
z/OS Basic Skills Information Center

Reusable JCL collection

���

z/OS Basic Skills Information Center

Reusable JCL collection

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 59.

This edition applies to z/OS (product number 5694-A01).

We appreciate your comments about this publication. Comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Send your comments through this Web site: http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/
index.jsp?topic=/com.ibm.zcontact.doc/webqs.html

© Copyright International Business Machines Corporation 2007, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html
http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html

Contents

Introducing the reusable JCL collection v

Chapter 1. Preparing to use JCL

samples in this collection 1

Chapter 2. Selecting a reusable JCL

sample 7

Reusable JCL: Creating a data set 7

Reusable JCL: Copying a data set to tape 10

Reusable JCL: Copying a partitioned data set . . . 13

Reusable JCL: Copying a sequential data set . . . 18

Reusable JCL: Copying a load module 22

Reusable JCL: Deleting a data set 27

Reusable JCL: Deleting some VSAM clusters . . . 29

Chapter 3. Basic JCL concepts 33

JCL statements: What does the JOB statement do? 33

JCL JOB statements: Positional and frequently

used parameters 33

JCL statements: What does the EXEC statement do? 35

JCL EXEC statements: Positional and frequently

used parameters 35

JCL EXEC statements: What are JCL procedures? 37

JCL EXEC statements: How z/OS finds the

program or procedure 38

JCL statements: What does the DD statement do? . 40

JCL DD statements: Advantages of using

symbolic names 40

JCL DD statements: Positional and frequently

used parameters 43

JCL DD statements: Use different parameters for

SMS data sets 45

JCL DD statements: Identify program libraries

with JOBLIB or STEPLIB 45

Chapter 4. Coding your own JCL . . . 47

JCL exercise: Creating and submitting a job 47

Coding JCL: Collecting company-specific

information 54

Coding JCL: Syntax rules for the name field . . . 56

Coding JCL: Data set types and name syntax . . . 56

Notices 59

Programming interface information 60

Trademarks 61

© Copyright IBM Corp. 2007, 2008 iii

iv z/OS Basic Skills Information Center: Reusable JCL collection

Introducing the reusable JCL collection

The reusable JCL collection consists of working samples of job control language

(JCL) that new z/OS® professionals can copy, edit, and reuse to accomplish basic

tasks on the job.

This collection is designed to help new users quickly become productive in the

z/OS environment, while teaching JCL keywords and syntax within the context of

realistic samples. The samples in the collection are based on tasks that existing

z/OS customers have identified as most likely to be given to new z/OS

professionals as part of their on-the-job training.

The samples in the reusable JCL collection are as complete as possible, and include

line-by-line instructions and descriptions. Correctly modifying the samples for use,

however, requires some basic knowledge of JCL techniques and of your own work

environment. This collection includes a company checklist and other educational

materials that can help you use the samples, and eventually code your own JCL.

© Copyright IBM Corp. 2007, 2008 v

vi z/OS Basic Skills Information Center: Reusable JCL collection

Chapter 1. Preparing to use JCL samples in this collection

The reusable JCL collection consists of working samples of JCL that you can copy,

edit, and reuse to quickly accomplish basic tasks on the job. Using these samples

requires some basic knowledge of JCL techniques and of your own work

environment; start with this checklist.

About this task

Although the samples in the reusable JCL collection are as complete as possible,

and include line-by-line instructions and descriptions:

v You need to understand the basic process for creating or editing JCL and

submitting a job.

v You need to memorize certain JCL techniques that are required for almost all of

the JCL that you modify or write.

v You must replace certain variables in the samples with company-specific

information.

v You will need to use additional reference materials if you want to significantly

alter these reusable samples.

Before you begin to work with the JCL samples, use the following checklist to

collect or learn what you need to know.

Procedure

1. Complete or review the exercise described in “JCL exercise: Creating and

submitting a job” on page 47, which takes you through the process of creating

a data set member for JCL, coding JCL (using a predefined sample), submitting

the job, and viewing the job output. Unless your mentor has already set up a

JCL data set for you, you will need to create your own data set to contain any

JCL you write or use, including any of the reusable samples in this collection.

2. Make sure you have access to the latest editions of the following resources:

v z/OS MVS™ JCL Guide (SA22-7598) and z/OS MVS JCL Reference (SA22-7597).

The latter is an especially indispensable resource, containing detailed

descriptions of JCL parameters and keywords.

v z/OS MVS System Messages and z/OS MVS System Codes (SA22-7626). Both are

useful for debugging error messages or return codes.

All are available in several formats. Check for them online in the z/OS Internet

Library:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You might need additional resources from the z/OS product library as well;

any specific references are noted in the instructions for each sample.

3. Memorize the names and functions of the five fields that constitute a JCL

statement.

© Copyright IBM Corp. 2007, 2008 1

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

4. Memorize the syntax rules for continuing JCL statements on more than one

line. When you modify one of the reusable JCL samples, your changes often

will make a complete JCL statement exceed 71 characters in length. When this

happens, you must use multiple lines to complete the statement. To continue a

JCL statement on one or more separate lines:

a. In the parameter field of the JCL statement, end the line before reaching

position 72, but after coding a complete parameter or subparameter and the

comma that follows it.

b. On the next line, code two forward slashes (//) in positions 1 and 2.

c. Beginning in any position from 4 to 16, resume coding the JCL statement

with the next complete parameter or subparameter.

You also may use this technique to make your JCL more easily readable. This

example illustrates a correctly coded multiple-line JCL statement:

//NEWDS DD DSNAME=ZUSER03.ACTDATA.LIST,DISP=(NEW,KEEP),

// DATACLAS=DSCLAS01,STORCLAS=STRCLS20

5. Learn how to correctly code data set names on the DSNAME parameter (often

abbreviated DSN) on data definition (DD) statements. Naming and syntax rules

for coding data set names vary depending on the type of data set you are

identifying.

Table 1 on page 3 lists the different types and examples of correctly coded

names. Unless another resource is noted in the table, z/OS MVS JCL Reference

(SA22-7597) is the definitive source for complete details about the data set

types and permissible names, along with syntax rules.

2 z/OS Basic Skills Information Center: Reusable JCL collection

Table 1. Summary of data set types and correctly coded DSNAME (DSN) parameter values

Type of data set DSNAME (DSN) parameter value formats and examples

Permanent Unqualified names: One through 8 alphanumeric or special ($, #, @)

characters, a hyphen, or a character X’C0’. The first character must be

alphabetic or special ($, #, @).

Example of an unqualified name:

DSNAME=ALPHA

Qualified names: Multiple unqualified names joined by periods. Each

qualifier is coded like an unqualified name; therefore, the name must

contain a period after every 8 characters or fewer. The maximum

length of a qualified data set name is:

v 44 characters, including periods.

v For a generation data group, 35 characters, including periods.

v For an output tape data set, 17 characters, including periods.

Example of a qualified name:

DSNAME=ALPHA.PGM

RACF-protected data sets: Use the same format as for a qualified

name, and make sure the high-level qualifier of the name is defined to

RACF®. Further details are documented in z/OS Security Server RACF

Security Administrator’s Guide (SA22-7683).

Formats for names of cataloged data sets:

dsname

dsname(member)

dsname(gen_data_group)

dsname(INDEX | PRIME | OVFLOW)

Example for a cataloged data set:

DSNAME=LIB1(PROG12)

Further details are documented in z/OS DFSMS™ Access Method

Services for Catalogs (SC26-7394).

Temporary When you define a temporary data set, you can code the DSNAME

parameter or omit it; in either case, the system generates a qualified

name for the temporary data set.

When you use the DSNAME parameter for a temporary data set, code

the name as two ampersands (&&) followed by a character string 1 to

8 characters in length:

v The first character following the ampersands must be alphabetic or

special ($, #, @).

v The remaining characters must be alphanumeric or special ($, #, @).

Formats for temporary data set names:

&&dsname

&&dsname(member)

&&dsname(INDEX | PRIME | OVFLOW)

Example for a temporary data set:

//DD3 DD DSNAME=&&WORK,UNIT=3420

Chapter 1. Preparing to use JCL samples in this collection 3

Table 1. Summary of data set types and correctly coded DSNAME (DSN) parameter

values (continued)

Type of data set DSNAME (DSN) parameter value formats and examples

In-stream or

system output

(sysout)

When defining an in-stream or sysout data set, you can code the

DSNAME parameter or omit it; if omitted, the system generates a

name for the data set.

The data set name for in-stream and sysout data sets consists of two

ampersands (&&) followed by one through eight 8 alphanumeric or

special ($, #, @) characters, a hyphen, or a character X’C0’. The first

character following the ampersands must be alphabetic or special ($, #,

@).Example for an in-stream data set:

//DDIN DD DATA,DSNAME=&&PAYIN1

Example for a sysout data set:

//DDOUT DD DSNAME=&&PAYOUT1,SYSOUT=P

Backward

reference

A backward reference is a reference to an earlier statement in the job or

in a cataloged or in-stream procedure called by this or an earlier job

step. A backward reference can be coded in the DSNAME parameter

to copy a data set name from an earlier DD statement.

Formats for backward references:

*.ddname

*.stepname.ddname

*.stepname.procstepname.ddname

Example of a backward reference in DD5 statement in STEP2:

//STEP1 EXEC PGM=CREATE

//DD4 DD DSNAME=&&ISDATA(PRIME),DISP=(,PASS),

// UNIT=(3350,2),VOLUME=SER=334859,

// SPACE=(CYL,(10,,2),,CONTIG),DCB=DSORG=IS

//STEP2 EXEC PGM=OPER

//DD5 DD DSNAME=*.STEP1.DD4,DISP=(OLD,DELETE)

Dummy data set The parameter NULLFILE specifies a dummy data set. NULLFILE has

the same effect as coding the DD DUMMY parameter.

6. Ask your system programmer or mentor to help you complete the following

list, which identifies elements of your work environment that might affect the

JCL that you code. Use Table 2 on page 5 to record your answers. When this

worksheet is complete, you should have the company-specific information you

need for most of the jobs you will run on z/OS.

v Determine which job entry subsystem (JES2 or JES3) is installed on the z/OS

system you will use. For many jobs, the type of JES does not affect JCL

parameters; for certain jobs, however, the JES in use does dictate which JCL

parameters, values, or job entry control (JECL) statements you may code.

v Determine which access methods your company uses for its data sets. An

access method defines the technique that is used to store and retrieve data.

Access methods have their own data set structures to organize data,

system-provided programs (or macros) to define data sets, and utility

programs to process data sets. Access methods, therefore, determine which

JCL parameters and parameter values that you need to code.

v For direct-access storage devices (DASD), determine which naming

conventions are used, as well as default or recommended values for data set

attributes.

v For storing or backing up data on tape, determine which tape device volume

numbers and types are available for your use.

4 z/OS Basic Skills Information Center: Reusable JCL collection

v Determine whether your company uses the Storage Management Subsystem

(SMS) to automate the use of storage for data sets. The JCL parameters for

SMS-managed (also called system-managed) data sets are different from

some parameters used for non-SMS data sets.

v Determine the information (account number, programmer name, and so on)

your company requires for each job that you submit.

 Table 2. JCL worksheet

Company convention or

z/OS environment specifics Notes® / Values to code on JCL statements

Job entry subsystem

JES2

 or

JES3

Access methods

Queued Sequential (QSAM)

Basic Partitioned (BPAM)

Virtual Sequential (VSAM)

Basic Sequential (BSAM)

Basic Direct (BDAM)

Direct-access storage

devices (DASD)

DSN=

UNIT=

VOL=SER=

Magnetic tape devices LABEL=

UNIT=

VOL=SER=

Data management system

Conventions for SMS-managed data sets

Average record AVGREC=

Data classes DATACLAS=

Management classes MGMTCLAS=

RACF profile names SECMODEL=

Storage classes STORCLAS=

Conventions for non-SMS-managed data sets

Data set attributes or

requirements

BLKSIZE

LRECL=

RECFM

SPACE=

SYSOUT=

Conventions for the JOB statement

Account number

Other accounting

information

Programmer name

Class CLASS=

Chapter 1. Preparing to use JCL samples in this collection 5

Table 2. JCL worksheet (continued)

Company convention or

z/OS environment specifics Notes® / Values to code on JCL statements

Message class MSGCLASS=

Message level MSGLEVEL=

Region size REGION=

Time limit TIME=

6 z/OS Basic Skills Information Center: Reusable JCL collection

Chapter 2. Selecting a reusable JCL sample

These JCL samples constitute the starter set for the reusable JCL collection.

Reusable JCL: Creating a data set

Modify this JCL sample to create a new data set, using the IBM® program IEFBR14.

Before you begin

v If you have not already done so, allocate a data set to contain your modified

version of this JCL sample. Use the instructions in “JCL exercise: Creating and

submitting a job” on page 47 to create this data set.

v Determine the information (account number, programmer name, and so on) your

company requires for each job that you submit.

v Determine whether your company uses the Storage Management Subsystem

(SMS) to automate the use of storage for data sets. The JCL parameters for

SMS-managed (also called system-managed) data sets are different from some

parameters used for non-SMS data sets.

v For direct-access storage devices (DASD), determine which naming conventions

are used, as well as default or recommended values for data set attributes.

About this task

The steps that follow provide line-by-line instructions for modifying this JCL

sample:

//jobname JOB (start of JOB statement parameters)

//stepname EXEC PGM=IEFBR14

//ddname DD DSN=dsname,

// DISP=(NEW,CATLG),

// UNIT=SYSALLDA,SPACE=(TRK,1)

/*

In the JCL statements that appear in code examples, lowercase text indicates items

that you need to modify. Except for a few cases, lowercase alphabetic characters

cannot be used in JCL.

All jobs require JOB and EXEC statements, so this sample contains both:

v The JOB statement marks the beginning of a job, specifies the job name, and also

might provide company-specific details or JCL parameters that apply to all job

steps within the job.

v The EXEC statement marks the beginning of a job step. In this case, the job step

is to run IEFBR14, which is a program that simply passes control back to z/OS.

For steps that call IEFBR14, then, other JCL statements within the step specify

any work that z/OS does.

If you modify this sample to complete more complex tasks, or if you encounter

JCL errors, see z/OS MVS JCL Reference (SA22-7597), which is the comprehensive

source of syntax rules and statement parameter descriptions.

Other useful references include:

v z/OS MVS JCL Guide (SA22-7598), which contains instructions and examples for

using IEFBR14 to test your JCL.

© Copyright IBM Corp. 2007, 2008 7

v z/OS DFSMS Using Data Sets (SC26-7410), which contains instructions for using

IEFBR14 to create different types of data sets, including HFS files.

Procedure

1. Required: Modify the JOB statement to uniquely identify your job and to

provide additional company-specific information.

//jobname JOB (start of JOB statement parameters)

a. Replace jobname with a unique name to identify this job. A common

convention is to use your TSO logon ID followed by a number (for

example: ZUSER031).

Syntax rules for the name field are:

v The name must begin in column 3 of the JCL statement.

v The name can be one through eight characters in length.

v The first character in the name must be an alphabetic character (the

letters A through Z) or a special character (the symbols #, @, and $).

v The remaining characters can be alphanumeric (the letters A through Z

and numbers 0 through 9) or special characters.

v Blank spaces cannot be included in a name.
b. Replace (start of JOB statement parameters) with parameters and values

that conform to guidelines set at your company.

2. Required: Modify the EXEC statement to uniquely identify the job step and the

utility to be run.

//stepname EXEC PGM=IEFBR14

a. Replace stepname with a unique name to identify this step. Syntax rules for

stepname are identical to those listed for jobname. Aside from changing the

step name, no further changes are required.
3. Required: Modify this input DD statement to define the data set to be created.

//ddname DD DSN=dsname,

// DISP=(NEW,CATLG),

// UNIT=SYSALLDA,SPACE=(TRK,1)

a. Replace ddname with a unique name for this JCL DD statement; this label in

the name field of a DD statement is known as a ddname. Syntax rules for

ddnames are identical to those listed for job and step names on JOB and

EXEC statements.

b. Replace dsname with the name that you want to use for your new data set.

Naming and syntax rules for DSN parameter values vary depending on the

type of data set you are identifying. If you want to create a permanent data

set to store your own collection of JCL samples, you can specify a qualified

name that starts with your TSO logon ID; for example: DSN=ZUSER03.JCL

c. Change the value for the DISP parameter, if necessary. The DISP parameter

tells the system about the status of your data set and what to do with it

when your job ends, either normally or abnormally. As coded in this

sample, the status subparameter value NEW tells the system to create your

data set. Only one subparameter value for job-end processing is specified,

so the system will add an entry in the system or user catalog (CATLG),

whether the job step ends normally or abnormally.

If you want to understand more about disposition processing, refer to the

summary of disposition processing in z/OS MVS JCL Reference (SA22-7597),

in the DD statement topic for the DISP parameter.

d. Change or replace the UNIT parameter, if necessary. Coding UNIT=SYSALLDA

tells z/OS to find the most appropriate storage unit for your new data set.

You may use this parameter and value to define either an SMS-managed or

8 z/OS Basic Skills Information Center: Reusable JCL collection

non-SMS-managed data set. If you are using SMS, however, you may

replace the UNIT parameter with the STORCLAS parameter and a storage

class name that your company uses.

e. Change or replace the SPACE parameter, if necessary. Coding

SPACE=(TRK,1) tells z/OS to do one of the following:

v For a non-SMS-managed data set, allocate one track of space for your

new data set.

v For an SMS-managed data set, override the space attributes specified

through the default data class. If you are defining an SMS-managed data

set, you have these choices:

– Leave the SPACE parameter as shown in the sample.

– Replace the SPACE parameter value to specify different space

attributes.

– Replace the SPACE parameter and its value with a DATACLAS

parameter and data class name that your company uses.

– Remove the SPACE parameter and its value to accept the space

attributes defined in the default data class.
4. Optional: Check for JCL syntax errors by submitting the job with TYPRUN=SCAN

on the JOB statement.

//jobname JOB (start of JOB statement parameters),TYPRUN=SCAN

Using TYPRUN=SCAN does not catch all possible JCL errors, but it’s a good start to

ensuring that your job will run. TYPRUN=SCAN requests that the system scan this

job’s JCL for syntax errors, without executing the job or allocating devices. This

parameter asks the system to check for:

v Spelling of parameters and some subparameters that is not correct.

v Characters that are not correct.

v Unbalanced parentheses.

v Misplaced positional parameters on some statements.

v In a JES3 system only, parameter value errors or excessive parameters.

v Incorrect syntax on JCL statements in cataloged procedures invoked by any

scanned EXEC statements.

You might still encounter JCL errors after using TYPRUN=SCAN, because this

request checks the JCL only through the converter, not the interpreter. The

difference is that the converter basically checks all expressions to the left of an

equal sign plus some expressions to the right of an equal sign (and issues

messages that start with IEFC), while the interpreter checks all expressions to

the right of an equal sign (and issues messages that start with IEF). For

example, a data set name containing a qualifier that exceeds eight characters,

such as DSN=L9755TB.JCL.TEST19970103 would not be flagged by

TYPRUN=SCAN but would be caught by the interpreter.

5. Required: Remove TYPRUN=SCAN from the JOB statement and submit the job. The

system response is:

JOB jobname(jobnumber) SUBMITTED

Results

When the job ends, you will receive a message indicating one of three conditions:

job successful, JCL error, or program abend. Use your installation’s viewing facility

(for example, SDSF) to view the output and determine whether the job completed

successfully.

Chapter 2. Selecting a reusable JCL sample 9

Reusable JCL: Copying a data set to tape

Modify this JCL sample to copy one cataloged data set to a tape device, using the

DFSMSdfp™ utility IEBGENER.

Before you begin

v If you have not already done so, allocate a data set to contain your modified

version of this JCL sample. Use the instructions in “JCL exercise: Creating and

submitting a job” on page 47 to create this data set.

v Determine the information (account number, programmer name, and so on) your

company requires for each job that you submit.

v Determine whether your company uses the Storage Management Subsystem

(SMS) to automate the use of storage for data sets. The JCL parameters for

SMS-managed (also called system-managed) data sets are different from some

parameters used for non-SMS data sets.

v For storing or backing up data on tape, determine which tape device volume

numbers and types are available for your use.

About this task

The steps that follow provide line-by-line instructions for modifying this JCL

sample:

//jobname JOB (start of JOB statement parameters)

//stepname EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT1 DD DSN=dsname,DISP=SHR

//SYSUT2 DD DSN=dsname,DISP=(NEW,CATLG),

// UNIT=tapedevice,

// VOL=SER=volser

/*

In the JCL statements that appear in code examples, lowercase text indicates items

that you need to modify. Except for a few cases, lowercase alphabetic characters

cannot be used in JCL.

All jobs require JOB and EXEC statements, so this sample contains both:

v The JOB statement marks the beginning of a job, specifies the job name, and also

might provide company-specific details or JCL parameters that apply to all job

steps within the job.

v The EXEC statement marks the beginning of a job step. In this case, the job step

is to run the program IEBGENER, which is a DFSMSdfp utility with a variety of

uses.

When you use the IEBGENER utility to copy a data set to tape, you must define

several input and output data definition (DD) statements in the job step:

v The SYSPRINT DD statement tells the system where to print IEBGENER messages.

v The SYSIN DD statement identifies a control data set that IEBGENER uses in

some cases.

v The SYSUT1 DD statement identifies the input data set; that is, the data set that

IEBGENER is to copy onto tape.

v The SYSUT2 DD statement identifies the output data set and its location; that is,

the copied data set (which may have a different name than the original), and the

tape device on which the copied data set will reside. To use a tape device, you

will need to consult with your mentor to find out how to get a tape and have it

10 z/OS Basic Skills Information Center: Reusable JCL collection

mounted before you run this job. Your mentor can help you determine how to

correctly modify this output DD statement.

You might want to refer to z/OS MVS JCL Reference (SA22-7597), which contains

other syntax rules and statement parameter descriptions that might help if you

modify this sample to complete more complex tasks, or if you encounter JCL

errors.

Another useful reference is z/OS DFSMSdfp Utilities (SC26-7414), which contains

details about using IEBGENER.

Procedure

1. Required: Modify the JOB statement to uniquely identify your job and to

provide additional company-specific information.

//jobname JOB (start of JOB statement parameters)

a. Replace jobname with a unique name to identify this job. A common

convention is to use your TSO logon ID followed by a number (for

example: ZUSER031).

Syntax rules for the name field are:

v The name must begin in column 3 of the JCL statement.

v The name can be one through eight characters in length.

v The first character in the name must be an alphabetic character (the

letters A through Z) or a special character (the symbols #, @, and $).

v The remaining characters can be alphanumeric (the letters A through Z

and numbers 0 through 9) or special characters.

v Blank spaces cannot be included in a name.
b. Replace (start of JOB statement parameters) with parameters and values

that conform to guidelines set at your company.

2. Required: Modify the EXEC statement to uniquely identify the job step and the

utility to be run.

//stepname EXEC PGM=IEBGENER

a. Replace stepname with a unique name to identify this step. Syntax rules for

stepname are identical to those listed for jobname. Aside from changing the

step name, no further changes are required.
3. Required: Include a SYSPRINT DD statement to tell the system where to print

IEBGENER messages.

//SYSPRINT DD SYSOUT=*

The SYSPRINT DD statement with SYSOUT=* tells the system to print the

informational or error messages from IEBGENER in the job log. Although you

may use other parameter values for SYSPRINT, no changes are required for this

DD statement.

4. Required: Include a SYSIN DD statement to identify a control data set that

contains additional instructions for IEBGENER.

//SYSIN DD DUMMY

When you are copying a data set to tape, IEBGENER does not need a control

data set, but you must include the SYSIN DD statement in your JCL anyway.

Using the DUMMY parameter tells the system that no resources are required

for the control data set. Although you may use other parameter values for

SYSIN, no changes are required for this DD statement.

5. Required: Modify this input DD statement to identify the cataloged data set

that IEBGENER is to copy onto tape, and the data set disposition.

Chapter 2. Selecting a reusable JCL sample 11

//SYSUT1 DD DSN=dsname,DISP=SHR

a. Do not replace SYSUT1 as the name for this JCL DD statement. Although

you may select your own labels (known as ddnames) for most DD

statements, the IEBGENER utility requires the use of SYSUT1 for the input

data set.

b. Replace dsname with the name of the cataloged data set to be copied.

Although this sample assumes you are using a cataloged data set for input,

you may use an uncataloged data set. If you are, however, the JCL

requirements for this input DD statement are slightly different: If your

uncataloged data set is not SMS-managed, you need to add UNIT and

VOL=SER parameters to this input DD statement. Use the instructions in

the following step for modifying the output DD statement.

c. Change the value for the DISP parameter, if necessary. The DISP parameter

tells the system about the status of your data set and what to do with it

when your job ends, either normally or abnormally. As coded in this

sample, the status subparameter value SHR (the abbreviation for “share”)

tells the system that your data set already exists, and can be used by other

programs while your job is running. The subparameter values for job-end

processing are not specified, so default values are in effect: Whether the job

ends normally or not, the system will keep, rather than delete, this data set.

If you want to understand more about disposition processing, refer to the

summary of disposition processing in z/OS MVS JCL Reference (SA22-7597),

in the DD statement topic for the DISP parameter.
6. Required: Modify this output DD statement to name the new copy and its

location on tape.

//SYSUT2 DD DSN=dsname,DISP=(NEW,CATLG),

// UNIT=tapedevice,

// VOL=SER=volser

a. Do not replace SYSUT2 as the name for this JCL DD statement. The

IEBGENER utility requires the use of SYSUT2 for the output data set.

b. Replace dsname with the name that you want to use for the copy of your

data set on tape.

c. If necessary, modify the disposition for the copied data set. As coded in this

sample, this DISP parameter tells the system to create the data set (NEW) on

tape, and add an entry for it in the system or user catalog (CATLG), whether

the job step ends normally or abnormally. No changes are required for this

parameter.

The remaining parameters that you use for the output DD statement depend on

whether your company uses SMS.

v If you are using SMS, replace the UNIT parameter with the STORCLAS

parameter and a storage class name that your company uses for tape devices

(for example, STORCLAS=SCLAS01). Also, remove the VOL=SER parameter.

v If you are not using SMS and the output data set is cataloged, you may

remove the UNIT and VOL=SER parameters. If the output data set is not

cataloged:

– Replace the UNIT parameter value tapedevice with a value that identifies

tape devices. The value is usually the symbolic name of a group of

devices; for example, UNIT=SYS3480R (SYS3480R is an IBM-assigned group

name that includes several models of Magnetic Tape Subsystems).

– Check with your mentor to determine whether you need to specify the

VOL=SER parameter; company guidelines determine what you supply for

it.

12 z/OS Basic Skills Information Center: Reusable JCL collection

7. Optional: Check for JCL syntax errors by submitting the job with TYPRUN=SCAN

on the JOB statement.

//jobname JOB (start of JOB statement parameters),TYPRUN=SCAN

Using TYPRUN=SCAN does not catch all possible JCL errors, but it’s a good start to

ensuring that your job will run. TYPRUN=SCAN requests that the system scan this

job’s JCL for syntax errors, without executing the job or allocating devices. This

parameter asks the system to check for:

v Spelling of parameters and some subparameters that is not correct.

v Characters that are not correct.

v Unbalanced parentheses.

v Misplaced positional parameters on some statements.

v In a JES3 system only, parameter value errors or excessive parameters.

v Incorrect syntax on JCL statements in cataloged procedures invoked by any

scanned EXEC statements.

You might still encounter JCL errors after using TYPRUN=SCAN, because this

request checks the JCL only through the converter, not the interpreter. The

difference is that the converter basically checks all expressions to the left of an

equal sign plus some expressions to the right of an equal sign (and issues

messages that start with IEFC), while the interpreter checks all expressions to

the right of an equal sign (and issues messages that start with IEF). For

example, a data set name containing a qualifier that exceeds eight characters,

such as DSN=L9755TB.JCL.TEST19970103 would not be flagged by

TYPRUN=SCAN but would be caught by the interpreter.

8. Required: Remove TYPRUN=SCAN from the JOB statement and submit the job. The

system response is:

JOB jobname(jobnumber) SUBMITTED

Results

When the job ends, you will receive a message indicating one of three conditions:

job successful, JCL error, or program abend. Use your installation’s viewing facility

(for example, SDSF) to view the output and determine whether the job completed

successfully.

Reusable JCL: Copying a partitioned data set

Modify this JCL sample to copy one cataloged partitioned data set (PDS) to a new

PDS, using the DFSMSdfp utility IEBCOPY.

Before you begin

v If you have not already done so, allocate a data set to contain your modified

version of this JCL sample. Use the instructions in “JCL exercise: Creating and

submitting a job” on page 47 to create this data set.

v Determine the information (account number, programmer name, and so on) your

company requires for each job that you submit.

v Determine whether your company uses the Storage Management Subsystem

(SMS) to automate the use of storage for data sets. The JCL parameters for

SMS-managed (also called system-managed) data sets are different from some

parameters used for non-SMS data sets.

v For direct-access storage devices (DASD), determine which naming conventions

are used, as well as default or recommended values for data set attributes.

Chapter 2. Selecting a reusable JCL sample 13

About this task

The steps that follow provide line-by-line instructions for modifying this JCL

sample:

//jobname JOB (start of JOB statement parameters)

//stepname EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=dsname,DISP=SHR

//SYSUT2 DD DSN=dsname,DISP=(NEW,CATLG),

// SPACE=(CYL,(1,1,45)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),

// UNIT=unit,

// VOL=SER=volser

//SYSIN DD *

 COPY INDD=SYSUT1,OUTDD=SYSUT2

/*

In the JCL statements that appear in code examples, lowercase text indicates items

that you need to modify. Except for a few cases, lowercase alphabetic characters

cannot be used in JCL.

All jobs require JOB and EXEC statements, so this sample contains both:

v The JOB statement marks the beginning of a job, specifies the job name, and also

might provide company-specific details or JCL parameters that apply to all job

steps within the job.

v The EXEC statement marks the beginning of a job step. In this case, the job step

is to run IEBCOPY, which is a DFSMSdfp utility for copying or merging full or

partial members between one or more partitioned data sets.

When you use the IEBCOPY utility, you must define several input and output data

definition (DD) statements in the job step:

v The SYSPRINT DD statement tells the system where to print the informational or

error messages from IEBCOPY.

v The SYSUT1 DD statement identifies the input data set to be copied.

v The SYSUT2 DD statement identifies the output data set where the copy of the

input data set is to be placed.

v The SYSIN DD statement contains instructions for IEBCOPY to process.

You might want to refer to z/OS MVS JCL Reference (SA22-7597), which contains

other syntax rules and statement parameter descriptions that might help if you

modify this sample to complete more complex tasks, or if you encounter JCL

errors.

Another useful reference is z/OS DFSMSdfp Utilities (SC26-7414), which contains

instructions for using IEBCOPY.

Procedure

1. Required: Modify the JOB statement to uniquely identify your job and to

provide additional company-specific information.

//jobname JOB (start of JOB statement parameters)

a. Replace jobname with a unique name to identify this job. A common

convention is to use your TSO logon ID followed by a number (for

example: ZUSER031).

Syntax rules for the name field are:

v The name must begin in column 3 of the JCL statement.

14 z/OS Basic Skills Information Center: Reusable JCL collection

v The name can be one through eight characters in length.

v The first character in the name must be an alphabetic character (the

letters A through Z) or a special character (the symbols #, @, and $).

v The remaining characters can be alphanumeric (the letters A through Z

and numbers 0 through 9) or special characters.

v Blank spaces cannot be included in a name.
b. Replace (start of JOB statement parameters) with parameters and values

that conform to guidelines set at your company.

2. Required: Modify the EXEC statement to uniquely identify the job step and the

utility to be run.

//stepname EXEC PGM=IEBCOPY

a. Replace stepname with a unique name to identify this step. Syntax rules for

stepname are identical to those listed for jobname. Aside from changing the

step name, no further changes are required.
3. Required: Include a SYSPRINT DD statement to tell the system where to print

IEBCOPY messages.

//SYSPRINT DD SYSOUT=*

The SYSPRINT DD statement with SYSOUT=* tells the system to print the

informational or error messages from IEBCOPY in the job log. Although you

may use other parameter values for SYSPRINT, no changes are required for this

DD statement.

4. Required: Modify this input DD statement to identify the cataloged PDS that

you want to copy, and the data set disposition.

//SYSUT1 DD DSN=dsname,DISP=SHR

a. You may replace SYSUT1 as the label (or ddname) for this JCL DD

statement. If you use a ddname other than SYSUT1, you must also replace

SYSUT1 on the SYSIN DD statement with the new ddname.

Syntax rules for ddnames are identical to those listed for job and step

names on JOB and EXEC statements. By default, SYSUT1 is used as the

ddname for the DD statement that identifies the input data set.

b. Replace dsname with the name of the data set to be copied. This sample

assumes that your input data set is cataloged. If you are copying an

uncataloged data set that is not SMS-managed, you must add the UNIT

parameter to this input DD statement; you might need to add the

VOL=SER parameter as well. Use the instructions in the following step

(modifying the output DD statement SYSUT2) for providingUNIT and

VOL=SER parameter values.

c. Change the value for the DISP parameter, if necessary. The DISP parameter

tells the system about the status of your data set and what to do with it

when your job ends, either normally or abnormally. As coded in this

sample, the status subparameter value SHR tells the system that your data

set already exists, and can be used by other programs while your job is

running. The subparameter values for job-end processing are not specified,

so default values are in effect. Whether the job ends normally or not, the

system will keep, rather than delete, this data set.

If you want to understand more about disposition processing, refer to the

summary of disposition processing in z/OS MVS JCL Reference (SA22-7597),

in the DD statement topic for the DISP parameter.
5. Required: Modify this output DD statement to create a new PDS to which

IEBCOPY is to copy the contents of the input PDS.

Chapter 2. Selecting a reusable JCL sample 15

//SYSUT2 DD DSN=dsname,DISP=(NEW,CATLG),

// SPACE=(CYL,(1,1,45)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),

// UNIT=unit,

// VOL=SER=volser

a. You may replace SYSUT2 as the label (or ddname) for this JCL DD

statement. If you use a ddname other than SYSUT2, you must also replace

SYSUT2 on the SYSIN DD statement with the new ddname.

By default, SYSUT2 is used as the ddname for the DD statement that

identifies the output data set.

b. Change dsname to the name that you want to use for the copy of your input

data set.

c. If necessary, modify the disposition for the output data set. Because this

sample assumes you want to create a new PDS to contain a copy of the

input data set, the code provided for the DISP parameter tells the system to

create the data set (NEW), and add an entry for it in the system or user

catalog (CATLG), whether the job step ends normally or abnormally. Although

you may change these parameter values to use an existing data set, no

changes are required for this parameter.
The remaining parameters that you use for the output DD statement depend on

whether your company uses the SMS.

v If you are using SMS, replace the SPACE, DCB, UNIT and VOL=SER

parameters with this sample code:

// DATACLAS=dataclassname,

// STORCLAS=storageclassname

– Replace dataclassname with a data class name with data set characteristics

that are similar to those of the input data set. Check with your mentor to

find an appropriate data class value.

– Replace storageclassname with a storage class name that your company

uses for PDSes (for example, STORCLAS=SCLAS01).
v If you are not using SMS:

– Change the SPACE parameter values to space attributes that are similar to

those of the input data set. The SPACE parameter values are positional, so

use the syntax diagram in z/OS MVS JCL Reference to make sure you code

it correctly. The SPACE parameter in this sample is:

SPACE=(CYL,(1,1,45))

These parameter values tell z/OS to allocate space for the data set:

- In cylinders (CYL), which is one of the four different ways in which

z/OS measures space for data set allocation.

- In quantities indicated by the set of parameter values (1,1,45) as

follows:

v The first number (1) is the primary quantity of cylinders.

v The second number (1) is the secondary quantity of cylinders, which

are allocated only when the primary quantity is not sufficient to hold

the data set’s contents.

v The last number (45) is the number of 256-byte records needed for

the directory of the new PDS.
– Change the DCB subparameter values to space attributes that are similar

to those of the input data set. The DCB parameter in this sample defines

three attributes:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)

16 z/OS Basic Skills Information Center: Reusable JCL collection

As written, this code tells z/OS to allocate a data set with:

- A record format (RECFM) of fixed blocks (FB).

- A logical record length (LRECL) of 80 bytes.

- A block size (BLKSIZE) of 6160 bytes.

You have a lot of flexibility with syntax for these parameters, so it’s best

to check with your mentor or read the descriptions of each parameter in

z/OS MVS JCL Reference.

– Replace the UNIT parameter value unit with an appropriate value, which

usually is the symbolic name of a group of devices; for example,

UNIT=SYSALLDA (SYSALLDA is an IBM-assigned group name that includes

contains all direct access devices defined to the system).

– Check with your mentor to determine whether you need to specify the

VOL=SER parameter; company guidelines determine what you supply for

it.
6. Required: Include a SYSIN DD statement, which contains instructions for

IEBCOPY to process.

//SYSIN DD *

 COPY INDD=SYSUT1,OUTDD=SYSUT2

/*

The SYSIN DD statement identifies an in-stream data set as the source of input

for IEBCOPY to process. DD * or DD DATA marks the beginning of the

in-stream data set; the delimiter /* marks the end of data.

The instream data set in this sample contains one job control statement for

IEBCOPY: The COPY statement tells IEBCOPY to copy the input data set

(INDD=SYSUT1) to the output data set (OUTDD=SYSUT2).

v If you used a ddname other than SYSUT1 for your input data set DD

statement, replace SYSUT1 with that new ddname.

v If you used a ddname other than SYSUT2 for your output data set DD

statement, replace SYSUT2 with that new ddname.
7. Optional: Check for JCL syntax errors by submitting the job with TYPRUN=SCAN

on the JOB statement.

//jobname JOB (start of JOB statement parameters),TYPRUN=SCAN

Using TYPRUN=SCAN does not catch all possible JCL errors, but it’s a good start to

ensuring that your job will run. TYPRUN=SCAN requests that the system scan this

job’s JCL for syntax errors, without executing the job or allocating devices. This

parameter asks the system to check for:

v Spelling of parameters and some subparameters that is not correct.

v Characters that are not correct.

v Unbalanced parentheses.

v Misplaced positional parameters on some statements.

v In a JES3 system only, parameter value errors or excessive parameters.

v Incorrect syntax on JCL statements in cataloged procedures invoked by any

scanned EXEC statements.

You might still encounter JCL errors after using TYPRUN=SCAN, because this

request checks the JCL only through the converter, not the interpreter. The

difference is that the converter basically checks all expressions to the left of an

equal sign plus some expressions to the right of an equal sign (and issues

messages that start with IEFC), while the interpreter checks all expressions to

the right of an equal sign (and issues messages that start with IEF). For

example, a data set name containing a qualifier that exceeds eight characters,

Chapter 2. Selecting a reusable JCL sample 17

such as DSN=L9755TB.JCL.TEST19970103 would not be flagged by

TYPRUN=SCAN but would be caught by the interpreter.

8. Required: Remove TYPRUN=SCAN from the JOB statement and submit the job. The

system response is:

JOB jobname(jobnumber) SUBMITTED

Results

When the job ends, you will receive a message indicating one of three conditions:

job successful, JCL error, or program abend. Use your installation’s viewing facility

(for example, SDSF) to view the output and determine whether the job completed

successfully.

One possible error condition that you might encounter is a region size that is too

small to successfully complete the job step. If your job ends with system

completion code 804 or 80A, which result when this condition is true, you can add

a REGION parameter to the EXEC statement and resubmit the job. The optional

REGION parameter overrides the default limit of storage that the system allocates

to a particular job step. Check with your mentor to determine an appropriate value

to specify for REGION; it is not a parameter to be used without advice.

Reusable JCL: Copying a sequential data set

Modify this JCL sample to copy one cataloged sequential data set into another

existing sequential data set, using the DFSMSdfp utility IEBGENER.

Before you begin

v If you have not already done so, allocate a data set to contain your modified

version of this JCL sample. Use the instructions in “JCL exercise: Creating and

submitting a job” on page 47 to create this data set.

v Determine the information (account number, programmer name, and so on) your

company requires for each job that you submit.

v Determine whether your company uses the Storage Management Subsystem

(SMS) to automate the use of storage for data sets. The JCL parameters for

SMS-managed (also called system-managed) data sets are different from some

parameters used for non-SMS data sets.

About this task

The steps that follow provide line-by-line instructions for modifying this JCL

sample:

//jobname JOB (start of JOB statement parameters)

//stepname EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT1 DD DSN=dsname,DISP=SHR

//SYSUT2 DD DSN=dsname,DISP=OLD,

// UNIT=unit,

// VOL=SER=volser

/*

In the JCL statements that appear in code examples, lowercase text indicates items

that you need to modify. Except for a few cases, lowercase alphabetic characters

cannot be used in JCL.

18 z/OS Basic Skills Information Center: Reusable JCL collection

All jobs require JOB and EXEC statements, so this sample contains both:

v The JOB statement marks the beginning of a job, specifies the job name, and also

might provide company-specific details or JCL parameters that apply to all job

steps within the job.

v The EXEC statement marks the beginning of a job step. In this case, the job step

is to run the program IEBGENER, which is a DFSMSdfp utility with a variety of

uses.

When you use the IEBGENER utility, you must define several input and output

data definition (DD) statements in the job step:

v The SYSPRINT DD statement tells the system where to print the informational or

error messages from IEBGENER.

v The SYSIN DD statement identifies a control data set that IEBGENER uses in

some cases.

v The SYSUT1 DD statement identifies the cataloged sequential data set that you

want IEBGENER to copy.

v The SYSUT2 DD statement identifies the output data set where your sequential

input data set is to be copied.

If you modify this sample to complete more complex tasks, or if you encounter

JCL errors, see z/OS MVS JCL Reference (SA22-7597), which is the comprehensive

source of syntax rules and statement parameter descriptions.

Another useful reference is z/OS DFSMSdfp Utilities (SC26-7414), which contains

instructions for using IEBGENER.

Procedure

1. Required: Modify the JOB statement to uniquely identify your job and to

provide additional company-specific information.

//jobname JOB (start of JOB statement parameters)

a. Replace jobname with a unique name to identify this job. A common

convention is to use your TSO logon ID followed by a number (for

example: ZUSER031).

Syntax rules for the name field are:

v The name must begin in column 3 of the JCL statement.

v The name can be one through eight characters in length.

v The first character in the name must be an alphabetic character (the

letters A through Z) or a special character (the symbols #, @, and $).

v The remaining characters can be alphanumeric (the letters A through Z

and numbers 0 through 9) or special characters.

v Blank spaces cannot be included in a name.
b. Replace (start of JOB statement parameters) with parameters and values

that conform to guidelines set at your company.

2. Required: Modify the EXEC statement to uniquely identify the job step and the

utility to be run.

//stepname EXEC PGM=IEBGENER

a. Replace stepname with a unique name to identify this step. Syntax rules for

stepname are identical to those listed for jobname. Aside from changing the

step name, no further changes are required.
3. Include a SYSPRINT DD statement to tell the system where to print IEBGENER

messages.

//SYSPRINT DD SYSOUT=*

Chapter 2. Selecting a reusable JCL sample 19

The SYSPRINT DD statement with SYSOUT=* tells the system to print the

informational or error messages from IEBGENER in the job log. Although you

may use other parameter values for SYSPRINT, no changes are required for this

DD statement.

4. Include a SYSIN DD statement.

//SYSIN DD DUMMY

The SYSIN DD statement identifies a control data set that IEBGENER uses in

some cases. When you are copying a sequential data set, however, IEBGENER

does not need a control data set unless the input data set is to be edited as part

of the copy operation, or the output data set is a partitioned data set. In this

case, the output data set is sequential, so this DUMMY parameter tells the

system that no resources are required for the control data set. No changes are

required for this DD statement.

5. Modify this input DD statement to identify the sequential data set that you

want to copy, and the data set disposition.

//SYSUT1 DD DSN=dsname,DISP=SHR

a. Do not replace SYSUT1 as the name for this JCL DD statement. Although

you may select your own labels (known as ddnames) for most DD

statements, the IEBGENER utility requires the use of SYSUT1 for the input

data set.

b. Replace dsname with the name of the sequential data set to be copied.

Although this sample assumes you are using a cataloged data set for input,

you may use an uncataloged data set. If you are, however, the JCL

requirements for this input DD statement are slightly different: If your

uncataloged data set is not SMS-managed, you need to add UNIT and

VOL=SER parameters to this input DD statement. Use the instructions in

the following step for modifying the output DD statement.

c. Change the value for the DISP parameter, if necessary. The DISP parameter

tells the system about the status of your data set and what to do with it

when your job ends, either normally or abnormally. As coded in this

sample, the status subparameter value SHR tells the system that your data

set already exists, and can be used by other programs while your job is

running. The subparameter values for job-end processing are not specified,

so default values are in effect. Whether the job ends normally or not, the

system will keep, rather than delete, this data set. No changes are required

for this parameter.

If you want to understand more about disposition processing, refer to the

summary of disposition processing in z/OS MVS JCL Reference (SA22-7597),

in the DD statement topic for the DISP parameter.
6. Modify this output DD statement to identify the existing sequential data set to

which IEBGENER is to copy the input data set.

//SYSUT2 DD DSN=dsname,DISP=OLD,

// UNIT=unit,

// VOL=SER=volser

a. Do not replace SYSUT2 as the name for this JCL DD statement. The

IEBGENER utility requires the use of SYSUT2 for the output data set.

b. Replace dsname with the name of the data set to which IEBGENER is to

copy the input sequential data set.

c. Change the value for the DISP parameter, if necessary. The disposition in

this sample is OLD, which indicates that the output data set exists before

this step and that this step requires exclusive (unshared) use of the data set.

The subparameter values for job-end processing are not specified, so default

20 z/OS Basic Skills Information Center: Reusable JCL collection

values are in effect. Whether the job ends normally or not, the system will

keep, rather than delete, this data set. No changes are required for this

parameter.

The remaining parameters that you use for the output DD statement depend on

whether your company uses SMS.

v If you are using SMS, replace the UNIT parameter with the STORCLAS

parameter and a storage class name that your company uses for PDSes (for

example, STORCLAS=SCLAS01). Also, remove the VOL=SER parameter.

v If you are not using SMS and the output data set is cataloged, you may

remove the UNIT and VOL=SER parameters. If the output data set is not

cataloged:

– Replace the UNIT parameter value unit with an appropriate value, which

usually is the symbolic name of a group of devices; for example,

UNIT=SYSALLDA (SYSALLDA is an IBM-assigned group name that includes

contains all direct access devices defined to the system).

– Check with your mentor to determine whether you need to specify the

VOL=SER parameter; company guidelines determine what you supply for

it.
7. Optional: Check for JCL syntax errors by submitting the job with TYPRUN=SCAN

on the JOB statement.

//jobname JOB (start of JOB statement parameters),TYPRUN=SCAN

Using TYPRUN=SCAN does not catch all possible JCL errors, but it’s a good start to

ensuring that your job will run. TYPRUN=SCAN requests that the system scan this

job’s JCL for syntax errors, without executing the job or allocating devices. This

parameter asks the system to check for:

v Spelling of parameters and some subparameters that is not correct.

v Characters that are not correct.

v Unbalanced parentheses.

v Misplaced positional parameters on some statements.

v In a JES3 system only, parameter value errors or excessive parameters.

v Incorrect syntax on JCL statements in cataloged procedures invoked by any

scanned EXEC statements.

You might still encounter JCL errors after using TYPRUN=SCAN, because this

request checks the JCL only through the converter, not the interpreter. The

difference is that the converter basically checks all expressions to the left of an

equal sign plus some expressions to the right of an equal sign (and issues

messages that start with IEFC), while the interpreter checks all expressions to

the right of an equal sign (and issues messages that start with IEF). For

example, a data set name containing a qualifier that exceeds eight characters,

such as DSN=L9755TB.JCL.TEST19970103 would not be flagged by

TYPRUN=SCAN but would be caught by the interpreter.

8. Required: Remove TYPRUN=SCAN from the JOB statement and submit the job. The

system response is:

JOB jobname(jobnumber) SUBMITTED

Results

When the job ends, you will receive a message indicating one of three conditions:

job successful, JCL error, or program abend. Use your installation’s viewing facility

(for example, SDSF) to view the output and determine whether the job completed

successfully.

Chapter 2. Selecting a reusable JCL sample 21

One possible error condition that you might encounter is a region size that is too

small to successfully complete the job step. If your job ends with system

completion code 804 or 80A, which result when this condition is true, you can add

a REGION parameter to the EXEC statement and resubmit the job. The optional

REGION parameter overrides the default limit of storage that the system allocates

to a particular job step. Check with your mentor to determine an appropriate value

to specify for REGION; it is not a parameter to be used without advice.

Reusable JCL: Copying a load module

Modify this JCL sample to copy one load module from one cataloged partitioned

data set (PDS) to another existing PDS, using the DFSMSdfp utility IEBCOPY.

Before you begin

v If you have not already done so, allocate a data set to contain your modified

version of this JCL sample. Use the instructions in “JCL exercise: Creating and

submitting a job” on page 47 to create this data set.

v Determine the information (account number, programmer name, and so on) your

company requires for each job that you submit.

v For direct-access storage devices (DASD), determine which naming conventions

are used, as well as default or recommended values for data set attributes.

v Determine which job entry subsystem (JES2 or JES3) is installed on the z/OS

system you will use. For many jobs, the type of JES does not affect JCL

parameters; for certain jobs, however, the JES in use does dictate which JCL

parameters, values, or job entry control (JECL) statements you may code.

v Determine whether your company uses the Storage Management Subsystem

(SMS) to automate the use of storage for data sets. The JCL parameters for

SMS-managed (also called system-managed) data sets are different from some

parameters used for non-SMS data sets.

About this task

The steps that follow provide line-by-line instructions for modifying this JCL

sample:

//jobname JOB (start of JOB statement parameters)

//stepname EXEC PGM=IEBCOPY,REGION=4M

/*JOBPARM SYSAFF=*,LINES=99

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=dsname,DISP=SHR

//SYSUT2 DD DSN=dsname,DISP=SHR,

// UNIT=unit,

// VOL=SER=volser

//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(10))

//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(10))

//SYSIN DD *

 COPYMOD INDD=SYSUT1,OUTDD=SYSUT2,MAXBLK=32760

 SELECT M=(membername)

/*

In the JCL statements that appear in code examples, lowercase text indicates items

that you need to modify. Except for a few cases, lowercase alphabetic characters

cannot be used in JCL.

All jobs require JOB and EXEC statements, so this sample contains both:

22 z/OS Basic Skills Information Center: Reusable JCL collection

v The JOB statement marks the beginning of a job, specifies the job name, and also

might provide company-specific details or JCL parameters that apply to all job

steps within the job.

v The EXEC statement marks the beginning of a job step. In this case, the job step

is to run IEBCOPY, which is a DFSMSdfp utility for copying or merging full or

partial members between one or more partitioned data sets.

When you use the IEBCOPY utility, you must define several input and output data

definition (DD) statements in the job step:

v The SYSPRINT DD statement tells the system where to print the informational or

error messages from IEBCOPY.

v The SYSUT1 DD statement identifies the input data set where your load module

resides.

v The SYSUT2 DD statement identifies the output data set where the copy of your

load module is to be placed.

v The SYSIN DD statement contains instructions for IEBCOPY to process.

You also may define two optional spill data sets on a virtual I/O (VIO) device;

these temporary data sets are used only when an insufficient amount of virtual

storage is available for some or all of the current input data set directory entries, or

for the output data set directory. This JCL sample contains DD statements for both

of these temporary data sets.

If you modify this sample to complete more complex tasks, or if you encounter

JCL errors, see z/OS MVS JCL Reference (SA22-7597), which is the comprehensive

source of syntax rules and statement parameter descriptions.

Another useful reference is z/OS DFSMSdfp Utilities (SC26-7414), which contains

information about using IEBCOPY.

Procedure

 1. Required: Modify the JOB statement to uniquely identify your job and to

provide additional company-specific information.

//jobname JOB (start of JOB statement parameters)

a. Replace jobname with a unique name to identify this job. A common

convention is to use your TSO logon ID followed by a number (for

example: ZUSER031).

Syntax rules for the name field are:

v The name must begin in column 3 of the JCL statement.

v The name can be one through eight characters in length.

v The first character in the name must be an alphabetic character (the

letters A through Z) or a special character (the symbols #, @, and $).

v The remaining characters can be alphanumeric (the letters A through Z

and numbers 0 through 9) or special characters.

v Blank spaces cannot be included in a name.
b. Replace (start of JOB statement parameters) with parameters and

values that conform to guidelines set at your company.

 2. Required: Modify the EXEC statement to uniquely identify the job step and

the utility to be run.

//stepname EXEC PGM=IEBCOPY

a. Replace stepname with a unique name to identify this step. Syntax rules for

stepname are identical to those listed for jobname. Aside from changing the

step name, no further changes are required.

Chapter 2. Selecting a reusable JCL sample 23

3. Optional: Override company-defined default values for maximum lines of

output, for the system on which this job is to run, or both. If you do not want

to override these default values, remove this line of code from the sample.

 To override defaults on

this job entry

subsystem: Use this job entry control language (JECL) statement:

JES2 /*JOBPARM SYSAFF=*,LINES=99

JES3 //*MAIN SYSTEM=JLOCAL,LINES=99

v The SYSAFF or SYSTEM parameter ensures that the conversion and

execution of the job will be done on a specific system. Specifying SYSAFF=*

or SYSTEM=JLOCAL means that the job will be run on the system into which

the job is read.

v The LINES parameter specifies the maximum output, in thousands of lines,

that the job entry subsystem is to allow on spool data sets for this job’s

sysout data sets.

Note the syntax rules for the JES3 //*MAIN statement: Place the characters //*

in columns 1 through 3, MAIN in columns 4 through 7, a blank in column 8,

and parameters beginning in column 9.

 4. Required: Include a SYSPRINT DD statement to tell the system where to print

IEBCOPY messages.

//SYSPRINT DD SYSOUT=*

The SYSPRINT DD statement with SYSOUT=* tells the system to print the

informational or error messages from IEBCOPY in the job log. Although you

may use other parameter values for SYSPRINT, no changes are required for this

DD statement.

 5. Required: Modify this input DD statement to identify the partitioned data set

that contains the load module that you want to copy, and the data set

disposition.

//SYSUT1 DD DSN=dsname,DISP=SHR

a. You may replace SYSUT1 as the label (or ddname) for this JCL DD

statement. If you use a ddname other than SYSUT1, you must also replace

SYSUT1 on the SYSIN DD statement with the new ddname.

Syntax rules for ddnames are identical to those listed for job and step

names on JOB and EXEC statements. By default, SYSUT1 is used as the

ddname for the DD statement that identifies the input data set.

b. Replace dsname with the name of the data set that contains the load

module. This sample assumes that your input data set is cataloged. If you

are copying a load module from an uncataloged data set that is not

SMS-managed, you must add the UNIT parameter to this input DD

statement; you might need to add the VOL=SER parameter as well. Use

the instructions in the following step (modifying the output DD statement

SYSUT2) for providingUNIT and VOL=SER parameter values.

c. Change the value for the DISP parameter, if necessary. The DISP

parameter tells the system about the status of your data set and what to do

with it when your job ends, either normally or abnormally. As coded in

this sample, the status subparameter value SHR tells the system that your

data set already exists, and can be used by other programs while your job

is running. The subparameter values for job-end processing are not

24 z/OS Basic Skills Information Center: Reusable JCL collection

specified, so default values are in effect. Whether the job ends normally or

not, the system will keep, rather than delete, this data set. No changes are

required for this parameter.

If you want to understand more about disposition processing, refer to the

summary of disposition processing in z/OS MVS JCL Reference (SA22-7597),

in the DD statement topic for the DISP parameter.
 6. Required: Modify this output DD statement to identify the partitioned data set

to which IEBCOPY is to copy the load module, the data set disposition, and

the device on which the data set resides.

//SYSUT2 DD DSN=dsname,DISP=SHR,

// UNIT=unit,

// VOL=SER=volser

a. You may replace SYSUT2 as the label (or ddname) for this JCL DD

statement. If you use a ddname other than SYSUT2, you must also replace

SYSUT2 on the SYSIN DD statement with the new ddname.

By default, SYSUT2 is used as the ddname for the DD statement that

identifies the output data set.

b. Replace dsname with the name of the data set into which IEBCOPY is to

copy the load module. Remember, this output data set must exist before

you run this job.

c. Change the value for the DISP parameter, if necessary. The disposition in

this sample is share (DISP=SHR) so that other programs can use the data

set while this job is running. The subparameter values for job-end

processing are not specified, so default values are in effect. Whether the job

ends normally or not, the system will keep, rather than delete, this data

set. No changes are required for this parameter.
The remaining parameters that you use for the output DD statement depend

on whether your company uses the Storage Management Subsystem (SMS).

v If you are using SMS, replace the UNIT and VOL=SER parameters with the

STORCLAS parameter and a storage class name that your company uses

for PDSes (for example, STORCLAS=SCLAS01).

v If you are not using SMS:

– Replace the UNIT parameter value unit with an appropriate value,

which usually is the symbolic name of a group of devices; for example,

UNIT=SYSALLDA (SYSALLDA is an IBM-assigned group name that contains

all direct access devices defined to the system).

– Check with your mentor to determine whether you need to specify the

VOL=SER parameter; company guidelines determine what you supply

for it.
 7. Optional: Remove or modify the DD statements that define temporary data

sets for this copy operation.

//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(10))

//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(10))

SYSUT3 defines an optional spill data set on a virtual I/O (VIO) device.

SYSUT3 is used only when an insufficient amount of virtual storage is

available for some or all of the current input data set directory entries.

Similarly, SYSUT4 defines an optional spill data set to be used only when an

insufficient amount of virtual storage is available for the output data set

directory.

This sample’s SYSUT3 and SYSUT4 DD statements tell the system to allocate

10 cylinders of space for the temporary VIO data sets. If you use these two

DD statements, you must replace at least the value specified for the UNIT

Chapter 2. Selecting a reusable JCL sample 25

parameter; companies typically choose their own unit name for VIO devices.

Ask your mentor for advice about coding these temporary data sets.

 8. Required: Modify the SYSIN DD statement, which contains instructions for

IEBCOPY to process.

//SYSIN DD *

 COPYMOD INDD=SYSUT1,OUTDD=SYSUT2,MAXBLK=32760

 SELECT M=(membername)

/*

The SYSIN DD statement identifies an in-stream data set as the source of

input for IEBCOPY to process. DD * or DD DATA marks the beginning of the

in-stream data set; the delimiter /* marks the end of data.

The instream data set in this sample contains two job control statements for

IEBCOPY:

v The COPYMOD statement tells IEBCOPY not only to copy your load

module, but also to reblock it on the data set to which it will be copied.

Reblocking is usually done to make the record length of the output data set

compatible with different devices or programs. Reblocking must be done if

the input data set has a larger block size than the output data set.

– If you used a ddname other than SYSUT1 for your input data set DD

statement, replace SYSUT1 with that new ddname.

– If you used a ddname other than SYSUT2 for your output data set DD

statement, replace SYSUT2 with that new ddname.

– MAXBLK specifies the maximum block size for records in the output

partitioned data set. This sample shows a MAXBLK value in decimal

form; instead, you may use the nnK format where nn is a decimal

number and the letter K indicates that the nn value is to be multiplied by

1024 bytes.

If your changes make the COPYMOD statement exceed 71 characters in

length, note that continuation rules are slightly different than those for

continuing other JCL statements on subsequent lines:

– End the first line with a comma that separates parameters, pad with

blanks out to column 72, and place a nonblank character in column 72.

– Start the next line in column 16 with a parameter and its value.
v The SELECT statement identifies which member of the input data set is to

be loaded. Replace membername with the name of the load module that you

want IEBCOPY to copy.
 9. Optional: Check for JCL syntax errors by submitting the job with TYPRUN=SCAN

on the JOB statement.

//jobname JOB (start of JOB statement parameters),TYPRUN=SCAN

Using TYPRUN=SCAN does not catch all possible JCL errors, but it’s a good start

to ensuring that your job will run. TYPRUN=SCAN requests that the system scan

this job’s JCL for syntax errors, without executing the job or allocating devices.

This parameter asks the system to check for:

v Spelling of parameters and some subparameters that is not correct.

v Characters that are not correct.

v Unbalanced parentheses.

v Misplaced positional parameters on some statements.

v In a JES3 system only, parameter value errors or excessive parameters.

v Incorrect syntax on JCL statements in cataloged procedures invoked by any

scanned EXEC statements.

26 z/OS Basic Skills Information Center: Reusable JCL collection

You might still encounter JCL errors after using TYPRUN=SCAN, because this

request checks the JCL only through the converter, not the interpreter. The

difference is that the converter basically checks all expressions to the left of an

equal sign plus some expressions to the right of an equal sign (and issues

messages that start with IEFC), while the interpreter checks all expressions to

the right of an equal sign (and issues messages that start with IEF). For

example, a data set name containing a qualifier that exceeds eight characters,

such as DSN=L9755TB.JCL.TEST19970103 would not be flagged by

TYPRUN=SCAN but would be caught by the interpreter.

10. Required: Remove TYPRUN=SCAN from the JOB statement and submit the job.

The system response is:

JOB jobname(jobnumber) SUBMITTED

Results

When the job ends, you will receive a message indicating one of three conditions:

job successful, JCL error, or program abend. Use your installation’s viewing facility

(for example, SDSF) to view the output and determine whether the job completed

successfully.

One possible error condition that you might encounter is a region size that is too

small to successfully complete the job step. If your job ends with system

completion code 804 or 80A, which result when this condition is true, you can add

a REGION parameter to the EXEC statement and resubmit the job. The optional

REGION parameter overrides the default limit of storage that the system allocates

to a particular job step. Check with your mentor to determine an appropriate value

to specify for REGION; it is not a parameter to be used without advice.

Reusable JCL: Deleting a data set

Modify this JCL sample to delete an existing data set, using the IBM program

IEFBR14.

Before you begin

v If you have not already done so, allocate a data set to contain your modified

version of this JCL sample. Use the instructions in “JCL exercise: Creating and

submitting a job” on page 47 to create this data set.

v Determine the information (account number, programmer name, and so on) your

company requires for each job that you submit.

About this task

The steps that follow provide line-by-line instructions for modifying this JCL

sample:

//jobname JOB (start of JOB statement parameters)

//stepname EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=*

//ddname DD DSN=dsname,

// DISP=(OLD,DELETE,DELETE)

/*

In the JCL statements that appear in code examples, lowercase text indicates items

that you need to modify. Except for a few cases, lowercase alphabetic characters

cannot be used in JCL.

Chapter 2. Selecting a reusable JCL sample 27

All jobs require JOB and EXEC statements, so this sample contains both:

v The JOB statement marks the beginning of a job, specifies the job name, and also

might provide company-specific details or JCL parameters that apply to all job

steps within the job.

v The EXEC statement marks the beginning of a job step. In this case, the job step

is to run IEFBR14, which is a program that simply passes control back to z/OS.

For steps that call IEFBR14, then, other JCL statements within the step specify

any work that z/OS does.

If you modify this sample to complete more complex tasks, or if you encounter

JCL errors, see z/OS MVS JCL Reference (SA22-7597), which is the comprehensive

source of syntax rules and statement parameter descriptions.

Procedure

1. Required: Modify the JOB statement to uniquely identify your job and to

provide additional company-specific information.

//jobname JOB (start of JOB statement parameters)

a. Replace jobname with a unique name to identify this job. A common

convention is to use your TSO logon ID followed by a number (for

example: ZUSER031).

Syntax rules for the name field are:

v The name must begin in column 3 of the JCL statement.

v The name can be one through eight characters in length.

v The first character in the name must be an alphabetic character (the

letters A through Z) or a special character (the symbols #, @, and $).

v The remaining characters can be alphanumeric (the letters A through Z

and numbers 0 through 9) or special characters.

v Blank spaces cannot be included in a name.
b. Replace (start of JOB statement parameters) with parameters and values

that conform to guidelines set at your company.

2. Required: Modify the EXEC statement to uniquely identify the job step and the

utility to be run.

//stepname EXEC PGM=IEFBR14

a. Replace stepname with a unique name to identify this step. Syntax rules for

stepname are identical to those listed for jobname. Aside from changing the

step name, no further changes are required.
3. Optional: Include a SYSPRINT DD statement to tell the system where to print

messages.

//SYSPRINT DD SYSOUT=*

The SYSPRINT DD statement with SYSOUT=* tells the system to print the

informational or error messages in the job log. Although you may use other

parameter values for SYSPRINT, no changes are required for this DD statement.

4. Required: Modify this input DD statement to define the data set to be deleted.

//ddname DD DSN=dsname,

// DISP=(OLD,DELETE,DELETE)

a. Replace ddname with a unique name for this JCL DD statement; this label in

the name field of a DD statement is known as a ddname. Syntax rules for

ddnames are identical to those listed for job and step names on JOB and

EXEC statements.

b. Replace dsname with the name of the data set to be deleted.

28 z/OS Basic Skills Information Center: Reusable JCL collection

c. Change the value for the DISP parameter, if necessary. The DISP parameter

tells the system about the status of your data set and what to do with it

when your job ends, either normally or abnormally. As coded in this

sample, the status subparameter value (OLD) tells the system that the data

set already exists. Both subparameter values for job-end processing (DELETE)

are specified, so the system will delete the data set whether the job step

ends normally or abnormally.
5. Optional: Check for JCL syntax errors by submitting the job with TYPRUN=SCAN

on the JOB statement.

//jobname JOB (start of JOB statement parameters),TYPRUN=SCAN

Using TYPRUN=SCAN does not catch all possible JCL errors, but it’s a good start to

ensuring that your job will run. TYPRUN=SCAN requests that the system scan this

job’s JCL for syntax errors, without executing the job or allocating devices. This

parameter asks the system to check for:

v Spelling of parameters and some subparameters that is not correct.

v Characters that are not correct.

v Unbalanced parentheses.

v Misplaced positional parameters on some statements.

v In a JES3 system only, parameter value errors or excessive parameters.

v Incorrect syntax on JCL statements in cataloged procedures invoked by any

scanned EXEC statements.

You might still encounter JCL errors after using TYPRUN=SCAN, because this

request checks the JCL only through the converter, not the interpreter. The

difference is that the converter basically checks all expressions to the left of an

equal sign plus some expressions to the right of an equal sign (and issues

messages that start with IEFC), while the interpreter checks all expressions to

the right of an equal sign (and issues messages that start with IEF). For

example, a data set name containing a qualifier that exceeds eight characters,

such as DSN=L9755TB.JCL.TEST19970103 would not be flagged by

TYPRUN=SCAN but would be caught by the interpreter.

6. Required: Remove TYPRUN=SCAN from the JOB statement and submit the job. The

system response is:

JOB jobname(jobnumber) SUBMITTED

Results

When the job ends, you will receive a message indicating one of three conditions:

job successful, JCL error, or program abend. Use your installation’s viewing facility

(for example, SDSF) to view the output and determine whether the job completed

successfully.

Reusable JCL: Deleting some VSAM clusters

Modify this JCL sample to delete one or more VSAM clusters, using DFSMSdfp

access method services (IDCAMS).

Before you begin

v If you have not already done so, allocate a data set to contain your modified

version of this JCL sample. Use the instructions in “JCL exercise: Creating and

submitting a job” on page 47 to create this data set.

v Determine the information (account number, programmer name, and so on) your

company requires for each job that you submit.

Chapter 2. Selecting a reusable JCL sample 29

About this task

The steps that follow provide line-by-line instructions for modifying this JCL

sample:

//jobname JOB (start of JOB statement parameters)

//stepname EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE ’entryname’

 DELETE ’entryname,entryname,entryname’

/*

In the JCL statements that appear in code examples, lowercase text indicates items

that you need to modify. Except for a few cases, lowercase alphabetic characters

cannot be used in JCL.

All jobs require JOB and EXEC statements, so this sample contains both:

v The JOB statement marks the beginning of a job, specifies the job name, and also

might provide company-specific details or JCL parameters that apply to all job

steps within the job.

v The EXEC statement marks the beginning of a job step. In this case, the job step

is to run access method services, which is a DFSMSdfp utility for managing

catalogs. IDCAMS is its program name.

When you use the access method services through JCL, you must define two

specific DD statements in the job step:

v The SYSPRINT DD parameter tells the system where to print IDCAMS messages.

v The SYSIN DD statement identifies an in-stream data set containing input for

access method services to process.

If you modify this sample to complete more complex tasks, or if you encounter

JCL errors, see z/OS MVS JCL Reference (SA22-7597), which is the comprehensive

source of syntax rules and statement parameter descriptions.

Another useful reference is z/OS DFSMS Access Method Services for Catalogs

(SC26-7394), which contains background information about VSAM clusters and

details about using IDCAMS for other operations.

Procedure

1. Required: Modify the JOB statement to uniquely identify your job and to

provide additional company-specific information.

//jobname JOB (start of JOB statement parameters)

a. Replace jobname with a unique name to identify this job. A common

convention is to use your TSO logon ID followed by a number (for

example: ZUSER031).

Syntax rules for the name field are:

v The name must begin in column 3 of the JCL statement.

v The name can be one through eight characters in length.

v The first character in the name must be an alphabetic character (the

letters A through Z) or a special character (the symbols #, @, and $).

v The remaining characters can be alphanumeric (the letters A through Z

and numbers 0 through 9) or special characters.

v Blank spaces cannot be included in a name.
b. Replace (start of JOB statement parameters) with parameters and values

that conform to guidelines set at your company.

30 z/OS Basic Skills Information Center: Reusable JCL collection

2. Required: Replace stepname with a unique name to identify this step.

//stepname EXEC PGM=IDCAMS

Syntax rules for stepname are identical to those listed for jobname. Aside from

changing the step name, no further changes are required.

3. Required: Use the SYSPRINT DD parameter to tell the system where to print

IDCAMS messages.

//SYSPRINT DD SYSOUT=*

The SYSPRINT DD statement with SYSOUT=* tells the system to print the

informational or error messages from IDCAMS in the job log. Although you

may use other parameter values for SYSPRINT, no changes are required for this

DD statement.

4. Required: Use the SYSIN DD statement to identify an in-stream data set as the

source of input for access method services to process.

//SYSIN DD *

 DELETE ’entryname’

 DELETE ’entryname,entryname,entryname’

/*

DD * or DD DATA marks the beginning of the in-stream data set; the delimiter /*

marks the end of data.

Replace entryname with the names of clusters that you want to delete. As coded

in this sample, the DELETE commands illustrate two of several possible formats

for specifying entries on this access methods services command:

v The first DELETE command specifies only one entry to be deleted; for

example: DELETE ’DB8YU.DSNDBC.CC390’

v The second DELETE command lists several entries to be deleted. Multiple

entries must be enclosed in quotes (as shown above), and separated by a

comma.

If your changes make the DELETE statement exceed 71 characters in length,

note that continuation rules are slightly different than those for continuing

other JCL statements on subsequent lines. To continue a command on several

lines, type either a hyphen or a plus sign as the last nonblank character before,

or in, column 72:

v A hyphen continues the command after a completely specified value:

DELETE entryname-

 entryname

v A plus sign continues both the command and a value within the command:

DELETE entry+

 name

5. Optional: Check for JCL syntax errors by submitting the job with TYPRUN=SCAN

on the JOB statement.

//jobname JOB (start of JOB statement parameters),TYPRUN=SCAN

Using TYPRUN=SCAN does not catch all possible JCL errors, but it’s a good start to

ensuring that your job will run. TYPRUN=SCAN requests that the system scan this

job’s JCL for syntax errors, without executing the job or allocating devices. This

parameter asks the system to check for:

v Spelling of parameters and some subparameters that is not correct.

v Characters that are not correct.

v Unbalanced parentheses.

v Misplaced positional parameters on some statements.

v In a JES3 system only, parameter value errors or excessive parameters.

Chapter 2. Selecting a reusable JCL sample 31

v Incorrect syntax on JCL statements in cataloged procedures invoked by any

scanned EXEC statements.

You might still encounter JCL errors after using TYPRUN=SCAN, because this

request checks the JCL only through the converter, not the interpreter. The

difference is that the converter basically checks all expressions to the left of an

equal sign plus some expressions to the right of an equal sign (and issues

messages that start with IEFC), while the interpreter checks all expressions to

the right of an equal sign (and issues messages that start with IEF). For

example, a data set name containing a qualifier that exceeds eight characters,

such as DSN=L9755TB.JCL.TEST19970103 would not be flagged by

TYPRUN=SCAN but would be caught by the interpreter.

6. Required: Remove TYPRUN=SCAN from the JOB statement and submit the job. The

system response is:

JOB jobname(jobnumber) SUBMITTED

Results

When the job ends, you will receive a message indicating one of three conditions:

job successful, JCL error, or program abend. Use your installation’s viewing facility

(for example, SDSF) to view the output and determine whether the job completed

successfully.

32 z/OS Basic Skills Information Center: Reusable JCL collection

Chapter 3. Basic JCL concepts

Job control language (JCL) is a set of statements that you code to tell the z/OS

operating system about the work you want it to perform. Although this set of

statements is quite large, most jobs can be run using a very small subset. Learn

about essential and most frequently used JCL statements and parameters, as well

as coding techniques.

JCL statements tell z/OS where to find the appropriate input, how to process that

input (that is, what program or programs to run), and what to do with the

resulting output.

All jobs use three main types of JCL statements:

v One JOB statement to identify the unit of work the operating system is to

perform

v One or more EXEC statements, depending on the number of job steps within the

job

v One or more DD statements to identify the input and output data sets

JCL statements: What does the JOB statement do?

The JOB statement is the first control statement in a job. It marks the beginning of

a job and also specifies the name of the job.

The JOB statement also might provide details and parameters that apply to all job

steps within the job, such as accounting information and conditions for job

termination. It also may contain any comments that help describe the statement.

This JCL example contains one JOB statement:

//JOBNUM1 JOB 504,SMITH PAYROLL

//STEP1 EXEC PGM=PROGRAM1

//DD1 DD DSN=HLQ.OUTPUT

//

v The name field contains the job name “JOBNUM1”. In every JOB statement, the

name field contains a one- through eight-character name that identifies the job

so that other JCL statements or the operating system can refer to it. Be sure to

assign a unique name for each job.

v The parameter field defines information that applies to the entire job, contains

an accounting number (504) and the programmer’s name (SMITH). These

parameters are positional and must appear in the order shown.

v The comment field contains PAYROLL.

The end of a job is indicated by a null statement, which consists of only two

forward slashes (//), or is marked by the beginning of another JOB statement. In

this sample, JOBNUM1 ends with a null statement.

JCL JOB statements: Positional and frequently used

parameters

In addition to the two positional parameters (job accounting information and

programmer name), the JOB statement also may contain over 20 keyword

parameters. But you’ll most often use only this handful.

© Copyright IBM Corp. 2007, 2008 33

Positional parameters

JOB statements have two positional parameters that apply to the entire job:

Job accounting information

The value that you code for job accounting information depends on the

guidelines set at your company. The value is usually a number that

identifies a department or person to whom processor time is billed.

 Job accounting information may consist of multiple pieces of information,

not just a single value as shown in this example.

Programmer name

The programmer name identifies the person or group responsible for a job.

The programmer’s name is not a mandatory part of the JOB statement

unless your company has made it so.

Keyword parameters

As with the positional parameters for the JOB statement, keyword parameter

values apply for the entire job. The JOB statement has over twenty different

keyword parameters, but you are most likely to use only these few:

CLASS

Use the CLASS parameter if your company uses classes to group jobs.

Grouping jobs helps to:

v Achieve a balance between different types of jobs. A good balance of job

class assignments helps to make the most efficient use possible of the

system.

v Avoid contention between jobs that use the same resources.

Because jobs classes are site-specific, you have to check with your

operations department to determine which job classes are available for use.

TIME Use the TIME parameter to specify the maximum amount of time that a

job may use the processor or to find out through messages how much

processor time a job used. Using the TIME parameter prevents an error in

your program from causing it to run longer than necessary.

 You can use the TIME parameter on a JOB statement to decrease the

amount of processor time available to a job or job step below the default

value. You cannot use the TIME parameter on a JOB statement to increase

the amount of time available.

MSGLEVEL

The MSGLEVEL parameter controls how the JCL, allocation messages, and

termination messages are printed in the job’s output listing (SYSOUT).

 The MSGLEVEL parameter value consists of two subparameters:

statement

The statement subparameter indicates which job control statements

the system is to print on the job log.

messages

The messages subparameter indicates which messages the system

is to print on the job log.

MSGCLASS

You can use the MSGCLASS keyword parameter to assign an output class

34 z/OS Basic Skills Information Center: Reusable JCL collection

for your output listing (SYSOUT). Output classes are defined by the

installation to designate unit record devices, such as printers.

Both the MSGLEVEL and MSGCLASS parameters have default settings, depending

on your company’s guidelines. The operating system uses the default setting if you

omit one or both of the keyword parameters from the JOB statement. In this case,

you would code these parameters only if you want to have a different message

level or message class than the preset values.

The MSGLEVEL subparameters have only IBM-supplied values that you may

specify, but output class assignments and the default settings for both parameters

depend on values your company chooses to use.

JCL statements: What does the EXEC statement do?

The EXEC statement marks the beginning of a step within a job, and specifies the

name of a program or cataloged procedure to be run.

Procedures are named collections of partial JCL, usually one or more EXEC

statements and data definition (DD) statements, that perform frequently used

functions such as sorting data. Procedures are often called procs.

Programs and cataloged procedures are stored in specific data sets, which are

called program or procedure libraries, respectively.

This JCL example contains only one EXEC statement (and therefore, only one job

step).

//JOBNUM1 JOB 504,SMITH PAYROLL

//STEP1 EXEC PGM=PROGRAM1

//DD1 DD DSN=HLQ.INPUT

//

In this EXEC statement:

v The name field contains the step name “STEP1”. A step name is a one- through

eight-character name that identifies the job step so that other JCL statements or

the operating system can refer to it.

v The parameter field contains the positional parameter PGM, which identifies the

program to be run (PROGRAM1).

Also, the sample includes a DD statement that identifies the input data set,

HLQ.INPUT, for the program. The JCL for a job step often contains several

associated DD statements that define the program or procedure uses for input or

output.

The end of a job step is indicated by a null statement, which consists of only two

forward slashes (//); by another EXEC statement; or by another JOB statement. In

this sample, STEP1 ends with a null statement that immediately follows the DD

statement DD1.

JCL EXEC statements: Positional and frequently used

parameters

In addition to the two positional parameters (PGM and PROC), the EXEC

statement also may contain about a dozen keyword parameters. But you’ll most

often use only this handful.

Chapter 3. Basic JCL concepts 35

Positional parameters

An EXEC statement must contain one of these positional parameters: PGM, PROC,

or procedure name.

PGM The PGM parameter identifies the program the system is to run.

 z/OS includes a number of programs, called utilities, which are useful in

batch processing. These programs provide many small, obvious, and useful

functions. For example, z/OS has a utility program named IEBGENER to

copy data.

Customer sites often add their own customer-written utility programs

(although most users refrain from naming them utilities) and many of

these are widely shared by the user community. Independent software

vendors also provide many similar products (for a fee).

PROC or procedure name

The PROC parameter or procedure name identifies the cataloged or

in-stream procedure the system is to run.

If you omit the PGM or PROC parameter, z/OS automatically assumes that you

are specifying a procedure that you want to run.

The following code illustrates the three ways to correctly code this positional

parameter.

//STEP1 EXEC PGM=program-name

//STEP1 EXEC PROC=procedure-name

//STEP1 EXEC procedure-name

Lowercase text is variable text that you provide. You may code only one of these

formats on a single EXEC statement.

Keyword parameters

In addition to the positional parameter indicating the program or procedure to run,

the EXEC statement also may contain keyword parameters. If you code one of

these keyword parameters on the EXEC statement, the keyword parameter value

will apply only to that step. You are most likely to use only these few EXEC

keywords:

COND

In a multi-step job, use the COND parameter to specify the conditions that

allow the system to bypass a step by testing return codes from any or all

previous steps. You can code up to eight comparisons. If any comparison is

true, the system bypasses the step.

 As an alternative, you may use the IF/THEN/ELSE statement, which you

might find easier to code than COND parameter conditions.

PARM Use the PARM parameter to pass variable information to the processing

program executed by this job step. To use the information, the processing

program must contain instructions to retrieve the information.

REGION

Use the REGION parameter to override the default amount of storage

space (in kilobytes or megabytes) that the system allocates to a particular

job or job step.

36 z/OS Basic Skills Information Center: Reusable JCL collection

You may code the REGION parameter on the JOB statement and the EXEC

statement. If REGION appears on both statements, the value on the JOB

statement overrides that on the EXEC statement.

JCL EXEC statements: What are JCL procedures?

Some programs and tasks require a larger amount of JCL than a user can easily

enter. JCL for these functions can be kept in procedure libraries.

A procedure library member contains only part of the JCL for a given task--usually

the fixed, unchanging part of JCL. The user of the procedure supplies the variable

part of the JCL for a specific job. In other words, a JCL procedure is like a macro.

Such a procedure is sometimes known as a cataloged procedure. A cataloged

procedure is not related to the system catalog; rather, the name is a carryover from

another operating system.

The following code shows an example of a JCL procedure (commonly called a

proc).

//MYPROC PROC

//MYSORT EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=&SORTDSN

//SORTOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

// PEND

In this example procedure:

v The PROC and PEND parameters identify the beginning and end of the JCL

procedure. PROC is preceded by a label or name; in this example, the name is

MYPROC. The PROC and PEND parameters are unique to procedures.

v The first (and only) step in the procedure is the EXEC statement named MYSORT,

which identifies the program SORT as the program to be run.

v The SORTIN DD statement identifies the input data set containing data to be

sorted. The variable &SORTDSN represents the input data set; its actual value will

be determined by the JCL that calls in and uses this procedure.

v The SORTOUT DD statement identifies the output data set where SORT is to place

the sorted input; the SYSOUT=* parameter identifies a default data set.

v The SYSOUT DD statement identifies a default data set in which the system is to

place messages issued during the SORT program’s processing.

If you coded JCL to use this example proc, your JCL might look like this:

//MYJOB JOB 1

//*---------------------------------*

//MYPROC PROC

//MYSORT EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=&SORTDSN

//SORTOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

// PEND

//*---------------------------------*

//STEP1 EXEC MYPROC,SORTDSN=ZPROF.AREA.CODES

//SYSIN DD *

SORT FIELDS=(1,3,CH,A)

In this example job:

v Your JCL begins with a JOB statement that names your job MYJOB.

v The first step in MYJOB, named STEP1, does two things:

Chapter 3. Basic JCL concepts 37

– Identifies MYPROC as the JCL procedure to be run.

– Specifies the value SORTDSN=ZPROF.AREA.CODES as the value for the variable

&SORTDSN.
v The SYSIN DD statement provides instream instructions for the SORT program to

use on the input data set, ZPROF.AREA.CODES.

The previous example shows how to change the value of one part of a JCL

procedure; in this case, replacing the variable &SORTDSN with a real data set name

ZPROF.AREA.CODES. In some cases, you might need to override an entire statement

within a JCL procedure. To do so, you code a JCL PROC override statement, which

is shown in this example:

//MYJOB JOB 1

//*---------------------------------*

//MYPROC PROC

//MYSORT EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=&SORTDSN

//SORTOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

// PEND

//*---------------------------------*

//STEP1 EXEC MYPROC,SORTDSN=ZPROF.AREA.CODES

//MYSORT.SORTOUT DD DSN=ZPROF.MYSORT.OUTPUT,

// DISP=(NEW,CATLG)

//SYSIN DD *

SORT FIELDS=(1,3,CH,A)

The MYSORT.SORTOUT DD statement is a procedure override that redefines the output

data set as a newly created data set rather than a default data set. The

stepname.ddname format tells the system to override the corresponding DD

statement in the named step, within the JCL procedure. Using an override allows

you to tailor the procedure for your needs, without changing its function for other

users.

JCL EXEC statements: How z/OS finds the program or

procedure

To successfully run the program or procedure that you specify on a JCL EXEC

statement, z/OS has to search for and find that program or procedure. Using

JOBLIB, STEPLIB, or JCLLIB statements can reduce search time.

Where z/OS searches depends on what you specify in your JCL:

v When you code the PGM parameter, z/OS looks for an application program,

and will automatically search standard system program libraries, such as

SYS1.LINKLIB, which contains IBM-supplied programs. If the program you

want to run resides in a private program library, you must specify either a

JOBLIB DD statement or a STEPLIB DD statement for z/OS to successfully

locate the program.

– When you use a JOBLIB DD statement, insert the JOBLIB DD statement in the

job before the first EXEC statement in the job. When you submit the job,

z/OS will search any private libraries specified on that JOBLIB DD statement

before searching system libraries. z/OS repeats that search order for any

programs called within the job.

For a multi-step job, using the JOBLIB DD statement is most efficient when

most of the programs reside in private libraries.

38 z/OS Basic Skills Information Center: Reusable JCL collection

– When you use a STEPLIB DD statement, you may place it anywhere within a

job step but it typically appears after the EXEC statement. When you submit

the job, z/OS will search the private libraries specified on that STEPLIB DD

statement, but only for the one step.

For a multi-step job, using the STEPLIB DD statement is most efficient when

most of the programs reside in system, rather than private, libraries.
v When you code the PROC parameter or you omit the PGM or PROC parameter,

z/OS looks for a procedure and will automatically search standard system

procedure libraries, such as SYS1.PROCLIB. If the procedure you want to run

resides in a private library, you must specify the JCLLIB statement for z/OS to

successfully locate the procedure.

If a job does not specify a procedure library, the system retrieves all cataloged

procedures called by EXEC statements from the procedure libraries defined by

the installation for the job’s job class. To direct the system to search another

procedure library, or to limit the procedure libraries it searches, code a JCLLIB

statement that identifies one or more libraries. On a JCLLIB statement, you may

list system libraries, installation-defined libraries, or private libraries. The system

searches the libraries in the order in which they are specified on JCLLIB.

What are the standard system libraries?

z/OS has many standard system libraries; here are a few that you will come across

often.

z/OS standard system libraries include:

SYS1.PROCLIB

This library contains JCL procedures distributed with z/OS. In practice,

there are many other JCL procedure libraries (supplied with various

program products) concatenated with it.

SYS1.PARMLIB

This library contains control parameters for z/OS and for some program

products. In practice, there may be other libraries concatenated with it.

SYS1.LINKLIB

This library contains many of the basic execution modules of the system.

In practice, it is one of a large number of execution libraries that are

concatenated.

SYS1.LPALIB

This library contains system execution modules that are loaded into the

link pack area when the system is initialized. There may be several other

libraries concatenated with it. Programs stored here are available to other

address spaces.

SYS1.NUCLEUS

This library contains the basic supervisor (″kernel″) modules of z/OS.

SYS1.SVCLIB

This library contains operating system routines known as supervisor calls

(SVCs).

These libraries are in standard PDS format and are found on the system disk

volumes.

Chapter 3. Basic JCL concepts 39

JCL statements: What does the DD statement do?

Data definition (DD) statements define the data sets that a program or procedure

uses when it runs. You must code one DD statement for each data set that is used

or created within a job step.

The order of DD statements within a job step is not usually significant.

This JCL example illustrates the format of a DD statement:

//PAY DD DSN=HLQ.PAYDS,DISP=NEW VENDOR PAYROLL

v The name field contains a one- through eight-character name, known as a

ddname, that identifies the DD statement so that other JCL statements, programs,

procedures, or the operating system can refer to it. The ddname of this DD

statement is PAY.

v The parameter field contains only two keyword parameters:

– DSN, which is an accepted abbreviation for the parameter DSNAME, which

identifies the real name of a data set.

– DISP, which identifies the data set HLQ.PAYDS as a new data set; that is, one

the system is to create when this job is submitted for processing.
v The comment field contains the phrase VENDOR PAYROLL.

A DD statement describes a data set extensively, and can include the following

information:

v The name that the program uses to refer to the data set, known as the ddname

v The actual name of the data set and its location

v Physical characteristics of the data set, such as record format

v The initial and final status of the data set, known as its disposition

You also can use DD statements to request I/O devices or specify storage

allocation for new data sets.

JCL DD statements: Advantages of using symbolic names

When you use symbolic names to identify individual DD statements in JCL, you

can improve the reusability of programs. Here’s how it works.

When you use symbolic names for DD statements in JCL, you can improve the

reusability of programs by changing data set information without having to

recompile the programs that access the data set.

For example, suppose that your company uses a payroll program to record its

employees’ pay. Each month, you have to run the program to update pay records,

using a different data set each time. In the program code, the program uses the

name “PAY” to refer to the data set. Instead of changing the program each month

to use a different data set name, you can use “PAY” as the label in the name field

(or ddname) for the JCL DD statement that identifies the payroll data set to be used.

So instead of changing and recompiling the payroll program, you make only minor

changes to your JCL.

The first time you run the program, your JCL looks like the JCL in Figure 1 on

page 41.

40 z/OS Basic Skills Information Center: Reusable JCL collection

The next time, when the payroll data set changes to DIV1.PAYROLL, you change

only the DSN parameter value on the DD statement, and the payroll program can

continue to use the same ddname (PAY). Your JCL now looks like the JCL in

Figure 2.

 The ddname connects a program reference to a data set to the data set description

(that is, the DD statement) in the JCL. So the ddname “PAY” is a symbolic name

that the payroll program uses, and the DSNAME parameter in the JCL identifies

the real name of the data set.

The use of symbolic file names is another defining characteristic of the z/OS

operating system. It applies a naming redirection between a data set-related name

used in a program and the actual data set used during execution of that program.

This redirection allows the program to be used to process different input data sets

simply by changing the DSNAME in the JCL. This ability becomes significant for

large commercial applications that might use dozens of data sets in a single

execution of the program.

The format for coding program references depends on the language in which the

program is written. For example:

In a COBOL program

The ASSIGN clause in the Environment Division identifies the DDNAME

that must be used in the DD statement.

SELECT FILEIN ASSIGN TO PAY...

In an Assembler program

The DDNAME is indicated as a keyword parameter of the DCB macro.

FILEIN DCB DDNAME=PAY,...

IBM reserves the following list of DD names for optional, special-function DD

statements:

Figure 1. Symbolic file name: Payroll program and MY.PAYROLL data set

Figure 2. Symbolic file name: Payroll program and new DIV1.PAYROLL data set

Chapter 3. Basic JCL concepts 41

JOBLIB

A JOBLIB DD statement, placed just after a JOB statement, specifies a

library that should be searched first for the programs executed by this job.

STEPLIB

A STEPLIB DD statement, placed just after an EXEC statement, specifies a

library that should be searched first for the program executed by the EXEC

statement. A STEPLIB overrides a JOBLIB if both are used.

JOBCAT and STEPCAT

JOBCAT and STEPCAT are used to specify private catalogs, but these are

rarely used (the most recent z/OS releases no longer support private

catalogs). Nevertheless, these DD names should be treated as reserved

names.

SYSABEND, SYSUDUMP, SYSMDUMP and CEEDUMP

The SYSABEND, SYSUDUMP, SYSMDUMP, and CEEDUMP DD statements

are used for various types of memory dumps that are generated when a

program abnormally ends.

JCL DD statement: ddnames that are reserved for specific uses

JCL programmers can use almost any name as a label for a DD statements, but

IBM reserves this list of ddnames for special-function DD statements.

Use the following special ddnames only when you want to use the facilities these

names represent to the system:

JOBLIB

A JOBLIB DD statement, placed just after a JOB statement, specifies a

library that should be searched first for the programs executed by this job.

STEPLIB

A STEPLIB DD statement, placed just after an EXEC statement, specifies a

library that should be searched first for the program executed by the EXEC

statement. A STEPLIB overrides a JOBLIB if both are used.

SYSCHK

The SYSCHK DD statement defines a checkpoint data set that the system is

to write during execution of a processing program.

SYSCKEOV

The SYSCKEOV DD statement defines a checkpoint data set for checkpoint

records from the checkpoint at end-of-volume (EOV) facility. The

checkpoint at EOV facility is invoked by a DD CHKPT parameter.

SYSIN

By convention, people often use a SYSIN DD statement to begin an

in-stream data set.

SYSABEND, SYSUDUMP, SYSMDUMP and CEEDUMP

The SYSABEND, SYSUDUMP, SYSMDUMP, and CEEDUMP DD statements

are used for various types of memory dumps that are generated when a

program abnormally ends.

Another set of reserved ddnames, JOBCAT and STEPCAT, are used to specify

private catalogs, but these are rarely used (the most recent z/OS releases no longer

support private catalogs). Nevertheless, these DD names should be treated as

reserved names.

The following ddnames have special meaning to JES2; do not use them on a DD

statement in a JES2 system.

42 z/OS Basic Skills Information Center: Reusable JCL collection

JESJCL

 JESJCLIN

 JESMSGLG

 JESYSMSG

The following ddnames have special meaning to JES3; do not use them on a DD

statement in a JES3 system.

 J3JBINFO

 J3SCINFO

 J3STINFO

 JCBIN

 JCBLOCK

 JCBTAB

 JESInnnn

 JESJCL

 JESJCLIN

 JESMSGLG

 JESYSMSG

 JOURNAL

 JS3CATLG

 JST

 STCINRDR

 TSOINRDR

JCL DD statements: Positional and frequently used

parameters

In addition to its one positional parameter, the DD statement has well over 50

keyword parameters. But you’ll most often use or encounter only this subset of

these parameters.

A DD statement may contain only one positional parameter that must precede all

keyword parameters. The following list describes the positional parameter values

you may code for the DD statement.

* (an asterisk)

The * parameter value begins an in-stream data set.

DATA The DATA parameter value begins an in-stream data set that may contain

statements with // in columns 1 and 2.

DUMMY

The DUMMY parameter value tells z/OS not to perform any input, output,

or disposition processing on the data set. Use the DUMMY parameter

value when you are not providing input or do not want the output for a

data set, or when testing a program.

DYNAM

The DYNAM parameter value is supported only to provide compatibility

with previous versions of the z/OS operating system.

Even when you become a JCL expert, you probably will use only a handful of DD

statement keywords frequently. Which keyword parameters you use depends on

several factors, including whether you want to use an existing or create a new data

set, what type of data set you are using or creating, and whether your company

uses SMS to manage data sets. Here are the keyword parameters that you are most

likely to use or see in existing JCL:

Chapter 3. Basic JCL concepts 43

DCB The DCB parameter defines the format type, length of records, and block

size for a new data set.

DISP The data set disposition parameter, DISP, indicates:

v The current status of the data set, and whether the job requires exclusive

use of it

v How z/OS is to handle the data set after the job step ends either

normally or abnormally.

The DISP parameters of DD statements help to prevent unwanted

simultaneous access to data sets. In other words, the DISP parameter helps

manage the integrity of data sets.

DSNAME or DSN

The DSNAME parameter, or its abbreviation DSN, specifies the actual

name of the data set. z/OS uses this name to locate the data set in storage.

The DSNAME or DSN keyword must be specified for an existing data set.

LABEL

The LABEL parameter specifies specific information about a tape or direct

access data set, including:

v The type and contents of the label or labels for the data set.

v If a password is required to access the data set.

v If the system is to open the data set only for input or output.

v The expiration date or retention period for the data set.

SPACE

The SPACE parameter allocates storage for a new data set on a direct

access storage device. The allocation of a data set means either or both of

two things:

v To set aside (or create) space for a new data set on a disk.

v To establish a logical link between a job step and any data set.

SYSOUT

The SYSOUT parameter specifies a system output data set and its output

class. A system output (SYSOUT) data set contains the job output that is to

be printed. This job output is also known is the output stream. Unlike a

permanent data set, a sysout data set is disk space that z/OS uses as buffer

storage for processing output.

UNIT When you are defining a new data set, you may use the UNIT parameter

to tell z/OS to place the data set on:

v A specific device, by specifying a hardware address.

v A certain type or group of devices; examples of device types are 3390 for

a disk or 3590 for tape.

v The same device as another data set.

VOLUME or VOL

When you are defining a new data set, you may use the VOLUME

parameter, or its abbreviation, VOL, to tell z/OS to place the data set on a

specific volume. You can request:

 A private volume

 A specific volume by serial number

 The same volume that another data set uses

44 z/OS Basic Skills Information Center: Reusable JCL collection

JCL DD statements: Use different parameters for SMS data

sets

The Storage Management Subsystem (SMS) automates the use of storage for data

sets. The use of SMS, which is optional, affects the JCL you code on DD statements

for SMS-managed data sets.

In a z/OS system, data management involves tasks that include the allocation,

placement, backup, recall and deletion of data sets. These activities can be done

either manually or through the use of automated processes. Several of these

activities can be done manually through the use of JCL.

Part of the z/OS storage management product, the Storage Management

Subsystem (SMS), automates the use of storage for data sets. With SMS, the z/OS

system programmer or storage administrator may, for example, create model data

definitions for typical data sets, so that SMS automatically assigns attributes to

data sets when they are created. The data sets allocated through SMS are called

system-managed data sets or SMS-managed data sets.

Before you start using JCL to work with data sets, you should know whether your

company uses SMS for the data sets you will be creating or using. If your

company does use SMS, you do not need to code certain DD statement keywords

in your JCL.

For example, suppose you want to create a new data set named DATA.LIST. If

SMS is active, you could use JCL like this:

//NEWDS DD DSN=HLQ.DATA.LIST,

// DISP=(NEW,KEEP),

// DATACLAS=DSCLAS01,

// STORCLAS=STRCLS20

In this case, z/OS can use characteristics from predefined data and storage classes

when it creates the DATA.LIST data set for you.

If SMS is not active or not in use, you need to manually specify the space

requirements and storage location for the new data set, and your JCL would look

like this or something even more complicated:

//NEWDS DD DSN=HLQ.DATA.LIST,

// DISP=(NEW,KEEP),

// SPACE=(CYL,(1,1)),

// UNIT=SYSDA,

// VOL=SER=SHARED

JCL DD statements: Identify program libraries with JOBLIB or

STEPLIB

To successfully run the program that you specify on a JCL EXEC statement, z/OS

has to search for and find that program. Using JOBLIB or STEPLIB DD statements

can reduce search time.

When you code the PGM parameter, z/OS looks for a program, and will

automatically search standard system program libraries, such as SYS1.LINKLIB,

which contains IBM-supplied programs. If the program you want to run resides in

a private program library, you must specify either a JOBLIB DD statement or a

STEPLIB DD statement for z/OS to successfully locate the program.

Chapter 3. Basic JCL concepts 45

Although both the JOBLIB DD statement and the STEPLIB DD statement identify

one or more private libraries as the location of a specified program, they dictate

different search behaviors for z/OS:

v JOBLIB tells z/OS to search the private libraries for each step in the job

v STEPLIB tells z/OS to search the private libraries only for one step

In both cases, z/OS searches system libraries only if it does not find the program

first in the private libraries on the JOBLIB or STEPLIB DD statement.

To decide which DD statement is most efficient for you to use, you need to know

the location of the programs to be run. If most are in the same private library, for

example, the JOBLIB DD statement is probably the best choice. If only a few

programs are in private libraries, the STEPLIB DD statement is probably the most

efficient.

In this example, a JOBLIB DD statement names the private library in which

PROGRAM1 resides:

//JOBNUM1 JOB 504,SMITH PAYROLL

//JOBLIB DD DSN=MY.LIBRARY,DISP=SHR//STEP1 EXEC PGM=PROGRAM1

//DD1 DD DSN=HLQ.INPUT

//

In this example, a STEPLIB DD statement names the private library in which

PROGRAM1 resides:

//JOBNUM1 JOB 504,SMITH PAYROLL

//STEP1 EXEC PGM=PROGRAM1

//STEPLIB DD DSN=MY.LIBRARY,DISP=SHR//DD1 DD DSN=HLQ.INPUT

//

If you code both a JOBLIB DD and STEPLIB DD statement in the same job, the

STEPLIB DD statement overrides the JOBLIB statement only for the one step. For

that step only, the system ignores JOBLIB and first searches the private libraries

specified on the STEPLIB DD statement. If the system does not find the program in

the private libraries, it then searches the system libraries. Then, if z/OS still has

not found the program, the system abnormally ends the job step.

46 z/OS Basic Skills Information Center: Reusable JCL collection

Chapter 4. Coding your own JCL

The easiest way to learn JCL is to use some that’s already been written, which is

why we started the reusable JCL collection. If you need to complete tasks that are

not yet represented in the reusable collection, you can borrow someone else’s JCL

and modify it to suit your task. Understanding general syntax rules and learning

about frequently used parameters will help you learn to correctly modify or code

your own JCL.

JCL exercise: Creating and submitting a job

This exercise takes you through the process of creating a data set member for JCL,

coding JCL (using a predefined sample), submitting the job, and viewing the job

output. Even if you do not have access to a z/OS system to accomplish these tasks,

reading through the instructions in this exercise will help you understand how to

use JCL to create jobs, submit those jobs and interpret the output.

Before you begin

Before you begin:

Before creating any job, you need to know the following:

v Installation conventions. Every job must include special accounting and

identifying information, which varies from one z/OS installation to another. To

submit your JCL successfully, you need to find out the conventions that are

followed at your company.

Use the worksheet in “Coding JCL: Collecting company-specific information” on

page 54 for documenting this information. You may need to ask a mentor or

co-worker to help you identify the conventions indicated in the worksheet.

v How to allocate and edit a data set. During the exercise, you will be entering

JCL statements into a data set so that you can subsequently modify and reuse

them as required. Therefore, you must know how to use ISPF panels (or an

equivalent technique) to allocate and edit the data set according to the specific

requirements of your z/OS system.

Note:

1. A common programming practice is to use JCL as the last qualifier in the

name of any data set that is to contain JCL; for example, userid.SORT.JCL

2. A data set that contains JCL must have a fixed-block format (RECFM=FB)

with a logical record length of 80 (LRECL=80).
v The job to be done and the resources needed. You need to determine what work

you plan to have z/OS perform:

– What inputs (resources) you will need and where they are located

– What program you plan to use.

– Where the output, if any, should go. (When the job completes, you will either

dispose of the output or hold it for later printing or for viewing.)

The job for this exercise is to sort a simple file and list the contents

alphabetically. Decisions about inputs, outputs, and processing have already

been made for you, so all you will have to do is to copy the example code

provided.

© Copyright IBM Corp. 2007, 2008 47

v How to view and understand held output. Running your job will produce three

types of held output:

– System messages from JES and z/OS

– Your JCL code with procedures expanded, overrides applied, and symbolics

resolved.

– Output as requested by the JCL code

Held output may be viewed, printed, or purged. Sample output shows you how

the output from the exercise should look and explains what each part of the

output means.

Procedure

1. Allocate a data set to contain your JCL. Use ISPF (or equivalent function) to

allocate a data set named userid.SORT.JCL (where userid is your TSO user ID)

with a fixed-block format (RECFM=FB) and a logical record length of 80

(LRECL=80).

2. Edit the JCL data set and add the necessary JCL. Use ISPF (or equivalent

function) to edit the data set that you just allocated.

a. Enter the following JCL statements into the data set. Note that all JCL

statements start with the special identifier //.

//SORT JOB ’accounting_data’, �1�

// ’user_name’, �2�

// NOTIFY=&SYSUID, �3�

// MSGCLASS=message_class, �4�

// MSGLEVEL=(1,1), �5�

// CLASS=n, �6�

//STEP1 EXEC PGM=IEFBR14 �7�

//SORTIN DD * �8�

NEPTUNE �9�

PLUTO

EARTH

VENUS

MERCURY

MARS

URANUS

SATURN

JUPITER

/* �10�

//SORTOUT DD SYSOUT=* �11�

/* �12�

In the JCL code above:

�1� Replace accounting_data with the appropriate security classification

and identification information, according to the information you

filled in on “Coding JCL: Collecting company-specific information”

on page 54.

�2� Replace user_name with your name.

�3� The NOTIFY parameter tells the system where to send “job

complete” information. &SYSUID tells the system to automatically

insert your user ID here, so the information will be sent to you.

�4� The MSGCLASS parameter tells the system what to do with

messages the system sends you as it processes your job; for

example, use a held output class to allow reviewing the messages

later. Replace message_class with the appropriate message class

value.

�5� MSGLEVEL=(1,1) tells the system to reproduce this JCL code in the

output, and to include allocation messages.

48 z/OS Basic Skills Information Center: Reusable JCL collection

�6� CLASS=n indicates the system resource requirements for the job.

�7� The EXEC statement invokes the program IEFBR14 and identifies

the first (and only) job step in this job. You are arbitrarily naming it

STEP1. All of the control statements that follow the EXEC statement

are part of this job step.

 IEFBR14 is the name of a program within your z/OS system. It

does not actually process any data, but it enables you to run this job

as a test to verify the JCL statements, and to create the input data.

Later in the exercise you will replace IEFBR14 with the name of

another program that sorts data.

�8� SORTIN is the name you have given the DD statement that

describes the input data.

�9� NEPTUNE through JUPITER are the items to be sorted. This

method of providing data to the program is referred to as in-stream

data, an alternative to providing the input in a separate allocated

data set.

�10� The symbols /* indicates the end of the input data stream.

�11� SORTOUT is the name you have given the DD statement that

describes where the output from running the job will be placed. In

this example, SYSOUT=* specifies that the output data will be

directed to the SYSOUT device defined in the MSGCLASS

statement.

�12� The symbols /* (optional) denote the end of the job.
3. Submit the JCL to the system as a job. When you have finished entering the

JCL into the data set, submit the job by entering the SUBMIT command from

the ISPF EDIT command line, the TSO/E command line, or following a READY

mode message. Each of these methods is shown below.

v ISPF EDIT command line:

 EDIT ---- userid.SORT.JCL -------------------------- LINE 00000000 COL 001 080

 COMMAND ===> SUBMIT SCROLL ===> CSR

********************************* TOP OF DATA ********************************

//userid JOB ’accounting data’,

 .

 .

 .

v TSO/E command line:

------------------------- TSO COMMAND PROCESSOR ----------------------------

ENTER TSO COMMAND OR CLIST BELOW:

===> SUBMIT ’userid.SORT.JCL’

ENTER SESSION MANAGER MODE ===> NO (YES or NO)

v After READY mode message:

Chapter 4. Coding your own JCL 49

.

 .

 .

 READY

SUBMIT ’userid.SORT.JCL’

Note: When entering the command from the TSO command line or after a

READY message, you must surround the data set name with single

quotation marks if you include your user ID. However, you can also enter

the command without specifying your user ID and without using single

quotation marks, as shown below:

SUBMIT SORT.JCL

When you do not specify the user ID and do not include single quotes, the

system automatically inserts your user ID before the data set name. (The

insertion of the user ID is for the duration of the current job; it is not a

permanent change to the data set name.)

After entering the command, you should receive the following message

indicating that your job was submitted successfully:

v When submitted from the ISPF EDIT command line:

 EDIT ---- userid.SORT.JCL -------------------------- LINE 00000000 COL 001 080

 COMMAND ===> SUBMIT SCROLL ===> CSR

********************************* TOP OF DATA ********************************

//userid JOB ’accounting data’,

 .

 .

 .

JOB jobname(jobnumber) SUBMITTED

v When submitted from the TSO command line:

------------------------- TSO COMMAND PROCESSOR -----------

ENTER TSO COMMAND OR CLIST BELOW:

===> SUBMIT ’userid.SORT.JCL’

ENTER SESSION MANAGER MODE ===> NO (YES or NO)

JOB jobname(jobnumber) SUBMITTED

v When submitted after READY mode message:

50 z/OS Basic Skills Information Center: Reusable JCL collection

.

 .

 .

 READY

 SUBMIT ’userid.SORT.JCL’

 .

 .

 .

JOB jobname(jobnumber) SUBMITTED

 .

 .

 READY

When the job ends, you will receive a message indicating one of three

conditions: job successful, JCL error, or program abend. If the message indicates

the error or abend condition, review steps 2 and 3 of this exercise to make sure

that you followed the instructions exactly, then resubmit the job.

If the job fails again, consult the appropriate messages as indicated below:

v If the message begins with HASP, the job was failed by JES2.

v If the message begins with IAT, the job was failed by JES3.
4. View and understand the output from the job. Use your installation’s viewing

facility (for example, SDSF) to view the output and determine whether the job

completed successfully.

If the job is on hold in the held queue, consider printing it for a record of the

job activity.

1 J E S 2 J O B L O G -- S Y S T E M A Q T S -- N O D E P L P S C

0

 15.21.28 JOB17653 IRR010I USERID userid IS ASSIGNED TO THIS JOB.

 15.21.28 JOB17653 ICH70001I userid LAST ACCESS AT 15:21:28 ON WEDNESDAY, OCTOBER 13, 2006

 15.21.28 JOB17653 $HASP373 SORT STARTED - INIT 9 - CLASS 5 - SYS AQTS

 15.21.28 JOB17653 IEF403I SORT - STARTED - TIME=15.21.28 �1�

 15.21.28 JOB17653 - ==

 15.21.28 JOB17653 - REGION --- STEP TIMINGS --- ----PAGING COUNTS----

 15.21.28 JOB17653 - STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP SERV PAGE SWAP VIO SWAPS

 15.21.28 JOB17653 - STEP1 IEFBR14 00 4K 00:00:00.01 00:00:00.03 1 211 0 0 0 0

 15.21.28 JOB17653 IEF404I SORT - ENDED - TIME=15.21.28

 15.21.28 JOB17653 - ==

 15.21.28 JOB17653 - NAME-user_name TOTALS: CPU TIME= 00:00:00.01 ELAPSED TIME= 00:00:00.05 SERVICE UNITS= 21

 15.21.28 JOB17653 - ==

 15.21.28 JOB17653 $HASP395 SORT ENDED

0------ JES2 JOB STATISTICS ------

- 13 OCT 1996 JOB EXECUTION DATE

- 20 CARDS READ

- 45 SYSOUT PRINT RECORDS �2�

- 0 SYSOUT PUNCH RECORDS

- 3 SYSOUT SPOOL KBYTES

- 0.00 MINUTES EXECUTION TIME

 1 //SORT JOB ’662282,D58,9211064,S=C’, JOB17653

 // ’user_name’,

 // NOTIFY=userid,

 // MSGCLASS=H, 00280009

 // MSGLEVEL=(1,1), 00430010 �3�

 // CLASS=5 00430010

 2 //STEP1 EXEC PGM=IEFBR14

 3 //SORTIN DD *

 4 //SORTOUT DD SYSOUT=*

 5 //SYSIN DD * GENERATED STATEMENT

 ICH70001I userid LAST ACCESS AT 15:21:28 ON WEDNESDAY, OCTOBER 13, 2006 IEF236I ALLOC. FOR SORT STEP1

 IEF237I JES2 ALLOCATED TO DATAIN

 IEF237I JES2 ALLOCATED TO SYSIN

 IEF142I SORT STEP1 - STEP WAS EXECUTED - COND CODE 0000 �5�

 IEF285I userid.SORT.JOB17653.D0000101.? SYSIN �4�

 IEF285I userid.SORT.JOB17653.D0000103.? SYSOUT

 IEF285I userid.SORT.JOB17653.D0000102.? SYSIN

 IEF373I STEP /STEP1 / START 1996286.1521

 IEF374I STEP /STEP1 / STOP 1996286.1521 CPU 0MIN 00.01SEC SRB 0MIN 00.00SEC VIRT 4K SYS 180K EXT 4K SYS 9424K

 IEF375I JOB /SORT / START 1996286.1521

 IEF376I JOB /SORT / STOP 1996286.1521 CPU 0MIN 00.01SEC SRB 0MIN 00.00SEC

Figure 3. Output from Job Invoking IEFBR14 Program

Chapter 4. Coding your own JCL 51

Figure 3 on page 51 contains an example of the held output for this exercise.

Each part of this output is explained below:

v The first block of information (�1�), ending with the line $HASP395 SORT

ENDED, is installation-specific and may differ on your system.

v The JES2 job statistics section (�2�), ending with the amount of execution

time (0.00 MINUTES EXECUTION TIME), contains JES messages about the job.

v The next section (�3�) contains the JCL statements, or JCL listing, that

resulted from the job.

v The final section (�4�), beginning with message ICH70001I, contains the

system output messages resulting from processing the job.

v Within the final section, the condition code 0000 (�5�) tells you that the

program ran successfully. You receive one condition code for each step in the

job. If a condition code is non-zero, see the documentation for the specific

program you invoked.
5. Make changes to your JCL. When your job has run successfully, edit the data

set containing the JCL and change or add control statements as indicated

below:

//SORT JOB ’accounting_data’,

// ’user_name’,

// NOTIFY=&SYSUID,

// MSGCLASS=H,

// MSGLEVEL=(1,1),

// CLASS=5

//STEP1 EXEC PGM=SORT �1�

//SYSIN DD * SORT FIELDS=(1,75,CH,A) �2�

/*

//SYSOUT DD SYSOUT=* �3�

//SORTIN DD *

NEPTUNE

PLUTO

EARTH

VENUS

MERCURY

MARS

URANUS

SATURN

JUPITER

/*

//SORTOUT DD SYSOUT=*

/*

�1� Replace the program name with the name of your sort program. In this

job, SORT will sort the input data identified by the SORTIN DD

statement.

�2� Add the SYSIN control statement. SYSIN specifies how you want the

sort to be done. In this case, you are indicating that you want to sort

the fields from column 1 to column 75 as characters in ascending

sequence.

�3� Add the SYSOUT control statement. SYSOUT specifies the data set to

which SORT will write its messages. A SYSOUT data set is a

system-handled output data set. This data set is placed temporarily on

direct access storage. Later, the system prints it or sends it to a

specified location.
When you have finished entering the JCL into the data set, submit the job.

6. View and understand your final output. Figure 4 on page 53 shows an example

of the held output for the completed exercise. Each part of this output is

52 z/OS Basic Skills Information Center: Reusable JCL collection

explained below:

v The first block of information (�1�), ending with the line $HASP395 SORT

ENDED, is installation-specific and may differ on your system.

1 J E S 2 J O B L O G -- S Y S T E M A Q T S -- N O D E P L P S C

0

 13.40.27 JOB06572 IRR010I USERID ’userid’ IS ASSIGNED TO THIS JOB.

 13.40.27 JOB06572 ICH70001I ’userid’ LAST ACCESS AT 13:39:20 ON MONDAY, NOVEMBER 15, 2006

 13.40.27 JOB06572 $HASP373 SORT STARTED - INIT 9 - CLASS 5 - SYS AQTS

 13.40.27 JOB06572 IEF403I SORT - STARTED - TIME=13.40.27 �1�

 13.40.28 JOB06572 - ==

 13.40.28 JOB06572 - REGION --- STEP TIMINGS --- ----PAGING COUNTS----

 13.40.28 JOB06572 - STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP SERV PAGE SWAP VIO SWAPS

 13.40.28 JOB06572 - STEP1 SORT 00 576K 00:00:00.03 00:00:00.15 20 1614 0 0 0 0

 13.40.28 JOB06572 IEF404I SORT - ENDED - TIME=13.40.28

 13.40.28 JOB06572 - ==

 13.40.28 JOB06572 - NAME-’user name’ TOTALS: CPU TIME= 00:00:00.03 ELAPSED TIME= 00:00:00.16 SERVICE UNITS= 1614

 13.40.28 JOB06572 - ==

 13.40.28 JOB06572 $HASP395 SORT ENDED

0------ JES2 JOB STATISTICS ------

- 15 NOV 1996 JOB EXECUTION DATE

- 25 CARDS READ

- 81 SYSOUT PRINT RECORDS �2�

- 0 SYSOUT PUNCH RECORDS

- 4 SYSOUT SPOOL KBYTES

- 0.00 MINUTES EXECUTION TIME

 1 //SORT JOB ’accounting data’, JOB06572

 // ’user_name’,

 // NOTIFY=userid,

 // MSGCLASS=H,

 // MSGLEVEL=(1,1),

 // CLASS=5 �3�

 2 //STEP1 EXEC PGM=SORT

 3 //SYSIN DD *

 4 //SYSOUT DD SYSOUT=*

 5 //SORTIN DD *

 6 //SORTOUT DD SYSOUT=*

 /*

 ICH70001I ’userid’ LAST ACCESS AT 13:39:20 ON MONDAY, NOVEMBER 15, 2006

 IEF236I ALLOC. FOR SORT STEP1

 IEF237I JES2 ALLOCATED TO SYSIN

 IEF237I JES2 ALLOCATED TO SYSOUT

 IEF237I JES2 ALLOCATED TO SORTIN

 IEF237I JES2 ALLOCATED TO SORTOUT

 IEF142I SORT STEP1 - STEP WAS EXECUTED - COND CODE 0000 �5�

 IEF285I userid.SORT.JOB06572.D0000101.? SYSIN

 IEF285I userid.SORT.JOB06572.D0000103.? SYSOUT

 IEF285I userid.SORT.JOB06572.D0000102.? SYSIN

 IEF285I userid.SORT.JOB06572.D0000104.? SYSOUT

 IEF373I STEP /STEP1 / START 1996319.1340

 IEF374I STEP /STEP1 / STOP 1996319.1340 CPU 0MIN 00.03SEC SRB 0MIN 00.00SEC VIRT 576K SYS 188K EXT 4096K SYS 9444K

 IEF375I JOB /SORT / START 1996319.1340

 IEF376I JOB /SORT / STOP 1996319.1340 CPU 0MIN 00.03SEC SRB 0MIN 00.00SEC

1ICE143I 0 BLOCKSET SORT TECHNIQUE SELECTED �4�

 ICE000I 1 --- CONTROL STATEMENTS/MESSAGES ---- 5740-SM1 REL 12.0 ---- 13.40.28 NOV 15, 2006 --

0 SORT FIELDS=(1,75,CH,A)

 ICE088I 1 SORT .STEP1 . , INPUT LRECL = 80, BLKSIZE = 80, TYPE = F

 ICE093I 0 MAIN STORAGE = (MAX,4194304,4194304)

 ICE156I 0 MAIN STORAGE ABOVE 16MB = (3624960,3624960)

 ICE128I 0 OPTIONS: SIZE=4194304,MAXLIM=1048576,MINLIM=450560,EQUALS=N,LIST=Y,ERET=RC16 ,MSGDDN=SYSOUT

 ICE129I 0 OPTIONS: VIO=N,RESDNT=ALL ,SMF=NO ,WRKSEC=Y,OUTSEC=Y,VERIFY=N,CHALT=N,DYNALOC=N ,ABCODE=MSG

 ICE130I 0 OPTIONS: RESALL=4096,RESINV=0,SVC=109 ,CHECK=Y,WRKREL=Y,OUTREL=Y,CKPT=N,STIMER=Y,COBEXIT=COB1

 ICE131I 0 OPTIONS: TMAXLIM=4194304,ARESALL=0,ARESINV=0,OVERRGN=65536,EXCPVR=NONE ,CINV=Y,CFW=Y

 ICE132I 0 OPTIONS: VLSHRT=N,ZDPRINT=N,IEXIT=N,TEXIT=N,LISTX=N,EFS=NONE ,EXITCK=S,PARMDDN=DFSPARM ,FSZEST=N

 ICE133I 0 OPTIONS: HIPRMAX=OPTIMAL ,DSPSIZE=MAX

 ICE084I 0 BSAM ACCESS METHOD USED FOR SORTOUT

 ICE084I 0 BSAM ACCESS METHOD USED FOR SORTIN

 ICE090I 0 OUTPUT LRECL = 80, BLKSIZE = 80, TYPE = F

 ICE080I 0 IN MAIN STORAGE SORT

 ICE055I 0 INSERT 0, DELETE 0

 ICE054I 0 RECORDS - IN: 9, OUT: 9

 ICE134I 0 NUMBER OF BYTES SORTED: 720

 ICE180I 0 HIPERSPACE STORAGE USED = 0K BYTES

 ICE188I 0 DATA SPACE STORAGE USED = 0K BYTES

 ICE052I 0 END OF DFSORT

 EARTH

 JUPITER

 MARS

 MERCURY

 NEPTUNE �6�

 PLUTO

 SATURN

 URANUS

 VENUS

Figure 4. Output from Job Invoking SORT Program

Chapter 4. Coding your own JCL 53

v The JES2 job statistics section (�2�), ending with the amount of execution

time, contains JES messages about the job.

v The next section (�3�) contains the JCL statements, or JCL listing, that

resulted from the job.

v The next section (�4�), beginning with message ICH70001I and ending with

message ICE052I, contains the system output messages resulting from

processing the job.

v Within the system output messages, the condition code 0000 (�5�) tells you

that the program ran successfully. You receive one condition code for each

step in the job. If a condition code is non-zero, see the documentation for the

specific program you invoked (in this case, SORT).

v The final section (�6�), from EARTH to VENUS, contains the output produced by

the SORT program.

Coding JCL: Collecting company-specific information

To correctly code JCL statements and parameter values, you need to collect certain

company-specific information. Use this checklist and worksheet to document what

you need to know about your company’s IT environment.

Procedure

Ask your system programmer or mentor to help you complete the following list,

which identifies elements of your work environment that might affect the JCL that

you code. Use Table 3 on page 55 to record your answers. When this worksheet is

complete, you should have the company-specific information you need for most of

the jobs you will run on z/OS.

v Determine which job entry subsystem (JES2 or JES3) is installed on the z/OS

system you will use. For many jobs, the type of JES does not affect JCL

parameters; for certain jobs, however, the JES in use does dictate which JCL

parameters, values, or job entry control (JECL) statements you may code.

v Determine which access methods your company uses for its data sets. An access

method defines the technique that is used to store and retrieve data. Access

methods have their own data set structures to organize data, system-provided

programs (or macros) to define data sets, and utility programs to process data

sets. Access methods, therefore, determine which JCL parameters and parameter

values that you need to code.

v For direct-access storage devices (DASD), determine which naming conventions

are used, as well as default or recommended values for data set attributes.

v For storing or backing up data on tape, determine which tape device volume

numbers and types are available for your use.

v Determine whether your company uses the Storage Management Subsystem

(SMS) to automate the use of storage for data sets. The JCL parameters for

SMS-managed (also called system-managed) data sets are different from some

parameters used for non-SMS data sets.

v Determine the information (account number, programmer name, and so on) your

company requires for each job that you submit.

54 z/OS Basic Skills Information Center: Reusable JCL collection

Table 3. JCL worksheet

Company convention or

z/OS environment specifics Notes / Values to code on JCL statements

Job entry subsystem

JES2

 or

JES3

Access methods

Queued Sequential (QSAM)

Basic Partitioned (BPAM)

Virtual Sequential (VSAM)

Basic Sequential (BSAM)

Basic Direct (BDAM)

Direct-access storage

devices (DASD)

DSN=

UNIT=

VOL=SER=

Magnetic tape devices LABEL=

UNIT=

VOL=SER=

Data management system

Conventions for SMS-managed data sets

Average record AVGREC=

Data classes DATACLAS=

Management classes MGMTCLAS=

RACF profile names SECMODEL=

Storage classes STORCLAS=

Conventions for non-SMS-managed data sets

Data set attributes or

requirements

BLKSIZE

LRECL=

RECFM

SPACE=

SYSOUT=

Conventions for the JOB statement

Account number

Other accounting

information

Programmer name

Class CLASS=

Message class MSGCLASS=

Message level MSGLEVEL=

Region size REGION=

Time limit TIME=

Chapter 4. Coding your own JCL 55

Coding JCL: Syntax rules for the name field

The name field begins in column 3 and may extend through column 10 in any JOB,

EXEC, or DD statement. Using unique labels in the name field is useful for

identifying, referring to, and diagnosing problems with specific JCL statements.

Syntax rules for the name field are:

v The name must begin in column 3 of the JCL statement.

v The name can be one through eight characters in length.

v The first character in the name must be an alphabetic character (the letters A

through Z) or a special character (the symbols #, @, and $).

v The remaining characters can be alphanumeric (the letters A through Z and

numbers 0 through 9) or special characters.

v Blank spaces cannot be included in a name.

Coding JCL: Data set types and name syntax

Naming and syntax rules for coding data set names vary depending on the type of

data set you are identifying. Use this summary to determine the type of data set

and its corresponding syntax for the DSNAME parameter value.

Table 4 on page 57 lists the different types and examples of correctly coded names.

Unless another resource is noted in the table, z/OS MVS JCL Reference (SA22-7597)

is the definitive source for complete details about the data set types and

permissible names, along with syntax rules.

56 z/OS Basic Skills Information Center: Reusable JCL collection

Table 4. Summary of data set types and correctly coded DSNAME (DSN) parameter values

Type of data set DSNAME (DSN) parameter value formats and examples

Permanent Unqualified names: One through 8 alphanumeric or special ($, #, @)

characters, a hyphen, or a character X’C0’. The first character must be

alphabetic or special ($, #, @).

Example of an unqualified name:

DSNAME=ALPHA

Qualified names: Multiple unqualified names joined by periods. Each

qualifier is coded like an unqualified name; therefore, the name must

contain a period after every 8 characters or fewer. The maximum

length of a qualified data set name is:

v 44 characters, including periods.

v For a generation data group, 35 characters, including periods.

v For an output tape data set, 17 characters, including periods.

Example of a qualified name:

DSNAME=ALPHA.PGM

RACF-protected data sets: Use the same format as for a qualified

name, and make sure the high-level qualifier of the name is defined to

RACF. Further details are documented in z/OS Security Server RACF

Security Administrator’s Guide (SA22-7683).

Formats for names of cataloged data sets:

dsname

dsname(member)

dsname(gen_data_group)

dsname(INDEX | PRIME | OVFLOW)

Example for a cataloged data set:

DSNAME=LIB1(PROG12)

Further details are documented in z/OS DFSMS Access Method Services

for Catalogs (SC26-7394).

Temporary When you define a temporary data set, you can code the DSNAME

parameter or omit it; in either case, the system generates a qualified

name for the temporary data set.

When you use the DSNAME parameter for a temporary data set, code

the name as two ampersands (&&) followed by a character string 1 to

8 characters in length:

v The first character following the ampersands must be alphabetic or

special ($, #, @).

v The remaining characters must be alphanumeric or special ($, #, @).

Formats for temporary data set names:

&&dsname

&&dsname(member)

&&dsname(INDEX | PRIME | OVFLOW)

Example for a temporary data set:

//DD3 DD DSNAME=&&WORK,UNIT=3420

Chapter 4. Coding your own JCL 57

Table 4. Summary of data set types and correctly coded DSNAME (DSN) parameter

values (continued)

Type of data set DSNAME (DSN) parameter value formats and examples

In-stream or

system output

(sysout)

When defining an in-stream or sysout data set, you can code the

DSNAME parameter or omit it; if omitted, the system generates a

name for the data set.

The data set name for in-stream and sysout data sets consists of two

ampersands (&&) followed by one through eight 8 alphanumeric or

special ($, #, @) characters, a hyphen, or a character X’C0’. The first

character following the ampersands must be alphabetic or special ($, #,

@).Example for an in-stream data set:

//DDIN DD DATA,DSNAME=&&PAYIN1

Example for a sysout data set:

//DDOUT DD DSNAME=&&PAYOUT1,SYSOUT=P

Backward

reference

A backward reference is a reference to an earlier statement in the job or

in a cataloged or in-stream procedure called by this or an earlier job

step. A backward reference can be coded in the DSNAME parameter

to copy a data set name from an earlier DD statement.

Formats for backward references:

*.ddname

*.stepname.ddname

*.stepname.procstepname.ddname

Example of a backward reference in DD5 statement in STEP2:

//STEP1 EXEC PGM=CREATE

//DD4 DD DSNAME=&&ISDATA(PRIME),DISP=(,PASS),

// UNIT=(3350,2),VOLUME=SER=334859,

// SPACE=(CYL,(10,,2),,CONTIG),DCB=DSORG=IS

//STEP2 EXEC PGM=OPER

//DD5 DD DSNAME=*.STEP1.DD4,DISP=(OLD,DELETE)

Dummy data set The parameter NULLFILE specifies a dummy data set. NULLFILE has

the same effect as coding the DD DUMMY parameter.

58 z/OS Basic Skills Information Center: Reusable JCL collection

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2007, 2008 59

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

This book documents information that is NOT intended to be used as

Programming Interfaces of z/OS.

60 z/OS Basic Skills Information Center: Reusable JCL collection

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. If these and other IBM trademarked terms are marked on their first

occurrence in this information with a trademark symbol (® or

™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common

law trademarks in other countries. A current list of IBM trademarks is available on

the Web at ″Copyright and trademark information″ at http://www.ibm.com/legal/
copytrade.shtml

Other company, product, or service names may be trademarks or service marks of

others.

Notices 61

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

62 z/OS Basic Skills Information Center: Reusable JCL collection

����

Printed in USA

	Contents
	Introducing the reusable JCL collection
	Chapter 1. Preparing to use JCL samples in this collection
	Chapter 2. Selecting a reusable JCL sample
	Reusable JCL: Creating a data set
	Reusable JCL: Copying a data set to tape
	Reusable JCL: Copying a partitioned data set
	Reusable JCL: Copying a sequential data set
	Reusable JCL: Copying a load module
	Reusable JCL: Deleting a data set
	Reusable JCL: Deleting some VSAM clusters

	Chapter 3. Basic JCL concepts
	JCL statements: What does the JOB statement do?
	JCL JOB statements: Positional and frequently used parameters

	JCL statements: What does the EXEC statement do?
	JCL EXEC statements: Positional and frequently used parameters
	JCL EXEC statements: What are JCL procedures?
	JCL EXEC statements: How z/OS finds the program or procedure
	What are the standard system libraries?

	JCL statements: What does the DD statement do?
	JCL DD statements: Advantages of using symbolic names
	JCL DD statement: ddnames that are reserved for specific uses

	JCL DD statements: Positional and frequently used parameters
	JCL DD statements: Use different parameters for SMS data sets
	JCL DD statements: Identify program libraries with JOBLIB or STEPLIB

	Chapter 4. Coding your own JCL
	JCL exercise: Creating and submitting a job
	Coding JCL: Collecting company-specific information
	Coding JCL: Syntax rules for the name field
	Coding JCL: Data set types and name syntax

	Notices
	Programming interface information
	Trademarks

