TRS-80°

TRS-XENIX SYSTEM

SOFTWARE DEVELOPMENT

Radie fhaek

XENIX Operating System Software: Copyright 1983 Microsoft
Corporation. All Rights Reserved. Licensed to Tandy
Corporation.

Restricted rights: Use, duplication, and disclosure are
subject to the terms stated in the customer Non-Disclosure
Agreement.

"tsh" and "tx" Software: Copyright 1983 Tandy Corporation.
All Rights Reserved.

XENIX Development System Software: Copyright 1983 Microsoft
Corporation. All Rights Reserved. Licensed to Tandy
Corporation. '

TRS-XENIX Software Development Manual: Copyright 1983
Microsoft Corporation. All Rights Reserved. Licensed to
Tandy Corporation.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors
or omissions in this manual, or from the use of the
information contained herein.

XENIX is a trademark of Microsoft.

UNIX is a trademark of Bell Laboratories.

~—

ACKNOWLEDGEMENTS

This manual builds on the writing of many others. In many
cases, the content here is identical, in whole or in part,
to papers and manuals written at Bell Laboratories. 'In
particular, Chapter 2 and Appendix B are adapted from papers
written by Brian Kernighan and D.M. Ritchie. Chapters 5 and
10 are adapted from papers written by S.C. Johnson. Chapter
6 is derived from a paper by S.I. Feldman, Chapter 7 from a
a paper by J.F. Marazano and S.R. Bourne, and Chapter 9 from
a paper by M.E. Lesk and E. Schmidt. 1In addition, Appendix
A 1is adapted from material written by Bill Joy and Mark
Horton, while at the University of California at Berkeley.
The work of those mentioned above, and countless others, is
gratefully acknowledged.

D

2.4

www w
L]
WN = o

CONTENTS

Introduction

overvieWOo.o..o.oo.oo....o...o.o.ooo.o.oo..oo.oo.o
Manual Organizationn ® © 00 0% ® 0000000000000 0000000000
Notational ConventionS- ® 60 00000000000 0000 000000000

XENIX Programming

Introduction.....................................
The C Interface To The XENIX SysteéM.cccceccecccces
2.2.1 Program ArgumentS.ccecccccccccccccccccccsscs

The ® © 00 00 00 0600060000600 0600600000000 000000000

The Standard I/0 Libraryeeceecececececcccccecses
"LOW=LevVel I/0cceccccccscccccsscscccssscssssos
ProCeSSeSeccccccccscccocscsaccscscscssccsccsccss
Signals and InterruptSecceccccccccccscccccs
tandard I/0 Library.ccececccececccccccccccscscscscs
General USQg€eccecocccccccscscscscoscsccscscscs
File ACCESSciceeresassacscssccssssscscscssssncas
File StatUS.ecceecccecccccsssssssscscsssscsccsa
Input FUNCtiON.cecececcccccscscccccscsccnsnsse
Output FUNCtiONS.cceceeeccccccsccsccsccccscs
String FUNCtiONS.cceeecccccsscssccccscccsse
Character ClassificatiONececccccccecccccncs
Character TranslatiONiccececccccccccccccnss
Space AllocatiON.ceeeeccccscccscscscsccsccncscse
de FileS.:eeeeessocesscsscssccssssissssscssssnscs
CtyPeeheceeeeeeececccccccccccccccccccccnscs
Signal.heceececccccccccccccccccoscssssscsss
StdiO.heeeeeceeceeececsscccscccccssssssssssns
MC68000 Assembly Language Interface........
Registers and Return ValueS...cccccccccccs
Calling SeqUEeNCe.ccceccssccccscscscsscscccacs
Stack ProbesS..ccccccccccccccccssccsccsscccas

e o T o
e o o o o

R EREQUWWWWWWWWWO DN

e o o Te o o o

pobBhbbibbbi

NNONNXNMNNMDNOMNHDNDNNDNNDNNDNDMDNDMBENDNDNNDND
WNHXWNDHCOWONAATUMeWNDHFNDOAUMLE WN

(SRS

Software Tools

IntrOdUCtion. 0.0.....oo..n00...........0.....0.0;0
BaSiC Tools. ©® © 0 0000060600000 0000000000000 00000000000
Other Tools. ©® © 06 0600060606006 060606000000060006006000600000000o0

3-1
3-1
3-2

HS\DCD\IO\UIthH

L] ° L] L] ° L[] L] L] L] L] '}

L]
=

(SO NS, NS, R, NS, N, NC, NS, R, N, N S N]
L]

o

W N

5.15
5.16

(S0,]
L]
e
(o JUN |

AAOYOVOYOV OV [=))
L[] L[] e o o []
AN EWN = o -

o O
° o
oo~

6.9

6.10
6.11
6.12

Cc: A C Compiler

Introduction...ce.a. verereasaveceeeccssrananea veew 4=1
Invocation Switches....... cecescenaane cecensens ee 4-2
The Loadereccececccccsasavsasnssnsses cecsscas cecececees 4=3
Lint: A C Program Checker

IntrodUCtiONececeeeeecccccccccccncennnsesns cececccns 5-1
A Word About PhiloSOPhYy.eceecccesoesssnrasccccsaans 5-2
Unused Variables and FunctionNS.sc.cecesvessses +ea 5-2
Set/Used INfOrmationN....csvessveenceee reeeen cecne 5-3
Flow Of CONtroOl.e s eavuvaroaccosssasnesssstannsnnnna 5-4
Function ValueS..c+s.. sreeccasesseranns sessrsssas 5-4
Type Checkingeceeceeeeeennssnensssssnnas veseese cee 5-5
TYPE CaStSececececescacassccssccccccccos eevecsesccsse 5-6
Nonportable Character US€..cccerveeesssccnccnnaanss 5-7
Assignments of longs tO intSecccceecccsoscessnnas 5-7
Strange ConstructionS..ccseesas t4secessaencsannsnnn 5-8
HiStOrYeeeeoeeeeeeooscoscsasnasorsosassesssoennsssnss 5-9
Pointer Alignment..ceceeeevesrrosnonranens eeeesese 5=10
Multiple Uses and Side Effects........ secssas e 5-10
Shutting Lint UPececcececcccosossseassssnnssaancanna 5-11
Library Declaration FileS..:eeesssscccccce cevunasen 5-12
NOtEeS:eeeeeeooeoecaosssossncssnssnsanssa seessscaress 5=-13

current Lint Options...........-...-.......-..... 5-14

ADB: A Program Debugger

INtrodUCtiON.ecceeeeeeesonnosscassasssaassonansncns . 6-1
Invocation...ceccecenvecnonan teameremnsrennastanns 6-1-
The Current Address - DOt..eeccenccerencsencnnaas o« 6-2.
FOrmMatSeeceeececccccocscsccscsssassnosnsoasnsas srectsnaeas 6-3
General Request MeaningS....... ceccecccsccsnnsanns 6-3
Debugging C PrOgramS.cccccecscasosannsasanss crasens 6-4.
6.6.1 Debugging A Core IMAge ecaaeseesacasasns o 6-4
6.6.2 Multiple FunctionS.eeceeceeceesss ccecccsccns 6-6
6.6.3 Setting BreakpointS.eceeeceessrsanens esscee 6-7
6.6.4 Other Breakpoint FacilitieS...cececceccersser 6-9
MAPSeeceococcoscssocscsscsssosncscsosnsnnsncansanansanns 6-10
Advanced Usag@.eeccecccccesonanen tnesvasasaae ceessas 6-=11
6.8.1 Formatted AUMP.ece-essvvanaa “rsssasseeen «v 6-11
6.8.2 DirectOry DUMPe.:scssessnossnsacsssrsss cee 6-14
6.8.3 Ilist DUMPecccoevccancosnnonnsnoscannsaa cee 6-14
6.8.4 Converting valueS....ecsecsssase ceccssssssss 6=15
Patchinge.eecscreasens cececscecerensanaa ceessssecsss 6-=15
NOteSeeeeeeeoesssnssnosasona tecessecccscscssecess 0-16
FigureSeeceeeececosanscaass ccessscccccccccscscscscccsecs 0-18
ADB SUMM. ALY e v o cooeanccconcsssscsscscscsccesssns eess 6=31

- ii -

~
[]
o

NS NN
e o o o o o o

NSO WwWN =

o0
° o

\O ©

6.12.1 Format Summary..ooo- --------- e 00 oee o v oo 6—32
6.12.2 Expression Summary....--............-.... 6-32

Make: A Maintenance Program

Introduction..cececececcecccccssnsnns ressesansa seces 7-1
Description Files and Substitutions....escces. ces 7-5
Command USaAge€.cceececsccesnnnsanonsonnennnse casene 7-7
Implicit RUlES.ccccccccccccscscnnannunne secsoannne 7-8
EXAQMPle:ceeeeceocscsscscscscssosoacsssncansancansacnssessne 7-10
Suggestions and WarningS..aseeciecceanee seasesssenae 7-11
Suffixes and Transformation RuleS..vsseessvconnes . 7-13

As: An Assembler

IntroductioON.eceeesceceenneoes sesasscrntvesssscs ceee 8-1
InvocatioN.eeeeeesseeeasanassa seoessssssscccscce sy 8-1
Invocation OptiONS..eesttnatsonnnesnseos cececccnn 8-2
Source Program Format.....ccueenoess cecesssenes .o 8-3
8.4.1 Label Field..ccceeeesnsnnna cheeraarunennens 8-4
8.4.2 Opcode Field..euvnwenusesssonnssssnassssnnens 8-4
8.4.3 Operand-Field.euvevsesnssnoasss cecensrnanny 8-5
8.4.4 Comment Field...ceteesaane sessaesseanaa cee 8-5
Symbols and EXpPresSsSiONS.:ecccescssacsscsannsses ceee 8-5
8.5.1 SymbOlS.cccccccccccssssnscsss . chvens 8-5
8.5.2 Assembly Location Counter..... csssenrsacense 8-8
8.5.3 Program SeCtiOnS...cssccesccsccanesssans ‘os 8-9
8.5.4 ConstantS...cscescccsosssssscsasnenas cecee 8-9
8.5.5 OperatOrSeccceccecccccesssasencsossscasansne . 8-11
8.5.6 TEeIMScceeonossnaasasasnsanna I - 1 V]
8.5.7 EXPressiOnNS.cc.cuicssacenncoannnee ceescsaveasss 8-12
Instructions and Addressing ModeS...+scesveccecees 8-13
8.6.1 Instruction MnemoniCS..eceeccecasna ceesscess 8-13
8.6.2 Operand Addressing ModeS...eceeess cessesaea 8-14
Assembler DirectiveS.cececavrounsananas seseseness 8-17
8.7.1 .aSCii .@SCiZicecscacscosanasssacancsannnnas 8-17
8.7.2 .blkb .blkw .blkl..:viesssassss cessescecces 8-18
8.7.3 .byte .word .lONg..icecccccccccscccannca 8-19
8.7.4 .€NAiceccccccccccscasnscnansssassansssnnnaaes 8-19
8.7.5 .text .data .bsSS..cccciiiniiann cececccss 8-19
8.7.6 .globl .COMM. . scvennssnssnnsscnscsssnnncnssa 8-20
8.7e7 <€VENiesconussosscssnnnnscnsse ceecccavennnac . 8-21
Operation CodeS.cuivavevn- cecsstresces s un seecceanse 8-22
Error MeSSAgeS.ceisscconssesrssanossssonssssansass 8-23

- iii -

VWONNOOON & WH

9.0 Lex: A Lexical Analyzer
9.1 InNtroduCtiON.ccccccccecseccscsccscscoccscccsccscccsccccscs 9-
9.2 LexX SOUICE.eeesccccsn cccecsscsssscssscs cecccsssccns 9-
9.3 Lex Regular EXpressioNS.ccccccces cecccsssscccns .o 9-
9.3.1 Character classeS..ccececececccccccss cecee 9-
9.3.2 Arbitrary character.cceceececcecccccccccccces 9-
9.3.3 Optional EXpPressSiONS..cccccccccccccccssss 9-
9.3.4 Repeated EXpressionNS.cccccececcceces ceccccss 9-
9.3.5 Alternation and Grouping...c... cecccscccs 9-
9.3.6 Context SensitivitYeeeeeeo. cecscccccscccce 9-
9.3.7 Repetitions and Definitions..cceeceees s e 9-
9.4 Lex ACtiONS..ccecececcsccccscssssscccssssssccsssssscse 9-
9.5 Ambiguous Source RuUleS..cccccecccccccccceas eeecees 9-13
9.6 Lex Source DefinitionS.ceceeessscas cvececssersrens 9-16
9.7 USag€ecececes cseccccssscensna asentessccssssssrses 9=17
9.8 Lex and YaCC:ieeeeesosssossscssssscscssssssnancoscscss 9-18
9.9 Left Context Sensitivityecceceeceeeceocsccccccccceceas 9=-22
9.10 Character Set..cccecccccccccnss teccessscssssssces 9-24
9.11 Summary of Source FOrmat.cecececcsscccccccsscsses 9I—-25
9.12 NOteSeeeeeeeocccosssssssssssssssscscccssssscscsccce I=27
10.0 YACC: A Compiler-Compiler
10.1 IntroductiON..:.cccceccccscscsccccsssscscsscssssscscse 10-1
10.2 Basic SpecificationS...cccececccccccccccccccnscs 10-4
10.3 ACtiONS..c.ceceeccccccccsscscscsccsscssssscsccsscscscs 10-6
10.4 Lexical AnalySiS.ccccecccccccsccscscsscssssssccccnss 10-9
10.5 How the Parser WOrKS.:.:e:eoeeeeecccsscssscsossccccess 10-11
10.6 Ambiguity and ConfliCctSe.cecceccccccccccccccccaes 10-17
10.7 PrecedenCe.ccccccccscsscscscscscscscscscscsscsssscccsccsccscscs 10-22
10.8 Error HandlinNgeeeccoeeocoescoecssccsccsoscssscssces 10-25
10.9 The Yacc Environment..cceccececceccccccscsccccsscsccscs 10-27
10.10 Hints for Preparing SpecificationsS..ccceceececcee 10-28
10.11 Advanced TOPIiCScceeeccescssssccosscssssssccsssssss 10-32
10.12 A Simple Example..ccccecceccccccsccos ceeesccsens .. 10=35
10.13 Yacc Input SynNtaAX.eeeeeeeeecsccccscscscscscscccsccccscse 10-38
10.14 An Advanced EXample...ccccccccccccsccscscssssssssss 10-40
10.15 O1d FeatUreS.ccececcccscccccsscscscssscsscsssscsccscs 10-47

Appendix A: The C Shell
Appendix B: M4
Appendix C: Portable C Programming

- jiv -

CHAPTER 1

INTRODUCTION
CONTENTS

l.l overview.ooo...0.0.00.0-.------..'...-.-..-.-.-... 1-1

1.2 Manual OrganizatioON.cccccccececcscccccsccscscsccccescees 1-1

1-3 Notational Conventions......ooooooo.o.o.o.o.o.oooo 1-3

Introduction Introduction

1.1 Overview

One of the primary uses of the XENIX system 1is as an
environment for software development. This manual describes
this programming environment and the available tools. Since
nearly all of the XENIX system is written in the C
programming language, C is the ideal language for creating
new XENIX applications. However, no attempt is made here to
teach C programming. For that, see the excellent tutorial
and reference The C Programming Language, by Kernighan and
Ritchie. For more information about the basic concepts and
software that underly XENIX itself, see the XENIX
Fundamentals manual.

1.2 Manual Organization
This manual is organized as follows:
CHAPTER 1l: Introduction

The chapter you are now reading contains a word
about the development of software on the XENIX
system

CHAPTER 2: Xenix Programming

Discusses the standard XENIX environment and how
this environment can be accessed either from C or
from assembly language.

CHAPTER 3: Software Tools

Describes each of the tools that you are 1likely
to use either directly or indirectly, in
programming on the XENIX system, with emphasis on
how the the software tools discussed in this
manual fit together.

CHAPTER 4: Cc: The C Compiler

Describes use of the XENIX C compiler, cc. Also
describes the preprocessing, linking, and
assembly stages 1in compiling C programs to
executable files.

CHAPTER 5: Lint: The C Program Checker
Describes use of 1lint, the XENIX C program

checker. Lint analyzes C program syntax and
language usage, reporting anomalies to the user.

1-1

Introduction ‘ Introduction

CHAPTER 6: Make: A Program Maintainer

Describes use of make, a program for controlling
software generation, update, and installation.

CHAPTER 7: ADB: A Program Debugger

Describes use of the debugger, ADB, a program for
debugging and analyzing both programs while they
execute.

CHAPTER 8: As: The XENIX Assembler

Describes how as, the XENIX assembler can be used
to assemble machine language programs and
routines.

CHAPTER 9: Lex: A Lexical Analyzer

Describes use of lex, a lexical analyzer useful
in reading input languages.

CHAPTER 10: YACC: A Compiler-Compiler

Describes use of YACC, a complex utility for
creating language translators. Useful in
conjunction with lex, above.

APPENDIX A: The C Shell

Describes use of the alternate shell command
interpreter, csh. The C shell command language
has a syntax similar to that of the C programming
language. Aliases and a command history
mechanism are also provided.

APPENDIX B: M4
Describes use of the macro preprocessor, M4.
APPENDIX C: C Program Portability

Explains how to write C programs that are
portable &across different processors and XENIX
systems.

Introduction

Introduction

1.3 Notational Conventions

Throughout this manual, the following notational conventions

are used:

boldface

underlining

[brackets]

<angle-brackets>

ellipses...

quotation marks

Command names are given in boldface in
the text of this manual; no boldface
occurs in displays, except in syntax

specifications for 1literal text. For

example, 1ls, date, and cd are all the
names of commands that you might type at
the keyboard, and therefore all are in
bold. An exception to this rule occurs
for 1long chapters about a single
command. In this case, the command name
is made 1less conspicuous by either
underlining or capitalization.

All filenames and pathnames are
underlined. For example, text.file is a
filename and /usr/mary is a pathname.
Most command arguments are underlined as
well, although in some cases these are
in boldface. Words and phrases also may
be underlined for emphasis. References
to entries in the XENIX Reference Manual
are underlined and include a section
number in parentheses. For example,
1ls(l) refers to the entry for the 1s
command in Section 1, "Commands".

Brackets enclose optional arguments in
syntax specifications.

Angle brackets enclose the names of

control characters and special function
keys. Examples are <CONTROL-D>,
<CONTROL-S>, <RETURN>, <INTERRUPT>, and

<BKSP>.

Ellipses are used to indicate one or.

more entries of an argument in a syntax

specification. For example, in the-

following syntax for the mail command,
the ellipses indicate that one or more
persons can be sent mail:

mail person ...

Quotation marks are used to set Off.

multiple keystroke input. For example,

1-3

Introduction Introduction

"ls -la ; date"™ 1is an example of a
command 1line appearing in the body of
the text.
Common abbreviations for ASCII characters are listed below:
<ESC> Escape, Control-|

<RETURN> Carriage return, Control-M

<LF> Newline, Linefeed, Control-J
<NL> Newline, Linefeed, Control-J
<BKSP> Backspace, Control-H

<TAB> Tab, Control-I

<BELL> Bell, Control-G

<FF> Formfeed, Control-L

<SPACE> Space, octal 040

 Delete, octal 0177

CHAPTER 2
XENIX PROGRAMMING

CONTENTS

Intrwuction.o......ooo.ooco.o.o..oo..o.oootccco.

The C Interface To The XENIX SysSteéMececececcceccess
2.2.1 Program ArguUmentS.cccccccccscsvnsnenennocecs

The ® © 0 00 000000000 000000000 s LN LI N R B)

The Standard I/0 Library.e.ieeeeecececeseoans
LOW-Level I/o.--.-...----.-ooavoo-o.o--o.-
ProcesseS..... cecccccccess e s s anenanesanence

e o o o o
NN
e o o o o

H MDD N

2

3

4

5

6
he Standard I/O Library...... ceescane cececsssans
.3.1 General Usag€..c..... chesneon veesus tesnenan
3.2 File ACCESSicecccccvonsssncncns cresseasena
e3.3 File StatUS.eccccccecccccnsssnnncaanasaa cenn
e3.4 Input FunctioON.ee:.eovrennrersanvas ceeneaas
3.5 Output FUNCtiONS..cceeecrssccssssnsrsasces
.3.6 String FunctionS....cc... crtvsasresenr s
.3.7 Character Classification....vecasesan cecee
.3.8 Character Translation........ tesumrbensnesns
.3.9 Space AllocatiON.ceeeescansannne vrseesenae

l de Fi leS. ® © © 00 000000000000 000000000000000000
Ctype.h ® o 0 & ¥ s & ®© 000000000 00w
Signal.h. ® 5 9 000 00 F s FH B YN OO 00000 0O TSROSO

stdio.ho.o.o...o..0......o.oo..oo...o.....

n

e

=)
WNhHX WhhHCo

MC68000 Assembly Language Interface...c.c...
Registers and Return ValueS...cceceececaasese
Calling SeqUEeNCe.cccccccsccccssssssccnsass
Stack ProbeS.ccccceccccccccccscccssossccsscce

NN N X NN H NN

o o o
v n

2-1
2-1
2-2
2-4
2-9

N e)
i
0
=
m.
o,

XENIX Programming XENIX Programming

2.1 Introduction

The C programming language is designed to be used in a
computing environment. Because of the power and flexibility
of the XENIX environment, it is important for the programmer
to to take advantage of its many capabilities. For example,
from within some C programs, you may want to execute other
programs, or make calls to perform system functions. Or,
you may want to write assembly 1language routines that
interface to C programs. Before you can perform any of
these programming tasks, you must know the environment. In
the case of the XENIX system, this environment includes
low-level system calls, available C libraries, and compiler
calling conventions. Because you may also want to write C
programs that are portable to other XENIX systems and other
processors, a section in this chapter discusses portable C
programming.

2.2 The C Interface To The XENIX System
This section shows how to interface C programs to the XENIX
system, either directly or through the standard I/0 library.
The topics discussed include:

@& Handling command arguments

@ Rudimentary I/O

@& The standard input and output

@ The standard I/0 library

@ File system access

@ Low-level I/O: open, read, write, close, seek

® Processes: exec, fork, pipes

@& Signals and interrupts

2.2.1 Program Arguments

When a C program is run as a command, the arguments on the
command 1line are made available to the function main as an
argument count argc and an array argv of pointers to
character strings that contain the arguments. By
convention, argv([0] is the command name itself, so argc is
always greater than 0.

2-1

XENIX Programming XENIX Programming

The following program illustrates the mechanism: it simply
echoes 1its arguments back to the terminal. (This is
essentially the echo command.)

main(argc, argv) /* echo arguments */
int argc;
char *argv(];

int i;

for (i = 1; i < argc; i++)
printf("%s%c", argv([i], (i<argc-1) 2 ' ' : '\n');

}

argv is a pointer to an array whose individual elements are
pointers to arrays of characters; each is terminated by \0,
so they can be treated as strings. The program starts by
printing argv([l] and loops until it has printed them all.

The argument count and the arguments are parameters to main.
If you want to keep them so other routines can get at them,
you must copy them to external variables.

2.2.2 The Standard

The simplest input mechanism is to read the "standard
input," which is generally the user's terminal. The
function getchar returns the next input character each time
it is called. A file may be substituted for the terminal by
using the < convention:

prog <file

This causes prog to read file instead of the terminal. The
program itself need know nothing about where its input is
coming from. This is also true if the input comes from
another program via the "pipe" mechanism. For example

otherprog | prog

provides the standard input for prog from the standard
output of otherprog.

Getchar returns the value EOF when it encounters the end of
file (or an error) on whatever you are reading. The value
of EOF is normally defined to be -1, but it 1is unwise to
take any advantage of that knowledge. As will become clear
shortly, this value is automatically defined for you when
you compile a program, and need not be of any concern.

XENIX Programming XENIX Programming

Slmllarly, gutchar(c) puts the character ¢ on the "standard
output," which is also by default the terminal. The output
can be captured on a file by using >. If prog uses putchar,

prog >outfile

writes the standard output on outfile instead of the
terminal. Outfile 1is <created 1if it doesn't exist; if it
already exists, its previous contents are overwritten.

The function printf, which formats output in various ways,
uses the same mechanism as putchar does, so calls to printf
and Eutchar may be intermixed in any order: the output
appears in the order of the calls.

Similarly, the function scanf provides for formatted input
conversion; it reads the standard input and breaks it up
into strings, numbers, etc., as desired. Scanf. uses the
same mechanism as getchar, so calls to them may also be
intermixed.

Many programs read only one input and write one output; for
such programs I/O with getchar, putchar, scanf, and printf
may be entirely adequate, and it is almost always enough to
get started. This 1is particularly true if the XENIX pipe
facility is used to connect the output of one program to the
input of the next. For example, the following program
strips out all ASCII control characters from its input
(except for newline and tab).

$include <stdio.h>

main() /* ccstrip: strip non-graphic characters */

int c;
while ((c = getchar()) != EOF)
if ((c >= "' ' && ¢ < 0177) \ ||
c == '"\t' || ¢ == "\n")
putchar (c) ;
exit (0);

}

The line
$include <stdio.h>

should appear at the beginning of each source file. It
causes the C compiler to read a file (/usr/include/stdio.h)
of standard routines and symbols that includes the
definition of EOF.

XENIX Programming XENIX Programming

If it is necessary to treat multiple files, you can use cat
to collect the files for you:

cat filel file2 ... | ccstrip >output

and thus avoid learning how to access files from a program.
By the way, the call to exit at the end is not necessary to
make the program work properly, but it assures that any
caller of the program will see a normal termination status
(conventionally 0) from the program when it completes.
Status returns are discussed later in more detail.

2.2.3 The Standard I/0 Library

The Standard I/O Library is a collection of routines
intended to provide efficient and portable I/0O services for
most C programs. The standard I/O library is available on
each system that supports C, so programs that confine their
system interactions to its facilities can be transported
from one system to another essentially without change.

In this section, we will discuss the basics of the standard
I/0 library. Section 2.3 contains a more complete
description of its capabilities.

2.2.3.1 File Access

The programs written so far have all read the standard input
and written the standard output, which we have assumed are
magically pre-defined. The next step is to write a program
that accesses a file that is not already connected to the
program. One simple example is wc, which counts the 1lines,
words and characters in a set of files. For instance, the
command

WC X.C Y.C

prints the number of lines, words and characters in x.c and
Y.c and the totals.

The question is how to arrange for the named files to be
read-that 1is, how to connect the file system names to the
I/0 statements which actually read the data.

The rules are simple. Before it can be read or written a
file has to be opened by the standard library function
fopen. Fopen takes an external name (like x.c or y.c), does
some housekeeping and negotiation with the operating system,
and returns an internal name which must be used in
subsequent reads or writes of the file.

XENIX Programming XENIX Programming

This internal name is actually a pointer, called a file
pointer, to a structure which contains information about the
file, such as the 1location of a buffer, the current
character position in the buffer, whether the file is being
read or written, and the like. Users don't need to know the
details, because part of the standard I/0 definitions
obtained by including stdio.h is a structure definition
called FILE. The only declaration needed for a file pointer

is exemplified by
FILE *fp, *fopen();

This says that fp is a pointer to a FILE, and fopen returns
a pointer to a FILE, which is a type name, like int, not a
structure tag.

The actual call to fopen in a program is
fp = fopen(name, mode) ;

The first argument of fopen is the name of the file, as a
character string. The second argument is the mode, also as
a character string, which indicates how you intend to use
the file. The only allowable modes are read (r), write (w),
or append (a).

If a file that you open for writing or appending does not
exist, it 1is created (if possible). Opening an existing
file for writing causes the o0ld contents to be discarded.
Trying to read a file that does not exist is an error, and
there may be other causes of error as well (like trying to
read a file when you don't have permission). If there is
any error, fopen returns the null pointer value NULL (which
is defined as zero in stdio.h).

The next thing needed is a way to read or write the file
once it is open. There are several possibilities, of which
getc and putc are the simplest. Getc returns the next
character from a file. It needs the file pointer to tell it
what file. Thus:

c = getc(fp)

places in c the next character from the file referred to by
fp; it returns EOF when it reaches end of file. Putc is the
inverse of getc. For example

putc(c, f£fp)

puts the character c on the file fp and returns c. Getc and
putc return EOF on error.

XENIX Programming XENIX Programming

When a program 1is started, three files are opened
automatically, and file pointers are provided for them.
These files are the standard input, the standard output, and
the standard error output; the corresponding file pointers
are called stdin, stdout, and stderr. Normally these are
all connected to the terminal, but may be redirected to
files or pipes. Stdin, stdout and stderr are pre-defined in
the I/O 1library as the standard input, output and error
files; they may be used anywhere an object of type

FILE *

can be. They are constants, however, not variables, so
don't try to assign to them.

With some of the preliminaries out of the way, we can now
write wc. The basic design 1is one that has been found
convenient for many programs: if there are command-line
arguments, they are processed in order; if there are no
arguments, the standard input is processed. This way the
program can be used stand-alone or as part of a larger
process.

XENIX Programming XENIX Programming

$include <stdio.h>

main(argc, argv) /* wc: count lines, words, chars */
int argc;
char *argv|[]:;

{

int ¢, i, inword;

FILE *fp, *fopen();

long linect, wordct, charct;

long tlinect = 0, twordct = 0, tcharct = 0;

i=1;
fp = stdin;
do {
if (argc > 1 && (fp=fopen(argv([i], "r")) == NULL) {
fprintf (stderr, "wc: can't open %s\n", argvl[i]);
continue;

}

linect = wordct = charct = inword = 0;
while ((c = getc(fp)) != EOF) ({

charct++;
if (c == '\n'")
linect++;
if (c==""'" || ¢=="'\t" || ¢ == '"\n")
inword = 0;
else if (inword == 0) {
inword = 1;
wordct++;

}

printf("%71d %714 714", linect, wordct, charct);
printf(argc > 1 2 " gs\n" : "\n", argvl[i]);
fclose (£fp) ;
tlinect += linect;’
twordct += wordct;
tcharct += charct;

} while (++i < argc);

if (argc > 2)

printf("%71d %714 %714 total\n", tlinect, twordct, tcharct);

exit (0);

The function fprintf is identical to printf, save that the
first argument is a file pointer that specifies the file to
be written.

The function fclose is the inverse of fopen; it breaks the
connection between the file pointer and the external name
that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files

XENIX Programming XENIX Programming

that a program may have open simultaneously, it's a good
idea to free things when they are no longer needed. There
is also another reason to call fclose on an output file-it
flushes the buffer in which putc 1is collecting output.
fclose(is called automatically for each open file when a
program terminates normally.)

2.2.3.2 Error Handling-Stderr and Exit

Stderr is assigned to a program in the same way that stdin
and stdout are. Output written on stderr appears on the
user's terminal even if the standard output is redirected.
We writes 1its diagnostics on stderr instead of stdout so
that if one of the files can't be accessed for some reason,
the message finds its way to the user's terminal instead of
disappearing down a pipeline or into an output file.

The program actually signals errors in another way, using
the function exit to terminate program execution. The
argument of exit is available to whatever process called it,
so the success or failure of the program can be tested by
another program that uses this one as a sub-process. By
convention, a return value of 0 signals that all is well;
non-zero values signal abnormal situations.

Exit itself calls fclose for each open output file, to flush
out any buffered output, then calls a routine named exit.
The function exit causes immediate termination without any
buffer flushing; 1t may be called directly if desired.

2.2.3.3 Miscellaneous I/0 Functions
The standard I/0 1library provides several other 1/0
functions besides those we have illustrated above.

Normally output with putc, etc., 1is buffered (except to
stderr); to force it out immediately, use fflush(fp).

fscanf is identical to scanf, except that its first argument
is a file pointer (as with fprintf) that specifies the file
from which the input comes; 1t returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and
fprintf, except that the first argument names a character
string instead of a file pointer. The conversion 1is done
from the string for sscanf and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and
including a newline, into buf; at most size-1l characters are
copied; it returns NULL at end of file. fputs (buf, £p)
writes the string in buf onto file fp.

XENIX Programming XENIX Programming

The function ungetc(c, fp) "pushes back" the character ¢
onto the input stream fp; a subsequent call to getc, fscanf,
etc., will encounter c. Only one character of push-back per
file is permitted.

2.2.4 Low-Level I/0

This section describes the bottom level of I/0O on the XENIX
system. The 1lowest level of I/O in XENIX provides neither
buffering nor any other services; it is in fact a direct
entry into the operating system. You are entirely on your
own, but on the other hand, you have the most control over
what happens. And since the calls and usage are quite
simple, this isn't as bad as it sounds.

2.2.4.1 File Descriptors

In the XENIX operating system, all input and output is done
by reading or writing files, because all peripheral devices,
even the user's terminal, are files in the file system.
This means that a single, homogeneous interface handles all
communication between a program and peripheral devices.

In the most general case, before reading or writing a file,
it 1is necessary to inform the system of your intent to do
so, a process called "opening" the file. If you are going
to write on a file, it may also be necessary to create it.
The system checks your right to do so (Does the file exist?
Do you have permission to access it?), and if all is well,
returns a small positive integer called a file descriptor.
Whenever 1I/0 is to be done on the file, the file descriptor
is used instead of the name to identify the file. (This is
roughly analogous to the use of and in Fortran.) All
information about an open file is maintained by the system;
the user program refers to the file only by the file
descriptor.

File pointers are similar in concept to file descriptors,
but file descriptors are more fundamental. A file pointer
is a pointer to a structure that contains, among other
things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so
common, special arrangements exist to make this convenient.
When the command interpreter (the "shell") runs a program,:
it opens three files, with file descriptors 0, 1, and 2,
called the standard input, the standard output, and the
standard error output. All of these are normally connected
to the terminal, so if a program reads file descriptor 0 and
writes file descriptors 1 and 2, it can do terminal I/O

XENIX Programming XENIX Programming

without worrying about opening the files.
If I/0 is redirected to and from files with < and >, as in
prog <infile >outfile

the shell changes the default assignments for file
descriptors 0 and 1 from the terminal to the named files.
Similar observations hold if the input or output is
associated with a pipe. Normally file descriptor 2 remains
attached to the terminal, so error messages can go there.
In all cases, the file assignments are changed by the shell,
not by the program. The program does not need to know where
its input comes from nor where its output goes, so long as
it uses file 0 for input and 1 and 2 for output.

2.2.4.2 Read and Write

All input and output is done by two functions called read
and write. For both, the first argument is a file
descriptor. The second argument is a buffer in your program
where the data is to come from or go to. The third argument
is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);
n_written = write(£fd, buf, n);

Each call returns a byte count which is the number of bytes
actually transferred. On reading, the number of bytes
returned may be less than the number asked for, because
fewer than n bytes remained to be read. (When the file is a
terminal, read normally reads only up to the next newline,
which 1is generally less than what was requested.) A return
value of zero bytes implies end of file, and -1 indicates an
error of some sort. For writing, the returned value is the
number of bytes actually written; it is generally an error
if this isn't equal to the number supposed to be written.

The number of bytes to be read or written 1is quite
arbitrary. The two most common values are 1, which means
one character at a time ("unbuffered"), and 512, which
corresponds to a physical block size on many peripheral
devices. This latter size will be most efficient, but even
character at a time I/O is not inordinately expensive.

Putting these facts together, we can write a simple program
to copy its input to its output. This program copies
anything to anything, since the input and output can be
redirected to any file or device.

)

XENIX Programming XENIX Programming

#define BUFSIZE 512
main() /* copy input to output */

char buf[BUFSIZE];
int ‘n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(l, buf, n);
exit(0);

}

If the file size is not a multiple of BUFSIZE, the last read
will return a smaller number of bytes to be written by
write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to
construct higher level routines like getchar, putchar, etc.
For example, here is a version of getchar which does
unbuffered input.

#define CMASK 0377 /* for making char's > 0 */
getchar () /* unbuffered single character input */
char c;

return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);

}

c must be declared char, because read accepts a character

pointer. The character being returned must be masked with
0377 to ensure that it is positive; otherwise sign extension
may make it negative. . (The constant 0377 1is machine

dependent and thus varies from machine to machine.)

The second version of getchar does input in big chunks, and
hands out the characters one at a time.

XENIX Programming XENIX Programming

#define CMASK 0377 /* for making char's > 0 */
#define BUFSIZE 512

?etchar() /* buffered version */
static char buf [BUFSIZE];
static char *bufp = buf;
static int n = 0;

if (n == 0) { /* buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf;

return((--n >= 0) ? *bufp++ & CMASK : EOF);

2.2.4.3 Open, Creat, Close, Unlink

Other than the default standard input, output and error
files, you must explicitly open files in order to read or
write them. There are two system entry points for this,
open and creat [sic].

open is rather like the fopen discussed in the previous
section, except that instead of returning a file pointer, it
returns a file descriptor, which is just an int.

int f4;
fd = open(name, rwmode) ;

As with fopen, the name argument is a character string
corresponding to the external file name. The access mode
argument is different, however: rwmode is 0 for read, 1 for
write, and 2 for read and write access. open returns -1 if
any error occurs; otherwise it returns a valid file
descriptor.

It is an error to try to open a file that does not exist.
The entry point creat is provided to create new files, or to
re-write old ones.

fd = creat(name, pmode) ;

returns a file descriptor if it was able to create the file
called name, and -1 1if not. If the file already exists,
creat will truncate it to zero length; it is not an error to
creat a file that already exists.

If the file 1is brand new, creat creates it with the
protection mode specified by the pmode argument. In the

2-12

7

XENIX Programming XENIX Programming

XENIX file system, there are nine bits of protection
information associated with a file, controlling read, write
and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-digit octal
number is most convenient for specifying the permissions.
For example, 0755 specifies read, write and execute
permission for the owner, and read and execute permission
for the group and everyone else.

To illustrate, here is a simplified version of the XENIX
utility cp, a program which copies one file to another.
(The main simplification is that our version copies only one
file, and does not permit the second argument to be a
directory.)

#$define NULL O
$define BUFSIZE 512

#$define PMODE 0644 /* RW for owner, R for group, others */

main(argc, argv) /* cp: copy fl to f2 */
int argc;
char *argv([];

int f1, £2, n;
char buf [BUFSIZE] ;

if (argc != 3)
error ("Usage: cp from to", NULL);

if ((£1 = open(argv([l], 0)) == -1)
error ("cp: can't open %s", argv([l]):
if ((£2 = creat(argv([2], PMODE)) == -1)

error ("cp: can't create %s", argv([2]);

while ((n = read(fl, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)
error ("cp: write error", NULL):;
exit(0);

}

error (sl, s2) /* print error message and die */
char *sl, *s2;

printf(sl, s2);
printf("\n");
exit(l);

}

There is a limit (typically 20) on the number of files which
a program may have open simultaneously. Therefore, any
program which intends to process many files must be prepared
to reuse file descriptors. The routine close breaks the

2-13

3

XENIX Programming XENIX Programming

connection between a file descriptor and an open file, and
frees the file descriptor for wuse with some other file.
Termination of a program via exit or return from the main
program closes all open files.

The following function removes the file filename from the
file system:

unlink (filename)

2.2.4.4 Random Access-Seek and Lseek

File I/O is normally sequential: each read or write takes
place at a position in the file right after the previous
one. When necessary, however, a file can be read or written
in any arbitrary order. The system call lseek provides a
way to move around in a file without actually reading or

"writing:

lseek (fd, offset, origin);

forces the current position in the file whose descriptor is
fd to move to position offset, which is taken relative to
the location specified by origin. Subsequent reading or
writing will begin at that position. offset is a long; fd
and origin are int's. origin can be 0, 1, or 2 to specify
that offset 1is to be measured from the beginning, from the
current position, or from the end of the file respectively.
For example, to append to a file, seek to the end before
writing:

lseek (£4, OL, 2);

To get back to the beginning ("rewind"):
lseek (£4, OL, 0):

Notice the OL argument; it could also be written as
(long) O

With lseek, it is possible to treat files more or less 1like
large arrays, at the price of slower access. For example,
the following simple function reads any number of bytes from
any arbitrary place in a file:

2-14

XENIX Programming XENIX Programming

get(fd, pos, buf, n) /* read n bytes from position pos */

int £4, n;
long pos;
char *buf;

lseek (£4d, pos, 0); /* get to pos */
return(read(£fd, buf, n)):;

2.2.4.5 Error Processing

The routines discussed in this section, and in fact all the
routines which are direct entries into the system can incur
errors. Usually they indicate an error by returning a value
of -1. Sometimes it is nice to know what sort of error
occurred; for this purpose all these routines, when
appropriate, 1leave an error number in the external cell
errno. The meanings of the various error numbers are listed
in the introduction to Section II of the XENIX Reference
Manual, so your program can, for example, determine if an
attempt to open a file failed because it did not exist or
because the user lacked permission to read it. Perhaps more
commonly, you may want to print out the reason for failure.
The routine perror will print a message associated with the
value of errno; more generally, sys errno is an array of
character strings which can be indexed by errno and printed
by your program.

2.2.5 Processes

It is often easier to use a program written by someone else
than to invent your own. This section describes how to
execute a program from within another.

2.2.5.1 The System"

The easiest way to execute a program from another is to use
the standard 1library routine system. System takes one
argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For
instance, to time-stamp the output of a program,

main ()

system("date") ;
/* rest of processing */

}

If the command string has to be built from pieces, the in-
memory formatting capabilities of sprintf may be useful.

XENIX Programming XENIX Programming

Remember than getc and putc normally buffer their input;
terminal I/O will not be properly synchronized unless this
buffering is defeated. For output, use fflush; for input,
see setbuf in the appendix.

2.2.5.2 Low-Level Process Creation-Execl and Execv

If you're not using the standard library, or if you need
finer control over what happens, you will have to construct
calls to other programs using the more primitive routines
that the standard library's system routine is based on.

The most basic operation 1is to execute another program
without returning, by using the routine execl. To print the
date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument to execl is the filename of the command;
you have to know where it is found in the file system. The
second argument is conventionally the program name (that is,
the 1last component of the file name), but this is seldom
used except as a place-holder. If the command takes
arguments, they are strung out after this; the end of the
list is marked by a NULL argument.

The execl call overlays the existing program with the new
one, runs that, then exits. There is no return to the
original program.

More realistically, a program might fall into two or more
phases that communicate only through temporary files. Here
it is natural to make the second pass simply an execl call
from the first.

The one exception to the rule that the original program
never gets control back occurs when there is an error, for
example if the file can't be found or is not executable. 1If

you don't know where date is located, say
execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl called execv is useful when you don't
know in advance how many arguments there are going to be.
The call is

execv(filename, argp):;

where argp is an array of pointers to the arguments; the

2-16

~—

XENIX Programming XENIX Programming

last pointer in the array must be NULL so execv can tell
where the list ends. As with execl, filename is the file in
which the program is found, and argp(0] is the name of the
program. (This arrangement is identical to the argv array
for program arguments.)

Neither of these routines provides the niceties of normal
command execution. There is no automatic search of multiple
directories-you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters
like <, >, *, ?, and [] in the argument list. If you want
these, use execl to invoke the shell sh, which then does all
the work. Construct a string commandline that contains the
complete command as it would have been typed at the
terminal, then say

execl("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its
argument -c says to treat the next argument as a whole
command line, so it does just what you want. The only
problem is in constructing the right information 1in
commandline.

2.2.5.3 Control of Processes - Fork and Wait

So far what we've talked about isn't really all that useful
by itself. Now we will show how to regain control after
running a program with execl or execv. Since these routines
simply overlay the new program on the old one, to save the
0ld one requires that it first be split into two copies; one
of these can be overlaid, while the other waits for the new,
overlaying program to finish. The splitting is done by a
routine called fork:

proc_id = fork():;

splits the program into two copies, both of which continue
to run. The only difference between the two is the value of
proc id, the "process id." In one of these processes (the
"child"), proc id is =zero. In the other (the "parent"),
proc id is non-zero; it is the process number of the child.
?hus the basic way to call, and return from, another program
is

if (fork() == 0)
/* in child */
execl("/bin/sh", "sh", "-c", cmd, NULL):;

And in fact, except for handling errors, this is sufficient.
The fork makes two copies of the program. 1In the child, the

XENIX Programming XENIX Programming

value returned by fork is zero, so it calls execl which does
the command and then dies. In the parent, fork returns
non-zero so it skips the execl. (If there 1is any error,

fork returns -1).

More often, the parent wants to wait for the child to
terminate before continuing itself. This can be done with
the function wait:

int status;

if (fork() == 0)
execl(\ ...\);
wait (&status);

This still doesn't handle any abnormal conditions, such as a
failure of the execl or fork, or the possibility that there
might be more than one child running simultaneously. (The
wait returns the process id of the terminated child, if you
want to check it against the wvalue returned by fork.)
Finally, this fragment doesn't deal with any funny behavior
on the part of the child (which 1is reported in status).
Still, these three 1lines are the heart of the standard
library's system routine, which we'll show in a moment.

The status returned by wait encodes in its 1low-order eight
bits the system's idea of the child's termination status; it
is 0 for normal termination and non-zero to indicate various
kinds of problems. The next higher eight bits are taken
from the argument of the call to exit which caused a normal
termination of the <child process. It 1is good coding
practice for all programs to return meaningful status.

When a program is called by the shell, the three file
descriptors 0, 1, and 2 are set up pointing at the right
files, and all other possible file descriptors are available
for |use. When this program calls another one, correct
etiquette suggests making sure the same conditions hold.
Neither fork nor the exec calls affects open files in any
way. If the parent is buffering output that must come out
before output from the <child, the parent must flush its
buffers before the execl. Conversely, if a caller buffers
an input stream, the called program will 1lose any
information that has been read by the caller.

2-18

XENIX Programming XENIX Programming

2.2.5.4 Pipes

A pipe is an I/O channel intended for wuse between two
cooperating processes: one process writes into the pipe,
while the other reads. The system looks after buffering the
data and synchronizing the two processes. Most pipes are
created by the shell, as in

1s | pr

which connects the standard output of 1ls to the standard
input of pr. Sometimes, however, it is most convenient for
a process to set up its own plumbing; in this section, we
will 1illustrate how the pipe connection is established and
used.

The system call pipe creates a pipe. Since a pipe 1is used
for both reading and writing, two file descriptors are
returned; the actual usage is like this:

int fa(2];

stat = pipe(£fd);
if (stat == -1)
/* there was an error ... */

fd is an array of two file descriptors, where £4[0] is the
read side of the pipe and f£d[l] is for writing. These may
be used in read, write and close calls just like any other
file descriptors.

If a process reads a pipe which is empty, it will wait until
data arrives; 1if a process writes into a pipe which is too
full, it will wait until the pipe empties somewhat. If the
write side of the pipe is closed, a subsequent read will
encounter end of file.

To illustrate the use of pipes in a realistic setting, 1let
us write a function called popen(cmd, mode), which creates a
process cmd (just as system does), and returns a file
descriptor that will either read or write that process,
according to mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent
write calls using the file descriptor fout will send their
data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it
then forks to create two copies of itself. The child
decides whether it is supposed to read or write, closes the

2-19

XENIX Programming XENIX Programming

other side of the pipe, then calls the shell (via execl) to
run the desired process. The parent likewise closes the end
of the pipe it does not use. These closes are necessary to
make end-of-file tests work properly. For example, if a
child that intends to read fails to close the write end of
the pipe, it will never see the end of the pipe file, Jjust
because there is one writer potentially active.

#include <stdio.h>

$define READ 0
#$define WRITE 1

$define tst(a, b) (mode == READ ? (b) : (a))
static int popen_pid;
popen(cmd, mode)
char *cmd;
int mode;
int p(2];

if (pipe(p) <. 0)
return(NULL) ;

if ((popen_pid = fork()) == 0) {
close(tst (p[WRITE], p[READ]));
close(tst(0, 1));
dup(tst(p[READ], p[WRITE]));
close(tst (p[READ], p[WRITE])):;
execl("/bin/sh", "sh", "-c", cmd, 0);
/* disaster has occurred if we get here*/
_exit(l);

if (popen_pid == -1)
return(NULL) ;

close(tst (p[READ], pI[WRITE])):;

return(tst (p[WRITE], p[READ]));

}

The sequence of <closes in the <child is a bit tricky.
Suppose that the task is to create a child process that will
read data from the parent. Then the first close closes the
write side of the pipe, leaving the read side open. The
lines

close(tst (0, 1));
dup(tst (p[READ], p[WRITE]))

are the conventional way to associate the pipe descriptor
with the standard input of the child. The close closes file
descriptor 0, that is, the standard input. Dup is a system
call that returns a duplicate of an already open file

2-20

XENIX Programming - XENIX Programming

descriptor. File descriptors are assigned in increasing
order and the first available one is returned, so the effect
of the dup is to copy the file descriptor for the pipe (read
side) to file descriptor 0; thus the read side of the pipe
becomes the standard input. (Yes, this is a bit tricky, but
it's a standard idiom.) Finally, the old read side of the
pipe is closed.

A similar sequence of operations takes place when the child
process 1is supposed to write from the parent instead of
reading. You may find it a useful exercise to step through
that case.

The job is not quite done, for we still need a function
pclose to close the pipe created by popen. The main reason
for using a separate function rather than close is that it
is desirable to wait for the termination of the child
process. First, the return value from pclose indicates
whether the process succeeded. Equally important is that
only a finite number of unwaited-for children can exist for
a given parent process, even 1if some of them have
tﬁrminated. Performing the wait lays the child to rest.
Thus:

#include <signal.h>

pclose (£4d) /* close pipe fd */
int £f4;

register r, (*hstat) (), (*istat) (), (*gstat) ():;
int status;
extern int popen_pid;

close (£4);

istat = signal (SIGINT, SIG_IGN);
gstat = signal (SIGQUIT, SIG_IGN);
hstat = signal (SIGHUP, SIG_IGN);
while ((r = wait(&status)) != popen_pid && r !=
if (r == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, gstat);
signal(SIGHUP, hstat);
return(status) ;

}

The calls to signal make sure that no interrupts, etc.,
interfere with the waiting process; this is the topic of the
next section.

-1)

’

XENIX Programming XENIX Programming

The routine as written has the limitation that only one pipe
may be open at once, because of the single shared variable
popen pid; it really should be an array indexed by file
descriptor. A popen function, with slightly different
arguments and return value 1is available as part of the
standard I/0 library discussed below. As currently written,
it shares the same limitation.

2.2.6 Signals and Interrupts

This section is concerned with how to deal gracefully with
program faults and with signals and interrupts from the
outside world. Since there's nothing very useful that can
be done from within C about program faults, which arise
mainly from illegal memory references or from execution of
peculiar instructions, we'll discuss only the outside-world
signals: interrupt, which is sent when the character is
typed; quit, generated by the character; hangup, caused by
hanging up the phone; and terminate, generated by the kill
command. When one of these events occurs, the signal is
sent to all processes which were started from the
corresponding terminal; unless other arrangements have been
made, the signal terminates the process. 1In the quit case,
a core image file is written for debugging purposes.

The routine which alters the default action is called
signal. It has two arguments: the first specifies the
signal, and the second specifies how to treat it. The first
argument is Jjust a number code, but the second is the
address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it
be given the default action. The include file signal.h
gives names for the various arguments, and should always be
included when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);
causes interrupts to be ignored, while
signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all
cases, signal returns the previous value of the signal. The
second argument to signal may instead be the name of a
function (which has to be declared explicitly if the
compiler hasn't seen it already). In this case, the named
routine will be called when the signal occurs. Most
commonly this facility is used to allow the program to clean

2-22

XENIX Programming XENIX Programming

up unfinished business before terminating, for example to
delete a temporary file:

#include <signal.h>

main ()
int onintr();
if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);
/* Process ... */
exit(0);
}
onintr ()

unlink (tempfile);
exit(l);

}

Why the test and the double call to signal? Recall that
signals 1like interrupt are sent to all processes started
from a particular terminal. Accordingly, when a program is
to be run non-interactively (started by &), the shell turns
off interrupts for it so it won't be stopped by interrupts
intended for foreground processes. If this program began by
announcing that all interrupts were to be sent to the onintr
routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt
handling, and to continue to ignore interrupts if they are
already being ignored. The code as written depends on the
fact that signal returns the previous state of a particular
signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be
caught.

A more sophisticated program may wish to intercept an
interrupt and interpret it as a request to stop what it is
doing and return to its own command-processing loop. Think
of a text editor: interrupting a long printout should not
cause it to terminate and lose the work already done. The
outline of the code for this case is probably best written
like this:

XENIX Programming XENIX Programming

#include <signal.h>
#include <setjmp.h>

main()
int (*istat) (), onintr():

istat = signal(SIGINT, SIG_IGN);

/* save original status above*/
setjmp(sjbuf); /* save current stack position */
if (istat != SIG_IGN)

signal (SIGINT, onintr);

/* main processing loop */

}

onintr ()

printf ("\nInterrupt\n");
longjmp(sjbuf) ; /* return to saved state */

}

The include file setjmp.h declares the type Jjmp buf an
object in which the state can be saved. Sjbuf is such an
object; it is an array of some sort. The setjmp routine
then saves the state of things. When an interrupt occurs, a
call is forced to the onintr routine, which can print a
message, set flags, or whatever. Longjmp takes as argument
an object stored into by setijmp, and restores control to the
location after the call to setjmp, so control (and the stack
level) will pop back to the place in the main routine where
the signal is set up and the main loop entered. Notice, by
the way, that the signal gets set again after an interrupt
occurs. This 1is necessary; most signals are automatically
reset to their default action when they occur.

Some programs that want to detect signals simply can't be
stopped at an arbitrary point, for example in the middle of
updating a linked list. If the routine called on occurrence
of a signal sets a flag and then returns instead of calling
exit or longjmp, execution will continue at the exact point
it was interrupted. The interrupt flag can then be tested
later.

There is one difficulty associated with this approach.
Suppose the program is reading the terminal when the
interrupt is sent. The specified routine is duly called; it
sets its flag and returns. If it were really true, as we
said above, that "execution resumes at the exact point it
was interrupted," the program would continue reading the

XENIX Programming XENIX Programming

terminal until the user typed another line. This behavior
might well be confusing, since the user might not know that
the program is reading; he presumably would prefer to have
the signal take effect instantly. The method chosen to
resolve this difficulty is to terminate the terminal read
when execution resumes after the signal, returning an error
code which indicates what happened.

Thus programs which catch and resume execution after signals
should be prepared for "errors" which are caused by
interrupted system calls. (The ones to watch out for are
reads from a terminal, wait, and pause.} A program whose

onintr program Jjust sets 1ntflag, resets the interrupt
signal, and returns, should usually include code like the

following when it reads the standard input:

if (getchar() == EOF)
if (intflagqg)
/* EOF caused by interrupt */
else
/* true end-of-file */

One item to keep in mind becomes important when signal-
catching 1is combined with execution of other programs.
Suppose a program catches interrupts, and also includes a
method (like "!" in the editor) whereby other programs can
be executed. Then the code should look something like this:

if (fork() == 0)
execl(...);
signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait (&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

Why is this? Again, 1it's not obvious but not really
difficult. Suppose the program you call catches its own
interrupts. If you interrupt the subprogram, it will get
the signal and return to its main loop, and probably read
your terminal. But the calling program will also pop out of
its wait for the subprogram and read your terminal. Having
two processes reading your terminal 1is very unfortunate,
since the system figuratively flips a coin to decide who
should get each line of input. A simple way out is to have
the parent program ignore interrupts until the child is
done. This reasoning is reflected in the standard 1I/0
library function system:

XENIX Programming XENIX Programming

#include <signal.h>

system(s) /* run command string s */
char *s;

int status, pid, w;
register int (*istat) (), (*gstat) ();

if ((pid = fork()) == 0) {
execl("/bin/sh", "sh", "-c", s, 0);
} _exit(127);
istat = signal(SIGINT, SIG_IGN);
gstat = signal (SIGQUIT, SIG_IGN);
while ((w = wait(&status)) != pid && w != -1)
if (w == -1)
status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, gstat);
return(status);

}

The function signal obviously has a rather strange second
argument. This argument is a pointer to a function
delivering an integer, and this is also the type of the
signal routine itself. The two values SIG_IGN and SIG_DFL
have the right type, but are chosen so they coincide with no
possible actual functions. For the enthusiast, here is how
they are defined for the PDP-11l; the definitions are
sufficiently ugly and nonportable to encourage use of the
standard include file:

#define SIG_DFL (int (*)())O0
#define SIG_IGN (int (*)())1

XENIX Programming XENIX Programming

2.3 The Standard I/0 Library

A knowledge of the available C libraries is essential to the
C programmer, since they defines a common set of macros,
types, and functions that can be wused in almost any
programming project. The most important functions and
macros are declared in the standard I/0 library, which was
was designed with the following goals in mind:

l. It must be as efficient as possible, both in time and
in space, so that there will be no hesitation in using
it no matter how critical the application.

2. It must be simple to use, and free of the magic
numbers and mysterious calls whose use can reduce
understandability and portability.

3. The interface provided .should be applicable on all
machines, whether or not the programs which implement
it are directly portable to other systems.

2.3.1 General Usage
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines
are in the normal C library, so no special library argument
is needed for 1loading. All names in the 1include file
intended only for internal use begin with an underscore ()
to reduce the possibility of conflict with other names
created by the user. The names intended to be visible
outside the package are:

stdin The name of the standard input file
stdout The name of the standard output file
stderr The name of the standard error file

EOF The value returned by the read routines on end-
of-file or error; usually -1

NULL The null pointer, returned by pointer-valued
functions to indicate an error

FILE The name of a macro useful when declaring pointers
to streams. It expands to "struct _iob".

XENIX Programming XENIX Programming

BUFSIZ The size (usually 512) size suitable for an 1I/O
buffer supplied by the user. See setbuf, below.

Getc, getchar, putc, putchar, feof, ferror, and fileno are
defined as macros. Their actions are described below; they
are mentioned here to point out that it is not possible to
redeclare them and that they are not actually functions.
Thus, they may not have breakpoints set on them when
debugging.

The routines in this package offer the convenience of
automatic buffer allocation and output flushing where
appropriate. The names stdin, stdout, and stderr are in
effect constants and may not be assigned to. Stdio.h
contains the definitions of NULL, EOF, FILE, and BUFSIZ.
The standard input file (stdin), standard output file
(stdout), and standard error file (stderr) are also defined
in the standard I/0 1library. These definitions can be
incorporated into a C program with the following statement:

#include <stdio.h>

The file ctype.h provides the macro definitions for the
possible character classifications. Any program using those
facilities must contain the line:

#include <ctype.h>

The functions that handle signals need to use the signal
definitions, so these definitions must be included if these
functions are to be used. This can be done with the line:

#include <signal.h>

Some function names have changed in order to follow the
established convention. To insure that the uniqueness of
function names is preserved even if truncation occurs on
some systems, those functions dealing with entire strings
are named str...; those functions that consider only the
first n characters of a string are named strn....

XENIX Programming XENIX Programming

Listed below are some common C library functions. Most of
these belong to the standard I/0 library -- although other
libraries are represented here as well.

2.3.2 PFile Access

fclose
#$include <stdio.h>
int fclose(stream)
FILE *stream;
Fclose closes a file that was opened by fopen,
frees any buffers after emptying them, and
returns zero on success, nonzero on error. Exit
calls fclose for all open files as part of its
processing.

fdopen

$include <stdio.h>

FILE *fdopen (fildes, type)
int fildes;

char *type;

Fdopen provides a bridge between the low-level
input-output (I/0) facilities of XENIX and the
standard I/0 functions. Fdopen associates a
stream with a valid file descriptor obtained from
a XENIX system call (e.g., open). "Type" is the
same mode ("r", "w", "a", r+ , w+ , a+) that
was used in the original creation of a file
identified by "fildes". Fdopen returns a pointer
to the associated stream, or NULL if
unsuccessful.

Example:
int f4;

char *name = "myfile";
FILE *strm;

fd = open(name,0);

if ((strm = f£dopen(£d,"r")) == NULL)
fprintf(stderr,"Error on %d\n",£f4d);

XENIX Programming XENIX Programming

fileno

fopen

#include <stdio.h>
int fileno (stream)
FILE *stream;

Implemented as a macro on XENIX, (and contained
in the file stdio.h), fileno returns an integer
file descriptor associated with a valid "stream".
Any existing non-XENIX implementations may have
different meanings for the integer which is
returned. Fileno is used by many other standard
functions in the C library.

#include <stdio.h>
FILE *fopen (filename, type)
char *filename, *type;

Fopen opens a file named "filename" and returns a
pointer to a structure (hereafter referred to as
"stream"), containing the data necessary to
handle a stream of data. The "type" is one of
the following character strings:

r Used to open for reading.

w Used to open for writing, which
truncates an existing file to =zero
length or creates a new file.

a Used to append, that 1is, open for
writing at the end of a file, or create
a new file.

For the update options, fseek or rewind can be
used to trigger the change from reading to
writing, or vice versa. (Reaching EOF on input
will also permit writing without further
formality.) Fopen returns a NULL pointer if
"filename" cannot be opened. The update
functions are particularly applicable to stream
I/O0 and allow for the possibility of creating
temporary files for both reading and writing.

Example:
FILE *fp;
char *file;

if((fp = fopen(file,"r")) == NULL)

fprintf(stderr, "Cannot open %s\n",file);

2-30

XENIX Programming XENIX Programming

freopen

#$include <stdio.h>
FILE *freopen (newfile, type, stream)
char *newfile, *type-
FILE *stream;
Freopen accepts a pointer, "stream", to a
previously opened file; the old file is closed,
and then the new file is opened. The principal
motivation for freopen 1is the desire to attach
the names stdin, stdout, and stderr to specified
files. On a successful freopen, the stream
pointer is returned; otherwise NULL is returned,
indicating that while the file <closing took
place, the reopening failed. Freopen 1is of
limited portability; it cannot be implemented in
all environments.
Example:

char *newfile;

FILE *nfile;

if((nfile = freopen(newfile,"r",stdout)) == NULL)

fprintf(stderr,"Cannot reopen %s\n",newfile)s;
fseek

$include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;

long offset;

int ptrname;

Fseek positions a stream to a location "offset"
distance from the beginning, current position or

end of a file, depending on the values 0, 1, 2
respectively for "ptrname". On XENIX the offset

unit is bytes; other implementations are not
necessarily the same. The return values are 0 on
success and EOF on failure. Both buffered and -
unbuffered files may use fseek.

Example:
To position to the end of a file:
FILE *stream;

fseek(stream,0L,2);

2-31

XENIX Programming XENIX Programming

pclose

popen

rewind

#include <stdio.h>
int pclose (stream)
FILE *stream;

Pclose closes a stream opened by popen. It
returns the exit status of the command that was
issued as the first argument of its corresponding
popen, or -1 if the stream was not opened by

popen.

#include <stdio.h>
FILE *popen (command, type)
char *command, *type;

Popen creates a pipe between the calling process
and a command to be executed. The first argument
is a shell command line; type is the I/O mode for
the pipe, and may be either "r" for reading or
"w" for writing. The function returns a stream
pointer to be used for I/O on the standard input
or output of the command. A NULL pointer is
returned if an error occurs.

Example:

FILE *pstrm;

if((pstrm=popen("tr mvp MVP","w"))== NULL)
fprintf(stderr, "popen error\n");

fprintf(pstrm,”a message via the pipe...\n");

if (pclose(pstrm) == -1)
fprintf(stderr,"Pclose error\n");

results in:

a message via the pipe

#$include <stdio.h>
int rewind(stream)
FILE *stream;

Rewind sets the position of the next operation at
the beginning of the file associated with
"stream", retaining the current mode of the .file.

It is the equivalent of fseek (stream,0L,0);.

2-32

XENIX Programming XENIX Programming

setbuf

#$include <stdio.h>
setbuf (stream, buf)
FILE *stream;

char *buf;

This function allows the user to choose his own
buffer for I/0 or choose no buffering at all.
Use it after opening and before reading or
writing. The function is often used to eliminate

.the single character writes to a file that result

from the execution of putc to standard output
that is not redirected. The choice to buffer I1I/0
brings with it the responsibility for flushing
any data that may remain in a 1last, partially-
filled buffer. Fflush or fclose perform this
task. The constant BUFSIZ in stdio.h tells how
big the character array "buf" is. It is well-
chosen for the machine on which XENIX is running.
When "buf" is set to NULL, the I/O is completely
unbuffered.

Example:

setbuf (stdout, malloc (BUFSIZ)):;

2.3.3 File Status

clearerr

feof

$include <stdio.h>
clearerr (stream)
FILE *stream;

Clearerr resets the error condition on "stream".
The need for clearerr arises in XENIX
implementations where the error indicator is not
reset after a query.

$include <stdio.h>
int feof (stream)
FILE *stream;

Feof, which is implemented as a macro, returns
nonzero if an input operation on "stream" has
reached end of file; otherwise a zero is
returned. Feof should be used in conjunction
with any I/0 function whose return value is not a
clear 1indicator of an end-of-file condition.
Such functions are fread and getw.

XENIX Programming XENIX Programming

ferror

ftell

Example:

int *x;
FILE *stream;

do
*x++ = getw(stream);
while(!feof(stream));

#include <stdio.h>
int ferror (stream)
FILE *stream;

Ferror tests for an 1indication of error on
"stream". It returns a nonzero value (true) when
an error is found, and a zero otherwise. Calls
to ferror do not clear the error condition, hence
the clearerr function is needed for that purpose.
The wuser should be aware that, after an error,
further use of the file may cause strange
results. On XENIX ferror 1is implemented as a

macro.

Example:

FILE *stream;
int *x;

while(!ferror(stream))
putw(*x++,stream) ;

#include <stdio.h>
long ftell (stream)
FILE *stream;

Ftell determines the current offset relative to
the beginning of the file associated with
"stream". It returns the current value of the
offset 1in Dbytes. On error, a value of -1 is
returned. This function is useful in obtaining
an offset for subsequent fseek calls.

2-34

XENIX Programming XENIX Programming

2.3.4 Input Function

fgetc
#$include <stdio.h>
int fgetc (stream)
FILE *stream;

This is the function version of the macro getc
and acts identically to getc. Because fgetc is a
function and not a macro, it can be used in
debugging to set breakpoints on fgetc and when
the side effects of macro processing of the
argument is a problem. Furthermore, it can also
be passed as an argument.

fgets
$include <stdio.h>
char *fgets (s,n,stream)
char *s;
int n;
FILE *stream;

Fgets reads from "stream" into the area pointed
to by "s" either n-1 characters or an entire
string including its newline terminator,
whichever comes first. A final null character is
affixed to the data read. Fgets returns the
pointer "s" on success, and NULL on end-of-file
or error. Fgets differs from the function gets
in three ways: it can read from other than stdin;
it appends the newline at the end of input when
the size of the string is longer than or equal to
"n"; and even more important, it provides
control, not available with gets, over the size
of the string to be read.

Example:

char msg[MAX];
FILE *myfile;

while (fgets(msg,MAX,myfile) != NULL)
printf ("%s\n",msg) ;

fread
#include <stdio.h>
int fread((char *)ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

XENIX Programming XENIX Programming

This function reads from "stream"™ the next
"nitems"™ whose size 1is the same as the size of
the item pointed to by "ptr", into a sufficiently
large area starting at "ptr". It returns the
number of items read. In XENIX, fread makes use
of the function getc. It 1is often wused in
combination with feof and ferror to obtain a
clear indication of the file status.

Example:

FILE *pstm;
char mesg[100];

while(fread((char *)mesg,sizeof(*mesg),l,pstm) == 1)
printf("$s\n",mesqg) ;

fscanf
#include <stdio.h>
int fscanf (stream, format[, argptr]...)
char *format;
FILE *stream;

Fscanf accepts input from the file associated
with "stream", and deposits it into the storage
area pointed to by the respective argument
pointers according to the specified formats.
Fscanf differs from scanf in that it can read

from other than stdin. The function returns the
number of successfully handled input arguments,
or EOF on end of input.

Example:

FILE *file;
long pay:;

char name[15];
char pan(7];

fscanf(file,"%$6s%14s%1d\n",pan, name, &pay) ;
if(pay<50000)
printf("$%1d raise for %s.\n",pay/10,name) ;
If the input data is:
020 202MaryJones 15000

the resulting output is:

XENIX Programming XENIX Programming

getc

getchar

gets

getw

$1500 raise for MaryJones.

#include <stdio.h>
int getc (stream)
FILE *stream;

Getc returns the next character from the named
"stream". It is implemented as a macro to avoid
the overhead of a function call. On error or
end-of-file it returns an EOF. Fgetc should be
used if it is necessary to avoid the side effects
of argument processing by the macro getc.

$include <stdio.h>
int getchar()

This is identical to getc (stdin).

$include <stdio.h>
char *gets(s)
char *s;

Gets reads a string of characters up to a newline
from stdin and places them in the area pointed to
by "s". The newline character which ended the
string 1is replaced by the null character. The
return values are "s" on success, NULL on error
or end-of-file. The simple example below
presumes the size of the string read into "msg"”
will not exceed SIZE 1in 1length. If used in
conjunction with strlen, a dangerous overflow can
be detected, though not prevented.

Example:

char msg[SIZE];
char *s;
S = msg;
while (gets(s) != NULL)
printf("%s\n",s);

#include <stdio.h>
int getw (stream)
FILE *stream;

2-37

XENIX Programming XENIX Programming

scanf

sscanf

Getw reads the next word from the file associated
with "stream". If successful, it returns the
word; on error or end-of-file, it returns EOF.
However, because EOF could be a valid word, this
function is best used with feof and ferror.

Example:

FILE *stream;
int *x;
do
*x++ = getw(stream) ;
while (!feof(stream)):;

#include <stdio.h>
int scanf (format[, argptr]...)
char *format:;

Scanf reads input from stdin, delivers the input
according to the specified formats, and deposits
the input in the storage area pointed to by the
respective argument pointers. For input from
other streams than stdin use fscanf; for input
from a character array use sscanf. Scanf returns
the number of successfully handled input
arguments, or EOF on end-of-input.

Example:

long number;

scanf("%1d",&number) ;

(printf (number%2?"%1d is odd":"%1d is even",number)) ;

#include <stdio.h>

sscanf (s, format [, pointer]...)
char *s;

char *format;

Sscanf accepts input from character string "s",
delivers the input according to the specified
formats, and deposits it into the storage area
pointed to by the respective argument pointers.
This function returns the number of successfully
handled input arguments.

2-38

XENIX Programming XENIX Programming

Example:

char datestr/(
char month([4]
char year(5];

] = {"THU MAR 29 11:04:40 EST 1983"};

sscanf (datestr,"$*3s%3s§*2s¥*8s¥*3s%4s",month,year) ;
printf("%s, $s\n",month,year);

The result is:
MAR, 1983

ungetc
$include <stdio.h>
int ungetc (c, stream)
int c;
FILE *stream:;

Ungetc puts the character "c" back on the file
associated with "stream". One character (but
never EOF) is assured of being put back. If
successful, the function returns "c", otherwise

EOF.

Example:

while(isspace (c = getc(stdin)))

ungetc(c,stdin) ;

This code puts the first character that is not
white space back onto the standard input stream.

2.3.5 Output Functions

fflush
#$include <stdio.h>
int £flush (stream)
FILE *stream;

Fflush takes action to guarantee that any data
contained in file buffers and not yet written out
will be written. It is used by fclose to flush a
stream. No action is taken on files not open for
writing. The return values are zero for success,
EOF on error.

/JN

)

XENIX Programming XENIX Programming

fprintf

fputc

fputs

#include <stdio.h>

int fprintf (stream, format([, arg J]...)
FILE *stream;

char *format;

Fprintf provides formatted output to a named
stream. The function printf may be used if the
destination is stdout. Fprintf returns nonzero
on error, otherwise zero.

Example:

int *filename;
int c;

if (c==EOF)

fprintf(stderr, "EOF on %s\n",filename);

#include <stdio.h>
int fputc (c,stream)
int c;

FILE *stream;

Fputc performs the same task as putc; that is, it
writes the character "c" to the file associated
with "stream", but is implemented as a function
rather than a macro. Fputc is preferred to putc
when the side effects of macro processing of
arguments are a problem. On success, it returns
the character written; on failure it returns EOF.

‘Example:

FILE *in, *out;
int c;

while ((c = fgetc(in)) != EOF)
fputc(c,out) ;

#include <stdio.h>
int fputs(s,stream)
char *s;

FILE *stream;

Fputs copies a string to the output file
associated with "stream", using the function putc

2-40

XENIX Programming

fwrite

printf

XENIX Programming

to do this. It is different from puts in two
ways: fputs allows any output stream to be
specified, and does not affix a newline to the
output. For an example, see puts.

$include <stdio.h>

int fwrite ((char *)ptr, sizeof (*ptr),nitems,stream)

FILE *stream;

Beginning at "ptr", this function writes up to
"nitems" of data of the type pointed to by "ptr"
into output "stream". It returns the number of
items actually written. Like fread, this
function should be used in conjunction with
ferror to detect the error condition.

Example:

char mesg[] ={"My message to write out\n"};
FILE *pstrm;

if(fwrite (mesg, (sizeof (*mesg)-1),1,pstrm) !=
fprintf (stderr,"Output error\n") ;

$include <stdio.h>
int printf(format[, argl...)
char *format;

Printf provides formatted output on stdout.

Fprintf and sprintf are related functions that
write output onto other than the standard output

device. In case of error, implementations are
not consistent in their output. On error, printf
returns nonzero, otherwise zero. In later

releases of the C 1library, printf returns the
number of characters transmitted, or a negative
value on error.
Example:

int num = 10;

char msg[] = {"ten"};

printf("%d - %o - %s\n", num, num, msg);

results in the line:

2-41

1)

XENIX Programming XENIX Programming

putc

putchar

puts

10 - 12 - ten;

#include <stdio.h>
int putc (c,stream)
int c;

FILE *stream;

Putc writes the character ¢ to the file
associated with stream. On success, it returns
the character written; on error it returns EOF.
Because it is implemented as a macro, side
effects may result from argument processing. In
such cases, the equivalent function fputc should
be used.

Example:

#define PROMPT () putc('\7',stderr)
/* Prompt is BELL character */

#include <stdio.h>
int putchar(c)

int c;

Putchar is defined as:

putc (c, stdout)

Putchar returns the character written or EOF if

an error occurs.

Example:

char *cp;
char x[SIZE];

for (cp=x;cp< (xX+SIZE) ;cp++)
putchar (*cp) ;

#include <stdio.h>
int puts(s)
char *s;

The function puts copies the string pointed to by
"s" without 1its terminating null character to
stdout. A newline character is appended. XENIX

2-42

XENIX Programming XENIX Programming

putw

sprintf

uses the macro putchar (which calls putc).

Example:

puts("I will append a newline");
fputs("\tsome more data ", stdout);
puts("and now a newline");

The resulting output is:

I will append a newline
some more data and now a newline

#include <stdio.h>
int putw(w,stream)
FILE *stream;

int w;

Putw appends word "w" to the output "stream". As
with getw, the proper way to check for an error
or end-of-file is to use the feof and ferror
functions.

Example:

int info;

while(!feof (stream))
putw(info,stream) ;

#include <stdio.h>

int sprintf(s, format, [, argl...)
char *s;

char *format;

Sprintf allows formatted output to be placed in a
character array pointed to by "s". Sprintf adds
a null at the end of the formatted output. It is
the user's responsibility to provide an array of
sufficient length. The related functions printf
and fprintf handle similar kinds of formatted
output. The comparable input function is sscanf.
On error, sprintf returns nonzero, otherwise

zero.

XENIX Programming XENIX Programming

Example:

char cmd(100];

char *doc = "/usr/src/cmd/cp.c"
int width 50;

int length = 60;

sprintf(cmd, "pr -w3¥d -1%d %$s\n",width,length,doc) ;

system(cmd) ;

The above code executes the pr command to print
the source of the cp command.

2.3.6 String Functions

strcat

strcmp

char *strcat(dst,src)
char *dst, *src;

Strcat appends characters in the string pointed
to by "src" to the end of the string pointed to
by "dst", and places a null character after the
last character copied. 1It returns a pointer to
"dst". To concatenate strings up to a maximum
number of characters, use strncat.

Example:

char *myfile;
char dir(L_cuserid+5] = "/usr/";
myfile = (strcat(dir,cuserid(0)));

The result is the concatenation of the login name
onto the end of the string "dir".

char *strcmp(sl,s2)
char *sl, *s2;

Strcmp compares the characters in the string "sl1"
and "s2". It returns an integer value, greater
than, equal to, or less than zero, depending on
whether "sl1l" 1is lexicographically greater than,
equal to, or less than "s2".

2-44

XENIX Programming XENIX Programming

strcpy

strlen

strncat

Example:
#define EQ(x,y) Istrcemp(x,Y)

char *strcpy(dst, src)
char *dst, *src;

Strcpy copies the characters (including the null
terminator) from the string pointed to by "src"
into the string pointed to by "dst". A pointer
to "dst" is returned.

Example:

char dst[]
char srcl]

"UPPER CASE";
"this is lowercase";

printf("%s\n",strcpy(dst,src+8));
results in:

lowercase

int strlen(s)
char *s;

Strlen counts the number of characters starting
at the character pointed to by "s" up to, but not
including, the first null character. It returns
the integer count.

Example:

char nextitem([SIZE];
char series[MAX]:;

if(strlen(series)) strcat(series,","):
strcat(series,nextitem) ;

char *strncat(dst, src, n)
char *dst, *src;

int n;

Strncat appends a maximum of "n" characters of

the string pointed to by "src" and then a null

XENIX Programming XENIX Programming

strncmp

strncpy

character to the string pointed to by "dst". It
returns a pointer to "dst".

Example:

char dst[]
char src(]

"cover";
"letter";

printf("%$s\n",strncat(dst,src,3));
The output is:

coverlet

int strncmp(sl,s2,n)
char *sl, *s2;
int n:

Strncmp compares two strings for at most "n"
characters and returns an integer value greater
than, equal to, or less than zero depending on
whether "sl" 1is lexicographically greater than,
equal to or less than "s2".

Example:

char filename [] = "/dev/ttyx";

if(strncmp (filename+5, "tty",3) == 0)
printf("success\n") ;

char *strncpy(dst,src,n)
char *dst, *src;
int n:

Strncpy copies "n" characters of the string
pointed to by "src" into the string pointed to by
"dst". Null padding or truncation of "src"
occurs as necessary. A pointer to "dst" is
returned.

Example:

2-46

./

XENIX Programming XENIX Programming

char buf [MAX]:;

char date [29] = {"Fri Dec 29 09:35:44 EDT 1982"};

char *day = buf;
strncpy (day,date,3);

After executing this code, "day" points to the
string "Fri".

2.3.7 Character Classification

isalnum

isalpha

isascii

iscntrl

#include <ctype.h>
int isalnum(c)
int c;

This macro determines whether or not the
character "c" is an alphanumeric character ([A-
Za-z0-9]). It returns zero for false and
nonzero for true.

#include <ctype.h>
int isalpha(c)
int c;

This macro determines whether or not the
character "c" 1is an alphabetic character ([A-
Za-z]). It returns zero for false and nonzero
for true.

#include <ctype.h>
int isascii(c)
int c;

This macro determines whether or not the integer
value supplied is an ASCII character; that is, a
character whose octal value ranges from 000 ¢to
177. It returns zero for false and nonzero for
true.

#include <ctype.h>
int iscntrl(c)
int c;

This macro determines whether or not the
character "c" when mapped to ASCII is a control

XENIX Programming XENIX Programming

isdigit

islower

isprint

ispunct

isspace

character (that is, octal 177 or 000-037). It
returns zero for false and nonzero for true.

#include <ctype.h>
int isdigit(c)
int c;

This macro determines whether or not the
character "c" is a digit. It returns zero for
false and nonzero for true. (that 1is, 1is an
ASCII code between octal 041 and 176 inclusive).

#include <ctype.h>
int islower(c)
int c;

This macro determines whether or not the
character "c" is a lowercase letter. It returns
zero for false and nonzero for true.

#include <ctype.h>
int isprint(c)
int c;

This macro determines whether or not the
character "c" is a printable character. (This
includes spaces.) It returns zero for false and
nonzero for true.

#include <ctype.h>
int ispunct(c)
int c;

This macro determines whether or not the
character "c" is a punctuation character (neither
a control character nor an alphanumeric). It
returns zero for false and nonzero for true.

#include <ctype.h>
int isspace(c)
int c;

This macro determines whether or not the
character "c" is a form of white space (that is,
a blank, horizontal or vertical tab, carriage
return, form-feed or newline). It returns zero

XENIX Programming XENIX Programming

N for false and nonzero for true.

\

isupper
#include <ctype.h>
int isupper(c)
int c;

This macro determines whether or not the
character "c" is an uppercase letter. It returns
zero for false and nonzero for true.

2.3.8 Character Translation

toascii
#include <ctype.h>
int toascii (c¢)
int c;
The macro toascii wusually does nothing: its
purpose is to map the input character into its
ASCII equivalent.
Example:
= FILE *oddstrm;
if(!isdigit (toascii(getw(oddstrm))))
fprintf (stderr,"bad data\n");
tolower

#include <ctype.h>
int tolower (c)
int c;

If the argument "c" passed to the function
tolower is an uppercase letter, the lowercase
representation of "c" is returned, otherwise "c"
is returned unchanged. For a faster routine, use
tolower, which 1is implemented as a macro;
however, the argument must already be an
uppercase letter.

Example:

if (tolower (getchar()) != 'y')
exit(0);

XENIX Programming XENIX Programming

toupper

#include <ctype.h>
int toupper (c)
int c;

If the argument "c" passed to the function
toupper is a lowercase letter, the uppercase
representation of "c" is returned, otherwise "c"
is returned unchanged. For a faster routine, use
toupper, however, the argument must already be a
lowercase letter.

Example:

if (toupper (getchar()) != 'Y"')
exit(0);

2.3.9 Space Allocation

calloc

free

char *calloc(n, size)
unsigned n, size;

Calloc allocates enough storage for an array of
"n" items aligned for any use, each of "size"
bytes. The space is initialized to zero. Calloc
returns a pointer to the beginning of the
allocated space, or a NULL pointer on failure.

Example:
char *t;
int n:

unsigned size;

if (t=calloc((unsigned)n, size) == NULL)
fprintf(stderr,"Out of space.\n");

free(ptr)
char *ptr;

Free 1is wused in conjunction with the space
allocating functions malloc, calloc, or realloc.
"Ptr" is a pointer supplied by one of these
routines. The function frees the space
previously allocated.

.

XENIX Programming XENIX Programming

malloc

realloc

char *malloc(size)
unsigned size;

Malloc allocates "size" bytes of storage
beginning on a word boundary. It returns a
pointer to the beginning of the allocated space,
or a NULL pointer on failure to acquire space.
For space initialized to zero, see calloc.

Example:
int n;
char *t;

unsigned size;

if (t=malloc((unsigned)n) == NULL)

fprintf(stderr,"Out of space.\n");

char *realloc (ptr, size)
char *ptr;
unsigned size;

Given "ptr" which was supplied by a call to
malloc or calloc, and a new byte size, "size",
realloc returns a pointer to the block of space
of "size" Dbytes. This function 1is wused to
compact storage, and is used with the functions
malloc and free.

XENIX Programming XENIX Programming

2.4 Include Files

The following pages contain the contents of the three most

important include files: 'ctype.h, stdio.h, and signal.s.
These files are well worth some study, as the define a

standard interface to the internals of the XENIX system.

2.4.1 ctype.h

#define U 0l

#define _L 02

#define N 04

#define _S 010

#define _P 020

#define C 040

#define _B 0100

extern char _ctype_[];

#define isalpha(c) ((_ctype_+1)[c]l&(_U| L))

f#define isupper(c) ((_ctype_ " +1) [c] & _U)

#define islower(c) ((_ctype +l)[c]& L)

#define isdigit(c) ((_ctype_ +1)[c]& N)

#define isspace(c) ((—ctype +1) [c]l&(_S|_B))

#define ispunct(c) ((_ctype_+1) [c]l&_P) ,
$define isalnum(c) ((_ctype_+1) [cl&(Ul l _N)) :)
#define isprint(c) ((_ctype_+1) [cl&(_P _L|_N|_B))
#define iscntrl(c) ((_ctype_ " +1) [cl & _C)

f#define isascii(c) ((unsigned) (c) <=0177)

#define _toupper (c) ((c)-'a'+'A)

#define —_tolower(c) ((c)=-'A'+'a')

#define toascii(c) ((c)&0177)

XENIX Programming

2.4.2

$define

$define
#define
$define
$define

$define

$define
$define
g§define
$define

$define
$define
$define
$define

#$define
$define

int
$define
$define

signal.h

NSIG

SIGHUP
SIGINT
SIGQUIT
SIGILL

SIGTRAP

SIGIOT
SIGEMT
SIGFPE
SIGKILL

SIGBUS
SIGSEGV
SIGSYS
SIGPIPE

SIGALRM
SIGTERM

(*signal()) () ;

SIG_DFL
SIG_IGN

16
1 /*
2 /*
3 /*
4 /*
/*
5 /*
/*
6 /*
7 /*
8 /*
9 /*
/*
10 /*
11 /*
12 /*
13 /*
/*
14 /*
15 /*
/*
(int (*
(int (*

XENIX Programming

hangup */

interrupt */

quit */

illegal instruction */

(not reset when caught) */
trace trap */

(not reset when caught) */
IOT instruction */

EMT instruction */

floating point exception */
kill (cannot be */

(caught or ignored) */

bus error */

segmentation violation */
bad argument to system call */
write on a pipe */

with no one to read it */
alarm clock */

software termination */
signal from kill */

XENIX Programming

XENIX Programming

2.4.3 stdio.h
#¢define BUFSIZ 512
#define _NFILE 20
ifndef FILE
extern struct iobuf {
char * ptr;
int _cnt;
char * base;
char _flag;
char _file;
} _iob[NFILE];
endif
#$define _IOREAD 0l
#define _IOWRT 02
#define _IONBF 04
#define _IOMYBUF 010
#define IOEOF 020
#define _IOERR 040
#define _IOSTRG 0100
#define _IORW 0200
#define NULL 0
#define FILE struct _iobuf
#define EOF (-1)
#define L _ctermid 9
#define L_cuserid 9
#define L_tmpnam 19
$define stdin (& _iob[0])
#define stdout (& iob[1])
#¢define stderr (& iob[2])
$§define getc(p) (== (p) =>_cnt>=0?\
*(p)-> ptr++&0377:_£filbuf(p))
#define getchar () getc(stdin)
#define putc(x,p) (--(p) =>_cnt>=0?\
((int) (* (p) ->_ptr++=(unsigned) (x))) =\
_flsbuf((unsigned) (x),p))
#define putchar (x) putc (x,stdout)
#define feof (p) (((p)->_flag&_IOEOF) {=0)
#define ferror (p) (((p)->_flag&_IOERR) !=0)
#define fileno (p) p->_file
FILE *fopen();
FILE *freopen();
FILE *fdopen() ;
long ftell():
char *fgets():;

2-54

)

XENIX Programming XENIX Programming

2.5 XENIX MC68000 Assembly Language Interface

The XENIX system is designed so that there should be 1little
need to program in assembly language. Occasionally, however,
the need does arise, and you may need to know the
conventions for storing words in memory and for accessing
parameters on the stack in a way compatible with the C
runtime environment. Remember, however, that programming in
assembly language is highly machine-dependent, and that you
sacrifice portability whenever you forsake C for whatever
low-level advantages you might gain.

If you do choose to mix MC68000 assembly language routines
and compiled C routines, there are several things to be
aware of:

® Registers and return values
& Calling sequence
® Stack probes

With an understanding of these three topics, you should be
able to write both C programs that call MC68000 assembly
language routines and assembly language routines that call
compiled C routines.

2.5.1 Registers and Return Values

Function return values are passed in registers if possible.
The set of machine registers used is called the save set,
and includes the registers from d2-d47 and a2-a7 that are
modified by a routine. The compiler assumes that these
registers are preserved by the callee, and saves them itself
when it is generating code for the callee. (When a C
compatible routine is called by another routine, we refer to
the calling routine as the caller. We refer to the called
routine as the callee.) Note that a6 and a7 are in effect
saved by a link instruction at procedure entry.

The function return value is in d40. The current floating
point implementation returns the high order 32 bits of
doubles in dl, and the low order 32 bits in d0. Functions
return structure values (not pointers to the values) by
loading 40 with a pointer to a static buffer containing the

XENIX Programming XENIX Programming

structure value.
This makes the following two functions equivalent:

struct list proc (){
struct list this;

return (this);

}

struct list *proc () {
struct list this;
static struct list temp;
temp = this;
return (&temp);

}

This implementation allows recursive reentrancy (as long as
the explicit form is not used, since the first sequence is
indivisible but not the second) . However, this
implementation does not permit multitasking reentrancy.
Note that the latter includes the XENIX signal(3) call.

Setjmp(3) and longjmp(3) cannot be implemented as they are
on the PDP-1l1l, because each procedure saves only the
registers from the save set that it will modify. This makes
it difficult to get back the current values of the register
variables of the procedure that is being setjmped to. Hence,
register variable values after a longjmp are the same as
before a corresponding setjmp is called. If you need 1local
variables to change between the call of setjmp and longjmp,
they cannot be register variables.

2.5.2 Calling Sequence

The calling sequence is straightforward: arguments are
pushed on the stack from the last to first: i.e., from right
to left as you read them in the C source. The push quantum
is 4 Dbytes, so if you are pushing a character, you must
extend it appropriately before pushing. Structures and
floating point numbers that are 1larger than 4 bytes are
pushed in increments of 4 bytes so that they end up in the
same order in stack memory as they are in any other memory.
This means pushing the last word first and long-word padding
the last word (the first pushed) if necessary. The caller is
responsible for removing his own arguments. Typically, an

addql #constant, sp

XENIX Programming XENIX Programming

is done. It is not really important whether the caller
actually pushes and pops his arguments or just stores them
in a static area at the top of the stack, but the debugger,
adb, examines the addql or addw from the sp to decide how
many arguments there were.

2.5.3 Stack Probes

XENIX is designed to dynamically allocate space on the stack
for 1local variables, function arguments, return addresses,
and other information. When additional space is needed and
an instruction causes a memory fault, the XENIX kernel
checks the offending instruction. If the instruction is a
stack reference, the kernel maps enough stack memory for the
instruction to complete its execution successfully. Then the
procedure continues execution where it left off. Generally,
this means restarting the offending memory reference
instruction (usually a push or store). The MC68000 does not
provide a way to restart instructions; therefore, we need to
perform a special instruction that can trigger the memory
fault, but that has no ill effect other than triggering the
fault. This instruction we call a stack probe.

When we perform a stack probe and a memory fault occurs, the
kernel allocates additional memory for the stack. The XENIX
kernel can allocate this needed stack memory, ignore the
fact that the stack probe instruction did not complete, and
then continue on to the next instruction.

The stack probe instruction for the MC68000 XENIX is
tstb -value(sp)

The value argument must be negative, because a negative
index from the stack pointer is above the top of the stack.
This is an otherwise absurd reference that XENIX recognizes
as a stack probe.

For the general case, use the following procedure entry
sequence:

procedure_entry:
link a6,#-savesize
tstb -pushsize-extra-8(sp)

Any registers among d2-d7 and a2-a5 that are wused in this
procedure are saved with a moveml instruction after this
sequence. The number of registers saved in the moveml
instruction needs to be accounted for in the push size.
Thus, pushsize is the sum of the number of bytes pushed as

XENIX Programming XENIX Programming

temporaries, save areas, and arguments by the whole
procedure. The 8 bytes are the space for the return address
and frame pointer save (by the link instruction) of a nested
call. The extra 1is tolerance so that extremely short
runtimes that use 1little stack do not need to perform a
stack probe. The tolerance is intentionally kept small to
conserve memory, so make sure you understand what you are
doing before you consider leaving out a stack probe in your
assembly procedures.

In most cases, unless you are pushing huge structures or
doing tricks with the stack within your procedure, you can
use the following instruction for your stack probe:

tstb =100 (sp)

This instruction makes sure that enough space has been
allocated for most of the usual things you might do with the
stack and is enough for the XENIX runtimes that do not
perform stack probes. Note that you do not need to consider
space allocated by the link instruction in this stack probe,
since it is already added by indexing off the stack pointer.

CHAPTER 3

SOFTWARE TOOLS

CONTENTS

3.1 Intrﬁuction....l...ll.l....0.00-0....0-........-0 3—1
3.2 BaSiC Tools.I..-.....no.o.o...o.-........o.oo.o.-l 3-1

3.3 Other Tools..0.000000oooooo...oo-oo.o.o.o....oo..o 3_2

O
I
P
v |
—_
m;
o)
€

Software Tools Software Tools

3.1 Introduction

This chapter discusses the tools available for use in
software development on the XENIX System. The wide variety
of available tools makes for a rich environment for
programmers and software engineers. Often, tools are
combined in shell procedures to perform whatever programming
task desired. However, because their are so many different
commands available to the programmer, it is often difficult
to know what subset 1is especially useful in software
development. To solve this problem, this chapter
circumscribes a set of commands that are known to be of use
in software development, and then summarizes the function of
each command. 1In addition, this chapter contains a section
describing the basic tools required in developing software
on the XENIX system. Most of these basic tools have late
chapters devoted to them.

3.2 Basic Tools
The tools used to create executable C programs are:
cc The XENIX C compiler.

lint The XENIX C program checker.

14 The XENIX loader.

as The XENIX assembler.

adb The XENIX debugger.

make The XENIX program maintainer.

Note that cc automatically invokes both the loader and the
assembler so that use of either 1is optional. Lint is
normally used in the early stages of program development to
check for illegal and improper usage of the C language. The
program adb is wused to debug executable programs. The
program make is used with the above tools to automatically
maintain and regenerate software in medium scale programming
projects.

All the above tools are used 1in creating executable C
programs. These programs are created to run in the XENIX
environment. This environment is manifested in the various
subroutines and system calls available in several subroutine
libraries.

Software Tools Software Tools

Note that not all programming projects are best implemented
in C, even if they are programs written for XENIX. Often,
simple programs can be written in the shell command language
much more quickly than they can be in C. For some
complicated programs, lex and yacc may be Jjust what is
required. Lex 1is a 1lexical analyzer that can be used to
accept a given input language. Yacc is a program designed
to compile grammars into a parsing program. Typically, it
is used to compile languages that are recognized by 1lex.
For this reason, 1lex and yacc are often used together,
although either can be used separately.

3.3 Other Tools

Other tools useful in software development are described
below:

ar Archives files and maintains libraries. Useful
when constructing or maintaining large object
libraries.

at Execute commands at a later time. Used to

execute time consuming compilations, printouts,
and makes, so that they execute when the system
isn't busy.

awk Recognizes text patterns and performs
transformation operations based on the awk
language.

basename Strips directory affixes and filename prefixes

from a filename or pathname. Useful in shell
scripts to obtain the filename part of a
pathname or to strip off filename extensions.

cb Beautifies o programs, improving their
readability. Note that the output from cb is not
necessarily attractive to all programmers.

chgrp Changes the group affiliation of a file, so that
it has the proper group permission when it is
accessed or, if it is an executable file, when
it is executed.

chown Changes the owner of a file, so that it has the
proper owner when it is accessed or, if it is an
executable file, when it is executed.

cmp Compares two sor ted files. Useful when
comparing object files and other binary images.

Software Tools Software Tools

comm

copy

csh

ctags

dad

as

diff
diff3
du

file

find

fsck

1n

lorder

Compares sorted lists by either selecting or
rejecting common lines.

Copies groups of files. Useful in recursively
copying directories or in creating files that
are linked to another set of files. Note that
cp does not copy recursively.

Interprets and executes commands taken from the
keyboard or from a command file. The "C shell"
supports a C-like command language, an aliasing
facility, and a command history mechanism.

Creates a tags file so that C functions can be
quickly found in a set of related C source
files.

Converts and copies a file to the standard
output. . Used to read in files from various
media. A variety of formats and conversions are
available.

Reports the amount of space that 1is free and
available in a given file system.

Compares two text files, line by line.
Compares three text files, line by line.

Summarizes disk usage. Used to determine how
much disk space you are using.

Determines the file type of given files Use this
to examine files to determine whether they are
directories, special files, or executable files.

Finds filenames in a filesystem and optionally
may perform commands that affect the found
files. Used in performing complex operations on
a selected set of files.

Checks file system consistency and if possible,
interactively repairs the file system when
inconsistencies are found.

Creates a link of a file to another file so that
file contents are shared and both filenames
refer to the same file.

Finds ordering relation for an object library.

Software Tools Software Tools

mé

mkfs
mknod

mkstr

mount
ncheck
nice
nm

od

printenv
prof
pstat
quot

ranlib

settime

size
sleep

strings

strip

su

Processes input text performing several
functions, including macro definition and
invocation.

Constructs a file system.

Creates a special file.

Creates an error message file by examining a C
source file. '

Mounts a file system on the given directory.
Generate file names from inode numbers.

Runs a command at a lower priority.

Prints the list of names in a program.

Performs an "octal dump" of given files,
printing files 1in a variety of formats, one of
which is octal.

Prints out the enQironment.
Displays profile data.

Prints system facts.

Summarizes file system ownership.

Converts archive libraries to random 1libraries
by placing a table of contents at the front of
each library.

Change the access and modification dates of
files.

Reports the size of an object file.
Suspends execution for a given period of time.

Finds and prints readable text (strings) in an
object or other binary file.

Removes symbols and relocation bits from
executable files.

Logs in user as super-user or other user.

Software Tools Software Tools

sum

sync

tr

tsort

umount

Xstr

Computes check sum for a file and counts blocks.
Useful in looking for bad spots in a file and in
verifying transmission of data between systems.

Updates the super block so that all input and
output to the disk is completed before the sync
command finishes.

Archives files to tape or other similar device.
Also used in moving large sets of files.

Times a given command. Used in taking
benchmarks for execution-time of programs.

Updates the modification date of a file without
altering the contents of the file.

Translates a one given set of characters to
another set for all characters in a file.

Topologically sorts object 1libraries so that
dependencies are apparent.

Unmounts a mounted file system.

Extracts strings from C programs to implement
shared strings.

CHAPTER 4
CC: A C COMPILER

CONTENTS

Intrwuction..-.........o-.....'....o.....oo...".
Invocation Switches...lo0.0.....-.IOII0.0o.l.....o

The Iloader.-.D.D.oo...........oo......o.......O..o

FileSoo..o..o...o..oo...0..0...0Ooo..o.oo.......oo

CcC CcC

4.1 Introduction

Cc is the command used to invoke the XENIX C compiler.
Since the entire XENIX system is written in the C language,
cc is the fundamental XENIX program development tool. The
emphasis in this chapter 1is on giving insight into cc's
operation and use. Special emphasis is given to input and
output files and and to the available compiler options.
Throughout, familiarity with compilers and with the C
language is assumed. For more information on programming in
C, see The C Programming Language, by Kernighan and Ritchie.

The fundamental function of the C compiler is to produce
executable programs by processing C source files. The word
"processing" is the key here, since the compilation process
involves several distinct phases: These phases are described
below:

Preprocessing

In this phase of compilation, your C source
program 1is examined for macro definitions and
include file directives. Any include files are
processed at the point of the include statement;
then occurrences of macros are expanded throughout
the text. Normally, standard include files found
in the /usr/include directory are included at the
beginning of C programs. These standard include
files normally are named with a ".h" extension.
For example, the following statement includes the
definitions for functions in the standard 1/0
library:

$include <stdio.h>

Note that the angle brackets indicate that the
file 1is presumed to exist in /usr/include. The
effects of preprocessing on a file can be captured
in a file by specifying the -P switch on the cc
command line. The -E switch performs a similar
function useful for debugging when you suspect
that an include file or macro is not expanding as
desired.

Optimization

Optimization of generated code can be specified on
the cc command 1line with the -0 switch. This
option should be used to increase execution speed
or to decrease size of the executing program.
Since programs will take longer to compile with
this option, you may want to use this option only
after you have a working debugged program.

cC

CC

Generation of Assembly Source Code

Assembly

The C compiler generates assembly source code that
is 1later assembled by the XENIX assembler, as.
Cc's assembly output can be saved in a file by
specifying the -S switch when the compiler is
invoked. Assembly source output is saved in a file
whose name has the ".s" extension.

To assemble the generated assembly code, cc calls
as to create a ".o" file. The ".o" file is used in
the next step, linking and loading.

Linking and Loading

The final phase in the compilation of a C program
is 1linking and 1loading. The program responsible
for this is the XENIX loader, 1ld. Loader options
can be specified on the cc command line. These
options are discussed later in the section on the
loader.

It is important to realize that all of the above
phases can be controlled at the cc command level:
they do not have to be invoked separately. What
normally happens when you execute a cc command is
that a sequence of programs processes the original
C source file. Each program creates a temporary
file that is used by the next program in the
sequence. The final output is the load image that
is loaded into memory when the final executable
file is run.

4.2 Invocation Switches

A list of

some of the available switches follows. Other

switches may be described in cc(1S).

-C

Suppress the loading phase of the compilation, and
force an object file to be produced even if only
one program is compiled.

Arrange for the compiler to produce code which
counts the number of times each routine is called.
Also, if loading takes place, replace the standard
startup routine by one that automatically calls

monitor(3) at the start and arranges to write out

a mon.out file at normal termination of execution
of the object program. An execution profile can
then be generated by use of prof(l).

7

cC CcC

-0 Invoke an object-code optimizer.

-S Compile the named C programs, and leave the
assembler-language output on corresponding files
suffixed ".s".

-P Run only the macro preprocessor and place the
result for each ".c" file in a corresponding ".i"
file. The resultant file has no "#" lines in it.

-0 output
Give the final output file the name specified by

output. If this option 1is used the file a.out
will be left undisturbed.

-Dname=def
Define the name to the compiler preprocessor, as
if by "#define". If no definition is given, then
name is assigned the value 1.

Remove any initial definition of name.

Any "#include" files whose names do not begin with
"/" and that are enclosed within angle brackets (<
and >) are searched for first in the directory of
the file argument, then in directories named in -I
options, then in directories given by a standard
list.

Other arguments are taken to be either 1loader option
arguments, or C-compatible object programs, typically
produced by an earlier cc run, or perhaps 1libraries of C-
compatible routines created with the assembler. These
programs, together with the results of any compilations
specified, are 1loaded (in the order given) to produce an
executable program with the name a.out.

Note that some versions of the C compiler support additional
switches. These switches and their function are described in
the reference section of this manual.

4.3 The Loader

As mentioned in the above sections, the XENIX 1loader, 14,
plays a fundamental role in the development of any C
program. For this reason it is discussed as part of cc; it
can however, be used as a stand-alone processor of object
files. Note that arguments to 1d can be given on the c¢c

cC cC

command line and are a part of the syntax of the cc command.

Some of the available 1loader switches are 1listed below.
Except for -1, they should appear before filename arguments.
Other switches are described in 14(1S).

-8 "Strip" the output, that 1is, remove the symbol
table and relocation bits to save space (but
impair the usefulness of the debugger). This
information can also be removed by strip(1ls).

-u Take the following argument as a symbol and enter
it as undefined in the symbol table. This is
useful for loading wholly from a 1library, since
initially the symbol table is empty and an
unresolved reference is needed to force the
loading of the first routine.

-1x This option is an abbreviation for the 1library
name /lib/libx.a, where x is a string. 1If that
does not exist, 1ld tries /usr/lib/libx.a. A
library is searched when its name is encountered,
so the placement of a -1 is significant.

-X Do not preserve local (non-.globl) symbols in the
output symbol table: enter only external symbols.
This option saves some space in the output file.

-X Save local symbols except for those whose names
begin with "L". This option 1is used by cc to
discard internally generated labels while

retaining symbols local to routines.

-n Arrange that when the output file is executed, the
text portion will be read-only and shared among
all users executing the file.

-i When the output file is executed, the program text
and data areas will 1live 1in separate address
spaces. The only difference between this option
and -n is that here the data starts at location 0.

-0 The name argument after -o is used as the name of
the 1d output file, instead of a.out.

For more information on the loader, see 1d in the reference
section of this manual.

4-4

cC CC

4.4 PFiles

The files making up the compiler, as well as those files
needed, used, or created by cc are listed below:

file.c input file

file.o object file

a.out loaded output
/tmp/ctm? temporaries for cc
/1lib/cpp preprocessor
/1lib/c[01] compiler for cc
/lib/c2 optional optimizer
/lib/crt0.o runtime startoff
/lib/mcrt0.o startoff for profiling
/lib/libc.a standard library
/usr/include standard directory for "#include" files

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

CHAPTER 5
LINT: A C PROGRAM CHECKER

CONTENTS

IntroductioN.eccceccceccceccecscscsscsscssscccccccas
A Word About PhilOoSOpPhy.cccecccccccccccccscccccss
Unused Variables and FunctionS..cccceceecccccccece
Set/Used InformatioON.icecececececcccccccocscscccsse
F1OW Of CONELOL.ceeeeeonneneeeeennnnnnnnnocnssses
Function ValueS..cccececcccccccccccscsscsssssnascs
Type CheCking.ccecececceceooosossssscccossscscssccscccss
Type CasStSeccecccccccccccccocsoscscossssosssscssssssncs
Nonportable Character US€..cccceccccccccccscccse
Assignments of 1longs to iNtS..ccceecccccccecccss
Strange ConsStrucCtionS..cccececccccscccsccccscccccsse
HiStOIYeeeeeeeoooeoscosoosososcscsssscsccscsssssscnnnscss
Pointer Alignment..ccccccccccccscscscsccccccscsccscscee
Multiple Uses and Side EffectS.cccccccccccccccns
Shutting Lint UPeeeecceccceccococccoscscecccsccccscss

Library DeClaration Files.o.-.-.-.-.-.-.-.....l.
Notes...oQ.o.o.o...ocoooo.o.ol....o..o....o....c

Current Lint options......-.........._....-......

5-1
5-2
5-2

5-3

5-4
5-5
5-6
5-7
5-7

5-9
5-10
5-10
5-11
5-12
5-13
5-14

Lint Lint

5.1 Introduction

Lint is a program that examines C source programs, detecting
a number of bugs and obscurities. It enforces the type
rules of C more strictly than the C compilers. It may also
be used to enforce a number of portability restrictions
involved in moving programs between different machines
and/or operating systems. Another option detects a number
of wasteful, or error prone, constructions which
nevertheless are, strictly speaking, legal.

The separation of function between Lint and the C compilers
has both historical and practical rationale. The compilers
turn C programs into executable files rapidly and
efficiently. This is possible in part because the compilers
do not perform sophisticated type checking, especially
between separately compiled programs. Lint takes a more
global, leisurely view of the program, 1looking much more
carefully at the compatibilities.

This section discusses the use of Lint, gives an overview of
the implementation, and gives some hints on the writing of
machine independent C code.

Suppose there are two C source files, filel.c and file2.c,
which are ordinarily compiled and loaded together. Then the
command

lint filel.c file2.c

produces messages describing inconsistencies and
inefficiencies in the programs. The program enforces the
typing rules of C more strictly than the C compilers (for
both historical and practical reasons) enforce them. The
command

lint -p filel.c file2.c

produces, in addition to the above messages, additional
messages that relate to the portability of the programs to
other operating systems and machines. Replacing the =-p by
-h produces messages about various error-prone or wasteful
constructions that, strictly speaking, are not bugs. Saying
-hp gets the whole works.

The next several sections describe the major messages; the
discussion of Lint <closes with sections discussing the

implementation and giving suggestions for writing portable
C. The final section gives a summary of Lint command line

options.

Lint Lint

5.2 A Word About Philosophy

Many of the facts about a particular C program that Lint
needs may be impossible for it to discover. For example,
whether a given function in a program ever gets called may
depend on the input data. Deciding whether exit is ever
called 1is equivalent to solving the famous "halting
problem," known to be recursively undecidable.

Thus, most of the Lint algorithms are a compromise. If a
function 1is never mentioned, it can never be called. If a
function is mentioned, Lint assumes it can be called: this
is not necessarily so, but in practice it 1is quite
reasonable.

Lint tries to give information with a high degree of
relevance. Messages of the form "xxx might be a bug" are
easy to generate, but are acceptable only in proportion to
the fraction of real bugs they uncover. If this fraction of
real bugs is too small, the messages lose their credibility
and serve merely to clutter up the output, obscuring the
more important messages.

Keeping these issues in mind, we now consider in more detail
the classes of messages that Lint produces.

5.3 Unused Variables and Functions

As sets of programs evolve and develop, previously used
variables and arguments to functions may become unused; it
is not uncommon for external variables, or even entire
functions, to become unnecessary, and yet not be removed
from the source. These "errors of commission" rarely cause
working programs to fail, but they are a source of
inefficiency, and make programs harder to understand and
change. Moreover, information about such unused variables
and functions can occasionally serve to discover bugs. If a
function does a necessary Jjob, and 1is never called,
something is wrong!

Lint complains about variables and functions that are
defined but not otherwise mentioned. An exception is made
for variables that are declared through explicit extern
statements but are never referenced. Thus, the statement

extern float sin():;

will evoke no comment if sin is never |used. This agrees
with the semantics of the C compiler.

Lint Lint

In some cases, these unused external declarations might be
of some interest: they can be discovered by adding the -x
flag to the Lint invocation.

Certain styles of programming require many functions to be
written with similar interfaces; frequently, some of the
arguments may be unused in many of the calls. The =-v option
is available to suppress the printing of complaints about
unused arguments. When -v is in effect, no messages are
produced about unused arguments except for those arguments
which are unused and also declared as register arguments.
This can be considered an active (and preventable) waste of
the register resources of the machine.

There is one case where information about wunused, or
undefined, variables is more distracting than helpful. This
is when Lint is applied to some, but not all, files out of a
collection that are to be loaded together. 1In this case,
many of the functions and variables defined may not be used,
and, conversely, many functions and variables defined
elsewhere may be used. The -u flag may be used to suppress
the spurious messages that might otherwise appear.

5.4 Set/Used Information

Lint attempts to detect cases where a variable is used
before it 1is set. This is very difficult to do well: many
algorithms take a good deal of time and space, and still
produce messages about perfectly valid programs. Lint
detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the
input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a
"use," since the actual use may occur at any later time, in
a data dependent fashion.

The restriction to the physical appearance of variables in
the file makes the algorithm very simple and quick to
implement, since the true flow of control need not be
discovered. It does mean that Lint can complain about some
legal programs, but these programs would probably be
considered bad on stylistic grounds (for example, they might
contain at least two goto's). Because static and external
variables are 1initialized to 0, no meaningful information
can be discovered about their |uses. The algorithm deals
correctly, however, with initialized automatic variables,
and variables which are used in the expression which first
sets them. .

Lint Lint

The set/used information also permits recognition of those
local variables that are set and never used: these form a
frequent source of inefficiencies, and may also be
symptomatic of bugs.

5.5 Flow of Control

Lint attempts to detect unreachable portions of program
code. It will complain about unlabeled statements
immediately following goto, break, continue, or return
statements. An attempt is made to detect loops that can
never be left at the bottom, detecting the special cases
while(1) and for(;:; as infinite 1loops. Lint also
complains about loops which cannot be entered at the top:
some valid programs may have such loops, but at best they
are bad style and at worst, bugs.

Lint has an important area of blindness in the flow of
control algorithm: it has no way of detecting functions
which are called and never return. Thus, a call to exit may
cause unreachable code which Lint does not detect; the most
serious effects of this are in the determination of returned
function values, discussed in the next section.

One form of unreachable statement is not usually complained
about by Lint: a break statement that cannot be reached
causes no message. Programs generated by yacc and
especially lex may have literally hundreds of unreachable
break statements. Using the -0 switch with the C compiler
will often eliminate the resulting object code inefficiency.
Thus, these unreached statements are of 1little importance.
There 1is typically nothing the user can do about them, and
the resulting messages would clutter up the Lint output. 1If
these messages are desired, Lint can be invoked with the -b
option.

5.6 Function Values

Sometimes functions return values which are never used;

sometimes programs incorrectly use function "values" which
have never been returned. Lint addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of
both

return (expr);

and

Lint Lint

return ;

statements is cause for alarm. In this case, Lint produces
the following error message:

function name contains return(e) and return

The most serious difficulty with this is detecting when a
function return is implied by flow of control reaching the
end of the function. This can be seen with a simple
example:

£ (a) {
if (a) return (3);

i();

Notice that, if a tests false, f will call g and then return
with no defined return value; this will trigger a complaint
from Lint. If g, like exit, never returns, the message will
still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been
discovered by this feature. It also accounts for a
substantial fraction of the "noise" messages produced by
Lint.

On a global scale, Lint detects cases where a function
returns a value, but this value is sometimes, or always,
unused. When the value is always unused, it may constitute
an inefficiency in the function definition. When the value
is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious
problem.

5.7 Type Checking

Lint enforces the type checking rules of C more strictly
than do the compilers. The additional checking is in four
major areas:

1. Across certain binary operators and implied
assignments

2. At the structure selection operators

Lint Lint

3. Between the definition and uses of functions
4. In the use of enumerations
There are a number of operators that have an implied

balancing between types of the operands. The assignment,
conditional (?:), and relational operators have this

property. The argument of a return statement, and
expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long,

unsigned, float, and double types may be freely intermixed.
The types of pointers must agree exactly, except that arrays
of x's can be intermixed with pointers to x's.

The type checking rules also require that, in structure
references, the left operand of a pointer arrow symbol (->)
be a pointer to a structure, the left operand of a period
*.' be a structure, and the right operand of these operators
be a member of the structure implied by the 1left operand.
Similar checking is done for references to unions.

Strict rules apply to function argument and return value
matching. The types float and double may be freely matched,
as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with
their declared counterparts.

With enumerations, checks are made that enumeration
variables or members are not mixed with other types, or

other enumerations, and that the only operations applied are
=, initialization, ==, !=, and function arguments and return

values.

5.8 Type Casts

The type cast feature in C was introduced largely as an aid
to producing more portable programs. Consider the
assignment

Pp=1;
where p 1is a character pointer. Lint quite rightly
complains. Now, consider the assignment

P = (char *)1 ;

in which a cast has been used to convert the integer to a
character pointer. The programmer obviously had a strong
motivation for doing this, and has clearly signaled his

Lint Lint

intentions. It seems harsh for Lint to continue to complain
about this. On the other hand, if this code is moved to
another machine, such code should be looked at carefully.
The -c flag controls the printing of comments about casts.
When -c is in effect, casts are treated as though they were
assignments subject to complaint. Otherwise, all legal casts
are passed without comment, no matter how strange the type
mixing seems to be.

5.9 Nonportable Character Use

Lint flags certain comparisons and assignments as being
illegal or nonportable. For example, the fragment

char c;

if((c = getchar()) <0)

works on some machines, but will fail on machines where
characters always take on positive values. The real
solution is to declare ¢ an integer, since getchar is
actually returning integer values. In any case, Lint issues
the message:

nonpor table character comparison

A similar issue arises with bitfields. When assignments of
constant values are made to bitfields, the field may be too
small to hold the value. This is especially true because on
some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a two
bit field declared of type int cannot hold the value 3, the
problem disappears if the bitfield is declared to have type
unsigned.

5.10 Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which
loses accuracy. This may happen in programs which have been
incompletely converted to wuse typedefs. When a typedef
variable 1is <changed from int to long, the program can stop
working because some intermediate results may be assigned to
integer values, losing accuracy. Since there are a number
of legitimate reasons for assigning longs to integers, the
detection of these assignments is enabled with the -a flag.

Lint Lint

5.11 Strange Constructions

Several perfectly legal, but somewhat strange, constructions
are flagged by Lint. The messages hopefully encourage
better code quality, clearer style, and may even point out
bugs. The -h flag is used to enable these checks. For
example, in the statement

*p++ ;

the star “*' does nothing. This provokes the message "null
effect” from Lint. The program fragment

unsigned x ;
if(x<0) ...

is clearly somewhat strange. The test will never succeed.
Similarly, the test

if(x>0) ...
is equivalent to
if(x !'=0)

which may not be the intended action. 1In these cases Lint
prints the message:

degenerate unsigned comparison
If one says
if(l !=0) o 0o oo

Lint reports "constant in conditional context", since the
comparison of 1 with 0 gives a constant result.

Another construction detected by Lint involves operator
precedence. Bugs which arise from misunderstandings about
the precedence of operators can be accentuated by spacing
and formatting, making such bugs extremely hard to find.
For example, the statements

if(x&077 == 0) ...
or
X<<2 + 40

probably do not do what is intended. The best solution is
to parenthesize such expressions, and Lint encourages this

Lint ‘ Lint

by an appropriate message.

Finally, when the -h flag is in force, Lint complains about
variables which are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is 1legal,
but is considered bad style, usually unnecessary, and
frequently a bug.

5.12 History

There are several forms of older syntax that are discouraged
by Lint . These fall into two classes, assignment operators
and initialization.

The older forms of assignment operators (e.g., =+, ==, ...)
could cause ambiguous expressions, such as

or

The situation is especially perplexing if this kind of

ambiguity arises as the result of a macro substitution. The
newer, and preferred operators (+=, -=, etc.) have no such
ambiguities. To spur the abandonment of the older forms,
Lint complains about these o0ld fashioned operators.

A similar issue arises with initialization. The older
language allowed

int x 1 ;

to initialize x to 1. This also caused syntactic
difficulties. For example

int x (-1) ;

looks somewhat like the beginning of a function declaration:
int x (y){ ...

and the compiler must read a fair ways past x in order to

sure what the declaration really is. Again, the problem is
even more perplexing when the initializer involves a macro.

Lint Lint

The current syntax places an equals sign between the
variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

5.13 Pointer Alignment

Certain pointer assignments may be reasonable on some
machines, and illegal on others, due entirely to alignment
restrictions. For example, on some machines, it is
reasonable to assign integer pointers to double pointers,
since double precision values may begin on any integer
boundary. On others, however, double precision values must
begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where
pointers are assigned to other pointers, and such alignment
problems might arise. The message "possible pointer
alignment problem" results from this situation whenever
either the -p or -h flags are in effect.

5.14 Multiple Uses and Side Effects

In complicated expressions, the best order in which to
evaluate subexpressions may be highly machine dependent.
For example, on machines in which the stack runs backwards,
function arguments will probably be best evaluated from
right-to-left; on machines with a stack running forward,
left-to-right seems most attractive. Function calls
embedded as arguments of other functions may or may not be
treated similarly to ordinary arguments. Similar issues
arise with other operators which have side effects, such as
the assignment operators and the increment and decrement
operators.

In order that the efficiency of C on a particular machine
not be unduly compromised, the C language leaves the order
of evaluation of complicated expressions up to the 1local
compiler, and, 1in fact, the various C compilers have
considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any
variable is <changed by a side effect, and also used
elsewhere in the same expression, the result is explicitly
undefined.

Lint checks for the important special case where a simple
scalar variable is affected. For example, the statement

)

Lint Lint

ali] = b[i++] ;
will draw the complaint:

warning: i evaluation order undefined

5.15 Shutting Lint Up

There are occasions when the programmer is smarter than
Lint. There may be valid reasons for "illegal" type casts,
functions with a variable number of arguments, etc.
Moreover, as specified above, the flow of control
information produced by Lint often has blind spots, causing
occasional spurious messages about perfectly reasonable
programs. Thus, some way of communicating with Lint,
typically to shut it up, is desirable. Therefore, a number
of words are recognized by Lint when they were embedded in
comments. Thus, Lint directives are 1invisible to the
compilers, and the effect on systems with the older
preprocessors is merely that the Lint directives don't work.

The first directive 1is concerned with flow of control
information. If a particular place in the program cannot be
reached, but this is not apparent ¢to Lint, this can be
asserted at the appropriate spot in the program by the
directive:

/* NOTREACHED */

Similarly, if it is desired to turn off strict type checking
for the next expression, use the directive:

/* NOSTRICT */

The situation reverts to the previous default after the next
expression. The -v flag can be turned on for one function
by the directive:

/* ARGSUSED */

Complaints about variable number of arguments in calls to a
function can be turned off by preceding the function
definition with the directive:

/* VARARGS */
In some cases, it is desirable to check the first several
arguments, and leave the later arguments unchecked. This

can be done by following the VARARGS keyword immediately
with a digit giving the number of arguments that should be

5-11

Lint Lint

checked. Thus:
/* VARARGS2 */

causes the first two arguments to be checked, the others
unchecked. Finally, the directive

/* LINTLIBRARY */

at the head of a file identifies this file as a library
declaration file, discussed in the next section.

5.16 Library Declaration Files

Lint accepts certain library directives, such as
_ly

and tests the source files for compatibility with these
libraries. This is done by accessing library description
files whose names are constructed from the library
directives. These files all begin with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions.
The <critical parts of these definitions are the declaration
of the function return type, whether the dummy function
returns a value, and the number and types of arguments to
the function. The VARARGS and ARGSUSED directives can be
used to specify features of the library functions.

Lint 1library files are processed almost exactly like
ordinary source files. The only difference is that
functions that are defined on a library file, but are not
used on a source file, draw no complaints. Lint does not
simulate a full library search algorithm, and complains if
the source files contain a redefinition of a library routine
(this is a feature!).

By default, Lint checks the programs it is given against a
standard 1library file, which contains descriptions of the
programs which are normally loaded when a C program is run.
When the -p flag 1is in effect, another file is checked
containing descriptions of the standard I/O library routines
which are expected to be portable across various machines.
The -n flag can be used to suppress all library checking.

5-12

(=

Lint Lint

5.17 Notes

Lint is by no means perfect. The checking of structures and
arrays 1is rather inadequate; size incompatibilities go
unchecked; and no attempt is made to match up structure and
union declarations across files.

Lint

5.18 Current Lint Options

The command currently has the form

lint [-options] files... library-descriptors...

The options are

h

P

Perform heuristic checks

Perform portability checks

Don't report unused arguments

Don't report unused or undefined externals
Report unreachable break statements.

Report unused external declarations

Report assignments of long to int or shorter.
Complain about questionable casts

No library checking is done

Same as h (for historical reasons)

5-14

Lint

CHAPTER 6

ADB: A PROGRAM DEBUGGER

CONTENTS

o
|

6.1 Intrwuction..o..-.0.no...c...ooo.o............t

6.2 Invocation ©® © 0600000000000 0000000000000 00 0000

6-3 The Current Address - Dotoo-o..o.ooooooc.oo-oo.o

6.4 Formats...............0.........................
6.5 General Request MeaningS...c.cccee. ceesecesecas oo

6.6 Debugging C ProgramS..ccececscscecccssssacscse cecenne

6.6.1 Debugging A Core IMAge ecccceccccocaccecs .
Multiple Functions..... creccccesssscsnne
Setting BreakpointS..ccececcecccsccacsas
Other Breakpoint Facilities........ ceeas

OWdONbd D w w N [o

> w N

6.
6.
6.

o OV OV
e o o

6.7 Maps...00.0.0'0..o.0..00.00o....ooo...o.o...o... 6-10

6.8 Advanced Usag€eeececoccscscccecars cececcnsenarraans 6-11

6.8.1 Formatted AUMP.eceresssssscecccacccncnssa 6-11
8.2 Directory DUMPecceccccccccccas cesrcsaanes 6-14
8.3 I1iSt DUMPeccceccococscossscssscosscsesss 6-14
8.4 Converting valueS..ceccessvoscccsascscccccns 6-15

6.9 PatChing.ececeeececeeecccccscscscscscsccscsscsscsocsccessess 6-15
6.10 NOteS.ceceeeeeecccccccoccccoscccsscccscscscscncece 6-16
6.1l FiQUIeS..cccccccccccccsscccscsssscssscssssssssscnccss 6-18
6.12 ADB SUMMAILY ceocccoccssscscscsscscsccssscscssanssscssssscse ©6-31

6.12.1 Format SUMMAIYececcoccscccssscecsccccs ees 6-32
6.12.2 EXpPression SUMMAILY.cceeesccecccccsccccesas 6-32

~7

6.1 Introduction

ADB is an indispensable tool for debugging programs or
crashed systems. ADB provides capabilities to look at core
files resulting from aborted programs, print output in a
variety of formats, patch files, and run programs with
embedded breakpoints. This chapter provides an introduction
to ADB with examples of its use. It explains the various
formatting options, techniques for debugging C programs, and
gives examples of printing file system information and of
patching.

6.2 Invocation
The ADB invocation syntax is as follows:

adb objectfile corefile

Here cbjectfile is an executable XENIX file and corefile is
a core image file. Often this will look like:

adb a.out core
or more simply:
adb

where the defaults are a.out and core, respectively. The
filename minus (-) means ignore this argument as in:

adb - core

ADB has requests for examining locations in either file. A
question mark (?) request examines the contents of
objectfile; a slash (/) request examines the corefile. The
general form of these requests is:

address ? format

or

address / format

6-1

6.3 The Current Address - Dot

ADB maintains a pointer to the current address, called dot,
similar in function to the current pointer in the editor,
ed(l). When an address is entered, the current address is
set to that location, so that:

012621

sets dot to octal 126 and prints the instruction at that
address. The request :

.,10/d4

prints 10 decimal numbers starting at dot. Dot ends up
referring to the address of the last item printed. When
used with the question mark (?) or slash (/) request, the
current address can be advanced by typing a newline; it can
be decremented by typing a caret (7).

Addresses are represented by expressions. Expressions are
made up from decimal, octal, and hexadecimal integers, and
symbols from the program under test. These may be combined
with the following operators:

+ Addition

- Subtraction

* Multiplication

$ Integer Division
& Bitwise AND

| Bitwise inclusive OR
Round up to the next multiple
- Not

Note that all arithmetic within ADB is 32-bit arithmetic.
When typing a symbolic address for a C program, type either
"name" or "_name"; ADB recognizes both forms. Because ADB
will find only one of "name" and "_name", (generally the
first to appear in the source) one will mask the other if

they both appear in the same source file.

6-2

)

6.4 Formats

To print data, a user specifies a collection of letters and
characters that describe the format of the printout.
Formats are "remembered" in the sense that typing a request
without one will cause the new printout to appear in the
previous format. The following are the most commonly used
format letters:

Letter Format

one byte in octal

one byte as a character

one word in octal

one word in decimal

one word in hexadecimal

two words in floating point
machine instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a newline

print a blank space

backup dot

MO CcOOrrrAMX A0 OQD

(Format letters are also available for "long" values, for
example, D for 1long decimal, and F for double floating
point.)

6.5 General Request Meanings
The general form of a request is:
address,count command modifier

which sets "dot" to address and executes the command count
times.

The following table illustrates some general ADB command
meanings:

Command Meaning

Print contents from a.out file
Print contents from core file
Print value of "dot"
Breakpoint control
Miscellaneous requests

Request separator

Escape to shell

smme Do || N\ W

ADB catches signals, so a user cannot use a quit signal to
exit from ADB. The request $q or $Q (or <CONTROL-D>) must
be used to exit from ADB.

6.6 Debugging C Programs

The following subsections describe use of ADB in debugging
the C programs given in figures at the end of this chapter.
Refer to these figures as you work your way through these
examples.

6.6.1 Debugging A Core Image

Consider the C program in Figure 1. The program is used to
illustrate a common error made by C programmers. The object
of the program is to change the lower case "t" to upper case
in the string pointed to by charp and then write the
character string to the file indicated by argument 1. The
bug shown is that the character "T" is stored in the pointer
charp instead of the string pointed to by charp. Executing
the program produces a core file because of an out of bounds
memory reference.

ADB is invoked by typing:
adb a.out core

The first debugging request
$c

is used to give a C backtrace through the subroutines
called. As shown in Figure 2, only one function, main, was
called and the arguments argc and argv have hex values 0x2
and Ox1fff90 respectively. Both of these values 1look
reasonable; 0x2 = two arguments, 0x1fff90 = address on stack
of parameter vector. These values may be different on your
system due to a different mapping of memory.

The next request
$r

prints out the registers including the program counter and
an interpretation of the instruction at that location.

The request:

6-4

Se
prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the
a.out file is referenced with a question mark (?), whereas
the map for the core file is referenced with a slash (/).
Furthermore, a good rule of thumb is to use question mark
for instructions and slash for data when 1looking at
programs. To print out information about the maps type:

$m

This produces a report of the contents of the maps. More
about these maps later.

In our example, it is useful to see the contents of the
string pointed to by charp. This is done by typing

*charp/s

which says use charp as a pointer in the core file and print
the information as a character string. This printout shows
that the character buffer was incorrectly overwritten and
helps identify the error. Printing the locations around
charp shows that the buffer is wunchanged but that the
pointer 1is destroyed. Using ADB similarly, we could print
information about the arguments to a function.

0x1£££90,3/X

prints the hex values of the three consecutive cells pointed

to by argv in the function main. Note that these values are
the addresses of the arguments to main. Therefore:

0x1fffb6/s

prints the ASCII value of the first argument. Another way
to print this value would have been

*"/s

The double quote mark (") means ditto, i.e., the the 1last
address typed, in this case O0x1fff90 ; the star (¥*)
instructs ADB to use the address field of the core file as a
pointer.

The request

« =X

prints the current address (not its contents) in hex which
has been set to the address of the first argument. The
current address, dot, is wused by ADB to "remember" its
current location. It allows the user to reference locations
relative to the current address, for example:

.-10/4

6.6.2 Multiple Functions

Consider the C program 1illustrated in Figure 3. This
program calls functions "f", "g", and "h" until the stack is
exhausted and a core image is produced.

Again you can enter the debugger via:
adb

which assumes the names a.out and core for the executable
file and core image file respectively. The request

$c

fills a page of backtrace references to "f", "g", and "h".
Figure 4 shows an abbreviated 1list (typing will
terminate the output and bring you back to ADB request
level. Additionally, some versions, will automatically quit
after 15 levels unless told otherwise with the command:

s levelcount$c
The request
/58cC
prints the five most recent activations.

Notice that each function ("f", "g", and "h") has a counter
that counts the number of times each has been called.

The request
fcnt/D

prints the decimal value of the counter for the function f£.
Similarly "gcnt"™ and "hcnt" could be printed. Notice that
because "fcnt", "gcnt", and "hcnt" are int variables, and on
the MC68000 int is implemented as long, to print its value
you must use the two word format D.

6.6.3 Setting Breakpoints

Consider the C program in Figure 5. This program, which
changes tabs into blanks, is adapted from Software Tools by
Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see
Figure 6) by typing:

adb a.out -

Breakpoints are set in the program as:
address:b [request]

The requests

settab+8:b
fopen+8:b
tabpos+8:b

set breakpoints at the start of these functions. C does not
generate statement 1labels. Therefore, it is currently not
possible to plant breakpoints at 1locations other than
function entry points without a knowledge of the code
generated by the C compiler. The above addresses are
entered as "symbol+8", so that they will appear in any C
backtrace since the first two instructions of each function
are used to set up the local stack frame. Note that some of
the functions are from the C library.

To print the location of breakpoints one types:
$b

The display indicates a count field. A breakpoint is
bypassed count-1l times before causing a stop. The command
field indicates the ADB requests to be executed each time
the breakpoint is encountered. In our example no command
fields are present.

By displaying the original instructions at the function
settab we see that the breakpoint is. set after the tstb
instruction, which is the stack probe. We can display the
instructions using the ADB request:

settab,5?ai

This request displays five instructions starting at settab
with the addresses of each 1location displayed. Another
variation is

6-7

settab,5?i

which displays the instructions with only the starting
address.

Notice that we accessed the addresses from the a.out file
with the question (?) command. 1In general when asklng for a
printout of multiple items, ADB advances the current address
the number of bytes necessary to satisfy the request. In the
above example, five instructions were displayed and the
current address was advanced 18 (decimal) bytes.

To run the program one type:
:r

To delete a breakpoint, for instance the entry to the
function settab, type:

settab+8:d

To continue execution of the program from the breakpoint
type:

:C

Once the program has stopped (in this case at the breakpoint
for fopen), ADB requests can be used to display the contents
of memory. For example:

$c
to display a stack trace, or:
tabs, 6/4X

to print 6 lines of 4 locations each from the array called
tabs. By this time (at location fopen) in the C program,
settab has been called and should have set a one in every
eighth location of tabs.

The XENIX quit and interrupt signals act on ADB itself
rather than on the program being debugged. If such a signal
occurs then the program being debugged is stopped and
control 1is returned to ADB. The signal is saved by ADB and
is passed on to the test program if

:C

is typed. This can be wuseful when testing interrupt
handling routines. The signal is not passed on to the test

program if

tcc 0

is typed.

6.6.4 Other Breakpoint Facilities

@& Arguments and change of standard input and output are

passed to a program as:

sr argl arg2 ... <infile >outfile

This request kills any existing program under test and
starts the a.out afresh.

The program being debugged can be single stepped by
typing:

S

If necessary, this request starts up the program being
debugged and stops after executing the first
instruction.

ADB allows a program to be entered at a specific
address by typing:

address:r

The count field can be wused to skip the first n
breakpoints as:

%3 4
The request

,N:C
may also be used for skipping the first n breakpoints
when continuing a program.
A program can be continued at an address different from
the breakpoint by typing:

address:c

The program being debugged runs as a separate process
and can be killed by typing:

6.7 Maps

XENIX supports several executable file formats. These are
used to tell the 1loader how to load the program file.
Nonshared program files are the most common and is generated
by a C compiler invocation such as:

cc pgm.cC

A shared file is produced by a C compiler command of the
form

cc -n pgm.cC

Note that separate instruction/data files are not supported
on the MC68000

ADB interprets these different file formats and provides
access to the different segments through a set of maps. To
print the maps type:

Sm
In nonshared files, both text (instructions) and data are
intermixed. This makes it impossible for ADB to

differentiate data from instructions and some of the printed
symbolic addresses 1look incorrect; for example, printing
data addresses as offsets from routines.

In shared text, the instructions are separated from data and
the "?2*" accesses the data part of the a.out file. The "?2*"
request tells ADB to use the second part of the map in the
a.out file. Accessing data in the core file shows the data
after it was modified by the execution of the program.
Notice also that the data segment may have grown during
program execution. In shared files the corresponding core
file does not contain the program text.

Figure 7 shows the display of three maps for the same
program linked as a nonshared and shared respectively. The
b, e, and f fields are used by ADB to map addresses into
file addresses. The "fl" field is the length of the header
at the beginning of the file (0x34 bytes for an a.out file
and 02000 bytes for a core file). The "f2" field is the
displacement from the beginning of the file to the data.
For unshared files with mixed text and data this is the same
~as the length of the header; for shared files this is the
length of the header plus the size of the text portion.

6-10

The "b" and "e" fields are the starting and ending locations
for a segment. Given an address, A, the location in the
file (either a.out or core) is calculated as:

(A-bl) +£f1

bl<A<el => file address
(A-b2)+£2

b2<A<e2 => file address

A user can access locations by using the ADB defined
variables. The "sv" request prints the variables
initialized by ADB:

base address of data segment
length of the data segment
length of the stack

length of the text

execution type (407,410,411)

ENG A Weex

In Figure 7 those variables not present are zero. Use can
be made of these variables by expressions such as

<b

in the address field. Similarly the value of the variable
can be changed by an assignment request such as:

02000>b
that sets b to octal 2000. These variables are useful ¢to
know if the file under examination is an executable or core
image file.

ADB reads the header of the core image file to find the

values for these variables. 1If the second file specified
does not seem to be a core file, or if it 1is missing then
the header of the executable file is used instead.
6.8 Advanced Usage
It is possible with ADB to combine formatting requests to
provide elaborate displays. Below are several examples.
6.8.1 Formatted dump
The line

<b,-1/404"8Cn

prints 4 octal words followed by their ASCII interpretation
from the data space of the core image file. Broken down,

the various request pieces mean:
<b The base address of the data segment.

<b,-1 Print from the base address to the end of file. A
negative count is used here and elsewhere to loop
indefinitely or until some error condition (like
end of file) is detected.

The format "404"8Cn" is broken down as follows:
40 Print 4 octal locations.

4" Backup the current address 4 1locations (to the
original start of the field).

8C Print 8 consecutive characters using an escape
convention; each character in the range 0 to 037
is printed as an at-sign (@) followed by the
corresponding character in the range 0140 to 0177.
An at-sign is printed as "@@".

n Print a newline.
The request:
<b,<d/404"8Cn

could have been used instead to allow the printing to stop
at the end of the data segment (<d provides the data segment
size in bytes).

The formatting requests can be combined with ADB's ability
to read in a script to produce a core image dump script.
ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of
such a script is:

6-12

120$w

4095S$s

$v

=3n

$m

;Bn"c Stack Backtrace"
C

=3n"C External Variables"
Se

=3n"Registers"”

$r

0Ss

=3n"Data Segment"
<b,-1/8ona

The request
120Sw

sets the width of the output to 120 characters (normally,
the width is 80 characters). ADB attempts to print
addresses as:

symbol + offset
The request

4095S8s

increases the maximum permissible offset to the nearest
symbolic address from 255 (default) to 4095. The equal sign
request (=) can be used to print 1literal strings. Thus,
headings are provided in this dump program with requests of
the form:

=3n"C Stack Backtrace"

This spaces three lines and prints the literal string. The
request

$v
prints all non-zero ADB variables. The request
0Ss

sets the maximum offset for symbol matches to zero thus
suppressing the printing of symbolic 1labels in favor of
octal values. Note that this is only done for the printing
of the data segment. The request:

6-13

<b,-1/8ona

prints a dump from the base of the data segment to the end
of file with an octal address field and eight octal numbers
per line.

Figure 9 shows the results of some formatting requests on
the C program of Figure 8.

6.8.2 Directory Dump

As another 1illustration (Figure 10) consider a set of
requests to dump the contents of a directory (which is made
up of an integer inumber followed by a 14 character name):

adb dir -
=n8t"Inum"8t"Name"
0,-1? u8tldcn

In this example, the u prints the inumber as an unsigned
decimal integer, the "8t" means that ADB will space to the
next multiple of 8 on the output line, and the "1l4c" prints
the 14 character file name.

6.8.3 Ilist Dump

Similarly the contents of the ilist of a file system, (e.g.,
/dev/src) could be dumped with the following set of
requests:

adb /dev/src -

02000>b

?m <b '
<b,-1?"flags"8ton"links,uid,gid"8t3bn", ...

(Note that the two lines separated by ellipses should be
entered as one line with no intervening space. The line is
broken here so that it will fit on the page.) In this
example the value of the base for the map was changed to
02000 by typing

?m<b

since that is the start of an ilist within a file system.
"Brd" above was wused to print the 24 bit size field as a
byte, a space, and a decimal integer. The last access time
and last modify time are printed with the "2Y" operator.
Figure 10 shows portions of these requests as applied to a
directory and file system.

6-14

6.8.4 Converting values

ADB may be used to convert values from one representation to
another. For example:

072 = odx
prints
072 58 #3a

which is the octal, decimal and hexadecimal representations
of 072 (octal). The format is remembered so that typing
subsequent numbers will print them in the given formats.
Character values may be converted similarly, for example:

prints
a 0141

It may also be used to evaluate expressions but be warned
that all binary operators have the same precedence which is
lower than that for unary operators.

6.9 Patching

Patching files with ADB is accomplished with the write (w or
W) request. This 1is often wused in conjunction with the
locate, (1 or L) request. In general, the request syntax
for 1 and w are similar:

?1 value

The request 1 is used to match on two bytes; L is used for
four bytes. The request w 1is wused to write two bytes,
whereas W writes four bytes. The value field in either
locate or write requests 1is an expression. Therefore,
decimal and octal numbers, or character strings are
supported.

In order to modify a file, ADB must be called as:
adb -w filel file2

When called with this option, filel and file2 are created if
necessary and opened for both reading and writing.

For example, consider the C program shown in Figure 8. We
can change the word "This" to "The " in the executable file
for this program, ex7, by using the following requests:

adb -w ex7 -
?21 'Th!
?W 'The'

The request
?1

starts at dot and stops at the first match of "Th" having
set dot to the address of the location found. Note the use
of the question mark (?) to write to the a.out file. The
form "?*" would have been used for a 411 file.

More frequently the request will be typed as:
21 'Th'; ?s

and locates the first occurrence of "Th" and print the
entire string. Execution of this ADB request will set dot
to the address of the "Th" characters.

As another example of the utility of the patching facility,
consider a C program that has an internal logic flag. The
flag could be set by the user through ADB and the program
run. For example:

adb a.out -
:s argl arg2
flag/w 1

:C

The ":s" request is normally used to single step through a
process or start a process in single step mode. 1In this
case it starts a.out as a subprocess with arguments argl and
arg2. If there 1is a subprocess running ADB writes to it
rather than to the file so the w request causes flag to be
changed in the memory of the subprocess.

’

6.10 Notes

Below is a list of some things that users should be aware
of:

1. Function calls and arguments are put on the stack by
the C save routine. Putting breakpoints at the entry
point to routines means that the function appears not
to have been called when the breakpoint occurs.

2. When printing addresses, ADB uses either text or data
symbols from the a.out file. This sometimes causes

unexpected symbol names to be printed with data (e.g.,
"savr5+022"). This does not happen if question mark

(?) is used for text (instructions) and slash (/) for
data.

Local variables cannot be addressed.

6-17

6.11 PFigures

Figure 1: C program with pointer bug

#include <stdio.h>
struct buf
int fildes:;
int nleft;
char *nextp;
char buff[512];
}bb;
struct buf *obuf;

char *charp = "this is a sentence.";
main(argc, argv)

int argc;

char **argv;

char ccC;
FILE *file;

if(argc < 2) {

printf ("Input file missing\n");

exit(8);
}
if((file = fopen(argv([l],"w")) == NULL){
printf("%s : can't open\n", argv(l]):;
} exit(8);
charp = 'T';

printf("debug 1 %s\n",charp);
while(cc= *charp++)
putc(cc, file) ;
fflush(file) ;

Figure 2: ADB output for C program of figure 1

adb
$c
start+44: _main (0x2, Ox1FFF90)
$r
do 0x0 a0 0x54
dl 0x8 al 0x1FFF90
da2 0x0 a2 0x0
das 0x0 a3 0x0
d4 0x0 a4 0x0
das 0x0 a5 0x0
de 0x0 a6 0x1FFF7C
a7 0x0 sp Ox1FFF74
ps 0x0
pc 0x80E4 _main+1l60: movb (al0),-1. (a6)
Se
environ: 0x1FFFOC
_errno: 0x19
_bb: 0x0
obuf: 0x0

“charp: 0x55
iob: 0x9B1C

__sobuf: 0x64656275
__lastbu: 0x96F8
__sibuf: 0x0
_allocs: 0x0
_allocp: 0x0
_alloct: 0x0
_allocx: 0x0
_end: 0x0
_edata: 0x0
$m
? map “a.out'
bl = 0x8000 el = 0x970C f1 = 0x20
b2 = 0x8000 e2 = 0x970C f2 = 0x20
/ map “=!
bl = 0x0 el = 0x1000000 f1 = 0x0
b2 = 0x0 e2 = 0x0 f2 = 0x0
*charp/s
0x55:
data address not found
0x1£££90,3/X
Ox1FFF90: Ox1FFFBO O0x1FFFB6 0x0
0x1f££fb0/s
O0x1FFFBO: a.out
/s
Ox1FFFBO: a.out
«=X
O0x1FFFBO

6-19

.-10/d
OX1FFFAG6:
$q

65497

6-20

Figure 3: Multiple function C program

int
?(XIY)

1(?!‘1)

f(a,b)
{

main ()

fcnt,gcent,hent;

int hi; register int hr;
hi = x+1;

hr = x-y+1;
hcnt++ ;
hj:

f (hr,hi);

int gi; register int gr;

gi = g-p;
gr = g-p+l;
gcnt++ ;
gj:

h(gr,qgi);

int fi; register int fr;

fi = a+2*b;
fr = a+b;
fcnt++ ;
fj:

g(fr,fi);

£(1,1);

6-21

Figure 4:

$c
_h+46:
_g+48:
_£+70:
_h+46:
_g+48:
_f+70:
h+46:
—g+48:
<INTERRUPT>
adb
»58c
_h+46:
_g+48:
_f£+70:
_h+46:
_g+48:
fcnt/D
_fent:
gcent/D
_gcent:
hent/D
_hent:

$q

ADB output for C program of Figure 3

I:h#m':hda'shm

|D"'H\tﬂ o

1175
1174
1174

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)
(0x92B, 0x1254)
(0x2, 0x929)
(0x928, 0x927)

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)

6-22

Figure 5: C program to decode tabs
#$include <stdio.h>
$define MAXLINE 80
$define YES 1l
#define NO 0
#define TABSP 8
char input[] = "data";
char ibuf[518];
int tabs[MAXLINE] ;
main ()
int col, *ptab;
char c;
ptab = tabs;
settab(ptab) ; /*Set initial tab stops */
col = 1;
if (fopen (input, ibuf) < 0) {
printf("%s : not found\n", input) ;
exit (8);
while((c = getch(ibuf)) 1= -1) {
switch(c)
case '\t': /* TAB */
while (tabpos(col) != YES)
/* put BLANK */
putchar(' ');
} col++ ;
break;
case '\n': /*NEWLINE */
putchar('\n');
col = 1;
break;
default:
putchar(c) ;
col++ ;

6-23

/* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;

if(col > MAXLINE)
return(YES) ;
else

return(tabs[col]);

/* Settab - Set initial tab stops */
settab(tabp)
int *tabp;

int 1i;

for (i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabs[i] = NO) : (tabs[i] =

/* getch(ibuf) - Just do a getc call, but not a macro */
getch(ibuf)
FILE *ibuf;

return(getc(ibuf));

6-24

YES)

’

Figure 6: ADB output for C program of Figure 5

adb a.out
settab+8:b
fopen+8:b
getch+8:b
tabpos+8:b
$b
breakpoints
count bkpt command
1 _tabpos+8
1 _getch+8
1 _fopen+8
1 _settab+8
settab,5?ia
_settab: link a6, #0XFFFFFFFC
_settab+4: tstb -132. (a7)
_settab+8: moveml #<>,-(a7)
_settab+l2: clrl -4. (ab6)
_settab+1l6: cmpl #0x50,-4. (a6)
_settab+24:
settab,5?i
_settab: link a6 ,# 0XFFFFFFFC
tstb -132. (a7)
moveml #<>,-(a7)
clrl -4, (ab)
cmpl $0x50,-4. (a6)
:r
a.out:running
breakpoint _settab+8: moveml #<>,-(a7)
settab+8:d
Ho]
a.out:running
greakpoint _fopen+8: jsr __findio
c
_main+52: _fopen (0x9750, 0x9958)
start+44: _main (0x1, Ox1FFF98)
tabs,6/4X
_tabs: 0Oxl 0x0 0x0 0x0
0x0 0x0 0x0 0x0
0x1l 0x0 0x0 0x0
0x0 0x0 0x0 0x0
0x1 0x0 0x0 0x0
0x0 0x0 0x0 0x0

6-25

Figure 7: ADB output for maps

adb a.out.unshared core.unshared

$m

? map “a.out.unshared’

bl = 0x8000 el = 0x83E4 fl1 = 0x20
b2 = 0x8000 e2 = 0x83E4 f2 = 0x20
/ map “core.unshared'

bl = 0x8000 el = 0x8800 fl = 0x800
b2 = 0x1EBO00O e2 = 0x200000 £f2 = 0x1000
$v

variables

b = 0x8000

d = 0x800

e = 0x8000

m = 0x107

s = 0x15000

$q

adb a.out.shared core.shared

$m

? map “a.out.shared’

bl = 0x8000 el = 0x8390 f1 = 0x20
b2 = 0x10000 e2 = 0x10054 f2 = 0x3BO
/ map “core.shared"'

bl = 0x10000 el = 0x10108 fl1 = 0x800
b2 = 0x1EBO00O e2 = 0x200000 f2 = 0x1000
$v

variables

b = 0x10390

d = 0x800

e = 0x8000

m = 0x108

s = 0x15000

$q

6-26

Figure 8: Simple
patching

char strl[] =
int one =
int number =
long lnum =
float fpt =
char str2[])] =
main ()
one = 2;

C program illustrating formatting and

"This
1;
456;
1234;
1.25;
"This

is a character string";

is the second character string";

6-27

ADB output illustrating fancy formats

020151
071564

0
072150
061564

020151
060562
071564
0

0

052150
072150
067144
061564
064556

020151
060562
071564
0

0

052150
072150
067144
061564
064556

ADB
Figure 9:
adb a.out.shared core.shared
<b,-1/8ona
_strl: 052150 064563
_strl+lé6: 072145 071040
_humber:
_humber: 0 0710
_str2+4: 020151 071440
_str2+20: 064141 071141
$nd:
$nd: 01 0140
<b,20/404"8Cn
_strl: 052150 064563
060440 061550
072145 071040
067147 O
_humber: 0 0710
_fpt: 037640 0
020151 071440
071545 061557
064141 071141
020163 072162
$nd: 0l 0140
data address not found
<b,20/40478t8Cna
_strl: 052150 064563
strl+8: 060440 061550
:strl+16: 072145 071040
_strl+24: 067147 0
number:
_number: 0 0710
_fpt:
_fpt: 037640 O
_str2+4: 020151 071440
_str2+12: 071545 061557
_str2+20: 064141 071141
str2+28: 020163 072162
Snd:
$nd: 0l 0140
data address not found
<b,10/2b8t"2cn
_strl: - 0124 0150

6-28

071440

071151

02322
062440
062562

071440
060543
071151
0l

02322

064563
062440
020143
062562
063400

071440
060543
071151
01

02322

064563
062440
020143
062562
063400

Th

060440 061550 060562
067147 O 0
037640 0 052150

071545 061557 067144

020163 072162 064556

This is

a charac

ter stri

nge @ e*e*@“ea

@*@“@aH@"@"@dR

? @@ This
is the
second c
haracter
string@*

This is
a charac
ter stri

060543
0l

064563
020143
063400

ng@~@*e*e*@"@a
@ @ @eaHe“ @ @dr

? @@ This

is the
second ¢
haracter

string@"

!

$q

0151
040

0l63
0141
0143
0141
0141
0164
0162

0l63
0151
040
040
0150
0162
0143
0145
040

6-29

is

ch
ar
ac
te

Figure 10: Directory and inode dumps

adb dir -
=nt"Inode”"t"Name"
0,-1?utl4cn

Inode Name

0: 652 .
82 e @
5971 cap.c
5323 cap
0 PP

adb /dev/src -
02000>b
?m<b
new map */dev/src’
bl 02000 el
b2 0 e2
Sv
variables
b = 02000
<b,-1?"flags"8ton"links,uid,gid"8t3bn"
size"8tbrdn"addr”"8t8un"times®"8t2Y2na
(type above two lines all on one line)
02000: flags 073145
links,uid,gid 0163 0164 0141
size 0162 10356

0100000000 fl
0 f2

nn
o

addr 28770 8236 25956 27766 25455 8236 25956 25206

times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461

addr 8308 30050 8294 25130 15216 26890 29806 10784

times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545

addr 25972 8306 28265 8308 25642 15216 2314 25970

times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

6-30

6.12 ADB Summary

Command Summary

a. Formatted printing

? format
/ format
= format
?wW expr
/W expr
?1 expr

print from a.out file according to
format

print from core file according to

format

print the value of dot
write expression into a.out file
write expression into core file

locate expression in a.out file

b. Breakpoint and program control

sb set breakpoint at dot

:C continue running program

:d delete breakpoint

tk kill the program being debugged
:r run a.out file under ADB control
:s single step

c. Miscellaneous printing

$b print current breakpoints
$c C stack trace

Se external variables N
$f floating registers

$m print ADB segment maps

$q exit from ADB

$r general registers

$s set offset for symbol match
$v print ADB variables

Sw set output line width

d. Calling the shell

1 call shell to read rest of line

e. Assignment to variables

>name assign dot to variable or register name

6-31

6.12.1 Format Summary

l>&xcgmn50wmmovm

the value of dot

one byte in octal

one byte as a character

one word in decimal

two words in floating point
machine instruction

one word in octal

print a newline

print a blank space

a null terminated character string
move to next n space tab
one word as unsigned integer
hexadecimal

date

backup dot

print string

6.12.2 Expression Summary

a. Expression components

decimal integer e.g. 256

octal integer e.g. 0277

hexadecimal e.g. #ff

symbols e.g. flag _main main.argc
variables e.g. <b

registers e.g. <pc <r0

(expression) expression grouping

b. Dyadic operators

+

ow— P » |

add

subtract

multiply

integer division

bitwise and

bitwise or

round up to the next multiple

c. Monadic operators

*

not
contents of location
integer negation

6-32

=

CHAPTER 7
MAKE: A PROGRAM MAINTAINER

CONTENTS

IntroductioN.cccecccecccccccccccccccsccscccccsccncs
Description Files and Substitutions...cccccececececs
Command US@ge€eccecccccccccccsccscscccscscsssssscccccscss
ImMplicit RUlEeS.ccceccccccccccscscscscsscsccsccscsccscncnccsnse
EXAMpPle. ccecccecsccccsccsccsccscscscscscsscscscscssccssscscssse
Suggestions and WarningsS..ceececcceccccoccccccccccss

Suffixes and Transformation RuleS...ccceccccecccses

7-10

7-11

7-13

O
I
>
O
—
m
Y
~d

Make Make

7.1 Introduction

In a programming project, it is easy to lose track of which
files need to be reprocessed or recompiled after a change is
made in some part of the source. Make provides a simple
mechanism for maintaining up-to-date versions of programs
that result from many operations on a number of files. It
is possible to tell Make the sequence of commands that
create certain files, and the list of files that require
other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the
make command will create the proper files simply, correctly,
and with a minimum amount of effort.

The basic operation of Make is to find the name of a needed
target in the description, ensure that all of the files on
which it depends exist and are up to date, and then create
the target if it has not been modified since its generators
were. The description file defines the graph of
dependencies. Make does a depth-first search of this graph
to determine what work is really necessary.

Make also provides a simple macro substitution facility and
the ability to encapsulate commands in a single file for
convenient administration.

It is common practice to divide large programs into smaller,
more manageable pieces. The pieces may require quite
different treatments: some may need to be run through a
macro processor, some may need to be processed by a
sophisticated program generator (e.g., Yacc or Lex). The
outputs of these generators may then have to be compiled
with special options and with certain definitions and
declarations. The code resulting from these transformations
may then need to be loaded together with certain 1libraries
under the control of special options. Related maintenance
activities involve running complicated test scripts and
installing validated modules. Unfortunately, it is very
easy for a programmer to forget which files depend on which

others, which files have been modified recently, and the
exact sequence of operations needed to make or exercise a
new version of the program. After a long editing session,
one may easily lose track of which files have been changed
and which object modules are still valid, since a change to
a declaration can obsolete a dozen other files. Forgetting
to compile a routine that has been changed or that uses
changed declarations will result in a program that will not
work, and a bug that can be very hard to track down. On the
other hand, recompiling everything in sight just to be safe
is very wasteful.

Make Make

The program described irn this report mechanizes many of the
activities of program development and maintenance. If the
information on inter-file dependences and command sequences
is stored in a file, the simple command

make

is frequently sufficient to update the interesting files,
regardless of the number that have been edited since the
last make command. In most cases, the description file Iis
easy to write and changes infrequently. It is usually
easier to type the make command than to issue even one of
the needed operations, so the typical cycle of program
development operations becomes think, edit, make, test.

Make is most useful for medium-sized programming projects.
It does not solve the problems of maintaining multiple
source versions or of describing huge programs.

Basic Features The basic operation of Make is to update a
target file by ensuring that all of the files on which it
depends exist and are up to date, then creating the target
if it has not been modified since its dependents were. Make
does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the
date and time that a file was last modified.

To illustrate, let us consider a simple example. A program
named prog is made by compiling and loading three C-language
files x.c, y.c, and z.c. By convention, the output of the C
compilations ~is found in files named x.0, y.o, and z.O.
Assume that the files x.c and y.c share some declarations in
a file named defs, but that z.c does not. That is, x.c and
y-c have the line

#$include "defs"

The following text describes the relationships and
operations:

prog: X.0 Y.0 2Z.0
cC X.0 Y.0 2.0 -0 prog

X.0 y.o: defs

If this information were stored in a file named makefile,
the command

make

Make Make

would perform the operations needed to recreate prog after
any changes had been made to any of the four source files
X.C, Y-S, z.c, or defs.

Make operates using three sources of information: a user-
supplied description file (as above), file names and "last-
modified" times from the file system, and built-in rules to
bridge some of the gaps. In our example, the first line
says that prog depends on three ".o" files. Once these
object files are current, the second line describes how to
load them to create prog. The third line says that x.0 and

.0 depend on the file defs. From the file system, Make

iscovers that there are three ".c" files corresponding to
the needed ".o" files, and uses built-in information on how

to generate an object from a source file (i.e., issue a
"cc -c" command).

The following long-winded description file is equivalent to
the one above, but takes no advantage of Make's default
rules:

prog: xX.0 Y.O
X.0

cc -=C z.C

If none of the source or object files had changed since the
last time prog was made, all of the files would be current,
and the command

make

would just announce this fact and stop. If, however, the
defs file had been edited, x.c and y.c (but not z.c) would
be recompiled, and then prog would be created from the new
".o" files. If only the file y.c had changed, only it would
be recompiled, but it would still be necessary to reload

prog.

If no target name is given on the Make command 1line, the
first target mentioned in the description 1is created;
otherwise the specified targets are made. The command

make x.0

would recompile x.0 if x.c or defs had changed.

7-3

Make Make

If the file exists after the commands are executed, its time
of last modification is used in further decisions; otherwise
the current time is used. It 1is often quite wuseful to
include rules with mnemonic names and commands that do not
actually produce a file with that name. These targets can
take advantage of Make's ability to generate files and
substitute macros. Thus, a target "save" might be included
to copy a certain set of files, or a target "cleanup" might
be used to throw away unneeded intermediate files. 1In other
cases one may maintain a zero-length file purely to keep
track of the time at which certain actions were performed.
This technique is useful for maintaining remote archives and
listings.

Make has a simple macro mechanism for substituting in
dependency lines and command strings. Macros are defined by
command arguments or description file 1lines with embedded
equal signs. A macro is invoked by preceding the name by a
dollar sign; macro names longer than one character must be
parenthesized. The name of the macro is either the single
character after the dollar sign or a name inside
parentheses. The following are valid macro invocations:

$ (CFLAGS)
$2

$ (xy)

$2

$(2)

The last two invocations are identical. $$ 1is a dollar
sign. All of these macros are assigned values during input,
as shown below. Four special macros change values during

the execution of the command: $*, $@, $?, and $<. They will
be discussed later. The following fragment shows the use:

OBJECTS = X.0 yY.0 zZ.0

LIBES = -1lln
prog: $ (OBJECTS)
cc $(OBJECTS) S$(LIBES) -0 prog

The command
make

loads the three object files with the Lex -1l1ln library. The
command

make "LIBES=-l1lln -1lm"
loads them with both the Lex (-11) and the math (-1m)

(=

Make Make

libraries, since macro definitions on the command line
override definitions in the description. (It 1is necessary
to quote arguments with embedded blanks in XENIX commands.)

The following sections detail the form of description files
and the command line, and discuss options and built-in rules
in more detail.

7.2 Description Files and Substitutions

A description file contains three types of information:
macro definitions, dependency information, and executable
commands. There is also a comment convention: all
characters after a sharp (#) are ignored, as is the sharp
itself. Blank lines and lines beginning with a sharp are
totally ignored. If a non-comment line is too long, it can
be continued using a backslash. If the last character of a
line 1is a backslash, the backslash, newline, and following
blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not
preceded by a colon or a tab. The name (string of letters
and digits) to the left of the equal sign (trailing blanks
and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are
stripped.) The following are valid macro definitions:

2 = xyz
abc = -11 -ly
LIBES =

The last definition assigns LIBES the null string. A macro
that 1is never explicitly defined has the null string as
value. Macro definitions may also appear on the Make
command line (see below).

Other 1lines give information about target files. The
general form of a target is:

target ... :[:] [dependent ...] [; commands] [# ...]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and
dependents are strings of 1letters, digits, periods, and
slashes. (Shell metacharacters "*" and "?" are expanded.) A
command is any string of characters not including a sharp
(except in quotes) or newline. Commands may appear either
after a semicolon on a dependency line or on lines beginning
with a tab immediately following a dependency line.

Make Make

A dependency line may have either a single or a double
colon. A target name may appear on more than one dependency
line, but all of those lines must be of the same (single or
double colon) type.

1. For the usual single-colon case, at most one of these
dependency lines may have a command sequence
associated with it. If the target is out of date with
any of the dependents on any of the lines, and a
command sequence 1is specified (even a null one
following a semicolon or tab), it is executed.
Otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be

associated with each dependency line. If the target
is out of date with any of the files on a particular
line, then the associated commands are executed. A
built-in rule may also be executed. This detailed
form 1is of particular value in updating archive-type
files.

If a target must be created, the sequence of commands is
executed. Normally, each command line is printed and then
passed to a separate invocation of the shell after
substituting for macros. (The printing is suppressed in
silent mode or if the command line begins with an @ sign).
Make normally stops if any command signals an error by
returning a non-zero error code. (Errors are ignored if the
"-i" flags has been specified on the Make command line, if
the fake target name ".IGNORE" appears in the description
file, or if the command string in the description file
begins with -a hyphen. Some XENIX commands return
meaningless status). Because each command line is passed to
a separate invocation of the shell, care must be taken with
certain commands (e.g., cd and Shell control commands) that
have meaning only within a single Shell process; the results
are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is
set to the name of the file to be "made". $? is set to the
string of names that were found to be younger than the
target. If the command was generated by an implicit rule
(see below), $< is the name of the related file that caused
the action, and $* is the prefix shared by the current and
the dependent file names.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name ".DEFAULT" are used. If there is no such name, Make
prints a message and stops.

Make Make

7.3 Command Usage

The make command takes four kinds of arguments: macro
definitions, flags, description file names, and target file
names. The syntax is as follows:

make [flags] [macro definitions] [targets]

The following summary of the operation of the command
explains how these arguments are interpreted.

First, all macro definition arguments (arguments with
embedded equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files.

Next, the flag arguments are examined. The permissible
flags are

-i Ignore error codes returned by invoked commands.

This mode 1is entered if the fake target name
" ., IGNORE" appears in the description file.

-s Silent mode. Do not print command 1lines before
executing. This mode 1is also entered if the fake
target name ".SILENT" appears in the description
file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute
them. Even 1lines beginning with an "@" sign are
printed.

-t Touch the target files (causing them to be up to

date) rather than issue the usual commands.

-q Question. The make command returns a zero or non-
zero status code depending on whether the target
file is or is not up to date.

-p Print out the complete set of macro definitions and
target descriptions

-d Debug mode. Print out detailed information on files
and times examined.

-f Description file name. The next argument is assumed
to be the name of a description file. A file name
of "-" denotes the standard input. If there are no
"-f" arguments, the file named makefile or Makefile

Make Make

in the current directory is read. The contents of
the description files override the built-in rules if
they are present).

Finally, the remaining arguments are assumed to be the names
of targets to be made; they are done in left to right order.
If there are no such arguments, the first name in the
description files that does not begin with a period is
"made".

7.4 Implicit Rules

The Make program uses a table of interesting suffixes and a
set of transformation rules to supply default dependency
information and implied commands. (The Appendix describes
these tables and means of overriding them.) The default
suffix list is:

Object file

C source file

Ef1 source file

Ratfor source file
Fortran source file
Assembler source file
Yacc-C source grammar
Yacc-Ratfor source grammar
Yacc-Ef1l source grammar
Lex source grammar

|H§ﬁr<|m|mln I®1a 10

The following diagram summarizes the default transformation
paths. If there are two paths connecting a pair of
suffixes, the longer one is used only if the intermediate
file exists or is named in.the description.

.o
[T T R A
.C .r .e .£ .S Y% .Yr .ye .1 .d
? A A
+-—+--+

If the file x.0 is needed and there is an x.c in the
description or directory, it is compiled. If there is also

Make Make

an x.1, that grammar would be run through Lex before
compiling the result. However, if there is no x.c but there
is an x.l, Make then discards the intermediate C-language

file and uses the direct link in the graph above.

It is possible to change the names of some of the compilers
used in the default, or the flag arguments with which they
are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and
LEX. The command

make CC=newcc

causes the newcc command to be used instead of the usual C

compiler. The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and
LFLAGS may be set to cause these commands to be issued with
optional flags. Thus

make "CFLAGS=-0"

causes the optimizing C compiler to be used.

Make Make

7.5 Example

As an example of the use of Make, we will present the
description file used to maintain the make command itself.
The code for Make is spread over a number of C source files
and a Yacc grammar. The description file contains:

Description file for the Make command

P = 1lpr

FILES = Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\
gram.y lex.c

OBJECTS = vers.o main.o ... dosys.o gram.o

LIBES=

LINT = lint -p

CFLAGS = -0

make: $(OBJECTS)
cc $ (CFLAGS) $(OBJECTS) $(LIBES) -o make
size make

$ (OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *,0 gram.cC
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: S$(FILES)# print recently changed files
pr $2 | $p
touch print

test:
make -dp | grep -v TIME >1lzap
/usr/bin/make -dp | grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c vers.c gram.c
$ (LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm gram.cC

arch:
ar uv /sys/source/s2/make.a $ (FILES)

Make usually prints out each command before issuing it. The

7-10

Make Make

following output results from typing the simple command
make

in a directory containing only the source and description
file:

cc -c vers.c

cc =-c main.c

cc -c doname.c

cc -c misc.c

cc =-c files.c

cc -c dosys.c

yacc gram.y

mv y.tab.c gram.c-

cc -c gram.cC

cc vers.o main.o ... dosys.o gram.o -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned
by name in the description file, Make found them using its
suffix rules and issued the needed commands. The string of
digits results from the "size make" command; the printing of
the command line itself was suppressed by an @ sign. The @
sign on the size command in the description file suppressed
the printing of the command, so only the sizes are written.

The last few targets in the description file are useful
maintenance sequences. The "print" target prints only the
files that have been changed since the 1last "make print"
command. A zero-length file print is maintained to keep
track of the time of the printing; the $? macro in the
command line then picks up only the names of the files
changed since print was touched. The printed output can be
sent to a different printer or to a file by changing the
definition of the P macro:

make print "P = lpr"
or

make print "P= cat >zap"

7.6 Suggestions and Warnings

The most common difficulties arise from Make's specific
meaning of dependency. If file x.c has a "#include "defs™"
line, then the object file x.o0 depends on defs; the source
file x.c does not. (If defs is changed, it is not necessary
to do anything to the file x.c, while it 1is necessary to

Make Make

recreate x.0.)

To discover what Make would do, the -n option 1is very
useful. The command

make -n

orders Make to print out the commands it would issue without
actually taking the time to execute them. If a change to a
file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the -t (touch) option can
save a lot of time: instead of issuing a 1large number of
superfluous recompilations, Make updates the modification
times on the affected file. Thus, the command

make -ts

("touch silently") causes the relevant files to appear up to

date. Obvious care 1is necessary, since this mode of
operation subverts the intention of Make and destroys all
memory of the previous relationships.

The debugging flag -d causes Make ¢to print out a very
detailed description of what it is doing, including the file
times. The output is verbose, and recommended only as a last
resort.

7-12

Make Make

7.7 Suffixes and Transformation Rules

The Make program itself does not know what file name
suffixes are interesting or how to transform a file with one
suffix into a file with another suffix. This information is
stored in an internal table that has the form of a
description file. If the "-r" flag is used, this table is
not used.

The list of suffixes is actually the dependency list for the
name ".SUFFIXES"; Make 1looks for a file with any of the
suffixes on the list. If such a file exists, and if there
is a transformation rule for that combination, Make acts as
described earlier. The transformation rule names are the
concatenation of the two suffixes. The name of the rule to
transform a ".r" file to a ".o" file is thus ".r.o". If the
rule 1is present and no explicit command sequence has been
given in the user's description files, the command sequence
for the rule ".r.o" is used. If a command is generated by
using one of these suffixing rules, the macro $* is given
the value of the stem (everything but the suffix) of the
name of the file to be made, and the macro $< is the name of
the dependent that caused the action.

The order of the suffix list is significant, since it is
scanned from 1left ¢to right, and the first name that is
formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can just
add a target for .SUFFIXES in his own description file; the
dependents will be added to the usual list. A .SUFFIXES
line without any dependents deletes the current 1list. (It
is necessary to clear the current list if the order of names

7-13

Make Make

is to be changed).
The following is an excerpt from the default rules file:

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s
YACC=yacc
YACCR=yacc -r
YACCE=yacc =-e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
«C.O :
$ (CC) $(CFLAGS) =-c $<
.e.0 .r.0o .f.o :
$ (EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<
«S.0 :
$ (AS) -o $@ s<
.Y.0 :
$ (YACC) $ (YFLAGS) $<
$ (CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@
.Y.C :
$ (YACC) $ (YFLAGS) $<
mv y.tab.c $@

7-14

8.7

CHAPTER 8
AS: AN ASSEMBLER

CONTENTS

Introductionc ® © 0 000 000000000000 0000000000000 00000
Invocation. ©® © 000 0000000000000 000000000000 0000000 o0
Invocation Options. & & & © 0 0 0 0000000000600 00000000000

Source Program Format..ceccecceccececccccccccccccccccs
8.4.1 Label Field...c:ceeeeeececcccsccccscccscccnan
2 Opcode Field..eenveeeceosssoccassncsscccccs
3 Operand-Field...cccceecccccscvsan cecccsscns
4 Comment Field....cceeeecccccocsccccccccnnsns

o o o
>
e o o

bols and EXPresSSiONS..ccceccccccccesscccccccscss
SYMbOlS.ceeeecccccocoscsccscscscccsosassosaccnss
Assembly Location Counter..ccceccececccccsse
Program SeCtiONS.ccececcccccccccscsaccccccns
ConstantSeceecceccecsnsns tccsccsecsssrsrecsces
OPEeratOrS.ecceeccccoscscccsccscsccscsscscsccccccscas

Terms..o..o.l---.oooncuooo ------ ®© e 00000000

Expressj.ons----.-oooo....o----.-o..-.....-

|

[] [] [] [] [] [] []
S, NN R, N RT BT
[] []] [] [] [] []
NSO WN QO

nstructions and Addressing ModeS.:..ccscccecccees

s
6.1 Instruction MnemoniCS..c.css=+= csecccsccnce
6.2 Operand Addressing MOdeS.cccececcesaccccscs

bler DirectiveS.ccecececcecccccsccscsccccsccccses
e@QSC1l .3SCiZeceecccccccccccccocscscccccnnas
«blkb .blkw .blKkl.cceeececcocccccsscnse cecee
.byte .word .lO0Ng..ccccccccccccccccccccs

.end.........o.o...o....'...o..o.o.ooo.o;o

.text .data .bss..o..oo....ol.....c...--
.glObl cccmm...........o-o......o.........

oeven-000..0........t..o.o..o...oo......o.

sSse

NNNNNNan
[] [] [] [] [] [] [}
NSJounewNH 3

Q0 GO G 00 0 0 ™ > o 0 H 00 0O 00 00 00 0 00 N @ 0 ™

Operation COdeSo..........-.-.-.-..........o....o

Error Messages........--....cooo........l.'....o‘

O
I:'
h -3
p)
-
m
. m
o

As As

8.1 Introduction

This chapter describes the use of the XENIX assembler, named
as, for the Motorola MC68000 microprocessor. It is beyond
the scope of this manual to describe the instruction set of
the 68000 or to discuss assembly language programming in
general. For information on these topics, refer to the
MC68000 16-Bit Microprocessor User's Manual, 3rd Edition,
Englewood Cliffs, N.J: Prentice-Hall, Inc., 1982.

This chapter is organized as follows:

The Command Line
Discusses assembler "invocation and command 1line
options.

Source Program Format
Discusses the proper layout of an assembly
language program, including specification of the
label, opcode, operand, and comment fields.

Symbols and Expressions
Discusses the symbols and expressions used in
writing assembly language programs.

Instructions and Addressing Modes
Discusses the available instructions and
addressing modes.

Assembler Directives
Discusses assembler directives.

Operation Codes
Lists the available 68000 operation codes.

Error Messages
Lists error messages that can be generated by as.

8.2 Invocation

As can be invoked with one or more arguments options.
Except for option arguments, which must appear first on the
command line, arguments may appear in any order on the
command 1line. The source filename argument should be named
filename.s. If a filename does not have the ".s" extension,
the assembler prints a warning message, but still assembles
the specified file. Note, that except as specified below,
flags may be grouped. For example

8-1

As

As

as -glo that.o this.s

will have the same effect as

as -g -1 -0 that.o this.s

8.3 Invocation Options

The various flags and their function are:

-0 relname

The default output name is filename.o if
assembling on an MC68000, and filename.b if
cross assembling. This can be overridden by
giving as the -o flag and giving the new
filename in the argument following the =-o. The
-0 must be the last argument in a flag bunch.
Subsequent flags are ignored. For example

as -o that.o this.s

assembles the source this.s and puts the output
in the file that.o.

By default, no output listing is produced. A
listing may be produced by giving the -1 flag.
The 1listing filename extension is L". The
filename for the 1list file 1is based on the
output file. So the command line

as -1 -o output.x input.s
produces a listing named output.L.

By default, all symbols go into the symbol table
of the a.out(5) format file that is produced by
the assembler, including 1locals. If you want
only symbols that are defined as .globl or .comm
to be included, you can give the =-e (externals
only) flag.

By default, if a symbol is undefined in an
assembly, an error is flagged. This may be
changed with the -g flag. If this is done,
undefined symbols will be interpreted as
external.

As As

8.4 Source Program Format

An as program consists of a series of statements, each of
which occupies exactly one 1line, 1i.e. a sequence of
characters followed by the newline character. Form feed,
ASCII <CONTROL-L>, also serves as a 1line terminator.
Continuation lines are not allowed, and the maximum 1line
length 1is 132 characters. However, several statements may
be on a single 1line, separated by semicolons. Remember
though, that anything after a comment character is
considered a comment. The format of an as assembly language

statement is:

[label-field] [opcode [operand-fieldl [;]) [| comment]

Most of the fields may be omitted under certain
circumstances. In particular:

1. Blank lines are permitted.

2. A statement may contain only a label field. The label
defined in this field has the same value as if it were
defined in the label field of the next statement in
the program. As an example, the two statements

name:
addl do,dl

are equivalent to the single statement
name: addl 40,41

3. A line may consist of only the comment field; the two
statements below are allowed as comments occupying
full lines:

This is a comment field.
So is this.

4. Multiple statements may be put on a line by separating
them with a semicolon (;). Remember, however, that
anything after a comment character (including
statement separators) is a comment.

In general, blanks or tabs are +allowed anywhere in a
statement; that 1is, multiple blanks are allowed in the
operand field to separate symbols from operators. Blanks are
significant only when they occur in a character string
(e.g., as the operand of an .ascii pseudo-op) or in a
character constant. At least one blank or tab must appear
between the opcode and the operand field of a statement.

As As

8.4.1 Label Field

A label is a user-defined symbol that is assigned the value
of the current location counter; both of which are entered
into the assembler's symbol table. The value of the 1label
is relocatable.

A label is a symbolic means of referring to a specific
location within a program. If present, a label always occurs
first in a statement and must be terminated by a colon. A
maximum of 10 1labels may be defined by a single source
statement. The collection of 1label definitions in a
statement is called the label-field.

The format of a label-field is:

symbol: [symbol:] ...

Examples:

start:
name: name2: Multiple symbols
78: A local symbol, defined below

8.4.2 Opcode Field

The opcode field of an assembly language statement
identifies the statement as either a machine instruction, or
an assembler directive (pseudo-op). One or more blanks (or
tabs) must separate the opcode field from the operand field
in a statement. No blanks are necessary between the label
and opcode fields, but they are recommended to improve
readability of the program.

A machine instruction 1is indicated by an instruction
mnemonic. Some conventions used in as for instruction
mnemonics are be described later in a 1later section. A
complete list of the opcodes is also presented.

An assembler directive, or pseudo-op, performs some function
during the assembly process. It does not produce any
executable code, but it may assign space in a program for
data.

As is case sensitive. Operators and operands may only be
lower case.

As As

8.4.3 Operand-Field

A distinction is made between operand-field and operand in
as. Several machine instructions and assembler directives
require one or more arguments, and each of these is referred
to as an "operand". 1In general, an operand field consists
of zero, one, or two operands, and in all cases, operands
are separated by a comma. In other words, the format for an
operand-field is:

[operand [, operand}...]

The format of the operand field for machine instruction

statements 1is the same for all instructions. The format of
the operand field for assembler directives depends on the
directive itself.

8.4.4 Comment Field

The comment delimiter in as is the vertical bar, (|), not
the semicolon, (;). The semicolon 1is the statement
separator.

The comment field consists of all characters on a source
line following and including the comment character. These
characters are ignored by the assembler. Any character may
appear in the comment field, with the obvious exception of
the newline character, which starts a newline.

8.5 Symbols and Expressions

This section describes the various components of as
expressions: symbols, numbers, terms, and expressions.

8.5.1 Symbols

A symbol consists of 1 to 32 characters, with the following
restrictions:

1. vVvalid characters include A-Z, a-z, 0-9, period (.),
underscore (_), and dollar sign (§).

2. The first character must not be numeric, unless the
symbol is a local symbol.

There is no 1limit to the size of symbols, except the
practical issue of running out of symbol memory in the

assembler. However, be aware that the current C compiler
only emits 8 characters so a 9 or more character symbol that
you think is the same in C -and assembly may not match.
Upper and 1lower cases are distinct, ("Name" and "name" are
separate symbols). The period (.) and dollar sign ($)
characters are valid symbol characters, but they are
reserved for system software symbols such as system calls
and should not appear in user-defined symbols.

A symbol 1is said to be "declared" when the assembler
recognizes it as a symbol of the program. A symbol is said
to be "defined" when a value is associated with it. With the
exception of symbols declared by a .globl directive, all
symbols are defined when they are declared. A 1label symbol
(which represents an address in the program) may not be
redefined; other symbols are allowed to receive a new value.

There are several ways to declare a symbol:
1. As the label of a statement

-2. In a direct assignment statement

3. As an external symbol via the .globl directive
4. As a common symbol via the .comm directive

5. As a local symbol

8.5.1.1 Direct Assignment Statements

A direct assignment statement assigns the value of an
arbitrary expression to a specified symbol. The format of a
direct assignment statement is:

symbol = [symbol =] ... expression

Examples of valid direct assignments are:

vect_size = 4

vectora = /Effe

vectorb = vectora-vect_size
CRLF = /0DOA

Any symbol defined by direct assignment may be redefined
later in the program, in which case its value is the result
of the last such statement. A local symbol may be defined
by direct assignment; a label or register symbol may not be
redefined. -

As As

If the expression is absolute, then the symbol is also
absolute, and may be treated as a constant in subsequent
expressions. If the expression 1is relocatable, however,
then symbol is also relocatable, and it is considered to be
declared in the same program section as the expression. See
the discussion in a later section for an explanation of
absolute and relocatable expressions.

8.5.1.2 Register Symbols

Register symbols are symbols used to represent machine
registers. Register symbols are usually used to indicate
the register in the register field of a machine instruction.
The register symbols known to the assembler are given at the

end of this chapter.

8.5.1.3 External Symbols

A program may be assembled in separate modules, and then
linked together to form a single program (see 1ld(l)).
External symbols are defined 1in each of these separate
modules. A symbol which is declared (given a value) in one
module may be referenced in another module by declaring the
symbol to be external in both modules. There are two forms
of external symbols: those defined with the .globl directive
and those defined with the .comm directive. See Section
8.7.6 for more information on these directives.

8.5.1.4 Local Symbols

Local symbols provide a convenient means of generating
labels for branch instructions, etc. Use of local symbols
reduces the possibility of multiply-defined symbols in a
program, and separates entry point symbols from local
references, such as the top of a loop. Local symbols cannot
be referenced by other object modules.

Local symbols are of the form n$ where n is any integer.
Valid local symbols include:

27$
394§

A local symbol is defined and referenced only within a
single 1local symbol block (lsb). A new local symbol block
is entered when either 1) a label is declared; or 2) a new
program section 1is entered. There is no conflict between
local symbols with the same name that appear in different
local symbol blocks.

8.5.2 Assembly Location Counter

The assembly location counter is the period character (.);
hence its name dot. When used in the operand field of any
statement, dot represents the address of the first byte of
the statement. Even in assembly directives, it represents
the address of the start of the directive. A dot appearing
as the third argument in a .byte directive would have the
value of the address where the first byte was loaded; it is
not updated "during" the pseudo-op.

For example:
movl .,dl | load value of program counter into dl

At the beginning of each assembly pass, the assembler clears
the location counter. Normally, consecutive memory locations
are assigned to each byte of generated code. However, the
location where the code is stored may be changed by a direct
assignment altering the location counter:

. = expression

This expression must not contain any forward references,
must not change from one pass to another, and must not have
the effect of reducing the value of dot. Note that setting
dot to an absolute position may not have quite the effect
you expect if you are linking as's output file with other
files, since dot is maintained relative to the origin of the
output file and not the resolved position in memory.
Storage area may also be reserved by advancing dot. For
example, if the current value of dot 1is 1000, the direct
assignment statement:

TABLE: .=. + /100

would reserve 100 (hex) bytes of storage, with the address
of the first byte as the value of TABLE. The next
instruction would be stored at address 1100. Note that
".blkb 100" 1is a substantially more readable way of doing
the same thing.

Note that the :p operator allows you to assemble values that
are location relative both 1locally (within a module) and
across module boundaries, without needing to do explicit
address arithmetic.

8.5.3 Program Sections

As in XENIX, programs to as are divided into two sections:
text and data. The normal interpretation of these sections
is: instruction space and initialized data space,
respectively.

In the first pass of the assembly, as maintains a separate
location counter for each section, thus for code like

.text

LABELl: movw dl,d2

_ .data

LABEL2: .word 27
.text

LABEL3: addl d2,dl
.data

LABEL4: .byte 4

in the output, LABELl will immediately precede LABEL3, and
LABEL2 will immediately precede LABEL4. At the end of the
first pass, as rearranges all the addresses so that the
sections will be output in the following order: text, then
data. The resulting output file is an executable image file
with all addresses correctly resolved, with the exception of
.comm's and undefined .globl's. For more information on the
format of the output file, consult a.out(5).

8.5.4 Constants

All constants are considered absolute quantities when
appearing in an expression.

8.5.4.1 Numeric Constants

Any symbol beginning with a digit is assumed to be a number,
and will be interpreted in the default decimal radix.
Individual numbers may be evaluated in any of the five
valid radices: decimal, octal, hexadecimal, character, and
binary. The default decimal radix is only wused on "bare"
numbers, i.e. sequences of digits. Numbers may be
regresented in other radices as defined by the following
table.

The other three radices require a prefix:

Radix Prefix Example

octal ~ (up-arrow) ~17 -equals 15. base 10.
octal 0 “017 equals 15. base 10.
hex / (slash) /Al equals 161. base 10.
hex 0x OxAl equals 16l. base 10.
char ' (quote) 'a equals 97 base 10.

char ' (quote) '\n equals 10 base 10.
binary % (percent) $11011 equals 27. base 10.

Letters in hex constants may be upper or lower case; e.g.,
/aa=/Aa=/AA=170. Illegal digits for a particular radix
generate an error (e.g. ~018). While the C character
constant syntax is supported, you cannot define character

constants by a number, (e.g., '\27) as this is more easily
represented in one of the other formats.

As As

8.5.5 Operators

8.5.5.1 Unary Operators
There are three unary operators in as:

Operator Function
+ unary plus, has no effect.

unary minus.
logical negation.

3 program displacement

The ":p" operator is a suffix that can be applied to a
relocatable expression. It replaces the value of the
expression with the displacement of that value from the
current location (not dot). This is implemented with
displacement relocation, so that it also works across
modules.

8.5.5.2 Binary Operators
Binary operators in as include:

Operator Description Example Value
+ Addition 3+4 7.
- Subtraction 3-4 -1., or /FFFF |
* Multiplication 4% 3 12,
/ Division 12/4 3.
| Logical OR $0110T | $000II $0I111
& l.ogical AND $01101&%00011 £00001
= Remainder 573 2.

Each operator is assumed to work on a 32-bit number. If the

value of a particular term occupies only 8 or 16 bits, the
sign bit is extended into the high byte.

Sometimes error messages in expressions can be fixed by
breaking the expressions into multiple statements using
direct assignment statements.

As As

8.5.6 Terms

A term is a component of an expression. A term may be one of
the following:

A. A number whose 32-bit value is used
B. A symbol

C. A term preceded by a unary operator. For example, both
"term" and "“term"” may be considered to be terms.
Multiple unary operators are allowed; e.g. "+--+A" has
the same value as "A".

8.5.7 Expressions

Expressions are combinations of terms joined together by
binary operators. An expression is always evaluated to a
32-bit value. If the instruction calls for only one byte,
(e.g. .byte), then the low-order 8 bits are used.

Expressions are evaluated left to right with no operator
precedence. Thus "1 + 2 * 3" evaluates to 9, not 7. Unary
operators have precedence over binary operators since they
are considered part of a term, and both terms of a binary
operator must be evaluated before the binary operator can be
applied.

A missing expression or term is interpreted as having a
value of zero. In this case, an "Invalid Expression" error
will be generated. An "Invalid Operator" error means that a
valid end-of-line character or binary operator was not
detected after the assembler processed a term. In
particular, this error will be generated if an expression
contains a symbol with an 1illegal character, or if an
incorrect comment character was used.

Any expression, when evaluated, is either absolute,
relocatable, or external:

A. An expression is absolute if its value is fixed. An
expression whose terms are constants, or symbols whose
values are constants via a direct assignment
statement, is absolute. A relocatable expression minus
a relocatable term, where both items belong to the
same program section is also absolute.

B. An expression is relocatable if its value 1is fixed
relative to a base address, but will have an offset
value when it is linked, or 1loaded 1into core. All

As As

labels of a program defined in relocatable sections
are relocatable terms, and any expression which
contains them must only add or subtract constants to
their value. For example, assume the symbol sym was
defined 1in a relocatable section of the program. Then
the following demonstrates the use of relocatable

expressions:
sym relocatable
sym+5 relocatable

sym-"'A relocatable

sym*2 Not relocatable

2-sym Not relocatable, since the expression cannot
be linked by adding sym's offset to it.

sym-sym2 Absolute, since the offsets added to sym and
sym2 cancel each other out.

C. An expression is external (or global) if it contains
an external symbol not defined in the current program.
The same restrictions on expressions containing
relocatable symbols apply to expressions containing
external symbols. Exception: the expression "sym-sym2"
where both sym and sym2 are external symbols is not
allowed.

8.6 Instructions and Addressing Modes

This section describes the. conventions used in as to specify
instruction mnemonics and addressing modes.

8.6.1 Instruction Mnemonics

The instruction mnemonics used by as are described in the
previously mentioned user's manual with a few variations.
Most of the MC68000 instructions can apply to byte, word or
to long operands, thus in as the normal instruction mnemonic
is suffixed with b, w, or 1 to indicate which 1length of
operand was intended. For example, there are three mnemonics
for the add instruction: addb, addw, and addl.

Branch and call instructions come in 3 forms: the bra, jra,
bsr and For the bra and bsr forms, the assembler will always
produce a long (1l6-bit) pc relative address. For the jra and
jbsr forms, the assembler will produce the shortest form of

As As

binary it can. This may be 8-bit or 16-bit pc relative, or
32-bit absolute. The 32-bit absolute is implemented for
conditional branches by inverting the sense of the condition
and branching around a 32-bit jmp instruction. The 32-bit
form will be generated whenever the assembler can't figure
out how far .away the addressed location is; for example,
branching to an undefined symbol or a calculated value such
as branching to a constant location.

8.6.2 Operand Addressing Modes

These effective addressing modes specify the operand(s) of
an instruction. For details of the effective "addressing
modes, see section 2.10 of the MC68000 User's Manual. Note
also that not all instructions allow all addressing modes.
Details are given in the MC68000 User's Manual in appendix B
under the specific instruction.

In the examples that follow, when two examples are given,
the first example is based on the assembly format suggested
by Motorola. The second example 1is in what 1is called
"Register Transfer Language" or RTL. This is the format used
by MIT and a number of other M68000 UNIX vendors, and is
used by Motorola to describe technically the register
transfers that are occurring within the machine, so it is
provided for compatibility. Either syntax is accepted, and
it is permissible to mix the two types of syntax within a
module or even within a 1line when two effective address
fields are allowed. Be aware, that a warning message will be
generated when the assembler notices such a mix.

Many of the effective address modes have other names, by

which they may be more commonly known. These name or names
appear to the right of the Motorola name in parenthesis.

Data Register Direct
addl do,dl

Address Register Direct
addl a0,a0

Address Register Indirect (indirect)

addl (a0),dl
addl age,dl

Address Register Indirect with Postincrement (autoinc)

(-

As As

movl (a7)+,dl
movl a7e+,dl

Address Register Indirect with Predecrement (autodec)

movl dl, (a7)-
movl dl,a7e-

Address Register Indirect with Displacement (indexed)

This form includes a signed 16-bit displacement. These
displacements may be symbolic.

movl 12(a6),dl
movl ae@(12),dl

Address Register Indirect with Index (double-indexed)

This form includes a signed 8-bit displacement and an
index register. The size of the index register is
given by following its specification with a ":w" or a
":1". If neither is specified, ":1" is assumed.

movl 12(a6,d0:w) ,dl
movl a6@ (12,d0:w) ,dl

Absolute Short Address

movl xx:w,dl
Absolute Long Address (absolute)

Note that this is the address mode assumed should the
given value be a constant. This is not true of branch
and call instructions. Note also that the second
example here 1is not RTL syntax, but it is provided
because it is also allowed.

movl xx,dl
movl xx:1,dl

Program Counter with Displacement (pc relative)
When pc relative addressing is used, such as
pea name (pc)
the assembler will assemble a value that is equal ¢to
"name-.", where dot (.) is the position of the value,

whether name is in the current module or not. You may
also cause an expression to be pc relative by suffixing

8-15

As

As

it with a ":p". See also the displacement relocation
mode in a.out(5).

movl 10 (pc) ,dl
movl pce (10) ,dl

Note that if a symbol appears in the above addressing
mode (where the 10 1is in the example), the symbol's
displacement from the extension word will be used in
the instruction.

Program Counter with Index

jmp switchtab(pc,d0:1)
jmp pc@ (switchtab,d0:1)
switchtab:

Immediate Data

Note that this is the way to get immediate data. If a

number 1is given with no number sign (#), you get
absolute addressing. This does not hold for jsr and jmp
instructions. Also note that the second and third

examples are not RTL syntax in particular.

movl $#47,41
jmp somewhere
moveq #7,41

In the movem instruction's register mask field, a
special kind of immediate is allowed: the register
list. 1Its syntax is as follows:

<reg [,regl>

Here, reg is any register name. Register names may be
given in any order. The assembler automatically takes
care of reversing th mask for the auto-decrement
addressing mode. Normal immediates are also allowed.

P

As As

8.7 Assembler Directives

The following pseudo-ops are available in as:

.ascii stores character strings
.asciz

.blkb
.blkw saves blocks of bytes/words/longs
.blkl

.byte
.word stores bytes/words/longs
. long

.end terminates program and identifies execution address

. text Text psect
.data Data psect

.bss Bss psect

.globl declares external symbols

. comm declares communal symbols

.even forces location counter to next word boundary

8.7.1 .ascii .asciz

The .ascii directive translates character strings into their
7-bit ascii (represented as 8-bit bytes) equivalents for use
in the source program. The format of the .ascii directive is
as follows:

.ascii "character-string”

where character-string contains any character valid in a

character constant. Obviously, a newline must not appear
within the character string. (It can be represented by the
escape sequence "\n" as described below). The quotation
mark (") is the delimiter character, which must not appear
in the string unless proceeded by a backslash (\).

The following escape sequences are also valid as single
characters:

8-17

As As

X Value of X
\b <backspace>, hex /08
\t. <tab>, ' hex /09
\n <newline>, hex /0A
\f <form—-feed>, hex /0C
\r <return>, hex /0D
\nnn hex value of nnn

Several examples follow:

Hex Code Generated: Statement:

22 68 65 6C 6C 6F 20 74 .ascii "hello there"

68 65 72 65 22

77 61 72 6E 69 6E 67 20 .ascii "Warning-\007\007 \n"
2D 07 07 20 oA

The .asciz directive is equivalent to the .ascii directive
with a zero (null) byte automatically inserted as the final
character of the string. Thus, when a list or text string
is to be printed, a search for the null character can
terminate the string. Null terminated strings are sometimes
used as arguments to XENIX system calls.

8.7.2 .blkb .blkw .blkl

The .blkb, .blkw, and .bkkl directives are used to reserve
blocks of storage: .blkb reserves bytes, .blkw reserves
words and .blkl reserves longs.

The format is:

[label:] .blkb expression
[label:] .blkw expression
[label:] .blkl expression

where expression is the number of bytes or words to reserve.
If no argument is given a value of 1 is assumed. The
expression must be absolute, and defined during pass 1 (i.e.
no forward references).

This is equivalent to the statement ".=.+expression”, but
has a much more transparent meaning.

8-18

8.7.3 .byte .word .long

The .byte, .word, and .long directives are used to reserve
bytes and words and to initialize them with values.

The format is:

[label:] .byte [expression] [,expression]...
[label:] .word [expression] [,expression]...
[label:] .long [expression] [,expression] ...

The .byte directive reserves one byte for each expression in
the operand field and initializes the value of the byte to
be the low-order byte of the corresponding expression. Note
that multiple expressions must be separated by commas. A
blank expression is interpreted as zero, and no error |is
generated.

For example,

.byte a,b,c,s reserves 4 bytes.

.byte ,,,., reserves five bytes, each with
a value of zero.
.byte reserves a single byte, with a

value of zero.
The semantics for .word and .long are identical, except that
1l6-bit or 32-bit words are reserved and initialized. Be
forewarned that the value of dot within an expression is
that of the beginning of the statement, not of the value
being calculated.
8.7.4 .end

The .end directive indicates the physical end of the source
program. The format is:

.end
The .end is not really required; reaching the end of file
has the same effect.
8.7.5 .text .data .bss

These statements change the "program section" where
assembled code will be loaded.

8.7.6 .globl .comm

Two forms of external symbols are defined with the .globl
and comm directives.

External symbols are declared with the .globl assembler
directive. The format is:

.globl symbol [, symbol ...]

For example, the following statements declare the array
TABLE and the routine SRCH to be external symbols:

.globl TABLE,SRCH

TABLE: .blkw 10.
SRCH: movw TABLE, a0

External symbols are only declared to the assembler. They
must be defined (i.e. given a value) in some other statement
by one of the methods mentioned above. They need not be
defined in the current program; in this case they are
flagged as "undefined" in the symbol table. If they are
undefined, they are considered to have a value of zero in

expressions.

It is generally a good idea to declare a symbol as .globl
before using it in anyway. This is particularly important
when defining absolutes.

The other form of external symbol is defined with the .comm
directive. The .comm directive reserves storage that may be
communally defined, i.e., defined mutually by several
modules. The link editor, 1d(1l) resolves allocation of .comm
regions. The syntax of the .comm directive is:

.comm name constant-expression

which causes as to declare the name as a common symbol with
a value equal to the expression. For the rest of the
assembly this symbol will be treated as though it was an
undefined global. As does not allocate storage for common
symbols; this task is 1left to the 1loader. The 1loader
computes the maximum size of each common symbol that may
appear in several load modules, allocates storage for it in
the final bss section, and resolves linkages.

As As

8.7.7 .even

This directive advances the location counter if its current
value is odd. This is useful for forcing storage allocation
to be on a word boundary after a .byte or .ascii directive.
Note that many things may not be on an odd boundary in as,
including instructions, and word and long data.

8-21

As

8.8 Operation Codes

Below are all opcodes recognized by as:

abcd
addb
addw
addl
addgb
addqw
addql
addxb
addxw
addxl
andb
andw
andl
aslb
aslw
asll
asrb
asrw
asrl
bece
bcecs
bchg
beclr
bcs
bcss
beq
begs

bges
bgt
bgts
bhi
bhis
ble
bles
bls
blss
blt
blts

bmi
bmis
bne
bnes
bpl
bpls
bra
bras
bset
bsr
bsrs
btst
bvc
bvcs
bvs
bvss
chk
clrb
Clrw
clrl
cmpb
Cmpw
cmpl
cmpmb
cmpmw
cmpml
dbcc
dbcs
dbeq
dbf
dbge
dbgt
dbhi
dble
dbls
dblt
dbmi
dbne
dbpl

dbra
dbt
dbvc
dbvs
divs
divu
eorb
eorw
eorl
exg
extw
extl
jbsr
jcec
jcs
jeq
ige
igt
Jhi
Jle
jls
jlt
jmi
jmp
jne
je
jra
jsr
jve
jvs
lea
link
1slb
1slw
1sll
1srb
lsrw
1srl

movb
movw
movl
movemw
moveml
movepw
movepl
moveq
muls
mulu
nbcd
negb
negw
negl
negxb
negxw
negxl
nop
notb
notw
notl
orb
orw
orl
pea
reset
rolb
rolw
roll
rorb
rorw
rorl
roxlb
roxlw
roxll
roxrb
LOXIW
roxrl

rte
rtr
rts
sbcd
scc
scs
seq
sf
sge
sgt
shi
sle
sls
slt
smi
sne
spl
st
stop
subb
subw
subl
subgb
subqw
subql
subxb
subxw
subxl
svc
svs
swap
tas
trap
trapv
tstb
tstw
tstl
unlk

As

As As

The following pseudo operations are recognized:

.ascii
.asciz
.blkb
.blkl
«blkw
.bss

.byte
. comm
.data
.end

.even
.globl
.long
.text
.word

The following registers are recognized:

d0 d1 42 43 d4 45 de6 47
a0 al a2 a3 a4 a5 a6 a7
Sp pc cc sr

8.9 Error Messages

If there are errors in an assembly, an error message appears
on the standard error channel (usually the terminal) giving
the type of error and the source 1line number. If an
assembly listing 1is requested, and there are errors, the
error message appears before the offending statement. If
there were no assembly errors, then there are no messages,
thus indicating a successful assembly. Some diagnostics are
only warnings and the assembly is successful despite the
warnings.

If an assembly listing was not requested, any source lines
which caused an assembly diagnostic are displayed on the
terminal (the standard error file). In addition, a 1list of
assembly errors and their description is also displayed on
the terminal.

The common error codes and their probable causes, appear
below:

Invalid character
An invalid character for a character constant or
character string was encountered.

8-23

As As

Multiply defined symbol
A symbol has appeared twice as a 1label, or an
attempt has been made to redefine a label using an
= statement. This error message may also occur if
the value of a symbol changes between passes.

Offset too large
A displacement cannot fit in the space provided
for by the instruction.

Invalid constant
An invalid digit was encountered in a number.

Invalid term
The expression evaluator could not find a valid
term that was either a symbol, constant or
expression. An invalid prefix to a number or a bad
symbol name in an operand will generate this.

Non-relocatable expression
Some instructions require relocatable expressions
as operands. It was not provided.

Invalid operand
An illegal addressing mode was given for the
instruction.

Invalid symbol
A symbol was given that does not conform to the
rules for symbol formation.

Invalid assignment
An attempt was made to redefine a label with an =
statement.

Invalid opcode
A symbol in the opcode field was not recognized as
an instruction mnemonic or directive.

Bad filename
An invalid filename was given.

Wrong number of operands
An instruction has either too few or too many
operands as required by the syntax of the
instruction.

Invalid register expression
An operand or operand element that must be a
register 1is not, or a register name is used where
it may not be used. For example, using an address

As

As
register in a moveq instruction, which only allows
data registers will produce this error message; as
will wusing a register name as a label with a bra
instruction.

O0dd address
Something which must start at an even address does
not.

Inconsistent effective address syntax
Both assembly and RTL syntax appear within a

single module.

Non-word memory shift
An in memory shift instruction was given a size

other than 16 bits.

8-25

9.11

9.12

CHAPTER 9
LEX: A LEXICAL ANALYZER

CONTENTS

Intrwuction....o...o"'....0.0......'.'.'......
Lex Sourceonoo...o.o.oo.l......."'o......o.....

Lex Regular EXPresSSiONS.cceccccccccccccscscsnsasccss
9.3.1 Character clasSeS.cececesssnssresas cecvenne
Arbitrary character....cececeeesasceaaans oo
Optional EXpPressiOnNS.cccecccccccccccccessa
Repeated EXpPressionS..ccecceaeas ceccetnsns
Alternation and Grouping..:vescseececcccccsce
Context Sensitivityeeeeceeevensscsosascans
Repetitions and Definitions....cceceeeveas

O O O VWYV
e o o o o o
WWwwww
e o o o o o
SO WN

Lex Actions.....................................
Ambiguous Source RUleS..cccceccscscsccccccccccccccs
Lex Source Definitions. ® 6 © 0 0 000 00 00 0 0 00 0 00 0 0 0 0 00

Usage‘.o.......0..o..o.................o.o......

Lex and YacCC.ceeeecccccococscscscscsccsosscsccscsssccose
Left Context Sensitivity.cecececcccccccccccccccne
Character Set.ccccecccccccccccccccccccccscccccscscse
Summary of Source Format.ecececccececceccceccccecccscse

Notes...o....o......0......0....0..0.0..0..00..0

9-1
9-3
9-4
9-5
9-6
9-6
9-6
9-7
9-7
9-8
9-9
9-13
9-16
9-17
9-18
9-22
9-24
9-25

9-27

)
-
> 3
0.
o |
m
)
w0,

Lex Lex

9.1 Introduction

Lex is a program generator designed for 1lexical processing
of character input streams. It accepts a high-level,
problem oriented specification for character string
matching, and produces a C program that recognizes regular
expressions. The regular expressions are specified by the
user in the source specifications given to Lex. The Lex
written code recognizes these expressions in an input stream
and partitions the input stream into strings matching the
expressions. At the boundaries between strings program
sections provided by the user are executed. The Lex source
file associates the regular expressions and the program
fragments. As each expression appears in the input to the
program written by Lex, the corresponding fragment Iis
executed.

The user supplies the additional code beyond expression
matching needed to complete his tasks, possibly including
code written by other generators. The program that
recognizes the expressions 1is generated in the general
purpose programming language employed for the user's program
fragments. Thus, a high 1level expression 1language is
provided to write the string expressions to be matched while
the wuser's freedom to write actions is unimpaired. This
avoids forcing the user who wishes to wuse a string
manipulation language for input analysis to write processing
programs in the same and often inappropriate string handling
language.

Lex is not a complete 1language, but rather a generator
representing a new language feature which can be added to
different programming languages, called "host languages." At
present, the only supported host language is C.

Lex turns the user's expressions and actions (called source
in this section) into the host general-purpose language; the
generated program is named yylex. The yylex program will
recognize expressions in a stream (called input here) and
perform the specified actions for each expression as it is
detected.

For a trivial example, consider a program to delete from the
input all blanks or tabs at the ends of lines.

%%
[\t]+$;

is all that 1is required. The program contains a %%
delimiter to mark the beginning of the rules, and one rule.
This rule contains a regular expression which matches one or

Lex Lex

more instances of the characters blank or tab (written \t
for visibility, in accordance with the C language
convention) Jjust prior to the end of a line. The brackets
indicate the character class made of blank and tab; the +
indicates "one or more ..."; and the $ indicates "end of
line." No action is specified, so the program generated by
Lex (yylex) will ignore these characters. Everything else
will be copied. To change any remaining string of blanks or
tabs to a single blank, add another rule:

L1

[\t]+$;
[\t]l+ printf(" ");

The finite automaton generated for this source will scan for
both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level analyzer
to recognize input tokens. Thus, a combination of Lex and
Yacc is often appropriate. When used as a preprocessor for
a later parser generator, Lex is used to partition the input
stream, and the parser generator assigns structure to the
resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs
written by Lex. Yacc users will realize that the name yylex
is what Yacc expects its lexical analyzer to be named, so
that the use of this name by Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source. The automaton 1is
interpreted, rather than compiled, in order to save space.
The result 1is still a fast analyzer. In particular, the
time taken by a Lex program to recognize and partition an
input stream 1is proportional to the length of the input.
The number of Lex rules or the complexity of the rules is
not important in determining speed, wunless rules which
include forward context require a significant amount of
rescanning. What does increase with the number and
complexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

Lex Lex

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch. The
automaton interpreter directs the control flow. Opportunity
is provided for the user to insert either declarations or
additional statements in the routine containing the actions,
or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted on the
basis of one character lookahead. For example, if there are
two rules, one looking for "ab" and another for "abcdefg",
and the input stream is "abcdefh", Lex will recognize "ab"
and leave the input pointer just before "cd". Such backup
is more costly than the processing of simpler languages.

9.2 Lex Source
The general format of Lex source is:

{definitions}

$3

{rules}

$3

{user subroutines}

where the definitions and the user subroutines are often
omitted. The second %% 1is optional, but the first is
required to mark the beginning of the rules. The absolute
minimum Lex program is thus

L2

(no definitions, no rules) which translates into a program
which copies the input to“*the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular expressions and the
right column contains actions, program fragments to be
executed when the expressions are recognized. Thus an
individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print
the message "found keyword INT" whenever it appears. 1In
this example the host procedural language is C and the C
library function printf() is used to print the string. The
end of the lex regular expression is indicated by the first
blank or tab character. If the action is merely a single C

Lex Lex

expression, it can just be given on the right side of the
line; 1if it 1is compound, or takes more than a line, it
should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words
from British to American spelling. Lex rules such as

colour printf("color");
mechanise printf ("mechanize");
petrol printf("gas");

would be a start. These rules are not quite enough, since
the word "petroleum" would become "gaseum"; a way of dealing
with this is described later.

9.3 Lex Regular Expressions

A regular expression specifies a set of strings to be
matched. It contains text characters (that match the
corresponding characters in the strings being compared) and
operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet and the digits
are always text characters. Thus, the regular expression

integer

matches the string "integer" wherever it appears and the
expression

a57D
looks for the string "a57D".

The operator characters are

"\Nl) " -2.*+ | ()s/{}s<>
and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indicates
that whatever is contained between a pair of quotes is to be
taken as text characters. Thus

xyz"++"
matches the string xyz++ when it appears. Note that a part
of a string may be quoted. It is harmless but unnecessary
to quote an ordinary text character; the expression

"xyz++"

is the same as the one above. Thus by quoting every non-

Lex Lex

alphanumeric character being used as a text character, the
user need not memorize the list above of current operator
characters.

An operator character may also be turned into a text
character by preceding it with a backslash (\) as in

xyz\+\+

which is another, less readable, equivalent of the above
expressions. The quoting mechanism can also be used to get
a blank into an expression; normally, as explained above,
blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted. Several normal C
escapes with \ are recognized:

\n newline
\t tab

\b backspace
\\ backslash

Since newline is illegal in an expression, a "\n" must be
used; it is not required to escape tab and backspace. Every
character but blank, tab, newline and the 1list above 1is
always a text character.

9.3.1 Character classes

Classes of characters can be specified using brackets: [and
]. The construction

[abc]

matches a single character, which may be "a", "b", or "c".
Within square brackets, most operator meanings are ignored.
Only three characters are special: these are the backslash
(\), the dash (-), and the up-arrow ("). The dash character
indicates ranges. For example

\

[a-20-9<>_]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using the dash between
any pair of characters which are not both upper case
letters, both 1lower <case letters, or both digits is
implementation dependent and causes a warning message. If
it is desired to include the dash in a character class, it
should be first or last; thus

Lex Lex

[-+0-9]
matches all the digits and the two signs.

. In character classes, the up-arrow (") operator must appear
as the first character after the left bracket; it indicates
that the resulting string is to be complemented with respect
to the computer character set. Thus

[“abc]

matches all characters except "a", "b", or "c", including

all special or control characters; or
[“a-2zA-2]

is any character which is not a letter. The backslash (\)
provides an escape mechanism within character class
brackets, so that characters can be entered 1literally by
preceding them with this character.

9.3.2 Arbitrary character

To match almost any character, the period (.) designates the

class of all characters except a newline. Escaping into

octal is possible although non-portable. For example
[\40-\176]

matches all printable characters in the ASCII character set,

from octal 40 (blank) to octal 176 (tilde).

9.3.3 Optional Expressions

The question mark (?) operator indicates an optional element
of an expression. Thus

ab?c

matches either "ac®™ or "abc".

9.3.4 Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and
plus (+) operators. For example

ar*

Lex Lex

matches any number of consecutive "a" characters, including
zero; while "a+" matches one or more instances of "a". For
example,

[a=-2]+
matches all strings of lowercase letters, and
[A-Za-z] [A-Za-20-9] *

matches all alphanumeric strings with a 1leading alphabetic

character. This 1is a typical expression for recognizing
identifiers in computer languages.

9.3.5 Alternation and Grouping

The vertical bar (|) operator indicates alternation. For
example

(ab]|cd)

matches either "ab" or "cd". Note that parentheses are used
for grouping, although they are not necessary at the outside
level. For example

ab|cd

would have sufficed in the preceding example. Parentheses
can be used for more complex expressions, such as

(ab|cd+)? (ef) *

which matches such strings as "abefef", "efefef", "cdef",
and "cddd", but not "abc",. "abecd", or "abcdef".

9.3.6 Context Sensitivity

Lex recognizes a small amount of surrounding context. The
two simplest operators for this are the up-arrow () and the
dollar sign ($). If the first character of an expression is
an up-arrow, then the expression 1is only matched at the
beginning of a line (after a newline character, or at the
beginning of the input stream). This can never conflict
with the other meaning of the up-arrow, complementation of
character classes, since complementation only applies within
brackets. If the very last character is dollar sign, the
‘expression only matched at the end of a 1line (when
immediately followed by newline). The latter operator is a
special case of the slash (/) operator, which indicates

Lex Lex

trailing context. The expression
ab/cd

matches the string "ab", but only if followed by "cd". Thus
ab$

is the same as

ab/\n

Left context 1is handled in Lex by specifying start
conditions as explained later. If a rule is only to be
executed when the Lex automaton interpreter is in start
condition "x", the rule should be enclosed in angle
brackets:

<X>

If we considered "being at the beginning of a 1line"™ to be
start condition ONE, then the up-arrow (") operator would be
equivalent to

<ONE>

Start conditions are explained more fully later.

9.3.7 Repetitions and Definitions

The curly braces ({ and }) specify either repetitions (if
they enclose numbers) or <definition expansion (if they
enclose a name). For example

{digit}

looks for a predefined string named "digit" and inserts it
at that point in the expression. The definitions are given
in the first part of the Lex input, before the rules. In
contrast,

a{1,s}
looks for 1 to 5 occurrences of the character "a".

Finally, an initial percent sign (%) is special, since it is
the separator for Lex source segments.

Lex Lex

9.4 Lex Actions

When an expression written as above is matched, Lex executes
the corresponding action. This section describes some
features of Lex which aid in writing actions. Note that
there 1is a default action, which consists of copying the
input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb
the entire input, without producing any output, must provide
rules to match everything. When Lex is being used with
Yacc, this is the normal situation. You may consider that
actions are what is done instead of copying the input to the
output; thus, in general, a rule which merely copies can be
omitted. Also, a character combination which is omitted
from the rules and which appears as input is 1likely to be
printed on the output, thus calling attention to the gap in
the rules.

One of the simplest things that can be done is to ignore the
input. Specifying a C null statement ";" as an action causes
this result. A frequent rule is

[\t\n] ;

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions 1is to wuse the
repeat action character, "|", which indicates that the
action for this rule is the action for the next rule. The
previous example could also have been written

ll\tn
"\n" ;

with the same result, although in different style. The
quotes around "\n" and "\t" are not required.

In more complex actions, you often want to know the actual
text that matched some expression like

[a-z]+

Lex leaves this text in an external character array named
"yytext". Thus, to print the name found, a rule like

[a=z)]+ printf("ss", yytext):;

prints the string in "yytext". The C function printf
accepts a format argument and data to be printed; in this

Lex Lex

case, the format 1is "print string"™ (% indicating data
conversion, and s indicating string type), and the data are
the characters in "yytext". So this just places the matched
string on the output. This action is so common that it may
be written as ECHO. For example

[a-z]+ ECHO;

is the same as the preceding example. Since the default
action 1is just to print the characters found, one might ask
why give a rule, like this one, which merely specifies the
default action? Such rules are often required to avoid
matching some other rule which is not desired. For example,
if there is a rule that matches read it will normally match
the instances of read contained in bread or readjust; to
avoid this, a rule of the form

[a-z])+
is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has
been found; hence Lex also provides a count of the number of
characters matched. in the variable, "yyleng". To count
both the number of words and the number of characters in
words in the input, you might write

[a-2zA-2Z2])+ {words++; chars += yyleng;}

which accumulates in the variables "chars" the number of
characters in the words recognized. The last character in
the string matched can be accessed by

yytext([yyleng-1]

Occasionally, a Lex action may decide that a rule has not
recognized the correct span of characters. Two routines are
provided to aid with this situation. First, yymore() can be
called to indicate that the next input expression recognized
is to be tacked on to the end of this input. Normally, the
next input string would overwrite the current entry in
"yytext". Second, yyless(n) may be called to indicate that
not all the characters matched by the currently successful
expression are wanted right now. The argument "n" indicates
the number of characters in "yytext" to be retained.
Further characters previously matched are returned to the
input. This provides the same sort of lookahead offered by
the slash (/) operator, but in a different form.

Example: Consider a language which defines a string as a set
of characters between quotation (") marks, and provides that

Lex ' Lex

to include a quotation mark in a string, it must be preceded
by a backslash (\). The regular expression that matches this
is somewhat confusing, so that it might be preferable to
write

\"[*"]* {
if (yytext([yyleng-1] == '\\')
yymore () ;
else

}

which, when faced with a string such as

... nNormal user processing

"abc\"def"
will first match the five characters
"abc\

and then the call to yymore() will cause the next part of
the string,

"def

to be tacked on the end. Note that the final Qquote
terminating the string should be picked up in the code
labeled "normal processing”.

The function yyless() might be used to reprocess text in
various circumstances. Consider the (o problem of
distinguishing the ambiguity of "=-a". Suppose it is
desired to treat this as "=- a" but print a message. A rule
might be

=-[a-zA-2Z] {i
printf("Operator (=-) ambiguous\n");
yyless(yyleng-1) ;
... action for =- ...

which prints a message, returns the 1letter after the
operator to the input stream, and treats the operator as
"=-", Alternatively it might be desired to treat this as "=
-a". To do this, just return the minus sign as well as the
letter to the input: The following performs the
interpretation:

9-11

Lex Lex

=-[a-2zA-2] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2);
.o+ action for = ...

Note that the expressions for the two cases might more
easily be written

=-/[A-Za-2]
in the first case and
=/-[A-Za-z]

in the second: no backup would be required in the rule
action. It 1is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"=-3", however, makes

==/[" \t\n]
a still better rule.

In addition to these routines, Lex also permits access to
the I/0 routines it uses. They are:

l. input() which returns the next input character;

2. output(c) which writes the character ¢ on the output;
and

3. unput(c) pushes the character ¢ back onto the input
stream to be read later by input().

By default these routines are provided as macro definitions,
but the user can override them and supply private versions.
These routines define the relationship between external
files and internal characters, and must all be retained or
modified consistently. They may be redefined, to cause
input or output to be transmitted to or from strange places,
including other programs or internal memory; but the
character set used must be consistent in all routines; a
value of zero returned by input must mean end of file; and
the relationship between unput and input must be retained or
the Lex lookahead will not work. Lex does not look ahead at
all if it does not have to, but every rule ending in + * ?
or $§ or containing / implies lookahead. Lookahead 1is also
necessary to match an expression that is a prefix of another
expression. See below for a discussion of the character set
used by Lex. The standard Lex 1library imposes a 100

9-12

Lex ' Lex

character limit on backup.

Another Lex library routine that you sometimes want to
redefine is yywrap() which is called whenever Lex reaches an
end-of-file. 1If yywrap returns a 1, Lex continues with the
normal wrapup on end of input. Sometimes, however, it is
convenient to arrange for more input to arrive from a new
source. In this case, the user should provide a yywrap
which arranges for new input and returns 0. This instructs
Lex to continue processing. The default yywrap always
returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is not
possible to write a normal rule which recognizes end-of-
file; the only access to this condition is through rap().
In fact, unless a private version of input() is supplie a
file containing nulls cannot be handled, since a value of 0
returned by input is taken to be end-of-file.

9.5 Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than one
expression can match the current input, Lex chooses as
follows:

& The longest match is preferred.

@ Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integer keyword action ...;
[a=z]+ 1identifier action ...;

to be given in that order. If the input is integers, it |is
taken as an identifier, because [a-z]+ matches 8 characters

while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int)
does not match the expression integer, so the identifier
interpretation is used.

The principle of preferring the longest match makes certain
constructions dangerous, such as the following:

*

For example,

Lex Lex

"ok
might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression matches
'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of
the form '

[\n] %!

which, on the above input, stops after ‘'first'. The
consequences oOf errors like this are mitigated by the fact
that the dot (.) operator does not match a newline.
Therefore, only no more than one line is ever matched by
such expressions. Don't try to defeat this with expressions
like

[.\n]+

or their equivalents: the Lex generated program will try to
read the entire input file, causing internal buffer

overflows.

Note that Lex is normally partitioning the input stream, not
searching for all possible matches of each expression. This
means that each character is accounted for once and only
once. For example, suppose it is desired to count
occurrences of both "she" and "he" in an input text. Some
Lex rules to do this might be

she ++
++

e we

he
\n

Se —3 0

where the last two rules ignore everything besides "he"™ and
"she". Remember that the period (.) does not include the
newline. Since "she" includes "he", Lex will normally not
recognize the instances of "he" included in "she", since
once it has passed a "she" those characters are gone.

Sometimes the user would like to override this choice. The
action REJECT means "go do the next alternative." It causes

Lex Lex

whatever rule was second choice after the current rule to be
executed. The position of the input pointer is adjusted
accordingly. Suppose the user really wants to count the
included instances of "he":

she sS++; REJECT;]
he h++; REJECT;
\n

. 7

These rules are one way of changing the previous example to
do just that. After counting each expression, it is
rejected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user could
note that "she" includes "he", but not vice versa, and omit
the REJECT action on "he"; in other cases, however, it would
not be possible to tell which input characters were in both
classes.

Consider the two rules

a[bcl+ {

REJECT;]
al[cd]l+

REJECT;

«e e

If the input is "ab", only the first rule matches, and on
"ad" only the second matches. The input string "accb"
matches the first rule for four characters and then the
second rule for three characters. 1In contrast, the input
"accd" agrees with the second rule for four characters and
then the first rule for three.

In general, REJECT is useful whenever the purpose of Lex is
not to partition the input stream but to detect all examples
of some items in the input, and the instances of these items
may overlap or include each other. Suppose a digram table
of the input is desired; normally the digrams overlap, that
is the word "the" is considered to contain both "th" and
"he". Assuming a two-dimensional array named digram to be
incremented, the appropriate source is

£ 3
[a-2z] [a-2] {digram[yytext[0]] [yytext[1))++; REJECT;}
\n ;

where the REJECT is necessary to pick up a 1letter pair
beginning at every character, rather than at every other
character.

9-15

Lex Lex

9.6 Lex Source Definitions
Remember the format of the Lex source:

{definitions}
3

{rules}

33

{user routines}

So far only the rules have been described. You will need
additional options, though, to define variables for use in
your program and for use by Lex. These can go either in the
definitions section or in the rules section.

Remember that Lex is turning the rules into a program. Any
source not intercepted by Lex is copied into the generated

program. There are three classes of such things:

1. Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior to the
first %% delimiter will be external to any function in
the code; if it appears immediately after the first

%3, it appears in an appropriate place for
declarations in the function written by Lex which
contains the actions. This material must look like
program fragments, and should precede the first Lex
rule.

As a side effect of the above, lines which begin with
a blank or tab, and which contain a comment, are
passed through to the generated program. This can be
used to include comments in either the Lex source or
the generated code. The comments should follow the
conventions of the C language.

2. Anything included between lines containing only "${"
and "$}" is copied out as above. The delimiters are
discarded. This format permits entering text 1like
preprocessor statements that must begin in column 1,
or copying lines that do not look like programs.

3. Anything after the third "%%" delimiter, regardless of
formats, etc., is copied out after the Lex output.

Definitions intended for Lex are given before the
first "%%" delimiter. Any 1line in this section not
contained between "${" and "%}", and beginning in
column 1, is assumed to define Lex substitution
strings. The format of such lines is

Lex Lex

name translation

and it causes the string given as a translation to be
associated with the name. The name and translation
must be separated by at least one blank or tab, and
the name must begin with a letter. The translation
can then be called out by the {name} syntax in a rule.
Using {D} for the digits and |E} for an exponent
field, for example, might abbreviate rules to
recognize numbers:

D [0-9]
E [DEde] [-+]?{D}+
)

$

D)+ printf{"integer"};
T
D}*" . "{D}+(1E})}?

D}+{E} printf("real");

Note the first two rules for real numbers; both
require a decimal point and contain an optional
exponent field, but the first requires at 1least one
digit before the decimal point and the second requires
at least one digit after the decimal point. To
correctly handle the problem posed by a Fortran
expression such as "35.EQ.I", which does not contain a
real number, a context-sensitive rule such as

[0-9]+/"."EQ printf("integer");

could be used in addition to the normal rule for
integers.

The definitions section may also contain other
commands, including the selection of a host language,
a character set table, a list of start conditions, or
adjustments to the default size of arrays within Lex -
itself for larger source programs. These
possibilities are discussed below under "Summary of
Source Format."

9.7 Usage

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a library
of Lex subroutines. The generated program is on a file
named lex.yy.c. The I/O library is defined in terms of the
C standard 1library.

Lex Lex

The library is accessed by the 1loader flag -1lln. So an
appropriate set of commands is

lex source
cc lex.yy.c -1lln

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see the following
section and Chapter 10 "YACC: A Compiler-Compiler"”.
Although the default Lex I/O routines use the C standard
library, the Lex automata themselves: do not do so. If
private versions of input, output and unput are given, the
library can be avoided.

9.8 Lex and Yacc

If you want to use Lex with Yacc, note that what Lex writes
is a program named lex(), the name required by Yacc for
its analyzer. Normally, the default main program on the Lex
library calls this routine, but if Yacc is loaded, and its
main program is used, Yacc will call yylex(). In this case,
each Lex rule should end with

return(token) ;

where the appropriate token value is returned. An easy way
to get access to Yacc's names for tokens is to compile the
Lex output file as part of the Yacc output file by placing
the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar to
be named "good" and the lexical rules to be named "better"
the XENIX command sequence can just be:

yacc good
lex better
cc y.tab.c -1y -1lln

The Yacc library (-ly) should be 1loaded before the Lex
library, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc ‘programs can be
done in either order.

As a trivial problem, consider copying an input file while
adding 3 to every positive number divisible by 7. Here is a
suitable Lex source program to just that:

9-18

Lex Lex

%
int k;
[0-91+ {
k = atoi(yytext);
if (k%7 == 0)
printf("sd", k+3);
else

}

>
The rule [0-9]+ recognizes strings of digits; atoi ()
converts the digits to binary and stores the result in "k".
The operator % (remainder) is used to check whether "k" is
divisible by 7; if it is, it is incremented by 3 as it is
written out. It may be objected that this program will
alter such input items as 49.63 or X7. Furthermore, it
increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

printf("sd",k);

L1
int k;
-2[0-9]+
k = atoi(yytext):;

rintf("sd", kg7 == ? k+3 K) ;

-?2[0-9.]+ ECHO;
[A-Za-2z] [A-Za-20-9]+ ECHO;

Numerical strings containing a decimal point or preceded by
a letter will be picked up by one of the last two rules, and
not changed. The if-else has been replaced by a C
conditional expression to save space; the form "a?b:c"
means: if "a" then "b" else "c".

For an example of statistics gathering, here is a program

which makes histograms of word 1lengths, where a word is
defined as a string of letters.

9-19

Lex Lex

int lengs[100];

%3
[a-z]+ lengs(yyleng]++;
\n ;

33 '
fywrap(y

int i; ,
printf ("Length No. words\n");
for (i=0; i<100; i++)
if (lengs[i] > 0)
printf("%54%104\n",i,lengs[i]);
return(l);

This program accumulates the histogram, while producing no
output. At the end of the input it prints the table. The
final statement return(l); indicates that Lex is to perform
wrapup. If rap() returns =zero (false) it implies that
further input 1s available and the program is to continue
reading and processing. To provide a yywrap() that never
returns true causes an infinite loop.

As a larger example, here are some parts of a program
written to convert double precision Fortran to single
precision Fortran. Because Fortran does not distinguish
upper and lower case letters, this routine begins by
defining a set of classes inecluding both cases of each
letter:

[aA]
[bB]
[cC]
(z2]

NQUO

An additional class recognizes white space:
W [\t]*

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

{a}{o}Hu}{b}{1}{e}{w}{p}{r}{e}{c}{i}{s}{i}{o}{n} {

Trintf(yytext[0]=='d'? "real" : "REAL"):;

Care is taken throughout this program to preserve the case
(upper or 1lower) of the original program. The conditional
operator is used to select the proper form of the keyword.
The next rule copies continuation card indications to avoid
confusing them with constants:

9-20

Lex Lex

o "[* 0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the ¢two different
meanings of the caret (") here. There follow some rules to
change double precision constants to ordinary floating
[0~9]+{W]{d} ?2{w}{0-91+
[0-9]+{wW}"." W [+~]?1w1[o—9]+
/* convert constants */
for (p=yytext; *p != 0; p++)

constants.
w}i+-
wital
n v {w}ro-91+{w}{a}{w}[+-12{w]}[0-9]+

if (*p == 'a°’ Il *p == 'D')
*p+= 'e'- 'd’';
ECHO;

After the floating point constant 1is recognized, it |is
scanned by the for loop to find the letter “d' or “D'. The
program then adds 'e'-'d' which converts it to the next
letter of the alphabet. The modified constant, now single-
precision, is written out again. There follow a series of
names which must be respelled to remove their initial "4d".
By using the array "yytext" the same action suffices for all
the names (only a sample of a rather long list is given
here) .

diistiijin

dijictiotis

al{s}t{qg}ir It]

driajittiatin

{al {£}{1}{o}{a}{¢} Printf("$s",yytext+l);

Another list of names must have initial "d" changed to
initial "a":

djiltiosig

drilriofigrlo

djimiiilintl

diimtiarix:1
yytext[0] += 'a' - '4’';
ECHO;

And one routine must have initial "d" changed to initial
llrll:

9-21

Lex Lex

{a}1{m}{a}{c}{n} {yytext[0] += 'r* - 'a';
ECHO;

To avoid such names as "dsinx" being detected as instances
of "dsin", some final rules pick up 1longer words as
identifiers and copy some surviving characters:

[A-Za-z] [A-Za-z0-9]*
[0-9]+

\n

. ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in FORTRAN or with the use of
keywords as identifiers.

9.9 Left Context Sensitivity

Sometimes it is desirable to have several sets of 1lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish
preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior
context, and there are several ways of handling such
problems. The circumflex (") operator, for example, is a
prior context operator, recognizing immediately preceding
left context just as the dollar sign ($) recognizes
immediately following right context. Adjacent left context
could be extended, to produce a facility similar to that for
adjacent right context, but it is unlikely to be as useful,
since often the relevant left context appeared some time
earlier, such as at the beginning of a line.

This section describes three means of dealing with different
environments: a simple use of flags, when only a few rules
change from one environment to another, the use of start
conditions on rules, and the possibility of making multiple
lexical analyzers all run together. 1In each case, there are
rules which recognize the need to change the environment in
which the following input text is analyzed, and set some
parameter to reflect the change. This may be a flag
explicitly tested by the user's action code; such a flag is
the simplest way of dealing with the problem, since Lex is
not involved at all. It may be more convenient, however, to
have Lex remember the flags as initial conditions on the
rules. Any rule may be associated with a start condition.
It will only be recognized when Lex is in that start
condition. The current start condition may be changed at
any time. Finally, if the sets of rules for the different

Lex Lex

environments are very dissimilar, clarity may be best
achieved by writing several distinct lexical analyzers, and
switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word "magic" to "first" on every line
which began with the 1letter "a", changing "magic" to
"second"” on every line which began with the letter "b", and
changing "magic" to "third" on every line which began with
the letter "c". All other words and all other lines are left
unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
£
“a flag = 'a'; ECHO;
“b flag = 'b'; ECHO;
“c flag = 'c'; ECHO;
\n flag = 0 ; ECHO:;
magic

switch (flag)

case 'a': printf("first"); break;

case 'b': printf("second"); break;
case 'c': printf("third"); break;

default: ECHO; break;

should be adequate.

To handle the same problem with start conditions, each start
condition must be introduced to Lex 1in the definitions
section with a line reading

g§Start namel name2 ...

where the conditions may be named in any order. The word
"Start"™ may be abbreviated to "s" or "S". The conditions
may be referenced at the head of a rule with angle brackets
(< and >):

<namel>expression

is a rule which is only recognized when Lex is in the start
condition "namel". To enter a start condition, execute the
action statement

Lex Lex

BEGIN namel;

which changes the start condition to namel. To resume the
normal state,

BEGIN O0;

resets the initial condition of the Lex automaton

interpreter. A rule may be active 1in several start
conditions:

<namel ,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix
operator is always active.

The same example as before can be written:

$START AA BB CC

£1

“a ECHO; BEGIN AA;

“b ECHO; BEGIN BB;

“c ECHO; BEGIN CC;

\n ECHO; BEGIN 0;}
<AA>magic printf("first");
<BB>magic printf("second") ;
<CC>magic printf("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work rather
than the user's code.

9.10 Character Set

The programs generated by Lex handle character I/0 only
through the routines input, output and unput. Thus the
character representation provided in these routines is
accepted by Lex and employed to return values in "yytext".
For internal use a character 1is represented as a small
integer which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. Normally, the letter
"a" is represented as the same form as the character
constant:

'al

If this interpretation is changed, by providing I/O routines
which translate the characters, Lex must be told about it,
by giving a translation table. This table must be in the

Lex Lex

definitions section, and must be bracketed by 1lines
containing only "$T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
For example:

1l Aa

2 Bb
26 2z
27 \n
28 +
29 -
30 0

31 1

39 9

This table maps the lower and upper case letters together
into the integers 1 through 26, newline into 27, plus (+)
and minus (-) into 28 and 29, and the digits into 30 through

39. Note the escape for newline. If a table is supplied,
every character that is to appear either in the rules or 1in
any valid input must be included in the table. No character

may be assigned the number 0, and no character may be
assigned a larger number than the size of the hardware
character set.

9.11 Summary of Source Format

The general form of a Lex source file is:

{definitions}

{user subroutines}
The definitions section contains a combination of
1. Definitions, in the form "name space translation".
2. Included code, in the form "space code".

3. Included code, in the form

Lex Lex

3{

code

t}

4. sStart conditions, given in the form
%S namel name2 ...
5. Character set tables, in the form

$T
number space character-string
T

6. Changes to internal array sizes, in the form
$X nnn

where nnn is a decimal integer representing an array
size and "x" selects the parameter as follows:

Letter Parameter

positions

states

tree nodes

transitions

packed character classes
output array size

oOxoo>3T

Lines in the rules section have the form "expression
action" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X The character "x"

"x" An "x", even if x is an operator.
\x An "x", even if x is an operator.
[(xy] The character x or y.

(x-2] The characters x, y or z.

["x] Any character but x.

. Any character but newline.

“x An x at the beginning of a line.

~—r

Lex Lex

<y>x An x when Lex is in start condition y.

x$ An x at the end of a line.

x? An optional x.

x* 0,1,2, ... instances of x.

x+ 1,2,3, ... instances of x.

x|y An x or ay.

(x) An Xx.

x/y An x but only if followed by y.

{xx} The translation of xx from the definitions
section.

x{m, n} m through n occurrences of x.

9.12 Notes

There are pathological expressions which produce exponential
growth of the tables when converted to deterministic
machines; fortunately, they are rare.

REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with
trailing context is found, and REJECT executed, the user
must not have used unput to change the characters
forthcoming from the input stream. This 1is the only
restriction on the wuser's ability to manipulate the not-
yet-processed input.

9-27

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15

CHAPTER 10
YACC: A COMPILER-COMPILER

CONTENTS

INtroduction. ceceeececccoscscccscscsscscssconsscncscs
Basic SpecificationsS..ccccccccccccccccccccccne
ACtiONS.ccccecscoscsssossssossssosssssnssscnscsscse
Lexical AnalySiSececcccceccecccscccccsccsccscccscncs
How the Parser WOrkSeeececececececececccccccccccccsce
Ambiguity and ConflictS..ccceccccccccccccccccns
PrecedenCe. cccccccccccccccccssssscscscscscscscccccecse
Error Handling.cceeceeeocececcscscocscscsscscsccscs
The Yacc Environment...cceccecceccecccccccccccces
Hints for Preparing SpecificationsS..ccecccecceces
Advanced TOPiCSeceeeccccccccscccccccccssssssscas
A Simple EXampPle..cccecccccsccccccoosscssscssccccss
Yacc Input SyntaXe.cecececececococococococcccccce
An Advanced ExampPle.cccecccccccccccccccscccscccs

016 Features...........o......o...............

10-1

10-4

10-6

10-9
10-11
10-17
10-22
10-25
10-27
10-28
10-32
10-35
10-38
10-40
10-47

O
L
P>
O
-,
m
By
=
o_.

YACC YACC

10.1 Introduction

Computer program input generally has some structure; every
computer program that does input can be thought of as
defining an "input language" which it accepts. An input
language may be as complex as a programming language, or as
simple as a sequence of numbers. Unfortunately, usual input
facilities are 1limited, difficult to use, and often lax
about checking their inputs for wvalidity.

Yacc provides a general tool for describing the input to a
computer program. The name Yacc itself stands for "yet
another compiler-compiler."” The Yacc user specifies the
structures of his input, together with code to be invoked as
each such structure 1is recognized. Yacc turns such a
specification into a subroutine that handles the input
process; frequently, it is convenient and appropriate to
have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied
routine to return the next basic input item. Thus, the user
can specify his input in terms of individual input
characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also
handle idiomatic features such as comment and continuation
conventions, which typically defy easy grammatical
specification. The class of specifications accepted is a
very general one: LALR grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc.,
Yacc has also been used for less conventional languages,
including a phototypesetter language, several desk
calculator 1languages, a document retrieval system, and a
Fortran debugging system.

Yacc provides a general tool for imposing structure on the
input to a computer program. The Yacc user prepares a
specification of the input process; this includes rules
describing the input structure, code to be invoked when
these rules are recognized, and a low-level routine ¢to do
the basic input. Yacc then generates a function to control
the input process. This function, called a parser, calls
the user-supplied 1low-level input routine (the lexical
analyzer) to pick up the basic items (called tokens) from
the 1input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of
these rules has been recognized, then user code supplied for
this rule, an action, is invoked; actions have the ability
to return values and make use of the values of other
actions.

10-1

YACC YACC

in this case, month name would be a token.

Literal characters such as "," must also be passed through
the lexical analyzer, and are also considered tokens.

Specification files are very flexible. It is relatively
easy to add to the above example the rule

date : month '/' day '/' year ;
allowing

7/4/1776
as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a
working system with minimal effort, and little danger of
disrupting existing input.

The input being read may not conform to the specifications.
These input errors are detected as early as is theoretically
possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be
quickly found. Error handling, provided as part of the
input specifications, permits the reentry of bad data, or
the continuation of the input process after skipping over
the bad data.

In some cases, Yacc fails to produce a parser when given a
set of specifications. For example, the specifications may
be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The
former cases represent design errors; the latter cases can
often be corrected by making the 1lexical analyzer more
powerful, or by rewriting some of the grammar rules. While
Yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the
constructions which are difficult for Yacc to handle are
also frequently difficult for human beings to handle. Some
users have reported that the discipline of formulating valid
Yacc specifications for their input revealed errors of
conception or design early in the program development.

The next several sections describe:

® The preparation of grammar rules

10-3

YACC YACC

Yacc is written in a portable dialect of C and the actions,
and output subroutine, are in C as well. Moreover, many of
the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of
grammar rules. Each rule describes an allowable structure
and gives it a name. For example, one dgrammar rule might
be:

date : month_name day ',' year H

Here, date, month name, day, and year represent structures
of interest in the input process; presumably, month name,
day, and year are defined elsewhere. The comma "," 1is
enclosed in single quotes; this implies that the comma is to
appear literally in the input. The colon and semicolon
merely serve as punctuation in the rule, and have no
significance in controlling the input. Thus, with proper
definitions, the input:

July 4, 1776
might be matched by the above rule.

An important part of the input process is carried out by the
lexical analyzer. This user routine reads the input stream,
recognizing the lower 1level structures, and communicates
these tokens to the parser. A structure recognized by the
lexical analyzer is called a terminal symbol, while the
structure recognized by the parser is called a nonterminal
symbol. To avoid confusion, terminal symbols will wusually
be referred to as tokens.

There 1is considerable leeway in deciding whether to
recognize structures using the lexical analyzer or grammar
rules. For example, the rules

month_name : 'J' 'a' 'n'
month_name : 'F' 'e' 'b'

«e “o

month_name 'D' 'e' 'c¢' ;

might be used in the above example. The 1lexical analyzer
would only need to recognize individual 1letters, and
month name would be a nonterminal symbol. Such 1low-level
rules tend to waste time and space, and may complicate the
specification beyond Yacc's ability to deal with it.
Usually, the 1lexical analyzer would recognize the month
names, and return an indication that a month name was seen;

10-2

YACC YACC

Blanks, tabs, and newlines are ignored except that they may
not appear in names or multi-character reserved symbols.
Comments may appear wherever a name is 1legal; they are
enclosed in /* ... */, as in C.

The rules section is made up of one or more grammar rules.
A grammar rule has the form:

A represents a nonterminal name, and BODY represents a
sequence of zero or more names and literals. The colon and
the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of
letters, dot ".", wunderscore "_", and non-initial digits.
Upper and lower case letters are distinct. The names used
in the body of a grammar rule may represent tokens or
nonterminal symbols.

A literal consists of a character enclosed in single quotes
*'', As in C, the backslash "\" is an escape character
within literals, and all the C escapes are recognized. Thus

For a number of technical reasons, the NUL character ('\O0'
or 0) should never be used in grammar rules.

If there are several grammar rules with the same 1left hand
side, the vertical bar “|“ can be used to avoid rewriting
the left hand side. 1In addition, the semicolon at the end
of a rule can be dropped before a vertical bar. Thus the
grammar rules

A : B C D
A : E F ;
A: G :

can be given to Yacc as

>

C D
F

QMW

-0

It is not necessary that all grammar rules with the same
left side appear together in the grammar rules section,
although it makes the input much more readable, and easier
to change. ‘

If a nonterminal symbol matches the empty string, this can
be indicated in the obvious way:

10-5

YACC YACC

® The preparation of the user supplied actions associated
with the grammar rules

® The preparation of lexical analyzers
® The operation of the parser

® Various reasons why Yacc may be unable to produce a
parser from a specification, and what to do about it.

® A simple mechanism for handling operator precedences in
arithmetic expressions.

@& Error detection and recovery.

@ The operating environment and special features of the
parsers Yacc produces.

® gives some suggestions which should improve the style
and efficiency of the specifications.

10.2 Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc
requires token names to be declared as such. 1In addition,
for reasons discussed later, it is often desirable to
include the 1lexical analyzer as part of the specification
file. It may be useful to include other programs as well.
Thus, every specification file consists of three sections:
the declarations, (grammar) rules, and programs. The
sections are separated by double percent "%$%" marks. (The
percent “%' is generally used in Yacc specifications as an
escape character.)

In other words, a full specification file looks like

declarations
3

rules

£33

programs

The declaration section may be empty. Moreover, if the
programs section is omitted, the second %% mark may be
omitted also; thus, the smallest legal Yacc specification is

3
rules

10-4

YACC YACC

{ hello(1, "abc"); |}
and

XXX : YYY 222
{ printf("a message\n");
flag = 25;}

are grammar rules with actions.

To facilitate easy communication between the actions and the
parser, the action statements are altered slightly. The
symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-
variable "$$" to some value. For example, an action that
does nothing but return the value 1 is

{ 8 = 1; }

To obtain the values returned by previous actions and the

lexical analyzer, the action may use the pseudo-variables
$1, $2, ..., which refer to the values returned by the
components of the right side of a rule, reading from left to
right. Thus, if the rule is

A : BCD;

for example, then $2 has the value returned by C, and $3 the
value returned by D.

As a more concrete example, consider the rule
expr : '(' expr ')' ;

The value returned by this rule is usually the value of the
expr in parentheses. This can be indicated by

expr : '"(' expr ")' { $$ = $2 ; }

By default, the value of a rule is the value of the first
element in it ($l1). Thus, grammar rules of the form

A : B ;

frequently need not have an explicit action.

In the examples above, all the actions came at the end of
their rules. Sometimes, it 1is desirable to get control

10-7

YACC YACC

empty : ;

Names representing tokens must be declared; this is most
simply done by writing

$token namel name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for
much more discussion). Every name not defined in the
declarations section is assumed to represent a nonterminal
symbol. Every nonterminal symbol must appear on the left
side of at least one rule.

Of all the nonterminal symbols, one, called the start
symbol, has particular importance. The parser is designed
to recognize the start symbol; thus, this symbol represents
the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left
hand side of the first grammar rule in the rules section.
It is possible, and in fact desirable, to declare the start
symbol explicitly in the declarations section using the
gstart keyword:

§start symbol

The end of the input to the parser is signaled by a special
token, called the endmarker. If the tokens up to, but not
including, the endmarker form a structure which matches the
start symbol, the parser function returns to its caller
after the endmarker is seen; it accepts the input. If the
endmarker is seen in any other context, it is an error.

It is the job of the user-supplied 1lexical analyzer to
return the endmarker when appropriate; see section 3, below.
Usually the endmarker represents some reasonably obvious I/0
status, such as "end-of-file" or "end-of-record".

10.3 Actions

With each grammar rule, the user may associate actions to be
performed each time the rule is recognized in the input
process. These actions may return values,.- and may obtain
the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do
input and output, call subprograms, and alter external
vectors and variables. An action is specified by _one or
more statements, enclosed in curly braces "{" and "}". For
example

10-6

YACC YACC

The user may define other variables to be used by the
actions. Declarations and definitions can appear in the
declarations section, enclosed in the marks "${" and "g}".
These declarations and definitions have global scope, so
they are known to the action statements and the 1lexical
analyzer. For example,

${ int variable = 0; %}

could be placed in the declarations section, making variable
accessible to all of the actions. The Yacc parser uses only
names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion
of values of other types will be found in a later section.

10.4 Lexical Analysis

The user must supply a lexical analyzer to read the input
stream and communicate tokens (with values, if desired) to
the parser. The 1lexical analyzer 1is an integer-valued
function called yylex. The function returns an integer, the
token number, representing the kind of token read. If there
is a value associated with that token, it should be assigned
to the external variable yylval.

The parser and the lexical analyzer must agree on these
token numbers in order for communication between them to
take place. The numbers may be chosen by Yacc, or chosen by
the user. 1In either case, the "# define" mechanism of C is
used to allow the lexical analyzer to return these numbers
symbolically. For example, suppose that the token name
DIGIT has been defined in the declarations section of the
Yacc specification file. The relevant portion of the
lexical analyzer might look like:

10-9

YACC YACC

before a rule is fully parsed. Yacc permits an action to be
written in the middle of a rule as well as at the end. This
rule is assumed to return a value, accessible through the
usual mechanism by the actions to the right of it. 1In turn,
it may access the values returned by the -'symbols to its
left. Thus, in the rule

A
$$ =1; }

X

~ N~
(]
n
N
-0
~
[]
<
w
-0
—

the effect is to set x to 1, and y to the value returned by
C.

Actions that do not terminate a rule are actually handled by
Yacc by manufacturing a new nonterminal symbol name, and a
" new rule matching this name to the empty string. The
interior action 1is the action triggered off by recognizing
this added rule. Yacc actually treats the above example as
if it had been written:

SACT : /* empty */
$$ =1; |}

°
’

B SACT C

>

°
’

In many applications, output is not done directly by the
actions; rather, a data structure, such as a parse tree, is
constructed in memory, and transformations are applied to it
before output 1is generated. Parse trees are particularly
easy to construct, given routines to build and maintain the
tree structure desired. For example, suppose there is a C
function node, written so that the call

node(L, nl, n2)
creates a node with label L, and descendants nl and n2, and

returns the index of the newly created node. Then parse
tree can be built by supplying actions such as:

expr : expr '+' expr
$$ = node('+', $1, $3); |}

in the specification.

10-8

YACC YACC

return 0 or negative as a token number upon reaching the end
of their input.

A very useful tool for constructing 1lexical analyzers is
Lex, discussed in a previous section. These lexical
analyzers are designed to work in close harmony with Yacc
parsers. The specifications for these lexical analyzers use
regular expressions instead of grammar rules. Lex can be
easily used to produce quite complicated lexical analyzers,
but there remain some languages (such as FORTRAN) which do
not fit any theoretical framework, and whose 1lexical
analyzers must be crafted by hand.

10.5 How the Parser Works

Yacc turns the specification file into a C program, which
parses the input according to the specification given. The
algorithm used to go from the specification to the parser is
complex, and will not be discussed here (see the references
for more information). The parser 1itself, however, is
relatively simple, and understanding how it works, while not
strictly necessary, will nevertheless make treatment of
error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state
machine with a stack. The parser is also capable of reading
and remembering the next input token (called the 1lookahead
token). The current state is always the one on the top of
the stack. The states of the finite state machine are given
small integer labels; initially, the machine is in state 0,
the stack contains only state 0, and no lookahead token has
been read.

The machine has only four actions available to it, called
shift, reduce, accept, and error. A move of the parser is
done as follows:

1. Based on its current state, the parser decides whether

it needs a lookahead token to decide what action
should be done; if it needs one, and does not have

one, it calls yylex to obtain the next token.

2. Using the current state, and the 1lookahead token if
needed, the parser decides on its next action, and
carries it out. This may result in states being
pushed onto the stack, or popped off of the stack, and
in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes.
Whenever a shift action 1is taken, there 1is always a

10-11

YACC YACC

yylex () {
extern int yylval;

int c;
c = getchar();

switch(c) {

case '0':
case 'l':
case '9':

yylval = c-'0"';
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value
equal to the numerical value of the digit. Provided that
the lexical analyzer code is placed in the programs section
of the specification file, the identifier DIGIT will be
defined as the token number associated with the token DIGIT.

This mechanism 1leads to <clear, easily modified 1lexical
analyzers; the only pitfall is the need to avoid using any
token names in the grammar that are reserved or significant
in C or the parser; for example, the use of token names if
or while will almost certainly cause severe difficulties
when the lexical analyzer is compiled. The token name error
is reserved for error handling, and should not be used
naively.

As mentioned above, the token numbers may be chosen by Yacc
or by the user. 1In the default situation, the numbers are
chosen by Yacc. The default token number for a 1literal
character 1is the numerical value of the character in the
local character set. Other names are assigned token numbers
starting at 257.

To assign a token number to a token (including 1literals),
the first appearance of the token name or literal in the
declarations section can be immediately followed by a
nonnegative integer. This integer is taken to be the token
number of the name or 1literal. Names and 1literals not
defined by this mechanism retain their default definition.
It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number
0 or negative. This token number cannot be redefined by the
user. Hence, all lexical analyzers should be prepared to

10-10

YACC YACC

this action 1is called a goto action. 1In particular, the
lookahead token is cleared by a shift, and is not affected
by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the
current state.

In effect, the reduce action "turns back the clock™ 1in the
parse, popping the states off the stack to go back to the
state where the right hand side of the rule was first seen.
The parser then behaves as if it had seen the left side at
that time. If the right hand side of the rule is empty, no
states are popped off of the stack: the uncovered state is
in fact the current state.

The reduce action is also important in the treatment of
user-supplied actions and values. When a rule is reduced,
the code supplied with the rule is executed before the stack
is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values
returned from the lexical analyzer and the actions. When a
shift takes place, the external variable yylval is copied
onto the value stack. After the return from the user code,
the reduction is carried out. When the goto action is done,
the external variable val is copied onto the value stack.
The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler.
The accept action indicates that the entire input has been
seen and that it matches the specification. This action
appears only when the lookahead token is the endmarker, and
indicates that the parser has successfully done 1its job.
The error action, on the other hand, represents a place
where the parser can no longer continue parsing according to
the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything
that would result in a legal input. The parser reports an
error, and attempts to recover the situation and resume
parsing: the error recovery (as opposed to the detection of
error) will be in a later section.

Consider the following example:

10-13

YACC YACC

lookahead token. For example, in state 56 there may be an
action:

IF shift 34

which says, in state 56, if the lookahead token is 1IF, the
current state (56) is pushed down on the stack, and state 34
becomes the current state (on the top of the stack). The
lookahead token is cleared.

The reduce action keeps the stack from growing without
bounds. Reduce actions are appropriate when the parser has
seen the right hand side of a grammar rule, and is prepared
to announce that it has seen an instance of the rule,
replacing the right hand side by the left hand side. It may
be necessary to consult the lookahead token to decide
whether to reduce, but usually it 1is not; in fact, the
default action (represented by a ".") is often a reduce
action.

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, leading
to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is
A: XYy 2z ;

The reduce action depends on the left hand symbol (A in this
case), and the number of symbols on the right hand side
(three in this case). To reduce, first pop off the top
three states from the stack (In general, the number of
states popped equals the number of symbols on the right side
of the rule). 1In effect, these states were the ones put on
the stack while recognizing x, y, and z, and no longer serve
any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before
beginning to process the rule. Using this uncovered state,
and the symbol on the left side of the rule, perform what is
in effect a shift of A. A new state is obtained, pushed
onto the stack, and parsing continues. There are
significant differences between the processing of the left
hand symbol and an ordinary shift of a token, however, so

10-12

YACC YACC

state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (1)

. reduce 1

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2

Notice that, in addition to the actions for each state,
there 1is a description of the parsing rules being processed
in each state. The underscore character (_) 1is wused to
indicate what has been seen, and what is yet to come, in
each rule. Suppose the input is

10-15

YACC YACC

ttoken DING DONG DELL

3
rhyme : sound place
sound : DING DONG
7
place : DELL
H

When Yacc is invoked with the -v option, a file called
y.output is produced, with a human-readable description of

the parser. The y.output file corresponding to the above
grammar (with some statistics stripped off the end) is:

10-14

YACC YACC

10.6 Ambiguity and Conflicts

A set of grammar rules is ambiquous if there is some input
string that can be structured in two or more different ways.
For example, the grammar rule

expr : expr '-' expr
is a natural way of expressing the fact that one way of
forming an arithmetic expression 1is to put two other
expressions together with a minus sign between them.
Unfortunately, this grammar rule does not completely specify
the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr
the rule allows this input to be structured as either

(expr - expr) - expr
or as

expr - (expr - expr)

(The first is called left association, the second right
association).

Yacc detects such ambiguities when it is attempting to build
the parser. It is instructive to consider the problem that
confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it
has seen:

expr - expr

matches the right side of the grammar rule above. The
parser could reduce the input by applying this rule; after
applying the rule; the input is reduced to expr(the 1left
side of the rule). The parser would then read the final
part of the input:

- expr

and again reduce. The effect of this is to take the 1left
associative interpretation.

10-17

YACC YACC

DING DONG DELL

It is instructive to follow the steps of the parser while
processing this input.

Initially, the current state is state 0. The parser needs
to refer to the input in order to decide between the actions
available in state 0, so the first token, DING, 1is read,
becoming the lookahead token. The action in state 0 on DING
is is "shift 3", so state 3 is pushed onto the stack, and
the lookahead token is cleared. State 3 becomes the current
state. The next token, DONG, 1is read, becoming the
lookahead token. The action in state 3 on the token DONG is
"shift 6", so state 6 is pushed onto the stack, and the
lookahead 1is cleared. The stack now contains 0, 3, and 6.
In state 6, without even consulting the 1lookahead, the
parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two
states, 6 and 3, are popped off of the stack, uncovering
state 0. Consulting the description of state 0, looking for
a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming
the current state.

In state 2, the next token, DELL, must be read. The action
is "shift 5", so state 5 is pushed onto the stack, which now
has 0, 2, and 5 on it, and the lookahead token 1is cleared.
In state 5, the only action is to reduce by rule 3. This
has one symbol on the right hand side, so one state, 5, is
popped off, and state 2 is uncovered. The goto in state 2

on place, the left side of rule 3, is state 4. Now, the
stack contains 0, 2, and 4. 1In state 4, the only action is
to reduce by rule 1. There are two symbols on the right, so
the top two states are popped off, uncovering state 0 again.
In state 0, there is a goto on rhyme causing the parser to
enter state 1. 1In state 1, the input is read; the endmarker
is obtained, indicated by "S$end" in the y.output file. The
action in state 1 when the endmarker is seen is to accept,

successfully ending the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as "DING DONG DONG",
"DING DONG", "DING DONG DELL DELL", etc. A few minutes
spend with this and other simple examples will probably be
repaid when problems arise in more complicated contexts.

10-16

YACC YACC

being recognized. In these cases, the application of
disambiguating rules is inappropriate, and 1leads to an
incorrect parser. For this reason, Yacc always reports the
number of shift/reduce and reduce/reduce conflicts resolved
by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating
rules to produce a correct parser, it is also possible to
rewrite the grammar rules so that the same inputs are read
but there are no conflicts. For this reason, most previous
parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is
somewhat unnatural, and produces slower parsers; thus, Yacc
will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider
a fragment from a programming language involving an "if-
then-else" construction:

stat IF '(' cond '")' stat

IF '(' cond ')' stat ELSE stat

[P —y

In these rules, IF and ELSE are tokens, cond is a
nonterminal symbol describing conditional (logical)
expressions, and stat is a nonterminal symbol describing
statements. The first rule will be called the simple-if
rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input
of the form

IF (Cl1l) IF (C2) S1 ELSE S2
can be structured according to these rules in two ways:

IF (Cl1) {
IF (C2) Sl

ELSE S2
or

IF (Ccl) {
IF (C2) sl
ELSE S2

The second interpretation 1is the one given in most
programming languages having this construct. Each ELSE is

associated with the last preceding "un-ELSE'd" IF. In this

10-19

YACC YACC

Alternatively, when the parser has seen
expr - expr

it could defer the immediate application of the rule, and
continue reading the input until it had seen

exXpr - expr - expr

It could then apply the rule to the rightmost three symbols,
reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take
the right associative interpretation. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction,
and has no way of deciding between them. This is called a
shift/reduce conflict. It may also happen that the parser
has a choice of two 1legal reductions; this is called a
reduce/reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc
still produces a parser. It does this by selecting one of
the valid steps wherever it has a choice. A rule describing
which choice to make in a given situation is called a
disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the
shift.

2. In a reduce/reduce conflict, the default is to reduce
by the earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there
is a <choice, 1in favor of shifts. Rule 2 gives the user
rather crude control over the behavior of the parser in this
situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or 1logic,

or because the grammar rules, while consistent, require a
more complex parser than Yacc can construct. The use of
actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is

10-18

YACC YACC

the output corresponding to the above conflict state might
be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat
stat

IF (cond) stat_ (18)
IF (cond) stat_ELSE stat

ELSE shift 45
. reduce 18

The first line describes the conflict, giving the state and
the input symbol. The ordinary state description follows,
giving the grammar rules active in the state, and the parser
actions. Recall that the underline marks the portion of the
grammar rules which has been seen. Thus in the example, 1in
state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time.
The parser can do two possible things. If the input symbol
is ELSE, it is possible to shift into state 45. State 45
will have, as part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back
in state 23, the alternative action, described by ".", is to
be done if the input symbol is not mentioned explicitly in
the above actions; thus, in this case, if the input symbol
is not ELSE, the parser reduces by grammar rule 18:

stat : IF '(' cond ')' stat

Once again, notice that the numbers following "shift"
commands refer to other states, while the numbers following
"reduce" commands refer to grammar rule numbers. In the
y.output file, the rule numbers are printed after those
rules which can be reduced. 1In most one states, there will
be at most reduce action possible in the state, and this
will be the default command. The user who encounters
unexpected shift/reduce conflicts will probably want to look
at the verbose output to decide whether the default actions
are appropriate. 1In really tough cases, the user might need
to know more about the behavior and construction of the
parser than can be covered here. 1In this case, one of the
theoretical references might be consulted; the services of a

10-21

YACC YACC

example, consider the situation where the parser has seen
IF (Cl) IF (C2) sl

and is looking at the ELSE. It can immediately reduce by
the simple-if rule to get

IF (Cl1) stat

and then read the remaining input,
ELSE S2

and reduce
IF (Cl) stat ELSE S2

by the if-else rule. This leads to the first of the above
groupings of the input.

On the other hand, the ELSE may be shifted, §2 read, and
then the right hand portion of

IF (Cl) IF (C2) Sl ELSE S2
can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This 1leads to
the second of the above groupings of the input, which is
usually desired.

Once again the parser can do two valid things - there is a
shift/reduce conflict. The application of disambiguating
rule 1 tells the parser to shift in this case, which 1leads
to the desired grouping.

This shift/reduce conflict arises only when there 1is a
particular current input symbol, ELSE, and particular inputs
already seen, such as

IF (Cl) IF (C2) Sl

In general, there may be many conflicts, and each one will
be associated with an input symbol and a set of previously
read inputs. The previously read inputs are characterized
by the state of the parser.

The conflict messages of Yacc are best understood by
examining the verbose (-v) option output file. For example,

10-20

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be
described with the keyword %nonassoc in Yacc. As an example
of the behavior of these declarations, the description

fright '='

gleft '+' '-?

gleft '*' '/

L1

expr : expr '=' expr
expr '+' expr
expr '-' expr

expr '*' expr
expr '/' expr
NAME

<o

might be used to structure the input
a=b=c*d - e - f*g

as follows:

a= (b= (((c*d)-e) - (£*g)))

When this mechanism is wused, wunary operators must, in
general, be given a precedence. Sometimes a unary operator
and a binary operator have the same symbolic representation,
but different precedences. An example is unary and binary
'-'; unary minus may be given the same strength as
multiplication, or even higher, while binary minus has a
lower strength than multiplication. The keyword, $prec,
changes the precedence 1level associated with a particular
grammar rule. The %prec appears immediately after the body
of the grammar rule, before the action or closing semicolon,
and is followed by a token name or literal. It causes the
precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary
minus have the same precedence as multiplication the rules
might resemble:

10-23

YACC YACC

local guru might also be appropriate.

10.7 Precedence

There is one common situation where the rules given above
for resolving conflicts are not sufficient; this is in the
parsing of arithmetic expressions. Most of the commonly
used constructions for arithmetic expressions can be
naturally described by the notion of precedence 1levels for
operators, together with information about left or right
associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create
parsers that are faster and easier to write than parsers
constructed from unambiguous grammars. The basic notion is
to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a
very ambiguous grammar, with many parsing conflicts. As
disambiguating rules, the user specifies the precedence, or
binding strength, of all the ‘operators, and the
associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in
accordance with these rules, and construct a parser that
realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens
in the declarations section. This is done by a series of
lines beginning with a Yacc keyword: %left, s$right, or
gnonassoc, followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of
increasing precedence or binding strength. Thus,

$left '+' -
Sleft '*' /7

describes the precedence and associativity of the four
arithmetic operators. Plus and minus are left associative,
and have lower precedence than star and slash, which are
also left associative. The keyword g%right is used to
describe right associative operators, and the keyword
fnonassoc is used to describe operators, like the operator
.LT. in Fortran, that may not associate with themselves;

thus,

10-22

YACC YACC

a good idea to be sparing with precedences, and use them in
an essentially "cookbook" fashion, until some experience has
been gained. The y.output file is very useful in deciding
whether the parser is actually doing what was intended.

10.8 Error Handling

Error handling is an extremely difficult area, and many of
the problems are semantic ones. When an error is found, for
example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, and, typically, set
switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error
is found. 1It is more useful to continue scanning the input
to find further syntax errors. This leads to the problem of
getting the parser "restarted" after an error. A general
class of algorithms to perform this involves discarding a
number of tokens from the input string, and attempting to
adjust the parser so that input can continue.

To allow the user some control over this process, Yacc
provides a simple, but reasonably general feature. The
token name "error" is reserved for error handling. This
name can be used in grammar rules; in effect, it suggests
places where errors are expected, and recovery might take
place. The parser pops its stack until it enters a state
where the token "error" is legal. It then behaves as if the
token "error" were the current lookahead token, and performs
the action encountered. The lookahead token is then reset
to the token that caused the error. If no special error
rules have been specified, the processing halts when an
error is detected.

In order to prevent a cascade of error messages, the parser,
after detecting an error, remains in error state until three
tokens have been successfully read and shifted. If an error
is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser
would attempt to skip over the statement in which the error
was seen. More precisely, the parser will scan ahead,
looking for three tokens that might 1legally follow a
statement, and start processing at the first of these; 1if
the beginnings of statements are not sufficiently

10-25

YACC YACC

gleft '+' '-?
$left '*' /¢
%3
expr expr '+' expr
expr '-' expr
expr '*' expr

expr '/' expr

'-' expr %prec '*!'
NAME

!0

A token declared by %left, %right, and %$nonassoc need not
be, but may be, declared by $token as well.

The precedences and associativities are used by Yacc to
resolve parsing conflicts; they give rise to disambiguating
rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for
those tokens and literals that have them.

2. A precedence and associativity is associated with each
grammar rule; it is the precedence and associativity
of the last token or literal in the body of the rule.
If the $prec construction is used, it overrides this
default. Some grammar rules may have no precedence
and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a
shift/reduce conflict and either the input symbol or
the grammar rule has no precedence and associativity,
then the two disambiguating rules given at the
beginning of the section are used, and the conflicts
are reported.

4., If there is a shift/reduce conflict, and both the
grammar rule and the input character have precedence
and associativity associated with them, then the
conflict 1is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is

used; left associative implies reduce, right
associative 1implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the

number of shift/reduce and reduce/reduce conflicts reported
by Yacc. This means that mistakes in the specification of
precedences may disguise errors in the input grammar; it is

10-24

YACC YACC

discovered. Sometimes, this is inappropriate; for example,
an error recovery action might take upon itself the job of
finding the correct place to resume input. In this case,
the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose
the action after error were to call some sophisticated
resynchronization routine, supplied by the user, that

attempted to advance the input to the beginning of the next
valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token
in a 1legal statement; the o0ld, illegal token must be
discarded, and the error state reset. This could be done by
a rule like

stat : error
resynch () ;
yyerrok ;
yyclearin ; }

.
14

These mechanisms are admittedly crude, but do allow for a
simple, fairly effective recovery of the parser from many
errors. Moreover, the user can get control to deal with the
error actions required by other portions of the program.

10.9 The Yacc Environment

When the user inputs a specification to Yacc, the output is
a file of C programs, called y.tab.c on most systems. The
function produced by Yacc is called yyparse; it is an
integer valued function. ., When it is called, it in turn
repeatedly calls yylex, the lexical analyzer supplied by the
user to obtain input tokens. Eventually, either an error is
detected, in which case (if no error recovery 1is possible)

arse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. 1In this case,
yyparse returns the value 0.

The user must provide a certain amount of environment f£for
this parser in order to obtain a working program. For
example, as with every C program, a program called main must
be defined, that eventually calls yyparse. In addition, a
routine called yyerror prints a message when a syntax error

is detected.

These two routines must be supplied in one form or another
by the user. To ease the initial effort of using Yacc, a

10-27

YACC YACC

distinctive, it may make a false start in the middle of a
statement, and end up reporting a second error where there
is in fact no error.

Actions may be used with these special error rules. These
actions might attempt to reinitialize tables, reclaim symbol
table space, etc.

Error rules such as the above are very general, but
difficult to control. Somewhat easier are rules such as

stat : error ';'

Here, when there is an error, the parser attempts to skip
over the statement, but will do so by skipping to the next
's'., All tokens after the error and before the next ';'
cannot be shifted, and are discarded. When the ';' is seen,
this rule will be reduced, and any "cleanup" action
associated with it performed.

Another form of error rule arises in interactive

applications, where it may be desirable to permit a line to
be reentered after an error. A possible error rule might be

input : error '\n' { printf("Reenter line: "); } input

$$ = $4;}

There is one potential difficulty with this approach; the
parser must correctly process three input tokens before it
admits that it has correctly resynchronized after the error.
If the reentered 1line contains an error in the first two
tokens, the parser deletes the offending tokens, and gives
no message; this is clearly unacceptable. For this reason,
there is a mechanism that can be used to force the parser to
believe that an error has been fully recovered from. The
statement

yyerrok ;

in an action resets the parser to its normal mode. The last
example is better written

input : error '\n'
yyerrok;
printf("Reenter last line: "); }
input

{s$=s4;}

As mentioned above, the token seen immediately after the
"error" symbol 1is the input token at which the error was

10-26

YACC YACC

Input Style It is difficult to provide rules with
substantial actions and still have a readable specification
file. The following style hints owe much to Brian
Kernighan.

a. Use all capital letters for token names, all 1lower
case letters for nonterminal names. This rule comes
under the heading of "knowing who to blame when things

go wrong."

b. Put grammar rules and actions on separate lines. This
allows either to be changed without an automatic need
to change the other.

c. Put all rules with the same left hand side together.
Put the 1left hand side in only once, and let all
following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given
left hand side, and put the semicolon on a separate
line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies
by three tab stops.

The examples in the text of this section follow this style
(where space permits). The user must make up his own mind
about these stylistic questions; the central problem,
however, is to make the rules visible through the morass of
action code.

Left Recursion The algorithm used by the Yacc parser
encourages so called "left recursive" grammar rules: rules
of the form

name : name rest_of_ rule ;

These rules frequently arise when writing specifications of
sequences and lists:

list : item
list ',' item
H
and
seq item

10-29

YACC YACC

library has been provided with default versions of main and
yyerror. The name of this library is system dependent; on
many systems the library is accessed by a -ly argument to
the 1loader. To show the triviality of these default
programs, the source is given below:

main(){
return(yyparse());

and
include <stdio.h>

yyerror (s) char *s; {
fprintf(stderr, "%s\n", s);

The argument to yyerror is a string containing an error
message, usually the string "syntax error". The average
application will want to do better than this. Ordinarily,
the program should keep track of the input line number, and
print it along with the message when a syntax error |is
detected. The external integer variable yychar contains the
lookahead token number at the time the error was detected;
this may be of some interest in giving better diagnostics.
Since the main program is probably supplied by the user (to
read arguments, etc.) the Yacc library is useful only in
small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0.
If it 1is set to a nonzero value, the parser will output a
verbose description of its actions, including a discussion
of which input symbols have been read, and what the parser
actions are. Depending on the operating environment, it may
be possible to set this wvariable by using a debugging
system.

10.10 Hints for Preparing Specifications
This section contains miscellaneous hints on preparing

efficient, easy to change, and clear specifications. The
individual subsections are more or less independent.

10-28

YACC YACC

% {
int dflag;
%}
... oOther declarations ...

£]
prog ¢ decls stats
decls : /* empty */
{ dflag = 1; }
| decls declaration
stats : /* empty */

]
o
-.
gt

dflag
| stats statement

<0

... oOther rules ...

The flag dflag is now 0 when reading statements, and 1 when
reading declarations, except for the first token in the
first statement. This token must be seen by the parser
before it can tell that the declaration section has ended
and the statements have begun. In many cases, this single
token exception does not affect the lexical scan.

This kind of "back door"™ approach can be over done.
Nevertheless, it represents a way of doing some things that
are difficult to do otherwise.

Reserved Words Some programming languages permit the user
to use words 'like "if", which are normally reserved, as
label or variable names, provided that such use does not
conflict with the 1legal use of these names in the
programming language. This is extremely hard to do in the
framework of Yacc; it is difficult to pass information to
the lexical analyzer telling it "this instance of “if' is a
keyword, and that instance 1is a variable". The user can
make a stab at it, using the mechanism described in the last
subsection, but it is difficult.

For stylistic (and other) reasons, it is best that keywords
be reserved; that 1is, be forbidden for use as variable
names.

10-31

YACC YACC

In each of these cases, the first rule will be reduced for
the first item only, and the second rule will be reduced for

the second and all succeeding items.

With right recursive rules, such as

item
item seq

seq

[Y I ——ry

the parser would be a bit bigger, and the items would be
seen, and reduced, from right to left. More seriously, an
internal stack in the parser would be 1in danger of
overflowing if a very long sequence were read. Thus, the
user should use left recursion wherever reasonable.

It is worth considering whether a- sequence with =zero
elements has any meaning, and if so, consider writing the
sequence specification with an empty rule:

Once again, the first rule would always be reduced exactly
once, before the first item was read, and then the second
rule would be reduced once for each item read. Permitting
empty sequences often 1leads to increased generality.
However, conflicts might arise if Yacc is asked to decide
which empty sequence it has seen, when it hasn't seen enough
to know!

Lexical Tie-ins Some lexical decisions depend on context.
For example, the 1lexical analyzer might want to delete

blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but

not in expressions.

One way of handling this situation is to <create a global
flag that is examined by the lexical analyzer, and set by
actions. For example, suppose a program consists of 0 or
more declarations, followed by O or more statements.
Consider:

10-30

YACC YACC

Support for Arbitrary Value Types By default, the values
returned by actions and the lexical analyzer are integers.
Yacc can also support values of other types, including
structures. In addition, Yacc keeps track of the types, and
inserts appropriate union member names so that the resulting
parser will be strictly type checked. The Yacc value stack
is declared to be a union of the various types of values
desired. The user declares the union, and associates union
member names to each token and nonterminal symbol having a
value. When the value 1is referenced through a $$ or $n
construction, Yacc will automatically insert the appropriate
union name, so that no unwanted conversions will take place.
In addition, type checking commands such as Lint(l) will be
far more silent.

There are three mechanisms used to provide for this typing.
First, there 1is a way of defining the union; this must be
done by the user since other programs, notably the 1lexical
analyzer, must know about the union member names. Second,
there is a way of associating a union member name with
tokens and nonterminals. Finally, there is a mechanism for
describing the type of those few values where Yacc can not
easily determine the type.

To declare the union, the user includes in the declaration
section:

sunion {
body of union ...

1

This declares the Yacc value stack, and the external
variables yylval and yyval, to have type equal to this
union. If Yacc was invoked with the -d option, the union
declaration is copied onto the y.tab.h file. Alternatively,
the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union.
Thus, the header file might also have said:

typedef union {
body of union ...
YYSTYPE;
The header file must be included in the declarations

section, by use of #{ and %}.

Once YYSTYPE is defined, the union member names must be

associated with the various terminal and nonterminal names.
The construction

10-33

YACC YACC

10.11 Advanced Topics

This section discusses a number of advanced features of
Yacc.

Simulating Error and Accept in Actions The parsing actions
of error and accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to
return the value 0; YYERROR causes the parser to behave as
if the current input symbol had been a syntax error; yyerror
is called, and error recovery takes place. These mechanisms
can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

Accessing Values in Enclosing Rules. An action may refer to
values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, a
dollar sign followed by a digit, but in this case the digit
may be 0 or negative. Consider

sent : adj noun verb adj noun
{ 100k at the sentence ... }

<

adj : THE { $$ = THE; }
| Young { $$ = YOUNG; }
noun : DOG { s$ = poG; }

CRONE { if($0 == YOUNG) {
Trintf("what?\n");

$$ = CRONE;

°
’

In the action following the word CRONE, a check is made that
the preceding token shifted was not YOUNG. Obviously, this
is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at
times this mechanism will save a great deal of trouble,
especially when a few combinations are to be excluded from
an otherwise regular structure.

10-32

YACC YACC

10.12 A Simple Example

This example gives the complete Yacc specification for a
small desk calculator: the desk calculator has 26 registers,
labeled "a" through "z", and accepts arithmetic expressions
made up of the operators +, -, *, /, % (mod operator), &
(bitwise and), | (bitwise or), and assignment. If an
expression at the top level is an assignment, the value is
not printed; otherwise it is. As in C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it
is assumed to be decimal.

As an example of a Yacc specification, the desk calculator
does a reasonable job of showing how precedences and
ambiguities are wused, and demonstrating simple error
recovery. The major oversimplifications are that the
lexical analysis phase 1is much simpler than for most
applications, and the output is produced immediately, line
by line. Note the way that decimal and octal integers are
read in by the grammar rules; This job is probably better
done by the lexical analyzer.

3{
include <stdio.h>
include <ctype.h>

int regs[26];
int Dbase;

%}
gstart list

ttoken DIGIT LETTER

sleft '|°
gleft '&!
gleft '4' '-

gleft '*! |/| 130
tleft UMINUS /* precedence for unary minus */

3 /* beginning of rules section */

list : /* empty */
list stat '\n'
list error '\n'
{ yyerrok; }

-9

stat expr

10-35

YACC ' YACC

< name >

is used to indicate a union member name, If this follows
one of the keywords $token, %left, %right, and %nonassoc,
the union member name is associated with the tokens 1listed.
Thus, saying

$left <optype> '+' '-!

will cause any reference to values returned by these two
tokens to be tagged with the union member name optype.
Another keyword, $type, is used similarly to associate union
member names with nonterminals. Thus, one might say

ttype <nodetype> expr stat

There remain a couple of cases where these mechanisms are
insufficient. If there 1is an action within a rule, the

value returned by this action has no a riori type.
Similarly, reference to 1left context values (such as $0 -
see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on
the reference by inserting a union member name, between <
and >, immediately after the first $. An example of this
usage is

rule : aaa { $<intval>$ = 3; } bbb
fun($<intval>2, $<other>0); }

This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in a later section. The
facilities 1in. this subsection are not triggered until they
are used: in particular, the use of %type will turn on these
mechanisms. When they are used, there is a fairly strict
level of checking. For example, use of $n or $$ to refer to
something with no defined type 1is diagnosed. If these
facilities are not triggered, the Yacc value stack 1is used
to hold int's, as was true historically.

10-34

YACC

yylval = c - 'a';
return (LETTER) ;

if(isdigit(c)) {
yylval = ¢ - '0';
return(DIGIT);

return(c)

10-37

YACC

YACC

expr

number

L3

yylex() { /*

{ printf("2d\n",
l LETTER '=' expr
{ regs(sl)

°
’

: '(' expr ")’
$$ = $2; }
expr '+' expr
$$ = $1 + $3; }
| expr '-' expr
{ ss = s1 - $3; }
| expr '*' expr
$$ = $1 * $3; }
| expr '/' expr
$$ = $1 / $3; }
| expr '$' expr
$$ = $1 % $3; }
| expr '&' expr
{ Ts = $1 & $3; }
| expr '|' expr
{ $s = s1 | $3; }
| '-' expr %prec UMINUS
{ 8 = - s2;
| LETTER

{ $$ = regs(s1]; }

| number

«e

DIGIT
{ $$ = $1; base =
| number DIGIT

$1); }
= $3; }

($1==0) 2 8

$$ = base * $1 + $2; |}

/* start of programs */

lexical analysis routine

YACC

/* returns LETTER for a lowercase letter,

/* yylval = 0 through 25
* return DIGIT for a digit, */

/* yylval = 0 through 9

/* all other characters */
/* are returned immediately

int c;
while((c=getchar()) ==
/* ¢ is now nonblank */

if(islower(c)) {

10-36

]])

{ /* skip blanks */ }

=

YACC

def

rword

tag

nlist

nmno

rules

rule

rbody

act

prec

YACC

START IDENTIFIER

UNION Copy union definition to output }
LCURL Copy C code to output file | RCURL

ndefs rword tag nlist

VO ——— Q) @

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

WO et ———) §

/* empty: union tag is optional */
'<' IDENTIFIER '>'

VY — g0

nmno
nlist nmno
nlist ',' nmno

-a

IDENTIFIER /* Literal illegal with stype */
IDENTIFIER NUMBER /* Illegal with $type */

H
/* rules section */

C_IDENTIFIER rbody prec
rules rule

<e

C IDENTIFIER rbody prec
'"T* rbody prec

L ——ry

: /* empty */
rbody IDENTIFIER
rbody act

{ { copy action, translate $$, etc. } '}’

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act

prec ';'

WO s @ @

10-39

YACC YACC

10.13 Yacc Input Syntax

This section has a description of the Yacc input syntax, as
a Yacc specification. Context dependencies, etc., are not
- considered. Ironically, the Yacc input specification
language is most naturally specified as an LR(2) grammar;
the sticky part comes when an identifier is seen in a rule,
immediately following an action. If this identifier is
followed by a colon, it is the start of the next rule;
otherwise it 1is a continuation of the current rule, which
just happens to have an action embedded in it. As
implemented, the 1lexical analyzer looks ahead after seeing
an identifier, and decide whether the next token (skipping
blanks, newlines, comments, etc.) 1is a colon. If so, it
returns the token C_IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS, but never as part of C_IDENTIFIERSs.

/* grammar for the input to Yacc */

/* basic entities */

$token IDENTIFIER /* includes identifiers and literals
$token C_IDENTIFIER /* identifier followed by colon
ttoken NUMBER /* [0-9]+ */

*/
*/

/* reserved words: S$type => TYPE, %$left => LEFT, etc.

t$token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

g$token MARK /* the %% mark */
stoken LCURL /* the %{ mark */
stoken RCURL /* the %} mark */

/* ascii character literals stand for themselves */

gstart spec

E-3

spec : defs MARK rules tail

tail : MARK { Eat up the rest of the file }
| /* empty: the second MARK is optional */
;

defs : /* empty */
| defs def

-0

10-38

*/

2.5+ (3.5, 4.)

Notice that the 2.5 is to be used in an interval valued
expression in the second example, but this fact is not known
until the "," is read; by this time, 2.5 1is finished, and
the parser cannot go back and change its mind. More
generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an
interval. This problem is circumvented by having two rules
for each binary interval valued operator: one when the left
operand is a scalar, and one when the 1left operand is an
interval. In the second case, the right operand must be an
interval, so the conversion will be applied automatically.
However, there are still many cases where the conversion may
be applied or not, leading to the above conflicts. They are
resolved by 1listing the rules that yield scalars first in
the specification file; in this way, the conflicts will be
resolved in the direction of keeping scalar valued
expressions scalar valued until they are forced to become
intervals.

This way of handling multiple types is very instructive, but
not very general. If there were many kinds of expression
types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more
dramatically. Thus, while this example is instructive, it
is better practice in a more normal programming language
environment to keep the type information as part of the
value, and not as part of the grammar.

Finally, a word about the 1lexical analysis. The only
unusual feature is the treatment of floating point
constants. The C library routine atof is used to do the
actual conversion from a character string to a double
precision value. If the lexical analyzer detects an error,
it responds by returning a token that is illegal in the
grammar, provoking a syntax error in the parser, and thence
error recovery.

10-41

YACC YACC

10.14 An Advanced Example

This section gives an example of a grammar using some of the
advanced features discussed in earlier sections. The desk
calculator example is modified to provide a desk calculator
that does floating point interval arithmetic. The
calculator understands floating point constants, the
arithmetic operations +, -, *, /, wunary -, and =
(assignment), and has 26 floating point variables, "a"
through "z". Moreover, it also understands intervals,
written

(x,Y)

where x is less than or equal to y. There are 26 interval
valued variables "A" through "Z" that may also be used.
Assignments return no value, and print nothing, while
expressions print the (floating or interval) value.

This example explores a number of interesting features of
Yacc and C. Intervals are represented by a structure,
consisting of the left and right endpoint values, stored as
double's. This structure is given a type name, INTERVAL, by
using typedef. The Yacc value stack can also contain
floating point scalars, and integers (used to index into the
arrays holding the variable values). Notice that this
entire strategy depends strongly on being able to assign
structures and unions in C. In fact, many of the actions
call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions: division by an interval containing 0, and an
interval presented in the wrong order. 1In effect, the error
recovery mechanism of Yacc is used to throw away the rest of
the offending 1line.

In addition to the mixing of types on the value stack, this
grammar also demonstrates an interesting use of syntax to
keep track of the ¢type (e.g. scalar or interval) of
intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands
an interval value. This causes a large number of conflicts
when the grammar is run through Yacc: 18 Shift/Reduce and 26
Reduce/Reduce. The problem can be seen by looking at the
two input lines:

2.5 + (3.5 - 4.)

and

10-40

YACC

dexp

vexp

DREG '=' dexp '\n’

{ areg($1] = $3; }

VREG '=' vexp '\n'

{ vreg($1] = $3; }

error '\n'
{ yyerrok; }

CONST
DREG

{ $$ = dreg($1]); }

dexp '+' dexp

{ $$ = 81 + $3;
dexp '-' dexp

{ $$ = $1 - $3;
dexp '*' dexp

{ s = 81 * $3;
dexp '/' dexp

{ ss = 51/ $3;
'-' dexp $prec UMINUS

{"s$s = - s2; }
V(! dexp vy

{"ss = s2; }

: dexp

{ $$.hi = $$.10
I(I de,{{p l" dexp l)'

$S.1o $2;
$$.hi $4;
if($S.lo >

}
}
}
}

$1; }

$$ohi

) {

YACC

printf("interval out of order\n");
YYERROR;

}

{ $$ = vregl$1); }

vexp '+' vexp

{ $$.hi = $1.hi + $3.hi;
$$.1o0 = $1.10 + $3.1l0; }

dexp '+' vexp

{ $$.hi = $1 + $3.hi;

$$.1o0 = $1 + $3.10; }

vexp '-' vexp

{ $$.hi = $1.hi - $3.10;
$$.1o = $l.1o - $3.hi; }

dexp '-' vexp

{ $$.ni = $1 - $3.10;
$$.10 = $1 - $3.hi;}

vexp '*' vexp

10-43

YACC

% {

#
#

inclu
inclu

typedef

INTERVAL
double

double
INTERVAL

t}
g§start

gunion

stoken
gtoken
stype

gtype

gleft

$left
$left

L3

lines

line

<stdio.h>
<ctype.h>

de
de

struct interval
double 1lo, hi;
} INTERVAL;

{

vmul(), vdiv():;

atof();

dreg([26];
vreg[26];

lines

int ival;
double dval;
INTERVAL vval;

YACC

<ival> DREG VREG /* indices into dreg, vreg arrays */
<dval> CONST /* floating point constant */
<dval> dexp /* expression */
<vval> vexp /* interval expression */
/* precedence information about the operators */
l+l 1.0
T%0 l/l
UMINUS /* precedence for unary minus */
: /* empty */
| lines 1line
H
: dexp '\n'
{ printf£("$15.8f\n", $1); }
| vexp '\n'

{ printf£("(s15.

10-42

8f, %15.8f)\n", $l.lo, $1.hi); }

YACC

*cp
if((cp-buf) >= BSZ)

else

if (c == 'e') {
if (exp++) return(‘e’

/* above causes syntax error */

continue;

/* end of number */

bre

'\0';

printf("constant too long:

unget

/* above pushes back last char read */

yylval.dval
return(CONST);

return(c);

INTERVAL hilo(a,

/* returns the smallest interval containing a, b, ¢, and

b,

c, d

ak:;

c(¢, stdin);

= atof (

) double

/* used by *, / routines */

INTERVAL v

if(a>b) { v.hi
b;

else { v.h

if(c>d)

if (
if (

}

else {

return(v

INTERVAL vmul(a,

°
’

i

{

b,

)

c>v.hi
d<v.lo

d>v.hi)

c<v.lo

’

v) do

=
Q =~
[}
[+V]
.
e

3
=
(o)

uble a, b;

return(hilo(a*v.hi, a*v.lo,

dcheck(v) INTERVAL v; {
if(v.hi >= 0. && v.lo <= 0.){

printf("divisor interval contains 0.\n");

return(l);

return(0);

10-45

buf)

YACC

a, b, ¢, d7{

= b; }

INTERVAL v; {

b*v.hi,

b*v.lo));

):

truncated\n") ;

a*/

YACC YACC

{ $8 = vmul($1.1o, $1.hi, $3); }
| dexp '*' vexp '
$$ = vmul($1, $1, $3); }
| vexp '/' vexp . :
if (dcheck($3)) YYERROR;
$$ = vdiv($1l.lo, $1l.hi, $3); }
| dexp '/' vexp
if (dcheck($3)) YYERROR;
$$ = vaiv($1, $1, $3); }
| '-' vexp s%prec UMINUS
{ $$.hi = -$2.10; $$.1o = -$2.hi; }

I v (e vexp '
$$ = s$2; |}

-0

L1
define BSZ 50 /* buffer size for fp numbers */

/* lexical analysis */

yylex () {
register «c;
{ /* skip over blanks */ }
while((¢ = getchar()) == "' ')

if (isupper(c)){
yylval.ival = ¢ - 'A';
return(VREG)

if (islower(c)){

return(DREG) ;

if(isdigit(c) || c=='."){
/* gobble up digits, points, exponents */

char buf[BSzZ+1], *cp = buf;
int dot = 0, exp = 0;

for (; (cp-buf)<BSZ ; ++cp,c=getchar()) {

*cp = C;

if (isdigit(c)) continue;

if (¢ =="."
if (dot++ || exp) return('.');
/* above causes syntax error */
ﬁontinue;

10-44

YACC YACC

10.15 014 Features

This section mentions synonyms and features which are
suppor ted for historical continuity, but, for various
reasons, are not encouraged.

l. Literals may also be delimited by double quotes """.

2. Literals may be more than one character long. If all
the characters are alphabetic, numeric, or underscore,
the type number of the literal is defined, just as 1if
the 1literal did not have the quotes around it.
Otherwise, it is difficult to find the value for such
literals. The use of multi-character 1literals is
likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc 1is doing a job that must be
actually done by the lexical analyzer.

3. Most places where “%' is legal, backslash "\" may be
used. In particular, "\\" is the same as "%%", \left
the same as gtleft, etc.

4. There are a number of other synonyms:

$< is the same as sleft

$> is the same as %right

g$binary and %2 are the same as %nonassoc
%20 and $term are the same as $token

%= is the same as %prec

5. Actions may also have the form

={ ...}

and the curly braces can be dropped if the action is a
single C statement.

6. C code between %{ and %} used to be permitted at the
head of the rules section, as well as 1in the
declaration section.

10-47

YACC YACC

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));

10-46

Appendix A: The C Shell

Csh 1is an alternate command language interpreter. It
incorporates good features of other shells and a history
mechanism. most of the features unique to csh are designed
more for the interactive XENIX user, although some features
of other shells have been incorporated to make writing shell
procedures easier.

XENIX users who have read a general introduction to the
system will find a valuable basic explanation of the shell
here. Simple terminal interaction with c¢sh 1is possible
after reading just the first section of this document. The
second section describes the capabilities you can explore
after you have begun to become acquainted with the Cshell.
Later sections introduce features which are useful, but not
necessary for all users of the shell.

The final section of this chapter lists special characters
of the Cshell.

A shell is a command language interpreter. Csh is the name
of one particular command interpreter on XENIX. The primary
purpose of csh is to translate command 1lines typed at a
terminal into system actions, such as invocations of other
programs. Csh is a user program just 1like any you might
write.

This document provides a full description of all features of
the shell and is a final reference for all questions.

A.1 Details on the shell for terminal users

A.l1.1 Shell startup and termination

When you login, the shell is started by the system in your
home directory and begins by reading commands from a file
.cshrc in this directory. All shells which you may start
during your terminal session will read from this file. We
will later see what kinds of commands are usefully placed
there. For now we need not have this file and the shell
does not complain about its absence.

A login shell, executed after you login to the system, will,
after it reads commands from .cshrc, read commands from a
file .login also in your home directory. This file contains
commands which you wish to do each time you login to the
XENIX system. A typical .login file might 1look something
like this:

Appendix A Appendix A

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${prompt}users" ; users
alias ts \
'set noglob ; eval “tset -s -m dialup:cl00rvdpna \
-m plugboard:?hp2621lnl *"';
ts; stty intr °C kill “U crt
set time=15 history=10
if (-e $mail) then
echo "${prompt}mail"
mail
endif

This above file contains several commands to be executed by
XENIX at each 1login. The first is a set command which is
interpreted directly by the shell. It sets the shell
variable ignoreeof which shields the shell from log off if
<CONTROL-D> is hit. Instead of <CONTROL-D>, the 1logout
command is used to log off the system. By setting the mail
variable, the shell is notified that it is to watch ~for
incoming mail and to notifiy the user if new mail arrives.

Next the shell variable time is set to "15" causing the
shell to automatically print out statistics 1lines for
commands which execute for at least 15 seconds of CPU time.
The variable "history" 1is set to 10 indicating that the
shell will remember the 1last 10 commands types in its
history list, (described later).

Next, an alias, "ts", is created which executes a tset(1l)
command setting up the modes of the terminal. The
parameters to tset indicate the kinds of terminal normally
used when not on a hardwired port. Then "ts" is executed,
and the stty command is used to change the interrupt
character to <CONTROL-C> and the 1line kill character to
<CONTROL-U>.

Finally, if my mailbox file exists, then I run the mail
program to process my mail.

When the mail programs finish, the shell will finish
processing my .login file and begin reading commands from
the terminal, prompting for each with "% ". When I log off
(by giving the logout command) the shell will print "logout"®
and execute commands from the file .logout if it exists in
my home directory. After that, the shell will terminate and
XENIX will log me off the system. If the system is not
going down, I will receive a new login message. In any
case, after the logout message the shell is committed ¢to
terminating and will take no further input from my terminal.

Appendix A Appendix A

A.l.2 Shell variables

The shell maintains a set of variables. We saw above the
variables history and time which had the values 10 and 15.
In fact, each shell variable has as value an array of zero
or more strings. Shell variables may be assigned values by
the set command. It has several forms, the most useful of
which was given above and is

set name=value

Shell variables may be used to store values which are to be
used in commands 1later through a substitution mechanism.
The shell variables most commonly referenced are, however,
those which the shell itself refers to. By changing the
values of these variables one can directly affect the
behavior of the shell.

One of the most important variables is the variable path.
This variable contains a sequence of directory names where
the shell searches for commands. The set command with no
arguments shows the value of all variables currently defined
(we usually say set) in the shell. The default value for
path will be shown by set to be

$ set

argv ()

cwd /usr/bill
home /usr/bill
path (. /bin /usr/bin)
prompt %

shell /bin/csh
status 0

term cl00rv4pna
user bill

%

This output indicates that the variable path points to the
current directory indicated by dot (.) and then /bin, and
/usr/bin. Your own local commands may be in dot. Normal
XENIX commands live in /bin and /usr/bin.

Often a number of locally developed programs on the system
live in the directory /usr/local. If we wish that all
shells which we invoke to have access to these new programs
we can place the command

set path=(. /bin /usr/bin /usr/local)

in our file .cshrc in our home directory. Try doing this
and then logging out and back in. Then type

Appendix A Appendix A

set
again to see that the value assigned to path has changed.

You should be aware that the shell examines each directory
that you insert into your path and determines which commands
are contained there. Except for the current directory, dot
(.), which the shell treats specially, this means that if
commands are added to a directory in your search path after
you have started the shell, they will not necessarily be
found. If you wish to use a command which has been added in

this way, you should give the command
rehash

to the shell, which causes it to recompute its internal
table of command locations, so that it will find the newly
added command. Since the shell has to look in the current
directory . on each command, placing it at the end of the
path specification usually works equivalently and reduces
overhead.

Other useful built in variables are the variable home which
shows your home directory, cwd which contains your current

working directory, the variable ignoreeof which can be set
in your .login file to tell the shell not to exit when it

receives an end-of-file from a terminal (as described
above). The variable "ignoreeof" is one of several
variables which the shell does not care about the wvalue of,
only whether they are set or unset. Thus to set this
variable you simply do

set ignoreeof
and to unset it do
unset ignoreeof

These give the variable "ignoreeof" no value, but none is
desired or required.

Finally, some other built-in shell variables of use are the
variables noclobber and mail. The metasyntax

>filename

which redirects the standard output of a command will

overwrite and destroy the previous contents of the named
file. 1In this way you may accidentally overwrite a file
which is valuable. If you would prefer that the shell not
overwrite files in this way you can

S~

Appendix A Appendix A

set noclobber
in your .login file. Then trying to do
date > now

would cause a diagnostic if "now" existed already. You
could type

date >! now

if you really wanted to overwrite the contents of now. The
">1" is a special metasyntax indicating that overwriting or
"clobbering" the file is ok. (The space between the
exclamation (!) and the word "now" is critical here, as
"!now" would be an invocation of the history mechanism, and
have a totally different effect.)

A.l1.3 The Shell's History List

The shell can maintain a history list into which it places
the words of previous commands. It is possible to use a
notation to reuse commands or words from commands in forming
new commands. This mechanism can be used to repeat previous
commands or to correct minor typing mistakes in commands.

The following figure gives a sample session involving
typical usage of the history mechanism of the shell.

Appendix A Appendix A

$ cat bug.c
main ()

{
}

$ cc !$
cc bug.c
"bug.c", line 4: newline in string or char constant
"bug.c", line 5: syntax error
$ ed !$
ed bug.c
29
4s/);:/"&/p
printf("hello");

printf("hello);

w
30

q
$ lc
cc bug.c
$ a.out
hello% !e
ed bug.c
30
4s/lo/1lo\\n/p
printf("hello\n");
w
32
q
$!c -o bug
cc bug.c -o bug
$ size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b

g 1ls -1 !*

ls -1 a.out bug

-rwxr-xr-x 1 bill 3932 Dec 19 09:41 a.out
-rwxr-xr-x 1 bill 3932 Dec 19 09:42 bug

% bug

hello

$ num bug.c | spp
spp: Command not found.
$ “spp”ssp
num bug.c | ssp
1 main()

3
4 \ printf("hello\n");
5

$ 1! | 1lpr

num bug.c | ssp | 1lpr
2

Appendix A Appendix A

In this example, we have a very simple C program which has a
bug (or two) in it in the file bug.c, which we cat out on
our terminal. We then try to run the C compiler on it,
referring to the file again as "!$", meaning the last
argument to the previous command. Here the exclamation mark
(!) 1is the history mechanism invocation metacharacter, and
the dollar sign ($) stands for the last argument, by analogy
to the dollar sign in the editor which stands for the end of
the line. The shell echoed the command, as it would have
been typed without wuse of the history mechanism, and then
executed it. The compilation yielded error diagnostics, so
we now run the editor on the file we were trying to compile,
fix the bug, and run the C compiler again, this time
referring to this command simply as "!c", which repeats the
last command which started with the 1letter "c". 1If there
were other commands starting with "c" done recently we could
have said "!cc" or even "!cc:p" which would have printed the
last command starting with "cc" without executing it.

After this recompilation, we ran the resulting a.out file,
and then noting that there still was a bug, ran the editor

again. After fixing the program we ran the C compiler again,
but tacked onto the command an extra "-o bug" telling the

compiler to place the resultant binary in the file bug
rather than a.out. 1In general, the history mechanisms may
be used anywhere in the formation of new commands and other
characters may be placed before and after the substituted
commands.

We then ran the size command to see how 1large the binary
program images we have created were, and then an "ls -1"
command with the same argument list, denoting the argument
list "*", Finally, we ran the program bug to see that its
output is indeed correct.

To make a numbered listing of the program, we ran the num
command on the file bug.c. 1In order to filter out blank
lines in the output of num we ran the output through the
filter ssp, but misspelled it as "spp". To correct this we
used a shell substitute, placing the o0ld text and new text
between up arrow (°) characters. This is similar to the
substitute command in the editor. Finally, we repeated the
same command with "!!", but sent its oytput to the line
printer.

There are other mechanisms available for repeating commands.
The history command prints out a number of previous commands
with numbers by which they can be referenced. There is a way
to refer to a previous command by searching for a string
which appeared in it, and there are other, less useful, ways
to select arguments to include in a new command. A complete

Appendix A Appendix A

description of all these mechanisms is given in the C shell
manual pages in the XENIX Programmers Manual.

A.l1l.4 Aliases

The shell has an alias mechanism which can be used to make
transformations on input commands. This mechanism can be
used to simplify the commands you type, to supply default
arguments to commands, or to perform transformations on
commands and their arguments. The alias facility is similar
to a macro facility. Some of the features obtained by
aliasing can be obtained also using shell command files, but
these take place in another instance of the shell and cannot
directly affect the current shells environment or involve
commands such as cd which must be done in the current shell.

As an example, suppose that there is a new version of the
mail program on the system called "newmail" you wish to use,

rather than the standard mail program which is called
"mail". If you place the shell command
alias mail newmail

in your .cshrc file, the shell will transform an input 1line
of the form

mail bill

into a call on "newmail". More generally, suppose we wish
the command 1ls to always show sizes of files, that is to
always do -s. We can do

alias 1s 1ls -s
or even
alias dir 1ls -s

creating a new command named "dir" which does an "ls -s".
If we say

dir ~bill
then the shell will translate this to
ls -s /usr/bill

Thus the alias mechanism can be used to provide short names
for commands, to provide default arguments, and to define
new short commands in terms of other commands. It 1is also
possible to define aliases which contain multiple commands

Appendix A Appendix A

or pipelines, showing where the arguments to the original
command are to be substituted using the facilities of the
history mechanism. Thus the definition

alias cd 'cd \!* ; 1s '

would do an 1ls command after each change dlrectory cd
command. We enclosed the entire alias definition in singTe
quotes (') to prevent most substitutions from occurring and
the semicolon (;) from being recognized as a metacharacter.
The exclamation mark (!) is escaped with a backslash (\) ¢to
prevent it from being interpreted when the alias command is
typed in. The "\!*" here substitutes the entire. argument
list to the pre-aliasing cd command, without giving an error
if there were no arguments. The semicolon (;) separating
commands 1is used here to indicate that one command is to be
done and then the next. Similarly the definition

alias whois 'grep \!" /etc/passwd’

defines a command which looks up its first argument in the
password file.

Warning: The shell currently reads the .cshrc file each time
it starts up. If you place a large number of commands there,
shells will tend to start slowly. You should ¢try to 1limit
the number of aliases you have to a reasonable number... 10
or 15 is reasonable, 50 or 60 will cause a noticeable delay
in starting up shells, and make the system seem sluggish
when you execute commands from within the editor and other
programs.

A.l1l.5 More redirection; >> and >&

There are a few more notations useful to the terminal user
which have not been introduced yet. 1In addition to the
standard output, commands also have a diagnostic output
which is normally directed to the terminal even when the
standard output is redirected to a file or a pipe. It is
occasionally desirable to direct the diagnostic output along
with the standard output. For instance if you want to
redirect the output of a long running command into a file
and wish to have a record of any error diagnostic it
produces you can type

command >& file

The ">&" here tells the shell to route both the diagnostic
output and the standard output into file. Similarly you can
give the command

Appendix A Appendix A

command |& lpr

to route both standard and diagnostic output through the
pipe to the line printer daemon lpr. A command form

command >&! file

exists, and is used when noclobber is set and file already
exists.

Finally, it is possible to use the form
command >> file

to place output at the end of an existing file. If
noclobber is set, then an error will result if file does not
exist, otherwise the shell will create file if it doesn't
exist. A form

command >>! file

makes it not be an error for file to not exist when
noclobber is set.

A.1.6 Jobs: Background and Foreground

When one or more commands are typed together as a pipeline
or as a sequence of commands separated by semicolons, a
single job is created by the shell consisting of these
commands together as a unit. Single commands without pipes
or semicolons create the simplest jobs. Usually, every line
typed to the shell creates a job. Some lines that create
jobs (one per line) are

sort < data
ls -s | sort -n | head -5
mail harold

If the ampersand metacharacter (&) is typed at the end of
the commands, then the job is started as a background job.
This means that the shell does not wait for it to complete
but immediately prompts and is ready for another command.
The job runs in the background at the same time that normal
jobs, <called foreground 3jobs, continue to be read and
executed by the shell one at a time. Thus

du > -usage &

would run the du program, which reports on the disk usage of
your working directory (as well as any directories below
it), put the output into the file usage and return

A-10

Appendix A Appendix A

immediately with a prompt for the next command without out
waiting for du to finish. The du program would continue
executing in the background until it finished, even though
you can type and execute more commands in the mean time.
Background jobs are unaffected by any signals from the
keyboard like the <INTERRUPT> or <QUIT> signals mentioned
earlier.

The kill command terminates a background Jjob immediately.
It may be given process numbers as arguments, as printed by

ps.
A.l.7 Useful Built-In Commands

We now give a few of the useful built-in commands of the
shell describing how they are used.

The alias command described above is wused to assign new
aliases and to show the existing aliases. With no arguments
it prints the current aliases. It may also be given only
one argument such as

alias 1s
to show the current alias for, e.g., 1ls.

The echo command prints its arguments. It is often used 1in
shell scripts or as an interactive command to see what
filename expansions will produce.

The history command will show the contents of the history
list. The numbers given with the history events can be used
to reference previous events which are difficult to
reference using the contextual mechanisms introduced above.
There is also a shell variable called prompt. By placing an
exclamation mark (!) in its wvalue the shell will there
substitute the number of the current command in the history
list. You can use this number to refer to this command in a
history substitution. Thus you could

set prompt='\! & '

Note that the exclamation mark (!) had to be escaped here
even within backslashes.

The logout command can be used to terminate a 1login shell
which has ignoreeof set.

The rehash command causes the shell to recompute a table of

where commands are located. This is necessary if you add a
command to a directory in the current shell's search path

A-11

N

Appendix A Appendix A

and wish the shell to find it, since otherwise the hashing
algorithm may tell the shell that the command wasn't in that
directory when the hash table was computed.

The repeat command can be used to repeat a command several
times. Thus to make 5 copies of the file one in the file
five you could do

repeat 5 cat one >> five

The setenv command can be used to set variables 1in the
environment. Thus

setenv TERM adm3a

sets the value of the environment variable TERM to "adm3a".
A user program printenv exists which will print out the
environment. It might then show:

$ printenv

HOME=/usr /bill

SHELL=/bin/csh

PATH=:/usr /ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER=bill

$

The source command can be used to force the current shell to
read commands from a file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file
which you wish to take effect before the next time you
login.

The time command can be used to cause a command to be timed
no matter how much CPU time it takes. Thus

% time cp /etc/rc /usr/bill/rc
0.0u 0.1s 0:01 8%
% time wc /etc/rc /usr/bill/rc
52 178 1347 /etc/rc
52 178 1347 /usr/bill/rc
104 356 2694 total
0.l1lu 0.1s 0:00 13%
$

indicates that the cp command used a negligible amount of

user time (u) and about 1/10th of a second system time (s);
the elapsed time was 1 second (0:01). The word count

A-12

Appendix A Appendix A

command, wc, on the other hand, used 0.1 seconds of user
time and 0.1 seconds of system time in less than a second of
elapsed time. The percentage "13%" indicates that over the
period when it was active the command wc used an average of
13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases
and variable definitions from the shell, and unsetenv
removes variables from the environment.

This concludes the basic discussion of the shell for
terminal users. There are more features of the shell to be
discussed here, and all features of the shell are discussed
in its manual pages. One useful feature which is discussed
later is the foreach built-in command which can be used to
run the same command sequence with a number of different
arguments.

A.2 Shell Control Structures and Command Scripts

It is possible to place commands in files and to cause
shells to be invoked to read and execute commands from these
files, which are called shell scripts. We here detail those
features of the shell useful to the writers of such scripts.

It is important to first note what shell scripts are not
useful for. There is a program called make which is very
useful for maintaining a group of related files or
performing sets of operations on related files. For
instance a large program consisting of one or more files can
have its dependencies described in a makefile which contains
definitions of the commands used to create these different

files when changes occur. Definitions of the means for
printing listings, cleaning up the directory in which the
files reside, and installing the resultant programs are
easily, and most appropriately placed in this makefile.
This format is superior and preferable to maintaining a
group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be
created which defines how different versions of the document
are to be created and which options of nroff or troff are
appropriate.
A.2.1 Invocation and the argv variable
A csh command script may be interpreted by saying

$ csh script ...

where script is the name of the file containing a group of

A-13

~

Appendix A Appendix A

csh commands and "..." 1is replaced by a sequence of
arguments. The shell places these arguments in the variable
argv and then begins to read commands from the script.
These parameters are then available through the same
mechanisms which are wused to reference any other shell
variables.

If you make the file script executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell
script (i.e. begin the file with a pound sign (#)) then a
/bin/csh will automatically be invoked to execute script
when you type

script

If the file does not begin with a pound sign (#) then the
standard shell /bin/sh will be used to execute it. This
allows you to convert your older shell scripts to use csh at
your convenience.

A.2.2 Variable substitution

After each input line 1is broken into words and history
substitutions are done on it, the input line is parsed into
distinct commands. Before each command 1is executed a
mechanism know as variable substitution is done on these
words. Keyed by the dollar sign ($), this substitution
replaces the names of variables by their values. Thus

echo Sargv

when placed in a command script would cause the current
value of the variable argv to be echoed to the output of the
shell script. It is an error for argv to be unset at this
point.

A number of notations are provided for accessing components
and attributes of variables. The notation

$?name

expands to 1 if name is set or to 0 if name is not set. It
is the fundamental mechanism wused for checking whether
particular variables have been assigned values. All other
forms of reference to undefined variables cause errors.

The notation

A-14

Appendix A

$#name

expands to the number of elements in the
Thus

set argv=(a b ¢)
echo $?argv

= dP dP

echo $#argv

unset argv
echo $?argv

echo S$argv _
ndefined variable: argv.

P CdPONRNR W

It is also possible to access the components
which has several values. Thus

$argv(1]

gives the first component of argv or in the
"a". Similarly

$argv($#argv]

would give "c", and
$argv[1-2]

would give:
ab

Other notations useful in shell scripts are
$n

where n is an integer as a shorthand for
$argv[n]

the nth parameter and
$*

which is a shorthand for

$argv

A-15

Appendix A

variable name.

of a variable

example above

\

Appendix A Appendix A

The form

$$

expands to the process number of the current shell. Since

this process number is unique in the system it can be used
in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input
read from the shell's standard input (not the script it is
reading). This is useful for writing shell scripts that are
interactive, reading commands from the terminal, or even
writing a shell script that acts as a filter, reading 1lines
from its input file. Thus the sequence

echo 'yes or no?\c'
set a=($<)

would write out the prompt "yes or no?" without a newline
and then read the answer into the variable a. 1In this case
"$#a" would be 0 if either a blank line or <CONTROL-D> was

typed.

One minor difference between "$n" and "$argv[n]" should be
noted here. The form "Sargv([n]" will yield an error if n is
not in the range "l-$#argv" while "$n" will never yield an
out of range subscript error. This is for compatibility
with the way older shells handled parameters.

Another important point is that it is never an error to give
a subrange of the form "n-"; if there are less than "n"
components of the given variable then no words are
substituted. A range of ‘the form "m-n" likewise returns an
empty vector without giving an error when "m" exceeds the
number of elements of the given variable, provided the
subscript "n" is in range.

A.2.3 Expressions

In order for interesting shell scripts to be constructed it
must be possible to evaluate expressions in the shell based
on the values of variables. In fact, all the arithmetic
operations of the language C are available in the shell with
the same precedence that they have in C. 1In particular, the
operations "==" and "!=" compare strings and the operators
"s&" and "||" implement the boolean AND and. OR operations.
The special operators "="" and "!™" are similar to "==" and
"1=" except that the string on the right side can have
pattern matching characters (like *, ? or [and]) and the

A-16

Appendix A Appendix A

test is whether the string on the left matches the pattern
on the right.

The shell also allows file enquiries of the form

-? filename

where question mark (?) is replaced by a number of single
characters. For instance the expression primitive

-e filename

tell whether the file filename exists. Other primitives
‘test for read, write and execute access to the file, whether
it is a directory, or has non-zero length.

It 1is possible to test whether a command terminates
normally, by a primitive of the form

{ command }

which returns true, i.e. 1 if the command succeeds exiting
normally with exit status 0, or 0 if the command terminates
abnormally or with exit status non-zero. If more detailed
information about the execution status of a command is
required, it can be executed and the variable "$status"
examined in the next command. Since "$status" is set by
every command, it is very transient. It can be saved if it
is inconvenient to wuse it only in the single immediately
following command.

For a full list of expression components available see the
manual section for the shell.

A.2.4 Sample shell script

A sample shell script which makes wuse of the expression
mechanism of the shell and some of its control structure
follows:

A-17

Appendix A Appendix A

% cat copyc

#

Copyc copies those C programs in the specified list

to the d1rectory ~“/backup if they differ from the files
already in ~/backup

#

set noglob

foreach i ($argv)

if ($i !~ *,c) continue # not a .c file so do nothing

if (! -r ~“/backup/$i:t) then
echo $i:t not in backup... not cp\'ed
continue

endif

cmp -s $i ~/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of §i
cp $i “/backup/S$i:t
endif
end

This script makes use of the foreach command, which causes
the shell to execute the commands between the foreach and
the matching end for each of the values given between
parentheses with the named variable, in this case "i" set to
successive values in the list. Within this loop we may use
the command break to stop executing the loop and continue to
prematurely terminate one iteration and begin the next.
After the foreach 1loop the iteration variable (i in this
case) has the value at the last iteration.

We set the variable noglob here to prevent filename
expansion of the members of argv. This is a good idea, in
general, if the arguments to a shell script are filenames
which have already been expanded or if the arguments may
contain filename expansion metacharacters. It 1is also
possible to quote each use of a "$" variable expansion, but
this is harder and less reliable.

The other control construct used here is a statement of the
form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to

A-18

Appendix A Appendix A

the current implementation of the shell. The following two
formats are not acceptable to the shell:

if (expression) # Won't work!
then
command

endif
and
if (expression) then command endif # Won't work

The shell does have another form of the if statement of the
form

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance.

The command must not involve "|", "&" or ";" and must not be
another control command. The second form requires the final
backslash (\) to immediately precede the end-of-line.

The more general if statements above also admit a sequence
of else-if pairs followed by a single else and an endif,
e.g.:

if (expression) then

commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts 1is the
colon (:) modifier. We can use the modifier ":r" here to
extract the root of a filename or “:e' to extract the
extension. Thus if the variable i has the value

/mnt/foo.bar then

A-19

Appendix A Appendix A

% echo $i Si:r Si:e
/mnt/foo.bar /mnt/foo bar
$

shows how the ":r" modifier strips off the trailing ".bar"
and the the ":e" modifier 1leaves only the "bar". Other
modifiers will take off the last component of a pathname
leaving the head ":h"™ or all but the last component of a
pathname leaving the tail ":t". These modifiers are fully
described in the csh(lS) manual pages in the XENIX Reference
manual. It is also possible to use the command substitution
mechanism described in the next major section to perform
modifications on strings to then reenter the shells
environment. Since each usage of this mechanism involves
the creation of a new process, it is much more expensive to
use than the colon (:) modification mechanism. (It is also
important to note that the current implementation of the
shell 1limits the number of colon modifiers on a "§"
substitution to 1. Thus

$ echo $i $i:h:t
/a/b/c /a/b:t
$

does not do what one would expect.)

Finally, we note that the pound sign character (#) lexically
introduces a shell comment in shell scripts (but not from
the terminal). All subsequent characters on the input 1line
after a pound sign are discarded by the shell. This
character can be quoted using "'" or "\" to place it in an
argument word.

A.2.5 Other control structures

The shell also has control structures while and switch
similar to those of C. These take the forms

while (expression)
commands
end

and

A-20

Appendix A Appendix A

switch (word)

case strl:
commands
breaksw

case strn:

commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh(1lS). C
programmers should note that we use breaksw to exit from a
switch while break exits a while or foreach loop. A common

mistake to make in cshell scripts is to use break rather
than breaksw in switches.

Finally, cshell allows a goto statement, with labels looking
like they do in C, i.e.:

loop:
commands
goto loop

A.2.6 Supplying input to commands

Commands run from shell scripts receive by default the
standard input of the shell which is running the script.
This is different from previous shells running under XENIX.
It allows shell scripts to fully participate in pipelines,
but mandates extra notation for commands which are to take
inline data.

Thus we need a metanotation for supplying inline data to

commands in shell scripts. As an example, consider this
script which runs the editor to delete leading blanks from
the lines in each argument file

. A=-21

Appendix A Appendix A

% cat deblank

deblank -- remove leading blanks
foreach i ($argv)

ed - $i << 'EOF'

1,8s/7[1*//

w

q
'EOF'
end

$

The notation "<< 'EOF'" means that the standard input for
the ed command is to come from the text in the shell script
file up to the next line consisting of exactly "'EOF'". The
fact that the EOF is enclosed in single quotes ('), i.e.
quoted, causes the shell to not perform variable
substitution on the intervening lines. 1In general, if any
part of the word following the "<<" which the shell uses to
terminate the text to be given to the command is quoted then
these substitutions will not be performed. In this case
since we used the form "1,$" in our editor script we needed
to insure that this dollar sign was not variable
substituted. We could also have insured this by preceding
the dollar sign ($) with a backslash (\), i.e.:

1,\$s/7[1*//

but quoting the EOF terminator is a more reliable way of
achieving the same thing.

A.2.7 Catching interrupts

If our shell script creates temporary files, we may wish to
catch interruptions of the shell script so that we can clean
up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is
received the shell will do a "goto label" and we can remove
the temporary files and then do an exit command (which is

built in to the shell) to exit from the shell script. If we
wish to exit with a non-zero status we can do

exit (1)

e.g. to exit with status 1.

A-22

Appendix A Appendix A

A.2.8 Other Features

There are other features of the shell useful to writers of
shell procedures. The verbose and echo options and the
related -v and -x command line options can be used to help
trace the actions of the shell. The =-n option causes the
shell only to read commands and not to execute them and may
sometimes be of use.

One other thing to note is that csh will not execute shell
scripts which do not begin with the pound sign character
(#), that is shell scripts that do not begin with a comment.
Similarly, the /bin/sh on your system may well defer to csh
to interpret shell scripts which begin with the pound sign
(#). This allows shell scripts for both shells to live in
harmony.

There 1is also another quotation mechanism using the
quotation mark ("), which allows only some of the expansion
mechanisms we have so far discussed to occur on the quoted
string and serves to make this string into a single word as
the single quote (') does.

A.3 Loops At The Terminal

It 1is occasionally useful ¢to use the foreach control
structure at the terminal to aid in performing a number of
similar commands. For instance, if there were three shells
in use on a particular system, /bin/sh, /bin/nsh, and
/bin/csh, you could count the number of persons using each
shell by using the following commands:

$ grep -c csh$ /etc/passwd

5

$ grep -c nsh$ /etc/passwd

3

$ grep -c -v sh$ /etc/passwd
20

%

Since these commands are very similar we can use foreach to
do this more easily.

¢ foreach i ('sh$' 'csh$' '-v sh$')
? grep -c $i /etc/passwd

? end

5

3

20

3

A-23

Appendix A Appendix A

Note here that the shell prompts for input with "? " when
reading the body of the loop.

Very useful with loops are variables which contain lists of
filenames or other words. You can, for example, do

$ set a=("1s")
$ echo $Sa
csh.n csh.rm
$ 1ls

csh.n

csh.rm

$ echo $#a

2

%

The set command here gave the variable a a list of all the

filenames in the current directory as value. We can then
iterate over these names to perform any chosen function.

The output of a command within back quote characters (%) is
converted by the shell to a list of words. You can also
place the quoted string within double quote characters (")
to take each (non-empty) 1line as a component of the
variable. This prevents the lines from being split into
words at blanks and tabs. A modifier ":x" exists which can
be used later to expand each component of the variable into
another variable by splitting the original variable into
separate words at embedded blanks and tabs.

A.4 Braces { ... } in argument expansion

Another form of filename expansion, alluded to before
involves the characters, "{" and "}". These characters
specify that the contained strings, separated by commas (,)
are to be consecutively substituted into the containing
characters and the results expanded left to right. Thus

A{strl,str2,...strn}B
expands’ to
AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions,
and may be applied recursively (i.e. nested). The results
of each expanded string are sorted separately, left to right
order being preserved. The resulting filenames are not
required to exist if no other expansion mechanisms are used.
This means that this mechanism can be used to generate
arguments which are not filenames, but which have common

A-24

Appendix A Appendix A

parts.
A typical use of this would be
mkdir ~/{hdrs,retrofit,csh}

to make subdirectories hdrs, retrofit and csh in your home
directory. This mechanism is most useful when the common
prefix is longer than in this example, i.e.

chown root /usr/{ucb/{ex,edit},lib/{ex?.2*,how_ex}}

A.5 Command substitution

A command enclosed in back quotes (%) 1is replaced, just
before filenames are expanded, by the output from that
command. Thus, it is possible to do

set pwd="pwd"
to save the current directory in the variable pwd or to do
vi “grep -1 TRACE *.c"

to run the editor vi supplying as arguments those files
whose names end in ".c" which have the string "TRACE" in
them. Command expansion also occurs in input redirected
with "<<" and within quotations ("). Refer to csh(1lS) in
the XENIX Reference manual for more information. =~

A.6 Other Details Not Covered Here

In particular circumstances it may be necessary to know the
exact nature and order of different substitutions performed
by the shell. The exact meaning of certain combinations of
quotations is also occasionally important. These are
detailed fully in its manual section.

The shell has a number of command line option flags mostly

of use in writing XENIX programs and debugging shell
scripts. See csh(1S) in the XENIX Reference Manual for a

list of these options.

A.7 Special Characters

The following table lists the special characters of csh and
the XENIX system. A number of these characters also have
special meaning in expressions. See the csh manual section
for a complete list.

A-25

Appendix A Appendix A

Syntactic metacharacters

R A~

Separates commands to be executed sequentially
Separates commands in a pipeline

Brackets expressions and variable values
Follows commands to be executed without waiting
for completion

Filename metacharacters

* YV

{

}

Separates components of a file's pathname
Expansion character matching any single character
Expansion character matching any sequence of
characters

Expansion sequence matching any single character
from a set of characters

Used at the beginning of a filename to indicate
home directories

Used to specify groups of arguments with common
parts

Quotation metacharacters

\

Prevents meta-meaning of following single
character

Prevents meta-meaning of a group of characters
Like ', but allows variable and command expansion

Input/output metacharacters

<
>

Indicates redirected input
Indicates redirected output

Expansion/Substitution metacharacters

$
!

-~

Indicates variable substitution

Indicates history substitution

Precedes substitution modifiers

Used in special forms of history substitution
Indicates command substitution

Other metacharacters

#

$

Begins scratch file names; indicates shell
comments

Prefixes option (flag) arguments to commands
Prefixes job name specifications

(=

APPENDIX B: M4 - A Macro Processor

M4 1is the name of the XENIX macro processor. Macro
processors are used to define and to process specially
defined strings of characters (called macros). By defining
a set of macros to be processed by M4, a programming
language can be enhanced to make it:

l. More structured
2. More readable

3. More appropriate for a particular application

The #define statement in. C and the analogous define in
Ratfor are examples of the basic facility provided by any
macro processor -- replacement of text by other text.

Besides the straightforward replacement of one string of
text by another, a macro processor provides:

@& Macros with arguments
é& Conditional macro expansions
& Arithmetic expressions
& File manipulation facilities
@ String processing functions

The basic operation of M is ¢to copy its input to its
output. As the input is read, , each alphanumeric "token"
(that is, string of letters and digits) is checked. If it
is the name of a macro, then the name of the macro is
replaced by its defining text, and the resulting string is
pushed back onto the input it is rescanned by M4. Macros
may be called with arguments, in which case the arguments
are collected and substituted into the right places in the
defining text before M4 rescans the text.

M4 provides a collection of about twenty built-in macros
which perform various operations. 1In addition, the user can
define new macros. Built-ins and user-defined macros work
exactly the same way, except that some of the built-in
macros have side effects on the state of the process.

Appendix B Appendix B

B.l Usage
To invoke M4, type:
m4 [files]

Each argument file is processed in order. If there are no
arguments, or if an argument is a dash (-), the standard
input is read at that point. The processed text is written
to the standard output.

m4 [files] >outputfile
B.2 Defining Macros

The primary built-in function of M4 is define, which is used
to define new macros. The input

define(name, stuff)

causes the string name to be defined as stuff. All
subsequent occurrences of name will be replaced by stuff.
Name must be alphanumeric and must begin with a letter (the
underscore _ counts as a letter). stuff is any text that
contains balanced parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define (N, 100)

if (i > N)

defines N to be 100, and uses this "symbolic constant" in a
later if statement.

The 1left parenthesis must immediately follow the word
define, to signal that define has arguments. If a macro or
built-in name is not followed immediately by "(", it is
assumed to have no arguments. This is the situation for N
above; it is actually a macro with no arguments, and thus
when it is used there need be no (...) following it.

You should also notice that a macro name is only recognized
as such if it appears surrounded by non-alphanumerics. For
example, in

define (N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defiined
macro N, even though it contains a lot of N's.

Things may be defined in terms of other things. For
example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way,
is M defined as N or as 100? In M4, the latter is true --
M is 100, so even if N subsequently changes, M does not.

This behavior arises because M4 expands macro names into
their defining text as soon as it possibly can. Here, that
means that when the string N is seen as the arguments of
define are being collected, it is immediately replaced by
100; it's just as if you had said

define(M, 100)
in the first place.

If this isn't what you really want, there are two ways out
of it. The first, which is specific to this situation, is
to interchange the order of the definitions:

define (M, N)
define (N, 100)

Now M is defined to be the string N, so when you ask for M
later, you will always get the value of N at that time
(because the M will be replaced by N which, in turn, will be
replaced by 100).

B.3 Quoting

The more general solution is to delay the expansion of the
arguments of define by guoting them. Any text surrounded by
the single quotes ® and ' is not expanded immediately, but
has the quotes stripped off. If you say

define(N, 100)
define (M, °N')

the quotes around the N are stripped off as the argument is
being collected, but they have served their purpose, and M
is defined as the string N, not 100. The general rule is
that M4 always strips off one 1level of single quotes

Appendix B Appendix B

whenever it evaluates something. This is true even outside
of macros. If you want the word define to appear in the
output, you have to quote it in the input, as in

“*define' = 1;

As another instance of the same thing, which is a bit more
surprising, consider redefining N:

define(N, 100)

define (N, 200)

Perhaps regrettably, the N in the second definition is
evaluated as soon as it's seen; that is, it is replaced by
100, so it's as if you had written

define (100, 200)

This statement is ignored by M4, since you can only define
things that 1look like names, but it obviously doesn't have
the effect you wanted. To really redefine N, you must delay
the evaluation by quoting:

define (N, 100)

define(*N', 200)

In M4, it is often wise to quote the first argument of a
macro.

If the forward and backward quote characters (* and ') are
not convenient for some reason, the quote characters can be
changed with the built-in changequote. For example:

changequote ([,])

makes the new quote characters the left and right brackets.
You can restore the original characters with just

changequote

There are two additional built-ins- related to define.
undefine removes the definition of some macro or built-in:

undefine(“N')

removes the definition of N. Built-ins can be removed with
undefine, as in

a

Appendix B Appendix B

undefine(“define')
but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is
currently defined. For instance, pretend that either the
word xenix or unix is defined according to a particular
implementation of a program. To perform operations
according to which system you have you might say:

ifdef(“xenix', “define(system,l)"')
ifdef (“unix', “define(system,2)')

Don't forget the quotes in the above example.

Ifdef actually permits three arguments: if the name is
undefined, the value of ifdef is then the third argument, as
in

ifdef(“xenix', on XENIX, not on XENIX)

B.4 Arguments

So far we have discussed the simplest form of macro
processing - replacing one string by another (fixed)
string. User-defined macros may also have arguments, so
different invocations can have different results. Within
the replacement text for a macro (the second argument of its
define) any occurrence of $n will be replaced by the nth
argument when the macro is actually used. Thus, the macro
bump, defined as

define(bump, $1 = $1 + 1)
generates code to increment its argument by 1l:
bump (x)

is

A macro can have as many arguments as you want, but only the
first nine are accessible, through $1 to $9. (The macro
name itself is $0, although that is 1less commonly used.)
Arguments that are not supplied are replaced by null
strings, so we can define a macro cat which simply
concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Appendix B Appendix B

Thus
cat(x, y, 2)
is equivalent to
Xyz

$4 through $9 are null, since no corresponding arguments
were provided.

Leading unquoted blanks, tabs, or newlines that occur during
argument collection are discarded. All other white space is
retained. Thus:

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but parentheses are
counted properly, so a comma "protected" by parentheses does
not terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally (b,c).
And of course a bare comma or parenthesis can be inserted by
quoting it.

B.5 Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on
integers. The simplest 1is incr, which increments its
numeric argument by 1. Thus, to handle the common
programming situation where you want a variable to be
defined as "one more than N", write

define (N, 100)
define (N1, “incr(N)')

Then N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in
called eval, which 1is capable of arbitrary arithmetic on
integers. It provides the following operators (in
decreasing order of precedence):

Appendix B Appendix B

unary + and -
** or © (exponentiation)
* / 8% (modulus)

or

4+ -
== 1= < <= > >=
! (not)

&

|

or &§& (logical and)
|| (Logical or)

Parentheses may be used to group operations where needed.
All the operands of an expression given to eval must
ultimately be numeric. The numeric value of a true relation
(like 1>0) 1is 1, and false is 0. The precision in eval is
implementation dependent.

As a simple example, suppose we want M to be 2**N+l. Then

define (N, 3)
define (M, “eval(2**N+1)')

As a matter of principle, it is advisable to quote the
defining text for a macro unless it is very simple indeed
(say just a number); it usually gives the result you want,
and is a good habit to get into.

B.6 File Manipulation

You can include a new file in the input at any time by the
built-in function include:

include(filename)

inserts the contents of filename in place of the include
command. The contents of the file 1is often a set of
definitions. The value of include (that is, its replacement
text) is the contents of the file; this can be captured in
definitions, etc.

It is a fatal error if the file named in include cannot be
accessed. To get some control over this situation, the
alternate form sinclude can be used; sinclude ("silent
include") says nothing and continues if it can't access the
file.

It is also possible to divert the output of M4 to temporary
files during processing, and output the collected material
upon command. M4 maintains nine of these diversions,
numbered 1 through 9. If you say

divert(n)

Appendix B Appendix B

all subsequent output is put onto the end of a temporary
file referred to as n. Diverting to this file is stopped by
another divert command; in particular, divert or divert(0)
resumes the normal output process. -

Diverted text is normally output all at once at the end of
processing, with the diversions output in numeric order. 1It
is possible, however, to bring back diversions at any time,
that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undivert
with arguments brings back the selected diversions in the
order given. The act of undiverting discards the diverted
stuff, as does diverting into a diversion whose number is
not between 0 and 9 inclusive.

The wvalue of undivert Iis not the diverted stuff.
Furthermore, the diverted material is not rescanned for

macros.

The built-in divnum returns the number of the currently
active diversion. This is zero during normal processing.

B.7 System Command

You can run any program in the local operating system with
the syscmd built-in. For example,

syscmd (date)

runs the date command. Normally, syscmd would be used to
create a file for a subsequent include.

To facilitate making unique file names, the built-in
maketemp is provided, with specifications identical to the
system function mktemp: a string of XXXXX in the argument is
replaced by the process id of the current process.

B.8 Conditionals

There is a built-in called 1ifelse which enables you to
perform arbitrary conditional testing. In the simplest
form,

ifelse(a, b, ¢, 4)
compares the two strings a and b. If these are identical,

ifelse returns the string c; otherwise it returns 4. Thus,
we might define a macro called compare which compares two

Appendix B Appendix B

strings and returns "yes" or "no" if they are the same or
different.

define(compare, “ifelse($1l, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of
ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus
provides a 1limited form of multi-way decision capability.
In the input

ifelse(a, b, ¢, 4, e, £, 9g)

if the string a matches the string b, the result is C.
Otherwise, if 4 is the same as e, the result is f.
Otherwise the result 1is g. If the final argument 1
omitted, the result is null, so

ifelse(a, b, c)

is ¢ if a matches b, and null otherwise.

B.9 String Manipulation

The built-in len returns the length of the string that makes
up its argument. Thus

len (abcdef)
is 6, and len((a,b)) is 5.

The built-in substr can be used to produce substrings of
strings. substr(s, i, n) returns the substring of s that
starts at the ith position (origin =zero), and is n
characters long. If n is omitted, the rest of the string is
returned, so

substr (*now is the time', 1)
is
ow is the time

If i or n are out of range, various sensible things happen.

index(sl, s2) returns the index (position) in sl where the
string s2 occurs, or -1 if it doesn't occur. As with
substr, the origin for strings is 0.

Appendix B Appendix B

The built-in translit performs character transliteration.
translit(s, £, t)

modifies s by replacing any character found in £ by the
corresponding character of t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is
shorter than £, characters which don't have an entry in t
are deleted; as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit(s, aeiou)
deletes vowels from s.

There is also a built-in called dnl which deletes all
characters that follow it up to and including the next
newline. It is useful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output. For example,

if you say

define (N, 100)
define(M, 200)
define (L, 300)

the newline at the end of each 1line 1is not part of the

definition, so it 1is copied into the output, where it may
not be wanted. If you add dnl to each of these 1lines, the
newlines will disappear.

Another way to achieve this, is

divert(-1)
define(...)

divert

B.10 Printing

The built-in errprint writes its arguments out on the
standard error file. Thus, you can say

errprint(“fatal error')

Dumpdef 1is a debugging aid which dumps the current
definitions of defined terms. If there are no arguments,
you get everything; otherwise you get the ones you name as
arguments. Don't forget the quotes.

B-10

APPENDIX C: C Language Portability

The C 1language is defined 1in the appendix to "The C
Programming Language", by Kernighan and Ritchie. This
definition leaves many details to be decided by individual
implementations of the 1language. It is those incompletely
specified features of the language that detract from its
portability and that should be studied when attempting to

write portable C code.

Most of the issues affecting C portability arise from
differences in either target machine hardware or compilers.
C was designed to compile to efficient code for the target
machine (initially a PDP-11l) and so many of the language
features not precisely defined are those that reflect a
particular machine's hardware characteristics.

This document highlights the various aspects of C that may
not be portable across different machines and compilers. It
also briefly discusses the portability of a C program in
terms of its environment, which is determined by the system
calls and library routines it uses during execution, file
pathnames it requires, and other items not guaranteed to be
constant across different systems.

The C language has been implemented on many different
computers with widely different hardware characteristics,
varying from small 8-bit microprocessors to large
mainframes. This document 1is 1largely concerned with the
portability of C code in the XENIX programming environment.
This is a more restricted problem to consider since all
XENIX systems to date run on hardware with the following
basic characteristics:

- Ascii character set.

8-bit bytes.
- 2 or 4 byte integers.
- Two's Complement Arithmetic.

None of these features is required by the formal definition
of the language, nor is it true of all implementations of C.
However, the remainder of this document is largely devoted
to those systems where these basic assumptions hold.

The C language definition contains no specification of how

input and output is performed. This is left to system calls
and library routines on individual systems. Within XENIX

systems there are a large number of system calls and library

- ¥
0
0
.m
=
B~
<

Appendix B

B.1ll Summary of Built-ins

changequote (L, R)
define(name, replacement)
divert (number)

divnum

dnl

dumpdef (*name', “name', ...)
errprint(s, s, ...)

eval (numeric expression)
ifdef(*name', this if true, this if false)
ifelse(a, b, c, 4)
include(file)

incr (number)

index(sl, s2)

len(string)
maketemp (. ..XXXXX...)
sinclude(file)

substr (string, position, number)
syscmd (s)

translit(str, from, to)
undefine (“name"')

undivert (number,number,...)

B-11

Appendix B

Appendix C Appendix C

routines which can be considered portable. These are
described briefly in a later section.

This document is not intended as a C 1language primer, for
which should be used. It is assumed here that the reader is
familiar with C, and with the basic architecture of common
microprocessors.

C.1 Source Code Portability

We are concerned here with source code portability, which
means that programs can be compiled and run successfully on
different machines without alteration.

Programs can be written to achieve this goal using several
techniques. The first 1is to avoid using inherently non-
portable language features. Secondly, any non-portable
interactions with the environment, such as I/0 to non-
standard devices should be isolated, and possibly passed as
an argument to the program at run time. For example programs
should not, in general, contain hard-coded file pathnames
except where these are commonly understood to be portable
(an example might be /etc/passwd).

Files required at compile time (i.e. include files) may also
introduce non-portability if the pathnames are not the same
on all machines. However in some cases the use of include
files to contain machine parameters can be used to make the
source code itself portable.

C.2 Machine Hardware

As mentioned earlier, most non-portable features of the C
language are due either to hardware differences in the
target machine or to compiler differences. This section
lists the more common hardware differences encountered on
XENIX systems and some language features to beware of.

C.2.1 Byte Length

The length of the char data type is not defined in the
language, other than that it must be sufficient to hold all
members of the machine's character set as positive numbers.
Within the scope of this document we will consider only 8-
bit bytes, since this is the byte size on all XENIX systems.

C.2.2 Word Length

The definition of C makes no mention of the size of the
basic data types for a given implementation. These generally
follow the most natural size for the underlying machine. It

Appendix C Appendix C

is safe to assume that short is no longer than long. Beyond
that no assumptions are portable. For example on the PDP-11
short is the same length as int, whereas on the VAX long is
the same length as int.

Programs that need to know the size of a particular data
type should avoid hard-coded constants where possible. Such
information can usually be written in a fairly portable way.
For example the maximum positive integer (on a two's
complement machine) can be obtained with:

#define MAXPOS ((int) (((unsigned) 0) >> 1))
This is usually preferable to something like:

$ifdef PDP1l1
$define MAXPOS 32767
#else

$endif

Likewise to find the number of bytes in an int use
sizeof(int) rather than 2, 4, or some other non-portable
constant.

C.2.3 Storage Alignment

The C language defines no particular layout for storage of
data items relative to each other, or for storage of
elements of structures or unions within the structure or
union.

Some CPU's, such as the PDP-11 and M68000 require that data
types longer than one byte be aligned on even byte address
boundaries. Others, such as the 8086 and VAX-1l1l have no such
hardware restriction. However, even with these machines,
most compilers generate code that aligns words, structures,
arrays and long words, on even addresses, or even long word
addresses. Thus, on the VAX-11l, the following code sequence
gives '8', even though the VAX hardware can access an int (a
4 byte word) on any physical starting address:

struct s_tag {
char c;
int 1i;
;
printf("%d\n",sizeof (struct s_tag));
The principal implications of this variation in data storage

are twofold: 1) data accessed as non-primitive data types is
not portable, and 2) neither is code that makes use of

c-3

Appendix C Appendix C

knowledge of the layout on a particular machine.

Thus unions containing structures are non-portable if the
union 1is wused to access the same data in different ways.
Unions are only likely to be portable if they are used
simply to have different data in the same space at different
times. For example, if the following union were used to
obtain four bytes from a long word, there's no chance of the
code being portable:

union {
char cl4];
long 1lw;
}ou;

The sizeof operator should always be used when reading and
writing structures:

struct s_tag st;

write(fd, &st, sizeof(st));

This ensures portability of the source code. It does NOT
produce a portable data file. Portability of data is
discussed in a later section.

Note that the sizeof operator returns the number of bytes an
object would occupy in an array. Thus on machines where
structures are always aligned to begin on a word boundary in
memory, the sizeof operator will include any necessary
padding for this in the return value, even if the padding
occurs after all useful data in the structure. This occurs
whether or not the argument is actually an array element.

C.2.4 Byte Order in a Word

The variation in byte order in a word between machines
affects the portability of data between machines more than
the portability of source code. However any program that
makes use of knowledge of the internal byte order in a word
is not portable. For example, on some PDP-1l1 systems there
is an include file misc.h which contains the following
structure declaration:

Appendix C Appendix C

/*
* structure to access an
* integer in bytes
*/
struct {
char lobyte;
char hibyte;

}i

- With certain less restrictive compilers this could be used
to access the high and 1low order bytes of an integer
separately, and in a completely non-portable way. The
correct way to do this is to use mask and shift operations
to extract the required byte:

$define LOBYTE(i) (i & Oxff)
$define HIBYTE(i) ((i >> 8) & Oxff)

Note that even this is only applicable to machines with two
bytes in an int.

One result of the byte ordering problem is that the
following code sequence will not always perform as intended:

int ¢ = 0;
read(fd, &c, 1);

On machines where the low order byte is stored first, the
value of ¢ will be the byte value read. On other machines
the byte is read into some byte other than the 1low order
one, and the value of c is different.

C.2.5 Bitfields

Bitfields are not implemented in all C compilers. When they
are, a number of restrictions apply:

- No field may be larger than an int.

- No field will overlap an int boundary. If necessary the

compiler will 1leave gaps and move to the next int
boundary.

The C language makes no guarantees about whether fields are
assigned 1left to right, or right to left in an int. Thus
while bitfields may be useful for storing flags, and other
small data items, their use in unions to disect bits from
other data is definitely non-portable.

Appendix C Appendix C

To ensure portability no individual field should exceed 16
bits.

C.2.6 Pointers

The C language is fairly generous in allowing manipulation
of pointers, to the extent that most compilers will not
object to non-portable pointer operations. The lint program
is particularly useful for detecting questionable pointer
assignments and comparisons.

The common non-portable use of pointers is where a pointer
to one data type is cast to be a pointer to a different data
type. This almost always makes some assumption about the
internal byte ordering and layout of the data type, and is
therefore non-portable. For example, in the following code,
the ordering of the bytes from the long in the byte array is
not portable:

char c[4];
long *1p;

lp = (long *)&c[0];
*1p = 0x12345678L;

The lint program will issue warning messages about such uses
of pointers. Very occasionally it is necessary and valid to
write code like this. An example 1is when the malloc()
library routine is wused to allocate memory for something
other than type char. The routine 1is declared as type
char * and so the return value has to be cast to the type to
be stored in the allocated memory. If this type 1is not
char * then 1lint will issue a warning concerning illegal
type conversion. In addition, the malloc() routine is
written to always return a starting address suitable for
storing all types of data, but lint does not know this, so
it gives a warning about possible data alignment problems
too. In the following example, malloc() is used to obtain
memory for an array of 50 integers. The code will attract a
warning message from lint. There is nothing which can be
done about this.

extern char *malloc():
int *ip;

ip = (int *)malloc(50);

Appendix C Appendix C

C.2.7 Address Space

The address space available to a program running under XENIX
varies considerably from system to system. On a small PDP-11
there may be only 64k bytes available for program and data
combined (although this can be increased - see 23fix(l)).
Larger PDP-1l1l's, and some 16 bit microprocessors allow 64k
bytes of data, and 64k bytes of program text. Other machines
may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data areas
may have portability problems on small machines.

C.2.8 Character Set

We have said that we are concerned here mainly with the
ascii character set. The C language does not require this
however. The only requirements are:

- All characters fit in the char data type.

- All characters have positive values.

In the ascii character set, all characters have values
between 2zero and 127. Thus they can all be represented in 7
bits, and on an 8 bits per byte machine are all positive
regardless of whether char is treated as signed or unsigned.

There is a set of macros defined under XENIX in the header
file /usr/include/ctype.h which should be wused for most
tests on character quantities. Not only do they provide
some insulation from the internal structure of the character
set, their names are more meaningful than the equivalent
line of code in most cases, Compare

if (isupper(c))
to

if((c >= 'A') && (c <= '2"))
With some of the other macros, such as isxdigit() to test
for a hex digit, the advantage is even greater. Also, the

internal implementation of the macros makes them more
efficient than an explicit test with an 'if' statement.

Appendix C Appendix C

C.3 Compiler Differences

There are a number of C compilers running under XENIX. On
PDP-11 systems there is the so called "Ritchie" compiler.
Also on the 11, and on most other systems, there 1is the
Portable C Compiler.

C.3.1 8Signed/Unsigned char, Sign Extension

The current state of the signed versus unsigned char problem
is best described as unsatisfactory. The problem is
completely explained and discussed in Sign Extension and
Portability in C, Hans Spiller, Microsoft 1982, so that
material is not repeated here.

The sign extension problem 1is one of the more serious
barriers to writing portable C, and the best solution at
present is to write defensive code which does not rely on
particular implementation features. The above paper suggests
some ways.

C.3.2 Shift Operations

The left shift operator, << shifts its operand a number of
bits 1left, £filling vacated bits with zero. This is a so-
called logical shift.

The right shift operator, >> when applied to an unsigned
quantity, performs a logical shift operation. When applied
to a signed quantity, the vacated bits may be filled with
zero (logical shift) or with sign bits (arithmetic shift).
The decision is implementation dependent, and code which
uses knowledge of a particular implementation is non-
por table. '

The PDP-11 compilers use arithmetic right shift. Thus ¢to

avoid sign extension it 1is necessary to either shift and
mask out the appropriate number of high order bits, or to

use a divide operator which will avoid the problem
completely:

char c;

For ¢ >> 3; use: (c >> 3) & Ox1f;
or: c/ 8;

C.3.3 Identifier Length
The use of long identifier names will cause portability

problems with some compilers. There are three different
cases to be aware of:

Appendix C Appendix C

- C Preprocessor Symbols.
- C Local Symbols.

- C External Symbols.

The loader used may also place a restriction on the number
of unique characters in C external symbols.

Symbols unique in the first six characters are unique to
most C language processors.

On some non-XENIX C implementations, upper and 1lower case
letters are not distinct in identifiers.

C.3.4 Register Variables

The number and type of register variables in a function
depends on the machine hardware and the compiler. Excess and
invalid register declarations are treated as non-register
declarations, which should not cause a portability problem.
On a PDP-11], up to three register declarations are
significant, and they must be of type int, char, or pointer.
(Page 81). Whilst other machines/compilers may support
declarations such as "register unsigned short" this should
not be relied upon.

Since the compiler ignores excess register keywords,
register type variables should always be declared in their
importance of being register type. Then the ones the
compiler ignores will be the least important.

C.3.5 Type Conversion

The C language has some rules for implicit type conversion;

tt also allows explicit type conversions by type casting.
The most common portability problem arising from implicit
type conversion 1is unexpected sign extension. This is a

potential problem whenever something of type char is
compared with an int.

For example
char c;

if (c == 0x80)

will never evaluate true on a machine which sign extends
since ¢ is sign extended before the comparison with 0x80, an
int.

Appendix C Appendix C

The only safe comparison between char type and an int is the
following:

char c;

if(c == 'x")

This is reliable since C guarantees all characters to be
positive. The use of hard-coded octal constants is subject
to sign extension. For example the following program prints

£f£80 on a PDP-11:
main()

printf ("%x0,'\200');

}

Type conversion also takes place when arguments are passed
to functions. Types char and short become int. Once again
machines that sign extend char can give surprises. For
example the following program gives -128 on the PDP-11l:

char ¢ = 128;
printf("%d\n",c);

This is because ¢ is converted to int before passing on the
stack to the function. The function itself has no knowledge
of 'the original type of the argument, and is expecting an
int. The correct way to handle this is to code defensively
and allow for the possibility of sign extension:

char ¢ = 128;
printf("s$d\n", c & Oxff);

C.3.6 Punctions With Variable Number of Arguments

Functions with a variable number of arguments present a
particular portability problem if the type of the arguments
is variable too. In such cases the code is dependent upon
the size of various data types.

In XENIX there is an include file, /usr/include/varargs.h,
that contains macros for use in variable argument functions
to access the arguments in a portable way:

Appendix C Appendix C

typedef char *va_list;

#define va_dcl int va_alist;

#define va_start(list) list = (char *) &va_alist
#define va_end(list)

#define va_arg(list,mode) ((mode *) (list += sizeof (mode))) [-1]

Figure 1. File: /usr/include/varargs.h

The va_end() macro is not currently required. The use of
the other macros will be demonstrated by an example of the
fprintf() library routine. This has a first argument of type
FILE *, and a second argument of type char *. Subsequent
arguments are of unknown type and number at compiyation
time. They are determined at run time by the contents of the
control string, argument 2.

The first few lines of fprintf() to declare the arguments

and find the output file and control string address could
be:

#include <varargs.h>
#include <stdio.h>

int
fprintf(va_alist)
va_dcl;

va_list ap; /* pointer to arg list */
char *format;
FILE *fp;

va_start(ap):; /* initialize arg pointer */
fp = va_arg(ap, (FILE *));
format = va_arg(ap, (char *));

}

Note that there is just one argument declared to fprintf().
This argument is declared by the va_dcl macro to be type
int, although its actual type is unknown at compile time.
The argument pointer, ap, is initialized by va_start() to
the address of the first argument. Successive arguments can
be picked from the stack so long as their type is known
using the va_arg() macro. This has a type as its second
argument, and this controls what data is removed from the
stack, and how far the argument pointer, ap, is incremented.

'In fprintf(), once the control string is found, the type of

subsequent arguments is known and they can be accessed
sequentially by repeated calls to va_arg(). For example,
arguments of type double, int *, and short, could be

Appendix C Appendix C

retrieved as follows:

double dint;
int *ip;
short s;

dint = va_arg(ap, double);
ip = va_arg(ap, (int ¥*));
s = va_arg(ap, short);

The use of these macros makes the code more portable,
although it does assume a certain standard method of passing
arguments on the stack. In particular no holes must be 1left
by the compiler, and types smaller than int (e.g. char, and
short on long word machines) must be declared as int.

C.3.7 8Side Effects, Evaluation Order

The C language makes few guarantees about the order of
evaluation of operands in an expression, or arguments to a
function call. Thus

func(i++, i++);
is extremely non-portable, and even
func (i++);

is unwise if func() is ever 1likely to be replaced by a
macro, since the macro may use i more than once. There are

certain XENIX macros commonly used in user programs; these
are all guaranteed to only use their argument once, and so

can safely be called with a side-effect argument. The
commonest examples are getc(), putc(), getchar(), and

putchar ().

Operands to the following operators are guaranteed to be
evaluated left to right:

’ && | ? :

Note that the comma operator here is a separator for two C
statements. A 1list of items separated by commas in a
declaration list are not guaranteed to be processed left to

right. Thus the declaration
register int a, b, ¢, 4;

on a PDP-11 where only three register variables may be
declared could make any three of the four variables register
type, depending on the compiler. The correct declaration is

——

Appendix C Appendix C

to decide the order of importance of the variables being
register type, and then use separate declaration statements,
since the order of processing of individual declaration
statements is guaranteed to be sequential:

register int a;
register int b;
register int c;
register int 4;

For the same reason declaration initializations of the
following type are unwise:

int a =0, b= a;
C.4 Program Environment Differences

Most non-trivial programs make system calls and use library

routines for various services. The sections below indicate
some of those routines that are not always portable, and
those that particularly aid portability.

We are concerned here primarily with portability under the
XENIX operating system. Many of the XENIX system calls are
specific to that particular operating system environment and
are not present on all other operating system
implementations of C. Examples of this are getpwent() for
accessing entries in the XENIX password file, and getenv()
which is specific to the XENIX concept of a process's

environment.

Any program containing hard-coded pathnames to files or
directories, or user 1id's, login names, terminal lines or
other system dependent parameters is non-portable. These
types of constant should be in header files, passed as
command line arguments, obtained from the environment, or by
using the XENIX default parameter library routines dfopen{(),
and dfread().

Within XENIX, most system calls and 1library routines are
por table across different implementations and XENIX
releases. However, a few routines have changed in their user
interface.

C.4.1 Libraries

The various XENIX library routines are generally portable
among XENIX systems; however, note the following:

printf The members of the printf family, printf, fprintf,
sprintf, sscanf, and scanf have changed in several

4

Appendix C Appendix C

small ways during the evolution of XENIX, and some
features are not completely portable. The return
values from these routines cannot be relied upon
to have the same meaning on all systems. Certain
of the format conversion characters have changed
their meanings, in particular relating to
upper/lower case in the output of hexadecimal
numbers, and the specification of long integers on
16-bit word machines. The reference manual page
for rintf (3S) contains the correct specification
for tEe routines.

C.5 Portability of Data

Data files are almost always non-portable across different
machine CPU architectures. As mentioned above, structures,
unions, and arrays have varying internal layout and padding
requirements on different machines. In addition, byte
ordering within words and actual word length may differ.

The only way to get close to data file portability is to
write and read data files as one dimensional character
arrays. This avoids alignment and padding problems if the
data is written and read as characters, and interpreted that
way. Thus ascii text files can usually be moved between
different machine types without too much problem.

C.6 Lint

For a complete description of lint(l) see the discussion in
a following chapter.

Lint is a C program checker which attempts to detect
features of a collection of C source files which are non-
portable or even incorrect C. One particular advantage over
any compiler checking is that 1lint checks function
declaration and usage across source files. Neither compiler
nor loader do this.

Lint will generate warning messages about non-portable
pointer arithmetic and dubious assignments and type
conversions. Passage unscathed through 1lint is not a
guarantee that a program is completely portable.

C.7 Byte Ordering Summary

The following conventions are used below. 'a0' is the lowest
physical addressed byte of the data item. 'al' has a byte
address a0 + 1, etc. 'b0' is the least significant byte of
the data item, 'bl' being the next least significant, etc.

Cc-14

Appendix C

of

Appendix C
o Note that any program which actually makes use
- following information is guaranteed to be non-portablel
tmm—————— + e +
| bo | bl | | b2 | b3 | b0 | bl |
e —— i +
a0 al a0 al a2 a3
type short type long
Figure 2. PDP-11 Byte Ordering
tm——————— -+ e +
| bo | b1l | | bO | bl | b2 | b3 |
e + ettt +
a0 al a0 al a2 a3
type short type long
Figure 3. VAX-11l Byte Ordering
Ve ¥ S + . —————— +
- | bo | bl | | b2 | b3 | b0 | bl |
i —— + e +
a0 al a0 al a2 a3
type short type long
Figure 4. 8086 Byte Ordering
tmmm—————— + e —— +
| b1 | bo | | b3 | b2 | bl | b0 |
i —— + 0 4 +
a0 al a0 al a2 a3
type short type long
Figure 5. M68000 Byte Ordering

C-15

the

Appendix C

e
+--~_a-a-‘-\--'-_
| bl l~b0
+——--—-—-—
a0 al
type short
T
p

+ S aatatat +
| | b3 | b2 | b1 | bO |
+ et L L L T +
a0 al a2 a3
type long

-—— i e - - -

Figure 6. 28000 Byte Ordering

C-16

Appendix C

	2017_02_11_01_17_05
	2017_02_11_01_18_32
	2017_02_11_01_21_00
	2017_02_11_01_23_35
	2017_02_11_01_25_09
	2017_02_11_01_27_01
	2017_02_11_01_28_01
	2017_02_11_01_29_12
	2017_02_11_01_30_36
	2017_02_11_01_31_46
	2017_02_11_01_35_50
	2017_02_11_01_36_21

