files using the m4 macro processor. The m4 program performs several
preprocessing functions, such as converting macros to their defined values and
including the contents of files into a source file.

1.4 Creating and Maintaining Libraries

You can create libraries of useful C and assembly language functions and
programs using the ar and ran lib programs. Ar, the XENIX archiver, can be
used to create libraries of relocatable object files. Ran lib, the XENIX random
library generator, converts archive libraries to random libraries and places a
table of contents at the front of each library

The larder command finds the ordering relation in an object library. The
tsort command topologically sorts object libraries so that dependencies are
apparent.

1.5 Maintaining Program Source Files

You can automate the creation of executable programs from C and assembly
language source files and maintain your source files using the make program
and the secs commands.

The make program is the XENIX program maintainer. It automates the steps
required to create executable programs, and provides a mechanism for ensuring

1-2

(

(

Introduction

up-to-date programs. It is used with medium-scale programming projects.

The Source Code Control (SCCS) commands let you maintain different versions
of a single program. The commands compress all versions of a source file into a
single file containing a list of differences. These commands also restore
compressed files to their original size and content.

Many XENIX commands let you carefully examine a program's source files. The
ctags command creates a tags file so that C functions can be quickly found in a
set of related C source files. The mkstr command creates an error message file
by examining aC source file.

Other commands let you examine object and executable binary files. The nm
command prints the list of symbol names in a program. The hd command
performs a hexadecimal dump of given files, printing files in a variety of
formats, one of which is hexadecimal. The size command reports the size of an
object file. The strings command finds and prints readable text(strings) in an
object or other binary file. The strip command removes symbols and
relocation bits from executable files. The sum command computes a checksum
value for a file and a count of its blocks. It is used in looking for bad spots in a file
and for verifying transmission of data between systems. The xstr command
extracts strings from C programs to implement shared strings.

) 1.6 Creating Programs With Shell Commands

In some cases, it is easier to write a program as a series of XENIX shell commands
than it is to create a C language program. Shell commands provide much of the
same control capability as the C language, and give direct access to all the
commands and programs normally available to the XENIX user.

The csh command invokes the C-shell, a XENIX command interpreter. The O­
shell interprets and executes commands taken from the keyboard or from a
command file. It has a C-like syntax which makes programming in this
command language easy. It also has an aliasing facility, and a command history
mechanism.

1.7 Using This Guide

This guide is intended for programmers who are familiar with the C
programming language and with the XENIX system.

Chapter 1 introduces the XENIX software development programs provided with
this package.

Chapter 2 explains how to compile C language programs using the cc command.

Chapter 3 explains how to check C language programs for syntactical and

1-3

XENIX Programmer's Guide

semantical correctness using the C program checker lint.

Chapter 4 explains how to automate the development of a program or other
project using the make program.

Chapter 5 explains how to control and maintain all versions of a project's source
files using the SCCS commands.

Chapter 6 explains how to debug C and assembly language programs using the
XENIX debugger ad b.

Chapter 7 explains how to assemble assembly language programs using the
XENIX assembler as.

Chapter 8 explains how to create lexical analyzers using the program generator
lex.

Chapter 9 explains how to create parsers using the program generator yacc.

Chapter 10 explains how to use XENIX as a cross-development environment to
create DOS programs.

Chapter 11 explains how to write device drivers.

Chapter 12 includes sample device drivers, and explains the syntax and logic
used.

Appendix A explains how to write C language programs that can be com pi led on
other XENIX systems.

Appendix B explains how to use to create and process macros using the m4
macro processor.

Appendix C discusses library routines available for XENIX and DOS cross
development.

AppendixD explains compiler, assembler and linker error messages.

C language programmers should read Chapters 2, 3, and 6 for an explanation of
how to compile and debug C language programs.

Assembly language programmers should read Chapter 7 for an explanation of
the XENIX assembler and Chapter 6 for an explanation of how to debug
programs.

Programmers who wish to automate the compilation process of their programs
should read Chapter 4 for an explanation of the make program. Programmers
who wish to organize and maintain multiple versions of their programs should
read Chapter 5 for an explanation of the Source Code Control System (SCCS)

1-4

(

)

Introduction

commands.

Special project programmers who need a convenient way to produce lexical
analyzers and parsers should read Chapters 8 and 9 for explanations of the lex
and yacc program generators.

XENIX programmers who want to write programs executable under DOS should
read Chapter 10 and Appendix C to learn to use cc, dosld, and the XENIX-DOS
common libraries for DOS compilation.

1.8 Notational Conventions

This guide uses a number of special symbols to describe the syntax of XENIX
commands. The following is a list of these symbols and their meaning.

[l

SMALL

bold

italics

Brackets indicate an optional command
argument.

Ellipses indicate that the preceding argument may
be repeated one or more times.

Small capitals indicate a key to be pressed.

Boldface characters indicate a command or
program name.

Italic characters indicate a placeholder for a
command argument. When typing a command, a
placeholder must be replaced with an appropriate
filename, number, or option.

1-5

)

Chapter2

Cc: A C Compiler

2.1 Introduction 2-1

2.2 InvokingtheCCompiler 2-1

2.3 Creating Programs From C Source Files 2-:-2
2.3.1 Compiling a C Source File 2-2
2.3.2 Compiling Several Source Files 2-3
2.3.3 Naming the Output File 2-4

2.4 Creating Small, Middle, and Large Programs 2-5
2.4.1 Creating Small Model Programs 2-6
2.4.2 Creating Pure-Text Small Model Programs 2-6
2.4.3 Creating Middle Model Programs 2-6

) 2.4.4 Creating Large Model Programs 2-7

2.5 Using Object Files and Libraries 2-7
2.5.1 CreatingObjectFiles 2-7
2.5.2 Creating Programs From Object Files 2-8
2.5.3 Linking a Program to Functions In Libraries 2-8

2.6 Creating Smaller and Faster Programs 2-9
2.6.1 Creating Optimized Object Files 2-9
2.6.2 Stripping the Symbol Table 2-10
2.6.3 RemovingStackProbesFromaProgram 2-11

2.7 PreparingProgramsforDebugging 2-11
2. 7 .1 Producing an Assembly Language Listing 2-11
2.7.2 ProfilingaProgram 2-12

2.8 Controlling the CPreprocessor 2-13
2.8.1 DefiningaMacro 2-13

2.8.2 Defining Include Directories 2-14
2.8 .3 Ignoring the Default Include Directories 2-14
2.8.4 Saving a Preprocessed Source File 2-15

2.9 Error Messages 2-15
2.9.1 C Compiler Messages 2-16
2.9.2 SettingtheLeveloCWarnings 2-16

2.10 Using Advanced Options 2-17
2.10.1 Creating Programs From Assembly Language Source

Files 2-18
2.10.2 UsingthenearandfarKeywords 2-18
2.10. 3 Changing Word Order in Programs 2-19
2.10.4 Setting the Stack Size 2-20
2.10.5 Using Modules, Segments, and Groups 2-20

2.11 CompilerSummary 2-21
2.11.1 Cc Options 2-22
2.11.2 Memory Models 2-23
2.11.3 PointerandlntegerSizes 2-24
2.11.4 SegmentandModuleNames 2-24

(

(

)

Cc: A C Compiler

2.1 Introduction

This chapter explains how to use the cc command. In particular, it explains
how to

Compile C language source files

Choose a memory model for a program

Use object files and libraries with a program

Create smaller and faster programs

Prepare C programs for debugging

Control the C preprocessor

It also describes the error and warning messages generated by the C compiler,
and explains how to use advanced features of the cc command to make
customized programs.

This chapter assumes that you are familiar with the C programming language,
and that you can create C program source files using a XENIX text editor. For a

) description of the C language, see the XENIX Microsoft C Reference Manual.

2 .2 Invoking the C Compiler

The cc command has the form

cc [option J ... filename ...

where option is a command option, and filename is the name of a C language
source file, an assembly language source file, an object file, or an archive library.
You may give more than one option or filename, if desired, but must separate
each item with one or more spaces.

The cc command options let you control and m0,dify the tasks performed by the
command. For example, you can direct cc top,.rform optimization or create an
assembly listing file The options also let you specify additional information
about the compilation, such as which program libraries to examine and what
the name of the executable file should be. Many options are described in the
following sections. For a complete description ,_,fall options, see cc(CP) in the

) XENIX Reference Maniial.

2-1

XENIX Programmer's Guide

2 .3 Creating Programs From C Source Files

The cc command is normally used to create executable programs from C
language source files. A file's contents are identified by the filename extension. (
C source files must have the extension ". c".

The cc command can create executable programs only from source files that
make up a complete C program. In XENIX, a complete program must have one
(and only one) function named "main". This function becomes the entry point
for program execution. The "main" function may call otherfunctions as long as
they are defined within the program or are part of the C standard library. The
standard C library is described in the XENIX Programmer's Reference.

2.3.1 Compiling aC Source File

You can compile a C source file by giving the name of the file when you invoke
the cc command. The command compiles the statements in the file, then copies
the executable program to the default output file a. out.

To compile a source program, type

cc filename

where filename is the name of the file containing the program. The program
must be complete, that is, it must contain a "main" program function. It may
also contain calls to functions explicitly defined by the program or by the
standard C library.

For example, assume that the following program is stored in the file named
main. c.

#include <stdio.h>

main()
{

}

intx,y;

scanf("%d %d", &x, &y);
printf("%d\n", x+y);

To compile this program, type:

ccmain.c

The command first invokes the C preprocessor, which adds the statements in
the file/ usr/ include/ stdio.h to the beginning of the program. It then compiles

2-2

(

(

)

)

Cc: A C Compiler

these statements and the rest of the program statements. Next, the command
links the program with the standard C library, which contains the object files
for the sca.nf and print/ functions. Finally, it copies the program to the file
a.. out.

You can execute the new program by typing

a.out

The program waits until you enter two numbers, then prints their sum. For
example, if you type "3 S"theprogram displays "8".

2.3.2 CompilingSeveralSourceFiles

Large source programs are often split into several files to make them easier to
understand, update and edit. You can compile such a program by giving the
names of all the files belonging to the program when you invoke the cc
command. The command reads and compiles each file in tum, then links all
object files together, and copies the new program to the file a.. out.

To compile several source files, type

cc filena.me ...

where each filename is separated from the next by at least one space. One of
these files (and only one) must contain a "main" function. The others may
contain functions that are called by this ''main" function or by other functions
in the program. The files must not contain calls to functions that are not
explicitly defined by the program or by the standard C library.

For example, suppose the following main program function is stored in the file
ma.in.

#include <stdio.h>
extern int add{);

main{)
{

}

intx,y,z;

scanf (" %d %d", &x, &y);
z=add(x,y);
printf("%d \n", z);

2-3

XENIX Programmer's Guide

Assume that the following function is stored in the file 4dtl.c.

add{a, b)
inta,b;
{

}
return(a+ b);

You can compile these files and create an executable program by typing:

cc main.c add.c

The command compiles the statements in m4in. c, then compiles the statements
in add.c. Finally, it links the two together(along with the standard C library)
and copies the program to a. out. This program, like the program in the previous
section, waits for two numbers, then prints their sum.

Since the cc command cannot keep track of more than one compiled file at a
time, when several source files are compiled at a time, the command creates
object files to hold the binary code generated for each source file. These object
files are then linked to create an executable program. The object files have the
same basename as the source files, but are given the ".o" file extension. For

(

example, when you compile the two source files above, the compiler produces (
the object files main.a and add.a. These files are permanent files, i.e., the
command does not delete them after completing its operation. Note that the
command also creates an object file if only one source file is compiled.

2.3.3 Naming the Output File

You can give the executable program file any valid filename by using the -o (for
''output") option. The option has the form

-ofilename

where filename is a valid filename or pathname. If a filename is given, the
program file is stored in the current directory. If a full pathname is given, the
file is stored in the given directory. If that file already exists, its contents are
replaced with the new executable program.

For example, the command

cc -oaddem main.c add.o

causes the compiler to create an executable program file addem from the source
file main. c and object file add. o. You can execute this program by typing:

2-4

(

)

)

Cc: A C Compiler

addem

Note that the -o option does not affect the existing a. out file. This means that
the cc command does not change the current contents of a. out if the -o option
has been given.

2.4 Creating Small, Middle, and Large Programs

The cc command lets you create programs of a variety of sizes and purposes
using the -Ms, -Mm, -Ml, and -i options. These options define the size of a
given program by defining the number of segments in physical memory to be
allocated for your program's use. They also determine how the system loads the
program for execution.

The cc command allows the creation of programs in four different memory
models: impure-text small model, pure-text small model, middle model, and
large model. Each model defines a different type of program structure and
storage.

Impure-text small model programs are typically C programs that are short or
have a limited purpose. These programs must not exceed 64 Kbytes.

Pure-text small model programs are typically short programs that are intended
to be invoked by many users. Pure-text programs can occupy up to 128 Kbytes,
but no more than 64 Kbytes each is permitted for either instructions or data.
Unlike small model programs, the system loads only one copy of a pure-text
program's instructions into memory, no matter how many times it has been
invoked. As long as this copy stays in memory, the system simply loads a new
copy of the data for each new invocation of the program. It then keeps each
copy of data separate, while sharing the instructions among the different
invocations. Pure-text programs save valuable memory space that would
otherwise be wasted by small model programs.

Middle model programs are typically C programs, that have a large number of
program statements but a relatively small amount of data. Program
instructions can be any size, but program data must not exceed 64 Kbytes.

Large model programs are typically very large C programs which use a large
amount of data storage during normal processing. Program instructions and
data may have any size, except that the program must not contain arrays or
structures that exceed 64 Kbytes.

C programs in memory consist of the actual machine instructions created from
the program's source statements, and the several bytes of binary data storage
created for the program's variables. The data storage also contains the stack
used by the program for temporary storage during execution. The XENIX
system stores the instructions and data in one or more segments of physical

2-5

XENIX Programmer's Guide

memory. Each segment is 64 Kbytes long. Thus, the maximum allowable size
for any program depends on how many segments allocated for it when
compiled.

The following sections describe how to use the-Mand -i options to create
programs with a specific number of segments. They also describe how to create
pure-text programs for execution by multiple users.

2.4.1 Creating Small Model Programs

You can create a small model program by using the -Ms option. This option
directs cc to create a program that occupies a single segment when loaded into
physical memory. To create a small model program, type

cc -Ms filename

where filename is the name of the program you wish to compile.

The cc command creates small model programs by default when you do not
otherwise specify a program model. Thus, the -Ms option is not required.

2 .4 .2 Creating Pur~ Text Small Model Programs

You can create a pure-text small model program by combining the-i and-Ms
options. The -i option directs cc to create separate memory segments for the
instructions and data of a small model program. To create a pure-text program,
type

cc-Ms-ifilename

where filename is the name of the file source program to be compiled. Since cc
creates small model programs by default, only the-ioption is required.

2 .4.3 Creating Middle Model Programs

You can create a middle model program by using the-Mm option. This option
creates one segment for the data of the program, and one or more segments for
the instructions. To create a middle model program, type

cc-Mm filename ...

where filename is the name of the source file to be compiled. When creating a
program, the compiler attempts to fit as many instructions into a segment (up
to 64 Kbytes) as possible.

2-6

(

(

Ce: A C Compiler

Middle model programs are pure in the sense that the system never loads more
than one copy of the program's instructions into memory at one time. This
means the -i option, used with pure-text small model programs, is not required

) for middle model programs.

)

2 .4 .4 Creating Large Model Programs

You can create large model programs by using the -Ml option. This option
directs cc to create multiple segments for both instructions and data. To create
a large model program, type

cc -Ml filename

where filename is the name of a source file to be compiled. As with middle model
programs, the compiler attempts to fit as many instructions into a segment as
possible.

Like middle model programs, large model programs are considered to be pure.

2.5 Using Object Files and Libraries

The cc command lets you save useful functions as object files, and use these
object files to create programs at a later time. Object files contain the compiled
or assembled instructions of your source file, so they save you the time and
trouble of recompiling the functions each time you need them. All object files
created by cc have the file extension" .o"

The cc command also lets you use functions found in XENIX system libraries,
such as the standard C library or the screen processing library curses. To use
these functions, you simply supply the name of the library containing them. In
some cases, such as for the standard C library, cc accesses the library
automatically and no explicit naming is required.

For convenience, you can create your own libraries with the ar and ranlib
commands. These commands, described in section CP of the XENIX Reference
Manual, copy your useful object files to a library file, and prepare the file for use
by the cc command. You can access the library like any other library in the
system if you copy it to the/ lib directory.

2.5.1 Creating Object Files

You can create an object file from a given source file by using the -e {for
"compile") option. This option directs cc to compile the source file without
creating a final program. The option has the form

2-7

XENIX Programmer's Guide

-c filename ...

where filename is the name of the source file. You may give more than one
filename if you wish. Make sure each name is separated from the next by a
space.

To make object files for the source files add. c and mult.c, type:

cc-c add.c mult.c

This command compiles each file and copies the compiled source files to the
object files add. o and mult. o. It does not link these files; no executable program
is created.

The -c option is typically used to save useful functions for programs to be
developed later. Once a function is in an object file it may be used as is, or saved
in a library file and accessed like other library functions, as described in the
following sections.

Note that the cc command automatically creates object files for each source file
in the command line. Unless the -c option is given, however, it will also attempt
to link these files, even if they do not form a complete program.

2 .5 .2 Creating Programs From Object Files

You can use the cc command to create executable programs from one or more
object files, or from a combination of object files and C source files. The
command compiles the source files (if any), then links the compiled source files
with the object files to create an executable program.

To create a program, give the names of the object and source files you wish to
use. For example, if the source file main. c contains calls to the functions add
and mult(saved in the object files add.o and mult.o), you can create a program
by typing:

cc main.c add.o mult.o

In this case, main. c is compiled, then linked with add. o and mult. o to create the
executable file a. out.

2.5.3 Linking a Program toFunctionsln Libraries

You can link a program to functions in a library by using the -I (for "library")
option. The option directs cc to search the given library for the functions called
in the source file. If the functions are found, the command links them to the
program file.

2-8

(

(

(

)

)

Cc: A C Compiler

The option has the form

cc-1name

where name is a shortened version of the library's actual filename (see Intro(S)
in the XENIX Reference Manual for a list of names). Spaces between the name
and option are optional. The linker searches the/ lib directory for the library. If
not found, it searches the/ uar/ lib directory.

For example, the command

cc main.c -!curses

links the library/ lib/libcuraea. a to the source file main.c.

A library is a convenient way to store a large collection of object files. The
XENIX system provides several libraries, the most common of which is the
standard C library. Functions in this library are automatically linked to your
program whenever you invoke the compiler. Other libraries, such as
libcuraea. a, must be explicitly linked using the -I option. The XENIX libraries
and their functions are described in detail in the XENIX Programmer's
Reference.

In general, the cc command does not search a library until the -I option is
encountered, so the placement of the option is important. The option must
follow the names of any source files containing calls to functions in the given
library. In general, all library options should be placed at the end of the
command line, after all source and object files.

2.6 Creating Smaller and Faster Programs

You can create smaller and faster C programs by using the optimizing options
available with the cc command. These options reduce the size of a compiled
program by removing unnecessary or redundant instructions or unnecessary
symbol information. Smaller programs usually run faster and save valuable
space.

2.6.1 Creating Optimized Object Files

You can create an optimized object file or an optimized program from a given
source file by using the -0 (for "optimize") option. This option reduces the size
of the object file or program by removing unnecessary instructions. For
example, the command

cc-Omain.c

2-9

XENIX Programmer's Guide

creates an optimized program from the source file main. c. The resulting object
file or program is smaller (in bytes) than if the source had been compiled
without the option. A smaller object file usually means faster execution.

The -0 option applies to source files only; existing object files are ignored if
included with this option. The option must appear before the names of the files
you wish tooptimize. Forexample, the command

cc-Oadd.cmain.c

optimizes main. c and add. c.

You may combine the -0 and -c options to compile and optimize source files
without linking the resulting object files. For example, the command

cc-0-cmain.cadd.c

creates separate optimized object files from the source files main. c and add. c.

Although optimization is very useful for large programs, it takes more time
than regular compilation. In general, it should be used in the last stage of
program development, after the program has been debugged.

2 .6 .2 Stripping the Symbol Table

You can reduce the size of a program's executable file by using the-sand -x
options. These options direct cc to remove items from the symbol table. The
symbol table contains information about code relocation and program symbols
and is used by the XENIX debugger adb to allow symbolic references to variables
and functions when debugging. The information in this table is not required for
normal execution, and should be removed when the program has been
completely debugged.

The -s option strips the entire table, leaving machine instructions only. For
example, the command

cc-smain.cadd.c

creates an executable program that contains no symbol table. It also creates the
object files main. o and add. owhich contain no symbol tables.

(

(

The -x option strips all nonglobal symbols from the file including the names of
local functions and variables, but excluding externally declared items. The rf
command I\.

cc-x main.o add.o

2-10

Cc1 A C Compiler

creates an executable program with global symbols, but only if the object files
main. o and add. o have symbol tables.

The -s and -x options may be combined with the -0 option to create an
optimized and stripped program. Note that you can also strip a program with
the XENIX command strip(CP). See the XENIX Reference Manual for details.

2.6 .3 Removing Stack Probes From a Program

You can reduce the size of a program slightly by using the -K option to remove
all stack probes. A stack probe is a short routine called by a function to check
the program stack for available space. The probes are not needed if the
program makes very few function calls or has unlimited stack space.

To remove the stack probes from the program main. c, type

cc-Kmain.c

Although this option, when combined with the -0 option, makes the smallest
possible program, it should be used with great care. Removing stack probes
from a program whose stack use is not well known can cause execution errors.

2. 7 Preparing Programs for Debugging

The cc command provides a variety of options to prepare a program that is
under development for debugging. These options range from creating an
assembly language listing of the program, for use with the XENIX debugger
adb, to adding routines for profiling the execution of a program.

2.'1.1 Producing an .Assembly Language Listing

You can direct the compiler to generate an assembly language listing of your
compiled source file by using the -S and -L options. The -S option creates an
assembly language listing. The-L option creates a listing that shows assembled
code, as well as instructions. The file created by -S is given the file extension
".s"; the file created by -L is given ".L"

Assembly language listing files are typically used by programmers who wish to
debug their program with adb. Since adb recognizes machine instructions
instead of the actual source statements in your program, a programmer needs
an assembly language listing for accurate debugging.

To create an assembly language listing, give the name of the desired source file.
For example, the command

2-11

XENIX Programmer's Guide

cc-Sadd.c

creates an assembly language listing file named add.s and the command

cc-Lmult.c

creates a listing file named mult.L. Note that both the -S and -L commands
suppress subsequent compilation of the source file; they imply the -c option.
Thus, no program file is created and no linking is performed.

The -S and -L options apply to source files only; the compiler cannot create an
assembly language listing file from an existing object file. Furthermore, the
option in the command line must appear before the names of -the files for which
the assembly listing is to be saved.

Note

The assembly language files created by the -S and -L options are not
suitable as input to the XENIX assembler as.

2.7 .2 Profiling a.Program

You can examine the flow of execution of a program by adding "profiling" code
to the program with the -p option. The profiling code automatically keeps a
record of the number of times program functions are called during execution of
the program. This record is written to the man.out file and can be examined
with the prof command.

For example, the command

cc-pmain.c

adds profiling code to the program created from the source file main. c. The
profiling code automatically calls the monitor function, which creates the
man.out file at normal termination of the program. The prof command and
monitor function are described in detail in pro.l{CP) and monitor(S) in the
XENIX Reference Manual.

(

(

The -p option must be given in any command line that references object files (
that contain profiling code. For example, if the command

cc-c-p fl.cf2.c

2-12

)

Cc: A C Compiler

was used to create the object files /1. o and /2. o, then the command

cc-p fl.o f2.o

must be used to create an executable program from these files.

2.8 Controlling the C Preprocessor

The cc command provides a number of options that let you control the
operation of the C preproceswr. These options let you define macros, create
new search paths for include files, and suppress subsequent compilation of the
source file.

2.8.1 DefiningaMacro

You can define the value or meaning of a macro used in a source file by using the
-D (for "define") option. The option lets you assign a value to a macro when
you invoke the compiler, and is useful if you have used if, if def, and ifndef
directives in your source files.

The option has the form

-Dname[=string]

where name is the name of the macro and atring is its value or meaning. If no
atring is given, the macro is assumed to be defined and its value is set to 1. For
example, the command

cc -DNEED=2 main.c

sets the macro "NEED" to the value "2". This is the same as having the
directive

#define NEED 2

in the source file. The command compiles the source file main. c, replacing every
occurrence of "NEED" with "2"

The -D option is especially useful with the itder directive. You can use the
option to determine which statements in the source are to be compiled. For
example, suppose a source file, main.c, contains the directive

#ifdefNEED

but does not contain an explicit define directive for the macro "NEED" Then
all statements following the ifdef directive are compiled only if you supply an

2-13

XENIX Programmer's Guide

explicit definition of "NEED" using the-D option. For example, the command

cc-DNEEDmain.c

is sufficient to compile all statements following the ifdef directive, while the (
command

ccmain.c

causes all those statements to be ignored.

You may use -D to define up to 20 macros on a command line. However, you
cannot redefine a macro once it has been defined. If a file uses a macro, you must
place the -D option before that file's name on the command line. For example,
in the command

cc main.c -DNEED add.c

the macro" NEED" is defined for add. c but not defined for main. c.

2 .8 .2 Defln ing Include Directories

You can explicitly define the directories containing "include" files by using the
-I (for "include") option. This option adds the given directory to a list of
directories to be searched for include files. The directories in the list are
searched whenever an include directive is encountered in the source file. The
option has the form

-ldirectorgname

where directoryname is a valid pathname to a directory containing include files.
For example, the command

cc -If usr / joe/include main.c

causes the compiler to search the directory /usr/joe/include for include files
requested by the source file main. c.

The directories are searched in the order they are listed and only until the given
include file is found. The / usr/ include directory is the default include directory
and is always searched after directories given with-I.

2.8.3 Ignoring theDefaultlncludeDirectories

You can prevent the C preprocessor from searching the default include
directories by using the -X option. This option is generally used with the -I

2-14

(

(

)

Cc: A C Compiler

option to define the location of include files that have the same names as those
found in the default directories, but which contain different definitions. For
example, the command

cc-X-1/usr /joe/include main.c add.c

causes cc to look for all include files only in the directory/ uar/joe/ include.

2.8.4 SavingaPreprocessedSourceFile

You can save a copy of the preprocessed source file by using the -P and -E
options. The file is identical to the original source file except that all C
preprocesor directives have been expanded or replaced. The -P option copies
the result to the file named filename.i, where filename is the same name as the
source file without the ".c" extension. The -E option copies the result to the
standard output, and places a #line directive at the beginning and end of this
output. You can save this output by redirecting it.

For example, the command

cc-Pmain.c

) creates a preprocessed file main. ifrom the source file main. c, and the command

cc-Eadd.c >add.i

creates a preprocessed file from the source file add. c. The output is redirected to
the file add. i.

Note that -P and -E suppress compilation of the source file. Thus, no object
file or program is created.

2.9 Error Messages

The C compiler generates a broad range of error and warning messages to help
you locate errors and potential problems in programs. In addition to compiler
messages, the cc command also displays error messages generated by the XENIX
C preprocessor and the XENIX assembler and linker programs. The following
sections describe the form and meaning of the compiler error messages and
warning messages you can encounter while using the cc command. For a
complete list of error messages, see Appendix D, "Compiler, Assembler, and
Linker Messages"

2-15

XENIX Programmer's Guide

2 .9 .1 C Compiler Messages

The C compiler displays messages about syntactical and semantic errors in a rf
source file, such as misplaced punctuation, Illegal use of operators, and \
undeclared variables. It also displays warning messages about statements
containing potential problems caused by data conversions or the mismatch of
types. Error and warning messages have the form

filename (linenumber): message

where filename is the name of the source file being compiled, linenumber is the
number of the line in the source file containing the error, and message is a self­
explanatory description of the error or warning.

If an error is severe, the compiler displays a message and terminates the
compilation. Otherwise, the compiler continues looking for other errors, but
does not create an. object file. If only warning messages are displayed, the
compiler completes compilation and creates an object file.

You can avoid many C compiler errors by using the XENIX C program checker
lint before compiling your C source files. Lint performs detailed error checking
on a source file, and provides a list of actual errors and possible problems which
may affect execution of the program. For a description of lint, see Chapter 3, '.
''Lint: AC Program Checker" \

2 .9 .2 Setting the Level of Warn in gs

You can set the level of warning messages produced by the compiler by using
the - W option. This option directs the compiler to display messages about
statements which may not be compiled as the programmer intends. Warnings
indicate potential problems rather than actual errors. The option has the form

-Wnumber

where number is a number in the range 0 to 3 giving the level of warnings. The
levels are

2-16

(

)

)

Cc: A C Compiler

Level W arninit

0 Suppresses all warning
messages. Only messages
about actual syntactical
or semantic errors are
displayed.

1 Warns about potentially
missing statements, non­
reachable statements, and
other structural problems.
Also, warns about overt
type mismatches.

2 Warns about all type
mismatches (strong
typing).

3 Warns on all automatic
data conversions.

If the option is not used, the default is level 1.

The higher option levels are especially useful in the earlier stages of program
development when messages about potential problems are most helpful. The
lower levels are best for compiling programs whose questionable statements are
intentionally designed. For example, the command

cc-W3main.c

directs the compiler to perform the highest level of checking, and produces the
greatest num her warning messages. The command

cc-WOmain.c

produces no warning messages. Note that the -w option has the same effect as
-WO.

2.10 Using Advanced Options

The cc command provides a number of advanced programming options that
give greater control over the compilation process and the final form of the
executable program. The following sections describe a number of these options.

2-17

XENIX Programmer's Guide

2 .10.1 Creating Programs From Assembly Language Source Files

You can use the cc command to create executable programs from a combination (.
of C source files and 8086/286 assembly language source files. .Assembly
language source files must contain 8086/286 instructions, as described in
Chapter7, "As: An.Assembler," and must have the extension" .s"

When assembly language source files are given, the cc command invokes the
XENIX assembler, as, to assem hie the instructions and create an object file. The
object file can then be linked with object files created by the compiler. For
example, the command

cc main.c add.s

compiles the C source file main.c, but assembles the assemble language source
file add.a. The resulting object files, main.a and add. o, are linked to form a
single program.

When using assembly language routines with C programs, you must be sure to
provide the correct interface for calls to and from C language functions. C
functions require a specific calling and return sequence. Assembly language
functions which fail to provide this interface will cause errors. See Appendix A,
"Assembly Language Interface," in the XENIX Programmer 'a Reference.

2.10.2 Using the near and far Keywords

The near and far keywords are special type modifiers that define the length
and meaning of the address of a given variable. The near keyword defines an
object with a 16 bit address. The far keyword defines an object with a full 32 bit
segmented address. Any data item or function can be accessed.

The near and far keywords override the normal address length generated by
the compiler for variables and functions. In small model programs, far lets you
access data and functions in segments outside of the program. In middle and
large model programs, near lets you access data with just an offset.

The examples in the following table illustrate the far and near keywords as
used in declarations in a small model program.

2-18

(

(

Cc: A C Compiler

U8e8 of near and far Keywords

Declaration AddressSize ltemSize

Notes:

[l] This example has no meaning; it is shown for syntactic completeness
only.

[2] This is similar to accessing data in a long model program.

[3] This example leads to trouble in most environments. The far call
changes the CS register, and makes run time support unavailable.

The following example is from a middle model compilation:

intnear foo();

This does a near call in an otherwise far (calling) program.

Since there is no type checking between items in separate source files, the near
and far keywords should be used with great care.

2 .10.3 Changing Word Order in Programs

The Microsoft C compiler automatically uses the standard 8086/286 word
order for long type values (the -M2 option). This order may cause problems
when reading data files from programs created by other C compilers. You can
change the word order for a given program by using the -MbO configuration
option. This option causes the compiler to generate all long values in reverse
word order, making the program compatible with programs created by other
XENIX compilers. Refer to the XENIX Development System Release Notes to

) see if this is the option to use for 8086 code generation.

Note that there are other portability issues which must be considered when
creating C programs intended for several different XENIX systems. For an
explanation of these issues, see Appendix B, "C Language Portability," in this

2-19

XENIX Programmer's Guide

guide.

2.10.4 Setting the Stack Size

You can set the size of the program stack by using the -F option. This option
hastheform

-Fnum

where num is the hexadecimal size (in bytes) of the program stack. The
program stack is used for storage of function parameters and automatic
variables. If the option is not used, a default stack size is set (usually either a
fixed stack of 2K bytes or variable stack). Refer to the machine(M) page in the
XENIX Reference Manual for the default stack used with a specific machine.

Note that all programs created by cc have fixed stacks. This means the stack
size cannot be increased during execution of the program. Therefore, a
sufficient stack size must be given when compiling the program.

2.10.5 Using Modules, Segments, and Groups

(

"Module" is another name for the object file created by the C compiler. Every (
module has a name, and the cc command uses this name in error messages if
problems are encountered during linking. The module name is usually the same
as the source file's name (without the" .c" or ".s" extension). You can change
this name using the -NM option. The option has the form

-NM name

where name can be any combination of letters and digits.

Changing a module's name is useful if the source file to be compiled is actually
the output of a program preprocessor and generator, such as lex or yacc.

A "segment" is a contiguous block of binary code produced by the C compiler.
Every module has two segments: a text segment containing the program
instructions, and a data segment containing the program data. Each segment
in every module has a name. This name is used by cc to define the order in
which the segments of the program will appear in memory when loaded for
execution. Text segments having the same name are loaded as a contiguous
block of code. Data segments of the same name are also loaded as contiguous
blocks.

Text and data segment names are normally created by the C compiler. These
default names depend on the memory model chosen for the program. For
example, in small model programs the text segment is named "_TEXT" and the

2-20

(

)

Cc: A C Compiler

data segment is named "_DATA". These names are the same for all small
model modules, so all segments from all modules of a small model program are
loaded as a contiguous block. In middle model programs, each text segment has
a different name. In large model programs, each text and data segment has a
different name. The default text and data segment names for middle and large
model programs are given in the section "Segment and Module Names" given
at the end of this chapter.

You can override the default names used by the C compiler (and override the
default loading order) by using the -NT and -ND options. These options set
the names of the text and data segments, in each module being compiled, to a
given name. The options have the form

-NT name

and

-ND name

where name is any combination of letters and digits. These options are useful in
middle and large model programs where there is no specific loading order. In
these programs, you can guarantee contiguous loading for two or more
segments by giving them the same name.

All text and data segments, whether or not they are loaded as contiguous
blocks, are eventually loaded into one or more physical segments of memory
All segments in a physical segment are collectively called a "group"

All programs have at least two groups: a text group and a data group. Each
group has a name. The text group is named "IGROUP" and the data group is
named "DGROUP". The C compiler automatically applies these names to the
text and data segments in each module. Thus, when the modules are eventually
linked, all text segments belong to the same group, and all data segments belong
to the same group.

Since a group corresponds to one physical segment, programs having more than
64 Kbytes each of text or data must be directed to two or more groups. (The
limit per physical segment is 64 Kbytes.)

For a complete description of the -dos option and the cross development tools
available under XENIX, see Chapter 10, "XENIX to :HS-DOS: A Cross
Development System''

2.11 Compiler Summary

The following sections summarize cc options and memory models.

2-21

XENIX Programmer's Guide

2.11.1 CcOptions

The following is a complete list of cc options:

-c Creates a linkable object file for each source file.

-C Preserves comments when preprocessing a file (only when -P or-E).

-D name I= string]
Defines name to the preprocessor. The value is string or I.

-dos Makes DOS executable files. Uses #include files in/ usr/ includedos.
Uses libraries in / usr /lib/ dos. Uses linker in/ usr /bin/ dosld.

-E Preprocesses each source file, copying the result to the standard
output.

-F num
Sets the size of the program stack.

-i Creates separate instruction and data spaces for small model
programs.

(

-I pathname (
Adds pathname to the list of directories to be searched for #include ~

2-22

files.

-K Removes stack probes from a program.

-lname
Search library name for unresolved function names.

-L Creates an assembler listing file containing assembled code and
assembly source instructions.

-Mstring
Sets the program configuration. The string may be any combination
of "s" (small model), "m" (middle model), "I" (large model). "e"
(enable far and near keywords), "2" (enables 286 code generation),
"b" (reverse word order), and "t" (sets data threshold for largest
item in a segment). The "s", "m", and "I" are mutually exclusive.

-nl num
Sets the maximum length of external symbols.

-ND name
Sets the data segment name.

Cc: A C Compiler

-NM name
Sets the module name.

-NT name
Sets the text segment name.

--0 filename
Makes filename the name of the final executable program.

-0 Invokes the object code optimizer.

-p Adds code for program profiling.

-P Preprocesses source files and sends output to files with the extension
cc. i,,

-S Creates an assembly source listing.

-V string
Copies string to the object file.

-w Suppresses compiler warning messages.

-Wnum
Sets the output level for compiler warning messages.

-X Removes the standard directories from the list of directories to be
searched for# include files.

2.11.2 Memory Models

The following table defines the number of text and data segments for the four
different program memory models. This table also lists the segment register
values.

Model Text Data. See:mentRe2isters
Small 1• 1• CS=DS=SS
Middle 1 oermodule 1 DS=SS
Lanze 1 oermodule 1 oermodule

* -- In impure-text small module programs, text and data occupy the same
segment. In pure-text programs, they occupy different segments.

2-23

XENIX Programmer's Guide

2.11.3 Pointer and Integer Sises

The following table defines the sizes (in bits) of integers(int type), and text and
data pointers, in each program memory model.

Model Data Pointer Text Pointer Inte2er
Small 16 16 16
Middle 16 32 16
Laroe 32 32 16

2.11.4 Segmenta.ndModuleNames

The following table lists the default text and data segment names, and the
default module name, for each object file.

Model Text Data Module
Small TEXT DATA filename
Middle module TEXT nATA filename
Larae module TEXT module DATA filename

2-24

(

(

Chapter 3
Lint: A C Program Checker

)

3.1 Introduction 3-1

3.2 Invoking lint 3-1

3.3 Checking for Unused Variables and Functions 3-2

3.4 Checking Local Variables 3-3

3.5 Checking for Unreachable Statements 3-4

3.6 Checking for Infinite Loops 3-4

3.7 Checking Function Return Values 3-.S

3.8 Checking for Unused Return Values 3-6

3.9 Checking Types 3-6

3.10 ChcckingTypeCasts 3-7

3.11 Checking for Nonportable Character Use 3-7

3.12 Checking for Assignment oflongs to in ts 3-7

3.13 Checking for Strange Constructions 3-8

3.14 Checking for Use of Older C Syntax 3-9

3.15 Checking Pointer Alignment 3-10

) 3.16 Checking Expression Evaluation Order 3-10

3.17 Embedding Directives 3-11

3.18 Checking For Library Compatibility 3-12

(

c

(

)

)

)

Lint: A C Program Checker

3.1 Introduction

This chapter explains how to use the C program checker lint. The program
ex a.mines C source files a.nd warns of errors or misconstructions that may ca.use
errors during compilation orthe file or during execution or the compiled file.

In pa.rticula.r, lint checks for:

Unused functions and variables

Unknown values in local variables

Unreachable statements a.nd infinite loops

Unused a.nd misused return values

Inconsistent types a.nd type casts

Mismatched types in a.ssignments

Nonporta.ble a.nd old fashioned syntax

Strange constructions

Inconsistent pointer alignment and expression evaluation order

The lint program a.nd the C compiler a.re genera.Hy used together to check and
compile C language programs. Although the C compiler compiles C language
source files, it does not perform the sophisticated type and error checking
required by ma.ny programs, though syntax is gone over. The lint program,
provides a.dditiona.l checking or source files without compiling.

3.2 Invoking lint

You ca.n invoke lintprogra.m by typing

lint f option J .•• filename ... lib ...

where option is a command option tha.t defines how the checker should operate,
filename is the name or the C language source file to be checked, a.nd lib is the
name of a. library to check. You can give more tha.n one option, filename, or
library na.me in the command. Ir you give two or more filenames, lint a.ssumes
that the files belong to the same program a.nd checks the files accordingly. For
example, the command

lint main.c a.dd.c

treats main.c a.nd add.c as two parts of a complete program.

3-1

XENIX Programmer's Guide

IC lint discovers errors or inconsistencies in a source file, it produces messages
describing the problem. The message has the form

filename (num): dt1cription

where filename is the name orthe source file containing the problem, num is the
number or the line in the source containing the problem, and deecription is a
description of the problem. For example, the message

main.c (3): warning: x unused in function main

shows that the variable "x", defined in line three of the source file main.c, is not
used anywhere in the file.

3.3 Checking for Unused Variables and Functions

The lint program checks (or unused variables and functions by seeing if each
declared variable and function is used in at least once in the source file. The
program considers a variable or (unction used if the name appears in at least
one statement. It is not considered used if it only appears on the left side or on
assignment. For example, in the following program fragment

ma.in()
{

int x,y,z;

x=I; y=2; z=x+y;

the variables "x" and "y" a.re considered used, but variable "z" is not.

Unused variables and (unctions orten occur during the development or large
programs. It is not uncommon for a programmer to remove a.II references to a
variable or function from a source file but forget to remove its declaration.
Such unused variables and (unctions rarely ca.use working programs to rail, but
do make programs larger, harder to understand and change. Checking ror
unused variables and functions can also help you find variables or (unctions
that you intended to used but accidentally have left out orthe program.

Note that the lint program does not report a variable or function unused if it is
explicitly declared with the extern storage class. Such a variable or function is
assumed to be used in another source file.

You can direct lint to ignore a.II the extern a.I declarations in a. source file by (
using the -x (for "external") option. The option ca.uses the program checker to (
skip any declaration that begins with the extern storage class.

The option is typically used to save time when checking a. program, especially if
all external declarations are known to be valid.

3-2

)

)

)

Lint: A C Program Checker

Some programming styles require functions that perform closely related tasks
to have the same number and type of arguments regardless of whether or not
these arguments are used. Under normal operation, lint reports any argument
not used as an unused variable, but you can direct lint to ignore unused
arguments by using the -v option. The -v option causes lint to ignore all
unused function arguments except for those declared with register storage
class. The program considers unused arguments of this class to be a
preventable waste ofthe register resources of the computer.

You can direct lint to ignore all unused variables and functions by using the -u
(for "unused") option. This option prevents lint from reporting variables and
functions it considers unused.

This option is typically used when checking a source file that contains just a
portion of a large program. Such source files usually contain declarations of
variables and functions that are intended to be used in other source files and are
not explicitly used within the file. Since lint can only check the given file, it
assumes that such variables or functions are unused and reports them as such.

3.4 Checking Local Variables

The lint program checks all local variables to see that they are set to a value
before being used. Since local variables have either automatic or register
storage class, their values at the start of the program or function cannot be
known. Using such a variable before assigning a value to it is an error.

The program checks the local variables by searching for the first assignment in
which the variable receives a value and the first statement or expression in
which the variable is used. Ir the first assignment appears later than the first
use, lint considers the variable inappropriately used. For example, in the
program fragment

char c;

if (c != EOT)
c = getchar();

lint warns that the the variable "c" is used before it is assigned.

Ir the variable is used in the same statement in which it is assigned for the first
time, lint determines the order of evaluation of the statement and displays an
appropriate message. For example, in the program fragment

int i,total;

scanf("%d", &i);
total = total + i;

lint warns that the variable "total" is used before it is set since it appears on the

3-3

XENIX Programmer's Guide

right side of the same statement that assigns its first value.

3.6 Checking for Unreachable Statements

The lint program cheeks for unreachable statements, that is, for unlabeled
statements that immediately follow a goto, break, continue, or return
statement. During execution or a program, the unreachable statements never
receive execution control and are therefore considered wasteful. For example,
in the program fragment

int x,y;

return (x+y);
exit (l);

the function call ezit after the return statement is unreachable.

Unreachable statements are common when developing programs containing
large case constructions or loops containing break and continue statements.

(

During normal operation, lint reports all unreachable break statements.
Unreachable break statements are relatively common (some programs created
by the yacc and lez programs contain hundreds), so it may be desirable to
suppress these reports. You can direct lint to suppress the reports by using the (
-boption.

Note that lint assumes that all functions eventually return control, so it does
not report as unreachable any statement that follows a function that takes
control and never returns it. For example:

exit (1);
return;

the call to ezit causes the return statement to become an unreachable
statement, but lint does not report it as such.

3.6 Checking for Infinite Loops

The lint program checks for infinite loops and for loops which are never
executed. For example, the statement

while (1) { }

and

for (;;) {}

are both considered infinite loops. While the statements

3-4

(

)

)

)

Lint: A C Program Checker

while (0) { }

or

for (O;O;) { }

are never executed.

It is relatively common for valid programs to have such loops, but they are
generally considered errors.

3.7 Checking Function Return Values

The lint program checks that a function returns a meaningful value if
necessary. Some functions return values which are never used; some programs
incorrectly use function values that have never been returned. Lint addresses
these problems in a number or ways.

Within a function definition, the appearance of both

return (expr);

and

return;

statements is cause for alarm. In this case, lint produces the following error
message:

function name contains return(e) and return

It is difficult to detect when a function return is implied by the flow of control
reaching the end of the given function. This is demonstrated with a simple
example:

r(a)
{

}

if (a)

g ();
return (3);

Note that if the variable "a" tests false, then/will call the function gand then
return with no defined return value. This will trigger a report from lint. Ir g,
like ezit, never returns, the message will still be produced when in fact nothing
is wrong. In practice, potentially serious bugs can be discovered with this
feature. It also accounts for a some of the noise messages produced by lint.

3-5

XENIX Programmer's Guide

3.8 Checking for Unused Return Values

The lint program checks for cases where a. function returns a value, but the
value is usually ignored. Lint considers functions that return unused values to (
be inefficient, and functions that return rarely used values to be a. result of bad
programming style.

Lint also checks for cases where a. function does not return a. value but the value
is used anyway. This is considered a.serious error.

3.9 Checking Types

Lint enforces the type checking rules of C more strictly than the C compiler.
The additional checking occurs in four major areas:

1. Across certain binary operators and implied assignments

2. At the structure selection operators

3. Between the definition and uses of functions

4. In the use of enumerations

There are an umber of opera.tors that have an implied balancing between types
of operands. The assignment, conditional, and relational operators have this
property. The argument of a return statement, and expressions used in
initialization also suffer similar conversions. In these operations, char, short,
int, long, unsigned, float, and double types may be freely intermixed. The
types of pointers must agree exactly, except that arrays ofx's can be intermixed
with pointers to x's.

The type checking rules also require that, in structure references, the left
operand of a pointer arrow symbol (->) be a pointer to a structure, the left
operand or a period (.)be a structure, and the right operand of these operators
be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int,
and unsigned. Pointers can also be matched with the associated arrays. Aside
from these relaxations in type checking, all actual arguments must agree in
type with their declared counterparts.

For enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations, and that the only
operations applied a.re assignment(=), initialization, equals(==), and not­
equals(!=). Enumerations may also be function arguments and return values.

3-6

(

(

)

)

Lint: A C Program Checker

3.10 Checking Type Casts

The type ca.st feature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment

p = 1;

where "p" is a character pointer. Lint reports this as suspect. But consider the
assignment

p = (char •)1 ;

in which a ca.st has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. On the other hand, if this code is moved to another
machine, it should be looked at carefully. The -c option controls the printing
of comments about casts. When -c is in effect, casts are not checked and all
legal casts are passed without comment, no matter how strange the type mixing
seems to be.

3.11 Checking for Nonportable Character Use

Lint flags certain comparisons and assignments as illegal or nonportable. For
example, the fragment

char c;

if((c = getchar()) < 0) ...

works on some machines, but fails on machines where characters always take
on positive values. The solution is to declare "c" an integer, since getchar is
actually returning integer values. In any case, lint issues the message:

nonportable character comparison

A similar issue arises with bitfields. When assignments of constant values are
made to bit.fields, the field may be too small to hold the value. This is especially
true where on some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a 2-bit field declared of
type int cannot hold the value 3, the problem disappears if the bitfield is
declared to have type unsigned.

3.12 Checking for Assignment of longs to ints

Bugs may arise from the assignment of a long to an int, because of a loss in

3-7

XENIX Programmer's Guide

accuracy in the process. This may happen in programs that have been
incompletely converted by changing type definitions with typedef. When a
typedef variable is changed rrom int to long, the program can stop working
because some intermediate results ma.y be assigned to integer values, losing
accuracy. Since there a.re a number or legitimate reasons ror assigning longs to
integers, you may wish to suppress detection or these assignments by using the
-a option.

3.13 Checking for Strange Constructions

Several perrectly legal, but somewhat strange, constructions are Hagged by
lint. The generated messages encourage better code quality, clearer style, and
ma.y even point out hugs. For example, in the statement

•p++;

the star (*) does nothing and lint prints:

null effect

The program rra.gment

unsigned x;
ir (x < O) .••

is also strange since the test will never succeed. Similarly, the test

if (x > 0) •.•

is equivalent to

ii'(x , 0)

which may not he the intended action. In these cases, liatprints the memage:

degenerate unsigned comparison

Iryou use

ir(1 , 0) ...

then· tint reports

constant in conditional context

since the comparison or 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence. Bugs that
arise from misunderstandings about the precedence of operators can he

3-8

(

(

Lint: A C Program Checker

accentuated by spacing and rormatting, making such bugs extremely hard to
find. For example, the statements

ir(x&077 == o) ...

) or

x<<2 + 40

probably do not do what is intended. The best solution is to parenthesize such
expressions. Lint encourages this by printing an appropriate message.

Finally, lint checks variables that are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal, but is considered bad style,
usually unnecessary, and rrequently a bug.

If you do not wish these heuristic checks, you can suppress them by using the -h
option.

3.14 Checking for Use of Older C Syntax

Lint checks ror older C constructions. These rail into two classes: assignment
operators and initialization .

. J The older forms or assignment operators (e.g., =+, --, ...) can cause
ambiguous expressions, such as

)

a =-1;

which could be taken aseither

a=- 1;

or

a = -1;

The situation is especially perplexing if this kind or ambiguity arises as the
result of a macro substitution. The newer, and prererred operators (e.g.,+=,
-=)have no such ambiguities. To encourage the abandonment of the older
forms, lint checks ror occurrences or these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1 ;

to initialize "x" to 1. This causes syntactic difficulties. For example

3-9

XENIX Programmer's Guide

int x (-1) ;

looks somewhat like the beginning or a run ct ion declaration

int x (y) { ...

and the compiler must read past "x" to determine what the declaration really
i~. The problem is eYen more perplexing when the initializer involves a macro.
The current C syntax places an equal sign between the variable and the
initializer:

int x = -1;

This rorm is rree or any possible syntactic ambiguity.

3.15 Checking Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal
on others, due to alignment restrictions. For example, on some ma.chines it is
reasonable to assign integer point.ers to double pointers, since double precision
values may begin on any integer boundary. On other machines, however,
double precision values must begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where pointers are assigned
to other pointers, and such alignment problems might arise. The message

possible pointer alignment problem

results rrom this situation.

3.16 Checking Expression Evaluation Order

In complicated expressions, the best order in which to evaluate subexpressions
may be highly ma.chine-dependent. For example, on machines in which the
stack runs up, runction arguments will probably be best evaluated rrom right
to left; on machines with a stack running down, left to right is probably best.
Function calls embedded as arguments of other runctions may or may not be
treated in the same wa.y as ordinary arguments. Similar issues a.rise with other
operators that have side effects, such as the assignment operators and the
increment and decrement operators.

In order that the efficiency of C on a particular ma.chine not be unduly
compromised, the C language leaves the order or evaluation of complicated
expressions up to the compiler, and various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result is explicitly undefined.

3-10

(

(

)

)

Lint: A C Program Checker

Lint checks for the important special case where a simple scalar variable is
affected. For example, the statement

a.Iii = bli++I ;

will draw the comment:

warning: i evaluation order undefined

3.17 Embedding Directives

There are occasions when the programmer is smarter than lint. There may be
valid reasons for illegal type casts, functions with a variable number or
arguments, and other constructions that lint flags. Moreover, as specified in
the above sections, the flow of control information produced by lint often has
blind spots, causing occasional spurious messages about perfectly reasonable
programs. Some way or communicating with lint, typically to turn off its
output, is desirable. Therefore, a number of words are recognized by lint when
they are embedded in comments in a C source file. These words are called
directives. Lint directives are invisible to the compiler.

The first directive discussed concerns flow of control information. Ir a
particular place in the program cannot be reached, this can be asserted at the
appropriate spot in the program with the directive:

/• NOTREACHED •/

Sim ii arly, if you desire to turn off strict type checking for the next expression,
use the directive:

/• NOSTRICT •/

The situation reverts to the previous def a.ult after the next expression. The -v
option can be turned on for one function with the directive:

/• ARGSUSED •/

Comments about a variable number of arguments in calls to a function can be
turned off by preceding the function definition with the directive:

/• VARARGS •/

In some cases, it is desirable to check the first several arguments, and leave the
later arguments unchecked. Do this by following the V ARARGS keyword
immediately with a digit giving the number or arguments that should be
checked. Thus:

3-11

XENIX Programmer's Guide

/• VARARGS2 •/

causes only the first two arguments to be checked. Finally, the directive

/• LINTLIBRARY •/

a.t the head or a file identifies this file 88 a library deelaration file, discussed in
the next section.

3.18 Checking For Library Compatibility

Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This testing is
done by accessing library description files whose names a.re constructed rrom
the library directives. These files all begin with the directive

/• LINTLIBRARY •/

which is rollowed by a series of dummy function definitions. The critical parts
or these definitions are the declaration or the function return type, whether the

(

dummy runction returns a value, and the number a.nd types or arguments to (
the runction. The "VARARGS" and "ARGSUSED" directives can be used to
specify features or the library runctions.

Lint library files are processed like ordinary source files. The only difference is
that functions that are defined in a. library file, but are not used in a source file,
draw no comments. Lint does not simulate a rull library search algorithm, a.nd
checks to see ir the source files contain redefinitions or library routines.

By default, lint checks the programs it is given against a standard library file,
which contains descriptions orthe programs that a.re normally loaded when a. C
program is run. When the -p option is in effect, the portable library file is
checked containing descriptions or the standard 1/0 library routines which a.re
expected to be portable a.cross various ma.chines. The -n option can be used to
suppress all library checking.

Lint library files a.re named "/usr/lib/II•". The programmer may wish to
examine the lint libraries directly to see what lint thinks a function should
passed and return. Printed out, lint libraries also make satisfactory skeleton
quick-reference cards.

3-12

(

Chapter 4
Make: A Program Maintainer

)

4.1 Introduction 4-1

4.2 Creating a Makefile 4-1

4.3 Invoking Make 4-3

4.4 Using Pseudo-Target Names 4-4

4.5 Using Macros 4-5

4.6 Using Shell Environment Variables 4-8

4.7 Using the Built-In Rules 4-9

:) 4.8 Changing the Built-in Rules 4-10

4.9 Using Libraries 4-12

4.10 Troubleshooting 4-13

4.11 Using Make: An Example 4-13

)

(

(

('

)

Make: A Program Maintainer

4.1 Introduction

The make program provides an easy way to automate the creation or large
programs. Make reads commands rrom a user-defined "makefile" that lists
the files to be created, the commands that create them, and the files rrom which
they are created. When you direct make to create a program, it verifies that
each file on which the program depends is up to date, then creates the program
by executing the given commands. Ir a file is not up to date, make updates it
before creating the program. Make updates a program by executing explicitly
given commands, or one or the many built-in commands.

This chapter explains how to use make to automate medium-sized
programming projects. It explains how to create makefiles ror each project, and
how to invoke make ror creating programs and updating files. For more
details about the program, see make(CP) in the XENIX Reference Manual.

4.2 Creating a Makefile

A makefile contains one or more lines or text called dependency lines. A
dependency line shows how a given file depends on other files and what
commands are required to bring a file up to date. A dependency line has the
form

target ... : (dependent ...) (; command ..•)

where target is the filename or the file to be updated, dependent is the filename
of the file on which the target depends, and command is the XENIX command
needed to create the target file. Ea.ch dependency line must have at least one
command associated with it, even ir it is only the null command{;).

You may give more than one target filename or dependent filename ir desired.
Each filename must be separated from the next by at least one space. The
target filenames must be separated rrom the dependent filenames by a colon (:).
Filenames must be spelled as defined by the XENIX system. Shell
metachara.cters, such as star (•)and question mark{?}, can also be used.

You may give a sequence or commands on the same line as the target and
dependent filenames, ir you precede ea.ch command with a semicolon(;). You
can give additional commands on rollowing lines by beginning ea.ch line with a
tab character. Commands must be given exactly as they would appear on a
shell command line. The at sign (@)may be placed in front of a command to
prevent make from displaying the command before executing it. Shell
commands, such as cd(C), must appear on single lines; they must not contain
the backslash(\) and newline character combination.

You may add a comment to a makefile by starting the comment with a number
sign (#) and ending it with a newline character. All characters after the
number sign a.re ignored. Comments may be place at the end of a dependency

4-1

XENIX Programmer's Guide

line iC desired. IC a command contains a number sign, it must be enclosed in
double quotation marks(").

Ir a dependency line is too long, you can continue it by typing a backslash (\)
and a newline character.

The makefile should be kept in the same directory as the given source files. For
convenience, the filenames makefile, Makeflle, •.ma/cefile, and •.Malcefile
are provided as default filenames. These names are used by make if no explicit
name is given at invocation. You may use one ofthese names for your makefile,
or choose one of your own. Ir the filename begins with the •· prefix, make
assumes that it is an SCCS file and invokes the appropriate SCCS command to
retrieve the lastest version or the file.

To illustrate dependency lines, consider the following example. A program
named prog is made by linking three object files, z.o, 1.0, and z.o. These object
files are created by compiling the C language source files z.c, J.C, and z.c.
Furthermore, the files z.c and y. c contain the line

#include "deCs"

This means that prog depends on the three object files, the object files depend
on the C source files, and two or the source files depend on the include file tle/1.
You can represent these relationships in a makefile with the following lines.

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

x.o: x.c de Cs
cc -c x.c

y.o: y.c deCs
cc -c y.c

z.o: z.c
cc -c z.c

In the first dependency line, prog is the target file and z.o, 1.0, and z.o are its
dependents. The command sequence

cc x.o y.o z.o -o prog

on the next line tells how to create prog if it is out or date. The program is out or
date iC any one of its dependents has been modified since prog was last created.

The second, third, and Courth dependency lines have the same Corm, with the
z.o, y.o, and z.o files as targets and z.c, g.c, z.c, and tie/• files as dependents.

(

Each dependency line has one command sequence which defines how to update (
the given target file. ~

4-2

)

)

Make: A Program Maintainer

4.3 Invoking Make

Once you have a. makefile a.nd wish to update a.nd modify one or more target
files in the file, you ca.n invoke make by typing its name a.nd optional
arguments. The invocation ha.s the form

make I option J ... I mac def J ... I target J ...

where option is a. program option used to modify program operation, mac de/is
a. macro definition used to give a. macro a. value or meaning, and target is the
filename orthe file to be updated. It must correspond to one of the ta.rgetna.mes
in the makefile. All arguments a.re optional. Ir you give more than one
argument, you must separate them with spaces.

You ca.n direct make to update the first target file in the makefile by typing
just the program name. In this case, make searches for the files makefile,
Makefile, 1.makefile, a.nd 1.Makefile in the current directory, and uses the
first one it finds a.s the makefile. For example, assume that the current makefile
contains the dependency lines given in the la.st section. Then the command

make

compares the current date or the prog program with the current date each or
the object files z.o, y.o, and z.o. It recreates prog if any changes have been
made to any object file since prog wa.s la.st created. It also compares the current
dates or the object files with the dates or the four source files z.c, 71.c, z.c, or
de/1, and recreates the object files if the source files have changed. It does this
before recreating prog so that the recreated object files can be used to recreate
prog. Ir none of the source or object files have been altered since the last time
prog wa.s created, make announces this fact and stops. No files are changed.

You ca.n direct make to update a given target file by giving the filename of the
target. For example,

make x.o

ca.uses make to recompile the z. o file, if the z.c or l.e/1 files have changed since
the object file was last created. Similarly, the command

make x.o z.o

causes make to recompile z.o and z.o if the corresponding dependents have
been modified. Make processes target names from the command line in a left to

) right order.

4-3

XENIX Programmer's Guide

You can speciry the name or the makefile you wish make to use by giving the -f
option in the invocation. The option has the form

-r filen4me

where filen4me is the name or the makefile. You must supply a full pathname if
the file is not in the current directory. For example, the command

make -r ma.keprog

reads the dependency lines or the makefile named makeprog round in the
current directory. You can direct make to read dependency lines from the
standard input by giving"-" as the filen4me. Make reads the standard input
until the end-of-file character is encountered.

You may use the program options to modify the operation or the make
program. The rollowing list describes some orthe options.

-p Prints the complete set of macro definitions and dependency lines
in a makefile.

-1 Ignores errors returned by XENIX commands.

-k Abandons work on the current entry, but continues on other
branches that do not depend on that entry.

-s Executes commands without displaying them.

-r Ignores the built-in rules.

-n Displays commands but does not execute them. Make even
displays lines beginning with the at sign (0).

-e Ignores any macro definitions that attempt to assign new values to
the shell's environment variables.

-t Changes the modification date of each target file without recreating
the files.

Note that make executes each command in the makefile by passing it to a
separate invocation or a shell. Because of this, care must be taken with certain
commands (e.g., cd and shell control commands) that have meaning only
within a single shell process; the results are forgotten before the next line is
executed. Ir an error occurs, make normally stops the command.

4.4 Using Pseudo-Target Names

It is orten useruJ to include dependency lines that have pseud~ta.rget names,
i.e., names for which no files actually exist or are produced. Pseud~target

4-4

(

(

Make: A Program Maintainer

names allow make to perrorm tasks not directly connected with the creation of
a program, such as deleting old files or printing copies of source files. For
example, the following dependency line removes old copies of the given object
files when the pseudo-target name "cleanup" is given in the invocation or
make.

cleanup:
rm x.o y.o z.o

Since no file exists for a given pseudo-target name, the target is always assumed
to be out of date. Thus the associated command is always executed.

Make also has built-in pseudo-target names that modiry its operation. The
pseudo-target name ".IGNORE" causes make to ignore errors during
execution or commands, allowing make to continue after an error. This is the
same as the -i option. (Make also ignores errors ror a given command ir the
command string begins with a hyphen(-).)

The pseudo-target name ".DEFAULT" defines the commands to be executed
either when no built-in rule or user-defined dependency line exists ror the given
target. You may give any number of commands with this name. If
".DEFAULT" is not used and an undefined target is given, make prints a
message and stops.

) The pseudo-target name ".PRECIOUS" prevents dependents or the current
target from being deleted when make is terminated using the INTERRUPT or
QUIT key, and the pseudo-target name" .SILENT" has the same effect as the -s
option.

)

4.5 Using Macros

An important feature or a makefile is that it can contain macros. A macro is a
short name that represents a filename or command option. The macros can be
defined when you invoke make, or in the makefile itself.

A macro definition is a line containing a name, an equal sign(-), and a value.
The equal sign must not be preceded by a colon or a tab. The name (string or
letters and digits) to the left or the equal sign (trailing blanks and tabs are
stripped) is assigned the string or characters following the equal sign (leading
blanks and tabs are stripped.) The following are valid macro definitions:

2 = xyz
abc = -II -ly
LIBES=

The last definition assigns "LIBES" the null string. A macro that is never
explicitly defined has the null string as its value.

4-5

XENIX Programmer's Guide

A macro is invoked by preceding the macro name with a dollar sign; macro
names longer than one character must be placed in parentheses. The name or
the macro is either the single character alter the dollar sign or a name inside
parentheses. The following are valid macro invocations.

$(CFLAGS)
$2
S(xy)
$Z
S(Z)

The last two invocations are identical.

Macros are typically used as placeholders for values that may change rrom time
to time. For example, the rollowing malte&le uses a macro ror the names or
object files to be link and one ror thenamesorthe library.

OBJECTS x.o y .o z.o
LIDES =-Un
prog: $(OBJECTS)

cc $(OBJECTS} S(LIDES) -o prog

Ir this makefile is invoked with the command

make

it will load the three object files with the lez h"brary specified with the -lln
option.

You ma.y in elude a macro definition in a command line. A macro definition in a
command line has the same rorm as a macro defini&ion in a makefile. H spaces
are to be used in the definition, double quotation marbmust be used to enclose
the definition. Macros in a command line override corresponding de&ni&ions
found in the makefile. For example, the command

make "LIDES==-lln -Im"

loads assigns the library options-Un and-Im to "LIBES''.

You can modify all or part or the value generated from a macro invocation
without changing the macro itself by using the "substitution sequence". The
sequence has the form

name : 6t1 =[1t2)

where name is the name or the macro whose value is to be modified, 1t1 is the
character or characters to be modified, and it.tis the character or characters to
replace the modified characters. Ir 1tt is not. given, nl is replaced by a null
character.

4-6

(

(

(

)

)

)

Make: A Program Maintainer

The substitution sequence is typically used to allow user-defined
metacharacters in a makefile. For example, suppose that" .x" is to be used as a
metacharacter ror a prefix and suppose that a makefile contains the definition

FILES = progl.x prog2.x prog3.x

Then the macro in-vocation

$(FILES : .x=.o)

generates the value

progl.o prog2.o prog3.o

The actual value or "FILES" remains unchanged.

Make has five built-in macros that can be used when writing dependency lines.
The rollowing is a list or these macros.

$• Contains the name or the current. target with the suffix removed.

$@

Thus ir the current target is prog. o, $• contains prog. It may be
used in dependency lines that redefine the built-in rules.

Contains the rull pathname or the current target. It may be used in
dependency lines with user-defined target names.

$ < Contains the filename of the dependent that is more recent than the
given target. It may be used in dependency lines with built-in target
names or the .DEFAULT pseudo-target name.

$? Contains the filenames or the dependents that are more recent than
the given target. It may be used in dependency lines with user­
defined target names.

$% Contains the filename or a library member. It may be used with
target library names (see the section "Using Libraries" later in this
chapter). In this case,$@ contains the name or the library and$%
contains the name orthe library member.

You can change the meaning or a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D .ijescriptor contains the
name or the directory containing the given file. Ir the file is in the current
directory, the macro contains".". A macro with the F descriptor contains the
name or the given file with the directory name part removed. The D and F
descriptor must not be used with the$? macro.

4-7

XENIX Programmer's Guide

4.6 Using Shell Environment Variables

Make provides access to current values of the shell's environment variables
such as "HOME", "PATH", and "LOGIN". Make automatically assigns the
value of each shell variable in your environment to a macro of the same name.
You can access a variable's value in the same way that you access the value of
explicitly defined macros. For example, in the following dependency line,
"$(HO:ME)" has the same value as the user's "HOME" variable.

prog:
cc $(HOME)/x.o $(HOME)/y.o /usr/pub/z.o

Make assigns the shell variable values after it assigns values to the built-in
macros, but before it assigns values to user-specified macros. Thus, you can
override the value of a shell variable by explicitly assigning a value to the
corresponding macro. For example, the following macro definition causes
make to ignore the current value of the "HOME" variable and use /urr/pub
instead.

HOME = /usr /pub

IC a makefile contains macro definitions that override the current values of the
shell variables, you can direct make to ignore these definitions by using the -e
option.

Make has two shell variables, "MAKE" and "MAKEFLAGS", that
correspond to two special-purpose macros.

The "MAKE" macro provides a way to override the -n option and execute
selected commands in a makefile. When "MAKE" is used in a command, make
will always execute that command, even if -n has been given in the invocation.
The variable may be set to any value or command sequence.

The "MAKEFLAGS" macro contains one or more make options, and can be
used in invocations of make Crom within a makefile. You may assign any
make options to "MAKEFLAGS" except-r, -p, and-d. IC you do not assign a
value to the macro, make automatically assigns the current options to it, i.e.,
the options given in the current invocation.

(

The "MAKE" and "MAKEFLAGS" variables, together with the -n option,
are typically used to debug makefiles that generate entire software systems.
For example, in the following makefile, setting "MAKE" to "make" and
invoking this file with the -n options displays all the commands used to
generate the programs progl, prog2, and prog9 without actually executing
them. (

4-8

)

)

)

Make: A Program Maintainer

system : progl prog2 prog3
@echo System complete.

progl : progl.c
$(MAKE) $(MAKEFLAGS) progl

prog2 : prog2.c
$(MAKE) $(MAKE1''LAGS) prog2

prog3 : prog3.c
$(MAKE) $(MAKEFLAGS) prog3

4.7 Using the Built-In Rules

Make provides a set or built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile, and create
up-to-date versions or these files if necessary. The built-in rules are identical to
user-defined dependency lines except that they use the suffix or the filename as
the target or dependent instead or the filename itself. For example, make
automatically assumes that all files with the suffix. o have dependent files with
the suffixes .c and .B.

When no explicit dependency line for a given file is given in a makefile, make
automatically checks the default dependents or the file. It then forms the name
or the dependents by removing the suffix or the given file and appending the
predefined dependent suffixes. Ir the given file is out or date with respect to
these default dependents, make searches for a built-in rule that defines how to
create an up-to-date version of the file, then executes it. There are built-in rules
for the following files .

. o Object file

.c C source file

. r Ratfor source file

.f Fortran source file

.B Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.l Lex source grammar

For example, if the file z. o is needed and there is an z.c in the description or
directory, it is compiled. Ir there is also an z.l, that grammar would be run
through lez before compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They
provide the rules for creating common files from typical dependents.
Reconsider the example given in the section "Creating a Makefile". In this
example, the program prog depended on three object files z.o, y.o, and z.o.
These files in turn depended on the C language source files z.c, y.c, and z.c.

4-D

XENIX Programmer's Guide

The files :z.c and 11.c also depended on the include file defs. In the original
example ea.ch dependency and corresponding command sequence was explicitly
given. Many of these dependency lines were unnecessary, since the built-in
rules could have been used instead. The following is all that is needed to show
the relationships between these files. (

prog: x.o y.o z.o
cc x.o y.o z.o -o prog

x.o y .o: defs

In this makefile, prog depends on three object files, and an explicit command is
given showing how to update prog. However, the second line merely shows that
two objects files depend on the include file dtfs. No explicit command sequence
is given on how to update these files if necessary. Instead, make uses the built­
in rules to locate the desired C source files, compile these files, and create the
necessary object files.

4.8 Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these lines or
by redefining the commands associated with the rules. You can display a
complete list of the built-in rules and the macros used in the rules by typing

make -fp - 2>/dev/null </dev/null

The rules and macros are displayed at the standard output.

The macros of the built-in dependency lines define the names and options of the
compilers, program generators, and other programs invoked by the built-in
commands. Make automatically assigns a default value to these macros when
you start the program. You can change the values by redefining the macro in
your makefile. For example, the following built-in rule contains three macros,
"CC", "CFLAGS", and "LOADLIBES" .

. c:
$(CC) $(CFLAGS) $< $(LOADLIBES) -o $@

You can redefine any of these macros by placing the appropriate macro
definition at the beginning or the makefile.

You can redefine the action of a built-in rule by giving a new rule in your
makefile. A built-in rule has the form

suffi:z-rule :
command

where euffi:z-rule is a combination of suffixes showing the relationship of the
implied target and dependent, and command is the XENIX command required

4-10

(

(

)

Make: A Program Maintainer

to carry out the rule. IC more than one command is needed, they are given on
separate lines.

The new rule must begin with an appropriate euffiz-rule. The available 1uffiz­
rule1 are

.c .c
.sh .sh
.c.o .c.o
.c .c .s.o
.s .0 .y.o
.y.o .l.o
.l.o .y.c
.y .c .l.c
.c.a .c .a
.s .a .h.h

A tilde () indicates an secs file. A single suffix indicates a rule that makes an
executable file from the given file. For example, the suffix rule ".c" is for the
built-in rule that creates an executable file from a. C source file. A pair or
suffixes indicates a. rule that makes one file from the other. For example," .c.o"
is ror the rule that creates an object file (.o) file from a corresponding C source
file (. c).

Any commands in the rule may use the built-in macros provided by make. For
example, the following dependency line redefines the action of the. c.o rule .

. c.o:
cc68 $< -c $•.o

Ir necessary, you can also create new euffiz-rules by adding a. list of new suffixes
to a. makefile with" .SUFFIXES". This pseudo-target name defines the suffixes
that may be used to make 11Ujfiz-ruler for the built-in rules. The line has the
form

.SUFFIXES: suffiz ...

where suffiz is usually a lowercase letter preceded by a. dot(.). Ir more than one
suffix is given, you must use spaces to separate them.

The order or the suffixes is significant. Ea.ch suffix is a. dependent of the suffixes
preceding it. For example, the suffix list

.SUFFIXES: .o .c .y .I .s

causes prog.c to be a. dependent of prog. o, and prog.11 to be a. dependent of
prog.c.

You can create new euffiz-rules by combining dependent suff1.Xes with the suffix
of the intended target. The dependent suffix must appear first.

4-11

XENIX Programmer's Guide

Ir a ".SUFFIXES" list appears more than once in a makefile, the suffixes are
combined into a single list. If a ".SlWFIXES" is given that has no list, all
suffixes are ignored.

4.9 Using Libraries

You can direct make to use a file contained in an archive library as a target or
dependent. To do this you must explicitly name the file you wish to access by
using a library name. A library name has the rorm

lib(member-name)

where lib is the name or the library containing the file, and member-name is the
name or the file. For example, the library name

libtemp.a(print.o)

rerers to the object file print. o in the archive library libtemp. a.

You can create your own built-in rules for archive libraries by adding the . a
suffix to the suffix list, and creating new suffix combinations. For example, the
combination ".c.a" may be used for a rule that defines how to create a library
member from a C source file. Note that the dependent suffix in the new
combination must be different than the suffix of the ultimate file. For example,
the combination" .c.a" can be used for a rule that creates .o files, but not for one
that creates . c files.

The most common use or the library naming convention is to create a makefile
that automatically maintains an archive library. For example, the following
dependency lines define the commands required to create a library, named lib,
containing up to dateversionsofthe filesfile1.o, fileB. o, andfile9.o.

lib:

.c.a:

lib(filel.o) lib(file2.o) lib(file3.o)
@echo lib is now up to date

$(CC) -c S(CFLAGS) S<
ar rv S@ $•.o
rm -f S•.o

The .c. a rule shows how to redefine a built-in rule for a library. In the following
example, the built-in rule is disabled, allowing the first dependency to create
the library.

4-12

(

)

)

Make: A Program Maintainer

lib:

.c.a:;

lib(filel.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm$?
@echo lib is now up to date

In this example, a substitution sequence is used to change the value or the "$?"
macro rrom the names of the object files "filel.o", "file2.o", and "file3.o" to
"filel.c", "file2.c", and "file3.c".

4.10 Troubleshooting

Most difficulties in using make arise from make's specific meaning of
dependency. Ir the file z. c has the line

#include n defs"

then the object file z.o depends on de/1; the source file z.c does not. (Ir de/Bis
changed, it is not necessary to do anything to the file z.c, while it is necessary to
recreate z.o.)

To determine which commands make will execute, without actually executing
them, use the -n option. For example, the command

make -n

prints out the commands make would normally execute without actually
executing them.

The debugging option -d causes make to print out a very detailed description
or what it is doing, including the file times. The output is verbose, and
recommended only as a last resort.

Ir a change to a file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the-t (touch) option can save a lot of time. Instead
of issuing a large number of superfluous recompilations, make updates the
modification times on the affected file. Thus, the command

make -ts

which stands for touch silently, causes the relevant files to appear up to date.

4.11 Using Make: An Example

As an example or the use of make, examine the makefile, given in Figure 4-1,
used to maintain the make itself. The code for make is spread over a number

4-13

XENIX Programmer's Guide

of C source files and a yacc grammar.

Make usually prints out each command before issuing it. The following output
results from typing the simple command

make

in a directory containing only the source and makefile:

cc -c vers.c
cc -c ma.in.c
cc -c dona.me.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
ya.cc gram.y
mv y.tab.c gram.c
cc -c gra.m.c
cc vers.o ma.in.a ... dosys.o gra.m.o -o make
13188+3348+3044 = 19580b = 046174b

Although none or the source files or grammars were mentioned by name in the
makefile, make found them by using its suffix rules a.nd issued the needed
commands. The string of digits results from the size make command.

The last rew targets in the makefile a.re useful maintenance sequences. The
print target prints only the files that have been changed since the last make
print command. A zero-length file, print, is maintained to keep track or the
time or the printing; the$! ma.cro in the command line then picks up only the
names or the files changed since print wa.s touched. The printed output can be
sent to a different printer or to a file by changing the definition of the P ma.cro.

4-14

(

(

(

)

)

Make: A Program Maintainer

Figure 4-1. Makefile Contents

Description file for the make command

Macro definitions below
p =!pr
FILES= Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\

gram.y lex.c
OBJECTS = vers.o main.o ... dosys.o gram.o
LIB ES=
LINT = lint -p
CFLAGS = -0

#targets: dependents
#<TAB>actions

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm •.o gram.c
-du

install:
@size make /usr /bin/make
cp make /usr /bin/make ; rm make

print: $(FILES) # print recently changed files
pr$? I $P

test:

touch print

make -dp I grep -v TIME > lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c vers.c gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a $(FILES)

4-15

(

(" \.

(:

)

)

Chapter 5
SCCS: A Source

Control System Code

5.1 Introduction 5-1

5.2 Basic Information 5-1
5.2.l Files and Directories 5-1
5.2.2 Deltas and SIDs 5-2
5.2.3 SCCS Working Files 5-3
5.2.4 SCCS Command Arguments 5-4
5.2.5 File Administrator 5-4

5.3 Creating and Using S-files 5-5
5.3. l Creating an S-file 5-5
5.3. 2 Retrieving a File for Reading 5-6
5.3.3 Retrieving a File for Editing 5-7
5.3.4 Saving a New Version ofaFile 5-8
5.3.5 Retrieving a Specific Version 5-9
5.3.6 Changing the Release Number of a File 5-9
5.3.7 Creating a Branch Version 5-10
5.3.8 Retrieving a Branch Version 5-10
5.3.9 RetrievingtheMostRecentVersion 5-11
5.3.10 Displaying a Version 5-11
5.3.11 SavingaCopyofaNewVersion 5-12
5.3.12 Displaying Helpful Information 5-12

5.4 Using Identification Keywords 5-13
5.4. l Inserting a Keyword into a File 5-13
5.4.2 Assigning Values to Keywords 5-14
5.4.3 ForcingKeywords 5-14

5.5 Using S-file Flags 5-15
5.5. l Setting S-file Flags 5-15
5.5.2 UsingtheiFlag 5-15
5.5.3 Using the d Flag 5-16

5.5.4 UsingthevFlag 5-16
5.5.5 RemovinganS-fileFlag 5-16

5.6 Modifying S-file Information 5-16
5.6.1 Adding Comments 5-17
5.6.2 Changing Comments 5-17
5.6.3 Adding Modification Requests 5-18
5.6.4 Changing Modification Requests 5-18
5.6.5 AddingDescriptiveText 5-19

5.7 Printing from an S-file 5-20
5.7.1 UsingaDataSpecification 5-20
5.7.2 Printing a Specific Version 5-20
5.7.3 Printing Later and Earlier Versions 5-21

5.8 Editing by Several Users 5-21
5.8. l Editing Different Versions 5-21
5.8.2 Editing a Single Version 5-22
5.8.3 Saving a Specific Version 5-22

5.9 Protecting S-files 5-23
5. 9.1 Adding a User to the User List 5-23
5. 9. 2 Removing a Usedrom a User List 5-23
5. 9.3 Setting the Floor Flag 5-24
5. 9.4 Setting the Ceiling Flag 5-24
5.9.5 Locking a Version 5-24

5.10 Repairing secs Files 5-25
5.10. l Checking an S-file 5-25
5.10.2 EditinganS-file 5-25
5.10.3 Changing an S-file's Checksum 5-26
5.10.4 Regenerating a G-file for Editing 5-26
5.10.5 Restoring a Damaged P-file 5-26

5.11 Using Other Command Options 5-26
5.11.l Getting Help With SCCS Commands 5-26
5.11.2 Creating a File With the Standard Input 5-27
5.11.3 Starting At a Specific Release 5-27
5.11.4 Adding a Comment to the First Version 5-27
5.11.5 Suppressing Normal Output 5-28
5.11.6 Including and Excluding Deltas 5-28

(

)

SCCS: A Source Code Control System

5.1 Introduction

The Source Code Control System (secs) is a collection or XENIX commands
that create, maintain, and cc .trol special files called SCCS files. The SCCS
commands let you create and store multiple versions or a program or document
in a single file, instead or one file for each version. The commands let you
retrieve any version you wish at any time, make changes to this version, and
save the changes as a new version of the file in the SCCS file.

The SCCS system is useful wherever you require a compact way to store
multiple versions or the same file. The SCCS system provides an easy way to
update any given version or a file and explicitly record the changes made. The
commands are typically used to control changes to multiple versions or source
programs, but may also be used to control multiple versions of manuals,
specifications, and other documentation.

This chapter explains how to make SCCS files, how to update the files contained
in SCCS files, and how to maintain the SCCS files once they are created. The
following sections describe the basic information you need to start using the
SCCS commands. Later sections describe the commands in detail.

5.2 Basic Information

This section provides some basic information about the SCCS system. In
particular, it describes

Files and directories

Deltas and SIDs

SCCS working files

secs command arguments

File administration

5.2.1 Files and Directories

All SCCS files (also called s-files) are originally created from text files containing
documents or programs created by a user. The text files must have been created
using a XENIX text editor such as vi. Special characters in the files are allowed
only if they are also allowed by the given editor.

To simplify s-file storage, all logically related files (e.g., files belonging to the
same project) should be kept in the same directory. Such directories should
contains-files only, and should have read and examine permission for everyone,
and write permission for the user only.

5-1

XENIX Programmer's Guide

Note that you must not use the XENIX link command to create multiple copies
or ans-file.

5.2.2 Deltas and SIDs

Unlike an ordinary text file, an SCCS file (ors-file ror short) contains nothing
more than lists or changes. Each list corresponds to the changes needed to
const.ru~t exactly one version or the file. The lists can then be combined to
create the desired version from the original.

Ea.ch list or changes is called a "delta". Each delta has an identification string
called an "SID". The SID is a string or at least two, and at most four, numbers
separated by periods. The numbers name the version and define how it is
related to other versions. For example, the first delta is usually numbered I.I
and the second 1.2.

The first number in any SID is called the "release number". The release number
usually indicates a group or versions that are similar and generally compatible.
The second number in the SID is the "level number". It indicates major
differences between files in the same release.

An SID may also have two optional numbers. The "branch number", the
optional third number, indicates changes at a particular level, and the

(

"sequence number", the fourth number, indicates changes at a particular (
branch. For example, the SIDs l. l.1.1 and 1.1.1.2 indicate two new versions
that contain slight changes to the original delta 1.1.

An s-file may at any time contain several different releases, levels, branches,
and sequences or the same file. In general, the maximum number or releases an
s-file may contain is gggg, that is, release numbers may range rrom 1 to 9999.
The same limit applies to level, branch, and sequence numbers.

When you creat.e a new version, the SCCS system usually creates a new SID by
incrementing the level number or the original version. Ir you wish to create a
new release, you must explicitly instruct the system to do so. A change to a
release number indicates a major new version or the file. How to create a new
version or a file and change release numbers is described later.

The SCCS system creates a branch and sequence number for the SID of a new
version, ir the next higher level number already exists. For example, ir you
change version 1.3 to create a version 1.4 and then change 1.3 again, the SCCS
system creates a new version named 1.3.1.1.

Version numbers can become quite complicated. In general, it is wise to keep (
the numbers as simple as possible by carerully planning the creation or each
new version.

5-2

)

SCCS: A Source Code Control System

5.2.3 SCCS Working Files

The SCCS system uses several different kinds of files to complete its tasks. In
general, these files contain either actual text, or information about the
commands in progress. For convenience, the SCCS system names these files by
placing a prefix before the name of the original file from which all versions were
ma.de. The following is a list of the working files.

s-file A permanent file that contains all versions or the given text file.
The versions are stored as deltas, that is, lists or changes to be
applied to the original file to create the given version. The name of
ans-file is formed by placing the file prefix 8. at the beginning or the
original filename.

x-file A temporary copy or the s-file. It is created by SCCS commands
which change the s-file. It is used instead of the s-file to carry out the
changes. When all changes are complete, the SCCS system removes
the originals-file and gives the x-file the name of the originals-file.
The name of the x-file is formed by placing the prefix z. at the
beginning of the original file.

g-file An ordinary text file created by applying the deltas in a givens-file
to the original file. The g-file represents a copy of the given version
of the original file, and as such receives the same filename as the
original. When created, a g-file is placed in the current working
directory of the user who requested the file.

p-file A special file containing information about the versions or an s-file
currently being edited. The p-file is created when a g-file is
retrieved from the s-file. The p-file exists until all currently
retrieved files have been saved in the s-file; it is then deleted. The
p-file contains one or more entries describing the SID of the
retrieved g-file, the proposed SID of the new, edited g-file, and the
login name of the user who retrieved the g-file. The p-file name is
formed by placing the prefix p. at the beginning of the original
filename.

z-file A lock file used by secs commands to prevent two users from
updating a single SCCS file at the same time. Before a command
modifes an SCCS file, it creates a z-file and copies its own process ID
to it. Any other command which attempts to access the file while
the z-file is present displays an error message and stops. When the
original command has finished its tasks, it deletes the z-file before
stopping. The z-file name is formed by placing the prefix z. at the
beginning of the original filename.

I-file A special file containing a list of the deltas required to create a given
version of a file. The I-file name is formed by placing the prefix l. at
the beginning of the original filename.

5-3

XENIX Programmer's Guide

d-file A temporary copy of the g-file used to generate a new delta.

q-file A temporary file used by the delta command when updating the p­
file. The file is not directly accessible.

In general, a user never directly accesses x-files, z-files, d-files, or q-files. Ir a
system crash or similar situation abnormally terminates a command, the user
may wish delete these files to ensure proper operation of subsequent SCCS
commands.

5.2.4 SCCS Command Arguments

Almost all secs commands accept two types or arguments: options and
filenames. These appear in the SCCS command line immediately after the
command name.

An option indicates a special action to be taken by the given SCCS command.
An option is usually a lowercase letter preceded by a minus sign (-). Some
options require an additional name or value.

(

A filename indicates the file to be acted on. The syntax for SCCS filenames is like
other XENIX filename syntax. Appropriate pathnames must be given if
required. Some commands also allow directory names. In this case, all files in
the directory are acted on. Ir the directory contains non-SCCS and unreadable (
files, these are ignored. A filename must not begin with a minus sign(-).

The special symbol - may be used to cause the given command to read a list of
filenames from the standard input. These filenames are then used as names for
the files to be processed. The list must terminate with an end-of-file character.

Any options given with a command apply to all files. The SCCS commands
process the options before any filenames, so the options may appear anywhere
on the command line.

Filenames are processed left to right. Ir a command encounters a fatal error, it
stops processing the current file and, if any other. files have been given, begins
processing the next.

5.2.5 File Administrator

Every SCCS file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file and therefore
owns it. Before other users can access the file, the administrator must ensure (.
that they have adequate access. Several SCCS commands let the administrator
define who has access to the versions in a givens-file. These are described later.

5-4

)

)

SCCS: A Source Code Control System

6.3 Creating and Using S-files

The s-file is the key element in the SCCS system. It provides compact storage
for all versions of a given file and automatic maintenance of the relationships
between the versions.

This section explains how to use the admin, get, and delta commands to
create and uses-files. In particular, it describes how to create the first version
of a file, how to retrieve versions for reading and editing, and how to save new
versions.

o.3.1 Creating an S-flle

You can create ans-file from an existing text file using the -i (for "initialize")
option of the admin command. The command has the form

admin -ifilename 1.filename

where -ifilename gives the name or the text file from which the a-file is to be
created, and 11.filename is the name of the news-file. The name must begin with
11. and must be unique; no others-file in the same directory may have the same
name. For example, suppose the file named demo.c contains the short C
language program

#include <stdio.h>

main()
{
printf("This is version 1.1 \n");
}

To create ans-file, type

admin -idemo.c s.demo.c

This command creates the s-file 1. demo.c, and copies the first delta describing
the contents of demo. c to this new file. The first delta is numbered 1.1.

After creating an s-file, the original text file should be removed using the rm
command, since it is no longer needed. Ir you wish to view the text file or make
changes to it, you can retrieve the file using the get command described in the
next section.

) When first creating an s-file, the admin command may display the warning
message

No id keywords (cm7)

5-5

XENIX Programmer's Guide

In genera.I, this message can be ignored unless you have specifically included
keywords in your file (see the section, "Using Identification Keywords" later in
this chapter).

Note that only a. user with write permission in the directory containing thes-file (
may use the admin command on that file. This protects the file from
administration by unauthorized users.

5.3.2 Retrieving a File ror Reading

You can retrieve a. file for reading from a. givens-file by using the get command.
The command has the form

get 8.filename ...

where e.filename is the name of the s-file containing the text file. The command
retrieves the lastest version or the text file and copies it to a regular file. The file
has the same name as the s-file but with the 8. removed. It also has read-only
file permissions. For example, suppose the s-file 8.tlemo.c contains the first
version of the short C program shown in the previous section. To retrieve this
program, type

get s.demo.c

The command retrieves the program and copies it to the file named tlemo.c.
You may then display the file just as you do any other text file.

The command also displays a message which describes the SID of the retrieved
file and its size in lines. For example, after retrieving the short C program from
e. demo.c, the command displays the message

l.1
6 lines

·You may also retrieve more than one file at a time by giving multiple s-file
names in the command line. For example, the command

get s.demo.c s.def.h

retrieves the contents of the s-files 8.demo.c and 8.de/.h. and copies them to the
text files demo.c and def.h.. When giving multiples-file names in a. command,
you must separate ea.ch with at least one space. When the get command

(

displays information about the files, it places the corresponding filename before (.
the relevent information.

5-6

)

)

SCCS: A Source Code Control System

5.3.3 Retrieving a File for Editing

You can retrieve a file for editing Crom a given s-file by using the -e (for
"editing") option of the get command. The command has the Corm

get -e s.filename ...

where e.filen ame is the name or the s-file containing the text file. You may give
more than one filename if you wish. IC you do, you must separate each name
with a space.

The command retrieves the lastest version or the text file and copies it to an
ordinary text file. The file has the same name as the s-file but with the '·
removed. It has read and write file permissions. For example, suppose the s-file
B.demo.c contains the first version or a c program. To retrieve this program,
type

get -e s.demo.c

The command retrieves the program and copies it to the file named demo.c.
You may edit the file just as you do any other text file.

IC you give more than one filename, the command creates files Cor each
corresponding s-file. Since the -e option applies to all the files, you may edit
P.achone.

After retrieving a text file, the command displays a message giving the SID or
the file and its size in lines. The message also displays a proposed SID, that is,
the SID for the new version after editing. For example, after retrieving the six­
line C program in B. demo.c, the command displays the message

I.I
new delta 1.2
6 lines

The proposed SID is 1.2. IC more than one file is retrieved, the corresponding
filename precedes the relevant information.

Note that any changes made to the text file are not immediately copied to the
corresponding s-file. To save these changes you must use the delta command
described in the next section. To help keep tr:i.ck or the current file version, the
get. command creat.es another file, called a p-file, that contains information
about the text file. This file is used by a subsequent delta command when
saving the new version. The p-file has the same name as the s-file but begins
with a p .. The user must not access the p-file directly.

5-7

XENIX Programmer's Guide

5.3.4 Saving a New Version of a. File

You can save a new version of at.ext file by using the delta command. The
command has the form

delta a.filename

where B.jilename is the name of the s-file from which the modified text file was
retrieved. For example, to save changes ma.de to a. C program in the file tlemo.c
(which was retrievedfrom the file 1.tlemo.c), type

delta. s.demo.c

Before saving the new version, the delta command asks for comments
explaining the nature of the changes. It displays the prompt

comments!

You may type any text you think appropriate, up to 512 characters. The
comment must end with a newline chara.ct.er. H necessary, you can start a new
line by typing a backslash (\) followed by a newline char act.er. If you do not
wish to include a comment, just type a newline chara.ct.er.

(

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the original version with the new version. A (
list of all the changes is copied to the s-file. This is the new delta.

Aft.er a command bas copied the new delta to the s-file, it displays a message
showing the new SID and the number of lines insert.ed, delet.ed, or left
unchanged in the new version. For example, irthe C program has been changed
to

#include <stdio.h>

main()
{
inti= 2;

printf(" This is version 1. %d O, i);
}

the command displays the message

1.2
3 insert.ed
1 delet.ed
5 unchanged

Once a new version is saved, the next get command retrieves the new version.

5-8

(

)

)

)

SCCS: A Source Code Control System

The command ignores previous versions. If you wish to retrieve a previous
version, you must use the -r option of the get command as described in the
next section.

5.3.5 Retrieving a Specific Version

You can retrieve any version you wish from an s-file by using the -r (for
"retrieve") of the get command. The command has the form

get 1-e J -rSID 11.filename ...

where -e is the edit option, -rS/D gives the SID of the version to be retrieved,
and 1.filename is the name of the s-file containing the file to be retrieved. You
may give more than one filename. The names must be separated with spaces.

The command retrieves the given version and copies it to the file having the
same name ass-file but with the 1. removed. The file has read-only permission
unless you also give the -e option. If multiple filenames are given, one text file
of the given version is retrieved from each. For example, the command

get -rl.l s.demo.c

retrieves version 1.1 from thes-file 1.demo.c, but the command

get -e -rl.l s.demo.c s.def.h

retrieves for editing a version 1.1 from both 1.demo.c and 1.de/.A. Ir you give
the number of a version that does not exist, the command displays an error
message.

You may omit the level number of a version number if you wish, that is, just
give a release number. Ir you do, the command automatically retrieves the
most recent version having the same release number. For example, if the most
recent version in the file 1. de mo.c is numbered 1.4, the command

get -rl s.demo.c

retrieves the version 1.4. If there is no version with the given release number,
the command retrieves the most recent version in the previous release.

5.3.6 Changing the Release Number of a File

You can direct the delta command to change the release number of a new
version of a file by using the -r option of the get command. In this case, the get
command has the form

get -e -rrel-num a.filename ...

5-0

XENIX Programmer's Guide

where -e is the required edit option, -rrel-numgives the new release number of
the file, and 6.filename gives the name of the s--file containing the file to be
retrieved. The new release number must be an entirely new number, that is, no
existing version may have this number. You may give more than one filename.

The command retrieves the most recent version From the s-file, then copies the
new release number to the p-file. On the subsequent delta command, the new
version is saved using the new release number and level number 1. For example,
if the most recent version in the s-file 6. demo.t: is 1.4, the command

get -e -r2 s.demo.c

causes the subsequent delta to save a new version 2.1, not 1.5. The new release
number applies to the new version only; the release numbers of previous
versions are not affected. Therefore, if you edit version l.4(from which 2.1 was
derived) and save the changes, you create a. new version 1.5. Similarly, if you
edit version 2.1, you create a. new version 2.2.

As before, the get command also displays a message showing the current
version number, the proposed version number, and the size of the file in lines.
Similarly, the subsequent delta command displays the new version number
and the number of lines inserted, deleted, and unchanged in the new file.

5.3.7 Creating a Branch Version

You can create a. branch version of a. file by editing a version that has been
previously edited. A branch version is simply a version whose SID contains a.
br:i.nch and sequence number.

For example, if version 1.4 already exists, the command

get -e -r 1.3 s.demo.c

retrieves version 1.3 for editing and gives l.3.1.l as the proposed SID.

In genera.I, whenever get discovers that you wish to edit a version that already
has a succeeding version, it uses the first available branch and sequence
numbers for the proposed SID. For example, if you edit version 1.3 a third time,
get. gives l.3.2.1 as the proposed SID.

You can save a branch version just like any other version by using the delta
command.

5.3.8 Retrieving a Branch Version

You can retrieve a branch version of a file by using the -r option of the get
command. For example, the command

5-10

(

(

)

)

SCCS: A Source Code Control System

get -rl.3.1.1 s.demo.c

retrieves branch version 1.3.1.1.

You may retrieve a branch version for editing by using the -e option or the get
command. When retrieving ror editing, get creates the proposed SID by
incrementing the sequence number by one. For example, ir you retrieve
branch version 1.3.1.1 for editing, get gives 1.3.1.2 as the proposed SID.

As always, the command displays the version number and file size. Ir the given
branch version does not exist, the command displays an error message.

You may omit the sequence number ir you wish. In this case, the command
retrieves the most recent branch version with the given branch number. For
example, ir the most recent branch version in the s-file 1.def.h is 1.3.1.4, the
command

get -r 1.3.1 s.der. h

retrieves version 1.3.1.4.

5.3.g Retrieving the Most Recent Version

You can always retrieve the most recent version or a file by using the -t option
with the get command. For example, the command

get -t s.demo.c

retrieves the most recent version rrom the file 1.demo.c. You may combine the
-r and-t options to retrieve the most recent version or a given release number.
For example, if the most recent version with release number 3 is 3.5, then the
command

get -r3 -t s.demo.c

retrieves version 3.5. Ir a branch version exists that is more recent than version
3.5 (e.g., 3.2.1.5), then the above command retrieves the branch version and
ignores version 3.5.

5.3.10 Displaying a Version

You can display the contents or a version at the standard output by using the
-p option or the get command. For example, •he command

get -p s.demo.c

displays the most recent version in the s-file 1.demo.c at the standard output.
Similarly, the command

5-11

XENIX Programmer's Guide

get -p -r2.1 s.demo.c

displays version 2.1 a.t the standard output.

The -p option is useful for creating g-files with user-supplied names. This (.
option also directs a.II output normally sent to the standard output, such as the
SID or the retrieved file, to the standard error file. Thus, the resulting file
contains only the contents ofthe given version. For example, the command

get -p s.demo.c >version.c

copies the most recent version in the s-file 1.demo.c to the file t1ersion.c. The
SID of the file and its size is copied to the standard error file.

5.3.11 Saving a Copy of a New Version

The delta command normally removes the edited file after saving it in the
s-file. You can save a. copy or this file by using the -n option of the delta
command. For example, the command

delta. -n s.demo.c

first saves a new version in the s-file '·demo. c, then saves a. copy of this version
in the file demo. c. You may display the file as desired, but you cannot edit the (
file.

5.3.12 Displaying Helpful Information

An SCCS command displays an error message whenever it encounters an error
in a. file. An error message has the form

ERROR (filename): meuage (code)

where filename is the name of the file being processed, meHage is a. short
description of the error, a.nd code is the error code.

You may use the error code a.s a.n argument to the help command to display
additional information a.bout the error. The command ha.sthe form

help code

where code is the error code given in a.n error message. The command displays
one or more lines of text that exp la.in the error and suggest a. possible remedy. (.
For example, the command ·

help col

displays the message

5-12

)

SCCS: A Source Code Control System

col:
n not an secs file"
A file that you think is an SCCS file
does not begin with the characters "s.".

The help command can be used at any time.

5.4 Using Identification Keywords

The secs system provides several special symbols, called identification
keywords, which may be used in the text or a program or document to represent
a predefined value. Keywords represent a wide range or values, from the
creation date and time or a given file, to the name or the module containing the
keyword. When a user retrieves the file for reading, the SCCS system
automatically replaces any keywords it finds in a given version or a file with the
keyword's value.

This section explains how keywords are treated by the various SCCS
commands, and how you may use the keywords in your own files. Only a few
keywords are described in this section. For a complete list of the keywords, see
the section get(CP) in the XENIX Re/ere nee Manual.

} 5.4.1 Inserting a Keyword into a File

)

You may insert a keyword into any text file.A keyword is simply an uppercase
letter enclosed in percent signs (%). No special characters are required. For
example, "%1%" is the keyword representing the SID or the current version,
and "%H%" is the keyword representing the current date.

When the program is retrieved for reading using the get command, the
keywords are replaced by their current values. For example, if the "%M%",
"%1%", and "%H" keywords are used in place or the module name, the SID,
and the current data in a program statement

char header(IOO) = {" %M% %1% %H% "};

then these keywords are expanded in the retrieved version ofthe program

char header(IOO) = {" MODNAME 2.3 07/07/77 "};

The get command does not replace keywords when retrieving a version for
editing. The system assumes that you wish keep the keywords (and not their
values) when you save the new version of the file.

To indicate that a file has no keywords, the get, delta, and ad min commands
display the message

5-13

XENIX Programmer's Guide

No id keywords (cm7)

This message is normally treated as a warning, letting you know that no
keywords are present. However, you may change the operation of the system to
make this a fatal error, as explained later in this chapter. (

5.4.2 Assigning Values to Keywords

The values of most keywords are predefined by the system, but some, such as
the value for the "%M%" keyword can be explicitly defined by the user. To
assign a value to a keyword, you must set the corresponding s-file flag to the
desired value. You can do this by using the -foptionofthe admin command.

For example, to set the %M% keyword to "cdemo",you must set them flag as
in the command

admin -fmcdemo s.demo.c

This command records "cdemo" as the current value of the %M% keyword.
Note that if you do not set the m flag, the SCCS system uses the name of the
original text file for %M% by default.

The t and q flags are also associated with keywords. A description of these flags
and the corresponding keywords can be found in the section get(CP) in the (
XENIX Reference Manual. You can change keyword values at any time.

5.4.3 Forcing Keywords

If a version is found to contain no keywords, you can force a fatal error by
setting the i flag in the given s-file. The flag causes the delta and admin
commands to stop processing of the given version and report an error. The flag
is useful for ensuring that keywords are used properly in a given file.

To set the i flag, you must use the -r option of the ad min command. For
example, the command

admin -fi s.demo.c

sets the i flag in the s-file B.demo.c. Ir the given version does not contain
keywords, subsequent delta or admin commands that access this file print an
error message.

Note that if you attempt to set the i flag at the same time as you create ans-file, (
and if the initial text file contains no keywords, the ad min command displays a
fatal error message and stops without creating the s-file.

5-14

)

)

)

SCCS: A Source Code Control System

5.5 Using S-file Flags

An s-file flag is a special value that defines how a given SCCS command will
operate on the corresponding s-file. The s-file flags are stored in the s-file and
are read by each SCCS command before it operates on the file. S-file flags affect
operations such as keyword checking, keyword replacement va.lues, and
default values for commands.

This section explains how to set and uses-file flags. It also describes the action
of commonly-used flags. For a complete description of all flags, see the section
admin(CP) in the XENIX Reference Manual.

5.5.1 Setting S-file Flags

You can set the flags in a given s-file by using the -r option of the admin
command. The command has the form

admin -Cftag s.filename

where -Cftag gives the flag to be set, and 6.filename gives the name of the s-file in
which the flag is to be set. For example, the command

admin -fi s.demo.c

sets the i flag in the s-file 6. de mo. c.

Note that some s-file flags take values when they are set. For example, the m
flag requires that a module name be given. When a value is required, it must
immediately follow the flag name, as in the command

admin -fmdmod s.demo.c

which sets them flag to the module name "dmod".

5.5.2 Using t.he i Flag

The i flag causes the ad min and delta commands to print afatalerror message
and stop, if no keywords are found in the given text file. The flag is used to
prevent a version of a file, which contains expanded keywords, from being
saved as a new version. (Saving an expanded version destroys the keywords for
all subsequent versions).

When the i flag is set, each new version of a file must contain at least one
keyword. Otherwise, the version cannot be saved.

5-15

XENIX Programmer's Guide

5.5.3 Using the d Flag

The d flag gives the default SID for versions retrieved by the get command.
The flag takes an SID as its value. For example, the command

admin -rdl. l s.demo.c

sets the default SID to 1.1. A subsequent get command which does not use the
-r option will retrieve version I. I.

5.5.4 Using the v Flag

The v flag allows you to include modification requests in ans-file. Modification
requests are names or numbers that may be used as a shorthand means or
indicating the reason for each new version.

When the v flag is set, the delta command asks for the modification requests
just before asking for comments. The v flag also allows the -m option to be
used in the delta and admin commands.

5.5.5 Removing an S-flle Flag

(

You can remove an &-file flag from ans-file by using the-d option of the admin (..
command. The command has the form

admin -dflag •.filename

where -dflag gives the name of the flag to be removed and 1.filen.ame is the
name of the s-file from which the flag is to be removed. For example, the
command

admin -di s.demo.c

removes the i flag from the &-file 1. demo.c. When removing a flag which takes a
value, only the flag name is required. For example, the command

admin -dm s.demo.c

removes them flag from the s-file.

The -d and -i options must not be used at the same time.

5.6 Modifying S-file Information

Every &-file contains information about the deltas it contains. Normally, this
information is maintained by the SCCS commands and is not directly accessible

5-16

(

)

)

SCCS: A Source Code Control System

by the user. Some information, however, is specific to the user who creates the
s-file, a.nd ma.y be changed a.s desired to meet the user's requirements. This
information is kept in two special parts of the s-file ca.lied the "delta table"
and the "description field"

The delta table contains information about each delta, such a.s the SID and the
date a.nd time of creation. It also contains user-supplied information, such as
comments and modification requests. The description field contains a user­
supplied description of thee-file a.nd its contents. Both parts can be changed or
deleted at a.ny time to reflect changes to thee-file contents.

5.6.1 Adding Comments

You can add comments to an s-file by using the -y option or the delta and
admin commands. This option causes the given text to be copied to the s-file a.s
the comment for the new version. The comment may be any combination or
letters, digits, and punctuation symbols. No embedded newline cha.ra.cters a.re
allowed. Ir spaces a.re used, the comment must be enclosed in double quotes.
The complete· command must fit on one line. For example, the command

delta -y" George Wheeler" s.demo.c

saves the comment "George Wheeler" in the a-file 11. demo.e.

The -y option is typically used in shell procedures a.s part or an automated
approach to maintaining files. When the option is used, the delta command
does not print the corresponding comment prompt, so no interaction is
required. Ir more than one e-file is given in the command line, the given
comment applies to them all.

5.6.2 Changing Comments

You ca.n change the comments in a. given e-file by using the cdc command. The
command ha.s the Corm

cdc -rSID 1.filename

where -rS/D gives the SID of the version whose comment is to be changed, and
1.filename is the name of thee-file containing the version. The command asks
for a. new comment by displaying the prompt

comments?

You ma.y type any sequence of cha.ra.cters up to 512 characters long. The
sequence ma.y contain embedded newline characters if they are preceded by a
ba.cksla.sh (\). The sequence must be terminated with a. newline character. For
example, the command

5-17

XENIX Programmer's Guide

cdc -r3.4 s.demo.c

prompts ror a new comment ror version 3.4.

Although the command does not delete the old comment, it is no longer directly (_
accessible by the user. The new comment contains the login name or the user .
who invoked the cdc command and the time the comment wa.s changed.

5.6.3 Adding Modification Requests

You can add modification requests to ans-file, when the v flag is set, by using
the -m option or the delta and ad min commands. A modification request is a
shorthand method of describing the reason ror a particular version.
Modification requests are usually names or numbers which the user ha.s chosen
to represent a specific request.

The -m option causes the given command to save the requests following the
option. A request may be any combination of letters, digits, and punctuation
symbols. Ir you give more than one request, you must separate them with
spaces and enclose the request in double quotes. For example, the command

delta -m" error35 optimize IO" s.demo.c

copies the requests "error35" and "optimize 10" to 8. demo. c, while saving the
new version.

The -m option, when used with the admin command, must be combined with
the -i option. Furthermore, the v flag must be explicitly set with the-foption.
For example, the command

admin -ider.h -m" errorO" -rv s.def.h

inserts the modification request "errorO" in the new file 8. def.Ii.

The delta command does not prompt ror modification requests if you use the
-moption.

5.6.4 Changing Modification Requests

You can change modification requests, when the v flag is set, by using the cdc
command. The command asks for a list of modification requests by displaying
the prompt

MRs!

You may type any number or requests. Each request may have any
combination or letters, digits, or punctuation symbols. No more than 512
characters are allowed, and the last request must be terminated with a newline

5-18

(

(

)

SCCS: A Source Code Control System

character. Ir you wish to remove a request, you must precede the request with
an exclamation mark(!). For example, the command

cdc -rl.4 s.demo.c

asks for changes to the modification requests. The response

MRs? error36 !error35

adds the request "error36" and removes "error35".

5.6.5 Adding Descriptive Text

You can add descriptive text to ans-file by using the -t option oft.he ad min
command. Descriptive text is any text that describes the purpose and reason
for the givens-file. Descriptive text is independent of the contents of the s-file
and can only be displayed using the prs command.

The -t option directs the ad min to copy the contents or a given file into the
description field of the s-file. The command has the form

admin -tfilename B.jilename

where -tfilename gives the name or the file containing the descriptive text, and
1.filename is the name of the s-file to receive the descriptive text. The file to be
inserted may contain any amount or text. For example, the command

admin -tcdemo s.demo.c

inserts the contents or the file cdemo into the description field or the s-file
1.demo.c.

The -t option may also be used to initialize the description field when creating
the s-file. For example, the command

admin -idemo.c -tcdemo s.demo.c

inserts the contents or the file cdemo into the news-file 1.demo.c. Ir-tis not
used, the description field of the news-file is le rt empty.

You can remove the current descriptive text in ans-file by using the -t option
without a filename. For example, the command

admin -t s.demo.c

removes the descriptive text from the s-file 1.demo.c.

5-19

XENIX Programmer's Guide

5.7 Printing from an S-file

This section explains how to use the prs command to display information
contained in an s-flle. The prs command has a variety ofoptions which control
the display format and content. (

5.7.1 Using a Data Specification

You can explicitly define the information to be printed from ans-file by using
the -d option of the prs command. The command copies user-specified
information to the standard output. The command has the form

prs -d1pec 1.filename

where -d1pec is the data specification, and •.filename is the name or the s-file
from which the information is to be taken.

The data specification is a string of data keywords and text. A data keyword is
an uppercase letter, enclosed in colons(:). It represents a value contained in the
givens-file. For example, the keyword :I: represents the SID or a given version,
:F: represent the filename or the givens-file, :C: represents the comment line
associated with a given version. Data keywords are replaced by these values
when the information is printed.

For example, the command

prs -d" version: :I: filename: :F: " s.demo.c

may produce the line

version: 2.1 filename: s.demo.c

A complete list of the data keywords is given in the section pr11(CP} in the
XENIX Reference Manual.

5.7.2 Printing a Specific Version

You can print information about a specific version in a given s-file by using the
-r option of the prs command. The command has the form

pre -rSID 11.filename

where -rSID gives the SID of the desired version, and 1.filename is the name or (.
the s-file containing the version. For example, the command

prs -r2.l s.demo.c

5-20

)

)

SCCS: A Source Code Control System

prints information about version 2.1 in the s-file B.demo.c.

If the -r option is not specified, the command prints information about the
most recently created delta.

5.7.3 Printing Later and Earlier Versions

You can print information about a group or versions by using the -I and -e
options of the prs command. The -I option causes the command to print
information about all versions immediately succeeding the given version. The
-e option causes the command to print information a.bout all versions
immediately preceding the given version. For example, the command

prs -rl.4 -e s.demo.c

prints all information about versions which precede version 1.4 (e.g., 1.3, 1.2,
and 1.1). The command

prs -rl.4 -I s.abc

prints information about versions which succeed version 1.4 (e.g., 1.5, 1.6, and
2.1).

Ir both options are given, information about all versions is printed.

5.8 Editing by Several Users

The SCCS system allows any number users to access and edit versions or a given
s-file. Since users are likely to access different versions of the s-file at the same
time, the system is designed to allow concurrent editing of different versions.
Normally, the system allows only one user at a time to edit a given version, but
you can allow concurrent editing or the same version by setting the j flag in the
givens-file.

The following sections explain how to perform concurrent editing and how to
save edited versions when you have retrieved more than one version for editing.

5.8.1 Editing Different Versions

The SCCS system allows several different versions of a file to be edited at the
same time. This means a user can edit version 2.1 while another user edit
version 1.1. There is no limit to the number of versions which may be edited at
any given time.

When several users edits different versions concurrently, each user must begin
work in his own directory. If users attempt to share a directory and work on
versions from the same s-file at the same time, the get command will refuse to

5-21

XENIX Programmer's Guide

retrieve a version.

5.8.2 Editing a Single Version

You can let a single version or a file be edited by more than one user by setting
the j flag in the givens-file. The flag causes the get command to check the p-file
and create a new proposed SID if the given version is already being edited.

You can set the flag by using the -r option or the a.dmin command. For
example, the command

admin -l'j s..demo.c

sets the flag for thes-file •.demo.c.

When the flag is set, the get command uses the next available branch SID for
each new proposed SID. For example, suppose a user retrieves for editing
version 1.4 in the file •.demo. c, and that the proposed version is 1.5. Ir another
user retrieves version 1.4 for editing before the first user has saved his changes,
the the proposed version ror the new user will be 1.4.1.1, since version 1.5 is
already proposed and likely to be taken. In no case will a version edited by two
separate users result. in a single new version.

5.8.3 Saving a Specific Version

When editing two or more versions of a file, you can direct the delta command
to save a specific version by using the -r option to give the SID or that version.
The command has the form

delta -rSID •.filea1me

· where -rSID gives the SID ofthe version being saved, and •.filen4me is the name
or the s-file to receive the new version. The SID may be the SID of the version
you have just edited, or the proposed SID for the new version. For example, if
you have retrieved version 1.4 for editing (and no version 1.5 exists), both
commands

delta -r 1.5 s.demo.c

and

delta -rl.4 s.demo.c

save version 1.5.

5-22

(

(

(

)

)

SCCS: A Source Code Control System

5.9 Protecting S-files

The SCCS system uses the normal XENIX system file permissions to protect
s-files from changes by unauthorized users. In addition to the XENIX system
protections, the SCCS system provides two ways to protect the s-files: the "user
list" and the "protection flags". The user list is a list of login names and group
IDs of users who are allowed to access the s-file and create new versions of the
file. The protection flags are three specials-file flags that define which versions
are currently accessible to otherwise authorized users. The following sections
explain how to set and use the user list and protection flags.

5.U.l Adding a User to the User List

You can add a user or a group of users to the user list of a given s-file by using
the -a option of the ad min command. The option causes the given name to be
added to the user list. The user list defines who may access and edit the versions
in the s-file. The command has the form

admin -aname s.filename

where -aname gives the login name of the user or the group name of a group of
users to be added to the list, and B.jilename gives the name of the s-file to receive

. the new users. For example, the command

admin -ajohnd -asuex -amarketing s.demo.c

adds the users "johnd" and "suex" and the group "marketing" to the user liot
of the s-file B. demo.c.

Ir you create ans-file without giving the -a option, the user list is left empty,
and all users may access and edit the files. When you explicitly give a user name
or names, only those users can access the files.

5.U.2 Removing a User from a User List

You c:i.n remove a user or a group of users from the user list of a givens-file by
using the -e option of the ad min command. The option is similar to the -a
option but performs the opposite operation. The command has the form

admin -enamc s.filename

where -ename gives the login name of a user or the group name of a group of
users to be removed from the list, ands.filename is the name of the s-file Crom
which the names are to be removed. For example, the command

admin -ejohnd -emarketing s.demo.c

5-23

XENIX Programmer's Guide

removes the user "johnd" and the group "marketing" from the user list or the
s-file 1.demo.c.

5.9.3 Setting the Floor Flag

The floor flag, r, defines the release number of the lowest version a user may edit
in a given e-file. You can set the flag by using the -r option or the admin
command. For example, the command

admin -f1'2 s.demo.c

sets the floor to release number 2. Ir you attempt to retrieve any versions with a
release number less than 2, an error will result.

5.0.4 Setting the Ceiling Flag

' The ceiling flag, c, defines the release number or the highest version a user may
edit in a givens-file. You can set the flag by using the -r option or the admin
command. For example, the command

admin -fcS s.demo.c

(

sets1the ceilingbto release nuhmb;r 5. Ir you a_t1te1 mpt1 to retrieve any versions with (
a re ease num er greater t an"• an error w1 resu t.

5.0.5 Locking a Version

The lock flag, I, lists by release number all versions in a given e-file which are
locked against further editing. You can set the flag by using the -r flag or the
admin command. The flag must be followed by one or more release numbers.
Multiple release numbers must be separated by commas (,). For example, the
command

admin -fl3 s.demo.c

locks all versions with release number 3 against further editing. The command

admin -84,5,9 s.def.h

locks all versions with release numbers 4, 5, and 9.

Note that the special symbol "a" may he used to specify all release numbers. (
The command

admin -fta s.demo.c

locks all versions in the file 1.tlemo.c.

5-24

)

)

SCCS: A Source Code Control System

5.10 Repairing SCCS Files

The SCCS system carerully maintains all SCCS files, making damage to the files
very rare. However, damage can result rrom hardware malfunctions, which
cause incorrect inrormation to be copied to the file. The following sections
explain how to check for damage to secs files, a.nd how to repair the damage or
regenerate the file.

5.10.1 Checking an S-flle

You can check a file for damage by using the -h option ofthe admin command.
This option causes the checksum or the given a-file to be computed and
compared with the existing sum. An s-file's checksum is a.n internal value
computed from the sum of all bytes in the file. Ir the new and existing
checksums are not equal, the command displays the message

corrupted file (co6)

indicating damage to the file. For example, the command

admin -h s.demo.c

checks the s-file B. de mo. c for damage by generating a new checksum for the file,
and comparing the new sum with the existing sum.

You may give more than one filename. Ir you do, the command checks each file
in turn. You may also give the name of a directory, in which case, the command
checks all files in the directory.

Since failure to repair a damaged s-file can destroy the file's contents or make
the file inaccessible, it is a good idea to regularly check alls-files for damage.

5.10.2 Editing an S-file

When ans-file is discovered to be damaged, it is a good idea to restore a backup
copy or the file from a backup disk rather than attempting to repair the file.
(Restoring a backup copy of a file is described in the XENIX Operatione Guide.)
IC this is not possible, the file may be edited using a.XENIX text editor.

To repair a damaged s-file, use the description or an a-file given in the section
eccefile (F) in the XENIX Reference Manual, to locate the part or the file which
is damaged. Use extreme care when making changes; small errors can cause
unwanted results.

5-25

XENIX Programmer's Guide

5.10.3 Changing an S-flle's Checksum

After repairing a damaged s-file, you must change the file's checksum by using
the -z option of the admin command. For example, to restore the checksum of
the repaired file s. demo.c, type (

admin -z s.demo.c

The command computes and saves the new checksum, replacing the old sum.

5.10.4 Regenerating a G-flle ror Editing

You can create a g-file ror editing without affecting the current contents or the
p-file by using the -k option of the get command. The option has the same
affect as the -e option, except thst the current contents or the p-file remain
unchanged. The option is typically used to regenerate a g-file that has been
accidentally removed or destroyed before it has been saved using the delta
command.

6.10.5 Restoring a Damaged P-flle

The -g option ofthe get command may be used to generate a new copy or a
p-file that has been accidentally removed. For example, the command

get -e -g s.demo.c

creates a new p-file entry ror the most recent version in 11. demo.c. If the file
demo.c already exists, it will not be changed by this command.

6.11 Using Other Command Options

Many or the secs commands provide options that control their operation in
userul ways. This section describes these options and explains how you may use
them to perform useful work.

5.11.l Getting Help With SCCS Commands

(

You can display helpful inrormation about an SCCS command by giving the
name of the command as an argument to the help command. The help
command displays a short explanation of the command and command syntax.
For example, the command (

help rmdel

displays the message

5-26

)

)

SCCS: A Source Code Control System

rmdel:
rmdel -rSID name ...

5.11.2 Creating a File With the Standard Input

You can direct ad min to use the standard input as the source for a news-file by
using the -i option without a filename. For example, the command

admin -i s.demo.c <demo.c

causes ad min to create a news-file named 1.demo.e which uses the text file
demo.e as its first version.

This method of creating a new s-file is typically used to connect admin to a
pipe. For example, the command

cat modl.c mod2.c I admin -i s.mod.c

creates a news-file B. mod.e which contains the first version of the concatenated
files modl. e and mod2. c.

5.11.3 Starting At a Specific Release

The admin command normally starts numbering versions with release
number 1. You can direct the command to start with any given release number
by using the -r option. The command has the form

admin -rrel-num 1.filename

where -r rel-num gives the value of the starting release number, and 1.filename
is the name of the s-file to be created. For example, the command

admin -idemo.c -r3 s.demo.c

starts with release number 3. The first version is3. l.

5.11.4 Adding a Comment to the First Version

You can add a comment to the first version of file by using the -y option of the
ad min command when creating the s-file. For example, the command

admin -idemo.c -y" George Wheeler" s.dcmo.c

inserts the comment "George Wheeler" in the news-file a.demo.c.

5-27

XENIX Programmer's Guide

The comment may be any combination of letters, digits, and punctuation
symbols. Ir spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line.

Ir the -y option is not used when creating ans-file, a comment of the form

date and time created YY/MM/DD HH:MMSS by logname

is automatically inserted.

5.11.5 Suppressing Normal Output

You can suppress the normal display of messages created by the get command
by using the -s option. The option prevents information, such as the SID orthe
retrieved file, from being copied to the standard output. The option does not
suppress error messages.

The -s option is often used with the -p option to pipe the output or the get
command to other commands. For example, the command

get -p -s s.demo.c I lpr

copies the most recent version in the s-file •· demo.c to the line printer.

You can also suppress the normal output of the delta command by using the -s
option. This option suppresses all output normally directed to the standard
output, except for the normal comment prompt.

5.11.6 Including and Excluding Deltas

You can explicitly define which deltas you wish to include and which you wish
to exclude when creating a g-file, by using the -i a.nd -x options or the get
command.

The -i option causes the command to apply the given deltas when constructing
a version. The -x option causes the command to ignore the given deltas when
constructing a. version. Both options must be followed by one or more S!Ds. Ir
multiple SIDs are given they must be separated by commas(,). A range of SIDs
may be given by separating two SIDs with a hyphen (-). For example, the
command

get -il.2,l.3 s.demo.c

causes deltas 1.2 and 1.3 to be used to construct the g-file. The command

get -xl.2-1.4 s.demo.c

causes deltas 1.2 through 1.4 to be ignored when constructing the file.

5-28

(

(

)

)

SCCS: A Source Code Control System

The -i option is useful if you wish to automatically apply changes to a version
while retrieving it for editing. For example, the command

get -e -i4.1 -r3.3 s.demo.c

retrieves version 3.3 for editing. When the file is retrieved, the changes in delta
4.1 are automatically applied to it, making the g-file the same as if version 3.3
had been edited by hand using the changes in delta 4.1. These changes can be
saved immediately by issuing a delta command. No editing is required.

The -x option is useful ir you wish to remove changes perrormed on a given
version. For example, the command

get -e -xl.5 -rl.6 s.demo.c

retrieves version 1.6 for editing. When the file is retrieved, the changes in delta
1.5 are automatically left out or it, making the g-file the same as if version 1.4
had been changed according to delta 1.6 (with no intervening delta 1.5). These
changes can be saved immediately by issuing a delta command. No editing is
required.

When deltas are included or excluded using the -i and -x options, get
compares them with the deltas that are normally used in constructing the given
version. Ir two deltas attempt to change the same line or the retrieved file, the
command displays a warning message. The message shows the range or lines in
which the problem may exist. Corrective action, if required, is the
responsibility or the user.

5.11.7 Listing the Deltas or a Version

You can create a table showing the deltas required to create a given version by
using the -l option. This option causes the get command to create an I-file
which contains the S!Ds of all deltas used to create the given version.

The option is typically used to create a history of a given version's
development. For example, the command

get -1 s.demo.c

creates a file named l.demo.c containing the deltas required to create the most
recent version of demo.c.

You can display the list or deltas required to create a version by using the -Ip
option. The option performs the same function as the -I options except it
copies the list to the standard output file. For example, the command

get -Ip -r2.3 s.demo.c

copies the list of deltas required to create version 2.3 or de mo. c to the standard

5-29

XENIX Programmer's Guide

output.

Note that the -I option may be combined with the -g option to create a list or
deltas without retrieving the actual version.

5.11.8 Mapping Lines to Deltas

You can map ea.ch line in a given version to its corresponding delta. by using the
-m option of the get command. This option ca.uses each line in a. g-file to be
preceded by the SID of the delta. that ca.used that line to be inserted. The SID is
separated from the beginning of the line by a tab character. The -m option is
typically used to review the history of each line in a given version.

5.11.0 Naming Lines

You can name ea.ch line in a. given version with the current module na.me (i.e.,
the value of the %M% keyword) by using the -n option or the get command.
This option ca.uses ea.ch line or the retrieved file to be preceded by the value of
the %M% keyword a.nd a tab character.

The -n option is typically used to indicate that a given line is from the given

(

file. When both the -m and -n options a.re specified, ea.ch line begins with the ,{.
%M% keyword. ll.

5.H .JJ.O Displaying a List of Differences

You can display a detailed list of the differences between a new version or a file
and the previous version by using the -p option or the delta command. This
option ca.uses the command to display the differences, in a. format similar to the
output or the XENIX d iff com ma.nd.

5.H.ll.ll. Displaying File Information

You can display information a.bout a given version by using the -g option of the
get command. This option suppresses the actual retrieval of a version and
causes only the information a.bout the version, such as the SID a.nd size, to be
displayed.

The -g option is often used with the -r option to check for the existence of a
given version. For example, the command

get -g -r4.3 s.demo.c

displays information about version 4.3 in the s-file s. demo.c. Ir the version does
not exist, the command displays an error message.

5-30

(

)

SCCS: A Source Code Control System

5.11.12 Removing a Delta

You can remove a delta Crom an s-file by using the rmdel command. The
command has the rorm

rmdel -rSID B.filename

where -r SID gives the SID or the delta. to be removed, and B.file name is the name
of the s-file from which the delta is to be removed. The delta must be the most
recently created delta. in the s-file. Furthermore, the user must have write
permission in the directory containing the s-file, and must either own the s-file
or be the user who created the delta.

For example, the command

rmdel -r2.3 s.demo.c

removes delta 2.3 from the s-file B.demo.c.

The rmdel command will refuse to remove a protected delta, that is, a delta
whose release number is below the current floor value, above the current ceiling
value, or equal to a current locked value (see the section "Protecting S..files"
given earlier in this chapter). The command will also refuse to remove a. delta
which is currently being edited.

The rmdel command should be reserved for those cases in which incorrect,
global changes were made to ans-file.

Note that rmdel changes the type indicator or the given delta from "D" to
"R". A type indicator defines the type of delta. Type indicators are described
in full in the section delta(CP) in the XENIX Reference Manual.

5.U.13 Searching for Strings

You can search for strings in files created Crom an s-file by using the what
command. This command searches for the symbol#(@) (the current value or
the %Z% keyword) in the given file. It then prints, on the standard output, a.II
text immediately following the symbol, up to the next double quote("), greater
than (>), backslash (\), newline, or (non-printing) NULL character. For
example, if the s-file e. dem•>.c contains the following line

char id! J = "%Z%%M%:%1%";

) and the command

get -r3.4 s.prog.c

is executed, then the command

5-31

XENIX Programmer's Guide

what prog.c

displays

prog.c:
prog.c:3.4

You may also use what to search files that have not been created by SCCS
commands.

5.11.H Comparing SCCS Files

You can compare two versions from a given s-file by using the sccsdiff
command. This command prints on the standard output the differences
between two versions or the s-file. The command has the form

sccsdiff -rS/Dl -rS/Dt 1.filename

where -rS/Dl and -rSIDt give the SIDs or the versions to be compared, and
1.file name is the name of the s-file containing the versions. The version SIDs
m~st be given in the order in which they were created. For example, the
command

sccsdiff -r3.4 -r5.6 s.demo.c

displays the differences between versions 3.4 and 5.6. The differences are
displayed in a form similar to the XENIX diff command.

5-32

(

(

(

)

)

Chapter6

Adb: A Program Debugger

6.1 Introduction 6-1

6.2 Starting and StoppingAdb 6-1
6.2.1 StartingWithaProgramFile 6-1
6.2.2 StartingWithaCorelmageFile 6-2
6.2.3 StartingAdb With Data Files 6-3
6.2.4 Starting With the Write Option 6-3
6.2.5 Starting With the Prompt Option 6-3
6.2.6 LeavingAdb 6-4

6.3 Displaying Instructions and Data 6-4
6.3.1 FormingExpressions 6-4
6.3.2 Choosing Data Formats 6-9
6.3.3 Using the= Command 6-10
6.3.4 Using the? and/ Commands 6-11
6.3.5 An Example: Simple Formatting 6-12

6.4 DebuggingProgramExecution 6-13
6.4.1 Executing a Program 6-14
6.4.2 SettingBreakpoints 6-14
6.4.3 Displaying Breakpoints 6-15
6.4.4 Continuing Execution 6-15
6.4.5 Stopping a Program with Interrupt and Quit 6-16
6.4.6 Single-Stepping a Program 6-16
6.4.7 Killing a Program 6-17
6.4.8 Deleting Breakpoints 6-17
6.4.9 Displaying the C Stack Backtrace 6-17
6.4.10 DisplayingCPURegisters 6-18
6.4.11 Displaying External Variables 6-18
6.4.12 AnExample:TracingMultipleFunctions 6-19

6.5 UsingtheAdbMemoryMaps 6-24
6.5.1 Displaying the Memory Maps 6-24

6.6 MiscellaneousFeatures 6-25
6.6.1 Combining Commands on a Single Line 6-25
6.6.2 Creating Adb Scripts 6-25
6.6.3 Setting Output Width 6-26
6.6.4 Setting the Maximum Offset 6-26
6.6.5 Setting Default Input Format 6-27
6.6.6 UsingXENIXCommands 6-27
6.6.7 ComputingNumbersandDisplayingText 6-28
6.6.8 An Example: Directory and !node Dumps 6-29

6.7 Patching Binary Files 6-30
6.7.1 LocatingValuesinaFile 6-30
6.7.2 WritingtoaFile 6-31
6.7.3 MakingChangestoMemory 6-31

(

(

(

)

)

Adb: A Program Debugger

6.1 Introduction

Adb is a debugging tool for C and assembly language programs. It carefully
controls the execution of a program while letting you examine and modify the
program's data and text areas.

This chapter explains how to use ad b. In particular, it explains how to

Start the debugger

Display program instructions and data

Run, breakpoint, and single-step a program

Patch program files and memory

It also illustrates techniques for debugging C programs, and explains how to
display information in non-ASCII data files.

6.2 Starting and StoppingAdb

Adb provides a powerful set of commands to let you examine, debug, and
repair executable binary files as well as examine non-ASCII data files. To use
these commands you must invoke a.db from a shell command line and specify
the file or files you wish to debug. The following sections explain how to start
a.db and describe the types of files available for debugging.

6.2.1 Starting With a. Program File

You can debug any executable C or assembly language program file by typing a
command line of the form

adb [filename]

where filename is the name of the program file to be debugged. Adb opens the
file and prepares its text (instructions) and data for subsequent debugging. For
example, the command

adb sample

prepares the program named "sample" for examination and execution.

Once started, ad b normally prompts with an asterisk (•) and waits for you to
type commands. If you have given the name of a file that does not exist or is in
the wrong format, a.db will display an error message first, then wait for
commands. For example, if you invoke ad b with the command

6-1

XENIX Programmer's Guide

adbsample

and the file "sample" does not exist, adb displays the message "adb: cannot
open 'sample"' (

You may also start adb without a filename. In this case, adb searches for the
default file a.out in your current working directory and prepares it for
debugging. Thus, the command

adb

is the same as typing

adba.out

Adb displays an error message and waits for a command if the a.oat file does
not exist.

6.2.2 Starting With a Core Image File

Adb also lets you examine the core image files of programs that caused fatal
system errors. Core image files contain the contents of the CPU registers, stack,
and memory areas of the program at the time of the error and provide a way to (
determine the cause of an error.

To examine a core image file with its corresponding program, you must give the
name of both the core and and the program file. The command line has the
form

adb programfile corefile

where programfile is the filename of the program that caused the error, and
core file is the filename of the core image file generated by the system. Adb then
uses information from both files to provide responses to your commands.

If you do not give a core image file, adb searches for the default core file, named
core, in your current working directory. If such a file is found, adb uses it
regardless of whether or not the file belongs to the given program. You can
prevent adb from opening this file by using the hyphen(-) in place of the core
filename.Forexample, the command

adbsample-

prevents adb from searching your current working directory for a core file.
(

)

)

Adb: A Program Debugger

6.2.3 StartingAdb WithDataFiles

You can use adb to examine data files by giving the name of the data file in
place of the program or core file. For example, to examine a data file named
outdata, type

adboutdata

Adb opens this file and lets you examine its contents.

This method of examining files is very useful if the file contains non-ASCII data.
Adb provides a way t.o look at the contents of the file in a variety of formats and
structures. Note that adb may display a warning when you give the name of
non-ASCII data file in place of a program file. This usually happens when the
content of the data file is similar to a program file. Like core files, data files
cannot be executed.

6.2.4 Starting With the Write Option

You can make changes and corrections in a program or data file using ad b if you
open it for writing using the-w option. For example, the command

adb-wsample

opens the program file a ample for writing. You may then use adb commands to
examine and modify this file.

Note that the -w option causes ad b t.o create a given file if it does not already
exist. The option also lets you write directly to memory after executing the
given program. See the section "Patching Binary Files" later in this chapter.

6.2.5 Starting With the Prompt Option

You can define the prompt used by ad b by using the -p option. The option has
the form ·

-p prompt

where prompt is any combination of characters. If you use spaces, enclose the
prompt in quotes. For example, the command

adb-p "Mar IO->" sample

sets the prompt t.o "Mar 10->" The new prompt takes the place of the default
prompt (*)when ad b begins t.o prom pt for commands.

~3

XENIX Programmer's Guide

Make sure there is at least one space between the -p and the new prompt,
otherwise &db will display an error message. Note that adb automatically
supplies a space at the end of the new prompt, so you do not have to supply one.

6.2.6 LeavingAdb

You can stop adb and return to the system shell by using the $q or $Q
commands. You can also stop the debugger by typing CNTRL-D.

You cannot stop &db command by pressing the INTERRUPT or QUIT keys.
These keys are caught by ad band cause it to to wait for a new command.

6.3 Displaying Instructions and Data

Adb provides several commands for displaying the instructions and data of a
given program and the data of a given data file. The commands have the form

address!, count]= format

addreaa(, count]? format

address!, count]/ format

where addreaa is a value or expression giving the location of the instruction or
data item, coant is an expression giving the number of items to be displayed,
and format is an expression defining how to display the items. The equal sign
(=),question mark(?), and slash(/) tell adb from what source to takethe item
to be displayed. If the question mark(?) is given, the programfile is examined. If
the slash(/) is given, the core file is examined.

6.3.1 FormingExpressions

Expressions may contain decimal, octal, and hexadecimal integers, symbols,
ad b variables, register names, and a variety of arithmetic and logical operators.

Decimal, Octal, and Hexadecimal Integers

(

(

Decimal integers must begin with a nonzero decimal digit. Octal numbers must
begin with a zero and may have octal digits only. Hexadecimal numbers must
begin with the prefix "Ox" and may contain decimal digits and the letters "a" (_
through "f" (in both upper and lowercase). The following are valid numbers

)

)

)

Adb: A Program Debugger

Decimal Octal Hexadecimal

34
4090

042
07772

Ox22
Ox ff a

Although decimal numbers are displayed with trailing decimal point(.), you
must not use the decimal point when typing the number.

Symbols

Symbols are the names of globol variables and functions defined within the
program being debugged and are equal to the address of the given variable or
function. Symbols are stored in the program's symbol table and are available if
the symbol table has not been stripped from the program file (see strirJ.. CP)).

In expressions, you may spell the symbol exactly as it is in the source program or
as it has been stored in the symbol table. Symbols in the symbol table are no
more than eight characters long and those defined in C programs are given a
leading underscore(_). The following are examples of symbols.

main _mam hex2bin _out_of

Note that if the spelling of any two symbols is the same (except for a leading
underscore), adb will ignore one of the symbols and allow references only to the
other. For example, if both "main" and "_main" exist in a program, then adb
accesses only the first to appear in the source and ignores the other.

When you use the? command, adb uses the symbols found in the symbol table
of the program file to create symbolic addresses. Thus, the command
sometimes gives a function name when displaying data. This does not happen if
the ? command is used for text (instructions) and the / command for data.
Local variables cannot be addressed.

AdbVariables

Adb automatically creates a set of its own variables whenever you start the
debugger. These variables are set to the addresses and sizes of various parts of
the program file as defined below.

b
d
m
s
t

base address of data segment
size of data
execution type
size of stack
size of text

6-5

XENIX Programmer's Guide

A user can access locations by using the adb defined variables. The

$v

request prints these variables.

Adb reads the program file to find the values for these variables. If the file does
not seem to be a program file, then ad b leaves the values undefined.

You can use the current value of an variable in an expression by preceding the
variable name with an less than (<)sign. For example, the current value of the
base variable "b" is

<b

You can create your own variables or change the value of an existing variable by
assigning a value to a variable name with the greater than (>) sign. The
assignment has the form

ezpression > variable-name

where ezpresaion is the value to be assigned t.o the variable, and variable-name
must be a single letter. For example, the assignment

Ox2000>b

assigns the hexadecimal value "Ox2000" to the variable "b".

You can display the value of all currently defined ad b variables by using the $v
command. The command lists the variable names followed by their values in
the current format. The command displays any variable whose value is not
zero. If a variable also has a nonzero segment value, the variable's value is
displayed as an address; otherwise it is displayed as a number.

Current Address

Adb has two special variables that keep track of the last address to be used in a
command and the last address to be typed with a command. The • (dot)
variable, also called the current address, contains the last address to be used in a
command. The" (double quotation mark) variable contains the last address to
be typed with a command. The • and " variables are usually the same except

(

(

when implied commands, such as the newline and caretr) characters, are used. ti
(These automatically increment and decrement., but leave" unchanged.) '-

Both the • and the" may be used in any expression. The less than (<)sign is not
required. For example, the command

6-6

)

)

)

Adb: A Program Debugger

displays the value of the current address and

displays the last address to be typed.

Register Names

Ad b lets you use the current value of the CPU registers in expressions. You can
give the value of the register by preceding its name with the less than (<)sign.
Adb recognizes the following register names:

ax register a
bx registerb
ex registerc
dx registerd
di data index
si stack index
bp base pointer
ft status flag
ip instruction pointer
cs code segment
ds data segment
SS stack segment
es extra segment
sp stack pointer

For example, the value of the "ax" register can be given as

<ax

Note that register names may not be used unless adb has been started with a
core file or the program is currently being run under adb control.

Operators

You may combine integers, gymbols, variables, and register names with the
following operators:

6-7

XENIX Programmer's Guide

Unary

Not
Negative

• Contents of location

Binary

+ Addition
Subtraction

• Multiplication
% Integer division
8& Bitwise AND

l Bitwise inclusive OR
Modulo

Round up to the next multiple

Unary operators have higher precedence than binary operators. Ali binary
operators have the same precedence. Thus, the expression

is equal to 10 and

is 18.

You can change the precedence of the operations in an expression by using
parentheses. For example, the expression

4+(2•3)

is equal to 10.

Note that adb uses 32 bit arithmetic. This means that values that exceed
2,147,483,647 (decimal) are displayed as negative values.

Note that the unary • operator treats the given address as a pointer. An
expression using this operator resolves to the value pointed to by that pointer.
For example, the expression

is equal to the value at the address "Oxl234", whereas

Oxl234

&-8

(

(

)

)

Adb: A Program Debugger

isjustequal to"Oxl234"

6.3.2 ChoosingDataFormat.8

A format is a. letter or character that defines how data. is to be displayed. The
following a.re the most commonly used formats:

Letter Format

0 I word in octal
d I word in decimal
D 2 words in decimal
x I word in hexadecimal
x 2 words in hexadecimal
u I word as an unsigned integer
f 2 we ~sin floating point
F 4 wo1 ... _ in floating point

c I byte as a character
s a null terminated character string

i ma.chine instruction
b I byte in octal

a the current absolute address
n a newline
r a blank space
t a horizontal tab

A format may be used by itself or combined with other formats to present a
combination of data in different forms.

The d,o ,x, and u formats may be used to display int type variables; D and X to
display long variables or 32-bit values. The f and F formats may be used to
display single and double precision floating point numbers. The c format
displays char type variables and s is for arrays of char that end with a null
character (null terminated strings).

The i format displays machine instructions in 8086/286 mnemonics. The b
format displays individual bytes and is useful for display data associated with
instructions or the high or low bytes of registers.

The a,r, and n formats a.re usually combined with other formats to make the
display more readable. For example, the format

ia

6-9

XENIX Programmer's Guide

causes the current address to be displayed after ea.ch instruction.

You may precede each format with a count of the number of times you wish it to
be repeated. For example the format

4c

displays four ASCII characters.

It is possible to combine format requests to provide elaborate displays. For
example, the command

displays four octal words followed by their ASCII interpretation from the data
space of the core image file. In this example, the display starts at the address
"<b", the base address of the program's data. The display continues until the
end-of-the-file since the negative count "-1" cause an indefinite execution of
the command until an error condition such as the end of the file occurs. In the
format, "4o" displays the next four words (16-bit values) as octal numbers. The
"4 • " then moves the current address back to the beginning of these four words
and "•C" redisplays them as eight ASCII characters. Finally, "n" sends a
newline character to the terminal. The C format causes values to be displayed
as ASCII characters if they are in the range 32 to 126. If the value is in the range
0 to 31, it is displayed as an "at" sign(@) followed by a lowercase letter. For
example, the value 0 is displayed as "@a". The "at" sign itself is displayed as a
double at sign"@@"

6.3.3 Usingthe=Command

The = command displays a given address in a given format. The command is
used primarily to display instruction and data addresses in simpler form, or to
display the results of arithmetic expressions. For example, the command

main=a

displays the absolute address of the symbol "main" and the command

<b+Ox2000=D

displays (in decimal) the sum of the variable "b" and the hexadecimal value
''Ox2000"

If a count is given, the same value is repeated that number of times. For
example, the command

6-10

(

(

)

)

Adb: A Program Debugger

main,2=x

displays the value of "main" twice.

If no address is given, the current address is used instead. This is the same as the
command

If no format is given, the previous format given for this command is used. For
example, in the following sequence of commands both "main" and "start" are
displayed in hexadecimal.

main=x
start=

6.3.4 Using the? and/ Commands

You can display the contents of a text or data segment with the T and /
commands. The commands have the form

[addre88] [, count]?[/ ormat]

[addre88] [, count]/ [format]

where addre88 is an address with the given segment, count is the number of
items you wish to display, and format is the format of the items you wish to
display.

The 'l command is typically used to display instructions in the text segment.
For example, the command

main,5?ia

displays five instructions starting at the address "main" and the address of each
instruction is displayed immediately before it. The command

main,5?i

displays the instructions but no addresses other than the starting address.

The / command is typically used to check the values of variables in a program,
especially variables for which no name exists in the program's symbol table.
For example, the command ·

6-11

XENIX Programmer's Gulde

<bp-4?x

displays the value (in hexadecimal) of a local variable. Local variables are
generally at some offset from the address pointed to by the hp register. (

6.3.5 An Example:SimpleFormatting

This example illustrates how to combine formats in ! or/ commands to display
different types of values when stored together in the same program. The
program to be examined has the following source statements.

char
int
int
long
float
char

main()
{

}

strl[]
one
number
lnum
fpt
str2[]

one=2;

= "This is a character string" ;
=l;
=456;
= 1234;
= 1.25;
= "This is the second character string" ;

The program is compiled and stored in a file named sample.

To start the session, type

adbsample

You can display the value of each individual variable by giving its name and
corresponding format in a/ command. For example, the command

strl/s

displays the contents of "strl" as a string

_strl: This is a character string

and the command

number/d

displays the contents of "number" as a decimal integer

_number: 456.

6-12

(

(

)

)

Adb: A Program Debugger

You may choose to view a variable in a variety of formats. For example, you can
display the long variable "lnum" as a 4-byte decimal, octal, and hexadecimal
number by using the commands

lnum/D
_lnum: 1234
lnum/O
_Inum: 02322
Inum/X
_Inum: Ox4D2

You can also examine all variables as a whole. For example, if you wish to see
them all in hexadecimal, type

strl,5/8x

This command displays eight hexadecimal values on a line and continues for
five lines.

Since the data contains a combination of numeric and string values, it is
worthwhile to display each value as both a number and a character to see where
the actual strings are located. You can do this with one command by typing

strl,5/4x4'8Cn

In this case, the command displays four values in hexadecimal, then the same
values as eight ASCII characters. The caret(') is used four times just before
displaying the characters to set the current address back to the starting address
for that line.

To make the display easier to read, you can insert a tab between the values and
characters and give an address for each line by typing

strl,5/4x4'8t8Cna

6.4 DebuggingProgramExecution

Adb provides a variety of commands to control the execution of programs
being debugged. The following sections explain how to use these commands as
well as how to display the contents of memory and registers.

Note that C does not generate statement labels for programs. This means it is
not possible to refer to individual C statements when using the debugger. In
order to use execution commands effectively, you must be familiar with the
instructions generated by the C. compiler and how they relate to individual C

f>.13

XENIX Programmer's Guide

statements. One useful technique is to create an assembly language listing of
your C program before using adb, then refer to the listing as you use the
debugger. To create an assembly language listing, use the -S option of the cc
command(see Chapter 2, "Cc: aC Compiler").

6 .4 .1 Executing a Program

You can execute a program by using the :r command. The command has the
form

I addressJ [,countJ :rl argumentsJ

where address gives the address at which to start execution, count is the number
of breakpoints you wish to skip before one is taken, and arguments are the
command line arguments, such as filenames and options, you wish to pass to the
program.

If no address is given, then the start of the program is used. Thus, to execute the
program from the beginning type

:r

If a count is given, adb will ignore all breakpoints until the given number have
been encountered. For example, the command

,S:r

causes adb to skip the firsts breakpoints.

If arguments are given, they must be separated by at least one space each. The
arguments are passed to the program in the same way the system shell passes
command line arguments to a program. You may use the shell redirection
symbols if you wish.

The :r command removes the contents of all registers and destroys the current
stack before starting the program. This kills any previous copy of the program
you may have been running.

6.4.2 SettingBreakpolnts

(

(

You can set a breakpoint in a program by using the :b command. Breakpoints (
cause execution of the program to stop when it reaches the specified address. ·
Control then returns to adb. The command has the form

().14

)

)

Adb: A Program Debugger

address I, countJ :b command

where address must be a valid instruction address, count is a count of the
number of times you wish the breakpoint to be skipped before it causes the
program to stop, and command is the adb command you wish to execute when
the breakpoint is taken.

Breakpoints are typically set to stop program execution at a specific place in the
program, such as the beginning of a function, so that the contents of registers
and memory can be examined. For example, the command

main:b

sets a breakpoint at the start of the function named "main". The breakpoint is
taken just as control enters the function and before the function'sstack frame is
created.

A breakpoint with a count is typically used within a function which is called
several times during execution of a program, or within the instructions that
correspond to a for or while statement. Such a breakpoint allows the program
to continue to execute until the given function or instructions have been
executed the specified number of times. For example, the command

light,5:b

sets a breakpoint at the fifth invocation of the function "light". The breakpoint
does not stop the function until it has been called at least five times.

Note that no more than 16 breakpoints at a time are allowed.

6.4.3 Displaying Breakpoints

You can display the location and count of each currently defined breakpoint by
using the $b command. The command displays a list of the breakpoints given
by address. If the breakpoint has a count and/or a command, these are given as
well.

The $b command is useful if you have creating several breakpoints in your
program.

6.4.4 Continuing Execution

You can continue the execution of a program after it has been stopped by a
breakpoint by using the :c command. The command has the form

6-15

XENIX Programmer's Guide

[address] [,count] :c [signalj

where address is the address of the instruction at which you wish to continue
execution, count is the number of breakpoints you wish to ignore, and signal is (
the number of the signal to send to the program (see signa(S) in the XENIX ·
Reference Manual).

If no address is given, the program starts at the next instruction after the
breakpoint. If a count is given, adb ignores the first count breakpoints.

6.4.5 Stopping & Program with Interrupt and Quit

You can stop execution of a program at any time by pressing the INTERRUPT
(CTRL-\) or QUIT (DEL) keys. These keys stop the current program and return
control to adb, The key are especially useful for programs that have infinite
loops or other program errors.

Note that whenever you press the INTERRUPT or QUIT key to stop a program,
adb automatically saves the signal and passes it to the program if you start it
again by using the :c command. This is very useful if you wish to test a program
that uses these signals as part of its processing.

If you wish to continue execution of the program but do not wish to send the (
signals, type

:c 0

The command argument "O" prevents a pending signal from being sent to the
program.

6 .4 .6 Single-Stepping a Program

You can single-step a program, i.e., execute it one instruction at a time, by using
the :s command. The command executes an instruction and returns control to
ad b. The command has the form

[address I [, count J :s

where address must be the address of the instruction you wish to execute, and
count is the number of times you wish to repeat the command.

If no address is given, adb uses the current address. If a count is given, a.db (
continues to execute each successive instruction until count instructions have
been executed. For example, the command

6-16

)

)

Adb: A Program Debugger

main,S:s

executes the first 5 instructions in the function main.

6 .4. 7 Killing a Program

You can kill the program you are debugging by using the :k command. The
command kills the process created for the program and returns control to adb.
The command is typically used to clear the current contents of the CPU
registers and stack and begin the program again.

6.4.8 Deleting Breakpoints

You can delete a breakpoint from a program by using the :d command. The
command has the form

address:d

where address is the address of the breakpoint you wish to delete.

The :d command is typically used to delete breakpoints you no longer wish to
use. The following command deletes the breakpoint set at the start of the
function "main".

main:d

6.4.9 Displaying the C Stack Backtrace

You can trace the path of all active functions by using the $c command. The
command lists the names of all functions which have been called and have not
yet returned control, as well as the address from which each function was called
and the arguments passed to it.

For example, the command

$c

displays a backtrace of the C language functions called.

By default, the $c command displays all calls. If you wish to display just a few,
you must supply a count of the number of calls you wish to see. For example,
the command

6-17

XENIX Programmer's Guide

,25$c

displays upto 25 calls in the current call path.

Note that function calls and arguments are put on the stack after the function
has been called. If you put breakpoints at the entry point to a function, the
function will not appear in the list generated by the $c command. You can
remedy this problem by placing breakpoints a few instructions into the
function. ·

6.4.10 Displaying CPU Registers

You can display the contents of all CPU registers by using the $r command.
The command displays the name and contents of each register in the CPU as
well as the current value of the program counter and the instruction at the
current address. The display has the form

ax OxO fl OxO
bx OxO ip OxO
ex OxO cs OxO
dx OxO ds OxO
di OxO SS OxO
si OxO es OxO
sp OxO sp OxO
0:0: ad db al,bl

The value of each register is given in the current default format.

6 .4 .11 Displaying Extern ill.I Variables

You can display the values of all external variables in the program by using the
$e command. External variables are the variables in your program that have
global scope or have been defined outside of any function. This may include
variables that have been defined in library routines used by your program.

The $e command is useful whenever you need a list of the names for all available
variables or to quickly summarize their values. The command displays one
name on each line with the variable's value (if any) on the same line.

The display has the form

6-18

(

)

}

)

Adb: A Program Debugger

fac: 0
_ermo: 0
_end: 0
_sobuf: 0
_obuf: 0
_lastbu: 0406
_sibuf: 0
_stkmax: 0
lscadr: 02
_iob: 01664
_edata: 0

6.4.12 An Example: Tracing Multiple Functions

The following example illustrates how to execute a program under adb control.
In particular, it shows how to set breakpoints, start the program, and examine
registers and memory. The program to be examined has the following source
statements.

6-19

XENIX Programmer's Guide

int fcnt,gcnt,hcnt;
h(x,y)
{

inthi; register int hr;
hi=x+l;
hr=x-y+l;
bent++;
hj:
f(hr,hi);

}

g(p,q)
{

intgi; register int gr;
gi=q-p;
gr=q-p+l;
gent++;
gj:
h(gr,gi);

}

f(a,b)
{

int fi; register int fr;
fi=a+2•b;
fr=a+b;
fcnt++;
fj:

}
g(fr,fi);

main()
{

}
f(l,1);

The program is compiled and stored in the file named sample. To start the
session, type

adbsample

This starts adb and opens the corresponding program file. There is no core
image file.

The first step is to set breakpoints at the beginning of each function. You can do
this with the :b command. For example, to set a breakpoint at the start of the
function "f", type

6-20

(

(

(

)

)

Adb1 A Program Debugger

f:b

You can use similar commands for the "g" and "h" functions. Once you can
created the breakpoints you can display their locations by typing

$b

This command lists the address, optional count, and optional command
associated with each breakpoint. In this case, the command displays

breakpoints
count bkpt command
1 _f
1 _g
1 _h

The next step is to display the first five instructions in the "f" function. Type

f,5?ia

This command displays five instructions, each preceded by its symbolic
address. The instructions in 8086/286 mnemonics are

_f: push bp
_f+l.: mov bp,sp
_f+3.: push di
_f+4.: push si
_f+5.: call chkstk
_f+8.:

You can display five instructions in "g" without their addresses by typing

g,5?i

In this case, the display is

_g: push bp
mov bp,sp
push di
push si
call chkstk

) To start program execution, type

:r

&-21

XENIX Programmer's Guide

Adb displays the message

sample: running

and begins to execute . .As soon as adb encounters the first breakpoint (at the (
beginning of the "f" function), it stops execution and displays the message

breakpoint f· -· push bp

Since execution to this point caused no errors, you can remove the first
breakpoint by typing

f:p

and continue the program by typing

:c

Adb displays the message

sample: running

and starts the program at the next instruction. Execution continues until the (
next breakpoint where adb displays the message ,

breakpoint _g: push bp

You can now trace the path of execution by typing

$c

The commands shows that only two functions are active: "main" and "f".

J(l.,1.) from.Jllain+6 .
.Jllain (1.,470.) from_start+114.

Although the breakpoint has been set at the start of function "g" it will not be
listed in the backtrace until its first few instructions have been executed. To
execute these instructions, type

,S:s

Adb single-steps the first five instructions. Now you can list the backtrace
again. Type

(

)

)

Adb: A Program Debugger

$c

This time the list shows three active functions:

_g(2.,3.) from_f+48.
_f(l.,l.) from_main+6.
_main(l.,470.) from_start+l14.

You can display the contents of the integer variable "tent" by typing

fcnt/d

This command displays the value of "fcnt" found in memory. The number
should be "l ".

You can continue execution of the program and skip the first 10 breakpoints by
typing

,lO:c

Adb starts the program and display the running message again. It does not
stop the program until exactly ten breakpoints have been encountered. It
displays the message

breakpoint _g: push bp

To show that these breakpoints have been skipped, you can display the
backtrace again using $c.

_f (2., 11.) from _h+46:
_h(lO., 9.) from_g+48:
_g(ll., 20.) from_f+48:
_f(2., 9.) from_h+46:
_h(8., 7.)from_g+48:
_g(9., 16.) from_f+48:
_f(2., 7.) from_h+46:
_h(6., 5.)from_g+48:
_g(7., 12.) from_f+48:
_f(2., 5.) from_h+46:
_h (4., 3.)from _g+48:
_g(5., 8.)from_f+48:
_f(2., 3.) from_h+46:
_h(2., 1.)from_g+48:

6-23

XENIX Programmer's Gulde

6.5 Using theAdb Memory Maps

Adb prepares a set of maps for the text and data segments in your program and (
uses these maps to access items that you request for display. The following I
sections describe how to view these maps and how they are used to access th~
text and data segments.

6.5.1 Displaying the Memory Maps

Adb interprets these different file formats and provides access to the different
segments through a set of maps. To print the maps type: $m command. The
command has the form

$m [segmentJ

In nonshared files, both text(instructions) and data are intermixed. This makes
it impossible for adb to differentiate data from instructions and some of the
printed symbolic addresses look incorrect; for example, printing data addresses
as offsets from routines.

In shared text, the instructions are separated from data and the

accesses the data part of the a. out file. This request tells ad b to use the second
part of the map in the a. out file. Accessing data in the core file shows the data
after it was modified by the execution of the program. Notice also that the data
segment may have grown during program execution. In shared files the
corresponding core file does not contain the program text.

If you have started adb but have not executed the program, the $m command
display has the form

?map 'a.out'
bl=O el =03700 fl=040
b2=0 e2 =0 f2=03740
/map I I

bl=O el =0100000000 fl=O
b2=0 e2 =0 f2=0

The b, e, and f fields are used by adb to map addresses into file addresses. The
"fl" field is the length of the header at the beginning of the file (Ox34 bytes for (
an a.out file and 02000 bytes for a core file). The "f2" field is the displacement
from the beginning of the file to the data For unshared files with mixed text and
data this is the same as the length of the header; for shared files this is the length
of the header plus the size of the text portion.

t>-24

)

)

)

Adb: A Program Debugger

The "b" and "e" fields are the starting and ending locations for a segment.
Given an address, "A", the location in the file (either a.outor core) is calculated
as:

bl::S:A::S:el =9 fileaddress=(A-bl)+fl
b2 ::S:A::S: e2 =9 file address= (A-b2)+f2

6.6 Miscellaneous Features

The following sections explain how to use a number of useful commands and
features of adb.

6 .6.1 Combining Commands on a Single Line

You can give more than one command on a line by separating the commands
with a semicolon(;). The commands are performed one at a time, starting at the
left. Changes to the current address and format are carried to the next
command. If an error occurs, the remaining commands are ignored.

One typical combination is to place a ? command after a I command. For
example, the commands

?I 'Th'; ?s

search for and display a string that begins with the characters "Th"

6.6.2 CreatingAdb Scripts

You can direct adb to read commands from a text file instead of the keyboard
by redirecting ad b 's standard input file at invocation. To redirect the standard
input, use the standard redirection gymbol < and supply a filename. For
example, to read commands from the file script, type

adbsample <script

The file you supply must contain valid adb commands. Such files are called
script files and can be used with any invocation of the debugger.

Reading commands from a script file is very convenient when you wish to use
the same set of commands on several different object files. Scripts are typically
used to display the contents of core files after a program error. For example, a
file containing the following commands can be used to display most of the
relevant information about a program error:

6-25

XENIX Programmer's Guide

120Sw
4095Ss
Sv
=3n
Sm
=3n" C Stack Backtrace"
SC
=3n" C External Variables"
Se
=3n"Registers"
$r
O$s
=3n"Data Segment"
<b,-1/8xna

6.6.3 Setting Output Width

You can set the maximum width (in characters) of each line of output created
by adb by using the $w command. The command has the form

n$w

where n is an integer number giving the width in characters of the display. You
may give any width that is convenient for your given terminal or display device.
The default width when adb is first invoked is80 characters.

The command is typically used when redirecting output to a lineprinter or
special terminal. For example, the command

120$w

sets the display width to 120 characters, a common maximum width for
lineprinters.

6 .6.4 Setting the Maximum Offset

(

(

Adb normally displays memory and file addresses as the sum of a symbol and
an offset. This helps associate the instructions and data you are viewing with a
given function or variable. When first invoked, adb sets the maximum offset to
255. This means instructions or data that are no more than 255 bytes from the
start of the function or variable are given symbolic addresses. Instructions or {
data beyond this point are given numeric addresses. ~

In many programs, the size of a function or variable is actually larger than 255
bytes. For this reason adb lets you change the maximum offset to

~26

)

)

Adb: A Program Debugger

accommodate larger programs. You can change the maximum offset by using
the $s command. The command has the form

n$s

where n is an integer giving the new offset. For example, the command

4095$s

increases the maximum possible offset to 4095. All instructions and data that
are no more than 4095 bytes away are given symbolic addresses.

Note that you can disable all symbolic addressing by setting the maximum
offset to zero. All addresses will be given numeric values instead.

6.6.5 SettingDefaultlnputFormat

You can set the default format for numbers used in commands with the $d
(decimal), $0 (octal), and $x (hexadecimal) commands. The default format
tells adb how to interpret numbers that do not begin with "O" or "Ox" and how
to display numbers when no specific format is given.

The commands are useful if you wish to work with a combination of decimal,
octal, and hexadecimal numbers. For example, if you use

$x

you may give addresses in hexadecimal without prepending each address with
"Ox". Furthermore, adb displays all numbers in hexadecimal except those
specifically requested to be in some other format.

When you first start adb, the default format is decimal. You may change this
at any time and restore it as necessary using the $d command.

6 .6 .6 Using XENIX Commands

You can execute XENIX commands without leaving adb by using the adb
escape command I. The escape command has the form

! command

where command is the XENIX command you wish to execute. The command
must have any required arguments. Adb passes this command to the system
shell which executes it. When finished, the shell returns control toadb.

For example, to display the date type

&-27

XENIX Programmer's Gulde

!date

The system displays the date at your terminal and restores control ad b.

6.6.7 Computing Numbers and Displaying Text

You can perform arithmetic calculations while in adb by using the =
command. The command directs adb to display the value of an expression in a
given format.

The command is often used to convert numbers in one base to another, to
double check the arithmetic performed by a program, and to display complex
addresses in easier form. For example, the command

Ox2a=d

displays the hexadecimal number "Ox2a" as the decimal number42 but

Ox2a=c

displays it as the ASCII character"*". Expressions in a command may have
any combination of symbols and operators. For example, the command

<d0-12•<dl+<b+5 x
computes a value using the contents of the do and dl registers and the adb
variable "b". You may also compute the value of external symbols as in the
command

main+5 X

This is helpful if you wish to check the hexadecimal value of an external symbol
address.

Note that the = command can also be used to display literal strings at your
terminal. This is especially useful in ad b scripts where you may wish to display
comments about the script as it performs its commands. For example, the
command

=3n" C Stack Backtrace"

(

(

spaces three lines, then prints the message "C Stack Backtrace" on the {.
terminal. ~-

6-28

)

)

Adb: A Program Debugger

6.6.8 An Example: Directory and lnodeDumps

This example illustrates how to create adb scripts to display the contents of a
directory file and the inode map of a XENIX file system. The directory file is
assumed to be named dir and contains a variety of files. The XENIX file system
is assumed to be associated with the device file / dev/ src and has the necessary
permissions to be read by the user.

To display a directory file, you must create an appropriate script, then start
adb with the name of the directory, redirecting its input to the script.

First, you can create a script file named script. A directory file normally
contains one or more entries. Each entry consists of an unsigned "inumber"
and a 14 character filename. You can display this information by adding the
command

0,-1 ?ut14cn

to the script file. This command displays one entry for each line, separating the
number and filename with a tab. The display continues to the end of the file. If
you place the command

="in umber" 8t" Name"

at the beginning of the script, adb will display the strings as headings for each
column of numbers.

Once you have the script file, type

adb dir- <script

(The hyphen(-) is used to prevent adb from attempting to open a core file.)
Adb reads the commands from the script and the resulting display has the form

inumber name
652
82
5971
5323
0

cap.c
cap
pp

To display the inode table of a file system, you must create a new script, then
start adb with the filename of the device associated with the file system (e.g.,
the hard disk drive).

The inode table of a file system has a very complex structure. Each entry
contains: a word value for the file's status flags; a byte value for the number
links; two byte values for the user and group IDs; a byte and word value for the

6-29

XENIX Programmer's Guide

size; eight word values for the location on disk of the file's blocks; and two word
values for the creation and modification dates. The inode table starts at the
address "02000". You can display the fust entry by typing

02000,-1 ?on3bnbrdn8un2Y2na

Several newlines are inserted within the display to make it easier to read.

To use the script on the inode table of/ dev/ src, type

adb / dev /src - <script

(Again, the hyphen(-) is used to prevent an unwanted core file.) Each entry in
the display has the form

02000: 073145
0163 0164 0141
0162 10356
28770 8236 25956 27766 25455 8236 25956 25206
1976Feb508:34:56 1975Dec2810:55:15

6.7 Patching Binary Files

You can make corrections or changes to any file, including executable binary
files, by using thew and W commands and invoking adb with the -w option.
The following sections describe how to locate and change values in a file.

6.7 .1 Locating Values in a File

You can locate specific values within a file by using the I and L commands. The
commands have the form

I address J ?I value

where address is the address at which to start the search, and value is the value
(given as an expression) to be located. The I command searches for 2 byte
values; L for 4 bytes.

The

?I

commands starts the search at the current address and continues until the first
match or the end of the file. If the value is found, the current address is set to
that value's address. For example, the command

f>-30

(

(

(

)

)

Adb: A Program Debugger

?l 'Th'

searches for the first occurrence of the string value "Th". If the value is found at
"main+210" the current address is set to that address.

6 .7 .2 Writing to a File

You can write to a file by using the w and W commands. The commands have
theform

I address] ?w value

where address is the address of the value you wish to change, and value is the
new value. The w command writes 2 byte values; W writes 4 bytes. For
example, the following commands change the word "This" to "The"

?l 'Th'
?W 'The'

Note that Wis used to change all four characters.

6.7.3 MakingChangestoMemor,y

You can also make changes to memory whenever a program has been executed.
If you have used an :r command with a breakpoint to start program execution,
subsequent w commands cause adb to write to the program in memory rather
than the file. This is useful if you wish to make changes to a program's data as it
runs, for example, to temporarily change the value of program flags or
constants.

&-31

c

(

(/

)

)

)

Chapter 7
As: An Assembler

7 .1 Introduction l

7.2 Command Usage 1

7 .3 Olaracters, Numbers, and Names 1
7. 3.1 Olaracta- Set 1
7 .3.2 integers 2
7.3.3 RealNumbus 2
7 .3.4 Encoded Real Number 3
7 .3.S Packed Decimal Numbers 3
7 .3.6 Olaracter and String Constams 4
7.3.7 Names 4
7.3.8 ReservedNames 4

7.4 Statements and Comments S
7 .4.1 Statements 5
7 .4.2 Comments 6

7 .S Source Files 6

7.6

7.7

Segments
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5

7
Text Segments 8
Data Segments - Near 9
Data Segments - Far 10
Bss Segments 11
Constant Segments 12

Labels, Variables, and Symbols 13
7.7.1 Labels 13
7.7.2 Simple Variables 14
7.7.3 Multiple-Value Variables 14
7.7.4 Symbols 15
7.7.5 AbsoluteSymbols 15

7.8

7.9

7.10

7.11

Operands 16
7.8.1 Immediate Operands 16
7.8.2 Register Operands 16
7.8.3 Direct Memory Operands 17
7.8.4 Based Operands 18
7.8.5 Indexed Operands 18
7.8.6 Based Indexed Operands 19

Expressions 19
7.9.1 Arithmetic Operators 20
7.9.2 SUR and SHL Operators 20
7.9.3 Relational Operators 21
7.9.4 Logical Operators 21
7.9.5 Attribute Operators 22
7.9.6 Expression Evaluation 26

Instruction Mnemonics 26
7.10.1
7.10.2
7.10.3
7.10.4
7.10.5
7.10.6

Directives
7.11.1
7.11.2
7.11.3
7.11.4
7.11.5
7.11.6
7.11.7
7.11.8
7.11.9
7.11.10
7.11.11
7.H.12
7.11.13
7.11.14
7.11.15
7.11.16

8086 lmtruction Mnemonics 27
8087 lmtruction Mnemonics 29
186 Instruction Mnemonics 31
286 Non-Privileged Instruction Mnemonics
286 Privileged Instruction Mnemonics
287 Instruction Mnemonics

33
ASSUME Directive 33
COMMENT Directive 34
DB Directive 34
OW Directive 35
DD Directive 35
DQ Directive 36
DT Directive 36
END Directive 37
EQU Directive 38
=Directive 38
EVEN Directive 39
EXTRN Directive 39
GROUP Directive 40
INCLUDE Directive 41
LABEL Directive 41
NAME Directive 42

32
32

(

32 (

(

)

)

)

7.11.17
7.11.18
7.11.19
7.11.20
7.11.21
7.11.22
7.11.23
7.11.24
7.11.25
7 .11.26
7.11.27
7.11.28
7 .11.29

ORG Directive 42
PROC and ENDP Directives 43
PUBLIC Directive 43
.RADIX Directive 44
SEGMENT and ENDS Directives 44
1F Directives (Conditionals) 47
PAGE Directive 48
TITLE Directive 49
SUBTITLE Directive 49
%OUT Directive SO
.LIST and .XLIST Directives SO
.SFCOND, .LFCOND,and .1FCONDDircctives 51
Instruction Sd Directives 51

7 .12 Program Listing Format 52
7.12.l Code Listing 52
7.12.2 Symbol Table 53

(

('

(I
'

)

)

)

7 .1 Introduction

This chapter describes the usage and input syntax of the XENIX 808611861286
assembler, as. The assembler produces relocatable objcc:a modules fnm 8086,
186, and 286 assembly language files. Object modules contain relocation
infonnation and a complete symbol table, and can be linked to othez objects
modules using the XENIX linker, Id.

As is designed to be used in those rare cases where C programs do not satisfy a
programming requirement. Thus, you can make complete programa by combining
as object modules with object modules created by the XENIX C compiler, u.

This chapter does not teach assembly language programming, nor docs it give a
detailed description of 8086, 186, and 286 instructioos. For infmnation on these
topics, you will need other references.

7.2 Command Usage

As is invoked as follows:

as [options] filename

The options are one or more assembler options, and jile11D111e is the name of an
assembly language source file. The source file name should have the ".s"
extension. Source files with this filename extension can also be assembled using
the cc command. See Chapter 2, ''Cc: AC Compiler.''

Although as has several options, the most commonly used are the -I and -o
options. The -I option causes the assembler to create a program listing that
includes the source, the assembled code, and any error messages. The listing is
given the ".1st" filename extension. The -o option directs as to place the object
module in the named file. The option has the fonn:

-o outfile

where outfile is the name of the file to receive the object module. If you do not use
the -o option, the object files created by as have the same name as the source file
except that the ". s" filename extension is replaced with a" .o".

For a complete list of the assembler options, see as(CP) in the XENIX Reference
Manual.

7 .3 Characters, Numbers, and Names

All assembly language programs consist of a combination of characters, numbers,
and names. Names and numbers are used to identify values in instruction
statements. Characters are used to fonn the names or numbers, or to form
character constants. The following sections describe what characters can be used
in a program and how to form numbers and names.

7.3.1 Character Set

As recognizes the following character set:

7-1

XENIX Propammer'a Gulde

ABC DEFGH 1J KLM N OPQR STU VW X YZ
abcdefghijtlmnopqratuvwxyz
01234567-119
?@_$:.lj()<>+-1•&

7.3.2 lntqen

Syntu

digits
digitsB
digitsQ
digitsO
digitsD
digitsH

An inleger represerts an integer munbcr. It is a combination of binary, octal,
decimal, or hexadecimal digits and an optional radix. The digits are a cmibination
of one or more digits of the specified radix: B. Q, 0, D, or H. If m radix is given,
as uses decimal by default. The following table lists the digits that can be used
with each radix.

Radix Tvne DIRib
B Binarv 01
Q Octal 01234567
0
D Decimal 0123456789
H Hexadecimal Ol 23456789ABCDEF

Hexadecimal numbers must always start with a decimal digit (0-9). The
hexadecimal digits A through F can be given as either upper or lower case.

The maximum munber of digits in an integer depends on the inSlruction or
directive in which the inleger is used.

Exam~es

OlOllOJOB
011118

132Q
170

5AH
Offl

900
150

90
15

You can override the default radix by using the .RADIX directive. See section,
''.RADIX Directive," given later in this chapter.

7.3.3 Real Numben

Syntu

digits.digits£ [+I-] digits

A real number represents a number having an integer, a fraction, and an exponent.
The digits can be any combination of decimal digits. Digits before the decimal
point (.) represent the integer part, and those after the point represent the fraction.
The digits after the exponent mark (E) rcpl'Csent the exponent. The exponent is
optional. If an exponent is given, the plus (+) and minus (-) signs can be used to

7-2

(

(

)

)

)

As: Aa AllemYer

indicate its sign.

Real numbers can only be used with the DD, DQ, and DT diRctives. The
maximum number of digits in the number and the maxim1m range of exponent
values depends on the directive.

Examples

25.23 2.523EI 2523.0E-2

7.J.4 Encoded Real Number

Syntax

digitsR

An encoded real number is an 8, 16, or 20-digit hexadecimal number that
represents a real number in encoded format. An encoded real number bu a sign
field, a biased exponent, and a mantissa. These values arc encoded as bit fielda
within the number. The exact size and meaning of each bit field depends on the
number of bits in the number. The digits must be hexadecimal digits. The number
must begin with a decimal digit (0-9).

Encoded real numbers can only be used with the DD, DQ, and DT directives. The
maximum number of digits for the encoded numbers used with DD, DQ, and DT
must not exceed 8, 16, and 20 digits, respectively. (If a leading zero is supplied,
the number must nel exceed 9, 17, and 21 digits.)

Example

3F800000R
3FFOOOOOOOOOOOOOR

; 1.0 for DD
; 1.0 fOI' DQ

7.J.5 Packed Decimal Numben

Syntax

[+ I - J digits

A packed decimal number represents a decimal integer that is to be stored in
packed decimal format. Packed decimal ~orage has a leading sign byte and 9
value bytes. Each value byte contains two decimal digits. The high order bil of the
sign byte is 0 for positive values, and I for negative values.

Packed decimals have the same fonnat as other decimal integers except that they
can take an optional plus (+) or minus (-) sign and can only be defined with the
DT directive. A packed decimal must not have more than 18 digits.

Examples

1234567890
-1234567890

; encoded as 00000000001234567890
; encoded as 80000000001234567890

7-3

XENIX Programmer's Golde

7.3.6 Cbara:ter and String Constants

Syntax

• characters •
" characters "

A character constant is a constant composed of a single ASCll character. A string
constant is a constant composed of two or more ASCll characters. Constants must
be enclosed in matching single quotation or double quotation marts.
Examples

'a'
'ab'

"This is a message."

7.3.7 Names

Syntax

characters ...

A name is a combination of letters, digits, and special characters thal can be used in
instruction statements to labels, variables, and symbols. Names have the following
formatting rules:

I . A name must begin with a letter, an underscore (_), a question mart (?),
a dollar sign($), or an at sign(@).

2. A name can have any combination of upper and lowercase letters.
Upper and lowercase letters are unique unless the - Ma or - Ms option
is used. (See as(CP) in the XENIX Reference Manual.)

3. A name can have any number of characters, but only the first 31
characters are used. AU other characters arc ignored.

Examples

subrout3
Array
..main

7.3.8 Reserved Names

A reserved name is any name that has a special, predefined meaning to the
assembler. Reserved names include iD5UUction and directive mnemonics, register
names, and predefined group and segment names. These names can only be used
as defined and must not be redefined.

The following is a list of all reserved names except instruction mnemonics. for a
complete list of instruction mnemonics, see "lmtruction Mnemonics" given later
in this chapter.

7-4

(

(

(

)

)

As: All Assembler

%OUT DD EQU LE SEO .286c
AH OOROUP ES LENGTH SEGMENT .286p
AL DH EVEN LOW SHL .287
AND DI EXTRN LT SHOKI' .8086
ASSUME DL FAR MOD SHR .8087
AX DQ GE NAME SI .LFCOND
BH DS GROUP NE SIZE .UST
BL DT GT NEAR SP .RADIX
BP DW HIGH NOi' SS .SFCOND
BX DWORD IF OFFSET SUBITL .TFCOND
BYTE DX lfl OR TBYTE .TYPE
CH ELSE lf2 ORO THIS .XUST
CL END lFDEF PAGE TITLE =
COMMENT END IF lFE PROC TYPE _sss
cs ENDP IFNDEF PTR WORD .DATA
ex ENDS INCLUDE PUBLIC XOR -TEXT
DB EQ LABEL QWORD .186

All upper and lowercase combinations of these names are considered to be the
same name. For example, the names "Length" and "LENGTH" are the same
name forthe LENGTH operator.

7 .4 Statements and Comments

All assembly language source files consist of one or more statements. Statements
define the actions to be taken by the assembler, such as the generation of
instruction code or the declaration of a variable.

Assembly language source files can also also contain comments. Comments are
programmer- supplied text that describes the action of the program or the purpose
of declared variables or labels.

The following sections describe the format of statements and comments in detail.

7.4.1 Statements

Syntax

[name] mnemonic [operands]

A statement is a combination of a name, an instruction or directive mnemonic, and
one or more operands. A statement represents an action to be taken by the
assembler. such as generating a machine instruction or generating one or more
bytes of data.

Statements have the following formatting rules:

I. A statement can begin in any column.

2. Statements with names normally start in column I.

3. A statement must not be longer than one line (128 characters).

1-S

XENIX Programmer'• Gulde

4. A statement must be laminated by a newline character. This includea
that la• •atemem in the soun:e file.

Eumples

COUii! db 0
mov ax, bx
assume cs:_TEXT, ds:OOROUP
.main proc far

7.4.2 Comments

Syntax

;IOI

A comment is any combination of dlllactcn pm;c:dcd by a aemicolon (;) IJld
terminated by a newline character. Comments describe the action of a program at
the given point. for this reason. the assembler amplctely ignores cOIDIDCJlls.

Comments can be placed anywhac in a program, including on the 1111J11C line as a
statement. The comment must be placed after all names, mnemonics, and
operands have been given. A cmllDClll lllllll not be longer than one line, that is, it
must n<l contain any embedded newline c:bancters. for very Jong comments, the
COMMENT directive can be used.

Examples

; This comment is alone on a line.
mov ax, bx ; This aimment follows a statement.

; Comments can contain rcsened wonts lite _TEXT.

Although comments are not a requiml pan of a propam, they are sttongly
recommended.

7 .5 Source Fales

Syntax

staremenr

END

An assembly language source file is any combination of statements and comments
that ends with an END din:ctive. AD soma: files to be assembled by m must have
this fonn.

(

In general, as imposes no restriction on the couent of a source file. This means a (
source file can represent a complete program, a part of a program, or ju• symbols ...
to be used by a program.

In XENIX. source files that define a COlllJllete or partial program should contain one
or more of the XENIX predefined segmeDlS: TEXT, DATA, BSS, and CONST.
Object files created from assembly language mun:e files that use the predefined

7-6

)

As: All AasemWer

segments are guaranteed to be compatible willl object files created from C language
source files and with all XENIX libraries. The formats of the TEXT, DATA, BSS,
and CONST segments are defined in the following scc:tions. The segments can
appear in any order.

Note that, like all other statements in a source file, the llatement containing the
END directive must terminate willl a newline character. As ignma any teXl it
finds on lines after this statement. Eum .. e

name Sample
DGROUP group ..DATA

assume cs:_TEXT, ds:DGROUP, ss:DGROUP, es:DGROUP

public ..main
extm ..printf:near

..DATA segment word public 'DATA'
string db 'Hello.•, Oah, 0
..DATA ends

_TEXT segment wmd public 'CODE'
..main proc near

push bp
mov sp. bp
push si
push di

mov ax, offset DGROUP:string
push ax
call ..printf
add sp, 2

pop di
pop si
mov bp, sp
pop bp
rel

..main endp
_TEXT ends

end

In this example, the module named "Sample" contains two segments: "_TEXT"
and "..DATA." _TEXT is the program code segment. lt contains a procedure
named "..main" . ..DATA is the program data segment. It contains the definition
for the variable ••suing. '' This module represents a small model pogram.

7 .6 Segments

A segment is a named collection of statements that define a program's code, data,
or uninitialized data space. AU assembly language source files consi5l of zero or
more segments.

7-7

XENIX Programmer's GuJde

In XENIX, there are four segment types:

TEXT
DATA
BSS
CONST

A TEXT segment defines program code, a DAT A segment defines data, a BSS
segment defines uninitializ.ed data space, and a CONST segment defines constant
data. Each segment type has a unique naming convention and content
requirement. These conw:mions are based on the memory model chmen for the
program.

XENIX has four different memory models:

Small (impure telll)
Small (pure text)
Middle
Large

A memory model defines the number of actual memory segments a program can
occupy when loaded into memory. Y w select a memory model for an assembly
language by choosing the appropriate segment names in your source file and by
linking with the appropriate XENIX object modules and libraries when you create
the executable program.

The following sections define the formatting rules for TEXT, DATA, BSS, and
CONST segment in small, middle, and large assembly language programs.

7.6.1 Tnt Segments

name _TEXT

SEGMENT WORD PUBLIC 'CODE'
statemenrs
ENDS

A text segment drfuies a module's program code. It contains sta1emen1s that define
instructions and data within the segment. A text segment musi have the name
name_ TEXT, where name can be any valid name. for middle and large module
programs. the module's own name is recommended. f<r snail model programs,
"_TEXT" only should be used.

A segment can contain any combination of instructions and data statements. These
statements must appear in an order that creates a valid program. All instructions
and data addresses in a text segment are relative to the CS segment regiSler.
Therefore, the statement

assume cs: name_TEXT

must appear at the beginning of the segment. This statement ensures that each label
and variable declared in the segment will be associated with the CS segment
register (see the section, "ASSUME Directive" given later in this chapter).

Text segments should have "PUBLIC" combimtion type, and muSl have the class
name "CODE." These define loading instructions that are passed to the linker.
Although other segment attributes are available, they should not be used. f<r a

7-8

(

(

)

)

)

As: An Auembler

complete description of the annbutes, see the section, "SEGMENT and ENDS
Directives," given later in this chapter.

Small Model Programs. Only one text segment is allowed. The segmem must not
exceed 64 Kbytes. If the segment's complete definition is distributed among
several modules, the statement

!GROUP groop _TEXT

should be used at the beginning of each module to ensure that the segment is placed
in a single 64 Kbyte physical segment. All procedure and statement labels should
have the NEAR type.

Example

!GROUP group _TEXT
assume cs:_TEXT

_TEXT segment word public 'CODE'
_main proc near

..main endp
_TEXT ends

Middle and Large Model Programs. Multiple text segments an: allowed,
however, no segment can be greater than 64 Kbytes. To distinguish one segment
from another, each should have its own name. Since most modules contain only
one text segment, the module's name is often used as part of the text segment's
name. All procedure and statement labels should have the FAR type, unless they
will only be accessed from within the same segment.

Example

assume cs:SAMPLE_TEXT

SAMPLE-TEXT segment word public 'CODE'
..main proc far

..main endp
SAMPLE_TEXT ends

7.6.2 Data Segments- Near

Syntax

..DATA SEGMENT WORD PUBLIC 'DATA'
statemen1s

..DATA ENDS

A near data segment defines initialized data that is in the segmenl pointed to by the
DS segment register when the program starts execution. The segment is "near"
because all data in the segment is accessible without giving an explicit segment

7-9

XENIX Propammer'a Gahle

value. All pograms have exactly one near data aegment. Only large model
programs can have additional data segments (see the ow section).

A near data segmeia•a name must be ".DATA.•• 1be 1Cgment can contain any
combination of data 11a1ements defining variables to be used by the pogram. 1be
segment must not exceed 64 Kbytea of data. AD data adlhsse1 in the segment IK
relative to the predefined group "DGROUP". lbcrefore. the atatemenu

DGROUP group .DATA
assume els: DGROUP

must appear at the begirming of the aegment. 1beae Slatementa ensure that each
variable declared in the data segment will be associated with the DS segment
register and DGROUP (see the sections. "ASSUME Directive" IJld "GROUP
Directive" given later in this chapter).

Near data segments must be "WORD" aligned, must have "PUBLIC"
combination type. and must have the class name "DAT A.•• These define loading
instructions that are passed to the linker. Ahbough Clbcr segment attributes are
available, they must not be used. Fer a complete description of the attributes, aee
the section, ''SEGMENT and ENDS Directives, .. gi~ later in this chapter.

Exam .. e

DGROUP group .DATA
assume ds: DGROUP

.DATA
coont
array
string
.DATA

segment
dw
dw
db
ends

word public 'DATA'
0
IOdup(I)
'Type CANCEL then pn:ss RETURN". Oah, 0

7.6.l Data Segments - Far

Syntax

name.DATA

name.DATA

SEGMENT WORD PUBLIC 'FAR.DATA'
statemenls
ENDS

A far data segment defines data or data space that can only be accessed by
specifying an explicit segment value. Only large model programs can have far
data segments.

(

A far data segment's name must be name.DATA, where name can be any valid
name. The name of the first variable declared in the segmern is recommended.
The segment can contain any combination of data statemenls defining variables to
be used by the program. The segment must not exceed 64 Kbytes of data. All data
addresses in the segment are relative to the ES segment register. When accessing a
variable in a far data segment, the ES register must be set to the appropriate (.
segment value. Also, the segment override operator must be used with the
variable• s name (see the section, "Attribute Operators," given later in this
chapter).

7-10

)

)

)

As: AD Assembler

Far data segments must be "WORD" aligned, must have "PUBLIC''
combination type, and should have the class name "FAJU>ATA." These define
loading instructions that are passed to the linker. Although other segment attributes
are available, they must not be used. For a complete description of the atttibutes,
see the section, ''SEGMENT and ENDS Directives," given later in this chapter.

Example

ARRAY.DATA
array dw

dw
dw
dw

table dw
ARRAY.DATA

segment word public 'FAJU>ATA'
0
I
2
4
1600 dup(?)
ends

7 .6.4 Bss Segments

Syntax

..BSS SEGMENT WORD PUBLIC 'SSS'
statemeflls

..BSS ENDS

A bss segment defines uninitialized data space. A bss segment's name must be
"..BSS." The segment can contain any combination of data stateme111s defining
variables to be used by the program. The segment must in exceed 64 Kbytes. AU
data addresses in the segment arc relative to the predefined group "DGROUP"
Therefore, the statements

DGROUP group ..BSS
assume ds: DGROUP

must appear at the beginning of the segment. These statements ensure that each
variable declared in the bss segment will be associated with the DS segment
register and DGROUP (see the sections, "ASSUME Directive" and "GROUP
Directive.·· given later in this chapter).

Notl'

The group name DGROUP must not be defined in more than one
GROUP directive in a source file. If your source file contains both a
DAT A and BSS segmelll, the directive

DGROUP group ..DAT A, ..BSS

should be used.

A bss segment must be "WORD" aligned. must have "PUBLIC" combination
type, and must have the class name "BSS. ••These define loading instructiom that
are passed to the linker. Although other segment attributes are available, they must

7-11

XENIX Programmer's Gulde

not be used. For a complete description of the attnbutcs, sec the sect.ion,
"SEGMENT and ENDS Directives," given later in this chapter.

Example

OOROUP group -8SS
assume ds: DGROUP

-8SS
courn
array
string
-8SS

segmern
dw
dw
db
ends

won1 public ·sss·
?
10 dup(?)
30 dup(?)

7 .6.5 Comtant Segments

Syntax

CONST SEGMENT WORD PUBLIC 'CONST'
statemenls

CONST ENDS

A constant scgmern defines conslaDt data that will not change during program
execution. Constarn segments arc typically used in large model programs to hold
the segment values offar data segments.

The constant segment• s name must be "CONST.•• The segment can contain any (
combination of data s1a1emen1s defining coostaots to be used by the program. The ~
segment must not exceed 64 Kbytes. AD data addresses in the segment arc relative
to the predefined group "DGROUP". lbacfon:, the statements

DGROUP group CONST
assume ds: OOROUP

must appear at the beginning of the segment. These statements ensure that each
variable declared in the constant segment will be associated with the DS scgmeol
register and DGROUP (sec the sections, "ASSUME Dmctive" and "GROUP
Directive ... given later in this chapter).

Note

The group name DGROUP must not be defined in more than one
GROUP directive in a source file. If ywr swrce file contains DATA.
BSS, and CONST segments, the directive

DGROUP group ..DAT A. -8SS, CONST

should be used.

A constant segment must be "WORD" aligned, must have "PUBLIC"
combination type, and must have the class name "CONST." These define loading
instructions that are passed to the linter. Ahhough other segment attributes are

7-12

(

)

)

)

As: AD Allemlller

available, they must n« be used. for a complete dcsaiption of the attributes, &ce

the section, "SEGMENT and ENDS Directives," given later in this chapter.

Example

OOROUP group CONST

CONST
segl
seg2
CONST

assume ds: DGROUP

segment
dw
dw
ends

word public 'CONST'
ARRAY.DATA
MESSAGE.DATA

In this example, the constant segment receives the segment values of two far data
segments: ARRAY .DATA and MESSAGE.DATA. These data segments must be
defined elsewhere in the module.

7.7 Labels, Variables, and Symbols

Labels, variables, and symbols arc named items that represent instruction
addresses, data addresses, and other values. Labels, variables, and symbols that
are used in a program must be explicitly defined. Defining an item means
associating a type, offset, and value to it. The following sections describe how to
define labels, variables, and symbols.

7.7.l Labels

Syntax

name LABEL [NEAR I FAR)

A label definition creates a label name and sets its type to NEAR or FAR. The
label then represents the address of the following instruction and can be used in
jmp, call, and loop instructions to direct execution conlrol to the given instruction.

When a label definition is encountered, the assembler sets the label's value to the
value of the current location counter and sets its type to NEAR or FAR. lfthe label
has FAR type, the assembler also sets its segment value to that of the enclosing
segment.

NEAR labels can be used with jmp. call, and loop instruction in the enclosing
segment only. FAR labels can be used in any segment of the program.

ANEAR label can also be defined using a colon(:). The definition has the form

name:

The definition can appear on a line by itself or on a line with an instruction.

Examples

again label near
start label far
clear_screen: mov al,20H
subroutine3:

7-13

XENIX Programmer's GUle

7.7.2 Simple Variallles

Syatn - DB init-valru
name ow init-valw
name DD init-valru
name DQ init-valru
name OT init- llOlile

A simple variable represents a single value atoml at a aingle addrcu. The name
must be the name of the new variable. and init-wibu is lhe variable's initial value.
If the question mart (?) is given. the initial value is undefined.

When a simple variable definition is encoudcml, lhe assembler sets name to the
cunent offset of the enclosing segmelll. It ICls lbc variable's type to BYTE,
WORD, OWORD, QWORD, or TBYTE. far DB, DW. DD, DQ, and DT,
respectively.

Examples

count
Slarl.JDOVe
diameter
temp

DB
OW
DQ
DB

0
I
3.S
?

"l.7.3 Multiple-V aloe V ambles

Symtn

name DB COUnl DUP(init-•'Olae)
name ow COUlll DUP(init- •ulue)
name DD COUnl DUP(init- •'Olu.e)
name DQ COUnl DUP(init-•·alue)
name m counl DUP(init-•'Dlw)

A muhiplc-value variable is a collection of one or more values all known by &he
same name. The coum defines the number of elements in the variable, and
DUP(init-•YJlue) defines the initial value of each elcmenl. Each element has the
siz~ defined by the given directive.

Muhiple dimensional arrays can be defined by giving a list of initial values, or
including another DUP directive in the initial value list. if more than one initial
value is given, the values must be separated by commas.

Muhiple-value variables can also be created using a list of initial values. The
definition has the fonn

name DB init-•YJ/uel. init-value2, ...• inil-valuen

where each init-valuc must be separated from the preceding by a comma.

7-14

{

(

)

)

)

As: AD Assembler

Examples

1.
2.
3.
4.
s.

Array
table
threeD
temp
Set

DB
DW
DB
DD
DB

100 DUP(I)
20 DUP(l,2,3,4)
S DUP(S DUP(S DUP (I)))
14 DUP(?)
I, 2, 3

Example I creates the variable "Array". The array has 100 clemciaa. Each
element, a byte, is initialized to I .

Example 2 creates a two-dimensional array "table". The array has 80 clcmcias,
each a word in length. The initial values of the fint four clements are I, 2, 3. and
4, respectively. This panem is repeated to the end of the 811'ay.

Example 3 creates a three-dimensional array "threcD". The 811'ay has 125
elements, each one byte in length. The initial value for all elements is I.

Example 4 creates a variable "temp" that has 14 elemelllS and undefined initial
values.

Example S creates a 3 element variable whose initial values are I, 2. and 3.

7.7.4 Symbols

Syntax

name EQU e.tpression

A symbol is a name that reprcserns a mnnber, a string, a variable, or an instluction.
A symbol definition sets name to the value or meaning given by expression. The
name must be a unique name. and e.tpression must be a number, string, symbol,
an instruction mnemonic, a valid expression, or any other entry such as labels,
variables, or memory operands.

Examples

seven equ 7h
mo vb equ mov
arrayl equ array
sum equ r;r frame equ

7.7.5 Ah5olute Symbols

Syntax

name e.tpression

An absolute symbol is a name that represents an integer number. The name is the
name of the symbol, and expression can be any valid expression that resolves to a
number.

Absolute symbols can be redefined at any time.

7-IS

XENIX Progralllllllft''ll Gulde

!Examples

fifteen
base
skiplS

7 .8 Operands

OFH
$+2
base+ JS

An operand is a comtant, label, 'Variable, er symbol thal is used in an instruction or
directive to represem a value or location to be acted on.

There are the following operand types:

lnunediate
Regi~er
Direct Memory
Based
Indexed
Based Indexed

7.8.1 Immediate Opennds

Syntax

numberlstringlsymbol

An immediate operand is a constad value thal does not change during execution of
the program. An immediate operand can be a mmabcr, Siring constant. absolute
symbol, or expression.

Examples

mov ax, 9
mov al, 'c'
mov bx, local
mov bx, offset OOROUP:tablc

7 .8.2 Register Operands

Syntax

reg-name

A register operand is the name of a CPU register. Register operands direct
instructions to carry out their actions on the contents of the given registers. The
reg-name can be any one of the following:

ax ~ ~ ~ ~ hl
a ~ cl ~ ~ ~

~ • a ~ ~ ~
di si

The ax, bx, a:, and ch regi~ers are 16-bit genaal purpose registers. They can be
used for any data or numeric manipulation. The ala. bh, ch. dh registers represent
the high 8-bits of the corresponding general purpose registers. Similarly, al, Ill,

7-16

(

(

)

)

d, and di represent the low-order 8-bits of the general purpose registers.

The cs, els, ss, and es registers are the segment registers. They contain the currern
segment address of the code, data, stack, and extra segments, respectively. All
instruction and data addresses are relative to the segmenl address in one of these
registers.

The sp register is the 16-bit stack poinla regista. The stack pointer contains the
current top of stack address. This address is relative to the segment address in the
ss register and is automatically modified by instructions that access the stack.

The bx, bp, di, and si registers are 16-bit base and index registers. These are
general purpose registers that are typically used for pointers to program data.

The 16-bit flag register contains nine I-bit Oags whose positions and meaning
are defined below:

Flag Bit Meaning
0 carry flag
2 parity flag
4 auxiliary ftag
5 trap ftag
6 i.ero flag
7 signftag
9 interrupt-enable flag
10 direction ftag
II overftow Oag

Although no name exists for the 16-bit ftag register, the contents of the register
can be accessed using the LAHF, SAHF, PUSHF, and POPF instructions.

7.8.3 Direct Memory Operands

Syntax

name

or

segment : number

A direct memory operand represents the address of one or more bytes of memory.
The name must be the name of a variable. The segme111 can be a segment register
name (CS, DS, SS, or ES), a segment name, or a group name. The number must
be a integer.

Examples

mov
mov
mov
mov

ax, feed
dx, ss:003JH
ex, .DAT A:OlOOH
al, DGROUP:2

7-17

XENIX Propammlr's Gulde

7 .8.4 Based Opennds

Syntax

dispf bp l
disp bx

A based operand reprcscnts a memory addn:ss relati"VC to one of the base registers:
bp or bx. The disp can be any immrdiate or din:c:t memory operand. It must
resolve to an absolute numba' or mcmmy address.. If DO disp is given. 0 is
assumed.

The effective address of a based opcrand is the sum of the disp value and the
contents of the given regista. lfbp is used. the operand's address is relati"VC to the
segment pointed to by the as regisla. If Is is used. the addreu is relati'VC to the
segment pointed to by the ds register.

Based operands have a variety of allcmatc forms. The following illustrate a few of
these f0m1s.

ldisr1fbp1
disp+bf1

disf.fbp
fbpi+disp

Examples

mov
mov
mov
mov

ax. f bp l ax, bx
ax, 12[bx l
ax, fre .. bp l

7.8.5 Indexed Operands

Syntax

displ si]
disp di l

An indexed operand represerts a memory address that is relative to one of the
index registers: si or di. Thedisp can be any immediate c.-din:ct mcmmy operand.
It must resolve to an absolute number or memory address. If DO disp is given, 0 is
assumed.

The effective address of an indexed operand is the sum of the disp value and the
contents of the given register. The address is always relative to the segmelll
pointed to by the ds register.

Indexed operands have a variety of ahernate forms. The following illustrate a few
of these fonns.

fdisp~di1 disp+di1
disp.[di]
[dii+disp

7-18

(

(

(

)

)

)

As: An Assembler

Examples

mov
ax, f s~' mov ax, d1

mov ax, 12[di]
mov ax, fredf si]

7.8.6 Based Indexed Operands

Syntax

~~~~ ~~I ~~1 
disp bx si 
disp bx di 

A based indexed operand represents a memory address that is relative to a 
combination of base and index registers. The disp can be any immediate or direct 
memory operand. It must resolve to an absolute number or memory address. If 
no disp is given, 0 is assumed. 

The effective address of a based indexed operand is the sum of the disp value and 
the contents of the given registers. If the bp register is used, the address is relative 
to the segment pointed to by the ss register. Otherwise, the address is relative to 
the segment pointed to by the ds register. 

Based indexed operands have a variety of alternate forms. The following illustrate 
a few of these forms. 

fdisp]fbp]fdi] 
disp + bp, +di] 
disp.fbplfdi1 
[dil+disp+ bp] 

Examples 

mov 
mov 
mov 
mov 

ax. f bp lf sil 
ax, bx] di] 
ax, 12[ bp ][di] 
ax, fredl bx J si ] 

7.9 Expressions 

An expression is a combination of operands and operators that resolves to a single 
value. Operands in expressions can be absolute values, memory operands, and 
labels. The result of an expression is also an absolute value, memory operand, <I 

label, depending on the types of operands and operators used. 

As provides a variety of operators. Arithmetic, shift, relational, and logical 
operators manipulate and compare the values of operands. Attribute operat<rs 
manipulate the attributes of operands, such as their type. address, and size. 

The following sections describe the operators in detail. 

7-19 



7.9.1 ArithmetkOperaton 

Syntu 

* exp2 exp/ 
exp/ 
exp/ 
e."<pl 
exp I 
+ exp 
- exp 

I exp2 
MOD exp2 
+ exp2 

exp2 

Arithmetic operators provide the common mathematical operations. The operalOTS 
have the following meanings: 

~rator Meanillg 
Mulliplicalion. * 

I 
MOD 
+ 

+ 

lnleger division. 
Remainder after division (modulus). 
Addition. 
Subtraction. 
Positive (unary). 
Negative (unary). 

For most operators, the expressions exp/ and exp2 must be integer numbers. 
Labels and variable names can be given with the + and - (subtraction) operators 
only. With +. at least one must be an integer llUlllba". With - • expl can be an 
integer number, label, or variable name; exp2 can only be a label ar variable name 
if exp I is also one and in the same segment. 

Examples 

14 • 4 
14 I 4 
14 MOD 4 
14 + 4 
14 4 
14 +4 
14 -4 

; equals S6 
; equals 3 
; equals 2 
; equals 18 
; equals 10 
; equals 10 
; equals 18 

7.9.2 SHRandSHLOperators 

Syntax 

e.tpression SHR count 
expression SHL counl 

The SHR and SHL operators shift the given e:tpression right OI" left by counl 
number of bits. Bits shifted off the end of the expresnon m: lost. 

Examples 

01110111 B SHL 3 
Ol I IOI llB SHR 3 

7-20 

; equals 101110008 
; equals 000011108 

( 

( 

( 



) 

) 

) 

7.9.3 Relational Operators 

Syntax 

exp/ EQ exp2 
exp/ NE exp2 
exp/ LT up2 
exp/ LE exp2 
e.tpl Gr up2 
exp/ GE exp2 

The relational operators compare the expressions exp] and exp2 and return true 
(OFFFFH) if the given condition is satisfied Cl' false (OOOOH) if it is not. The 
expressions must resolve to absolute values. The operators ha\'C the following 
meanings: 

Operator 
EQ 
NE 
LT 
LE 
Gr 
GE 

Condition a satisfied wbeu: 
Operands are equal. 
Operands are ntt equal. 
Left operand is less than right. 
Left operand is less than or equal to right. 
Left operand is greater than right. 
Left operand is greater than or equal to right. 

Relational operators are typically used with conditional directives and conditional 
instructions to direct program control. 

Examples 

l EQ 0 
l NE 0 
1 LT 0 
I LE 0 
I GT 0 
I GE 0 

7.9.4 LogkaD Operators 

Syntax 

NOT exp 
e.tpl AND exp2 
e.tpl OR exp2 
exp/ XOR exp2 

; false 
; true 
; false 
; false 
; true 
; true 

The logical operators perf onn bitwise operations on the given expressions. In a 
bitwise operation, the operation is performed on each bit in an expression rather 
than on the expression as a whole. The expressions must resolve to absolute 
values. 

7-21 



XENIX Propammer'1 Gulde 

The operators have the following meanings: 

Operator 
NOT 
AND 
OR 
XOR 

Inverse. 
Boolean AND. 
Boolean OR. 
Boolean exclusive OR. 

Examples 

NOT llllOOOOB 
010101018 AND lllJOOOOB 
01010101B OR JJ JJOOOOB 
010101018 XOR JJ JJOOOOB 

7.9.5 AttrlbuteOperaton 

; equals OOOOJJJIB 
; equals OIOJOOOOB 
; equals JI IJOIOIB 
; equals IOIOOIOIB 

The attribute operators modify or return the values and types associated with 
labels, variables. and symbols. 

PTR Operator Syntax 

type P'fR e:cpression 

The PTR operator assigns a new type to the variable or label given by the 
e:cpression. The type must be one of the following size or distance values: 

BITE 
WORD 
DWORD 
QWORD 
TBYTE 
NEAR 
FAR 

The operand can be any memory operand or label. The BITE, WORD, and 
DWORD types can be used with lllCID<If operands only. The NEAR and FAR 
types can be used with labels only. 

The PrR operator is typically used with forward references to explicitly define 
what size or distance a reference has. If not used, as assumes a default siz.c: m 
distance for the reference. The PTR operator is also used to give instructions access 
to variables in ways that would otherwise generate errors. For example, accessing 
the high-order byte of a WORD size variable. 

Examples 

ca 11 far ptr s¥brouty"\ 
mov byte ptr l arr~y J. I 
add al, byte ptr [fulLword] 

Segment Override Operator Syntax 

segmenJ-regiSJer : e.tpression 
segmen1-name : e.tpression 
group-name : expression 

7-22 

( 

( 



) 

) 

As: Au Assembler 

The segmem override operator(:) forces the address of a given variable or label to 
be computed using the beginning of the given segmen1-register, segmen1-name, 
or group-name. If a segmen1-name or gr<Mp-name is given, the name must 
have been assigned to a segmeia register with a previous ASSUME directive and 
defined using a SEGMENT or GROUP directive. The eJCpression can be an 
absolute address or any memory operand. The segmen1-register must be one of 
CS, OS, SS, or ES. 

By default, the effective address of a memory operand is computed relative to the 
DS or ES register, depending on the instruction and operand type. Similarly, all 
labels are assumed to be NEAR. These default types can be overridden using the 
segment override operator. 

Examples 

mov ax, es:[bxJsi] 
mov _TEXT:fadabel, ax 
mov ax, DGROUP:variable 
mov al, cs:OOOIH 

SHORT Operator Syntu 

SHORT label 

The SHORT operator sets the type of the given label to SHORT. Short labels can 
be used in "jump" instructions whenever the distance from the label to the 
instruction is not more than 127 bytes. Instructions using short labels are one byte 
smaller than idemical instructions using near labels. 

Example 

I . jmp short repeat 

THIS Operator Syntax 

THIS type 

The THIS operator creates an operand whose offset and segment value are equal to 
the current location counter value and whose type is given by type. The type can 
be any one of the following: 

BITE 
WORD 
DWORD 
QWORD 
TBYTE 
NEAR 
FAR 

The THIS operator is typically used with the EQU or= directive. It is similar to 
creating operands with the LABEL directive. 

Examples 

tag equ this byte 
spoLcheck this near 

Example I is equivale111 to the statement ''TAG LABEL B YfE''. 

Example 2 is equivale111 to the statement "SPOLCHECK LABEL NEAR". 

7-23 



XENIX Prrognmmer's Guide 

HiGH and WW Opwaton Syotu 

HIGH expression 
LOW expression 

The HIGH and LOW operators return the high and low 8-bits of the given 
expression. The HIGH operator returns the high 8 bits of the expression; the LOW 
operator returns the low-order 8-bits. The eJCpression can be any absolute value. 

Examples 

mov ah, high word. value 
mov al, low OFFFfll 

SEG Operator Syntax 

SEG eJCpression 

The SEG operator returns the segmenl value of the given expression. The 
e.tpres.sion can be any label, variable, or symbol. 

Example 

I. mov ax. seg variable.name 
2. mov ax, seg labeUwne 

OFFSET OperatOll' Syntax 

OFFSET e.tpression 

The OFFSET operator returns the offset of the given expression. The expression 
can be any label. variable, er symbol. The returned value is the number of bytes 
between item and the beginning of the segment in which it is defined. 

The segment override operator (:)can be used to force OFFSET to mum the 
number of bytes between the item in the expression and beginning of a named 
segment or group. This is method used to generate valid offsets for items in a 
group. See example 2. 

Examples 

mov bx, offset array 
mov bx, offset DGROUP:global 

The returned value is always a relative value that is subject to change by the linker 
when the program is actually linked. 

TYPE Operator Syntax 

TYPE expression 

The TYPE operator returns a number representing the the type of the given 
expression. If the expression is a label, variable, or symbol, the operator returns 
the size of the operand in bytes. If the expression is a label. the operator returns 
OFFFFH if the label is NEAR. and OFFFEH if the label is FAR. 

Examples 

mov ax, type array 
jmp (type geLloc) ptr destiny 

7-24 

( 

( 

( 



) 

As: An Assembler 

• TYPE Operator Sy111tu 

.TYPE l'ariable 

The . TYPE operator returns a byte that defines the mode and scope of the given 
i'Qriable. The variable can be any label, variable, or symbol. lf the expression is 
not valid, .TYPE returns zero. 

The variable· s attributes are returned in bits 0, l, 5, and 7 as follows: 

Bit Position 
0 
1 
s 
7 

lfBit=O 
Absolute value 

Not defined 
Localscq>e 

UBit=l 
Program related 
Data Related 
Locally defined 
External scope 

If both the scope bit and defined bit are 0, the expression is not valid. 

The . TYPE operator is typically used with conditional directives, where an 
argument may need to be tested to make a decision regarding program Oow. 

Example 

x 
z 

db 12 
.type x 

This example sets z to 34. 

LIENGm Operator Syntax 

LENGTH "ariable 

The LENGTH operator returns the size of the given i'ariable in units of BYTE, 
WORD, DWORD, QWORD, ar TBYTE. The units selected depends on the 
l'ariable 's defined type. 

Only variables that have been defined using the DUP operator return values greater 
than I . The return value is always the number that precedes the first DUP 
operator. 

In the following examples, assume the definitions: 

array dw 100 dup(I) 
table dw I 00 dup(l, 10 dup(?)) 

Examples 

mov ex, length array 
mov ex, length table 

In example I, LENGTH returns I 00. 

In example 2, LENGTH returns 100. The return value does not depend on any 
nested DU P operators. 

) SIZE Operator Syntax 

SIZE l'ariable 

The SIZE operator returns the total number of bytes allocated for the given 
l'ariable. The return value is equal to return value of LENGTH times the return 
value of TYPE. 

7-25 



In the following example, assume the definition: 

array dw I 00 dup( I) 

Example 

mov bx, size array 

In this example, SIZE tttums 200. 

7 .9.6 ExprtsSion Evaluation 

Expressions arc evaluated according to the rules of operat<r precedence and order. 
Operations of highest precedence an: performed 6rSl. Operations of equal 
precedence are performed fnm left to right. This defauk order of evaluation can 
be overridden using enclosing parentheses. Operations in parentheses arc always 
perfonned before any other operations. The following table list the precedence of 
all operators. Operators on the same line have equal precedence. 

Examples 

814 * 2 

Precedence 
Highest 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
II 
12 
13 
Lowest 

8 / (4 * 2) 
8 + 4 * 2 
(8 + 4) * 2 
8 EQ 4 AND 2 LT 3 
8 EQ4 OR 2 LT 3 

Opera Ion 

LENGTH. SIZE 

u 
PTR. OFFSET. SEG, TYPE, THJS 
HIGH.LOW 
*,I, MOD. SHL, SHR 
+.-
EQ.NE.LT.LE.Gf,GE 
NOT 
AND 
OR, XOR 
SHORT, .TYPE 

; equaJs4 
; equals I 
; equals 16 
; equals 24 
; equals OOOOH (false) 
; equals OFFFA-1 (true) 

7. I 0 Instruction Mnemonics 

As supports the complete instruction sets of the 8086 family of microprocessors. 
This includes the instruction sets for the 8086, 8087. 186, 286, and 287 
microprocessors. The following sections list the instruction mnemonics of all 
instructions supported by the assembler. Instructions are listed by microprocessor. 

7-26 

( 

( 



) 

) 

) 

As: AD Assembler 

The 8086 instructions apply to all microprocessors. 

Note 

The .8086, .186, .286c, .286p, .8087, and .287 directives define which 
ini.1ruction sets are recogniz.ed by the assembler. By default, as 
recognizes and assembles all 286 non-privileged and 287 instructions. 
This set can be limited to 8086 and 8087 instructions by using the .8086 
and .8087 directives in the source file. It can be expanded to include 
286 privileged instructions by using .286p. f(I a complete description of 
these directives. see the section, "Instruction Set Directives," given later 
in this chapter. 

7.10.1 8086 Instruction Mnemonics 

The following is a complete list of the 8086 instructions. As assembles all 8086 
instructions by defauh. It also assembles 286 non-privileged instructions. The 
. 8086 directive can be used to limit assembly to 8086 instructions only. 

8086 Mnemonic 
AAA 
AAD 
AAM 
AAS 
ADC 
ADD 
AND 

CALL 
CBW 
CLC 
CLD 
cu 

CMC 
CMP 

CMPS 
CMPSB 

CMPSW 
CWD 
DAA 
DAS 
DEC 
DIV 
ESC 
HLT 
IDIV 

IMLIL 
IN 

INC 

Full Name 
ASCII adjust for addition 
ASCII adjust for division 
ASCII adjust for muhiplication 
ASCII adjui.t fa- subtraction 
Add with carry 
Add 
And 
Call 
Convert byte to word 
Clear carry flag 
Clear direction flag 
Clear interrupt flag 
Complement carry flag 
Compare 
Compare byte or word (of string) 
Compare byte string 
Compare word string 
Convert word to double word 
Decimal adjust for addition 
Decimal adjust for subtraction 
Decrement 
Divide 
Escape 
Hah 
Integer divide 
Integer multiply 
Input byte or word 
Increment 

7-27 



XENIX Programmer's Guide 

8086 Mmmooic 
1Nf 

INTO 
lRET 

JA 
JAE 

JB 
JBE 

JC 
JCXZ 

JE 
JG 

JOE 

7-28 

JL 
JLE 
JMP 
JNA 

JNAE 
JNB 

JNBE 
JNC 
JNE 
JNG 

JNGE 
JNL 

JNLE 
JNO 
JNP 
JNS 
JNZ 

JO 
JP 

JPE 
JPO 

JS 
JZ 

LAHF 
LDS 
LEA 
LES 

LOCK 
LOOS 

LODSB 
LODSW 

LOOP 
LOO PE 

LOOPNE 
LOOP NZ 

LOOPZ 
MOV 

MOVS 
MOVSB 

FullNa1m 
Interrupt 
Interrupt on overflow 
Interrupt return 
Jump on above 
Jump on above Cl' equal 
Jump on below 
Jump on below or equal 
Jump on carry 
Jump on ex 7.aO 

Jump on equal 
Jump on greater 
Jump on greater or equal 
Jump on less than 
Jump on less than ar equal 
Jump 
Jump on not above 
Jump on not above or equal 
Jump on not below 
Jump on not below or equal 
Jump on no cany 
Jump on not equal 
Jump on not greater 
Jump on not greater o;r equal 
Jump on not less than 
Jump on not less than ar equal 
Jump on not overflow 
Jump on not parity 
Jump on not sign 
Jump on not zao 
Jump on overflow 
Jump on parity 
Jump on parity even 
Jump on parity odd 
Jump on sign 
Jump on zero 
Load AH with flags 
Load pointer into DS 
Load effective address 
Load pointer into ES 
Lock bus 
Load byte or word (of string) 
Load byte (string) 
Load word (string) 
Loop 
Loop while equal 
Loop while not equal 
Loop while not zero 
Loop while zero 
Move 
Move byte or word (of string) 
Move byte (string) 

( 



) 

) 

8086 Mnemonic 
MOVSW 

MUL 
NEG 
NOP 
NOT 

OR 
OUT 
POP 

POPF 
PUSH 

PUSHF 
RCL 
RCR 
REP 
RET 
ROL 
ROR 

SAHF 
SAL 
SAR 
SBB 

SCAS 
SCASB 

SCASW 
SHL 
SHR 
STC 
STD 
STI 

STOS 
STOSB 
STOSW 

SUB 
TEST 
WAIT 

XCHG 
XLAT 

XOR 

Full Name 
Move word (string) 
Multiply 
Negate 
No operation 
Not 
Or 
Output byte or word 
Pop 
Pop flags 
Push 
Push flags 
Rotate through carry left 
Rotate through carry right 
Repeat 
Return 
Rotate left 
Rotate right 
Store AH into flags 
Shift arithmetic left 
Shift arithmetic right 
Subtract with borrow 
Scan byte or word (of string) 
Sc an byte (string) 
Scan word (string) 
Shift left 
Shift right 
Set carry flag 
Set direction flag 
Set interrupt flag 
Store byte or word (of string) 
Store byte (string) 
Store word (string) 
Subtract 
Test 
Wait 
Exchange 
Translate 
Exclusive OR 

7.10.2 8087 Instruction Mnemonics 

As: Ao Assem .. er 

The 8087 is a coprocessor that operates in conjunction with the 8086 
microprocessor. As assembles all 8087 instructions by default. It also assembles 
287 instructions. The .8087 directive can be used to limit assembly to 8087 
instructions only. 

The following is a list of the 8087 instructions. 

8087 Mnemonic Full Name 
F2XMI Calculate 2X-J 

7-29 



XENIX Programmer's Guide 

8087 Mnemonic 
FADS 

FADD 
FADDP 

FBLD 
FBSTP 
FCHS 

FCLEX 
FCOM 

FCOMP 
FCOMPP 

FDECSTP 
FDISI 
FDIV 

FDIVP 
FDIVR 

FDIVRP 
FENI 

FFREE 
FIADD 
FICOM 

FICO MP 
FIDIV 

FIDIVR 
FILO 

FIMUL 
FINCSTP 

FINIT 
FIST 

FISTP 
FISUB 

FISUBR 
FLO 

FLDI 
FLDCW 

FLDENV 
FLDL2E 
FLDL2T 
FLDLG2 
FLDLN2 

FLDPI 
FLDZ 

FMUL 
FMULP 

FNCLEX 
FNDISI 
FNENI 

FNINIT 
FNOP 

FNSAVE 
FNSTCW 

FNSTENV 

7-30 

Fall Name 
Take absolute value of top of stack 
Add real 
Add real and pop stack 
Load packed decimal OnlO top of stack 
Store packed decimal and pop stack 
Cllllnge sign on the top stack elcmenl 
Clear exceptions after W AlT 
Compare real 
Compare real and pop stack 
Compare real and pop stack twice 
Decrcmenl stack pointer 
Disable intenupts after WAIT 
Divide real 
Divide real and pop stack 
Reversed real divide 
Reversed real divide and pop stack twice 
Enable interrupts after WAIT 
Free stack element 
AddinlCger 
Integer compare 
lnleger compare and pop stack 
lnleger divide 
Reversed integer divide 
Load integer onto top of stack 
Integer muhiply 
Increment stack pointer 
Initialize proceioor after WAIT 
Store integer 
Store integer and pop stack 
Integer subtract 
Reversed integer subtract 
Load real onto top of stack 
Load + 1.0 onto top of stack 
Load control word 
Load 8087 environmem 
Load log2 e onlo top of stack 
Load log2 I 0 onto top of stack 
Load log1 o 2 onto top of stack 
Load lQge 2 onto top of stack 
Load pi onto top of stack 
Load +0.0omotopofstack 
Muhiply real 
Multiply real and pop stack 
Clear exceptions with no WAIT 
Disable intenupts with no WAIT 
Enable interrupts with no WAIT 
Initialize proceioor, with no WAIT 
No operation 
Save 8087 state with no WAIT 
Store control word without WAIT 
Store 8087 enviromnent with no W AlT 

( 

( 



) 

) 

8087 Mnemonic 
FNSTSW 
FPATAN 

FPREM 
FPTAN 

FRNDlNT 
FRSTOR 

FSA VE 
FSCALE 

FSQRT 
FST 

FSTCW 
FSTENV 

FSTP 
FSTSW 

FSUB 
FSUBP 
FSLIBR 

FSUBRP 
FfST 

FWAIT 
FXAM 
FXCH 

FXTRACT 
FYL2X 
FYL2PI 

As: An Assemlller 

Full Name 
Store 8087 status word with on WAIT 
Partial arctangent function 
Partial remainder 
Partial tangent function 
Round to integer 
Restcre state 
Save 8087 state after WAIT 
Scale 
Square root 
Store real 
Store control word with WAIT 
Store 8087 environment after WAIT 
Store real and pop stack 
Store 8087 status word after WAIT 
Subtract real 
Subtract real and pop stack 
Reversed real subtract 
Reversed real subtract and pop stack 
Test top of stack 
Wait for last 8087 operation to complete 
Examine top of Slack element 
Exchange contents of stack element and stack top 
Extract exponent and significand from number in top of stack 
Calculate Y log2x 
Calculate Y log2(x + I) 

The 8087 instructions can be freely combined with 8086 and 286 instructions. 
During normal operation. the 8086 or 286 passes all 8087 instructions to the 8087 
coprocessor. 

7.10.J 186 lostructioo Mnemonics 

The 186 inSlruction set consists of all 8086 instructions plus the following 
instructions. 

186 Mnemonic 
BOUND 
ENTER 

lNS 
LEAVE 

OUTS 
PU SHA 

POPA 

Full Name 
Detect value out of range 
Enter Procedure 
Input byte/word/string from port DX 
Leave Procedure 
Output byte/word/string to port DX 
Push all registers 
Pop all registers 

As assembles these instructions by defauh. The .186 directive can be used to 
enable instructions if they have been disabled by the . 8086 directive. 

7-31 



XENIX Programmer's Guide 

7.10.4 286 Non-Privileged lmlroctlon Mnemonics 

The 286 non-privileged instruction set consists of all 8086 instructions plus the 
following instructions. 

286 Mnemonic 
BOUND 
ENTER 

INS 
LEAVE 

OUTS 
PUSH A 

POPA 

Full Name 
Detect value out of range 
Enter Procedure 
Input byte/word/string from port DX 
Leave Procedure 
Output byte/word/string to port DX 
Push all registers 
Pop all registers 

As assembles these instructions by defauh. The .286c directiw: can be used to 
enable instructions if they have been disabled by the .8086 directive. 

7.10.S 286 Privileged lmtruction Mnemouks 

The 286 privileged instruction set consists of all 8086 and 286 non-privileged 
instructions plus the following. 

286p Mnemonic 
ARPL 
CLTS 
LAR 

LGDT 
LIDT 

LLDT 
LMSW 

LSL 
LTR 

SGDT 
SIDT 
SLDT 

SMSW 
STR 

VERR 
VERW 

FuDName 
Adjust requested privilege level 
Clear task switched Oag 
Load access rights 
Load global descriptor table 
Load imerrupt descriptor table 
Load local descriptor table 
Load machine status word 
Load segmeru limit 
Load task register 
Store global descriptor table 
Store interrupt descriptor table 
Store local descriptor table 
Store machine status word 
Store task register 
Verify read access 
Verify write access 

As assembles these instructions only if the .286p directive has been given in the 
source ti le. 

7.10.6 287 instruction Mnemonks 

The 287 ini.truction set consi~s of all 8087 instructions plus the following 
additional instructions. 

7-32 

( 

( 

( 



) 

) 

As: An Assembler 

287Mnemonk 
FSETPM 

FSTSW AX 
FNSTSW AX 

Full Name 
Set Pr~ected Mode 
Store Status Word in AX (wait) 
Store Status Word in AX (no-wait) 

As assembles these instructions by defauh. The .287 directive can be used to 
enable the instructions if they have been disabled by the .8087 directive. 

7.11 Directives 

Directives give the assembler directions and information about input and output, 
memory organization, conditional assembly, listing and cross-reference control, 
and definitions. There are the following directives: 

.186 

.286c 

.286p 

.287 

.8086 

.8087 

ASSUME 
COMMENT 
DB 
DD 
DQ 

DT 
DW 
ELSE 
END 
ENDIF 
ENDP 
ENDS 
EQU 
EVEN 
EXT RN 
GROUP 
IF 

IFI 
1F2 
IFDEF 
IFE 
IFNDEF 
INCLUDE 
LABEL 
.LFCOND 
.UST 
NAME 
ORG 

%OUT 
PAGE 
PROC 
PUBLIC 
.RADIX 
SEGMENT 
.SFCOND 
SUBTTL 
.TFCOND 
TITLE 
.XUST 

Any combination of upper and lowercase letters can be used when giving 
directives names in a source file. 

7.11.1 ASSUME Directive 

Syntax 

ASSUME seg-reg : seg-name ,., 
ASSUME NOfHING 

The ASSUME directive selects the given segment register seg-reg to be the 
default segment register for all labels aoo variables defined in the segment or groop 
given by seg-name. Subsequent references to the label or variable will 
automatically assume the selected register when the effective address is computed. 
The segment override operator (:) can be used to override the defauh segment 
register. 

The ASSUME directive can define up to 4 selections: one selection for each of the 
four segment registers. The seg-reg can be any one of the segment register 
names: CS. DS. ES. or SS. The seg-name must be the one of the following: 

The name of a segment defined with the SEGMENT directive. 

The name of a group defined with the GROUP directive. 

7-33 



XENIX Programmer'• Guide 

The keyword NOTHING. 

The keyword NOTHING cancels the current segment selection. The directive 
"ASSUME NOTHING" cancels all register selections made by a srevious 
ASSUME statement. 

Examples 

ASSUME cs:_TEXT 
ASSUME ds:DGROUP,ss:OOROUP,cs:IGROUP,es:NOllllNG 
ASSUME NOTHING 

7.11.2 COMMENT Directive 

Syntu 

COMMENT delim te.tt delim 

The COMMENT directive causes as to treat all le.fl between the given pair of 
delimiters delim as a comment. The delimiter character must be the first non­
blank character after the COMMENT keyword. The le.fl is all remaining 
characters up to the next occurrence of the delimiter. The text must not contain the 
delimiter. 

The COMMENT directive is typically used for multiple line comments. 

Example 

COMMENT• 
This comment continues until the 
next asterisk. 
* 

7.ll.J DBDiredive 

Syntax 

name DB expression ,., 

The DB directive allocates and initializes a byte (8 bits) of storage for each given 
expression. An expression can be an integer, a character string constant, a DUP 
operation. or a constant expression. lf two or more expressions are given, they 
must be separated by commas(.). 

The name is optional. lf a name is given, the directive creates a variable of type 
BYTE whose offset value is the current location counter value. 

Examples 

7-34 

( 

( 

( 



) 

) 

) 

As: An Assem .. er 

integer DB 16 
string DB 'ab' 
message DB "Enter your name: " 
constantexp DB 4*3 
empty DB ? 
muhiple DB I, 2. 3, '$' 
duplicate DB 10 dup(?) 
higlLbyte DB 255 

7.11.4 DW Directive 

Syntax 

name DW upression ... 

The DW directive allocates and initializes a word (2 bytes) of storage for each 
given expression. An e.tpression can be an integer, a I or 2 character string 
constant, a DUP operation, a constant expression, or an address expression. If two 
or more expressions are given. they must be separated by commas(,). 

The name is optional. If a name is given, the directive creates a variable of type 
WORD whose offset value is the current location counter value. 

Examples 

integer ow 16728 
string ow 'ab' 
constantexp DW 4*3 
addressexp ow string 
empty ow ? 
multiple DW I. 2, 3, '$' 
duplicate DW 10 dup("!) 
hig!Lword DW 65535 
arrayptr OW offset array 
array2ptr OW offset DGROUP:array 

7.11.5 DD Directive 

Syntax 

name DD expression ... 

The DD directive allocates and initializes a doubleword (4 bytes) of storage for 
each given expression. An expression can be an integer, a real number, a I or 2 
character string constant, an encoded real number, a DUP operation. a constant 
expression, or an address expression. If two or more expressions are given, they 
must be separated by commas(,). 

The name is optional. If a name is given, the directive creates a variable of type 
DWORD whose offset value is the current location counter value. 

7-35 



XENIX Programmer's Guide 

Exam .. es 

integer DD 16728 
string DD 'ab' 
real DD 1.5 
encodedreal DD 3fOOOOOOR 
constantexp DD 4*3 
addressptr DD real 
empty DD '! 
muhiple DD I, 2, 3, '$' 
duplicate DD IOdup('!) 
hig!Ldouble DD 4294967295 

7.11.6 DQ Directive 

Syntax 

name DQ expression ... 

The DQ directive allocates and initializes a quadword (8 bytes) of storage for each 
given upression. An expression can be an integer, a real number, a I or 2 
character string constant, an eiroded real number, a DUP operation, or a constant 
expression. If two or more expressions are given, they must be separated by 
commas(,). 

The name is optional. If a nome is given, the directive creates a variable of type 
QWORD whose offset value is the current location counter value. 

Examples 

integer DQ 16728 
string DQ 'ab' 
real DQ 1.5 
encodedreal DQ 3fOOOOOOOOOOOOOOR 
constantexp DQ 4*3 
empty DQ '! 
multiple DQ I, 2, 3, '$' 
duplicate DQ IOdup('!) 
hig!Lquad DQ 18446744073709551615 

7.11.7 DT Directive 

Syntax 

name DT e.tpression ,. , 

The DT directive allocates and initializes 10 bytes of storage for each given 
expression. An expression can be an integer expression, a packed decimal, a! or 
2 character string constar4, an encoded real number, or a DUP operation. lftwo or 
more expressions are given, they must be separated by commas(,). 

The name is optional. If a nome is given, the directive creates a variable of type 
TBYTE whose offset value is the currem location counter value. 

7-36 

( 

( 

( 



) 

) 

As: Aa Assembler 

Note 

The DT directive assumes that constants with decimal digits are packed 
decimals, not integers. 

Examples 

packeddecimal 
integer 
string 
real 
encodedreal 
empty 
multiple 
duplicate 
higlLtbyte 

DT 
DT 
DT 
DT 
DT 
DT 
DT 
DT 
DT 

7.11.8 END Directive 

Syntax 

END expression 

1234567890 
167280 
'ab' 
1.5 
3IDOOOOOOOOOOOOOR 
? 
I, 2, 3, 'S' 
10 dup(?) 
12089258196146291747061750 

The END directive marks the end of the module. The assembler ignores any 
statements following this directive. 

The optional expression defines the program emry point. The entry point defines 
the address at which program execution is to start. If the program has more than 
one module, only one of these modules can define an entry point. This must be the 
main module, i.e., the module containing the starting instruction. If no entry point 
is given, none is assumed. 

Note 

If the XENIX cc command is used to link assembly language programs, 
the command automatically determines its own entry point. In this case, 
an explicit entry point should not be given. 

7-37 



Example 

public table 

..DATA segment word public ·oATA. 
table db 100 dup(l.2.3.4.S) 
..DATA ends 

END 

7.11.9 EQUDindm 

Syntax 

name EQU e.tpres.sion 

The EQU directive assigns the e.:cpnssion to the givm 1t11tne. The uscmblcr 
replaces each occurrence of the name with either the text of the expression. or with 
the value of the expression. depending on the type of ellpl"CSSion given. 

The nanre must be a unique name. mt previously defined. The e.tpression can be 
an integer. a string constant. a real 111DDber, anenrodcd real munber, an instruction 
mnemonic, a constant expression. or an address expessioo. ElqJKssions that 
resolve to integer values in the range 0 to 6S,S3S cause the assembla- to replace the 
name with a value. All other expressions cause the assembler the replace the name 
with text. 

The EQU directive is typically used as a simple macro facility. N~e that the 
assembler replaces text names before attempting to assemble the statements 
containing them. 

Examples 

integer EQU 16728 ; rqJlace with value 
real EQU 3.141S9 ; replace with text 
constantexp EQU l~]4 ; replace with value 
memoryop EQU ; replace with text 
mnemonic EQU mov ; replace with text 
addressexp EQU real ; replace with text 
string EQU 'Pn:ss Return• ; replace with text 

7.11.10 = DirectiYe 

Syntax 

name = e.tpression 

( 

( 

The = directive creates an absolute symOOB by assignmg the llUlllllCric wdue « 
expression to name. No storage is allocated. Instead, the assanbla replaces each (' 
occurrence of the name with the value of the givmexpns.sion. 

The e.tpression can be an intega-, a I or 2 character Siring constaU, a CODSl.alll 
expression, or an address expression. Its value must not CllCeed 6SS36. The name 
must be either a unique name, or a mme that was previously defined using the = 
directive. 

7-38 



) 

) 

Examples 

intega 16728 
string 'ab' 
constantexp 3 * 4 
addressexp string 

Unlike the EQU directive, the = directive can be used to redefine symbols that 
have been previously defined. 

7.11.11 

Syntax 

EVEN 

EVEN Directive 

The EVEN directive increments the location counta to an even value and 
generates one NOP instruction (90h). If the location counter is already even, the 
directive is ignored. 

The EVEN directive must not be used in byte-aligned segments. 

Example 

org 0 
test I db I 

EVEN 
test2 dw 513 

In this example, EVEN incremenls the location counta and genCl'ates a NOP 
instruction (90h). This means the offset of• 'test2' • is 2. IKll I. 

7.11.12 EXTRN Directive 

Syntax 

EXTRN name:type ... 

The EXTRN directive defines an external variable, label, or symbol named name 
and whose type is type. An external item is any variable, label, or symbol that bas 
been publicly declared in another module of the program. 

The name must be the name of a variable, label, or symbol defined in anotha 
module of the program and listed in a PUBLIC directive of that module. The type 
must match the type given to the item in its actual definition. It can be any one of 
the following: 

BYTE 
WORD 
DWORD 
QWORD 
TBYTE 
NEAR 
FAR 
ABS 

The ABS type is reserved for symbols that represent absolute numbers. 

7-39 



XENIX Programmer's Gulde 

Although the actual address is not determined uutil lint time, the assembler 
assumes a default segment register for the external item based on where the 
EXTRN directive is placed in the module. If il is outside all segments, the default 
segment register is DS or CS, depending ou whether or not the item is a wriable or 
label. If placed inside a segmelll, the defauh register is the same as fm other 
variables defined in that segment. The segment o~ operator(:) can be used to 
override an external variable's or label's defauh segment register. 

Example 

EXTRN tagn:near 
EXTRN varl:word, var2:dword 

7.11.13 GROUP Directive 

Syntax 

name GROUP seg-namt1,,, 

The GROUP directive associates a group name name with one or more segments, 
and directs the linker to load the named segments into the same physical segmenl. 
This means all addresses in the named segmelllS are relative to a single segment 
value. 

The order in which segments of a group are named does not influence the mder in 
which they are loaded. Loading order depends on each segment's class, or on the 
order the object modules are given to the linker. 

All segments in a group must fit within one 64 Kbyte block of memory. This 
means the total size of a group made up of contiguws segments must oot exceed 
64 Kbytes. 

The seg-name must be the name of a segmem defined using the SEGMENT 
directive, or a SEG expression. The name must be unique. 

Group names can be used with the ASSUME directive and as an operand prefix 
with the segment override operator(:). 

Note 

A group name must not be used in mon: than one GROUP directive in 
any source file. If several segmems within the source file belong to the 
same group, all segment names must be given in the same GROUP 
directive. 

7-40 

( 

( 



) 

) 

Example 

DGROUP 
assume 

GROUP .DATA, ..BSS 
ds:DGROUP 

.DATA segment word public 'DATA' 

.DATA ends 

..BSS segment wocd public 'BSS' 

..BSS ends 
end 

7.11.14 INCLUDE Directive 

Syntax 

!NO.UDE filename 

As: AD Assembler 

The INCLUDE directive inserts source code from the source file given by filename 
into the current source file during assembly. The filename must name an existing 
file. A pathname must be given if the file is not in the current working directory. If 
the named file is not found, as displays an enor message and stops. 

When as encounters an INCLUDE directive, it opens the named file and begins to 
assemble its source statements immediately. When all statements have been read, 
as resumes with the next statement following the directive. 

Nested INCLUDE directives are allowed. This means a file named by an 
INCLUDE directive can contain its own INCLUDE directives. 

When a program listing is created, as marks included statements with the letter C. 

Examples 

!NO.UDE entry 
INCLUDE include/record 
INO..UDE /usr/include/as'stdio 

7.11.15 LABEL Directive 

Syntax 

name LABEL type 

The LABEL directive creates a new variable or label by assigning the current 
location counter value and the given type to name. 

The name must be unique and not previously defined. The type can be any one of 
the following: 

7-41 



XENIX Programmer's Gulde 

BYTE 
WORD 
DWORD 
QWORD 
TBYTE 
NEAR 
FAR 

The type can also be the name of a valid structure type. 

Examples 

subroutine 
barray 

LABEL far 
LABEL byte 

7.11.16 NAME Directl.e 

Syntax 

NAME module-name 

The NAME directive sets the name of the current module to module-name. A 
module name is used by the linker when displaying error messages. 

The module-name can be any combination of letters and digits. Although the 
name can be any length, only the first six characters arc used. The name must be 
unique and must not be a reserved word. 

Example 

NAMEmain 

If the NAME directive is not used, as creates a defauh module name using the first 
six characters of a TITLE directiYe. If no TITLE directive is found, the default 
name "A" is used. 

7.11.17 ORG Directive 

Syntax 

ORG expression 

The ORG directive sets the location counter to e.tpression. Subsequent instruction 
and data addresses begin at the new value. 

The e.tpression must resolve to an absolute number, i.e., all symbols used in the 
expression must be known on the first pass of the assembler. The location counter 
symbol($) can also be used. 

Examples 

ORG 
ORG 

7-42 

120H 
$+2 

( 

( 



) 

) 

) 

As: An As.wmWer 

7.11.18 PROC and ENDP DlrectJves 

Syntax 

name PROC type 
stateme111s 

name ENDP 

The PROC and ENDP mark the beginning and end of a procedure. A procedure is 
a block of instructions that forms a program subroutine. Every procedure has a 
name with which it can be called. 

The name must be a unique name, not previously defined in the program. The 
optional type can be either NEAR or FAR. NEAR is assumed if no type is given. 
The name has the same attributes as a label and can be used as an cpcrand in a 
jump, call. or loop instruction. 

Any number of stateme111s can appear between the PROC and ENDP statements. 
The procedure should contain at least one ret statement to return control to the 
point of call. Nested procedures are allowed. 

Example 

..main PROC NEAR 
push bp 
mov bp. sp 
push si 
push di 

mov ax. offset string 
push ax 
call ..printf 
add sp. 2 

pop di 
pop si 
mov sp, bp 
pop bp 

ret 
..main ENDP 

7.11.19 PUBUC Dlrectin 

Syntax 

PUBLIC name,., 

The PUBLIC directive makes the variable, label, or absolute symbol given by 
name available to all other modules in the program. The name must be the name of 
a variable, label, or absolute symbol defined within the cum:~ module. Absolute 
symbols, if given, can only represent I or 2 byte integer or string values. 

If the - Mu or - Mx option is used, as converts all lowercase letters in the given 
names to uppercase before passing the name to the object file. Otherwise, as 
copies the names exactly as spelled. 

7-43 



XENIX Programmer's Guide 

Example 

true 
test 
start 

PUBLIC true, test, start 
OFFFfll 

db 
label 

I 
far 

7.11.20 .RADIX Directhe 

Syntax 

.RADIX expression 

The .RADIX directive sets the defauh input radix for numbers in the source file. 
The expression defines whether the numbers are binary, octal, decimal, 
hexadecimal, or numbers of some other base. It must be within the range 2 to 16. 
The following lists some common values: 

2 - binary 
8 - octal 
JO - decimal 
16 - hexadecimal 

The expression is always considered a decimal number regardless of the current 
default radix. 

Examples 

.RADIX 16 

.RADIX 2 

The .RADIX directive does not affect the DD, DQ, or DT directives. Numbers 
entered in the expression of these directives are always evaluated as decimal unless 
a numeric suffix is appended to the value. 

7.11.21 SEGMENT and ENDS Directives 

Syntax 

name SEGMENT align combine 'class' 
name ENDS 

The SEGMENT and ENDS directives mad the beginning and end of a program 
segment. A program segment is a collection of instructions and/CY data whose 
addresses are all relative to the same segment register. 

The name defines the name of the segment. This name can be unique CY can be the 
same name given to other segments in the program. Segments with identical 
names are treated as the same segment. 

( 

The optional align. combine, and class define program loading instructions that arc (. 
to be used by the linker when forming the executable program. These options are 
described later. 

Segments can be nested. When as encounters a nested segment, it temporarily 
suspends assembly of the enclosing segment, and begins assembly of the nested 
segment. When the nested segment has been assembled, a continues assembly of 

7-44 



) 

As: An Assembler 

the enclosing segment. Overlapping segments are not permitted. 

Example 

SAMPLE_TEXT SEGMENT WORD PUBLIC 'CODE' 
..main proc far 

CONST SEGMENT WORD PUBLIC 'CONST' ; nested segmert 
segl dw ARRAY.DATA 
CONST ENDS ; end nesting 

mov es, segl 
push es 
mov ax, es:pointer 
push ax 
call _printf 
add sp, 4 

ret 
..main endp 
SAMPLE_TEXT ENDS 

This example contains two segments: "SAMPLE..TEXT" and "CONST". The 
"CONST" segment is nested within the "SAMPLE.. TEXT" segment. 

Note 

Although a given segment name can be used more than once in a soun:e 
file. each segmenl definition using that name must haw: either exactly the 
same attributes, <JI' attributes that do not conflict with previously defined 
attributes. 

Program Loading Options 

The optional align defines where to place the start of the segment when loading into 
memory. It can be any one of the following: 

BYTE segment starts on a byte boundary. 
WORD segment starts on a word boundary. 
PARA segment starts on a paragraph boundary (16 bytes/paragraph) 
PAGE segment starts on a page boundary (256 bytes/page) 

If no align is given, PARA is used by default. The actual start address is computed 
when the program is loaded. The linker, however, guarantees that the address will 
be on the given boundary. A BYTE boundary address will be any address in 
memory. A WORD boundary address will be a multiple of 2; a PARAGRAPH 
boundary a muhiple of 16 (10 hexadecimal); and a PAGE boundary a muhiple of 
256 (100 hexadecimal). 

7-45 



XENIX Programmer's Gulde 

The optional combi~ defines how to combine segmems having the same name. It 
can be any one of the following: 

PUBLIC 

STACK 

COMMON 

MEMORY 

AT address 

Concatenates all segments having the same name and forms a 
single, contiguous segmera. All instruction and data addresses in 
the new segment arc relative to a single segment register, and all 
offsets arc adjusted to repr-csent the distance from the: beginning of 
the new segment. 

Concatenates all segments as with PUBLIC segments. All 
addresses in the new segment arc relative: to the SS segment 
register. The Stack Poime% (SP) register is set to the first address of 
the first stack segment. 

Creates overlapping segments by placing the start of all segmerts 
having the same name at the: same address. The length of the: 
resulting area is the: length of the longest segment. All addrcacs in 
the segments are relative to the same: base address. 

Places all segments having the same name: in the highest physical 
segment in memory. If more than one MEMORY segmenl is 
given, the segmellls arc overlap as with COMMON segments. 

Causes all label and variable addresses defined in the segment to be 
relative to the given address. The address can be any valid 
expression. but must not contain a forward reference:. AT segments 
typically contain no code or initiali:zed data. Instead, they represent 
address templates that can be placed over code or data already in 
memory, such code and data as found in ROM devices. The labels 
and variables in the AT segments can then be used to access the 
fixed instructions and data. 

If no cmrbine is given, the segment is not combined. Instead, it receives its own 
physical segmelll when loaded into memory. 

Note 

The linker requires at least one stack segment in a program. This 
segment is typically provided by the C program startup module linked 
with all programs. 

The optional class defines which segments are to be: loaded in contiguous memory. 
Segments having the same class name are loaded into memory one after ancther. 
All segments of a given class are loaded before segments of any other class. The 
class name must be enclosed in single quotation marks. 

7-46 

( 

( 

( 



) 

) 

As: AD Assem .. er 

Example 

assume cs:_ TEXT 
_TEXT segment word publk 'CODE' 

_TEXT ends 

This example illustrates the general form of a text segment for a small module 
program. The segment name is "_TEXT". The segment alignment and combine 
type are "word" and "public." respectively. The class is "CODE." These 
segment attributes are the required attributes for assembly language programs to be 
run under XENIX. 

7.11.22 IF Directil'es (Conditionals) 

The IF directives, or conditional directives. allow conditional assembly of blocks 
of statements. There are the following conditional directives: 

IF 
IFE 
lfl 
IF2 
IFDEF 
IFNDEF 
ELSE 
ENDIF 

The six IF directives and the ENDIF and ELSE directives can be used to enclose 
the statements to be considered for conditional assembly. The conditional block 
takes the form: 

IF 
statements 

ELSE 
statements 

ENDIF 

where the statements can be any valid statements, including other conditional 
blocks. The ELSE directive is optional. 

As assembles the statemellls in the conditional block only if the condition that 
satisfies the corresponding IF directive is met. If the conditional bloclr. contains an 
ELSE directive. however. m will assemble only the statements up to the ELSE 
directive. The statements following the ELSE directive are assembled only if the 
IF condition is not met. An ENDIF directive must mart the end of the conditional 
block. No more than one ELSE for each IF directive is allowed. 

IF directives can be nested up to 255 levels. To avoid ambiguity, a nested ELSE 
directive alway:; belongs to the nearest, preceding IF directive. 

IF and IFE Directives Syntax 

7-47 



XENIX Programmer's Guide 

IF expression 
!FE e.xpression 

The lf and lFE directives test the value of an expression. The IF clin:4ivt grants 
assembly if the expression is non-zero (true). The !FE directive grants assembly rf 
if the expression is 0 (false). The expression must resolve to an absolute value am!! { 
must not contain forward references. 

Example 

IF debug 

ENDIF 

extm dump:far 
extm trace: far 
extm breakpoint:far 

IFl and IF2 Directives Syntu 

!Fl 
IF2 

The lF 1 and lF2 directives test the current assembly pass. The lFI directive grallli 
assembly on pass I only. lf2 grants assembly on pass 2. The directives take no 
arguments. 

Example 

lFl 
%out Pass I Starting 

ENDIF 

IFDEF and IFNDEF Directives Syntax 

IFDEF name 
IFNDEF name 

The IFDEF and IFNDEF directives test whether or not the given name has been 
defined. The IFDEF directive grants assembly if name is a label, variable, or 
symbol. The IFNDEF directive grants assembly if name has not yet been defined. 

The name can be any valid name. Ntte that if name is a forward reference, it is 
considered undefined on pass I. but defined on pass 2. This is a frequent cause of 
phase errors. 

Example 

IFNDEF buffer 
buffer db 10 dup(?) 
ENDIF 

7.11.23 PAGE Directive 

Syntax 

PAGE length, width 
PAGE+ 
PAGE 

The PAGE directive sets the line length and character width of the program listing, 

7-48 

( 

( 



) 

) 

As: An As.wmbler 

increments section page numbering, « generates a page break in the listing. 

If a length and width are given, PAGE sets the maximum number of lines per page 
to length, and the maximum number of characters per line to widlh. The length 
must be in the range 10 to 255. The default is 50. The width must be ind= range 
60to132. Thedefauhis80. 

If a plus sign ( +) is given, PAGE increments the section number and resets the 
page number to 1. Program listing page numbers have the form: 

section-minor 

By default, page numbers start at 1-1. 

If no argument is given, PAGE starts a new output page in the program listing. It 
copies a form feed character to the file and generates a title and subtitle line. 

Examples 

PAGE 
PAGE 58,60 
PAGE ,132 
PAGE+ 

Example I creates a page break. 

Example 2 sets the maximum line length to 58, and the maximum width to 60 
characters. 

Example 3 sets the maximum width to 132 characters. The cunent line length 
remains unchanged. 

Example 4 increments the current section number and sets the page number to I. 

7.11.24 TITLE Directive 

Syntax 

TITLE te.tr 

The TITLE directive defines the program listing title. It directs as to copy text to 
the first line of each new page in the program listing. The text can be any 
combination of characters up to 60 characters long. 

No more than one TITLE directive per module is allowed. 

Example 

TITLE progI - - I st Program 

Note that the first six non-blank characters of the title will be used as the module 
name if the module does not contain a NAME directive. 

7.11.25 SUBTITLE Directive 

Syntax 

SUBTTL text 

The SUBTTL directive defines the listing subtitle. It directs as to copy text to the 

7-49 



XENIX Programmer's Gulde 

line immediately after the title on each new page in the program listing. The text 
can be any combination of characters. Only the first 60 characters are used. If no 
characters are given, the subtitle line is left blank. 

Any number of SU BTIL directives can be given in a program. Each new directive 
replaces the current subtitle with the new text. 

Examples 

I. SUBITL Special 110 Routine 
2. SUBITL 

Example I creates the subtitle "Special 110 Routine." 

Example 2 creates a blank subtitle. 

7.11.26 CJl.OUT Directive 

Syntax 

%OUT text 

The %OUT directive directs a to display the text at the user's terminal. The 
directive is useful for displaying messages during specific points of a long 
assembly. 

The %OUT directive generates output for both assembly passes. The IFI and IF2 
directives can be used to control when the directive is processed. 

Example 

ifl 

end if 

7.11.27 

Syntax 

.UST 

.xusr 

%OUT First Pass - - Okay 

.UST and .XLIST Directives 

The .UST and .XUST directi\'es control which source program lines arc copied to 
the program listing. The .XUST directive suppresses copying of subsequent 
source lines to the program listing. The .UST directive restores copying. The 
directives are typically used in pairs to prevent a section of a given source file from 
being copied to the program listing. 

The .XUST directive overrides all other listing directives. 

Example 

.xusr 
;listing suspended here 

.UST 
;listing resumes here 

7-50 

( 

( 



) 

) 

As: An Assemlller 

7.11.28 .SFCOND •• LFCOND, and. TFCOND Directives 

Syntax 

.SFCOND 

.LFCOND 

.TFCOND 

The .SFCOND and .LFCOND directives determine whether cs- not conditional 
blocks should be listed. The .SFCOND directive suppresses the listing of any 
subsequent conditional blocks whose IF condition is false. The .LFCOND 
directive restores the listing of these blocks. The directives can be used like .UST 
and .XLIST to suppress listing of the conditional blocks in sections of a program. 

The .TFCOND directive sets the defauh mode for listing of conditional blocks. 
This directive works in conjunction with the - X option of the assembler. lf - Xis 
not given in the as command line, .TFCOND causes false conditional blocks to be 
listed by default. lf - X is given, . TFCOND causes false conditional blocks to be 
suppr-essed. 

Examples 

.SFCOND 
IF 0 

;This block will not be listed. 
END IF 
.LFCOND 
IF 0 

ENDJF 

7.11.29 

Syntax 

.8086 

.8087 

.186 

.286c 

.286p 

.287 

;This block will be listed. 

lmtruction Set Directive 

The instruction set directives enable/disable the instruction sets for the given 
microprocessors. When a directive is given, aw will recognize and assemble any 
instruction mnemonics belonging to the given microprocessor. 

The .8086 directive disables the .186 and .286 instruction sets. Any attempt to use 
these instructions results in an errcs-. 

The .8087 directive enables the 8087 instruction set; .287 enables the 287 set. lf 
the -r option has been selected in the as command line. the assembler generates 
the actual instruction code for these instructions. lf the option is not given, as 
replaces the code with the code for a software interrupt to the floating emulator. 

The .186 directive enables the 186 instructions. The .286c directive enables b«h 
the 186 instructions and the 286 non-protected instructions. The .286p directive 

7-51 



XENIX Programmer's Gulde 

enables the 286 protected instructions. 

7 .12 Program Lkting Format 

As creates a program listing whenever tlx: -I option is given in the command line. 
The program listing has two parts: the listing of the actual statements and code, and 
tables detailing the names and attributes of all labels, variables, and symbols in the 
module. 

7.12.l Code l.l§ting 

Lines in the code listing part of the program listing have the fonn: 

offset code S011TCe-sratemen1 

The offset is from the start of the curmn segment. The code is the instJUction code 
or data generated by the assembler for the given source-statement. The 
source-suuemenl is as it appears in the original source file. As displays offsets, 
code, and data in a hexadecimal radix. It displays line numbers in decimal. If 
desired, you can change the output radix to the octal radix by using the -0 option 
in the as command line. Error messages, if any, are printed directly below the 
statement containing the error. 

A number of special characters uc used in the code listing to indicate specific 
attributes of the given statcmcul or generated cede. 

c Appears between the code am source statement in lines that have been 
included as part of an INCLUDE directive. 

E Appears beside code that conlains an address to an externally defined label 
or variable. 

R Appears beside code containing an address that must be resolved by the 
linker. 

Appears before the offset on lines containing the = or EQU directive. 

nn: Appears before instJUction code in which the segment override operator have 
been used. The nn is the instJUction code for the segment regista' named in 
the source statemenl. 

nnl Appears before instJUction code in which a rep or lock instruction has been 
used. The nn is the instruction code for the given prefix instruction. 

Appears in instruction code that conlains a segmenl reference to a named 
segment or group. The actual value is resolved by the linka. 

nn[.u] 

7-52 

Appears in place of generated data whenever a DUP operator is used. The 
nn is the number of duplicated elements, and .u is the initial value(s) given to 
each element. 

( 

( 

( 



) 

) 

) 

As: An Assembler 

As generates code listings for both assembly passes whenevCI' you give the -d 
option along with the -I option. Code generated for pass I usually contains error 
messages that do not appear in the pass 2 listing. Typically, these messages are 
caused by forward references that are resolved by the time the second listing is 
generated. Since phase errors during assembly are caused by the assembla 
misunderstanding the actual size or type of forward references, the different 
messages generated for pass I and pass 2 can be very useful in tracking down the 
actual cause of these phase errors. 

7.12.2 Symbol Table 

The second part contains tables that define the names and anributes of all labels, 
variables, symbols, segments, and groups. It also lists the number of warnings 
and severe error messages generated. 

The program listing contains two symbol tables: a table for segments and groups, 
and a table for labels, variables, and symbols. If a program does ntt generate 
entries for a given table, that table is left out of the program listing. 

Segment and Group Tables A segment and group table defines the name, size, 
alignment, combine type, and class of a segment, and the name of a group. The 
size of a segment is the number of bytes of instruction code and data it contains. 

Lines that define segments have the form: 

name..... size alignmenz combine-type class 

The alignmen1 is a segment alignment name: BYTE, WORD, PARA, or PAGE. 
The combine-type is a segment combine type: PUBLIC, STACK, COMMON, 
MEMORY, or AT. The keyword NONE is given ifthe segment has no combine 
type. The class is the class name given to the segment. 

Lines that define groups have the form: 

name ...... GROUP 

Segments that belong to the named group appear indented immediately under the 
group line. 

Example 

Name Size align combine class 

_TEXT oow WORD PUBLIC 'CODE' 
OOROUP ..... GROUP 
..DATA ...... 0200 WORD PUBLIC 'DATA' 
..BSS 0031 WORD PUBLIC 'BSS' 

Symbol Tables A symbol table defines the name. type, value, and other attributes 
of a label, variable, or symbol. Each line in the table has the form: 

name... . . type value anribute 

The type defines what the symbol is or what it represents. It usually consists of one 
or more of the following: 

7-53 



XENIX Programmer's Gulde 

L - a label or variable 
F - a far label 
N - a near label 
PROC - a procedure label 
Number - an absolute number { 
Alias - another symbol \ 
Opcode - an instruction mnemonic 
Telll - any item not covered by Number, Alias, or Opccdc 

The types BYTE, WORD, DWORD, QWORD, TBYTE, NEAR, and FAR may 
also appear. The l'a/ue is either the actual value of the symbol or its offset in 
hexadecimal. The attribute names the segment to which the symbol belongs. It 
can also show whether the symbol is external or global. External symbols are 
declared using the EXTRN directive; global symbols with PUBLIC. The length of 
each procedure is also given. 

Example 

Name 

CLS ........ . 
MAXCHAR ... . 
MESSG ....... . 
PARMS ....... . 
RECEIVR ..... . 
START ....... . 

Type Value Attr 

N PROC 0036 
Number 0019 
L BYTE OOIC 
L OOJC 0000 
L FAR 0000 
F PROC 0000 

_TEXT Length =OOOE 

...BSS 

...BSS 
External 

_TEXT Length =0036 

Symbols that have Number, Opcode, Alias, or Text type have been created using (' 
an EQU directive or an = directive. All information that follows one of these 
entries is considered its value, even if the value is simple text. 

( 

7-54 



Chapter 8 
Lex: A Lexical Analyzer 

8.1 Introduction 8-1 

8.2 Lex Source Format 8-2 

8.3 Lex Regular Expressions 8-3 

8.4 Invoking fe:i 8-4 

8.5 Specifying Character Classes 8-5 

8.6 Specifying an Arbitrary Character 8-6 

8.7 Specifying Optional Expressions 8-6 

) 
8.8 Specifying Repeated Expressions 8-6 

8.9 Specifying Alternation and Grouping 8-7 

8.10 Specifying Context Sensitivity 8-7 

8.11 Specifying Expression Repetition 8-8 

8.12 SpecifyingDefinitions 8-8 

8.13 SpecifyingActions 8-8 

8.14 Handling Ambiguous Source Rules 8-12 

8.15 SpecifyingLeftContextSensitivity 8-15 

) 8.16 Specifying Source Definitions 8-17 

8.17 Lex and Yacc 8-18 



8J.8 Specifying Cll:aaracteli' Sets 8-22 

8.19 SourceFormat 8-23 

( 

( 

( 



) 

) 

Lex: A Lexical Analyzer 

8.1 Introduction 

Lex is a. program generator designed for lexical processing of character input 
streams. It accepts a. high-level, problem-oriented specification for character 
string matching, a.nd produces a. C program tha.t recognizes regular 
expressions. The regular expressions a.re specified by the user in the source 
specifications given to lex. The lex code recognizes these expressions in an 
input stream a.nd partitions the input stream into strings matching the 
expressions. At the boundaries between strings, program sections provided by 
the user a.re executed. The lex source file associates the regular expressions a.nd 
the program fragments. As each expression appears in the input to the 
program written by lex, the corresponding fragment is executed. 

The user supplies the additional code needed to complete his tasks, including 
code written by other genera.tors. The program that recognizes the expressions 
is generated in the from the user's C program fragments. Lex is not a complete 
language, but rather a generator representing a new language feature added on 
top of the C programming language. 

Lex turns the user's expressions a.nd actions (ca.lied eourc:e in this chapter) into 
a. C program named yylez. The yylez program recognizes expressions in a. 
stream (called input in this chapter) a.nd performs the specified actions for each 
expression as it is detected. 

Consider a program to delete from the input all blanks or tabs at the ends of 
lines. The following lines 

%% 
[\t)+$ 

a.re all that is required. The program contains a %% delimiter to mark the 
beginning of the rules, and one rule. This rule contains a regular expression 
that matches one or more instances or the characters blank or tab (written \t 
for visibility, in accordance with the C language convention) just prior to the 
end or a line. The brackets indicate the character class made or blank and tab; 
the + indicates one or more of the previous item; and the dollar sign ($) 
indicates the end or the line. No action is specified, so the program generated by 
lex will ignore these characters. Everything else will be copied. To change any 
remaining string or blanks or tabs to a single blank, add another rule: 

%% 
[\t)+$ 
[\ti+ 

I 

printf(" "); 

The finite automaton generated for this source scans for both rules at once, 
observes at the termination of the string of blanks or ta.bs whether or not there 
is a newline character, and then executes the desired rule's action. The first rule 
matches all strings of blanks or tabs at the end or lines, a.nd the second rule 
matches all remaining strings of blanks or tabs. 

8-1 



XENIX Programmer's Guide 

Lex can be used alone for simple transformations, or for analysis and st.atistics 
gathering on a. lexica.l level. Lex ca.n also be used with a parser generator to 
perform the lexical a.na.lysis phase; it is especially easy to interface lex a.nd 
yacc. Lex programs recognize only regular expressions; yacc writes parsers 
that accept a large class or context-free grammars, but that require a lower 
level analyzer to recognize input tokens. Thus, a combination of lex and yacc 
is often appropriate. When used as a preprocessor for a later parser genera.tor, 
lex is used to partition the input stream, and the parser genera.tor assigns 
structure to the resulting pieces. Additional programs, written by other 
generators or by hand, ca.n be added easily to programs written by lex. Yacc 
users will realize that the name yglez is what yacc expects its lexical analyzer to 
be named, so that the use ofthis name by lex simplifies interfacing. 

Lex generates a. deterministic finite au tom a.ton from the regular expressions in 
the source. The automaton is interpreted, rather than compiled, in order to 
save space. The result is still a fa.st analyzer. In particular, the time ta.ken by a. 
lex program to recognize and partition an input stream is proportional to the 
length of the input. The number orJex rules or the complexity orthe rules is not 
important in determining speed, unless rules which include forward context 
require a significant amount of rescanning. What does increase with the 
number and complexity of rules is the size of the finite automaton, a.nd 
therefore the size of the program generated by lex. 

In the program written by lex, the user's fragments (representing the actions to 
be performed as ea.ch regular expression is found) are gathered as cases of a. ( 
switch. The a.utoma.ton interpreter directs the control flow. Opportunity is 
provided for the user to insert either declarations or additional statements in 
the routine containing the actions, or to a.dd subroutines outside this action 
routine. 

Lex is not limited to source that ca.n be interpreted on the basis of one 
character lookahead. For example, if there a.re two rules, one looking for ab a.nd 
another for abcdefg, and the input stream is abcdefh, lex will recognize ab a.nd 
leave the input pointer just before ed. Such backup is more costly than the 
processing of simpler languages. 

8 .2 Lex Source Format 

The general format of lex source is: 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

where the definitions and the user subroutines are often omitted. The second 
%% is optional, but the first is required to mark the beginning of the rules. The 
absolute minimum !ex program is thus 

8-2 

( 



) 

) 

Lex: A Lexical Analyzer 

%% 

(no definitions, no rules) which translates into a program that copies the input 
to the output unchanged. 

In the lex program format shown above, the rules represent the user's control 
decisions. They make up a table in which the left column contains regular 
expressions and the right column contains actions, program fragments to be 
executed when the expressions are recognized. Thus the following individual 
rule might appear: 

integer printf(" found keyword INT"); 

This looks for the string intege rin the input stream and prints the message 

found keyword INT 

whenever it appears in the input text. In this example the C library function 
print/() is used to print the string. The end of the lex regular expression is 
indicated by the first blank or tab character. If the action is merely a single C 
expression, it can be given on the right side of the line; if it is compound, or takes 
more than a line, it should be enclosed in braces. As a slightly more useful 
example, suppose it is desired to change a number of words from British to 
American spelling. Lex rules such as 

colour 
mechanise 
petrol 

printf(" color"); 
printC(" mechanize"); 
printf(" gas"); 

would be a start. These rules are not quite enough, since the word petroleum 
would become ga11eum; a way of dealing with such problems is described in a 
later section. 

8.3 Lex Regular Expressions 

A regular expression specifies a set or strings to be matched. It contains text 
characters (that match the corresponding characters in the strings being 
compared) and operator characters (these specify repetitions, choices, and 
other features). The letters of the alphabet and the digits are always text 
characters. Thus, the regular expression 

integer 

) matches the string integer wherever it appears and the expression 

a57D 

looks for the string a57D. 

8-3 



XENBX Programmer's Guide 

The operator characters are 

"\II'-!. •+l()S/{ }% < > 

Ir any of these characters are to be used literally, they needed to be quoted ( 
individually with a backslash ( \) or as a group within quotation marks (" ). 
The quotation mark operator(") indicates that whatever is contained between 
a pair of quotation marks is to be taken as text characters. Thus 

xyz"++" 

matches the string zyz++ when it appears. Note that a part or a string may be 
quoted. It is harmless but unnecessary to quote an ordinary text character; the 
expression 

"xyz++" 

is the same as the one above. Thus by quoting every nonalphanumerie 
character being used as a text character, you need not memorize the above list 
of current operator characters. 

An operator character may also be turned into a text character by preceding it 
with a backslash(\) as in 

xyz\+\+ 

which is another, less readable, equivalent of the above expressions. The 
quoting mechanism can also be used to get a blank into an expression; normally, 
as explained above, blanks or tabs end a rule. Any blank character not 
contained within brackets must be quoted. Several normal C escapes with the 
backslash (\)are recognized: 

\n newline 

\t tab 

\b backspace 

\\ backslash 

Since newline is illegal in an expression, a \n must be used; it is not required to 
escape tab and backspace. Every character but blank, tab, newline and the list 
above is always a text character. 

8.4 Invoking lez 

There are two steps in compiling a lex source program. First, the lex source 
must be turned into a generated program in the host general purpose language. 
Then this program must be compiled and loaded, usually with a library or lex 

8-4 

( 

( 



) 

) 

) 

Lex: A Lexical Analyzer 

subroutines. The generated program is in a file named lex.yy.c. The 1/0 
library is defined in terms of the C standard library. 

The library is accessed by the loader flag -ll. So an appropriate set or 
commands is 

lex source 
cc lex.yy .c -II 

The resulting program is placed on the usual file a.out for later execution. To 
use lex with yacc see the section "Lex and Yacc" in this chapter and Chapter 9, 
"Yacc: A Compiler-Compiler"". Although the default lex 1/0 routines use the 
C standard library, the lex automata themselves do not do so. IC private 
versions or input, output, and unput are given, the library can be avoided. 

8.5 Specifying Character Classes 

Classes of characters can be specified using brackets: I and j. The construction 

jabc) 

matches a single character, which may be a, b, or c. Within square brackets, 
most operator meanings are ignored. Only three characters are special: these 
are the backslash (\), the dash (-), and the caret ( • ). The dash character 
indicates ranges. For example 

[a-z0-9<>_J 

indicates the character class containing all the lowercase letters, the digits, the 
angle brackets, and underline. Ranges may be given in either order. Using the 
dash between any pair of characters that are not both uppercase letters, both 
lowercase letters, or both digits is implementation dependent and causes a 
warning message. If it is desired to include the dash in a character class, it 
should be first or last; thus 

[-+0-9J 

matches all the digits and the plus and minus signs. 

In character classes, the caret(') operator must appear as the first character 
after the left bracket; it indicates that the resulting string is to be 
complemented with respect to the computer character set. Thus 

['abcJ 

matches all characters except a, b, or c, including all special or control 
characters; or 

8-5 



XENIX Programmer's Guide 

[. a-zA-ZJ 

is any character which is not a letter. The backslash ( \) provides an escape 
mechanism within character class brackets, so that characters can be entered 
literally by preceding them with this character. 

8.6 Specifying an Arbitrary Character 

To match almost any character, the period (.) designates the cl:i.ss or all 
characters except a newline. Escaping into octal is possible although 
non portable. For example 

(\40-\176] 

matches all printable characters in the ASCII character set, From octal 40 
(blank) to octal 176 (tilde). 

8.7 Specifying Optional Expressions 

The question mark(!) operator indicates an optional element or an expression. 
Thus 

ab!c 

matches either ac or abc. Note that the meaning or the question mark here 
differs From its meaning in the shell. 

8 .8 Specifying Repeated Expressions 

Repetitions or classes are indicated by the asterisk(•) and plus(+) operators. 
For example 

matches any number or consecutive a characters, including zero; while a+ 
matches one or more instances or a. For example, 

(a-z)+ 

matches all strings or lowercase letters, and 

(A-Za-z](A-Za-z0-9)• 

matches all alphanumeric strings with a leading alphabetic character; this is a 
typical expression ror recognizing identifiers in computer languages. 

8-6 

( 

( 

( 



) 

) 

Lex; A Lexical Analyzer 

8.9 Specifying Alternation and Grouping 

The vertical bar (I) operator indicates alternation. For example 

(ablcd) 

matches either ab or c d. Note that parentheses a.re used for grouping, although 
they are not necessary at the outside level. For example 

ablcd 

would have sufficed in the preceding example. Parentheses should be used for 
more complex expressions, such as 

(ablcd+ )?(ef)• 

which matches such strings as abef ef, efef ef, cdef, and cddtl, but not abc, abed, 
or abcdef. 

8.10 Specifying Context Sensitivity 

Lex recognizes a. small a.mount of surrounding context. The two simplest 
opera.tors for this a.re the caret ( • ) and the dollar sign($). Ir the first character 
of an expression is a. caret, then the expression is only matched at the beginning 
of a. line (after a. newline character, or at the beginning of the input stream). 
This can never conflict with the other meaning or the caret, complementation 
of character classes, since complementation only applies within brackets. Ir the 
very la.st character is dollar sign, the expression only matched at the end of a. 
line (when immediately followed by newline). The latter opera.tor is a. special 
case of the slash(/) opera.tor, which indicates trailing context. The expression 

a.b/cd 

matches the string ab, but only if followed by c d. Thus 

ab$ 

is the same as 

a.b/\n 

Left context is handled in lex by specifying start conditions as explained in the 
section "Specifying Left Context Sensitivity". If a rule is only to be executed 
when the lex automaton interpreter is in start condition :r, the rule should be 
enclosed in angle brackets; 

<x> 

8-7 



XENIX Programmer's Guide 

If we considered being at the begmning of a line to be start condition ONE, then 
the caret ( • ) opera.tor would be equivalent to 

<ONE> 

Sta.rt conditions a.re explained more fully later. 

8.11 Specifying Expression Repetition 

The curly braces ( { a.nd}) specify either repetitions (if they enclose numbers) or 
definition expansion (if they en close a. n a.me). For example 

{digit} 

looks for a predefined string named digit and inserts it at that point in the 
expression. 

8.12 Specifying Definitions· 

The definitions are given in the first part of the lex input, before the rules. In 
contra.st, 

a.{ 1,5} 

looks for 1to5 occurrences of the character a. 

Fina.Hy, a.n initial percent sign (%)is special, since it is the separator for lex 
source segments. 

8.13 Specifying Actions 

When a.n expression is matched by a pattern of text in the input, lex executes 
the corresponding action. This section describes some features of lex which a.id 
in writing actions. Note that there is a. default action, which consists of copying 
the input to the output. This is performed on a.II strings not otherwise matched. 
Thus the lex user who wishes to absorb the entire input, without producing a.ny 
output, must provide rules to match everything. When lex is being used with 
yacc, this is the normal situation. You may consider tha.t actions a.re wha.t is 
done instead of copying the input to the output; thus, in genera.I, a. rule which 
merely copies can be omitted. 

( 

One of the simplest things that ca.n be done is to ignore the input. Specifying a. C (' 
null statement ;as an action ca.uses this result.A frequent rule is 

[ \t\nJ 

which ca.uses the three spacing cha.ra.cters (blank, tab, and newline) to be 

8-8 



) 

) 

) 

Lex: A Lexical Analyzer 

ignored. 

Another easy way to avoid writing actions is to use the repeat action character, 
I, which indicates that the action for this rule is the action for the next rule. The 
previous example could also have been written 

"\t" 
"\n" 

with the same result, although in a different style. The quotes around \n and \t 
are not required. 

In more complex actions, you often want to know the actual text that matched 
some expression like: 

[a-zJ+ 

Lex leaves this text in an external character array named vvte:zt. Thus, to 
print the name found, a rule like 

[a-z J+ printf(" %s", yytext); 

prints the string in yyte:zt. The C function print/ accepts a format argument 
and data to be printed; in this case, the format is print etringwhere the percent 
sign(%) indicates data conversion, and the B indicate string type, and the data 
are the characters in yyte:zt. So this just places the matched string on the 
output. This action is so common that it may be written as ECHO. For example 

[a-zj+ ECHO; 

is the same as the preceding example. Since the default action is just to print 
the characters found, one might ask why give a rule, like this one, which merely 
specifies the default action? Such rules are often required to avoid matching 
some other rule that is not desired. For example, if there is a rule that matches 
read it will normally match the instances or re ad contained in bread or readjust; 
to avoid this, a rule or the form 

[a-zJ+ 

is needed. This is explained further below. 

Sometimes it is more convenient to know the end oC what has been found; hence 
lex also provides a count of the number of characters matched in the varial:,le, 
yyleng. To count both the number of words and the number of characters in 
words in the input, you might write 

[a-zA-ZJ+ {words++; chars+= yyleng;} 

which accumulates in the variables chars the number of characters in the words 

8-9 



XENIX Programmer's Guide 

recognized. The last character in the string matched can be accessed with: 

yytext(yy leng-1 j 

Occasionally, a lex action may decide that a rule has not recognized the correct ( 
span or characters. Two routines are provided to aid with this situation. First, · 
yymore () can be called to indicate that the next input expression recognized is 
to be tacked on to the end or this input. Normally, the next input string will 
overwrite the current entry in y,tezt. Second, ri'ul{n) may be called to 
indicate that not all the characters· matched by the currently successful 
expression are wanted right now. The argument n indicates the number or 
characters in yytezt to be retained. Further characters previously matched are 
returned to the input. This provides the same sort or lookahead offered by the 
slash(/) operator, .but in a different Corm. 

For example, consider a language that defines a string as a set of characters 
between quotation marks("), and provides that to include a quotation mark in 
a string, it must be preceded by a backslash (\). The regular expression that 
matches this is somewhat confusing, so that it might be preferable to write 

\"r"I• { 
ir(yytext(yy leng-1 j = = '\\') 

yymore(); 
else 

... normal user processing 
} 

which, when raced with a string such as 

"abc\"der 

will first match the five characters 

"abc\ 

and then the call to yymore() will cause the nextpartofthestring, 

"der 

to be tacked on the end. Note that the final quotation mark terminating the 
string should be picked up in the code labeled normal processing. 

The function yyle11() might be used to reprocess text in various circumstances. 
Consider the problem in the older c sYntax or distinguishing the ambiguity or ( 
=-a. Suppose it is desired to treat this as=- a and to print a message. A rule 
might be 

8-10 



) 

) 

Lex: A Lexical Analyzer 

=-(a-zA-Z] { 
printr(" Operator ( =-) ambiguous\n" ); 
yyless(yyleng-1); 
... action for =· ... 
} 

which prints a message, returns the letter arter the operator to the input 
stream, and treats the operator as=-. 

Alternatively it might be desired to treat this as = -a. To do this, just return 
the minus sign as well as the letter to the input. The following performs the 
interpretation: 

=-(a-zA-Z] · { 
printt(" Operator ( =-) ambiguous\n" }; 
yyless(yyleng-2); 
... action for = ... 
} 

Note that the expressions tor the two cases might more easily be written 

=-/IA-Za-z] 

in the first case and 

=/-!A-Za-zJ 

in the second: no backup would be required in the rule action. It is not 
necessary to recognize the whole identifier to observe the ambiguity. The 
possibility or =-9, however, makes 

=-/[' \t\nJ 

a still better rule. 

In addition to these routines, lex also permits access to the 1/0 routines it uses. 
They include: 

1. input() which returns the next input character; 

2. output( c) which writes the character con the output; and 

3. unput(c) which pushes the character c back onto the input stream to 
be read later by input(). 

By default these routines are provided as macro definitions, but the user can 
override them and supply private versions. These routines define the 
relationship between external files and internal characters, and must all be 
retained or modified consistently. They may be redefined, to cause input or 

8-11 



XENIX Programmer's Guide 

output to be transmitted to or from strange places, including other programs 
or internal memory; but the character set used must be consistent in all 
routines; a value of zero returned by input must mean end-of-file; and the 
relationship between unput and input must be retained or the lookahead will 
not work. Lex does not look ahead at all if it does not have to, but every rule (. 
containing a slash ( /) or ending in one of the following characters implies • 
lookahead: 

+ • ! $ 

Lookahead is also necessary to match an expression that is a prefix of another 
expression. See below for a discussion of the character set used by lex. The 
standard lex library imposes a 100 character limit on backup. 

Another lex library routine that you sometimes want to redefine is yywrap() 
which is called whenever lex reaches an end-of-file. If JIJ!Wrap returns a 1, lex 
continues with the normal wrapup on end of input. Sometimes, however, it is 
convenient to arrange for more input to arrive from a new source. In this case, 
the user should provide a 11J1Wrap that arranges for new input and returns 0. 
This instructs lex to continue processing. The default 1Jlwrap always returns 1. 

This routine is also a convenient place to print tables, summaries, etc. at the 
end of a program. Note that it is not possible to write a normal rule that 
recognizes end-of-file; the only access to this condition is through yywrap(). In 
fact, unless a private version of input() is supplied a file containing nulls cannot (•• 
be handled, since a value oro returned by input is taken to be end-of-file. 

8.14 Handling Ambiguous Source Rules 

Lex can handle ambiguous specifications. When more than one expression can 
match the current input, lex chooses as follows: 

The longest match is preferred. 

• Among rules that match the same number of characters, the first 
given rule is preferred. 

For example, suppose the following rules are given: 

integer 
la-z)+ 

keyword action ... ; 
identifier action ... ; 

If the input is integeru, it is taken as an identifier, because 

la.-z)+ 

matches 8 characters while 

8-12 

( 



) 

) 

) 

Lex: A Lexical Analyzer 

integer 

matches only 7. If the input is integer, both rules match 7 characters, and the 
keyword rule is selected because it was given first. Anything shorter (e.g., int) 
does not match the expression integer, so the identifier interpretation is used. 

The principle of preferring the longest match makes certain constructions 
dangerous, such as the following: 

.• 
For example 

might seem a good way of recognizing a string in single quotes. But it is an 
invitation for the program to read Car ahead, looking tor a distant single quote. 
Presented with the input 

'first' quoted string here, 'second' here 

the above expression matches 

'first' quoted string here, 'second' 

which is probably not what was wanted. A better rule isotthe form 

T '\nJ•' 

which, on the above input, stops after 'first'. The consequences of errors like 
this are mitigated by the fact that the dot (.) operator does not match a 
newline. Therefore, no more than one line is ever matched by such expressions. 
Don't try to defeat this with expressions like 

[.\n)+ 

or their equivalents: the lex generated program will try to read the entire input 
file, causing internal buffer overflows. 

Note that lex is normally partitioning the input stream, not searching tor all 
possible matches of each expression. This means that each character is 
accounted for once and only once. For example, suppose it is desired to count 
occurrences of both ahe and he in an input text. Some lex rules to do this might 
be 

she 
he 
\n 

s++; 
h++; 
[ 

8-13 



XENIX Programmer's Guide 

where the last two rules ignore everything besides Ae and eAe. Remember that 
the period ( . ) does not include the newline. Since 1Ae includes Ae, lex will 
normally not recognize the instances of Ae included in •le, since once it has 
passed a 1Ae those characters are gone. 

Sometimes the user would like to override this choice. The action REJECT 
means go do the next alternative. It causes whatever rule was second choice 
after the current rule to be executed. The position or the input pointer is 
adjusted accordingly. Suppose the user really wants to count the included 
instances of Ae: 

she {s++; REJECT;} 
he {h++; REJECT;} 
\n I 

These rules are one way of changing the previous example to do just that. After 
counting each expression, it is rejected; whenever appropriate, the other 
expression will then be counted. In this example, of course, the user could note 
that Blae includes /ae, but not vice versa, and omit the REJECT action on he; in 
other cases, however, it would not be possible to tell which input characters 
were in both classes. 

Consider the two rules 

alb cl+ 
acd + 

{ ... ; REJECT;} 
{ ... ; REJECT;} 

Uthe input is ab, only the first rule matches, and on ad only the second matches. 
The input string accb matches the first rule for four characters and then the 
second rule for three characters. In contrast, the input aced agrees with the 
second rule for four characters and then the first rule for three. 

In general, REJECT is userul whenever the purpose or lex is not to partition the 
input stream but to detect all examples of some items in the input, and the 
instances of these items may overlap or include each other. Suppose a digram 
table of the input is desired; normally the digrams overlap, that is the word tlu 
is considered to contain both ti& and /ae. Assuming a two-dimensional array 
named digram to be incremented, the appropriate source is 

%% 
(a-zJ(a-z) { digram[yytext(O))[yytext(l))++; REJECT;} 

\n 

where the REJECT is necessary to pick up a letter pair beginning at every 
character, rather than at every other character. 

Remember that REJECT does not rescan the input. Instead it remembers the 
results or the previous scan. This means that if a rule with trailing context is 

8-14 

( 



) 

) 

) 

Lex: A Lexical Analyzer 

Cound, and REJECT executed, you must not have used unput to change the 
characters forthcoming from the input stream. This is the only restriction to 
ability to manipulate the not-yet-processed input. 

8.15 Specifying Left Context Sensitivity 

Sometimes it is desirable to have several sets of lexical rules to be applied at 
different times in the input. For example, a compiler preprocessor might 
distinguish preprocessor statements and analyze them differently from 
ordinary statements. This requires sensitivity to prior context, and there are 
several ways of handling such problems. The caret(•) operator, for example, is 
a prior context operator, recognizing immediately preceding left context just as 
the dollar sign ($) recognizes immediately following right context. Adjacent 
left context could be extended, to produce a facility similar to that for adjacent 
right context, but it is unlikely to be as useful, since often the relevant left 
context appeared some time earlier, such as at the beginning of a line. 

This section describes three means of dealing with different environments: 

1. The use of Ila.gs, when only a few rules change from one environment 
to another 

2. The use of start conditions with rules 

3. The use multiple lexical analyzers running together. 

In each case, there are rules that recognize the need to change the environment 
in which the following input text is analyzed, and set some parameter to reflect 
the change. This may be a flag explicitly tested by the user's action code; such a 
flag is the simplest way or dealing with the problem, since lex is not involved at 
all. It may be more convenient, however, to have lex remember the flags as 
initial conditions on the rules. Any rule may be associated with a start 
condition. It will only be recognized when lex is in that start condition. The 
current start condition may be changed at any time. Finally, if the sets ofrules 
for the different environments are very dissimilar, clarity may be best achieved 
by writing several distinct lexical analyzers, and switching from one to another 
as desired. 

Consider the following problem: copy the input to the output, changing the 
word magic to fir8t on every line that began with the letter a, changing magic to 
ucond on every line that began with the letter b, and changing magic to third 
on every line that began with the letter c. All other words and all other lines are 
left unchanged. 

These rules are so simple that the easiest way to do this job is with a flag: 

8-15 



XENIX Programmer's Guide 

%% 
·a 
Ab 
c 

\n 
magic 

int flag; 

{flag= 'a'; ECHO;} 
{flag= 'b'; ECHO;} !flag= 'c'; ECHO;} 

fta.g = 0; ECHO;} 

switch (fta.g) 
{ 
case 'a': printr(" first"); break; 
case 'b ': pr in tr(" second"); break; 
case 'c ': printr(" third"); break; 
default: ECHO; break; 

i 
should be adequate. 

To handle the same problem with start conditions, each start condition must be 
introduced to lex in the definitions section with a. line reading 

%Start na.mel na.me2 ... 

where the conditions may be named in any order. The word Start may be 
abbreviated to 1 or S. The conditions may be reCerenced a.t the head or a rule 
with angle brackets. For example 

< namel >expression 

is a rule that is only recognized when lex is in the start condition name1. To 
enter a start condition, execute the action statement 

BEGIN namel; 

which changes the start condition to name1. To return to the initial state 

BEGIN O; 

resets the initial condition or the lex automaton interpreter. A rule may be 
active in several start conditions; for example: 

<name l ,na.me2,na.me3 > 

is a. legal prefix. Any rule not beginning with the < > prefix opera.tor is always 
active. 

The same example as berore can be written: 

8-16 

( 

( 



) 

) 

) 

Lex: A Lexical Analyzer 

%ST ART AA BB CC 
%% 
a {ECHO; BEGIN AA;} 

'b {ECHO; BEGIN BB;} 
'c {ECHO; BEGIN CC;} 
\n {ECHO; BEGIN O;} 
<AA> magic printf(" first"); 
<BB> magic printf(" second"); 
<CC> magic printf(" third"); 

where the logic is exactly the same as in the previous method or handling the 
problem, but lex does the work rather than the user's code. 

8.16 Specifying Source Definitions 

Remember the format of the lex source: 

{definitions} 
%% 
{rules} 
%% 
{user routines} 

So far only the rules have been described. You will need additional options, 
though, to define variables for use in your program and for use by lex. These 
can go either in the definitions section or in the rules section. 

Remember that lex is turning the rules into a program. Any source not 
intercepted by lex is copied into the generated program. There are three classes 
of such things: 

1. 

2. 

Any line that is not part of a lex rule or action which begins with a 
blank or tab is copied into the lex generated program. Such source 
input prior to the first%% delimiter will be external to any function 
in the code; if it appears immediately after the first%%, it appears in 
an appropriate place for declarations in the function written by lex 
which contains the actions. This material must look like program 
fragments, and should precede the first lex rule. 

As a side effect or the above, lines that begin with a blank or tab, and 
which contain a comment, are passed through to the generated 
program. This can be used to include comments in either the lex 
source or the generated code. The comments should follow the 
conventions of the C language. 

Anything included between lines containing only %{and %} is copied 
out as above. The delimiters are discarded. This format permits 
entering text like preprocessor statements that must begin in column 

8-17 



XENIX Programmer's Guide 

1, or copying lines that do not look like programs. 

3. Anything after the third %% delimiter, regardless or formats, is 
copied out after the lex output. 

Definitions intended for lex are given before the first %% delimiter. Any line in 
this section not contained between %{ and %} , and beginning in column I, is 
assumed to define lex substitution strings. The format ofsuch lines is 

name translation 

and it causes the string given as a translation to be associated with the name. 
The name and translation must be separated by at least one blank or tab, and 
the name must begin with a letter. The translation can then be called out by the 
{name} syntax in a rule. Using {D} for the digits and {E} for an exponent field, 
for example, might abbreviate rules to recognize numbers: 

D 
E 
%% 
{D}+ 
{D}+" ."{D}~({E})! 
{D}•" ." {D}+( {E} )! 
{D}+{E} 

IO-DJ 
IDEdeJl-+J!{D}+ 

printf(" integer"); 

I 
I 

printf(" real"); 

Note the first two rules for real numbers; both require a decimal point and 
con ta.in an optional exponent field, but the first requires at least one digit before 
the decimal point and the second requires at least one digit after the decimal 
point. To correctly handle the problem posed by a FORTRAN expression such 
as 95.EQ. l, which does not contain a real number, a context-sensitive rule such 
as 

(0-D)+/" ."EQ printf(" integer"); 

could be used in addition to the normal rule for integers. 

The definitions section may also contain other commands, including a 
character set table, a list of start conditions, or adjustments to the default size 
of arrays within lex itself for larger source programs. These po~ibilities are 
d iscu~ed in the section "Source Format". 

8.17 Lex and Yacc 

( 

( 

Ir you want to use lex with yacc, note that what lex writes is a program named f. 
yylez(), the name required by yacc for its analyzer. Normally, the default main ~ 
program on the lex library calls this routine, but if yacc is loaded, and its main 
program is used, yacc will call yylez(). In this case, each lex rule should end 
with 

8-18 



) 

) 

) 

Lex: A Lexical Analyzer 

return{ token); 

where the appropriate token value is returned. An easy way to get access to 
yacc's names for tokens is to compile the lex output file as part of the yacc 
output file by placing the line 

# include "lex.yy.c" 

in the la.st section or yacc input. Supposing the grammar to be named good and 
the lexical rules to be named bette rthe XENIX command sequence can just be: 

yacc good 
lex better 
cc y.ta.b.c -ly -II 

The yacc library (-ly) should be loaded before the lex library, to obtain a main 
program which invokes the yacc parser. The generation of lex and yacc 
programs can be done in either order. 

A1s a trivial problem, consider copying an input file while adding 3 to every 
positive number divisible by 7. Here is a suitable lex source program to do just 
that: 

%% 
int k; 

IO-QJ+ { 
k = atoi(yytext); 
ir (k%7 == o) 

printf(" %d", k+3); 
else 

printf{" %d" ,k ); 
} 

The rule IO-Qj + recognizes strings or digits; atoal) converts the digits to binary 
and stores the result ink. The remainder operator(%) is used to check whether 
k is divisible by 7; ir it is, it is incremented by 3 as it is written out. It may be 
objected that this program will alter such input items as 49.63 or X7. 
Furthermore, it increments the absolute value oC all negative numbers divisible 
by 7. To a.void this, just add a few more rules after the active one, as here: 

%% 
int k; 

-?I0-9J+ { 
k = atoi(yytext); 
printr(" %d", k%7 == o ! k+3 : k); 
} 

-?I0-9.J+ ECHO; 
IA-Za-zJIA-Za.-z0-9]+ ECHO; 

Numerical strings containing a decimal point or preceded by a letter will be 

8-19 



XENIX Programmer's Guide 

picked up by one or the last two rules, and not changed. The if-else has been 
replaced by a C conditional expression to save space; the form afb:c means: if a 
then b else c. 

For an example or statistics gathering, here is a program which makes ( 
histograms or word lengths, where a word is defined as a string orletters. . 

%% 
la-z)+ 

\n 
%% 
yywrap() 
{ 
int i; 

int lengsllOO); 

lengs(yyleng)++; 

I 

printf("Length No. words\n" ); 
Cor(i=O; i<IOO; i++) 

iC (lengsliJ > 0) 
printf(" %5d % 1 Od\n" ,i, lengsli)); 

return( I); 
} 

This program accumulates the histogram, while producing no output. At the 
end of the input it prints the table. The final statement return(l); indicates 
that lex is to perform wrapup. If yywrap() returns zero (false) it implies that 
further input is available and the program is to continue reading and 
processing. To provide a yywrap() that never returns true causes an infinite 
loop. 

As a larger example, here are some parts of a program written to convert 
double precision FORTRAN to single precision FORTRAN. Because FORTRAN 
does not distinguish between upper- and lowercase letters, this routine begins 
by defining a set of classes including both cases of each letter: 

1:1 a 
b 
c (cCJ 

z lzZ) 

An additional class recognizes white space: 

w I \tJ• 

The first rule changes double precieion to real, or DOUBLE PRECISION to 
REAL. 

8-20 

( 



) 

) 

) 

Lex: A Lexical Analyzer 

{ d}{o }{ u}{b }{l}{ e }{W}{p }{ r }{ e}{ c }{i}{s }{i}{ o }{n} { 
printf(yytext!OJ=='d'? "real" : "REAL"); 
} 

Care is taken throughout this program to preserve the case of the original 
program. The conditional operator is used to select the proper form of the 
keyword. The next rule copies continuation card indications to avoid confusing 
them with constants: 

,, I' OJ ECHO; 

In the regular expression, the quotes surround the blanks. It is interpreted as 
beginning of line, then five blanks, then anything but blank or zero." Note the 
two different meanings of the caret(') here. There follow some rules to change 
double precision constants to ordinary floating constants. 

10-Ql+{W}{ d}{W}(+-J?{W}IO-Q)+ I 
0-Q +{W}" ." {W}{d}{W}1+-1?{W}10-g1+ {I 

"." {W}I0-9)+{W}{ d}{W} +- ? {W} 0-9 + 
/• convert constants •/ 
for{p=yytext; •p != O; p++) 

{ 
if (•p == 'd' II •p == 'D') 

•p+= 'e'- 'd'; 
ECHO; 

} 

After the floating point constant is recognized, it is scanned by the for loop to 
find the letter "d" or "D". The program then adds "1 e1 - 1 d'" which converts it 
to the next letter of the alphabet. The modified constant, now single precision, 
is written out again. There follow a series of names which must be respelled to 
remove their initial "d". By using the array yytezt the same action suffices for 
all the names (only a sample of a rather long list is given here). 

{d}{s}{i}{n} I 
{d}{c}{o}{s} I 
{d}{s}{q}{r}{t} I 
{d}{a}{t}{a}{n} I 

{ d}{f} {l}{o}{ a}{ t} printf(" %s" ,yytext+ l); 

Another list of names must have initial d changed to initial a: 

8-21 



XENIX Programmer's Guide 

{d}{l}{o}{g} 
{ d}ll}{o}{g}lO 
{d} m}{i}{n}l 
{d} m}{a}{x}l { 

yytext(O) + .... 'a' - 'd '; 
ECHO; 
} 

And one routine must have initial ti changed to initial r: 

{d}l{m}{a}{c}{h} { 

} 

yytext(O) +""' 'r' - 'd '; 
ECHO; 

To avoid such names as tllinz being detected as instances of tlein, some final 
rules pick up longer words as identifiers and copy some surviving characters: 

IA-Za-z)(A-Za-zO-g)• 
(0-g)+ 
\n 

ECHO; 

Note that this program is not complete; it does not deal with the spacing 
problems in FORTRAN or with the use of keywords as identifiers. ( 

8.18 Specifying Character Sets 

The programs generated by lex handle character 1/0 only through the 
routines input, output, and unput. Thus the character representation provided 
in these routines is accepted by lex and employed to return values in 11ytezt. 
For internal use a character is represented as a small integer which, if the 
standard library is used, has a value equal to the integer value or the bit pattern 
representing the character on the host computer. Normally, the letter a is 
represented as the same Corm as the character constant: 

'a' 

Ir this interpretation is changed, by providing 1/0 routines which translate the 
characters, lex must be told about it, by giving a translation table. This table 
must be in the definitions section, and must be bracketed by lines containing 
only %T. The table contains lines of the form 

{integer} {character string} 

which indicate the value associated with each character. For example: 

8-22 

( 



) 

Lex: A Lexical Analyzer 

%T 
1 Aa 
2 Bb 

26 Zz 
27 \n 
28 + 
29 
30 0 
31 l 

39 9 
%T 

This table maps the lowercase and uppercase letters together into the integers 1 
through 26, newline into 27, plus(+) and minus(-) into28 and 29, and the digits 
into 30 through 39. Note the escape for newline. Ir a table is supplied, every 
character that is to appear either in the rules or in any valid input must be 
included in the table. No character may be assigned the number 0, and no 
character may be assigned a larger number than the size or the hardware 
character set. 

8.19 Source Format 

) The general form of a lex source file is: 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

The definitions section contains a combination of 

1. Definitions, in the form "name space translation" 

2. Included code, in the form "space code" 

3. Included code, in the form 

%{ 
code 

) 
%} 

4. Start conditions, given in the form 

%S namel name2 ... 

8-23 



XENIX Programmer's Guide 

5. Character set tables, in the form 

%T 
number space character-string 
%T 

6. Changes to internal array sizes, in the form 

%x nnn 

where nnn is a decimal integer representing an array size and zselects 
the parameter as follows: 

Letter 
p 
n 
e 
a 
k 
0 

Parameter 
positions 
states 
tree nodes 
transitions 
packed character classes 
output array size 

Lines in the rules section have the form: 

e::pre111ion action 

where the action may be continued on succeeding lines by using braces to 
delimit it. 

Regular expressions in lex use the following operators: 

x The character" x" 

"x" An "x", even if x is an operator. 

\x An" x", even ih is an operator. 

lxy) The character x or y. 

lx-zJ The characters x, y or z. 

rxJ Any character butx. 

Any character but newline. 

. x An x at the beginning or a line . 

<y > x An x when lex is in start condition y. 

x$ An x at the end of a line. 

8-24 

( 

( 

( 



) 

) 

) 

x? An optional x. 

x* 0,1,2, ... instancesorx. 

x+ 

xjy 

(x) 

1,2,3, ... instancesorx. 

Anxor ay. 

Anx. 

x/y Anx but only iUollowed by y. 

Lex: A Lexical Analyzer 

{xx} The translation or xx rrorn the definitions section. 

x{ rn,n} m through noccurrences orx. 

8-25 



(: 



Chapter 9 
Yacc: A Compiler-Compiler 

) 

9.1 Introduction 9-1 

9.2 Specifications 9-4 

9.3 Actions 9-6 

9.4 Lexical Analysis 9-8 

9.5 How the Parser Works 9-10 

9.6 Ambiguity and Conflicts 9-14 

9.7 Precedence 9-19 
) 

9.8 Error Handling 9-22 

9.9 The Yacc Environment 9-24 

9.10 Preparing Specifications 9-25 

9.11 InputStyle 9-25 

9.12 Left Recursion 9-26 

9.13 Lexical Tie-ins 9-27 

9.14 Handling Reserved Words 9-27 

9.15 Simulating Error and Accept in Actions 9-28 

) 9.16 Accessing Values in Enclosing Rules 9-28 

9.17 Supporting Arbitrary Value Types 9-29 



g_18 A Small Desk Calculator 9-30 

g.rn Yacc Input Syntax g..32 

9.20 An Advanced Example 9-34 

g_21 Old Features g..40 

( 

( 



) 

) 

) 

Yacc: A Compiler-Compiler 

9.1 introduction 

Computer program input genera.Uy ha.s some structure; every computer 
program that does input ca.n be thought or as defining a.n input language which 
it accepts. An input la.ngua.ge may be as complex a.s a. programming language, 
or as simple as a sequence of numbers. Unfortunately, usual input racilities are 
limited, difficult to use, and often la.x about checking their inputs for validity. 

Yacc provides a. general tool for describing the input to a computer program. 
The name yacc itself stands ror "yet another compiler-compiler". The yacc 
user specifies the structures or his input, together with code to be invoked as 
each such structure is recognized. Yacc turns such a specification into a 
subroutine tha.t handles the input process; rrequently, it is convenient and 
appropriate to have most or the flow or control in the user's application handled 
by this subroutine. 

The input subroutine produced by yacc calls a user-supplied routine to return 
the next basic input item. Thus, the user can speciry his input in terms or 
individual input characters, or in terms or higher level constructs such as 
names and numbers. The user-supplied routine may also handle idiomatic 
features such as comment and continuation conventions, which typically defy 
easy grammatical specification. The class of specifications accepted is a very 
general one: LALR grammars with disambiguating rules. 

In addition to compilers for C, APL, Pa.sea.I, RATFOR, etc., yacc ha.s also been 
used for less conventional languages, including a phototypesetter language, 
several desk calr.ulator languages, a document retrieval system, and a 
FORTRAN de bugging system. 

Yacc provides a general tool for imposing structure on the input to a computer 
program. The yacc user prepares a specification of the input process; this 
includes ruleii describing t.he input structure, code to be invoked when these 
rules are recognized, and a. low-level routine to do the basic input. Yacc then 
generates a function to control the input process. This function, called a 
parser, calls the user-supplied low-level input routine (called the lexical 
analyzer) to pick up the basic items (ca.lied tokens ) from the input stream. 
These tokens are organized according to the input structure rules, called 
grammar rules; when one of these rules has been recognized, then user code 
supplied for this rule, an action, is invoked; actions have the ability to return 
values and make use of the values of other actions. 

Yacc is written in a portable dialect of C and the a...:tions, and output 
subroutine, are in Caswell. Moreover, many of the syntactic conventions of 
yacl" follow C. 

The heart of the input specification is a collection of grammar rules. Each rule 
describes an allowable structure a.nd gives it a name. For example, one 
grammar rule might be: 

9-1 



XENIX Programmer's Guide 

date : month_name day ',' year 

Here, date I montla_name, da.11, and year represent structures or interest in the 
input process; presumably, montla_name, day, and year are defined elsewhere. 
The comma (,) is enclosed in single quotation marks; this implies that the (. 
comma is to appear literally in the input. The colon and semicolon merely serve 
as punctuation in the rule, and have no significance in controlling the input. 
Thus, with proper definitions, the input: 

July 4, 1776 

might be matched by the above rule. 

An important part or the input process is carried out by the lexical analyzer. 
This user routine reads the input stream, recognizing the lower level 
structures, and communicates these tokens to the parser. A structure 
recognized by the lexical analyzer is ca.lied a terminal symbol, while the 
structure recognized by the parser is ca.lied a nonterminal symbol. To avoid 
confusion, terminal symbols will usually be referred to as tokens. 

There is considerable leeway in deciding whether to recognize structures using 
the lexical analyzer or grammar rules. For example, the rules 

month_na.me : 'J' 'a' 'n' ; 
month_name : 'F' 'e' 'b' ; 

month_na.me : 'D' 'e' 'c' ; 

might be used in the above example. The lexical analyzer would only need to 
recognize individual letters, and montla_name would be a nonterminal symbol. 
Such low-level rules tend to waste time and space, and may complicate the 
specification beyond yacc's ability to deal with it. Usually, the lexical analyzer 
would recognize the month names, and return an indication that a 
montla_name was seen; in this case, month_name would be a token. 

Literal characters, such as the comma, must also be passed through the lexical 
analyzer and are considered tokens. 

Specification files are very flexible. It is relatively easy to add to the above 
example the rule 

date: month'/' day'/' year; 

allowing 

7/4/1776 

as a synonym ror 

9-2 

( 

( 



) 

) 

) 

Yacc: A Compiler-Compiler 

July 4, 1776 

In most cases, this new rule could be slipped in to a working system with 
minimal effort, and little danger of disrupting existing input. 

The input being read may not conform to the specifications. These input errors 
are detected as early as is theoretically possible with a left-to-right scan; thus, 
not only is the chance or reading and computing with bad input data 
substantially reduced, but the bad data can usually be quickly found. Error 
handling, provided as part or the input specifications, permits the reentry of 
bad data, or the continuation of the input process after skipping over the bad 
data. 

In some cases, yacc fails to produce a parser when given a set or specifications. 
For example, the specifications may be self contradictory, or they may require 
a more powerful recognition mechanism than that available to yacc. The 
former cases represent design errors; the latter cases can often be corrected by 
making the lexical analyzer more powerful, or by rewriting some of the 
grammar rules. While yacc cannot handle a.II possible specifications, its power 
compares favorably with similar systems; moreover, the constructions which 
are difficult for yacc to handle are also frequently difficult for human beings to 
handle. Some users have reported that the discipline of formulating valid yacc 
specifications for their input revealed errors of conception or design early in the 
program development. 

The next several sections describe: 

• The preparation or grammar rules 

• The preparation or the user supplied actions associated with the 
grammar rules 

• The preparation orlexica.I analyzers 

• The operation of the parser 

• Various reasons why yacc may be unable to produce a parser from a 
specification, and what to do about it. 

• A simple mechanism for handling operator precedences in arithmetic 
expressions. 

Error detection and recovery. 

• The operating environment and special features or the parsers yacc 
produces. 

• Some suggestions which should improve the style and efficiency of the 
spe cifica.tions. 

9-3 



XENIX Programmer's Guide 

9.2 Specifications 

Names refer to either tokens or nonterminal symbols. yacc requires token 
names to be declared as such. In addition, for reasons discussed later, it is often 
desirable to include the lexical analyzer as part of the specification file. It may ( 
be useful to include other programs a.s well Thus, every specification file 
consists or three sections: the declarations, (grammar) rules, and programs. 
The sections are separated by double percent %% marks. (The percent sign 
(%)is generally used in yacc specifications as 3Descape character.) 

In other words, a full specification file looks like 

declarations 
%% 
rules 
%% 
programs 

The declaration section may be empty. Moreover, if the programs section is 
omitted, the second %% mark may be omitted also; thus, the smallest legal 
yacc specification is 

%% 
rules 

Blanks, tabs, and newlines are ignored except that they may not appear in 
names or multir.haracter reserved symbols. Comments may appear wherever a 
name is legal; they are enclosed in/• ... •/, as in C. 

The rules section is made up of one or more grammar rules. Agrammar rule has 
the form: 

A:BODY; 

A represents a nonterminal name, and BODY represents a sequence of zero or 
more names and literals. The colon and the semicolon are yacc punctuation. 

Names may be of arbitrary length, and may be made up orletters, dot(.), the 
underscore (_), and noninitial digits. Uppercase and lowercase letters are 
distinct. The names used in the body of a grammar rule may represent tokens 
or nonterminal symbols. 

A literal consists of a character enclosed in single quotation marks (' ). As in C, 
the backslash(\) is an escape character within literals, and all the C escapes are ( 
recognized. Thus 

Q-4 



) 

) 

'\n' 
'\r' 
'\" 
'\\' 
'\t' 
'\b' 
'\r 
'\xxx' 

Newline 
Return 
Single quotation mark 
Backslash 
Tab 
Backspace 
Form feed 
"xxx" in octal 

Yacc: A Compiler-Compiler 

For a number oftechnical reasons, the ASCII NUL character ( \O' or 0) should 
never be used in grammar rules. 

If there are several grammar rules with the same left hand side, then the 
vertical bar (I) can be used to avoid rewriting the left hand side. In addition, 
the semicolon at the end of a rule can be dropped before a vertical bar. Thus the 
grammar rules 

A:B CD; 
A:E F 
A:G; 

can be given to yacc as 

A:B CD 
IE F 
IG 

It is not necessary that all grammar rules with the same left side appear 
together in the grammar rules section, although it makes the input much more 
readable, and easier to change. 

If a nonterminal symbol matches the empty string, this can be indicated in the 
obvious way: 

empty:; 

Names representing tokens must be declared; this is most simply done by 
writing 

%token name 1 name2 ... 

in the declarations section. (See Sections 3, 5, and 6 for much more discussion). 
Every nonterminal symbol must appear on the left side of at least one rule. 

) or all the nonterminal symbols, one, called the start symbol, has particular 
importance. The parser is designed to recognize the start symbol; thus, this 
symbol represents the largest, most general st.ructure described by the 
grammar rules. By default, the start symbol is taken to be the left hand side of 
the first grammar rule in the rules section. It is possible, and in fact desirable, to 

g.5 



XENIX Programmer's Guide 

declare the start symbol explicitly in the declarations section using the %start 
keyword: 

%start symbol 

The end or the input to the parser is signaled by a special t.oken, called the 
endmarker. If the tokens up to, but not including, the endmarker Corm a 
structure which matches the start symbol, the parser function returns to its 
caller arter the endmarker is seen; it accepts the input. Ir the endmarker is seen 
in any other context, it is an error. 

It is the job of the user-supplied lexical analyzer t.o return the endmarker when 
appropriate; see section 3, below. Usually the endmarker represents some 
reasonably obvious 1/0 status, such as the end ofthe file or end oC the record. 

9.3 Actions 

With each grammar rule, the user may associate actions to be performed each 
time the rule is recognized in the input process. These actions may return 
values, and may obtain the values returned by previous actions. Moreover, the 
lexical analyzer can return values Cor tokens, if desired. 

( 

An action is an arbitrary C statement, and as such can do input and output, call 
subprograms, and alter external vectors and variables. An action is specified ( 
by one or more statements, enclosed in curly braces {and}. For example 

and 

A:'(' B ')' 
{ hello( I, "abc" ); } 

XXX: yyyzzz 
{ printf(" a message\n"); 

flag= 25;} 

are grammar rules with actions. 

To facilitate easy communication between the actions and the parser, the 
action statements are altered slightly. The dollar sign($) is used a.s a signal to 
yacc in this context. 

To return a value, the action normally sets the pseudo-variable $$ to some 
value. For example, an action that does nothing but return the value 1 is 

{ $$ = l;} 

To obtain the values returned by previous actions and the lexical analyzer, the 
action may use the pseudo-variables $1, $2, ... , which refer to the values 
returned by the components or the right side or a rule, reading from left to 

g.5 

( 



) 

) 

) 

Ya.cc: A Compiler-Compiler 

right. Thus, if the rule is 

A:BCD; 

for example, then $2 has the value returned by C, and $3 the value returned by 
D. 

As a more concrete example, consider the rule 

expr : '(' expr ')' ; 

The value returned by this rule is usually the value or the e:1pr in parentheses. 
This can be indicated by 

expr : '(' expr ')' { $$ = $2 ; } 

By default, the value or a rule is the value or the first element in it ($1). Thus, 
grammar rules or the form 

A:B; 

rrequently need not have an explicit action. 

In the examples above, all the actions came at the end or their rules. Sometimes, 
it is desirable to get control before a rule is fully p:used. Yacc permits a.n 
action to be written in the middle or a rule as well as at the end. This rule is 
assumed to return a value, accessible through the usual mechanism by the 
actions to the right or it. In turn, it may access the values returned by the 
symbols to its left. Thus, in the rule 

A:B 
{ $$ = 1; } 
c 
{ x = $2; y = $3; } 

the effect is to set z to 1, and yto the value returned by C. 

Actions that do not terminate a rule are actually handled by ya.cc by 
manufacturing a new nonterminal symbol name, and a new rule matching this 
name to the empty string. The interior action is the action triggered off by 
recognizing this added rule. Yacc actually treats the above example as if it had 
been written: 

9-7 



XENIX Programmer's Guide 

$ACT: /o empty to/ 
{ $$ = l; } 

A : B $ACT C 
{ x=$2; y=$3;} 

In many applications, output is not done directly by the actions; rather, a data 
structure, such as a parse tree, is constructed in memory, and transformations 
are applied to it before output is generated. Parse trees a.re particularly easy to 
construct, given routines to build and maintain the tree structure desired. For 
example, suppose there is a. C function no tie, written so that the ca.II 

node( L, n 1, n2 ) 

creates a node with label L, and descendants nl and n2, and returns the index of 
the newly created node. Then parse tree can be built by supplying actions such 
as: 

expr : expr '+' expr 
{ $$ = node( '+', $1, $3 ); } 

in the specificat.ion. 

The user may define other variables to be used by the actions. Declarations and 
definitions can appear in the declarations section, enclosed in the marks %{ and 
%} . These declarations and definitions have global scope, so they a.re known to 
the action statements and the lexical analyzer. For example, 

%{ int variable = O; %} 

could be placed in the declarations section, ma.king t1ariable accessible to a.11 of 
the actions. The yacc parser uses only names beginning in 1111; the user should 
avoid such names. 

In these examples, all the values are integers: a. discussion of values of other 
types will be found in a later section. 

9.4 Lexical Analysis 

( 

( 

The user must supply a. lexical analyzer to read the input stream and 
communicate tokens (with values, if desired) to the parser. The lexical analyzer 
is an integer-valued function ca.lied yylez. The function returns an integer, (. 
ca.lied the token number, representing the kind of token read. If there isa. value 
associated with that token, it should be assigned to the external variable yylval. 

The parser and the lexical analyzer must agree on these token numbers in order 
for communication between them to take place. The numbers may be chosen 

D-8 



) 

) 

) 

Yacc: A Compiler-Compiler 

by yacc, or chosen by the user. In either case, the # define mechanism or C is 
used to allow the lexical analyzer to return these numbers symbolically. For 
example, suppose that the token name DIGIT has been defined in the 
declarations section or the yacc specification file. The relevant portion or the 
lexical analyzer might look like: 

yylex(){ 
extern int yylval; 
int c; 

c = getcha.r(); 

switch( c ) { 

case 'O': 
case 'I': 

case 'Q': 
yylval = c-'O'; 
return( DIGIT ); 

} 

The intent is to return a token number or DIGIT, and a value equal to the 
numerical value or the digit. Provided that the lexical analyzer code is placed in 
the programs section or the specification file, the identifier DIGIT will be 
defined as the token number associated with the token DIGIT. 

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall 
is the need to avoid using any token names in the grammar that are reserved or 
significant in C or the parser; Cor example, the use or token names i/or while will 
almost certainly cause severe difficulties when the lexical analyzer i1:1 compiled. 
The token name error is reserved Cor error handling, and should not be used 
naively. 

As mentioned above, the token numbers may be chosen by yacc or by the user. 
In the default situation, the numbers are chosen by yacc. The default token 
number for a literal character is the numerical value or the character in the 
local character set. Other names are assigned token numbers starting at 257. 

To assign a token number to a token (including literals), t,he first appearance or 
the token name or literal in the declarations section can be immediately 
followed by a nonnegative integer. This integer is taken to be the token number 
of the name or literal. Names and literals not defined by this mechanism retain 
their default definition. It is important that all token numbers be distinct. 

For historical reasons, the endmarker must have token number 0 or negative. 
This token number cannot be redefined by the user. Hence, alllexical analyzers 
should be prepared to return 0 or negative as a token number upon reaching the 

g.g 



XENIX Programmer's Guide 

end of their input. 

A very useful tool for constructing lexical analyzers is lex, discussed in a 
previous section. These lexical analyzers are designed to work in close harmony 
with yacc parsers. The specifications for these lexical analyzers use regular 
expressions instead or grammar rules. Lex can be easily used to produce quite ( 
complicated lexical analyzers, but there remain some languages (such as 
FORTRAN) which do not fit any theoretical framework, and whose lexical 
analyzers must be crafted by hand. 

9.5 How the Parser Works 

Yacc turns the specification file into a C program, which parses the input 
according to the specification given. The algorithm used to go Crom the 
specification to the parser is complex, and will not be discussed here (see the 
references for more information). The parser itseir, however, is relatively 
simple, and understanding how it works, while not strictly necessary, will 
nevertheless make treatment of error recovery and ambiguities much more 
comprehensible. 

The parser produced by yacc consists of a finite state machine with a stack. 
The parser is also capable or reading and remembering the next input token 
(called the lookahead token). The current state is always the one on the top or 
the stack. The states or the finite state machine are given small integer labels; ti 
initially, the machine is in state 0, the stack contains only state 0, and no \ 
lookahead token has been read. 

The machine has only four actions available to it, called d.i/t, reduce, accept, 
and error. A move or the parser is done as follows: 

1. Based on its current state, the parser decides whether it needs a 
lookahead token to decide what action should be done; if it needs one, 
and does not have one, it calls yyle~ to obtain the next token. 

2. Using the current state, and the lookahead token if needed, the parser 
decides on its next action, and carries it out. This may result in states 
being pushed onto the stack, or popped off or the stack, and in the 
lookahead token being processed or left alone. 

The shirt action is the most common action the parser takes. Whenever a shift 
action is taken, there is always a lookahead token. For example, in state 56 
there may be an action: 

IF shirt 34 

which says, in state 56, if the lookahead token is IF, the current state (56) is 
pushed down on the stack, and state 34 becomes the current state (on the top or 
the stack). The lookahead token is cleared. 

11-10 

{ 



) 

) 

) 

Yacc: A Compiler-Compiler 

The reduce action keeps the stack Crom growing without bounds. Reduce 
actions are appropriate when the parser has seen the right hand side or a 
grammar rule, and is prepared to announce that it has seen an instance or the 
rule, replacing the right hand side by the left hand side. It may be necessary to 
consult the lookahead token to decide whether to reduce, but usually it is not; in 
fact, the default action (represented by a.) is often a reduce action. 

Reduce actions are associated with individual grammar rules. Grammar rules 
are also given small integer numbers, leading to some confusion. The action 

reduce 18 

reCers to grammar rule 18, while the action 

IF shift 34 

refers to state 34. 

Suppose the rule being reduced is 

A: x y z; 

The reduce action depends on the left hand symbol (A in this case), and the 
number or symbols on the right hand side (three in this case). To reduce, first 
pop off the top three states from the stack (In general, the number of states 
popped equals the number of symbols on the right side of the rule). In effect, 
these states were the ones put on the stack while recognizing z, y, and z, and no 
longer serve any useful purpose. After popping these states, a state is 
uncovered which was the state the parser was in before beginning to process the 
rule. Using this uncovered state, and the symbol on the left side of the rule, 
perform what is in effect a shift oC A. A new state is obtained, pushed onto the 
stack, and parsing continues. There are significant differences between the 
processing or the left hand symbol and an ordinary shift or a token, however, so 
this action is called a goto action. In particular, the lookahead token is cleared 
by a shift, and is not affected by a goto. In any case, the uncovered state 
contains an entry such 3.s: 

A goto 20 

causing state 20 to be pushed onto the stack, and become the current state. 

In effect, the reduce action turns back the clock in the parse, popping the states 
off the stack to go back to the state where the right hand side or the rule was first 
seen. The parser then behaves as if it had seen the left side at that time. Ir the 
right hand side or the rule is empty, no states are popped off or the stack: the 
uncovered state is in fact the current state. 

The reduce action is also important in the treatment or user-supplied actions 
and values. When a rule is reduced, the code supplied with the rule is executed 
before the stack is adjusted. In addition to the stack holding the states, another 

0-11 



XENIX Programmer's Guide 

stack, running in parallel with it, holds the values returned from the lexical 
analyzer and the actions. When a shift takes place, the external variable yylval 
is copied onto the value stack. Arter the return from the user code, the 
reduction is carried out. When the goto action is done, the external variable 
yytial is copied onto the value stack. The pseudo-variables SI, $2, etc., refer to ( .. 
the value stack. 

The other two parser actions are conceptually much simpler. The accept action 
indicates that the entire input has been seen and that it matches the 
specification. This action appears only when the lookahead token is the 
endmarker, and indicates that the parser has successfully done its job. The 
error action, on the other hand, represents a place where the parser can no 
longer continue parsing according to the specification. The input tokens it has 
seen, together with the lookahead token, cannot be followed by anything that 
would result in a legal input. The parser reports an error, and attempts to 
recover the situation and resume parsing: the error recovery (as opposed to the 
detection or error) will be in a later section. 

Consider the following example: 

%token DING DONG DELL 
%% 
rhyme : sound place 

, 
sound : DING DONG 

, 
pla~e : DELL 

When yacc is invoked with the -v option, a file called y.output is produced, 
with a human-readable description of the parser. The y.output file 
corresponding to the above grammar (with some statistics stripped off the end) 
IS: 

9-12 

( 

( 



) 

) 

) 

state 0 
$accept : _rhyme $end 

DING shift 3 
. error 

rhyme goto I 
sound goto 2 

state 1 
$accept : rhyme_$end 

$end accept 
. error 

state 2 
rhyme : sound_place 

DELL shift 5 
. error 

place goto 4 

state 3 
sound : DING_DONG 

DONG shift 6 
. error 

state 4 
rhyme : sound place_ (1) 

. reduce I 

state 5 
place : DELL_ (3) 

. reduce 3 

state 6 
sound : DING DONG_ (2) 

. reduce 2 

Yacc: A Compiler-Compiler 

Notice that, in addition to the actions for each state, there is a description of the 
parsing rules being processed in each state. The underscore character(_) is used 
to indicate what has been seen, and what is yet to come, in each rule. Suppose 
the input is 

9-13 



XENIX Programmer's Guide 

DING DONG DELL 

It is instructive to follow the steps orthe parser while processing this input. 

Initially, the current state is state 0. The parser needs to refer to the input in { 
order to decide between the actions available in state 0, so the first token, '\ 
DING, is read, becoming the lookahead token. The action in state 0 on DING is 
shift 9, so state 3 is pushed onto the stack, and the lookahead token is cleared. 
State 3 becomes the current state. The next token, DONG, is read, becoming 
the lookahead token. The action in state 3 on the token DONG is shift 6, so 
state 6 is pushed onto the stack, and the lookahead is cleared. The stack now 
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the 
parser reduces by rule 2. 

sound : DING DONG 

This rule has two symbols on the right hand side, so two states, 6 and 3, are 
popped off of the stack, uncovering state 0. Consulting the description or state 
0, looking for a goto on round, 

sound goto 2 

is obtained; thus state 2 is pushed onto the stack, becoming the current state. 

In state 2, the next token, DELL, must be read. The action is 1hift 5, so state 5 is 
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token 
is cleared. In state 5, the only action is to reduce by rule 3. This has one symbol 
on the right hand side, so one state, 5, is popped off, and state 2 is uncovered. 
The goto in state 2 on place, the left side of rule 3, is state 4. Now, the stack 
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are 
two symbols on the right, so the top two states are popped off, uncovering state 
0 again. In state 0, there is a goto on rhyme causing the parser to enter state 1. 
In state 1, the input is read; the endmarker is obtained, indicated by $end in the 
y. output file. The action in state I when the endmarker is seen is to accept, 
successfully ending the parse. 

The reader is urged to consider how the parser works when confronted with 
such incorrect strings as DING DONG DONG, DING DONG, DING DONG 
DELL DELL, etc. A few minutes spend with this and other simple examples 
will probably be repaid when problems arise in more complicated contexts. 

9.6 Ambiguity and Conflicts 

A set of grammar rules is ambiguous if there is some input string that can be ( 
structured in two or more different ways. For example, the grammar rule 

expr : expr '-' expr 

is a natural way of expressing the fact that one way of forming an arithmetic 

9-14 



) 

) 

Yacc: A Compiler-Compiler 

expression is to put two other expressions together with a minus sign between 
them. Unfortunately, this grammar rule does not completely specify the way 
that all complex inputs should be structured. For example, irthe input is 

expr - expr - expr 

the rule allows this input to be structured as either 

( expr - expr ) - expr 

or as 

expr - ( expr - expr ) 

(The first is called left association, the second right association). 

Yacc detects such ambiguities when it is attempting to build the parser. It is 
instructive to consider the problem that confronts the parser when it is given 
an input such a.s 

expr - expr - expr 

When the parser has read the second expr, the input that it has seen: 

expr - expr 

matches the right side or the grammar rule above. The parser could reduce the 
input by applying this rule; after applying the rule; the input is reduced to ezpr 
(the left side of the rule). The parser would then read the final part of the input: 

- expr 

and again reduce. The effect or this is to take the left associative interpretation. 

Alternatively, when the parser has seen 

expr - expr 

it could defer the immediate application or the rule, and continue reading the 
input until it had seen 

expr - expr - expr 

It could then apply the rule to the rightmost three symbols, reducing them to 
) e.:rprand leaving 

expr - expr 

Now the rule can be reduced once more; the effect is to take the right associative 
interpretation. Thus, having read 

9-15 



XENIX Progra.mmer's Guide 

expr - expr 

the parser can do two legal things, a shirt or a reduction, and has no way or 
deciding between them. This is called a shirt/reduce conflict. It may also 
happen that the parser has a choice or two legal reductions; this is ca.lied a ti 
reduce/reduce conflict. Note that there are never any shirt/shirt conflicts. { 

When there are shirt/reduce or reduce/reduce conflicts, yacc still produces a 
parser. It does this by selecting one or the valid steps wherever it has a choice. 
A rule describing which choice to make in a given situation is called a 
disambiguating rule. 

Yacc invokes two disambiguating rules by default: 

1. In ashitt/reduce conflict, the detault is to do the shirt. 

2. In a reduce/reduce conflict, the default is to reduce by the earlier 
grammar rule (in the input sequence). 

Rule 1 implies th:i.t reductions are deterred whenever there is a choice, in favor 
or shirts. Rule 2 gives the user rather crude control over the behavior or the 
parser in this situation, but reduce/reduce conflicts should be avoided 
whenever possible. 

Conflicts may a.rise because or mistakes in input or logic, or because the 
grammar rules, while consistent, require a more complex parser than yacc can 
construct. The use of actions within rules can also cause conflicts, ir t.he action 
must be done before the parser can be sure which rule is being recognized. In 
these cases, the application or disambiguating rules is inappropriate, and leads 
to an incorrect parser. For this reason, yacc always reports the number of 
shirt/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2. 

In general, whenever it is possible to apply disambiguating rules to produce a 
correct pa.rser, it is also possible to rewrite the grammar rules so that the same 
inputs are read but there are no conflicts. For this reason, most previous parser 
generators ha.ve considered conflicts to be fatal errors. Our experience has 
suggested that this rewriting is somewhat unnatural, and produces slower 
parsers; thus, yacc will produce parsers even in the presence or conflicts. 

As an example of the power of disambiguating rules, consider a fragment from a 
programming language involving an if-then-else construction: 

stat : IF '(' cond ')' stat 
I IF '(' cond ')' stat ELSE stat 

In these rules, /Fand ELSE are tokens, con dis a nonterminal symbol describing 
conditional (logical) expressions, and 11tat is a nonterminal symbol describing 
statements. The first rule will be called the simple-if rule, and the second the 

9-16 

( 

( 



) 

) 

Yacc: A Compiler-Compiler 

if-else rule. 

These two rules form an ambiguous construction, since input of the form 

IF ( Cl ) IF ( C2 ) SI ELSE S2 

can be structured according to these rules in two ways: 

or 

IF ( Cl ) { 
IF ( C2) SI 
} 

ELSE S2 

IF ( Cl ) { 
IF ( C2) Sl 
ELSE S2 
} 

The second interpretation is the one given in most programming languages 
having this construct. Each ELSE is associated with the last IF immediately 
preceding the ELSE. In this example, consider the situation where the parser 
has seen 

IF ( Cl ) IF ( C2 ) SI 

and is looking at the ELSE. It can immediately reduce by the simple-if rule to 
get 

IF ( C 1 ) stat 

and then read the remaining input, 

ELSE S2 

and reduce 

IF ( Cl ) stat ELSE S2 

by the if-else rule. This leads to the first orthe above groupings orthe input. 

On the other hand, the ELSE may be shifted, S2 read, and then the right hand 
portion or 

IF ( C 1 ) IF ( C2 ) S 1 ELSE S2 

can be reduced by the if-else rule to get 

9-17 



XENIX Programmer's Guide 

IF ( Cl ) stat 

which can be reduced by the simple-if rule. This leads to the second or the 
above groupings or the input, which is usually desired. 

Once again the parser can do two valid things - there is a shirt/reduce conflict. 
The application or disambiguating rule 1 tells the parser to shirt in this case, 
which leads to the desired grouping. 

This shirt/reduce conflict arises only when there is a particular current input 
symbol, ELSE, and particular inputs already seen, such as 

IF ( Cl ) IF ( C2 ) Sl 

In general, there may be many conflicts, and each one will be associated with an 
input symbol and a set or previously read inputs. The previously read inputs 
are characterized by the state of the parser. 

The conflict messages or yacc are best understood by examining the verbose 
(-v) option output file. For example, the output corresponding to the above 
conflict state might be: 

23: shirt/reduce conflict (shirt 45, reduce 18) on ELSE 

state 23 

stat : IF ( cond ) stat_ ( 18) 
stat : IF ( cond ) stat_.ELSE stat 

ELSE shirt 45 
reduce 18 

The first line describes the conflict, giving the state and the input symbol. The 
ordinary state description rollows, giving the grammar rules active in the state, 
and the parser actions. Recall that the underline marks the portion or the 
grammar rules which has been seen. Thus in the example, in state 23 the parser 
has seen input corresponding to 

IF ( cond ) stat 

and the two grammar rules shown are active a.t this time. The parser can do 
two possible things. Ir the input symbol is ELSE, it is possible to shirt into state 
45. State 45 will have, as part of its description, the line 

stat : IF ( cond ) stat ELSE_stat 

since the ELSE will have been shifted in this state. Back in state 23, the 
alternative action, described by "." , is to be done ir the input symbol is not 
mentioned explicitly in the a.hove actions; thus, in this case, ir the input symbol 

9-18 

( 

( 

( 



) 

) 

Yacc: A Compiler-Compiler 

is not ELSE, the parser reduces by grammar rule 18: 

stat : IF '(' cond ')' stat 

Once again, notice that the numbers following shirt commands refer to other 
states, while the numbers following reduce commands refer to grammar rule 
numbers. In the y.output file, the rule numbers are printed after those rules 
which can be reduced. In most one states, there will be at most reduce action 
possible in the state, and this will be the default command. The user who 
encounters unexpected shift/reduce conflicts will probably want to look at the 
verbose output to decide whether the default actions are appropriate. In really 
tough cases, the user might need to know more about the behavior and 
construction of the parser than can be covered here. In this case, one of the 
theoretical references might be consulted; the services of a local guru might also 
be appropriate. 

9.7 Precedence 

There is one common situation where the rules given above for resolving 
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most 
or the commonly used constructions for arithmetic expressions can be naturally 
described by the notion or precedence levels for operators, together with 
information about left or right associativity. It turns out that ambiguous 
grammars with appropriate disambiguating rules can be used to create parsers 
that are faster and easier to write than parsers constructed from unambiguous 
grammars. The basic notion is to write grammar rules of the form 

expr : expr OP expr 

and 

expr : UNARY expr 

for all binary and unary operators desired. This creates a very ambiguous 
grammar, with many parsing conflicts. As disambiguating rules, the user 
specifies the precedence, or binding strength, or all the operators, and the 
associativity of the binary operators. This information is sufficient to allow 
yacc to resolve the parsing conflicts in accordance with these rules, and 
construct a parser that realizes the desired precedences and associativities. 

The precedences and associativities are attached to tokens in the declarations 
section. This is done by a series of lines beginning with a yacc keyword: %left, 
%right, or %nonassoc, followed by a list or tokens. All or the tokens on the 
same line are assumed to have the same precedence level and associativity; the 
lines are listed in order or increasing precedence or binding strength. Thus, 

%left '+' '-' 
%left '•' '/' 



'XENIX Programmer's Guide 

describes the precedence and associativity or the four arithmetic operators. 
Plus and minus a.re left associative, and have lower precedence than star and 
slash, which are also left associative. The keyword %right is used to describe 
right associative operators, and the keyword %nonassoc is used to describe 
operators, like the operator .LT. in FORTRAN, that may not associate with {. 
themselves; thus, \ 

A.LT.B.LT.C 

is illegal in FORTRAN, and such an operator would be described with the 
keyword %nonassoc in yacc. As an example or the behavior or these 
declarations, the description 

%right'=' 
%left '+' '-' 
%left '•' '/' 

%% 

expr : expr '=' expr 

I expr '+' expr 
expr '-' expr 

I expr '•' expr 
expr '/' expr 
NAME 

might be used to structure the input 

as follows: 

a= ( b = ( ((c•d)-e) - (f•g))) 

When this mechanism is used, unary opera.tors must, in general, be given a 
precedence. Sometimes a unary operator and a binary operator have the same 
symbolic representation, but different precedences. An example is unary and 
binary '- '; unary minus may be given the same strength as multiplication, or 
even higher, while binary minus has a lower strength than multiplication. The 
keyword, %prec, changes the precedence level associated with a particular 
grammar rule. The %prec appears immediately after the body of the grammar 
rule, before the action or closing semicolon, and is followed by a token name or 
literal. It causes the precedence or the grammar rule to become that of the 

( 

following token name or literal. For example, to make unary minus have the ( 
same precedence as multiplication the rules might resemble: 

9-20 



) 

) 

%left '+' '-' 
%left '•' '/' 

%% 

expr : expr '+' expr 
I expr '-' expr 

I expr '•' expr 
ex pr '/' expr 

I '-' expr %prec '•' 
!NAME 

Yacc: A Compiler-Compiler 

A token declared by %left, %right, and %nonassoc need not be, but may be, 
declared by %token as well. 

The precedences and associativities are used by yacc to resolve parsing 
conflicts; they give rise to disambiguating rules. Formally, the rules work as 
follows: 

l. The precedences and associativities a.re recorded for those tokens and 
literals that have them. 

2. A precedence and associativity is associated with each grammar rule; 
it is the precedence and associativity of the last token or literal in the 
body of the rule. If the %prec construction is used, it overrides this 
default. Some grammar rules may have no precedence and 
associativity associated with them. 

3. When there is a reduce/reduce conflict, or there is a shift/reduce 
conflict and either the input symbol or the grammar rule has no 
precedence and associativity, then the two disambiguating rules 
given at the beginning of the section a.re used, and the conflicts are 
reported. 

4. If there is a shift/reduce conflict, and both the grammar rule and the 
input character have precedence and associativity associated with 
them, then the conflict is resolved in favor of the action (shift or 
reduce) associated with the higher precedence. Ir the precedences a.re 
the same, then the associativity is used; left associative implies 
reduce, right associative implies shift, and nonassociating implies 
error. 

Conflicts resolved by precedence are not counted in the number of shift/reduce 
and reduce/reduce conflicts reported by yacc. This means that. mistakes in the 
specification of precedences may disguise errors in the input grammar; it is a 
good idea to be spa.ring with precedences, and use them in an essentially 
cookbook fashion, until some experience has been gained. The 'ii· output file is 
very useful in deciding whether the parser is actually doing what was intended. 

9-21 



XENIX. Programmer's Guide 

9.8 Error Handling 

Error handling is an extremely difficult area, and many of the problems are 
semantic ones. When an error is found, for example, it may be necessary to 
reclaim parse tree storage, delete or alter symbol table entries, and, typically, 
set switches to avoid generating any further output. 

It is seldom acceptable to stop all processing when an error is found. It is more 
useful to continue scanning the input to find further syntax errors. This leads 
to the problem of getting the parser restarted after an error. A genera.I class of 
algorithms t.o perform this involves discarding a number or tokens from the 
input string, and attempting to adjust the parser so that input can continue. 

To allow the user some control over this process, yacc provides a simple, but 
reasonably general feature. The token name effor is reserved for error 
handling. This name can be used in grammar rules; in effect, it suggests places 
where errors are expected, and recovery might take place. The parser pops its 
stack until it enters a state where the token error is legal. It then behaves a.s if 
the token error were the current lookahead token, and performs the action 
encountered. The lookahead token is then reset to the token that caused the 
error. If no special error rules have been specified, the processing halts when an 
error is detected. 

In order to prevent a cascade of error messages, the parser, after detecting an 

( 

error, remains in error state until three tokens have been successfully read and ( 
shifted. Ir an error is detected when the parser is already in error state, no 
message is given, and the input token is quietly deleted. 

As an example, a rule or the form 

stat: error 

would, in effect, mean that on a syntax error the parser would attempt to skip 
over the statement in which the error was seen. More precisely, the parser will 
scan ahead, looking for three tokens that might legally follow a statement, and 
start processing at the first of these; if the beginnings or statements are not 
sufficiently distinctive, it may make a false start in the middle of a statement, 
and end up reporting a second error where there is in fact no error. 

Actions may be used with these special error rules. These actions might 
attempt to reinitialize tables, reclaim symbol table space, etc. 

Error rules such as the above are very general, but difficult to control. 
Somewhat easier are rules such as 

stat : error ';' 

Here, when there is an error, the parser attempts to skip over the statement, 
but will do so by skipping to the next '; •. All tokens after the error and before 

9-22 

( 



) 

) 

Yacc: A Compiler-Compiler 

the next ';'cannot be shifted, and are discarded. When the ';'is seen, this rule 
will be reduced, and any cleanup action associated with it performed. 

Another form of error rule arises in interactive applications, where it may be 
desirable to permit a line to be reentered after an error. A possible error rule 
might be 

input : error '\n' { printC( nReenter line: n); } input 
{ .. = $4;} 

There is one potential difficulty with this approach; the parser must correctly 
process three input tokens before it admits that it has correctly resynchronized 
after the error. Ir the reentered line contains an error in the first two tokens, 
the parser deletes the offending tokens, and gives no message; this is clearly 
unacceptable. For this reason, there is a mechanism that can be used to force 
the parser to believe that an error has been fully recovered from. The 
statement 

yyerrok; 

in an action resets the parser to its normal mode. The last example is better 
written 

input : error '\n' 
{ yyerrok; 

printf( n Reenter last line: n ); } 

input 
{$$=$4;} 

As mentioned above, the token seen immediately after the error symbol is the 
input token at which the error was discovered. Sometimes, this is 
inappropriate; for example, an error recovery action might take upon itselfthe 
job of finding the correct place to resume input. In this case, the previous 
lookahead token must be cleared. The statement 

yyclearin ; 

in an action will have this effect. For example, suppose the action after error 
were to call some sophisticated resynchronization routine, supplied by the user, 
that attempted to advance the input to the beginning or the next valid 
statement. After this routine was called, the next token returned by yylex 
would presumably be the first token in a legal statement; the old, illegal token 
must be discarded, and the error state reset. This could be done by a rule like 

9-23 



XENIX Programmer's Guide 

stat : error 
{ resynch(); 

yyerrok; 
yyclearin ; } 

These mechanisms are admittedly crude, but do allow for a simple, fairly 
effective recovery of the parser from many errors. Moreover, the user can get 
control to deal with the error actions required by other portions of the 
program. 

9.9 The Yacc Environment 

When the user inputs a. specification to yacc, the output is a file ofC programs, 
called y.tab.c on most systems. The function produced by yacc is called 
yyparse ; it is an integer valued function. When it is called, it in turn repeatedly 
calls yylez, the lexical analyzer supplied by the user to obtain input tokens. 
Eventually, eit.her an error is detected, in which case (if no error recovery is 
possible) yyparse returns the value 1, or the lexical analyzer returns the 
endmarker token and the parser accepts. In this case, yyparse returns the value 
0. 

The user must provide a certain a.mount of environment for this parser in order 
to obtain a working program. For example, as with every C program, a 
program called main must be defined, that eventually calls yypar11e. In 
addition, a routine called yyerror prints a message when a synt:i.x error is 
detec-ted. 

These two routines must be supplied in one form or another by the user. To 
ease the initial effort of using yacc, a library has been provided with default 
versions of main and yye rror. The name of this library is system dependent; on 
many systems the library is accessed by a-ly argument to the loader. To show 
the triviality or these default programs, the source is given below: 

main(){ 
return( yyparse() ); 
} 

and 

# include <stdio.h> 

yyerror(s) char •s; { 
rprintr( stderr, "%s\n", s ); 
} 

The argument to yyerror is a string containing an error message, usually the 
string syntax error. The average application will want to do better than this. 
Ordinarily, the program should keep track or the input line number, and print 

9-24 

( 

( 



) 

) 

Yacc: A Compiler-Compiler 

it along with the message when a syntax error is detected. The external integer 
variable yycha.r contains the lookahead token number at the time the error was 
detected; this may be of some interest in giving better diagnostics. Since the 
ma.in program is probably supplied by the user (to read arguments, etc.) the 
yacc library is useful only in small projects, or in the earliest stages of larger 
ones. 

The external integer variable yydebug is normally set to 0. IC it is set to :i. 
nonzero value, the parser will output a verbose description or its actions, 
including a discussion or which input symbols have been read, and what the 
parser actions are. Depending on the operating environment, it may be 
possible to set this v:i.riable by using a debugging system. 

9.10 Preparing Specifications 

This section contains miscellaneous hints on preparing efficient, easy to change, 
and clear specifications. The individual subsections are more or less 
independent. 

9.11 Input Style 

It is difficult to provide rules with substantial actions and still have a readable 
specification file. 

I. Use uppercase letters for token names, lowercase letters for 
nonterminal names. This rule helps you to know who to blame when 
things go wrong. 

2. Put grammar rules and actions on separate lines. This allows either 
to be ch:rnged without an automatic need to change the other. 

3. Put all rules with the same left hand side together. Put the left hand 
side in only once, and let all following rules begin with a vertical bar. 

4. Put a semicolon only after the last rule with a given left hand side, and 
put the semicolon on a separate line. This allows new rules to be easily 
added. 

5. Indent rule bodies by two tab stops, and action bodies by three tab 
stops. 

The examples in the text of this section follow this style (where space permits). 
The user must make up his own mind about these stylistic questions; the central 
problem, however, is to make the rules visible through the morass or action 
code. 

9-25 



XENIX Programmer's Guide 

9.12 Left Recursion 

The algorithm used by the yacc parser encourages so-called left recursive 
grammar rules: rules of the form 

name : name rest_of_rule ; 

These rules _frequently arise when writing specifications or sequences and lists: 

list : item 
I list ',' item 

and 

seq: item 
I seq item 

In each of these cases, the first rule will be reduced for the first item only, and 
the second rule will be reduced for the second and a.II succeeding items. 

With right recursive rules, such as 

seq: item 
I item seq 

the parser would be a bit bigger, and the items would be seen, and reduced, 
from right to left. More seriously, an internal stack in the parser would be in 
danger or overflowing if a very long sequence were read. Thus, the user should 
use left recursion wherever reasonable. 

It is worth considering whether a sequence with zero elements has any meaning, 
and if so, consider writing the sequence specification with an empty rule: 

seq : /• empty •/ 
I seq item 

Once again, t.he first rule would always be reduced exactly once, before the first 
item was read, and then the second rule would be reduced once for each item 
read. Permitting empty sequences often leads to increased generality. 

( 

( 

However, conflicts might arise if yacc is asked to decide which empty sequence { 
it has seen, when it hasn't seen enough to know! ~ 

9-26 



Yacc: A Compiler-Compiler 

9.13 Lexical Tie-ins 

Some lexical decisions depend on context. For example, the lexical analyzer 
might want to delete blanks normally, but not within quoted strings. Or names 
might be entered into a symbol table in declarations, but not in expressions. 

One way of handling this situation is to create a global flag that is examined i:iy 
the lexical analyzer, and set by actions. For example, suppose a program 
consists of 0 or more declarations, followed by 0 or more statements. Consider: 

%{ 
int dflag; 

%} 
.. . other declarations ... 

%% 

prog : decls stats 

decls : /•empty•/ 
{ dflag = I; } 

I decls declaration 

stats : /•empty•/ 
{ dflag = O; } 

I stats statement 

other rules ... 

The flag dflag is now 0 when reading statements, and I when reading 
declarations, except for the first token in the first statement. This token must 
be seen by the parser before it can tell that the declaration section has ended 
and the statements have begun. In many cases, this single token exception does 
not affect the lexical scan. 

This kind or back door approach can be over done. Nevertheless, it represents a 
way or doing some things that are difficult to do otherwise. 

9.14: Handling Reserved Words 

Some programming languages permit the user to use words like i/, which are 
normally reserved, as label or variable names, provided that such use does not 
conflict with the legal use or these names in the programming language. This is 
extremely hard to do in the framework of yacc; it is difficult to pass 
information to the lexical analyzer telling it "this instance or 'ir is a keyword, 

9-27 



XENIX Programmer's Guide 

and that instance is a variable". The user can make a stab at it, but it is 
difficult. It is best that keywords be reserved; that is, be forbidden ror use as 
variable names. 

9.15 Simula.ting Error a.nd Accept in Actions 

The parsing actions or error and accept can be simulated in an action by use of 
macros YYACCEPTand YYERROR. Y}~4CCEPTcauses yyparrf: to return 
the value O; YYERROR causes the parser to behave as if the current inr'.lt 
symbol had been a syntax error; yyerror is called, and error recovery takes 
place. These mechanisms can be used to simulate parsers with multiple 
endma.rkers or context-sensitive syntax checking. 

9.16 Accessing Values in Enclosing Rules 

An action rna.y rc:-fcr to valul's returned by actions t.o the left ofthe current rule. 
The rnerhanisrn is simply the same as with ordinary actions, a dollar sign 
followed by a digit, but in this case the digit may be 0 or negat.ive. Consider 

sent : adj noun verb adj noun 
{ look at the sentence ... } 

adj : THE { $$ = THE; } 
I YOliNG { $$ =YOUNG; } 

noun : DOG { $$ = DOG; } 
I CRONE { ir( $0 == YOUNG ){ 

printr( "what?\n" ); 
} 

$$=CRONE; 
} 

( 

In the action rollowing the word CRONE,acheckittmade preceding token 
shirted was not YOUNG. Obviously, this is only possible when a great deal is 
known about. what might. precede the symbol noun in the input. There is also a 
distinctly unstructured flavor about this. Nevertheless, at times this 
mechanism will save a great deal of trouble, especially when a few combinations 
a.re to be excluded from an otherwise regular structure. ( 

9-28 



) 

) 

) 

Yacc: A Compiler-Compiler 

9.17 Supporting Arbitrary Value Types 

By default, the vdues returned by actions and the lexical analyzer are integers. 
Yacc can also support values or other types, including structures. In addition, 
yacc keeps track or the types, and inserts appropriate union member names so 
that the resulting parser will be :;trictly type checked. The yacc value stack is 
declared to be a union or the various types or values desired. The U!ll!r declares 
the union, and associates union member names to each token and nonterminal 
symbol having a value. When the value is rererenced through a $$ or $n 
construction, yacc will automatically insert the appropriate union name, so 
that no unwanted conversions will take place. In addition, type checking 
commands such a.s lint(C) will be far more silent. 

There a.re three mechanisms used to provide for this typing. First, there is a 
way or defining the union; this must be done by the user since other programs, 
notably the lexical analyzer, must know about the union member names. 
Second, there is a way of associating a union member name with tokens and 
nont.erminals. Finally, there is a mechanism for describing the type or those 
few values where yacc cannot easily determine the type. 

To d<·dare the union, the user in dudes in the declaration section: 

%union { 
bod11 of union ... 
} 

This dedares the yacc value stack, and the external variables yylf!al and 1/1/flal, 
to have type equal to this union. Ir yacc was invoked with the -d option, t.he 
union decfaration is copied onto the y.tab.h file. Alternati\·ely, the union may 
be declared in a header file, and a typedef used to define the variable }TS TYPE 
to rt· present this union. Thus, the header file might also have said: 

typedef union { 
body of union ... 
} YYSTYPE; 

The header file must be included in the declarations section, by use or%{ and 
%}. 

Once }TSTYI'Eis defined, the union member names must be associated with 
the various terminal and nonterminal names. The com;truction 

<name> 

is used to indicate a union member name. Ir this follows one or the keywords 
%token, %left, %right, and %nonassoc, the union member name is associated 
with the tokens listed. Thus, saying 

9-29 



XENIX Programmer's Guide 

%left <optype> '+' '-' 

will cause any reference to values returned by these two tokens to be tagged 
with the union member name opt11pe. Another keyword, %type, is used 
similarly to associate union member names with nonterminals. Thus, one ( 
might say \ 

%type <nodetype> expr stat 

There remain a couple or cases where these mechanisms are insufficient. Ir 
there is an action within a rule, the value returned by this action has no 
predefined type. Similarly, reference to left context values (such as $0- see the 
previous subsection) leaves yacc with no easy w:i.y or knowing the type. In this 
case, a type can be imposed on the reference by inserting a union member name, 
between < and >,immediately after the first$. An example of this usage is 

rule: aaa { $<intval>$ = 3; } bbb 
{ Cun( S<intval>2, $<other>O ); } 

This syntax has little to recommend it, but the situation arises rarely. 

A sample specification is given in a later section. The facilities in this subsection 
are not triggered until they are used: in particular, the use of%type will turn on 
these mechanisms. When they are used, there is a fairly strict level of checking. (• 
For example, use or $n or $$ to refer to something with no defined type is · 
diagnosed. Ir these facilities are not triggered, the yacc value stack is used to 
hold int's, as was true historically. 

9.18 A Small Desk Calculator 

This example gives the complete yacc specificat.ion for a small desk calcuhtor: 
the desk calculator has 26 registers, labeled a through z, and accepts arithmetic 
expressions made up of the operators+,-, •, /, % (mod operator), & (bitwise 
and), I (bitwise or), and assignment. Ir an expression at the top level is an 
assignment, the value is not printed; otherwise it is. As in C, an integer that 
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be 
decimal. 

As an example of a.yacc specification, the desk calculator docs a reasonable job 
or showing how precedences and ambiguities are used, and demonstrating 
simple error recovery. The major oversimplifications are that the lexical 
analysis phase is much simpler than for most applications, and the output is 
produced immediately, line by line. Note the way that decimal and octal (·• 
integers are read in by the grammar rules; This job is probably better done by 
the lexical analyzer. 

9-30 



) 

) 

) 

Yacc: A Compiler-Compiler 

%{ 
# include <stdio.h> 
# include <ctype.h> 

int regsl26J; 
int base; 

%} 

%start list 

%token DIGIT LETTER 

%left 1' 
%left '&' 
%left '+' '-' 
%left '• ' '/' '%' 
%left UMINUS /• precedence for unary minus •/ 

%% /• beginning or rules section •/ 

list : /• empty •/ 
I list stat \n • 
I list error \n' 

{ yyerrok;} 

stat : expr 
{ printf( "%d\n", $1 ); } 
LETTER '=' expr 

{ regsl$1J = $3; } 

expr : '( • expr } ' 
{$$=$2;} 

I expr '+' expr 
{ ~*.= $1 + $3;} 

I expr - expr 
{ $$ = $1 - $3; } 

I expr '• ' expr 
{ $$ = $1 • $3; } 

I expr '/' expr 
{ ss = s1 / $3; } 

I expr '%' expr 
{ $$ = $1 % $3; } 

I expr '&' expr 
{ $$ = $1 & $3; } 

I expr 1' expr 
{ st = s1 I ta; } 

Q-31 



XENIX Programmer's Guide 

I '-' expr %prec UMINUS 
{ $$ = - $2;} 

I LETTER 
{ $$ = rcgsl$1J; } 

I number 

number : DIGIT 
{ $$ = $1; b:i.se = ($1==0) ! 8 : 10; } 

I number DIGIT 
{ $$ = base • $1 + $2; } 

%% /• start of programs•/ 

yylex() { /• lexical analysis routine •/ 
/• returns LETTER for a lowercase letter, •/ 
/• yylval = 0 through 25 •/ 
/• return DIGIT for a digit, •/ 
/• yylval = 0 through 9 •/ 
/• all other characters •/ 
/• are returned immediately •/ 

int c; 

while( (c=getchar()) == '') {/*skip blanks•/} 

/• c is now nonbbnk •/ 

if( islower( c ) ) { 
yylval = c - 'a'; 
return ( LETTER ); 
} 

if( isdigit( c ) ) { 
yylval = c - 'O'; 
return( DIGIT ); 
} 

return( c ); 
} 

9.19 Yacc Input Syntax 

( 

This section has a description of the yacc input synta.x, as a yacc specification. 
Context dependencies, etc., are not considered. Ironically, the yacc input { 
specification language is most naturally specified :i.s an LR(2) grammar; the 
sticky part comes when an identifier is seen in a rule, immediately following an 
action. Ir this identifier is followed by a colon, it is the start of the next rule; 
otherwise it is a continuation of the current rule, which just happens to have an 

9-32 



) 

) 

Yacc: A Compiler-Compiler 

action embedded in it. As implemented, the lexical analyzer looks ahead after 
seeing an identifier, and decide whether the next token (skipping blanks, 
newlines, comments, etc.) is a colon. IC so, it returns the token 
C_IDENTIF!ER. Otherwise, it returns IDENTIFIER. Literals (quoted 
strings) a.re also returned as IDENTIFIER, but never as part or 
C_IDENT/FIER. 

/•grammar for the input to Yacc •/ 

/• basic entities • / 
%token IDENTIFIER /• includes identifiers and literals •/ 
%token C_IDENTIFIER /• identifier followed by colon •/ 
%token NUMBER /• (0-g)+ •/ 

/•reserved words: %type=> TYPE, %left=> LEFT, etc.•/ 

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION 

%token MARK /• the %% mark •/ 
%token LCUHL /•the%{ mark •/ 
%token RCURL /•the%} mark o/ 

/• ascii cha.racter literal:> st.and Cor themselves • / 

%start spec 

%% 

spec : defs MARK rules ta.ii 

tail : MARK { Eat up the mrt of the file } 
I /• empty: the second MARK is optional •/ 

defs : /• empty •/ 
I defs def 

def : START IDENTIFIER 

I UNION { Cop1 union definition to output } 
LCURL { Cop11 C code to output file } RCURL 

I ndefs rword tag nlist 

rword : TOKEN 

I LEFT 
RIGHT 

I NONASSOC 

9-33 



XENIX Programmer's Guide 

ITYPE 

tag : /• empty: union tag is optional •/ 
I , < , IDENTIFIER '>, 

nlist : nmno 
I nlist nmno 
I nlist ',' nmno 

nmno : IDENTIFIER /•Literal illegal with %type•/ 
I IDENTIFIER NUMBER /• Illegal with %type •/ 

/• rules section •/ 

rules : C_IDENTIFIER rbody prec 
I rules rule 

rule : C_IDENTIFIER rbody prec 
I 'I' rbody prec 

rbody : /• empty •/ 
I rbody IDENTIFIER 
I rbody act 

act : '{' { Copy action, translate $$, etc. } '}' 

prec : /•empty •/ 
I PREC IDENTIFIER 
I PREC IDENTIFIER act 
I prec , 

9.20 An Advanced Example 

( 

( 

This section gives an example or a grammar using some or the advanced 
features discussed in earlier sections. The desk calculator example is modified { 
to provide a. desk calculator that does floating point interval arithmetic. The 
calculator understands floating point constants, the arithmetic operations+, 
-, •, /, unary -, and = (assignment), and has 26 floating point variables, a 
through z. Moreover, it also understands intervals, written 

9-34 



) 

) 

Yacc: A Compiler-Compiler 

( x 'y) 

where :z is less than or equal to g. There are 26 interval valued variables A 
through Z that may also be used. Assignments return no value, and print 
nothing, while expressions print the (floating or interval) value. 

This example explores a number or interesting features or yacc and C. 
Intervals are represented by a structure, consisting or the lert and right 
endpoint values, stored as a double precision values. This structure is given a 
type name, INTERVAL, by using tgpede/. The yacc value stack can also 
contain floating point scalars, and integers (used to index into the arrays 
holding the variable values). Notice that this entire strategy depends strongly 
on being able to assign structures and unions in C. In fact, many of the actions 
call (unctions that return structures as well. 

It is also worth noting the use of YYERROR to handle error conditions: 
division by an interval containing 0, and an interval presented in the wrong 
order. In effect, the error recovery mechanism of yacc is used to throw away 
the rest of the offending line. 

In addition to the mixing or types on the value stack, this grammar also 
demonstrates an interesting Jse of syntax to keep track ofthe type (e.g., scalar 
or interval) of intermediate expressions. Note that a scalar can be 
automatically promoted to an interval if the context demands an interval 
value. This causes a large number of conflicts when the grammar is run 
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be 
seen by looking at the two input lines: 

2.5 + ( 3.5 - 4. ) 

and 

2.5 + ( 3.5 I 4. ) 

Notice that the 2.5 is to be used in an interval valued expression in the second 
example, but this fact is not known until the comma(,) is read; by this time, 2.5 
is finished, and the parser cannot go back and change its mind. More generally, 
it might be necessary to look ahead an arbitrary number or tokens to decide 
whether to convert a scalar to an interval. This problem is circumvented by 
having two rules for each binary interval valued operator: one when the Iert 
operand is a scalar, and one when the left operand is an interval. In the second 
case, the right operand must be an interval, so the conversion will be applied 
automatically. However, there are still many casP.s where the conversion may 
be applied or not, leading to the above conflicts. They are resolved by listing 
the rules that yield scalars first in the specification file; in this way, the conflicts 
will be resolved in the direction of keeping scalar valued expressions scalar 
valued until they are forced to become intervals. 

This way or handling multiple types is very instructive, but not very general. Ir 
there were many kinds or expression types, instead or just two, the number of 

9-35 



XENIX Programmer's Guide 

rules needed would increase dramatically, and the conflicts even more 
dramatically. Thus, while this example is instructive, it is better practice in a 
more normal programming language environment to keep the type 
information as part of the value, and not as pa.rt of the grammar. 

Finally, a word a.bout the lexical analysis. The only unusual feature is the 
treatment of floating point constants. The C library routine ato/is used to do 
the actual conversion from a character string to a double precision value. Ir the 
lexira.l analyzer detects an error, it responds by returning a token that is illegal 
in the grammar, provoking a syntax error in the parser, and thence error 
recovery. 

9-36 

%{ 

# include <stdio.h> 
# include <ctype.h> 

typedef struct interval { 
double lo, hi; 
} INTERVAL; 

INTERVAL vmul(), vdiv(); 

double a.tor(); 

double dreg[ 26 J; 
INTERVAL vregl 26 J; 

%} 

%start lines 

%union { 
int iva.l; 
double dva.I; 
INTERVAL vva.I; 
} 

%token <iva.l> DREG VREG /• indices into dreg, vreg arrays•/ 

%token <dva.l> CONST /• Hoa.ting point constant •/ 

%type <dva.l> dexp /o expression "/ 

%type <vva.I> vexp /• interval expression•/ 

/• precedence information a.bout the opera.tors •/ 

%left '+' '-' 

( 

( 

( 



) 

) 

Yacc: A Compiler-Compiler 

%left '•' '/' 
%left UMINUS /• p~eeedenee for unary mmus •/ 

%% 

lines : /• empty •/ 
I lines line 

line : dexp '\n' 
{ printf( "%15.8f\n", $1 ); } 

I vexp '\n' 
{ printf( "(%15.8f, %15.8f )\n", $1.lo, $1.hi ); } 

I DREG '=' dexp '\n' 
{ dreg($1) = $3; } 

I VREG '=' vexp '\n' 
{ vreg($1J = $3; } 

I error '\n' 
{ yyerrok;} 

dexp : CONST 
!DREG 

{ $$ = dreg($1); } 
I dexp '+' dexp 

{ $$ = $1 + $3; } 
I dexp '-' dexp 

{ $$ = $1 - $3; } 
I dexp '•' dexp 

{ $$ = $1 • $3; } 
I dcxp '/' dexp 

{ SS = $1 I $3; } 
I'-' dexp %prec UMINUS 

{ $$ = - $2;} 
I '(' dexp ')' 

{ $$ = $2;} 

vexp : dexp 
{ $$.hi = $$.lo = $1; } 

I'(' dexp ',' dexp ')' 
{ 

$$.lo = $2; 
$$.hi = $4; 
if( SS.lo > $$.hi ){ 

printf{"interval out of order\n"); 
YYERROR; » 

IVREG 

9-37 



XENIX Programmer's Guide 

9-38 

%% 

{ $$ = vregl$1); } 
I vexp '+' vexp 

{ $$.hi = $1.hi + $3.hi; 
$$.lo = $1.lo + $3.lo; } 

I dexp '+' vexp 
{ $$.hi = $1 + $3.hi; 

SS.lo= $1 + $3.lo; } 
I vexp '-' vexp 

{ $$.hi = $1.hi - $3.lo; 
SS.lo = $1.lo - $3.hi; } 

I dexp '-' vexp 
{ $$.hi = $1 - $3.lo; 

$$.lo = $1 - $3.hi;} 
I vexp '•' vexp 

{ $$ = vmul( $1.lo, $1.hi, $3 ); } 
I dexp '•' vexp 

{ $$ = vmul( $1, $1, $3 ); } 
I vexp '/' vexp 

{ ir ( dcheck( $3 ) ) YYERROR; 
$$ = vdiv( $1.lo, $1.hi, $3 ); } 

I dexp '/' vexp 
{ ir ( dcheck( $3 ) ) YYERROR; 

$$ = vdiv( $1, $1, $3 ); } 
I'-' vexp %prec UMINUS 

{ $$.hi = -$2.lo; $$.lo = -$2.hi; } 
I '(' vexp ')' 

{ $$=$2;} 

# define BSZ 50 /• buffer size for rp numbers •/ 

/• lexical analysis •/ 

yylex(){ 
register c; 

{ /• skip over blanks •/ } 
while( ( c = getchar() ) == ' ' ) 

ir ( isupper(c) ){ 
yylval.ival = c - 'A'; 
return( VREG ); 
} 

if ( islower( c) ){ 
yylval.ival .... c - 'a'; 
return( DREG ); 
} 

ir( isdigit( c) II c=='.' ){ 

( 

( 



) 

) 

) 

Yacc: A Compiler-Compiler 

/• gobble up digits, points, exponents •/ 

char buf(BSZ+IJ, •cp = buf; 
int dot= 0, exp= O; 

for( ; (cp-buf)<BSZ; ++cp,c=getchar() ){ 

•cp = c; 
if( isdigit(c) ) continue; 
if( c == '.' ) { 

if ( dot++ II exp ) return( '.' ); 
/• above causes syntax error •/ 

continue; 
} 

if (c == 'e' ) { 
if ( exp++ ) return( 'e' ); 

/• above causes syntax error •/ 
continue; 
} 

/• end of number •/ 
break; 
} 

•cp = '\O'; 
if( (cp-buf) >= BSZ ) 

printf( "constant too long: truncated\n" ); 
else ungetc( c, std in ); 

/• above pushes back last char read •/ 
yylval.dval = atof ( bur); 
return( CONST); 
} 

return( c ); 
} 

INTERVAL hilo( a, b, c, d) double a, b, c, d; { 
/• returns the smallest interval containing a, b, c, and d •/ 
/* used by •, / routines •/ 
INTERVAL v; 

if( a>b) { v.hi =a; v.lo = b;} 
else { v.hi = b; v.lo = a; } 

if(c>d){ 

else { 

if ( c>v.hi) v.hi = c; 
if ( d <v.lo ) v.lo = d; 
} 

if ( d>v.hi) v.hi = d; 
if ( c<v.lo) v.lo = c; 

9-39 



XENIX Programmer's Guide 

} 
return( v ); 
} 

INTERVAL vmul( a, b, v) double a, b; INTERVAL v; { 
return( hilo( a•v.hi, a•v.lo, b•v.hi, b•v.lo) ); 
} 

dcheck( v ) INTERVAL v; { 
if( v.hi >= 0. && v.lo <= 0. ){ 

printf( "divisor interval contains O.\n" ); 
return( I); 
} 

return(O); 
} 

INTERVAL vdiv( a, b, v) double a, b; INTERVAL v; { 
return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo} }; 
} 

9.21 Old Features 

( 

This section mentions synonyms and features which are supported for 
historical continuity, but, for various reasons, are not encouraged. ( 

I. Literals may also be delimited by double quotation marks("). 

2. Literals may be more than one character long. If all the characters are 
alphabetic, numeric, or underscore, the type number of the literal is 
defined, just as if the literal did not have the quotation marks around 
it. Otherwise, it is difficult to find the value for such literals. The use 
or multicharacter literals is likely to mislead those unfamiliar with 
yacc, since it suggests that yacc is doing a job that must be actually 
done by the lexical analyzer. 

3. Most places where '%' is legal, backslash (\) may be used. In 
particular, the double backslash (\ \) is the same as %%, \left the 
same as %left, etc. 

4. There are a number of other synonyms: 

9-40 

%< is the same as %left 
%> is the same as %right 
%binary and %2 are the same as %nonassoc 
%0 and %term are the same as %token 
%= is the same as %prec 

( 



) 

) 

Yacc: A Compiler-Compiler 

5. Actions may also have the form 

6. 

={ ... } 

and the curly braces can be dropped if the action is a single C 
statement. 

c code between %{ and % } used to be permitted at the head or the 
rules section, as well as in the declaration section. 

9-41 



c· .. 

(.1 



) 

) 

Chapter 10 
XENIX to MS-DOS: A Cross 
Development System 

IO.I Introduction 1 

10.2 Creating Source Files 1 

I0.3 Compiling an MS-DOS Source File 2 

10.4 Using Assembly Language Source Files 3 

I0.5 Creating Linking Object Files 3 

10.6 Running and Debugging an MS-DOS Program 3 

10.7 Transferring Programs Between Systems 4 

10.8 Creating MS-DOS Libraries 4 



(' 



) 

) 

XENIX to MS-DOS: A Cross Development System 

10.l Introduction 

The XENIX system provides a variety of tools to create programs that can be 
executed under control of the MS-DOS operating system. The MS-DOS cross 
developmenl system lets you create, compile, and link MS-DOS programs on the 
XENIX system and transfer these programs to an MS-DOS system for execution 
and debugging. 

The complete development system CQnsists of 

The C program compiler cc 

The 8086 assembler as 

The MS-DOS linker dosld 

The MS-DOS libraries (in lusrllibldos) 

The MS-DOS include files(inlusrlincludeldos) 

The dos(C) commands 

The heart of the cross development system is the cc command. The command 
provides a special -dos option which directs the compiler to create code f~ 
execution under MS-DOS. When -dos is given, cc uses the special MS-DOS 
include files and libraries to create a program. The resulting program file has the 
correct format for execution on any MS-DOS system. 

The cc command uses the dosld commands to carry out the last part of the 
compilation process. the creation of the executable program file. Cc invokes the a 
command only when 8086 assembly language source files arc given in the 
command line. In most cases, cc invokes as and dosld automatically. You can also 
invoke them directly when you need to perform special tasks. 

The last important step in the cross development process is to transfer the 
executable program files to an MS-DOS system. Since MS-DOS programs 
cannot be executed or debugged on the XENIX system, you must copy the resulting 
programs to MS-DOS file systems bef~e anempting execution. You can do this 
using the XENIX dos(C) commaoos. For example, the doscp command lets you 
copy files back and fonh between XENIX and MS-DOS disks. This means you 
can transfer program files from the XENIX system to an MS-DOS system, OF copy 
source files from an MS-DOS system to XENIX. 

10.2 Creating Source F'Jles 

You can create program source files using either XENIX or MS-DOS text editors. 
The most convenient way is to use a XENIX editor, such as vi, since this means you 
do nrt have to transfer the source files from the MS-DOS system to XENIX each 
time you make changes to the files. 

When creating source files, you should follow these simple rules: 

10-1 



XENIX Programmer's Gulde 

Use the standard C language format for your swrce files. MS-DOS 
source files have the same format as XENIX source files. In fact, many 
MS-DOS programs, if compiled without the -dos option, can be 
executed on the XENIX system. 

Use the MS-DOS naming conventions when giving file aoo directory 
names within a program, e.g., use "\" instead of"/" for the pathname 
separator. Since the compiler does not check names, failure to follow 
the conventions will cause errors when the program is executed. 

Use only the MS-DOS include files and library functions. Mo• MS­
DOS include files and functions are identical to their XENIX 
counterparts. Others have only slight differences. For a complete list of 
the available MS-DOS include files aoo functions, and a description of 
the differences between them and the corresponding XENIX files and 
functions, see Appeooix C of the XENIX Programmer's Reference. 

If you use a function that does not cxi•, dosld displays an error message and 
leaves the linked output file incomplete. 

10.3 Compiling an MS-DOS Source File 

You can compile an MS-DOS source file by using the -dos option of the XENIX 
cc command. The command line has the form 

cc -dos options jileT11l171e ... 

where options are other cc command options (as described in Oiapter 2), and 
filename is the name of the source file you wish to compile. You can give more 
than one source file if desired. Each source filename must end with the ".c" 
extension. 

The cc command compiles each source file separately, creating an object file for 
each file. then links all object files together with the appropriate C libraries. The 
object files created by the cc command have the same base name as the 
corresponding source file, but end with the ".o" extension instead of the ".c" 
extension. The resulting program file also has the name a. OUI if no name is 
explicitly given. 

For example, the comma!XI 

cc -dos test.c 

compiles the source file test.c and creates the ~ect file test.o. it then calls dmld 
which links the object file with functions from the MS-DOS libraries. The 
resulting program file is named, a.out. 

You can use any number of cc options in the command line. The options work as 
described in the Oiaptcr 2 of this guide. For example, you can use the -o option 
to explicitly name the resulting program file, or the -c option to create object files 
without creating a program file. In some cases, the default values fOI' an option arc 
different than when compiling for XENIX. In particular, the dcfauh directory for 
library files given with the -I option is lusrllibldos. Note that the -p (for 
"profiling") option cannot be used. 

10-2 

( 

( 



) 

) 

XENIX to MS-DOS: A Cross Devdopmeat System 

10.4 Using Assembly Language Source Files 

Yoo can direct cc to assemble 8086 assembly language llOUR:e files by including 
the files in the cc command line. Like C source files, assembly language source 
files may contain only calls to functions in the MS-DOS libraries. Furthermore, 
the source files must follow the C calling conventions described in Appendix A of 
the XENIX Programmer's Reference. The filename of an assembly language 
source file must end with the" .s" extension. 

When an assembly language source file is given, cc automatically invokes aa, the 
8086 assembler. The assembler creates an object file that can be linked with any 
otherobject file created by cc. 

Yoo can invoke the assembler directly by using the as command. The command 
creates an object file just as the cc command, but does nOl create an executable file. 
For a description of the command and its options, see as(CP) in the XENIX 
Reference Manual. 

10.S Creating Linking Object Files 

You can link MS-DOS object files previously created by cc or as by giving the 
names of the files in the cc command line. The object files must haw been created 
using as or with cc using the -dos option. Object files created withoot using the 
-dos option cannot be linked to MS-DOS programs. The object filenames must 
end with the" .o" extension. 

When an object file is given, cc automatically inwkes dosld the MS-DOS linker, 
which links the given object files with the appropriate C libraries. If there are no 
errors, dosld creates an executable program file named a.out. 

Yoo can inwke the linker directly by using the dosld command. The command 
creates an MS-DOS program file just as the cc command, but does not accept 
source files. For a description of the command and its options, see dmld(CP) is the 
XENIX Reference Manual. 

Note 

MS-DOS programs created by cc and dosld are completely compatible with 
the MS-DOS system and can be executed on any such system. MS-DOS 
programs cannot be executed on the XENIX system. 

10.6 Running and Debugging an MS-DOS Program 

Yoo can debug an MS-DOS program by transferring the program file to an 
MS-DOS system and using the MS-DOS debugger, Debu1, to load and execute 
the program. The following section explains how to transfer program files between 
systems. For a description of the Debu1 program, see the appropriate MS-DOS 
manual. 

10-3 



XENIX Programmer's Gulde 

10. 7 Tramferriog Programs Between Systems 

You can transfer programs between XENIX and MS-DOS systems by using 
MS-DOS floppy disks and the XENIX doscp command. The doscp command lets 
you copy files to an MS-DOS floppy disk. The command has the form 

doscp -rjile-1 del~.jik-2 

where -r is the required "raw .. option, jile-1 is the name of the MS-DOS 
program file you wish to transfer, dev is the full pathname of a XENIX system 
floppy disk driw:, and jile-2 is the full pathname of the new program file on the 
MS-DOS disk. The new filename must have the ".exe" extension. lbe -r 
option ensures that the program file is copied byte f« byte. 

To transfer a program file to a MS-DOS system, follow these steps: 

I. Insert a formatted MS-DOS diskette into a XENIX system floppy disk 
drive. 

2. Use the closcp command to copy the program file to the disk. For 
example, to copy the program file a.01'1 to the file test.exe on the MS­
DOS disk in the floppy drive JdevlftXJ, type 

doscp -r a.out /dev/fdO:/test.exe 

3. Remove the 8oppy dist from the driw. 

You can now insert the 8cppy disk into the floppy disk drive of the MS-DOS 
system and invoke the program just as you would any other MS-DOS program. 

Note 

MS-DOS program files that do not end with the ".exe" or ".com" 
extension cannol be loaded for execution under MS-DOS. When 
transferring program files from XENIX to MS-DOS, you must mate sure 
you rename a.01'1 files to an appropriate ".exe" or ".com" file. 

On some XENIX systems, you may be able to create an MS-DOS partition on the 
system hard disk and copy MS-DOS program files to this partition instead ofto 
ftoppy disks. To execute the program, yw must reboct the system, loading the 
MS-DOS operating system from the MS-DOS partition. 

10.8 Creating MS-DOS Libraries 

You can create a library of your own MS-DOS object files by using the XENIX ar 
command. The command copies object files crcalCd by the compiler to a given 
archive file. The command has the form 

ar archb~ jilenatM ... 

where archive is the name of an archive file, and filename is the name of the 

10-4 

( 

( 

( 



) 

) 

) 

XENIX to MS-DOS: A Cross Development System 

MS-DOS object file you wish to add to the library. 

Note 

MS-DOS libraries created on the XENIX system are not compatible with 
libraries created on the MS-DOS system. This means you cannot copy the 
libraries to the MS-DOS system and expect them to wod with the MS­
DOS Link command. 

JO-S 



( 

(! 

(' 



) 

Chapterll 

Writing Device Drivers 

11.1 Introduction 11-1 
11.1.1 What is a XENIX Device Driver? 11-1 
11.1.2 Relationship to XENIX Operating System 11-1 
11.1.3 Device Models Supported by XENIX 11-1 
11.1.4 Using Sample Device Drivers 11-2 
11.1.5 Special Device Files 11-3 

11.2 Kernel Environment 11-4 
11.2.1 Modes of Operation 11-4 
11.2.2 Context Switching 11-5 
11.2.3 System Mode Stack 11-5 
11.2.4 Task Time Processing 11-6 
11.2.5 Interrupt Time Processing 11-7 
11.2.6 Interrupt Routine Rules 11-8 

11.3 Kernel Support Routines 11-9 
11.3.1 in(), out(), inb(), and outb() 11-9 
11.3.2 spl5() and splx() 11-10 
11.3.3 sleep() and wakeup() 11-11 
11.3.4 timeout() 11-12 
11.3.5 copyio () 11-14 
11.3.6 Version 7 /System 5 Compatibility Issues 11-16 

11.4 Parameter Passing to Device Drivers 11-17 

11.5 Naming Conventions 11-18 

11.6 Device Drivers for Character Devices 11-18 
11.6.1 Character Device Driver Routines 11-19 
11.6.2 Interrupt Routines for Character Device Drivers 11-

25 
11.6.3 Character List Architecture 11-25 



11.6.4 Terminal Device Drivers 11-26 
11.6.5 Other Character Devices 11-29 

11.7 Device Drivers for Block Devices 11-29 
11.7.1 Character Interface to Block Devices 11-30 
11.7.2 Block Device Driver Routines 11-31 

11.8 Sharing Interrupt Vectors 11-35 

11.9 Warnings 11-36 

( 

( 



) 

) 

) 

Writing Device Drivers 

11.1 Introduction 

This chapter, along with Chapter 12, "Sample Device Drivers," explains how to 
write and install device drivers in a XENIX environment. It describes the role of 
device drivers in a XENIX-based system, and discusses· other special 
considerations involved in writing a device driver. It describes the XENIX model 
of devices in terms of files, tasks to be performed, and interrupts to be 
processed. 

11.1.1 What is aXENIXDeviceDriver? 

For each peripheral device in a XENIX system, there must be a "device driver" 
to provide the software interface between.the device and the system. A XENIX 
device driver is a set of routines that communicates with a hardware device, and 
provides a uniform interface to the kernel. This interface allows the kernel to 
interpret user I/O requests into operating system tasks to be performed. 

11.1.2 Relationship to XENIX Operating System 

The XENIX device driver manages the flow of data and control between the user 
program and the peripheral devices. The path of an I/O request is shown below, 
starting with a system call from a user program, and ending at the device driver: 

+- - - - - - - - - - - - - -+ 
I User Program I 
+- - - - - - - - - - - - - -+ 

I 
I User Space 

---------------1--------------------------
1 Kernel Space 
I 

+- - - - - - I - - - - - - - - - -+- - - - - - - + 
I I I I 
I +---->--------->--------->Peripheral 
I Kernel !Device I Devices 
I !Drivers! 
+- - - - - - - - - - - - - - - - - - - - - - - - -+ 

User Program Requesting 1/0 

11.1.3 Device Models Supported by XENIX 

The XENIX operating system supports two device models: character 
devices and block devices. This chapter describes how to write device 
drivers for both device models. 

11-1 



Programmer's Guide 

In general, any device that appears to be a randomly addressable set of 
fixed-size records is a block device; any other type of device is a character 
device. For example, disk drives and tape drives are block devices, while 
terminals and line ~rfinter:i arrfe character devices. Tbhe XE1'.'ffi'd. obp1erakting ( 
system presents a um orm mte ace to user programs y prov1 mg oc ing 
and unblocking in the kernel. Thus, character and block devices look alike 
to the user program. 

Character device drivers communicate directly with the user program. The 
process begins when a user program requests a data transfer of some 
number of bytes between a section of its memory and a specific device. 
The operating system transfers control to the appropriate device driver. 
The user program supplies the parameters for the request to the device 
driver, which, in turn, performs the work. Thus, the operating system has 
minimal involvement in the request; the data transfer is a private 
transaction between the user process and the device driver. 

Block device drivers require more involvement from the operating system 
to perform their tasks. Block devices transfer data in fixed-size blocks, and 
are usually capable of random access. (The device does not need to be 
capable of random access; magnetic tapes are often read or written using 
block I/O.) The two factors that distinguish block I/O from character I/O 
are: 

The size of data transfer requests from the kernel to the device is 
always a multiple of the system block size (called BSIZE) 
regardless of the size of the user process' original request. A single 
user process request can generate many system requests to the 
driver. BSIZE is 1024 bytes in the 286 version of XENIX. The 
device's physical block size may be smaller than BSIZE, in which 
case the device driver initiates multiple physical transfers to 
transfer a single logical block. 

Transfers are never done directly into a user process' memory 
area. They are always staged through a pool of BSIZE buffers. 
Program I/O requests are satisfied directly from the buffers. 
XENIX commands the device driver to read and write from the 
buffers as necessary. It manages these buffers to perform services 
such as blocking and unblocking of data and disk caching. 

11.1.4 Using Sample Device Drivers 

( 

Chapter 12, "Sample Device Drivers," discusses sample device driver source ( 
code for a line printer, a terminal, a hard disk drive, and a memory- .. 
mapped screen. These source code samples are intended as prototypes 
from which the experienced programmer can begin writing a device driver 
for a particular device. 

11-2 



) 

) 

Writing Device Drivers 

11.1.5 Special Device Files 

To a XENIX user, a device will usually appear to act like a "file." A file 
consists of an ordered sequence of bytes. Files that contain data are called 
"regular files," and files that represent devices are called "special device 
files." Each file has at least one name; the names of special device files are, 
by convention, placed in the directory named / dev. 

Each special device file has a "device number," that uniquely identifies the 
device. The device number consists of two parts, the "major number" and 
the "minor number." The major number tells the kernel which device 
driver will handle requests for this special file. The minor number can be 
used by the driver to provide more information about a particular unit of 
the devices that it controls (such as the unit number). 

Before the user process can request 1/0, it must first have opened a 
"special device file." A special device file looks like an ordinary disk file 
except that it was created by a utility program called mknod(C) described 
in the XENIX Re/erence Manual. The file appears in a directory and has 
owner and permission fields, as does any disk file, but it contains no data. 
Instead, it has a pair of 8-bit numbers, called the "major" and "minor" 
numbers, associated with it. The command ls -l displays these numbers: 

c rw- -w- ·W· 

b rw- • • • • • • 

davewo 
aye info 

4, 3 Sep 21 09:49 /dev/lly03 
3, 2 Sep 21 OD:49 /dev/hdOl 

Here the file / dev/ttyOS has a major device number of 4 and a minor device 
number of 3. The / dev/ hdOl file has a major device number of 3 and a 
minor device number of 2. 

When a user process opens the special device file, XENIX recognizes that it 
is a special device file and uses the major number to index a table of entry 
points. If the special device file designates a character device, the table 
used is cdevsw; if it designates a block device, the table used is bdevsw. 
These two tables are defined in the /usr/sys/conf/c.c file generated by the 
make program when the kernel is built. XENIX calls the device driver's 
open entry-point through this table, supplying as an argument the minor 
device number. The minor device number usually encodes the unit number, 
although often a device driver dedicates some of the bits in the minor 
number to indicating special options, such as "use double density" in the 
case of a floppy disk. 

The convention is for these special device files to have meaningful names 
and reside in the/ dev directory For example, 

/dev/tty03 

would normally be associated with the major device number of the serial 

11-3 



Programmer's Guide 

device driver; its minor number would indicate the fourth port. It is 
important to note that this is just a convention; the system administrator 
~~~d just as well assign the same major/minor numbers to either of the ( 

/usr / ellen/magtape
/usr/ellen/tty91

with identical results. The name is for user convenience; XENIX keys solely
on the major and minor device numbers.

11.2 Kernel Environment

This section briefly discusses a few functional aspects of the XENIX
operating system: modes of operation, context switching, system mode
stack use, task time processing, and interrupt time processing. It also
describes the services provided to device drivers by the XENIX kernel, and
the rules that device drivers are required to obey.

11.2.l Modes of Operation

When a process is executing instructions in the user program, it is said to (
be in "user mode." When it is executing instructions in the XENIX kernel,
it is said to be in "system mode." When the kernel receives an interrupt
from an external device, it switches to system mode if it was in user mode,
and control is passed to the interrupt routine of the appropriate device
driver. When the driver is done, it returns, and the processing that was
interrupted is resumed. The processing that was interrupted is referred to
as "task time processing" and the processing that took place as a result of
the interrupt is called "interrupt time processing."

Although all processes originate as user programs, a given process may run
in either user or system mode. In system mode, it executes XENIX kernel
code and has privileged access to I/O devices and other services. In user
mode, it executes the user's program code, and has no special privileges. In
fact, XENIX provides a high level of protection around processes in user
mode to prevent a user program from inadvertently damaging the system
or other user programs. A process voluntarily enters system mode when it
makes a system call. When an interrupt or trap is received while a process
is executing in user mode, the process will switch into system mode to
handle the interrupt. At this time it may lose the CPU and the kernel
may decide to switch control or "context" to a different process. (

11-4

)

)

Writing Device Drivers

11.2.2 Context Switching

Context switching occurs when the kernel decides to transfer control of the
CPU from the currently executing process to a different process.

In user mode, the kernel switches context whenever:

The process' time slice has expired.

The process makes a system call that cannot be completed
immediately; for example, a read from a slow input device.

An interrupt is received that allows a blocked process to proceed.
This case will occur when the.process has been sleeping at high
priority, waiting for the interrupt handler to call wakeup() to
indicate a completed 1/0 request. If the priority at which the
process is sleeping is higher than that of the currently running
process, a context switch will occur.

In system mode, switching contexts is always voluntary. A process
voluntarily gives up the processor when the routine sleep() is called.
Interrupts can still arrive (they can be locked out for short periods of time,
if necesi;ary) but when the interrupt service routine returns, control always
passes back to the interrupted process.

11.2.3 System Mode Stack

Each process has a special area of memory associated with it, called the
"u" area. The u area is not directly accessible to the user (that is, it is not
in the process' normal address space). It contains the information the
kernel needs to manage the process, and contains space for a system mode
stack. When any process makes a system call, its registers are preserved in
its u area, and the stack pointer is moved to the beginning of its system
mode stack area. When the system call has completed, the registers are
restored from the u area, the stack pointer is restored to the process' stack,
and control is returned to the process. Since each process in the system has
its own u area, a system running N processes has N user stacks and N
system stacks.

The XENIX operating system, and therefore the task time portions of the
device drivers, uses a fixed-size system mode stack in the u area. In XENIX,
the size of this per-process stack is 1024 bytes. It is critical, then, that
device driver procedures not create local (frame) buffers of any significant
size. The following declaration will cause trouble, since as soon as the
routine is called it requires at least 1024 bytes of stack space:

11-5

Programmer's Guide

open()
{

char buf 1512];
char buf2l512];

Further, interrupt service routines make use of whatever system stack was
set up at the time of the interrupt. If the interrupt occurs while the
currently running process is in user mode, the interrupt service routine will
have the entire u stack area for its use. However, if the interrupt takes
place while the process is in system mode, the interrupt routine will be
sharing the u stack area. For this reason, interrupt service routines must
mm1m1ze their frame variable declarations, keeping their frame
requirements below 512 bytes.

11.2.4 Tas.k Time Processing

(

The operating system manages a number of processes, each corresponding
to a user program. Any particular process may be running in system mode
or user mode at any given time. When a process makes a system call to
request kernel service, the process switches to system mode, and starts
running kernel code. When the kernel is executing code at the request of a
user program, it is doing "task time processing." (

If there are 50 processes running, there may be as many as 50 simultaneous
processes in system mode, each with its own local variables. This requires
that all kernel code be re-entrant, but it otherwise greatly simplifies things.
Each system process instance has to deal only with servicing the specific
system call that the user program requested. The active process' u area is
always mapped into the kernel's address space, so when kernel code is
executing it has information about the request and process it is serving.

Often the kernel cannot service a request immediately. The request may
require doing some 1/0, or it could even be a request to wait awhile. When
a process in system mode blocks, awaiting some event, the system
scheduler schedules some other process, which may be in either user or
system mode.

I/O requests from the user process are passed via system calls to the device
driver. Some parameters of the request, such as byte count and transfer
address, are kept in the u area; these task time portions of the driver can
reference and perhaps modify the u area cells, since we know that the
currently running process' u area is always mapped into the kernel address
space.

11-6

(

)

)

Writing Device Drivers

11.2.5 Interrupt Time Processing

When a device interrupt is received, the tasks performed as a result of the
interrupt are referred to as "interrupt time processing." When an interrupt
arrives, any of the active processes on the system may be executing. Even
if this interrupt signals the completion of a user process' request, the
interrupt service routine can take no direct action: the process that was
interrupted is almost certainly not the process that initiated the request.
Instead, all interrupt time portions of device driver routines must store, in
static memory locations, information for the task time portion of the device
driver routines to figure out the result of the interrupt service. Any data or
status that the interrupt service routine wants to return to the task time
portion of the driver (and hence, perhaps to the requesting user program)
must also be passed via static memory.

The local (frame) variables of the task portion of the device driver are kept
in its system mode stack, which is in the u area. This u area is not mapped
into the kernel address space at interrupt time; the u area there belongs to
some other process. The correct u area might even be out on the swap disk.
Thus, the interrupt service routine must never attempt to store data in the
u area or in user memory; and the I/O device itself, via DMA or whatever,
must not attempt to transfer directly into the user's memory area.

Usually, this is not a problem. Character devices typically make use of
small system supplied buffers called character lists (clists). Block devices
use BSIZE buffers in the system buffer pool. The task time portion of the
driver transfers the data from the buffers into the user's memory. It may
be important that the transfer take place directly into user memory. In
such cases, it is necessary to lock the user program into physical memory so
that it is not swapped.

Typically, the task time portion of the device driver issues a sleep() call
when it makes the initial I/O request. The interrupt service routine decides
what to do and, if it needs to notify the task time portion (as opposed to
issuing another I/O command), it puts any status information and data
into static cells and issues a wakeup() call to the task portion. The
interrupt service routine then exits to the operating system, and the
operating system exits the interrupt. The system scheduler soon reschedules
the running process so that the one that has just been awakened is
executed. The task time portion of the device driver finds that it has
returned from the sleep() call, and that there are status and data bytes
waiting in static memory locations.

Access to static variables that can be modified at interrupt time is
interlocked with the spl5() routine. The spl5() routine raises the interrupt
priority of the CPU so that interrupts that might cause a value change are
locked out until the splz() routine is called. This period must be kept as
short as possible. Refer to Section 11.3, "Kernel Support Routines," for a
more detailed description of the routines mentioned here.

11-7

Programmer's Guide

Device drivers that use the standard interfaces to the kernel are provided
with a method for passing information between the interrupt time portion
of a driver and the task time portion. Standard buffered 1/0 device drivers
note the outcome of the data transfer in the buffer headers associated with
the transfer. The header for the list of transfers the driver is working on is (
defined in /usr/sys/h/iobuf.h; the header for the buffer associated with the
current transfer is defined in /usr/sys/h/buf.h. Standard character 1/0
device drivers use the per device "tty" structure (defined in
/ usr/ sys/ h/tty.h} to pass information about the 1/0 request.

11.2.6 Interrupt Routine Rules

An interrupt routine operates in a more restricted environment than a task
time routine, since it cannot make any assumptions about the state of the
system or about the presence of particular user processes or user data in
system memory. The relationship between the scope of task time and
interrupt time routines is illustrated in the figure below:

TASK
TIME

+- - - - - - - - - - - - - -+
J User Program J

+- - - - - - - - - - - - - -+

+- -+
I u area I
1-------------------------1
I Kernel IDriversl

I I I
+- -+

INI'ERRUPI'
TIME

+---------+
I I
I Driver I
IInterrup&I
IRou&ines I
+---------+

Task and Interrupt Time

The key things to remember are that the user process is mapped into
memory, and its u space is mapped into the kernel's address space only at
task time. Task time processing occurs whenever the user program code
itself is executing (user mode) or the operating system is executing and
performing services for the program (system mode).

(

It cannot be assumed that the u area is mapped into memory during the (
execution of an interrupt routine. No interrupt routine, nor any routine
that may be ca.lied at interrupt time, may make any reference to user
memory, the u area, or nonstatic memory locations. This means that the
task time portion of the driver must not try to pass addresses of its frame

11-8

)

)

Writing Device Drivers

variables and buffers to devices and interrupt service routines. Those
locations are valid only when that individual user process is executing.

11.3 Kernel Support Routines

This section describes the routines that the kernel provides for device
driver use.

11.3.1 in(), out(), inb(), and outb()

This section describes the routines used to interface to the registers that
access and control a particular device. ·These registers may reside either in
main memory (memory mapped) or in 1/0 space. There are four routines
that provide a portable interface to the registers. These routines are
described as follows:

in (port) word

Purpose: This routine returns the value of the word
specified by the given port or register address.

Parameters: port is an integer value that specifies the
address of the desired word.

word is an integer specifying the value of the returned
word.

Result: The value of word is returned.

Example: To read the status of a word register at
address 20 (hex), you may use the following lines of code:

int val;
val = in(Ox20);

11-9

Programmer's Guide

inb (port) byte

Purpose: This routine returns the value of the byte
specified by the given port or register address.

Parameters: port is an integer value that specifies the
address of the desired byte.

byte is a byte specifying the value of the returned byte.

Result: The value of byte is returned.

out (port, value)

Purpose: This routine sets the word at the specified
address to the specified value.

Parameters: port is an integer value that specifies the
address of the word.

value is the integer value that the word will be set to.

Result: The word at the specified address is set to the
specified value.

outb (port, value)

Purpose: This routine sets the byte at the specified
address to the specified value.

Parameters: port is an integer value that specifies the
address of the byte.

value is the byte value that the byte will be set to.

Result: The byte at the specified address is set to the
specified value.

11.3.2 spl6(} and splx()

This section describes the routines used to enable and disable interrupts
during task time processing.

11-10

(

(

)

)

)

Writing Device Drivers

spl5 () level

Purpose: This routine may be called if interrupts should
not be acknowledged during task time processing. It
disables all disk and character 1/0 interrupts, and
returns the pre-empted interrupted level. This value is
used when restoring interrupts with the Bplx(} routine.

Para.meters: level is an integer value that specifies the
interrupt level pre-empted by this routine.

Result: The value of the pre-empted interrupt level 1s
returned.

splx (oldspl)

Purpose: This routine takes the return value of the
Bpl5(} routine and enables the interrupt levels that were
accepted before the call to Bpl5(}. Calls to Bpl5(} and
Bplx(} nest correctly.

Para.meters: oldBpl is an integer value specifying the
level of interrupts that were disabled by Bpl5.

Example: To restrict interrupts during critical device
driver processing, you may use the following lines of
code:

int x;
x = spl5();
/*do uninterruptable work*/
splx(x);

11.3.3 sleep() and wakeup()

This section describes the routines used to suspend and reawaken requests
that cannot be serviced immediately. For example, a device driver may
receive a write request when the output buffer is full. In this case, the
requesting process can suspend itself by calling Bleep(). When the
condition is alleviated, the suspended process is awakened in either of two
ways: some other process may awaken the suspended process by calling
wakeup() or it can be awakened by a signal.

11-11

Programmer's Guide

sleep (chan, pri)

Purpose: This routine suspends a requesting process
when one of the conditions required to execute the
process cannot be met. This routine should never be
called at interrupt time.

Parameters: chan is a unique number that identifies the
sleeping process. The convention for generating this
unique number is to use the address of some data
structure the device drivers uses. Since no data
structures will have the same address, uniqueness is
guaranteed.

pri is an integer value that determines the priority of the
process when it awakens. If a process goes to sleep at a
priority lower than manifest constant PZERO, the sleep
will not be broken by a signal. Typically, the priority is
below PZERO if the condition is likely to disappear
almost immediately, and it is above PZERO otherwise.

wakeup (chan)

Purpose: This routine wakes up a process(es) that has
(have) been suspended by the sleep() routine. All the
processes that have called sleep() with the unique
number specified are awakened. When a process is
awakened, the call to sleep() returns, and the process
should check that the reason for going to sleep has
disappeared.

Parameters: chan i$ a unique number that identifies the
sleeping process t.o be awakened. The convention for
generating this unique number is to use the address of
some data structure the device drivers uses. Since no
data structures will have the same address, uniqueness is
guaranteed.

11.3.4 timeout()

(

(

This section describes the routine used to schedule a call to a routine at (
some later time.

11-12

)

)

Writing Device Drivers

timeout (function, arg, tim)

Purpose: This routine allows a function to be called at
a scheduled time in the future.

Para.meters: function is an integer value specifying the
function to be called.

arg is the argument to the function being called.

tim is an integer value specifying the number of clock
ticks that should elapse before the call.

Example: This routine can qe used, along with sleep()
and wakeup() to provide "busy waiting." The following
code sample illustrates this:

HZ/10 /* 1/10 second */ #define PERIOD
#define BUSYPRI
int stopwait{);

(PZERO -1) /•somewhat arbitrary•/

int status;

int busywait{) /*wait until status is non-zero*/
{

}

while (status == o) {
timeout{stopwait, 0, PERIOD);
sleep(&status, BUSYPRI);

}

int stopwait{)
{

wakeup(&status);
}

WARNING

A driver should never loop while waiting for a status change unless the
delay involved is shorter than 100 microseconds.

11-13

Programmer's Gunc:lle

U.3.5 copyno (}

This section describes the routine used to copy bytes to and from specific
locations in the kernel.

11-14

(

(

(

)

)

Writing Device Drivers

copyio (addr, faddr, cnt, mapping) error

Purpose: This routine can be used to copy bytes
to/from a physical address (i.e., buffer address) in the
kernel or to/from a long address (i.e., user data pointer)
in the kernel.

Parameters: addr is a long value that specifies the
physical kernel address to which or from which the data
is to be transferred.

f addr is a character value that specifies the segment and
offset of the user address to which or from which the
data is to be transferred.

cnt is an integer value that specifies the number of bytes
of data to transfer.

mapping is an integer that designates the direction of the
transfer. The possible mapping values are defined in
user.h and listed below:

U_WUD transfer from user data to a kernel data (buffer)
U_RUD transfer from kernel data (buffer) to user data
U_WUI transfer from user text to a kernel data (buffer)
U_RUI transfer from kernel data (buffer) to user text
U_WKD transfer from kernel data to file (buffer)
U_RKD transfer from file (buffer) to kernel data

U_READ
U_WRITE

means copy from addr to faddr
means copy from faddr to addr

Result: If successful, this routine performs the specified
data transfer; otherwise, it returns -1.

Example: The ioctl interface to a driver actually has
two calling sequences:

1) ioctl (fd, cmd, arg)
int fd, cmd, arg;

2) ioctl (fd, cmd, arg)
int fd, cmd;
int •arg;

In the kernel, the ioctl interface is translated into the
device specific call shown below:

xxioctl (dev, cmd, arg)

11-15

Programmer's Guide

int dev, cmd;
faddr_t arg;
If "arg" is a pointer to a data structure, you may copy
your data in/out using the copyio routine as shown
below:

struct foo dst;
/• copy from arg to dst •/
if (copyio ((caddr_t) &dst, arg, sizeof(foo), U_WUD) = = -1) {

u.uerror = EFAULT;
return;

}

Note: The file named /uar/aya/h/pa.ra.m.h defines several
macros that are useful for converting addresses from one
type to another. These macros include:

(

ftoseg(x) -
ftoof(x) -
sotofar(seg,oO) -
ptok(x)­
ktop(x)-

converts x from an faddr_t to a segment (selector number
converts x from an faddr_t to an offset
converts a segment, offset pair into an faddr_t
converts a physical address to a kernel logical address
converts a kernel logical address to a physical address

11.3.6 Version 7 /System 5 Compatibility IBSues

This section describes some of the changes between Version 7 UNIX and
System 5 of UNIX that affect the device driver interface.

Device Numbers

In Version 7 of UNIX, the dev parameter passed to the open(), close(},
rea.d{), write(}, a.nd iocU() driver routines included the major and minor
device numbers. In System 3 and System 5, only the minor device number
is passed in the dev parameter. This means it is no longer necessary for all
device drivers to mask out the major device number before checking the
minor device number.

iomove ()

Some Version 7 device drivers used a routine called iomove() to copy to or
from user space. The iomove() routine does not exist in System 3 and
System 5; however, adding the code shown below will provide most of the
same capability: ·

11-16

(

(

)

)

Writing Device Drivers

#include " .. /h/param.h"
#include " . ./h/dir.h"
#include " . ./h/user.h"
/•
• iomove - equivalent to the V7 version except we don't provide
* any of the standard segflg machinations for writing
* to instruction space
• NOTE: u.ubase is an faddr_t
•/

iomove(cp, cnt, flag)
caddr_t cp;
register int cnt;
int flag;
{

register int ret_val;

if (cnt == o)
return; /*Nothing to do! */

if(flag == B_ WRITE)
ret_val = copyio((caddr_t)cp, u.ubase, cnt, U_WUD);

else
ret_val = copyio((caddr_t)cp, u.ubase, cnt, UJWD);

if(ret_val == -1) {

}

}

u.uerror = EFAULT;
return;

u.ubase += cnt;
u.ucount -= cnt;
u.uoffset += cnt;

11.4 Parameter Passing to Device Drivers

The task time portion of the device driver has access to the user's u area,
since this is mapped into kernel address space. The kernel routines that
process the user process' 1/0 request place information describing the
request into the process' u area. The parameters passed in the u area are:

u.ubase -
u.ucount -
u.uoffset -
u.usegflg -

address in user data to read/write data for transfer
the number of bytes to transfer
the start address within the file for transfer
indicates the direction of the transfer

11-17

Programmer's Guide

Refer to the /usr/sys/h/user.h file for the values to use for u.usegfig. In
addition to the parameters passed in the u area, the kernel I/O routines
pass the major and minor device numbers as a parameter to the driver
when it is called. Thus the driver has all the information it needs to (
perform the request: the target device, the size of the data transfer, the I
starting address on the device, and the address in the process' data.

Only device drivers that do not use standard character and block I/O
interfaces in the kernel need examine the parameters in the u area. Kernel
routines that provide these standard interfaces have done the work of
converting the values passed in the u area into values that the driver
expects. In the case of the standard block I/O interface, these parameters
are set in the buffer header describing the data transfer. Refer to Section
11.7, "Device Drivers for Block Devices," for more information on using the
buffer header information to set up a block data transfer.

Device drivers using the standard character I/O interface use the clist
buffering scheme and the routines that manipulate the clist to effect the
data transfers. Refer to Section 11.6, "Device Drivers for Character
Devices," for more information on using clists and the character I/O
interface routines.

11.5 Naming Conventions

There is a naming convention for all driver routines called by the kernel,
and for some driver variables. Each driver uses a unique two-to-four
character prefix to identify its routines. For example, a hard disk driver
might use the prefix "hd" In the following sections, the prefix used is
''xx''

11.6 Device Drivers for Character Devices

This section describes XENIX character device drivers. Character devices
conform to the XENIX file model; their data consists of a stream of bytes
delimited only by the beginning and end of file. The XENIX system
provides programs with direct access to devices through the special device
files described in Section 5.1.5, "Special Device Files."

Most character device drivers in XENIX should be designed around the
special requirements of terminal devices. There are facilities provided for
programming functions on input and output (character erase, line kill, tab
functions, etc.), and for setting line options such as speed. Other (.
character-oriented devices such as lineprinters use the same program
interface as terminals, but with a different driver.

The character device drivers for slow devices use a data buffering
mechanism known as a character list or "clist. 11 Clists are used for

11-18

)

)

Writing Device Drivers

transferring relatively small amounts of data between the driver and the
user program, and are described in more detail in Section 5.6.3, "Character
List Architecture."

11.6.1 Character Device Driver Routines

The task time portion of the character device driver is called when a user
process requests a data transfer to or from a device under the control of the
driver. The system determines this from the major device number of the
device with which the user wishes to do I/O. The driver's job is to take
the user process' requests, check the parameters supplied, and set up the
necessary information for the device interrupt routine to perform the I/O.

In the case of a write to a slow device (that is, one using clists}, the driver
copies the data from user space into the output clist for the device. In the
case of direct I/O between the device and user memory (for example,
magnetic tapes), the driver simply sets up the I/O request. The routines
that provide the interface between the kernel and character device drivers
are described as follows (xx is a mnemonic that refers to the device type).

xxinit ()

Purpose: This routine is called to initialize the device
when XENIX is first booted. If present, it is called
indirectly through the dinitsw table defined in the kernel
configuration file (/usr/sys/conf/c.c).

xxopen {dev, flag)

Purpose: This routine is called each time the device is
opened. It is the responsibility of this routine to prepare
the device for the 1/0 transfers, and perform any error
or protection checking.

Parameters: dev is an integer that specifies the minor
number of the device.

flag is the oflag argument that was passed to the open
system call.

11-19

Programmer's Guide

xxclose (dev, flag)

Purpose: This routine is called on the last close on a
device. It is responsible for any cleanup that may be
required, such as disabling interrupts, clearing device
registers, and so on.

Parameters: dev is an integer that specifies the minor
number of the device.

fta.g is the ofta.g argument passed to the last open system
call.

xxstart ()

Purpose: If the task time portion of the driver detects
that the device is idle, this routine may be called to start
it. This routine is often called by both task time and
interrupt time parts of the driver. It checks whether the
device is ready to accept another transfer request, and if
so, starts it up, usually by sending it a control word.
uata.rt() is not used by device drivers that control tty
devices.

xxintr (vec_num)

ll-20

Purpose: This routine is called by the kernel when the
device issues an interrupt. Since the interrupt typically
signals completion of a data transfer, the interrupt
routine must determine the appropriate action; perhaps
taking the received character and placing it in the input
buffer, or removing the next character from the output
buffer and starting the transmission.

Parameters: vec_num is an integer that specifies the
interrupt vector number.

(

(

)

)

Writing Device Drivers

xxread (dev)

Purpose: This routine is called when a program makes a
read system call. Its responsibility is to transfer data to
the user's address space. A subroutine is available to
transfer one character at a time to the user: cplJ88 (}.
This subroutine returns a -1 when there are no more
characters to be transferred.

Parameters: dev is an integer that specifies the minor
number of the device.

xxwrite (dev)

Purpose: This routine is called when a program makes a
write system call. Its responsibility is to transfer data
from the user's address space. A subroutine is available
to transfer one character at a time from the user:
passc(}. This subroutine returns a -1 when there are no
more characters to be transferred.

Parameters: dev is an integer that specifies the minor
number of the device.

xxproc (tp, cmd)

Purpose: This routine is called to perform output
character expansion, output characters, halt or restart
character output and, in general, effect the desired
change in the output.

Parameters: tp specifies the tty value of the device.

cmd specifies the process to be performed. The sample
tty driver in Chapter 12, "Sample Device Drivers,"
documents the list of "cmd" argument values that
zzproc(} can expect.

11-21

Programmer's Gulde

xx ioctl (dev, cmd, arg, mode)

Purpose: This routine is called by the kernel when a
user process makes an ioctl(} system call for the specified
device. It performs hardware dependent functions such
as setting the data rate on a character device.

Parameters: dev is an integer that speifies the minor
device number of the device.

cmd is an integer that specifies the command passed to
the system ca.II.

arg specifies the argument passed to the system call.

mode specifies the flags passed on the open system call
for the device.

Character List Routines

(

There is a pool of small buffers called character lists, "clists" in the kernel.
A clist structure is the head of a linked list queue of characters. The (
elements in the linked list are called "cblocks"; each cblock can hold a
small number of characters. These are used for buffering low-speed
character devices. The primary use of the clist buffers is for terminal
devices that must interface with the common terminal interface. Refer to
Section 11.6.3, "Character List Architecture," for further information on
clists.

A driver that wishes to use the clist buffer mechanism must declare a queue
header of type clist. If both input and output are buffered, the driver will
need two headers. There are six routines that the driver can use to
manipulate clist buffers. These routines are described below:

getc (cp)

11-22

Purpose: This routine moves one character from the
clist buffer for ea.ch ca.II.

Parameters: cp specifies the clist buffer from which
characters are moved.

Result: This routine returns the next character in the
buffer, or -1 if the buffer is empty.

(

)

)

)

Writing Device Drivers

putc (c, cp)

Purpose: This routine moves one character to the clist
buffer for each call.

Parameters: c is an integer that specifies the character
to be moved.

cp specifies the clist buffer to which the character is
moved.

Result: This routine places the specified character in the
buffer, or returns -1 if there is no free space.

getcb (cp) cbp

Purpose: This routine moves one cblock from the clist
buffer for each call.

Para.meters: cp specifies the clist buffer from which the
cblocks are moved.

cbp is a pointer to a cblock.

Result: This routine returns the next cblock in the
buffer, or -1 if the buffer is empty.

putcb (cbp, cp)

Purpose: This routine moves one cblock to the clist
buffer for each call.

Para.meters: cbp is a pointer that specifies the cblock to
be moved.

cp is a pointer that specifies the clist buffer to which the
cblock is moved.

Result: This routine places the specified cblock in the
buffer, or returns -1 if there is no free space.

11-23

Programmer's Guide

getcr () cbp

Purpose: This routine talces a cblock from the freelist,
and returns a pointer to it.

Parameters: cbp is a pointer to a cblock.

putcf cbp

Purpose: This routine puts the specified cblock onto the
freelist.

Parameters: cbp is a pointer to a cblock.

Notes: All the cblocks not currently used are kept on a
list of free memory blocks. Since there are a limited
number of cblocks in the system, each driver must be
judicious in determining how many cblocks are used for
buffering input and output.

For output buffering, the driver usually follows a "high
and low water mark" convention. The driver accepts
and queues requests from the user process until the buffer
has reached its high water mark. At that point, the
requesting processes are suspended via sleep(). When the
buffer has drained below the low-water mark, the
suspended processes are awalcened, and can fill the buffer
again.

For input buffering, the driver usually buffers the data
up to some limit. When this limit is reached, data is
discarded to malce room for the more recent data.

putchar (c)

11-24

Purpose: This routine is used for printing error and
system crash messages when the device driver is used to
handle the console. It puts one character on the console,
doing a "busy wait" rather than depending on
interrupts.

Parameters: c is the character to be printed on the
console.

(

(

)

)

Writing Device Drivers

Line Discipline Routines

If a serial device is to be used as an interactive terminal, it must support
various functions such as character and line erase, echoing, and buffered
input. The code needed to perform each of these functions has been
abstracted into a set of routines that roughly corresponds to the character
device function. Each of these sets is called a "line discipline". One
standard line discipline is provided by default. Each of the routines is
called through the linesw table initialized in /usr/sys/conf/c.c; each entry
in this table represents one line discipline, and has entries for eight
functions.

The l_open(_) routine should be called on the first open of a device. The
l_close() routine should be called on the last close of the device. The
l_read(.) and l_write() routines are called by the drivers read and write
routines, to pass characters to and from the calling process. The l_input()
routine is called to buffer an incoming character. The l_output(), l_ioct~),
and l_mdmint() routines are currently unused.

11.6.2 Interrupt Routines for Character Device Drivers

The device interrupt routine is entered whenever one of its devices raises
an interrupt. Note that in general one driver may control several devices,
but that all interrupts are vectored through a single function entry point,
usually called xxintr(.), where xx is a mnemonic that refers to the device
type (see Section 5.5, "Naming Conventions"). It is the driver's
responsibility to decide which device caused the interrupt.

When a device raises an interrupt, it generally makes available some status
information to indicate the reason for the interrupt. The driver interrupt
routine decodes this information. If it indicates a transfer just completed,
the wakeup() routine will alert any process waiting for the transfer to
complete. It then makes a check to see if the device is idle, and if so looks
for more work to start up. Thus in the case of output to a terminal, the
interrupt routine looks for more work in the clists each time a transfer
completes.

11.6.3 Character List Architecture

The character lists (clists) provide a general character buffering system for
use by character device drivers. The mechanism is designed for buffering

) small amounts of data from relatively slow devices, particularly terminals.

The XENIX kernel has a pool of character lists. Each driver that wishes to
use the clist mechanism declares a static buffer header that points to the
first clist buffer. Each buffer contains a pointer to the next buffer, forming a
singly linked list.

11-25

Programmer's Guide

The kernel provides the getc(} and putc() routines (described above) for
putting characters into a clist, and removing characters from a clist. These
routines should be used by all drivers using clists. Note that the routines
are not the same as the Standard 1/0 Library routines of the same name. (

The static buffer header for each clist contains three fields: a count of the
number of characters in the list, a pointer to the first character in the list,
and a pointer to the last character. The clist buffers form a single linked
list as shown below:

strud {
int. c_cc;
char •c_cf;
char •c_c I;
} clist;

+------+ +------+ +-----+
I next 1--->I next 1---->I 0 I
+- - - - - -+

---->I I
- -+ I I

I !chars I
I I I
I I I
I I I
I +------+
I

+------+
I I
I I
!chars I
I I
I I
I I
+------+

+- - - - -+
I I
I I
I chars I
I I

+->I I
I I I
I +-----+
I

+- -+

Character List Buffers

There is a protocol defined for use of the clists to prevent a particular
process or driver from consuming all available resources. Two constants
for the clist high and low water marks are defined in the file named tty. h.
A process is allowed to issue write requests until the corresponding clist hits
the high water mark. The process is then suspended and 1/0 performed.
When the list reaches the low water mark, the process is awakened. A
similar protocol is used for read requests.

11.6.4 Terminal Device Drivers

The terminal device drivers use clists extensively. For each terminal line
(each minor device number}, the driver declares static clist headers for
three clists. These clists are the "raw queue," the "canonical queue," and
the "output queue."

(

When a process writes data to a terminal device, the task time part of the
driver puts the data into the output queue, and the interrupt routine (
transfers it from the queue to the device. ·

When a process requests a read of data from the terminal, the situation is
slightly more complicated. This is because XENIX provides for some
processing of characters on input, at the option of the requesting process.

11-26

)

)

WritingDeviceDrivers

For example, in normal input the backspace key is interpreted as "delete
the last character input," and the line kill character means "forget the
whole current line." Certain special characters (such as backspace) have to
be treated in context; that is, they depend upon surrounding characters. To
handle this, XENIX drivers use two queues for incoming data.

The two queues are the raw queue and the canonical queue. Data received
by the interrupt routine is placed in the raw queue with no data processing.
At task time, the driver decides how much processing to do. The user
process has the option of requesting raw input, where it receives data
directly from the raw queue. Cooked (the opposite of raw) input refers to
the input after processing for erase, line kill, delete, and other special
treatment. In this case, a task time routine, canon(), is used to transfer
data from the raw queue to the canonical queue. This performs backspace
and line kill functions, according to the options set by the process using the
ioct~2) system call.

11-27

Programmer's Guide

The basic flow of data through the system during terminal I/O is shown in
the diagram below:

XENIX I DRIVER TASK TIME #INfERRUPT

KERNEL I * TIME

I * <---1-<-- <- ---------<&&read() #
Read() I xxread() I #
sys&em I +---->----+----<----+ #
ca11 I I I #

I +-----+ +-----+ #
I I I I I #
I icanonl I raw I #
I lqueuel<- canon() <-lqueuel<-#receive
I I I I I #rou&ine
I I I I I *
I +- - - - -+ +- - - - -+ #
I #

Wri &e() I #
sys&em I +------+ #
cal I I I I #

- -->I->-- ->-1-- -> Hwri h () - ->lou&pu& I - -->#&ransmi t

I xxwrite()I lqueue I #rou&ine
I I I I #
I I I I #
I I +------+ *

Data Flow For Terminal Device Drivers

There are two slight complications to the scheme presented in the diagram
above. These are output character expansion, and input character echo.
Output expansion occurs for a few special characters. In cooked mode, tabs
may be expanded into spaces, and the newline character is mapped into
carriage return plus line feed. There is a facility for producing escape
sequences for uppercase terminals, and delay periods for certain characters
on slow terminals. Note that all these are simple expansions, or mapping
single characters, and so do not require a second list, as is the case for
input. Instead all the expansion is performed by the zzproc() routine before
placing the characters in the output clist.

(

(

Character echo is a user process option required by most processes. With (
this, all input characters are immediately echoed to the output stream,
without waiting for the user process to be scheduled. Character expansion
is performed for echoed characters, as for regular output. Character echo
takes place at interrupt time, so that a user typing at a terminal gets fast

11-28

Writing Device Drivers

echo, regardless of whether his program is in memory and running, or
swapped out on disk.

) 11.6.5 Other Character Devices

)

There are three character devices commonly found on XENIX systems:
terminals, lineprinters, and magnetic tape drivers. Terminals receive a lot
of special attention in the XENIX system. Lineprinters and magnetic tape
tend to use existing kernel facilities, with little special handling.

Lineprinters

These are usually relatively slow chatacter-oriented devices. The drivers
use the clist mechanism for buffering data. However a lineprinter driver is
generally simpler than a terminal driver because there is less processing of
output characters to do, and no input.

Magnetic Tape Drivers

Magnetic tape is a special case. The data is arranged on the physical
medium in blocks, as on a disk. However, it is almost always accessed
serially. Furthermore, there is generally only one program accessing a tape
drive at a time. Thus, the elaborate kernel buffer management scheme in
XENIX (which is designed to optimize disk access when several processes
are making simultaneous requests to different parts of the same disk) is not
applicable to tapes. Neither is the clist mechanism appropriate, because of
the large amount of data involved.

Usually tape drivers provide two interfaces, a block and a character
interface. The character interface is used for raw, or physical, I/O directly
between the device and the user process' address space. The block interface
makes use of the XENIX kernel buffer pool and buffer manipulation routines
to store data in transit between device and process. Refer to Section
11.7.1, "Character Interface to Block Devices," for information on
providing the facility for raw 1/0.

11.7 Device Drivers for Block Devices

Block devices are those that must be addressed in terms of large blocks of
data, rather than individual bytes. Disks fall into this category, as do some
magnetic tape systems. XENIX file systems always reside on block devices.
However, block devices do not have to be used in this way.

Unlike the case with character devices, a block 1/0 transfer request is not a
private transaction between a driver and a user process. The XENIX kernel

11-29

Programmer's Guide

provides a comprehensive buffer management scheme which is used by
block device drivers.

The XENIX kernel maintains a pool of buffers, and keeps track of what r[
data is in them, and whether the block is dirty (i.e., has been modified and {
therefore needs to be written out to disk). When a user process issues a
transfer request to a block device, the kernel buffer routines check the
buffer pool to see if the data is already in memory. If not, a request is
passed to the driver to get the data. All the driver ever sees are fixed size
requests (BSIZE bytes long) coming in from one source. This is regardless
of the size of the process' 1/0 request. Large requests are broken down into
BSIZE blocks, and handled individually, since some may be in memory,
and some not.

When a process issues a read request, this generally translates into one or
more disk blocks. The kernel checks which of these is already in memory,
and requests that the driver get the rest. The data from each buffer filled
by the driver is copied into the process' memory by the kernel. In the case
of a write request, the kernel copies the data from the user process'
memory into the buffer pool. If there are insufficient free buffers, the kernel
will have the driver write some out to disk, using a selection algorithm
designed to reduce disk traffic. When all the data is copied out of user
space, the kernel can reschedule the process. Note that all the data may
not yet be out on disk; some may be in memory buffers and marked as (
needing to be written out at some later time. 1

11. 7 .1 Character Interface to Block Devices

Sometimes block device drivers provide a character 1/0 interface as well as
one for block I/O. In this case, a separate special device file can be created
to access the device through the character interface. To construct a
character 1/0 interface to a block device, use the utility mknod(C)
described in the XENIX Reference Manual to create a character special
device file that has the same major and minor number as the block special
file for this device. The block device driver must provide the routines
xxread() and xxwrite() described below to implement character 1/0.

When a block device is accessed through a character interface, data
transfer takes place directly between the device and the process' memory
space. There is no intermediate buffering in the kernel buffer pool or the
clists. The driver receives the request exactly as the process sent it, for
whatever size was specified. There is no kernel support to break the job
into BSIZE blocks. This type of data transfer is referred to as physical (or ('
raw) 1/0. It has some advantages for certain types of programs. ~

Programs that need to read or write an entire device can usually do this
more efficiently through the character interface since the device can be
accessed sequentially, and large transfers can be used. There is also less

11-30

)

)

)

Writing Device Drivers

copying of data between buffers than is used in the block interface. Thus
disk backup programs, or utilities that copy entire volumes, typically
operate through this interface.

The cost of this extra efficiency is that the process has to be locked in
memory during the transfer, since the driver has to know where to buffer
the da.ta.. The routine physio() called by the xxread and xxwrite driver
routines handles locking the process in core for the duration of the data.
transfer.

11.7 .2 Block Device Driver Routines

A block device appears to the kernel as a. randomly a.ddressa.ble set of
records of size BSIZE, where BSIZE is a manifest constant defined in the
param.h file. The XENIX kernel inserts a. layer of buffering software
between user requests for block devices and the device driver. This
buffering improves system performance by acting as a. cache, allowing read
a.head and write behind on block devices.

Each buffer in the cache contains a.n area for BSIZE bytes of data and has
associated with it a. header of type struct bu/ which contains information
a.bout the data. in the buffer. When an 1/0 request is passed to the task
time portion of the block device driver, a.II of the information needed to
handle the da.ta. transfer request has been stored in the buffer header. This
information includes the disk address, and whether a read or a write is to
be done. The file /usr/sys/h/buf.h describes the fields in the buffer header.
The fields most relevant to the device driver a.re:

b_dev
b_bcount
b_paddr
b_blkno
b_error

- the major and minor numbers of the device
- the number of bytes to transfer
- the physical address of the buffer
- the block number on the device
- set if an error occurred during the transfer

The driver validates the transfer parameters in the buffer header, and then
queues the buffer on a doubly linked list of pending requests. In each block
device driver, this chain of requests is pointed to by a header of type struct
iobuf named xxtab. The file /usr/sys/h/iobuf.h describes the fields in the
request queue header. The requests in the list are kept sorted using the
disksort(J routine. The device interrupt routine takes its work from this
list.

When a transfer request is placed in the list, the process ma.king the
request sleeps until the transfer is completed. When the process is
awakened, the driver checks the status information from the device
interrupt routine, and if the transfer completed successfully, returns a
success code to the kernel. The kernel buffer routines a.re responsible for

11-31

Programmer's Guide

correlating the completion of an individual buffer transfer with particular
user process requests.

The interface between the kernel and the block device driver consists of the I
routines described in the following paragraphs. ~

xxinit ()

Purpose: This routine is called to initalize the device
when XENIX is first booted. If present, it is called
indirectly through the dinitsw table defined in the kernel
configuration file (/usr/sys/conf/c.c).

xxopen (dev,ftag)

Purpose: This routine is called each time the device is
opened. It is the responsibility of this routine to intialize
the device, and perform any error or protection checking.

Parameters: dev is an integer that specifies the device
number.

flag is the oflag argument that was passed to the open
system call.

xxelose (dev, ftag)

11-32

Purpose: This routine is called on the last close on a
device. It is responsible for any cleanup that may be
required, such as disabling interrupts, clearing device
registers, ejecting media, and so on.

Parameters: dev is specifies the device number of the
device being closed.

flag is the a/fag argument that was passed to the last
open system call.

(

(

)

)

Writing Device Drivers

xxstrategy (bp)

Purpose: This routine is called by the kernel to queue
an I/O request. It must make sure the request is for a
valid block, and then insert the request into the queue.
Usually the driver will call disksorf;(.) to insert the request
into the queue. The disksort(.) routine takes two
arguments: a pointer to the head of the queue, and a
pointer to the buffer header to be inserted.

Parameters: bp is a pointer to a buffer header.

xxstart ()

Purpose: If the task time portion of the driver detects
that the device is idle, this routine may start it. It is
often called by both task time and interrupt time parts
of the driver. It checks whether the device is ready to
accept another transfer request, and if so, starts it up,
usually by sending it a control word.

xxintr (vec_num)

Purpose: This routine is called whenever the device
issues an interrupt. Depending on the meaning of the
interrupt, it may mark the current request as complete,
start the next request, continue the current request, or
retry a failed operation. The routine examines the device
status information, and determines whether the request
was successful. The block buffer header is updated to
reflect this. The interrupt routine checks to see if the
device is idle, and if so, starts it up before exiting.

Parameters: vec_num is an integer that specifies the
interrupt vector number.

11-33

Programmer's Guide

xxread (dev)

Purpose: The only action taken by this routine is to call
the physio() routine with the appropriate arguments.

Parameters: dev specifies the device number of the
device.

Note: Often a block device driver will provide a
character device driver interface so that the device can
be accessed without going through the structuring and
buffering imposed by the kernel's block device interface.
For example, a program might wish to read magnetic
tape records of arbitrary size, or read large portions of a
disk directly. When a block device is referenced through
the character device interface, it is called raw 1/0 to
emphasize the unstructured nature of the action. Adding
the character device interface to a block device requires
the zzread() and zzwrite() routines.

xxwrite (dev)

11-34

Purpose: The only action taken by this routine is to call
the physio(} routine with appropriate arguments.

Parameters1 dev specifies the device number of the
device.

Note: See Note for zzread(} routine.

(

(

)

Writing Device Drivers

physio (bs, bp, dev, flag)

Purpose: This routine provides the raw 1/0 interface
for block device drivers. It validates the request, builds a
buffer header, locks the process in core, and calls the
strategy routine to queue the request.

Parameters: bs is a pointer to the strategy routine for
the block device.

bp is a pointer to the buffer header describing the request
to be filled.

dev is the device number of the device.

flag specifies the call is a read or write operation.

xxioctl (dev, cmd, arg, mode)

Purpose: This routine is called by the kernel when a
user process makes an ioct() system call for the specified
device. It performs hardware dependent functions such
as parking the heads of a hard disk, setting a variable to
indicate that the driver is to format the disk, or telling
the driver to eject the media when the close routine is
called.

Parameters: dev specifies the minor number of the
device.

cmd specifies the command that was passed to the ioctl(}
system call.

arg specifies the argument that was passed to the ioctl(}
system call.

mode specifies the flags that were set on the open()
system call for the specified device.

11.8 Sharing Interrupt Vectors

) 1/0 devices may only share interrupt vectors if there is a way to poll each
device using the shared vector to determine whether that device has posted
an interrupt.

If there are two devices "aa" and "bb" that share interrupt level 3, the

11-35

Programmer's Guide

code in the c. c file should be as follows:

vector3(level)
int level;
{

}

aaintr{level);
bbintr{level);

int (•vecintswfiX) =
{

}

clock,
consintr,
novec,
vector3,
novec,
etc

(

The interrupt routines aaintr() and bbintr() should have the following (
format: ·

xxintr{level)
int level;
{

}

IF NOT MY INTERRUPT
return;

NORMAL INTERRUPT PROCESSING

11.9 Warnings

The following warnings will help you avoid problems when writing a device
driver:

11-36

Don't defer interrupts with spl5(.) calls any longer than necessary.

Don't change the per process data in the u structure at interrupt
time.

(

)

)

)

Writing Device Drivers

Don't call seterror(J or sleep(_) at interrupt time.

Don't call spl5(.) at interrupt time.

Make interrupt time processing as short as possible.

Protect buffer and clist processing with spl5(.) calls.

Avoid "busy waiting" whenever possible.

Never use floating point arithmetic operations in device driver
code.

If any assembly language device driver sets the direction flag
(using std), it must clear it (using cld) before returning.

Keep the local (stack) data requirements for your driver very
small.

11-37

(,

)

)

Chapter12

Sample Device Drivers

12.1 Introduction 12-1

12.2 Sample Device Driver for Line Printer 12-2

12.3 Sa_mple Device Driver for Terminal 12-8

12.4 Sample Device Driver for Disk Drive 12-25

(

(

)

)

)

Sample Device Drivers

12.1 Introduction

This chapter provides sample device driver code for line printer, terminal, and
hard disk drives. Each 50-line segment of code is followed by some general
comments, which describe the routines used and explain key lines in the
program. These key lines are identified by line number.

12-1

Programmer's Guide

12 .2 Sample Device Driver for Line Printer

/•
2 •• Ip- prototype line printer driver
3 •/
4 #include • .. /h/param.h"
6 #include • .. /h/dir.h"
6 #include • .. /h/a.out.h"
7 #include • .. /h/user.h"
8 #include " .. /h/Ble.h"
9 #include • .. /h/tty.h"

10
11
12

13
14

#deBne LPPRI
#define LONAT
#deBne HIWAT

PZER0+6
60
160

16 /• register definitions •/
1 6

17
18

1 9

20
21

#define RBASE
#define RDATA
#define RSTA'IUS
#define RCNIRL

OxOO
(RBASE + 0)
(RBASE + 1)
(RBASE + 2)

/• control de6nitions •/

/• base address or registers •/
/• place character here •/
/• non 1ero means busy •/
/• write control here •/

22
23
24
26

#define CRESET OxOl
#define CIENABL Ox02

/• initialize the interface •/
/• +Interrupt enable •/

26 /•Bags deBnitions •/
27 #deBne FIRST OxOl
28 #define ASLEEP Ox02
29
30

#define AOI'IVE Ox04

31 struct clist lp_queue;
32 unsigned lp_ftags = O;
33
34 Jpopen(dev)
36 int dev;
36 {
37 if ((lp_ftags & FIRST)== 0) {
38 lp_ftags I= FIRST;
39 ou&b(RCNI'RL, CRESET);
40
41

42
43

}

}
outb(RCNI'RL, CIENABL);

44 Jpclose(dev)
46 int dev;
46 {

12-2

(

{

Sample Device Drivers

47

) Description of Device Driver for Line Printer

)

)

The device driver presented here is for a single parallel interface to a
printer. It transfers characters one at a time, buffering the output from the
user process through the use of character blocks (cblocks).

11: LPPRI is the priority at which a process sleeps when it needs
to stop. Since the priority is greater than PZERO, a signal
sent to the suspended process will awaken it.

12: LOWAT is the minimum number of characters in the buffer.
If there are fewer than LOWAT characters in the buffer, a
process that was suspended (because the buffer was full) can
be restarted.

13: HIWAT is the maximum number of characters in the queue.
If a process fills the buffer up to this point, it will be
suspended via sleep() until the buffer has drained below
LOWAT.

17-20: The device registers in this interface occupy a contiguous
block of address, starting at RBASE, and running through
RBASE+2. The data to be printed is placed in RDATA, one
character at a time. Printer status can be read from
RSTATUS, and the interface can be configured by writing
into RCNTRL.

27-29: The flags defined in these lines are kept m the variable
lp_ftags. FIRST is set if the interface has been initialized.
ASLEEP is set if a process is asleep waiting for the buffer to
drain below LOWAT. ACTIVE is set if the printer is active.

31: lp_queue is the head of the linked list of cblocks that forms
the output buffer.

32: lp_ftags is the variable in which the flags mentioned above
are kept.

lpopen() - lines 34 to 42

The lpopen() routine is called when some process makes an open() system
call on the special file that represents this driver. Its single argument, dev
represents the minor number of the device. Since this driver supports only
one device, the minor number is ignored.

12-3

Programmer's Guide

37-39: If this is the first time (since XENIX was booted) that the
device has been touched, the interface is initialized by setting
the CRESET bit in the control register.

41: Interrupts from this device are enabled by setting the
IENABL bit in the control register.

lpclose() - lines 44 to 47

The lpclose() routine is called on the last close of the device; that is, when
the current close() system call results in zero processes referencing the
device. No action is taken.

12-4

(

49
60
61

) 62
63
64
66
66
67
68
69
60
61
62
63
64
66
66
67
68
69
70
71

) 72
73
74
76
76
77
78
79
80
81
82
83
84
86
86
87
88
89
90
91

) 92
93
94
96
96
97

Sample Device Drivers

lpwrite(dev)
int dev;
{

}

reg is hr int c;
int x;

while (c = cpass()) >= 0) {
x = spl6();
while (lp_queue. c_cc > HIWA.T) {

lpshrt();

splx(x);

lp_ftags I= ASLEEP;
sleep(&lp_queue, LPPRI);

putc(c, &lp_queue)~
}
x spl6();
lpstart();
splx(x);

Jpshrt ()
{

if (lp_ftags & ACTIVE)
return; /• interrupt chain is keeping printer going •/

lp_ftags I= ACTIVE;
lpintr(O);

lpintr(vec)
int vec;
{

int tmp;

i! ((lp_ftags & ACTIVE)== 0)
return; /• ignore spurious interrupt •/

/o pass chars until busy•/
while (inb(RSTATUS) == 0 .t& (tmp getc(&lp_queue)) >= 0)

oulb(RDATA, tmp);

/•wakeup the writer if necessary •/
i! (lp_queue.c_cc < LONA.T && lp_ftags & ASLEEP) {

lp_ftags Iii;= -ASLEEP;
wakeup(&lp_queue);

/o wakeup writer i! waiting !or drain •/

12-5

Programmer's Guide

98 if (lp_queue.c_cc<=O)
99 lp_ftaga &=-ACTIVE;
100

lpwrite() - lines 49 to 66

The lpwrite(.) routine is called to move the data from the user process to
the output buffer. Code is defined as follows:

55: While there are still characters to be transferred, do what
follows.

56-63: Raise the processor priority so the interrupt routine can't
change the buffer. If the buffer is full, make sure the printer
is running, note that the process is waiting, and put it to
sleep. When the process wakes up, check to make sure the
buffer has enough space, then go back to the old priority and
put the character in the buffer.

65-66: Make sure the printer is running, by locking out interrupts
and calling lpstart().

lpstart() - lines 70 to 76

The lpstar() routine ensures that the printer is running. It's called twice
from lpwrite(), and serves simply to avoid duplicate code. Code is defined
as follows:

72-75: If the printer is running, just return; otherwise, mark it
ACTIVE, and call lpintr{) to start the transfer of characters.

lpintr() - lines 79 to 100

The lpintr{) routine is called from two places: lpstart(), and from the kernel
interrupt handling sequence when a device interrupt occurs. Code is
defined as follows:

12-6

84-85: If lpintr() is called unexpectedly, or the driver doesn't have
anything to do, it just returns.

88-89: While the printer indicates it can take more characters and
the driver has characters to give it, the characters come from
the buffer through getc(), and pass to the interface by writing
to the data register.

(

(

(

)

)

)

Sample Device Drivers

92-94: If the buffer has fewer than LOWAT characters in it, and
some process is asleep waiting for room, wake it up.

98-99: If the queue is empty, turn off the ACTIVE flag. Note that
the interrupt that completes the transfer and empties the
buffer is in some sense "spurious", since it will occur with the
ACTIVE flag reset.

12-7

Programmer's Guide

12 .3 Sample Device Driver for Terminal

2
3

/•
•• td- terminal device driver
•/

4 #include" .. /h/param.h"
6 #include • .. /h/dir.h"
6 #include • .. /h/user.h"
7 #include • .. /h/file.h"
8 #include " .. /h/Hy.h"
9 #include• .. /h/conf.h"

10
11
12
13
14
16
1 6
17
18
1 9
20
21
22
23
24
26
26
27
28

/• registers •/
#define RR.DATA OxOl
#define R'I'DATA Ox02
#define RSTATUS Ox03
#define RCNIRI.. Ox04
#define RIENABL Ox06
#define RSPEED Ox06
#define RllR Ox07

/• received data •/
/• transmitted data•/
/• status •/
/• control •/
/• interrupt enable •/
/• data rate •/
/• interrupt identification •/

/• status register bits •/
#define SRRDY OxOl /• received data ready •/
#define STROY Ox02 /• transmitter ready •/
#define SOERR Ox04 /• received data overrun •/
#define SPERR Ox08 /• received data parity error •/
#define SFERR OxlO /• received data framing error •/
#define SDSR Ox20 /• status or dsr (cd)•/
#define SCTS Ox40 /• status or clear to send •/

29 /• control register •/
30 #define CBITS6 OxOO /• five bit chars •/
31 #define CBITS6 OxOl • /o six bit cha.rs •/
32 #define CBITS7 Ox02 /• seven bit chars •/
33 #define CBITS8 Ox03 /• eight bit chars •/
34 #define CD1R Ox04 /• data terminal ready •/
36 #define CRTS Ox08 /• request to send •/
36 #define CSTOP2 OxlO /• two stop bits •/
37 #define CP.ARI1Y Ox20 /• parity on •/
38 #define CEVEN Ox40 /• even parity otherwise odd •/
39 #define CBREAK Ox80 /• set xmitter to space •/
40
41

42
43
44
46

/• interrupt enable •/
#define EXMIT OxOl
#define ERECV Ox02
#define EMS Ox04

46 /• interrupt ident •/

12-8

/• transmitter ready •/
/• receiver ready •/
/• modem status change •/

(

(

)

)

Sample Device Drivers

47 #define IRECV OxOl

48 #define D<MIT Ox02

49 #define IMS Ox04

60
60A #define NIDEVS 2
60B #define VECI'O 3

60C #define VECI'l 6

Description or Device Driver for Terminal

This driver supports two serial terminals on a hypothetical UART type
interface.

12-18: The interface for each line consists of seven registers. The
values that would be defined here represent offsets from the
base address, which is defined in line 72. The base address
differs for each line. The data to be transmitted is placed one
character at a time into the RTDATA register. Likewise, the
received data is read one character at a time from the
RRDATA register. The status of the UART can be
determined by examining the contents of the RSTATUS
register. The UART configuration is adjusted by changing
the contents of the RCNTRL register. Interrupts are enabled
or disabled by setting the bits in the RIENABL register. The
data rate is set by changing the contents of the RSPEED
register. Interrupts are identified by reading the bits in the
RIIR register.

30-39: The two low order bits of the "control register" determine
the length of the character sent. The next two bits control
the data-terminal-ready and request:rto-send lines of the
interface. The next bit controls the number of stop bits, the
next controls whether parity is generated, and the next
controls whether generated parity is even or odd. Finally, the
most significant bit forces the transmitter to continuous
spacing if it is set.

42-44: The three low order bits of the "interrupt enable" register
control whether the device generates interrupts under certain
conditions. If bit 0 is set, an interrupt is generated every
time the transmitter becomes ready for another character. If
bit 1 is set, an interrupt is generated every time a character is
received. If bit 2 is set, an interrupt is generated every time
the data-set:rready line changes state.

47-49: After an interrupt, the value in the interrupt identification

12-9

lProgramme!l''s Guide

12-10

register will contain one of three values, indicating the reason
for the interrupt.

(

Sample Device Drivers

51 /• data rates •/
62 in& &d_speedsj] {
53 /• BO •/ 0.

) 64 /• 860 •/ 2304,
55 /• 875 •/ 1536,
66 /• 8110 •/ 1047,
67 /• 8134 •/ 867,
58 /• 8150 •/ 768,
69 /• 8200 •/ 0.
60 /• 8300 •/ 384,
61 /• 8600 •/ 1g2,
62 /• 81200 •/ 96'
63 /• 81800 •/ 64,
64 /• 82400 •/ 48.
66 /• 84800 •/ 24,
66 /• 89600 •/ 12,
67 /• FXrA •/ 6. /• 19.2k bps •/
68 /• IDITB •/ 68 /• 2000 bps •/
69 } ;
70
71 s&ruc& Uy &d_UyjNIDEVSJ;
72 in& &d_addrjNrDEVSj = { OxOO, Ox!O } ;
73

) 74
75 &dopen(dev, llag)
76 in& dev, llag;
77
78 regie&er s&ruc& Uy •\p;
79 in& add r;
80 extern &dp roe();
81 in& x . .
82
83 i r (de v >= NIDEVS) {
84 se&error(ENXIO);
86 rel.urn;
86
87 &p = &&d_&&yjdevl;
88 addr = &d_addrjdev];
89 i r((&p->&_lllag & XCLUDE) Ill& !suser()) {
90 se&error(EBUSY);
91 re\urn;
92
93 i r ((&p->&_s &a&e&(ISOPENlv.oPEN)) 0) {

) 94 Uini&(&p);
96 &p->&_proc = &dproc;
96 &dparam(dev);
97
98 x sp 16();
99 i r (&p->&_cllag & CLOCAL 11 & dmodem(dev, 'TtJRN'.)N))

12 - 11

Programmer's Guide

100
101
102

tp->t_state I= CARR_ON;
else

tp->t_state l/t;= -CARR_ON;

52-69: The values t.o be loaded into the RSPEED register t.o get
various data rates are defined here.

71: Each line must have a tty structure allocated for it.

72: Here, the base addresses of the registers are defined for each
line.

tdopen() - lines '15 to 110

The tdopen() routine is called whenever a process makes an open() system
call on the special file corresponding t.o this driver. Code is defined as
follows:

83-85: If the minor number indicates a device that doesn't exist,
indicate the error, and return.

(

89-91: If the line is already open for exclusive use, and the current {
user is not the super-user, indicate the error and return. ~

93-96: If the line is not already open, initialize the tty structure via
a call to · ttinit(), set the value of the proc field in the tty
structure, and configure the line by calling tdparam(.).

98: Defer interrupts so the interrupt routines cannot change the
state while it is being examined.

99-102: If the line is not using modem control, or if it is not turning
on the data-terminal-ready and request-to-send signals (which
results in carrier-detect being asserted by the remote device),
indicate that the carrier signal is present on this line.
Otherwise, indicate that there is no carrier signal.

12-12

(

)

)

)

Sample Device Drivers

103
104
106
106
107
108
109
110
111

if (l(Hag&FNDELAY))
while ((tp->t_state&CARR_ON)==O) {

}

tp->t_s tate I= \\OPEN;
sleep((caddr_t)&tp->t_canq, TrIPRI);

(•Ii ne sw(tp->t_l ine (. l_open) (tp);
splx(x);

112 tdclose(dev)
113 {
114 register struct tty •tp;
116
116 tp=&td_Uy[dev(;
117 (•linesw[tp->t_line(. l_close)(tp);
118 if (tp->t_cHag & HUPCL)
119 tdmodem(dev,TURNOFF);
120 tp->t_IHag lit= "XCLUDE; /• turn of exclusive use bit •/
121 /* turn of interrupts o/
122 outb(td_addr[dev(+ RIENABL, O);
123
124
126
126
127
128
129

tdread(dev)
{

(•Ii ne sw I t p ->t _ l i ne I . l _re ad) (&t d_ tty Ide v I) ;

130 tdwrite(dev)
131 {
132
133 (•linesw[tp->t_line(.l_write)(&td_Uy(devj);
134
136
136 tdparam(dev)
137 {
138 register int cHag;
139 register int addr;
140 register int temp, speed, x;
141
142 addr = td_addr[devj;
143 cHag = td_tty[dev] .t_cHag;
144
146 /• if speed is BO, turn I ine of •/

if ((cHag & CBAUD) ==BO){ 146
147 outb(addr + RCNfRL, inb(addr+RCNIRL) & "CDTR & "CRTS);
148 return;
149 }
160

12-13

Programmer's Guide

103-106: If open() is supposed to wait for the carrier, wait until the
carrier is present.

108: Call the l_open routine indirectly through the linesw table.
This completes the work required for the current line
discipline to open a line.

109: Allow further interrupts.

tdclose() - lines 112 to 123

The tdclose() routine is called on the last close on a line.

117: Call the close() routine through the linesw table to do the
work required by the current line discipline.

118-119: If the "hang up on last close" bit is set, drop the data­
terminal-ready and request-to-send signals.

120: Reset the exclusive use bit.

122: To prevent spurious interrupts, disable all interrupts for this
line.

tdrea.d() a.nd tdwrite() - lines 125 to 134

Both of these routines simply call the relevant routine via the linesw table;
the called routine performs the action appropriate for the current line
discipline.

tdpa.ra.m() - lines 136 to 171

The tdparamJ routine configures the line to the mode specified in the
appropriate tty structure.

142-143: Get the base address and flags for the referenced line.

146-148: The speed BO means "hang up the line."

12-14

(

(

)

Sample Device Drivers

161 /• set up speed •/
162 outb(addr + RSPEED, td_speedsl cll.ag & CBAUD j);
163
164
166
166
167
168
160
160
161
162

/• set up line control */
temp= (cll.ag & CSIZE) >> 4; /* length •/
ir (cll.ag & CSTOPB)

temp I= CSTOP2;
i r cll.ag & PARENB) {

temp I= CPARITY;
if ((cll.ag & PARODD) == 0)

temp I= CEVEN;

163 temp I= CDTR I CRTS;
104 out(addr + RCNTRL, temp) ;
166
166 /• setup interrupts •/
167 temp = EXMIT;
168 ir (cll.ag & CREAD)
160 temp I= ERECV;
170 outb(addr + RIENABL, inb(RIENABL) I \emp);
171
172
173 tdmodem(dev, cmd)

)
174
176

int dev, cmd;

178 register int addr;
177
178 addr = td_addrldevj;
179 switch(cmd){
180 case 'l'UR!IK)N: /• enable modem interrupts, set IYI'R & RTS true •/
181 outb(addr + RIENABL, inb(addr+RIENABL) I EMS);

182 outb(addr + RCNI'RL, inb(addr+RCNIRL) I CDTR I CRTS);
183 break;
1 8 4 c as e TURNOFF : / • d i 1 ab 1 e mod em i n t e r r up t s , re s e t IYI'R, RTS • /
186 outb(addr + RIENABL, inb(addr+RIENABL) & -a..18);

180 outb(addr + RCNl'RL, inb(addr+RCNIRL) - (CDTR I CRTS)) ;
187
188

break;

189 return (inb(addr + RSTATUS) & SDSR);
190
1111 #end i r
192
193 tdintr(vec)

) 194
y 196

196

1117

in& vec;

register int iir, dev, inter;

198 switch(vec) {
199 case VECl'O:

12-15

Programmer's Guide

200

152:

dev = O;

The remainder of the tdparam() routine simply loads the
device registers with the correct values.

tdmodem(}- lines 173 to 190

The tdmodem() routine controls the data-terminal-ready and request-to­
send line signals. Its return value indicates whether data-set-ready signal
(carrier detect) is present for the line.

180-183: If cmd was TURNON, turn on modem interrupts, and assert
data-terminal-ready and request-to-send.

184-187: If cmd was TURNOFF, disable modem interrupts, and drop
data-terminal-ready and request-to-send.

189: Return a zero value if there is no data-set-ready on this line,
otherwise return a non-zero value.

tdintr() - lines 193 to 217

The tdintr() routine determines which line caused the interrupt and the
reason for the interrupt, and calls the appropriate routine to handle the
interrupt.

198-207: Different lines will result in different interrupt vectors being
passed as the tdintr() routine's argument. Here, the minor
number is determined from the interrupt vector that was
passed to tdintr().

12-16

(

(

(

)

)

)

Sample Device Dl'ivers

break;
ca11 VBCTI:

•• ,. - I;
break;

•era.a':

201
202
20S
204
206
200
207

prla,r(•,•1a1: wroa1 leYel l•'•rr•p' (%a)\•",Yec); ,.,., ..
208 }
209 wblle((llr lab(,d_addr(d•Yf-+RllR)) I- 0) (
2 I 0 I r ((I I r .t D<MIT) 1- 0
211 , •• 1.,(•••);
2 I 2 I r ((I I r .t IREC.V) 1- 0

213 ,.,1.,(•••);
214 Ir ((11 r .t IMS) I- O

216 'dmia,(deY);
210

217
218
219 ldsia'(dn)
220 (
221 re1i1ler olr•cl llJ •Ip;
222 re1l1ler I•' addr;
223
224

226

228
227

228
229

230

231

232
233
23i

236

238

237

238
239

'P - .t,._,,J(deYf;
addr - ,d_addr(d•Y);
i r lab(aUr + RSTA'IVS) .t STim'l'·

lp->l_olale .._"BUSY;
II (1p->l_11a1e .t TnCON)

oalb(addr + R'IllATA, CSTART) ;.
lp->l_•l•h "TD<ON;

) 011• II (lp->l_1lale .t Tr.XDFF) {
o•lb(addr + R'lllo\'IA, CSTOP);

} eloe
ldproc(lp, T_CCIFUT);

240 &dri•l(dn)
241 (

242 regioler ial c, 1lala1;
2t3 re1i1ler IDI addr;
2H
246

re1i1ler olracl lly •1p;

248 Ip - .t1d_111l•••I;
247 addr - ld_addr!d<V\;

248

.:!4P /• gt t. c:ba.r •11d I la.l•1 •/

I 2 - I 7

Programmer's Guide

250 c = inb(a.ddr + RRDATA) ;

209-215: While the interrupt identification register indicates that there (.
are more interrupts, call the appropriate routine. When the
condition that caused the interrupt is resolved, the UART
will reset the bit in the register by itself.

tdxint() - lines 210 to 238

The tdxin~) routine is called when a transmitter ready interrupt is
received. It may issue a CSTOP character to indicate that the device on
the other end must stop sending characters, - it may issue a CSTART
character to indicate that the device on the other end may resume sending
characters, or it may call tdproc() to send the next character in the queue.

226: If the transmitter is ready, reset the busy indicator.

229-231: If the line is to be restarted, send a CSTART, and reset the
indicator.

232-234: If the line is to be stopped, send a CSTOP, and reset the
~=~. (

235-236: Otherwise, call tdproc() and ask it to send the next character
in the queue.

tdrint() - lines 240 to 263

The tdrint(.) routine is called when a receiver interrupt is received. All it
has to do is pass the character, along with any errors, to the appropriate
routine via the linesw table.

250-251: Get the character and status.

12-18

(

)

)

)

Sa.mp le Device Drivers

261
262

status inb(addr + RSTATUS);

263 /•
264
266
266
267
268
269
260
261
262
263
264

• Were there any errors on input?

•/
if(status & SOERR /• overrun error •/

c I= OVERRUN;
if(status & SPERR) /•parity error •/

c I= PERROR;
if(status & SFERR) /• framing error */

c I= FRERROR;
(•linesw[lp->t_line].l_input)(tp, c, O);

266 tdminl(dev)
266 {
267 register slrucl lly •tp;
268 register int addr,c;
269
270 Ip= &td_lly[dev];
271 if (lp->t_cftag & CLOCAL) {
272 return;
273
274
276
276
277
278
279

addr td_addr[dev];

if (inb(addr + RSTATUS) & SDSR) {
if ((tp->t_stale & CARR_ON)==O)

lp->t_s tale I= CARR_ON;
wakeup(&lp->t_canq);

280 }
281 } else {
282 if (tp->t_stale & CARR_ON) {
283 if (tp->t_stale & ISOPEN}
284 signal(tp->t_pgrp, SIGHUP);
286 ldmodem(dev, TURNOFF);
286 ttyftush(tp, (FREADIFWRITE));
287
288
289
290
291
292

tp->t_s tale Ill;= -CARR_ON;

293 tdiocll(dev, cmd, arg, mode)
294 int dev;
296 int cmd;
296 faddr_t arg;
297 int mode;
298
299 if (tliocom(&td_tty[dev], cmd, arg, mode))

12-19

Programmer's Guide

300
301

tdparam(dev);

256-261: If any errors were detected, set the appropriate bit in c.

262: And finally, pass the character and errors to the l_input()
routine for the current line discipline.

tdmint() - lines 265 to 2Dl

The tdmint() routine is called whenever a modem interrupt is caught.

271-272: If there is no modem support for this line, just return.

276-279: If a data-set-ready is present for this line, and it wasn't
before, mark the line as having carrier, and wake up any
processes that are waiting for the carrier before their tdopenO
call can be completed.

281-290: If no data-set-ready is present for this line, and one existed
before, send a hangup signal to all of the processes associated

(

with this line, call tdmodem(.) to hang up the line, flush the (·
output queue for this line by calling ttyflush<J, and finally,
mark the line as having no carrier.

tdioctl{) - lines 2D3 to 301

The tdioct~) routine is called when some process makes an ioctl system
call on a device associated with the driver. It just calls ttiocom(.) which
returns a non-zero value if the hardware must be reconfigured.

12-20

(

)

)

Sample Device Drivers

302
303 tdproc(tp, cmd)
304 register struct tty •tp;
306 {
306 regieter c;
307 register int addr;
308
309 extern ttrstrt();
310
311 addr = td_addr I tp - &d_Uyj;
312 switch (cmd) {
313
314 case T_TIME:
316
316
317
318

tp->t_s &ah 81;= "TIMIDUI';
ou&b(addr + RCNI'RL, inb(addr + RCNIBL) & -CBREAK);
goto start;

319 caee T_WFLUSH:
320 case T_RESUME:
321
322
323
324
326
326
327
328
329
330
331
332
333
334
336
336
337
338
339
340
341
342
343
344
346
346
347
348
348A
349

tp->t_s&a&e 81;= -TISTOP;
goto start;

case T_OUI'Pl.Tl':
start:

if (tp->t_state&(TI~ITISTOPIBUSY))
break;

(tp->t_state&r!TION) && tp->t_outq.c_cc==O) {
tp->t_sta&e 81;= -TrlON;
wakeup((caddr_t)&tp->t_oftag);

while ((c=getc(&tp->t_outq)) >= 0) {

}
ir

}

if (tp->t_oftag&OPOST && c == 0200)
if ((c = getc(&tp->t_outq)) < 0)

break;
i r (c > 02 oo) {

tp->t_sta&e I= TIMEOl.Tl';
timeout(ttrstrt, (caddr_t)tp,
(c&0177)); break;

tp->t_s tate I= BUSY;
outb(addr + RTDATA, c);
break;

(tp->t_state&OASLP) && tp->t_outq.c_cc<=
ttlowatltp->t_cftag&CBAUDI) {

tp->t_state 81;= "OASLP;
wakeup((caddr_t)&tp->t_outq);

12-21

Programmer's Guide

360 break;

tdproc() - lines 303 to 382

The tdproc() routine is called to effect some change on the output, such as
emitting the next character in the queue, or halting or restarting the
output.

312: The cmd argument determines the action taken.

314-317: The time delay for outputting a break has finished. Reset
the flag that indicates there is a delay in progress, and stop
sending a continuous space. Then restart output by jumping
to start.

321-322: Either a line on which output was stopped is restarting, or
someone is waiting for the output queue to drain. Reset the
flag indicating that output on this line is stopped, and start
the output again by jumping to star~) (line 325).

(

326-327: Try to put out another character. If some delay is in
progress (TIMEOUT) or the line output has stopped ('
(TTSTOP) or a character is in the process of being output
(BUSY), just return.

328-330: If some process was waiting for the output queue to drain,
reset the indicator, and wake the process.

332: While characters still exist in the output buffer do the
following:

333-340: If output postprocessing is occurring on this line, and the
current character is a delay marker (octal 200), get the next
character, which specifies the delay in clock ticks, mark the
line as waiting for a delay to expire, and schedule the line to
be restarted via the timeout() routine.

342-344: Otherwise, output a character; mark the line BUSY, and pass
the character to the controller.

346-348: If some process is waiting because the buffer went over the
high water mark, and it is now below the low water mark, (
wake it up.

12-22

Sample Device Drivers

361
362 case T_SUSPEND:
363 tp->t_etate I= TTSTOP;
364 break;
366
366 case T_BLOCK:
367 tp->t_e tate /Ir;= - TrXON;

368 tp->t_state I= TBLOCK;
369 iC (tp->t_state&BUSY)
360 tp->t_s tate I= TIXOFF;
361 else
362 outb(addr + RIDATA, CSTOP);
363 break;
364
366 case T_RFLUSH:
366 ir (l(tp->t_atate&l'BLOCK))
367 break;
368 case T_UNBLOCK:
369 tp->t_atate /Ir;= - (TI'XOFFjTBLOCK);
370 i r (tp->t_s t ate&BUSY)
371 tp->t_state I= TIXON;
372 else
373 outb(addr + RTDATA, CSTART);

) 374 break;
376
376 case T_BREAK:
377 outb(addr + RCNIRL, inb(addr + RCNIRL) I CBREAK) ;
378 tp->t_stah l=TI~;
3711 timeout(ttrstrt, tp' HZ/4);
380 break;
381
382

)

12-23

Programmer's Guide

352-354: To stop the output on this line, since there is no way to stop
the character we have already passed to the controller, just
flag the line stopped, and drop through.

356-363: To tell the device on the other end to stop sending
characters, reset the flag asking to stop the line, and mark
the line stopped. If the line is already busy, set the flag;
otherwise, output a CSTOP character.

365-367: A process is waiting to flush the input queue. If the device
hasn't been blocked, just return. Otherwise, drop through
and unblock the device.

368--374: To tell the device on the other end to resume sending
characters, adjust the flags. If the controller is sending a
character, set the flag to send a CSTART later; otherwise,
send the CSTART now.

376-380: To send a break, set the transmitter to continuous space,
mark the line as waiting for a delay, and schedule output to
be restarted later.

12-24

(

(

(

)

)

Sample Device Drivers

12.4 Sample Device Driver for Disk Drive

1
2
3
4
6
6
7
8
9

10
11
12
13
14
16
1 6

/•
•• hd- pro\o\ype hard disk driver

•/

#include • .. /h/param.h"
#include• .. /h/bur.h"
#include• .. /h/iobur.h"
#include• .. /h/dir.h"
#include• .. /h/conr.h"
#include" .. /h/user.h"

/• disk parame\ers •/
#define NHD 4 /•number or drives •/
#define NCPD 600 /•#cylinders/disk •/
#define Nl'PC 4 /•#\racks/cylinder •/
#define NSPT 10 /• # sec\ors/\rack •/

17 #define NBPS 612 /• # by\es/sec\or •/
.17A #define NSPB (BSIZE/NBPS) /• sec\ors/block •/
18 #define NBPC (Nll'C•NSPT•NSPB) /• blocks/cylinder •/
1 9
20
21
22
23
24
26
2~

27
28
29
30
31
32
33
34
36

/• addresses or con\rol ler
#define RBASE OxOO
#define RCM> (RBASE+O)
#define RSTAT (RBASE+l)
#define RCYL (RBASE+2)
#define R'IRK (RBASE+3)
#define RSEC (RBASE+4)
#define RADDRL (RBASE+6)
#define RADDRH (RBASE+6)
#define RCNr (RBASE+7)

/• bits in ROAD regis\er •/
#define CREAD Ox01
#define OMUTE Ox02
#define CRESET Ox03

36 /•

regis\ers •/
/•base or all regis\ers •/
/• conmand regis\er •/
/• s'a\us - nonzero means error •/

/• \arge\ cylinder •/
/• \arge\ \rack •/
/• \arge\ sec\or •/
/• \arge\ memory address lo 16 bits•/
/• target memory address hi 8 bits•/
/• number or sectors to xrer •/

/• start a read •/
/• s\ar\ a write •/
/• reset \he con\ roller •/

37 •• minor number layou\ is OOOddppp
38 •• where d is the drive number and ppp is the partition
39 •/
40 #define drive(d)
41 #define part(d)
42
43 /• partit.ion table •/
44 struct partab {
46 daddr_t len;

minor(d) >> 3)
minor(d) & Ox07)

/*#of blocks in partition •/

12-25

Programmer's Guide

46 in& cyloll'; /• s&ar&ing cylinder or par&i&ion •/
47 };
48

Description of Device Driver for Disk Drive

The device driver presented here is for an intelligent controller that is
attached to one or more disk drives. The controller can handle multiple
sector transfers that cross track and cylinder boundaries.

13: NHD defines the number of drives the controller can be
attached to.

14-18: Each disk drive attached to the controller has NCPD
cylinders; each cylinder has NTPC tracks, and each track has
NSPT sectors. The sectors are NBPS bytes long and each
cylinder has NBPC blocks.

21-29: The controller registers occupy a region of contiguous address
space starting at RBASE and running through RBASE+7.

32-34: To make the controller perform some action, the registers i
that describe the transfer (RCYL, RTRK, RSEC, RADDRL, \
RADDRH, RCNT) are set to the appropriate values, and
then the bit representing the desired action is written into the
RCMD register.

40-41: The drive() and par~) macros split out the two parts of the
minor number. Bits 0 through 2 represent the partition on
the disk, and the remaining bits specify the drive number.
Thus, the minor number for drive 1, partition 2 would be 10
decimal.

44-46: Large disks a.re typically broken into several partitions of a
more manageable size. The structure that specifies the size of
the partitions specifies the length of the partition in blocks,
and the starting cylinder of the partition.

12-26

(

)

SampleDevice Drivers

49 struct partab hd_sizesl8J
50 NCPD•NBPC, O,

51

52
53
54
55

56
57

ROCYI'SZ•NBPC,
SWAPSZ•NBPC,
USERSZ•NBPC,
0,
o,
0.
0.

58 } ;
59
60 struct
61 struct
63 /•

0,

0,
0,
0,

iobu r
bur

0,

ROOI'SZ,
USROFS,

hdtab;
rbdbur;

Strategy Routine:
Arguments:

/•
!•
/•
/•
/*
/•
/•
/•

/•
/•

64 ••

65 ••
66 ••
67 ••

68 ••
69 ••
70 ••

Pointer to butler structure

71 •/

Fune t ion:
Check validity or request
Queue the request
Start up the device if idle

72 int hdstrategy(bp)
73 register etruct bur •bp;
74

whole disk •/
root area •/
swap area */
usr area •/
spare */
spare •/
spare •/
spare •/

start or requee t queue •/
header ro r raw i/o •/

75 register int dr, pa; /•drive and partition numbers •/
76 daddr_t ss, bn;
77 int x;
79 dr = drive(bp->b_dev);
80 pa= part(bp->b_dev);
80A bn = bp->b_blkno • NSPB;
81 s1 = (bp->b_bcount + BMASK) >> BSHIFT;
82 if (dr<NHD && pa<NP.ARI'S && bn>=O && bn<bd_sizee(paJ. len &&

83 ((bn + 11 < hd_siue(paJ.len) II (bp->b_llaga & B_READ)))
84
85
86
87
88
89
90
9 1

92
93
94
95
96
97

98

if bn + s1 > hd_eisea(paj.len) {
s1 = (hd_sizeslpaj.len - bn) • NBPS;
bp->b_resid = bp->b_bcount - (unsigned) s1;
bp->b_bcount =(unsigned) sz;

else
bp->b_llags I= B_ERROR;
iodone(bp);
ret.urn;

bp->b_cylin = (b_blkno / NBPC) + bd_sizesjpaj .cyloll;
x=epl5();
disksort{&hdtab, bp);
if (bdtab.b_active ==NULL)

12-27

Programmer's Guide

99 hdstarl();
100 splx(x);
101

49-53: This driver splits a disk into up to eight pieces, but at
present, only four are used. The first partition covers the
whole disk. The remaining three split the disk three ways,
one partition for each of root, swap, and usr.

60: The buffer headers representing requests for this driver are
linked into a queue, with hdtab forming the head of the
queue. In addition, information regarding the state of the
driver is kept in hdtab.

61: Each block driver that wants to allow raw 1/0 allocates one
buffer header for this purpose.

hdstra.tegy() - lines 72 to 101

The hdstrateg!I{) routine is called by the kernel to queue a request for 1/0.
The single argument is a pointer to the buffer header which contains all of

(

the data relevant to the request. The strategy routine is responsible for ('
validating the request, and linking it into the queue of outstanding I

requests.

79-81: First, compute various useful numbers that will be used
repeatedly during the validation process.

82-94: If the request is for a non-existent drive or a non-existent
partition, if it lies completely outside the specified partition,
or is a write, and ends outside the partition, the B_ERROR
bit in the b_flags field of the header is set to indicate that the
request has failed. The request is then marked as complete
by calling iodone() with the pointer to the header as an
argument. If the request is a read, and ends outside the
partition, it is truncated to lie completely within the
partition.

95: Compute the target cylinder of the request for the benefit of
the dis/csort(.) routine.

96: Block interrupts, to prevent the interrupt routine from
changing the queue of outstanding requests.

97: Sort the request into the queue by passing it and the head of
the queue to dis/csor~).

12-28

(

)

)

)

Sample Device Drivers

98: If the controller is not already active, start it up.

99: Re-enable interrupts and return to the user process.

102

103 /•
104
106
106
107
108
109
110

•
•
•
•
•
•
•

111 •/

Slarlup Rouline:
Argumenls:

None
Funclion:

Compule device-dependenl paramelers
Slarl up device
lndicale requesl lo 1/0 monilor roulines

112 hdshrl ()
113 {
114 regisler slrucl bur •bp; /• BUFFER POINfER •/
116 regisler unsigned sec;
116
117 if ((bp = hdlab.b_aclC) ==NULL)
118 hdlab.b_aclive =NULL;
119 relurn;
120

hdlab.b_aclive = 1;

sec= (unsigned)bp->blkno • NSPB);
out(RCYL, sec/ NSPC); /•cylinder•/
sec %= NSPC;
oul(R1RK, sec / NSPT); /• track •/
oul (RSEC, sec% NSPT); /• seclor •/
out(RCNI', bp->b_counl / NBPS); /• counl •/
oul(RDRV, drive(bp->b_dev)); /• drive •/

121
122
123
124
126
126
127
128
129
130
131
132
133

oul (RADDRL, bp->b_paddr & Oxtrtr); /• memory address lo •/
ou'(RADDRH, bp->b_paddr >> 16); /•memory address hi •/
iC (bp->b_ftags & B_READ)

oul{R<MD, CREAD);
134 else
136 ou I (RCMD, ONRITE);
136
137

138 /•
139 • lnlerrupt routine:
140 Check completion slalus
141 • Indicate complelion lo i/o monitor roulines
142 • Log errors
143 • Reslarl (on error) or start next requesl
144 • /
140 hdintr()
146 {

12-29

Programmer's Guide

147 register struct bur •bp;
148
149
lliO

if (hdtab.b_active == 0)
return;

hdstart() - lines to 112 to 136

The hdstart(.) routine performs the calculation of the physical address on
the disk, and starts the transfer.

117-119: If there are no active requests, mark the state of the driver as
idle, and return.

121: Mark the state of the driver as active.

123-127: Calculate the starting cylinder, track, and sector of the
request, and load the controller registers with these values.

129-131: Load the controller with the drive number, and the memory
address of the data to be transferred.

(

132-135: If the request is a read request, issue a read command; (
otherwise, issue a write command. ·

hdintr() - lines 145 to 171

The hdinb{) routine is called by the kernel through the vecintsw table
whenever the controller issues an interrupt.

149-150: If an unexpected call occurs, just return.

12-30

(

)

)

)

Sample Device Drivers

bp hdhb.b_actr;
161
162
163
164
166
166
167

i r (in (RSTAT) I= o)
OU t (RCMD, CRESET);
ir (++hdtab.b_errcnt <= ERRLIM) {

hdstart();
168 return;
169 }
160 bp->b_Bags I= B_ERROR;
161 deverr(&hdtab, bp, in(RSTAT), 0);
162 }
163 /•
164 • Flag current request complete, start next one
166 •/
166 hdtab.b_errcnt = O;
167 hdtab.b_actr = bp->av_rorw;
168 bp->b_resid = O;
189 iodone(bp);
170 hdstart();
171
172
173 /•
174 raw read routine:
176
176
177
178
179

This routine calls "physio" which computes and validates
a physical address rrom the current logical address.

0 Arguments
Full device number

180 Functions:
181 Call phyaio which does the actual raw (physical) 1/0
182 The arguments to physio are:
183 pointer to the strategy routine
184 buffer for raw 1/0
186 device
186 read/write Bag
187 •/
188 hdread(dev)
189 {
190
191 physio(hdstrategy, &rhdbur, dev, B_READ);
192
193
194 /•
196

•
0

Raw write routine:
Arguments(to hdwrite):

Full device number
Functions:

196
197
198

199 • Call physio which does actual raw (physical) 1/0

12-31

Programmer's Guide

200 •/

152: Get a pointer to the first buffer header in the chain; this is
the request that is currently being serviced.

154-162: If the controller indicates an error, and the operation hasn't
been retried ERRLIM times, try it again. If it has been
retried ERRLIM times, assume it is a hard error, mark the
request as failed, and call deverror(.) to print a console
message about the failure.

166-171: Mark this request complete, take it out of the request queue,
and call hdstart() to start on the next request.

hdread() - lines 188 to 192

The hdread{) routine is called by the kernel when a process requests raw
read on the device. All it has to do is call physio(), passing the name of the
strategy routine, a pointer to the raw buffer header, the device number,
and a flag indicating a read request. The physio() routine does all the
preliminary work, and queues the request by calling the device strategy
routine.

La.st Five Lines of Sample Driver

201 hdwrite(dev)
202 {
203
204
206 }

physio(hds\ra\egy, &rhdbuf, dev, B_\\RITE);

hdwrite() - lines 201 to 205

The hdwrite() routine is called by the kernel when a process requests a raw
write on the device. Its responsibilities and actions are the same as
hdreat(), except that it passes a flag indicating a write request.

12-32

(

)

)

)

Ap_pendixA

C Language Portability

A.1 Introduction A-1

A.2 ProgramPortability A-2

A.3 Machine Hardware A-2
A.3.1 Byte Length A-2
A.3.2 WordLength A-2
A.3.3 StorageAlignment A-3
A.3.4 ByteOrderinaWord A-4
A.3.5 Bitfields A-5
A.3.6 Pointers A-5
A.3.7 AddressSpace A-6
A.3.8 CharacterSet A-6

A.4 Compiler Differences A-7
A.4.1 Signed/Unsigned char, Sign Extension A-7
A.4.2 Shift Operations A-7
A.4.3 Identifier Length A-8
A.4.4 Register Variables A-8
A.4.5 Type Conversion A-9
A.4.6 Functions With a Variable Number of Arguments A-10
A.4.7 Side Effects, Evaluation Order A-12

A.5 ProgramEnvironmentDifferences A-13

A.6 Portability of Data A-13

A.7 Lint A-14

A.8 Byte Ordering Summary A-14

CJ

c

(

)

)

C Language Portability

A.1 Introduction

The standard definition of the C programming language leaves many details to
be decided by individual implementations of the language. These unspecified
features of the language detract from its portability and must be studied when
attempting to write portable C code.

Most of the issues affecting C portability arise from differences in either target
machine hardware or compilers. C was designed to compile to efficient code for
the target machine (initially a PDP-11) and so many of the language features
not precisely defined are those that reflect a particular machine's hardware
characteristics.

This appendix highlights the various aspects of C that may not be portable
across different machines and compilers. It also briefly discusses the portability
of a C program in terms of its environment, which is determined by the system
calls and library routines it uses during execu1.ion, file pathnames it requires,
and other items not guaranteed to be constant across different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from small 8-bit microprocessors to
large mainframes. This appendix is concerned with the portability of C code in
the XENIX programming environment. This is a more restricted problem to
consider since all XENIX systems to date run on hardware with the following
basic characteristics:

ASCII character set

8-bit bytes

2-byte or 4-byte integers

Two's complement arithmetic

These features are not formally defined for the language and may not be found
in of all implementations of C. However, the remainder of this appendix is
devoted to those systems where these basic assumptions hold.

The C language definition contains no specification of how input and output is
performed. This is left to system calls and library routines on individual
systems. Within XENIX systems there are system calls and library routines that
can be considered portable. These are described briefly in a later section.

This appendix is not intended as a C language primer. It is assumed that the
reader is familiar with C, and with the basic architecture of common
microprocessors.

A-I

XENIX Programmer's Guide

A.2 Program Portability

A program is portable if it can be compiled and run successfully on different
machines without alteration. There are many ways to write portable programs.
The first is to avoid using inherently nonportable language features. The
second is to isolate any nonportable interactions with the environment, such as
1/0 to nonstandard devices. For example programs should avoid hard-coding
pathnames unless a pathname is common to all systems (e.g.,

Files required at compiletime (i.e., include files) may also introduce
nonportability if the pathnames are not the same on all machines. In some cases
include files containing machine parameters can be used to make the source
code itself portable.

A.3 Machine Hardware

Differences in the hardware of the various target machines and differences in the
corresponding C compilers cause the greatest number of portability problems.
This section lists problems commonly encountered on XENIX systems.

A.3 .1 Byte Length

By definition, the char data type in C must be large enough to hold as positive
integers all members of a machine's character set. For the machines described
in this appendix, the char size is exactly an 8 bit byte.

A.3 .2 Word Length

In C, the size of the basic data types for a given implementation are not formally
defined. Thus they often follow the most natural size for the underlying
machine. It is safe to assume that short is no longer than Beyond that no
assumptions are portable. For example on some machines short is the same
length as whereas on others long is the same length as

Programs that need to know the size of a particular data type should avoid
hard-coded constants where possible. Such information can usually be written
in a fairly portable way. For example the maximum positive integer (on a two's
complement machine) can be obtained with:

#defineMAXPOS((int)(((unsigned)-1) > > 1))

This is preferable to something like:

A-2

(

(

(

)

)

)

#ifdef PDPll
#define MAXPOS 32767
#else

#endif

C Language Portability

To find the number of bytes in an int use "sizeof(int)" rather than 2, 4, or some
other nonportable constant.

A.3.3 StorageAlignment

The C language defines no particular layout for storage of data items relative to
each other, or for storage of elements of structures or unions within the
structure or union.

Some CPU's, such as the PDP-11 and M68000 require that data types longer
than one byte be aligned on even byte address boundaries. Others, such as the
8086 and V AX-11 have no such hardware restriction. However, even with these
machines, most compilers generate code that aligns words, structures, arrays,
and Jong words on even addresses, or even long word addresses. Thus, on the
VAX-11, the following code sequence gives "8", even though the VAX
hardware can access an int (a 4-byte word) on any physical starting address:

structs_tag {
charc;
inti;

};
printf("%d\n" ,sizeof(struct s_tag));

The principal implications of this variation in data storage are that data
accessed as non primitive data types is not portable, and code that makes use of
knowledge of the layout on a particular machine is not portable.

Thus unions containing structures are non portable if the union is used to access
the same data in different ways. Unions are only likely to be portable if they are
used simply to have different data in the same space at different times. For
example, if the following union were used to obtain 4 bytes from a long word,
the code would not be portable:

union{

} u;

charc[4];
longlw;

The Bizeof operator should always be used when reading and writing structures:

A-3

XENIX Programmer's Guide

struct s_tag st;

write(fd, &st, sizeof(st));

This ensures portability of the source code. It does not produce a portable data
file. Portability of data is discussed in a later section.

Note that the sizeof operator returns the number of bytes an object would
occupy in an array. Thus on machines where structures are always aligned to
begin on a word boundary in memory, the sizeof operator will include any
necessary padding for this in the return value, even if the padding occurs after
all useful data. in the structure. This occurs whether or not the argument is
actually an array element.

A.3 .4 Byte Order in a Word

The variation in byte order in a. word affects the portability of data. more than
the portability of source code. However any program that makes use of
knowledge of the internal byte order in a word is not portable. For example, on
some systems there is an include file misc.h that contains the following
structure declaration:

/*
• structure to access an
•integer in bytes
•/
struct{

char lobyte;
char hi byte;

};

With certain less restrictive compilers this could be used to access the high and
low order bytes of an integer separately, and in a. completely non portable way.
The correct way to do this is to use mask and shift operations to extract the
required byte:

#define LOBYTE(i) (i & Oxff)
#defineHIBYTE(i)((i > > 8)&0xff)

Note that even this operation is only applicable to machines with two bytes in
an int.

A-4

(

(

)

)

C Language Portability

One result of the byte ordering problem is that the following code sequence will
not always perform as intended:

intc=O;

read(fd, &c, 1);

On machines where the low order byte is stored first, the value of "c" will be the
byte value read. On other machines the byte is read into some byte other than
the low order one, and the value of "c" is different.

A.3 .5 Bitfields

Bitfields are not implemented in all C compilers. When they are, no field may be
larger than an and no field can overlap an int boundary. If necessary the
compiler will leave gaps and move to the next int boundary.

The C language makes no guarantees about whether fields are assigned left to
right, or right to left in an Thus, while bitfields may be useful for storing flags
and other small data items, their use in unions to dissect bits from other data is
definitely non portable.

To ensure portability no individual field should exceed 16 bits.

A.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to the
extent that most compilers will not object to nonportable pointer operations.
The lint program is particularly useful for detecting questionable pointer
assignments and comparisons.

The common non portable use of pointers is the use of casts to assign one pointer
to another pointer of a different data type. This almost always makes some
assumption about the internal byte ordering and layout of the data type, and is
therefore nonportable. In the following code, the byte order in the given array is
not portable:

charc[4];
long•lp;

Ip= (long *)&c[OJ;
•Ip= Ox12345678L;

The lint program will issue warning messages about such uses of pointers. Code

A-5

XENIX Programmer's Guide

like this is very rarely necessary or valid. It is acceptable, however, when using
the malloc function to allocate space for variables that do not have type. The
routine is declared as type char • and the return value is cast to the type to be
stored in the allocated memory. If this type is not then lint will issue a warning (
concerning illegal type conversion. In addition, the malloc function is written to .
always return a starting address suitable for storing all types of data. Lint does
not know this, so it gives a warning about possible data alignment problems too.
In the following example, malloc is used to obtain memory for an array of 50
integers.

extern char •malloc();
int•ip;

ip =(int*)malloc(SO);

This example will attract a warning message from lint.

The C Reference manual states that a pointer can be assigned (or cast) to an
integer large enough to hold it. Note that the size of the int type depends on the
given machine and implementation. This type is a long on some machines and
short on others. In general, do not assume that "sizeof(char •) ==
sizeof(int)"

In most implementations, the null pointer value, "NULL" is defined to be the (
integer value 0. This can lead to problems for functions that expect pointer .
arguments larger than integers. For portable code, always use

func((char*)NULL);

to pass a "NULL" value of the correct size.

A.3.7 AddreesSpace

The address space available to a program running under XENIX varies
considerably from system to system. On a small PDP-11 there may be only 64K
bytes available for program and data combined. Larger PDP-11 's, and some 16
bit microprocessors allow 64K bytes of data, and 64K bytes of program text.
Other machines may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data areas may have portability
problems on small machines.

A.3.8 Character Set

The C language does not require the use of the ASCII character set. In fact, the
only character set requirements are that all characters must fit in the char data

A-6

(

)

C Language Portability

type, and all characters must have positive values.

In the ASCII character set, all characters have values between zero and 127.
Thus they can all be represented in 7 bits, and on an 8-bits-per-byte machine
are that all positive, whether char is treated as signed or unsigned.

There is a set of macros defined under XENIX in the header file
/ usr /include/ ctype. h that should be used for most tests on character
quantities. They provide insulation from the internal structure of the character
set and in most cases their names are more meaningful than the equivalent line
of code. Compare

if(isu pp er(c))

to

if((c >= 'A')&&(c <= 'Z'))

With some of the other macros, such as isdigit to test for a hex digit, the
advantage is even greater. Also, the internal implementation of the macros
makes them more efficient than an explicit test with an 'if' statement.

) A.4 Compiler Differences

There are a number of C compilers running under XENIX. On PDP-11 systems
there is the so-called "Ritchie" compiler. Also on the 11, and on most other
systems, there is the PortableC Compiler.

A.4.1 Signed/Unsigned chu, Sign Extension

The current state of the signed versus unsigned char problem is best described
as unsatisfactory.

The sign extension problem is a serious barrier to writing portable C, and the
best solution at present is to write defensive code that does not rely on
particular implementation features.

A.4.2 Shift Operations

The left shift operator, "<<"shifts its operand a number of bits left, filling
vacated bits with zero. This is a so-called logical shift. The right shift operator,
"> >" when applied to an unsigned quantity, performs a logical shift
operation. When applied to a signed quantity, the vacated bits may be filled
with zero (logical shift) or with sign bits (arithmetic shift). The decision is
implementation dependent, and code that uses knowledge of a particular

A-7

XENIX Programmer's Guide

implementation is nonportable.

The PDP-11 compilers use arithmetic right shift. To avoid sign extension it is
necessary to shift and mask out the appropriate number of high order bits: {

charc;

c=(c > > 3)&0xlf;

You can also avoid sign extension by using using the divide operator:

charc;

c=c/8;

A.4.3 Identifier Length

The use of long symbols and identifier names will cause portability problems
with some compilers. To avoid these problems, a program should keep the
following symbols as short as possible:

C Preprocessor Symbols

C Local Symbols

C External Symbols

The linker used may also place a restriction on the number of unique characters
in C external symbols.

Symbols unique in the first six characters are unique to most C language
processors.

On some non-XENIX C implementations, uppercase and lowercase letters are
not distinct in identifiers.

A.4 .4 Register V aria.hies

(

The number and type of register variables in a function depends on the machine
hardware and the compiler. Excess and invalid register declarations are treated
as nonregister declarations and should not cause a portability problem. On a (
PDP-11, up to three register declarations are significant, and they must be of
type or pointer. While other machines and compilers may support declarations
such as

A-8

)

C Language Portability

register unsigned short

this should not be relied upon.

Since the compiler ignores excess variables of register type, the most important
register type variables should be declared first. Thus, if any are ignored, they
will be the least important ones.

A.4.5 Type Conversion

The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is a
potential problem whenever something of type char is compared with an int.

For example

charc;

if(c == Ox80)

) will never evaluate true on a machine which sign extends since "c" is sign
extended before the comparison with Ox80, an int.

)

The only safe comparison between char type and an int is the following:

charc;

if(c== 'x')

This is reliable because C guarantees all characters to be positive. The use of
hard-coded octal constants is subject to sign extension. For example the
following program prints "ff80" on aPDP-11:

main()
{

printf("%x\n", '\200');
}

Type conversion also takes place when arguments are passed to functions.
Types char and short become Machines that sign extend char can give
surprises. For example the following program gives-128 on some machines:

A-9

XENIX Programmer's Guide

charc = 128;
printf("%d\n" ,c);

This is because "c" is converted to int before passing to the function. The
function itself has no knowledge of the original type of the argument, and is
expecting an The correct way to handle this is to code defensively and allow for
the possibility of sign extension:

charc= 128·
printf("%d\~", c & Oxff);

A.4.6 Functions With a Variable Number of Arguments

Functions with a variable number of arguments present a particular portability
problem if the type of the arguments is variable too. In such cases the code is
dependent upon the size of various data types.

In XENIX there is an include file, /usr/ include/ varargs.h, that contains macros
for use in variable argument functions to access the arguments in a portable
way:

typedef char •va_list;
#define va_dcl int va_alist;
#define va_start(list) list= (char•) &va_alist
#define va_end(list)
#defineva_arg(list,mode) ((mode• Xlist += sizeof(mode)))[-1]

The va_end() macro is not currently required. Use of the other macros will be
demonstrated by an example of the /print/ library routine. This has a first
argument of type FILE •, and a second argument of type Subsequent
arguments are of unknown type and number at compilation time. They are
determined at run time by the contents of the control string, argument 2.

The first few lines of /print/to declare the arguments and find the output file
and control string address could be:

A-10

(

(

(

)

)

)

C Language Portability

#include <varargs.h>
#include <stdio.h>

int
fprin tf(va_alist)
va_dcl
{

va_listap;
char •format;
FILE•fp;

/ * pointer to arg list

va_start(ap); / * initialize arg pointer*/
fp = va_arg(ap, FILE•);
format = va_arg(ap, char *);

}

*/

Note that there is just one argument declared to /print[This argument is
declared by the va_dcl macro to be type int, although its actual type is
unknown at compile time. The argument pointer "ap" is initialized by va_start
to the address of the first argument. Successive arguments can be picked from
the stack so long as their type is known using the va_arg macro. This has a type
as its second argument, and this controls what data is removed from the stack,
and how far the argument pointer "ap" is incremented. In /print/, once the
control string is found, the type of subsequent arguments is known and they can
be accessed sequentially by repeated calls to va_arg(). For example, arguments
of type and could be retrieved as follows:

double dint;
int•ip;
shorts;

dint= va_arg(ap, double);
ip=va_arg(ap, int•);
s = va_arg(ap, short);

The use of these macros makes the code more portable, although it does assume
a certain standard method of passing arguments on the stack. In particular no
holes must be left by the compiler, and types smaller than int (e.g., and short
on long word machines) must be declared as

A-11

XENIX Programmer's Guide

A.4.7 Side Effects, Evaluation Order

The C language makes few guarantees about the order of evaluation of
operands in an expression, or arguments to a function call. Thus

func(i++, i++);

is extremely non portable, and even

func(i++);

is unwise if June is ever likely to be replaced by a macro, since the macro may use
"i" more than once. There are certain XEN1X macros commonly used in user
programs; these are all guaranteed to use their argument once, and so can safely
be called with a side-effect argument. The most common examples are getc,
putc, getchar, and putchar.

Operands to the following operators are guaranteed to be evaluated left to
right:

&& II

Note that the comma operator here is a separator for two C statements. A list of
items separated by commas in a declaration list is not guaranteed to be
processed left to right. Thus the declaration

register int a, b, c, d;

on a PDP-11 where only three register variables may be declared could make
any three of the four variables register type, depending on the compiler. The
correct declaration is to decide the order of importance of the variables being
register type, and then use separate declaration statements, since the order of
processing of individual declaration statements is guaranteed to be sequential:

A-12

register int a;
register int b;
register int c;
register int d;

(

{

(

)

)

)

C La.ngua.ge Portability

A.5 Program Environment Differences

Most programs make system calls and use library routines for various services.
This section indicates some of those routines that are not always portable, and
those that particularly aid portability.

We are concerned here primarily with portability under the XENIX operating
system. Many of the XENIX system calls are specific to that particular operating
system environment and are not present on all other operating system
implementations of C. Examples of this are getpwentfor accessing entries in the
XENIX password file, and getenv which is specific to the XENIX concept of a
process' environment.

Any program containing hard-coded pathnames to files or directories, or user
IDs, login names, terminal lines or other system dependent parameters is
nonportable. These types of constant should be in header files, passed as
command line arguments, obtained from the environment, or obtained by using
the XENIX default parameter library routines df open, and dfread.

Within XENIX, most system calls and library routines are portable across
different implementations and XENIX releases. However, a few routines have
changed in their user interface. The XENIX library routines are usually portable
among XENIX systems.

Note that the members of the printf family, and have changed in several ways
during the evolution of XENIX, and some features are not completely portable.
The return values of these routines cannot be relied upon to have the same
meaning on all systems. Some of the format conversion characters have
changed their meanings, in particular those relating to uppercase and lowercase
in the output of hexadecimal num hers, and the specification of long integers on
16-bit word machines. The reference manual page for contains the correct
specification for these routines.

A.6 Portability of Data

Data files are almost always nonportable across different machine CPU
architectures. As mentioned above, structures, unions, and arrays have varying
internal layout and padding requirements on different machines. In addition,
byte ordering within words and actual word length may differ.

The only way achieve data file portability is to write and read data files as one
dimensional character arrays. This avoids alignment and padding problems if
the data is written and read as characters, and interpreted that way. Thus
ASCII text files can usually be moved between different machine types without
too many problems.

A-13

XENIX Programmer's Guide

A.7 Lint

Lint is a C program checker which attempts to detect features of a collection of
C source files that are nonportable or even incorrect C. One particular (
advantage of lint over any compiler checking is that lint checks function
declaration and usage across source files. Neither compiler nor linker do this.

Lint will generate warning messages about nonportable pointer arithmetic,
assignments, and type conversions. Passage unscathed through lint is not a
guarantee that a program is completely portable.

A.8 Byte Ordering Summary

The following conventions are used in the tables below:

aO The lowest physically addressed byte of the data item. aO + 1, and so
on.

bO The least significant byte of the data item, 'bl' being the next least
significant, and so on.

Note that any program that actually makes use of the following information is (
guaranteed to be non portable!

Byte Ordering for Short Types

CPU Byte Order

.. n !l 1

PDP-11 bO bl
VAX-11 bO bl
8086 bO bl
286 bO bl
M68000 bl bO
Z8000 bl bO

(

A-14

)

)

)

C Language Portability

Byte Ordering for Long Types

CPU Byte Order

.,.() ~.1 ~.2 ~-~

PDP-11 b2 b3 bO bl
VAX-11 bO bl b2 b3
8086* bO bl b2 b3
8086** b2 b3 bO bl
286 bO bl b2 b3
M68000 b3 b2 bl bO
Z8000 b3 b2 bl bO

Note that byte ordering for long types is compiler dependent (not CPU
dependent) on PDP-11a.nd8086 based ma.chines. This table is based on a.PDP-
11 using the Ritchie compiler. 8086 *shows byte ordering for compilers using
little-endia.n word order. 8086 **shows byte ordering for big-endia.n compilers.
8086 users ca.n refer to the XENIX Development System Release Notes for the
type of word order used of the compiler.

A-15

(

(1

('

Appendix B
M4: A Macro Processor

)

B.l Introduction 1

B.2 lnvokingm4 1

B.3 Defining Macros 2

B.4 Quoting 3

B.5 Using Arguments 4

B.6 Using Arithmetic Built-ins 5

B.7 Manipulating Files 5

B.8 U singS ystemCommands 6

B.9 Using Conditionals 6

B.10 Manipulating Strings 7

B.11 Printing 8

)

c

)

)

M4: A Macro Processor

B.l Introduction

The m4 macro processor defines and processes specially defined strings of characters
called macros. By defining a set of macros to be processed by m4, a programming
languagecanbeenhancedtomakeit:

More stnlctlU'ed

More readable

More appropriate fora particular application

The #define statement in C and the analogous define in Ratfor are examples of the
basic facility provided by anymacroprocessor~placement oftextby<Mertext.

Besides the straightforward replaccmera ofone string of text by another, m4provides:

Macros with arguments

Conditional macro expansions

Arithmetic expressions

File manipulation facilities

String processing functions

The basic operation of m4 is copying its input to its output. As the input is read, each
alphanumeric token (that is, string of letters and digits) is checked. If the token is the
name of a macro. then the name of the macro is replaced by its defining telll. The
resulting string is reread by m4. Macros may also be called with arguments, in which
case the arguments are collected and substituted in the right places in the defining text
before m4 rescans the text.

M4 provides a collection of about twenty buih- in macros. In addition, the user can
define new macros. Built-ins and user-defined macros work in exactly the same
way, except that some of the buih-in macros have side effects on the state of the
process.

B.2 Invoking m4

The invocation syntax for m4 is:

m4 [files]

Each file name argument is processed in order. If there an: no arguments, or if an
argument is a dash (-). then the standard is read. The processed text is written to the
standard output, and can be redirected as in the following example:

) m4 lilel file2 - > outputlile

Note the use of the dash in the above example to indicate processing of the standard
input,afterthefilesji/e/ andjile2havebeenprocessedbym4.

B-1

XENIX Programmer's Gulde

B.3 Defining Macros

The primary built-in function of m4 is define, which is used to define new macros.
The input

define(name. stuff) (

causes the llring name to be defined as stuff. All subsequent occunenc:es of name will
be replaced by stuff. Name must be alphanumeric and must begin with a letter (the
underscore(_) counts as a letter). Stuff"asany text, including text that contains balanced
parentheses; itmay stretchovermuhiple lines.

Thus,asatypicalexample

define(N, I 00)

if (i > N)

defines' 'N'' to be I 00, and uses this symbolic constantinalaterl' statement.

The left parenthesis must immediately follow the word define, to signal that delinehas
arguments. If a macro or buih-in name is not followed immediately by m left
parenthesis, "(", it is assumed to have DD arguments. 1bis is the situation for "N"
above; it is actually a macro with no arguments. Thus, when it is used, no parentheses
are needed following its name.

Yoo should also notice that a macro name is only recognized as such if it appears (.
surroundedbynonalphanumerics. Forexample, in

define(N, 100)

if (NNN > 100)

thevariable"NNN"isabsolutelyunreiatedtothedefioedmaav"N",eventhoughit
contains three N • s.

Thingsmaybedefinedintennsofothezothings. Forexamplc

define(N, 100)
define(M, N)

definesbothMandNtobe 100.

What happens if"N" is redefined? Or, to say it another way, is "M" defined as "N"
or as 100? lnm4, the latter is true, "M" is 100, soevenif"N" subsequently changes,
"M"doesnct.

This behavior arises because m4 expands macro names into their defining telll as soon
as it possibly can. Here, that means that when the string "N" isseenastheargumellls
of define are being collected, it is immediately replaced by ! 00; it's just as if you had
said

define(M, 100)

in the first place.

If this isn't what you really want, there are two ways out of it. The first. which is
specific to this situation, istointerchangethemderofthedefinitions:

B-2

(

)

)

)

define(M, N)
define(N, 100)

M4: A Macro Processor

Now "M" is defined to be the string "N", so whenyouaskfor "M" latez, you will
always get the value of "N" at that time (because the "M" will be replaced by "N"
which, inturn, willbereplacedby 100).

B.4 Quoting

The more general solution is to delay the expansion of the arguments of define by
quoting them. Any text SUJ1'0Unded by single quotation mmts • and ' is n<t e.xpamled
immediately, buthasthequotationmarksstrippedotf. If you say

define(N, 100)
define(M, 'N')

the quotation marks around the "N" are stripped off as the argument is being
collected, but theyhaveservedtheirpurpose, and "M" isdefinedasthestring "N",
not 100. The general rule is that m4 always strips off one level of single quotation
m1uks whenever it evaluates llOOlething. This is true even outside of macros. lf you
want the word •'define" to appear in the output, youhavetoquoteit in the input, as in

'define' = I;

As another inslance of the same thing, which is a bit more llUlprising, consider
redefining "N":

define(N, 100)

define(N, 200)

Perhaps regrettably, the "N" in the second definition is evaluated as soon as it's seen;
that is, it is replaced by 100, soit'sasifyouhadwritten

define(IOO, 200)

This statemenl is ignored by m4, since you can only define things that look like names,
but it obviously doesn 'thave the effect you wanted. To really redefine "N", you must
delay the evaluation by quoting:

define(N, I 00)

define('N', 200)

lnm4, it is often wisetoquotethefirst argument of a macro.

If the forward and backward quotation marks (• and ') are not convenielll fcv some
reason, the quotation marks can be changed with the buih-in cbanpquote. For
example:

changequoted,]>
makesthenewquotationmarkstheleftandrightbrackets. Youcanrcstoretheoriginal
characters with just

changequote

There are two additional ooih-ins related to define. The buih-in undelillle removes
the definition of some macroorbuilt-in:

B-3

XENIX Programmer's Golde

undcfine('N')

removesthedefinilionof''N". Buill-imcanberemowdwithandefine,asin

undefine('dcfinc')

butonceyouremoveone,youcannevcrgc:tilback.

The buih-in if'clef provides a way to determine if a macro is currently defined. For
instance, pretend that either the word "xenix" or "unix"' is defined according to a
particular implcmemation of a program. To perform operations according to which
systemyouhaveyoumightsay:

ifdef('xenix'. 'dcfine(systcm,I)')
ifdef('unill', 'dcfine(system,2)')

Don'tforgetthequotationmartsintheabovcexample.

Ir def actually permits three arguments: if the name is undefined, the value of llrdd' is
thenthethirdargument,asin

ifdef('xenix'. on XENIX, not on XENIX)

8.5 Using Arguments

So far we have discussed the simplest form of maao processing - replacing one
string by another {fixed) string. User-delined macros may also have argumems, so
different invocations can have differern results. Within the replacemern telll for a
macro (the second argument ofits defme) any occum:ncc ofSnwill be replaced by the
nth argument when the macro is actually used. Thus. them:.crobwnp, defined as

define(bump, SJ = SJ + I)

generates codetoincremem its argument by I:

bump(x)

is

x=x+J

A macro can have as many arguments as you want. but only the first nine arc
accessible, through $1 to S9. (The macro name itselfis SO.) Arguments that are not
supplied are replaced by null strings. so we can define a macro cal which simply
concatenates its arguments. like this:

deline(cat. SJ$2$3$4$5$6.$7$M9)

Thus

cat(x, y, z)

is equivalent to

xyz

The arguments $4 through $9 arc mill, since no corresponding argumetts were
provided.

Leading unquoted blanks. tabs, or newlines thatoccurduringargumentcollcctionarc
discarded. Allotherwhitespaceisretained. Thus:

8-4

(

(

(

)

)

M4: A Macru Processor

define(a, b c)

delines"a"tobe"b c".

Arguments are separated by commas, but parentheses are courted properly, so a
commaprotectedbyparenthesesdoesnotterminateanargument. Thatis,in

deline(a, (b,c))

there are only two arguments; the second is literally "(b,c)". And of course a bare
commaorparenthesiscanbeins.."'ltedbyquotingit.

B.6 Using Arithmetic Built-ins

M4 provides two buih-in functions for doing arithmetic on integen. The simplest is
incr, which increments its numeric argument by I. Thus, to handle the common
programming situation where you want a variable to be defined as one more than N,
write

define(N, 100)
define(N I, 'incr(N)')

Then "NI" isdefinedasonemorethanthecurrcnt valueof"N".

The more general mechanism for arithmetic is a buih-incaUed eval, which is capable
of arbitrary arithmetic on integers. it provides the following operat~s (in decreasing
order of precedence):

unary +and -
** or • (exponentiation)
* I % (modulus)
+ -
== != < <= > >=

(not)
& or && (logical and)
I or 11 (logical or)

Pareruheses may be used to group operations where needed. AU the operands of an
expression given to e\'81 must ultimately be numeric. The numeric value of a true
relation (like 1>0) is J, and false is 0. The precision in eval is implementation
dependent.

Asa simple example, suppose we want "M"tobe"2**N+ I". Then

dcfinc(N, 3)
define(M. 'eva1(2**N + 1)')

As a matter of principle, it is advisable to quote the defining text for a macro unless it is
very simple indeed (say ju~ a number); it usually gives the resuh you want, and is a
good habitto get into.

B. 7 Manipulating Files

You can include a new file in the input at any time by the buih-infunctionloclude:

include(/i/ename)

B-S

XENIX Programmer's GllBMe

inserts thecontentsofjilename in place of the lncmdecommand. Thec:ontenlSofthe
fileisoftenasetofdefinitions. Thewlueoflndude(thalis,itsreplacemelJltext)isthc
contentsofthefile;thiscanbecapturedindefinitions,etc.

!t is a fatal error if the file named in lndade cannot be aa:essc:d. To get scmc conttoB
over this situation, the ahemate form sindode can be used; slndude (for "silent (·
include'')saysnolhingandcominuesifitcan'tacccssthefile.

It is also possible to divert the cutput of m4 to temporaty files during processing. and
output the collected material upon command. M4 maintains nineofthesedi'm'Sions,
numbered I through 9. If you say

divert(n)

all subsequem output is put onto the end of a temporary file referred to as "n".
Diverting to this file is stopped by another diftl't command; in particular. divert or
divert(O)resumesthe normal wtputprocess.

Divertedtextisoormallyoutputallatonceattheendofprocessing. withthedivmions
output in numeric order. It is possible, however, tobringbactdivcrsionsatanytime,
thatis,toappendthemtothecurrentdiversion.

undivert

bringsbackalUdiveirsionsinnumericorder,andamidiwriwilhargumentsbringsbact
the selected diversions in the order given. The act of undiverting discards the diverted
stuff, asdoesdivertingintoadiversionwhosenumberisnotbetween0and9inclusive.

The value of andiven is not the di~ stuff. Furthermtlre, the divmed material is
not rescanned for macros.

The buih-indivnamretums the numberofthccum:ntly attivedM:rsion. Thisisuro
during nonnal processing.

B.8 Using System Commands

Yw canrunanyprograminthelocaloperalingsystemwiththes,scmdbuilt-in. F<r
example,

syscmd(date)

runs the date command. Nonnally. syscmd would be used to cn:ate a file for a
subsequent indade.

To facilitate making unique file names, the buih-in mabtemp is provided, with
specificationsidemicaltothesystemfunctionmktemp:asttingof"XXXXX"inthe
argumentisreplacedbytheprocessidofthecurremprocess.

B.9 Using Conditionak

There is a built-in called IJ'eBse which enables you to perform arbitrary conditional {',
testing. lnthesimplestfonn. ~

ifelse(a, b, c. 4)

compares the two strings a and b. If these an: idemicai, lrelse returns the suing c;
otherwise it retmns d. Thus, we might define a macro called compve which

8-6

)

)

M4: A Mama lFiroceslor

comparestwostringsandretums ''yes"« "no'' ifthey uetbcsamemdiffemu.

define(compare. 'ifclse(Sl. $2, yes, oo)')

Notetbequotationmarts. whichpreventtoo-earlyevaluationoflldse.

If the fourthargwnent is missing, itistrealedascmpty.

U'elsecanactuallyha\'Canynumberofarguments,andtbusprovi.des2limitedformof
multi-way decisioncapabilily. In the input

ifelsc(a. b, c, d, e,f, g)

if the string a matches the string b, the result is c. Otherwise, if d ns the same as~, the
result is/. Otherwise the n:sull is g. If the final argument is omitted, the result is null, so

ifelsc(a, b, c)

iscifamatchesb,andnullotherwise.

B.10 Manipulating Strings

Thebuilt-inlenretumsthelengthofthestringtbatmakesupitsargumenl. Thus

len(abcdet)

is6,and

len((a,b))

is5.

Thebuilt-insubstrcanbeusedtoproducesubsttingsofsttings. Forexample

substr(s,i,n)

returns the substting of sthat starts at positioni (origin zero), andisncharacters long. If
n is omitted, the rest of the string is returned, so

substr('now is the time', I)

is

ow is the time

If i or nare out of range, various sensible things happen.

The command

index(s/ ,s2)

returns the index (position) in sJ where the string s2 occurs. or -1 if it doesn't occur.
As withsubstr, theoriginforstringsisO.

The built-in translitperfonnscharactertransliteration.

translit(s, /, t)

modifies s by replacing any character found in/by the corresponding character oft.
That is

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If 1 is shorter than/, characters that
don'thave an entry int are deleted; asa limiting case, if tis not present at all. characters

B-7

XENIX Programmer's Gulde

from/aredcletedfroms. So

translit(s, aeiou)

deletes vowels from "s".

There is also a built-in called dnl which deletes all characters that follow it up 10 and
including the next newline. It is useful mainly for throwing away empty lines that
otherwisetendtoclutterupm4 output. Forexample, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is ccpied into the
output, where it may not be wanted. If you add dal to each of these lines, the newlines
will disappear.

Anotherwaytoachievethis, is

divert(-1)
define(...)

divert

B.11 Printing

The built- in errpriot writes its arguments out on the standard error file. Thus, you
can say

errprint('fatal error')

Dumpclef is a debugging aid that dumps the currenl definitions of defined terms. If
there are no arguments, you get everything; otherwise you get the ones you name as
arguments. Don't forget the quotation marts.

8-8

(

(

Appendix C
A Common Library

) ForXENIXandMS-DOS

C.l Introduction 1

C.2 ConunonlncludeFiles 2

C.3 Differences BetweenCommonRoutines 3
C.3.1 Abort 3
C.3.2 Access 3
C.3.3 Oldie 3
C.3.4 Oimod 4
C.3.5 Oisize 4
C.3.6 Creat 4

) C.3.7 Ctime, l..ocaltime, Gmtime, and Asctime 4
C.3.8 Exec 4
C.3.9 Exit 5
C.3.10 Fopen,Fdopen,Freopen 5
C.3.11 Fseek 6
C.3.12 Getpid 6
C.3.13 lsatty 6
C.3.14 Lseek 6
C.3.15 Mk.temp 6
C.3.16 Open 7
C.3.17 Read 7
C.3.18 Sbrk 7
C.3.19 Signal 7
C.3.20 Stat,Fstat 7
C.3.21 System 9
C.3.22 Umask 9
C.3.23 Unlink. 9

) C.3.24 Write 9

C.4 Differences in Definitions 9

C.5 MS-OOSSpecificRoutines 10
C.5.1 Eof 10
C.5.2 Fcloseall 10
C.5.3 Fgetchar 10
C.5.4 Filelength 11

(
C.5.5 Flushall 11
C.5.6 Fputchar 11
C.5.7 ltoa,Ltoa,andUltoa 11
C.5.8 Labs 12
C.5.9 Mkdir 12
C.5.10 Rmdir 12
C.5.H Spawn 13
C.5.12 StclwrandStrupr 15
C.5.13 StrsetandStrnset 15
C.5.14 Strrev 15
C.5.15 Tell 16

(

(

)

)

)

A Common Library For XENIX and MS-DOS

C.1 Introduction

This appendix lists the XENIX litmuy routines that form the Common C Utmuy for the
XENIX and MS-DOS versions of the Microsoft C compiler. These routines can be
used by programmers who wish to develop C programs for both the XENIX and
MS-DOS environmenls. The routines provide an identical interface to a set of
operations that are useful on both XENIX and MS-DOS.

The following isa list of the common routines:

abcrt* ec:vt free islower putw stmcmp
abs execl* fn:open• isprinl rand stmcpy
access• execle• frcxp ispunct read* lllrpbrt
acos execlp• fscanf isspace rcalloc llm:br
asctime* execv• fscek* isuppa rewind llrspn
as in execve• fstat* isxdigit sbrk* strtok
assert execvp• ft ell jO scanf swab
atan exit* ftime jl sctbuf system•
atan2 exp fwritc jn sctjmp tan
at of fabs gcvt ldexp signal* tanh
atoi fclose getc locahime* sin time
atol fcvt getchar log sinh toascii
cabs fdopen• getcwd loglO spintf tolower
calloc feof getenv longjmp sqrt toupper
ceil ferror getpid* lscek* srand .Jo lower
chdir* mush gets malloc sscanf ..toupper
chmod* fgetc getw mktemp* stat• tzset
chsize* fgets gmtime* modf strcat umask*
clearerr file no hypot open• strchr ungetc
close floor isalnum perror strcmp unlink*
cos fmod isalpha pow strcpy utime
cosh fopen* isascii printf strcspn write*
creat* fprintf isatty* putc strdup yO
ctime* fputc iscntrl putchar strlen yl
dup fputs isdigit puts stmcat yn
dup2 fread is graph

The following is a list of the variables used by the common routines and available in
both environments:

daylight timezone tzname

Routines marked by an asterisk(*) have a slightly different operation or meaning inthe
MS-DOS environment than they do under XENIX. These differences are fully
described in the following sections. Routines which are not marked function exactly
the same in MS-DOS as they doinXENIX. Complete descriptions are given in section
S oftheXENIXReferenceManual.

In addition to common routines, this appeooix describes the following MS-DOS
specific routines:

C-1

eof
fcloseaU
fgetchar
file length
ftushall
fputchar

itoa
Dabs
1toa
mkclir
nndir
spawnl

C.2 Common fucBude JF"des

spawnle
spawnip
spawnv
spawnw:
spawnvp
strlwr

sunset
stncv
strset
&truJll'
tel!
ultoa

Structure definitions, return value types, and manifest constants used in the
descriptions of some of the common routines may vary from covironmeol to
environment and are therefore fully defined in a set of include files fw each
environment. There are the following include files:

assert.h
ctype.h
ermo.h
fcntl.h
math.h
setjmp.h
signal.h
stdio.h
time.b
sysltimeb.h
sysltypes.h
sysl&tat.h
syslutime.h

The assert.h file defines the statements used to implement theas.unfunction.

The rtype. h file defines the values and llOlllCroS used to support the character translation
and testing functions.

The errno.h file contains definitions of the error values returned in the global variable,
~rmo. Whenever a libracy routine or system call detects an error, a general error
indicator is returned from the call. The indicator isdelinedto be some otherwise illegal
return value. usually -1. This method is used to avoid possibie conflicts between an
error return and a legitimate return value. When an error return is detected, the actual
errol' value can be determined by looking at the value of erroo. The value of enuo is
undefined if the function returned a non-errorresult.

Thefcntl. h file defines the values and macros used with the openandcreal functions.

The ma1h.h file defines some of the floating point math routine inlerfaces and some
standard constants.

The serjmp.h function defines the structure used with the setjmp and longjmp
functions.

The signal.h file defines the values and macros used with the signal function.

The ltdio.h file contains the definitions of the basic system file structure, flLE, some of
the basic operations available for files, such as the pule, getc, pu1char, and getchar
macros.aswellasthe&tandardpoinlerconstantNUlL.

C-2

(

(

(

)

)

)

A Com.moo Library Foli' XENIX and MS-DOS

The time.h file defines the structure tm returned with the loa:iltime and gmtime
functions, and used bytheasctime function.

Thesys/timeb.hfiledefinesthestructuretimebusedwiththeftimefunction.

The ~ysltypes.h file defines some of the types used in defining system structures, such
as the time, date, and file status structures.

The syslstat.h file defines the fonuat, fields, and constant values for the file status
structure returned by the stat and /stat routines. It also defines the file permission
modes that may be used in the open, clunod, andcreat functions.

The ~ys!utime. h file defines the structure used with the time routines.

C.3 Differences Between Common Routines

The following sections explain how the MS-DOS routines of the common library
differ from their XENIX counterparts. These descriptions are intended to be used in
conjunction with the more detailed descriptions of XENIX functions provided in
sectionSoftheXENIXReferenceManwl.

C.J.1 Abort

The abort routine terminates the process and returns control to the operating system
without creating a core file. It also copies the message "Abnormal program
termination'' to the stderr file.

C.J.2

The access routine checks the access to a given file. Access does not depend on real
and effective IDs as it does in the XENIX environment. Under MS-OOS, the real and
effective IDs are ignored. Amode can be any combination of the values:

04 Read
02 Write
00 Check for existence

The "Execute .. access mode (01)is not allowed.

The EROFS and ETXTBS Y error values an: not used.

C.3.3 Cbdlr

The clulir routine causes the named directory to become the current working directory
just as it does in the XENIX environment. The only difference is that the directory
pathname under MS-DOS should have a backslash separator(\) instead ofa slash
separator(/).

C-3

Programmer's Gulde

C.3.4 Cb mod

The chmod routine can set the "owner'' access permissions for a given file, but all
otherpermissionssettingsarc ignored. Mode can be:

S-1READ Read by owner
S.JWRITE Write by owner
SJREADIS.JWRITE Read and write by owner

The SJREAD and S.JWRITE constants are defined in the .sys/star. h include file. Note
that the OR operator (I) is used to combine these constants to fmn read and write
permission.

If write permission is not given. the file is treated as a read-only file. If read
permission is not given, the file is assumed to be readable. MS-DOS does not suppmt
non-readable files.

ThechmodroutineunderMS-DOSismtaffectedbyrealoreffectiveIDs.

TheEPERMandETXTBSYerrorvaluesarenotused.

C.3.5 Cbslze

The chsize routine changes the size of the given file just as it does in the XENIX
enviromnent. However. the maxinunn size of a file is not affected by the limit defined
bytherdimir(S)routine. ThereisnordimitroutinefortheMS-DOSenviromne~.

C.3.6 Creat

The creat routine creates a new file or prepares an existing file for writing. If the file is
created, the access permissions arc set as defined by mode. Only "owner'"
permissions are allowed (see "Ounod00 above). Ownership of the file is not affected
bytherealandeffectiveuserand group IDs. (These are ignored under MS-DOS).

TheEROf'SandETXTBSYerrorvaluesarenotusedbycreatunderMS-OOS.

As in the XENIX environment. use of the open routine is preferred over creat when
creatingoropeningfilesintheMS-OOScnviromnent.

C.3.7 Ctime, Localtime, Gmlime, end Asctlme

Although the clime, localrime, gmtime, andasc:time routines, which return a date and
time, carry out the same time conversions as in the XENIX enviromnent, the earliest
possible date returned by these routines in the MS-DOS environment is January I,
1980. TheXENIXroutinescann:tumdatesasearlyasJanuary l, 1970. Iftheroutines
arepassed valuesrepresentingdatesearlielrthanJanuary ! , 1980, theyretumthisdatc.

C.3.8 Exec

The e:cecl, execle, execlp, execv, execve, and execvp routines overlay the calling
process as in the XENIX environment. If there is ntt enough memory fm the new

C-4

(

(

(

)

)

)

A Common Library For XENIX and MS-DOS

process, the exec routine will fail and return to the calling process. Odierwise, the new
process begins execution.

Under MS-DOS, theexecroutinesdonot:

Usetheclose-on-execOagtodetennineopenfilesforthenewprocess.

Use the set user and group ID access pennissions of the new process file to
determine effective user and groop U>a.

Set up signal processingforthenewprocess.

Disable profiling for the new process (profiling is not allowed under MS­
DOS).

Give the new processattributesinheritc:dfromthecallingprocess.

UsetheETXTBSY error value.

The combined size of all arguments in an exec routine under MS-DOS must not
exceed 128 bytes.

C.3.9 Exit

The e.tir function tenninates the current process and makes the low order byte of status
available to the parent process. When the process is tenninated, all buffers are ftushed
and released. Also,allopenfilesinthecallingprocessareclosed.

C.3.10 Fopen,Fdopen,Freopen

Thefopen ,fdopen, and/reopen routines open stream filesjustas they do in the XENIX
environment. However, there are the following additional valuesforthe type string:

Opens the file in text mode. Opening a file in this mode causes the low­
level 110 routines to translate carriage return/linefeed (CR-LF) character
combinations into a single linefeed (LF) on input. Similarly on output,
linefeedsaretranslated into CR-LF combinations.

b Opens the file in binary mode. This mode suppresses translation.

For example, the call

fopen("test. dat", "rt");

opens a file forreading in textmode.

If ''t'' or ''b'' is not given in the type string, then the mode is defined by the default
mode variable .fmode. lf ./mode is 0, the default mode is tat. lfthehigherorderbitof
.fmode is I, the default mode is binary. The linker initially setsthe.fmode variabletoO
unless you link your program with the object file llibldoslrawmode.o. This file sets
.fmodetol.

C-5

Programmer's Gulde

C.J.H Fseek

The /seek routine moves the file poilller to the given position just as in the XENIX
environment. However, since MS-DOS uses the curiage return/linefeed (CR-LF)
character combinations for newline characters (XENIX uses only anLF), anf Mek call
which moves the file pointer a specific number ofbytes past newline characters will not
move the pointer to same place in the MS-DOS file as it does in !he XENIX file. FN
example, ifa file contains the characters

abcdet\n0912..l

(where\n is the newline character)andthe file pointer is currently at the letter• 'a'', then
the call

fseek(stream, 8, I);

moves the pointer to the digit "O", if the fileisanMS-DOS file, or to the digit "9'', if
the file isaXENIXfile.

Note that somefuek caUstreatMS-DOS and XENIX files identically. For example,

fseelt(stream, 0, 2)

always moves the filepointertotheendofthe file.

C.J.12 Getpld

The getpid routine returns a unique number. Although the number may be used to
uniquely idelllify the process, it does not have the same meaning as the process ID
retumedby getpidintheXENIXenviromnent.

C.3.11.3 wtty

The isatty routine indicates whether or not the given file descriptor is associated with
any character device, not just a terminal A character device can be a console, printer,
or serial port.

C.3.14

The /seek routine is similar to the /seek routine under MS-DOS wheneverthe given
file descriptor has been opened in iext mode. In ether words, /seek must move the file
pointer one additional byte for each newline character in the MS-DOS file in order to
move the file pointer to the same position in the XENIX file. See "Fseek .. for more
details.

C.3.15 Mk.temp

The mktemp routine creates a temporary filename, using a unique number instead of a
process ID. The number is the same as returned by getpid(i;ee "Getpid" above).

C-6

(

(

)

)

A Common Library Foir XENIX add MS-DOS

C.3.16 Opeo

The open routine opens a file descriptor for a named file, just as in the XENIX
environment. However. there is one additional ojlag value, O..BINARY, and two
values. O..NDELA Yand O..SYNCW. have been removed.

The O..BINAR Y flag causes the file to be opened in the opposite mode specified by the
.fmode variable (see "Fopen"" above). far example. if the default mode is ftelli
(./mode is 0), then using O..BINARY opens the file in binary mode, but ifthedcfauh
mode is binary (./mode is I), then using O..DINAR Y opens the file in texnmodc.

TheEISDIR.EROfS.ETXTBSY.andENXIOemrvaluesarenotused.

C.3.17 Read

The read routine reads characters from the file given by a file descriptor just as i.n the
XENIX environment. However. if the file has been opened in tel'.limode (see "Open"·
above). read will replace each CR-LF pair read from the file with a single LF
character. The number ofbytes returned is the numberofbytes remaining after the the
CR - LF pairs have been replaced. Thus. the return value may not always correspond
with the actual number of bytes read. This is considered nonnal and has no
implications as far as detecting the end of the file.

C.3.18 Sbrk

The sbrk routine performs the same task as in the XENIX environment. However, sbrk
is not affected by the limits imposed by ulimit(S), since oo ulimit routine exists for
MS-DOS.

C.3.19 Signal

The signal routine can only handle the SIGINT signal. In MS-DOS, SIGINT is defined
tobelNT2.lH(theCNTRL-Csignal).

C.3.20 s1aa, IFstat

The stat and/ stat routines return a structure defining the ClllVCnt status of the given file.
The structure members returned by Slat have the following names and meaning:

sLmode User read/write/execute bits are set ar cleared to reflect the file"s
permissions. The execute bit is inferred from the filename extension.
These are copied into the group and other bits. The S..IFREG bit is set if
the file is a regular file; S.lFDIR is set if it is a directory. See stal.ls in
•'Common Include Files·· above.

sLino Not used.

C-7

Programmer's Gulde

sLdev Drive number of the disk containing the file.

st.rdev Drive numberofthediskcontainingthe file.

sLnlink Always I.

SLuid Not used.

sLgid Not used.

sLsize Size of the file in bytes.

sLatime Timeoflastmodificationoffile.

st.mtime Timeoflastmodificationoffile.

sLctime Time oflast modification of file.

Fstat returns less useful information since MS-DOS does not make as much
infonnation available for file descriptors as it d<Jes full pathnames. F stat can detect
device files. but it must not be used with directories. The structure returned by /.SIQlhas
the followingmembers:

sLmode

sLino

sLdev

st.rdev

sLnlink

sLuid

sLgid

SLsize

sLatime

sLmtime

SLctime

C-8

User read and write bits are set m cleared to reOect the file's
permissions. The SJFOIR fllag is set if this is a device. Otherwise, the
S.lFREGbitisset. Seestat.hin"CommonlndudeFiles"above.

Not used.

Either drive llUIDber of the disk c:onlaining the file, or file descriplcr if
this file is a device.

Either drive number of the disk containing the fiBe, or file descriptor if
this file isa device.

Always I.

Not used.

Not used.

Siu of the file in bytes.

Timeoflastmodific:ationof file.

Timeoflastmodilicationoffile.

Timeoflast modification of file.

(

(

)

)

)

A Common Library For XENIX and MS-DOS

C.3.21 System

The system routine passes the given string the the operating system for execution. In
order to execute this string, the full pathname of the directory containing the MS­
DOS ''COMMAND.COM'' program must be assigned to theCOMSPCenvironment
variable. or assigned to the PA Ill environment variable. The call will retumanenor if
''COMMAND. COM'' cannot befoond using these variables.

C.3.22 Umask

The umask routine can set a mask for "owner" read and write access permissions
only. All other permissions are ignored.

C.3.23 Unlink

The unlink routine always deletes the given file. Since MS-DOS does not allow
multiple' 'links'' to the same file, unlinking a file is the same as deleting it.

TheEBUSY,ETXTBSY,andEROFSerrorvaluesarenotused.

C.3.24 Write

The write routine writes a specified numberofcharacters to the file named by the given
file descriptor just as in the XENIX environment. However, if the file has been opened
in text mode (see "Open" above), every LF character in the output is replaced by a
CR-LF pair before being written. This does not affect the return value.

C.4 Differences in Definitiom

Many of the special definitions given in imro(S) in the XENIX Reference Maflllal do
not apply to the common routines when used in the MS-DOS environment. The
following is a list of the differences.

The process ID is still a unique integer, but does not have the same meaning as in the
XENIX environment.

The parem process, process group, tty group, real user, real group, ejfecth-e user
and effe1~tfre group IDs are not used by the common routines when run under MS­
DOS. Furthermore, there is no super-user or special processes in the MS-DOS
environment.

Filenames in MS-DOS have two parts: a filename and a filename extension.
Filenames may be any combinationofuptoeight lenersmdigits. Filename extensions
maybeanycombinationofuptothreelenersordigits,precededbyaperiod(.).

Pathnames in MS-DOS may be any combination of directory names separated by a
backslash (\). The slash (/) used in the XENIX environment is not allowed unless the
user has redefined the leading character used with options in MS-DOS command
lines (this character is initially the slash). Directory names may be any combination of
up to eight leners or digits. The special names ''. '' and '' .. '' refer to the current

C-9

Programmer's Gulde

directory and the parent directoiry. respectively.

Dri "e Mmes may be used at the begin ofa pathname to specify a spe::ific disk cl!rive OI'

device. Drives names are generally a letter or combination of leners and digits
followed by a colon(:).

Access permissions in MS-DOS are restricted to read and write by the owner of the
file. Since all usersownall lilesinMS-OOS, access permissions do little more than
define whether ar not the file is a read-only file m can be modified. !Execution
permission and other permissions defined for files in the XENIX enviromnent do noll
apply the files in the MS-DOS environment.

C.S MS-OOS Specific Routines

The MS-DOS specific routines are intended for programs being compiled in the
XENIX environment. but which are to be executed in the MS-DOS environment only.
These routines are not available far use in the XENIX cnvironmem. The following
sections de scribe the routines in detail.

c.s.n Eor

int eof{ fildcs)
int fildes;

The eof function returns the value l if the current position of the file associated with
fildes is at the end-of-file, otherwise the function iretums 0. The return value - !
indicates an error.

C.S.2 Fdoseall

int fcloseaU{)

The f closeall function closes all currently open streams. except skllibm. stdoua, and
sldeRT. The function flushes all file buffers before closing. and although it releases
sy~em-allocatedbuffers.itdoesno11releasebuffersallocaledusingsetbuf.

F closeall returns the total number of streams closed. The return value - I indicales an
error.

C.S.3 Fgetcbar

#include <stdio.h>

int fgetchar()

The fgetchar function reads a single character from the mndanl input stream stdla.
Fgetcharisthefunctionversionofthemacrogerchar.

Fgetcharretumsthecharacterread,orEOfwhenend-of-fileisreached.

C-10

(

(

(

)

)

)

A Common !Libnnry lFoF XENllX amicA MS-DOS

C.5.41 File.length

long filelength(fildes)
int fildes;

The filelength function returns the length, in bytes, of the file associated wiJ.hjildes.
Theretumvalue-1 indicatesanerror.

C.5.5 FllusbaH

int flushall()

The flushall function ftushes the buffers of all currently open output streams. All
streamsremainopenafterthecall.

Flushall returns the total number of open streams (both input arull output streams).
Thereisnoerrorreturn.

Note that buffers are automatically flushed when they are full, when the assotiated
files are closed, or when a program terminates without dosing the files.

C.5.6 Fpukhar

#include <stdio.h>

int fputchar(c)
chair c;

The fputchar function writes the single character c to the outgrut stream ~tdoot.
Fputcharis the function version of the macroputchar.

F putcharretums the character written. The return value EOF indicates an error.

C.5.7

char *itoa(value, string, radix)
int value;
char *string;
int radix;

char *ltoa(value, string, radix)
long value;
char *string;
int radix;

char *ultoa(value, string, radix)
unsigned long value;
char *string;
int radix;

C-11

Programmer's Guide

The itoa, ltoa. and ultoa functions convert the given \YJ/ue to a character string that
represents that value. The resulting string is stored in string, and consists of one or
more digits from the numeric base given by radi.t.

ltoa convens type Int values into strings, ltoa convens type long values, and ultoa
convens type unsigned long values. The radi.t can be any in the range 2-36. if radix
equals 10 and \•alue is negative, the first character of the stored string is the minus sign
(-).

All functions return a pointer to the new string. There is no error return, and no
overflow checking is performed.

C.5.8 Labs

long labs(value)
long value;

The labs function returns the absolute value of the type long number given by WW#.

Thereisnoenurretum.

C.5.9 Mkdir

int mkdir(pathname)
char *pathname;

The mkdir function creates a new directory with the specified pathname. The last
component of pa1hname names the new directoiy; the preceding componetts must
identify an existing directory.

Mkdir returns the value 0 if the new directcry was crealed. The rdUJD value - A
indicates an error.

C.5.10 Rmdlll'

int nndir(pathname)
char *pathname;

The nndirfunction deletes the directory specified by pa1hname. Thedim:torymust be
empty,anditmustnotbethecurrentworkingdilectoryortherootdin:ctcly.

Rmdir returns the value 0 if the directory is successfully deleted. The return value - I
indicates an error.

C-12

(

(

(

)

A Common Library For XENIX and MS-DOS

C.S.11 Spawn

#include <spawn.h>
#include <stdio.h>

int spawnl(modeflag, pathname, argO, ... , argn, NULL)
int modeftag;
char *pathname, *argO, ... , *argn;

int spawnle(modeftag, pathname, argO, ... , argn, NULL, envp)
int modeftag;
char *pathname, *argO. . .. , *argn. *envpf];

int spawnlp(modeflag. filename, argO, ... , argn, NULL)
int modeftag;
char *filename, *argO, ... , *argn;

int spawnv(modeftag, pathname, argv)
int modeftag;
char *pathname, *argvf];

int spawnve(modeftag, pathname, argv, envp)
int modeftag;
char *pathname, *argv[], *envpf];

int spawnvp(modeftag, filename, argv)
int modeflag;
char *filename, *arvf];

The spawn functions load and execute new child processes. Thepathnameorfilename
argument names the executable file to be loaded. Theargnorargvargumentscontain
pointers to character strings to be passed to the new process. The modeflag argument
defines the execution of the parent process after placing a call toaspawnfunction. The
envp argument allows the user to alter the environment for the child process bypassing
a list of environment settings. The spawnl, spawnle and spawnlp functions are
typically used in cases where the number of arguments is known in advance. Spawnv,
spawnve, and spawnvpare useful when the number of arguments to the new process is
variable. Poinlers to the arguments are passed as an array, argv, which accommodates
any numberof elements.

The modeflag values are defined in the include file spawn.h. The following lists the
meaning of each value:

C-13

P!l'ogrammer's Guide

P_WAIT

P..NOWAIT

P_OVERLAY

Suspend parent process until execution of
child process is complete.
Continue to execute parent process
concurrently with child process.
Overlay parent process with child
process.

When p _ w AIT or P ..NOW AIT is specified. there must be sufficient manmy available
for loading and executing the child process. if IP _OVERLAY is specified, the parem
process is destroyed and control cannot be returned to it. This is similar to the effect of
the exec routines. Only P _WAIT and IP_OVERL.A Y may be used undeir MS-DOS 2.0.
P ..NOWAIT is reserved for future implementations, and use of this flag with MS-DOS
2.0willproduceanerror.

The pathname argument must be the full directOI}' pathname for the file lO be loaded.
The filename argument (in the spawnlp and spawmp functions) may be just the
filename or a partial pathname for the file; the current value oftheenviromnent variable
PA TH is used to determine which directories are searched forthis file.

The arg n arguments in the spawnl. spawnle, lllJld spawnlp functions must be pointen
to null-terminated character strings. These strings form the argumenl list for the chiic!l
process. Their combined length must not exceed 128 bytes. (Terminating nulB
characters (\0) are not counted.) Thus, any number of argn arguments may be given,
as long as the character count of the corresponding strings does not exceed ~ 28. The
NULLpoimervaluemustmarktheendoftheargnargumenilist.

The argv arguments in the spownv, spawm•e, and spawnvp functions must be pointers
to a single array of pointers to the character strings. The combined length olf the strings
must not exceed 128 bytes. The NULL pointer value must be placed in the array
element immediately following the element containing the last character string.

By convention. the argO and argt•ro1 arguments should be ai copy of the parhname or
ji/enameargument. AdifferentvaluewillnotproducelllJlermr.

The em·pargument in the spawnle and spawm•e functions must belllJl array of character
pointers, each element of which points to a null-terminated string defining an
enviromnent variable. Anenvironmentsettinghasthdollowingform:

name=value

where name is the name of an enviromnent variable a~ tulue is the string value to
which that variable is set. Notice that i•alue is not enclosed in double quotes. When
em•pisNULL.thechildprocessinheritstheenviromnentseuingsoftheparentprocess.

Files that are open when a call to a spawn function is made remain open in the new
process. In the spawn/. spawnlp. spawm•, and spawmp functions, the child process
inherits the environment of the parent.

Return Values

If the P _WAIT is specified, the return value is the exit status of the child process. The
exit status is 0 if the process terminated normally. A positive exit status indicates an
abnonnalexit through anaborr function call or an interrupt. The exit status may also be
set toa non-zero value if the child process specifically calls the exit function with a
non- zeroargument.

C-14

(

(

(

)

)

)

A Common Library !For XENIX aocB MS-DOS

If p_QVERLA Y is specified and the child is successfully loaded. the routine never
returns a value.

The return value - 1 indicates an error (the child process is nm started). The value -1
is also returned whenP ..NOW AIT is specified under MS-DOS 2. 0.

C.5.12 Strlwr and Strupr

char *strlwr(string)
char *string;

char *strupr(string)
char *string;

The strlwr function converts any uppercase letters in the given string to lowercase.

The srruprfunctionconverts any lowercase letters in the given string touppacase.

Strlwrand srruprreturna pointerto the converted string. Thereisnoerrorretum.

C.5.13 Strset and Strmet

char *strset(string, c)
char *string, c;

char *strnset(string. c, n)
char *string. c;
unsigned int n;

The strset function sets all characters in the given string (except the terminating null
character) to the character c and returns a pointer to the altered string.

The strnset function sets the first n characters of string to the character c and returns m
pointer to the altered string. If n is greater than the length of a given string, the string
length is used instead.

C.5.14 Strrev

char *strrev(string)
char *string;

The strrev function reverses the order of the characters in the given string. The
terminating null character (\0) remains in place.

Strrevreturnsapointertothealteredstring. Thereisnoerrorretum.

C-IS

Programmer's Guide

C.5.15 TeD

long tell(fi.ldes)
int Ii.Ides;

The tell fum:tion returns the current position of the file associated withfil«ks. The
position is the number of bytes from the beginning of the file. The mum value of -1
indicates an error.

C-16

(

(

)

)

Appendix D
Compiler, Assembler,
and Linker Messages

D.l lnh'oduction

D.2 CompilerErrorMessages I
D.2.1 WamingMessages l
D.2.2 ProgramErrorMessages S
D.2.3 FatalErrorMessages 14

D.3 CompilerRequirementsandLimits 16

D.4 AssemblerErrorMessages 17

D.5 LlnkerErrorMessages 24

(,

)

)

Compiler, As.wmbler, and Linker Messages

D. l Introduction

This appendix lists the messages displayed by the cc, as, and Id commands when
errors are encountered during compilation of a program. It also lists the restrictions
imposed by the C compiler on the siz.e and complexity of program source files and
statements within source files.

D.2 Compiler Error Messages

The error messages produced by the C compiler fall into three categories: warnings,
program errors, and fatal errors. W arningsalert you to problems that may cause errors
during execution of the program, but do not prevent compilation of your program.
Program errors identify problems that make successful compilation of your program
impossible. Fatal errors identify problems that prevent cc from continuing execution.
Whenever the compiler encounters program or fatal errors, it terminates operation
before producing an object file.

The following sections explain the meaning of the compiler error messages, and
provide clues on how to solve the problem indicated by these messages.

D.2.1 Warning Messages

The follo'Yiftg isa complete list of compiler warnings messages. The mimberinsquare
brackets ([J) at the end of each message gives the minimum warning level that must be
set for the message to appear. You can set the warning level by using the -W option
described earlier in this chapter.

warning: Addressofframe variable taken, DS !""SS[I)
Taking the address of a frame variable in a small model program with
separate data and stack segments resuhs in an incorrect address. The
addressdoesnotrefertothecorrectsegmer4.

warning:'identi.fier':badtype(notir4egral) [I)
The given bitfield is converted to an unsigned integral type.

warning: 'idenJifier': bad type (not unsigned) [I)
The given bitfield is converted to an unsigned integral type.

warning:castofintexpressiontofarpoir4er [I)
A far pointer represents a full segmented address. Casting an integer
value to a far pointer produces an address with a meaningless segmem
value.

warning: Constar4 too big [1]
Information is lost because a constant value is too large to be represented
in the type to which it is assigned.

warning:conversionlostsegment [I)
The conversion of a rar pointer (a full segmented address) to a near
pointer(asegmentoffset)resuhsinthelossofthesegmentaddress.

D-1

XENIX Programmer's Galcle

warning: Data conversion [3)
Two data items had different types, causing lbc type of one item to be
converted.

warning: 'operator' : different types [I)
The values specifiedintheoperationbavedifferml types.

warning: Float constant in a cross compilation [1)
Floating point constants arc m portable because: tbe repae1Ulion of
floatingpoinl valuesdiffersacrossmadlinea.

warning: 'ide111ifer': formalsigmred [1]
Formal argumenls appeaml in a function dcdanlioo (fo- example,
"extern int *f(a,b,c);"). Thcfonmlargumettsarcignoml.

warning: 'ide111ijier': functionasanargumcnl [I)
A formal paramder to a function is declaml to be a function. which is
illegal. The folmalparameterisconvcrtcdtoa functionpointer.

warning: Functionmust retl.Dlla value [2)
Afunctionisexpectcdtorctumavalueunlessitisdcclamlasvold.

warning: functionidentijiertoolargefo-pm!-opimil.er [0)
The named function was not optimized because insuflicicml program
space was available. To corm:t this problem, reduce the me of the
function by breaking it down intotwoormore smaller functions.

warning: 'ide111ijier': hasbadclass [I)
The specified storage class cannot be used in this codext (f« example,
function parameters cannot be giw:n akn class). The dcfauh storage
class forthal context is used in place of the illegalc:laa.

waming:-Shaspreccdcnceover-L [I]
You cannol create both a disassembled listing (-S) and an assembled
listing (- L) with the same command. The -L opticn is ignored and a
disassembled listingiscreated.

warning: Id truncated to' ide111ijier' [I)
Only the first 31 characters of an identifier are significanl.

waming:-Cignored(mustalsospecify-Por-Eor-EP) [I]
The -C option preserves commcnls in a preprocessed listing and takes
effect only when you cn:ate such a listing with the -P, -E or -EP
option.

warning : ignoring unknown flag option [i]
The compilerdcesnot recognize the giw:noptionandigoores il.

waming:Illegalnullchar [I]

D-2

The single quotes delimiting a character constanl must conlain one
character. Forexample, the declaration "chara = "" isiUegal.

(

(

(

)

)

Compiler, Assembler, and Linker Messages

warning: 'operator' : illegal pointer combination [I]
A pointer to a given type is forced to poir4 to an object with a diffell'ent
type.

warning: 'operator' :illegalwithenums (I]
You may oot usethegivenoperatorwitheJRJmvalues. Thce1111mvalues
are converted to int type.

warning:missingcloseparenafter'defined(id' (l]
Theclosingparenthesisismissingfroman #II defined directive.

warning: Mixed near/farpointers (I]
A pointer is assigned to a pointer with a different size, resulting in the loss
of a segment address from a far pointer or the addition of a segment
address toa near pointer.

warning:Newlineinstringconstanl (I]
A newline character is not preceded by an escape character(\) in a suing
constant.

warning: 'idenrijier': nofunctionretumtype [2]
AfunctiondeclaredtohavevoidtypereturnsavaJue.

warning: No return value [2]
A function declared to return a value does not do so.

warning: Not enough parameters [I]
The number of actual argumems specified with an identifier is less than
the number of formal parameters given in the macro definition of the
identifier.

warning: ' & 'on function/array. ignored [I]
The address of(&) operator is used incorrectly ona function or array.

warning:Onlyoneof-P/-E/-EPaJlowed, -Pselected [I]
Each of the - P, - E and - EP options produces a different kind of
preprocessedlisting;onlyoneoptioncanbeusedatatime.

warning: overftow in constant arithmetic (I]
The resuh of an operation exceeds Ox7ftllfff.

warning: overflow in constant multiplication [I]
Theresuhofanoperationexceeds0x7fft1Tff.

warning: 'idenrijier': overflows array bounds (I]
Too many initiali:zers are present for the given array. The exceu
initializ.ersare ignored.

warning: Pointermismatch (I]
Pointers to different types of variables are used imcrchangeably.

D-3

XENIX Programmer's Guide

warning : Pr~f dure too large. loop inversion optimization missed but continuing

Some optimizations for a function are skipped because insufficient
program space is available for optimization. To correct this problem,
reduce the size of the function by breaking it down into two or more
smaller functions.

warning

warning

Proc~ too Jar~.] skipping branch sequence optimization and
contmumg l 0
Some optimizations are skipped because insufficient program space is
available for optimization. To correct this problem, reduce the size of the
functionbybreakingitdownintotwoormoresmallerfunctions.

Procedure too ~e, skipping cross jump optimization and
continuing l 0 J
Some optimizations for a function are skipped because insufficient
program space is available for optimization. To com:ct this problem,
reduce the sire of the function by breaking it down into two or more
smaller functions.

warning: Recoverable ~CltP overflow in post optimirer - some optimizations may be
missed [OJ
Some optimizations are skipped because insufficient program space is
available foroptimization. To correct this program, reduce the sire of the
functionbybreakingitdownintotwoormoresmallerfunctions.

warning: 'identifier': redeclaration ignored [1]
Thenamedformalparameterwaspreviouslydefined.

warning: identifier: redefinition [1]
The given identifier is redefined.

warning: 'register' on 'identifier' ignored [I]
Only inlegral and pointer type variables may be given regbter storage
class.

warning: "-i" required on the command line,changing name SCgD!f~ or group
requiresseparateiandd. Setting/-iandcontinuing. l I J
The text segment ofa small model program can be renamed (using -NI')
onlyifaseparatetextscgmellliscreatedusingthe-ioption.

warning: requires parameters [1]
Formal parameters are given in the macro definition of an identifier, but
no argument list is given with the identifier.

warning: Storage class class on 'identifier' changedtoextem [1]
Items declared outside of functions must have static or extern storage
class.

warning: String too big, leading chars ttuncated [I]
Strings may not exceed 512 bytes.

D-4

(

(

(

)

)

Compiler, Assembler, and Linker Ma.sages

warning: Strong type mis-match [2]
Two different butcompatibletypes are used: forelUUDple, a typedef type
withanon-typedeltype,ortwodifferentbutequivalentstructoruoloa
types.

warning:Toomanyparameters [l]
The number of actual arguments specified with an identifier is greater
than the number of formal parameters given in the macro definition of the
identifier.

warning: Type following' keyword' is illegal, ignored [l]
An illegal combination occurs (forexample, umlgned Boat.)

warning: ideruijier: undefined [l]
The givenide111ifier is not defined.

warning:' identifier': unknown array size[J]
The sizeofthenamedarrayis not specified.

warning: 'ide111ijier': unknown size [1]
The size of the named variable is not specified.

warning: unmatched close comment'*/' [1]
A comment was started (with '/*')but wasnotclosed(with '*/').

warning:' identifier': voidtypechangedtoint [I]
Only functions may be declared to have void type.

D.2.2 Program Error Messages

The following is a complete list of program error messages. After printing a program
error message, the compiler typically continues to look for mon: emrs, but will not
create an object file.

'+': 2 pointers
Twopointersmay not be added.

'identifier': aggregate initsrequire curly braces
Aninitializ.er foranaggregatetypehas a syntaxerrt¥.

Array of functions
Arrays of functions are not allowed.

auto allocation exceeds 32K
The space allocated for the local variables of a function exceeds the limit
of32Kbytes.

'identifier': automatic struct/arrays
Structures, arrays, and unions with auto storage class cannot be
initialil.ed.

D-.5

XENIX Prognmmer'1 Golde

Bad call
Theexpressionbeforetheplll'Clllhesesinafimctioncalldoesnolevaluate
toafunctionpoimer. Forexample,

int •p;

(*p)();

'class': bad class
Thegivenstorageclas.sc:annotbeusedinthisconrext.

operator: bad left operand
The left-hand operand of the givenopitnUorisanillcgal value.

Badoctalnumber'n'.
The character nis n«a valid octal digit.

operator: bad right operand
The right-handoperandofthe givenopenuorisaniDegal value.

'identifier': base type with near/far not allowed
Declarations of structure and union mcmbcn may in use the llaU' and
farkeywcrdstooverridetheaddressingconvenlionfCll'amembeir.

can'tcastobjectsas'far' (.
The near and far keywords may not be used in type caSls. fer example, ·
"(intfar)foo'' isillegaB.

can"tcastobjectsas'near'
The near and far keywords may n« be used in type casts. Fol' example,
"(intnear)foo" is illegal.

Case expression n((constant
Case expressions must be integral constanls.

Case expression DC(integral
Case expressionsmuSI be integralconstaotll.

Casevalue'n' already used
The case value nhasalrcadybeenused inthisswltdl statement.

castof'void'termtonon-void
The void type may not be cast to any other type.

cast to array type is illegal
Anobjectcannotbecasttoanarraytype.

cast to function returning ... is illegal
Anobjectcannotbecasttoafunctiontype.

D-6

(

)

)

Compiler, Assembler, and Linker Messages

Compiler error (assertion): filejilenmne,

linensource=jilenmne
The compiler consistency check failed. Try rearranging your code. In
this message, the firstjilenmne identifies the compiler file producing the
error; the line number n refers to that file. The secondjilelllllM gives the
nameofthelKlUl'Cefilebeingcompiled.

Compiler error (code generation)
The compiler could net generate code for this c:qression. Try
reanangingtheexpression.

Compilererror(inlernal):
Thecompilerconsistencycheckfailed. Tryrcarrangingyourcode.

Compilerlimit:macro'sactualparameteristoobig
Arguments topreprocessormacrosmay notexceed2S6bytes.

Compiler limit: structlunionnesting
NestingofstructureanduniondefinitionsmaynotexccedSlcvds.

Compilerlimit:Toomanyactualparametersformacro
Amacrodelinitionmaynottakemorethan8actualarguments.

compiler limitation: lnitializ.ers too deeply nested
The compiler limit on nesting ofinitializershas been exceeded. The limit
ranges from J Oto JS levels, depending on the combination of types being
initialized. To correct this problem, simplify the data type being
initialized to reduce the levels of nesting, (]I' assign initial values in
separate statements after the declaration.

Constant expression is not integral
The context requires an integral constant expression.

#define syntax
A #defill!edirectivehasa syniaxerror.

'iden1ifier': definition too big
Macrodefinitionsmay notexceed2S6bytes.

•operator': differentaggregatetypes
Pointers to different structure or union types are not allowed with the
givenoperator.

DividebyO
The second operand in a division (/)operationevaluatestozcro (0).

'identifier': enum/structluniontype redefinition
Thegiveniden1ifierhasalreadybeenusedforanenumeration,11UUcturc,
orunion tag in the same scope.

D-7

XENIX Programmer's Guide

expected T to follow 'idenri.fier'
The context requiresparenthesesafterthe furw:tianidenrifier.

Expected constant expression
The context requiresaconsta~expression.

expected 'defined(id)'
An #if defined directive has asyntaxemll".

Expected exponent value. not 'n'
Theexponentofafloatingpointconstanlisnotavalidnumbcr.

Expected preprocessor command, fwnd • c'
The character following a number sign (#) is DOl the first letter of a
preprocessor directive.

'idenrifier': fieldisanarray/ptr
Bitfieldrnembersmusthaveumigned integral type.

• idenrifier' : field type too smallfornumberofbils
The number of bits specified in the bilficld declaration exceeds the
numberofbits inanunsiglledintcgcrofthe givcnsiz.c.

•identifier': fields only instructs
OnlystructuretypcsmayCODlainbilfickb.

Function returns array
A functionmaynotreturnanuray. (ltmayrctumapointertoanmay.)

Function returns function
A function may not return a function. (It may return a pointer to a
function.)

'idenrifier': Functionsareillegalmcmbers
A function cannot be a member of a structure; use apoinlatoa function
instead.

'string': ignored
The given text appearcdoutof COD!cUaodwasigmn:d.

111egalallocationof segment> 64K
Thespaceallooatedforasinglcclataiteme.xa:cdsthclimitofoncscgmCDl
(64Kbytes).

lllegal break

lllegalcase

D-8

A break statement is legal only whcoitappcarswithinaclo,for, wble, or
switch statement.

The case keyword may only appearwithinaswttc•Slataocnt.

(

(

)

)

CompDer, Assembler, aocl Linker Messages

illegal cast
Atypeusedinacastoperationisnotalegaltype.

lllegalcontinue
A conthme stateme~ is legal only when it appears within a do, for, OI'

while statement.

Illegal default
Thedef'aultkeywordmayonlyappcarwithinaswltchstatement.

lllegalescapesequence
The character(s) after the escape character(\) do not form a valid escape
sequence.

Illegal expression
An expression is illegal because of a previous mor. ('lbe previous mor
may nothaveproducedanenormessage.)

'operator': illegal forstruct/union
Suuctureand uniontypevaluesarenotallowed with the given operator.

lllegalindex, indirection not allowed
A subscript was applied to an expression that does not evaluate to a
pointer.

Illegal indirection.
Theindirectionoperator('*')wasappliedtoanon-pointer'Value.

Illegal initialization
Aninitializationisillegalbccauscofapreviousemir. ('lbeprc:viousemir
may nothaveproducedanerrormessage).

'operator': illegalpointercombination
Pointers that point to differe111 types cannot be used with the gi\'Cn
operator.

Illegal pointer subtraction.
Only pointers that point to the same type may be subtracted.

#include expected a file name
An #include directive lacks the mandatory filename specification.

'identifier': initofafunction
Functionsmaynotbeinitialized.

'ide ntijie r' is an undefined structlunion
The suucture or union type of the givenidentifieris not defined.

keyword' enum' illegal
The enum keyword appears in a suucture or union declaration, or an
enum type definition is not formed correctly.

D-9

Label• identifier' was undefined.
The function does not contain a statcmeu labeled with the given
idenlifier.

leftof'->identijier'musthaveastruct/uniontypc
The expression beflX"e the member selection operal« '->'does not
pointtoastructureoruniontype.

left of' .iden1i.fier' must have a struct/uniontype
The expression before the member selection opc:ntcr •.' does oot have a
structureoruniontype.

left of' - >'specifies undefined struct/union 'identifier'
The expression before the member selection operatOtr ·->' points to a
structureoruniontypethatisnotdefincd.

left of'.' specifies undefined struct/union • ideruijier'
The expression before the member selection opcratcr •. • has a llll\lcture
oruniontypethatisnotdefined.

operator: Left operand must be lval.
TheleftoperandofthcgivenoJ¥ratormustbcanlvalue.

#line expected a line number
A #linedim:tive lacltsthcmandatory lincnumbaspccification.

'iden1ijier': memberof enumredefinition
The given iden1ijier has already been used for an enumc:ntion comtant,
either within the same enumeration type or within anolhcr enumen11ion
type in the same scope.

Missing'>"
Theclosinganglebractet('>')ismissingfroman#lndudedim:tive.

MissingnamefolkJwing '<'
An #lododedirective lacks the mandatory filename specification.

missing open parenafterkeyword 'defined'
Parenlheses must surround the identifier to be checked in an #I' deftned
directive.

• ide n1ijie r' : Missing subscript

ModbyO

To reference an element of an array you must use a subscript (for
example," Af 6]").

Thesecondoperandinaremainder(%)operationevaluatestozero(O).

More than one defauh

D-10

A switch statemern cornains too many dd'aula labels (only one is
allowed).

(

(

)

XENIX Programmer's Guide

'operator' needslvalue.
The givenoperatormusthavean I value operand.

negative subscript
Avaluedefininganarraysiz.ewasnegati-w:.

Newline inconstant
Anewlinecharacterinacharactcrorstringconstantmustbcprecededby
the backslash escape character(\).

Noclosingsinglequote
A newline character in a character constant must be preceded by the
backslash escape character(\).

Nostructdefinition
Astructureoruniontypeisusedinadeclarationwithoutbeingdelined.

Non-address expression
An attempt was made to initialiu an item that is not an lvalue. Fw
example. the declaration "inti, j = I;" in the following example is
illegal.

inti, j = i;
main()

I

The declaration occurs rut side ofaU functions, so it cannot be detcrmined
until link time (too late for initialization) whether ; is a reference to a
global variable defined and initialized elsewhere, or a definition of a
global variable (with a default initial value ofO) .

Non-constant offset
An initializer uses a non-constant offset. For example, the declaration
"illli,j, *p= &i + j;"inthefollowingexampleisillegal.

int i, j. *p = &.i + j;
main()

I

Thedeclarationoccursrutsideofallfunctions, soitcannotbedetcrmined
until link time (too late for initialization) whether i andj an: references to
global variables defined and initiali7.ed elsewhere, ordefinitionsof global
variables(withdefauhinitialvalucsofO).

Non-integer switch expression
Switch expressions must be integral.

D-JI

XENIX Programmer's Gulde

Non- integral index
Only inlegral expressions are allowed in array subscripts.

'identifier': not a function
The given identifier was not declared as a function but an attempt was (
made to use it as a function. For example,

inti;

i();

'identifier': not a label
The identifier specified in a goto statemern docs not correspond to a
statement label.

'identifier': notstruct/unionmcmber
The given identifier is used in a context that requires a structure or union
member.

• & • on bit field ignored
Bitfieldscannothavetheiraddresstak:en.

• & ·on constant
Only variablesandfunctionscanhavetheiraddress taken.

• & 'onregister variable
Register variables cannot have their address taken.

parameter has type void
Only functions have void type, and formal parameters may not be
functions.

pointer+ non-integer
Only inlegral values may be added to pointers.

'operator': pointer on left. Needs integral right.
Theleftopcrandofthegivenoperarorisapoimcr;therightoperandmust
be an integral value.

'+ ·: 2pointers
Twopointersmaynotbeaddcd.

Preprocessorcommandmuststartasfirstnon-white
Non-whitespace characters appear before the number sign (#) of m
preprocessordircctiveonthe same line.

•identifier': redefinition
Thegivenidemifierwasdefinedmorethanonceinthesamcscope.

•.' requires struct/union name
The expression before the member selection operator •.' is not the name

D-12

(

(

)

CompDer, Assembler, and Linker Messages

of a structure or union.

' - > 'requires struct/union poimer
The expression before the member selection operatq- •->' is not a
pointertoa structure or union.

' - ': right operand pointer
If the left-hand operand in a subtraction (-)operation is n~ a pointer,
the right-hand operand is not permitted to be a pointer.

Static procedure' ideniijier' not found.
A forward reference was made to a missing static procedure.

Structure/Union comparison illegal
Yoo cannot compare a structure type to a union type. (You can,
however, compareindividualmembersofstructureandunions).

Subscriptonnon-array.
A subscript wasusedona variable that is mt an array.

syntax error
Thisstatementortheprecedingstatementisnotfonnedcorrectly.

'n' : too big for char
Thenumbernistoolargctobcrcprcscntcdasacharactcr.

Too many chars in constant
A character constant is limited to a single character. (Muhi-charactcr
charactcrconstantsarenotsupported).

Too many initializers.
Thenumberofinitiali7.crscxccedsthcmunbcrofobjectstobcinitialized.

Typedef specifi.esdifferentenum
Twoenumerationtypesdcfinedwithtypedelareusedtodeclareanitem,
but the enumeration types are different.

Typedef specifies different struct
Two structure types defined with typederareuscd to declare an item, but
thestructuretypesaredifferent.

Typedef specifies different union
Two union types defined with typedelareusedtodeclareanitem, but the
union types are different.

'typedefs' both define indirection
Two typedef types are used to declare an item and both typedef types
have indirection. For example, the declaration of p in the following
example is illegal.

D-13

XENIX Programmer's Gulde

typedef int •p ..INT;
typedef short *P ...SHORT;
P ...SHORT P ..INT p; I* this declaration is illegal */

'idenrijier':undefined (.
The givenidenrijier isootdefincd.

'c·: unexpected informal list
The character c is misused in a macro definition's lisl of formal
parameters.

'c': unexpected in macro definition
Thecharacta' c is misused inamacrodefinition.

unknown character 'Oxn'
The given hexadecimal aumba' does not C\liaespond to to a character in
the C character sea.

'iden1ijier': unknownsize
Amemberofastructure«unionhasanundcfinedsi7.e.

'void' illegal with all types
Thevoiidtypecannmbeusedinopentionswithochertypes.

'expression' was the use of the struct/union
An undefined struaure Cll' union t)'F wriable is used in the given
expression.

D.2.3 Fatal Error Messages

The following is a complete list of fa!aD mw messages. After printing a fatal aror
message, the compiler terminates processingandmumsCOlllroltothe system.

fatal: Badftag =option
The given option is illegal or im:onsistent with another qition appearing
onthesameline.

fatal: Badparenthesisne&ting
Theparenthesesinapreprocessordirectivearenctmatched.

fatal: Bad preprocessor command 'string'.
Thecharactersfollowingthenumbersign(#)doootfonnapreproceSSCi'
directive.

fatal: Cannot open 'filename'
The compiler ran out of dist space, or the disk is protected against
writing.

fatal: Compiler limit: Macroexpansiontoo big
The expansionofamacroexceedsthe space availablef<ll" it.

D-14

(

)

)

)

Compiler, Assembler, and Linker Messages

fatal: Compiler limit: possibly a recursively defined macro
The expansion of a macro exceeds the space available for it. Oieck to see
whetherthemacroisrecursivelydefined.

fatal: DGROUPdata allocation exceeds64K
Longmodelallocationof variables to the default segmenl exceeds64K.

fatal: #i~n1def expected an identifier
Youmustspecifyanidentifierwiththe#lldefam#if'ncleldirectives.

fatal: expected' #endif
An #'4, #if def, #il'ndel, or#il defined directive was not tenninated
with an #end.ii directive.

fatal: only one memory model allowed
Confticting memorymodeloptionsappearon the command line.

fatal: Parser stack overflow, please simplify your program
Your program caMd be processed because the space required to parse
the program exceeds a compiler limit. To solve this problem, try to
simplify your program.

fatal: Too many include files
Nesting of #lodude directives exceeds the limit of I Olevels.

fatal: unexpected' #elif
The #elll directive is legal only when it appears within an #II, #ii
defined, #irdel, or#llndeldlrectlve.

fatal: unexpected' #else·
The #else directive is legal only when it appears within an #ii, #fl
defined, #ifdel, or #llodeldirective.

fatal: unexpected' #endif
An #eodl' directive appears without a matching #I', #I' delioed,
#if def, or #il'ndefdirective.

fatal: UnexpectedEOf
The em ofa file was encountered. This message appears when you have
insufficient space on the defauh disk drive for the compiler to create the
temporal}' files it needs. The space required is approximately three times
the size of the source file.

fatal: Unknown configuration string• string'
The configuration string given with the -M option contains an
unrecognized character.

fatal: Unknownmodel type
The configuration string given with the -M option conlains an
unrecognized character.

D-JS

XENIX Programmer's Guide

D.3 Compile!!' Requirements and Lhmts

The following list summarizes the limits imposed by the C compiler. If your program
exceeds any of these limits, an errormessage will infonnyouoftheproblem.

1. Disk Space (
Minimwn disk space for compilation 3 times swrce file size

2. Declarations

Maximum number of dimensions
in an array S dimensions

Maximum level of nesting for
structure/union definitions S levels

Maximum level of indirection S levels
Maximum level of nesting for aggregate

initializers (depends on the combination
of aggregate types; higher levels of
nesting are possible with array
initialization than with stnJcturc
and union initialization) 10- JS levels

3. Constants

Maximum length of a string, including the
tenninating null character (\0) Sl2 bytes (

4. Identifiers

Maximum length of an identifier 31 dwac1crs
(characters in excess of this limit
do not cause an error, but they are
not significant)

s. Preprocessor Directives

Maximum sii.e of a macro definitico Sl2 bytes
Maximum nwnber of actual argumems to

a macro definition 8 arguments
Maximum length of an actual preprocessor

argument 2S6 bytes
Maximum level of nesting for #ii',

#ll'del, #ll'nder. and
#ii' defined directives 32 levels

Maximum level of nesting for include files 10 levels

The compiler does not set explicit limits on the number ancllcomplexityof declarations,
definitions, and statements in an individual function or in a program. if the compiler (encourners a function or program that is too large or too complex to be processed, it
produces an errormessagetothateffect.

D-16

)

)

)

CompDer, Assembler, aocl Linker Mmages

D.4 Assembler Error M~ges

This section lists and explains the messages displayed by the XENIX assembler. As
displays a message whenever it encounters an error during processing. It displays a
warning message whenever it encoulllersquestionable statemernsyrnax.

An end-of-assembly message is displayed at the end of processing, e~n if no errors
occurred. The message contains a courn of errors and warning messages it displayed
duringtheassembly. Themessagehastheform:

Warning Fatal
Errors Errors
n n

Thismessageisalsocopiedtothesourcelisting.

Error messages are listed in alphabetical order with a short explanation where
necessary.

As.wmbler Erron

Already defined locally (Code 23)
Tried to define a symbol as EXTERNAL that had already been defined
locally.

Already had ELSE clause (Code 7)
Anempt to define an ELSE clause within an existing ELSE clause (you
cannotnestELSEwithoutnestinglF ... ENDIF).

Alreadyhavebaseregister(Code46)
Tryingtodoublebaseregister.

Alreadyhaveindexregister(Code47)
Trying to double index address.

Block nesting error (CodeO)
Nested procedures, segmems, suuc:tures, macros, !RC, IRP, or R.EPr
are not properly terminated. An example of this error is close of an outer
level of nesting with inner level(s) still open.

Byte register is illegal (Code SS)
Use ofoneofthe byteregistersincontelll where it is illegal. For example,
PUSH AL.

Can'toverrideES segment(Code67)
Trying to override the ES segmern in an instruction where this override is
not legal. For example, store string.

Can'treach withsegmentreg(Code68)
ThereisnoASSUMEthatmakesthevariablereachable.

Can'tuseEVENonBYTEsegment(Code70)
Segment was declared to be byte segment and anempt to use EVEN was
made.

D-17

XENIX Programmer's Guidt

CircularchainofEQU aliases (Code 83)
AnaliasEQU eventually points to itself.

Constant wasexpected(Code42)
Expecting a constant and n:ceived something else.

CS register illegal usage (Code 59)
TryingtousetheCSregistcrillegally. F~examplc,XCHGCS,AX.

Directive illegal inSTRUC (Code 78)
All statements withinSTRUC blocks must citha be oomments preceded
by a semicolon(;), oroncoftheDefinedirectivcs.

Division by Oorovcrflow (Code 29)
An expression is giventhatresuhs in a divide byO.

DUPistoolargeforlinker(Code74)
Nesting of DUP' s was such that too large a n:cont was created for the
linker.

8087opcodecan'tbeemulated(Code84)
Either the 8087 opcode or the operands you used with it produce an
instruction that the emulator cannot support.

Extracharactersonline(Code I)
Thisoccurswhensufficientinformationtodcfinetheinstructiondirectivc
has been received on a line and supcrftuous cbaractcrs beyond arc
received.

Field cannot be ovcnidden (Code 80)
In a STRUC initialization statement, you tried to give a value to a field that
cannot be ovcnidden.

Forward needs override (Code 71)
This message is mt currently used.

Forward reference is illegal (Code 17)
Anempt to forward reference something that must be defined in pass 1.

lllegalregistervalue (Code 55)
The register value specified docs not fit into the "reg' field (the reg field is
greaterthan7).

Illegal size for item (Code 57)
Sizeofreferenceditemisillegal. forexample, shiftofadoubleword.

lllegal use of external (C.ode 32)
Use of an external in some illegal manner. Fer example, DBM DUP(?)
where M is declared external.

lllegal use ofregister(Code49)
Use of a register with an instruction where there is no 8086 or 8088

D-18

(

(

(

)

)

CompDer, Assembler, and Linker Messages

instruction possible.

lllegalvalueforDUPcount(Code72)
DUPcoontsmustbe a constant that is not Om negative.

Improper operand type (Code52)
Useofanoperandsuchthattheopcodecannotbegenerated.

lmproperuseofsegmentreg(Code61)
Specification of a segment register where this is illegal. For example, au
immediatemovetoasegmentregister.

lndexdispl. mustbeconstant(Code54)
Illegal use ofindexdisplay.

Labelcan'thaveseg. override(Code65)
lllegaluseofsegmentoverride.

Left operand must have segment(c.ode38)
Used something in right operand that required a segment in the left
operand. (For example,":.")

More values than defined with (Code 76)
Too many fields given in REC mSTRUCallocation.

Must be associated with code (Code45)
Useofdatarelateditemwhen:codeitemwasexpected.

Must be associated with data (Code44)
Use of code related item where data related item was expected. For
example.MOY AX.<code-label>.

Must be AX or AL (Code60)
Specification of some regii.ter other than AX or AL where only these are
acceptable. For example, the IN instruction.

Must be indexorbaseregii.ter(Code48)
Instruction requires a base o;r index register and some tther register was
specified in square brackets, .

Must be declared in pass I (Code 13)
Assembler expecting a constarn value but got something else. An
exampleofthismightbeavectorsiz.ebeingaforwardreference.

Must be in segment block (Code69)
Attempt to generate code when not ina segment.

Mustberecordfieldname(Code33)
Expecting a record field name but got something else.

Mui.1 berecordorficldnamc (Code34)
Expecting a record name or field name and received something else.

D-19

XENIX Programmer's Guide

Mustberegister(Code 18)
Register expected as operand but you furnished a S)'lllllbol - - was mt a
register.

Mustbesegme~orgroup(Code20)
Expectingsegmentorgrcupandscmdhingelsewuspecificd.

Must be structure field name (Code 37)
Expecting a structure field namebutn:cci~somcthingelse.

Must be symbol type (Code 22)
MustbeWORD,DW,QW,BYTE,crTBbutn:ceMdsomclhingelse.

Must be var, labelorconstant(Code36)
Expectingavariable,label,orconstanlbutrcccivcdsomcthingclse.

Musthaveopcodeafterprefix(Code66)
Use of one of the prefix instructions wilhout specifying any opcode after
it.

Near JMP/CAU.todifferentCS(Code64)
Attempt to do a NEAR jump Oii' call to a location in a diffm:ll CS
ASSUME.

Noimmediatcmodc(Code56)
Immediate mode specified Cll' an qipc:ode dJat c:anno& accept die
immediate. Forexample,PUSH.

NoorunreachableCS (Code62)
Trying to jump to a label thal is umacbabk.

No:rmal type operand expected (Code41)
Received STRUCT, AELDS, NAMES, BYTE. WORD, or DW when
expecting a variable label.

Not in conditional block (Code 8)
AnENDIForELSEisspecifiedwithoutapn:'riousc:omfiliomlaasmably
directive active.

Not proper align/combine type (Code2S)
SEGMENT parameters are incorrect.

One operand must beconst (Code 39)
This is an illegal use ofthcadditionopc:rator.

Only initialize list legal (Code 77)
AttempttouseSTRUCnamewithoutanglebracb:ls,<>.

Operand combination illegal (Code63)

D-20

Specification of a two-operand instJuction where the combination
specified is illegal.

(

(

(

)

CompDeir, Assembler, and Linker Mesaagea

Operandsmustbesameor 1 abs(Code40)
Illegal use of the subtraction operator.

Operandmusthavesegment(Code43)
lllegal use ofSEG directive.

Operandmusthavesize(Code35)
Expectedoperandtohaveasize, butitdidnot.

Operandnotin1Psegmera(Code51)
Access of operand is impossible because it is not in the CUll'Cnt IP
segment.

Operandtypesmustmatch(Code31)
Assembler gets different kinds or sizes of arguments in a case where they
mustmatch. Forexample,MOV.

Operandwasexpected(Code27)
Assembler is expecting an operand but anopuatorwasreceived.

Operatorwasexpected (Code 28)
Assemblerwasexpectinganoperatarbutanoperandwasreceived.

Overrideisofwrongtype(Code81)
In a STRUC initialization statement, you tried to use the wrong siz.c on
override. for example, 'HELLO' for OW field.

Override with DU Pis illegal (Code 79)
Ina STRUC initialization statement, you triedtouseDUPinanovenide.

Phase error between passes (Code 6)
The program has ambiguous instruction directives such that the location
of a label in the program changed in value between pass 1 andpass2ofthe
assembler. An example of this is a forward reference coded without a
segment override where one is required. There would be an additional
byte (the code segment override) generated in pass 2 causing the next
label to change. You can use the - D option to p-oduce a listing to aid in
resolving phase errors between passes. See as(CP) in the XENIX
ReferenceMaTUllJJ.

Redefinition of symbol (Code4)
This erroroccursonpass2and succeeding definitions of a symbol.

Reference tomultdefined (Code 26)
The instruction references something that has been multi-defined.

Register already defined (Code 2)
Thiswillonlyoccurifthcassemblerhasintemallogicenurs.

Register can't be forwardref(Code 82)

D-21

XENIX Programmer's Gulde

Relativejumpoutofrange(Code.53)
Relative jumps must be within the range -128 to +127 of the c:urrcnl
instruction, and the specific jump is beyond this range.

Segmenl parameters arc changed (Code 24) (
List of arguments to SEGMENT were not identical to the first time this ·
segment WaJ! used.

Shift count is negative (Code 30)
A shift expression is generated that rcsuhsinanegali~shiftcounl.

Should have been group name (Code J 2)
Expcctingagroupnamebutsomething01hathanthiswasgivm.

Symbol already differelll kind (Code IS)
Attempt to define a symboldiffereraly fiomapreviousdefinition.

Symbolalreadyexternal(Code73)
Attempt to define a symbol as local thal is already external.

Symbolhasnosegmelll(Code21)
Trying to use a variable with SEG, and the variable has no known
segment.

Symbol ismuhi-defined (Code5)
Thiserroroccursonasymbolthatislatcrrcdefincd.

Symbolisresenedword(Codel6)
Attempt to use an assembler reserved wcnl illcgaDy. F<l!I' example, to
declareMOV asa variable.

Symbol not defined (Code 9)
A symbol is used that hasnodelinition.

Symbol type usage illegal (Code 14)
lllegaluseofaPUBUCsymbol.

Syntaxerror(Code 10)
The sylllax of the statement docs not match any recognizable S)'lllU.

Type illegal in context (Code 11)
The type specified is of an unacceptable sil.e.

Unexpected end offile (Code 85)
You forgot an end statement or there isa nesting error.

Unknownsymboltype(Code3)
Symbol statement has something inthctypefieldthatisunm:ogniuble.

Usage of? (indeterminate) bad (Code 75)
lmproperuscofthe"?". forexample, ?+5.

D-22

(

)

)

)

CompDer, Assembler, and LJnker Meuages

Valueisoutofrange(CodeSO)
Valueistoolargeforexpecteduse. Forexample,MOV AL,5000.

Wrongtypeofregister(Code 19)
Directive or insuuction expected one type of register, but amther was
specified. Forexample,lNCCS.

Numerical ListolMessages

Code
0
1
2
3
4
s
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2S
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Message
Block nesting error
Exuacbaractersonline
Register already defined
Unknown symbol type
Redefinition of symbol
Symbol is multi-defined
Phase em .. between passes
Already had ELSE clause
Not inconditioMI block
Symbol not defined
Syntax err«
Type illegal inconlCxt
Should have been group name
Must be declared in pass I
Symbol type usage illegal
Symbol already different kind
Symbol is reserved wcrd
Forward reference is illegal
Mustberegister
Wrong type of register
Must be segment or group
Symbol has no segment
Must be symbol type
Already defined locally
Scgmentparamctersarechanged
Not proper align' combine type
Reference to muh defined
Operand was expected
Operator was expected
DivisionbyOor overflow
Shift count is negative
Operand types must match
Illegal useof external
Must be record field name
Must be record or field name
Operandmusthavesizc
Must be var, label orconstanl
Must be structure field name
Leftoperandmusthave segment
Oneoperammustbeconst
Operandsmustbesamear I abs
Normal type operand expected
Constant was expected

D-23

XENIX Programmeli"'s Guide

43 Operand must have segment
44 Must be associated wilhdala
4S Must be associated with code
46 Already have base register

(47 Already have indeuegister
48 Must be index or base register
49 lllegal use of register
so Valueisoutofrange
SI Operand not in IP segment
S2 Improper operand type
S3 Relativejumpoutofrange
S4 lndexdispl. must be constanl
SS Illegal register value
56 No immediate mode
51 lllegal siz.efor item
S8 Byte register is illegal
59 CSregisterillegalusage
(j() Must be AX or AL
61 lmpropecuseof segment reg
62 Noor unreachable CS
6.l Operandcombinalionillegal
64 Near JMP/CALLtodifferentCS
6S Labelcan'thaveseg. override
66 Must have opcodeafterprefut
67 Can't o'VCJrideES segment

(68 Can't reach with segment reg
(/) Must be in segment block
70 Can't use EVEN on BYTE aegmeult
71 forward needs override
72 lllegalvaluelforDUPcoont
73 Symbol already external
74 DU Pis too large for linter
15 Usageof?(indetenninate)Mdl
76 More values than defined with
77 Only initialize list legal
78 Directive illegal inSTRUC
79 Ovenide with DU Pis illegal
00 field cannot beoveniclden
81 Override is of wrong type
82 Registercan'tbe forwanbcf
83 CircularchainoffiQU aliases
84 8087 opcode can't bec:mulated
8S Unexpectedendoffile

JD.§ Lmlkeir lEKiroli' Messsiges

(
This s.ection lists and explains the messages displayed by the XENIX linker. lLd
displays a message whenever it encounters an error during processing.

Array element sizemismatch
A far communal array has be.en declared with twoClf more different array

D-24

)

)

CompDeir, Assembler, al!ld Lbnker Messages

element sizes (e.g. declared once asanarrayof charactersandonceasan
arrayofreals). Matcbdefinitionsandrccreateobjectmoclule.

Attempt to access data outside segment bounds
One of the object modules is invalid. Try recompiling the invalid
module. If the link still fails, ntte exactly how the module was compiled
and report the bug to Microsoft.

Attempttoputsegmentnameinmorethanonegroupinfilejilename
Asegmentwasdeclaredtobeamemberoftwodifferenlgroups. Correct
the source andrecreatetheobjectfiles.

Cannot find file.filename
Specified file cannot be found. Try again after locating the file in
question.

Cannot open list file
Thedirectoryordisitisfull. MakespaceonthediskCll'inthedircctory.

Cannot open run file
Thedircctoryordiskisfull. Makcspaceonthediskarinthedircctory.

Cannot open temporary file
Thedirectoryordiskisfull. Makespaceonthediskwinthedin:ctory.

Common area longertban6SS36 bytes
User's program has more than 64K of communal wriables. At the
presenl time, only C language programs can possibly cause this message
to be displayed. Rewrite your program using fewc:r communal variables
or making SOOle of your communal variables far, or recompile your
program large model.

Data record too large
LEDATA record contains more than 1024 bytes of data. This is a
translatorerroir.

Duprecord too large
LID AT A recm! contains more than 512 bytes of data. Most likely, an
assembly module contains a struc definition that is wzy complex, or a
series of deeply nestedDUP statements(e.g. table db IOdup(l I dup(i2
dup(l3dup(...))))). Simplifyandreassemble.

Error accessing library
File in question is an invalid library. U sea valid library.

Fixupoverftow near mun in segment name infilename(name)offset mun
A fixup overflow can be caused by: 1) a group larger than 64K bytes, 2)
the user's program contains an intersegment short jump or intersegment
short call, 3) the user has a data item whose name conflicts with that of a
subroutine in a library included in the link, and 4) an assembly language
source file has an EXTRN declaration for a far procedure inside the body
of a segment.

D-25

XENIX Programmer's Guide

Group name largcrthan64Kbytes
Userhasdefinedagroupcontainingmoirethan64Kbytesofcodeordata.
Make the offending groop smaller and relink.

invalid object module
Om: of the object modules is invalid. Try recompiling.

List file name missing
Namemissingafter-moption. Tryagainwithcom:ctcrmmandline.

Multiplecodesegmenls--shouldbc:mediummodcl
User's program contains more than one code segment, and the user has
not informed the linker that the program is middle or large model. Unless
the program ishybridmodel, relink using - Mm option.

Muhipledatasegments- -should be large model
User's program contains moire than one data segment, and the user has
not informed the linker that the program is large model. Unless the
program is hybrid model, relink using -Ml option.

Name length missing
Number missing after the -nl option. Try again with correct command
line.

NEAR/HUGEconftict
Confficting near and huge definitions for a communal variable. Revise
definitions to be consistent (Note: a communal variable is "huge" if it is
larger than 65536 bytes).

No object files specified
No object files were specified on the command line and the -u option was
notused. Tryagainwithcorrectcommandline.

No object modules specified
Userfailedtosupplythelinkerwithanyobjectfilenames. Tryagain.

Out of space on list file
Disk on which list file is being written is full. Free more space on the disk
and try again.

Outofspaceonrunfile
Disk on which executable is being written is full. Free more space on the
disk and try again.

Out of space on scratch file
Disk indefauh drive is full. Delete some files on that disk, or replace with
another diskette, and restart the linker.

Relocation tableoverftow

D-26

More than 16384 long calls or long jumps or other long poimers in the
user's program. Rewrite program replacing long references with short
references where possible and recreate object module.

(

(

(

)

)

CompDer, Assembler, aocl Linker Messages

Run file name missing
Namemissingafterthe-ooption. Tryagainwithcorrcctcommandline.

Segment limit settoohigh
The limit on the number of segments allowed was set highrr than I 024
using the -S option. Try link again with a smallernumber.

Segment limittoohigh
There is insufficient memory for the linker to allocate tables to describe
the number of segments requested (either the value specified with -Sor
the defauh: 128). Try the link again using -S to select a smaller number
of segments (e.g. 64, if the default was used previously).

Segmentsizeexceeds64K
User has a small model program with more than 64Kbytes of code, er
user has a middle model program with mere than 64Kbytcs of data. Try
compilingandlinkingmiddleorlargemodel.

Stacksizeexceeds65536bytes
Thevaluespecifiedusingthe-FoptionexceedsOxlOOOO. Tryagain.

Stack size missing
Number missing after - f option. Try again with correct command line.

Symbol missing
Symbol missing after the -u option. Try again with correct command
line.

Symboltable overflow
The user's program has grcaler than 2S6K of symbolic information
(Publics, cxterns, segments, groups, classes, files, etc). Combine
modulesand/orscgmcntsandrccreatetheobjectfiles. Eliminateasmany
public symbolsaspossible.

Terminated by user
Theuserprcssedthcdcletckcy.

Toomanyextemalsymbolsinoncmodule
User'sobjectmodulespecifiedmorethantheallowednumberofcxtcmal
symbols. Breakupthcmodulc.

Too many group-, segment-, andclass-namesinonemochde
User's program contains too many group, segment, and class names.
Reduce the number of groups, segments, or classes and n:crcatc the
object files.

Too many groups
User's program defines more than nine groups. Reduce the number of
groups.

ToomanyGRPDEFsinoncmodule
Linker encountered more than 9 G.RPDEFs in a single module. Reduce

D-27

XENIX Programmer's Guide

the numberofGRPDEFs or split up the module.

Too many libraries
User tried to link with more than 32 libraries. Combine libraries or link
modules that require fewer libraries.

Toomanysegmentsinonemodule
Theuser'sobj~tmodulehasmorethan255segments. Splitthemodules
or combine segments.

Too many segments
The user's program has too many segments. Relink using the -S option
with an appropriate number of segments specified.

ToomanyTYPDEFs
TYPDEFs are records emitted by the compiler to describe communal
variables. Create two sources from the old source, dividing the
communal variable definitions between them; recompile and relink.

Unexpectedend-of-fileonlibrary
The diskette containing the library has probably been removed. Try again
after replacing the diskette with the library.

U nex~ted end-of- file on scratch file
The Diskette containing the VM. TMP file was removed. Try again after
replacing the diskette with the VM. TMP file.

Unknownmodel ~ifier '-Mx·
x was none of the following: s, m, or I. Try again with correct command
line.

Unknownoption ·-x'
Specified option is not recognized by the link.cir. Try again with correct
command line.

Unrecognized Xenix version number
Number after -v option was neith« 2 nor 3. Try again with correct
command line.

Use - i option
User's program is n« small model impure (i.e., it consists of more than
onesegment). Relinkusingthe-ioption.

Version number missing
Numbermissingafter-voption. Tryagainwithcorrectcooummdline.

Warning: Groups name and name overlap

D-28

User's program contains overlapping groups. Unless one group is
completely contained by the other, fix the source code, recompile, and
relink.

(

(

(

)

)

CompDer, Assembler, and JLinker MfSSSgeS

Warning: model mismatch
One or more object modules were not compiled using the memory model
specified by the - M option. Recompile the offending module and
relink.

Warning: nostacksegment
User'sprogramcontainsnosegmentofcombine-typestaclt.

Warning: too many public symbols
The user has asked for a sorted listing of public symbols in the list file, but
there are too many symbols to sort. The linker will produce an unsorted
listing of the public symbols.

-useenbefore-nl
User has specified a symbol to look for (using the -u option) before
specifying the maximum symbol length with the -nl option. Try again
placing the -nl option and its argument before all -u options and their
arguments.

D-29

(

)

Index

A

-a option
lint 3-8

Accessing Registers
Adb 6-1

basic tool
description

As 7-1
assembler
basic tool

assembler
Assembler See As
Assembler See As

error messages
A waking Processing

B

1-1
1-2

7-1
1-1

2-15

11-9

11-11

) -b option
lint 3-4

)

Block Devices
Device Drivers

-c option
C compiler
lint 3-7

c

11-29

2-8

C compiler 2-1
-I option, include file search 2-14
-1 option

library linking 2-9
-o option

a.out file naming 2-5
output optimization 2-

10
-P option, preprocessor invocation

2-15
-p option, profiling code 2-12
-S option
-s option, output stripping 2-11

assembly language output 2-
12

-x option, external symbol entry
2-10

C compiler (continued}
-X option, symbol saving
a.out file

default output file 2-3
naming 2-4

assembly language output
creating

object files
D option

macro definition
error messages

evaluation order
function calls

counting 2-12
search 2-14

labe I discard
library

linking 2-9
linking

library 2-9

2-8

2-13
2-15

3-11

2-10

lint directives, effect
macro

definition
preprocessor

moo.out file write out
multiple source files

2-13
2-15

object file
creation 2-4

optimization
output

2-10

output file See a.out file
output file See a.out file

assembly language output
12

stripping 2-11
preprocessing
preprocessing
profiling code
source file

linking 2-4
multiple 2-4
single 2-2

2-13
2-15
2-12

2-10

2-12

3-11

2-12
2-3

2-

strip command, output stzipping
2-10

symbol table 2-11
.s file 2-12

C language 2-1
compiler See cc
compiler See cc
usage check 1-1
YM!C 9-1
string extraction 1-3

1

Index

C programming language
C programs 2-1

creating 1-1
C source file

compilation See C compiler
cc command

error messages 2-15
source file

compiling 2-3
Character Devices

Device Drivers
Character Lists
Character Lists
clists

11-18
11-19
11-25

See Character Lists
Command 1-3

execution 1-3
interpretation 1-3
SCCS commands See SCCS
SCCS See SCCS

Compatibility Issues
Context Switching 11-5
Controlling Registers
copyio 11-14

D

-D option
C compiler 2-13
C compiler 2-15

De bugger See Adb
De bugger See Adb
Defining Registers 12-9
Del ta See SCCS
Desk calculator

specifications 9-31
Device Driver Routines

Block Devices 11-31
Character Devices 11-19

1-1

2-2

11-16

11-9

Naming Conventions 11-18
Line Printer Routines 12-3

Device Drivers

2

Block Devices 11-29
Character Devices 11-18
Character Devices 11-26
Character Devices 11-29
Character Interface 11-30
Definition 11-1
Disk Drives 12-25
1/0 Control 12-20

Device Drivers (continued)
Interrupt Routines 11-20
Interrupt Routines 12-16
Interrupt Routines 12-18
Interrupt Routines 12-30
Interrupt Routines for Character

Devices 11-25
Line Discipline Routines
Line Printer 12-2
Line printers 11-29
Magnetic Tape 11-29
Modem Routines 12-16
Overview 11-1
Sample Code 12-1
Scheduling
Terminal 12-8
Terminals
Warnings
Writing 11-2

11-12

11-26
11-36

Block Devices 11-1
Character Devices 11-1

Disk Drives
Device Drivers 12-25
creation 1-2
prof 2-12

F

File 1-2
archives 1-2
block counting 1-3

11-25

check sum computation 1-3
error message file See Error

message file
error message file See Error

message file
octal dump 1-2
relocation bits removal 1-3
removal

SCCS use See SCCS
Source Code Control System See

SCCS
symbol removal 1-3
text search, print 1-3

FORTRAN

conversion program 8-20

(

(

(

)

)

)

Index

FORTRAN (continued}

getc
getc
getcb
getcf

11-22
11-26
11-23
11-23

G

H

-h option
lint 3-9
C compiler 2-14

Hard Disk Routines
hdintr 12-30
hdread 12-32
hdstart 12-30
hdstrategy 12-28
hdwrite 12-32

hrlintr 12-30
h r!read 12-32
h dstart 12-30
hdstrategy 12-28
hdwrite 12-32
Hexadecimal dump 1-2

I

in 11-9
in b 11-9
Interrupt Routines
Interrupt Routines 11-20
Interrupt Routines 11-8

Character Device Drivers
Interrupt Service Routines
Interrupt Time Processing
Interrupt Vectors 11-35
Jn terrupt.s

Acknowledgement 11-10
No Acknowledgement

ioctl 11-14

iomove 11-16

11-25
11-8
11-7

11-10

K

Kernel Functions 11-4
Kernel Routines

Data. transfer 11-14

L

-1 option
lint 3-12

2-1 Id
basic tool 1-1
link editor used with as 7-1

Lex 8-1
-JI flag

library access 8-5
O, end or file notation
a.out file

contents 8-5
action

default 8-8
description
repetition
specification

8-3
8-9
8-8

alternation 8-7

8-12

ambiguous source rules 8-12
angle brackets (< >)

operator character 8-24
operator character 8-4
start condition referencing 8-

16
arbitrary character match 8-6
array size change 8-24
asterisk (*)

operator character 8-25
operator character 8-4
repeated expression specification

8-6
automaton interpreter

initial condition resetting 8-
16

backslash (\)
C escapes 8-4
operator character 8-24
operator character 8-4
operator character escape 8-4
operator character escape 8-6

3

Index

Lex (continued}
BEGIN

4

start condition entry 8-
16

blank character
quoting 8-4
rule ending 8-4

blank, tab line beginning 8-17
braces ({})

expression repetition 8-8
operator character 8-25
operator character 8-4

brackets (11)
character class specificat.ion 8-5
character class use 8-1
operator character 8-24
operator character 8-4
operator character escape 8-5

buffer overfiow 8-13
C escapes 8-4

~::: ~ :~ operator
left context recognizing 8-

15
character class inclusion
context sensitivity 8-7
operator character 8-24
operator character 8-4
string complement 8-5

character
character class

notation 8-1
specification
specification
internal use
set table 8-22
set table 8-24

8-5
8-22
8-22

translation table See set table

context sensitivity 8-7
copy classes 8-17
dash (-)

character class inclusion
operator character 8-24
operator character 8-4
range indicator 8-5

definition
expansion 8-8
format 8-18
placement 8-8
character set table 8-22
contents 8-18

8-5

8-5

Lex (continued}
definition (conlinued}

contents 8-23
format 8-23
location 8-18
specification 8-17

delimiter
discard 8-18
rule beginning marking 8-1
source format 8-2
third delimiter, copy 8-

18
description 8-1
description 1-2
do liar sign ($)
do liar sign ($) operator

right context recognizing 8-
15

con text sensitivity 8-7
end or line notation 8-1
operator character 8-24
operator character 8-4

dot(.) operator See period(.)

double precision constant change
8-21

ECHO
format argument, data printing

8-Q
end-of-file

O handling 8-12
yywrap routine 8-12

environment
change 8-15

expression
new line illegal 8-4
repetition 8-8

external character array 8-Q
environment change 8-

15
FOR'IRAN conversion program

8-20
grouping 8-7
1/0 library See library
1/0 routine

access 8-11
consistency 8-11

input
input() routine 8-11

character 1/0 handling 8-
22

description 8-1

(

(

(

)

)

)

Index

Lex (cominued}
:nput () routine (cominued}

end-or-file, 0 notation
12

ignoring 8-8
manipulation restriction

15
invocation 8-4
left context
left context 8-7

Cal'et (') operator 8-15
sensitivity 8-15

lex.yy.c file 8-5
lexical analyzer

environment change
15

library
access 8-5
avoidance 8-5
backup limitation 8-12
loading 8-HI

line beginning match
line end match 8-7
loader ftag See -ll ftag
lookahead characteristic
lookahead characteristic
ma.tch count 8-Q
matching

occtJrrence counting
13

preferences 8-12
new line

illegality 8-4
newline

escape 8-23
matching 8-13

octal escape 8-6
operator character

escape 8-4
operator characters

designated 8-24
escape 8-5
escape 8-6
listing 8-4
literal meaning 8-4
quoting 8-4
See also Speciftc Operator

Character
optional expression

speciftcation 8-6
output(c) routine 8-11

character 1/0 handling
22

8-

8-

8-7

8-12
8-10

8-

8-

Lex (continued}
output (c) routine {continued}
parentheses (())

grouping 8-7
operator character 8-4
operator character 8-25

parser generator
analysis phase 8-2

percentage sign(%)
delimiter notation (%%) 8-1
operator character 8-4
remainder operator 8-

19
source segment separator 8-8

period (.)
designted 8-24
arbitrary chal'acter match 8-6
newline no match 8-13
operator character 8-4

plus sign (+)
operator character 8-25
operator character 8-4
repeated expression speciftcation

8-6
preprocessor statement entry 8-18
question mark (T)

operator character 8-25
operator character 8-4
optional expression specification

8-6
quotation marks, double ()"
quotation marks, double ()"
real numbers rule 8-18
regular expression

description 8-3
end indication 8-3
operators See operator characters

rule component 8-3
REJECT 8-14
repeated expression

speciftcation 8-6
right context

dollar sign ($) operator 8-
15

rule
active 8-16
real number 8-18

rules
components 8-3
format 8-24

semicolon (;)

5

Index

Lex (continued}

6

semicolon (;) (continued)
null statement 8-8

slBBh (/)
operator character
operat.or character
trailing text

source
source definitions

8-25
8-4
8-7

specification 8-17
format 8-23

source program
compilation 8-4
copy into generated program 8-

17
description 8-1
format 8-17
format 8-2
interception failure 8-17
segment separat.or 8-8

spacing character ignoring 8-9
start
start condition
start condition 8-7

entry 8-16
environment change 8-

15
format 8-23
location 8-23
abbreviation 8-16

statistics gathering 8-20
string

printing 8-3
substitution string

definition See definition
tab line beginning See blank, tab

line beginning
text. character

quoting 8-4
trailing text
unput

8-7

unput (c) routine 8-11
character 1/0 handling

22
REJECT noncompatible

15

8-

8-

unreachable statement
vertical bar (~

3-4

action re petition
alternation
operat.or character
operator character

8-9
8-7
8-25
8-4

Lex (continued}
wrapup See yywrap routine
Yacc
Y ace interface

tokens 8-19
yylex () 8-18
interface 8-2
library loading

yyleng variable
yyless ()

8-19
8-9

text reprocessing 8-10
yyless (n) 8-10
yylex () program

Yacc interface 8-18
yylex program

contents 8-1
yymore ()
yytext

8-10

external character array
yywrap () 8-20
yywrap () routine 8-12

Li~rary 1-2
conversion 1-2
maintenance 1-2
ordering relation 1-2
sort 1-2

Line Discipline Routines
Device Driver 11-25

Line Printer Routines
Interrupt Routines 12-6
lpclose 12-4
lpintr 12-6
lpopen 12-3
lpstart 12-6
lpwrite 12-6
Device Driver 12-2

Line printers 11-29
linker

error messages 2-15
Lint 3-1

-a option 3-8
-b option 3-4
-c option 3-7
-h option 3-9
-ly directive 3-12
-n option 3-12
-p option 3-12
-u option 3-3

turnon 3-11
unused variable report

suppression 3-3
-x option 3-2

(

8-9

(

)

)

Index

Lint (continued}
ARGSUSED directive 3-11
ARGSUSED directive 3-12
argument number comments

turnoff 3-11
check 3-8
new rorm 3-10
old rorm, check 3-9
operand type balancing 3-6

assignment, implied See implied
assignment

binary operat.or, type check 3-6
unreachable See unreachable

break statement
C language check 1-1
C program check 3-1
C syntax, old form, check 3-9
cast See type cast
conditional operat.or, operand type

balancing 3-6
constant in conditional context

3-9
construction check 3-1
construction check 3-8
control information flow 3-11
degenerate unsigned comparison

3-8
description 3-1

defined 3-11
embedding 3-11

enumeration, type check 3-6
error message, runction name

3-5
expression, order 3-10
extern statement 3-2
external declaration, report

suppression 3-2
library declaration file

identification 3-12
error message 3-5
return value check 3-5
type check 3-6
unused See unused runction

implied assignment, type check
3-6

initialization, old style check 3-10
compatibility check 3-12
compatibility check suppression

3-12
directive acceptance 3-

12
file processing 3-12

Lint {continued}
LIN1LIBRARY directive
loop check 3-4

3-12

nonportable character check 3-7
nonporta.ble expression evaluation

order check 3-10
NOS'IRICT directive
NO'IREACHED directive

operand types balancing
precedence 3-9

output turnoff 3-11
agreement 3-6
alignment check 3-10
control 3-4

3-11
3-11

3-6

relational operator, operand type
balancing 3-6

scalar variable check 3-11
source file, library compatibility

check 3-12
statement, unlabeled report 3-4
structure selection operat.or, type

check 3-6
syntax 3-1

check 3-7
comment printing control
description 3-6
turnoff 3-11

unreachable brea.k statement,
report suppression 3-4

report suppression 3-3
unused runction, check
unused variable, check
VARARGS directive

3-7

3-2
3-2
3-12

external variable initialization
3-4

inner/outer block conflict 3-9
set/used information 3-3
static variable initialization 3-4
unused See unused variable

Loader See Id
Loader See Id
Loop

lint use See Lint
description 1-2

lpclose 12-4
lpintr 12-6
Jpopen 12-3
Jpstart 12-6
lpwrite 12-6
l_close 11-25
Jjnput 11-25
Jjoctl 11-25

7

Index

l_mdmint 11-25
!_open 11-25
!_output 11-25
IJead 11-25
!_write 11-25

description 1-2
preprocessing 1-2

M

Magr,et.ic Tape 11-29
Maintainer See Make
Maintainer See Make
Make 4-1

8

arguments 4-4
syntax 4-4
-d option 4-13
-n opt.ion 4-13
-t opt.ion 4-13
argument quoting 4-6

description file continuation
basic tool 1-2

macro deftnit.ion 4-6
command string substitution

hyphen (-) start 4-5
form 4-1
location 4-1
print without execution

13
dependency line substitution

form 4-1
comment convention
macro deftnit.ion 4-6
argument 4-4

dollar sign ($)
macro invocation 4-6
macro deftnit.ion 4-5

Ille
file generation 4-5
file update 4-1

time, date printing 4-13
updating 4-13
command string start

macro 4-6
macro definition

analysis 4- 6
argument 4-4
description 4-5
definition 4-6
definition override 4-6

4-2

4-5

4-

4-5

4-1

4-5

Make (continued}
macro definition (continued}

invocation 4-6
substitution 4-5
value assignment 4-6

medium sized projects
metatharact.er expansion

description file comment
object Ille

suffix 4-0
use 4-4

parentheses (())
macro enclosure 4-6

program maint.enance
command introduction

source file
suffixes 4-0

source grammar
suffixes 4-0

suffixes
list 4-0
table 4-0

target Ille
pseudo-target Illes 4-5
updat.e 4-13
argument 4-4

target name omission
touch opt.ion See -t opt.ion
transformation rules

table 4-0
troubleshooting 4-13
.c suffix 4-0
.DEFAULT 4-5
.r suffix 4-0
.IGNORE 4-5
.I suffix 4-0
.o suffix 4-0
.PRECIOUS 4-5
.r suffix 4-0
.s suffix 4-9
.SILENT 4-5
.y suffix 4-0
.yr suffix 4-9

Modem Interrupts 12-20
Modem Routines 12-16

4-1
4-1

4-1

4-1
4-1

4-3

Modes or Operation 11-4

(

(

(

)

)

)

Index

N

Naming Conventions
Device Driver Routines

Notational conventions

0

-o option
C compiler 2-10
C compiler 2-6

Object files
creating 2-8

Operation Modes
System Mode 11-4
User Mode 11-4

out 11-9
outb 11-9

-p option
C compiler
C compiler

p

lint 3-12
physio 11-34
Pipe 6-28

2-12
2-16

SCCS use See SCCS
Printing error messages
Processes

System
u Area
User

11-4
11-5
11-4

pror command 2-12
Program 4-1
Program development

maintainer See Make
maintainer See Make

putc 11-23
putc 11-26
putcb 11-23
putchar 11-24

description 1-2

11-18
1-4

11-26

1-1

putchar (continued)

Registers
Accessing
Controlling
Defining 12-9

R

11-9
11-9

SCCS use See SCCS

s

-s option
C compiler 2-11

secs 0-1
SCCS, source code control 1-2

%M% keyword
g-flle line precedence

30
-a option

login name addition use
23

flags deletion 6-16
data specification provision

20
flag removal 6-16

-e option
delta range printing

21
file editing use 6-7
login name removal 6-

24
flag initialization, modification

6-16
flag, value setting 6-16
output suppression 6-30
p-flle regeneration 6-26
file audit use 6-26
keyword message, error

treatment &-16
delta. inclusion list use

28
g-flle regeneration 6-26
delta range printing

21
I-file creation &-29

-m option
effective when &-18

6-

9

Index

SCCS, source code control (continued} SCCS, source code control (continued} (-m option (continued} checksum (continued}
file change identification 5- Ille corruption determination 5-

30 25
new file creation 5-27 command

-n option argument See argument
%M% keyword value use 5- execution control 5-4

30 explanation 5-26
g-flle preservation 5-12 comments
pipeline use 5-30 change procedure 5-17
delta printing 5-30 omission, effect 5-28
output effect 5-11 corrupted file

-r option determination 5-25
delta creation use 5-22 processing restrictions 5-
delta printing use 5-21 25
file retrieval 5-9 restoration 5-26
release number specification 5- d llag

27 default specification 5-
output suppression 5-28 16

-t option d-file
delta retrieval 5-11 temporary g-file 5-4
file initialization 5-19 data keyword
file modification 5-19 data specification component 5- (delta exclusion list use 5- 20

28 replacement 5-20
-y option data specification

comments prompt response 5- description 5-20
17 delta

new file creation 5-27 comments prompt 5-8
file audit use 5-26 file change procedure 5-8

0 (#)string g-file removal 5-12
file information, search 5- p-file reading 5-7

31 p-file read~11g 5-8
admin command delta table

file administration 5-25 delta removal, effect 5-
Ille checking use 5-25 31
file creation 5-5 description 5-17
use authorization 5-6 branch delta See branch delta

administrator
description 5-4 defined 5-1

argument defined 5-2
minus sign(-)>use 5-4 exclusion 5-28
types designated 5-4 inclusion 5-28
retrieval 5-10 interference 5-29

branch number latest release retrieval 5-

(description 5-2 11
cdc command level number See level number

commentary change 5-
17 name See SID

ceiling flag printing 5-21
protection 5-24 printing 5-30

checksum range printing 5-21

10

)

)

Index

SCCS, source code control (continued}
delta table (continued}

release number See release
number

removal 5-31
Jescriptive text

initialization 5-19
modification 5-19
removal 5-19

diagnostic output
-p option effect 5-12

diagnostics
code as help argument 5-

12
form 5-12

directory
directory use 5-1

file argument application 5-4
x-file location 5-3

error message
code use 5-12
form 5-12

exclamation point(!)
MR deletion use 5-19

file
description 5-4
processing 5-4
comment line generation 5-

28
commentary 5-27
comments omission, effect 5-

28
levei number 5-27
release number 5-27

file protection 5-23
administration 5-25
change identification 5-

30
change procedure 5-8
change, major 5-9
changes See delta
checking procedure 5-

25
comparison 5-32
composition 5-16
composition 5-2
corrupted file See corrupted file

creation 5-5
data keyword See data. keyword

descriptive text d~scription
17

5-

secs, source code control (continued}
file protection (continued)

descriptive text See descriptive
text

editing, -e option use 5-7
grouping 5-1
identifying information 5-

31
link See link
multipie concurrent edits 5-

22
name arbitrary 5-12
name See link:
name, s use 5-5
parameter initialization,

modification 5-19
printing 5-20
protection methods 5-

23
removal 5-5
retrieval See get command
x-file See x-file

flags
deletion 5-16
initialization 5-15
modification 5-15
setting, value setting 5-

16
use 5-16

floor flag
protection 5-24

g-file
creation 5-3
creation date, time recordation

5-13
description f>.3
line identification 5-30
line, %M% keyword value 5-

30
ownership 5-3
regeneration 5-26
removal, delta command use 5-

12
temporary See d-file

get command
-e optior, u!'~ 5-7
conC'urrent editing, directory use

5-21
delta inclusion, exclusion check

5-29
file retrieval
filename creation

5-6
5-6

11

Index

SCCS, source code control (continued} secs, source code control (continued} (get command (continued} output (continued}
g-file creation 5-3 suppression, -s option 5-
message 5-6 28
release number change 5-9 write to standBld output 5-

help command 11
Blgument 5-12 p-file
code use 5-12 contents 5-3
use 5-26 contents 5-7

i fiag creation 5-3
file creation, efl'ect 5-14 delta command reading 5-8

ID keyword See keyword naming 5-3
identification string See SID ownership 5-3
j fiag permissions 5-3

multiple concurrent edits regeneration 5-26
s pe cifi cation 5-22 update 5-3

keyword updating 5-4
data See data keyword keyword enclosure 5-13
format 5-13 piping
lack, error treatment 5- piping 5-28

16 -n option use 5-30
use 5-13 prs command

I-file file printing 5-20
(contents 5-3 purpose 5-1

creation 5-29 use 5-4
level number R

delta component 5-2 delta removal check 5-
new file 5-27 31
omission, file retrieval, efl'ect 5-9 release number

link -r option, specification 5-
number restriction 5-2 27

lock file See z-file change 5-2
lock fiag change procedure 5-Q
minus sign (-) delta component 5-2

option Blgument use 5-4 new file 5-27
Bl'gument use 5-4 protection 5-24

mode rm command
g-file 5-3 Ille removal 5-6

MR rmdel command
commental'y supply 5- delta removal 5-31

17 sccsdifl' command
deletion 5-18 Ille compBlison 5-32
new file creation 5-27 sequence number

multiple users 5-4 description 5-2
option argument SID

(description 5-4 components 5-2
processing order 5-4 delta printing use 5-21

output tab chB1acter
data specification See data -n option, designation 5-

specification 30
piping 5-28 user list
suppression, -g option 5- empty by default 5-23

30
12

)

Im.lex

SCCS, source rode control (continued)
user list (continued}

login name addition 5-
23

login name removal
24

protection rea.ture
user name

list 5-23
v flag

new file use
what command

file information
delta removal

x-flle
directory, location
naming procedure
permissions
temporary file copy
use 5-3

XENIX command
use precaution

z-file

5-23

S-16

S-31
f>..31

S-3
S-3
S-3
0.3

0.25

lock fl le use 5-3
ownership 0.3
perm1ss1ons 5-3

5-

Sharing Interrupt Vectors 11-35
sleep 11-11

described 1-1
Source Code Control System See

secs
Source files 1-1
spl routines 11-10
Stack

u Area 11-5
description 1-3

sum 1-3
description 1-3

Suspending Processing 11-11
Symbol 1-3

name list 1-2
removal 1-3

sync 1-3
description 1-3

System Calls
iocU routfoe 11-14

System Mode Stack 11-5

System Processes 11-4

T

Tags file 1-2
creation 1-2

Task Time Processing
tdclose 12-14
tdintr 12-16
tdioctJ 12-20
tdmint 12-20
tdmodem 12-16
tdopen 12-12
td plll'&ID 12-12
tdpara.m 12-14
tdproc 12-22
tdread 12-14
tdrint 12-18
tdwrite 12-14
tdxint 12-18
Terminal

tdmint 12-20
tdxint 12-18
tdioctJ 12-20
tdclose 12-14
tdinw 12-16
tdmodem 12-16
tdopen 12-12
tdparam 12-14
tdproc 12-22
tdread 12-14
tdrint 12-18
tdwrite 12-14
Device Driver Sample 12-8

Text editor 1-1
creating programs 1-1

timeout 11-12
description 1-2

ttinit 12-12

u

-u option
lint 3-3

u Area 11-5

User Processes 11-4

11-6

13

Index

v
-v option

lint 3-11
lint 3-3

vi, the screen-oriented text editor
1-1

w
wakeup 11-11

x
-x option

C compiler 2-10
lint 3-2

XENIX file
identifying information

XENIX Operating system
xxclose 11-19
xxclose 11-32
xxinit 11-19
xxinit 11-32
xxintr 11-20
xxintr 11-33
xxioctJ 11-21
xxioctJ 11-35
xxopen 11-lg
xxopen 11-32
xxproc 11-21
xxread 11-20
xxread 11-33
xxstart 11-20
xxstart 11-33
xxstrategy 11-32
xxwrite 11-21

xxwrite 11-34
14

li-31
1-1

y

Yacc g_1
% token keyword

union member name association
g_3o

CJaeft keyword
CJaeft keyword g-20

union member name association
g_3o

CJaeft token
synonym g_42

%nonassoc keyword
%nonassoc keyword g_21

union member name association
g_3o

%nonassoc token
synonyms g-42

%prec
o/oprec keyword g_21

synonym g_42
%-ight keyword
%-ight keyword g-21

union member name association
g_30

%-ight token
synonym g_42

9fl.oken
synonym g-42

%type keyword g_31
)0 key

endmarker token marker g_
10

-ly argument, library access g_25
-v option

y.output file g_}3
0 character

grammar rules, avoidance g_5
accept action See parser
accept simulation g_2g
action

0, negative number g_
2g

conflict source g-17
defined g_1
error rules g_23
form g_42
global flag setting g_28
input style g-26

(

(

(

Index

Yacc (continued} Yacc (continued}

)
action (continued} conflict (continued}

invocation 9-1 disambiguating rules g_
location 11-8 17
nonterminating 9-8 message 9-10
parser See parser precedence See precedence
return value 9-30 reduce/reduce conflict g_
sts.tement 9-7 17
sts.tement 9-8 reduce/reduce conflict g_
value in enclosing rules, access 22

9-20 resolution, not counted g_
ampersand(&) 22

bitwise AND operator 9- shirt/reduce conflict g_
31 17

desk calculator operator g.. shift/reduce conflict 0-
31 10

arithmetic expression shift/reduce conflict g_
desk calculator 9-31 22
parsing 0-20 source 11-17
precedence See precedence declaration

BSBOCiativity declaration section
arithmetic expression parsing 0- header file 0-30

20 specification file component g..4
grammar rule BS&ociation g.. description 1-2

22 desk calculator specifications 0-31
recordation 0-22 advanced features 11-35
token a.tts.chment 9-20 error recovery 9-36

BBterisk (1!1) floating point interval g_
desk calculator operator g.. 35

31 scalar conversion 0-36
backslash (\) dftag 0-28

escape character g..5 disambiguating rule 11-17
percentage sign (%) substitution disambiguating rules 11-17

0-41 dollar sign (S)
binary operator action significance g..7

precedence 9-21 empty rule 0-27
blank character enclosing rules, access 0-20

restrictions g..5 endmarker
braces ({}) lookahead token 0-12

action 9-8 parser input end 0-6
action statement enclosure g..7 representation 0-6
action, dropping 0-42 token number 0-10
header Ille enclosure g.. environment 11-25

30 error
colon (:) error action See parser

identifier, effect g..33 error token

) punctuation g..5 parser restart 0-23
comments handling 0-23

location g..5 nonBSsociating implication g..
conflict 22

BSsociativity See associativity parser restart 0-23
simulation 0-20

15

Index

Y ace (continued)
error token (continued)

yyerrok statement 0-24
escape characters 0-5
external interger variable 0-26

global ftag See global ftag
floating point intervals See desk

calculator
global ftag

lexical analysis 0-28
grammar rules
grammar rules 0-1

0 character avoidance 0-5
advanced reatures 0-35
ambiguity 0-15
associativity association 0-

22
C code location 0-42
empty rule 0-27
error token 0-23
rormat 0-5
input style 0-26
lert recursion 9-27
left side repetition 9-5
names 9-5
numbers 0-20
precedence association 9-

22
reduce action 0-11
reduction 9-12
rewrite 0-17
right recursion 0-27
specification file component 0-4
value 9-7

header file, union declaration
9-30

historical features 9-41
identifier

input synts.x 9-33
if-else rule 0-18
ir-then-else construction
input error detection
input language 9-1

style 0-26
synts.x 0-33

keyword 0-20
reservation 9-29

0-17
9-3

union member name association
0-30

le rt e::: ~ciation 9-16
lert associative

reduce implication 0-22

16

Y ace (continued)
lert recursion
lert recursion

value type
lex

interrace 8-2

9-27
9-31

lexical analyzer construction 9-
10

lexical analyzer
context dependency

28
defined 0-1
defined 9-9
endmarker return 9-6

9-

ftoating point constants 9-
37

runction 9-2
global flag examination 9-

28
identifier analysis
lex 9-10
return value 9-30
scope 9-8
specification file component 9-4
terminal symbol See terminal

symbol
token number agreement 9-9

lexical tie-in 9-28
Ii brary 9-25
library 9-26
literal

defined 9-5
delimiting 9-41
length 9-41

lookahead token
lookahead token 9-10

clearing 9-24
error rules 9-23

LR(2) grammar 9-33
main program
minus sign (-)

desk calculator operator 9-
31

names
composition 9-5
length 9-5
reference 9-4
token name See token name

newline character
restrictions

non associating
9-5

(

(

(

)

)

)

Index

Yacc (continued}
non associating (continued}

error implication 9-22
nonterminal name

input style 9-26
9-5 re pre sen ta.tio n

nonterminal symbol
nonterminal symbol

empty string match 9-6
9-2

location 9-6
name See nonterminal name

start symbol See start symbol

union member name association
9-31

octal interger
0 beginning 9-31

p81'8er
accept action 9-12
accept simulation 9-29
actions 9-11
arithmetic expression 9-

20
conOict See conOict
creation 9-20
deOned 9-1
description 9-10
error action 9-12
error handling See error
goto action 9-12
initial state 9-15
input end 9-6
lookahead token 9-11
movement 9-11
names, yy preOx 9-9
nonterminal symbol See

nonterminal
production railure 9-3
reduce action 9-11
restart 9-23
shirt action 9-11
start symbol recognition 9-6
token number agreement 9-9

percentage sign (%)
action 9-8
desk calculator mod opera.tor 9-

31
header Ole enclosure 9-

30
precedence keyword

20
9-

Yacc (continued}
percentage sign(%) (continued}

speciOcation file section separator
9-4

substitution 9-41
plus sign (+)

desk calculator opera.tor 9-
31

precedence
binary operator 9-21
change 9-21
grammar rule association 9-

22
keyword 9-20
parsing runction
recordation
token a.ttschment
unary opera.tor

program

9-20
9-22

9-20
9-21

speciOcation Ole component 9-4
punctuation 9-5
quotation marks, double (

literal enclosure 9-5
reduce action See p81'8er
reduce command

number rererence 9-20
reduce/reduce conOict
reduce/reduce conOict
reduction conOict See

)"

9-17
9-22

reduce/reduce conOict
reduction conOict See shift/reduce

conOict
reserved words
right association
right associative

shirt implication
right recursion
semicolon (;)

9-28
9-16

9-22
9-27

input style 9-26
punctuation 9-5

shirt action See p81'8er
shirt command

number reference 9-20
shirt/reduce conOict 9-17
shirt/reduce conftict 9-19
shirt/reduce conftict 9-22
simple-ir rule 9-18
slash (/)

desk calculator operator 9-
31

speciOcation Ole
contents 9-4

17

Index

Y ace (continued)
specifica.tion ftle (continued}

lexical analyzer inclusion g..4
sections sep&ra.tor g..4

specification files 9-2
start symbol

description 11-6
loca.tion 11-6

symbol synonyms 9-41
tab ch&racter

restrictions g..5
terminal symbol 11-2
token
token name

decl&ra.tion 11-6
input style 11-26

token names g..10
token number g..9

agreement g..9
assignment g..10
endmarker 11-10
associa.tivity 11-20
defined 11-1
error token See error token
names g..4
organiza.tion 11-1
precedence 11-20

unary opera.tor
precedence 11-21

underscore sign (_)
parser 9-14

union
copy g..30
declara.tion g..30
header ftle g..30
name associa.tion g..30

unreachable statement 3-4
value
value stack
value stack g..30

declara.tion 9-30
ftoa.ting point scalars, intergers

11-36
typing 11-30
union s~e union

vertical bar (~
bitwise OR operator g..

31
desk calculator opera.tor g..

31
grammar rule repetition 11-5
input style 11-26

18

(
Y ace (continued}

y.output ftle
y.output file 9-13

p&rser checkup 11-22
y.tab.c ftle 9-25
y.tab.h file 9-30
YYACCEPT 9-29
yych&r 11-26
yycle&rin statement 9-24
yydebug 11-26
yyerrok statement 9-24
yyerror 9-25
YYERROR 9-36
yylex 11-25
yyparse
yyp&rse 11-25

YY ACCEPT effect 9-29
YYSTYPE 9-30

(

(

)

)

Contents

Programming Commands (CP)

intro
adb
ad min
ar
as
ch
cc
cdc
comb
con fig
cpp
crer
ctags
delta
dosld
get
gets
hdr
help
Id
lex
lint
!order
m4
make

mks tr
nm
prof
prs
ran lib
ratfor

regcmp
rmdel
saet
sccsdiff
size
spline

Introduces XENIX Development commands.
Invokes a general-purpose debugger.
Creates and administers SCCS files.
Maintains archives and libraries.
Invokes the XENIX assembler.
Beautifies C programs.
Invokes the C compiler.
Changes the delta commentary of an SCCS delta.
Combines SCCS deltas.
Configures a XENIX system.
The C Language preprocessor.
Makes a cross-reference listing.
Creates a tags file.
Makes a de! ta (change) to an SCCS file.
XENIX to MS-DOS cross linker.
Gets a version of an secs file.
Gets a string from the standard input.
Displays selected parts of object files.
Asks for help about SCCS commands.
Invokes the link editor.
Generates programs for lexical analysis.
Checks C language usage and syntax.
Finds ordering relation for an object library.
Invokes a macro processor.
Maintains, updates, and regenerates groups of
programs.
Creates an error message file from C source.
Prints name list.
Displays profile data.
Prints an SCCS file.
Converts archives to random libraries.
Converts Rational FORTRAN into standard
FORTRAN.
Compiles regular expressions.
Removes a delta from an SCCS file.
Prints current SCCS file editing activity.
Compares two versions of an SCCS file.
Prints the size of an object file.
Interpolates smooth curve.

strings
strip
time
tsort
unget
val
xref
xstr
yacc

Finds the printable strings in an object file.
Removes symbols and relocation bits.
Times a command.
Sorts a file topologically.
Undoes a previous get of an secs file.
Validates an secs file.
Cross-references C programs.
Extracts strings from C programs.
Invokes a compiler-compiler.

(

(

(

)

)

INIRO(CP) INIRO(CP)

Name
intro - Introduces XENIX Development System commands.

Description
This section describes use of the individual commands available in
the XENIX Development System. Each individual command is
labeled with the letters CP to distinguish it from commands avail­
able in the XENIX Operating and Text Processing Systems. These
letters are used for easy reference from other documentation. For
example, the reference cc(CP) indicates a reference to a discussion
of the cc command in this section, where the letter "C" stands for
"Command" and the letter "P" stands for "Programming".

Syntax
Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [options] [cmdarg]

where:

name The filename or pathname of an executable file

option

cmdarg

See Also

A single letter representing a command option. By
convention, most options are preceded with a dash.
Option letters can sometimes be grouped together
as in -abal or alternatively they are specified
individually as in -a -b -c -d • The method of
specifying options depends on the syntax of the
individual command. In the latter method of
specifying options, arguments can be given to the
options. For example, the -f option for many
commands often takes a following filename argu­
ment.

A pathname or other conunand argument not
beginning with a dash. It may also be a dash alone
by itself indicating the standard input.

getopt(C), getopt(S)

Diagnostics
Upon termination, each conunand returns 2 bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of "nonnal" tennination) one supplied by the program
(see wait(S) and exit(S)). The former byte is 0 for normal termi­
nation; the latter is customarily 0 for successful execution and
nonzero to indicate troubles such as erroneous parameters, or bad

Page l

/Nl'RO(CP) /Nl'RO(CP)

or inaccessible data. It is called variously "exit code", "exit
status", or "return code", and is described only when: special
conventions are involved.

Notes
Not all commands adhere to the above syntax.

Page 2

(

(

(

)

)

ADE(CP) ADE (CP)

NaI11e

adb - debugger

Syntax

adb [- w] [objfil [corfil]]

Description

Adb is a general purpose debugging program. It may be used
to examine files and to provide a controlled environment for
the execution of XENIX programs.

Objfil is normally an executable program file, preferably con­
taining a symbol table; if not then the symbolic features of
adb cannot be used although the file can still be examined.
The default for obj/ii is a.out. Corfil is assumed to be a core
image file produced after executing obj/ii; the default for corfil
is core.

Requests to adb are read from the standard input and
responses are to the standard output. If the - w flag is
present then both obj/ii and corfil are created if necessary and
opened for reading and writing so that files can be modified
using adb. Adb ignores QUIT (CTRL-\); INTERRUPT
(DEL) causes return to the next adb command.

In general requests to adb are of the form

[addreas] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is
set to 0. For most commands count specifies how many times
the command will be executed. The default count is 1.
Address and count are expressions.

The interpretation of an address depends on the context it is
used in. If a subprocess is being debugged then addresses are
interpreted in the usual way in the address space of the sub­
process. For further details of address mapping see Addresses.

Page 1

ADB(CP) ADE (CP)

Expressions

+

"

The value of dot.

The value of dot incremented by the current incre­
ment.

The value of dot decremented by the current incre­
ment.

The last address typed.

integer An octal number if integer begins with a O; a hexade­
cimal number if preceded by # or Ox; otherwise a
decimal number.

integer .fraction
A 32 bit floating point number.

'cccc' The ASCII value of up to 4 characters. \may be used
to escape a '.

<name
The value of name, which is either a variable name or
a register name. Adb maintains a number of variables
(see Variables) named by single letters or digits. If
name is a register name then the value of the register
is obtained from the system header in corfil.

symbol A symbol is a sequence of upper or lower case letters,
underscores or digits, not starting with a digit. The
value of the symbol is taken from the symbol table in
objfil. An initial _or - will be prepended to symbol if
needed.

_symbol
In C, the 'true name' of an external symbol begins
with _. It may be necessary to use this name to dis­
tinguish it from internal or hidden variables of a pro­
gram.

(exp) The value of the expression exp.

Monadic operators

Page 2

(

(

(

)

)

ADE (CP) ADE (CP)

*exp The contents of the location addressed by exp in corftl.

@ exp The contents of the location addressed by exp in objfii.

- exp Integer negation.

-exp Bitwise complement.

Dyadic operators are left associative and are less binding than
monadic operators.

el+ e2 Integer addition.

e1- e2 Integer subtraction.

el *e2 Integer multiplication.

el o/oe2 Integer division.

e1 &e2 Bitwise conjunction.

el I e2 Bitwise disjunction.

el #e2 E1 rounded up to the next multiple of e2.

Commands

Most commands consist of a verb followed by a modifier or
list of modifiers. The following verbs are available. {The
commands '?' and '/' may be followed by '•'; see Addresses
for further details.)

? f Locations starting at address in objftl are printed
according to the format/.

/ f Locations starting at address in corfil are printed
according to the format/.

=! The value of address itself is printed in the styles indi­
cated by the format/. (For i format '?' is printed for
the parts of the instruction that reference subsequent
words.)

A format consists of one or more characters that specify a style
of printing. Each format character may be preceded by a

Page 3

ADB(CP) ADB(CP)

decimal integer that is a repeat count for the format character.
While stepping through a format dot is incremented tem­
porarily by the amount given for each format letter. If no for-
mat is given then the last format is used. The format letters (
available are as follows.

0 2

04

Print 2 bytes in octal. All octal numbers output by
adb are preceded by 0.

Print 4 bytes in octal.
q 2

Print in signed octal.
Q4

Print long signed octal.
d 2

Print in decimal.
D4

Print long decimal.
x 2

Print 2 bytes in hexadecimal.
X4

Print 4 bytes in hexadecimal.
u 2

Print as an unsigned decimal number.
U4

Print long unsigned decimal.
f 4

Print the 32 bit value as a floating point number.
F 8

Print double floating point.
b 1

Print the addressed byte in octal.
c 1

Print the addressed character.
c 1

Print the addressed character using the following
escape convention. Character ralues 000 t.o 040 are

(

printed as @ followed by the corresponding character {.
in the range 0100 to 0140. The character@ is printed
as@@.

s n
Print the addressed characters until a zero character is

Page 4

)

)

)

ADB(CP) ADE(CP)

reached.
S n

Print a string using the @ escape convention. n is the
length of the string including its zero terminator.

Y4
Print 4 bytes in date format (see ctime(3)).

n

a 0

Print as PDPll instructions. n is the number of bytes
occupied by the instruction. This style of printing
causes variables 1 and 2 to be set to the offset parts of
the source and destination respectively.

Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type
as indicated below.

/ local or global data symbol
? local or global text symbol

local or global absolute symbol

p 2

t 0

r 0

Print the addressed value in symbolic form using the
same rules for symbol lookup as a.

When preceded by an integer tabs to the next
appropriate tab stop. For example, 8t moves to the
next 8-space tab stop.

Print a space.
n 0

Print a newline.
,. ••• ,, 0

Print the enclosed string.
Dot is decremented by the current increment. Noth­
ing is printed.

+ Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

newline
If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous
comma.'l.d with a count of 1.

Page 5

ADB(CP) ADB (CP)

['!/]I value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used then the
match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the
matched location. If mask is omitted then - 1 is used.

[? /]w value ...
Write the 2-byte value into the addressed location. If the
command is W, write 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[?/]mbl elfl['t/]
New values for (bl, el, fl) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the '?' or '/' is followed
by '•' then the second segment (b2, e2, /2) of the map­
ping is changed. If the list is terminated by '?' or '/' then
the file (objfil or corfil respectively) is used for subsequent
requests. (So that, for example, '/m?' will cause '/' to
refer to objfil.)

>name
Dot is assigned to the variable or register named.

A shell is called to read the rest of the line following '! '.

$modifier
Miscellaneous commands. The available modifiers are:

<!Read commands from the file /and return.
> f Send output to the file f, which is created if it does

not exist.
r Print the general registers and the instruction

addressed by pc. Dot is set to pc.
f Print the floating registers in single or double length.

If the floating point status of pe is set to double (0200
bit) then double length is used anyway.

b Print all breakpoints and their associated counts and

(

commands. (
c C stack ba.cktra.ce. If address is given then it is taken .

as the address of the current frame (instead of r5). If
C is used then the names and (16 bit) values of all
automatic and static variables are printed for each

Page 6

)

)

)

ADB(CP) ADB(CP)

active function. IC count is given then only the first
count frames are printed.

e The names and values of external variables are
printed.

w Set the page width for output to addre88 (default 80).
s Set the limit for symbol matches to addre88 (default

255).
o All integers input are regarded as octal.
d Reset integer input as described in Expressions.
q Exit from adb.
v Print all non zero variables in octal.
m Print the address map.

:modifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at addre88. The breakpoint is executed
count- 1 times before causing a stop. Each time the
breakpoint is encountered the command c is executed.
If this command sets dot to zero then the breakpoint
causes a stop.

d Delete breakpoint at addre88.

r Run obifil as a subprocess. IC addre88 is given expli­
citly then the program is entered at this point; other­
wise the program is entered at its standard entry point.
count specifies how many breakpoints are to be
ignored .before stopping. Arguments to the subpro­
cess may be supplied on the same line as the com­
mand. An argument starting with < or > causes the
standard input or output to be established for the
command. All signals are turned on on entry to the
subprocess.

cs The subprocess is continued with signal 8 c 8, see 8ig­
nal(2). IC addre88 is given then the subprocess is con­
tinued at this address. IC no signal is specified then
the signal that caused the subprocess to stop is sent.
Breakpoint skipping is the same as for r.

&8 As for c except that the subprocess is single stepped
count times. If there is no current subprocess then
objfil is run as a subprocess as for r. In this case no

Page 7

ADB(CP) ADE(CP)

signal can be sent; the remainder of the line is treated
as arguments to the subprocess.

k The current subprocess, if any, is terminated.

Variables

Adb provides a number of variables. Named variables are set
initially by adb but are not used subsequently. Numbered
variables are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the
corftl. If corfil does not appear to be a core file then these
values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
s The stack segment size.
t The text segment size.

Addresses

The address in a file associated with a written address is deter­
mined by a mapping associated with that file. Each mapping is
represented by two triples (bl, el, fl) and (b2, e2, /2) and the
file address corresponding to a written address is calculated as
follows.

bl ::5 address< el
address=address+ fl- bl, otherwise,

b2 ::5 address< e2
address= address+ /2- b2,

=> file

=> file

(

otherwise, the requested address is not legal. In some cases (
(e.g. for programs with separated I and D space) the two seg-
ments for a file may overlap. If a ? or / is followed by an *
then only the second triple is used.

Page 8

)

)

ADB(CP) ADB(CP)

The initial setting of both mappings is suitable for normal a.out
and eare files. If either file is not of the kind expected then, for
that file, bl is set to 0, e1 is set to the maximum file size and /1 is
set to O; in this way the whole file can be examined with no address
translation.

So that adb may be used on large files all appropriate values are
kept as signed 32 bit integers.

Files

/dev/mem
/dev/swap
a.out
core

See Also

a.out{F), core(F)

Diagnostics

'Adb' when there is no current command or format. Com­
ments about inaccessible files, syntax errors, abnormal termi­
nation of commands, etc. Exit status is 0, unless last com­
mand failed or returned nonzero status.

Page 9

(,

(

c

)

)

)

ADMIN(CP) ADMIN(CP)

Name

admin - Creates and administers SCCS files.

Syntax

admin [- nJ 1- i(name)) 1- rre!J 1- t(namelJ 1- mag(flag-va111

f- dflag(flag-val)) [- alogin) (- elogin) (- m(mrlist
- y(comment)) (- h) (- z) files

Description

Admin is used to create new SCCS files and to change parameters or
existing ones. Arguments to sdminmay appear in any order. They
consist or options, which begin with - , and named files (note that.
SCCS filenames must begin with the characters 11.). Ir a named file
doesn't exist, it is created, and its parameters are initialized accord­
ing to the specified options. Parameters not initialized by a option
are assigned a default value. Ir a named file does exist, parameters
corresponding to specified options are changed, and other parameters
are Jett as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonSCCS files
(last component or the pathname does not begin with 111.) and
unreadable files are silently ignored. Ir the dash - is given, the
standard input is read; each line or the standard input is taken to be
the name or an SCCS file to be processed. Again, nonSCCS files and
unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed since the effects or the arguments apply
independently to each named file.

-n

- i(name)

This option indicates that a new secs file is to be
created.

The name of a file from which the text for a new
SCCS file is to be taken. The text constitutes the
first delta of the file (see - r below for delta
numbering scheme). Ir the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is encoun­
tered. Ir this option is omitted, then the SCCS file is
created empty. Only one SCCS file may be created
by an admin command on which the i option is sup­
plied. Using a single admin to create two or more
SCCS files require. that they be created empty (no
- i option). Note that the - i option implies the
- n option.

Pagel

ADMIN(CP)

- rrel

- t(name)

- tflag

b

ADMIN(CP)

The release into which the initial delta. is inserted.
This option ma.y be used only if the - i option is
also used. Ir the - r option is not used, the initial
delta is inserted into release 1. The level or the ini­
tial delta is always I (by default initial deltas are
n3Jlled 1.1).

The name or a file Crom which descriptive text ror
the SCCS file is to be taken. Ir the - t option is
used and admin is creating a new SCCS file (the - n
and/or - i options also used), the descriptive text
filename must also be supplied. In the case or exist,.
ing SCCS files: a - t option without a filename
causes removal of descriptive text (if any) currently
in the SCCS file, and a - t option with a filename
ca.uses text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This option specifies a flag, and possibly a value for
the flag, to be placed in the SCCS file. Several t
options may be supplied on a single admin com­
m and line. The allowable flags and their values are:

Allows use of the - b option on a get(CP)
command to create branch deltas.

(

ccet7 The highest release (i.e., "ceiling"), a number (,
less than or equal to gggg, which may be
retrieved by a get(CP) command for editing.
The default value for an unspecified c flag is
gggg_

f/loor The lowest release (i.e., "floor"), a number
greater than 0 but less than gggg, which may
be retrieved by a get(CP) command ror edit,.
ing. The default value for an unspecified r flag
is 1.

dslD The default delta num her (SID) to be used by
a get(CP) command.

Ca.uses the "No id keywords (ge6)" message
issued by get(CP) or delta(CP) to be treated as
a fatal error. In the absence or this flag, the
message is only a warning. The message is
issued if no secs identification keywords (see
get(CP)) are found in the text retrieved or
stored in the SCCS file. (

j Allows concurrent get(CP) commands ror edit,.
ing on the same SID of a.n SCCS file. This
allows multiple concurrent updates to the same
version of the SCCS file.

Page 2

ADMIN(CP)

)

)

) - d[flag]

ADM/N(CP)

A liit of releases to which deltas can no longer
be made (get - e against one of these
"locked" releases fails). The liit has the fol­
lowing syntax:

<list> ::= <range> I <list> , <range>
<range>::= RELEASE NUMBER I a

The character a in the list is equivalent to
specifying all releasu for the named SCCS file.

n Causes delta(CP) to create a "null" delta in
each of those releases (if any) being skipped
when a. delta is ma.de in a new release (e.g., in
ma.king delta 5.1 after delta 2.7, releases 3 and
4 are skipped). These null deltas serve as
"anchor points" so that branch deltas may
later be created from them. The absence or
this flag causes skipped releases to be nonex­
istent in the SCCS file preventing branch deltas
from being created from them in the future.

qtezt User-definable text substituted for a.II
occurrences of the keyword in SCCS file text
retrieved by get(CP).

mmod Module name of the SCCS file substituted for
a.II occurrences of the admin.CP keyword in
SCCS file text retrieved by get(CP). If the m
flag is not specified, the value assigned is the
name of the SCCS file with the leading s.
removed.

ttype

v(pgm]

Type of module in the SCCS file substituted for
a.II occurrences of
keyword in SCCS file text retrieved by

get(CP).

Causes delta(CP) to prompt for Modification
Request (MR) numbers as the reason for
creating a delta. The optional value specifies
the name of an MR num her validity checking
pro gram (see delta (CP)). (Ir th is ft ag is set
when creating an SCCS file, the m option must
a.lso be used even if its value is null).

Causes removal (deletion) of the specified flag from
an SCCS file. The - d option may be specified only
when processing existing secs files. Several - d
options may be supplied on a single admin com­
mand. See the - r option for allowable flag names.

Page 3

ADMIN(CP)

- alogin

lliat

ADMIN(CP)

A liet of releases to be "unlocked". See the
- r option for a description of the I flag and
the syntax of a li1t

A login name, or numerical XENIX group ID, to be
added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a options may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane­
ously. If the list or users is' empty, then anyone
may add deltas.

- elogin A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e options may be used on a
single admin command line.

- y(eommen4 The comment t.ext is insert.ed into the SCCS file as a
comment for the initial delta in a manner identical
to that of delta(CP). Omission of the - y option
results in a default comment line being inserted in
the form:

- m(mrlir4

-h

YY/ MM/ DD HH:MM:SS by login

The - y option is valid only if the - i and/or - n
options a.re specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file a.s the reason for creating
the initial delta in a manner identical to delta(CP).
The v flag must be set and the MR numbers a.re
validat.ed if the v flag ha.s a value (the name of an
MR number validation program). Diagnostics will
occur if the v flag is not set or MR validation fails.

Ca.uses admin to check the structure of the SCCS file
(see eccsfile(F)), and to compare a newly computed
checksum (the sum of a.II the cha.ra.ct.ers in the SCCS
file except those in the first line) with the checksum
that is stored in the first line of the SCCS file.
Appropriat.e error diagnostics a.re produced.

This option inhibits writing on the file, nullifying
the effect of any other options supplied, and is
therefore only meaningful when processing existing
files.

Page 4

(

(

(

)

)

)

ADMIN(CP)

- z

Files

ADMIN(CP)

The SCCS file checksum is recomputed and stored in
the first line of the secs file (see - b, above).

Note that use of this option on a truly corrupted file
may prevent future detection or the corruption.

The last component of all SCCS filenames must be of the form
s.filt-name. New SCCS files are created read-only (444 modified by
umask) (see chmod(C)). Write permission in the pertinent directory
is, of course, required to create a file. All writing done by admin is
to a temporary x-file, called x.filename, (see get(CP)), created with
read-only permission if the admin command is creating a new SCCS
file, or with the same mode as the SCCS file if it exists. After suc­
cessful execution or admin, the SCCS file is removed (if it exists),
and the x-file is renamed with the name or the secs file. This
ensures that changes are made to the SCCS file only if no errors
occurred.

It is recommended that directories containing SCCS files be mode
755 and that SCCS files themselves be read-only. The mode of the
directories allows only the owner to modify SCCS files contained in
the directories. The mode of the SCCS files prevents any
modification at all except by SCCS commands.

Ir it should be necessary to patch an SCCS file for any reason, the
mode may be changed to 644 by the owner allowing use of a text
editor. Care mu1t be taken! The edited file should alway1 be pro­
cessed by an admin - h to check for corruption followed by an
admin - z to generate a proper checksum. Another admin - h is
recommended to ensure the SCCS file is valid.

Admin also makes use or a transient lock file (called z.filename),
which is used to prevent simultaneous updates to the secs file by
different users. See get(CP) for further information.

See Also

delta(CP), ed(C), get(CP), help(CP), prs(CP), what(C), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Page 5

(

c

(

)

)

)

AR(CP) AR(CP)

Name
ar - Maintains archives and libraries.

Syntax
ar key [posname] afile name ...

Description
Ar maintains groups of files combined into a single archive file.
Its main use is to create and update library files as used by the link
editor though it can be used for any similar purpose.

Key is one charactec from the set drqtpms, optionally con­
catenated with one or more of vuaibcln. Ajile is the archive file.
The names are constituent files in the archive file. The posname is
the name of a constituent file, and is required when certain keys
are used. The meanings of the key characters are:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. If the
optional character u is used with r, then only those files
with modified dates latec than the archive files are
replaced. 1f an optional positioning character from the set
abi is used, then the posname argumenl must be prcsenl
and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed
at the end.

q Quickly appends the named files to the end of the archive
file. Optional positioning characters are invalid. The
command does not check whether the added members are
already in the archive. Useful only to avoid quadratic
behavior when creating a large archive piece by piece.

t Prints a table of contents of the archive file. If no names
are given, all files in the archive are tabled. If names are
given, only those files are tabled.

p Prints the named files in the archive.

m Moves the named files to the end of the archive. If a
positioning character is present, then the posname argu­
ment must be present and, as in r, specifies where the
files are to be moved.

Extracts the named files. If no names are given, all files
in the archive are extracted. Unless the optional character
n is used with x, an extracted file's modification date will
be set to the date stored in that file's archive header. In

Page 1

AR(CP)

v

AR(CP)

neither case does x alter the archive file.

Verbose. Under the verbose option, ar gives a file­
by-file description of the making of a new archive file
from the old archive and the comtituent files. When used
with t, it gives a long listing of all information about the
files. When used with x, it precedes each file with a
name.

c Create. Normally ar will create qfi/e when it needs to.
The create option suppres,,es the normal message that is
produced when qfile is created.

Local. Normally ar places its temporary files in the
directory /tmp. This option causes them to be placed in
the local directory.

n New. When used with the key character x it sets the
extracted file's modification date to the current date.

When ar creates an archive, it always creates the header in the
format of the local system (see ar(F)).

Files
/tmp/v• Temporary files

See Also
ld(CP), lorder(CP), ar(F)

Notes
1f the same file is mentioned twice in an argument list, it may be
put in the archive twice.

Page 2

(

(

(

)

)

AS(CP) AS(CP)

Name

as - Xenix 8086/186/286 Assembler.

Syntax

as [options] source-file

Description

As assembles 8086/186/286 assembly language source files
and produces linkable object modules. The command accepts
one source-file. The source file name must have the ".s"
extension. The resulting file containing the object module is
given the same base name as the source, with the ".o" exten­
sion replacing the ".s" extension.

There are the following options:

-a Assembled segments are output in alphabetic order,
instead of in order of occurrence in the source file.

-d Creates program listings for both passes of the assem­
bler. This listing can be used to resolve phase errors
between assembler passes. The -d option is ignored if
the -1 option is not in effect.

-1 Produces a listing file. The listing file has the same base
name as the source file, but has the ".lst" extension.

-Mu Disables case sensitivity for all names and symbols. This
option makes upper and lowercase letters in names and
symbols indistinguishable to the assembler. This option
also causes the symbols defined by the EXTRN and
PUBLIC directives to be output in uppercase regardless
of their original spelling.

-Mx Disables case sensitivity for all names and symbols
except those names defined by the EXTRN and PUBLIC
directives. This option is similar to the -Mu option
except that public and external names copied to the
object file retain their original spelling.

Page 1

AS (CP) AS (CP)

-n Suppresses the generation of the symbol table in the pro­
gram listing. This option is ignored if the -I option is
not in effect.

-o filename (
Directs the generated object module to the file named
filename. No default extension is assumed.

-0 Causes values in the program listing to be displayed m
octal. The default radix is hexadecimal.

-r Causes generation of actual 8087 /287 instructions
instead of software interrupts for the floating point emu­
lation package. Object modules created using this option
can only be executed on machines with an 8087 or 287.

-X Directs the assembler to list any conditional block whose
IF condition resolves to false. This option can be over­
ridden in the source file by using the . TFCOND direc­
tive. This option is ignored if the -1 option is not in
effect.

By default, as recognizes 8086 instruction mnemomcs only. (
To assemble 186, 286, 8087, or 287 instructions, the
corresponding .186, .286c, .286p, .8087, or .287 directive must
be given in the source file.

Files

/bin/as

See Also

cc(C), Id(CP), XENIX Programmer's Guide

Note

Unless the -r is given, as assumes all 8087 /287 instructions {.
are to be carried out using floating point emulation. The -r
option should only be used on machines with an 8087 or 287
coprocessor.

Page 2

)

CB(CP) CB(CP)

Name

cb - Beautifies C programs.

Syntax

cb (file)

Description

Cb places a copy of the C program in file (standard input if file is
not given) on the st3ndard output with spacing and indentation that
displays the structure or the program.

Page 1

(.t

(

)

)

CC (CP) CC(CP)

Name

cc - Invokes the C compiler.

Syntax

cc [options] filename ...

Description

Cc is the XENIX C compiler command. It creates executable
programs by compiling and linking the files named by the
filename arguments. Cc copies the resulting program to the
file a.out.

The filename can name any C or assembly language source file
or any object or library file. C source files must have a ".c"
filename extension. Assembly language source files must
".s'', object files ".o", and library files ".a" extensions. Cc
invokes the C compiler for each C source file and copies the
result to an object file whose basename is the same as the
source file but whose extension is ".o". Cc invokes the
XENIX assembler, as , for each assembly source file and
copies the result to an object file with extension ".o". Cc
ignores object and library files until all source files have been
compiled or assembled. It then invokes the XENIX link editor,
Id , and combines all the object files it has created together
with object files and libraries given in the command line to
form a single program.

Files are processed in the order they are encountered in the
command line, so the order of (iles is important. Library files
are examined only if functions referenced in previous files
have not yet been defined. Library files must be in
ranlib(CP) format, that is, the first member must be named
_.SYMDEF, which is a dictionary for the library. The library
is searched repeatedly to satisfy as many references as possi­
ble. Only those functions that define unresolved references
are concatenated. A number of "standard" libraries are
searched automatically. These libraries support the standard C
library functions and program startup routines. Which
libraries are used depends on the program's memory model

Page 1

CC(CP) CC(CP)

(see "Memory Models" below). The entry point of the
resulting program is set to the beginning of the "main" pro­
gram function.

There are the following options:

-P

-E

Preprocesses each source file and copies the result to a file
whose basename is the same as the source but whose
extension is ".i". Preprocessing performs the actions
specified by the preprocessing directives.

Preprocesses each source file as described for - P , but
copies the result to the standard output. The option also
places a #line directive with the current input line number
and source file name at the beginning of output for each
file.

-EP
Preprocesses each source file as described for - E , but
does not place a #line directive at the beginning of the
file.

-C
Preserves comments when preprocessing a file with - E or
- P. That is, comments are not removed from the
preprocessed source. This option may only be used in
conjunction with - E or - P •

- D namer= string I
Defines name to the preprocessor as if defined by #define
in each source file. The form "- D name" sets name to
1. The form "- D name = stn'ng" sets name to the given
string.

- I pathname
Adds pathname to the list of directories to be searched
when an #include file is not found in the directory con-

(

taining the current source file or whenever angle brackets (.-
(< >) enclose the filename. If the file cannot be found ~
in directories in this list, direc_tories in a standard list are
searched.

Page 2

)

)

CC(CP) CC(CP)

-X
Removes the standard directories from the list of direc­
tories to be searched for #include files.

- V string
Copies string to the object file created from the given
source file. This option is often used for version control.

-Wnum
Sets the output level for compiler warning messages. If
num is 0, no warning messages are issued. If 1, only
warnings about program structure and overt type
mismatches are issued. If 2, warnings about strong typing
mismatches are issued. If 3, warnings for all automatic
conversions are issued. This option does not affect com­
piler error message output.

-w

-p

Prevents compiler warning messages from being issued.
Same as "- W O".

Adds code for program profiling. Profiling code counts
the number of calls to each routine in the program and
copies this information to the man.out file. This file can
be examined using the prof(CP) command.

- i Creates separate instruction and data spaces for small
model programs. When the output file is executed, the
program text and data areas are allocated separate physical
segments. The text portion will be read-only and may be
shared by all users executing the file. The option is
implied when creating middle or large model program.
(Not implemented on all machines.)

- Fnum
Sets the size of the program stack to num bytes. Default
stack size if not given, is 2 Kbytes.

-K
Removes stack probes from a program. Stack probes are
used to detect stack overflow on entry to program rou­
tines.

Page 3

CC(CP) CC(CP}

- nl num
Sets the maximum length of external symbols to num.
Names longer than num are truncated before being copied
to the external symbol table.

- M string
Sets the program configuration. This configuration defines
the program's memory model, word order, data threshold.
It also enables C language enhancments such as advanced
instruction set and keywords. The stn"ng may be any com­
bination of the following (the "s", "m", and "l" are
mutually exclusive):
s Creates a small model program (default).
m Creates a middle model program.
l Creates a large model program.
e Enables the far and near keywords.
2 Enables 286 code generation for compiled C
source files.
b Reverses the word order for long types. High

order word is first. Default is low order word first.
t num Sets the size of the largest data item in the

data group to num. Default is 32,767.

- c Creates a linkable object file for each source file but does
not link these files. No executable program is created.

- o filename
Defines filename to be the name of the final executable
program. This option overrides the default name a.out.

- des
Directs cc to create an executable program for MS-DOS
systems.

- llibrary
Searches library for unresolved references to functions.
The library must be an object file archive library in ranlib
format.

-0
Invokes the object code optimizer.

-S
Creates an assembly source listing of the compiled C

Page 4

(

(

(

)

CC (CP) CC(CP)

-L

source file and copies this listing to the file whose
ba.scname is the same as the source but whose extension
is ".s". It should be noted that this file is not suitable for
assembly. This option provides code for reading only.

Creates an assembler listing file containing assembled code
and assembly source instructions. The listing is copied to
the file whose basename is the same as the source but
whose extension is ".L ". This option suppresses the
"- S" option.

- NM name
Sets the module name for each compiled or assembled
source file to name. If not given, the filename of each
source file is used.

- NTname
Sets the text segment name for each compiled or assem­
bled source file to name. If not given, the name
"modu/e_1EXT" is used for middle model, and "_1EXT"
for small model.

- ND name
Sets the data segment name for each compiled or assem­
bled source file to name. If not given, the name
"_DATA" is used.

Many options (or equivalent forms of these options) are
passed to the link editor as the last phase of compilation. The
"s", "m", and "l" configuration options are passed to specify
memory requirements. The - i, - F, and - p are passed to
specify other characteristics of the final program.

The - D and - I options may be used several times on the
command line. The - D option must not define the same
name twice. These options affect subsequent source files only.

Memory Models

Cc can create programs for three different memory models:
small, middle, and large. In addition, small model programs
can be pure or impure.

Page 5

GG(CP) GG(OP)

Impure-Text Small Model
These programs occupy one 64 Kbyte physical segment in
which both text and dat.a are combined. Ge creates
impure small model programs by default. They can also
be created using the "-Ms" option. (

Pure-Text Small Model
These programs occupy two 64 Kbyte physical segments.
Text and dat.a are in separate segments. The text is read­
only and may be shared by several processes at once.
The maximum program size is 128 Kbytes. Pure small
model programs are created using the "-i" and "-Ms"
options.

Middle Model
These programs occupy several physical segments, but
only one segment contains data. Text is divided among as
many segments as required. Special call and returns are
used t.o access functions in other segments. Text can be
any size. Dat.a must not exceed 64 Kbytes. Middle
models programs are created using the "-Mm" option.
These programs are always pure.

Large Model
These programs occupy several physical segments with
both text and data in 88 many segments 88 required. Spe­
cial calls and returns are used t.o access functions in other
segments. Special addresses are used to access dat.a in
other segments. Text and data may be any size, but no
dat.a item may be larger than 64 Kbytes. Large model
programs are created using the "-Ml" option. These pro­
grams are always pure.

Small, middle, and large model object files can only be linked
with object and libracy files of the same model. It is not possi­
ble to combine small, medium, and large model object files in
one executable program. Ge automatically selects the correct
small, middle, or large versions of the st.andard libraries based
on the configuration option. It is up t.o the user t.o make sure
that all of his own object files and private libraries are properly
compiled in the appropriate model.

The special calls and returns used in middle and large model
programs may affect execution time. In particular, the

Page 6

(

(

CC(CP) CC(CP)

execution time of a program which makes heavy use of func­
tions and function pointers may differ noticably from small
model programs.

In both middle and large model programs, function pointers
are 32 bits long. In large model programs, data pointers are
32 bits long. Programs making use of such pointers must be
written carefully to avoid incorrect declaration and use of
these variables. Lint(CP) will help to check for correct use.

The - NM, - NT, and - ND options may be used with mid­
dle and large model programs to direct the text and data of
specific object files to named physical segments. All text hav­
ing the same text segment name is placed in a single physical
segment. Similarly, all data having the same data segment
name is placed in a single physical segment.

Files

/bin/cc

See Also

as(CP), ar(CP), Id(CP), lint(CP), ran lib(CP)

Notes

Error messages are produced by the program that detects the
error. These messages are usually produced by the C com­
piler, but may occasionally be produced by the assembler or
the link loader.

All object module libraries must have a current ranlib direc­
tory.

Page 7

(

(

GDG(CP) GDG(CP)

Name

cdc - Changes the delta commentary of an secs delta.

Syntax

cdc - rSID [- m[mrlist)J [- y(comment)) files

Description

Ode changes the delta commentary for the SID specified by the - r
option, or each named SCCS file.

Delta commentary is defined to be the Modification Request (MR)
and comment information normally specified via the delta(CP) com­
mand (- m and- y options).

Ir a directory is named, cdc behaves as though each file in the direc­
tory were specified as a named file, except that nonSCCS files (last
component of the pathname does not begin with s.) and unreadable
files are silently ignored. Ir a name or - is given, the standard input
is read (see Warning); each line of the standard input is taken to be
the name or an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist or options
and file names.

All the described options apply independently to each named file:

- rSID

- m[mrlistj

Used to specify the SCCS /Dentification (SID)
string or a delta for which the delta commen­
tary is to be changed.

Ir the SCCS file has the v flag set (see
admin(CP)) then a list or MR numbers to be
added and/or deleted in the delta commentary
or the SID specified by the - r option may be
supplied. A null MR list has no effect.

MR entries are added to the list or MRs in the
same manner as that or delta(CP). In order to
delete an MR, precede the MR number with
the character! (see Examples). Ir the MR to
be deleted is currently in the list or MRs, it is
removed and changed into a "comment" line.
A list of all deleted MRs is placed in the com·
ment section or the delta commentary and pre­
ceded by a comment line stating that they were
deleted.

Page 1

CDC(CP) CDC(CP)

Ir - m is not used and the standa.rd input is a.
termina.l, the prompt MR.s! is issued on the
standa.rd output before the sta.nda.rd input is
read; if the standa.rd input is not a. termina.l,
no prompt is issued. The MR.s! prompt always
precedes the comments? prompt (see - y
option).

MRs in a list a.re sep3.I'a.ted by blanks and/or
tab characters. An unesca.ped newline cha.rac­
ter terminates the MR list.

Note tha.t if the v flag has a. value (see
admin(CP)), it is ta.ken t.o be the name of a
program (or shell procedure) which validates
the correctness or the MR numbers. Ir a
nonzero exit status is returned from the MR
number validation program, cdc terminates
and the delb commentary remains unchanged.

- y(comment) Arbitrary text used t.o replace the comment(s)
already existing for the delta specified by the
- r option. The previous commentB a.re kept
and preceded by a comment line stating that
they were changed. A null comment ha.s no
effect.

Ir - y is not specified and the standa.rd input is
a terminal, the prompt "commentB!" is issued
on the standard output before the sbndard
input is read; if the standard input is not a ter­
minal, no prompt is issued. An unesca.ped
newline cha.ra.cter terminates the comment text.

In genera.I, ir you ma.de the delta., you can change itB delta.
commentary; or if you own the file and direct.cry you can
modiCy the delta commenta.ry.

Examples

The following:

cdc - rl.6 - m"bl78-12345 !bl77-54321 bl7Q-00001" - ytrouble
s.file

adds bl78-12345 a.nd bl79-00001 t.o the MR list, removes bl77-54321
from the MR list, and adds the comment trouble to delta. 1.6 of
s.file.

Page 2

(

CDC(CP)

The following int.eractive sequence does the same thing.
cdc - r 1.6 s .file
MRs! lbl77-54321 bl78-12345 bl79-00001
comments! trouble

CDC(CP)

) Warning

)

Ir SCCS file names are supplied to the cde command via the standard
input (- on the command line), then the - m and - y options must
also be used.

Files

x-file See delta(CP)

z-rile See delta (CP)

See Also

admin(CP), delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagn.ostics

Use help(CP) for explanations.

Page 3

(

(

c

)

)

COMB(CP) OOMB(CP)

Name

comb - Combines SCCS deltas.

Syntax

comb [- o) [- s) (- piid) [- dist) files

Description

Comb provides the means to combine one or more deltas in an SCCS
file and make a. single new delta. The new delta. replaces the previous
deltas, making the secs file smaller than the original.

Comb does not perform the combination itselr. Instead, it generates
a. shell procedure that you must save and execute to reconstruct the
given SCCS files. Comb copies the generated shell procedure to the
standard output. To save the procedure, you must redirect the outr
put to a. file. The saved file can then be executed like any other shell
procedure (see 1h(C)).

When invoking comb, arguments may be specified in any order. All
options apply to all named SCCS files. Ir a. directory is named, comb
behaves as though ea.ch file in the directory were specified a.s a
named file, except that nonSCCS files (la.st component or the pa.th·
name does not begin with s.) and unreadable files are silently
ignored. Ir a name or - is given, the standard input is read; each
line or the standard input is ta.ken to be the name or an SCCS file to
be processed; nonSCCS files and unreadable files a.re silently ignored.

The options a.re as follows. Ea.ch is explained as though only one
named file is to be processed, but the effects or any option apply
independently to each named file.

- pSID The SCCS /Dentifica.tion string (SID) of the oldest delta. to
be preserved. All older deltas a.re discarded in the recon·
structed file.

- diet A li1t (see get(CP) ror the syntax or a. li1t) or deltas to be
preserved. All other deltas are discarded.

- 0 For ea.ch get - e generated, this argument ca.uses the re con·
structed file to be accessed at the release of the delta. to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. Use of the - o option ma.y
decrease the size or the reconstructed SCCS file. It may also
alter the shape or the delta. tree or the original file.

Page 1

COMB (CP) COMB (CP)

- s This argument causes comb to generate a shell procedure
that will produce a ·report Cor each file giving the filename,
size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 ° (original - combined) /original

Before any SCCS files are actually combined, you should use this
option to determine exactly how much space is saved by the combin­
ing process.

If no options are specified, comb will preserve only !ear deltas and
the minimal number or ancestors needed to preserve the tree.

Files

comb!???! Temporary files

See Also

admin(CP), delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use Aelp(CP) for explanations.

Notes

Comb may rearrange the shape or the tree or deltas. It may not save
any space; in fact, it is possible for the reconstructed file to be larger
than the original.

Page 2

(

(

(

)

)

GONFIG(CP) GONFIG(CP)

Name

config - Configures a XENIX system.

Syntax

/eU:./config [- t] [- c file] [- m file] dfile

Description

Gonfig is a program that takes a description of a XENIX system
and generates a file which is a C program defining the confi­
guration tables for the various devices on the system.

The - c option specifies the name of the configuration table
file; c.c is the default name.

The - m option specifies the name of the file that contains all
the information regarding supported devices; /e.U:./mBSU!r is
the default name. This file is supplied with the XENIX system
and should not be modified unless the user fully understands
its construction.

The - t option requests a short table of major device numbers
for character and block type devices. This can facilitate the
creation of special files.

The user must supply d/ile; it must contain device information
for the user's system. This file is divided into two parts. The
first part contains physical device specifications. The second
part contains system-dependent information. Any line with an
asterisk (*) in column 1 is a comment.

All configurations a.re assumed to have a set of required dev­
ices, such as the system clock, which must be present to run
XENIX . These devices must not be specified in dfile.

First Pa.rt of d/ile

Each line contains two fields, delimited by blanks and/or tabs
in the following format:

Page 1

CONFIG(CP) CONFIG(OP)

devname number

where devname is the name of the device, and number is the
number (decimal) of devices associated with the correspond- {
ing controller. The device name can be any name given in
part 1 of the /eU:/rnasrer file, or any alias given in part 3 of
the same file; number is optional, and if omitted, a default
value which is the maximum value for that controller is used.

There are certain drivers that may be provided wit,4 the sys­
tem, that are actually paeudo-device drivers; that is, there is no
real hardware associated with the driver. If the system has
such drivers, they are described in section M of the XENIX
Reference Manual.

Second Part of dfJe

The second part contains three different types of lines. Note
that all specifications of this part are required, although their
order is arbitracy.

1. Root/pipe device specification

Two lines, each having three fields:

root
pipe

devname
devname

minor
minor

where devname is the name of the device, and minor is the
minor device number (in octal). The device name can be any
name given in part 1 of the /eU:/mas~r file, or any alias
given in part 3 of the same file.

2. Swap device specification

One line that contains five fields as follows:

swap devname minor swplo nswap

(

where devname is the name of the device, minor is the minor (
device number (in octal), swplo is the lowest disk block
(decimal) in the swap area, and nswap is the number of disk
blocks (decimal) in the swap area. The device name can be
any name given in part 1 of the /eU:/mas~r file, or any alias

Page 2

)

)

CONFIG (CP) CONFIG (CP}

given in part 3 of the same file.

3. Parameter specification

One or more lines, each having two fields as follows:

name number

where name is a t.unable parameter name, and number is the
desired value (in decimal} for the given parameter. Only
names that have been defined in pa.rt 4 of the /etc/master file
can be used; number overrides the default value for the given
parameter. The following is a list of the available parameters:

buffers

sabufs

hashbuf

in odes

files

mounts

coremap

SW&pDULp

pages

calls

procs

maxproc

texts

Maximum number of external (mapped­
out) buffers available to the kernel. If set
to 0, config computes the optimum
number for the system.

Maximum number of internal (non­
mapped} buffers available.

Maximum number of hash buffers.

Maximum number of inodes per file sys­
tem.

Maximum number of files per file sys-
tern.

Maximum number of mounted file sys-
terns.

Maximum number of core map elements.

Maximum number of swap map ele­
ments.

Number of memory pages. On seg­
mented systems such as the 286, this
value should be 0.

Maximum number of entries in the sys­
tem timeout table.

Maximum number of processes per sys­
tem.

Maximum number of processes per user.

Maximum number of text segments per
system.

Page 3

CONFIG(CP) CONFIG(CP)

clists

locks

Maximum number of clists per system.

Maximum number of file locks per sys­
tem.

sh data Maximum number of shared data seg­
ments per system.

timezone Number of minutes difference between
the local timezone and Greenwich Mean
Time.

daylight Daylight savings time in effect (1), or not
in effect (O}.

cmask Default file creation mask for process 0.

maxprocmem Maximum amount of memory available
per process. This value cannot be greater
than 75% of total user memory. If set to
0, config computes the optimum value.

Example

Suppose we wish to configure a system with the following dev­
ices:

one HD disk drive controller with 1 drive
one FD floppy disk drive controller with 1 driver

We must also specify the following parameter information:

root device is an HD (pseudo disk 3}
pipe device is an HD (pseudo disk 3)
swap device is an HD (pseudo disk 2)

with a swplo of 1 and an nswap of 2300
number of buffers is 50
number of processes is 50
maximum number of processes per user ID is 15
number of mounts is 8
number of inodes is 120
number of files is 120
number of calls is 30
number of texts is 35
number of character buffers is 150
number of swapmap entries is 50
number of memory pages is 512

Page 4

(

(

(

)

)

CONFIG(CP) CONFIG(CP)

number of file locks is 100
timezone is pacific time
daylight time is in effect

The actual system configuration would be specified as follows:

Files

hd 1
fd 1
root hd 3
pipe hd 3
swap hd 2 0 2300
* Comments may be inserted in this manner
buffers 50
procs 150
ma.xproc 15
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150
swapmap 50
pages (1024/2);
locks 100
timezone
daylightl

{8•60)

/etc/master default input master device table
default output configuration table file c.c

See Also

master(F)

Diagnostics

Diagnostics are routed to the standard output and are self-

Page 5

CONFIG(CP) CONFIG(CP)

explanatory.

Notes

The - t option does not know about devices that have aliases.
However, the major device numbers are always correct.

Page 6

(

(

)

)

)

OPP(CP) OPP(CP)

Name

cpp - The C language preprocessor.

Syntax

/lib/cpp (option ...] [ifile (ofile]]

Description

Opp is the C language preprocessor which is invoked as the
first pass of any C compilation using the cc(CP) command.
Thus the output or cpp is designed to be in a Corm acceptable
as input to the next pass of the C compiler. As the C
language evolves, therefore, the use or cpp other than in this
framework is not suggested. The preferred way to invoke cpp
is through the cc(CP) command. See m.4(CP) for a general
macro processor.

Opp optionally accepts two file names as arguments. /file and
ofiJe are respectively the input and output for the preproces­
sor. They default to standard input and standard output if not
supplied.

The following optiona to cpp are recognized:

-P
Preprocess the input without producing the line control
information used by the next pass or the c compiler.

-C
By default, cpp strips C-style comments. If the - C option
is specified, all comments (except those found on cpp
directive lines) are passed along.

- Uname
Remove any initial definition of name, where name is a
reserved symbol that is predefined by the particular
preprocessor.

- Dname
- Dname=def

Define name as if by a #define directive. If no =def is

Page 1

CPP(CP) CPP(CP)

given, name is defined as 1.

- Idir
Change the algorithm for searching for #include files (.·
whose names do not begin with / to look in dir before 8

looking in the directories on the standard list. Thus,
#include files whose names are enclosed in "" will be
searched for first in the directory of the ifile argument,
then in directories named in - I options, and last in direc-
tories on a standard list. For #include files whose names
are enclosed in < >, the directory of the ifile argument is
not searched.

Two special names are understood by cpp. The name
__ LINE __ is defined as the current line number (as a decimal
integer) as known by cpp, and _ _Ji'ILE __ is defined as the
current file name (as a C string) as known by cpp. They can
be used anywhere (including in macros) just as any other
defined name.

All cpp directives start with lines begun by :fl:. The directives
are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ••• , arg) token-stn"ng
Notice that there can be no space between name and the (.
Replace subsequent instances of name followed by a (, a
list of comma separated tokens, and a) by token-string
where each occurrence of an arg in t.he token-atring is
replaced by the corresponding token in the comma
separated list.

:fl:undef name
Cause the definition of name (if any) to be forgotten from
now on.

#include "/Jename"

(

#include <filename> (.
Include at this point the contents of filename (which will .·.
then be run through cpp). When the <filename> nota-
tion is used, filename is only searched for in the standard
places. See the - I option above for more det.ail.

Page 2

)

)

OPP(CP) GPP(CP)

#line integer-coJUJtant "/Jename"
Causes cpp to generate line control information for the
next pass of the C compiler. lnteger-coJUJtant is the line
number of the next line and filename is the file where it
comes from. If "filename" is not given, the current file
name is unchanged.

:/lenmf
Ends a section of lines begun by a test directive (#if,
#ifdef, or #ifndef). Each test directive must have a
matching :/lenmf.

#ifdef name
The lines following will appear in the output if and only iC
name has been the subject of a previous #define without
being the subject of an intervening #under.

#ifndef name
The lines following will not appear in the output if and
only if name has been the subject of a previous #define
without being the subject of an intervening #under.

#if defined identifier
May be used in place of the #if directive. If the identifier
is defined the directive has a value of 1, otherwise 0. This
is frequently used for conditional environment-specific
text.

#elif constant-expression
Allows for the conditional compilation of portions of the
text. The constant-expression is evaluated and if it is not
zero the text immediately following (until the next elif,
else, endif) is passed to the compiler.

#if constant-expression
Lines following will appear in the output if and only if the
constant-expression evaluates to non-zero. All binary non­
assignment C operators, the ? : operator, the unary - , !,
and - operators are all legal in constant-expression. The
precedence of the operators is the same as defined by the
C language. There is also a unary operator defined, which
can be used in constant-expression in these two forms:
defined (name) or defined name. This allows the utility
of #ifdef and #ifndef in a #if directive. Only these

Page 3

CPP(CP) CPP(CP)

operators, integer constants, and names which are known
by cpp should be used in conatant-expresaion. In particular,
the sizeci' operator is not available.

#else
Reverses the notion of the test directive which matches
this directive. So if lines previous to this directive are
ignored, the following lines will appear in the output.
And vice versa.

The test directives and the possible ://=else directives can be
nested.

Files

/usr/include standard directory for #include files

See Also

cc(CP), m4{ CP).

Diagnostics

The error messages produced by cpp are intended to be self­
explanatory. The line number and filel}ame where the error
occurred are printed along with the diagnostic.

Not.es

When newline characters were found in argument lists for
macros to be expanded, previous versions of cpp put out the
newlines as they were found and expanded. The current ver­
sion of cpp replaces these newlines with blanks to alleviate
problems that the previous versions had when this occurred.

Page 4

(

(

(

)

)

)

CREF(CP) CREF(CP)

Name

creC - Makes a cross-reference listing.

Syntax

crer l - acilnostux123 J files

Description

Cref makes a cross-reference listing or assembler or C programs. The
program searches the given filee for symbols in the appropriate C or
assembly language syntax.

The output report is in four columns:

1. Symbol
2. Filename
3. Current symbol or line number
4. Text as it appears in the file

Cref uses either an ignore file or an only file. Ir the - i option is
given, the next argument is taken to be an ignore file; ir the - o
option is given, the next argument is ta.ken to be an only file. Ignore
and only files are lists or symbols separated by newlines. All sym­
bols in an ignore file are ignored in columns 1 and 3 or the output.
Ir an only file is given, only symbols in that file will appear in
column 1. Only one or these options may be given; the default set­
ting is - i using the default ignore file (see FILES below). Assem­
bler predefined symbols or C keywords are ignored.

The - s option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C,
the current function name. The - l option causes the line number
within the file to be put in column 3.

The - t option causes the next available argument to be used as the
name or the intermediate file (instead or the temporary file
/tmp/crt!!). This file is created and is not removed at the end or
the process.

The trf/ options are:

a Uses assembler format (default)

c Uses C format

Uses an ignore file (see above)

Puts line number in column 3 (instead or current symbol)

Pagel

CREF(CP) CREF(CP)

n OmitB column 4 (no context)

0 Uses an unly file (see above)

8 Current symbol in column 3 (default)

t User-supplied temporary file

u PrintB only symbols that occur exactly once

x PrintB only C external symbols

1 Sorts output on column 1 (default)

2 Sorts output on column 2

3 Sorts output on column 3

Files

/usr/lib/cref/• Assembler specific riles

See Also

as(CP), cc(CP), sort(C), xrer(CP)

Notes

Cre/ inserts an ASCII DEL character into the intermediate file after
the eighth cha.racter or each name that is eight or more cha.racters
long in the source file.

Page 2

(

(

CTAGS(CP) CTAGS(CP)

Name
ctags - Creates a tags file.

Syntu
ctags [-u][-w lf -x l name ...

) Description

)

Ctags makes a tags file for vi(C) from the specified C sources. A
tags file gives the locations of specified objects (in this case func­
tions) in a group of files. Each line of the tags file codains the
function name. the file in which it is defined, and a scanning pat­
tern used to find the function definition. These are given in separate
fields on the line, separated by blanks or tabs. Using the tags file,
vi can quickly find these function definitions.

If the -x ftag is given, ctags produces a list of function names, the
line number and file name on which each is defined, as well as the
text of that line and prints this on the standard output. With the -x
option no tags file is created. This is a simple index which can be
printed out as an off- line readable function index.

Files whose name ends in .c or .b are assumed to be C source files
and are searched for C routine and macro definitions.

Other options are:

-w Suppresses warning diagnostics.

-u Causes the specified files to be updaled in tags; that is, all
references to them are deleted, and the new values are
appended to the file. (Beware: this option is implemented in
a way which is rather slow; it is usuaUy faster to simply
rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is
created by prepending M to the name of the file, with a trailing .c
removed, if any, and leading pathname components also removed.
This makes use of ctags practical in directories with more than one
program.

Files
tags Output tags file

Page 1

CTAGS(CP) CTAGS(CP)

See Also
cx(C), vi(C)

Credit
This utility was developed at the University of California at
Berkeley and is used with pennission. (

(

(

Page 2

)

)

)

DELTA (CP) DELTA (CP)

Name

delta. - Makes a. delta (change) to an SCCS file.

Syntax

delta [- rSID) (- s) (- n) (- glist) [- m(mrlistJI (- y(commentJI
(- p) files

Description

Delta is used to permanently introduce into the named SCCS file
changes that were ma.de to the file retrieved by get(CP) (called the
g-file, or generated file).

Delta makes a delta to ea.ch SCCS file named by filu. Ir a directory
is named, delta behaves as though ea.ch file in the directory were
specified as a named file, except that nonSCCS files (last component
or the pathname does not begin with s.) and unreadable files are
silently ignored. Ir a name or - is given, the standard input is read
(see Warning); ea.ch line or the standard input is ta.ken to be the
name or an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon
certain options specified and flags (see admin(CP)) that may be
present in the SCCS file (see - m and - y options below).

Options apply independently to ea.ch named file.

- rS/D

- 8

-n

Uniquely identifies which delta is to be made to the
SCCS file. The use or this keyletter is necessary
only if two or more versions or the same SCCS file
have been retrieved for editing (get - e) by the
same person (login name). The SID value specified
with the - r keyletter ca.n be either the SID specified
on the get command line or the SID to be ma.de as
reported by the get command (see get(CP)). A
diagnostic results ir the specified SID is ambiguous,
or ir it is necessary and omitted on the command
line.

Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and uncha.nge.d in the SCCS file.

Specifies retention of the edited g-file (normally
removed at completion of delta processing).

Page 1

DELTA (CP)

- gliat

- m(mrli•4

DELTA (CP)

Specifies a 1iet (see get(CP) for the definition of 1i6t)
of deltas which are t.o be ignored when the file is
accessed at the change level {SID) created by this
delta..

If the SCCS file has the v flag set (see admin.(CP))
then a Modification Request (MR) num her muat be
supplied as the reason for creating the new delta..

If - mis not used and the standard input is a termi­
nal, the prompt MRs! is issued on the standard out­
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs ! prompt always precedes the comments!
prompt (see - y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unesca.ped newline character ter­
minates the MR list.

Note that if the v flag ha.s a v3.lue (see admin.(CP)),
it is ta.ken t.o be the name of a program (or shell
procedure) which will validate the correctness of the
MR numbers. If a nonzero exit status is returned
from MR num her validation program, delta ter­

.minates (it is assumed that the MR numbers were
not all valid).

- y(commen.4 Arbitrary text used t.o describe the reason for m a.k­
ing the delta.. A null string is considered a valid
comment.

-p

Files

If - y is not specified and the standard input is a
terminal, the prompt comments! is issued on the
standard output before the sta.ndar•~ input is read; if
the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates
the comment text.

Ca.uses delta t.o print (on the standard output) the
SCCS file differences before and after the delta is
applied. Differences are displayed in a diff(C) for­
mat.

All files of the form f-file a.re explained in Chapter 5, "SCCS: A
Source Code Control System" in the XENIX Programmer'• Guidt. The
naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after
completion of delta.

Page 2

(

(

)

)

DELTA (CP)

p-rile

q-file

x-file

z-file

d-file

DELTA (CP)

Existed before the execution of delta; may exist
after completion of delta.

Created during the execution of delta; removed after
completion of delta.

Created during the execution of delta; renamed to
SCCS file after completion of delta.

Created during the execution of delta; removed dur­
ing the execution of delta.

Created during the execution of delta; removed after
completion or delta.

/usrfbin/bdiff Program to compute differences between the
"retrieved" file and the g-file.

Warning

Lines beginning with an SOii ASCII character (binary 001) cannot be
placed in the SCCS file unless the SOB is escaped. This character has
special meaning to SCCS (see 1cc1fde(FJ) and will cause an error.

A get or many secs files, followed by a delta of those files, should
be avoided when the get generates a large amount or data.. Instead,
multiple get/delta sequences should be used.

Ir the standard input (-) is specified on the delta command line, the
- m (if necessary) and - y options mu1t also be present. Omission
of these options causes an error to occur.

See Also

adm in(CP), bdiff(C), get{ CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Page 3

(

(

)

)

OOSW(CP) OOSW(CP)

N~

dosld - XENIX to MS-DOS cross link.er

Syntu
dosld [options] file ...

Description
Dosld links the object files(s) given by file to create a program far
execution under.MS-DOS. Although similar to ld(CP). dosld Im
many options that differ significamly from Id. The options arc
described below:

- D OS Allocate. This imttucts dosld to perform DS alloca­
tion. lt is generally used inconjunction with die -B
option.

- H Load high. This option instructs dosld to set a field in the
header of the executable file to tell MS-DOS to load the
program at the highest available posfilon in memory. At is
most often used with programs in which data pm:edes
code in the memory image.

- L Include line numben. This option instructs dosld to
include line 1111mbcts in the listing file (if any). Note that
dosld cannot put line numbers in Ille listing file if the
source translatar hasn't put them in Ille object file.

- M Include public symbols. This option insaruds dosld to
include public symbols in the lisa file. The sy~la arc
sorted twice, lexicographically and by addras.

-C Ignore case. This option instructs dosld to tn:at upper and
lower case characters in symbol names as idemical.

-Fnum

-Snum

Set stack. size. This option should be followed by a beu­
decimal number. Dosld will use Ibis numbu for Ille siu
in bytes of the stack sc:gmem in the output file.

Set segmem limit. This option should be followed by a
decimal nbumber between 1 and 1024. The oumber sets
the limit on the number of differcm segments that may be
linked togelber. The default is 128. Note that the higher
the value given. the slower the link will be.

-mji/ename
Create map file. This option should be followed by a
filename. Dosld will create a file with Ille given name in
which ii wiil po! information about the segments and
g01.•ps in the c~.ecutable. Additionally, public symbols and
line numbers will be listed in this file if the -M and -L

-nl nlL"TI

Page I

DOSW(CP) OOSlD(CP)

Set name length. This optinb should be followed by a
decimal number. The option imtructs dosld to truncate all
public and external symbols longer than num characters.

-o .filename
Name output file. This option should be followed by a
filename which dosld will use as the name of the execut­
able file it creates. The default name is a.out.

-u name
Name undefined symbol. This option should be followed
by a symbol name. Dos/d will elller the given name into
its symbol table as an undefined symbol. The -u option
may appear more than once on the command line.

-G Ignore group associations. This option instructs dosld to
ignore any group definitions it may find in the input files.
This option is provided for compatibility with old versions
of MS-LINK; generally, it should never be used.

As with Id, the files passes to dosld may be either XENIX-style
libraries (objects collected using ar(CP) and indexed using
ranlib(CP)) or ordinary 8086 object files. Unless the -u option
appears, at least one of the files passed to dosld must be an ordinary
object file. Libraries are searched only after all the ordinary object
files have been processed.

Files
/usr/bin/dosld

See Also
ar(CP), as(CP), cc(CP), ld(CP), ranlib(CP)

Page 2

(

(

(

)

)

)

GET(CP) GET(CP)

Name

get - Gets a version of an secs file.

Syntax

get [- rSID) 1- ccutofl') (-- ilistl (- xlist) 1- aseq-no.) [- k) [- e)
[- l(p)) [- p] - m) [- nJ (- s) - bj [- gJ - t) file ...

Description

Get generates an ASCII text file from each named SCCS file according
to the specifications given by its options, which begin with - . The
arguments may be specified in any order, but all options apply to all
named SCCS files. Ir a directory is named, get behaves as though
each file in the directory were specified BB a named file, except that
nonSCCS files (last component or the pathname does not begin with
s.) and unreadable files are silently ignored. Ir a name or - is
given, the standard input is read; each line or the standard input is
taken to be the name of an SCCS file to be processed. Again,
nonSCCS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file
whose name is derived from the SCCS filename by simply removing
the leadings.; (see also FILES, below).

Each of the options is explained below BB though only one SCCS file
is to be pro~essed, but the effects or any option apply independently
to each named file.

- rSID The SCCS /Dentification string (SID) of the version
(delta) of an SCCS file to be retrieved.

- ccutoff Cutoff date-time, in the form:

-e

YY[MM[DD[HH[MM[SSjjjjj

No changes (deltas) to the SCCS file that were created
after the specified cutoff date-time are included in the
generated ASCII text file. Units omitted from the date­
time default to their maximum possible values; that is,
- c7502 is equivalent to - c750228235Q5Q. Any number
or nonnumeric characters may separate the various 2
digit pieces or the cutoff date-time. This feature allows
you to specify a cutoff date in the form: "- c77 /2/2
9:22:25".

Indicates that the get is for the purpose or editing or
making a change (delta) to the SCCS file via a subsequent
use or delta(CP). The - e option used in a get for a par­
ticular version (SID) of the SCCS file prevents further

Page I

GET(CP) GET(CP)

gets for editing on the same SID until delta. is executed or
the j (joint edit) flag is set in the secs file (see
admin(CP)). Concurrent use of get - e for different
SIDs is always allowed.

Ir the g-file generated by get with an - e option is
accidentally ruined in the editing process, it may be
regenerated by reexecuting the get command with the
- k option in place of the - e option.

secs file protection specified via the ceiling, floor, and
authorized user list stored in the secs file (see
a.dmin(CP)) a.re enforced when the - e option is used.

- b Used with the - e option to indicate that the new delta
should have an SID in a new branch. This option is
ignored ir the b flag is not present in the file (see
a.dmin(CP)) or if the retrieved delta is not a leaf delta..
(A leaf delta is one that has no successors on the secs
file tree.)

- ililt

- xli11t

-k

- l(pj

-p

Note: A branch delt11 may always be created from a non­
leaf delta..

A list of deltas to be included (forced to be applied) in
the creation of the generated file. The liet has the follow­
ing syntax:

<list> ::= <range> I <list> , <range>
<range> ::- SID I SID - SID

SID, the SCCS Identification of a delta, may be in any
form described in Chapter 5, "SCCS: A Source Code
Control System," in the XENIX Progra.mmer'i Guide.

A liet of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the - i option
Cor the lilt format.

Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The - k
option is implied by the - e option.

Ca.uses a. delta summary to be written into an I-file. If
- Ip is used then an I-file is not created; the delta sum­
mary is written on the standard output instead. See
FILES Cor the format of the I-file.

Causes the text retrieved from the SCCS file to be written
on the standard output. No g-file is created. All output
that normally goes to the standard output goes to file
descriptor 2 instead, unless the - s option is used, in
which case it disappears.

Page 2

(

(

(

)

)

)

GET(CP)

-s

-m

GET(CP)

Suppresses all output normally writt.en on the standard
output. However, ratal error messages (which always go
to file descriptor 2) remain una.IJected.

Causes each text line retrieved from the SCCS file to be
preceded by the SID of the delta that inserted the text
line in the SCCS file. The format is: SID, followed by a
horizontal tab, followed by the text line.

- n Causes each generat.ed text line to be preceded with the
~%identification keyword value (see below). The for­
mat is: ~% value, followed by a horizontal tab, fol­
lowed by the t.ext line. When both the - m and - n
options are used, the format is: ~%value, followed by
a horizontal tab, followed by the - m option generated
format.

- g Suppresses the actual retrieval or text from the secs file.
It is primarily used to generate an I-file, or to verify the
existence of a particular SID.

- t Used to access the most recently created (top) delta in a
given release (e.g., - rl), or release and level (e.g.,
- rl.2).

- aeeq·no. The delta sequence number of the SCCS file delta (ver­
sion) to be retrieved (see eccefile(F)). This option is
used by the comb(CP) command; it is not particularly
useful should be avoided. Ir both the - r and - a
options are specified, the - a option is used. Care
should be taken when using the - a option in conjunc­
tion with the - e option, as the SID of the delta to be
created may not be what you expect. The - r option can
be used with the - a and - e options to control the nam­
ing of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with
the SID being accessed and with the number or lines retrieved from
the SCCS file.

Ir the - e option is used, the SID or the delta to be made appears
a!ter the SID accessed and before the number or lines generated. Ir
there is more than one named file or if a directory or standard input
is named, each filename is print.ed (preceded by a newline) before it
is processed. Ir the - i option is used included deltas are listed fol­
lowing the notation "Included"; if the - x option is used, excluded
deltas are listed following the notation "Excluded".

Identification Keyword!

Identifying information is inserted into the text retrieved from the
SCCS file by replacing identification keyworde with their value

Page 3

GET(CP) GET(CP)

wherever they occur. The following keywords may be used in the
text stored in an SCCS file:

KeyWord
~%

c;a3

~%
'JI,%
~%
%;%
~%
~%
%1'%
'?£%
o/cG%
%1%
%Y%

o/c\%

Files

Value
Module name: either the value or the m ftag in the file
(see ad min(CP)), or if absent, the name of the SCCS file
with the leading s. removed.
SCCS identification (SID) (9m%%L%~%o/c:S%) or the
retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DD/YY).
Current time (HH:MM:SS}.
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS}.
Module type: value or the t ftag in the SCCS file (see
admin(CP)).
SCCS filename.
Fully qualified SCCS filename.
The value or the q flag in the file (see admin(CP)).
Current line number. This keyword is intended for iden­
tifying messages output by the program such as "this
shouldn't have happened" type errors. It is not intended
to be used on every line to provide sequence numbers.
The 4-cha.racter string@(#) recognizable by what(C).
A shorthand notation for constructing what(C) strings for
XENIX program files. %W% = o/oZ%'1(1..f%<horizontal­
ta.b>~%
Another shorthand notation ror constructing what(C)
strings for non XENIX program files.
o/<A % = %Z%%Y% md% 98%o/oZ%

Several auxiliary files may be created by get. These files a.re known
generically as the g-file, I-file, p-file, and z-file. The letter berore the
hyphen is called the tag. An auxiliary filename is formed from the
SCCS filename: the last component or all SCCS filenames must be of
the rorm s.module-name, the auxiliary files are named by replacing
the leading s with the tag. The g-file is an exception to this scheme:
the g-file is named by removing the s. prefix. For example, s.xyz.c,
the auxiliary filenames would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c,
respectively.

The g-file, which contains the generated text, is created in the
current directory (unless the - p option is used). A g-file is created
in all cases, whether or not any lines or text were generated by the
get. It is owned by the real user. Ir the - k option is used or

Page 4

(

(

(

)

GET(CP) GET(CP)

implied, the g-file's mode is 644; otherwise the mode is 444. Only
the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in gen­
era.ting the retrieved text. The I-file is created in the current direc­
tory iC the - 1 option is used; its mode is 444 and it is owned by the
real user. Only the real user need have write permission in the
current directory.

Lines in the 1-fil.e have the following format:

a. A blank character if the delta was applied;
•otherwise

b. A blank character if the delta was applied or wasn't applied
and ignored;
• iC the delta wasn't applied and wasn't ignored

c. A code indicating a "special" reason why the delta was or
was not applied:

d. Blank

"I": Included
"X": Excluded
"C": Cut off (by a - c option)

e. SCCS identification (SID)
r. Tab character
g. Date and time (in the form YY/MM/DD HH:MM:SS) or crea­

tion
h. Blank
i. Login name or person who created delta

The comments and MR data. follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-fil.e is used to pass information resulting Crom a. get with an
- e option along to delta. Its contents are also used to prevent a
subsequent execution of get with an - e option for the same SID
until delta is executed or the joint edit flag, j, (see admin(CP)) is set
in the SCCS file. The p-fil.e is created in the directory containing the
SCCS file and the effective user must have write permission in that
directory. lta mode is 644 and it is owned by the effective user. The
format of the p-file is: the gotten SID, followed by a blank, followed
by the SID that the new delta will have when it is made, followed by
a blank, Collowed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, followed by a
blank and the - i option if it was present, followed by a blank and
the - x option iC it was present, followed by a. newline. There can
be an arbitrary number of lines in the p-fil.e at any time; no two lines
can have the same new delta SID.

The z. fil.e serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID or the com­
mand (i.e., get) that created it. The z-file is created in the directory
containing the SCCS file for the duration of get. The same protection
restrict.ions as those for the p-fil.e apply for the z-file. The z-file is

Page 5

GET(CP) GET(CP)

created mode 444.

See Also

admin(CP), delta(CP), help(CP), prs(CP), what.(C), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Notes

Ir the effective user has write permission (either explicitly or impli­
citly) in the directory containing the SCCS files, but the real user
doesn't, then only one file may be named when the - e option is
used.

Page 6

(

(

)

)

)

GETS(CP) GETS(CP)

Name

gets - Gets a string from the standard input.

Syntax

g-eta [string)

Description

Geu can be used with ceh(CP) to read a string from the standard
input. If 1tring is given it is used as a default value if an error
occurs. The resulting string (either etring or as read from the stan­
dard input) is written to the standard output. Ir no .iring is given
and an e~ror occurs, geu exits with exit status 1.

See Also

line(C), csh(CP)

Page I

(,

(

HDR (CP) HDR (CP)

Name

hdr - Displays selected parts of object files.

) Syntax

)

hdr I - dhprsSt J file ...

Description

Hdr displays object file headers, symbol tables, and text or data relo­
cation records in human-readable formats. It also prints out seek
positions for the various segments in the object file.

A.out, x.out, and x.out segmented formats and archives are under­
st.ood.

The symbol table format consists of six fields. In a.out formats the
third field is missing. The first field is the symbol's index or position
in the symbol table, printed in decimal. The index or the first entry
is zero. The second field is the type, printed in hexadecimal. The
third field is the s_seg field, printed in hexadecimal. The fourth
field is the symbol's value in hexadecimal. The fifth field is a single
character which represents the symbol's type as in nm(CP), except C
common is not recognized as a special case or undefined. The last
field is the symbol name.

Ir long form relocation is present, the format consists or six fields.
The first is the descript.or, printed in hexadecimal. The second is the
symbol ID, or index, in decimal. This field is used for external relo­
cations as an index int.a the symbol table. It should reference an
undefined symbol table entry. The third field is the position, or
offset, within the current segment at which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name or
the segment referenced in the relocation: text, data, bss or EXT for
external. The fifth field is the size of relocation: byte, word (2
bytes), or long. The la.st field will indicate, if present, that the relo­
cation is relative.

Ir short form relocation is present, the format consist of three fields.
The first field is the relocation command in hexadecimal. the second
field contains the name of the segment referenced; text or data. The
la.st field indicates the size of relocation: word or long.

Options and their meanings are:

- h Causes the object file header and extended header t.o be printed
out. Each field in the header or extended header is labeled.
This is the default option.

Page 1

HDR (CP) HDR (CP)

- d Causes the data relocation records to be printed out..

- t Causes the text relocation records to be printed out.

- r Causes both text and data relocation to be printed.

- p Ca.uses seek positions to be printed out as defined by macros in
the include file, <a.out.h>.

- s Prints the symbol table.

- S Prints the file segment table with a header. (Only applicable to
x .out segmented executable files.)

See Also

a.out(F), nm(CP)

Page 2

(

(

(

)

)

HELP(CP) HELP(CP)

Name

help - Asks Cor help a.bout SCCS commands.

Syntax

help [args]

Description

Help finds information to explain a. message from a.n SCCS command
or explain the use of a. command. Zero or more arguments ma.y be
supplied. IC no arguments a.re given, help will prompt for one.

The arguments ma.y be either message numbers (which norm ally
a.ppea.r in parentheses following messages) or command names.
There a.re the following types of arguments:

type 1

type 2

type 3

Begins with nonnumerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the program
or set of routines which produced the message (e.g., ge6,
Cor message 6 Crom the get command).

Does not contain numerics (a.s a. command, such a.s get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information
related to the argument, if there is a.ny.

When all else fails, try "help stuck".

Files

/usr/lib/help Directory containing files of message text

Page 1

(

(

(

)

LD (CP) LD (CP)

Name

Id - Invokes the link editor.

Syntax

Id [options] filename ...

Description

Ld is the XENIX link editor. It creates an executable program
by combining one or more object files and copying the execut­
able result to the file a.out. The filename must name an
object or library file. These names must have the ".o" (for
object) or ".a" (for archive library). extensions. If more than
one name is given, the names must be separated by one or
more spaces. If errors occur while linking, Id displays an error
message; the resulting a.out file is unexecutahle.

Ld concatenates the contents of the given object files in the
order given in the command line. Library files in the com­
mand line are examined only if there are unresolved external
references encountered from previous object files. Library
files must be in ranlib(CP) format, that is, the first member
must be named _.SYMDEF, which is a dictionary for the
library. Ld ignores the modification dates of the library and
the _.SYMDEF entry, so if object files have been added to
the library since _.SYMDEF was created, the link may result
in an "invalid object module."

The library is searched iteratively to satisfy as many references
as possible and only those routines that define unresolved
external references are concatenated. Object and library files
are processed at the point they are encountered in the argu­
ment list, so the order of files in the command line is impor­
tant. In general, all object files should be given before library
files. Ld sets the entry point of the resulting program to the
beginning of the first routine.

There are the following options:

- Anum
Creates a standalone program whose expected load address

Page 1

LD (OP) LD (OP)

(in hexadecimal) is num. This option set.s the absolute
flag in the header of the a.out file. Such program files can
only be executed as standalone programs.

- Bnum

-C

Set.s the text selector bias to the specified hexadecimal
number.

Causes the editor to ignore the case of symbols.

- Dnum
Set.s the data selector bias to the specified hexadecimal
number.

- Fnum
Set.s the size of the program stack to num bytes. Default
stack size if not given, is 4086 bytes.

- i Creates separate instruction and data spaces for small
model programs. When the output file is executed, the

(

program text and data areas are allocated separate physical (
segment.s. The text portion will be read-only and shared
by all users executing the file.

- mnaIDe
Creates a link map file named name that includes public
symbols.

-Ms
Creates small model program and checks for error, such
as fixup overflow. This option is reserved for object files
compiled or assembled using the small model
configuration. This is the default model if no - M option
is given.

-Mm
Creates middle model program and checks for errors. This
option is reserved for object files compiled or assembled
using the middle model configuration. This option implies
- i .

-Ml
Creates a large model program and checks for errors. The

Page 2

(

)

)

LD (CP) LD (CP)

option is reserved for object files compiled using the large
model configuration. This option implies - i .

- nlnum
Truncates symbols to the length specified by num.

- o name
Sets the executable program filename to name instead of
a.out.

- s Strips the symbol table.

- Snum
Sets t.he maximum number of data segments to num. If
no argument is given, the default is 128.

- usymbol
Designates the specified symbol as undefined.

- vnum
specifies the Xenix version number. Acceptable values
for num are 2 or 3; 3 is the default.

Ld should be invoked using the cc(CP) instead of invoking it
directly. Cc invokes Id as the last step of compilation, provid­
ing all the necessary C-language support routines. Invoking Id
directly is not recommended since failure to give command
line arguments in the correct order can result in errors.

Files

/bin/Id

See Also

as(CP), ar(CP), cc(CP), ran lib(CP)

Notes

The - Anum, - Bnum, and - Dnum options to Id should not
be used when creating a binary for an 8086/88 or 80186/88
system.

Page 3

LD {CP) LD {CP)

The user must make sure that the most recent library versions
have been processed with ranlib{CP) before linking. If this is
not done, Id cannot create executable programs using these
libraries.

Page 4

(

(

(

)

)

LEX(CP) LEX(CP)

Name

lex - Generates programs Cor lexical analysis.

Syntax

lex [- ctvn) [tile) ...

Description

Lez generates programs to be used in simple lexical analysis or text.

The input file• (standard input default) contain strings and expres­
sions to be searched for, and C text to be executed when strings a.re
round.

A file lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specitied in the
file is found; then the corresponding program text is executed. The
actual string matched is left in wtezt, an external character array.
Matching is done in order of the strings in the rile. The strings may
contain square brackets to indicate character classes, as in (abx- z]
to indicate a, b, x, y, and z; and the operators •, +, and ! mean
respectively any nonnegative number or, any positive number or,
and either zero or one occurrences or, the previous character or
character class. The character • is the class of all ASCII characters
except newline. Parentheses for grouping and vertical bar for alter­
nation are also supported. The notation r{d,e} in a rule indicates
between d and e instances or regular expression r. It has higher pre­
cedence than i but lower than •, f, +, and concatenation. The
character A at the beginning of an expression permits a successful
match only immediately after a newline, and the character $ at the
end or an expression requires a trailing newline. The character / in
an expression indicates trailing context; only the part of the expres­
sion up to the slash is returned in 11,tezt, but the remainder or the
expression must follow in the input strea.m. An operator character
may be used as an ordinary symbol if it is within • symbols or pre­
ceded by \. Thus (a- zA- Z)+ matches a st.ring of letters.

Three subroutines defined as macros are expected: input() to read a
character; unput(c) to replace a character read; and output(c) to
place an output character. They are defined in terms or the standard
streams, but you can override them. The program generated is
named yylex(), and the library contains a main() which calls it. The
action RE.IF.CT on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function
yymore() accumulates additional characters into the same wtezt; and
the function yyless(p) pushes back the portion or the string matched
beginning at p, which should be between gytezt and Jmtezt+ 11Jlleng.
The macros input and output use files yyin and yyout to read from

Pagel

LEX(CP) LEX(CP)

and write to, defaulted to st.din and st.dout, respectively.

Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes o/i% it is copied into the external defini­
tion area. or the lex.yy.c tile. All rules should follow a ~ as in
YACC. Lines preceding %!b which begin with a. non blank character
define the string on the left to be the remainder of the line; it can be
called out lll.ter by surrounding it with fl. Note that curly brackets
do not imply parentheses; only string substitution is done.

Example

D
%%

(0- 0)

it printf("IF statement\n");
(a.- z)+ printf("tag, value %;\n",yytext);
O{D}+ printt("octa.l number %;\n",yytext);
{D }+ printf("decima.l number %i\n",yytext);
"+ +" printr("unary op\n");
"+" printt("bina.ry op\n");
"/*" { loop:

while (input() I""' '*');
switch (input())

}

{
case '/': break;
case'*': unput('*');
detault: go to loop;
}

The external names generated by lez all begin with the prerix yy or.
YY.

The options must appear before any tiles. The option - c indicates
C actions and is the default, - t causes the lex.yy.c program to be
written instead to standard output, - v provides a one-line summary
or statistics or the machine generated, - n will not print out the -
summary. Multiple files are treated as a single file. Ir no files are
specified, standard input is used.

Certain table sizes for the resulting finite state ma.chine can be set in
the definitions section:

o/cp n
num her or positions is n (de fa.ult 2000)

%1 n
number or states is n (500)

%.n
number or parse tree nodes is n (1000}

Page 2

(

(

)

)

)

LEX(CP) LEX(CP)

%L"
number or transitions is n (3000)

The use or one or more or the above automatically implies the - v
option, unless the - n option is used.

See Also

yacc(CP)
Xenix So/h11Grt Dnelopme1it Gui4e

Page 3

(:

(

(

LINT(CP) LINT(CP)

Name

lint - Checks C language usage and syntax.

Syntax

lint (- abchlnpuvx) file ...

Description

Lint attempts'''to detect features or the C program file that are likely
t.o be bugs, nonportable, or wasterul. It also checks type usage more
strictly than the C compiler. Among the things which are currently
detected are unreachable statements, loops not entered at the t.op,
aut.omatic variables declared and not used, and logical expressions
whose value is constant. Moreover, the usage or functions is
checked t.o find functions which return values in some places and
not in others, (unctions called with varying numbers or arguments,
and functions whose values are not used.

Ir more than one file is given, it is assumed that all the files are to be
loaded together; they are checked ror mutual compatibility. Ir rou­
tines rrom the standard library are called rrom file, lint checks the
function definitions using the standard lint library llibc.ln. Jr lint is
invoked with the - p option, it checks function definitions from the
portable lint library llibport.ln.

Any number or lint options may be used, in any order. The follow­
ing options are used to suppress certain kinds or complaints:

- a Suppresses complaints about assignments or long values t.o vari­
ables that are not long.

- b Suppresses complaints about break statements that cannot be
reached. (Programs produced by lez or race will often result in
a large number or such complaints.)

- c Suppresses complaints about casts that have questionable porta­
bility.

- h Does not apply heuristic tests that at.tempt to intuit bugs,
improve style, and reduce waste.

- u Suppresses complaints about functions and external variables
used and not defined, or defined and not used. (This option is
suitable for running lint on a subset of files of a larger program.)

- v Suppresses complaints about unused arguments in functions.

- x Does not report variables referred to by external declarations
but never used.

Page I

LINT(CP) LINT(CP)

The following arguments alter lint'a behavior:

- n Does not check compatibility against either the standard or the
portable lint library.

- p Attempts to check portability to other dialects or C.

- llibname
Checks functions definitions in the specified lint library. For
example, - Im causes the library llibm.ln to be checked.

The - D, - U, and - I optfons or cc:(CP) are also recognized as
separate arguments.

Certain conventional comments in the C source will change the
behavior or lint:

/*NOTREACHED*/
At appropriate points stops comments about unreachable
code.

/*VARARGSn*/
Suppresses the usual checking for variable numbers or argu­
ments in the following Cunction declaration. The data types
of the first n arguments are checked; a missing n is taken to
be 0.

/*ARGSUSED*/
Turns on the - v option for the next function.

/*LINTLIBRARY*/
Shuts off complaints about unused functions in this file.

Lint produces its first output on a per source file basis. Complaints
regarding included files are collected and printed after all source files
have been processed. Finally, information gathered Crom all input
files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems Crom a given source file or Crom
one or its included files, the source filename will be printed followed
by a question mark.

Files

/usr/Iib/lint!12) Program files

/usr flib/llibc.ln, /usr /lib/llibport.ln,
/usr /Ii b/lli bdbm. In, /usr /Ii b/llibterm lib.In

Standard lint libraries (binary format)

/usr /lib /Ilibm.ln,

Page 2

(

(

)

)

L/NT(CP) LINT(CP)

/usr/Iib/llibc, /usr/Iib/Ilibport, /usr/lib/llibm, /usrflib/Ilibdbm,
/usr /lib/llibtermlib

Standard lint libraries (source format)

/usr /tmprlint• Temporaries

See Also

cc(CP)

Notes

Ezit(S). and other functions which do not return, are not under­
stood. This can cause improper error messages.

Page 3

(

c·

(

)

LORDER (CP) LORDER (CP)

Name

!order - Finds ordering relation for an object library.

Syntax

lorder file ...

Description

Lorder creates an ordered listing or object filenames, showing which
files depend on variables declared in other files. The file is one or
more object or library archive files (see ar(CP)). The standard ou~
put is a list or pairs or object filenames. The first file or the pair
refers to external identifiers defined in the second. The output may
be processed by teort(CP) to find an ordering or a library suitable for
one-pass access by Id(CP).

Example

The rollowing command builds a new library rrom existing .o files:

ar er library '!order •.o I tsort'

Files

•symrer, •symder Temp files

See Also

ar(CP), Id(CP), tsort(CP)

Notes

Object files whose names do not end with .o, even when contained
in library archives, are overlooked. Their global symbols and rerer­
ences are attributed to some other file.

Page 1

c

)

)

M-1 (CP) M-1 (CP)

Name

m4 - Invokes a macro processor.

Syntax

m4 (options) (files)

Description

M-1 is a macro processor intended as a front end for Ratfor, C, and
other languages. Each of the argument files is processed in order; if
there are no files, or if a filename is - , the standard input is read.
The processed text is written on the standard output.

The options and their effects are as follows:

- e Operates interactively. Interrupts are ignored and the output is
unbuffered.

- s Enables line sync output for the C preprocessor (#line ...)

- Bint
Changes the size of the push-back and argument collection
buffers from the default or 4,096.

- Hint
Changes the size of the symbol table hash array from the
default of 199. The size should be prime.

- Sint
Changes the size or the call stack from the default or 100 slots.
Macros take three slots, and nonmacro arguments take one.

- Tint
Changes the size of the token buffer from the default or 512
bytes.

To be effective, these flags must appear before any filenames and
before any - D or - U flags:

- Dnamel=val)
Defines name to 11111 or to null in 1111l's absence.

- Uname
Undefines name.

Page I

M4 (CP) M4(CP)

Macro Calls

Macro calls have the Corm:

name(argl,arg2, ... , argn)

The (must immediately follow the name or the macro. U a defined
macro name is not followed by a (, it is deemed t.o have no argu­
ments. Leading unquoted blanks, tabs, and newlines are ignored
while collecting arguments. Potential macro names consist or alpha­
betic letters, digits, and underscore _, where the first character is not
a digit.

Left and right single quotation marks are used t.o quote st.rings. The
value or a quoted string is the string stripped or the quotation marks.

When a macro name is recognized, its arguments are collected by
searching Cor a matching right parenthesis. Macro evaluation
proceeds normally during the collection or the arguments, and any
commas or right parentheses which happen t.o turn up within the
value or a nested call are as effective as those in the original input
text. After argument collection, the value or the macro is pushed
back ont.o the input stream and rescanned.

M4 m3.kes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define

underine

dern

pushder

popdef

The second argument is installed as the value or the
macro whose name is the first argument. Each
occurrence or Sn in the replacement text, where n is a
digit, is replaced by the n-th argument. Argument 0 is
the name or the macro; missing arguments are replaced
by the null string; Sf is replaced by the number or
arguments; •• is replaced by a list or all the arguments
separated by commas; $0 is like s•, but each argument
is quoted (with the current quotatfon marks).

Removes the definition or the macro named in its argu­
ment.

Returns the quoted definition or its argument(s). It is
useful Cor renaming macros, especially built-ins.

Like define, but saves any previous definition.

Removes current definition of its argument(s), expos­
ing the previous one if any.

ifdef Ir the first argument is defined, the value is the second
argument, otherwise the third. Ir there is no third
argument, the value is null. The word XENIX is
predefined in M4.

Page 2

(

(

(

)

)

)

M4 (CP)

shift

M4 (CP)

Returns all but its first argument. The other arguments
are quoted and pushed back with commas in between.
The quoting nullifies the effect oC the extra scan that
will subsequently be performed.

changequote Changes quobtion marks to the first and second argu­
ments. The symbols may be up to five characters long.
Clu1ngequote without arguments restores the original
values (i.e., ' 1-

changecom Changes left and right comment markers Crom the
default # and newline. With no arguments, the com­
ment mechanism is effectively disabled. With one
argument, the leCt marker becomes the argument and
the right marker becomes newline. With two argu­
ments, both markers are affected. Comment markers
may be up to five characters long.

divert M4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation or the st.reams in
numerical order; initially stream 0 is the current
stream. The tlit1ert macro changes the current output
stream to its (digit-string) argument. Output diverted
to a stream other than 0 through 9 is discarded.

undivert

divnum

dnl

Causes immediate output or text Crom diversions
named as arguments, or all diversions ir no argument.
Text may be undiverted into another diversion.
Undiverting discards the diverted text.

Returns the value or the current output stream.

Reads and discards characters up to and including the
next newline.

ifelse Has three or more arguments. Ir the first argument is
the same string as the second, then the value is the
third argument. Ir not, and if there are more than Four
arguments, the process is repeated with arguments 4, 5,
6 and 7. Otherwise, the value is either the Fourth
string, or if it is not present, null.

incr Returns the value or its argument incremented by 1.
The Yalue or the argument is calculated by interpreting
an initial digit-string as a decimal number.

deer Returns the value or its argument decremented by 1.

eval Evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include +, - , •, /,
% A (exponentiation), bitwise &, I• A' and -; relation­
als; parentheses. Octal and hex numbers may be
specified as in C. The second argument specifies the

Page 3

M4 (CP)

Jen

index

substr

tra.nslit

include

sinclude

syscmd

M-1 (CP)

radix ror the result; the default is 10. The third argu­
ment may be used t.o speciry the minimum number or
digits in the result.

Returns t.he num her or characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or - l if the
second argument does not occur.

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length or
the substring. A missing third argument is taken to be
large enough to extend to the end of the first string.

Transliterates the characters in its first argument from
the set given by the second argument to the set given
by the third. No abbreviations are permitted.

Returns the contents or the file named in the argu­
ment.

Identical t.o include, except that it says nothing if the
file is inaccessible.

Executes the XENIX command given in the first argu­
ment. No value is returned.

sysval Is the return code rrom the last ca.II to 1111cmtl.

maketemp Fills in a string of XXXXX in its argument with the
current process ID.

m4exit Causes immediate exit from ffl4. Argument I, if given,
is the exit code; the default is 0.

m4wrap Argument 1 will be pushed back at final EOF; example:
m4wrap('cleanup() 1

errprint Prints its argument on the diagnostic output file.

dumpdef Prints current names a.nd definitions, for the named
items, or ror all if no arguments a.re given.

trace on

trace off

\Vith no arguments, turns on tracing for a.II macros
(including built-ins). Otherwise, turns on tracing for
named macros.

Tums off trace globally and for a.ny macros specified.
Macros specifically traced by traceon ca.n be untraced
only by specific calls to traceoff.

Page 4

(

(

(

MAKE(CP) MAKE(CP)

Name

make - Maintains, updates, and regenerates groups of programs.

Syntax

make (- t maJtefile) [- p) [- i) [- k) (- s) [- ri [- n) [-bl (- e)
[- tJ [- q) [- d) (names I

Description

The following is a brief description of a.II options and some special
names:

- t makefile Description filename. Makefile is assumed to be the
name of a description file. A filename of - denotes
the standard input. The contents or makefile override
the built.in rules if they are present.

- p Prints out the complete set or macro definitions and
target descriptions.

- i Ignores error codes returned by invoked commands.
This mode is entered if the fake target name .IGNORE
appears in the description file.

- k Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

- s Silent mode. Does not print command lines before
executing. This mode is also entered if the fake target
name .SILENT appears in the description file.

- r Does not use the built.in rules.

- n No execute mode. Prints commands, but does not
execute them. Even lines beginning with an @ are
printed.

- b Compatibility mode for old makefiles.

- e Environment variables override assignments within
makefiles.

- t Touches the target files (causing them to be up-to­
date) rather than issues the usual commands.

- d Debug mode. Prints out detailed information on files
and times examined.

Pagel

MAKE(CP) MAKE(CP)

-q Question. The make command returns a zero or
nonzero status code depending on whether the target
file is or is not up-to-date .

• DEFAULT Ir a file must be made but there are no explicit com-
mands or relevant built-in rules, the commands associ- (
atcd with the name .DEFAULT are used iC it exists. ~

.PRECIOUS Dependents or this target will not be removed when
quit or interrupt are hit.

. SILENT Same effect as the - s option .

• IGNORE Same effect as the - i option .

Ma.ke executes commands in makefile to update one or more target
names. Name is typically a program. Ir no - r option is present,
makefile, Makefile, s.makefile, and s.Makeflle are tried in order.
Ir makefil.e is - , the standard input is taken. More than one - f
makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than
the target. All prerequisite files or a target are added recursively to
the list or targets. Missing files are deemed to be out or date.

Makefile contains a sequence or entries that speciry dependencies.
The first line of an entry is a blank-separated, nonnull list or targets, (
then a :, then a (possibly null) list or prerequisite files or dependen-
cies. Text following a ; and all following lines that begin with a tab
are shell commands to be executed to update the target. The first
line that does not begin with a tab or # begins a new dependency or
macro definition. Shell commands may be continued across lines
wit.h the <backslash> <newline> sequence. (f) and newline sur-
round comments.

The following makefile says that pgm depends on two files a.o and
b.o, and that they in turn depend on their corresponding source files
(a.c and b.c) and a common file incl.h:

pgm: a.o b.o
cc a.o b.o - o pgm

a.o: incl.h a.c
cc - c a.c

b.o: incl.h b.c
cc - c b.c

Command lines are executed one at a time, each by its own shell. A
line is printed when it is executed unless the - s option is present, (_
or the entry .SILENT: is in makefil.e, or unless the first character or
the command is @. The - n option specifies printing without execu-
tion; however, ir the command line has the string $(MAKE) in it, the

Page 2

)

)

MAKE(CP) MAKE(CP)

line is always executed (see discussion of the MAKEFLAGS macro
under Environment). The - t (touch) option updates the modified
date of a file without executing any commands.

Commands returning nonzero status normally terminate make. Ir
the - i option is present, or the entry .IGNORE: appears in makefile,
or if the line specifying the command begins with
<tab><hyphen>, the error is ignored. Ir the - k option is
present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The - b option allows old makefiles (those written for the old ver­
sion of make) to run without errors. The difference between the old
version of make and this version is that this version requires all
dependency Jines to have a (possibly null) command associated with
them. The previous version of make assumed if no command was
specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target
depends on the special name .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be
macro definitions and processed as such. The environment \•ariables
are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment variables.
The - e option causes the environment to override the macro
assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except - r, - p, and - d) defined
for the command line. Further, upon invocation, make "invents"
the variable if it is not in the environment, puts the current options
into it, and passes it on to invocations of commands. Thus,
MAKEELAGS always contains the current input options. This proves
very usetul for "super-makes". In fact, as noted above, when the
- n option is used, the command ${MAKE) is executed anyway;
hence, one can perform a make - n recursively on a whole software
system to see what would have been executed. This is because the
- n is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles for a
software project without actually doing anything.

Macro•

Entries of the form 1tn"ngl = 1tn"ngf! are macro definitions. Subse­
quent appearances of $(.tn"ngll:eublJtl=leubetf!JI) are replaced by
1tringf!. The parentheses are optional if a single character macro
name is used and there is no substitute sequence. The optional
:11ub1tl=eub1Jtf! is a substitute sequence. If it is specified, all nono­
verlapping occurrences of eublJtJ in the named macro are replaced by

Page 3

MAKE(CP) MAKE(CP)

subltt. Strings (for the purposes or this type or substitution) are
delimited by blanks, tabs, newline characters, and beginnings or
lines. An example of the use or the substitute sequence is shown
under Libraries.

Internal Macros

There are five internally maintained macros which are useful for
writing rules for building targefll:

•• The macro s• stands for the filename part or the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

so The •• macro stands for the run target name or the current
target. It is evaluated only for explicitly named dependencies.

$< The S< macro is only evaluated for inrerence rules or the
.DEFAULT rule. It is the module which is out or date with
respect to t.he target. (i.e., the "manuractured" dependent
filename). Thus, in the .c.o rule, the $< macro would evalu­
ate to t.he .c file. An example for malting optimized .o files
rrom .c files is:

.c.o:
cc - c - 0 @"'.c

or:

.c.o:
cc - c - o S<

$! The $! macro is evaluated when explicit. rules from the
m altefile are evaluated. It is the list or prerequisites that are
out or date with respect to the target; essentially, those
modules which must be rebuilt.

$% The S% ma<:ro is only evaluated when the target is an archive
library member or the form lib(81e.o). In this case, so evalu­
ates to lib and S%evaJuates to the library member, 81e.o.

Four or the five macros can have alternative forms. When an upper
case D or F is appended to any or the four macros the meaning is
changed to "directory part" for D and "file part" for F. Thus,
S(ft D) rerers to the directory part or the string $0. Ir there is no
directory part ./ is generat.ed. The only macro excluded from this
alternative form is S!.

Suffize•

Certain names (for instance, those ending with .o) have default

Page 4

(

(

(

)

)

)

MAKE(CP) MAKE(CP)

dependents such as .c, .s, etc. Ir no update commands for such a
file appear in makefile, and if a default dependent exists, that prere­
quisite is compiled to make the target. In this case, mde has infer­
ence rules which allow building files from other files by examining
the suffixes and determining an appropriate inference rule to use.
The current default inference rules are:

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y-.o .l.o .1-.0

.y.c .y-.c .l.c .c.a .c-.a .s-.a .h-.h

The internal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To print
out the rules compiled into the make on any machine in a form suit,.
able for recompilation, the following command is used:

make - Cp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which printf(S)
prints when handed a null string.

A tilde in the above rules refers to an SCCS file (see ecctfile(F)).
Thus, the rule .c-.o would transform an SCCS C source file into an
object file (.o). Because the s. of the SCCS files is a prefix it is
incompatible with make's suffix pointrof-view. Hence, the tilde is a
way of changing any file reference into an SCCS file reference.

A rule with only one suffix (i.e .. c:) is the definition of how to build
z Crom z .c. In effect, the other suffix is null. This is useful for
building targets Crom only one source file (e.g., shell procedures,
simple C programs).

Additional suffixes are given as the dependency list for .SUFTIXES.
Order is significant; the first possible name for which both a file and
a rule exist is inferred as a prerequisite.

The default list is:

.Sl'mXES: .o .c .y .I .s

Here again, the above command for printing the internal rules will
display the list or suffixes implemented on the current machine.
Multiple suffix lists accumulate; .SUFFlXES: with no dependencies
clears the list or suffixes.

Inference Ruin

The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o - o pgm

a.o b.o: incl.h

Page 5

MAKE(CP) MAKE(CP)

This is because make has a set or internal rules for building files.
The user may add rules t.o this list by simply putting them in the
makefile.

Certain macros are used by the default inference rules t.o permit the
inclusion of optional matter in any resulting commands. For exam­
ple, CFLAGS, I.FLAGS, and YFLAGS are used for compiler options t.o
cc(CP), lez(CP), and 14cc(CP) respectively. Again, the previous
method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule t.o create
a file with suffix .o from a file with suffix .c is specified as an entry
with .c.o: as the target and no dependents. Shell commands associ­
ated with the target define the rule for making a .o file from a .c file.
Any target that has no slashes in it and starts with a dot is identified
as a rule and not as a true target.

Libr11rie11

Ir a target or dependency name contains parentheses, it is assumed
t.o be an archive library, the string within parentheses referring t.o a
member within the library. Thus lib(flle.o) and $(LIB)(flle.o) both
refer t.o an archive library which contains file.o. (This assumes the
LIB macro has been previously defined.) The expression
$(LIB)(filel.o file2.o) is not legal. Rules pertaining t.o archive
libraries have the form .XX.a where the XX is the suffix from which
the archive member is t.o be made. An unfortunate byproduct of the
current implementation requires the XX t.o be different from the
suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive
interface follows. Here, we assume the source files are all C type
source:

lib: lib(file l.o) lib(file2.o) lib(file3.o)
@echo lib is now up t.o date

.c.a:
$(cc) - c $(CFLAGS) •<
ar rv $0 s•.o
rm -r s•.o

In fact, the .c.a rule listed above is built int.o make and is unneces­
sary in this example. A more interesting, but more limited example
or an archive library maintenance construction follows:

lib: lib(filel.o) lib(file2.o) lib(file3.o)
$(cc) - c $(CFLAGS) $(! :.o=.c)
ar rv lib $!
rm $! @echo lib is now up t.o date

.c.a:;

Here the substitution mode of the macro expansions is used. The
$! list is defined t.o be the set of object filenames (inside lib) whose

Page 6

(

(

(

)

)

MAKE(CP) MAKE(CP)

C source files are out or date. The substitution mode translates the
.o to .-::. (Unfortunately, one cannot as yet transform to .c-) Note
also, the disabling or the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds up archive
library maintenance considerably. This type or construct becomes
very cumbersome ir the archive library contains a mix or assern bly
programs and C programs.

•Files

!Mm)akefile

s.!Mm)akefile

See Also

sh(C)

Notes

Some commands return nonzero status inappropriately; use - i to
overcome the difficulty. Commands that are directly executed by the
shell, notably cd(C), are ineffectual across newlines in make. The
synt.ax (lib(filel.o file2.o file3.o) is illegal. You cannot build
lib(file.o) from file.o. The macro S(a:.o=.c-) is not available.

Page 7

(:

(

)

MKSTR (CP) MKSTR (CP)

Name

mkstr - Creates an error message file from C source.

Syntax

mkstr I-) messagefile prefix file ...

Description

.Mk.tr is used to create files or error messages. lta use can make pro­
grams with large numbers of error diagnostics much smaller, and
reduce system overhead in running the program as the error mes­
sages do not have to be constantly swapped in and out.

Mketr will process each specified file, placing a massaged version of
the input file in a file whose name consists or the specified prefiz and
the original name. The optional dash (-) causes the error messages
to be placed at the end or the specified message file for recompiling
part or a large mketred program.

A typical mketr command line is

mkstr pistrings xx •.c

This command causes all the error messages from the C source files
in the current directory to be placed in the file pietring1 and processed
copies of the source for these files to be placed in files whose names
are prefixed with zz.

To process the error messages in the source to the message file,
mk1tr keys on the string 'error("' in the input stream. Each time it
occurs, the C string starting at the '"' is placed in the message file
followed by a null character and a newline character; the null charac­
ter terminates the message so it can be easily used when retrieved,
the newline character makes it possible to sensibly eat the error mes­
sage file to see its contents. The massaged copy of the input file
then cont:i.ins a leuk pointer into the file which can be used to
retrieve the message. For example, the command changes

error("Error on reading", a2, a3, a4);

into

error(m, a2, a3, a4);

where m is the seek position or the string in the resulting error mes­
sage file. The programmer must ere ate a routine error which opens
the message file, reads the string, and prints it out. The following
example illustrates such a routine.

Page l

MKSTR (CP)

Example

char efilname[) ... "/usrflib/pi_strings";
int efil - -1;

error(a.l, a2, a.3, a4)
{

char bur(256);

ir (efil < 0) {
efil,.,. open(efilna.me, O);
ir (efil < o) {

perror(efilname);

}
}

exit(C);

MKSTR (CP)

ir (lseek(efil, (long) a.I, 0) llrea.d(efil, bur, 256) <= 0)
goto oops;

printf(bur, a.2, a.3, a4);
}

See Also

lseek(S), xstr(CP)

Credit

This utility was developed at the University or California at Berkeley
and is used with permission.

Notes

All the arguments except the name or the file to be processed a.re
unnecessary.

Page 2

(

(

(

)

)

)

NM(CP) NM(CP)

Name
run - Prints name list.

Syn tu
nm [-acgnoOprsuv] [+offset] [file . . .]

Description
Nm prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each
object file in the archive will be produced. If no file is given, the
symbols in a.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks
if undefined) and one of the letters U (undefined). A (absolute). T
(text segment symbol), D (data segment symbol), B (bss segment
symbol), S (segment name), C (common symbol), or K (8086
common segment). If the symbol table is in segmented format,
symbol values are displayed as segment:oft'set. If the symbol is
local (non-external) the type lettec is in lowercase. The output is
sorted alphabetically.

Options are:

-a Prim only absolute symbols.

-c Prim only C program symbols (symbols which begin with
'_')as they appeared in the C program.

-1 Prim only global (external) symbols.

-o Sort numerically rather than alphabetically.

-o Prepend file or archive element name to each output line
ratha than only once.

-0 Prim symbol values in octal.

-p Don't sort; prim in symbol-table order.

-r Sort in reverse order.

-s Switch the display format. if the symbol table is in seg-
mented format, print values in non-segmented format. lf
not segmented, print values in segmented format.

-u Print only undefined symbols.

-v Also describe tbe object file and symbol table fonnat.

Page 1

NM(CP) NM(CP)

a.oot Default input file

See .Aliso
ar(CJJ>), ar(JF), s.oot(F)

(

(

(

)

PROF(CP) PROF(CP)

NBllle

prof - Displays profile data.

Syntax

prof [- a] [- I] [file]

Description

Prof interprets the file mon.out produced by the monitor sub­
routine. Under default modes, the symbol table in the named
object file (a.out default) is read and correlated with the
mon.out profile file. For each external symbol, the percentage
of time spent executing between that symbol and the next is
printed (in decreasing order), together with the number of
times that routine was called and the number of milliseconds
per call.

If the - a option is used, all symbols are reported rather than
just external symbols. If the - I option is used, the output is
listed by symbol value rather than decreasing percentage.

To cause calls to a routine to be tallied, the - p option of cc
must have been given when the file containing the routine
was compiled. This option also arranges for the mon.out file
to be produced automatically.

Files

mon.out For profile

a.out For namelist

See Also

monitor(S), profil(S), cc(CP)

Notes

Beware of quantization errors.

Page 1

PROF(CP) PROF(CP)

If you use an explicit call to monitor(S) you will need to make
sure that the buffer size is equal to or smaller than the pro­
gram size.

Page 2

(

(

(

PRS(CP) PRS(CP)

Name

prs - Prints an SCCS file.

) Syntax

)

prs (- d(dataspec)) (- r(SIDIJ (- e) (- I) (- a) files

Description

Pn prints, on the standard output, all or part of an SCCS file (see
•ce•/ile(F)) in a user supplied format. Ir a directory is named, pn
behaves as though each rile in the directory were specified as a
named file, except that nonSCCS files (last component of the path·
name does not begin with a.), and unreadable files are silently
ignored. Ir a name of - is given, t.he standard input is read; each
line of the st:indard input is taken to be the name of an SCCS file or
directory to be processed; nonSCCS files and unreadable files are
silently ignored.

Arguments to prs, which may appear in any order, consist of
options, and filenames.

All the described options apply independently to each named file:

- d{ dataapec) Used to specify the output data specification. The
tlataapec is a string consisting of SCCS file data /cey·
words (see Data Ktyt11ortls} interspersed with optional
user-supplied text.

- rf SID)

-e

- I

-a

Used to specify the SCCS /Dentifica.tion (SID} string
of a delta for which information is desired. Ir no
SID is specified, the SID of the most recently created
delta is assumed.

Requests information for all deltas created earlier
than and including the delta designated via the - r
option.

Requests information for all deltas created later than
and including the delta designated via the - r
option.

Requests printing of information for both removed,
i.e., delta type R, (see nndel(CP)) and existing,
i.e., delta type = D, deltas. If the - a option is not
specified, information for existing deltas only is pro·
vided.

Page 1

PRS(CP) PRS(CP)

Dat:i. Keywords

Data keywords specify which parts of an SCCS file are to be retrieved
and output. All pa.rts of an SCCS file (see 1cc1file(F)) have an asso­
ciated data keyword. There is no limit on the number of times a
data keyword may appear in a 4atupu. (

The inform at.ion printed by pn consists of the user-supplied text and
appropriate values (extracted from the secs file) substituted for the
recognized data keywords in the order of appearance in the 4atupec.
The format of a data keyword value is either simple, in which key-
word substitution is direct, or multiline, in which keyword substitu-
tion is followed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/newline is specified by \n.

Page 2

(

(

PRS(CP) PRS(CP)

TABLE 1. SCCS Files Data Keywords
KeywJort!Data Item Fie Section Value Format

:Dt: Delta information Delta Table See below• s
:DL: Delta line statistics :Li:/:Ld:/:Lu: s
:Li: Lines inserted by Delta nDnnD s

)
:Ld: Lines deleted by Delta nDDnD s
:Lu: Lines uncha.nged by Delta DnnnD s
:OT: Delta type D orR s

:I: SCCS ID string (SID) :R:.:L:.:B:.:S: s
:R: Relea.se number nnnn s
:L: Level number DDDD s
:B: Branch number DDDn s
:S: Sequence number DDDD s
:D: Date Delta created :Dy:/:Dm:/:Dd: s
:Dy: Year Delta created DD s
:Dm: Month Delta creaied • DD s
:Dd: Day Delt.a created DD s
:T: Time Delta creaied :Th:::Tm:::Ts: s

:Th: Hour Delta created DD s
:Tm: Minutes Delta created DD s
:Ts: Seconds Delta created DD s
:P: Programmer who created Delta. logname s

:OS: Delta sequence number DDDD s
:DP: Predeceesor Delta seq-no. llDDn s
:DI: Seq-no. of delta.I! ind., excl., ignored :Dn:/:Dx:/:Dg: s
:On: Deltas included (seq#) :OS: :OS: ••• s
:Ox: Delw excluded (seq#) :OS: :OS: ••• s
:Dg: Delw ignored (eeq #) :OS: :OS: ••• s

)
:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Modale type Bag . text s

:MF: MR validation Bag ye1 or no s
:MP: MR validation pgm name text s
:KF: Keyword error/warning Bag yu or no s
:BF: Branch Bag ye1 or no s
:J: Joint edit Bag ye• or no s

:LK: Locked releases :R: ••• s
:Q: User defined keyword text s
:M: Modale name text s
:FB: Floor boundary :R: s
:CB: Ceiling boundary :R: s
:Os: Deh.ult SID :I: s
:ND: Null delta Bag ye• or no s
:FD: File descriptive text Comments text M
:BO: Body Body text M
:GB: Gotten body . text M
:W: A form of .,/tat(C) string N/A :Z::M:\t:I: s
:A: A form of S1hat(C) string N/A :Z::Y: :M: :l::Z: s
:Z: 111/aal(C) string delimiter N/A @(#) s
:F: SCCS filename N/A text s

) :PN: SCCS file pathname N/A text s
• :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

Page 3

PRS(CP) PRS(CP)

Examples

The rollowing:

prs - d"Users and/or user IDs for :F: are:\n:UN:• s.file

may produce on the standard output:

Users Md/or user IDs for s.file are:
xyz
131
abc

prs - d"Newest. delta for pgm :M:: :I: Created :D: By :P:• - r
e.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77 /12/l By cas

As a 1puial cue:

prs s.file

may produce on the standard output:

D 1.1 77 /12/i 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this .is the comment line for s.file init.ial delt.a

for each delt3 table entry of the "D" type. The only option allowed
to be used with the 1pcci11l tau is the - a option.

Files

/tmp/pr!!!!!

See Also

admin(CP), delta(CP), get(CP), help(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Page 4

(

(

{

)

)

RANLIB(CP) RANLIB(CP)

Name

ranlib - Converts archives to random libraries.

Syntax

ranlib archive

Description

Ranlib converts each archi11e to a form which can be loaded more
rapidly by the loader, by adding a table or contents named _.SYM­
DEF to the beginning or the archive. It uses ar{ CP) to reconstruct
the archive, so sufficient temporary file space must be available in
the file system containing the current directory.

See Also

ld(CP), ar(CP), copy(C), settime(C)

Notes

Failure to process a library with ranlib, or failure to reprocess a
library with ranlib, will ca.use Id to fa.ii. Because generation or a
library by ar a.nd randomization by ranlib are separate, phase errors
are possible. The loader ltl warns when the modification date or a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

Page 1

(

(·

RATFOR (CP) RATFOR (CP)

Name

ratf'or - Converts Rational FORTRAN into standard FORTRAN.

) Syntax

)

)

ratlor (option ...) (filename •.. J

Description

Ratfor converts a rational dialect of FORTRAN into ordinary irra­
tional FORTRAN. Ratfor provides control flow constructs essentially
identical to those in C:

statement grouping:
{statement; statement; statement}

decision-making:
if (condition) statement (else statement J
switch (integer value} {

case integer: statement

}
(default: J statement

loops:
while (condition) statement
lor (expression; condition; expression} statement
do limits statement
repeat statement (until (condition))
break (n)
next (n)

and some additional syntax to make programs easier to read and write:

Free form input:
multiple statements/line; automatic continuation

Comments:
f this is a comment

Translation ol relationals:
>, >==,etc., become .GT., .GE., etc.

Return (expression)
returns expression to caller from function

Define:
define name replacement

Page 1

RATFOR (CP) RATFOR (CP)

Include:
include filename

The option - h causes quot.ed strings to be turned int.o 27H con­
structs. - C copies comments to the output, and attempts to rormat
it neatly. Normally, continuation lines are marked with an & in (
column l; the option - 6x makes the continuation charact.er x and
places it in column 6.

Page 2

)

)

REGCMP(CP) REGCMP(CP)

Name

regcmp - Compiles regular expressions.

Syntax

regt:mp I-) riles

Description

Regcmp, in most cases, precludes the need for calling regcmp (see
regez(S)) Crom C programs. This saves on both execution time and
program size. The command regcmp compiles the regular expres­
sions in file and places the output in file .i. Uthe - option is used,
the output will be placed in file .c. The format or entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotation marks. The output
oC regcmp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i Ciles may thus be included
into C programs, or /iJ.e.c riles may be compiled and later loaded. In
the C program which uses the regcmp output, regez(abc,line) applies
the regular expression named abc to line. Diagnostics are selr­
explanatory.

Examples

name "({A- Za- z)IA- Za- zO- g_J•)SO"

telno "\({0,1}((2- Q)IOlJll- Q))S0\){0,1} *"
"(,2- gl (O- Q){2})Sll -){O,l}"
"(0- g {4})$2"

In the C program that uses the regcmp output,

regex(telno, line, area, ex ch, rest)

will apply the regular expression named telno to line.

See Also

regex(S)

Page 1

(

(

('

)

)

RMDEL (CP) RMDEL (CP)

Name

rmdel - Removes a delta rrom an SCCS file.

Syntax

rmdel - rSID files

Description

Rmdel removes the delta specified by the SID rrom each named SCCS
file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain or each named SCCS file. In
addition, the SID specified must not be that or a version being edited
ror the purpose or making a delta. That is, ir a p·file exists ror the
named SCCS file, the SID specified must not appear in any entry or
the p-file(see get(CP)).

Ir a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that nonSCCS flies
(last component or the pathname does not begin with s.) and
unreadable flies are silently ignored. Ir a name or - is given, the
standard input is read; each line or the standard input is taken to be
the name or an SCCS file to be processed; nonSCCS files and unread­
able files are silently ignored.

Files

x-rile See delt11(CP)

z- rile See delt11 (CP)

See Also

delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) ror explanations.

Page I

(.

(·

)

)

SACT(CP) SACT(CP)

Name

sact- Prints current SCCS file editing activity.

Syntax

158.Ct files

Description

Sact informs the user of any impending delta.s to a named SCCS file.
This situation occurs when get(CP) with the - e option ha.s been
previously executed without a subsequent execution or delta(CP). Ir
a direct.ory is named on the command line, net behaves as though
each file in the direct.ory were specified as a named file, except that
nonSCCS files and unreadable files are silently ignored. Ir a name of
- is given, the standard input is read with each line being taken as
the name or an SCCS file t.o be processed.

The output for each named file consists of five fields separated by
spaces.

Field 1 Specifies the SID or a delta that currently exists in the
SCCS file t.o which changes will be made t.o make the
new delta

Field 2 Specifies the SID for the new delta t.o be created

Field 3 Contains the logname or the user who will make the
delta i.e., executed a gtt for editing

Field 4 Contains the date that get - e was executed

Field 5 Contains the time that get - e was executed

See Also

delta(CP), get(CP), unget(CP)

Diagnostics

Use latlp(CP) for explanations.

Page 1

(

(

c

)

SCCSD/FF (CP) SCCSDIFF (CP)

Name

sccsdifJ - Compares two versions or an SCCS file.

Syntax

sccsdiff - rSID 1 - rSID2 (- p) (- an) files

Description

Sccedilf compares two versions of an SCCS file and generates the
differences between the two versions. Any number of SCCS files
may be specified, but arguments apply to all files.

- rSJD'I SJD1 and SIDI specify the deltas of an SCCS file that. are
to be compared. Versions are passed to 61.i/l(C) in the
order given.

- p Pipe output for each file through pr{ C).

- an n is the file segment sue that 6diJ/ will pass to difff. C).
This is useful when di/I fails due to a high system load.

Files

/tmp/get?!?!! Temporary files

See Also

bdifJ(C), get(<;J>), help(CP), pr(C)

Diagnmtics

rile: No l.ilferencee Ir the two versions are the same.

Use ,\tip(CP) for explanations.

Page 1

('

(

c

SIZE (CP) SIZE (CP)

Name

size - Print.s the size or an object file.

) Syntax

)

size f object ... J

Description

Size prints the (decimal) number or bytes requir2d by the text, data,
and bss portions, and their sum in decimal and hexadecimal, or each
object-file argument. Ir no file is specified, a.out is used.

See Also

a.out(F)

Page I

(:

(_

(

SPLINE(CP} SPLINE(CP)

Name

spline - Interpolates smooth curve.

) Syntax

spline (option J ...

Description

Spline takes pairs or numbers rrom the standard input as abci.ssas and
ordinates or 'a function. It produces a similar set, which is approxi­
mately equally spaced and includes the input set, on the standard
output. The cubic spline output has two continuous derivatives, and
enough points to look smooth when plotted.

The following options are recognized, each as a separate argument.

- a Supplies abscissas automatically (they are missing from the
input}; spacing is given by the next argument, or is assumed to
be I if next argument is not a number.

- k The constant k used in the boundary value computation

II I • I

110 = k111 I • • • I 1/n = k11n- l

is set by the next argument. By default k - 0.

- n Spaces output points so that approximately n intervals occur
between the lower and upper z limits. (Default n - 100.)

- p Makes output periodic, i.e. matches derivatives at ends. First
and last input values should normally agree.

- x Next I (or 2) arguments are lower (and upper) z limits. Nor­
mally these limits are calculated rrom the data. Automatic
abcissas start at lower limit (default 0).

Diagn08tics

When data is not strictly monotone in z, 1pline reproduces the input
without interpolating extra points.

) Notes

A limit or 1000 input points is silently enforced.

Page I

(·.

I

(

c

)

)

STRINGS (CP) S'I'RJNGS(CP)

Name

strings - Finds the printable strings in an object file.

Syntax

strings (- J (- o) [- number J file ...

Description

String• looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline
or a null character. Unless the - ftag is given, dring1 only looks in
the initialized data space or object files. Jr the - 0 ftag is given, then
each string is preceded by its decimal offset in the file. Ir the
- number flag is given then number is used as the minimum string
length rather than 4.

Stn"ng1 is useful for identifying random object files and many other
things.

See Also

hd(C), od(C)

Credit

This utility was developed at the University or California at Berkeley
and is used with permission.

Page 1

(

c
)

(

)

STRIP (CP) STRJP(CP)

Name

strip - Removes symbols and relocation bits.

Syntax

strip name ...

Description

Strip removes the symbol table and relocation bits ordinarily attached
to the output or the assembler and link editor. Thia is useful ror
saving space a.Cter a program has been debugged.

The effect or etrip is the same as use or the - s option or ltl.

Ir name is an archive rile, ltrip will remove the local symbols from
any a. out rormat riles it rinds in the archive. Certain libraries, such
as those residing in /lib, have no need ror local symbols. By deletr
ing them, the size or the archive is decreased and link editing perfor­
mance is increased.

Files

/tmp/stm* Temporary file

See Also

ld{CP)

Page 1

('

)

)

)

T/ME(CP) T/ME(CP)

Name

time - Times a command.

Syntax

time command

Description

The given command is executed; alt.er it is complete, time prints t.he
elapsed time during the command, t.he time spent in t.he system, and
the time spent in execution of t.he command. Times are reported in
seconds.

The times are printed on the standard error.

See Also

times(S)

Page 1

(

(

)

)

)

TSORT(CP) TSORT(CP)

Name

tsort - Sorts a file topologically.

Syntax

taort I file I

Description

Teort produces on the standard output a totally ordered list of items
consistent with a partial ordering or items mentioned in the input
file. Ir no fil.e is specified, the standard input is understood.

The input consists or pairs or items (nonempty strings) separated by
blanks. Pairs of different items indicate ordering. Pairs of identical
items indicate presence, but not ordering.

See Also

lorder(CP)

Diagn011tics

Odd data: There is an odd number of fields in the input file.

Notes

The 1ort algorithm is quadratic, which can be slow if you have a large
input list.

Page 1

(

("

UNGET(CP) UNGET(CP)

Name

unget- Undoes a previous get of an SCCS file.

J Syntax

)

unget (- rSID) (- s) (- n) files

Description

Unget undoes the effect or a get - e done prior to creating the
intended new delta. Ir a directory is named, vngd behaves as
though each file in the directory were specified as a named file,
except that nonSCCS files and unreadable files are silently ignored.
If a name of - is given, the standard input is read with each line
being ta.ken as the name of an SCCS file to be processed.

Options apply independently to each named file.

- rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by gtt as the "new
delta".) The use or this option is necessary only if two
or more versions of the same SCCS file have been
retrieved for editing by the same person (login name).
A di::ignostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line.

- s Suppresses the printout, on the standard output, or the
intended delta's SID.

- n Causes the retention or the file which would normally
be removed Crom the current directory.

See Also

delta{CP), get{CP), sact{CP)

Diagnostics

Use Atlp(CP) for explanations.

Page I

(

(

(

)

VAL (CP) VAL (CP)

Name

val - Validates an secs file.

Syntax

val -

val !- s) (- rSID) (- mname] (- ytype] files

Description

Val determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments to
val may appear in any order. The arguments consist of options,
which begin with a - , and named files.

Val has a special argument, - , which causes reading of the standard
input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit code
upon exit as described below.

The options are defined as follows. The effects or any option apply
independently to each named file on the command line:

- 8

- rSID

- mname

- ytype

The presence of this argument silences the diagnos­
tic message normally generated on the standard outr
put for any error that is detected while processing
each named file on a given command line.

The argument value SID (SCCS /Dentification
String) is an SCCS delta number. A check is made
to determine if the SID is ambiguous (e.g., rl is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or invalid (e.
g., rl.O or rl.1.0 are invalid because neither case
can exist as a valid delta number). Ir the SID is
valid and not ambiguous, a check is made to deter­
mine if it actually exists.

The argument. value name is compared with the
SCCS %M% keyword in file.

The argument value type is compared with the SCCS
%Y% keyword in file.

Page 1

VAL (CP) VAL (CP)

The 8-bit code returned by t111l is a disjunction or the possible errors,
i. e., can be interpreted as a bit string where (moving Crom leCt to
right) set bits are interpreted as follows:

bit 0 = Missing file argument

bit I =Unknown or duplicate option

bit 2 .,,. Corrupted SCCS file

bit 3 ... Can't open file or file not SCCS

bit 4 = SID is invalid or ambiguous

bit 5 - SID does not exist

bit 6 = %¥%, - y mismatch

bit 1 = ~f%, - m mismatch

Note that t1al can process two or more files on a given command line
and in turn can process multiple command line (when reading the
standard input). In these cases an aggregate code is returned; a logi­
cal OR of the codes generated for each command line and file pro­
cessed.

See Also

admin(CP), delta(CP), get(CP), prs(CP)

Diagnoatics

Use lulp(CP) for explanations.

Notes

Val can process up to 50 files on a single command line.

Page 2

(

(

(

XREF(CP) XREF(CP)

Name

xrer - Cross-references C programs.

) Syntax

)

)

xref I file ...)

Description

Xref reads the named filu or the standard input ir no file is specified
and prints a cross reference consisting of lines of the form

identifier filename line numbers ...

Function definition is indicat.ed by a. plus sign (+) preceding the line
number.

See Also

cref(CP)

Pagel

(

(

)

)

XSTR (CP) XSTR (CP)

Name

xstr - Extracts strings from C programs.

Syntax

xstr [- c) (-) [file)

Description

Xatr maintains a file 1tring1 into which strings in component parts or
a large program are hashed. These strings are replaced with refer­
ences to this common area. This serves to implement shared con­
stant strings, most useful ir they are also read-only.

The command

xstr - c name

will extra.ct the strings from the C source in name, replacing string
references by expressions or the form (&xstr(num her)) for some
number. An appropriate declaration or zatr is prepended to the file.
The resulting C text is placed in the file z.c, to then be compiled.
The strings Crom this file are placed in the atringe data base ir they
are not there already. Repeated strings and strings which are suffices
or existing strings do not cause changes to the data base.

After all components of a large program have been compiled, a file
z1.c declaring the common zlfr space can be created by a command
or the Corm

xstr -c name I name2 name3 ...

This ze.c file should then be compiled and loaded with the rest or the
program. IC possible, the array can be made read-only (shared) sav­
ing space and swap overhead.

Xetr can also be used on a single file. A command

xstr name

creates files z.c and ze.c as before, without using or affecting any
1tn"ng1 file in the same directory.

It may be useful to run zatr after the C preprocessor ir any macro
definitions yield strings or ir there is conditional code which contains
strings which may not, in Cact, be needed. Xatr reads from its stan­
dard input when the argument- is given. An appropriate command
sequence for running zstr after the C preprocessor is:

Pagel

XSTR (CP) XSTR (CP)

cc - E name.c lxstr - c -
cc - c x.c
mv x.o name.o

Xlfr does not touch the file 1tring1 unless new items are added, thus (
make can avoid remaking ze.o unless truly necessary.

Files

strings Data bsse of strings

x.c Massaged C source

xs.c C source for definition of array "xstr"

/tmp/xs" Temp ftle when "xstr ns.rne" doesn't touch etringe

See Also

mkstr(CP)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Ir a string is a suffix or another string in the data base, but the
shorter string is seen first by zstr, both strings will be placed in the
data base when just placing the longer one there will do.

Page 2

(

(

)

)

YACC(CP) YACC(CP)

Name

yacc - Invokes a compiler-compiler.

Syntax

yacc [- vd] grammar

Description

Yau converts a context-free grammar into a set of tables for a sim­
ple automaton which executes an LR(l) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to pro­
duce a program mar1e. This program must be loaded with the lexi­
cal analyzer program, r.Jez, as well a.s main and werror, an error
handling routine. These routines must be supplied by the user;
lez(CP) is useful for creating lexical analyzers usable by race.

Ir the - v flag is given, the file y.output is prepared, which contains
a description of the parsing tables and a report on conriicts generated
by ambiguities in the grammar.

Ir the - d flag is used, the file y.tab.h is generated with the #define
statements that associate the race-assigned "token codes" with the
user-declared "token names". This allows source files other than
y.tab.c to access the token codes.

Files

y.output.

y.tab.c

y.tab.h Defines for token names

yacc.tmp, yacc.acts Temporary files

/usr /lib/yaccpar Parser prototype for C programs

See Also

lex(CP)

Page 1

YACO(CP) YACC(CP)

Diagn011tic11

The number of reduce-reduce and shiftr-reduce conflicts is reported
on the standard output; a more detailed report is found in the
y.output file. Similarly, if some rules are not reachable from the
start symbol, this is also reported.

Notes

Because filenames are rlXed, at most one race process can be active
in a given directory at a time.

Page 2

(

(

(

Index

Programming Commands (CP)

Archives and libraries .. ar
Assembler .. as
C compiler ... cc
C language usage and syntax .. Jin t
C language preprocessor ... cpp
C program, formatting ... cb
Compiler compiler .. yacc
Debugger ... adb
Error message file .. mkstr
Execution, time .. time
Graphics, interpolating curves .. spline
Lexical analyzers .. lex
Link editor ... Id
Macro processor ... m4
Object file, printable strings ... strings
Object file, size ... size
Object file, displaying .. hdr
Object file, symbols and relocation strip

) Ordering relations .. !order
Program listing, cross-reference xref
Program listing, cross-reference cref
Program maintenance ... make
Rational FORTRAN ... ratfor
Regular expressions .. regcmp
secs files, combining ... comb
secs files, comments ... cdc
SCCS files, comparing ... sccsdiff
SCCS files, creating new versions delta
SCCS files, editing .. sact
SCCS files, printing ... prs
SCCS files, removing ... rmdel
SCCS files, restoring ... unget
SCCS files, retrieving versions ... get
SCCS files, creating and maintaining admin
SCCS files, validating .. val
SCCS, command help .. help
Sorting topologically ... tsort
Standard input, reading strings gets
Strings, extracting .. xstr
System,XENIXconfiguration ... config
Tags file ... ctags
XENIX to MS-DOS cross linker ... dosld

f
I

c

(

(

