

)

Information in this document is subject to change without notice and does not
represent a commitment on the part of The Santa Cruz Operation, Inc. nor
Microsoft Corporation. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement. It is against
the law to copy this software on magnetic tape, disk, or any other medium for
any purpose other than the purchaser's personal use.

© 1983, 1984 Microsoft Corporation
© 1984, 1985 The Santa Cruz Operation, Inc.

This document was typeset with an IMAGEN® 8 /300 Laser Printer.

XENIX is a. registered tra.dema.rk of Microsoft Corpora.tion.
Sperry is a.registered tra.dema.rk of the Sperry Corpora.tion.
IMAGEN is a. registered tra.dema.rk of IMAGEN Corpora.tion.

Document Number: G-2-14-85-1.3/1.0

(

(l

)

XENIX 1.3 Development
System Release Notes

1. Preface 1

2. Software Notes 1

2.1 cc(CP} 1
2.1.1 Code Generation 1
2.1.2 DOSDevelopmentFiles 2
2.1.3 Large Model Program Generation 2
2 .1.4 Relinking Relocatable Files 3
2.1.5 Assembly Language Generation 3

2.2 LinkKit 3

3. Known Bugs 5

3.1 adb(CP} 5

3.2 as(CP) 5

3.3 ctime(S} 6

3.4 config(CP) and master(F) 6

3.5 prof(CP} 6

3.6 signal(S) 7

3.7 Casting Function Calls 7

3.8 Infinite Spill Error 7

(.J

(

()

' '1,

)

Release Notes
Release 1.3

XENIX®-86 3.0 for Sperry® Personal Computers
Development System

1. Preface

These notes pertain to the XENIX-86 Development System for
Sperry Personal Computers. They contain notes on the software,
the procedure for installing the software and a list of the files on the
floppies in this package.

We are always pleased to hear of user's experience with our product,
and recommendations of how it can be made even more useful. All
written suggestions are given serious consideration.

2. Software Notes

) This release is notably enhanced by the incorporation of the
Microsoft "emerge C compiler." These notes will enable you to best
take advantage of this compiler.

)

2.1 cc(CP)

The emerge compiler, cc(CP), supports several important features.
It allows you to compile programs for both XENIX and DOS. It also
has stronger typing restrictions than the 1.1 C compiler (e.g. pointer
arithmetic is more stringent).

2.1.1 Code Generation

The most important difference between compiling programs for
XENIX and DOS is the treatment of long words. The XENIX System
requires ''big-endian'' word order for longs (high order word first in
memory). DOS requires "little-endian" word order for longs (low
order word firstin memory).

-1-

XENIX for Sperry Personal Computers

The emerge compiler, cc(CP), defaults to small model XENIX 8086
code generation (big-endian word order) and uses the "b" libraries
(for example Sbli'bc.a rather than S/i"bc.a). The default configuration
flag is -MbO.

The default stack for programs is a variable size stack, starting at the
top of afull 64K byte data segment. A full 64K of physical memory is
alloted for combined stack and data. The stack grows down until it
hits the data. Use the -F flag to specify a fixed stack size.

The libraries included in the 1.1, 1.2 and 1.3 XENIX Development
Systems use big-endian word order.

The 1.3 XENIX Development System release does not support the
ability to produce executable programs suitable for XENIX 286
systems. It will produce 286 DOS executables and 286 re linkable
object files. 286 program generation will be fully supported in future
releases.

2.1.2 DOS Development Files

(

DOS executable files are created by using the -dos flag with cc(CP). (
The -dos flag causes the compiler to produce littJe-endian word
order, use the DOS libraries and invoke the DOS linker, dosld(CP),
instead of Id(CP). The DOS libraries are the "d" libraries, such as
Sd/10 c. a, found in fesr;fib /dos.

Refer to XENIX Programmer's Guide (Chapter 10 "XENIX to MS­
DOS: A Cross Development System," Appendix C "A Common
Library System for XENIX and MS-DOS" and dosld(CP)) for more
information on using XENIX to create programs suitable for DOS
systems.

2.1.3 Large Model Program Generation

This release does not support large model 8086 program generation
for XENIX. This will be supported in future releases. Large model is
supported for DOS program generation.

- 2 -

(

)

Development System Release Notes

2.1.4 Relinking Relocatable Files

The XENIX-86 1.2 and 1.3 Development System C compiler
supports longer variable names than the previous C compilers. This
feature may be suppressed by specifying the -nl 8 flag on the
command line to cc, for example:

cc -nl 8 *.o -o newprog

This is needed when using object code files (.o files) created by
versions of the compiler previous to 1.2.

2.1.5 Assembly Language Generation

The -S and-L options to cc(CP), which generate assembly language
source listings, do not function properly.

2.2 Link Kit

A Link Kit is provided with the XENIX 1.3 Operating System. The
necessary files are on the Operating System floppy labelled "Link Kit
floppy".

In order to save disk space, we recommend that this floppy not be
installed unless required. The Link Kit may be installed at any time
by using the /etcjinatall command (see install(M)). Login as root
(super-user) to remove the Link Kit once you are finished using it
(or if it was inadvertently installed). Remove the directory /uar/aya
by (CAREFULLY!) typing:

rm -rf /usr/sys

The Link Kit enables you to add device drivers to your system.
Additional device drivers are necessary to run non-supported
peripheral devices. Ref er to the two chapters in the XENIX
Programmer' a Guide for explanations on writing device drivers. They
are "Writing Device Drivers" and "Sample Device Drivers".

After the device driver is written and compiled it is necessary to
relink the XENIX kernel, including the new device driver, allowing
XENIX to make use of the device.

-3-

XENIX for Sperry Personal Computers

Once you have a completed device driver (driver.o} and a correct
configuration table (c.o) you need to relink the XENIX kernel. Copy
the driver. o file and the c. o file to the directory ju8r/8'!J8/conf. Edit the
/u8r/8'!J8/conffmakefile to include the name of the driver file. Add the
name of the driver file to the line in the section "xenix.modules":

CONF=

You can then make(OP} a xenix or xenix.8ml. by typing:

make xenix

or

make xenix.sml

The makefile tests for the existence of xenix or xenix.8ml, backs it up,
links a new xenix including the new device driver, and makes a new
name/S:,tfile (see run(OP}).

Note

Before using the shell script make xenix you MUST have (
'.' included in your PATii. If '.' is not included,
fu8r/8'!J8/conf frk8eg is not executed. The resulting kernel,
when booted, will show nothing but a blank screen.

As super-user type the command:

PATil=.:$PATII

to temporarily include '.'.

Create a 'bootable xenix floppy' to test the new xenix kernel you
have created. Insert a formatted floppy in drive 0 and type:

make boot

while in the directory /u8r/8'!J8/conf. When you are finished, reboot
the system from the floppy with your new kernel on it. Check the (
XENIX lnatallation Guide Chapter 2 "Installation Procedure" for
instructions on booting the sytem from a floppy disk.

-4-

Development System Release Notes

Now that you have anew, tested xenu kernel, you may install it onto
the hard disk.

) Note

Do not install a xenix on the hard disk until it is fully tested
using a bootable floppy.

Use the shell script fuar/aya/confjhdinatall to install the new xenu on
the hard disk. hdinstall can be invoked by typing:

/usr /sys/ conf /hdinstall

or, while in the directory juar/sya/conf, type:

make hdinstall

To install a xenix.sml you must first move xenix.sml to xenix, as
hdinstall installs the file /v.sr/sys/conf/xenuon the hard disk.

3. Known Bu~

3.1 adb{CP)

The program debugger, adb(OP), does not single-step system calls.
Subprocess control does not work on medium model programs.

3.2 as(CP)

as(OP) does not assemble the assembly code output from the 0
compiler cc(OP) when cc is given the -S flag. Future releases will
allow 0 compiler code to be assembled.

-5-

XENIX for Sperry PersCDal Computers

Note

Assembly language programs of sufficient length will not (
assemble correctly {using /bin/as). If this is the case, we
recommend using jbin/as_l.1 with its different syntax or
rewriting the program in C.

as_l.l is included with this release. The manual page as_l.1{ CP)
and an alternate XENIX Programmer's Guide Chapter 7 "As_l.1: An
Assembler" are included with these Release Notes.

3.3 ctime(S)

The dime(S) library function needs to have the XENIX library li'bx
included when linked. Specify the library on the cc{ CP) line, for
example:

cc -o prog •.o -lx

3.4 config(CP) and master(F)

master(F), the device information table and config(CP), which
configures aXENIX system are not included with this release.

3.5 prof(CP)

The command prof(CP) is included with this release. However, if
cc{ CP) is used to compile a program using the -poption and prof is
later run, you will getan error message:

No time accumulated

(

This is because the 1.3 XENIX kernel does not support profiling.
Profiling will be supported in alaterrelease. (

- 6 -

)

)

Development Syst.em Release Not.es

3.6 signal(S)

The function address value given as a June (prescribing the action
signal is to execute) must be an even address. Signal treats odd
address as SIG_IGN(causing the process to ignore the signal.)

In XENIX-86 3.0 release 1.2 signal catching was not handled
correctly. This problem has been fixed. An example of this incorrect
behaviorwas manifested bysleep(S) not working.

3.7 Casting Function Calls

Do not cast function calls to void The compiler does not correctly
handle this cast. This will be fixed in a future release.

3.8 Infinite Spill Error

The error

Compiler Error (internal):
infinite spill

is provoked by excessive use of pointers and indexes. This will be
fixed in a future release.

The line number given in the error message contains the expression
causing the error. The error may be avoided by dividing the
expression over several statements.

3.9 16 bit Left Shifts

The emerge compiler generates incorrect code for expressions
involving aleftshiftof 16 bits of an integer variable. Assign integer
variables to long variables before attempting to left shift by 16 bits.

) 4. Documentation Notes

-7-

XENIX for Sperry Personal Computers

This section discusses changes and errors in the documentation.

4.1 New Documentation

The following new documentation is included with these Release (
Notes. Please insert them int.o your XENIX Reference.

XENIX Programmer's Guide
Chapter 7 "As_l.1: An Assembler"

alternate t.o current "As: An Assembler"
as_l.1(CP) alternate t.o current as(CP)

XENIX Programmer's Reference
sdget{ S) replaces current sdget{ S)

Both as and as_l.1 are available with the •y•tem. You can use
either one, though as_l .1 ls the newer version. A new Chapter
7 covering as_l .1 can be found In these release notes. A page
describing as_l.1 to be Inserted In the Commands(CP) section
of the Programmer's Gulde ls also Included In these release
notes.

4.2 Appendix of Libraries

At the end of the (S) reference section in the Programmer's
Reference is an appendix listing the XENIX system calls and libraries.
The library listings include each of the functions included in that
library.

The XENIX-86 1.3 Development System does not include large
model libraries for the XENIX System. There are large model
libraries for DOS.

4.3 read(S)

The command rdchk(S) should be listed under the section "See
Also."

4.4 sdget(S)

The syntax for sdget, shown on the sdget.(S) manual page, using the
XENIX 1.3 kernel, should read int size; rather than long size;. A
replacement manual page is included with these Rel ease Notes.

- 8 -

(

(

)

)

Development System Release Notes

5. Installation Notes

Note that you need the 1.3 (or equivalent) XENIX Operating System
installed on your system in order to use the 1.3 XENIX Development
System.

5.1 Disk Usage

The XENIX-86 1.3 Development System can be installed in two
portions. If you intend to do DOS cross compilation, install the DOS
development environment (linker, libraries and include files) in
addition to the XENIX files. Otherwise you can install just the XENIX
files. Floppies number 6 and 7 contain the DOS files and can be
installed at a later time, if desired, by logging in as root (super-user)
and using the /etc/install utility explained later in this section or ref er
to the install(M) manual page.

The 1.3 XENIX Development System requires the following amount
of free space (512 byte blocks) for installation.

3556 XENIX development files (Floppies 1-5)
824 DOS development files (Floppies 6-7)

4380 entire XENIX Development System

Use the df(C) command to check the amount of free disk space on
your system. df(C) reports free disk space in 512 byte blocks.

5.2 Installation Procedure

To install the XENIX-86 1.3 Development System, follow this
procedure:

1. Login as root (super-user) or enter system maintenance
mode (single-user).

2. Insert the first Development System floppy into the floppy
drive and enter the command:

/etc /install

-9-

XENIX for Sperry Personal Chmputers

3. The install utility will prompt:

First floppy <y/n>?

Enter'y' and press RETURN.

4. The program will prompt you for each floppy. Insert the
next Development System floppy and enter 'y' in response
to the prompt:

Next floppy <y,n>?

5. When you have installed the final Development System
floppy, enter 'n' in response to the prompt:

Next floppy <y,n>?

Note that some files may extend from one floppy to the next. In this
case, the tar utility will prompt you in aslightlydifferentfashion than
the /etcjiMta//program.

'tar: please insert new volume, then press RETURN'

Insert the next floppy and press RETURN when the floppy is properly

(

inserted and the floppy door latch is closed. (

(

-10-

)

)

Contents - Development System Floppies

6. Contents -- Development System F1oppies

The following files are included in the 1.3 release XENIX
D evelopmentSystem package.

floppy#!:

/bin/adb
/bin/as
/bin/ch
/bin/gets
/binjlorder
/bin/nm
/bin/regcmp
/bin/strings
/bin/time
/lib/MbcrtO.o

floppy#2:

/lib /Mblibcfp.a
/lib/Mblibdbm.a
/lib /Mblibtermlib.a
linked to /Iib/Mblibtermcap.a

/lib/Mbliby.a
/Iib/Mblibc.a
/lib /Mblibm .a
/lib/Sblibc.a
/lib /Sblibcfp.a
/lib /Sblibdbm .a
/lib/Sblibln.a
linked to /lib/Sblibl.a

/lib/Sbliby.a
/lib /SbcrtO .o
/lib/Sbseg.o

/bin/ar
/bin/as_l.1
/bin/cc
/bin/hdr
/bin/make
/bin /ranlib
/bin/size
/bin/strip
/bin/tsort
/lib/MbmcrtO.o

/lib/Mbseg.o
/lib /Mblibtermcap.a
/lib /Mb lib I.a
/lib/Mblibln.a

linked to /Iib/Mblibl.a
/lib /Mblibx .a
/lib /Mblibcurses.a
/lib /Sblibx .a
/lib /Sblibcurses .a
/lib /Sblibl.a
/lib /Sblibtermcap.a
/lib/Sblibtermlib.a

linked to /lib/Sblibtermcap.a
/lib/SbmcrtO.o
/lib/Sbsegimp.o

-11-

XENIX for Sperry Personal Computers

fioppy#3:
/lib /Sblibm .a
/lib/pO
/lib/p2
/usr/bin/admin
/usr /bin/rmdel
linked to /usr/bin/cdc

fioppr#4:
/usr/bin/comb
/usr/bin/delta
/usr/binjlex
/usr/bin/m4
/usr /bin/prof
/usr /bin/ratfor
/usr /bin/unget
linked to /usr/bin/sad

/usr/bin/val
/ usr /bin /xs tr
/usr/include /a.out.h
/usr/include/ar.h
/usr/include/assert.h
/usr/include/core.h
/usr /include/ ctype .h
/usr/include/dbm.h
/usr/include/errno.h
/usr /include /fcntl.h
/usr /include /math.h
/usr/include /pwd.h
/usr /include /setjmp.h

fioppy#5:
/usr /include /sgtty.h
/usr /include /stand.h
/usr /include /string.h
/usr/include/sys/buf.h
/usr /include /sys /conf.h
/usr /include /sys /fblk.h
/usr/include/sys/filsys.h
/usr /include /sys /in ode .h
/usr /include /sys /ioctl.h

/lib/cpp
/lib/pl
/lib/p3
/usr/bin/cdc
/usr/bin/cref
/usr/bin/help

/usr /bin/ ctaJ{,s
/usr/bin/get
/usr/binjlint
/usr /bin /mkstr
/usr/bin/prs
/usr/bin/sat:.t
/usr /bin /sccsdiff
/usr/bin/spline
/usr/bin/xref
/usr/bin/yat:.c
/usr/include/sys/a.out.h
linked to /usr/include/a.out.h

/usr/include/sys/assert.h
linked to /usr/include/assert.h

/usr /include/ curses.h
/usr /include/ dum prestor .h
/usr /include/ execargs.h
/usr/include/grp.h
/usr/include/mnttab.h
/usr /include /regexp.h

/usr /include /signal.h
/usr/include/stdio.h
/usr /include /sys/ at:.ct.h
/usr/include/sys/callo.h
/usr/include/sys/dir.h
/usr/include/sys/file.h
/usr/include/sys/ino.h
/usr/include/sys/iobuf.h
/usr /include /sys/lock.h

-12-

(

(

(

)

)

)

Cantenta - Development System Floppies

/usr /include /sys jlocking.h
/usr /include /sys /mount.h
/usr /include /sys /proc .h
/usr/include/sys/relsym.h
/usr /include /sys /sd.h
/usr/include/sys/sites.h
/usr /include /sys /spat:e .h
/usr/include/sys/sysinfo.h
/usr /include /sys /text.h
/usr/include/sys/times.h
/usr /include /sys /tty .h
/usr/include/sys/ulimit.h
/usr /include /sys /ut.sname .h
/usr /include /termio.h
/usr /include /ustat.h
/usr /include /varargs.h
/usr /lib/ cref /at.ab
/usr /lib/ cref / crpost
/usr/lib/cref/eign
/usr /lib/ cref /upost
/usr /lib /help /bd
/usr/lib/help/cm
/usr/lib/help/co
/usr/lib/help/default
/usr/lib/helpjhe
/usr/lib/help/rc
/usr/lib/help/ut
/usr/lib/lintl
/usr /lib /llib-lc
/usr /lib /llib-lcurses
/usr/lib/llib-lm
/usr /lib /llib-port
/usr/lib/xrefa
/usr /lib /yat:cpar
/once /init.soft

/usr/include/sys/map.h
/usr/include/sys/param.h
/usr/include/sys/reg.h
/usr /include /sys /relsym86 .h
/usr /include /sd.h
linked to /usr/include/sys/sd.h

/ usr /include/ sys/ stat.h
/usr/include/sys/systm.h
/usr /include /sys/time b.h
/usr/include/sys/ttold.h
/usr/include/sys/types.h
/usr/include/sys/user.h
/usr/include/sys/var.h
/usr /include /time .h
/usr/include/utmp.h
/usr /lib/ cref / ai.gn
/usr /lib/cref /cign
/usr /lib/ cref /ctah
/usr /lib/ cref /etah
/usr/lib/help/ad
/usr/lib/help/cb
/usr/lib/help/cmds
/usr /lib /help/ de
/usr/lib/help/ge
/usr/lib/help/prs
/usr/lib/help/un
/usr /lib /lex /ncform
/ usr /lib /lin t2
/usr /lib /llib-lc .ln
/usr/lib/llib-lcurses.ln
/usr/lib/llib-lm.ln
/usr /lib /llib-port.ln
/usr /lib /xrefb
/etc/soft.perms

-13-

XENIX for Sperry Perscnal C.om.put.ers

floppy#6:
/usr/bin/dosld
/usr /include/ dos/ ctype .h
/usr/include/dos/fcntl.h
/usr/include/dos/setjmp.h
/usr/include/dos/spawn.h
/usr/include/dos/time.h
/usr/include/dos/sys/timeb.h
/usr/include/dos/sys/utime.h
/ usr /lib/ dos /Sdlibc .a
/usr/lib/dos/Mdlibc.a
/usr/lib/dos/Mdlibm.a
/usr/lib/dosjLdcrtO.o

floppy#7:
/ usr /lib/ dos /L dli bcf p. a
/usr/lib/dos/Sdlibm.a
/once /dos.perms

/usr/include/dos/assert.h
/usr/include/dos/errno.h
/usr/include/dos/math.h
/usr/include/dos/signal.h
/usr/include/dos/stdio.h
/usr/include/dos/sys/stat.h
/usr/include/dos/sys/types.h
/usr /lib/ dos /SdcrtO .o
/ usr /lib/ dos /Sdli bcf p .a
/usr/lib/dos/Mdlibcfp.a
/usr/lib/dosjMdcrtO.o
/usr/lib/dos/Ldlibc.a

/usr/lib/dos/Ldlibm.a
/usr/lib/dos/rawmode.o
/once/init.dos

-14-

(

)

Chapter7

As_l.1: An Assembler

7 .1 Introduction 7-1

7 .2 Command Usage 7-1

7 .3 Lexical Conventions 7-1
7 .3.1 Identifiers 7-1
7.3.2 Constants 7-1
7.3.3 Blanks 7-2
7.3.4 Comments 7-2

7.4 Segments 7-2

7 .5 The Location Counter 7-3

7 .6 Statements 7-3
7.6.1 Labels 7-3
7.6.2 Nullstatements 7-4
7.6.3 Expressionstatements 7-4
7.6.4 Assignmentstatements 7-4
7.6.5 Keywordstatements 7-5

7. 7 Expressions 7-5

7.8

7.7.1 Expressionoperators 7-5
7.7.2 Types 7-5
7. 7 .3 Type Propagation in Expressions 7-7

Assembler Directives 7-8
7.8.1 .even 7-8
7.8.2 .float, .double 7-8
7.8.3 .globl 7-8
7.8.4 .text, .data, .bss 7-9
7.8.5 .comm 7-9

7.8.6 .insrt 7-9
7.8.7 .ascii, .asciz 7-10
7.8.8 .list,.nlist 7-10
7.8.9 .blkb, .blkw 7-11
7.8.10 .byte, .word 7-11
7.8.11 .end 7-11

7 .9 Machine Instructions 7-12

7.10 AddressingModes 7-15
7.10.1 RegisterOperands 7-15
7.10.2 Immediate Operands 7-16

7.11 Memory Addressing Modes 7-16
7.11.1 DirectAddressing 7-16
7.11.2 RegisterlndirectAddressing 7-17
7.11.3 BasedAddressing 7-17
7.11.4 lndexedAddressing 7-17
7 .11.5 Based Indexed Addressing 7-18

7.12 Diagnostics 7-18 (

(

)

)

As_l.1: An Assembler

7 .1 Introduction

This document describes the usage and input syntax of the XENIX 8086
assembler, as_l.1, an assembler that produces an output file containing
relocation information and a complete symbol table. The output is acceptable
to the XENIX loader ld(CP), which may be used to combine the outputs of
several assembler runs and to obtain object programs from libraries. The
output format has been designed so that if a program contains no unresolved
references to external symbols, it is executable without further processing.

This chapter does not teach assembly language programming, nor does it give a
detailed description of 8086 operation codes. For information on these topics,
you will need other references.

7 .2 Command Usage

As_l.1 is invoked as follows:

as_l.l [-1] [-o output] file

If the optional -1 argument is given, an assembly listing is produced which
includes the source, the assembled (binary) code, and any assembly errors. This
name of the listing file has an .L extension.

The output of the assembler is by default placed on the file file. o in the current
directory; The-o flag causes the output to be placed on the named file.

7 .3 Lexical Conventions

Assembler tokens include identifiers (alternatively, "symbols" or "names"),
constants, and operators.

7 .3.1 Identifiers

Identifiers begin with a period, underscore, or letters. Identifiers may contain
periods, underscores, or letters (case is significant), and digits. Only the first
eight characters are significant.

7 .3.2 Constants

A hex constant consists of a backslash character(/) followed by a sequence of
digits and one of the letters "a" "b" "c" "d" "e" and "f" (any of which may
be capitalized). The letters are i~ter~reted with the following values:

7-1

XENIX Programmer's Guide

HEX DECIMAL
a IO
b 11
c 12
d 13
e 14
f 15

An octal constant consists of a series of digits, preceded by the tilde (-)
character. The digits must be in the range(}. 7.

A decimal constant consists simply of a sequence of digits. The magnitude of the
constant should be representable in 15 bits; i.e., be less than 32, 768.

7 .3.3 Blanks

Blank and tab characters may be freely interspersed between tokens, but may
not be used within tokens (except in character constants). A blank or tab is
required to separate adjacent identifiers or constants not otherwise separated.

7 .3.4 Comments

Comments are ignored by the assemler. The vertical bar (I) introduces
comments, which extends to the end of the line on which it appears.

7 .4 Segments

Assembled code and data fall into three segments: the tezt segment, the data
segment, and the bss segment. The tezt segment is the one in which the
assembly begins, and it is the one into which instructions are typically placed.
The XENIX system will, if desired, enforce the purity of the text segment of
programs by trapping write operations into it. Object programs produced by
the assembler must be processed by the link editor ld(CP)(using its-i option) if
the text segment is to be write-protected. A single copy of the text segment is
shared among all processes executing such a program.

The data segment is available for storing data or instructions that may be
modified during execution. Anything that may be stored in the text segment

(

(

may be put into the data segment. In programs with write-protected, shareable (.
text segments, the data segment contains the initialized but variable parts of a
program. If the text segment is not pure, the data segment begins immediately
after the text segment. If the text segment is pure, the data segment is in an
address space of its own, starting at location zero (0).

The bss segment may not contain any explicitly initialized code or data. The

7-2

)

)

)

As_l.1: An Assembler

length of the bss segment (like that of text or data) is determined by the high­
water mark of the location counter within it. The bss segment is actually an
extension of the data segment and begins immediately after it. At the start of
execution of a program, the bss segment is set to 0. The advantage in using the
bss segment for storage that starts off empty is that the initialization
information need not be stored in the output file. For more information, see the
discussion of the bss directive.

7 .5 The Location Counter

The special symbol, "dot" (.), is the location counter. Its value at any time is
the offset within the appropriate segment from the start of the statement in
which it appears. The location counter may be assigned to, with the restriction
that the current segment may not change. Furthermore, the value of dot may
not decrease. If the effect of the assignment is to increase the value of dot, then
the required number of null bytes is generated.

7 .6 Statements

A source program is composed of a sequence of statements. Statements are
separated by newlines. There are four kinds of statements:

Null statements

Expression statements

Assignment statements

Keyword statements

The format for most 8086 assembly language source statements is:

[lab elfield] op-code [operandfield] [comment]

Any kind of statement may be preceded by one or more labels.

7 .6.1 Labels

There are two kinds of labels: name labels and numeric labels. A name label
consists of an identifier followed by a colon (:). The effect of a name label is to
assign the current value and type of the location counter to the name. An error
is indicated in pass 1 if the name is already defined; an error is indicated in pass 2
if the value assigned changes the definition of the label.

A numeric label consists of a string of digits 0 to 9 and a dollar-sign ($) followed
by a colon (:). Such a label serves to define local symbols of the form

7-3

XENIX Programmer's Guide

n$

where n is the digit of the label. The scope of the numeric label is the labeled
block in which it appears. As an example, the label "9$'' is defined only between
the labels lab ell and labele:

labell:
9$: .byteO

label2: .word a

As in the case of name labels, a numeric label assigns the current value and type
of dot to the symbol.

7.6.2 Nullstatements

A null statement is an empty statement (which may, however, have labels and a
comment). A null statement is ignored by the assembler. Common examples of
null statements are empty lines or lines containing only a label.

7 .6.3 Expression statements

An expression statement consists of an arithmetic expression not beginning
with a keyword. The assembler places the value of the expression in the output,
together with the appropriate relocation bits.

7 .6.4 .Assignment statements

An assignment statement consists of an identifier, an equal sign (=), and an
expression. The value and type of the expression are assigned to the identifier.
It is not required that the type or value be the same in pass 2 as in pass 1, nor is it
an error to redefine any symbol by assignment.

Any external attribute of an expression is lost across an assignment. This
means that it is not possible to declare a global symbol by assigning to it, and
that it is impossible to define a symbol to be offset from a nonlocally defined
global symbol.

(

As mentioned, it is permissible to assign to the location counter. It is required, rf
however, that the type of the expression assigned be of the same type as dot, and \
it is forbidden to decrease the value of dot. In practice, the most common
assignment to dot has the form

7-4

)

.As_l.l: An .Assembler

.=.+n

for some number n; this has the effect of generating n null bytes.

7 .6 .5 Keyword statements

Keyword statements are numerically the most common type, since most
machine instructions are of this sort. A keyword statement begins with one of
the many predefined keywords of the assembler; the syntax of the remainder
depends on the keyword. All the keywords are listed below with the syntax they
require.

7 .7 Expressions

An expression is a sequence of symbols representing a value. I ts constituents are
identifiers, constants, and operators. Each expression has a type.

Arithmetic is two's complement. All operators have equal precedence, and
expressions are evaluated strictly left to right.

7 .7 .1 Expression operators

The operators are:

Operator Description

(blank) Same as+
+ Addition

Subtraction

* Multiplication
I Division

Logical OR
&& Logical AND
!! Logical NOT
> Right Shift
< Left Shift

7.7.2 Types

The assembler deals with expressions, each of which may be of a different type.
Most types are attached to the keywords and are used to select the routine
which treats that keyword. The types likely to be met explicitly are:

7-5

XENIX Programmer's Guide

7-6

undefined
Upon first encounter, each symbol is undefined. It may become
undefined if it is assigned an undefined expression.

undefined external

absolute

text

data

bss

A symbol which is declared .globl but not defined in the
current assembly is an undefinied external. If such a symbol is
declared, the link editor ld(CP) must be used to load the
assembler's output with another routine that defines teh
undefined reference.

An absolute symbol is defined ultimately from a constant. Its
value is unaffected by any possible future applications of the
link-editor to the output file.

The value of a text symbol is measured with respect to the
beginning of the text segment of the program. If the assembler
output is link-edited, its text symbols may change in value
since the program need not be the first in the link editor's
output. Most text symbols are defined by appearing as labels.
At the start of an assembly, the value of dot is text 0.

The value of a data symbol is measured with respect to the
origin of the data segment of a program. Like text symbols, the
value of a data symbol may change during a subsequent link­
editor run, since previously loaded programs may have data
segments. After the first . data statement, the value of dot is
dataO.

The value of a bss symbol is measured from the beginning of
the bss segment of a program. Like text and data symbols, the
value of a bss symbol may change during a subsequent link­
editor run, since previously loaded programs may have bss
segments. After the first .bss statement, the value of dot is bss
0.

external absolute, text, data, or bss

other types

Symbols declared .globl but defined within an assembly as
absolute, text, data, or bss symbols may be used exactly as if
they were not declared .globl; however, their value and type (.
are available to the link editor so that the program may be
loaded with others that reference these symbols.

Each keyword known to the assembler has a type that is used

)

)

As_l.1: An Assembler

to select the routine which processes the associated keyword
statement. The behavior of such symbols when not used as
keywords is the same as if they were absolute.

7 .7 .3 Type Propagation in Expressions

When operands are combined by expression operators, the result has a type
that depends on the types of the operands and on the operator. The rules
involved are complex, but are intended to be sensible and predictable. For
purposes of expression evaluation the important types are:

undefined
absolute
text
data
bss
undefined external
other

The combination rules are as follows:

If one of the operands is undefined, the result is undefined.

If both operands are absolute, the result is absolute.

If an absolute is combined with one of the other types mentioned
above, the result has the other type.

If two operands of other type are combined, the result has the
numerically larger type.

An other type combined with an explicitly discussed type other than
absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an
undefined external, the result has the postulated type and the other
operand must be absolute.

If the first operand is a relocatable text-, data-, or bss-segment
symbol, the second operand may be absolute (in which case the result
has the type of the first operand); or the second operand may have
the same type as the first (in which case the result is absolute). If the
first operand is external undefined, the second must be absolute. All
other combinations are illegal.

others

7-7

XENIX Programmer's Guide

It is illegal to apply these operators to any but absolute symbols.

1.8 Assembler Directives

As_1.1 supports a number of assembler directives (also called "Pseudo­
operations" or "pseudo-ops"). The keywords listed below introduce
statements that influence the later operations of the assembler. The
metanotation

[item] ...

means that 0 or more instances of the given item may appear. Also, boldface
tokens are literals, italic words are substitutable.

7 .8.1 .even

If the location counter is odd, it is advanced by one so the next statement will be
assembled at a word boundary. This is useful for forcing storage allocation to be
on a word boundary after a .byte or .ascii directive.

7 .8.2 .float, .double

.float float

The .float pseudo operation accepts as its operand an optional string of tabs
and spaces, then an optional sign, then a string of digits optionally containing a
decimal point, them an optional "e" or "E", followed by an optionally signed
integer. The string is interpreted as a floating point number. The difference
between .float and .double is in the number of bytes for the result. The .float
sets aside four bytes, while .dou hie sets aside eight bytes.

7 .8.3 .globl

.glob I name [, name] ...

(

(

This statement makes the names external. If they are otherwise defined (by
assignment or appearance as a label) they act within the assembly exactly as if (
the .globl statement were not given; however, the link editor ld(CP) may be ·
used to combine this routine with other routines that refer to these symbols.

Conversely, if the given symbols are not defined within the current assembly,
the link editor can combine the output of this assembly with that of others

7-8

)

)

)

As_l.l: An Assembler

which define the symbols. It is possible to force the assembler to make all
otherwise undefined symbols external.

7 .8.4 .text, .data., .bss

These three pseudo-operations cause the assembler to begin assembling into the
text, data, or bss segment, respectively. Assembly starts in the text segment. It
is forbidden to assemble any code or data into the bss segment, but symbols
may be defined and dot moved about by assignment.

7.8.5 .comm

The format of the .comm statement is

.comm name

Provided the name is not defined elsewhere, this statement is equivalent to
.globl. That is, the type of name is "undefined external", and its size is
expression. In fact the name behaves in the current assembly just like an
undefined external. However, the link-editor ld has been special-cased so that
all external symbols that a.re not otherwise defined, and that have a nonzero
value, are defined to lie in the bss segment, and enough space is left after the
symbol to hold expression bytes. All symbols which become defined in this way
are located before all the explicitly defined bss-segment locations.

7 .8 .6 .insrt

The format of a .insrt is:

.insrt "filename"

where filename is any valid XENIX filename. Note that the filename must be
enclosed within double quotation marks.

The assembler attempts to open this file for input. If it succeeds, source lines are
read from it until the end of file is reached. If as is unable to open the file, the
following error message is printed:

Cannot open insert file

This statement is useful for including a standard set of comments or symbol
assignments at the beginning of a program. It is also useful for breaking up a
large source program into easily manageable pieces.

7-9

XENIX Programmer's Guide

The maxim um depth of nexted insertions with .insrt is ten.

System call names are not predefined. They may be found in the file
/ usr/ include/ sys.s. (

7 .8.7 .ascii, .asciz

The .ascii directive translates character strings into their 7-bit ASCII
(represented as 8-bit bytes) equivalents for use in the source program. The
format of the .ascii directive is as follows:

.ascii /string/

where string contains any character valid in a character constant. Obviously, a
newline must not appear within the character string. (It can be represented by
the escape sequence "\n"). Note that the slash is the delimter character. This
may be any be any character not appearing in character-string.

Several examples follow:

Hex Code Generated

22 68 65 6C 6C 6F 20 7 4
6865726522

7761726E696E6720
2D0707200A

6162 636465 6667

Statement:

. a.scii /"hello there"/

.ascii "Warning-\007\007 \n"

.ascii •abcdefg•

The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically inserted as the final character of the string. Thus, when a list or
text string is to be printed, a search for the null character can terminate the
string. Null terminated strings are used as arguments to some XENIX system
calls.

7 .8 .8 .list, .nlist

(

These pseudo-directives control the assembler output listing. These, in effect,
temporarily override the -1 switch to the assembler. This is useful when certain
portions of the assembly output is not necessarily desired on a printed listing. (

.list Turns the listing on

.nlist Turns the listing off

7-10

As_l.1: An Assembler

7 .8.9 .blkb, .blkw

The .blkb and .blkw directives are used to reserve blocks of storage: .blkb
) reserves bytes, .blkw reserves words.

)

)

The format is:

.blkb

.blkw
[express~onl
[expression

where expression is the number of bytes or words to reserve. If no argument is
given a value of 1 is assumed. The expression must be absolute, and defined
during pass I.

This is equivalent to the statement

. = . + expression

but has a much more transparent meaning.

7 .8.10 .byte, .word

The .byte and .word directives are used to reserve bytes and words and to
initialize them with certain values.

The format is:

.byte

.word
[express~onl
[expression

The .byte directive reserves one byte for each expression in the operand field
and initializes the value of the byte to be the low-order byte of the
corresponding expression.

The semantics for .word are identical, except that 16-bit words are reserved
and initialized.

7 .8.11 .end

The .end directive indicates the physical end of the source program. The
format is:

.end [expression]

where expression is an optional argument which, if present, indicates the entry
point of the program, i.e., the starting point for execution. If the entry point of a
program is not specified during assembly, it defaults to zero.

7-11

XENIX Programmer's Guide

Every source program must be terminated with a .end statement. Inserted
files that contain a .end statement will terminate assembly of the
entire program, not just the inserted portion.

7 .9 Machine Instructions

The 8086 instructions treat different types of operands uniformly. Nearly every
instruction can operate on either byte or word data. In the table that follows,
with some exceptions, an instruction that operates on a byte operand will have
a "b" suffix on the opcode.

The 8086 instruction mnemonics which follow are implemented by the
Microsoft 8086 assembler described in this section. Some of the opcodes are not
found in any other 8086 manual; for example,. the some of the branch
instructions are specific to this assembler. These branch instructions expand
into a jump on the inverse of the condition specified, followed by an an
unconditional intrar-segment jump. The operand field format for the branch
opcodes is the same as the operand field for the jump long opcodes. The opcodes
that are implemented only in this assembler are annotated by an asterisk, and
are fully defined and described in this document.

8086 Assembler Opcodes

Opcode Description

aaa ascii adjust for addition
aad ascii adjust for division
aam ascii adjust for multiply
aas ascii adjust for subtraction
adc add with carry
adcb add with carry
add add
ad db add
and logical AND
an db logical AND
•beq long branch equal
•bge long branch grt or equal
•hgt long branch grt
•bhi long branch on high
•bhis long branch high or same
•hie long branch les or equal
•blo long branch on low
•blos long branch low or same
•bit long branch less than
•bne long branch not equal
•hr long branch
call intra segment call

7-12

(

(

As_Ll: An Assembler

calli inter segment call
cbw convert byte to word
clc clear carry flag
cld clear direction flag
cli clear interrupt flag
cmc complement carry flag
crop compare
cmpb compare
crops compare string
cmpsb compare string
cwd covert word to double word
daa decimal adjust for addition
das decimal adjust for subtraction
dee decrement by one
decb decrement by one
div division unsigned
divb division unsigned
hit halt
idiv integer division
idivb integer division
imul integer multiplication
imulb integer multiplication
in input byte

) inc increment by one
inch increment by one
int interrupt
into interrupt if overflow
inw input word
iret interrupt return
j short jump
ja short jump if above
jae short jump if above or equal
jb short jump if below
jbe short jump if below or equal
jcxz short jump if CX:is zero
je short jump on equal
jg short jump on greater than
jge short jump greater than or equal
j I short jump on less than
jle short jump on less than or equal
jmp jump
jmpi inter segment jump
jna short jump not above

) jnae short jump not above or equal
jnb short jump not below
jnbe short jump not below or equal
jne short jump not equal
jng short jump not greater
jnge short jump not greater or equal

7-13

XENIX Programmer's Guide

jnl short jump not less
jnle short jump not lessor equal
jno short jump not overflow
jnp short jump not parity (jns short jump not sign
jnz short jump not zero
jo short jump on overflow
jp short jump if parity
jpe short jump if parity even
jpo short jump if parity odd
js short jump if signed
jz short jump if zero
lahf load AH from flags
Ids load pointer using DS
lea load effective address
les load pointer using ES
lock lock bus
lodb load string byte
lodw load string word
loop loop short label
loope loop if equal
loopne loop if not equal
loopnz loop is not zero
loopz loop if zero
mov move
movb move byte
movs move string
movsb move string byte
mul multiplication unsigned
mulb multiplication unsigned
neg negate
negb negate
nop no op
not logical NOT
notb logical NOT
or logical OR
orb logical OR
out output byte
outw output word
pop pop from stack
po pf pop flag from stack
push push onto stack
pushf push flags onto stack
rel rotate left through carry
rclb rotate left through carry
rcr rotate right through carry
rcrb rotate right through carry
rep repeat string operation
repnz repeat string operation not zero

7-14

)

)

)

As_l.1: An Assembler

repz repeat string operation while zero
ret return from procedure
reti return from intersegment procedure
rot rotate left
rolb rotate left
ror rotate right
rorb rotate right
sahf store AH into flags
sat shift arithmetic left
salb shift arithmetic left
Sar shift arithmetic right
sarb shift arithmetic right
sbb subtract with borrow
sbbb subtract with borrow
scab scan string
sh! shift logical left
shlb shift logical left
shr shidr logical right
shrb shidr logical right
stc set carry flag
std set direction flag
sti set interrupt enable flag
stob store byte string
stow store word string
sub subtraction
subb subtraction
test test
testb test
wait wait while TEST pin
xchg exchange
xchgb exchange
xlat translate
xor xclusiveOR
xorb xclusiveOR

7 .10 Addressing Modes

The 8086 assembler provides many different ways to access instruction
operands. Operands may be contained in registers, within the instruction itself,
in memory, or in I/O ports. In addition, the addresses of memory and 1/0 port
operands can be calculated in several different ways.

7 .10.1 Register Operands

Instructions that specify only register operands are generally the most compact
and fastest executing of all the instruction forms. This is because the register

7-15

XENIX Programmer's Guide

"addresses" are encoded in the instructions with just a few bits, and because
these operations are performed entirely within the CPU. Registers may serve as
source operands, destination operands, or both. Examples of register
addressing follow:

sub cx,di
mv ax,/3•4
mv /3•4/,ax
mov ax,•l

7 .10.2 Immediate Operands

Immediate operands are constant data contained in an instruction. The data
may be either 8or16 bits in length. Immediate operands can be accessed quickly
because they are available directly from the instruction queue. It is possible
that no bus cycles will be needed to obtain an immediate operand. An
immediate operand is always a constant value and can only be used as a source
operand.

The assembler can accept both 8 and 16 bit operands. It does not perform any
checking on the operand size, but determines the size of the operand by the
following symbols:

•expr
#expr

an 8 bit immediate
a 16 bit immediate

Examples of immediate addressing follow:

mov cx,•PAGSIZ/2
mov cx,#PAGSIZ/2
mov map,#PAGSIZ/2
mov map,•PAGSIZ/2

'1.11 Memory Addressing Modes

When reading or writing a memory operand, a value called the offset is required.
This offset value, also called the effective address is the operand's distance in
bytes from the beginning of the segment in which it resides.

'l •. U.l DirectAddressing

Direct addressing is the simplest memory addressing mode since no registers are
involved. The effective address is taken directly from the displacement field of
the instruction. It is typically used to access simple (scalar) variables. Examples

7-16

(

(

(

)

)

of direct addressing follow:

push
mov
add

*6(bp)
cx,#256
si,*4

7 .11.2 Register IndirectAddressing

As_l.l: An Assembler

The effective address of a memory operand may be taken from a base or index
register. One instruction can operate on many different memory locations if the
value in the base or index register is updated appropriately. Indirect addressing
is denoted by an ampersand(\@) preceding the operand. Examples of indirect
addressing follow:

popl rrO,@rlS
calli @moncall

7 .ll.3 Based Addressing

In based addressing, the effective address is the sum of a displacement value and
the content of register bx or hp. Based addressing also provides a
straightforward way to address structures which may be located in different
places in memory. A base register can be pointed at the base of the structure and
elements of the structure addressed by their displacements from the base.
Different copies of the same structure can be accessed by simply changing the
base register. An example of based addressing follows:

mov *2(si),#/1000

7 .11.4 Indexed Addressing

In indexed addressing, the effective address is calculated from the sum of a
displacement plus the content of an index register. Indexed addressing often is
used to access elements in an array. The displacement locates the beginning of
the array, and the value of the index register selects one element. Since all array
elements are the same length, simple arithmetic on the index register will select
any element. An example of indexed addressing follows:

mov #_cat,(bx)

7-17

XENIX Programmer's Guide

7 .11.5 Based Indexed Addressing

Based indexed addressing generates an effective address that is the sum of a
base register, an index register, and a displacement. Based indexed addressing is (
a very fiexible mode because two address components can be varied at execution
time.

Based indexed addressing provides a convenient way for a procedure to address
an array allocated on a stack. Register bp can contain the offset of a reference
point on the stack, typically the top of the stack after the procedure has saved
registers and allocated local storage. The offset of the beginning of the array
from the reference point can be expressed by a displacement value, and an index
register can be used to access individual array elements. Examples of based
indexed addressing follow:

mov (bx)(dx),_sym
mov •2(bxX dx),_sym
mov #2(bx)(dx),_sym

7 .12 Diagnostics

When syntactic errors occur, the line number and the file in which they occur is (
displayed. Errors in pass 1 cause cancellation of pass 2.

•ERROR• syntax error, line nnn
file: eeeerrors

where nnn represents the line number(s) in error, and eee represents the total
number of errors.

7-18

(

)

)

AS_1.1 (OP) AS_1.1 (OP)

Name

as_l.1 - assembler

Synopsis

as_l.1 [-] [- o objfile] file ...

Description

As_1.1 assembles the concatenation of the named files. If the
optional first argument - is used, all undefined symbols in
the assembly are treated as global.

The output of the assembly is left on the file objfue. The out­
put format is INTEL 8086 Relocatable Format. See the
manual page 86rel(F) for a description of the output format.

Files

/bin/as_l.1
file.o

See Also

this assembler
object

ld(OP), nm(OP), adb(OP), a.out(F), 86rel(F)
XENIX Programmer's Reference

Diagnostics

When an input file cannot be read, its name followed by a
question mark is typed and assembly ceases. When syntactic
or semantic errors occur, a single-character diagnostic is typed
out together with the line number and the file name in which
it occurred. Errors in pass 1 cause cancellation of pass 2. The
possible errors are:

) Parentheses error
] Parentheses error
< String not terminated properly
* Indirection used illegally

Page 1

AS_l.1 (CP)

a Error in address
b Branch instruction is odd or too remote
e
f
g

m
0

p
r
u
x

Error in expression
Error in local ('f' or 'b') type symbol
Garbage (unknown) character
End of file inside an if
Multiply defined symbol as label
Word quantity assembled at odd address
'.' different in pass 1 and 2
Relocation error
Undefined symbol
Syntax error

AS_l.1 (CP)

Syntax errors can cause incorrect line numbers m following
diagnostics.

Page 2

(

(

(

)

SDGET(S) SDGET(S)

Name

sdget, sdfree - Attachs and detachs a shared data segment.

Syntax

#include <sd.h>

char *sdget(path, n~, [size, mode])
char~th;
int flag!I, mode;
int size;

int sdfree{ addr);
char •ad.ch;

Description

Sdget attachs a shared data segment to the data space of the
current process. The actions performed are controlled by the
value of flags. Rags values are constructed by OR-ing flags
from the following list:

SDJWONLY
Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writing.

SD_CREAT If the segment named by path exists and is not in
use (active), this flag will have the same effect as
creating a segment from scratch. Otherwise, the
segment is created according to the values of size
and mode. Read and write access to the segment
is granted to other processes based on the per­
missions passed in mode, and functions the same
as those for regular files. Execute permission is
meaningless. The segment is initialized to con­
tain all zeroes.

SD_UNLOCK
If the segment is created because of this call, the
segment will be made so that more than one pro­
cess can be between sdenter and sdleave calls.

Page 1

SDGET(S) SDGET(S)

Sdfree detachs the current process from the shared data seg­
ment that is attached at the specified address. If the current
process has done an sdenter but not a adleave for the specified
segment, an ad/eave will be done before detaching the seg­
ment.

When no process remains attached to the segment, the con­
tents of that segment disappear, and no process can attach to
the segment without creating it by using the SD_CREAT flag in
adget. Ermo is set to EEXIST if a process tries to create a
shared data segment that exists and is in use. Ermo is set to
ENOTNAM if a process attempts an sdget on a file that exists
but is not a shared data type.

Notes

Use of the SD_UNLOCK flag on systems without hardware
support for shared data may cause severe performance degra­
dation.

It is recommended that adget and other shared data functions

(

be reserved for large model programs only. Small or middle (
model programs that attempt to use shared data may run out l

of available memory.

Sdget automatically increments the process's original break
value to the memory location immediately after the shared
data segment. This affects subsequent abrk or brk calls which
attempt to restore the original break value. In particular,
attempts to restore the break value to its value before the
adget call will cause an error.

This feature is a XENIX specific enhancement and may not be
present in all UNIX implementations. This routine may be
linked using the linker option - Ix.

Return Value

On successful completion, the address at which the segment (
was attached is returned. Otherwise, -1 is returned, and ermo
is set to indicate the error. Errno is set to EINV AL if a process
does an adget on a shared data segment to which it is already
attached. Errno is set to EEXIST if a process tries to create a

Page 2

)

SDGET(S) SDGET(S)

shared data segment that exists and is in use. Errno is set to
ENOTNAM if a process attempts an sdget on a file that exists
but is not a shared data type.

See Also

sdenter(S), sdgetv(S), sbrk(S)

Page 3

('

