
ibm.com/redbooks

Front cover

ABCs of z/OS System
Programming
Volume 10

Paul Rogers
Alvaro Salla
Livio Sousa

z/Architecture, IBM System z
processor design and connectivity

LPAR concepts, HCD, z9, z10

DS8000 DASD controller

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

ABCs of z/OS System Programming Volume 10

September 2008

SG24-6990-03

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Fourth Edition (September 2008)

This edition applies to Version 1 Release 10 of z/OS (5694-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this book . xiii
Become a published author . xiv
Comments welcome. xiv

Chapter 1. Introduction to z/Architecture . 1
1.1 Computer architecture overview . 3
1.2 Concept of a process . 4
1.3 Process states and attributes . 5
1.4 System components . 7
1.5 Processing units (PUs) . 9
1.6 z/Architecture enhancements . 11
1.7 64-bit address space map. 13
1.8 Addressing mode . 15
1.9 64-bit dynamic address translation . 17
1.10 CP registers (general) . 18
1.11 Floating point registers . 20
1.12 Current program-status word (PSW). 21
1.13 Next sequential instruction address . 22
1.14 Program-status-word format . 23
1.15 Prefixed save area (PSA) . 26
1.16 Several instruction formats . 27
1.17 Microcode concepts . 29
1.18 z/Architecture components . 30
1.19 z/Architecture data formats . 33
1.20 Interrupts . 36
1.21 Interrupt processing . 37
1.22 Types of interrupts . 39
1.23 Supervisor call interrupt . 40
1.24 Storage protection. 43
1.25 Storage protection logic . 45
1.26 Addresses and address spaces . 46
1.27 z/Architecture address sizes . 48
1.28 Storage addressing . 49
1.29 Real storage locations. 50
1.30 Dynamic address translation (DAT) . 52
1.31 Dynamic address translation. 54
1.32 Page faults . 55
1.33 Dual address space (cross memory) . 57
1.34 Access register mode (dataspaces) . 59
1.35 CPU signaling facility . 61
1.36 Time measurement TOD. 62
1.37 Time measurement (CP timer) . 64
1.38 Sysplex Timer expanded availability configuration . 66
1.39 Server Time Protocol (STP) . 68
1.40 Data center and I/O configuration . 69
© Copyright IBM Corp. 2008. All rights reserved. iii

1.41 Channel subsystem. 71
1.42 Multiple CSS structure (z10 EC) . 73
1.43 Control units . 75
1.44 Device number . 77
1.45 Subchannel number . 79
1.46 Subchannel numbering . 81
1.47 Control unit address . 83
1.48 Unit addresses . 85
1.49 Map device number to device address . 87
1.50 Multiple channel paths to a device . 88
1.51 Start subchannel (SSCH) logic . 90
1.52 SAP PU logic. 92
1.53 Channel processing . 94
1.54 I/O interrupt processing. 96
1.55 I/O summary . 98

Chapter 2. IBM System z . 101
2.1 z9 EC models overview. 103
2.2 z9 BC models overview. 105
2.3 Processor unit (PU) instances. 108
2.4 z9 EC frames and cages. 110
2.5 PU cage and books. 111
2.6 z9 EC Multichip module (MCM) . 112
2.7 Pipeline in z9 EC. 113
2.8 Processor unit caches. 115
2.9 Cache and PU, SC, SD, and MSC chips . 118
2.10 Instruction and execution units . 120
2.11 A book (logical view) . 121
2.12 Physical book design . 123
2.13 L2 cache and book connection . 125
2.14 Self-timed interconnect (STI) and domains. 127
2.15 STIs and I/O cards . 128
2.16 The I/O data flow. 129
2.17 z9 EC I/O cage . 130
2.18 Redundant I/O Interconnect . 132
2.19 I/O operation in a multi-book server . 133
2.20 16-port ESCON channel card . 134
2.21 Logical Channel Subsystem (LCSS). 136
2.22 LP IDs, MIF IDs and spanning concepts . 138
2.23 Physical channel ID (PCHID) . 140
2.24 Association between CHPIDs and PCHIDs . 142
2.25 Comparison between System z servers . 143
2.26 IOCP statements example . 145
2.27 Configuration definition process . 146
2.28 Introduction to MIDAW . 148
2.29 Using MIDAWs . 150
2.30 Channel command word (CCW) concept . 152
2.31 CCWs and virtual storage - IDAW Concept . 154
2.32 DASD extended format . 156
2.33 Reducing CCWs using MIDAW. 158
2.34 MIDAW facility . 160
2.35 MIDAW performance results . 161
2.36 Cryptographic hardware features . 163
iv ABCs of z/OS System Programming Volume 10

2.37 Crypto Express2 . 165
2.38 z9 EC crypto synchronous functions. 167
2.39 z9 EC crypto asynchronous functions. 168
2.40 Non-disruptive upgrades . 170
2.41 z9 EC new features. 173
2.42 z9 BC functions and comparisons. 176

Chapter 3. IBM System z10 EC . 179
3.1 z10 EC overview . 180
3.2 IBM System z nomenclature . 181
3.3 z10 EC naming summary . 182
3.4 System design numeric comparison . 183
3.5 The power of GHz (high frequency) . 184
3.6 Processor unit (PU) instances. 186
3.7 z10 EC hardware model . 188
3.8 z10 EC sub-capacity models. 189
3.9 z10 EC frames and cages. 191
3.10 Book topology comparison . 193
3.11 NUMA topology . 194
3.12 z10 EC Books . 195
3.13 Multi-chip module (MCM) . 197
3.14 PU chip . 198
3.15 Book element interconnections . 200
3.16 Pipeline in z10 EC. 201
3.17 Pipeline branch prediction. 203
3.18 About each z10 EC PU . 204
3.19 z10 EC storage controller (SC) chip . 206
3.20 Recapping the z10 EC design. 208
3.21 Three levels of cache . 209
3.22 Software/hardware cache optimization . 212
3.23 HiperDispatch . 214
3.24 Central storage design . 215
3.25 Addresses and addresses. 217
3.26 Hardware system area (HSA) . 219
3.27 Large page (1 M) support . 220
3.28 Connecting PU cage with I/O cages . 222
3.29 Detailed connectivity . 224
3.30 HCA and I/O card connections . 225
3.31 InfiniBand interconnect technology . 226
3.32 I/O cage. 228
3.33 The I/O data flow. 230
3.34 Redundant I/O Interconnect . 231
3.35 z10 EC I/O features supported . 232
3.36 16-port ESCON channel card . 233
3.37 FICON features and Extended Distance. 234
3.38 Channel subsystem (CSS) . 236
3.39 LP ID, MIF ID, and spanning concepts . 238
3.40 Physical channel ID (PCHID) . 240
3.41 Association between CHPIDs and PCHIDs . 242
3.42 Comparison between System z servers . 243
3.43 IOCP statements example . 245
3.44 Configuration definition process . 246
3.45 Channel availability features . 248
 Contents v

3.46 Introduction to MIDAW . 250
3.47 Channel command word (CCW) concept . 252
3.48 CCWs and virtual storage - IDAW Concept . 253
3.49 DASD extended format . 255
3.50 Using MIDAWs . 257
3.51 Reducing CCWs using MIDAW. 259
3.52 MIDAW performance results . 260
3.53 Cryptographic hardware features . 262
3.54 z10 EC crypto synchronous functions. 264
3.55 Crypto Express2 . 265
3.56 z10 EC crypto asynchronous functions. 267
3.57 Just-in-time capacity upgrades . 269
3.58 Capacity provisioning . 272
3.59 Capacity Provisioning Domain . 274
3.60 z10 EC new features. 276

Chapter 4. System z connectivity . 277
4.1 Connectivity overview . 278
4.2 Multiple Image Facility channels . 280
4.3 Channel subsystem connectivity . 282
4.4 CSS configuration management . 284
4.5 Displaying channel types . 286
4.6 ESCON architecture . 287
4.7 ESCON concepts . 290
4.8 ESCD (switch) functions . 292
4.9 ESCON Director (ESCD) description . 294
4.10 ESCON Director matrix . 295
4.11 Channel-to-channel adapter . 296
4.12 ESCON CTC support . 298
4.13 FICON channels . 300
4.14 FICON conversion mode. 302
4.15 Supported FICON native topologies . 304
4.16 Fibre Channel Protocol (FCP). 305
4.17 FICON improvements (1) . 306
4.18 FICON improvements (2) . 308
4.19 FICON/ESCON numerical comparison . 310
4.20 FICON switches . 312
4.21 Cascaded FICON Directors . 313
4.22 FICON Channel to Channel Adapter (FCTC) . 315
4.23 z9 Coupling Facility links. 316
4.24 z10 EC Coupling Facility connectivity options. 318
4.25 All z10 EC coupling link options . 319
4.26 OSA-Express . 321
4.27 QDIO architecture . 323
4.28 HiperSockets connectivity . 325
4.29 Hardware Configuration Definition (HCD) . 327

Chapter 5. Logical partition (LPAR) concepts . 329
5.1 History of operating environments . 330
5.2 Server in basic mode . 332
5.3 Server in LPAR mode . 333
5.4 Shared logical CPs example . 335
5.5 LPAR dispatching and shared CPs. 337
vi ABCs of z/OS System Programming Volume 10

5.6 Reasons for intercepts . 339
5.7 LPAR event-driven dispatching. 341
5.8 LPAR weights . 343
5.9 z9 PU pools. 346
5.10 Capping workloads . 348
5.11 LPAR capping . 350
5.12 LPAR capped versus uncapped . 351
5.13 Soft capping . 353
5.14 Group capacity in soft capping . 354
5.15 Intelligent Resource Director (IRD) . 356
5.16 WLM LPAR CPU management . 358
5.17 Workload Manager advantages . 360
5.18 Dynamic Channel Path Management (DCM) . 363
5.19 Channel subsystem I/O priority queueing . 365

Chapter 6. Hardware Configuration Definition (HCD) . 369
6.1 What is HCD . 370
6.2 IOCP example. 372
6.3 IOCP elements . 373
6.4 Hardware and software configuration . 375
6.5 HCD functions . 377
6.6 Dynamic I/O reconfiguration . 379
6.7 Dynamic I/O reconfiguration device types. 381
6.8 IODF data set . 383
6.9 Definition order . 386
6.10 HCD primary menu . 387
6.11 Creating a new work IODF . 388
6.12 Defining configuration data . 389
6.13 Operating system definition. 390
6.14 Defining an operating system . 391
6.15 EDT and esoterics. 392
6.16 How to define an EDT (1) . 394
6.17 How to define an EDT (2) . 395
6.18 Defining an EDT identifier . 396
6.19 How to add an esoteric . 397
6.20 Adding an esoteric . 399
6.21 Defining switches . 400
6.22 Adding switches . 402
6.23 Defining servers . 403
6.24 z9 EC server elements . 405
6.25 Information for defining a server . 406
6.26 Defining a server . 407
6.27 Working with LCSS . 408
6.28 Logical channel subsystems defined . 409
6.29 Adding a logical partition (LP) . 410
6.30 z9 EC LPAR server configuration . 411
6.31 Channel types operation mode . 412
6.32 Channel types . 413
6.33 Information required to add channels . 415
6.34 Working with channel paths . 416
6.35 Adding channel paths dynamically . 417
6.36 Adding a channel path . 418
6.37 Defining an access and a candidate list . 420
 Contents vii

6.38 Adding a control unit . 421
6.39 Information required to define a control unit . 423
6.40 Adding a control unit . 424
6.41 Defining a 2105 control unit . 426
6.42 Selecting a processor/control unit . 427
6.43 Servers and channels for connecting control units . 428
6.44 Defining server attachment data . 429
6.45 Information required to define a device. 430
6.46 z/OS device numbering. 432
6.47 Defining a device. 433
6.48 Defining device CSS features (1) . 435
6.49 Defining device CSS features (II) . 436
6.50 Defining devices to the operating system . 437
6.51 Defining operating system device parameters . 438
6.52 Assigning a device to an esoteric . 440
6.53 Defining an NIP console . 441
6.54 Using the CHPID mapping tool . 442
6.55 Build a production IODF . 444
6.56 Define the descriptor fields . 446
6.57 Production IODF created . 447
6.58 Activating a configuration with HCD . 448
6.59 View an active IODF with HCD . 449
6.60 Viewing an active IODF. 450
6.61 Displaying device status . 451
6.62 HCD reports . 452
6.63 Hardware Configuration Manager (HCM) . 455

Chapter 7. DS8000 series concepts . 457
7.1 DASD controller capabilities . 458
7.2 DS8000 characteristics . 460
7.3 DS8000 design . 462
7.4 Internal fabric and I/O enclosures . 463
7.5 Disk subsystem . 464
7.6 Switched Fibre Channel Arbitrated Loop (FC-AL). 466
7.7 Redundant array of independent disks (RAID) . 468
7.8 DS8000 types of RAID . 470
7.9 Logical subsystems (LSS). 472
7.10 Logical partition (LPAR) . 473
7.11 Copy Services classification criteria . 474
7.12 Consistency group concept . 476
7.13 Copy services in DS8000 . 478
7.14 FlashCopy . 479
7.15 Consistency group in FlashCopy . 482
7.16 Remote Mirror and Copy (example: PPRC) . 483
7.17 Consistency groups in Metro Mirror . 485
7.18 Global Copy (example: PPRC XD) . 487
7.19 Global Mirror (example: async PPRC) . 488
7.20 z/OS Global Mirror (example: XRC) . 490
7.21 Parallel Access Volume (PAV) . 492
7.22 HyperPAV feature for DS8000 series . 494
7.23 HyperPAV and IOS . 495
7.24 HyperPAV implementation . 496
7.25 Display M=DEV command . 498
viii ABCs of z/OS System Programming Volume 10

7.26 RMF DASD report . 499
7.27 RMF I/O Queueing report . 500
7.28 DS8000 Capacity on Demand. 501
7.29 DS command line interface (CLI) . 502
7.30 Storage Hardware Management Console (S-HMC) . 503

Related publications . 505
IBM Redbooks . 505
Other publications . 505
Online resources . 505
How to get IBM Redbooks . 506
 Contents ix

x ABCs of z/OS System Programming Volume 10

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2008. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
e-business on demand®
pSeries®
z/Architecture®
z/OS®
z/VM®
z/VSE™
zSeries®
z10™
z10 EC™
z9™
Common User Access®
CICS®
CUA®
DB2®
DFSMS™
DS6000™
DS8000™
Enterprise Storage Server®
Enterprise Systems

Architecture/370™
ECKD™

ES/9000®
ESCON®
FlashCopy®
FICON®
Geographically Dispersed Parallel

Sysplex™
GDPS®
HiperSockets™
HyperSwap™
IBM®
IMS™
Language Environment®
MQSeries®
MVS™
MVS/ESA™
MVS/XA™
Parallel Sysplex®
Power PC®
PowerPC®
Processor Resource/Systems

Manager™
POWER5™

PR/SM™
Redbooks®
Resource Link™
RACF®
RMF™
S/360™
S/370™
S/390®
Seascape®
Sysplex Timer®
System z™
System z10™
System z9®
System Storage™
System/360™
System/370™
TotalStorage®
VSE/ESA™
VTAM®
WebSphere®
3090™

The following terms are trademarks of other companies:

SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several
other countries.

InfiniBand Trade Association, InfiniBand, and the InfiniBand design marks are trademarks and/or service
marks of the InfiniBand Trade Association.

Java, JVM, RSM, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xii ABCs of z/OS System Programming Volume 10

http://www.ibm.com/legal/copytrade.shtml

Preface

The ABCs of z/OS® System Programming is an 11-volume collection that provides an
introduction to the z/OS operating system and the hardware architecture. Whether you are a
beginner or an experienced system programmer, the ABCs collection provides the
information that you need to start your research into z/OS and related subjects. If you would
like to become more familiar with z/OS in your current environment, or if you are evaluating
platforms to consolidate your e-business applications, the ABCs collection will serve as a
powerful technical tool.

This IBM® Redbooks® publication, Volume 10, provides an introduction to z/Architecture®,
zSeries® processor design, zSeries connectivity, LPAR concepts, Hardware Management
Console (HMC), Hardware Configuration Definition (HCD), and DS8000™.

The contents of the other volumes are as follows:

� Volume 1: Introduction to z/OS and storage concepts, TSO/E, ISPF, JCL, SDSF, and z/OS
delivery and installation

� Volume 2: z/OS implementation and daily maintenance, defining subsystems, JES2 and
JES3, LPA, LNKLST, authorized libraries, SMP/E, Language Environment®

� Volume 3: Introduction to DFSMS™, data set basics storage management hardware and
software, catalogs, and DFSMStvs

� Volume 4: Communication Server, TCP/IP, and VTAM®

� Volume 5: Base and Parallel Sysplex®, System Logger, Resource Recovery Services
(RRS), global resource serialization (GRS), z/OS system operations, automatic restart
management (ARM), Geographically Dispersed Parallel Sysplex™ (GDPS®)

� Volume 6: Introduction to security, RACF®, Digital certificates and PKI, Kerberos,
cryptography and z990 integrated cryptography, zSeries firewall technologies, LDAP, and
Enterprise Identity Mapping (EIM)

� Volume 7: Printing in a z/OS environment, Infoprint Server and Infoprint Central

� Volume 8: An introduction to z/OS problem diagnosis

� Volume 9: z/OS UNIX® System Services

� Volume 10: Introduction to z/Architecture, zSeries processor design, zSeries connectivity,
LPAR concepts, HCD, and DS8000

� Volume 11: Capacity planning, performance management, WLM, RMF™, and SMF

The team that wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Paul Rogers is a Consulting IT Specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM classes
worldwide on various aspects of z/OS, z/OS UNIX, and Infoprint Server. Before joining the
ITSO 20 1/2 years ago, he worked in the IBM Installation Support Center (ISC) in Greenford,
England providing and JES support for IBM EMEA and the Washington Systems Center. Paul
has worked for IBM for 41 years.
© Copyright IBM Corp. 2008. All rights reserved. xiii

Thanks to the following people for their contributions to this project:

Alvaro Salla is an IBM retiree who worked for IBM for more than 30 years, specializing in
large systems. He has co-authored many IBM Redbooks publications and spent many years
teaching about large systems from S/360™ to S/390®. He has a degree in Chemical
Engineering from the University of Sao Paulo, Brazil.

Thanks to the authors of the previous editions of this book.

� Authors of the previous editions, ABCs of z/OS System Programming Volume 10,
published in August 2004, 2006, and 2007, were:

Alvaro Salla

Livio Sousa is a Technical Sales Support member of the Linux® for zSeries team in Brazil.
He has four years of experience in the areas of operational systems and networking. He is
finishing college and has been working for IBM since 2002, with responsibility for planning
and implementing new workload projects. He has been a contributor to other IBM Redbooks
publications.

Thanks also to Robert Haimowitz, International Technical Support Organization,
Poughkeepsie Center, for his support of this project.

The second and third editions of this book were produced by the following specialists working
at the International Technical Support Organization, Poughkeepsie Center:

Paul Rogers

Alvaro Salla

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks
xiv ABCs of z/OS System Programming Volume 10

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/contacts.html

xvi ABCs of z/OS System Programming Volume 10

Chapter 1. Introduction to z/Architecture

In this chapter, we provide an overview of z/Architecture.

z/Architecture is the next step in the evolution from System/360™ to System/370™,
System/370 Extended Architecture (370-XA), Enterprise Systems Architecture/370™
(ESA/370), and Enterprise Systems Architecture/390 (ESA/390). In order to understand
z/Architecture, you have to be familiar with the basics of ESA/390 and its predecessors.

An address space maps all of the available addresses—and includes system code and data,
as well as user code and data. Thus, not all of the mapped addresses are available for user
code and data. This limit on user applications was a major reason for System/370 Extended
Architecture (370-XA) and MVS/XA™. Because the effective length of an address field
expanded from 24 bits to 31 bits, the size of an address space expanded from 16 megabytes
to 2 gigabytes. An MVS/XA address space is 128 times as big as an MVS/370 address
space.

In the early 1980s, XA (or extended architecture) was introduced with an address space that
began at address 0 and ended at two gigabytes. The architecture that created this address
space provided 31-bit addresses. To maintain compatibility, MVS™ provided two addressing
modes (AMODEs) for programs: programs that run in AMODE 24 can use only the first 16
megabytes of the address space, and programs that run in AMODE 31 can use the entire 2
gigabytes.

As of z/OS V1R2, the address space begins at address 0 and ends at 16 exabytes, an
incomprehensibly high address. This architecture, zArchitecture, in creating this address
space, provides 64-bit addresses. The address space structure below the 2 gigabyte address
has not changed; all programs in AMODE 24 and AMODE 31 continue to run without change.
In some fundamental ways, the address space is much the same as the XA address space.

z/OS and the IBM zSeries 900 (z900) deliver the 64-bit architecture (z/Architecture) to
provide qualities of service that are critical for the e-business world. 64-bit real storage
support eliminates expanded storage and helps eliminate paging. 64-bit real storage support
may allow you to consolidate your current systems into fewer logical partitions (LPARs), or to
a single native image.

1

© Copyright IBM Corp. 2008. All rights reserved. 1

With System z™, initial program loading sets the ESA/390 architectural mode. The new
SIGNAL PROCESSOR order then can be used to set the z/Architecture mode or to return
from z/Architecture to ESA/390. This order causes all CPs in the configuration to always be in
the same architectural mode.

When converting to z/Architecture mode, existing programs work unchanged.

In this redbook, we use the following terminology to refer to the exploiting operating system:

� When appropriate, we specifically emphasize z/OS.

� Otherwise, if a statement is valid for any previous release or version of z/OS, we may use
MVS in the statement.
2 ABCs of z/OS System Programming Volume 10

1.1 Computer architecture overview

Figure 1-1 An architecture definition

Computer architecture
This chapter provides a detailed description of z/Architecture, and it discusses aspects of the
servers running such architecture. These servers are now referred to as System z and they
comprise the z800, z890, z900, z990, z9™ EC, z9 BC and z10™ EC.

So, what is a “computer architecture”?

The computer architecture of a computing system defines its attributes as seen by the
programs that are executed in that system, that is, the conceptual structure and functional
behavior of the server hardware. Then, the computer architect defines the functions to be
executed in the hardware and the protocol to be used by the software in order to exploit such
functions. Note that the architecture has nothing to do with the organization of the data flow,
the logical design, the physical design, and the performance of any particular implementation
in the hardware.

Several dissimilar server implementations may conform to a single architecture. When the
execution of a set of programs on different server implementations produces the results that
are defined by a single architecture, the implementations are considered to be compatible for
those programs.

Note: When reading this chapter, it is useful to have z/Architecture Reference Summary,
SA22-7871, at hand to use as a quick reference. The main source of reference information
about this architecture, however, is z/Architecture Principles of Operations, SA22-7832.

Software

Protocol

Hardware

POPPOP

Computer
Architect
Chapter 1. Introduction to z/Architecture 3

1.2 Concept of a process

Figure 1-2 Concept of a process

Architecture concepts
One of the z/Architecture items we cover in this document is multiprocessing. However, in
order to understand multiprocessing, you first need to be familiar with the concept of a
process. As defined in a commercial data processing environment, a process is the serial
execution of programs in order to solve one problem of a business unit (such as payroll
update, banking checking account transaction, Internet query, and so on).

Analogies
To illustrate the process concept, let ‘s draw an analogy using real life. Each item in the
real-life list in Figure 1-2 corresponds to an item in the data processing list: the car is the CP,
the street is the program, and “going to the movies” is the process. Streets and cars were
created because people go to places. Programs and CPs (and thus, the data processing
industry) were developed because processes need to be executed. So, if every time you go to
the movies, you notice that you are late because you have a slow car, it would be useless to
buy another slow car—in the same way, if your process is taking longer because of a slow CP,
it is useless to add another server that has the same speed. You could also go to the movies
by taking a taxi, then get out somewhere, do some shopping, take another taxi, and so on.
Similarly, the same process can start in one CP, be interrupted, and later resume in another
CP, and so on. Also, on the same street there may be different cars taking people to different
places. Likewise, the same reentrant program can be executed by different CPs on behalf of
different processes. Finally, taking someone to the hospital allows you to shortcut a queue in
the traffic, just as a key process has a higher priority in a queue for getting CP and I/O
compared with other processes.

Payroll

Real Life

 Car

 Street

 Going to the movies

Data Processing

 Program

 Process

 CP
4 ABCs of z/OS System Programming Volume 10

1.3 Process states and attributes

Figure 1-3 More on processes

States of processing
From an operating system perspective, a process has one of three states:

Active In the Active state, a program is being executed by one CP.

Ready In the Ready state, a program is delayed because all available CPs are busy
executing other processes.

Wait In the Wait state, a program is being delayed for a reason that is not CP-related (for
example, waiting for an I/O operation to complete).

Process attributes
In the operating system, processes are born and die (normally or abnormally), depending on
the needs of business units. A process dies normally when its last program completes
normally. A process dies abnormally when one of its programs executes something wrong.
The amount of resources consumed is charged to the process and not to the program. Also,
when there are queues for accessing resources, the priority to be placed in such queues
depends on the process and not the program.

For each active process in the system, z/OS must keep the following:

� State (PSW, content of registers)

� Resources held (data sets, virtual storage, programs in memory, ENQs)

� Priority when entering in queues for resources

Process states

Active, when its program is executing on a CP

Ready, when being delayed due to CP availability

Wait, when delayed by any reason other than a CP

 Process attributes

State

Resources

Priority

Accounting

Addressing

Security
Chapter 1. Introduction to z/Architecture 5

� Accounting - how much CP time was used, I/Os executed, and memory occupied

� Addressing - which addresses the programs of the process have the right to access in
memory (for data and instructions)

� Security profile - which resources are allowed to the process

Dispatchable tasks
In z/OS, processes are called dispatchable units, which consist of tasks and service requests.
The control program creates a task in the address space as a result of initiating execution of
the process (called the job step task).

You can create additional tasks in your program. However, if you do not, the job step task is
the only task in the address space being executed. The benefits of a multiprogramming
environment are still available even with only one task in the job step; work is still being
performed for other address spaces when your task is waiting for an event, such as an input
operation, to occur.

Note: From now on in this publication, we will use the word “task” instead of “process”.
6 ABCs of z/OS System Programming Volume 10

1.4 System components

Figure 1-4 System components

Before giving more detailed information about z/Architecture, we will describe a system
generically.

Server components
Physically, a system consists of the following:

� Main storage.
� One or more central processing units—previously known as CPU, but in this publication

we use the term central processor (CP).
� Operator facilities (Service Element, which is not represented in Figure 1-4).
� A channel subsystem (formed by SAPs and channels).
� I/O devices (for example, disks also called DASD, tape, printers, teleprocessing); I/O

devices are attached to the channel subsystem through control units. The connection
between the channel subsystem and a control unit is called a channel path.

Note: The model number designates the maximum number of processor units (PUs)
available for an installation to use. Using feature codes, customers can order CPs, IFLs,
ICFs, optional SAPs, unassigned CP and/or unassigned IFLs up to the maximum number
of PUs for that model. Therefore, an installation may order a model B16 with 13 CP
features and three IFL features, or a model B16 with only one CP feature. Unlike prior
server model names, which indicate the number of purchased CPs, z10 EC™ model
names indicate the maximum number of processor units potentially orderable, and not the
actual number that have been ordered as CPs, IFLs, ICFs, or additional SAPs. A software
model notation is also used to indicate how many CPs are purchased.

Main Storage

CP

CP

Expanded Storage

Crypto

ETR... ...

CU

Dynamic
Switch

Dynamic
Switch

CU CU

CU CU

CU

CU

...

...

......

...

......

...

...

CU ...
...

Serial Channel Paths

Channel Subsystem

Parallel Channel Paths
Chapter 1. Introduction to z/Architecture 7

System Assist Processor (SAP)
System Assist Processor (SAP®) is exactly the same as a CP, but with a different microcode;
refer to 1.17, “Microcode concepts” on page 29 for more information. The SAP acts as an
offload engine for the CPs. Different server models have different numbers of SAPs. The SAP
relieves CP involvement, thus guaranteeing one available channel path to execute the I/O
operation. In other words, it schedules and queues an I/O operation, but it is not in charge of
the movement between central storage (CS) and the channel.

Channels
A channel is much simpler in that it assists in the dialog with an I/O control unit, to execute an
I/O operation—that is, the data transfer from or to memory and the device.

Previously, there was no need for channels because only one process at a time (for example,
a payroll) was loaded in storage. So if this process needed an I/O operation, the CP itself
executed it—that is, it communicated with the I/O control unit. There was no other process to
be executed in memory.

However, now that we are able to have several processes in memory at the same time
(multiprocessing), using the CP to entertain the I/O operations is inefficient. The CP is an
expensive piece of hardware, and other independent processes may require processing. For
this reason, the concept of using channels was introduced.

Channel paths
A channel path employs either a parallel-transmission electric protocol (old fashion) or a
serial-transmission light protocol and, accordingly, is called either a parallel channel path or a
serial channel path. For better connectivity and flexibility, a serial channel may connect to a
control unit through a dynamic switch that is capable of providing multiple connections
between entities connected to the ports of the switch (that is, between channels and I/O
control units).

Expanded storage
Expanded storage is a sort of second level memory introduced because of the architected
limitation of the 2 GB size of central storage per MVS image. It is not available in
z/Architecture, where this 2 GB limitation does not exist anymore.

Crypto
To speed up cryptographic computing, a cryptographic facility is included in a CP. The IBM
common cryptographic architecture (CCA) defines a set of cryptographic functions, external
interfaces, and a set of key management rules which pertain to both the Data Encryption
Standard (DES)-based symmetric algorithms and the Public Key Algorithm (PKA) asymmetric
algorithms.

ETR
An external time reference (ETR) may be connected to the server to guarantee time
synchronization between distinct servers. The optional ETR cards provide the interface to
IBM Sysplex Timers, which are used for timing synchronization between systems in a sysplex
environment.
8 ABCs of z/OS System Programming Volume 10

1.5 Processing units (PUs)

Figure 1-5 Processing units (CPs, IFLs, ICFs, and SAPs)

Processing units
The following types of processing units (PUs) can be ordered (enabled or assigned) on a
System z:

CPU A CPU is a general purpose processor that is able to execute all the possible z10
EC running operating systems, such as z/OS, Linux, z/ VM, z/VSE™, Coupling
Facility Control Code (CFCC), and z/TPF. A CPU is also known as a CP.

IFL This type of PU is only able to execute native Linux and Linux under z/VM®. IFLs
are less expensive than CPUs.

ICF This type of PU is only able to execute the CFCC operating system. The CFCC is
loaded in a Coupling Facility LP from a copy in HSA; after this, the LP is activated
and IPLed. ICFs are less expensive than CPUs.

zAAP This type of PU only runs under z/OS, and is for the exclusive use of Java™
interpreter code (JVM™) and DB2® 9 XML parsing workloads. A zAAP is less
expensive than a CPU, and does not increase the software price (based on
produced MSUs) because it does not produce MSUs.

zIIP This type of PU is run in z/OS only, for eligible DB2 workloads such as DDF,
business intelligence (BI), ERP, CRM and IPSec (an open networking function
used to create highly secure crypto connections between two points in an
enterprise) workloads. A zIIP is less expensive than a CPU and does not
increase the software price (based on produced MSUs) because it does not

z/OSz/OS ICFz/VM Linux
CFCC

LinuxLinux

LinuxCMS

LPAR 1 LPAR 2 LPAR 3 LPAR 4 LPAR 5
(CP PU) (CP PU) (IFL PU) (ICF PU) (IFL PU)

zSeries Server

Channel Subsystem
(SAP PU)
Chapter 1. Introduction to z/Architecture 9

produce MSUs. There is a limitation to using zIIP processors, however: only a
percentage of the candidate workload can be executed,

SAP A System Assist Processor (SAP) is a PU that runs the Channel Subsystem
Licensed Internal Code. An SAP manages the starting of I/O operations required
by operating systems running in all logical partitions. It frees z/OS (and the CPU)
from this role, and is “mainframe-unique”. z10 EC models have a variable number
of standard SAPs configured.

Spare A spare PU is a PU that is able to replace, automatically and transparently, any
falling PU in the same book, or in a different book. There are at least two spares
per z10 EC server.
10 ABCs of z/OS System Programming Volume 10

1.6 z/Architecture enhancements

Figure 1-6 z/Architecture enhancements

z/Architecture
Figure 1-6 lists all the enhancements introduced by z/Architecture in relation to the former
ESA/390. The majority of the enhancements are implemented to support 64-bit addressing
mode.

With z/OS, the MVS address space expands to a size so vast that we need new terms to
describe it. Each address space, called a 64-bit address space, is 16 exabytes in size (an
exabyte is slightly more than one billion gigabytes).

The new address space has logically 2(64) addresses. It is 8 billion times the size of the
former 2-gigabyte address space that logically has 2(31) addresses. The number is 16 with
18 zeros after it: 16,000,000,000,000,000,000 bytes, or 16 exabytes.

Set addressing mode instructions
z/Architecture provides three new set addressing mode instructions that allow you to change
addressing mode. The instructions are:

� SAM24, which changes the current AMODE to 24
� SAM31, which changes the current AMODE to 31
� SAM64, which changes the current AMODE to 64

The addressing mode also determines where the storage operands can reside. The storage
operands for programs running in AMODE 64 can be anywhere in the 16-exabyte address

64-bit address space map

64- or 31- or 24-bit virtual storage addressing modes

Introduction of up to 3 levels of region tables

64-bit registers

PSW with 16 bytes (128 bits)

PSA with 8-KB

SIGP instruction to introduce a bi-modal architecture

New instructions
Chapter 1. Introduction to z/Architecture 11

space, while a program running in AMODE 24 can use only storage operands that reside in
the first 16 megabytes of the 16-exabyte address space.

z/Architecture enhancements
z/Architecture also provides significant extensions, as follows:

� Up to three additional levels of dynamic address-translation (DAT) tables, called region
tables, for translating 64-bit virtual addresses. A virtual address space may be specified
either by a segment-table designation as in ESA/390, or by a region-table designation.

� 64-bit general registers and control registers. The bit positions of the general registers and
control registers of z/Architecture are numbered 0-63. To maintain compatibility, an
ESA/390 instruction that operates on bit positions 0-31 of a 32-bit register in ESA/390,
operates instead on bit positions 32-63 of a 64-bit register in z/Architecture.

� An 8K-byte prefix area for containing larger old and new PSWs and register save areas.

� A SIGNAL PROCESSOR order for switching between the ESA/390 and z/Architecture
architectural modes. Initial program loading sets the ESA/390 architectural mode. The new
SIGNAL PROCESSOR order then can be used to set the z/Architecture mode or to return
from z/Architecture to ESA/390. This order causes all CPUs in the configuration always to
be in the same architectural mode.

� Many new instructions, many of which operate on 64-bit binary integers and three new
types of instructions able to declare a displacement of 20 bits instead of 12 bits, such as
RSY, RXY and SIY.
12 ABCs of z/OS System Programming Volume 10

1.7 64-bit address space map

Figure 1-7 64-bit address space map

64-bit virtual address space
The virtual storage 2 GB limit was broken with z/Architecture, as explained here.

Support for up to 4 TB of real memory on a single z/OS image (z/OS V1R8). This will allow for
up to 1 TB of real memory on a single z/OS image for the z10 EC server, up to 512 GB of real
memory on a single z/OS image on IBM System z9® servers, and up to 256 GB on z990
servers.

Because of changes in the architecture that supports the MVS operating system, there were
two different address spaces prior to the 64-bit address space. The address space of the
1970s began at address 0 and ended at 16 megabytes (shown as the 16M line in Figure 1-7).
The architecture that created this address space provided 24-bit addressing.

The initial support for 64-bit virtual addressing was introduced in z/OS Version 1 Release 2.
The size of the 64-bit address space is 16 exabytes (16 E), which makes the new address
space 8 billion times the size of the former S/390 address space. Programs continue to be
loaded and run below the 2 gigabyte address; these programs can use data that resides
above 2 gigabytes.

Each address space is logically 16 exabytes in size. To allocate and release virtual storage
above 2 GB, a program must use the services provided in the IARV64 macro. The GETMAIN,
FREEMAN, STORAGE, and CPOOL macros do not allocate storage above the 2 gigabyte
address, nor do callable cell pool services.

User Private area

Area Reserved for
Memory Sharing

User Private area

Below 2 GB0

642

532
502

412

322
312

16M line

The bar
Chapter 1. Introduction to z/Architecture 13

The bar
For compatibility, the layout of the storage areas for an address space is the same below
2 GB, providing an environment that can support both 24-bit and 31-bit addressing. The area
that separates the virtual storage area below the 2 GB address from the user private area is
called the bar, as shown in Figure 1-7 on page 13.

In a 64-bit virtual storage environment, the terms “above the bar” and “below the bar” are
used to identify the areas between 2**31 and 2**64-1, and 0 and 2**31-1, respectively. For
example, any address in the range 0 to 7FFFFFFF is below the bar, and an address in the
range FFFFFFFF to 7FFFFFFF_FFFFFFFF is above the bar. This is basically an alteration to
the 2 GB 31-bit terminology that related “below the line” to 24-bit storage, and “above the line”
to 31-bit addresses.

The 64-bit address space map is as follows:

� 0 to 2**31: The layout is the same as in all the previous releases that supported 31-bit
addressing.

� 2**31 to 2**32: From 2 GB to 4 GB is considered the bar. Below the bar can be addressed
with a 31-bit address. Above the bar requires a 64-bit address. Just as the system does
not back the page at 7FFFF000 in order to protect programs from addresses which can
wrap to 0, the system does not back the virtual area between 2 GB and 4 GB. That means
a 31-bit address with the high bit on will always program check if used in AMODE 64.

� 2**31 - 2**41: The Low Non-shared area starts at 4G and goes to 2**41.

� 2**41 - 2**50: The Shared Area starts at 2**41 and goes to 2**50 or higher if requested.

� 2**50 - 2**64: The High Non-shared area starts at 2**50 or wherever the Shared Area
ends and goes to 2**64.

User private area
The area above the bar is intended for application data; no programs run above the bar. No
system information or system control blocks exist above the bar, either. Currently there is no
common area above the bar. However, IBM reserves an area above the bar to be used for
future enhancements. A user program can also reserve some area in the virtual storage
allocated above the bar.

The user private area includes:

� Low private: The private area below the line

� Extended private: The private area above the line

� Low Non-shared: The private area just above the bar

� High Non-shared: The private area above Shared Area

As users allocate private storage above the bar, it will first be allocated from the Low
Non-shared area. Similarly, as Shared Area is allocated, it will be allocated from the bottom
up. This is done to allow applications to have both private and shared memory above the bar
and avoid additional server cycles to perform dynamic address translation (DAT).

Note: The Shared Area is supported beginning with z/OS Version 1 Release 5.
14 ABCs of z/OS System Programming Volume 10

1.8 Addressing mode

Figure 1-8 Addressing mode

Addressing mode
A program module has a residence mode assigned to it, and each entry point and alias has
an addressing mode assigned to it. You can specify one or both of these modes when
creating a program module, or you can allow the binder to assign default values. AMODEs
and RMODEs can be assigned at assembly or compilation time for inclusion in an object
module.

You assign an addressing mode (AMODE) to indicate which hardware addressing mode is
active when the program executes. Addressing modes are:

24 Indicates that 24-bit addressing must be in effect.

31 Indicates that 31-bit addressing must be in effect.

ANY Indicates that either 24-bit or 31-bit addressing can be in effect.

64 Indicates that 64-bit addressing can be in effect.

Running programs
The addressing mode determines where storage operands can reside. The storage operands
for programs running in AMODE 64 can be anywhere in the 16-exabyte address space, while
a program running in AMODE 24 can use only storage operands that reside in the first 16
megabytes of the 16-exabyte address space.

PSW

31
32

31-BIT
ADDRESSES16 MB24-BIT

ADDRESSES

127

2 GB

16E

64-BIT
ADDRESSES
Chapter 1. Introduction to z/Architecture 15

When generating addresses, the server performs address arithmetic; it adds three
components: the contents of the 64-bit GPR, the displacement (a 12-bit value), and
(optionally) the contents of the 64-bit index register.

Then, the server checks the addressing mode and truncates the answer accordingly. For
AMODE 24, the server truncates bits 0 through 39; for AMODE 31, the server truncates bits 0
through 32; for AMODE 64, no truncation (or truncation of 0 bits) occurs.

An AMODE value is provided for each entry point into the program module. The main
program AMODE value is stored in the primary directory entry for the program module. Each
alias directory entry contains the AMODE value for both the main entry point and the alias or
alternate entry point.

When a program is loaded in memory, its addressing mode is already determined. There are
non-privileged instructions that are able to change the addressing mode, such as BRANCH
AND SAVE (BSM) and SET MODE (BASSM).

Architecture considerations
In S/390 architecture, the processor added together the contents of a 32-bit GPR, the
displacement, and (optionally) the contents of a 32-bit index register. It then checked to see if
the addressing mode was 31 or 24 bits, and truncated accordingly. AMODE 24 caused
truncation of 8 bits; AMODE 31 caused a truncation of bit 0.

For total compatibility with old code, z/Architecture handles three possibilities:

� 24 bits (AMODE 24), up to 16 M addresses
� 31 bits (AMODE 31), up to 2 GB addresses
� 64 bits (AMODE 64), up to 16 E addresses

The CP addressing mode for the running program is described in bits 31 and 32 in the current
PSW, respectively:

� 00 indicates AMODE 24.
� 10 indicates AMODE 31.
� 11 indicates AMODE 64.
16 ABCs of z/OS System Programming Volume 10

1.9 64-bit dynamic address translation

Figure 1-9 64-bit dynamic address translation

Region tables for 64-bit
In a 16 EB address space with 64-bit virtual storage addressing, there are three additional
levels of translation tables, called region tables. They are called region third table (R3T),
region second table (R2T), and region first table (R1T). The region tables are 16 KB in length,
and there are 2048 entries per table. Each region has 2G bytes.

When the first storage is created above the bar, RSM™ creates the R3T. The R3T table has
2048 segment table pointers, and provides addressability to 4 TB. When virtual storage
greater than 4 TB is allocated, an R2T is created. An R2T has 2048 R3T table pointers and
provides addressability to 8 PB. An R1T is created when virtual storage greater than 8 PB is
allocated. The R1T has 2048 R2T table pointers, and provides addressability to 16 EB.
Figure 1-9 shows the page table hierarchy and the size of virtual storage each table covers.

Segment tables and page table formats remain the same as for virtual addresses below the
bar. When translating a 64-bit virtual address, once you have identified the corresponding 2G
region entry that points to the segment table, the process is the same as that described
previously.

RSM only creates the additional levels of region tables when necessary to back storage that
is mapped. They are not built until a translation exception occurs. So for example, if an
application requests 60 PB of virtual storage, the necessary R2T, R3T, segment table, and
page tables are only created if they are needed to back a referenced page. Up to five lookup
tables may be needed by DAT to do translation, but the translation only starts from the table
that provides translation for the highest usable virtual address in the address space.

R1T
R2T

R2T

R3T

R3T

SGT

SGT

PGT

PGT

PAGE

PAGE

4 KB
Kilobytes
 212

2 GB
Gigabytes

8 P
Petabytes
253 231 1 MB

Megabytes
4T
Terabytes

16E
Exabytes

264
242 220
Chapter 1. Introduction to z/Architecture 17

1.10 CP registers (general)

Figure 1-10 CP registers (general)

Registers
The CP provides registers that are available to programs, but that do not have addressable
representations in main storage. They include the current program-status word (PSW), the
general registers, the floating-point registers and floating-point-control register, the control
registers, the access registers, the prefix register, and the registers for the clock comparator
and the CP timer.

Each CP in an installation provides access to a time-of-day (TOD) clock, which is shared by
all CPs in the installation. The instruction operation code determines which type of register is
to be used in an operation. There are several types of registers, as explained in the following
sections.

General registers
General registers (GRs) are used to keep temporary data (operands) loaded from memory to
be processed or already processed. Instructions may designate information in one or more of
16 general registers. The general registers may be used as base-address registers and index
registers in address arithmetic, and as accumulators in general arithmetic and logical
operations.

Each register contains 64 bit positions. The general registers are identified by the numbers
0-15, and are designated by a four-bit R field in an instruction. Some instructions provide for
addressing multiple general registers by having several R fields. For some instructions, the
use of a specific general register is implied rather than explicitly designated by an R field of

32
FLOATING POINT CONTROL ACCESS GENERAL

32

ALU
FLAGS

MEMORY

General registers are used to hold temporary data:
- Machine instructions loaded from memory
- Fixed point data (also called binary integers)

0

F

18 ABCs of z/OS System Programming Volume 10

the instruction. The data is in binary integer format, also called fixed point. There are certain
CP instructions that are able to process data stored in GRs. Its contents can also be used for
the execution of a CP instruction to point to the address of a storage operand.

Control registers
The CP has 16 control registers (CRs), each having 64 bit positions. The bit positions in the
registers are assigned to particular facilities in the system, such as program-event recording,
and are used either to specify that an operation can take place, or to furnish special
information required by the facility.

The control registers are identified by the numbers 0-15 and are designated by four-bit R
fields in the instructions LOAD CONTROL and STORE CONTROL. Multiple control registers
can be addressed by these instructions.

CRs are registers accessed and modified by z/OS through privileged instructions. All the data
contained in the CRs are architected containing information input by z/OS and used by
hardware functions (such as Crypto, cross memory, virtual storage, and clocks) implemented
in the server. It is a kind of extension of the PSW (covered in 1.12, “Current program-status
word (PSW)” on page 21). Refer to z/Architecture Reference Summary, SA22-7871, for the
complete set of CR contents.

Access registers
Access registers (ARs) are used by z/OS to implement data spaces through activating the
access register mode in the CP; this subject is covered in more detail in 1.34, “Access
register mode (dataspaces)” on page 59.

The CP has 16 access registers numbered 0-15. An access register consists of 32 bit
positions containing an indirect specification of an address-space-control element. An
address-space-control element is a parameter used by the dynamic-address-translation (DAT)
mechanism to translate references to a corresponding address space.

When the CP is in a mode called the access-register mode (controlled by bits in the PSW), an
instruction B field, used to specify a logical address for a storage-operand reference,
designates an access register, and the address-space-control element specified by the
access register is used by DAT for the reference being made. For some instructions, an R
field is used instead of a B field. Instructions are provided for loading and storing the contents
of the access registers, and for moving the contents of one access register to another.
Chapter 1. Introduction to z/Architecture 19

1.11 Floating point registers

Figure 1-11 Floating point registers

Floating point registers
All floating-point instructions (FPS, BFP, and HFP) use the same floating-point registers. The
CP has 16 floating-point registers. The floating-point registers are identified by the numbers
0-15 and are designated by a four-bit R field in floating-point instructions. Each floating-point
register is 64 bits long and can contain either a short (32-bit) or a long (64-bit) floating-point
operand. As shown in Figure 1-11, pairs of floating-point registers can be used for extended
(128-bit) operands. Each of the eight pairs is referred to by the number of the lower-numbered
register of the pair.

Floating point registers (FPRs) are used to keep temporary data (operands) loaded from
memory to be processed or already processed. This data is in the format HFP or BFP. All
floating-point instructions (FPS, BFP, and HFP) use the same set of FPRs.

There are 16 FPRs (numbered from 0 to F), each one with 8 bytes, and it can contain either a
short (32-bit) or a long (64-bit). A number in the extended (128-bit) format occupies a register
pair.

There is also a floating-point-control (FPC) register, a 32-bit register to control the float point
instructions execution. It contains mask bits, flag bits, a data exception code, and
rounding-mode bits.

32
FLOATING POINT CONTROL ACCESS GENERAL

32

ALU
FLAGS

MEMORY

SHORT LONG EXTENDED
NUMBER
SIGN

EXPONENT
SIGN CHARACTERISTIC EXCESS OF 64, X’40’

6 DÍGITS HEXADECIMALS 8 DÍGITS HEXADECIMALS 14 DÍGITS HEX...

+
IEEE
20 ABCs of z/OS System Programming Volume 10

1.12 Current program-status word (PSW)

Figure 1-12 PSW from bit 0 to bit 31

Program-status word (PSW)
The current PSW is a storage circuit located within the CP. It contains information required for
the execution of the currently active program; that is, it contains the current state of a CP. It
has 16 bytes (128 bits). The PSW includes the instruction address, condition code, and other
information used to control instruction sequencing and to determine the state of the CP. The
active or controlling PSW is called the current PSW. It governs the program currently being
executed.

Problem or supervisor bit mode (bit 15)
CP instructions can be classified as privileged and non-privileged. Note that, if misused,
privileged instructions may damage system integrity and security. Privileged instructions
should be executed only by z/OS programs.

When the CP is in the supervisor state (bit 15 Off), it can execute any instruction. When the
CP is in the problem state (bit 15 On), it can only execute non-privileged instructions. z/OS
manages that, when its code is executing, bit 15 is Off; when an application program is
executing, bit 15 is On.

PSW key (bits 8-11)
The PSW key is used by a hardware mechanism within the CP called storage protection. It
guarantees that programs running processes do not alter or access areas in storage that
belong to other processes; refer to 1.24, “Storage protection” on page 43, for more
information.

1 - CPU accepts or not PER interruptions (a type of program interrupts)
5 - DAT is active (1) or not (0)
6 - CPU enable (1) or disable (0) for I/O interrupts
7 - CPU enable (1) or disable (0) for External interrupts
8 a 11 - PSW Key
 0 a 7 - Used by certain z/OS components
 8 - Used by all application programs
 9 - Used by CICS key storage protection
 10 a 15 - Used by up to 6 programs in Virtual = Real mode
12 - Must be 0 in z/Architecture
13 - CPU enable (1) or disable (0) for Machine Check interrupts
14 - CPU in Wait (1), no instruction execution
15 - CPU in Problem state (1) or in Supervisor state (0)
16 e 17 - CPU Address Space Control Mode:
 00 = Primary Space, Program refers to the primary AS
 01 = Access Register, Program refers: instructions in primary AS, data in DS
 10 = Secondary Space, Program refers: instructions in primary, data is secondary
 11 = Home Space, Program refers to instruction or data in Home AS
18 e 19 - Condition code
20 a 23 - Enable (1) or disable (0) for the following program interrupts:
 20 - Fixed Point Overflow: result does not fit
 21 - Decimal Overflow: result does not fit
 22 - Exponent Underflow: exponent number less than -64
 23 - Significance: result too little, replaced by zero

=> 2.4

=>2.9

<= 1.1

All
these
bits
must
be
zero,
to
avoid a
speci-
fication
error
Chapter 1. Introduction to z/Architecture 21

1.13 Next sequential instruction address

Figure 1-13 Next sequential instruction address

Instruction address (bits 64 to 127)
Bits 64 to 127 point to the storage address of the next instruction to be executed by this CP.
When an instruction is fetched from central storage, its length is automatically added to this
field. Then, it will point to the next instruction address. However, there are instructions as a
BRANCH that may replace the contents of this field, pointing to the branched instruction. The
address contained in this PSW field may have 24, 31 or 64 bits, depending on the addressing
mode attribute of the executing program. For compatibility reasons, old programs that still
address small addresses are still allowed to execute. When in 24- or 31-bit addressing mode,
the left-most bits of this field are filled with zeroes.

CP interrupts
The CP has an interrupt capability, which permits it to switch rapidly to another program in
response to exceptional conditions and external stimuli. When an interrupt occurs, the CP
places the current PSW in an assigned storage location, called the old-PSW location, for the
particular class of interrupt. The CP fetches a new PSW from a second assigned storage
location. This new PSW determines the next program to be executed. When it has finished
processing the interrupt, the program handling the interrupt may reload the old PSW, making
it the current PSW again, so that the interrupted program can continue.

There are six classes of interrupt: external, I/O, processor check, program, restart, and
supervisor call. Each class has a distinct pair of old-PSW and new-PSW locations
permanently assigned in real storage.

BR
MVC
MVC

PSW

64 127

NEXT
SEQUENTIAL
INSTRUCTION

0

22 ABCs of z/OS System Programming Volume 10

1.14 Program-status-word format

Figure 1-14 Program-status-word format

PER mask - R (bit 1)
Bit 1 controls whether the CP is enabled for interrupts associated with program-event
recording (PER). When the bit is zero, no PER event can cause an interruption. When the bit
is one, interruptions are permitted, subject to the PER-event-mask bits in control register 9.

DAT mode - T (bit 5)
Bit 5 controls whether implicit dynamic address translation of logical and instruction
addresses used to access storage takes place. When the bit is zero, DAT is off, and logical
and instruction addresses are treated as real addresses. When the bit is one, DAT is on, and
the dynamic-address-translation mechanism is invoked.

I/O mask - IO (bit 6)
Bit 6 controls whether the CP is enabled for I/O interruptions. When the bit is zero, an I/O
interruption cannot occur. When the bit is one, I/O interruptions are subject to the
I/O-interruption subclass-mask bits in control register 6. When an I/O-interruption
subclass-mask bit is zero, an I/O interruption for that I/O-interruption subclass cannot occur;
when the I/O-interruption subclass-mask bit is one, an I/O interruption for that I/O-interruption
subclass can occur.

External mask - EX (bit 7)
Bit 7 controls whether the CP is enabled for interruption by conditions included in the external
class. When the bit is zero, an external interruption cannot occur. When the bit is one, an

0

0 5 8 12 16 18 20 24 31

63

64 95

96 127

32

0 00R T
I
O Key MWP

E
X 0 A SC C

Prog
Mask 0000000

E
A

B
A

0000000

Instruction Address (Continued)

Instruction Address

00000000000000000 0000000
Chapter 1. Introduction to z/Architecture 23

external interruption is subject to the corresponding external subclass-mask bits in control
register 0; when the subclass-mask bit is zero, conditions associated with the subclass
cannot cause an interruption; when the subclass-mask bit is one, an interruption in that
subclass can occur.

PSW key (bits 8-11)
Bits 8-11 form the access key for storage references by the CP. If the reference is subject to
key-controlled protection, the PSW key is matched with a storage key when information is
stored or when information is fetched from a location that is protected against fetching.
However, for one of the operands of each of MOVE TO PRIMARY, MOVE TO SECONDARY,
MOVE WITH KEY, MOVE WITH SOURCE KEY, and MOVE WITH DESTINATION KEY, an
access key specified as an operand is used instead of the PSW key.

Processor-check mask - M (bit 13)
Bit 13 controls whether the CP is enabled for interruption by processor-check conditions.
When the bit is zero, a processor-check interruption cannot occur. When the bit is one,
processor-check interruptions due to system damage and instruction-processing damage are
permitted, but interruptions due to other processor-check-subclass conditions are subject to
the subclass-mask bits in control register 14.

Wait state - W (bit 14)
When bit 14 is one, the CP is waiting; that is, no instructions are processed by the CP, but
interruptions may take place. When bit 14 is zero, instruction fetching and execution occur in
the normal manner. The wait indicator is on when the bit is one. When in wait state, the only
way of getting out of such state is through an Interruption, which is covered in 1.20,
“Interrupts” on page 36, or by an IPL (a z/OS boot).

Certain bits, when off in the current PSW, place the CP in a disabled state; the CP does not
accept Interrupts. So when z/OS, for any error reason (software or hardware) decides to stop
a CP, it sets the PSW to the Disable and Wait state, forcing an IPL in order to restore the CP
back to the running state.

Problem state - P (bit 15)
When bit 15 is one, the CP is in the problem state. When bit 15 is zero, the CP is in the
supervisor state. In the supervisor state, all instructions are valid.

In the problem state, only those instructions are valid that provide meaningful information to
the problem program and that cannot affect system integrity; such instructions are called
unprivileged instructions; see “Problem or supervisor bit mode (bit 15)” on page 21.

The instructions that are never valid in the problem state are called privileged instructions.
When a CP in the problem state attempts to execute a privileged instruction, a
privileged-operation exception is recognized. Another group of instructions, called
semi-privileged instructions, are executed by a CP in the problem state only if specific
authority tests are met; otherwise, a privileged-operation exception or a special-operation
exception is recognized; see “Problem or supervisor bit mode (bit 15)” on page 21.

Address-space control -AS (bits 16-17)
Bits 16 and 17, in conjunction with PSW bit 5, control the translation mode.

Condition code - CC (bits 18-19)
Bits 18 and 19 are the two bits of the condition code. The condition code is set to 0, 1, 2, or 3,
depending on the result obtained in executing certain instructions. Most arithmetic and logical
24 ABCs of z/OS System Programming Volume 10

operations, as well as some other operations, set the condition code. The instruction
BRANCH ON CONDITION can specify any selection of the condition-code values as a
criterion for branching.

The part of the CP that executes instructions is called the arithmetic logic unit (ALU). The
ALU has internally four bits that are set by certain instructions. At the end of these
instructions, this 4-bit configuration is mapped into bits 18 and 19 of the current PSW.

As an example, the instruction COMPARE establishes a comparison between two operands.
The result of the comparison is placed in the CC of the current PSW, as follows:

� If CC=00, then the operands are equal.
� If CC=01, then first operand is lower.
� If CC=10, then first operand is greater.

To test the contents of a CC (set by a previous instruction), use the BRANCH ON
CONDITION (BC) instruction. It contains an address of another instruction (branch address)
to be executed, depending on the comparison of the CC and a mask M. The instruction
address in the current PSW is replaced by the branch address if the condition code has one
of the values specified by M; otherwise, normal instruction sequencing proceeds with the
normal updated instruction address. Here are the types of codes:

� Condition code (bits 18,19 PSW)
� Return code - a code associated with how a program ended
� Completion code - a code associated with how a task ended
� Reason code - a code passed in the GPR 15 detailing how a task ended

Program Mask (bits 20-23)
During the execution of an arithmetic instruction, the CP may find some unusual (or error)
condition, such as overflows, lost of significance, or underflow. In such cases, the CP
generates a program interrupt; refer to 1.22, “Types of interrupts” on page 39 for more details.

When this interrupt is treated by z/OS, usually the current task is abnormally ended (ABEND).
However, in certain situations programmers do not want an ABEND, so by using the
instruction SET PROGRAM MASK (SPM), they can mask such interrupts by setting some of
the program mask bits to OFF. Each bit is associated with one type of condition:

� Fixed point overflow (bit 20)
� Decimal overflow (bit 21)
� Exponent underflow (bit 22)
� Significance (bit 23)

The active program is informed about these events through the condition code posted by the
instruction where the events described happened.

The contents of the CP can be totally changed by two events:

� Loading a new PSW from storage along an interruption
� By executing the instruction LPSW, which copies 128 bits from memory to the current

PSW

Extended addressing mode - EA, BA (bits 31-32)
The combination of bits 31 and 32 identify the addressing mode (24, 31 or 64) of the running
program. Bit 31 controls the size of effective addresses and effective-address generation in
conjunction with bit 32, the basic-addressing-mode bit. When bit 31 is zero, the addressing
mode is controlled by bit 32. When bits 31 and 32 are both one, 64-bit addressing is specified;
refer to 1.8, “Addressing mode” on page 15 for more information.
Chapter 1. Introduction to z/Architecture 25

1.15 Prefixed save area (PSA)

Figure 1-15 Prefixed save area (PSA)

Prefixed save area (PSA)
Figure 1-15 depicts the layout of the PSA in z/Architecture. The PSA maps the storage that
starts at location 0 for the related server. The function of the PSA is to map fixed hardware
and software storage locations for the related server.

IPL of a server
Initial program load (IPL) provides a manual means for causing a program to be read from a
designated device, and for initiating the execution of that program.

An IPL is initiated manually by setting the load-unit-address controls to a four-digit number to
designate an input device, and by subsequently activating the load-clear or load-normal key.
Activating the load-clear or load-normal key sets the architectural mode to the ESA/390
mode.

The first CCW to be executed is not fetched from storage. Instead, the effect is an implied
format-0 CCW, beginning in absolute location 0.

END. Length . Function
 0 8 Restart NEW PSW; IPL PSW
 8 8 Restart OLD PSW; IPL CCW1
 16 8 CVT address; IPL CCW2
 24 8 External OLD PSW
 32 8 Supervisor Call OLD PSW
 40 8 Program Check OLD PSW
 48 8 Machine Check OLD PSW
 56 8 Input / Output OLD PSW
 88 8 External NEW PSW
 96 8 Supervisor Call NEW PSW
104 8 Program Check NEW PSW
112 8 Machine Check NEW PSW
120 8 Input / Output NEW PSW
128 4 External Interr.Parameter
132 4 CPU Address + External Code
136 4 SVC Interruption: ILC + Code
140 4 Program Interruption: ILC + Code
144 4 Translation Exception ID

END. Length Function
149 1 Monitor class
150 6 PER (1 or 2) Code + PER Address
156 4 Monitor Code
160 2 Exception Access + PER Access
184 4 SID (0001+Subchannel #) => 3.1
188 4 I/O Interr.Param.subchannel (@ UCB)
216 8 St.Status / Mach.Check CPU Timer SA
224 8 St.Status / Mach.Check Clock Comp.SA
232 8 Machine Check Interruption Code
244 4 External Damage Code
248 4 Failing Storage Address
256 16 St.Status PSW SA; Fixed Logout area
272 16 Reserved
288 64 St.Status / Mach.Check Access reg.SA
352 32 St.Status / Mach.Check Flt.Pt. reg.SA
384 64 St.Status / Mach.Check General reg.SA
448 64 St.Status / Mach.Check Control reg.AS
 ...
26 ABCs of z/OS System Programming Volume 10

1.16 Several instruction formats

Figure 1-16 Several instruction types

Instruction formats
An instruction is one, two, or three halfwords in length, as shown in Figure 1-16, and must be
located in storage on a halfword boundary. Each instruction is in one of 18 basic formats: E,
RR, RRE, RRF, RX, RXE, RXF, RS, RSE, RSL, RSI, RI, RIE, RIL, SI, S, SSE, and SS, with
three variations of RRF, two of RS, RSE, and RIL, and four of SS.

Instruction set
The instruction set is a key item of the architecture, and it provides the function to allow
programmers to access the hardware functions when creating programs. This means the set
of instructions that programs (application or operating system) may use. In other words, the
CP executes instructions, but only the ones defined by the computer architecture in the
instruction set.

The quality of an architecture depends very much on how powerful the instruction set is in
solving the various types of programming solutions. z/Architecture is a powerful architecture
used to run in general purpose servers and to address different kinds of problems.

There are more than 550 instructions, as defined in z/Architecture. Each instruction has an
implicit logic described in z/Architecture Principles of Operations, SA22-7832.

RR R1R2

Op code

B2

RS R1R3 B2 D2

SS L B1 D1 B2 D2

RX R1X2 D2

 SI I2 B1 D1

RI R1
Op
Cd

I2

RSI R1 R3 I2

B2 D2 S

///// R1 R2RRE

SSE B1 D1 B2 D2

RSE R3 B2 D2 ///// Op CdR1R1

The format types, such as
RR, RX, etc. shown here
are the Op code portion of
the instruction
Chapter 1. Introduction to z/Architecture 27

Instruction codes
Each instruction has the following generic information:

Op codes The instruction codes, or Op codes, indicate to the hardware which instruction
to execute. For example, ADD (A) has an instruction code of 5A; CHECKSUM
(CKSM) has an instruction code of B241.

Operands The operands are the remainder of the instruction, following the Op code. They
can be in storage (the instruction indicates the address), or in a register (the
instruction indicates the register number).

In z/Architecture, an instruction may be two bytes, four bytes or six bytes in size, depending
on the amount of information it needs to pass to the CP. The size is declared in the first two
bits of the instruction code. For example, ADD REGISTER (1A), which adds the contents of
two GPRs, only has two bytes: one for the code, and the other to indicate the pair of GPRs
involved.

All instructions that process operands in storage need to address that operand. For that,
z/Architecture adds the following:

� Contents of a GPR indicated in the instruction as a base register, such as R1 (as shown in
Figure 1-16 on page 27).

� Contents of a GPR indicated in the instruction as an index or base register, such as B1 (as
shown in Figure 1-16 on page 27).

� A displacement is indicated in the instruction, such as D1 (as shown in Figure 1-16 on
page 27). For the RSY, RXY and SYI type of instruction, this displacement is 20 bits (1-M
range); for the others, it has 12 bits.

E Denotes an operation using implied operands and having an extended Op code field.
RR Denotes a register-and-register operation.
RRE Denotes a register-and-register operation having an extended Op code field.
RRF Denotes a register-and-register operation having an extended Op code field and an

additional R field, or M field, or both.
RX Denotes a register-and-indexed-storage operation.
RXE Denotes a register-and-indexed-storage operation having an extended Op code field.
RXF Denotes a register-and-indexed-storage operation having an extended Op code field

and an additional R field.
RS Denotes a register-and-storage operation.
RSE Denotes a register-and-storage operation having an extended Op code field.
RSL Denotes a storage operation (with an instruction format derived from the RSE format).
RSI Denotes a register-and-immediate operation having an extended Op code field.
RIE Denotes a register-and-immediate operation having a longer extended Op code field.
RIL Denotes a register-and-immediate operation having an extended Op code field and a

longer immediate field.
SI Denotes a storage-and-immediate operation.
28 ABCs of z/OS System Programming Volume 10

1.17 Microcode concepts

Figure 1-17 Microcode concept

Microcode concepts
To better explain how z/Architecture instructions are implemented in zSeries, we now
introduce the concept of microcode. The vast majority of the z/Architecture instruction set is
implemented through microcode. Microcode is a design option (not an architecture option)
that is used to implement CP logic. To make it simple, we can divide the CP into two pieces:
data control and data flow (also called ALU). Instructions are really executed in the data flow
(where data is transformed); however, the sequence and timing of each of the multiple
operations done in the data flow is ordered from the data control. It is similar to an orchestra:
musicians (like pieces of data flow) know how to play their instrument, but they need guidance
and tempo from the maestro (the data control) in order to execute.

In a microcoded CP, for each possible instruction of the instruction set, there is one micro
program that tells data control what to do in order to execute the instruction in the data flow.
The micro program has, in a special language, the sequence of orders to be sent by the data
flow. These micro programs are loaded in a special internal memory in the CP, called control
storage, at power-on reset time. Decoding an instruction consists of finding the address in the
control storage of its micro program. The opposite of microcoding is hardwiring, in which the
logic of data control for each instruction is determined by Boolean hardware components. The
advantage of microcoding is flexibility, where any correction or new function can be
implemented by just changing or adding to the existent microcode. It is also possible that the
same CP may switch instantaneously from one architecture to another (such as from
ESA/390 to z/Architecture) by using another set of microcode to be loaded into another piece
of its control storage.

StorageALU

A

Z

B

Control Storage

ADD

Maestro
Micro

Program

Data Control Data Flow
Chapter 1. Introduction to z/Architecture 29

1.18 z/Architecture components

Figure 1-18 z/Architecture components

Multiprocessing concepts
Allowing many processes at the same time in a system can cause a single CP to be heavily
utilized. In the 1970s, IBM introduced a tightly coupled multiprocessing complex, allowing
more than one CP to execute more than one process (task) simultaneously. All these CPs
share the same real storage (main storage, central storage, and real storage are different
terms for the same kind of memory), which is controlled by a single z/OS copy in such
storage.

To implement tightly coupled systems, the following items are needed in the architecture:

� Shared main storage, which allows several CPs (up to 32 with the z990, in some server
models) to share the same main storage

� CP-to-CP interconnection and signalling; refer to “CPU signaling facility” on page 61
� Time-of-Day Clock (TOD) synchronization, to guarantee that all TODs in the same server

are synchronized; refer to “Time measurement TOD” on page 62 for more details

A system is made up of hardware products, including a central processor (CP), and software
products, with the primary software being an operating system such as MVS. Other types of
software (system application programs, end-user application programmatic tools) also run on
the system. The CP is the functional hardware unit that interprets and processes program
instructions. The CP and other system hardware, such as channels and storage, make up a
server complex.

Multiprocessing concepts

Data formats

Instruction set

Interrupts

Storage protection

Addressing memory locations (virtual storage)

CP signaling facility

Time measurements and synchronization

I/O operations

Coupling Facility concepts
30 ABCs of z/OS System Programming Volume 10

z/Architecture defines that a single CP processes one—and only one—instruction from a
program at a time. The MVS operating system (z/OS) manages the instructions to be
processed and the resources required to process them. When a single copy of the MVS
operating system (MVS image) manages the processing of a CPC that has a single CP, the
system configuration is called a uniprocessor.

When you add more CPs to the server complex, you add the capability of processing program
instructions simultaneously. When all the CPs share central storage and a single MVS image
manages the processing, work is assigned to a CP that is available to do the work. If a CP
fails, work can be routed to another CP. This hardware and software organization is called a
tightly coupled multiprocessor.

A tightly coupled multiprocessor has more than one CP, and a single MVS image, sharing
central storage. The CPs are managed by the single MVS image, which assigns work to
them. As mentioned, the multiprocessing facility includes the following:

� Shared main storage
� CP-to-CP interconnection
� TOD clock synchronization

Data formats
The following data formats are used by z/Architecture:

Decimal Decimal numbers may be represented in either the zoned or packed
format. Both decimal number formats are of variable length; the
instructions used to operate on decimal data each specify the length of
their operands and results. Each byte of either format consists of a pair of
four-bit codes; the four-bit codes include decimal-digit codes, sign codes,
and a zone code.

Floating point Four additional floating-point facilities improve the
hexadecimal-floating-point (HFP) capability of the server and add a
binary-floating-point (BFP from IEEE) capability.

Binary Binary integers are either signed or unsigned. Unsigned binary integers
have the same format as signed binary integers, except that the left-most
bit is interpreted as another numeric bit, rather than a sign bit. There is no
complement notation because all unsigned binary integers are
considered positive.

Alphanumeric Such as EBCDIC, ASCII, UNICODE, UTF-8.

Instruction set
The instruction set for z/Architecture has many new instructions, and many of them operate
on 64-bit binary integers. All ESA/390 instructions, except for the asynchronous-pageout,
asynchronous-data-mover, program-call-fast, and vector facilities, are included in
z/Architecture. The bit positions of the general registers and control registers of z/Architecture
are numbered 0-63. An ESA/390 instruction that operates on bit positions 0-31 of a 32-bit
register in ESA/390 operates instead on bit positions 32-63 of a 64-bit register in
z/Architecture.

Interrupts
With an interrupt, certain events may cause a change in the status of the server and the
selection of the next instruction to be executed by the server.

Note: For an illustration of the data formats, refer to Figure 1-19 on page 33.
Chapter 1. Introduction to z/Architecture 31

Storage protection
Storage protection mechanisms, needed because several programs from different users
(processes), may occupy locations in the same memory at the same time.

Addressing memory locations
z/Architecture contains a scheme to allow programs to address memory locations, where
data and instructions are stored (virtual storage).

CP signalling facility
The signaling facility among CPs consists of a CP-signaling-and-response facility that uses
the SIGNAL PROCESSOR order and a mechanism to interpret and act on several order
codes. The facility provides for communications among CPs, including transmitting, receiving,
and decoding a set of assigned order codes; initiating the specified operation; and responding
to the signaling CP. A CP can address a SIGNAL PROCESSOR to itself.

Time measurements and synchronization
Time measurements and time synchronization are provided, as every CP has access to a
TOD clock and every channel subsystem has access to at least one channel-subsystem
timer. When multiple channel-subsystem timers are provided, synchronization among these
timers is also provided, creating the effect that all the timing facilities of the channel
subsystem share a single timer. Synchronization among these timers may be supplied either
through a TOD clock, or independently, by the channel subsystem.

Coupling Facility concepts
The Coupling Facility enables high performance data sharing among z/OS systems that are
connected by means of the facility. The Coupling Facility provides storage that can be
dynamically partitioned for caching data in shared buffers, maintaining work queues and
status information in shared lists, and locking data by means of shared lock controls. z/OS
services provide access to and manipulation of Coupling Facility contents.
32 ABCs of z/OS System Programming Volume 10

1.19 z/Architecture data formats

Figure 1-19 z/Architecture data formats

Data formats
Central storage is a volatile magnetic digital device used to store instructions and data
manipulated by such instructions. Central storage is made up of bytes, and each byte in
z/Architecture is eight bits. The format of the data allowed depends on how the logic of an
instruction understands it. The following data formats are used with z/Architecture.

Binary integers
Binary integers (also called fixed point) are treated as signed or unsigned, without a fraction
point. In an unsigned binary integer, all bits are used to express the absolute value of the
number. When two unsigned binary integers of different lengths are added, the shorter
number is considered to be extended on the left with zeros. For signed binary integers, the
left-most bit represents the sign (0 for positive and 1 for negative), which is followed by the
numeric field. Positive numbers are represented in true binary notation with the sign bit set to
zero. Negative numbers are represented in two's-complement binary notation, with a one in
the sign-bit position. The length of such data can be two bytes (a half word), four bytes (a full
word) or eight bytes (a double word).

Decimal numbers
Decimal numbers are represented in a variable number of bytes, and may be represented in
either the zoned or packed format. Each byte of either format consists of a pair of four-bit
codes. The four-bit codes may be decimal digit codes, sign codes, and a zone code.

Using Binary Integer

11011011 00111111 or D B 3 F

Binary Representation Hex Representation

Signed Binary Integer (2 bytes)

0101 1010 1101 0001

1010 0101 0110 1111

or Hex (+5AD1)

or Hex (-5AD1): complement of 5AD1 to
2's with 16 binary zeroes

Decimal Zoned

Z N Z N Z/S N
Example:
F3 F5 F1 or 351

Decimal Packed
D D D D D S

Example:
or +47829

Short HFP

S

Short BFP

Character 6 Digit Fraction

S Exponent Fraction

0 7 8 31

0 9 31

47 82 9C

F3 F5 C1
Chapter 1. Introduction to z/Architecture 33

In the zoned format, the rightmost four bits of a byte are called the numeric bits (N), and
normally consist of a code representing a decimal digit (from 0 to 9). The left-most four bits of
a byte are called the zone bits (Z), usually an X’F’, except for the rightmost byte of a decimal
operand, where these bits may be treated either as a zone or as a sign (S).

Decimal digits in the zoned format may be part of a larger character set (as EBCDIC), which
includes also alphabetic and special characters. The zoned format is, therefore, suitable for
input, editing, and output of numeric data in human-readable form. There are no
decimal-arithmetic instructions that operate directly on decimal numbers in the zoned format;
such numbers must first be converted to the packed format.

In the packed format, each byte contains two decimal digits (D), except for the rightmost byte,
which contains a sign to the right of a decimal digit (Hex C or Hex F for positive, and Hex D for
negative). Decimal arithmetic operation is performed with operands in the packed format, and
generates results in the packed format. The packed-format operands and results of
decimal-arithmetic instructions may be up to 16 bytes (31 digits and sign). The editing
instructions can fetch as many as 256 decimal digits from one or more decimal numbers of
variable length, each in packed format. There are instructions to convert between the numeric
data formats.

Floating point numbers
The floating-point number is used to represent large real numbers with high precision, which
is usually needed in engineering and science processing. This format includes a fraction point
separating the integer part from the rest. It has three components: a sign bit, a signed binary
exponent, and a significant. The significant consists of an implicit unit digit to the left of an
implied radix point, and an explicit fraction field to the right. The significant digits are based on
the radix, 2 or 16.

The magnitude (an unsigned value) of the number is the product of the significant and the
radix raised to the power of the exponent. The number is positive or negative depending on
whether the sign bit is zero or one, respectively. The radix values 16 and 2 lead to the
terminology “hexadecimal” and “binary” floating point (HFP developed by IBM and BFP
developed by IEEE). The formats are also based on three operand lengths: short (32 bits),
long (64 bits), and extended (128 bits).There are instructions (FPS) able to execute both
types, just as there are instructions specialized in just one of the formats.

The exponent of an HFP number is represented in the number as an unsigned seven-bit
binary integer called the characteristic. The characteristic is obtained by adding 64 to the
exponent value (excess-64 notation). The range of the characteristic is 0 to 127 (7 bits), which
corresponds to an exponent range of -64 (1111111) to +63 (0111111).

The exponent of a BFP number is represented in the number as an unsigned binary integer
called the biased exponent. The biased exponent is obtained by adding a bias to the
exponent value. The number of bit positions containing the biased exponent, the value of the
bias, and the exponent range depend on the number format (short, long, or extended) and
are shown for the three formats. For more information about floating point representation,
refer to 1.11, “Floating point registers” on page 20.

EBCDIC data
Extended Binary - Coded-Decimal Interchange Code (EBCDIC) is an alpha-numeric 8-bit
(256 possibilities) code, developed by IBM, to represent in memory graphic signs as letters,
numbers, and certain special signals such as: $, #, & and so on. For instance, if you key the
letter A in your mainframe keyboard, the byte in memory where that letter is read presents the
hexadecimal pattern C1 (1100 0001 in binary) when in EBCDIC.
34 ABCs of z/OS System Programming Volume 10

If you key the letter B, you have C2 (1100 0010). If you key the number 2, you have F2 (1111
0010). Refer to z/Architecture Reference Summary, SA22-7871 for the complete set of
EBCDIC code.

ASCII data
ASCII is a standard from Unsound is also an alpha-numeric 8-bit code. It is fully supported in
z/Architecture by a set of several instructions.

Unicode
Unicode an alpha-numeric double byte code with 64 KB possibilities. It is fully supported in
z/Architecture by a set of several instructions.

UTF-8
UTF-8 is an alpha-numeric quadri-byte code with 4 GB possibilities. It is fully supported in
z/Architecture by a set of several instructions.
Chapter 1. Introduction to z/Architecture 35

1.20 Interrupts

Figure 1-20 The six types of interrupts

Interrupt events
An interrupt occurs when the CP detects one of six events. During interrupt processing, the
CP does the following:

� Stores (saves) the current PSW in a specific central storage location named old PSW
� Fetches, from a specific central storage location named new PSW, an image of PSW and

loads it in the current PSW
� Stores information identifying the cause of the interrupt in a specific central storage

location called interrupt code

Note that old and new PSWs are just copies of the PSW current contents. Processing
resumes as specified by the new PSW instruction address and status. The old PSW stored on
an interrupt normally contains the status and the address of the instruction that would have
been executed next had the interrupt not occurred, thus permitting later the resumption of the
interrupted program (and task).

Six groups of events cause interrupts: Supervisor Call (SVC), Input/Output, Program check,
External, processor check, and Restart. For each type of interrupt there are, in central
storage, a trio of locations for old PSW, new PSW, and interrupt codes. These locations are
kept in an 8 KB area at the very beginning of central storage called the Prefix Storage Area
(PSA). For example, the address of the SVC New PSW is X’1C0’, the address of I/O Old PSW
is X’140’ and the address of the I/O interrupt code is X’88”. For more information, refer to
“Fixed Storage Locations” in SA22-7871.

RESTART OLD

EXTERNAL OLD

S V C OLD

PROGRAM CHECK OLD

MACHINE CHECK OLD

I / O OLD

RESTART NEW

EXTERNAL NEW

S V C NEW

PROGRAM CHECK NEW

MACHINE CHECK NEW

I / O NEW

Current PSW
F L I H

DISPATCHER

z/OS Service
Routines

1

2
3

4

5

6

070E 0000 00000000

078D 0000 IIIIIIII

7

LOCK
LCTL 1
LM
LPSW

DISABLED
STM
MVC

8

PSA
36 ABCs of z/OS System Programming Volume 10

1.21 Interrupt processing

Figure 1-21 Types of interrupt processing

Interrupts
Depending on the type of the interrupt, a CP may be temporarily disabled by z/OS because of
integrity reasons, as described by bits 6 and 7 in the PSW and also by bit settings in the CRs.
In this case, the interrupt is not lost but stacked in the original hardware element, or handled
by other CPs in the server.

Types of interrupts
As mentioned, there are six classes of interruption conditions: Supervisor call (SVC), I/O,
program check, external, processor check, and restart.

Reasons for interrupts
When the CP finishes the execution of one instruction, it executes the next sequential
instruction (the one located in an address after the one just executed). The instruction
address field in the current PSW is updated in order to execute the next instruction. If the logic
(set of logically connected instructions) of the program allows it, the next instruction can
branch to another instruction through the BRANCH ON CONDITION instruction.

In a sense, an interrupt is a sort of branching—but there is a logical difference between a
BRANCH instruction issued in a program and an interrupt. A BRANCH is simply a twist in the
logic of the program. In an interrupt, however, one of the six interruption conditions occurred
which needs to be brought to the attention of z/OS immediately. In the following section, we
describe the flow of an interrupt.

Current
PSW

Application
Program

FLIH

Second level
Interrupt handler

Old
PSW

New
PSW

Dispatcher

LPSWE (old PSW)

z/OS

Interrupt

11

22 33

44

55

66

77
Chapter 1. Introduction to z/Architecture 37

Step 1
The application program is interrupted by one of the six classes of interrupts.

Step 2 and Step 3
The CP was following the sequence of the instructions pointed by the instruction address in
the current PSW and suddenly, after the interrupt, it now addresses (and executes) the
instruction pointed to by the copy of PSW located in the new PSW, which is now loaded in the
current PSW.

Each type of interrupt has two related PSWs, called old and new, in permanently assigned
real storage locations. Each type of interrupt involves storing information that identifies the
cause of the interrupt, storing the current PSW at the old-PSW location, and fetching the
PSW at the new-PSW location, which becomes the current PSW.

Note that all the events generating interrupts have something in common: they cannot be
processed by an application program. Instead, they need z/OS services (see Step 4). So why
is it that a simple branch to z/OS code does not solve the problem? The reason is because a
branch does not change the bits of the current PSW.

Step 4
Control is passed to the first level interrupt handler (FLIH). z/OS will use privileged
instructions to respond to the event; the new PSW (prepared by z/OS itself) has bit 15 turned
off (see “Problem state - P (bit 15)” on page 24). z/OS needs to access a storage location to
respond to the event, and the new PSW (prepared by z/OS) has the PSW key set for that
storage location.

Step 5
Control is passed, for each type of interrupt, to a second level interrupt handler for further
processing of the interrupt.

Step 6
The MVS dispatcher that dispatches all waiting tasks can dispatch the interrupted program if
an available CP is ready for new work.

Step 7
The MVS dispatcher does this by using the old PSW, which has been saved, and which
contains CP status information necessary for resumption of the interrupted program.

At the conclusion of the program invoked by the interruption, the instruction LOAD PSW
EXTENDED may be used to restore the current PSW to the value of the old PSW and return
control to the interrupted program.

In the following section, we examine each type of interrupt in more detail.
38 ABCs of z/OS System Programming Volume 10

1.22 Types of interrupts

Figure 1-22 Types of interrupts

Program check interrupt
This interrupt is generated by the CP when something is wrong during the execution of an
instruction. For example:

� 0001 is an operation exception meaning that the CP tried to execute an instruction with an
unknown operation code.

� 0002 is a privileged-operation exception meaning that the CP tried to execute a privileged
instruction with the current PSW having bit 15 on, indicating problem mode.

Usually the z/OS reaction to a program interrupt is to ABEND the task that was executing the
program in error.

Remember that certain causes for program interrupts can be masked by the SET PROGRAM
MASK (SPM) instruction, as covered in 1.14, “Program-status-word format” on page 23.
However, getting something wrong during instruction execution does not necessarily indicate
an error. For example, a page fault program interrupt (interrupt code 11) indicates that the
virtual storage address does not correspond to a real address in central storage, but the task
is not ABENDed. Refer to 1.30, “Dynamic address translation (DAT)” on page 52 for more
information.

Sometimes a bad pointer used in a branch instruction may cause operation exception or
protection exception program interrupts. These are difficult to diagnose since there is no clue
about how the system got there. With the new wild branch hardware facility of the z9-109, the
last address from which a successful branch instruction was executed is kept in storage.

Program check

Supervisor call

I/O

External

Machine check

Restart
Chapter 1. Introduction to z/Architecture 39

1.23 Supervisor call interrupt

Figure 1-23 Example of an SVC 0 interrupt

Supervisor call interruption
This interrupt is triggered in the CP by the execution of the SUPERVISOR CALL (SVC)
instruction. This instruction has two bytes:

� 0A as the instruction code in the first byte

� The SVC interrupt code (SVC number) in the second byte

When executed by the CP, the SVC instruction causes an SVC interrupt; that is, the current
PSW is stored in the PSA at the SVC old PSW, a new PSW from the PSA is loaded in the
current PSW, and the second byte of the instruction is stored in the SVC interrupt code in
PSA memory.

The reason for such interrupts is part of the architecture, where an application program
running in problem mode (bit 15 of the current PSW on) may pass control to z/OS asking for a
service. After the interrupt, the CP goes to the current PSW to get the address of the next
instruction. Now, the content of the current PSW is the copy of the SVC new PSW, which is in
supervisor state. This PSW points to the first instruction of a code inside z/OS named SVC
first level interrupt handler (FLIH). This FLIH, is already running in supervisor state saves the
contents of the registers and the SVC old PSW in the Task Control Block (TCB) - a control
block in memory allocated by z/OS to keep the state of the interrupted process. In the majority
of the cases SVC FLIH branches to a second level interrupt handler (SLIH) z/OS routine.
SLIH gets the interruption code (SVC number), that is used as an index into a SVC table
control block. There is an entry in such a table per every possible SVC number. The entry
describes the state and the address of a z/OS SVC routine that handles a required function

Current
PSW

Program
issues SVC o

instruction

FLIH

Second level
Interrupt handler

Old
PSW

New
PSW

z/OS

Interrupt

11

22 33

44

55

SVC Table

SVC 0

SVC 1
SVC 2

. . .

SVC 0
routine

addres of
40 ABCs of z/OS System Programming Volume 10

associated with the SVC number. For example, SVC 0 means the z/OS EXCP routine, the
one in charge of starting an I/O operation. Consulting the proper entry in the SVC table, the
SVC SLIH routine branches to the specific SVC routine. Consequently, the program issuing
the SVC instruction needs to know the relationship between the SVC interrupt code and the
z/OS component to be invoked. For example:

� 00 means that the application program is invoking the input/output supervisor (IOS),
asking for an I/O operation (EXCP).

� 01 means that the active task wants to enter the wait sate (Wait).
� 04 means that the active task wants the permit to address some virtual addresses

(GETMAIN).

However, the limit for the number of SVC routines is 256, because the SVC number has just
one byte. To circumvent the problem, z/OS introduced the concept of Extended SVC Router
(ESR). It implies that certain SVC routines, such as SVC 109, are just another router. By
inspecting the contents of the general purpose register (GPR) 1 and using another table, SVC
routine 109 routes to a z/OS routine that will execute the required function. For example,
depending on the contents of GPR 1, SVC 109 may invoke IFAUSAGE, or MSGDISP, or
OUTADD z/OS routines.

After the request is processed by the z/OS SVC routine, the interrupted program can regain
control by restoring of its registers and the LPSWE instruction issued against the copy of the
SVC old PSW in the TCB.

Input/output interrupt
An I/O operation is requested by a task to the input/output supervisor (IOS) through an SVC 0
instruction. After the SVC interrupt processing, the SVC FLIH passes control to IOS. In
z/Architecture, the I/O operation is not handled by the CP executing z/OS code. There are
less expensive and more specialized servers to do the job: the channels. When IOS issues
the privileged START SUBCHANNEL (SSCH) instruction, the CP delegates to a channel the
execution of the I/O operation. Then, the I/O operation is a dialogue between the channel and
an I/O control unit, in order to move data between central storage and the I/O device
controlled by such a controller. After the execution of the SSCH instruction, IOS returns
control to the task issuer of the SVC 0. This task places itself in wait, till the end of the I/O
operation.

Now, how does IOS and the CP become aware that the I/O operation handled by the channel
is finished? This is handled through an I/O interrupt triggered by the channel. The I/O new
PSW points to the IOS code in z/OS (I/O FLIH) and the interrupt codes tell IOS which device
has an I/O operation that has completed. Also, be aware that there may be many I/O
operations running in parallel. The final status of the I/O operation is kept in a control block
called the Interrupt Request Block (IRB), which is placed in storage through the execution of
the TEST SUBCHANNEL instruction. The I/O old PSW has the current PSW at the moment
of the I/O interrupt, so it can be used to resume the processing of the interrupted task.

External interrupt
This type of interrupt has eight different causes, usually not connected with what the active
program is doing, as follows:

� 0040 Interrupt key - An interrupt request for the interrupt key is generated when the
operator activates that key in the HMC console; refer to “System components” on page 7.

� 1004 Clock comparator - The contents of the TOD Clock became equal to the Clock
Comparator; refer to “Time measurement TOD” on page 62.

� 1005 CPU timer - The contents of the CPU Timer became negative; refer to “Time
measurement (CP timer)” on page 64.
Chapter 1. Introduction to z/Architecture 41

� 1200 Malfunction alert - Another CPU in the MP tightly coupled complex is in check stop
state due to an hardware error. The address of the CPU that generated the condition is
stored at PSA locations 132-133.

� 1201 Emergency signal - Generated by the SIGNAL PROCESSOR instruction when z/OS,
running in a CPU with a hardware malfunction, decided to stop (Wait Disable) that CPU.
The address of the CPU sending the signal is provided with the interrupt code when the
interrupt occurs. (Note that the CPU receiving such an interrupt is not the one with the
defect.)

� 1202 External call - Generated by the SIGNAL PROCESSOR instruction when a program
wants to communicate synchronously or asynchronously with another program running in
another CPU. The address of the CPU sending the signal is provided with the interrupt
code when the interrupt occurs.

� 1406 ETR - An interrupt request for the External Timer Reference (ETR) is generated
when a port availability change occurs at any port in the current server-port group, or
when an ETR alert occurs; refer to “Time measurement TOD” on page 62.

� 2401 Service signal - An interrupt request for a service signal is generated upon the
completion of certain configuration control and maintenance functions, such as those
initiated by means of the model-dependent DIAGNOSE instruction. A 32-bit parameter is
provided with the interrupt to assist the program in determining the operation for which the
interrupt is reported.

Processor check interrupt
This type of interrupt is a part of the processor check-handling mechanism. This mechanism
provides extensive equipment malfunction detection to ensure the integrity of system
operation and to permit automatic recovery from some malfunctions. This detection design is
mainly based on the redundancy of components. For example, within each CP there are
execution units, two of them executing the same instruction and a third comparing the results.

Equipment malfunctions and certain external disturbances are reported by means of a
processor check interrupt to assist z/OS in program damage assessment and recovery. The
interrupt supplies z/OS with information about the extent of the damage and the location and
nature of the cause.

Four hardware mechanisms may be used to provide recovery from server-detected
malfunctions: error checking and correction, CP retry, channel subsystem recovery, and unit
deletion.

There are two types of processor-check-interrupt conditions: exigent conditions and
repressible conditions:

� Exigent processor-check-interrupt conditions are those in which damage has or would
have occurred such that execution of the current instruction or interrupt sequence cannot
safely continue.

� Repressible processor-check-interrupt conditions are those in which the results of the
instruction processing sequence have not been affected.

Restart interrupt
The restart interrupt provides a means for the operator (by using the restart key in HMC) or a
program running on another CP (through a SIGNAL PROCESSOR instruction) to invoke the
execution of a specified z/OS component program. The CP cannot be disabled for this
interrupt. In z/OS, the specific component does an evaluation of the system status, reporting
hangs, locks, and unusual states in certain tasks. It gives the operator a chance to cancel the
offending task. It maybe the last chance in order to avoid an IPL.
42 ABCs of z/OS System Programming Volume 10

1.24 Storage protection

Figure 1-24 Storage protection

Storage protection
This is one of the mechanisms implemented by z/Architecture to protect central storage. With
multiprocessing, hundreds of tasks can run programs accessing physically any piece of
central storage.

Storage protection imposes limits and a task is only able to access (for read or write) the
central storage locations with its own data and programs, or, if specifically allowed, to read
areas from other tasks. Any violation of this rule causes the CP to generate a program
interrupt 0004 (protection exception), that makes z/OS ABEND that task.

All real addresses manipulated by CPs or channels must go through the storage protection
verification before being used as an argument to access the contents of central storage. The
input of storage protection is a real storage address, and the output is an OK or a program
interrupt 0004.

Storage key
For each 4 KB block of central storage, there is a 7-bit control field, called a storage key. This
key is used as follows:

� Access control bits

Bits 0-3 are matched against the 4-bit protection key in the program status word (PSW)
whenever information is stored, or whenever information is fetched from a location that is
protected against fetching.

FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME

0
1
1
8
8
7
8
8
0
...
8

PSW KEY Central Storage
KEY

Access control (KKKK) - 4 bits

Fetch bit (F), controlled by MVS to create READ protection

Reference bit (R), ON if the FRAME was read or altered by CP/Channel

Change bit (C), ON if the FRAME was altered by CP or Channel

STORAGE KEY

0 1 2 3 4 5 6 7
K K K K F R C
Chapter 1. Introduction to z/Architecture 43

� PSW protection keys

There are16 protection keys (0 to 15) provided by the PSW, and they are matched against
the access control bits in the storage key. The storage protection implementation formats
central (real) storage into 4 KB frames. For each 4 KB frame, there is a 7-bit storage key.
Each storage key has:

– 4 access control bits (shown as KKKK in Figure 1-24 on page 43)
– Fetch bit
– Reference bit
– Change bit

PSW key field
The PSW key field (bits 8 to 11) is set by the privileged SET PSW KEY FROM ADDRESS
instruction. This key is compared to the access control bits (kkkk) for the frame being
referenced for storage access.

Fetch protection bit
Bit 4 indicates whether protection applies to fetch-type references. A zero indicates that only
store-type references are monitored, and that fetching with any protection key is permitted; a
one indicates that protection applies to both fetching and storing. No distinction is made
between the fetching of instructions and the fetching of operands.

Reference bit
Bit 5 is associated with dynamic address translation (DAT). It is normally set to one whenever
a location in the related 4 KB storage block is referred to for either storing or fetching of
information.

Change bit
Bit 6 is also associated with DAT. It is set to one each time that information is stored into the
corresponding 4 KB block of storage.

Note: For further information on storage protection, refer to 1.25, “Storage protection logic”
on page 45.
44 ABCs of z/OS System Programming Volume 10

1.25 Storage protection logic

Figure 1-25 Storage protection logic

Storage protection logic
z/OS may alter storage key bits by issuing the SSKE instruction, and may inspect them by the
ISKE and IVSK instructions. The reference bit is inspected and switched off after inspection
by the RRBE instruction. On top of that, the CPU storage hardware switches on the reference
bit when the frame is accessed by any CPU or any channel, and also switches on the change
bit when the frame contents are changed by those components. The reference and change
bits do not participate in the storage protection algorithm. They are used for virtual storage
implementation; refer to 1.30, “Dynamic address translation (DAT)” on page 52.

The following conclusions can be reached from the logic:

� If a running program has PSW key equal to 0000, it may access any frame in memory.

� If the fetch bit is off in a frame, any program can read the contents of that frame.

� To read the contents of a frame where the fetch bit is on, the PSW key of the running
program must match the access control 4 bits in the storage key of the frame.

� To alter (write) the contents of a frame, the PSW key of the running program must match
the access control 4 bit in the storage key of the frame.

z/OS exploits storage protection by managing frame storage key values and running the
program PSW key field in the current PSW; for example, several z/OS routines run with PSW
key zero, and others run with PSW key one. Application code has PSW key eight.

Storage protection logic

OK

PSW
KEY

.

.
0000

FETCH
DATA

?

FETCH

BIT
ON
?

OKEQUAL

OK
No

NOT
EQUAL

Yes

PSW
KEY

:
Access

Bits

Yes

No

(Alter Data)

Program interrupt
x '0004': Protection

Exception

EQUAL

NOT
EQUAL
Chapter 1. Introduction to z/Architecture 45

1.26 Addresses and address spaces

Figure 1-26 Addressing and address spaces

Evolution of architectures
z/Architecture is the next step in the evolution from the System/360 to the System/370,
System/370 extended architecture (370-XA), Enterprise Systems Architecture/370
(ESA/370), and Enterprise Systems Architecture/390 (ESA/390). z/Architecture includes all of
the facilities of ESA/390 except for the asynchronous-pageout, asynchronous-data-mover,
program-call-fast, and vector facilities. z/Architecture also provides significant extensions, as
follows:

� 64-bit general registers and control registers.

� A 64-bit addressing mode, in addition to the 24-bit and 31-bit addressing modes of
ESA/390, which are carried forward to z/Architecture.

Both operand addresses and instruction addresses can be 64-bit addresses. The program
status word (PSW) is expanded to 16 bytes to contain the larger instruction address. The
PSW also contains a newly assigned bit that specifies 64-bit addressing mode.

� Up to three additional levels of dynamic-address-translation (DAT) tables, called region
tables, for translating 64-bit virtual addresses.

In order to support the growth in e-business with large numbers of users and transactions, a
64-bit virtual addressing scheme has been introduced. The first basic support in the z/OS
operating system for 64-bit virtual addressing was introduced with z/OS V1R2.

Architecture: System/360
24 bits

PSW

24 bits
GPR

Architecture: 370/XA - ESA/390
31 bits

PSW

31 bits
GPR

Architecture: z/Architecture
64 bits

PSW

64 bits
GPR

Instruction
Address

Instruction
Address

Instruction
Address

Operand
Address

Operand
Address

Operand
Address

16 MB Address
Space

2 GB Address
Space

16 Exabyte
Address Space

addresses
46 ABCs of z/OS System Programming Volume 10

An address is an argument used by the CP to access the contents of bytes in memory or
cache. A CP needs to access memory (also called central or real storage) to reach:

� An instruction, where its address is in the current PSW; refer to “Current program-status
word (PSW)” on page 21.

� An memory operand referred by an RS, RX, SS type of instruction. The operand address
is formed by:

– Adding the contents of a GPR, named base register plus a displacement of 12 bits (or
20 bits) declared in the instruction (refer to “Several instruction formats” on page 27), or

– Adding the contents of a GPR, named base register plus the contents of a GPR,
named index plus a displacement of 12 bits declared in the instruction

Addresses
An address size refers to the maximum number of significant bits that can represent an
address. With z/Architecture, three sizes of addresses are provided:

24-bit A 24-bit address can accommodate a maximum of 16,777,216 (16M) bytes.

31-bit With a 31-bit address, 2,147,483,648 (2 G) bytes can be addressed.

64-bit With a 64-bit address, 8,446,744,073,709,551,616 (16 E) bytes can be
addressed.

Any program running with 24-bit or 31-bit addresses can run in z/Architecture.
Chapter 1. Introduction to z/Architecture 47

1.27 z/Architecture address sizes

Figure 1-27 z/Architecture address sizes

Addresses in 4-byte fields
The bits of an address that is 31 bits regardless of the addressing mode are numbered 1-31.
When a 24-bit or 31-bit address is contained in a four-byte field in storage, the bits are
numbered 8-31 or 1-31, respectively.

A 24-bit or 31-bit virtual address is expanded to 64 bits by appending 40 or 33 zeros,
respectively, on the left before it is translated by means of the DAT process. A 24-bit or 31-bit
real address is similarly expanded to 64 bits before it is transformed by prefixing. A 24-bit or
31-bit absolute address is expanded to 64 bits before main storage is accessed. Thus, a
24-bit address always designates a location in the first 16 MB block of the 16 exabyte storage
addressable by a 64-bit address, and a 31-bit address always designates a location in the first
2 GB block.

64-bit words
The bits of a 24-bit, 31-bit, or 64-bit address produced by address arithmetic under the control
of the current addressing mode are numbered 40-63, 33-63, and 0-63, respectively,
corresponding to the numbering of base address and index bits in a general register.

Therefore, whenever the server generates and provides to the program a 24-bit or 31-bit
address, the address is made available (placed in storage or loaded into a general register)
by being imbedded in a 32-bit field, with the left-most eight bits or one bit in the field,
respectively, set to zeros. When the address is loaded into a general register, bits 0-31 of the
register remain unchanged.

24-bit address

31-bit address

0

0

31

31

8

1

4-byte fields in
Central Storage

24-bit address

31-bit address

64-bit address

0

0

0

63

63

63

40
/
/

/
/

/
/

33

64-bit words
48 ABCs of z/OS System Programming Volume 10

1.28 Storage addressing

Figure 1-28 Addresses in storage

Accessing storage
Storage is viewed as a long, horizontal string of bits, and is available in multiples of 4 KB
blocks. For most operations, access to storage proceeds in a left-to-right sequence. The
string of bits is subdivided into units of eight bits. This eight-bit unit is called a byte, which is
the basic building block of all information formats.

Bits and bytes
Each byte location in storage is identified by a unique nonnegative integer, which is the
address of that byte location or, simply, the byte address. Adjacent byte locations have
consecutive addresses, starting with 0 on the left and proceeding in a left-to-right sequence.
Addresses are unsigned binary integers and are 24, 31, or 64 bits.

The value given for a byte is the value obtained by considering the bits of the byte to
represent a binary code. Thus, when a byte is said to contain a zero, the value 00000000
binary, or 00 hex, is meant.

Within each group of bytes, bits are numbered in a left-to-right sequence. The left-most bits
are sometimes referred to as the “high-order” bits and the right-most bits as the “low-order”
bits. Bit numbers are not storage addresses, however. Only bytes can be addressed. To
operate on individual bits of a byte in storage, it is necessary to access the entire byte.

The bits in a byte are numbered 0 through 7, from left to right.

Address Space
0

16E
(Virtual addresses)

64-bit word (8 bytes)

8-bits (1 byte)

0 7
1 0 0 1 0101

11000110 = C6
4K-byte
block
Chapter 1. Introduction to z/Architecture 49

1.29 Real storage locations

Figure 1-29 Accessing data in storage

Storage location
Central storage is also referred to as main storage or real storage. When a program is
executing in an address space, the program’s virtual storage address in a 4 K frame where
the execution is taking place must be located in a central storage frame, as shown in
Figure 1-29.

Address space references
Main storage provides the system with directly addressable fast access storage of data. Both
data and programs must be loaded into main storage (from input devices) before they can be
processed. The storage is available in multiples of 4 KB blocks.

Therefore, MVS programs and data reside in virtual storage that, when necessary, is backed
by central storage. Most programs and data do not depend on their real addresses. Some
MVS programs, however, do depend on real addresses and some require these real
addresses to be less than 16 megabytes. MVS reserves as much central storage below 16
megabytes as it can for such programs and, for the most part, handles their central storage
dependencies without requiring them to make any changes.

Virtual address
A virtual address identifies a location in virtual storage. When a virtual address is used for an
access to main storage, it is translated by means of dynamic address translation to a real
address, which is then further converted by prefixing to an absolute address.

31-bit Virtual Address

/ Segment
Index Byte IndexPage

Index

| 11 bits | 8 bits | 12 bits |

0 11 22 33 44 52 63

| 11 bits | 11 bits | 11 bits | 11 bits | 8 bits | 12 bits |

R1 Index R2 Index R3 Index Segment
Index

Page
Index Byte Index

64-bit Virtual Address

Pre - z/Architecture

z/Architecture

0 1 12 20 31

Central Storage

Address Space

(Virtual addresses)

Frame/Page
(4K)

0

16E
50 ABCs of z/OS System Programming Volume 10

A real address identifies a location in real storage. When a real address is used for an access
to main storage it is converted, by means of prefixing, to an absolute address. At any instant
there is one real address-to-absolute address mapping for each CP in the configuration.
When a real address is used by a CP to access main storage, it is converted to an absolute
address by prefixing.

Storage consisting of byte locations sequenced according to their real addresses is referred
to as real storage.

Virtual address to main storage
When a virtual address is used by a CP to access main storage it is first converted, by means
of dynamic address translation (DAT), to a real address, and then, by means of prefixing, to
an absolute address. DAT may use from five to two levels of tables (region first table (R1
index), region second table, region third table, segment table, and page table) as
transformation parameters.

The designation (origin and length) of the highest-level table for a specific address space is
called an address-space-control element, and it is found for use by DAT in a control register or
as specified by an access register. Alternatively, the address-space-control element for an
address space may be a real space designation, which indicates that DAT is to translate the
virtual address simply by treating it as a real address and without using any tables.
Chapter 1. Introduction to z/Architecture 51

1.30 Dynamic address translation (DAT)

Figure 1-30 Dynamic address translation (DAT)

Dynamic address translation
Dynamic address translation (DAT) is the process of translating a virtual address during a
storage reference into the corresponding real address.

A segment table designation or region table designation causes translation to be performed
by means of tables established by the operating system in real or absolute storage.

In the process of translation when using a segment table designation or a region table
designation, three types of units of information are recognized:

Region A block of sequential virtual addresses spanning 2 Gbytes and beginning at the
4 Gbyte boundary (above the bar).

Segment A block of sequential virtual addresses spanning 1 MB and beginning at a 1 MB
boundary.

Page A block of sequential virtual addresses spanning 4 KB and beginning at a 4 KB
boundary. Starting with the z10 EC server, optionally a page can have a size of
1 M addresses (large pages). However, this is only possible for pages above
the bar. All those pages are fixed in central storage.

z/OS translation tables
There are three levels of translating tables: segment table, region table, and page table. Each
entry in the segment table points to a page table. Each entry in the page table points to the
location of the frame associated with that page.

DAT

F0

F1

F2

F4

F3

Address Space
P0

P1

P255
P0

P1

P255

. . .
. . .

. . .
. . .

S0

S1

S 0
S 1

S 4A6

4A6C8A26 100000

4A6 (# SEGM)C8A26

C8A26 1000

C8 (# Page)A26

256
Entries

256
Entries

8000Location = 8000 + A26 = 8A26 (the location 8000
was taken from the page table entry)

(Number of pages equal
to the number of frames)

PG C8

..

Central Storage

Segment Table

Page Table

Page Table

Page Table
52 ABCs of z/OS System Programming Volume 10

Dynamic address translation performs the following tasks:

� Receives an address from the CP (it does not matter if it refers to an operand or to an
instruction)

� Divides the address by 1 M. The quotient is the number of the segments (S), and the rest
is the displacement within the segment (D1).

� Finds the corresponding entry in the segment table to obtain the pointer of the
corresponding page table.

� Divides the D1 by 4 K. The quotient is the number of the page (P), and the rest is the
displacement within the page (D2). It finds the corresponding entry for P2 in the page
table, getting the location of the corresponding frame.

� Adds D2 with the frame location and passes back this result to the CP to allow access to
the memory contents.

Figure 1-31 on page 54 illustrates the process of translating the address x ‘4A6C8A26’.
Chapter 1. Introduction to z/Architecture 53

1.31 Dynamic address translation

Figure 1-31 Virtual storage and dynamic address translation

Control registers and DAT
Translation of a virtual address is controlled by the DAT-mode bit and address-space-control
bits in the PSW and by the address-space-control elements (ASCEs) in control registers 1, 7,
and 13, and as specified by the access registers. When the ASCE used in a translation is a
region-first-table designation, the translation is performed by means of a region first table,
region second table, region third table, segment table, and page table, all of which reside in
real or absolute storage.

When the ASCE is a lower-level type of table designation (region-second-table designation,
region-third-table designation, or segment-table designation), then the translation is
performed by means of only the table levels beginning with the designated level—and the
virtual-address bits that would, if nonzero, require use of a higher level or levels of table must
be all zeros; otherwise, an ASCE-type exception is recognized. When the ASCE is a real
space designation, the virtual address is treated as a real address, and table entries in real or
absolute storage are not used.

Page faults
Following the DAT attempt, either a real address is determined or a page fault occurs. There
is a bit in the page table entry called the invalid bit. When the invalid bit is on, it means that
the content of the referenced page is not mapped into a frame in real storage. DAT reacts to
this by generating a program interrupt code X’11” indicating a page fault. This page must be
read in from external storage called a page data set.

Real address

Segment
Table

DAT or page fault

Virtual address

Instruction
or

operand

CR1

CR1CR1 Page Table

Page Table

0 6352
 Primary Region-Table
or Segment-Table Origin
54 ABCs of z/OS System Programming Volume 10

1.32 Page faults

Figure 1-32 Virtual storage and page data sets

Page data sets
Paging data sets contain the paged-out portions of all virtual storage address spaces. In
addition, output to virtual I/O devices may be stored in the paging data sets. Before the first
IPL, an installation must allocate sufficient space on paging data sets to back up the following
virtual storage areas:

� Primary storage for the pageable portions of the common area
� Secondary storage for duplicate copies of the pageable common area
� The paged-out portions of all swapped-in address spaces - both system and installation
� Space for all address spaces that are, or were, swapped out
� VIO data sets that are backed by auxiliary storage

Address space virtual storage
Every address space has the same virtual storage mapping. Figure 1-32 shows two address
spaces with a virtual storage address of 10254000 which contains either data or executable
code belonging to that address space. For each address space to reference the 4 K page
beginning at that address, that 4 K page must reside in central storage, as shown by the real
addresses in central storage. When referenced, the page could either be in central storage
already, or a page fault occurs and it must be read from the page data set where is resides.

Central Storage

4k

User A address space

User X address space

10254000
Virtual address

10254000
Virtual address

00971000
Real address

0014A000
Real address

Page data sets

xyz

abc
Chapter 1. Introduction to z/Architecture 55

DAT and MVS
To determine how to access the page in virtual storage, the functions are divided between
hardware (DAT) and the operating system (z/OS), as follows:

� DAT is in charge of translating the address, from now on called the virtual address,
producing or a location, from now on called the real address in central storage, or
generating a page fault.

There is a bit in the current PSW (bit 5) that when on, DAT is implicitly invoked for each
address referenced by the CP. When off, it means that the virtual address is equal to the
real address and DAT is not invoked.

� MVS is in charge of the following:

– Maintaining the tables (Segment and Page tables).
– Deciding which page contents are kept in real storage frames.
– Allocating I/O DASD page data sets to keep the unreferenced pages, when there is a

real storage frames shortage. These data sets are formatted in 4 KB slots.
– Supporting page faults, bringing to a real storage frame the copy of the page from the

page data sets.
– Executing page stealing, when the amount of available frames falls below a certain

threshold. The pages to be stolen are the least referenced. Pages in a central storage
frame have an associated count called the unreferenced-interval count (UIC) that is
calculated by MVS. This count measures for how many seconds such a page is
unreferenced. The pages with the highest UIC counts are the ones to be stolen.

Address space tables
MVS creates a segment table for each address space. The segment table entries point, as
shown in Figure 1-31 on page 54, to page tables for only the ones representing pages with
valid data in them in the address space. If a 4 K block of virtual addresses has no valid data in
it, there is no need to build a page table entry. There is a bit in segment table entry (the invalid
bit) that indicates this condition to DAT.

DAT knows the current address space because MVS loads, in control register 1, the real
address of its segment table. As shown in Figure 1-32 on page 55, the same virtual address
10254000 is referred to in two different address spaces that point to distinct real addresses.
Each address has its own segment table.

z/OS implements a common area in all address spaces. All the segments belonging to the
common area share the same set of page tables. Refer toABCs of z/OS System
Programming Volume 2, SG24-6982, for more information about the common areas.

If the virtual address is above the bar in the address space, the segment table is not used and
the appropriate region table is used for DA: Third Region table, Second Region table and First
Region table; refer to 1.6, “z/Architecture enhancements” on page 11.
56 ABCs of z/OS System Programming Volume 10

1.33 Dual address space (cross memory)

Figure 1-33 Cross memory

MVCP and MVCS
The PC routine can, if necessary, access data in the user's address space without using ARs.
The MVCP instruction moves data from the secondary address space (the user) to the
primary address space (the service provider). The MVCS instruction moves data from the
primary address space (the service provider) to the secondary address space (the user). To
use the MVCP or MVCS instructions, the service provider must have obtained SSAR
authority to the user's address space before the PC routine receives control.

Cross memory
Synchronous cross-memory communication enables one program to provide services
synchronously to other programs. Synchronous cross-memory communication takes place
between address space 2, which gets control from address space 1 when the program call
(PC) instruction is issued. Address space 1 has previously established the necessary
environment, before the PC instruction transfers control to an address space 2 program called
a PC routine. The PC routine provides the requested service and then returns control to
address space 1.

The user program in address space 1 and the PC routine can execute in the same address
space or, as shown in Figure 1-33, in different address spaces. In either case, the PC routine
executes under the same TCB as the user program that issues the PC. Thus, the PC routine
provides the service synchronously.

Data Data

Address Space 1

PC

PR

1
2
3

oper1

oper2

oper3

MVCP

MVCS

Move Data

Pass Control

Intructions here,
Operands there

 Address Space 1 Address Space 2

Address Space 2

(User) (Service
Provider)
Chapter 1. Introduction to z/Architecture 57

Dual address space or cross-memory (XM) is an evolution of virtual storage. It has three
objectives:

� Move data synchronously between virtual addresses located in distinct address spaces.

This can be implemented by the use of the SET SECONDARY ADDRESS REGISTER
(SSAR) instruction. It points to an address space and makes it secondary. A secondary
address space has its Segment Table pointed by CR 7 instead of CR 1. Next, using the
MOVE CHARACTER TO SECONDARY (MVCS) or MOVE CHARACTER TO PRIMARY
(MVCP), the objective can be accomplished.

� Pass the control synchronously between instructions located in distinct address spaces.

There is an instruction PROGRAM CALL (PC) able to do that. To return the origin address
space, there is the instruction PROGRAM RETURN (PR).

� Execute one instruction located in one AS and its operands are located in other address
space.

Through the SSAR instruction, a secondary address space is defined. Using the SET
ADDRESSABILITY CONTROL (SAC) instruction, the CP is placed in “Secondary Space
Translation mode”. When in this mode, the instruction’s virtual address is translated by
DAT through CR1 and the operand’s virtual addresses through CR7. Then, it is possible to
have more than one set of active DAT tables (for instructions or operands) for translation
depending on the translation mode as indicated by bits 16 and 17 in PSW, which are
modified by the SAC instruction.
58 ABCs of z/OS System Programming Volume 10

1.34 Access register mode (dataspaces)

Figure 1-34 Access register mode

Access registers (ARs)
An access register (AR) is a hardware register that a program uses to identify an address
space or a data space. Each server has 16 ARs, numbered 0 through 15, and they are paired
one-to-one with the 16 general purpose registers (GPRs).

Dataspaces and hiperspaces
Dataspaces and hiperspaces are data-only spaces that can hold up to 2 gigabytes of data.
They provide integrity and isolation for the data they contain in much the same way as
address spaces provide integrity and isolation for the code and data they contain. They are an
extremely flexible solution to problems related to accessing large amounts of data.

There are two basic ways to place data in a data space or a hiperspace. One way is through
using buffers in the program's address space. A second way avoids the use of address space
virtual storage as an intermediate buffer area; instead, through data-in-virtual services, a
program can move data into a data space or hiperspace directly. For hiperspaces, the second
way reduces the amount of I/O.

Programs that use data spaces run in AR ASC mode. They use MVS macros to create,
control, and delete data spaces. Assembler instructions executing in the address space
directly manipulate data that resides in data spaces.

2G

0
Address
Spaces

Extended
Private

Private

16M

Operands

Data
Spaces

(System)

 Extended Common

 Common

0

2G

16E
Chapter 1. Introduction to z/Architecture 59

Using access registers
Access registers provide you with a different function from cross-memory. You cannot use
them to branch into another address space. Through access registers, however, you can use
assembler instructions to manipulate data in other address spaces and in data spaces. You
do not use access registers to reference addresses in hiperspaces.

Through access registers your program, whether it is supervisor state or problem state, can
use assembler instructions to perform basic data manipulation, such as:

� Compare data in one address space with data in another.

� Move data into and out of a data space, and within a data space.

� Access data in an address space that is not the primary address space.

� Move data from one address space to another.

� Perform arithmetic operations with values that are located in different address spaces or
data spaces.

A PC routine can access (fetch or store) data in the user's address space by using access
registers (ARs) and the full set of assembler instructions. If the PC routine has the proper
authority, it can also access data in other address spaces or in data spaces.

Access register mode is an extension of cross-memory. It introduces the concept of the data
space. A data space is a sort of address space (but at the old 2 GB size) and consequently it
is also represented by segment tables. The major difference is that an address space
contains the addresses of instructions and operands, and a data space only contains operand
addresses.

In order to access a data space, the CP must be in access register translation mode, as set
by the SAC instruction on bits 16 and 17 in the current PSW. In this mode, DAT translates
instruction virtual addresses through the segment table pointed by CR 1 (for address spaces)
and operands through the segment table pointed by an access register. Refer to 1.10, “CP
registers (general)” on page 18 for more detailed information. An access register points
indirectly to the data space’s segment table.

The advantage of having data spaces is a cleaner design for programming, where data and
instructions are not mixed.
60 ABCs of z/OS System Programming Volume 10

1.35 CPU signaling facility

Figure 1-35 Signaling facility order codes

Signaling facility
The CP signaling facility consists of a SIGNAL PROCESSOR (SIGP) instruction and a
mechanism to interpret and act on several order codes. The facility provides for
communication among CPs, including transmitting, receiving, and decoding a set of assigned
order codes; initiating the specified operation; and responding to the signaling CP. This facility
fulfills the MVS need for communication between its components, when running in different
CPs in the same tightly coupled complex.

Signal-processor orders
Signal-processor orders are specified in bit positions 56-63 of the second-operand address of
SIGNAL PROCESSOR instruction, and are encoded as shown in Figure 1-35.

Some of the orders are as follows:

� Change the CP architecture (12) from ESA/390 to z/Architecture, and vice versa.

� Generate external interrupts as such (2) and (3).

� Cause a stop and store the CP status in memory (9).

� Reset the CP (C). CP reset provides a means of clearing equipment check indications and
any resultant unpredictability in the CP state, with the least amount of information
destroyed.

1 - Sense
2 - External call
3 - Emergency signal
4 - Start
5 - Stop
6 - Restart
9 - Stop and store status
B - Initial CP reset
C - CP reset
D - Set prefix
E - Store status at address
12 - Set architecture
Chapter 1. Introduction to z/Architecture 61

1.36 Time measurement TOD

Figure 1-36 Store clock extended instruction

TOD clock
The timing facilities include three facilities for measuring time:

� The TOD clock
� The clock comparator
� The CP timer

A TOD programmable register is associated with the TOD clock. In a multiprocessing
configuration, a single TOD clock is shared by all CPs. Each CP has its own clock
comparator, CP timer, and TOD programmable register.

The TOD clock is a 104-bit counter register inside each PU. The TOD clock provides a high
resolution measure of real time suitable for the indication of date and time of day. This timing
is precious information for operating systems, databases, and system logs.

The cycle of the clock is approximately 143 years (from all bits zero to all bits zero again). The
TOD clock nominally is incremented by adding a one in bit 51 every microsecond. In models
having a higher or lower resolution, a different bit position is incremented at such a frequency
that the rate of advancing the clock is the same as if a one were added in bit 51 every
microsecond.

TOD follows the coordinated universal time (UTC) that is derived from the atomic time TA1
(based in Cesium 133 radioactivity), and is adjusted with discrete leap seconds to keep
reasonably close to UT1 (based on the Earth’s rotation).

TOD CLOCK

0 103

Programmable
Field

TOD PROGRAMMABLE REGISTER

0 0

0 16

CP

Memory

Zeroes TOD CLOCK

0 8 112

Store Clock
Extended
Instruction

31

Progr. Field
62 ABCs of z/OS System Programming Volume 10

Incrementing the TOD clock does not depend on whether the CP is in a wait state or whether
the CP is in operating, load, stopped, or check-stop states.

Note: The TOD cannot be used by MVS for time accounting for tasks in z/OS.

Instructions for storing the clock
There are two instructions used by MVS to alter and store in memory its contents:

� The SET CLOCK EXTENDED instruction changes the contents of 104 bits TOD from a
memory location.

� The STORE CLOCK EXTENDED instruction, as pictured in Figure 1-36 on page 62,
moves into memory 104 bits plus the program fields (16 bits) from the TOD program fields
register.

MVS assumes that 01/01/1900 corresponds to a TOD zeroed. The clock comparator is a
circuit in each PU that provides an external interrupt (X’1004’) when the TOD clock value
exceeds a value specified by the program. Using the clock comparator, the software can be
alerted when a certain amount of wall clock time has elapsed, or at an specific hour of the
day.
Chapter 1. Introduction to z/Architecture 63

1.37 Time measurement (CP timer)

Figure 1-37 CP timer

CP timer
The CP timer is a binary counter with a format which is the same as that of bits 0-63 of the
TOD clock, except that bit 0 is considered a sign. The CP timer nominally is decremented by
subtracting a one in bit position 51 every microsecond. In models having a higher or lower
resolution, a different bit position is decremented at such a frequency that the rate of
decrementing the CP timer is the same as if a one were subtracted in bit position 51 every
microsecond.The CP timer requests an external interrupt with the interrupt code 1005 hex
whenever the CP timer value is negative (bit 0 of the CP timer is one).

TOD and ETOD formats
It is recommended that you begin to convert your applications to using the ETOD format. The
extended time-of-day format was required both to address the time-wrapping problem that
would occur in the year 2042, and also to provide the improved resolution necessary for faster
servers as they become available.

Note: If you request ETOD information and your server is not configured with the 128-bit
extended time-of-day clock, timer services will return the contents of the 64-bit TOD and
simulate the remaining 64 bits of the ETOD.

Conversely, if you request TOD information and your server is configured with the extended
time-of-day clock, timer services will return only that portion of the 128-bit ETOD that
corresponds to the 64-bit TOD.

Decrementing binary counter register in the CP

64 bits (TOD vs ETOD)

Same frequency as TOD clock

Stops when the CP is not running or not in wait

Used for CP accounting purposes by MVS

Causes external interrupt when reaching a negative
value

Instructions: STORE CPU TIMER and SET CPU
Timer
64 ABCs of z/OS System Programming Volume 10

TOD frequency
When both the CP timer and the TOD clock are running, the stepping rates are synchronized
such that both are stepped at the same rate when a specified amount of time has elapsed.

Timer stops
The CP timer stops when the CP is in stop state. This state may be caused by operator
intervention, or in LPAR mode when a shared logical CP is not executed in a physical CP.
Refer to 5.4, “Shared logical CPs example” on page 335 for more information about this topic.

MVS and accounting
The CP timer is used by MVS for accounting purposes (because it stops at CP stop); that is, it
is used to time how much CP a task or a service request consumes.

Timer external interrupt
Assume that a program being timed by the CP timer is interrupted for a cause other than the
CP timer, external interruptions are disallowed by the new PSW, and the CP timer value is
then saved by STORE CPU TIMER. This value could be negative if the CP timer went from
positive to negative since the interruption.

Subsequently, when the program being timed is to continue, the CP timer may be set to the
saved value by SET CPU TIMER. A CP timer interruption occurs immediately after external
interruptions are again enabled if the saved value was negative.

Timer instructions
The CP timer can be inspected by executing the instruction STORE CPU TIMER, and can be
set by MVS to a specified value by executing the SET CPU TIMER instruction.
Chapter 1. Introduction to z/Architecture 65

1.38 Sysplex Timer expanded availability configuration

Figure 1-38 Sysplex Timer® expanded availability configuration

External timer reference (ETR)
There is a long-standing requirement for accurate time and date information in data
processing. As single operating systems have been replaced by multiple, coupled operating
systems on multiple servers, this need has evolved into a requirement for both accurate and
consistent clocks among these systems. Clocks are said to be “consistent” when the
difference or offset between them is sufficiently small. An accurate clock is consistent with a
standard time source.

The IBM z/Architecture and S/390 Architecture external time reference (ETR) architecture
facilitates the synchronization of server time-of-day (TOD) clocks to ensure consistent
time stamp data across multiple servers and operating systems. The ETR architecture
provides a means of synchronizing TOD clocks in different servers with a centralized time
reference, which in turn may be set accurately on the basis of an international time standard
(External Time Source). The architecture defines a time-signal protocol and a distribution
network, called the ETR network, that permits accurate setting, maintenance, and
consistency of TOD clocks.

ETR time
In defining an architecture to meet z/Architecture and S/390 Architecture time coordination
requirements, it was necessary to introduce a new kind of time, sometimes called ETR time,
that reflects the evolution of international time standards, yet remains consistent with the
original TOD definition. Until the advent of the ETR architecture (September 1990), the server
TOD clock value had been entered manually, and the occurrence of leap seconds had been

Port 0 Port 1

Attachment Feature

9672 CPC

Port 0 Port 1

Attachment Feature

2064 CPC

CLO Links

(Fiber Optic)
9037-0029037-002

RS232

Backup
External
Time
Source
(optional)

External
Time
Source
(optional)

RS232

Token-Ring

9037 Standby
Console
(optional)

Token-Ring

9037 Active
Console

z900 Server z990 Server

1

2

3

4

56
7

8

9

10

11
12

1

2

3

4

56
7

8

9

10

11
12
66 ABCs of z/OS System Programming Volume 10

essentially ignored. Introduction of the ETR architecture has provided a means whereby TOD
clocks can be set and stepped very accurately, on the basis of an external Universal Time
Coordinate (UTC) time source.

Sysplex Timer
The IBM 9037 Sysplex Timer is a mandatory hardware requirement for a Parallel Sysplex
consisting of more than one zSeries or G5/G6 server. The Sysplex Timer provides the
synchronization for the time-of-day (TOD) clocks of multiple servers, and thereby allows
events started by different servers to be properly sequenced in time. When multiple servers
update the same database, all updates are required to be time stamped in proper sequence.

Sysplex Timer model 002 supports two types of configuration:

� Basic configuration

� Expanded Availability configuration

Sysplex Timer Expanded Availability configuration is the recommended configuration in a
Parallel Sysplex environment. This configuration is fault-tolerant to single points of failure,
and minimizes the possibility that a failure can cause a loss of time synchronization
information to the attached servers.

Expanded availability configuration
The Sysplex Timer expanded availability configuration consists of two IBM 9037 Sysplex
Timer Units, as shown in Figure 1-38 on page 66. In an Expanded Availability configuration,
the clocks running in the two Sysplex Timer units are synchronized to each other using the
control link oscillator (CLO) card in each Sysplex Timer unit and the CLO links between them.

Both Sysplex Timer units are simultaneously transmitting the same time synchronization
information to all attached servers. The CLO connection between Sysplex Timer units is
duplicated, to provide redundancy. Critical information is exchanged between the two Sysplex
Timer units, so in case one fails, the other unit will continue transmitting to the attached
servers without disrupting server operations.

Redundant fiber optic cables are used to connect one port from each Sysplex Timer unit to
the two ETR ports of a server. Each attaching server’s two ETR ports (ETR Port 0 and ETR
Port 1) operate in one of two modes: the active (or stepping) ETR port, and the alternate ETR
port. The server’s TOD clock steps to the timing signals received from the active (stepping)
ETR port only. If a server’s alternate ETR port detects the stepping ETR port to be
nonoperational, it forces an automatic ETR port switchover; the server’s TOD clock now steps
to timing signals received from the server’s alternate ETR port, which has now assumed the
role as the stepping ETR port. This switchover takes place without disrupting server
operations.

Note: The Sysplex Timer units do not switch over, and are unaware of the ETR port role
change at the server end.

For an effective fault-tolerant Sysplex Timer Expanded Availability configuration, ETR Port
0 and ETR Port 1 in each server must connect to different Sysplex Timer units within the
same Sysplex Timer ETR network.
Chapter 1. Introduction to z/Architecture 67

1.39 Server Time Protocol (STP)

Figure 1-39 Server time protocol - full configuration

Server Time Protocol (STP)
Server Time Protocol (STP) is designed for z/OS V1R7 (PTFs are required) running on a z10
EC, z9, z990, or z890 that requires the time of day (TOD) clock to be synchronized. STP is a
replacement for the Sysplex Timer, and it is aimed at decreasing the total cost of the
mainframe platform. STP allows TOD information to be exchanged between z/OS systems
running in different servers using CF links as communication media. STP is designed to:

� Support a multisite timing network of up to 100 km (62 miles) over fiber optic cabling,
allowing a Parallel Sysplex to span these distances

� Potentially reduce the cross-site connectivity required for a multisite Parallel Sysplex

� Coexist with an ETR (Sysplex Timer) network

� Allow use of dial-out time services to set the time to an international time standard (such
as coordinated universal time (UTC), for example), as well as adjust to UTC on a periodic
basis

� Allow setting of local time parameters, such as time zone and daylight saving time

� Allow automatic updates of daylight saving time

All the functions performed previously through the Sysplex Timer console are executed in the
server HMC. Stratum 1 is the z/OS propagating TOD signals to stratum 2 z/OS systems.
Stratum 2 receives from stratum 1 and propagates to stratum 3. Stratum 0 is the external time
source (ETS).

HMC

P3 P4
z890(1)
Arbiter

Stratum 2

P2P1

z9 EC
Preferred

Time Server
Stratum 1

z990(1)
Backup

Time Server
Stratum 2

ETS

z990(2)
Stratum 2

z10 EC
68 ABCs of z/OS System Programming Volume 10

1.40 Data center and I/O configuration

Figure 1-40 Data center and I/O configuration

Input/Output (I/O) configuration
You must define an I/O configuration to the operating system (software) and the channel
subsystem (hardware). The Hardware Configuration Definition (HCD) element of z/OS
consolidates the hardware and software I/O configuration processes under a single
interactive end-user interface. The validation checking that HCD does as you enter data helps
to eliminate errors before you attempt to use the I/O configuration.

An I/O configuration is the hardware resources available to the operating system and the
connections between these resources. The resources include:

� Channels
� ESCON/FICON® Directors (switches)
� Control units
� Devices such as tape, printers, and DASD

Figure 1-40 shows a typical zSeries data center. As you can see, the complex consists of
separate I/O devices and networks connected through high-speed data buses to the server,
which comprises servers, server storage, and channels. It shows connections among servers,
as well. z/Architecture provides up to 512 high-speed data buses, called channels, per server.
Included in those are the OSA channels, which are assembled with a network controller and
one adapter.

Ethernet
Token-Ring
FDDI
Fast Ethernet
155 ATM
Gigabit Ethernet

Parallel
ESCON
FICON

Multiple Rooms/Floors/Bldgs.

Tape

Printers

DASD

Hub

Controller
Parallel
ESCON
FICON

DASD
Farm

Tape
Vault

ESCON
Director

WANWAN

LAN

Router

Switch

37xx,Cisco,3174
Chapter 1. Introduction to z/Architecture 69

Channel types
Input/Output (I/O) channels are components of the zSeries and 9672 G5/G6 Channel
Subsystems (CSS). They provide a pipeline through which data is exchanged between
servers, or between a server and external devices. The different types of channels, including
the ones connecting the Coupling Facility (CF) are:

� Parallel channels - IBM introduced the parallel channel with System/360 in 1964. The I/O
devices were connected using two copper cables called bus cables and tag cables. A bus
cable carries information (one byte each way), and a tag cable indicates the meaning of
the data on the bus cable.

� Enterprise Systems Connection (ESCON®) - Since 1990, ESCON has replaced the
parallel channel as being the main channel protocol for I/O connectivity, using fiber optic
cables and a new “switched” technology for data traffic.

� Fiber Connection: FICON, FICON Express and Fibre Channel Protocol (FCP) - In 1998,
IBM announced a new I/O architecture for 9672 G5/G6 servers called Fibre Connection
(FICON). The zSeries server builds on this architecture by offering higher speed FICON
connectivity.

� Open Systems Adapter-2 (OSA-2), with the following type of controllers: Ethernet, Fast
Ethernet, Token-ring, Fiber Distributed Data Interface (FDDI), 155 Asynchronous Transfer
Mode (ATM) - In 1995, OSA-2 was introduced, bringing the strengths of zSeries, such as
security, availability, enterprise-wide access to data, and systems management to the
client/server environment. Some OSA-2 features continue to be supported in
z/Architecture (z900 only), while others have been replaced by the OSA-Express features,
which were introduced in 1999. All OSA features were designed to provide direct, industry
standard, local area network (LAN) and ATM network connectivity in a multi-vendor
networking infrastructure.

� OSA Express, with the following type of controllers: Gigabit Ethernet, Fast Ethernet,
1000BaseT Ethernet, High Speed Token Ring) - The Open Systems Adapter-Express
(OSA-Express) Gigabit Ethernet (GbE), 1000BASE-T Ethernet, Fast Ethernet (FENET),
Asynchronous Transfer Mode (ATM) and Token Ring (TR) features are the generation of
features beyond OSA-2. OSA-Express features provide significant enhancements over
OSA-2 in function, connectivity, bandwidth, data throughput, network availability, reliability,
and recovery.

� ISC - fiber Coupling Facility (CF) link - InterSystem Channels (ISC) provide the
connectivity required for data sharing between the CF and the systems directly attached to
it. ISC links are point-to-point connections that require a unique channel definition at each
end of the link.

� ICB - copper Coupling Facility (CF) link - Integrated Cluster Bus links are members of the
Coupling Link options available on zSeries and G5/G6 servers. They are faster than ISC
links, attaching directly to a Self-Timed Interconnect (STI) bus of the server.

Data transfer mechanisms
Methods of transferring data are as follows:

� Traditional I/O data transfer through the use of the START SUBCHANNEL instruction,
CCWs, and I/O interrupts, used by ESCON and FICON channels.

� Queue Direct I/O (QDIO), through the use of the SIGA instruction, used by OSA-Express
and HiperSockets™ channels. - QDIO is a highly efficient data transfer mechanism that
satisfies the increasing volume of TCP/IP applications and increasing bandwidth
demands. It dramatically reduces system overhead, and improves throughput by using
system memory queues and a signaling protocol to directly exchange data between the
OSA-Express microprocessor and TCP/IP software. SNA support is provided through the
use of TN3270 or Enterprise Extender; see “QDIO architecture” on page 323.

� Message architecture, to access the Coupling Facility (CF), used by CF links (ISC, ICB,
IC).
70 ABCs of z/OS System Programming Volume 10

1.41 Channel subsystem

Figure 1-41 Channel subsystem

Channel subsystem
An individual I/O device may be accessible to the channel subsystem by as many as eight
different channel paths, depending on the model and the configuration. The total number of
channel paths provided by a channel subsystem depends on the model and the configuration;
the maximum addressability is 256.

Channels
The zSeries channel subsystem contains channels, which are much simpler than an SAP, are
able to communicate with I/O control units (CU) and manage the movement of data between
central storage and the control units. They are located in I/O cards in the zSeries I/O cage;
refer to “I/O cages” on page 110. Being more specific, the channels can:

� Send channel commands from the memory to a CU
� Transfer data during read and write operations
� Receive status at the end of operations
� Receive sense information from control units, such as detailed error information

In z/Architecture, the I/O operation is created when a privileged START SUBCHANNEL
(SSCH) instruction is executed by the input/output supervisor (IOS), a z/OS component,
which issues the instruction on behalf of a task. It finishes when an I/O interrupt is received by
the CPU, forcing the execution of the IOS component again.

Channel Subsystem is formed by:

Up to 256 channels

A few SAPs (depends on the zSeries model)

Up to 64 K subchannels (also called UCWs)

I/O devices attached through control units
Chapter 1. Introduction to z/Architecture 71

SAPs
In order to communicate with the I/O devices attached to the channels, both the operating
system (MVS) and the channel subsystem (formed by the system-assisted processor (SAP)
and channels) need to know the I/O configuration, which contains the following types of
information:

� What devices are attached to each channel
� The device types
� The device addresses: subchannel number, device number, and device address (also

called a unit address)
� What protocols to use
� Channel type

A PU is a zSeries server. An SAP is a PU that runs I/O licensed internal code (LIC). By LIC,
IBM means either microcode or software programs that the customer is not able to read or
alter. The SAP relieves z/OS (and consequently, CP involvement) during the setup of an I/O
operation. It does the scheduling of an I/O operation; that is, it finds an available channel path
to the device and guarantees that the I/O operation really starts. SAP, however, is not in
charge of the movement between central storage (CS) and the channel.

Subchannels
Within the channel subsystem are subchannels. One subchannel is provided for and
dedicated to each I/O device accessible to the channel subsystem. Each subchannel
provides information concerning the associated I/O device and its attachment to the channel
subsystem. The subchannel also provides information concerning I/O operations and other
functions involving the associated I/O device.

The subchannel is the means by which the channel subsystem provides information about
associated I/O devices to CPs, which obtain this information by executing I/O instructions.
The actual number of subchannels provided depends on the model and the configuration; the
maximum addressability is 65,536.

I/O devices and control units
I/O devices are attached through control units to the channel subsystem by means of channel
paths. Control units may be attached to the channel subsystem by more than one channel
path, and an I/O device may be attached to more than one control unit.

In all, an individual I/O device may be accessible to the channel subsystem by as many as
eight different channel paths, depending on the model and the configuration.
72 ABCs of z/OS System Programming Volume 10

1.42 Multiple CSS structure (z10 EC)

Figure 1-42 Multiple CSS structure for the z10 EC

Multiple CSS - description
The multiple channel subsystems (CSS) concept was introduced with the z10 EC server. The
z10 EC server delivers a considerable increase in system performance due to an improved
design, use of technology advances, and decrease in cycle time. In support of this, the CSS is
correspondingly scaled to provide for significantly more channels. New concepts are
introduced to facilitate this architectural change and provide relief for the number of supported
LPARs, channels, and devices available to the server.

Each CSS may have from 1 to 256 channels, and may in turn be configured with 1 to 15
logical partitions. Table 1-1 shows the number of LPARs and CHPIDs supported with multiple
channel subsystems.

Table 1-1 LPAR and CHPID numbers by CSS

Multiple CSS - components
The multiple CSS introduces new components and terminology that differs from previous
server generations. These components are explained in the following sections.

Number of CSS Number of LPARs Number of CHPIDs

1 15 256

2 30 512

DASD
LCUs

 3

LP16LP2 LP3 LP14 LP15LP1

 1 2 3

LCSS 1

 21

LCSS 0

81 90 918081 90 9180

151 1E1 1F1141150 1E0 1F0140

LCSSs

LPARs

PCHIDs

MIF IDs

CHPIDs

DASD
LCUs

Directors

Control Units
and Devices

Names
Chapter 1. Introduction to z/Architecture 73

Channel subsystem (CSS)
The z10 EC server provides the ability to have more than 256 CHPIDs in the system by the
introduction of the channel subsystem. This is a logical replication of CSS facilities (CHPIDS,
control units, subchannels, and so on). This enables a balanced system structure between
the server’s capability and the I/O capability. The CSS for the z10 EC server introduces
significant changes to the I/O configuration. For ease of management, it is strongly
recommended that HCD is used to build and control your z10 EC Input/Output configuration
definitions.

On a z10 EC, no LPs can be added until at least one CSS has been defined. LPARs are now
defined to a CSS, not to a server. An LP is associated with one CSS only. CHPID numbers
are unique within an CSS; however, the same CHPID number can be reused within all CSSs.

It is important to note that the z10 EC is still a single server with logical extensions. All
Channel Subsystem Images (CSS Image or CSS) are defined within a single IOCDS. The
IOCDS is loaded into the Hardware System Area (HSA) and initialized during Power-on
Reset.

An CSS is identified by a CSS Identifier (CSS ID). The CSS IDs are 0 (zero) and 1.

Multiple channel subsystem
The multiple channel subsystem (CSS) concept implemented in the System z servers is
designed to offer a considerable increase in processing power, memory sizes, and I/O
connectivity over previous servers; refer to Table 1-2 for a comparison.

Table 1-2 CSS comparison

Important: A z10 EC server does not support basic mode. Only LPAR mode can be
defined.

z10 EC, z9 EC z9 BC z990 z890

Number of CSS 4 per server 2 per server 4 per server 2 per server

Devices in
subchannel
set-0

63.75 K per CSS

255 K per server

63.75 K per CSS

255 K per server

63 K per CSS

252 K per server

63 K per server

126 K per server

Devices in
subchannel
set-1

64K-1 per CSS

256K-4 per server

64K-1 per CSS

256K-4 per server

0 0

Partitions 15 per CSS
60 per server

15 per CSS
30 per server

15 per CSS
30 per server

15 per CSS
30 per server

CHPIDs 256 per CSS
1024 per server

256 per CSS
512 per server

256 per CSS
1024 per server

256 per CSS
512 per server
74 ABCs of z/OS System Programming Volume 10

1.43 Control units

Figure 1-43 Control units

Control units
A control unit provides the logical capabilities necessary to operate and control an I/O device,
and adapts the characteristics of each device so that it can respond to the standard form of
control provided by the channel subsystem.

Communication between the control unit and the channel subsystem takes place over a
channel path. The control unit accepts control signals from the channel subsystem, controls
the timing of data transfer over the channel path, and provides indications concerning the
status of the device.

The I/O device attached to the control unit may be designed to perform only certain, limited
operations, or it may perform many different operations. A typical operation is moving a
recording medium and recording data. To accomplish its operations, the device needs
detailed signal sequences peculiar to its type of device. The control unit decodes the
commands received from the channel subsystem, interprets them for the particular type of
device, and provides the signal sequence required for the performance of the operation.

Control unit functions
All channels connect to a control unit prior to connecting to the I/O device. The role of the
control unit is to regulate the I/O-device operation. It provides intelligence, caching and
buffering capabilities necessary to operate multiple I/O requests to the associated I/O
devices. It also does error recovery. Today's control units are very complex, behaving as
several independent logical control units; they are sometimes called I/O subsystems.

Every channel connects to a physical control unit
through a host adapter

The same physical control unit can play the role of
several logical control units

The control unit may be located:

In a separate unit with several devices (as ESS)

In the CEC, such as CTCA or OSA

In the device (as tape)
Chapter 1. Introduction to z/Architecture 75

From the z/OS and application programming perspective, most control unit functions merge
with I/O device functions.

The control unit function may be:

� In a separate control unit

� Integrated with the I/O device, as for some tape devices

� Integrated with the channel in the server as CTCA, OSA

I/O devices
An input/output (I/O) device is the endpoint in the “conduit” between a server and a
peripheral. Although the channel does not communicate directly with I/O devices (it
communicates with control units), it is useful to mention them here because we previously
discussed subchannels, which appear as I/O devices to programs.
76 ABCs of z/OS System Programming Volume 10

1.44 Device number

Figure 1-44 Device number

Device number
Each subchannel that has an I/O device assigned to it also contains a system-unique
parameter called the device number. The device number is a 16-bit value that is assigned as
one of the parameters of the subchannel at the time the device is assigned to the subchannel.

The device number provides a means to identify a device, independent of any limitations
imposed by the system model, the configuration, or channel-path protocols. The device
number is used in communications concerning the device that take place between the system
and the system operator. For example, the device number is entered by the system operator
to designate the input device to be used for initial program loading (IPL), or the operator once
the IPL completes can vary a device online or offline, as follows:

V 200A, online

HCD
A device number is a nickname you assign to identify all the I/O devices in the configuration,
using HCD. A device number may be any hexadecimal number from X'0000' to X'FFFF'
allowing a maximum of 65,536 devices. You should specify the physical unit address in the
Unit Address field in the HCD panel.

HSA
The device number is stored in the UCW (in the Hardware System Area - HSA) at Power-on
Reset (POR) and comes from the IOCDS. Refer to 6.4, “Hardware and software

HSA

LPAR B
Central Storage

LPAR A
Central Storage

UCB
2001

UCB
2000

UCB
183F

6830
6831

6832
6833

FF00

FF01

FF02

FF03

C40
V 200A,ONLINE
 IEE302I 200A ONLINE

V 200B,ONLINE

683F

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

200A

200B

200C

200D

200E

200F

External device label
Four hex digits in range 0000-FFFF
Arbitrarily assigned by sysprog
Used in JCL, commands, messages, EREP
Chapter 1. Introduction to z/Architecture 77

configuration” on page 375, to get more information on IOCDS. HSA is a piece of central
storage not addressable by z/OS. It is allocated at Power-on Reset (POR) and contains LPAR
LIC, microcode work areas, and the I/O configuration as UCWs used by the channel
subsystem. For each pair device/logical partition, there is one UCW representing the device
in HSA.

UCB
The device number is also stored in the UCB at IPL, to be used by IOS. A unit control block
(UCB) holds information about an I/O device, such as:

� State information for the device
� Features of the device

The UCW represents the device from the channel subsystem point of view; an UCB
represents the device from the IOS point of view.

Device number considerations
If your installation is running out of device numbers, you might use the same device number
for two different devices across several z/OS LPARs. The devices have to be attached to
different control units. To indicate whether devices identified by the same device number are
the same or a different device, you can specify the serial number of the device to HCD for
documentation purposes only.

Do not name the same device with different device numbers in different z/OS LPARs, as this
may cause some confusion for your operating staff. However, z/OS perceives that the device
is the same, because it can recognize the device by a CCW called read device
characteristics.
78 ABCs of z/OS System Programming Volume 10

1.45 Subchannel number

Figure 1-45 Subchannel number

Subchannel number
Normally, subchannel numbers are only used in communication between the CP program and
the channel subsystem.

A subchannel number is a system-unique 16-bit (2 bytes) value whose valid range is
0000-FFFF and which is used to address a subchannel. The subchannel is addressed by
eight different I/O instructions. Each I/O device accessible to the channel subsystem is
assigned a dedicated subchannel at installation time.

All I/O functions relative to a specific I/O device are specified by the program by designating
the subchannel assigned to the I/O device. Subchannels are always assigned subchannel
numbers within a single range of contiguous numbers.

The lowest-numbered subchannel is subchannel 0. The highest-numbered subchannel of the
channel subsystem has a subchannel number equal to one less than the number of
subchannels provided. A maximum of 65,536 subchannels, (64 K) devices per LPAR per
CSS, can be provided.

A subchannel is a z/Architecture entity. It provides the logical appearance of a device to z/OS,
and contains information required for sustaining a single I/O operation. I/O operations are
initiated with a device by the execution of I/O instructions that designate the subchannel
associated with the device.

Device identification used for communication

Between CP and channel subsystem

Two bytes

Values from 0000 to FFFF (64K devices)

Index for the UCW in the UCW table

Used by SSCH microcode

To find the requested UCW

Stored in the UCB during the IPL process
Chapter 1. Introduction to z/Architecture 79

In zSeries servers, subchannels are implemented through UCWs, control blocks allocated in
the Hardware System Area (HSA) at Power-on Reset (POR). Then, the subchannel consists
of internal storage (UCW) that contains two types of information:

� Static from the HCD process, describing the paths to the device (CHPIDs), device number,
I/O-interrupt-subclass code, as well as information on path availability.

� Dynamic referred to ongoing I/O operation, such as functions pending or being performed,
next CCW address, status indication. There is just one I/O operation per UCW.

The subchannel number is stored in the UCB at IPL.

Note: When you have devices in control units with the capability of doing parallel I/O
operations (Parallel Access Volume - PAV) as Shark, you need to define a UCW for each
additional parallel I/O.
80 ABCs of z/OS System Programming Volume 10

1.46 Subchannel numbering

Figure 1-46 Subchannel numbering

Subchannel numbering
Subchannel numbers are limited to four hexadecimal digits by hardware and software
architectures. Four hexadecimal digits provides up to 64 K addresses, known as a set. IBM
reserved 256 subchannels, leaving 63.75 K subchannels for general use.

The advent of Parallel Access to Volumes (PAV) has made this 63.75 K subchannels limitation
a problem for larger installations. One solution is to have multiple sets of subchannels, with a
current implementation of two sets. Each set provides 64 K-1 addresses. Subchannel set 0
still reserves 256 subchannels for IBM use. Subchannel set 1 provides to the installation the
full range of 64 K addresses.

Figure 1-46 shows the offset concept of the subchannel number in the UCW table as
assigned during installation. When IOCP generates a basic IOCDS, it creates one
subchannel for each I/O device associated with a logical control unit.

When IOCP generates an LPAR IOCDS, the number of subchannels it generates for the
group of I/O devices associated with a logical control unit depends on the number of logical
control units generated for the group of I/O devices. The total number of subchannels it
generates for the group of I/O devices is the number of I/O devices in the group multiplied by
the number of logical control units generated for that group.

The device may be a physically identifiable unit, or it may be housed internal to a control unit.
In all cases a device, from the point of view of the channel subsystem, is an entity that is
uniquely associated with one subchannel and that responds to selection by the channel

ACTIVATE IODF=55
DYNAMIC ACTIVATION IN
 PROGRESS

LPARs
Central
Storage

HSA (UCW Table)

Dev Num
983F

Dev Num
7040

Dev Num
7041

Dev Num
7042

Dev Num
7043

Dev Num
7044

Subch
#1E37

Subch
#1E38

Subch
#1E39

Subch
#1E3A

Subch
#1E3B

Subch
#1E3C

Channel Subsystem device label
Four hex digits in range 0000-FFFF
Assigned during IOCP
Independent of device number
Used between MVS<->CSS conversation

IOCDS
Chapter 1. Introduction to z/Architecture 81

subsystem by using the communication protocols defined for the type of channel path by
which it is accessible.

Then, the subchannel number is another way for addressing an I/O device. It is a value that is
assigned to the subchannel (UCW) representing the device at POR time. It indicates the
relative position of the UCW in the UCW table. The specific value depends on the position of
the statement IODEVICE in the IOCP; refer to 2.26, “IOCP statements example” on page 145
for more information. The subchannel number was designed to speed up the search of a
UCW during SSCH processing.

In a z990, the maximum number of UCWs is 64 K times 15 times 2, because there is one
UCW table per LPAR per CSS in the HSA; refer to 2.21, “Logical Channel Subsystem
(LCSS)” on page 136. Then the same subchannel number is duplicated in different CSSs.
However, it does not pose a problem because the same z/OS can be in just one CSS.
82 ABCs of z/OS System Programming Volume 10

1.47 Control unit address

Figure 1-47 Control unit address

Control units
A control unit provides the logical capabilities necessary to operate and control an I/O device,
and adapts the characteristics of each device so that it can respond to the standard form of
control provided by the channel subsystem.

Communication between the control unit and the channel subsystem takes place over a
channel path. The control unit accepts control signals from the channel subsystem, controls
the timing of data transfer over the channel path, and provides indications concerning the
status of the device.

Modern DASD I/O control units may offer a great deal of space, already in the terabyte realm.
To reach these figures, they need to have thousands of I/O devices. However, z/Architecture
only allows 256 devices, per channel per I/O control unit, as we see in 1.48, “Unit addresses”
on page 85.

To circumvent this situation, DASD manufacturers use a technique created by an I/O architect
where, for the 3174 network controllers, the same physical control unit responds for several
logical control units, as shown in Figure 1-47. Then, each DASD control unit responds to the
channel as several logical control units (each one with up to 256 devices), each identified by a
CUA® as indicated in the header of the frames used in the communication between channels
and I/O control units.

ESCON channels supports up to 16 I/O logical control units in the CUA (4 bits) field and
FICON supports up to 256 I/O logical control units (8 bits). Then, the actual number of logical

Logical
CU Images

3174-12L
SNA mode

ESCD

LPZ TSO
LOGON

LPA
CHP
17

LPY
CHP
23

LPB LPZ

CHP48

LPC
CHP
21

LPX
CHP
33

3174-12L
non-SNA
mode

ESCD

LPY TSO
LOGON

LPB TSO
LOGON

LPC MVS
CONSOLE

LPY TSO LOGON

(VTAM Cross Domain)

LPA
CHP
17

LPY
CHP
23

LPB LPZ

CHP48

LPC
CHP
21

LPX
CHP
33

CUADD 1

CUADD 2
CUADD 3

CUADD 4

CUADD 5

CUADD 6
Chapter 1. Introduction to z/Architecture 83

control units in a physical I/O control unit depends on the model and the manufacturers of
each one.

ESCON Directors
Figure 1-47 on page 83 shows ESCON Directors (ESCD). The switching function of ESCON
is handled by products called ESCON Directors, which operationally connect channels and
control units only for the duration of an I/O operation (dynamic connection). They can switch
millions of connections per second, and are the centerpiece of the ESCON topology.

Apart from dynamic switching, the ESCON Directors can also be used for static switching of
“single user” control units among different system images (dedicated connection).

Note: ESCON is an integral part of the Enterprise Systems Architecture/390 (ESA/390)
and, by extension, of the z/Architecture. ESCON replaces the previous S/370™ parallel
OEMI with the ESCON I/O interface, supporting additional media and interface protocols.

By replacing the previous bus and tag cables and their multiple data and control lines,
ESCON provides half-duplex serial bit transmission, in which the communication protocol
is implemented through sequences of special control characters and through formatted
frames of characters.
84 ABCs of z/OS System Programming Volume 10

1.48 Unit addresses

Figure 1-48 Unit address

Unit address
The unit address (UA) or device address is used to reference the device during the
communication between a channel and the control unit serving the device. The UA is two-hex
digits in the range 00-to-FF, and is stored in the UCW as defined to HCD. It is transmitted over
the I/O interface to the control unit by the channel.

ESCON channel
An ESCON channel can reach up to 16 control units (the CUA field has 4 bits), with 256
devices each (the UA has 8 bits). An ESCON channel executes commands presented by the
standard z/Architecture or ESA/390 I/O command set, and it manages its associated link
interface (link level/device level) to control bit transmission and reception over the optical
medium (physical layer). On a write command, the channel retrieves data from central
storage, encodes it, and packages it into device-level frames before sending it on the link. On
a read command, the channel performs the opposite operation.

Control unit
The UA has no relationship to the device number or the subchannel number for a device.
Although Figure 1-49 on page 87 shows the device numbers at the control unit, the control
unit is not aware of device numbers. Some control units attached to zSeries require a unit
address range starting at X'00', as shown in Figure 1-49 on page 87. The unit address
defined in HCD must match the unit address on the control unit where the device has been
physically installed by the hardware service representative.

UCW
UA=04

7040 7041 7042 7043 7044 7045 7046 7047Device Number

Unit Address 00 01 02 03 04 05 06 07

CHP
 2C

CHP
 32

CHP
 24

CHP
 29

SSCH subchannel number
X '1E38'

Two hex digits in range 00-FF

Used to select a device on a
channel

Defined by a sysprog in HCD,
taken from physical definition in
the controller

Control Unit
Chapter 1. Introduction to z/Architecture 85

I/O operation
In the visual, IOS issues the SSCH instruction pointing to the UCW with the subchannel
number X’1E38’. One of the channels (24, for example) handling the I/O operation fetches
from the UCW the UA 04. Channel 24 starts the dialogue with the control unit passing the UA
04, identifying the specific device for the I/O operation.

In summary:

� The device number is used in communication between an operator and MVS.

� The subchannel number is used in communication between CPU (z/OS) and channel
subsystem.

� The unit address is used in communication between the channel and the control unit.
86 ABCs of z/OS System Programming Volume 10

1.49 Map device number to device address

Figure 1-49 Mapping device numbers to device addresses

Device address through JCL
Figure 1-49 shows how, in an ESCON environment, the device number is mapped to the
device address. The UNIT parameter in the DD card in the JCL specifies the device number
through an esoteric or generic name. Also, a specific device number may be specified. This
information is used to allocate the data set associated with this DD statement.

MVS allocation
Allocation of a data set in MVS terms means to associate the data set DD statement (through
a TIOT, a control block) with the UCB of the device containing the data set. The UCB has all
the information needed for the preparation of the SSCH instruction by IOS, including the
subchannel number.

The channel subsystem, through a ESCON channel, finds in the UCW (through the
subchannel number) the receiver address (port address in the ESCD switch, control unit, and
unit address) to be placed in the ESCON frame.

Figure 1-49 also shows that any operator command that refers to a device uses the device
number.

MVS
UCB

(SSCH)

JCL LCUESCDESCD

Device
number

Console msgs
Commands

UNIT =
Device name:
Device type:
Device number:

SYSALLDA
3390
200A

(Esoteric)
(Generic)

Unit
address '0A'

Device
number

200A

S/390 ESCON
I/O interface

Port address
Control unit address
Unit address UA=0A

1A

2A

8A

9A

ESCDESCD

ESCDESCD

ESCDESCD

CHANNEL
SUBSYSTEM

LCU

LCU

LCU

 sub
channel
number
Chapter 1. Introduction to z/Architecture 87

1.50 Multiple channel paths to a device

Figure 1-50 Multiple channels to a device

I/O devices
I/O devices are attached through I/O control units to the channel subsystem. The idea here is
that, instead of having intelligence in all devices, the I/O designer centralized it in the I/O
control unit. A channel path is simply a route to a device from the server.

An I/O device may be accessed by an z/OS system through as many as eight different
channels. Also, an I/O device may be accessible to a server (channel subsystem) by as many
as eight different channels.

Control units
Control units may be attached to the channel subsystem through more than one channel
path. SAP is in charge of selecting the channel to reach the device; usually it balances the
channel utilization by rotating the one selected. Also, an I/O device may be attached to more
than one control unit.

DEVSERV command
Use the DEVSERV command to request a display of the status of DASD and tape devices.
The response is a display of basic status information about a device, a group of devices, or
storage control units, and optionally can include a broad range of additional information.

In Figure 1-50, the DEVSERV (DS) command output indicates that the device with a device
number 0CC0 has 4 connected channels: 10, B0, 88 and DC. It also shows that CHPID DC is
physically unavailable.

Processor

ESCON DIRECTOR

Control Unit

I/O Device
CC0 String

 IEE459I 11.48.20 DEVSERV PATHS 667
 UNIT DTYPE M CNT VOLSER CHPID=PATH STATUS
 RTYPE SSID CFW TC DFW PIN DC-STATE CCA DDC ALT CU-TYPE
 0CC0,33902 ,O,000,PMUDAS,10=+ B0=+ 88=+ DC=<
 000A Y YY. YY. N SIMPLEX 00 00 3990-6
 ************************ SYMBOL DEFINITIONS ************************
 O = ONLINE + = PATH AVAILABLE
 < = PHYSICALLY UNAVAILABLE

IEE174I 11.52.23 DISPLAY M 670
DEVICE 0CC0 STATUS=ONLINE
CHP 10 B0 88 DC
PATH ONLINE Y Y Y N
CHP PHYSICALLY ONLINE Y Y Y Y
PATH OPERATIONAL Y Y Y N

 Channel path DC is unavailable to dev

CC0 but there is still access to the CC0
device through the other 3 paths

ds p,CC0,1

d m=dev(CC0)
88 ABCs of z/OS System Programming Volume 10

DISPLAY M command
Use the DISPLAY M command to display the status of sides, servers, vector facilities, ICRFs,
channel paths, devices, central storage, and expanded storage, or to compare the current
hardware configuration to the configuration in a CONFIGxx parmlib member. The system is to
display the number of online channel paths to devices or a single channel path to a single
device.

In Figure 1-50 on page 88, the command output shows the device status as online and for
each of the CHPIDs, (10, B0, 88, and DC), whether the channel path in online, the CHPID is
online, and the path is operational.

Note: The total number of channel paths provided by a channel subsystem depends on
the model and the configuration; the maximum number of channel paths is 256 per server.
Chapter 1. Introduction to z/Architecture 89

1.51 Start subchannel (SSCH) logic

Figure 1-51 SSCH logic

START SUBCHANNEL (SSCH) instruction
SSCH is a privileged instruction issued by the Input/Output Supervisor (IOS) component of
z/OS. IOS issues this instruction when responding to an I/O request from a task when there is
not another ongoing I/O operation running in the device represented by the target UCB. If
there is, this request is queued at the UCB level, also called the IOS queue. Remember that if
it is a PAV device, then the I/O operation may start immediately.

The SSCH instruction has two operands:

� General register 1 contains a subsystem-identification word that designates the
subchannel number to be started.

� The second-operand address is the logical address of the operation request block (ORB)
and must be designated on a word boundary; otherwise, a specification exception is
recognized.

Subchannel number
This is an index into the UCW associated with the I/O device (refer to 1.45, “Subchannel
number” on page 79). It indicates the device where the I/O operation will be executed.

ORB
The ORB is an architected control block informing about what to do during the I/O operation;
among other fields, it contains the channel program address. Refer to z/Architecture
Reference Summary, SA22-7871, for the ORB contents.

IOS CODE

SSCH

Channel
Subsystem

0RB

(Subchannel
number)

ORB Executes

Points
to

CCW
CCW
CCW

Move
contents

UCWs

Pass the
control

CP SAP Channel
90 ABCs of z/OS System Programming Volume 10

SSCH logic
The channel subsystem is signaled to asynchronously perform the start function for the
associated device, and the execution parameters that are contained in the designated ORB
are placed at the designated subchannel, as follows:

� The SSCH microcode in the CP moves the ORB contents into the dynamic part of the
respective UCW and places the UCW in a specific Hardware System Area (HSA) queue
called the initiative queue.

There is one initiative queue per SAP.

� The number of SAPs is server model-dependent, but in the z10 EC, you may have up to
three SAPs per book; refer to “A book (logical view)” on page 121 for more detailed
information. One I/O card is served by just one SAP, so depending on which channels
serve the device, the right SAP is chosen by the SSCH microcode.

� After that SSCH logic completes, the next IOS instruction is executed, which later will
allow the use of the CP in another task.
Chapter 1. Introduction to z/Architecture 91

1.52 SAP PU logic

Figure 1-52 RMF I/O queueing report

SAP logic
The SAP acts as an offload engine for the CPUs. Different server models have different
numbers of SAPs, and a spare 9672 PU can be configured as an additional SAP.

SAP functions include:

� Execution of ESA/390 I/O operations. The SAP (or SAPs) are part of the I/O subsystem of
the server and act as Integrated Offload Processor (IOP) engines for the other servers.

� Processor check handling and reset control.

� Support functions for the Service Call Logical Processor (SCLP).

The SAP finds the UCW in the initiative queue and tries to find an available channel path
(channel, port switch, I/O control unit and device) that succeeds in starting the I/O operation.
SAP uses the I/O configuration information described in the Hardware Configuration
Definition (HCD), now stored in the static part of the UCW, to determine which channels and
control units can reach the target device. Initial selection may be delayed if:

� All channel paths (serving the device) are busy (CP busy). The I/O request is queued at
initiative queue again (in the same or from other SAP).

� ESCON Director port is busy (DP busy). SAP tries either another path (if this other path
goes through another port), or the I/O request is queued in an LCU queue.

� The control unit interface, called the host adapters busy (CU busy). SAP tries either
another path (if this other path goes through another logical control unit), or the I/O
request is queued in an LCU queue.

z/OSz/OS ICFz/VM Linux
CFCC

LinuxLinux

LinuxCMS

LPAR 1 LPAR 2 LPAR 3 LPAR 4 LPAR 5
(CP PU) (CP PU) (IFL PU) (ICF PU) (IFL PU)

zSeries Server

Channel Subsystem
(SAP PU)
92 ABCs of z/OS System Programming Volume 10

� The device is busy, due to shared DASD (several z/OS systems connected to the same
device) activity generated in another z/OS (DV busy). The I/O request is delayed.

During all of these delays, the I/O request is serviced by the System Assist Processor (SAP)
without z/OS awareness. If the channel path is not fully available, as we mentioned, SAP
queues the I/O request (represented by the UCW) in some queues (depending on the type of
delay).

The same I/O request may be queued several times by the same or other delay reasons.
These queue are ordered by the I/O priority, as determined by the z/OS component Workload
Manager (WLM).

When the I/O operation finishes (device-end status is presented), SAP queues the UCW
(containing all the I/O operation final status) in the I/O interrupt queue, ready to be picked up
by any enabled CPU. All the time between the SSCH and the real start of the I/O operation is
timed by SAP and is called pending time.
Chapter 1. Introduction to z/Architecture 93

1.53 Channel processing

Figure 1-53 Channel processing

CCWs
The channel command word (CCW) is required to perform I/O requests to any type of device.
The CCW, or chain of CCWs, is constructed by the requestor, which may be an access
method or an I/O request by a program using standard assembler macros.

There may be more than 1 CCW in an I/O request to read or write data to devices, and the
request is sometimes referred to as the channel program. In a channel program, (CCW) is the
address of the CCW (shown as @CCW in Figure 1-53), which describes the following:

� How to locate the record in the device (cylinder, track, block)
� Physical record length (COUNT)
� Address in the memory from or to the data is moved (@DATA)
� Flags telling when the channel program ends

I/O request from a program
Programs executing in the CP initiate I/O operations with the instruction START
SUBCHANNEL (SSCH).

I/O request to the subchannel
This SSCH instruction passes the contents of an operation-request block (ORB) to the
subchannel. The contents of the ORB include the subchannel key, the address of the first
CCW to be executed, and a specification of the format of the CCWs. The CCW specifies the
command to be executed and the storage area, if any, to be used.

C S S
C
H
A
N
N
E
L

 C
 O U
 N N
 T I
 R T
 O
 L

PATH

S A P

CCWs are
constructed
by Access
Methods

FLAGS: Key, Suspend, Format, Prefetch, Initial, Address Limit, LPM, Length

SSCH

@UCB

REG1
SID

@CCW

FLAGS

FLAGS:
CD USE @DADOS NEXT CCW
CC USE COMMAND NEXT CCW
SLI IGNORE ERROR IN SIZE
SKIP NO DATA TRANSFER
PCI CAUSES INTERRUPTION AT CCW FETCH
IDA ADDRESS OF IDA WORD (2 KB)
S SUSPEND CHANNEL PROGRAM

 @DATA

CMD FLGS COUNT @DATA

O
R
B

1

2

0

CCW (Memory)

CCW

CCW
CCW

CCW

Memory

3

Device

0

94 ABCs of z/OS System Programming Volume 10

When the ORB contents have been passed to the subchannel, the execution of START
SUBCHANNEL is complete. The results of the execution of the instruction are indicated by
the condition code set in the program status word. When facilities become available, the
channel subsystem fetches the first CCW and decodes it according to the format bit specified
in the ORB.

Channel path selection to device
If the first CCW passes certain validity tests and does not have the suspend flag specified as
a one, the channel subsystem attempts device selection by choosing a channel path from the
group of channel paths that are available for selection. A control unit that recognizes the
device identifier connects itself logically to the channel path and responds to its selection.

The channel subsystem sends the command code part of the CCW over the channel path,
and the device responds with a status byte indicating whether the command can be executed.
The control unit may logically disconnect from the channel path at this time, or it may remain
connected to initiate data transfer.

Communication paths
This communication is managed by a protocol such as ESCON, FICON, FICON EXPRESS
and FCP (FCP is not supported by z/OS, but is supported in zSeries for Linux), which
determines the channel type and the host adapter type in the I/O control unit. Refer to 1.41,
“Channel subsystem” on page 71 for all the channel types.

However, independently of the channel type and the I/O control unit host adapter type, the
information needed by the channel to execute the I/O operation (together with the I/O control
unit) is described in a channel program. Making an analogy, the CPU execute programs made
of instructions, and the channel executes channel programs made of Channel Command
Words (CCWs). The channel program is written by z/OS components such as VSAM, QSAM,
BSAM, and BPAM.

Note: During the execution of the I/O operation, there are moments when the channel is
connected to the control unit, transferring data and control information. There are other
times when only the control unit is working (such as in a cache miss); this time is called
disconnected.
Chapter 1. Introduction to z/Architecture 95

1.54 I/O interrupt processing

Figure 1-54 I/O Interrupt processing

Device end condition (DE)
A device end status condition generated by the I/O device and presented following the
conclusion of the last I/O operation of a start function is reset at the subchannel by the
channel subsystem without generating an I/O-interrupt condition or I/O-interrupt request, if
the subchannel is currently start pending and if the status contains device end either alone or
accompanied by control unit end (CE). If any other status bits accompany the device end
status bit, then the channel subsystem generates an I/O interrupt request with deferred
condition code 1 indicated.

I/O interrupts
The traditional I/O for z/Architecture is an interrupt-driven architecture (the channel interrupts
the CP when the I/O completes), as follows:

� When an interrupt condition is recognized by the channel subsystem, it is indicated at the
appropriate subchannel.

� The subchannel then has a condition of status pending.

� The subchannel becoming status pending causes the channel subsystem to generate an
I/O-interrupt request.

� An I/O-interrupt request can be brought to the attention of the program only once. An
I/O-interrupt request remains pending until it is accepted as follows:

– By a CP in the configuration.
– It is withdrawn by the channel subsystem.

C S S
C
H
A
N
N
E
L

C
O
N
T
R
O
L

PATH

S A P

CCWs
SCSW

RG1 UCW#

I
R
B

CP

CR 6 mask

1

CR 6 = I/O Interrupts Subclass Mask

CE/DE, with or w/o

UNIT CHECK

I O S

EXT.CTRL

EXT.STAT

TSCH

SSCH

TPI

24
5

UCB

7

8

9

HSAHSA
UCWUCW

3

6
IOQIOQIOQ

CE /DE

DE

I/O “DISABLED”

U
N
I
T

Device
96 ABCs of z/OS System Programming Volume 10

– It is cleared by means of the execution of TEST PENDING INTERRUPTION (TPI),
TEST SUBCHANNEL (TSCH), or CLEAR SUBCHANNEL, or by means of subsystem
reset.

� When a CP accepts an interrupt request (the CP can be disabled individually by a channel
through control register (CR) 6) and stores the associated interrupt code, the interrupt
request is cleared and the I/O new PSW is loaded in the current PSW.

Alternatively, an I/O interrupt request can be cleared by means of the execution of TEST
PENDING INTERRUPTION (TPI).

In either case, the subchannel remains status pending until the associated interrupt
condition is cleared when TEST SUBCHANNEL or CLEAR SUBCHANNEL is executed, or
when the subchannel is reset.

� By means of mask bits in the current PSW, a CP may be enabled or disabled for all
external, I/O, and processor check interruptions and for some program interrupts. When a
mask bit is one, the CP is enabled for the corresponding class of interrupts, and those
interrupts can occur. When a mask bit is zero, a CP is disabled for the corresponding
interrupts. The conditions that cause I/O interrupts remain pending.

Interruption-response block (IRB)
The IRB is the operand of the TEST SUBCHANNEL (TSCH) instruction. The two rightmost
bits of the IRB address are zeros, designating the IRB on a word boundary. The IRB contains
three major fields:

� Subchannel-status word
� Extended-status word
� Extended-control word

Usually, IOS then posts the task waiting for the I/O operation, and changes its state from wait
to ready. Another SSCH may be executed for a previously queued I/O request.

In certain error situations, the I/O interrupt is not generated within an expected time frame.
The MVS component Missing Interrupt Handler (MIH), a timer-driven routine, alerts IOS
about this condition.
Chapter 1. Introduction to z/Architecture 97

1.55 I/O summary

Figure 1-55 I/O summary

I/O summary
Figure 1-55 shows a summary of the flow of an I/O operation from the request issued by an
application until the operation completes.

1. The user program grants access to the data set by issuing an OPEN macro, which invokes
the Open routine through an SVC instruction. Later, to request either input or output of
data, it uses an I/O macro like GET, PUT, READ, or WRITE, and specifies a target I/O
device. These macros generate a branch instruction, invoking an access method. An
access method has the following functions:

– Writes the channel program (with virtual addresses)
– Implements buffering
– Guarantees synchronization
– Executes I/O recovery

The user program could bypass the access method, but it would then need to consider
many details of the I/O operation, such as the physical characteristics of the device.

2. There are several z/OS access methods, such as VSAM, BSAM, and BPAM, each of
which offers differing functions to the user program. The selection of an access method
depends on how the program plans to access the data (randomly or sequentially, for
example).

ESCDESCD

ESCDESCD

ESCDESCD

ESCDESCD

Device
number
200A

Channel
SubsystemI/O

DRVs

ASM

JES

VTAM

EXCP

Appl
Storage

IOS

IOQ
 IOSB
 CCW
 CCW

SSCH

ORB
 LPM
 CCW
 CCW

TSCH

I/O
Interrupt

IRB

99

DEVDEV

CU

CU

CU

CU

Access
Method

User
Appl

22

11

PUT or
GET
READ or
WRITE

55

1010

33

IOSB

UCB
200C

UCB
200B

UCB
200A

UCB
2009

UCB
2008

44

88

77

S/C
1E39

S/C
1E38

S/C
1E37

S/C
1E36

S/C
1E35

66

ESCDESCD

ESCDESCD

ESCDESCD

ESCDESCD

Device
number
200A

Channel
SubsystemI/O

DRVs

ASM

JES

VTAM

EXCP

Appl
Storage

IOS

IOQ
 IOSB
 CCW
 CCW

SSCH

ORB
 LPM
 CCW
 CCW

TSCH

I/O
Interrupt

IRB

99

DEVDEV

CU

CU

CU

CU

Access
Method

User
Appl

22

11

PUT or
GET
READ or
WRITE

55

1010

33

IOSB

UCB
200C

UCB
200B

UCB
200A

UCB
2009

UCB
2008

44

88

77

UCW
1E39

UCW
1E38

UCW
1E37

UCW
1E36

UCW
1E35

66
98 ABCs of z/OS System Programming Volume 10

3. To request the movement of data, the access method presents information about the
operation to an I/O driver routine (usually the EXCP driver) by issuing the EXCP macro,
which expands into an SVC 0 instruction.

The I/O driver translates the channel program from virtual to real (a format acceptable by
the channel subsystem), fixes the pages containing the CCWs and the data buffers,
guarantees the volume extents, and invokes the I/O Supervisor (IOS).

4. IOS, if there is no pending I/O operation for the required device (originated previously in
this system), issues the Start Subchannel (SSCH) instruction to the channel subsystem.
Then the CPU continues with other work (the task executing the access method is
probably placed in wait state) until the channel subsystem indicates with an I/O interrupt
that the I/O operation has completed. If the device is busy, the request is queued in the
UCB control block.

5. The SAP selects a channel path to initiate the I/O operation. This channel executes the
channel program controlling the movement of data between device, control unit, and
central storage.

6. When the I/O operation is complete, SAP signals the completion by generating an I/O
interrupt towards any I/O-enabled CPU.

7. IOS processes the interrupt by determining the status of the I/O operation (successful or
otherwise) from the channel subsystem. IOS reads the IRB to memory by issuing the
TSCH instruction. IOS indicates that I/O is complete by posting the waiting task and calling
the dispatcher.

8. When appropriate, the dispatcher dispatches the task returning to the access method
code.

9. The access method returns control to the user program, which can then continue its
processing.
Chapter 1. Introduction to z/Architecture 99

100 ABCs of z/OS System Programming Volume 10

Chapter 2. IBM System z

IBM System z9 is the product line name of several models of mainframe servers. The new
family name is IBM System z. The z9 EC and z9 BC are the most current models of
mainframe servers. They are based on the proven IBM z/Architecture which was first
introduced with the zSeries family of servers. The zSeries family of servers, z800, z890, z900,
and z990, are now included in the IBM system z family.

Terminology is always important, and it can be confusing when several products have similar
names. We use the following terminology in this book:

Full Name: IBM System z9 Business Class server z9 BC and IBM System z9 Enterprise
Class server z9 EC

Short name: z9 EC (previously z9-109) and z9 BC

This chapter is mostly about z9 EC, and when no server is stated, we are referring to z9 EC.
The items covering the z9 BC are clearly stated up front.

z9 EC delivers enhancements, compared with previous zSeries servers, in the areas of
performance, scalability, availability, security and virtualization. On the other hand, it retains
key platform characteristics such as dynamic and flexible resource management, clustering,
goal-oriented performance management, and partitioning of predictable and unpredictable
workload environments.

These servers can be configured in numerous ways to offer outstanding flexibility in
deployment of e-business on demand® solutions. Each z9 EC server can operate
independently, or as part of a Parallel Sysplex cluster of servers. In addition to z/OS, the z9
EC can host sets of ten to hundreds of Linux images running identical or different applications
in parallel, based on z/VM virtualization technology.

The z9 EC has been designed using a holistic approach that includes the latest operating
system, middle ware, storage, and networking technologies. The synergies gained through

2

© Copyright IBM Corp. 2008. All rights reserved. 101

this collaborative design and development enables the elements to support each other, while
helping to delivering additional value to your business.

Its multi-book design provides enhanced availability and a great degree of flexibility to tailor
the server to your precise needs, while the wide choice of specialty servers enables key
workloads to be deployed at lower cost of ownership.

The IBM System z9 Enterprise Class (z9 EC, formerly z9-109) continues the evolution of the
mainframe, building upon the structure introduced on z990 in support of z/Architecture. The
z9 EC further extends and integrates key platform characteristics such as dynamic and
flexible partitioning, resource management in mixed and unpredictable workload
environments, availability, scalability, clustering, and security and systems management with
emerging e-business on demand application technologies (for example, WebSphere®, Java,
and Linux).

The IBM System z9 Business Class server (also known as the z9 BC server) is part of the
next step in the evolution of the mainframe family. Based on the IBM System z9 109, it also
introduces new functions and extensions.
102 ABCs of z/OS System Programming Volume 10

2.1 z9 EC models overview

Figure 2-1 The z9 EC server

z9 EC models
Initially, we cover the z9 EC model characteristics. Later in this chapter, we cover the z9 BC
characteristics.

A z9 EC server is comprised of two frames (A and Z). Each frame has two cages. One of the
four cages is a server cage. The other three cages are I/O cages.

The server cage can have up to four components known as books. Each book is made of
processor units (PUs), memory, and paths to I/O channels.

The z9 EC has five configuration model offerings, from one to 54 characterizable processor
units (PUs). The configuration models vary with the number of books and the number of PUs
per book.

The first four configuration models (S08, S18, S28, and S38) have 12 PUs per book. The
middle digit, plus one, tells the number of books. The last two digits tell the number of
characterizable PUs. There is also a fifth configuration model, the high capacity model (the
S54), which has 16 PUs in each of its four books.

Note: Unlike prior server model names, which indicate the number of purchased CPs, the
z9 EC model names indicate the maximum number of processor units potentially
orderable, and not the actual number that have been ordered.
Chapter 2. IBM System z 103

New superscalar server
The z9 EC PU is superscalar. It has the capacity of executing several instructions at the same
cycle time. The exploitation of the CMOS 10S-SOI technology (state-of-the-art technology
based on eight-layer copper interconnections and silicon-on Insulator) also improves (takes
less cycle time) uniprocessor performance by 33%, compared to the z990 uniprocessor.

By increasing the number of CPs and decreasing the cycle time, the largest z9 EC
configuration model, S54, provides up to 95% more total system capacity than the largest
z990 model D32.

Model configurations
The z9 EC server model nomenclature is based on the number of PUs available for customer
use in each configuration. Five models of the z9 EC server are available:

Model S08 Eight PUs are available for characterization as CPs, IFLs, ICFs, up to four
zAAPs or zIIPs, or up to five additional SAPs.

Model S18 Eighteen PUs are available for characterization as CPs, IFLs, up to 16 ICFs,
up to nine zAAPs or zIIPs, or up to 13 additional SAPs.

Model S28 Twenty-eight PUs are available for characterization as CPs, IFLs, up to 16
ICFs, up to 14 zAAPs or zIIPs, or up to 21 additional SAPs.

Model S38 Thirty-eight PUs are available for characterization as CPs, IFLs, up to 16
ICFs, up to 19 zAAPs or zIIPs, or up to 24 additional SAPs.

Model S54 Fifty-four PUs are available for characterization as CPs, IFLs, up to 16 ICFs,
up to 27 zAAPs or zIIPs, or up to 24 additional SAPs.
104 ABCs of z/OS System Programming Volume 10

2.2 z9 BC models overview

Figure 2-2 z9 BC overview

z9 BC overview
There is just one frame that includes:

� One book, containing PUs, memory, and STI ports

� Two ThinkPads that are used as Support Elements

� One I/O cage with 16 or 28 available I/O slots (depending on model)

Many I/O cards from a zSeries processor can be moved forward to the z9 BC server.

z9 BC models
There are two models of the z9 BC server. Both have many capacity levels, but there is little
overlap between the capacity levels of the two models. In addition, the larger model has more
logical partitions, potentially more CPs, and more usable I/O slots. Key facts include:

� Both models contain eight PUs.

� Both models include one SAP processor, leaving a maximum of seven PUs than can be
characterized as follows:

– Model R07 can contain from one to three CPs, with the remaining PUs being specialty
processors or unused.

– Model S07 can contain zero to four CPs, with the remaining PUs being specialty
processors or unused.

� In these modes, the PU speed can be changed or varied.

IBF (battery) feature

Dual Support
Elements (SEs)
(swingout)

Processor book

Air blocks

I/O cage

Fibre trunk

Power Sequence
Controller (PSC)
possible but not shown
Chapter 2. IBM System z 105

� There is no dedicated spare PU in the z9 BC server; however, uncharacterized PUs are
used as spares.

� Model R07 provides up to 15 LPs; model S07 provides up to 30 LPs.

� Model R07 provides up to 16 I/O slots; model S07 provides up to 28 I/O slots (as the z9
EC server).

� Both models provide up to 64 GB memory.

There are 73 possible combinations of capacity levels and numbers of processors. These
offer considerable overlap in absolute capacity, provided different ways. For example, a
specific capacity (expressed as MSUs) might be obtained with a single faster CP or with three
slower CPs. The hardware cost is approximately the same. The single-CP version might be a
better choice for traditional CICS® workloads (single task), and the three-way server might be
a better choice for mixed batch workloads.

Table 2-1 on page 107 lists the processor capacity of the various z9 BC processor
configurations in MSUs/hour.

A key characteristic of the z9 BC server is that the processor hardware price is based on the
total processor capacity purchased, not on the number of processors purchased.
106 ABCs of z/OS System Programming Volume 10

Table 2-1 Relative capacity

Capacity
indicator

Model R07 Model S07

1 CP 2 CP 3 CP 1 CP 2 CP 3 CP 4 CP

CP A 4 7 10

CP B 5 10 15

CP C 6 12 18

CP D 8 16 23

CP E 10 19

CP F 12 24

CP G 15

CP H 18

CP I 21

CP J 24

CP K 30

CP L 28 36

CP M 34 45

CP N 30 43 56

CP O 36 52 67

CP P 41 59 77

CP Q 47 68 88

CP R 27 52 76 99

CP S 30 59 85 111

CP T 34 66 95 124

CP U 38 73 106 138

CP V 42 82 119 155

CP W 47 92 134 174

CP X 53 103 150 195

CP Y 59 115 166 216

CP Z 67 130 189 246
Chapter 2. IBM System z 107

2.3 Processor unit (PU) instances

Figure 2-3 List of processor unit (PU) instances

Processor unit instances
All PUs are physically identical. However, at Power-on Reset, it is possible to have different
types of servers by loading unique microcode, leading to different instances and functions.
Some of these can be ordered by customers and are known as characterizable. Following are
the PU instances:

CP A CP is able to execute the following operating systems: z/OS, Linux, z/ VM,
Coupling Facility Control Code (CFCC), and TPF.

IFL This type of PU is only able to execute Linux and Linux under z/VM.

ICF This type of PU is only able to execute CFCC. The CFCC is loaded in a CF LP
from a copy in HSA; after this, the LP is activated and IPLed.

SAP A System Assist Processor (SAP) is a PU that runs the Channel Subsystem
Licensed Internal Code to control I/O operations. All SAPs perform I/O operations
for all logical partitions.

All z9 EC models have standard SAPs configured. z9 EC Model S08 has two
SAPs; Model S18 has four SAPs; Model S28 has six SAPs; and Model S32 and
Model S54 have eight SAPs as the standard configuration.

zAAP This type of PU is a server purchased and activated for exclusive use to run Java
code under control of z/OS JVM.

zIIP This type of PU is run in z/OS only, for eligible DB2 workloads such as business
intelligence (BI), ERP, and CRM.

Central processor (CP)

Integrated Facility for Linux (IFL)

Integrated Coupling Facility (ICF)

z9 Application Assist Processor (zAAP)

z9 Integrated Information Processor (zIIP)

System Assist Processor (SAP)

Spare
108 ABCs of z/OS System Programming Volume 10

Spare This type of PU is able to replace, automatically and transparently, any falling PU
in the same book, or in a different book. There are at least two spares per server.

Ordering z9 EC models
When a z9 EC order is configured, PUs are characterized according to their intended usage.
They can be ordered as follows:

CP The PU purchased and activated supporting the z/OS, z/VSE,
VSE/ESA™, z/VM, TPF, and Linux operating systems. It can also run
Coupling Facility Control Code (CFCC). A CP can also be configured
to run as an SAP.

Capacity marked CP A CP purchased for future use as a CP is marked as available
capacity. It is offline and unavailable for use. A capacity marker
identifies that a certain number of CPs have been purchased. This
number of purchased CPs is higher than the number of CPs actively
used.

The capacity marker marks the availability of purchased but unused
capacity intended to be used as CPs in the future; they usually have
this status for software charging reasons. Unused CPs do not count in
establishing the MSU value to be used for MLC software charging, or
when charged on a per server basis.

IFL The Integrated Facility for Linux is a PU that is purchased and
activated for exclusive use by the z/VM for Linux guests and Linux
operating systems.

Unassigned IFL This is a PU purchased for future use as an IFL. It is offline and
unavailable for use.

ICF A PU purchased and activated for exclusive use by the Coupling
Facility Control Code (CFCC).

zAAP A PU purchased and activated for exclusive use to run Java code
under control of z/OS JVM.

zIIP A PU purchased and activated for exclusive use by DB2 UDB for z/OS
V8 to run eligible workloads.

Additional SAP The optional System Assist Processor is a PU that is purchased and
activated for use as an SAP.

The maximum number of CPs (54) is derived by the following account:

4 books x 16 PUs - (2 SAPs/book x 4) - (2 spares)

The development of a multi-book system provides an opportunity to concurrently increase the
capacity of the system in several areas:

� You can add capacity by concurrently activating more characterizable PUs, such as CPs,
IFLs, ICFs, zIIPs, zAAPs or SAPs, on an existing book.

� You can add a new book concurrently and activate more CPs, IFLs, ICFs, zIIPs, zAAPs or
SAPs.

� You can add a new book to provide additional memory and STIs to support increasing
storage and/or I/O requirements.
Chapter 2. IBM System z 109

2.4 z9 EC frames and cages

Figure 2-4 z9 EC frames and cages

z9 EC frames and cages
There are two frames:

� Frame A has two cages: the PU cage (where the books are) on top, and an I/O cage at the
bottom, plus power and cooling units (MRU) and optional internal battery feature.

� Frame Z contains one or two I/O cages, or it can be without an I/O cage. It is always
present, even if no I/O cages are installed in it. It always has two ThinkPads, which are
used as support elements for operations, and basic power management.

Optional battery feature (IBF)
IBF keeps the server powered up for up to 13 minutes when there is a power outage. This
time amount is dependent on the number of I/O cages. In practical terms, the IBF can be
used as follows:

� To keep the storage contents of the LP running the non-volatile Coupling Facility (CF),
then allowing structures rebuild in the other CF.

� For orderly shutdown of z/OS in case of a longer outage, if the I/O storage configuration
has an alternate source of power (which is usually the case).

� To avoid disruption while waiting for the power outage to pass.

I/O cages
I/O cages can house all supported types of channel cards. An I/O cage accommodates up to
420 ESCON channels or up to 112 FICON Express4 channels in the absence of any other
card. Up to three I/O cages are supported.

Internal batteries

Power supplies

3 I/O cages

Hybrid cooling

Four books

2 support elements

Front View

Frame AFrame Z
110 ABCs of z/OS System Programming Volume 10

2.5 PU cage and books

Figure 2-5 A book (a hardware view)

PU cage and books
A book has processor units (PUs), memory, and connectors (STIs) to I/O cages where I/O
channels are. Books are located in the PU cage in Frame A. A view of a book is shown in
Figure 2-5. A book is approximately 56 cm high and 14 cm wide and weighs about 32 kg with
memory cards fully populated. It contains the following:

� 16 GB to 128 GB of physical memory. Up to eight memory cards (minimum of four), each
containing 4, 8, or 16 GB.

� Up to eight memory bus adapters (MBAs), supporting up to 16 self-timed interconnects
(STIs) to the I/O cages and/or ICB-4 channels.

The model number tells the number of books and characterizable PUs:

� S08 with one book with 12 PUs, up to 8 characterizable PUs, 2 SAPs and 2 spares

� S18 with two books with 24 PUs, up to 18 characterizable PUs, 4 SAPs and 2 spares

� S28 with three books, up to 36 PUs, up to 28 characterizable PUs, 6 SAPs and 2 spares

� S38 with four books, up to 48 PUs, up to 38 characterizable PUs, 8 SAPs and 2 spares

� S54 with four books, up to 64 PUs, up to 54 characterizable PUs, 8 SAPs and 2 spares

A characterizable PU can be any of the following: CP, IFL, ICF, zAAP, zIIP, or an additional
SAP.

MCM

 Memory cards

MBA/STI fan out cards
Chapter 2. IBM System z 111

2.6 z9 EC Multichip module (MCM)

Figure 2-6 A z9 EC multichip module (MCM)

Multichip module
The z9 EC multichip module (MCM) contains 16 chips. There is one MCM in each book. The
chips are used as follows:

� Eight are processor unit chips; the number of PUs depends on the model:

– Sx8: The MCM contains 12 PUs, because four of these chips house two PUs each.

– S54: The MCM contains 16 PUs, because the eight chips house two PUs each.

� Four chips are system data (SD) chips for the L2 cache (10 MB each chip).

� One is the storage control (SC) chip.

� Two chips are used for the memory storage controller (MSC), which carries the memory
subsystem control function in charge of moving data between the L2 cache and memory
(PMAs), as ordered by SC.

� One chip is used for the clock (CLK-ETR) function that generates pulses each cycle time.

The 95 x 95 mm glass ceramic substrate on which these 16 chips are mounted has 102
layers of glass ceramic, with 545 meters of internal wiring. The total number of transistors on
all chips amounts to more than 4.5 billion.

Each PU has an on-chip Level 1 cache (L1) of 512 KB, also called the High Speed Buffer
(HSB). The PUs on the MCM in each book are implemented with a mix of single-core (one PU
per chip) and double-core (two PUs per chip). Each PU runs at a cycle time of 0.58 nsecs, as
ticked by the clock located in the MCM.

MSC MSCPU PU

PU

PU

PU PU

PU

PUSD SD

SD SD

SCCLK

MSC MSCPU PU

PU

PU

PU PU

PU

PUSD SD

SD SD

SCCLK
112 ABCs of z/OS System Programming Volume 10

2.7 Pipeline in z9 EC

Figure 2-7 A car pipeline example

Pipeline in z9 EC
In order to manufacture a car, serial tasks need to be executed. Similarly, when executing
program instructions, serialized tasks also need to be executed. The term “pipeline” implies
executing—in parallel—different tasks for different cars (or instructions). The main objective of
pipelining in to increase throughput (that is, the number of executed instruction per time unit).

Within the z9 EC PU there are a few special CPs, each one executing a very specific task.
Following is a list of those tasks:

� Get the instruction virtual address in the PSW.

� Translate this virtual address to real address through DAT.

� Fetch the instruction from cache or memory.

� Decode the instruction; that is, find the microcode address (in control storage) associated
with this execution.

� If there is an input storage operand, derive its virtual address through the contents of the
base register plus the displacement.

� Translate this virtual address to real address through DAT.

� Fetch the operand from cache or memory.

� Execute the instruction.

Assemble the structure
...
Add wheels
...
Paint
Chapter 2. IBM System z 113

� If there is an output storage operand, derive its virtual address through the contents of the
base register plus the displacement.Translate this virtual address to real address through
DAT.

� Store the output operand in cache.

� Depending on the instruction, set the condition code in PSW.

Techniques for instruction pipelining
There are techniques to speed up an instruction pipeline, as such:

� Execute more than one instruction in the same cycle (superscalar).

This is implemented by adding resources onto the server to achieve more parallelism by
creating multiple pipelines, each working on their own set of instructions. A superscalar
server is based on a multi-issue architecture. In such a server, where multiple instructions
can be executed at each cycle, a higher level of complexity is reached because an
operation in one pipeline may depend on data in another pipeline. A superscalar design
therefore demands careful consideration of which instruction sequences can successfully
operate in a multi-pipeline environment.

� Perform out of order execution.

This implies that the sequence of instructions presented in a program is not the sequence
where the instructions are executed. For example, if the instruction n+1 is ready to be
executed and the nth instruction is still being delayed by a storage operand fetch, and the
result of n does not interfere in the input of n+1, then n+1 is executed first.

� Perform out of order fetch.

Instructions having memory operands may suffer multi-cycle delays to get the memory
content. To overcome these delays, the server continues to fetch (single cycle) instructions
that do not cause delays. The technique used is called out-of-order operand fetching.

This means that some instructions in the instruction stream are already underway, while
earlier instructions in the instruction stream that cause delays due to storage references
take longer. Eventually, the delayed instructions catch up with the already fetched
instructions and all are executed in the designated order.

� Perform branch prediction through a branch history table (BHT), as described in the
following section.
114 ABCs of z/OS System Programming Volume 10

2.8 Processor unit caches

Figure 2-8 Processor unit (PU) caches

Two levels of cache
Level 1 (L1) and level 2 (L2) caches exist to improve performance by reducing access to real
storage (also called L3). They are not directly visible to programs.

We know that operands and instructions are originally located in real storage. However,
compared with the PU speed, real memory is a slow device. In order to speed up program
execution, the concept of cache or high speed buffer (HSB) was introduced.

For example, the z9 EC has a very fast 512 KB internal PU cache (called the L1 cache) that is
used to save PU cycles by avoiding fetch from, or store to, slower memories. Two levels of
cache means that separate caches (256 KB each) exist for instructions and data. The reason
for splitting data and instructions is that the pattern and nature of the reference is different; for
example, data is less often changed, but instructions are very seldom changed.

L1 and L2 cache
Each PU chip has its own 512 KB cache level 1 (L1), split into 256 KB for data and 256 KB for
instructions. The L1 cache is designed as a store-through cache, meaning that altered data is
also stored to the next level of memory (L2 cache). The z9 EC models S08, S18, S28, S38,
and S54 use the CMOS 10KS-SOI PU chips running at 0.58 ns. The L1 caches communicate
with the L2 caches (SD chips) by two bi-directional 16-byte data buses.

There is a 2:1 bus/clock ratio between the L2 cache and the PU, controlled by the Storage
Controller (SC chip), that also acts as an L2 cache cross-point switch for L2-to-L2 ring traffic,

Ring
structure

Memory
Cards

PUPU
L1

PUPU
L1

PUPU
L1

PUPU
L1

PUPU
L1

PUPU
L1

Memory
Cards

PUPU
L1

PUPU
L1

 L1PU
L1

PUPU
L1

PUPU
L1

PUPU
L1

L2
Cache

L2
Cache

Each PU chip has
its own 512 KB
Cache Level 1 (L1)

Level 2 (L2) Cache
 40 MB each book

Store-
through Store-

in
Chapter 2. IBM System z 115

L2-to-MSC traffic, and L2-to-MBA traffic. The L1-to-L2 interface is shared by two PU cores on
a dual core PU chip. The SC chip measures 16.41 x 16.41 mm and has 162 million
transistors.

Every time that an operand or an instruction needs to be fetched, the L1 cache is inspected
first. It is called a “hit” when the operand or instruction is found in the cache, and a “miss”
when it is not found in the cache.

Instruction execution
When a PU executes an instruction that changes the contents of the output operand:

� Post the other PUs, which may have in their L1s cache an out-of-date copy of the storage
element changed by the first PU.

In the z9 EC, the system controller (SC) located in each MCM book has the L1 cache
directories of all PUs of its book. When a PU alters the contents of one of its cache
elements, the SC is informed to invalidate this element in the L1 cache of other PUs, but
without disturbing such PUs.

� Define a place where the other PUs can fetch the most updated copy of such contents.

In a z9 EC, the idea is to copy synchronously (store-through) the updated contents from
L1 cache to a global memory where the other PUs can reach this most updated copy of
the element. To make this copy faster, an L2 cache concept is introduced.

In a z9 EC, an L2 cache of 40 MB is much faster than real memory. The L2 cache is
shared by all PUs within a book and it has a store-in behavior—that is, the update of the
real storage from an L2 cache is done asynchronously when L2 cache occupancy reaches
a threshold. The performance advantage of being store-in is that the PU does not need to
wait for a slow store in memory. Also, if the same data is updated a few times, when in an
L2 cache, the store to central storage is done just once.

The SC controls the 40 MB L2 cache, and is responsible for the inter-book communication
in a ring topology connecting up to four books through two concentric loops, called the
ring structure.

Cache summary
The z9 EC PU has a dual L1 cache, meaning that separate caches (256 KB each) exist for
instructions and data. The L1 cache is designed as a store-through cache, meaning that
altered data is immediately stored to the next level of memory. To make it faster, the next layer
is a global book cache (which is also very fast), named the L2 cache. The PU uses a least
recently used (LRU) algorithm to expel from the L1 cache the least referenced set of
operands and instructions, if needed.

In the z9 EC, an L2 cache is the aggregate of all cache space on the SD chips in MCM.
Beyond the fact that the L2 cache is shared by all PUs within a book, the L2 caches of all
books are connected through a very fast ring structure, and it is the L2 cache operation that
provides the unified, coherent shared memory seen by all PUs in the books and all the
channels in the I/O cages.

Another reason for the existence of the L2 cache in a multi-book design server is to be the
memory used for communication between the books. The ring provides the communication
between L2 caches across books in server with more than one book installed.

Cache differences
There are other differences between the L1 cache and the L2 cache which make L1 even
faster than L2.
116 ABCs of z/OS System Programming Volume 10

For the L1 cache:

� There is error detection through parity bit because there is a trusted copy in L2.
� There is no local error correction (data is recovered from L2).

For the L2 cache:

� There is error detection through ECC.
� There is local error correction (which makes it slower).
Chapter 2. IBM System z 117

2.9 Cache and PU, SC, SD, and MSC chips

Figure 2-9 Cache and PUs

Storage controller (SC chip)
The storage controller (SC) has the directory information about the contents of all L1 caches
of all the PUs in its books. Whenever one of the PUs changes something in its L1 cache, the
SC is informed. The SC is able to invalidate the entry only in the PUs that have the changed
element.

The sequence of functions performed by a PU is independent of the functions performed by
other PUs. Then, even if the SC is invalidating the L1 cache of a PU, because this is done
asynchronously, chances are that this PU will not see the most updated copy of a memory
element.

In order to guarantee the full coherency of memory, the program must execute serializing
instructions, as described in z/Architecture Principles of Operations, SA22-7832. With the
execution of such instructions (such as the Compare and Swap instruction), there is the
completing of all previous storage access, as observed by other PUs and channels, before
the subsequent storage accesses occur.

SC chips and cache
The SC chip controls the access and storage of data (through an LRU algorithm) in the four
SD chips. The interface between the L2 cache and memory is accomplished by four
high-speed memory buses, and is controlled by the memory controllers (MSC). Storage
access is interleaved between the storage cards, which tends to equalize storage activity
across the cards.

MSC MSCPU PU

PU

PU

PU PU

PU

PUSD SD

SD SD

SCCLK

MSC MSCPU PU

PU

PU

PU PU

PU

PUSD SD

SD SD

SCCLK

Each PU has a 512 KB on chip Level 1 cache (L1) that
is split into a 256 KB L1 cache for instructions and a
256 KB L1 cache for data, providing large bandwidth
118 ABCs of z/OS System Programming Volume 10

The storage controller (SC chip) is the main traffic controller inside and outside of the book,
and it controls the following:

� L1 caches communication with the L2 caches (SD chips) by two bidirectional 16-byte data
buses.

� L2-to-Memory Subsystem Control function (MSC) that manages the flow of data to
memory.

� L2-to-Memory Bus Adapter (MBA) I/O traffic through STIs to I/O channels.

� The L2 cache cross-point switch for L2-to-L2 ring traffic in different books; refer to “L2
cache and book connection” on page 125 for more information.
Chapter 2. IBM System z 119

2.10 Instruction and execution units

Figure 2-10 E-unit and I-unit components of a PU

Instruction (I) and execution (E) units
The basic components of a PU are:

� The Instruction unit (I-unit), which contains the majority of the pipeline that prepares the
instruction execution (set up). This IU component makes the z9 EC E-unit very powerful,
being capable of executing more than one instruction in the same cycle (when fed
accordingly by the I-unit).

� The Execution unit (E-unit), where the majority of instructions are executed.

� Floating and fixed point specialist PUs, where the float and fixed point operand
instructions are executed.

� The B-unit, which accesses the L1 cache and, through SCE, the L2 cache. The L2 cache
is accessed when data to be fetched is not in the L1 cache and always in a store.

� The R-unit, which implements asymmetric mirroring for error detection.

Each PU in the z9 EC uses asymmetric mirrored instruction execution as an error detection
mechanism. There are two pairs of I-units and E-units, as shown in Figure 2-10, executing the
same instruction. The final results are compared by an R-unit. In old mainframes, error
detection was implemented through microcode verification. It is asymmetric because the
mirrored execution is delayed from the actual operation. The benefit of the asymmetric design
is that the mirrored units do not have to be closely located to the units where the actual
operation takes place, thus allowing for optimization for performance.

Processing Unit (PU)
Dual processor
I-Unit (Instruction fetch)
E-Unit (Execution)
Floating Point function
Simple error detection mechanism
Data flow - parity checked
Address paths - parity checked
L1 Cache - parity checked
Processor logic (I - E - F)

Duplicated, then compared output
Error detection for mis-compare

I-Unit

E-Unit

I-UnitB-Unit

E-Unit

R-Unit

Floating p
Fixed p

To B-Unit To B-Unit

From E-Unit From E-Unit

COMPARE

To L2 Cache

From L2 Cache

Floating p
Fixed pError

Detection

L1
 Cache
120 ABCs of z/OS System Programming Volume 10

2.11 A book (logical view)

Figure 2-11 A book (logical view)

Book concept
A book looks like a box. A book plugs into one to four slots in the server cage of the z9 EC. Up
to eight memory cards, the MCM, and various other chips and connectors (MBAs
and STis) are mounted in each book.

Recovery
With enhanced book availability and flexible memory options, a single book in a multi-book
system can be concurrently removed and reinstalled for an upgrade or repair; it is a field
replacement unit (FRU). Any book can be replaced, including book 0, which initially contains
the HSA.

However, this requires that you have sufficient resources in the remaining books to avoid
impacting the workload. CPs and memory from the book must be relocated before the book
can be removed. Not only do additional PUs need to be available on the remaining books to
replace the deactivated book, but also sufficient redundant memory must be available if it is
required that no degradation of applications is allowed. You may wish to consider the flexible
memory option. Removal of a book also cuts the book connectivity through its STIs to the I/O
cages. The impact of the removal of the book is limited by the use of Redundant I/O
Interconnect. However, all ICBs on the removed book have to be configured offline.

PR/SM™ has knowledge of the amount of purchased memory and how it relates to the
available physical memory in each of the installed books. PR/SM has control over all physical

Each book contains:
One MultiChip Module
(MCM):

Up to 16 Processing
Units (PUs) in 8 Chips
Level 2 (L2) Cache in 4
chips
 SC Chip

Two Memory cards
(MSCs)
Eight Memory Bus
Adapter (MBA) cards:

Two Self-timed
interfaces (STIs) per
MBA card

Book

Mem
Card

Mem
Card

MBA MBA MBA MBA MBA MBA MBA MBA

MCM
PU PU PU PU PU PU PU PU

PU PU PU PU

12 STls
(2 GB/s each)

PU PU PU PU

L2 cache (40 MB)
Chapter 2. IBM System z 121

memory and therefore is able to make physical memory available to the configuration when a
book is non-disruptively added.

PR/SM also controls the reassignment of the content of a specific physical memory array in
one book to a memory array in another book. This is known as the Memory Copy/Reassign
function. It is used to reallocate the memory content from the memory in a book to another
memory location when enhanced book availability is applied, to concurrently remove and
re-install a book in case of an upgrade or repair action. Also, PR/SM always attempts to
allocate all real storage for a logical partition within one book,

Memory cards
Each book may contain a maximum of 128 GB of physical memory. Physical memory is
organized in two banks of four memory cards each. One bank of four memory cards in each
book is always populated. The memory size per bank per book may differ.

Also, memory sizes in each book do not have to be similar; different books may contain
different amounts of memory. A memory card is a field removable unit (FRU). Each card
physically contains 4, 8, or 16 GB of memory.

Each memory card has two ports that each have a maximum bandwidth of 8 GB/sec. Each
port contains a control bus and a data bus, in order to further reduce any contention by
separating the address and command from the data bus.

L2 cache
One key component of a book is the L2 cache, as illustrated in Figure 2-8 on page 115. The
interface between the L2 cache and memory (L3) is accomplished by four high-speed
memory buses and controlled by the memory controllers (MSC). Storage access is
interleaved (a sort of parallel access) between the storage cards, which tends to equalize
storage activity across the cards. Each memory card has two ports, which each have a
maximum bandwidth of 8 GB/sec.

Memory bus adapter (MBA) and self-timed interconnect (STI)
An STI is an interface to the Memory Bus Adaptor (MBA), used to gather and send data from
or to the I/O cage. There are 16 STis per book, and each of these STIs has a bidirectional
bandwidth of 2.7 GB/sec. The maximum instantaneous bandwidth per book is then 43.2
GB/sec.

A book contains (PUs), memory, and connectors to I/O cages and ICB-4 links. ICB-4
channels do not require a slot in the I/O cage. They attach directly to the STI of the
communicating server with a bandwidth of 2.0 GB/second.

So, how can a huge amount data (up to 172 GB/sec) be transferred from memory to I/O
devices (writes), and from I/O devices to memory (reads), if we have the possibility of 1024
concurrent channels in the I/O cages?

The z9 EC servers modeled such data flow; the conclusion was that eight MBAs (a sort of
“traffic cop” between STIs and the L2 cache that is managed by SC) and two STIs per MBA
are enough to support such a flow. Note that, for all I/O operations, data is read from or
written to the L2 cache. The MBAs are not on the MCM, but rather on separate riser cards in
the book; see Figure 2-16 on page 129.
122 ABCs of z/OS System Programming Volume 10

2.12 Physical book design

Figure 2-12 Book design

Physical book design
Figure 2-12 illustrates details of the topology connections between the elements participating
in a book.

Storage controller (SCC CNTLR)
The Storage Controller, shown here as SCC CNTLR, acts as a cross-point switch between
processor units (PUs), memory controllers (MSCs), L2 cache (SDs), and memory bus
adapters (MBAs).

SD chips (L2 cache)
The SD chips, shown here as SCD, also incorporate a memory coherent controller (MCC)
function from SC. The MCC controls a 40 MB L2 cache, and it is responsible for the inter-book
communication in a ring topology connecting up to four books through two concentric loops,
called the ring structure.

Processor units (PUs)
Each PU chip has its own 512 KB Cache Level 1 (L1), split into 256 KB for data and 256 KB
for instructions.

Memory controllers (MSC)
The interface between the L2 cache and memory (L3) is accomplished by four high-speed
memory buses and controlled by the memory controllers (MSC). Storage access is

SCD
Cache

Dual

SD
Cache

SCDSCC
Cntl

MSC0 MSC

SD
Cache

RingRing

CLK

Dual
Core
CPU

Dual
Core
PU

PMA0 PMA1 PMA3PMA2

MBAMBA

MBAMBA

MBAMBAMBA
MBAMBA

MSC1

Dual
Core
PU

Dual
Core
PU

Dual
Core
PU

Dual
Core
PU

Dual
Core
PU

Dual
Core
PU

Dual
Core
PU

to
 S

D

to
 S

D
to

 S
SC

Card
0

Card
1

Card
3

Card
2

Card
4

Card
5

Card6Card
7

MBA
Chapter 2. IBM System z 123

interleaved between the storage cards, which tends to equalize storage activity across the
cards. Each PMA has two ports that each have a maximum bandwidth of 8 GB per second.
Each port contains a control and a data bus, in order to further reduce any contention by
separating the address and command from the data bus.

Memory bus adapter (MBA)
The Memory Bus Adaptor (MBA) is used to gather and send data from or to the I/O cage
through the STIs links.

Self-timed interconnect (STI)
The STI is the other element of the I/O path, connecting several channels with the MBA. STIs
are located in the book, but out of the MCM.

For the z9 EC, enhancements have been made such that, in the unlikely event of a
catastrophic failure of an MBA chip, the failure is contained to that chip, while the other MBAs
on that book continue to operate. In a server configured for maximum availability, alternate
paths maintain access to critical I/O devices.
124 ABCs of z/OS System Programming Volume 10

2.13 L2 cache and book connection

Figure 2-13 L2 cache and multi-book connection

Ring topology
Figure 2-13 shows just three MBAs per book (really eight with 16 STIs per book). Concentric
loops or rings are constructed such that in a four-book system, each book only is connected
to two others, which means that only data transfers or data transactions to the third book
require passing through one of the other books. If there is more than one book, there is
always a ring structure between the books that maintains an inter-book communication at the
L2 cache level.

With the L2 cache ring (controlled by its SC), a PU from one book can reach any byte in any
L2 cache in any other book—and indirectly, in any memory card. Any SAP PU can reach any
MBA, and consequently any channel, through the STIs.

When a PU or an MBA (along an I/O data transfer) alters an element of memory, the L2 cache
of the book containing that PU or MBA is the one that contains the updated copy. The new
copy is not in the L2 cache of the book that houses the memory card containing the element.
Refer to 2.19, “I/O operation in a multi-book server” on page 133 for additional information.
Also, in all four L2 caches, there is just one copy of any memory element.

The z9 EC contains almost 127.75 K subchannels (UCWs) per LCSS. There is one UCW per
each pair LP/device. Remember that because of the 2-byte device number, one z/OS copy
can only support 64 K devices (UCWs).

z9 up to a four-book system

12 STIs
(2.7

GB/s)

L2 Cache (40 MB)

Mem
CardMBAMBA MBA

Mem
Card

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

pu

PU

PU

PU

PU

Book 0

12 STIs
(2.7

GB/s)

L2 Cache (40 MB)

Mem
CardMBAMBA MBA

Mem
Card

PUPU

PU

PU

PU

PU

PU

PU

PU

PU PU PU

Book 3

12 STIs
(2.7

GB/s)

L2 Cache (40 MB)

Mem
CardMBAMBA MBA

Mem
Card

PUPU

PU

PU

PU

PU

PU

PU

PU

PU PU PU

Book 2

12 STIs
(2.7

GB/s)

L2 Cache (40 MB)

Mem
CardMBAMBA MBA

Mem
Card

PUPU

PU

PU

PU

PU

PU

PU

PU

PU PU PU

Book 1

Channel SubSystem (CSS)

Up to 1024 Channels
Up to 8 SAPs by default

63.75K UCWs in set-0 + 64K-1 UCWs in set-1

PU PU PU PU PU PU PUPU PU PU PU PU PU
Chapter 2. IBM System z 125

Channel Subsystem (CSS)
Input/output (I/O) channels are components of the z9 EC server Channel Subsystem (CSS).
They provide a pipeline through which data is exchanged between PUs, or between a PU and
external devices or networks. The most common type of device attached to a channel is a
control unit (CU). The CU controls I/O devices such as disk and tape drives.

SAPs
z9 EC Model S08 has two SAPs, Model S18 has four SAPs, Model S28 has six SAPs, and
Model S32 and Model S54 have eight SAPs, as the standard configuration.

A standard SAP configuration provides a very well-balanced system for most environments.
However, there are application environments with very high I/O rates (typically, some TPF
environments). In these cases, optional additional SAPs can be ordered. Assignment of
additional SAPs can increase the capability of the Channel Subsystem to perform I/O
operations. In z9 EC servers, the number of SAPs can be greater than the number of CPs.

Channels
All 16 STIs in a book have a data rate of 2.7 GB per second. Depending on the channel types
installed, a maximum of 1024 channels per server is supported.

Multiple subchannel sets (MSS)
New and exclusive to the z9 EC are the multiple subchannel sets, designed to provide an
increased number of subchannels. Two subchannel sets are now available per LCSS,
enabling a total of 63.75 K subchannels in set-0 and the addition of 64 K-1 subchannels in
set-1.
126 ABCs of z/OS System Programming Volume 10

2.14 Self-timed interconnect (STI) and domains

Figure 2-14 STIs and domains

Self-timed interconnects (STIs)
A book has 12 or 16 PUs, 4 or 8 memory cards, and up to 16 STIs organized on 8 MBA/STI
fanout cards, coordinated by the System Controller (SC). Each memory card has a capacity
of 4 GB, 8 GB, or 16 GB, resulting in up to 128 GB of memory Level 3 (L3) per book. A
four-book z9 EC can have up to 512 GB memory. The Storage Controller acts as a
cross-point switch between Processor Units (PUs), Memory Controllers (MSCs), and Memory
Bus Adapters (MBAs).

Each MBA has two self-timed interconnects (STIs), resulting in a total of 16 STIs on each z9
EC book. Each STI has a bandwidth of 2.7 GB/sec full-duplex.

STIs and I/O cage connections
An STI cable goes directly from an STI connector on a MBA in the book to a STI-MP card in
the I/O cage. Each STI connection (through STI-MP) controls the data flow of a domain. A
domain is a set of four I/O cards in the I/O cage. I/O cards contains I/O channels. There are
seven domains per I/O cage.

Up to 4 I/O
adapter cards
per domain

2.7 GB/sec STI

Ring
structure

Ring
structure

 I/O Cage
One STI drives one
domain in the I/O cage

One I/O cage can
have up to 7
domains

The z9-109 can have
up to 3 I/O cages

FICON Express OSA-ExpressISC-3ESCON

Memory Cards

PUPU

PUPU

PUPU PUPU

PUPU

PUPU

Memory Cards

PUPU

PUPU

PUPU PUPU

PUPU

PUPU

2 STIs per MBA
(16 STIs per
Book)

STI-M STI-M STI-MSTI-M STI-MSTI-MSTI-M

L2 Cache L2 Cache

8 MBAs 8 MBAs

Each PU chip has its own
512 KB Cache Level 1 (L1)

Level 2 (L2) Cache
 40 MB each
Chapter 2. IBM System z 127

2.15 STIs and I/O cards

Figure 2-15 STIs and I/O cages

STIs and I/O cages
The z9 EC servers can have up to three I/O cages to house the I/O cards required to keep the
I/O channels and STIs cards. The STI function is to funnel I/O data traffic coming from many
channels into an MBA (for reads), and the same in the other direction (for writes). Physically
an STI path is formed by:

� STI ports in the book (server cage) connected upward to the MBAs

� STI cables

� STI cards of several types:

– A multiplexer (STI-MP) card at 2 GB/sec in the I/O cage, with four links to I/O cards
such as ESCON, FICON, OSA-E, ISC-3, and Crypto Express 2

– An STI-3 Extender card at 1 GB/sec in the I/O cage with two links to ICB-3

– An ICB-4 link at 2 Gb/sec, which attaches directly to an STI port on MBA

The z9 EC server’s multi-book structure results in multiple MBAs, therefore there are multiple
STI sets. This means that an I/O balanced distribution over books, MBAs, STIs, I/O cages and
I/O cards is desirable for both performance and availability purposes.

The ICBs provide coupling links directly connected to book in other servers (the coupling links
can be used for functions other than CFCC partitions).

 I/O Cage

ICB-3
(1 GB/sec)

STI-3 Extender

ICB-3
(1 GB/Sec)

STI-3 Extender

ICB-4
(2 GB/Sec)

CEC Cage
2.7 GB/sec

STIs

Book

M
B
A
s

ESCON

STI-MP
OSA-E2

Crypto
Express2

 STI
500 MB/Sec Crypto

Express2

 STI
333 MB/Sec

 STI
1 GB/Sec

ESCON

STI-MP
OSA-E2

ISC-3
 STI
500 MB/Sec

FICON
Express4

 STI
333 MB/Sec

 STI
1 GB/Sec

16 STIs
 STI
2 GB/Sec

I/O Cards
128 ABCs of z/OS System Programming Volume 10

2.16 The I/O data flow

Figure 2-16 I/O data flow tree in the z9 EC server

I/O data flow for a read - example
Here we follow a data flow experienced by a 4 KB DASD FICON read, through all the paths
that the data might travel:

1. From a disk track to the DASD controller cache - and it was a cache miss.
2. From the DASD controller cache to DASD controller host adapter buffer.
3. From the DASD controller host adapter buffer to the FICON switch director port buffer

(moved within FICON data frames).
4. From the FICON director port buffer (moved within FICON data frames) to the channel I/O

port buffer in one I/O card in one I/O cage.
5. From a channel I/O port buffer in one I/O card in an I/O cage, to an I/O port in the STI-MP

card.
6. From an I/O port in the STI-MP card to an MBA buffer.
7. From an MBA buffer to the L2 cache.

As shown in Figure 2-16, using a tree as an analogy for the z9 EC, the “top leaves” (I/O
channels) connect to a little branch, which connect to a larger branch to the trunk. All I/O
channels in one I/O card fork in the I/O card port. Four I/O card ports fork in a STI-MP. Two
STI-MPs fork in a MBA (there are two STI-MP per STI-MP card). Eight MBAs fork in one
L2-Cache. In all forks, traffic controllers allow, serially, all the confluent flows (refer to
Figure 2-14 on page 127).

I/O Channel
I/O channel

I/O channelI/O card

STI-MP

STI-MP

MBA

MBA
MBA

L2 -Cache

I/O channel

I/O card
Chapter 2. IBM System z 129

2.17 z9 EC I/O cage

Figure 2-17 I/O cage physical view

I/O cages
Figure 2-17 shows a physical view of the I/O cage. The z9 EC server can have up to three I/O
cages to host the I/O and cryptographic cards required by a configuration. Each I/O cage has
28 I/O slots for I/O and cryptographic cards, and supports up to seven I/O domains. Each I/O
domain is made up of up to four I/O slots, as shown.

Each I/O domain requires one Self-Timed Interconnect Multiplexer (STI-MP) card. All I/O
cards within an I/O domain are connected to its STI-MP card via the back plane board. A full
I/O cage requires eight STI-MP cards, which are half-high cards, using four slots. In addition,
two Distributed Converter Assembly-Cage Controller (DCA-CC) cards plug into the I/O cage.

If one I/O domain is fully populated with ESCON cards (each with 15 active ports and one
spare per card), then up to 60 (four cards x 15 ports) ESCON channels can be installed and
used. An I/O cage that has six domains fully populated with ESCON cards will have
360 (60 x 6 domains) ESCON channels.

Each STI-MP card is connected to an STI jack (J00 and J01) located in a book’s Memory Bus
Adapter (MBA) fan out card via an STI cable. Because each STI-MP card requires one STI,
up to eight STIs are required to support one I/O cage.

The configuration process selects which slots are used for I/O cards and supplies the
appropriate number of I/O cages and STI cables, either for a new build server, or for a server
upgrade.

I
/
O

A

I
/
O

B

I
/
O

A

I
/
O

B

I
/
O

A

I
/
O

B

I
/
O

A

I
/
O

B

I
/
O

C

I
/
O

D

I
/
O

C

I
/
O

D

I
/
O

C

I
/
O

D

I
/
O

C

I
/
O

D

Board

I
/
O

G

I
/
O

G

I
/
O

G

I
/
O

F

I
/
O

E

I
/
O

F

I
/
O

E

I
/
O

F

I
/
O

E

I
/
O

F

I
/
O

E

D
C
A
/
C
C
2

I/O Domain 0
I/O Slots
1,3,6,8

I/O Domain 1
I/O Slots
2,4,7,9

I/O Domain 2
I/O Slots

10,12,15,17

I/O Domain 3
I/O Slots

11,13,16,18

I/O Domain 6
I/O Slots

29,30,31,32

I/O Domain 5
I/O Slots

20,22,25,27

I/O Domain 4
I/O Slots

19,21,24,26

2 3 4 5 6 98 10 11 12 13 14 15 16 177 181

19202122232425262728293031333435 32

Front of
I/O Cage

Rear of
I/O Cage

36

I
/
O

G

D
C
A
/
C
C
1

2.7 GB-STI2.7 GB-STI2.7 GB-STI2.7 GB-STI

S
TI-M

P
 (2) E

F

ST I-M
P

 (2) AB

S
TI-M

P (2) C
D

S
T I-M

P
 (2) G

H

2.7 GB-STI

2.7 GB-STI

2.7 GB-STI

2.7 GB-STI
130 ABCs of z/OS System Programming Volume 10

Note that domain 6 is not used for I/O cards until all other domains in all three cages are full.
A new cage is added when more than 24 or 48 I/O cards need to be installed. STI-3 cards use
domain 6, and when more than four STI-3 cards are needed, a new cage is added. STI-3 and
PSC24V (always in slot 29) cards are plugged in domain 6.

A full I/O cage requires four STI-MP cards (from A to G), which are half-high cards, using
three and a half slots. I/O cards can be installed or replaced concurrently. The I/O cards
contain the channel where the I/O logic is executed and the I/O ports to connect to the
external devices, networks or to other servers.

All channels of an I/O card are served by the same SAP. As Table 2-2 on page 135 shows,
there are different types and different numbers of channels per I/O card, depending on the
channel type.

Following are the maximum number of channels in the server by type of channel:

� Up to 1024 ESCON

� Up to 336 Fibre Connection (FICON) Express2 or Express4

� Up to 48 Open Systems Adapter (OSA) Express

� Up to 16 Integrated Cluster Bus-4 (ICB-4)

� Up to 16 Integrated Cluster Bus-3 (ICB-3)

� Up to 8 Integrated Cluster Bus-2 (ICB-2)

� Up to 48 Inter-System Channel-3 (ISC-3)

� Up to 16 HiperSockets and 32 IC (both simulated and internal data links)
Chapter 2. IBM System z 131

2.18 Redundant I/O Interconnect

Figure 2-18 Redundant I/O Interconnect

Redundant I/O Interconnect
Redundant I/O Interconnect is a unique feature of the z9 EC server model. It is accomplished
by the facilities of the Self-Timed Interconnect Multiplexer (STI-MP) card.

Each STI-MP card is connected to an STI jack located in the MBA fanout card of a book.
STI-MP cards are half-high cards and are interconnected with new cards called STI-A8 and
STI-A4, allowing redundant I/O interconnect if the STI connection coming from a book ceases
to function (such as when a book is removed). A conceptual view of how Redundant I/O
Interconnect is accomplished is shown in Figure 2-18.

Normally book 0 MBA/STI connects to the STI-MP (A) card and services domain 0 I/O
connections (slots 01, 03, 06, and 08). In the same way, book 1 MBA/STI connects to the
STI-MP (B) card and services domain 1 (slots 02, 04, 07, and 09).

If book 1 is removed, or if the connections from book 1 to the cage are removed, connectivity
to domain 1 is maintained by guiding the I/O to domain 1 through the interconnect between
STI-MP (A) and STI-MP (B).

......MBA

z9-109 Book 0

......MBA

z9-109 Book 1

Domain

0

Domain

1

 Interconnect

STI-MP
B

STI-MP ASlot
5

Bandwidth to I/O card:
 1 GB/sec
 500 MB/sec
 333 MB/sec

Depends on I/O card type

I/O Cage

2.7 GB/sec

CEC Cage
132 ABCs of z/OS System Programming Volume 10

2.19 I/O operation in a multi-book server

Figure 2-19 The books in a z990

z9 EC I/O operations
A System Assist Processor (SAP) is a PU that runs the Channel Subsystem Licensed Internal
Code to control I/O operations.

All SAPs perform I/O operations for all logical partitions. All z9 EC models have standard
SAPs configured. As previously mentioned, z9 EC Model S08 has two SAPs, Model S18 has
four SAPs, Model S28 has six SAPs, and Model S32 and Model S54 have eight SAPs as the
standard configuration.

A standard SAP configuration provides a very well-balanced system for most environments.
However, there are application environments with very high I/O rates (typically some TPF
environments). In this case, optional additional SAPs can be ordered. Assignment of
additional SAPs can increase the capability of the Channel Subsystem to perform I/O
operations. In z9 EC servers, the number of SAPs can be greater than the number of CPs.

z9 EC - Up to a four-book system

12 STIs
(2 GB/s)

L2 Cache (32 MB)

Mem
CardMBAMBA MBA

Mem
Card

PUPU

PU

PU

PU

PU

PU

PU

PU

PU PU PU

Book 0

12 STIs
(2 GB/s)

L2 Cache (32 MB)

Mem
CardMBAMBA MBA

Mem
Card

PUPU

PU

PU

PU

PU

PU

PU

PU

PU PU PU

Book 3

12 STIs
(2 GB/s)

L2 Cache (32 MB)

Mem
CardMBAMBA MBA

Mem
Card

PUPU

PU

PU

PU

PU

PU

PU

PU

PU PU PU

Book 2

12 STIs
(2 GB/s)

L2 Cache (32 MB)

Mem
CardMBAMBA MBA

Mem
Card

PUPU

PU

PU

PU

PU

PU

PU

PU

PU PU PU

Book 1

Channel SubSystem (CSS)

Up to 1024 Channels
Up to 8 SAPs dy default

Up to 127.75 UCWs

1 284

76

35

89
Chapter 2. IBM System z 133

2.20 16-port ESCON channel card

Figure 2-20 A 16-port ESCON channel card

z9 EC 16-port ESCON feature
The 15 active ports on each 16-port ESCON feature are activated in groups of four ports via
Licensed Internal Code - Control Code (LIC-CC) by using the ESCON channel port feature
(FC 2324).

The first group of four ESCON ports requires two 16-port ESCON features. After the first pair
of ESCON cards is fully allocated (by seven ESCON ports groups, using 28 ports), single
cards are used for additional ESCON ports groups.

Ports are activated equally across all installed 16-port ESCON features for high availability. In
most cases, the number of physically installed channels is greater than the number of active
channels that are LIC-CC enabled. This is not only because the last ESCON port (J15) of
every 16-port ESCON channel card is a spare, but also because several physically installed
channels are typically inactive (LIC-CC protected). These inactive channel ports are available
to satisfy future channel adds.

If there is a requirement to increase the number of ESCON channel ports (the minimum
increment is four), and there are sufficient unused ports already available to fulfill this
requirement, an LIC-CC diskette is sent to concurrently enable the number of additional
ESCON ports ordered. This is illustrated in Figure 2-20. In this case, no additional hardware
is installed.

LIC
C

C
 EN

A
B

LEM
EN

T

ESCON-16

J00
J01
J02
J03
J04
J05
J06
J07
J08
J09
J10
J11
J12
J13
J14
J15

ESCON-16

SPARE
CHANNEL

J00
J01
J02
J03
J04
J05
J06
J07
J08
J09
J10
J11
J12
J13
J14
J15

ESCON-16

J00
J01
J02
J03
J04
J05
J06
J07
J08
J09
J10
J11
J12
J13
J14
J15

ESCON-16

SPARE
CHANNEL

J00
J01
J02
J03
J04
J05
J06
J07
J08
J09
J10
J11
J12
J13
J14
J15

ADD 4
ESCON

ch
an

ne
ls

PCHID
Number

110
111

120
121

110
111

120
121

112
113

122
123
134 ABCs of z/OS System Programming Volume 10

A maximum of 1024 ESCON ports can be activated on a z9 EC server. This maximum
requires 69 16-port ESCON channel cards to be installed. The z9 EC Model S08 can have up
to 960 ESCON ports, on 64 channel cards. This number is limited by the number of available
STIs on the S08 model. Table 2-2 lists, for all types of channels, information about the
maximum number of I/O ports, channels, and so on.

Table 2-2 Maximum number of I/O ports, channels and so on

I/O feature
Feature
codes

Number of Max. number of

PCHID
CHPID

definitionPorts
per card

Ports
increments

Ports
I/O

slots

ESCON 2323
2324 (ports)

16
(one

spare)

4
(LIC-CC)

1024 69 Yes CNC, CVC,
CTC, CBY

FICON Express
LX/SX

2319/2320 2 2 120 60 Yes FC,FCP
FCV

FICON Express2
LX/SX

3319/3320 4 4 336 84 Yes FC, FCP

FICON Express4
LX/SX

3321/3324/
3322

4 4 336 84 Yes FC, FCP

OSA-Express2
Gb Ethernet
LX/SX

3364/3365 2 2 48 24 Yes OSD, OSN
(z9 only)

OSA-Express2
10Gb LR

3368 1 1 24 24 Yes OSD

OSA-Express2
1000BASE-T
Ethernet

3366 2 2 48 24 Yes OSE, OSD,
OSC, OSN

ICB-3
(1 GBps)

0993 2 1 16 8 Yes CBP

ICB-4
(2.0 GBps)

3393 - 1 16 0 Yes CBP

ISC-3 at 10km
(2 Gbps)

0217 (ISC-M)
0218 (ISC-D)
0219 (ports)

4/ISC-M
2/ISC-D

1

(LIC-CC)

48 12 Yes CFP

ISC-3 20km
support
(1 Gbps)

RPQ 8P2197
(ISC-D)

4/ISC-M
2/ISC-D

2 48 12 Yes CFP

HiperSockets - - 1 16 0 No IQD

IC - - 2 32 0 No ICP

ETR 6155 1 - 2 - No -

Crypto Express2 0863 2 2 16 8 Yes -
Chapter 2. IBM System z 135

2.21 Logical Channel Subsystem (LCSS)

Figure 2-21 Multiple LCSSs

Channel subsystem (CSS)
The channel subsystem controls communication of internal (as IC and IQD) and external (as
FICON) channels to control units and devices. The configuration definitions of the CSS (at
HCD) define the operating environment for the correct execution of all system Input/Output
(I/O) operations. The channels permit transfer of data between main storage and I/O devices
(through controllers) or other servers under the control of a channel program. The CSS allows
channel I/O operations to continue independently of other operations within the CPs.

Multiple logical channel subsystems
Each LCSS includes up to 256 channels. Because the z9 EC allows up to four LCSSs, then
we may have more than 256 channels causing benefits for larger installations.

CHIPDs
Channels are grouped in sets of 256 named logical channel subsystems (LCSS).

Each logical partition (LP) and its software can only access one LCSS, and can work with a
maximum of 256 CHPIDs. Different LPs may share the same LCSS or have a different LCSS,
but there can be just one LCSS per LP.

Then, within the logical partition the channel is referred by software through the one-byte
CHPID, as usual. In other words, CHPIDs are unique within an LCSS ranging from 00 to FF.
The same CHPID number range is used again for the other LCSSs.

DASD
LCUs

5

LP16LP2 LP3 LP14 LP15LP1

2 35

LCSS 1

31

LCSS 0

81 90 918081 90 9180

151 1E1 1F1141150 1E0 1F0140

LCSS

LPAR name

PCHID

MIF ID

CHPID

DASD
LCUs

Directors

Control
Units

and Devices

0201

LPAR ID 1A0B 0C 11 1300

Logical Channel Subsystem (LCSS)
136 ABCs of z/OS System Programming Volume 10

However, outside the LP scope as in a HCD definition, the channel is identified by the CHPID
qualified by the LCSS ID, as shown in this IOCP statement:

CHPID PATH=(CSS(0),80),SHARED,PARTITION=((LP1,LP2,LP3),(=)),

The CHPID 80 from LCSS 0 is shared (MIF-shared) between logical partitions LP1, LP2, and
LP3.

As shown in Figure 2-21 on page 136, in the server you can have several channels (from
different LCSSs) with same CHPID; CHPIDs 80, 81, 82 and 83 are repeated, but in a distinct
LCSS. Thus a single operating system instance (using existing code) still has a maximum of
256 CHPIDs, but the server as a whole can have more than 256 CHPIDs.

Logical partitions (LPs)
A given logical partition (LP) is associated with a single LCSS, and a single LCSS has a
maximum of 256 CHPIDs. Multiple LPs may be associated with a given LCSS, as follows:

� Each LCSS may have from one to 256 channels.

� Each CHPID is qualified by its LCSS ID.

� Each LCSS can be configured with 1 to 15 logical partitions.

� The four LCSSs can be configured to 60 logical partitions per server.

� Each LCSS supports almost 127.75K I/O devices.

Figure 2-22 on page 138 illustrates the relationship between LPs, MIF IDs, LCSSs, CHPIDs,
and PCHIDs. The concept of PCHIDs is illustrated in Figure 2-23 on page 140.

The I/O subsystem continues to be viewed as a single input/output configuration data set
(IOCDS) across the entire system with multiple LCSSs. Refer to 6.4, “Hardware and software
configuration” on page 375 for more information on IOCDS. Only one hardware system area
(HSA) is used to describe using control blocks the multiple LCSS.

The channel definitions of an LCSS are not bound to a single book. An LCSS may define
channels that are physically connected to all STIs of all books in any multi-book z9 EC model.
Chapter 2. IBM System z 137

2.22 LP IDs, MIF IDs and spanning concepts

Figure 2-22 LP IDs and MIF IDs example

LP IDs and MIF IDs concept
The LP ID is an identification (as declared in the LPAR profile in HMC and in HCD under the
label LP number) of the logical partition together with the LPname (as declared in HCD).
When the maximum number of LPs was 15, the LPID had one-half byte length from X’1’ to
X’F’ (up to 15 LPs).

The LP ID is used by several hardware and software functions, such as the following:

� An ESCON/FICON channel identifies itself to the I/O control unit in a multi-image facility
(MIF) setup—when the same channel may serve several LPs—through the four-bits LP ID.

� For the CTC control unit logical address of the remote CTC, when a MIF channel path is
used.

� As an output in storage of the STORE CP ID (STIDP) instruction.
� To identify the MVS system that sends the path group ID CCW to an I/O controller.

With the z9 EC, the maximum allowed number of LPs is 60. In order to accommodate that the
LP ID field now has two hex characters (one byte), from X’00’ to X’3F’.

However, all functions depending on an LP ID still expect a four-bits field. For example, the
ESCON/FICON protocol for implementing EMIF still works with an LP ID from X’1’ to X’F’.
The solution is the introduction of the MIF ID as a replacement; that is, the MIF ID is used
instead of the LP ID by such functions. To maintain the uniqueness of a MIF ID, it is qualified
by the LCSS.

LCSS0

Partition
1

. . .Partition
2

Partition
14

Partition
15

Partition
16

Partition
17

Partition
18

Partition
60

. . .

MIF-1 MIF-2 MIF-F. . .

LCSS1

MIF-1 MIF-2 MIF-3 MIF-F

CHPID
00

CHPID
01

CHPID
02

CHPID
03

Share

PCHID
10B

PCHID
10C

PCHID
10D

PCHID
20E

. . .
CHPID

FF

PCHID
20A

CHPID
04

SPAN

CHPID
06

SPAN

PCHID
120

CHPID
00

CHPID
01

CHPID
05

Share

CHPID
22

CHPID
FF

PCHID
145

PCHID
146

PCHID
147

PCHID
158

PCHID
159

.

. . .
138 ABCs of z/OS System Programming Volume 10

The MIF Image ID is a number that is defined through HCD or directly via the IOCP through
the RESOURCE statement. It is in the range '1' to 'F' and it is unique within an LCSS, but it is
not unique within the z9 EC. Multiple LCSSs may specify LPs with the same MIF Image ID.

Note the following summary points:

1. The logical partition names are specified in the I/O definition process (HCD or IOCP) and
must be unique for the logical partition across all LCSSs in the z9 EC.

2. The logical partition MIF ID is specified in the I/O definition process (HCD or IOCP) and
must be unique x'0’ to ‘F' for all logical partitions across each LCSS in the z9 EC.

3. The logical partition ID is specified (by the user) in the z9 EC image profile (for the LP in
the HMC) and must be unique x'00-3F' for the logical partition across all LCSSs in the z9
EC.

In 2.22, “LP IDs, MIF IDs and spanning concepts” on page 138, LP 1 has a MIF ID of 1. In
another LCSS, LP 14 has a MIF ID of 1, as well.

Spanning
A spanned channel is a channel connected to more than one LCSS. With the z9 EC
announcement, the channel types described here can be spanned.

Spanned and shared channels
The Multiple Image Facility (MIF) allows channels to be shared among multiple logical
partitions in a server.

� Shared channels can be shared by logical partitions within a Logical Channel Subsystem.

� Spanned channels can be shared by logical partitions within and across LCSSs.

The following ESCON channels cannot be shared or spanned:

� ESCON channels defined with CHPID type CVC or CBY

The following channels can be shared but not spanned:

� ESCON channels defined with CHPID type CNC or CTC

� FICON channels defined with CHPID type FCV

All other channels can be shared and spanned:

� FICON Express when defined as CHPID type FC or FCP

� FICON Express2 and FICON Express4

� OSA-Express and OSA-Express2

� Coupling links channels in peer mode: ICB-4, ICB-3, ISC-3

� Internal channels: IC and HiperSockets

HiperSockets
A spanned channel occupies the same CHPID number in all LCSSs in which it is used. For
example, if a HiperSockets channel is CHPID 2C in LCSS 0, it must be the same CHPID
number in LCSS 1 (if LCSS 1 is used, of course, and if that HiperSockets is also defined in
LCSS1). A HiperSockets that connects LPs in different LCSSs must be spanned.
Chapter 2. IBM System z 139

2.23 Physical channel ID (PCHID)

Figure 2-23 PCHIDs

Physical channel IDs (PCHIDs)
Before the introduction of the PCHID in zSeries, the CHPID was associated one-to-one with a
physical channel. With PCHIDs, the CHPID is just a logical name or a nickname for the
channel and no longer directly corresponds to a hardware channel. A CHPID number
identifies a physical slot location within an I/O cage.

CHPIDs are not pre-assigned on z9 EC, z9 BC, z990, and z890 servers. It is the customer’s
responsibility to assign the CHPID numbers through the use of the CHPID Mapping Tool
(CMT), or directly with HCD/IOCP. Assigning CHPIDs means that the CHPID number is
associated with a physical channel port location (PCHID), and a LCSS. The CHPID number
range is still from ‘00’ to ‘FF’ and must be unique within an LCSS. Any CHPID not connected
to a PCHIDs will fail validation when an attempt is made to build a production IODF or an
IOCDS.

Figure 2-23 shows the front view of the first I/O cage (bottom of the A frame), including some
I/O cards in slots 01 to 08, and the PCHID numbers of each port. The example shown is valid
for z9 EC, z9 BC, z990, and z890 servers.

A hardware channel is now identified by a three-digit PCHID, or physical channel identifier. A
PCHID number is defined for each potential channel interface; as an example, in the following
IOCP statement, the CHPID 80 of LCSS 0 corresponds to the PCHID 0140:

CHPID PATH=(CSS(0),80),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0140

ISC-3 OSA-E FICON
Express2

. . .

I/O Cage 1 -
FrontI/O Cards

I/O Ports

01 02 03 04 05 06 07I/O Slots

110

111

120

121

140

141

142

143

PCHIDs

STI

STI

. . .

Crypto OSA-E

130

131

ESCON

160
161
162
163

16B

FICON
Express2

150

151

152

153

08
140 ABCs of z/OS System Programming Volume 10

For ESCON channels, each ESCON I/O card has up to 16 adapters or channel interfaces.
Then, 16 PCHID numbers are reserved for each I/O adapter slot in each I/O cage. Not all I/O
adapters provide 16 channels, of course, but 16 PCHID numbers are reserved to each
possible I/O slot.

Each enabled I/O port has its own PCHID number, which is based on the following:

� Its I/O port or channel interface (also called connect number)

� Its I/O slot (card) location

� Its I/O cage

Table 2-3 shows the PCHIDs numbering scheme.

Table 2-3 PCHIDs numbering scheme

As mentioned, it is the customer’s responsibility to perform these assignments of CHPIDs to
PCHIDs by using HCD and IOCP definitions and the assistance of the CHPID Mapping Tool
(CMT). Using CMT gives you an IOCP source that maps the defined CHPIDs to the
corresponding PCHIDs of the server.

Note: The PCHID numbers allocated to each I/O adapter and port on that adapter are
fixed and cannot be changed by a user.

Cage Front PCHID ## Rear PCHID ##

I/O Cage 1a

a. Only I/O cage 1 is present in z9 BC and z890 servers, whereas z9 EC and z990 can have up
to 3.

100 - 1FF 200 - 2BF

I/O Cage 2 300 - 3FF 400 - 4BF

I/O Cage 3 500 - 5FF 600 - 6BF

Server Cageb

b. Although the z9 BC and z890 servers have only one book, the reserved addresses for ICB-4s
will still fit in the specified range.

000 - 0FF reserved for ICB-4s

Note: There is no absolute requirement to use CMT; you can assign CHPIDs to PCHIDs
directly in an IOCP source or through HCD. However, this is a very cumbersome process
for large configurations.

If you choose to do a manual assignment of CHPIDs to PCHIDs (using HCD or IOCP), it is
your responsibility to distribute CHPIDs among the physical channel card ports (PCHIDs)
for availability and performance. The objective of CMT is to assist in performing these
tasks.
Chapter 2. IBM System z 141

2.24 Association between CHPIDs and PCHIDs

Figure 2-24 CHPIDs and PCHIDs

CHPIDs and PCHIDs
A z9 EC now supports up to 1024 physical channels, or PCHIDs. In order for an operating
system running in a partition to make use of that PCHID, it must be mapped to a CHPID. Each
CHPID is uniquely defined in an LCSS and mapped to an installed PCHID by the customer
through HCD, IOCP, or the CHPID Mapping Tool. A PCHID is eligible for mapping to any
CHPID in any LCSS.

For internal channels, such as IC links and HiperSockets, CHPIDs are not assigned a PCHID.

Channels
Channels can be shared between logical partitions by including the partition name in the
partition list of a Channel Path ID (CHPID). I/O configurations are defined by the I/O
Configuration Program (IOCP) or the Hardware Configuration Dialog (HCD) in conjunction
with the CHPID Mapping Tool (CMT). The CMT is an optional, but strongly recommended,
tool used to map CHPIDs onto Physical Channel IDs (PCHIDs) that represent the physical
location of a port on a card in an I/O cage.

Operating systems
IOCP is available on the z/OS, z/VM and z/VSE operating systems, and as a standalone
program on the z9 EC hardware console. HCD is available on z/OS and z/VM operating
systems.

Physical location is known as the
PCHID, assigned and reported by
eConfig

Except for ESCON sparing and a
channel swap, a PCHID relates directly
to a jack location in a specific slot, in a
specific cage

CHPID numbers are no longer
pre-assigned

Customer responsibility to do this
assignment using:

HCD/IOCP Process

New CHPID Mapping Tool (CMT)

CHPID assignment:

Associate the CHPID number to a
physical channel port location

Associate the channel to an LCSS

CHPIDs are still 00-FF and must be
unique within an LCSS

Physical Channel IDs (PCHIDs)

102 103 104 110 200 201 202 3F1 320

Logical Partitions

LCSS0 LCSS1

12 52 EF4F 12 2F EF00 02

IOCDS
142 ABCs of z/OS System Programming Volume 10

2.25 Comparison between System z servers

Figure 2-25 Comparing LP IDs for the servers

Comparison between System z servers
Figure 2-25 shows a comparison of the current z9 EC implementation on LP ID and LP
names with the previous ones. We divide the System z family in two groups: old (formed by
z800 and z900) and modern (formed by the z990, z890, z9 EC, and z9 BC). Figure 2-25
displays a comparison of the definition terms used with System z9 and zSeries servers, as
follows:

LP name In old servers, this name is defined through HCD or in the IOCP logical partition
name in the RESOURCES statement in an IOCP. The names must be unique
across the server.

In modern servers, this is the same.

LP ID In old servers, the logical partition identifier is used as the four-bits digit of the
operand stored by the Store CP ID instruction. This value must be in the range of
0 to F. The LP identifier must be unique for each active LP. The value is assigned
on the General Page of the Image Profile for the LP in the Hardware Management
Console (HMC), in the LPAR number parameter in HCD, and in the
RESOURCES statement in IOCP.

In modern servers, the LP ID is a value in the range of 00 to 3F. It is assigned in
the image profile through the support element (SE) or the HMC. This identifier is
returned by the Store CP ID (STIDP) instruction. It is unique across the z9 EC
server and is also referred to as the user logical partition ID (UPID).

MIF ID In old servers, this is the same entity as the LP ID.

Specified in HMC
Image Profile

LCSS 0 LCSS 1

Specified in
 HCD/IOCP

z9 EC, z9 BC, z990, z890

TST1 PROD1 PROD2 TST2 TST3 PROD3

02 04 0A 12 15 17

MIF ID
2

MIF ID
4

MIF ID
A

MIF ID
2

MIF ID
5

MIF ID
7

Logical Partition Name Logical Partition Name

Logical Partition ID Logical Partition ID

CSS

z800, z900
Specified in
HCD/IOCP

TST1 PROD1 PROD2

2 4 A

2 4 A

Logical Partition Name

Logical Partition ID

Logical Partition Number

Specified in
 HCD/IOCP
Chapter 2. IBM System z 143

In modern servers, the MIF ID is introduced because these servers allow more
than 15 LPs. Therefore, the LP ID cannot be used to implement MIF channels,
CTCA protocol, or the I/O control unit path group ID. Then, the MIF ID ranges
from X’1’ to X’F’ as demanded by such protocols, and it is unique within an LCSS.
It is specified in HCD/IOCP in the LP number option.

I/O component comparison
Table 2-4 lists the number of I/O components supported on System z9 and zSeries servers.

Table 2-4 CSS comparison

z800 and z900 z890 z990 z9 BC z9 EC

CSSs 1 per server 2 per server 4 per server 2 per server 4 per server

Partitions 15 per server 15 per LCSS
30 per server

15 per LCSS
30 per server

15 per LCSS, up to
30a per server

a. z9 BC model R07 (capacity setting A01 only) supports a maximum of 15 logical partitions per server.

15 per LCSS, up to
60 per server

CHPIDs 256 per CSS
256 per server

256 per LCSS
512 per server

256 per LCSS
1024 per server

256 per LCSS, up to
512 per server

256 per LCSS, up to
1024 per server

Devices 63K per server 63 K per LCSS
126 K per server

63 K per LCSS
252 K per server

63.75 K per LCSSb,
up to 127.5 K per
server

b. Multiple subchannel sets are supported.

63.75 K per LCSSb,
up to 255 K per server
144 ABCs of z/OS System Programming Volume 10

2.26 IOCP statements example

Figure 2-26 IOCP example

IOCP statements example
In the example shown in Figure 2-26, the first appearance of the new parameters for the
modern servers is shown in bold font from the HCD-produced IOCP. As when the LP is
defined in RESOURCE statement, it is associated with the ID of the LCSS, such as CSS(0).

The former LP ID is now the MIF ID, such as: (LP1,1); the LP IDs are defined through HMC
panels.

MAXDEV keyword
MAXDEV reserves space in the HSA, based on maximum number of UCWs (subchannels),
to allow Dynamic I/O Configuration. There is no longer any need to reserve space in the HSA
through an HMC option. In a z9 EC model you may define, per channel subsystem, the
amount of subchannels from subchannel set zero and from subchannel set one.

Defining CHPIDs
When you are defining a CHPID, it must be qualified by the LCSS ID, such as
CSS(0),80,81,90,91. The CHPIDs must be mapped to a PCHID, as shown in the CHPID
statement. This mapping can be done by using the CHPID mapping tool.

Note: It is now recommended to use HCD and not to code IOCP statements.

ID MSG1=’BILLIOCP’,MSG2=’z990 2 LCSS’,SYSTEM=(2084,1)
RESOURCE PARTITION=((CSS(0),(LP1,1),(LP2,2),LP3,3)), X

 (CSS(1),(LPA,1),(LPB,2),LPC,3))), X
 MAXDEV=((CSS(0),64512),(CSS(1),64512))

CHPID PATH=(CSS(0),80),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0140

CHPID PATH=(CSS(0),81),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0150

CHPID PATH=(CSS(0),90),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01E0

CHPID PATH=(CSS(0),91),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01F0

CHPID PATH=(CSS(1),80),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0141

CHPID PATH=(CSS(1),81),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0151

CHPID PATH=(CSS(1),90),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01E1

CHPID PATH=(CSS(1),91),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01F1

CNTLUNIT CUNUMBR=3000, X
 PATH=((CSS(0),80,81,90,91),(CSS(1),80,81,90,91)), X
 UNITADD=((00,256)),CUADD=0,UNIT=2105, X
 LINK=((CSS(0),20,21,20,21),(CSS(1),20,21,20,21))

CNTLUNIT CUNUMBR=3100, X
 PATH=((CSS(0),80,81,90,91),(CSS(1),80,81,90,91)), X
 UNITADD=((00,256)),CUADD=1,UNIT=2105, X
 LINK=((CSS(0),20,21,20,21),(CSS(1),20,21,20,21))

IODEVICE ADDRESS=(3000,032),CUNUMBR=(3000),STADET=Y,UNIT=3390B
Chapter 2. IBM System z 145

2.27 Configuration definition process

Figure 2-27 Configuration definition process

CHPID mapping tool (CMT)
Figure 2-27 shows a diagram containing the suggested steps needed in defining a new build
for a z9 EC, z9 BC, z990, or z890 I/O configuration.

The old servers had fixed CHPID assignments. The modern servers (z990 and z9 EC) use a
concept called Channel CHPID Assignment where the CHPIDs are not permanently
assigned to a particular card slot, but instead are assigned as needed.

When upgrading from a z990, z9 EC, or z9 BC to a z9 EC, from a z890 to a z9 BC, or from a
z9 BC to another z9 BC, it is strongly recommended that you use the CHPID Mapping Tool to
configure the CHPID to PHCID assignments. For these upgrades, the process in Figure 2-27
changes in that the IOCP input statements generated for the CMT input must contain the
PCHID values previously assigned to CHPIDs in the original server. In this case, CMT
assigns new PCHID values to the affected CHPIDs based on the physical movement of the
channel features when the appropriate files (CF report Order file and IOCP file with PCHID
assignments from the z990, z9 EC, or z9 BC) have been loaded into CMT.

The CHPID Mapping Tool provides a way to customize the CHPID assignments for a z9 EC
system to avoid attaching critical channel paths to single points of failure, such as two
channels from the same I/O card reaching a same I/O control unit. This tool should be used
after the server order is placed and before the system is delivered for installation. The tool can
also be used to remap CHPIDs after hardware upgrades that increase the number of
channels. The tool maps the CHPIDs from an IOCP file (usually generated by HCD) to
Physical Channel Identifiers (PCHIDs) which are assigned to the I/O ports. As you know, the

Assigning PCHIDs
 HCD

 1. Create IODF for your server
without PCHIDs

 2. Create IODF (validated work
 IODF) - HCD option 2.12 =
 Build validated work I/O definition file

 3. Create IOCP source without
 PCHIDs - HCD option 2.3 =
 Build IOCP input data set

 5. Import IOCP source with PCHIDs
 into IODF - HCD option 5.1 =
 Migrate IOCP/OS data,
 Migrate option 3 (PCHIDs)

 6. Create a production IODF -
 HCD option 2.1 =
 Build production I/O definition file

 CHPID mapping tool

 4. Run CHPID mapping tool.
 It will produce an IOCP source
 with PCHIDs assigned

IODF
no PCHIDs

IODF
with

PCHIDs

IOCP
source

no PCHIDs

IOCP
source

with
PCHIDs

CF Report
or

 H/W
Config

Report for
your order

(CCN)

Reports
146 ABCs of z/OS System Programming Volume 10

PCHID assignments are fixed and cannot be changed. The CHPID Mapping Tool is available
from Resource Link™ as a standalone PC-based program.

CHPIDs
Existing software code works with single-byte CHPID numbers, producing the limitation of
256 CHPIDs. The difficulty is to extend this number while maintaining compatibility with
existing software. The 256 maximum CHPID number is reflected in various control blocks in
operating systems, software performance measurement tools, and even some application
code. The new architecture provides multiple sets of channel definitions, each with a
maximum of 256 channels. Existing operating systems would be associated with one logical
channel subsystem (LCSS), and work with a maximum of 256 CHPIDs. Different logical
partitions can be associated with different logical channel subsystem definitions. Thus a
single operating system instance (using existing code) still has a maximum of 256 CHPIDs,
but the server as a whole can have more than 256 CHPIDs. To exploit more than 256
channels, it is necessary to have multiple operating images (in multiple LPs).

PCHIDs
A Physical Channel ID, or PCHID, reflects the physical identifier of a channel-type interface. A
PCHID number is based on the I/O cage location, the channel feature slot number, and the
port number of the channel feature. A CHPID does not directly correspond to a hardware
channel port on a z9 EC server, and may be arbitrarily assigned. A hardware channel is now
identified by a PCHID, or Physical Channel Identifier.

You can address 256 CHPIDs within a single Logical Channel Subsystem. That gives a
maximum of 1024 CHPIDs when four LCSSs are defined. Each CHPID is associated with a
single channel. The physical channel, which, uniquely identifies a connector jack on a
channel feature, is known by its PCHID number.

Using the CMT
The major result of using the CMT tool is an IOCP deck that maps the defined CHPIDs to the
corresponding PCHIDs of the server. There is no requirement to use the mapping tool. You
can assign CHPIDs to PCHIDS directly in an IOCP decks or through HCD. However, this is a
very cumbersome process for larger configurations and it is much easier to use the tool to do
channel mapping. If customers choose to do manual assignment of CHPIDs to PCHIDs
(using HCD or IOCP), it is their responsibility to distribute CHPIDs among the physical
channel cards (PCHIDs) for availability (avoid single point of failures) and performance. The
objective of the tool is to help in performing these tasks.

Figure 2-27 on page 146 shows a diagram containing the suggested steps that an installation
can take in defining a new z9 EC I/O configuration.
Chapter 2. IBM System z 147

2.28 Introduction to MIDAW

Figure 2-28 I/O operation scheme with MIDAWs

Modified Indirect Data Address Word (MIDAW) facility
The System z9 I/O architecture supports a new facility for indirect addressing, the Modified
Indirect Data Address Word (MDAW) facility, for both ESCON and FICON channels. The use
of the MIDAW facility, by applications that currently use data chaining, may result in improved
channel throughput in FICON environments. This facility is used by VSAM media manager.

The MIDAW facility is exclusive to the z9 EC, and is supported by ESCON using CHPID type
CNC, and by FICON using CHPID types FCV and FC. The MIDAW facility is exploited by
z/OS. It is unique in z9 EC servers and requires z/OS V1R7 or V1R6 plus APARs and I/O
controller awareness, as for the DS8000.

Results of internal DB2 table scan tests with Extended Format data sets (the ones with a
32-byte suffix at each physical block) on the z9 EC with the Modified Indirect Data Address
Word facility and the IBM TotalStorage® DS8000 yielded the following results when using
FICON Express4 operating at 4 Gbps on a z9 EC compared to FICON Express2 operating at
2 Gbps:

� A 46% improvement in throughput for all reads (270 MBps versus 185 MBps)

� A 35% reduction in response times

Use of the MIDAW facility with FICON Express4, operating at 4 Gbps, compared to use of
Indirect Data Address Words (IDAWs) with FICON Express2, operating at 2 Gbps, showed an
improvement in throughput of greater than 220% for all reads (270 MBps versus 84 MBps) on
DB2 table scan tests with Extended Format data sets.

C S S
C
H
A
N
N
E
L

PATH

S A P

CCWs are
constructed
by Access
Methods

FLAGS: Key, Suspend, Format, Prefetch, Initial, Address Limit, LPM, Length

SSCH

@UCB

REG1
SID

@CCW

FLAGS

FLAGS:
8 CD USE @DADOS NEXT CCW
9 CC USE COMMAND NEXT CCW
10 SLI IGNORE ERROR IN SIZE
11 SKIP NO DATA TRANSFER
12 PCI CAUSES INTERRUPTION CCW FETCH

13 IDA IDA Bit is On
14 S SUSPEND CHANNEL PROGRAM

CMD FLGS COUNT @DATA

O
R
B

1

2

0

CCW (Memory)

CCW

CCW
CCW

CCW

Memory

3

Device

0

0 8 16 32

200 K

100 K

First IDAW

Second IDAW

CECs I/O cage

With the exception of the last
CCW, all flag bit 9s are on

I/O
C
O
N
T
R
O
L
L
E
R

148 ABCs of z/OS System Programming Volume 10

The MIDAW facility provides a more efficient CCW/IDAW structure for certain categories of
data chaining I/O operations, as described here:

� MIDAW can significantly improve FICON performance for extended format data sets.

– Non-extended data sets can also benefit from MIDAW.

� MIDAW can improve channel utilization and can significantly improve I/O response time.

– It reduces FICON channel connect time, director ports and control unit overhead.

IDAWs
MIDAW means Modified IDAW. An IDAW is an Indirect Address Word that is used to specify
real data addresses for I/O operations in a virtual environment. The existing IDAW design
allows the first IDAW in a list to point to any address within a page. Subsequent IDAWs in the
same list must point to the first byte in a page. Also, all but the first and last IDAW in a list must
deal with complete 2 K or 4 K units of data.

MIDAW format
The MIDAW facility is a new method of gathering/scattering data from and into discontinuous
storage locations during an I/O operation. The modified IDAW (MIDAW) format is shown in
Figure 2-29. It is 16 bytes long and is aligned on a quadword. Its most important new field is
the count describing the length of the I/O buffer piece described in the MIDAW. With such
count, we save CCWs in the channel program making it faster.

Figure 2-29 Modified IDAW (MIDAW) format

0 40 48 64 127

reserved flags count data address (64 bits)

Flags:
Bit 40 - last MIDAW in list
Bit 41 - skip transfer to main storage Iike Skip in CCW)
Bit 42 - data transfer interruption control (like PCI in CCW)
Chapter 2. IBM System z 149

2.29 Using MIDAWs

Figure 2-30 MIDAW CCW chaining

MIDAW CCW chaining
The use of MIDAWs is indicated by the MIDAW bit in the CCW. If this bit is set, then the skip
flag may not be set in the CCW; the skip flag in the MIDAW may be used instead. The data
count in the CCW should equal the sum of the data counts in the MIDAWs. The CCW
operation ends when the CCW count goes to zero or the last MIDAW (with the last flag) ends.

The combination of the address and count in a MIDAW cannot cross a page boundary; this
means the largest possible count is 4 K. The maximum data count of all the MIDAWs in a list
cannot exceed 64 K. (This is because the associated CCW count cannot exceed 64 K.)

The scatter-read or scatter-write effect of the MIDAWs makes it possible to efficiently send
small control blocks embedded in a disk record to separate buffers than those used for larger
data areas within the record. MIDAW operations are on a single I/O block, in the manner of
data chaining. Do not confuse this operation with CCW command chaining.

Extended format data sets
z/OS extended format data sets use internal structures (usually not visible to the application
program) that require scatter-read (or scatter-write) operation. This means that CCW data
chaining is required and this produces less than optimal I/O performance. Extended format
data sets was introduced in 1993 and are widely in use today. Since the most significant
performance benefit of MIDAWs is achieved with Extended Format (EF) data sets, a brief
review of the EF data sets are included here.

CCW IDAW address

Command
(Read)

Flags
(MIDAW flag set)

Data count
(Number of bytes)

MIDAWs

3104

4 K
Pages

MIDAWs remove the 4K
boundary restrictions of

IDAWs

MIDAWs can start and
end at any location
within a 4K page

Format-1 CCW

02 01

reserved

reserved

reserved

real address

L

2K

32

1K

real address

real address

Count
Flags

(Last MIDAW in list)

MIDAWs are a new method of gathering/scattering data into/from
discontiguous storage locations during an I/O operation
150 ABCs of z/OS System Programming Volume 10

To process an I/O operation to an EF data set would normally require at least two CCWs with
data chaining. One CCW would be used for the 32-byte suffix of the EF data set. With
MIDAW, the additional CCW for the EF data set suffix can be eliminated.

MIDAWs benefit both EF and non-EF data sets. For example, to read twelve 4 K records from
a non-EF data set on a 3390 track, Media Manager would chain 12 CCWs together using
data chaining. To read twelve 4 K records from an EF data set, 24 CCWs would be chained (2
CCWs per 4K record). Now, by using Media Manager track-level command operations and
MIDAWs, a whole track can be transferred using a single CCW.

Performance benefits
Media Manager has the I/O channel programs support for implementing Extended Format
data sets, it automatically exploits MIDAWs when appropriate. Today, most disk I/Os in the
system are generated using Media Manager.
Chapter 2. IBM System z 151

2.30 Channel command word (CCW) concept

Figure 2-31 DASD channel program example

Channel command word (CCW) concept
An I/O operation includes a dialog between a FICON (or ESCON) channel microprocessor
located on the FICON feature card (refer to (2) in Figure 2-28 on page 148).

The objective of this dialog is the transfer of data between the server's real memory and a
device media, managed by that I/O controller. The channel is in command of the I/O
operation, requiring certain actions from the controller. In order to know what to order, the
channel accesses, in real storage, an already-written channel program (refer to (0) in
Figure 2-28 on page 148. As an analogy, the CP executes programs comprised of
instructions, and the I/O channel executes channel programs made of channel command
words (CCWs). That is, a channel program describes to the channel the actions it needs to
order from the I/O controller for an I/O operation. A CCW is the basic element of a channel
program.

DEFINE EXTENT CCW
The DEFINE EXTENT CCW is always the first one in the channel program, and it is added by
the Input output supervisor (IOS). This CCW deals with security, integrity and DASD cache
control of the channel program. A discussion of this topic beyond the scope of this book.

LOCATE RECORD CCW
The LOCATE RECORD CCW tells the channel about the physical address (cylinder, track,
physical block number) in the DASD device of the physical block to be read or written. This
information is passed by the channel to the controller.

CCW DEFINE EXTENT

Used for security, integrity, DASD cache
management

CCW LOCATE RECORD

Tells the location of the physical record (cyl, track
and record) in the DASD device

CCW READ 4 KB,flags,10000

Reads 4096 bytes into contents of storage address
10000

Flag bits are used for indicating some options
152 ABCs of z/OS System Programming Volume 10

READ CCW
The READ CCW informs you that the physical block described by the LOCATE RECORD
CCW is to be moved from the DASD device to storage. Two informational items are key: the
address in storage, and the size of the physical block (for checking purposes).

Instead of the READ CCW, you can have a WRITE CCW that inform you that the physical
block already prepared in storage is to be moved to a DASD device location, as described by
the LOCATE RECORD CCW. Two informational items are key: the address in storage, and
the size of the physical block to be written in the device track.

Now take a look at the CCW contents (refer to (0) in Figure 2-28 on page 148), as follows:

� The first 8 bits (CMD) contain the command code; for example, X'02' is a read and X'01' is
a write.

� Flags (FLGS) indicate options.

� Byte count (COUNT) indicates the size of the physical block to be transferred by this CCW.
If a write is the amount of bytes to be stored in the device, then read is the amount of bytes
to be transferred to storage.

� Data address (@DATA) tells the address in storage for the physical block read or write.
This storage area is also called the I/O buffer.
Chapter 2. IBM System z 153

2.31 CCWs and virtual storage - IDAW Concept

Figure 2-32 IDAW concept

CCWs and virtual storage - IDAW concept
As shown in Figure 2-32, an 8-KB output I/O buffer is aligned in a page boundary starting at
virtual address 12-MB. The access method builds the following CCW:

CCW write,8-KB, flags,12-M

The page starting at the 12-MB virtual address is located in the frame starting at real storage
200-KB. The next page, the one at 12-MB plus 4-KB, is located in the frame starting at real
storage 100-KB. As you can see, there is no continuity in real storage.

When the I/O driver prepares the CCW, the channel moves the 8-KB from storage starting at
frame 200-KB and continuing into frame 204-KB, which is clearly a mistake.

In order to solve such a problem, the concept of indirect addressing was introduced. If the
CCW flag bit 13 is on, the channel understands that the CCW-address field—instead of
containing a real address of the I/O buffers—contains the real address of a list of double
words, called indirect data address words (IDAWs), each of which contains a real address
designating a 4-KB frame. When the first 4-KB frame is exhausted, the channel keeps the I/O
data transfer to the real address in the next IDAW in the list. The list is called an indirect data
address list (IDAL).

However, the IDAW design is flexible, allowing the first IDAW in a list to point to any real
address within a page frame. Subsequent IDAWs in the same list, however, must point to the
first byte in a page frame. Also, all but the first and last IDAW in a list must deal with complete

Virtual Storage Pages

Real Storage Frames

12 M

12 M+4K

100 K

200 K

Access Method writes:
CCW READ 8 KB, 12M

I/O Driver Writes:
CCW READ 8 KB, BIT 13 on, IDAL Address

200 K

100 K

IDAL address

IDAW 0

IDAW 1
154 ABCs of z/OS System Programming Volume 10

4K units of data. Therefore, in our numeric example, the first IDAW points to real address
200-K and the second points to real address 100-K.

If the CCW-address field only has 31 bits (up to 2 GB addresses), it is possible to have an I/O
buffer above the bar (higher than 2-GB real address). This is because even if the I/O buffer is
totally contained in one page, the IDAWS must be always used for such I/O, since each IDAW
has 64 bits in order to have addressability beyond 2-GB.

CCW command chaining
An I/O physical book contains logical records. Its size is determined by the access method
parameter installation-defined blksize. On DASD or on tape, each physical block is separated
from others by gaps.

Generally speaking, each read or write CCW is able to transfer just one physical block.
However, it is possible in the same channel program to transfer more than one physical block.
To implement this, a flag bit called the command chain bit 9 is set.

The CP is a always very busy, because its default is “when you finish one instruction, execute
the next”. The channel is slower because its default is “when you finish one CCW, quit (send
an I/O interrupt informing the end of the channel program execution)”. The command chaining
flag is needed in order to make the channel execute the next CCW. Therefore, all CCWs in a
channel program (except the last one) should have the command chaining bit on.

With sequential I/O processing it is very common, for performance reasons, to transfer
several physical blocks in just one channel program by using the command chaining facility.

Data chaining
Data chaining is a special case of command chaining. It is activated by flag bit 8 in the CCW.
Data chaining means that several CCWs, in sequence, with this flag on, operate on the same
physical record. Basically there are two reasons for this implementation:

� To read and write a physical block greater than 64 KB. Keep in mind that the byte count in
the CCW only allows 64 KB (it has 16 bits). Looking at the following channel program with
virtual addresses:

CCW Write 64 KB, flag 8 On, 10 M
CCW Write 64 KB, flag 8 On, 10 M + 64 K
CCW Write 64 KB, flag 8 On, 10 M + 128 K
CCW Write 64 KB, flag 8 Off, 10 M + 192 K

As you can see, this channel program is writing just one physical block of 256 KB.

� To read and write a “spread physical record (also called scatter-read or scatter-write). As
an example, with 3390 DASD, the physical record or block is usually comprised of two
items: a count with 8 bytes containing control information (transparent to the application),
and data which contains the data itself.

If an access method wants to read the specified count to an internal specific storage area
and the data to the I/O buffer, it can produce the following virtual channel program:

CCW Read 8, flag 8 On, 20 M
CCW Read 4 KB, flag 8 Off, 10 M

In this case, the count is 20 MB and the 4 KB data at 10 M.
Chapter 2. IBM System z 155

2.32 DASD extended format

Figure 2-33 Extended format

DASD extended format
You can allocate both sequential and VSAM data sets in extended format (EF) on a
system-managed DASD. The DASD is attached to a controller that supports Extended
Platform.

An extended-format data set supports the following formats:

� Compression, which reduces the space for storing data and improves I/O, caching, and
buffering performance.

� Data striping, which distributes data for one data set across multiple SMS-managed DASD
volumes, which improves I/O performance and reduces the batch window (for example, a
data set with 28 stripes is distributed across 28 volumes).

� Extended addressability, which enables you to create a VSAM data set that is larger than
4 GB.

Extended format is a technique that affects the way count key data (CKD) is stored in a 3390
or 3380 DASD track. Extended format was first introduced to implement data striping. It
improves the performance and the reliability of an I/O operation.

COUNT COUNT

G
A
P

G
A
P

G
A
P

D A T A D A T A

32-byte suffix (in extended format)
156 ABCs of z/OS System Programming Volume 10

The major difference from those data sets to the ones not in extended format is:

� A 32 bytes suffix is added to each physical record at the data component. This physical
block suffix may increase the amount of space actually needed for the data set, depending
on the blksize.

The 32 bytes suffix contains the following:

– A relative record number used for data stripping.

– A 3-byte field to detect controller invalid padding, thus improving the availability of the
I/O operation. A discussion of this topic is beyond the scope of this IBM Redbook.

Record format on DASD
The physical record format and the suffix are transparent to the application; that is, the
application does not require internal or external modifications to create and use the extended
format data set.

As mentioned previously, it is recommended that you convert your data sets to extended
format for better performance, additional function, and improved reliability. For example, there
are several VSAM functions only available for EF data sets, such as:

� Data striping

� Data compression

� VSAM extended addressability

� Partial space release

� System-managed buffering

Note: All channel programs accessing EF data sets must use data chaining to read the
32-bytes suffix to a different area as an scatter-read or scatter-write I/O operation.

DFSMS sms-managed data sets
All extended format data sets must be system-managed; that is, have an associated storage
class.

To convert a non-extended format data set to an extended format, or to allocate an extended
format data set, you need to create an SMS data class (DC) with the DATASETNAMETYPE
field equal to EXT, and then assign the data sets to that data class.
Chapter 2. IBM System z 157

2.33 Reducing CCWs using MIDAW

Figure 2-34 Reducing CCWs through MIDAW

Reducing CCWs using MIDAW
System z9 I/O architecture supports a new facility for indirect addressing, known as the
Modified Indirect Data Address Word (MIDAW) facility, for both ESCON and FICON channels.
The use of the MIDAW facility, by applications that currently use data chaining, may result in
improved channel throughput in FICON environments.

The MIDAW facility is exclusive to the z9 EC, and is supported by ESCON using CHPID type
CNC, and by FICON using CHPID types FCV and FC. The MIDAW facility is exploited by
z/OS.

The MIDAW facility addresses the following:

� Due to the use of extended format (EF), data chaining is very much used in channel
programs.

� Due to virtual storage implementation, you need to have IDAWs in channel programs
(remember that I/O buffers are not contiguous in real storage).

The MIDAW facility is designed to help improve performance for native FICON applications
that use data chaining for extended format data sets by reducing channel, director, and
control unit overhead. MIDAW provides a more efficient CCW/IDAW structure for certain
categories of data chaining I/O operations.

� MIDAW can significantly improve FICON performance for extended format data sets.

– Non-extended data sets can also benefit from MIDAW.

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

Non-EF data sets pre-MIDAWs

32 CCWs in total

CCW READ 32 byte
suffix

CCW READ 4K

CCW READ 32 byte
suffix

CCW READ 4K

CCW READ 32 byte
suffix

CCW READ 4K

CCW READ 32 byte
suffix

CCW READ 4K

CCW READ 32 byte
suffix

CCW READ 4K

64 CCWs in total

EF data sets Pre-MIDAWs

Track level CCW

Track level CCW

Track level CCW

Track level CCW

 EF or non-EF data sets
With MIDAWs

3 or 4 CCWs in total
158 ABCs of z/OS System Programming Volume 10

� MIDAW can improve channel utilization and can significantly improve I/O response time.

– Use of MIDAW reduces FICON channel connect time, director ports and control unit
overhead.

An IDAW is an indirect address word that is used to specify data addresses for I/O operations
in a virtual environment. The existing IDAW design allows the first IDAW in a list to point to
any address within a page. Subsequent IDAWs in the same list must point to the first byte in a
page. Also, all but the first and last IDAW in a list must deal with complete 2 K or 4 K units of
data. This limits the usability of IDAWs to straightforward buffering of a sequential record.

By using MIDAW, Media Manager can transfer a whole track using a single CCW, without the
need of data chaining, as shown in Figure 2-34 on page 158.
Chapter 2. IBM System z 159

2.34 MIDAW facility

Figure 2-35 MIDAW example

MIDAW facility
MIDAWs are an alternative to using CCW data chaining in channel programs, and provide a
new method of gathering and scattering data into and from non-contiguous storage locations
during an I/O operation, thereby reducing the number of FICON frames and sequences
flowing across the link, which makes the channel more efficient. MIDAWS remove the 4 K
boundary IDAW restriction, allowing access to scattered data by a single CCW.

The advantage is that all the MIDAWs can point to any real address and indicate any length
(up to 4-kB), as pictured in Figure 2-35. This makes it possible to efficiently send small blocks
embedded in a disk record (as the EF suffix) to separate buffers than those used for larger
data areas within the record. For FICON this means that all the data is associated with the
same FICON frame command information units (IU). With MIDAW there is a greater chance
that more information units (up to 16) may be sent to the control units in a single burst.

Remember also that the MIDAW operations are on a single I/O physical record (block), and
exploit data chaining with just one CCW.

The use of MIDAWs is indicated by the MIDAW bit 7 in the CCW flags. Each MIDAW has
128 bits. The byte count in the CCW should equal the sum of the data counts in the MIDAWs.
The CCW operation ends when the CCW count goes to zero or when the last MIDAW (with
the last flag) ends.

flags

MIDAWs

(L flag = Last MIDAW in list)

command

data
count MIDAW bit (flag bit 7)

addressCCW

2KB

32

1KBL

reserved

reserved

reserved

real address 1

real address 2

real address 3

flags count real
address

pages
160 ABCs of z/OS System Programming Volume 10

2.35 MIDAW performance results

Figure 2-36 MIDAW performance results

MIDAW exploiting
MIDAWs are used by two IOS drivers:

� The Media Manager (a VSAM-specific I/O driver) exploits MIDAWs when appropriate.

� Users of the EXCPVR IOS driver may construct channel programs containing MIDAWs,
provided that they construct an IOBE with the new IOBEMIDA bit set.

Note: Users of the EXCP driver may not construct channel programs containing MIDAWs.

MIDAW performance results
Media Manager contains the I/O channel program support for implementing Extended Format
data sets, and it automatically exploits MIDAWs when appropriate. Today, most disk I/Os in
the system are generated using Media Manager.

The MIDAW facility removes the 4 K boundary restrictions of IDAWs— and in the case of EF
data sets—reduces the number of CCWs. Decreasing the number of CCWs helps to reduce
the FICON channel utilization. Media Manager and MIDAWs will not cause the bits to move
any faster across the FICON link, but they do reduce the number of frames and sequences
flowing across the link, thus utilizing the channel resources more efficiently.

Use of the MIDAW facility with FICON Express4, operating at 4 Gbps, compared to use of
Indirect Data Address Words (IDAWs) with FICON Express2, operating at 2 Gbps, showed an
improvement in throughput of greater than 220% for all reads (270 MBps versus 84 MBps) on
DB2 table scan tests with extended format data sets.

0
20
40
60
80

100

1 2 3C
ha

nn
el

 B
us

y%

pre-MIDAWs MIDAWs

I/O Response Time (ms)

0

1

2

3

4

5

1 2 3 1 2 3
Number of DB2 partitions

pend connect
Pre-MIDAWs MIDAWs

0

50

100

150

200

1 2 3

Number of DB2 partitions
Th

ro
ug

hp
ut

(M

B
/s

ec
)

Configuration:
MIDAW : z/OS 1.7
Pre-MIDAW: z/OS 1.4

DB2 for z/OS Version 8
4000 byte row size
System z9 109
FICON® Express2
2 Gbit/sec link
DS8000 control unit
Chapter 2. IBM System z 161

These measurements are examples of what has been achieved in a laboratory environment
using one FICON Express4 channel operating at 4 Gbps (CHPID type FC) on a z9 EC with
z/OS V1.7 and DB2 UDB for z/OS V8.

The performance of a specific workload may vary, according to the conditions and hardware
configuration of the environment. IBM laboratory tests found that DB2 gains significant
performance benefits using the MIDAW facility in the following areas:

� Table scans

� Logging

� Utilities

� Using DFSMS striping for DB2 data sets

Figure 2-36 on page 161 illustrates the environment where the results were captured. By all
metrics, we observe a dramatic improvement in the I/O performance, as listed here:

� I/O connect time: more than 50% decrease, for three DB2 partitions

� Channel busy%: 30% decrease, for three DB2 partitions

� Throughput in MB/sec: 63% increase, for three DB2 partitions
162 ABCs of z/OS System Programming Volume 10

2.36 Cryptographic hardware features

Figure 2-37 Cryptographic hardware features

Cryptography
Today, e-business applications are increasingly relying on cryptographic techniques to
provide the confidentiality and authentication required in this environment. Secure Sockets
Layer/Transport Layer Security (SSL/TLS) technology is a key technology for conducting
secure e-commerce using Web servers, and it is in use by a rapidly increasing number of
e-business applications, demanding new levels of security and performance.

z9 EC cryptographic features
Two types of cryptographic features are available on the z9 EC:

� CP Assist Crypto Function (CPACF)
� Crypto Express 2

All the hardware z9 EC cryptographic facilities are exploited by the Integrated Cryptographic
Service Facility (ICSF, which is the z/OS component for crypto) and the IBM Resource
Access Control Facility (RACF), or equivalent software products. They provide data privacy,
data integrity, cryptographic key installation and generation, electronic cryptographic key
distribution, and personal identification number (PIN) processing.

Note: The cryptographic features are usable only when explicitly enabled through IBM to
conform with US export requirements.

Crypto enablement feature (CPACF)

Crypto Express2

TKE 5.0 LIC

TKE workstation

TKE smart card reader

TKE additional smart cards
Chapter 2. IBM System z 163

CP Assist Crypto Function (CPACF)
A microcode assist is implemented in a few instructions, to be able to execute some crypto
algorithms. Each CP and IFL has a a set of assisted instructions in support of cryptography.
The CP Assist for Cryptographic Function (CPACF) provides high performance encryption
and decryption support. To that end, five instructions were introduced with the cryptographic
assist function:

KMAC Compute Message Authentic Code
KM Cipher Message
KMC Cipher message with chaining
KIMD Compute Intermediate Message Digest
KLMD Compute Last Message Digest

The CP Assist for Cryptographic Function offers a set of symmetric (encryption and
decryption use the same key) cryptographic functions that enhance the encryption and
decryption performance of clear key operations for SSL, VPN, and data storing applications
that do not require FIPS 140-2 level 4 security.

The CPACF includes DES, T-DES data encryption and decryption, AES encryption and
decryption, MAC message authorization and SHA-1/SHA-256 hashing. These functions are
directly available to application programs, thereby diminishing programming overhead. The
CP Assist for Cryptographic Function complements—but does not execute—public key (PKA)
functions.

Crypto Express2
The total number of Crypto Express2 features may not exceed eight per z9 EC server. Each
Crypto Express2 feature contains two PCI-X adapters. Each adapter can be configured as a
cryptographic coprocessor or accelerator. During the feature installation, both PCI-X adapters
are configured by default as coprocessors. The Crypto Express2 feature does not use
CHPIDs from the Logical Channel Subsystem pool, but each feature is assigned two
PCHIDs, one per PCI-X adapter.

TKE workstation
The TKE workstation is an IBM PCI bus-based personal computer. The different feature
codes are for your network connection. The following features are also available with a TKE
workstation:

� Feature 0887: 2 smart card readers and 20 smart cards
� Feature 0888: 10 smart cards

 Table 2-5 summarizes the Cryptographic feature codes for the IBM System z9.

Table 2-5 Cryptographic Feature codes

Feature code Description

3863 Crypto enablement feature
Prerequisite to use the CPACF or Crypto Express2 features

0863 Crypto Express2 feature

0855 TKE 5.0 LIC

0859 TKE workstation

0887 TKE Smart Card Reader

0888 TKE additional smart cards
164 ABCs of z/OS System Programming Volume 10

2.37 Crypto Express2

Figure 2-38 Cryptographic Express2

Crypto Express2
The Crypto Express2 feature is an outboard processor. It is peripheral, being located in the
I/O cage in one I/O card. All its processing is asynchronous. It has two PCI-X cryptographic
adapters. Each PCI-X cryptographic adapter can be configured as a cryptographic
coprocessor or a cryptographic accelerator.

The Crypto Express2 in z9 EC replaces PCIXCC and PCICA. Reconfiguration of the PCI-X
cryptographic adapter between coprocessor and accelerator mode is an exclusive of the
z9 EC system and is also supported for Crypto Express2 features brought forward from z990
and z890 systems to the z9 EC.

� When the PCI-X cryptographic adapter is configured as a coprocessor, the adapter
provides equivalent functions (plus some additional functions) as the PCICC card on
previous systems with a doubled throughput.

� When the PCI-X cryptographic adapter is configured as an accelerator, it provides
PCICA-equivalent functions with an expected throughput of approximately three times the
PCICA throughput on previous systems.

The z9 EC supports up to eight Crypto Express2 features (up to sixteen PCI-X cryptographic
adapters) to be installed. Each PCI-X adapter either acts as cryptographic coprocessor or as
cryptographic accelerator.

2.5V

PCI-X (64-bit, 133MHz)

3.3V

24V

Display &
RISCWatch
Connectors

1.8V

STI
Interface

500 MB/sec

Po
w

er

Ba
t te

r y
B a

tt e
r y

PCIXCC
 Card

B
at t ery

PCIXCC
 Card

PCI-X
Bridge

PCI-X
Bridge

B
att ery
Chapter 2. IBM System z 165

The Crypto Express2 feature does not have ports and does not use fiber optic or other
cables. It does not use CHPIDs, but requires one slot in the I/O cage and one PCHID for each
PCI-X cryptographic adapter. The feature is attached to an STI and has no other external
interfaces. Each PCI-X cryptographic adapter can be shared by any logical partition defined
in the system, up to a maximum of 16 logical partitions per PCI-X cryptographic adapter.

Crypto Express2
The Crypto Express2 coprocessor is a Peripheral Component Interconnect eXtended (PCI-X)
cryptographic adapter configured as a outboard coprocessor. It provides a high-performance
cryptographic environment with added functions.

PPCI-X cryptographic adapters, when configured as coprocessors, are designed for FIPS
140-2 Level 4 compliance rating for secure cryptographic hardware modules. Unauthorized
removal of the adapter or feature zeros its content.

The Crypto Express2 coprocessor enables the user to:

� Encrypt and decrypt data utilizing secret-key (non clear key) algorithms. Triple-length key
DES and double-length key DES algorithms are supported.

� Generate, install, and distribute cryptographic keys securely using both public and secret
key cryptographic methods.

� Generate, verify, and translate personal identification numbers (PINs).
� Ensure the integrity of data by using message authentication codes (MACs), hashing

algorithms, and Rivest-Shamir-Adelman (RSA) public key algorithm (PKA) digital
signatures.

The Crypto Express2 coprocessor also provides (natively) the functions described here for
the Crypto Express2 accelerator with, however, a lower performance than the Crypto
Express2 accelerator can provide.

The security-relevant portion of the cryptographic functions is performed inside the secure
physical boundary of a tamper-resistant card. Master keys and other security-relevant
information is also maintained inside this secure boundary.

PR/SM fully supports the Crypto Express2 feature coprocessor to establish a logically
partitioned environment in which multiple logical partitions can use the cryptographic
functions. A 128-bit data-protection master key, and one 192-bit Public Key Algorithm (PKA)
master key, are provided for each of 16 cryptographic domains that a coprocessor can serve.

Using the dynamic add/delete of a logical partition name, a logical partition can be renamed.
Its name can be changed from ‘NAME1’ to ‘*’ and then changed again from ‘*’ to ‘NAME2’.
The logical partition number and MIF ID are retained across the logical partition name
change. The master keys in the Crypto Express2 feature coprocessor that were associated
with the old logical partition ‘NAME1’ are retained. There is no explicit action taken against a
cryptographic component for this dynamic change.

Note: While PCI-X cryptographic adapters have no CHPID type and are not identified as
external channels, all logical partitions in all LCSSs have access to the coprocessor (up to
16 logical partitions per coprocessor).

Note: Cryptographic coprocessors are not tied to logical partition numbers or MIF IDs.
They are set up with PCI-X adapter numbers and domain indices that are defined in the
partition image profile. The customer can assign them to the partition and change or clear
them when needed.
166 ABCs of z/OS System Programming Volume 10

2.38 z9 EC crypto synchronous functions

Figure 2-39 Synchronous crypto functions in z9 EC

Cryptographic function support
The z9 EC includes both standard cryptographic hardware and optional cryptographic
features for flexibility and growth capability.

Cryptographic synchronous functions
These functions are provided by the CP Assist for Cryptographic Function (CPACF).
Synchronous means that the function is holding the CP processing of the instruction flow until
the operation has completed. Note that crypto keys, when needed, are to be provided in clear
form only, meaning the key may be in central storage.

� Data encryption/decryption algorithms

– Data Encryption Standard (DES)

• Double length-key DES
• Triple length-key DES (TDES)

– Advanced Encryption Standard (AES) for 128-bit keys

� Hashing algorithms: SHA-1 and SHA-256

� Message authentication code (MAC):

– Single-key MAC
– Double-key MAC

� Pseudo random number generation (PRNG)

Data encryption/decryption algorithms

Data Encryption Standard (DES)

Double length-key DES

Triple length-key DES

Advanced Encryption Standard (AES) for 128-bit keys

Hashing algorithms: SHA-1 and SHA-256

Message authentication code (MAC):

Single-key MAC and

Double-key MAC

Pseudo random number generation (PRNG)
Chapter 2. IBM System z 167

2.39 z9 EC crypto asynchronous functions

Figure 2-40 z9 EC crypto asynchronous functions

z9 EC crypto asynchronous functions
These functions are provided by the PCI-X cryptographic adapters.

The following secure key (not clear key) functions are provided as cryptographic
asynchronous functions. System internal messages are passed to the cryptographic
coprocessors to initiate the operation, and messages are passed back from the coprocessors
to signal completion of the operation.

� Data encryption/decryption algorithms

– Data Encryption Standard (DES)
– Double length-key DES
– Triple length- key DES

� DES key generation and distribution

� PIN generation, verification, and translation functions

� Pseudo random number generator (PRNG)

� Public Key Algorithm (PKA) Facility

– Importing RSA public-private key pairs in clear and encrypted forms

– Rivest-Shamir-Adelman (RSA)

• Key generation, up to 2048-bit
• Signature verification, up to 2048-bit
• Import and export of DES keys under an RSA key, up to 2048-bit

Data encryption/decryption algorithms

Data Encryption Standard (DES)

Double length-key DES

Triple length-key DES

DES key generation and distribution

PIN generation, verification and translation functions

Public Key Security Control (PKSC)

Public Key Algorithm (PKA) Facility
168 ABCs of z/OS System Programming Volume 10

– Public Key Encrypt (PKE)

Public Key Encrypt service is provided for assisting the SSL/TLS handshake. When
used with the Mod_Raised_to Power (MRP) function, it is also used to off load
compute-intensive portions of the Diffie-Hellman protocol onto the PCI-X cryptographic
adapter.

– Public Key Decrypt (PKD)

Public Key Decrypt supports a Zero-Pad option for clear RSA private keys. PKD is
used as an accelerator for raw RSA private operations such as those required by the
SSL/TLS handshake and digital signature generation. The Zero-Pad option is exploited
by Linux to allow use of PCI-X cryptographic adapter for improved performance of
digital signature generation.

– Derived Unique Key Per Transaction (DUKPT)

The service is provided to write applications that implement the DUKPT algorithms as
defined by the ANSI X9.24 standard. DUKPT provides additional security for
point-of-sale transactions that are standard in the retail industry. DUKPT algorithms are
supported on the Crypto Express2 feature coprocessor for triple-DES with
double-length keys.

– Europay Mastercard VISA (EMV) 2000 standard

Applications may be written to comply with the EMV 2000 standard for financial
transactions between heterogeneous hardware and software. Support for EMV 2000
applies only to the Crypto Express2 feature coprocessor of the z9 EC.

Other key functionalities of the Crypto Express2 feature (to be seen later) serve to enhance
the security of public/private key encryption processing:

� Retained key support (RSA private keys generated and kept stored within the secure
hardware boundary)

� Support for 4753 Network Security Processor migration

� User-Defined Extensions (UDX) support, including:

– For Activate UDX requests:

• Establish Owner
• Relinquish Owner
• Emergency Burn of Segment
• Remote Burn of Segment

– Import UDX File function

– Reset UDX to IBM default function

– Query UDX Level function

UDX allows the user to add customized operations to a cryptographic coprocessor.
User-Defined Extensions to the Common Cryptographic Architecture (CCA) support
customized operations that execute within the Crypto Express2 feature. UDX is supported via
an IBM, or approved third-party, service offering.
Chapter 2. IBM System z 169

2.40 Non-disruptive upgrades

Figure 2-41 Non-disruptive upgrades

Concurrent upgrades
The z9 EC allows non-disruptive (concurrent) upgrades, adding more capacity to the HW,
without an outage in the delivered service.

Given today's business environment, benefits of the concurrent capacity growth capabilities
provided by z9 EC servers are plentiful, and include:

� Enabling exploitation of new business opportunities
� Supporting the growth of e-business environments
� Managing the risk of volatile, high growth, high volume applications
� Supporting 24x365 application availability
� Enabling capacity growth during “lock down” periods

This capability is based on the flexibility of the z9 EC system design and structure, which
allows configuration control by the Licensed Internal Code (LIC) and concurrent hardware
installation.

Licensed Internal Code (LIC)-based upgrades
The LIC-Configuration Control (LIC-CC) provides for server upgrade with no hardware
changes by enabling the activation of additional previously installed capacity. Concurrent
upgrades via LIC-CC can be done for:

� Processing units (CPs, IFLs, and ICFs) - require available spare PUs on installed book(s)

� Memory - requires available capacity on installed memory cards

Concurrent upgrades

LIC-based upgrades

Planned upgrades

Capacity Upgrade on Demand (CUoD)

Customer Initiated Upgrade (CIU)

On/Off Capacity on Demand (On/Off CoD)

Unplanned upgrades

Capacity Backup (CBU)
170 ABCs of z/OS System Programming Volume 10

� I/O card ports (ESCON channels and ISC-3 links) - requires available ports on installed
I/O cards

Hardware installation configuration upgrades can also be concurrent by installing additional:

� Books (which contain PUs, memory, and STIs) - require available book slots in the
installed server cage

� I/O cards - requires available slots on installed I/O cages; I/O cages cannot be installed
concurrently

Planned upgrades
Following is a list of the planned upgrades:

� Capacity Upgrade on Demand (CUoD) is planned and permanent capacity growth.

CUoD applies for PUs (CPs, ICFs, IFLs), memory and I/O ports. CUoD does not require
any special contract, but requires IBM service personnel for the upgrade. In most cases, a
very short period of time is required for the IBM personnel to install the LIC-CC and
complete the upgrade.

To better exploit the CUoD function, an initial configuration should be carefully planned to
allow a concurrent upgrade up to a target configuration. You need to consider planning,
positioning, and other issues to allow a CUoD no- disruptive upgrade. By planning ahead,
it is possible to enable non-disruptive capacity and I/O growth for the z9 EC, without
system power-down and no associated POR or IPLs.

� Customer Initiated Upgrade (CIU) is the capability for the z9 EC user to initiate a planned
and permanent upgrade for CPs, ICFs, IFLs and/or memory via the Web, using IBM
Resource Link.

CIU is similar to CUoD, but the capacity growth can be added by the customer. The
customer also has the ability to unassign previously purchased CPs and IFLs. However,
CPs or IFLs unassignment is a disruptive task. The customer will then be able to download
and apply the upgrade using functions on the HMC via the Remote Support Facility,
without requiring the assistance of IBM service personnel.

After all the prerequisites are in place, the whole process—from ordering to activation of
the upgrade—is performed by the customer. The actual upgrade process is fully
automated and does not require any on site presence of IBM service personnel.

CIU supports LIC-CC upgrades only, and does not support I/O upgrades. All additional
capacity required by a CIU upgrade must be previously installed. This means that
additional books and/or I/O cards cannot be installed via CIU. CIU may change the
server’s software model (7XX) but cannot change the z9 EC server model.

Before customers are able to use the CIU function, they have to be registered. Once they
are registered, customers gain access to the CIU application by ordering the CIU
Registration feature from their salesperson.

� On/Off Capacity on Demand (On/Off CoD) is the ability for the user to temporarily turn on
unowned CPs available within the current server.

On/Off CoD uses the Customer Initiated Upgrade (CIU) process to request the upgrade
via the Web, using IBM Resource Link. (Note that this capability is mutually exclusive with
Capacity BackUp (CBU), because both use the same record type.)

The only resources eligible for temporary use are CPs. Temporary use of IFLs, ICFs,
memory, and I/O ports is not supported. Spare PUs that are currently unassigned and
unowned can be temporarily and concurrently activated as CPs via LIC-CC, up to the
limits of the physical server size.
Chapter 2. IBM System z 171

This means that an On/Off CoD upgrade cannot change the z9 EC server model, as
additional book(s) installation is not supported. However, On/Off CoD changes the
server’s software number (7XX).

Unplanned upgrades
There is one unplanned upgrade.

� Capacity BackUp (CBU) is offered to provide reserved emergency backup capacity for
unplanned situations where customers have lost capacity in another part of their
establishment, and want to recover by adding the reserved capacity on a designated z9
EC server.

CBU is the quick, temporary activation of central processors (CPs) in the face of a loss of
customer processing capacity due to an emergency or disaster/recovery situation.

CBU can only add CPs to an existing z9 EC server—but CPs can assume any kind of
workload that could be running on IFLs and ICF PUs at the failed system or systems.
z/VM, Linux and CFCC (for Coupling Facility partitions) can also run on CPs.

Note: CBU is for disaster/recovery purposes only, and cannot be used for peak load
management of customer workload.
172 ABCs of z/OS System Programming Volume 10

2.41 z9 EC new features

Figure 2-42 List of z9 109 new features

z9 EC new features
Figure 2-42 lists some of the unique z9 EC features, which are described in more detail in the
following sections.

Enhanced book availability (EBA)
The z9 EC is designed to allow a single book, in a multibook server, to be concurrently
removed from the server and reinstalled during an upgrade or repair action. Enhanced book
availability is an extension of the support for Concurrent Book Add (CBA) delivered on z990.
CBA is designed to allow you to concurrently upgrade a z9 EC by integrating a second, third,
or fourth book into the server without affecting application processing.

Enhanced driver maintenance (EDM)
One of the greatest contributors to downtime during planned outages is Licensed Internal
Code (LIC) driver updates performed in support of new features and functions. When properly
conditioned, the z9 EC is designed to support activating a selected new driver level
concurrently, utilizing enhanced driver maintenance.

Wild branches
In instances where a bad pointer is used, or when code overlays a data area containing a
pointer to some code, this results in a random branch causing a 0C1(operation exception) or
0C4 (protection exception) abends. Random branches (also called wild branches) are very
difficult to diagnose since there is no clue about how the system got there.

Enhanced book availability (EBA)

Enhanced driver maintenance

Wild branches

Hot pluggable MBAs

Up to 60 logical partitions

Separated PU pools in LP management

Multiple subchannel (UCWs) sets

QDIO enhancements for Linux under z/VM

Sharing FCP channels among LPs

GDPS enhancements
Chapter 2. IBM System z 173

With the new wild branch hardware facility of the z9 EC, the last address from which a
successful branch instruction was executed is kept in storage. z/OSV1.7 uses this information
in conjunction with debugging aids, like the SLIP command, to determine where the wild
branch came from, and may collect data from that storage location. This decreases the
number of debugging steps needed when determining where the branch came from.

Hot pluggable MBA
With the introduction of the z9 EC, a hot pluggable and concurrently upgradable MBA fanout
card is available. In the event of an outage, an MBA fanout card may be concurrently repaired
without loss of access to I/O by using Redundant I/O Interconnect.

Up to 60 LPs
In a z9 EC, there is the possibility of activating up to 60 logical partitions (LPs), each one in
one logical channel subsystem.

Separated PU pools in LP management
The separate management of PU types enhances and simplifies capacity planning and
management of the configured logical partitions and their associated shared resources. For
logical partitions that have both CPs and zAAPs configured, a new zAAP weight specification
is provided to allow a new unique LPAR weight specification for shared zAAPs to be defined.

Multiple subchannel (UCWs) sets
Two subchannel sets are now available per logical partition, enabling a total of 63.75K
subchannels in set-0 and the addition of 64K-1 subchannels in set-1. z/OS V1R7 allows only
Parallel Access Volume Alias (PAV-alias) devices in the subchannel set 1.

QDIO enhancements for Linux under z/VM
This virtualization technology is designed to allow QDIO interruptions to be passed directly to
guests for HiperSockets, Fibre Channel Protocol (FCP), and OSA on the z9 EC, z990, and
z890 servers:

� QDIO Enhanced Buffer-State Management (QEBSM) - Two new hardware instructions
designed to help eliminate the overhead of hypervisor interception

� Host Page-Management Assist (HPMA) - An interface to the z/VM Central Storage
management function designed to allow the hardware to assign, lock, and unlock page
frames without z/VM hypervisor assistance.

Sharing FCP channels among LPs
N_Port Identifier Virtualization (NPIV) for Fibre Channel Protocol for FCP channels, CHPID
type FCP, is designed to allow the sharing of a single physical FCP channel among operating
system images, whether in logical partitions or as z/VM guests in virtual machines. NPIV
offers improved FCP channel utilization and sharing among operating system images, joining
ESCON and native FICON in offering channel sharing through virtualization. This may help
reduce hardware requirements and facilitate infrastructure simplification.

GDPS enhancements
GDPS is a required product in order to guarantee a disaster recovery framework, able to keep
the continuous availability requirement even in the event of a disaster.

HyperSwap™ is an operation triggered by GDPS to switch the secondary devices to primary
in a PPRC remote copy solution without disrupting the running applications. IOS intelligence
is needed to achieve such task. Usually, HyperSwap is activated in a remote center due to
planned or unplanned stoppages in the primary center.
174 ABCs of z/OS System Programming Volume 10

The GDPS enhancements are explained here:

� GDPS/PPRC HyperSwap Manager is designed to add the capability to provide continuous
availability of data within a single data center. Previously, a planned outage of a single disk
subsystem or an unplanned failure of a single disk subsystem invoked a HyperSwap for all
the remote copy pairs defined to GDPS. The remote copy pairs could potentially span
multiple disk subsystems.

With the GDPS V3.3 enhancement, GDPS/PPRC HyperSwap Manager is designed to
optionally only invoke a HyperSwap for individual disk subsystems, as long as both the
primary and secondary disk subsystems are located in the same data center. This
simplifies the management and allows you to maintain backup capability for the remaining
disk subsystems during the window of a planned or unplanned outage.

� The current GDPS/PPRC failover has potentially long and variable recovery application
restart times. The Coupling Facility (CF) structure data may not be time-consistent with a
frozen copy of data on disk, so GDPS must discard all CF structures at the secondary site
when restarting workloads. This results in loss of changed data in CF structures. The
customer must execute potentially long-running and highly variable data recovery
procedures to restore the lost data.

With GDPS V3.3 enhanced recovery, if you specify the FREEZE=STOP policy and duplex
the appropriate CF structures, then when CF structure duplexing drops into simplex,
GDPS is designed to direct z/OS to always keep the CF structures in the site where the
secondary disks reside. This is designed to ensure that the secondary PPRC volumes and
the CF structures are time consistent, thereby helping to provide consistent application
restart times without any special recovery procedures.

For more information on GDPS, see the white paper GDPS: The e-business Availability
Solution, GF22-5114, at:

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gf225114.html
Chapter 2. IBM System z 175

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gf225114.html

2.42 z9 BC functions and comparisons

Figure 2-43 z9 BC functions

z9 BC functions
System z9 introduces significant new functions compared to zSeries machines. Figure 2-43
lists some of the new functions that were introduced with the z9 BC server.

RoHS compliance refers to compliance with a European Unit restriction on the use of the
hazardous substances of lead, cadmium, mercury, and hexavalent chromium.

Comparison of zSeries and z9 servers
Table 2-6 lists the major differences between the zSeries and z9 servers.

Table 2-6 Comparison of zSeries and z9 servers

z800 z890 z9 BC
model R07

z9 BC
model S07

z9 EC

Machine type 2066 2086 2096 2096 2094

Number of PUs 5 5 8 8 up to 64

Max characterized
PUs (excl std SAP)

4 4 7 7 54

Standard SAPs 1 1 1 1 2 per book

Number CPs 0-4 0-4 1-3 0-4 0-54

zIIP specialty processors, intended to offload selected
types of functions currently used by DB2® programs

Fifteen or thirty logical partitions depending on the
model of the z9 BC server

Multiple Subchannel Sets (MSS)

FICON Express4

N_Port ID virtualization

Several new or changed instructions

Availability enhancements

Enhanced driver maintenance

RoHS compliance
176 ABCs of z/OS System Programming Volume 10

Upgrades
To protect investments in zSeries technology, upgrade paths are offered as depicted in
Figure . The significance of an upgrade is that, in many cases, it is not considered a
replacement for financial depreciation purposes. Note the following points:

� A z9 BC model R07 server cannot be directly upgraded to a z9 EC server.
� Upgrades from z900 and z990 to a z9 BC server are not possible.
� A downgrade from a z9 BC server model S07 to a model R07 is not possible.

Figure 2-44 Upgrade paths

Number specialty
processors

0-4 0-4 0-6 0-7 0-54

Spare PUs unused PUs unused PUs unused PUs unused PUs 2/server

Max memory 32 GB 32 GB 64 GB 64 GB 128 GB
per book

Cycle time 1.6 ns 1.0 ns .7 ns .7 ns .58 ns

Maximum LPARs 15 30 15 30 60

Maximum I/O cages 1 1 1 1 3

I/O slots/cage 16 28 16 28 28

L1 cache
(processor)

256K/256K 256K/256K 256K/256K 256K/256K 256K/256K

L2 cache (book) 8 MB 32 MB 40 MB 40 MB 40 MB/book

Logical Channel
Subsystems
(LCSSs)

1 2 2 2 4

Subchannel sets per
LCSS

1 1 2 2 2

I/O bandwidth
(GBps)a

6 GB 16 GB 43 GBps 43 GBps 43-172
GBps

Number STIs
Speed each STI

6
(1.0 GBps)

8
(2.0 GBps)

16
(2.7 GBps)

16
(2.7 GBps)

16-64
(2.7 GBps)

a. The number shown is simply the number of STIs multiplied by the speed of the STI. It is un-
likely that any practical system or application would stress these numbers. Perhaps a better
title would be something like Memory bandwidth to I/O interfaces.

z800 z890 z9 BC
model R07

z9 BC
model S07

z9 EC

z9 ECz9 BC

z890-A04

z800-004

R07
z9 BC
S07 S08

z9 EC
larger
Chapter 2. IBM System z 177

178 ABCs of z/OS System Programming Volume 10

Chapter 3. IBM System z10 EC

Some of the key requirements today in commercial environment are the need to maximize
return on investments (ROI) by deploying resources designed to drive efficiencies and
economies of scale; managing growth through resources that can scale to meet changing
business demands; reducing risk by reducing the threat of lost productivity through downtime
or security breaches; reduce complexity by reversing the trend of server proliferation; and
enabling business innovation by deploying resources that can help protect existing
investments, while also enabling new technologies that enable business transformation.

The IBM System z10™ Enterprise Class (z10 EC) delivers a world-class enterprise server
designed to meet these business needs. The z10 EC provides new levels of performance and
capacity for growth and large scale consolidation, improved security, resiliency and
availability to reduce risk, and introduces just-in-time resource deployment to help respond to
changing business requirements.

As environmental concerns raise the focus on energy consumption, the z10 EC is designed
to reduce energy usage and save floor space when used to consolidate x86 servers.
Specialty engines continue to help users expand the use of the mainframe for a broad set of
applications, while helping to lower the cost of ownership. The z10 EC is at the core of the
enhanced System z platform that delivers technologies that businesses need today along
with a foundation to drive future business growth.

The performance design of the z/Architecture can enable the server to support a new
standard of performance for applications through expanding upon a balanced system
approach. As CMOS technology has been enhanced to support not only additional
processing power, but also more PUs, the entire server is modified to support the increase in
processing power.

The z10 EC technology shares some concepts and functions (such as HDFU) with the
POWER6 used in IBM p servers (RISC). The I/O subsystem supports a greater amount of
bandwidth than previous generations through internal changes, providing for larger and faster
volume of data movement into and out of the server. Support of larger amounts of data within
the server required improved management of storage configurations, made available through
integration of the operating system and hardware support of 64-bit addressing. The combined
balanced system design allows for increases in performance across a broad spectrum of
work.

3

© Copyright IBM Corp. 2008. All rights reserved. 179

3.1 z10 EC overview

Figure 3-1 The IBM System z10 EC

z10 EC highlights
The z10 EC, which is displayed in Figure 3-1, is designed to provide up to 1.7 times the total
system capacity of the previous z9 EC, and has up to triple the available central storage (from
512 GB to 1.5 GB). The maximum number of processor units (PUs) has grown from 64 to 77.
It also offers a 14% improvement in performance per KWh over the IBM System z9 EC.

All z10 EC (machine type designation 2097) models ship with two frames (twin-frame
system):

� The A-Frame has two cages: a PU cage with the PUs and central storage (above) and
one I/O cage (below).

� The Z-Frame has two I/O cages containing two ThinkPads used as Support Elements.

The I/O cages contain I/O cards with I/O processors, known as channels.

The processor unit (PU) cage can have up to four components, known as books. Each book
is comprised of processor units (PUs), memory, and I/O fanout cards. The fanout cards are
paths from the PU cage to I/O channels in the I/O cages.

The z10 EC has five configuration model offerings, from one to 64 characterized processor
units (PUs); refer to “Processor unit (PU) instances” on page 186 to learn about characterized
PUs. Four z10 EC models (E12, E26, E40 and E56) have 17 PUs per book, and the high
capacity E64 has one 17 PU book and three 20 PU books. The configuration models vary
with the number of books and the number of PUs per book.
180 ABCs of z/OS System Programming Volume 10

3.2 IBM System z nomenclature

Figure 3-2 IBM System z nomenclature

IBM System z nomenclature
Figure 3-2 shows the elements of the nomenclature used to identify IBM System z servers.
Chapter 3. IBM System z10 EC 181

3.3 z10 EC naming summary

Figure 3-3 z10 EC name summary

z10 EC name summary
Figure 3-3 shows the official identification of the z10 EC servers.
182 ABCs of z/OS System Programming Volume 10

3.4 System design numeric comparison

Figure 3-4 System design numeric comparison

System design numeric comparison
Figure 3-4 shows a four-axis comparison between the four different product lines: z900, z990,
z9 and z10. As you can see, the growth between z9 and z10 is huge but harmonious in
several areas:

� MIPS per PU grew 1.62 times. Using Large Systems Performance Reference (LSPR)
measurements, new measurements with z/OS V1R8, and reevaluating the calculation for
the mixed workload, the z10 EC uni-processor MIPS is 920.

� The maximum number of CPUs grew from 54 to 64 and PUs from 64 to 77.

� Central storage grew from 512 GB to 1.5 TB.

� The aggregate I/O data rate grew from 172.8 to 288 GB/sec.

Central storage growth is proportionally larger than the other three resources. The
justification is that in a heavy commercial data processing environment, central storage can
really improve the overall performance by decreasing drastically the I/O rate. In other words,
central storage is good for the performance health of the full system.

Memory

System I/O Bandwidth

CPUs

ITRs for
1-way

288 GB/sec

1.5 TBs

64-way

~900

172.8 GB/sec

~600512 GB

54-way

96 GB/sec

450256 GB

32-way

24 GB/sec

30064 GB

16-way

Z10 EC

z9 EC

zSeries 990

zSeries 900

Balanced System
CPU, nWay, Memory,

I/O Bandwidth*

*z9 EC and z10 EC exploit a subset of its designed I/O capability
Chapter 3. IBM System z10 EC 183

3.5 The power of GHz (high frequency)

Figure 3-5 The power of the GHz

Does GHz (high frequency) matter
High GHz (or low cycle time) is not the only dimension that matters when talking about CPU
performance; system performance is not linear with frequency. Instead, you need to use
Large Systems Performance Reference (LSPR) measurements along with System z capacity
planning tools to achieve real client and workload sizing.

The CPU speed for executing a program depends on:

� Low cycle time and consequently high GHz (frequency) - as provided by the technology
(type of circuitry).

� Low number of cycles per average executed instruction (CPAI) - as provided by the
design (pipeline, cache).

� Fewer instructions in the referred program - as provided by the architecture (powerful set
of instructions).

The z10 EC focus is on balanced system design and architecture to leverage technology and
exploit high frequency design, as listed here:

� Low-latency pipeline (refer to “Pipeline in z10 EC” on page 201 for more information).

� Dense packaging (MCM) allows MRU cooling which yields more power-efficient operation.

� Optimum set of instructions.
184 ABCs of z/OS System Programming Volume 10

� Virtualization technology allows consistent performance at high utilization, which makes
CPU power-efficiency a much smaller part of the system and data center power
consumption picture.

� Environmentally sensitive energy efficiency.

However, frequency (GHz) is still significant and important because it is a way for hardware to
speed up the processors.

System z has steadily and consistently grown frequency, with occasional jumps/step
functions (G4 in 1997, z10 in 2008).
Chapter 3. IBM System z10 EC 185

3.6 Processor unit (PU) instances

Figure 3-6 Processor unit (PU) instances

Processor unit (PU) instances
All PUs are physically identical. However, at Power-on Reset, it is possible to have different
types of PUs through a small LIC change (for the SAP PU, the change is large), leading then
to different instances. These instances are also called specialty engines. The major reason
for such engines is to lower overall total cost of computing in the mainframe platform. They
can be ordered by customers and are known as characterized. Following are the possible PU
instances:

CPU A CPU is a general purpose processor that is able to execute all the possible z10
EC running operating systems, as such z/OS, Linux, z/ VM, z/VSE, Coupling
Facility Control Code (CFCC), and z/TPF. A CPU is also known as a CP.

IFL This type of PU is only able to execute native Linux and Linux under z/VM. IFLs
are less expensive than CPUs.

ICF This type of PU is only able to execute CFCC operating system. The CFCC is
loaded in a Coupling Facility LP from a copy in HSA; after this, the LP is activated
and IPLed. ICFs are less expensive than CPUs.

zAAP This type of PU only runs under z/OS, and is for the exclusive use of Java
interpreter code (JVM) and DB2 9 XML parsing workloads. A zAAP is less
expensive than a CPU, and does not increase the software price (based on
produced MSUs) because it does not produce MSUs.

zIIP This type of PU is run in z/OS only, for eligible DB2 workloads such as DDF,
business intelligence (BI), ERP, CRM and IPSec (an open networking function

Central processor (CP)

Integrated facility for Linux (IFL)

Integrated Coupling Facility (ICF)

z10 Application Assist Processor (zAAP)

z10 Integrated Information Processor (zIIP)

System Assisted Processor (SAP)

Spare
186 ABCs of z/OS System Programming Volume 10

used to create highly secure crypto connections between two points in an
enterprise) workloads. A zIIP is less expensive than a CPU and does not increase
the software price (based on produced MSUs) because it does not produces
MSUs. There is a limitation about using zIIP processors, that is, only a
percentage of the candidate workload can be executed,

SAP A System Assist Processor (SAP) is a PU that runs the Channel Subsystem
Licensed Internal Code. An SAP manages the starting of I/O operations required
by operating systems running in all logical partitions. It frees z/OS (and the CPU)
from this role, and is “mainframe-unique”. z10 EC models have a variable number
of standard SAPs configured.

Spare A spare PU is a PU that is able to replace, automatically and transparently, any
falling PU in the same book, or in a different book. There are at least two spares
per z10 EC server.

Ordering z10 EC models
When a z10 EC order is configured, PUs are characterized according to their intended usage.
They can be ordered also for future growth, as follows:

Capacity marked CP A CP that is purchased for future use as a CP is marked as available
capacity. It is offline and unavailable for use. A capacity marker
identifies that a certain number of CPs have been purchased. This
number of purchased CPs is higher than the number of CPs actively
used.

The capacity marker marks the availability of purchased but unused
capacity intended to be used as CPs in the future; they usually have
this status for software charging reasons. Unused CPs do not count in
establishing the MSU value to be used for WLC plan for software
charging, or when charged on a per server basis.

Unassigned IFL A PU purchased for future use as an IFL, offline, unavailable for use.

Unassigned ICF A PU purchased for future use as an ICF, offline, unavailable for use.

Unassigned zAAP A PU purchased for future use as a zAAP, offline, unavailable for use.

Unassigned zIIP A PU purchased for future use as a zIIP, offline, unavailable for use.

Additional SAP The optional System Assist Processor is a PU that is purchased and
activated for use as an SAP if your I/O workload demands it.

The development of a multibook system provides an opportunity to concurrently increase the
capacity of the system in several areas:

� You can add capacity by concurrently activating more characterized PUs, such as CPs,
IFLs, ICFs, zIIPs, zAAPs or SAPs, on an existing book.

� You can add a new book concurrently (non-disruptively) and activate more CPs, IFLs,
ICFs, zIIPs, zAAPs or SAPs.

� You can add a new book to provide additional memory and fanout cards to support
increasing storage and/or I/O requirements.

Simulation support
z/VM guest virtual machines can create virtual specialty processors on processor models that
support same types of specialty processors but do not necessarily have them installed.
Virtual specialty processors are dispatched on real CPs. Simulating specialty processors
provides a test platform for z/VM guests to exploit mixed-processor configurations. This
allows users to assess the operational and CPU utilization implications of configuring a z/OS
system with zIIP or zAAP processors without requiring the real specialty processor hardware.
Chapter 3. IBM System z10 EC 187

3.7 z10 EC hardware model

Figure 3-7 z10 EC hardware model

z10 EC hardware model
The z10 EC server hardware model nomenclature (also called Configs) is based on the
number of PUs available for customer use in each server. These PUS are called
characterized and can take any PU personality. The z10 EC has five models with a total of
100 capacity settings available:

Model E12: one book with 17 PUs, 3 standard SAPs and 2 standard spare, then 12
characterized PUs.

Model E26: two books with 17 PUs each, 6 standard SAPs and 2 standard spare, then 26
characterized PUs.

Model E40: three books with 17 PUs each, 9 standard SAPs and 2 standard spare, then 40
characterized PUs.

Model E56: four books with 17 PUs each, 10 standard SAPs and 2 standard spare, then 56
characterized PUs.

Model E64: one book with 17 and three books with 20 PUs each, 11 standard SAPs and 2
standard spare, then 64 characterized PUs.

As with z9 servers, the z10 EC hardware model names indicate the maximum number of
processor units potentially orderable (named characterized), and not the actual number of
active CPUs.
188 ABCs of z/OS System Programming Volume 10

3.8 z10 EC sub-capacity models

Figure 3-8 Sub-capacity models

Sub-capacity models
Sub-capacity models (also called sub-unis) are servers in which the CPU speed is artificially
downgraded due to financial and marketing considerations. In z10 EC there are a total of 36
sub-capacity settings. They are only available for the E12 models (from 1 to 12 CPUs).
Models with 13 CPs or greater must be full capacity.

For the E12 models, there are four capacity settings per CPU. The entry point (Model 401) is
approximately 23.69% of a full speed CPU (Model 701). All specialty engines (zAAP, zIIP,
ICF, IFL) continue to run at full speed. Sub-capacity processors have all the availability of z10
EC features and functions. All CPUs must be the same capacity setting size within one z10
EC.

Software model numbers
For software billing purposes only, there is a Capacity Indicator (also called a software model
number) associated with the number of PUs that are characterized as CPUs. This number is
stored in memory by the Store System Information (STSI) instruction.

There is no affinity between the hardware model and the number of activated CPs. For
example, it is possible to have a Model E26 (26 characterized PUs) but with only 13 CPUs, so
for software billing purposes, the STSI instruction would report 713.

Series5

E12 E26 E40 E54 E64

CP Capacity Relative to Full Speed

7xx

6xx

5xx

4xx

7xx = 100%
6xx = 69.35%
5xx = 51.20%
4xx = 23.69%
xx = 01 through 12
Chapter 3. IBM System z10 EC 189

The software model number (Nxx) follows these rules.

� N = the capacity setting of the engine:

– 7xx = 100%

– 6xx ~ 69.35%

– 5xx ~ 51.20%

– 4xx ~ 23.69%

� xx = the number of PUs characterized as CPUs in the server

After xx exceeds 12, then all CPU engines are full capacity. Here is a list for all possible
values:

� 700, 401 to 412, 501 to 512, 601 to 612 and 701 to 764.

The software model 700 does not have any CPU engines, it may have ICFs and IFLs.

There are 101 (64 + 36 +1) possible combinations of capacity levels and numbers of
processors. These offer considerable overlap in absolute capacity, provided different ways.
For example, a specific capacity (expressed as MSUs) might be obtained with a single faster
CP or with three slower CPs. The hardware cost is approximately the same. The single-CP
version might be a better choice for traditional CICS workloads because they are single task
(however, a CPU loop can have a significant negative impact), and the three-way server
might be a better choice for mixed batch workloads.
190 ABCs of z/OS System Programming Volume 10

3.9 z10 EC frames and cages

Figure 3-9 z10 EC frames and cages

z10 EC frames and cages
As previously mentioned, all z10 EC models ship with two frames:

� The A-Frame is divided into two cages: a PU cage (above) with the processor units (up to
77) and central storage (up to 1.5 TB), and one I/O cage (below), plus power and cooling
units (MRU) and an optional internal battery feature (IBF).

� The Z-Frame is divided into two optional I/O cages containing two ThinkPads that are
used as Support Elements (a processor controlling the server and used as an interface
with IBM custom engineers), plus basic power supplies and an optional IBF.

The I/O cages have I/O cards (located in I/O slots) containing I/O processors known as
channels. In total you may have up to 1024 channels, but up to 256 accessed per z/OS
image.

The processor unit (PU) cage (also called the CEC cage) can have up to four components
known as books connected via a point-to-point SMP network. (These components are called
books because they look like books on a library shelf.) Each book is made of up to 20
processor units (PUs), memory (up to 384 GB) and I/O fanout cards. The fanout cards are
paths to I/O channels in the I/O cages.

z10 models
The z10 EC has five configuration model offerings, from one to 64 characterized processor
units (PUs). Four z10 EC models (E12, E26, E40 and E56) have 17 PUs per book, and the
Chapter 3. IBM System z10 EC 191

high capacity E64 has one 17 PU book and three 20 PU books. We have up to standard 11
SAPs and always two Spare PUs

per server.

The configuration models vary with the number of books and the number of PUs per book.

Optional battery feature (IBF)
IBF keeps the server powered up for up to 10 minutes when there is a power outage (in all
four AC feeds). This time amount is dependent on the number of I/O cages. In practical
terms, the IBF can be used as follows:

� To keep the storage contents of the LP running the non-volatile Coupling Facility (CF),
then allowing structures rebuild in the other CF.

� For orderly shutdown of z/OS in case of a longer outage, if the I/O storage configuration
has an alternate source of power (which is usually the case).

� To avoid disruption while waiting for a short power outage to pass.

I/O cages
The z10 EC contains an I/O subsystem infrastructure which uses an I/O cage that provides
28 I/O slots and the ability to have one to three I/O cages, delivering a total of 84 I/O slots.

The z10 EC continues to use the Cargo cage for its I/O (as used by the z9 servers),
supporting up to 960 ESCON and 256 FICON channels on the Model E12 (64 I/O slots) and
up to 1024 ESCON and 336 FICON channels (84 I/O slots) on the Models E26, E40, E56 and
E64.
192 ABCs of z/OS System Programming Volume 10

3.10 Book topology comparison

Figure 3-10 Book topology comparison

Book topology comparison
As shown on the right side of Figure 3-10, in the z10 EC server there are 77 PUs possible,
and all books are interconnected in a star configuration with high speed communications links
via the L2 caches. This allows the system to be operated and controlled by the LPAR facility
as a symmetrical, memory-coherent multiprocessor. It was designed to get the maximum
benefit of the improved processor clock speed.

Books are interconnected by a point-to-point connection topology. This allows every book to
communicate with every other book. Data transfer never has to go through another book
(cache) to address the requested data or control information. Inter-book communication takes
place at the Level 2 (L2) cache level.

The L2 cache is implemented on two Storage Control (SC) cache chips in each MCM. Each
SC chip holds 24 MB of SRAM cache, resulting in a 48 MB L2 cache per book. The L2 cache
is shared by all PUs in the book and has a store-in buffer design. The SC function regulates
coherent book-to-book traffic.

The ring topology employed on the z9 EC server (64 PUs) and shown on the left in the figure
is not used on the z10 EC.

In a system with more than one book, all physical memory in the book containing the failing
memory is taken offline, which allows you to bring up the system with the remaining physical
memory in the other books. In this way, processing can be resumed until a replacement
memory card is installed.
Chapter 3. IBM System z10 EC 193

3.11 NUMA topology

Figure 3-11 NUMA topology

NUMA topology
In a symmetrical multiprocessing (SMP) design, as implemented in z10 EC where several
PUs (up to 77) access (share) the same central storage, there is a limitation for the numbers
of such CPUs, performance-wise. This limitation is much smaller than 77.

To overcome such a problem, Non-Uniform Memory Access (NUMA) topology in z10 EC
servers is introduced. Each PU has local access to one piece (25%) of central storage (the
one allocated in its book) and remote access to other pieces (75%). In other words, the
access is non-uniform.

LPAR logic and the z/OS dispatcher together try to guarantee that the majority (80%) of the
memory access by one PU is in the same book.

As an analogy, consider a baker who decides spontaneously to bake a cake, but only has
flour, sugar, and eggs (80% of the ingredients) at home, because it is uneconomical to keep
all the ingredients on hand. So the baker needs to go (remotely) to a supermarket for the
remaining 20% of the necessary ingredients.

Neighborhood,
a remote
 memory for
bakery goods

Our house,
a local memory
for bakery goods

The cake

The baker
194 ABCs of z/OS System Programming Volume 10

3.12 z10 EC Books

Figure 3-12 z10 EC book

z10 EC books
A book has processor units (PUs), central storage, and fanout cards connecting the book with
the I/O cages, where the I/O channels are. Through the fanout cards:

� A channel can access data (read or write) in central storage, moving it to or from I/O
controllers along I/O operations.

� SAPs can talk to channels during the start of the I/O operation or I/O interrupts.

Books are located in the PU cage in Frame A (see Figure 3-12), and have the following
components:

� Multi-chip module (MCM). Each MCM includes five quad-core processor unit (PU) chips
and two Storage Control (SC) chips. Refer to “Multi-chip module (MCM)” on page 197. for
more information about this topic.

� Memory dual in-line memory module (DIMM). The DIMM is plugged into 48 available slots,
providing 64 GB to 384 GB of central storage.

� A combination of up to eight InfiniBand® host channel adapters (HCA2-Optical or
HCA2-Copper) and memory bus adapter (MBA) fanout cards can be installed. Each one
has two ports, supporting up to 16 connections. HCA2-copper connections are for links to
I/O cages in this server. HCA2-Optical and MBA are for links to external servers (coupling
links). MBA cards are used for ICB-4 links only. Refer to “Connecting PU cage with I/O
cages” on page 222 for more information about these fanout cards.

MCM

Memory

DCA Power
Supplies

MRU
Connections

HCA2-O (InfiniBand)

HCA2-C (I/O cages)

MBA (ICB-4)

FSP cards

MCM

Memory

DCA Power
Supplies

MRU
Connections

HCA2-O (InfiniBand)

HCA2-C (I/O cages)

MBA (ICB-4)

FSP cards
Chapter 3. IBM System z10 EC 195

� Distributed converter assemblies (DCAs). Three DCAs provide power to the book. Loss of
a DCA leaves enough book power to satisfy the books’ power requirements. The DCAs
can be concurrently maintained.

� Functional service processor (FSP). The FSP card is based on the IBM Power PC®
microprocessor. It connects to an internal Ethernet LAN to communicate with the support
elements in this book and in other books.

About book replacement
With enhanced book availability and flexible memory options, a single book in a multibook
system can be concurrently removed and reinstalled for an upgrade or repair; it is a field
replacement unit (FRU). Any book can be replaced, including book 0, which initially contains
the HSA.

However, this requires that you have sufficient resources in the remaining books to avoid
impacting the workload. CPs and memory from the book must be relocated before the book
can be removed. Not only do additional PUs need to be available on the remaining books to
replace the deactivated book, but also sufficient redundant memory must be available if it is
required that no degradation of applications is allowed.

You may want to consider using the flexible memory option. Removal of a book also cuts the
book connectivity through its host channel adapters (HCA); refer to “Connecting PU cage with
I/O cages” on page 222 for more information about the HCA. The impact of the removal of the
book is limited by the use of redundant I/O Interconnect. However, all MBAs on the removed
book have to be configured offline.

PR/SM has knowledge of the amount of purchased memory and how it relates to the
available physical memory in each of the installed books. PR/SM also has control over all
physical memory and therefore is able to make physical memory available to the
configuration when a book is non-disruptively added.

PR/SM also controls the reassignment of the content of a specific physical memory array in
one book to a memory array in another book. This is known as the Memory Copy/Reassign
function. It is used to reallocate the memory content from the memory in a book to another
memory location when enhanced book availability is applied, to concurrently remove and
reinstall a book in case of an upgrade or repair action.

Also, PR/SM always attempts to allocate all real storage for a logical partition within one
book.
196 ABCs of z/OS System Programming Volume 10

3.13 Multi-chip module (MCM)

Figure 3-13 Multi-chip module

Multi-chip module (MCM)
The z10 EC book has a new Multi-Chip Module with five new IBM z10 Processor chips.
Depending on the MCM version (17 PU or 20 PU), from 17 to 77 PUs are available, on one to
four books. This new MCM provides a significant increase in system scalability and an
additional opportunity for server consolidation. All books are interconnected with very high
speed internal communications links in a fully connected star topology via the L2 cache,
which allows the system to be operated and controlled by the PR/SM facility as a
symmetrical, memory-coherent multiprocessor.

There is just one MCM per book in a z10 EC server. It contains seven chips and measures
approximately 96 x 96 millimeters. All chips use Complementary Metal Oxide of Silicon
(CMOS) 11S chip technology. CMOS 11s is state-of-the-art microprocessor technology
based on ten-layer Copper Interconnections and Silicon-On Insulator technologies.

An MCM contains 103 glass ceramic layers to provide interconnection between the chips and
the off-module environment. It produces cycle time of approximately 0.23 nanoseconds, that
is, 4.4 GHz for frequency. Each MCM has:

� Five PU chips, and each PU chip has up to four PUs (engines).

Two MCM options are offered: with 17 PUs, or 20 PUs.

� Two SC chips, and each SC chip is connected to all five PU chips.

PU 0PU 2

PU 4 PU 3

SC 0SC 1

PU 1

S 0

S 1

S 2

S 3
Chapter 3. IBM System z10 EC 197

3.14 PU chip

Figure 3-14 The PU chip

PU chip
The new Enterprise Quad Core z10 PU chip is comprised of three or four PUs. It contains
6 Km of wire, and has 994 million transistors in a 450-mm2 area. A schematic representation
of the PU chip is shown in Figure 3-14.

As mentioned, there are five PU chips on each MCM. The five PU chips come in two
versions. For models E12, E26, E40, and E56, the processor units on the MCM in each book
are implemented with a mix of three active cores and four active cores per chip (3 x 3 cores
active, plus 2 x 4 cores active), resulting in 17 active cores per MCM. All MCMs in these
models have 17 active cores. This means that a Model E12 has 17, a Model E26 has 34, a
Model E40 has 51, and a Model E56 has 68 active PUs.

The four PUs (cores) are shown in the corners of the figure. They include the L1 and L1.5
caches, plus all microprocessor functions. COP indicates the two co-processors, each of
which is shared by two of the four cores. The co-processors are accelerators both for data
compression (Zivv Lampel algorithm) and cryptographic functions. If the co-processor is busy
performing compression, the crypto request must wait, and vice versa. (Do not confuse this
co-processor with the Crypto Express-2 that is located in the I/O cage.)

L2 cache
The L2 cache (in the SC chip in the same MCM) interface is shared by all four PUs. GX
indicates the I/O bus controller that controls the interface to the Host Channel adapters

MC

Core
L1 + L1.5

&
HDFU

COP

Core
L1 + L1.5

&
HDFU

Core
L1 + L1.5

&
HDFU

Core
L1 + L1.5

&
 HDFU

COP

L2 Intf GX
L2 Intf IO

Memory

.

198 ABCs of z/OS System Programming Volume 10

accessing the I/O. The Memory Controller (MC) is the gate to access the central storage
banks located in this book. L2 Intf is the interface to SC and the L2 cache.

As you can imagine, there is intense traffic. This chip controls traffic between the
microprocessors (PUs), memory, I/O and the L2 cache located on the SC chips.

L1 and L1.5 cache
Each PU has a 192 KB on-chip Level 1 cache (L1) that is split into a 64 KB L1 cache for
instructions (I-cache) and a 128 KB L1 cache for data (D-cache). A second level on chip
cache, the L1.5 cache, has a size of 3 MB per PU. The two levels on chip cache structure are
needed to optimize performance so that it is tuned to the high frequency properties of each of
the microprocessors (cores).

MCM and spare PUs
In each MCM, 12 to 16 available PUs may be characterized for customer use. Up to three
SAPs may reside in an MCM; how many are used depends on the model and the book in
which they reside. System-wide, two spare PUs (cores) are available that may be allocated
on any MCM in the system. Up to two spare PUs (cores) may be allocated on an MCM.
Chapter 3. IBM System z10 EC 199

3.15 Book element interconnections

Figure 3-15 Book element interconnections

Book element interconnections
Figure 3-15 shows a logical view of the connections within the MCM book. The z10 EC book
has a new Multi-Chip Module with five new IBM z10TM Processor chips. This new MCM
provides a significant increase in system scalability and an additional opportunity for server
consolidation.

Depending on the MCM version (17 PU or 20 PU), from 17 to 77 PUs are available, on one to
four books. As previously mentioned, all books are interconnected with very high speed
internal communications links, in a fully connected star topology via the L2 cache, which
allows the system to be operated and controlled by the PR/SM facility as a symmetrical,
memory-coherent multiprocessor.

The PU configuration is made up of two spare PUs per server and a variable number of
System Assist Processors (SAPs), which scale with the number of books installed in the
server—three with one book installed, and up to eleven when four books are installed. The
remaining PUs can be characterized as central processors (CPs), Integrated Facility for Linux
(IFL) processors, System z10 Application Assist Processors (zAAPs), System z10 Integrated
Information Processors (zIIPs), internal Coupling Facility processors, or additional SAPs.

GX refers to the adapters connecting with the I/O cages.

Next, we introduce the pipeline concept.
200 ABCs of z/OS System Programming Volume 10

3.16 Pipeline in z10 EC

Figure 3-16 A car pipeline example

Pipeline in z10 EC
To build a car, serial tasks need to be executed. Similarly, when executing program
instructions, serialized tasks also need to be executed. The term “pipeline” implies executing,
in parallel, different tasks for different cars (or instructions). The main objective of a pipeline is
to increase throughput (that is, the number of executed instructions per time unit), and not to
decrease the average time to execute one instruction.

Within the z10 EC PU there are a few special processors, each one executing a very specific
function:

� Get the instruction virtual address in the PSW.

� Translate this virtual address to real address through the DAT.

� Fetch the instruction from cache (L1 or L 1.5 or L2) or from central storage.

� Decode the instruction; that is, if the instruction is microcoded, find the microcode address
(in control storage) associated with its execution.

� If there is an input storage operand, calculate its virtual address through the contents of
the base register plus the displacement.

� Translate this virtual address to a real address through the DAT.

� Fetch the operand from cache (L1 or L1.5 or L2) or from central storage.

� Execute the instruction.

Assemble the structure

...

Adding the wheels

...

Painting
Chapter 3. IBM System z10 EC 201

� If there is an output storage operand, derive its virtual address through the contents of the
base register plus the displacement.

� Translate this virtual address to a real address through the DAT.

� Store the output operand in cache (L1 and L1.5).

� Depending on the instruction, set the condition code in the PSW.

Techniques for instruction pipeline
Techniques exist for speeding up an instruction pipeline:

� Execute more than one instruction in the same cycle (superscalar).

This is implemented by adding resources onto the server to achieve more parallelism by
creating multiple pipelines, each working on their own set of instructions. A superscalar
server is based on a multi-issue architecture. In such a server, where multiple instructions
can be executed at each cycle, a higher level of complexity is reached because an
operation in one pipeline may depend on data in another pipeline. A superscalar design
therefore demands careful consideration of which instruction sequences can successfully
operate in a multi-pipeline environment.

The z10 EC PU is superscalar, which means that it is able to decode up two instructions at
same time and to execute up to three (depending on the instructions).

� Perform out-of-order execution.

This implies that the sequence of instructions presented in a program is not the sequence
where the instructions are executed. For example, if the instruction (n+1)th is ready to be
executed and the nth instruction is still being delayed by a storage operand fetch, and the
result of n does not interfere in the input of n+1, then n+1 is executed first. z10 EC PU
does not implement such function; rather, it performs in-order execution.

� Perform out-of-order fetch.

Instructions having memory operands may suffer multi-cycle delays to get the memory
content. To overcome these delays, the server continues to fetch (single cycle)
instructions that do not cause delays. The technique used is called out-of-order operand
fetching.

This means that some instructions in the instruction stream are already under way, while
earlier instructions in the instruction stream that cause delays due to storage references
take longer. Eventually, the delayed instructions catch up with the already-fetched
instructions and all are executed in the designated order. The z10 EC PU implements
such function.
202 ABCs of z/OS System Programming Volume 10

3.17 Pipeline branch prediction

Figure 3-17 Branch history table algorithm

Pipeline branch prediction
z10 EC performs branch prediction through a branch history table (BHT). The branch history
table implementation on processors has a large performance improvement effect, but is not
sufficient for the z10 EC. The BHT was originally introduced on IBM ES/9000® 9021 in 1990
and has been improved ever since. The BHT offers significant branch performance benefits.
The BHT allows each PU to take instruction branches based on a stored BHT, which
improves processing times for calculation routines. In addition to the BHT the z10 EC uses a
variety of techniques to improve the prediction of the correct branch to be executed.

Every conditional branch instruction in a program poses a problem to a pipeline at the fetch
instruction moment: which side of the branch will be taken at conditional branch execution
time, and which side of the fork will fetch instructions? To address this the pipeline
remembers, when the same code was executed in the past, whether that conditional branch
had branched or simply went straight in the code. Such information will be used in the fetch
and decode decision. The mechanisms used are:

� Branch history table (BHT)
� Branch target buffer (BTB)
� Pattern history table (PHT)
� BTB data compression

The success rate of branch prediction contributes significantly to the superscalar aspects of
the z10 EC, given the fact that the architecture rules prescribe that for successful parallel
execution of an instruction stream, the correctly predicted result of the branch is essential.

Without BHT:

Hardware branch
guess OK

Hardware branch
guess not OK
99 of 100 times

Guess Path

Actual Path

Hardware branch guess OK

Hardware branch
guess OK
98 of 100 times

Guess Path
Actual Path

With BHT:
Chapter 3. IBM System z10 EC 203

3.18 About each z10 EC PU

Figure 3-18 Real z10 EC PU picture

About each z10 EC PU
Figure 3-18 shows an actual picture of a z10 EC PU inside the PU chip contained in an MCM.
The highlighted portion is the HDFU. Each PU (core) has its own decimal floating point unit
(HDFU). The L2 cache interface is shared by all four cores. MC indicates the memory
controller function controlling access to memory, and GX indicates the I/O bus controller that
controls the interface to the host channel adapters accessing the I/O. The chip controls traffic
between the microprocessors (cores), memory, I/O, and the L2 cache on the SC chips.

A PU is superscalar when it may execute more than one instruction per cycle. Then, z10 EC
PU is superscalar because it may execute (finish) up to three instructions (depending on the
specific instructions) per cycle (230 picoseconds).

The PU is able to execute 894 different instructions, as described in z/Architecture Principles
of Operations, SA22-7832. More than 50+ instructions are added to z10 EC to improve object
code efficiency, such as for Java BigDecimal, C#, XML, XL C/C++, GCC, DB2 V9, and
Enterprise PL/1. To achieve high speed, 668 of such instructions are implemented entirely in
hardware, and only 226 instructions are microcoded and millicoded.

Millicode is a PU internal code at higher level than microcode and is very similar to
Assembler. Millicode is required to implement the more complex instructions of the instruction
set, such as Start Interpretive Execution (SIE).
204 ABCs of z/OS System Programming Volume 10

HDFU
Each PU has a Hardware Decimal Floating Point unit (HDFU) to accelerate decimal floating
point transactions. This function does not exist in z9 EC. It conforms with the standard IEEE
745R. This is expected to be particularly useful for the calculations involved in many financial
transactions (previously they were performed by software routines).

Out of the PUs but in the PU chip, there are two co-processor units. Each co-processor unit
implements cryptographic and data compression functions, and each unit is shared by two of
the four PUs.

Each PU contains:

� Store though L1 cache (refer to “Three levels of cache” on page 209) divided into a 64 KB
cache for instructions and a 128 KB cache for data.

� Store through L1.5 cache of 3 MB.

The two levels of chip cache structure are needed to optimize performance so that it is
tuned to the high frequency properties of each PU.

� Translation Look-aside Buffer (TLB) of 512 entries. These entries are used by dynamic
address translation (DAT) to keep the real addresses of the 512 most-referenced pages.

� Several other processors in order to implement a pipeline (for example, an I-unit for
fetching and decoding; an E-unit for execution; a unit containing L1 and L1.5 caches, and
others).
Chapter 3. IBM System z10 EC 205

3.19 z10 EC storage controller (SC) chip

Figure 3-19 z10 EC SC chip

z10 EC SC chip
The z10 EC is built on a proven superscalar microprocessor architecture. On each book there
is one MCM that supports up to 20 PUs. The MCM has five PU chips and two SC chips. Each
PU chip has up to four cores, which can be characterized as CPs, IFLs, ICFs, zIIPs, zAAPs,
or SAPs. Two MCM sizes are offered, 17 or 20 cores, on five PU chips.

There are two SC chips on the MCM. Each SC chip contains 1.6 billion transistors. An SC
chip has:

� 24 MB of L2 cache, resulting in a combined L2 cache size of 48 MB (2 x 24) per book.

� A Storage Controller processor, which controls:

– The communication between the L1.5 cache in the PUs and the L2 cache in the same
MCM is done by five bidirectional 16-byte data buses.

– The communication of the cross-point switch for L2-to-L2 traffic to up to three remote
books by three bidirectional 16-byte data buses.

Storage Controller function is described in more detail in the following section.

Storage Controller function
The Storage Controller (SC) acts as a coherency manager. It is responsible for coherent
traffic between the L2 caches in a multi-book system, and between the L2 cache and the local
PU L1 and L1.5. Note that L2 is shared between all PUs of a book.

Pipe0
Word 0

Pipe0
Word 1

L2C
Pipe0

Pipe1
Word 0

Pipe1
Word 1

L2C
Pipe1
206 ABCs of z/OS System Programming Volume 10

The Storage Controller has directory information for all L1 and L1.5 caches in all the book
PUs. If there is a change in the contents, the Storage Controller can invalidate the old copy in
other L1 caches. It also optimizes cache traffic and does not look for cache hits in other books
when it knows that all resources of a given logical partition are available in the same book.
The SC chip also controls the access and storage of data in between the central storage (L3)
and the L2 on-chip cache.

The SC chip also acts as an L2 cache cross-point switch for L2-to-L2 traffic to up to three
remote MCMs or books by three bidirectional 16-byte data buses with a 3:1 bus/clock ratio.
The SC chip measures 21.11 x 21.71 mm and has 1.6 billion transistors. The L2 SRAM cache
size on the SC chip measures 24 MB, resulting in a combined L2 cache size of 48 (2 x 24)
MB per book. The clock function is distributed between both SC chips, and the wire length of
the chip amounts to 3 km.

Figure 3-19 on page 206 displays the various elements of the PU chip. In the figure, PIPEx is
the L2 cache, and L2C is the Storage Controller itself. Most of the space is taken by the
SRAM L2 cache. L2C indicates the controller function of the chip for point-to-point interbook
communication. Directory and addressing function locations are also shown.
Chapter 3. IBM System z10 EC 207

3.20 Recapping the z10 EC design

Figure 3-20 z10 EC detailed view

Recapping the z10 EC
Figure 3-20 displays the major z10 EC components (there are also two frames, which are not
pictured here).

The book, which is a component of the PU cage, is shown in the top right corner.

There are four books. One MCM is shown, with five PU chips and two SC chips.

Each PU chip has up to four PUs, each with L1 and L1.5 caches and HDFU, as well as two
co-processors and crypto hardware functions.

Each SC chip has L2 cache and an SC processor.
208 ABCs of z/OS System Programming Volume 10

3.21 Three levels of cache

Figure 3-21 Processor unit (PU) caches

Three levels of cache
Caches are fast memories used to avoid the need to access lower-level memories that are
cheaper, larger and slower. In a PU, the cache is used to decrease access to relatively slow
central storage. In the z10 EC, there are three levels of cache (L1, L1.5, and L2) to improve
performance by reducing access to real storage (called L3). Caches are not directly visible to
programs.

Cache sizes are being limited by ever-decreasing cycle times because they must respond
quickly without creating bottlenecks. Access to large and distant caches cost more short
cycles. This phenomenon of shrinking cache sizes can be seen in the design of the z10 EC,
where the L1 instruction and data caches have been shortened to accommodate decreased
cycle times.

The distance to remote caches is also a consideration; for example, the L2 cache, not located
in the PU, might be in another book. To address this in the z10 EC, the L1.5 cache has been
introduced. This intermediate-level cache reduces traffic to and from the L2 cache. With the
L1.5 cache, requests are sent to the L.2 cache only when there is a cache miss in L1 and
L1.5.

Each PU has its own 192 KB Cache Level 1 (L1), split into 128 KB for data (D-cache) and 64
KB for instructions (I-cache). The reason for splitting data and instructions is because the
pattern and nature of the reference is different; for example, data is often changed, but
instructions are very seldom changed. The PU only fetches and store instructions or

Store-
through

Store-
in

Memory
Cards

4 PUs
L1

L1.5

L2
Cache

4 PUs
L1

L1.5

4 PUs
L1

L1.5

4 PUs
L1

L1.5

4 PUs
L1

L1.5

Memory
Cards

4 PUs
L1

L1.5

L2
Cache

4 PUs
L1

L1.5

4 PUs
L1

L1.5

4 PUs
L1

L1.5

4 PUs
L1

L1.5

Level 2 (L2) Cache
48 MB each book

STAR
topology to
other books

Each PU chip has
its own 192 KB
Cache Level 1 (L1)
and 3 MB fo cache
Level 1.5 (L1.5)
Chapter 3. IBM System z10 EC 209

operands (data) from or to the L1 cache. L1 cache is designed as a store-through cache,
meaning that altered data is immediately (synchronously) stored to the next level of memory.

The next level of memory is the L1.5 cache, which is in each PU and is 3 MB in size. It is also
a store-through cache to L2.

The MCM also contains L2 cache located in two Storage Control (SC) chips. Each SC chip
has a Level 2 (L2) cache of 24 MB, for a total of 48 MB. Each L2 cache has a direct path to
each of the other L2 caches in remote books on one side, and each of the PUs in the MCM on
the other side, through point-to-point (any-to-any) connections.

The L2 cache is shared by all PUs within a book. SC processor services provide the
communication between L2 caches across books. The L2 cache has a store-in buffer design,
which means that the changes are not immediately copied to central storage (L3). The
destage to central storage is performed when L2 occupancy reaches some threshold
occupancy. The performance advantage of being store-in is that the PU does not need to wait
for a slow store in memory. Also, if the same data is updated several times when in an L2
cache, the store to central storage performed done just once.

The z10 EC uses a least-recently used (LRU) algorithm to expel the least referenced set of
operands and instructions from the L1 cache to the L1.5 cache. The same LRU is also used
from L1.5 to L2, and from L2 to central storage.

Whenever an operand or instruction needs to be fetched, the L1 cache is inspected first.
When the operand or instruction is found in the cache, it is known as a “hit”. When an
operand or instruction is not found, it is known as a “miss”. In the rare case of a miss (less
than 10%), the search sequence is L1.5, L2, and then central storage.

Changing the contents of the L1 cache
When a PU executes an instruction that changes the contents of the output operand in its L1
cache, the following actions are executed:

� Posting the other PUs, which may have in their L1 or L1.5 cache an out-of-date copy of
the storage element changed by the first PU.

In the z10 EC, the SC located in each MCM book has the L1 cache directories of all PUs
of its book. When a PU alters the contents of one of its L1 cache elements, the SC is
directed to invalidate this element in the L1 cache directory of other PUs in the same book,
but without disturbing those PUs. This update information is passed to the other SCs (in
other books) to execute the same invalidation, if needed.

However, just switching on the bit does not guarantee that all PUs will see the most
recently updated copy at the same time. To guarantee the full coherency of memory, the
program must execute serializing instructions, as described in z/Architecture Principles of
Operations, SA22-7832.

With the execution of such instructions (such as the Compare and Swap instruction), all
previous storage access is completed, as observed by other PUs and channels, before
the subsequent storage accesses occur.

� Defining a place where the other PUs can fetch the most updated copy of such contents, if
they need to do so. In a z10 EC, the updated contents are copied synchronously
(store-through) from the L1 cache to the L1.5 cache, and from the L1.5 cache to the L2
210 ABCs of z/OS System Programming Volume 10

cache, which is a book’s “global memory” where other PUs can reach the most updated
copy of the element.

Cache differences
In addition to location, there are other differences between the L1/L1.5 cache and the L2
cache which make L1/L1.5 even faster than L2.

For the L1L1.5 cache:

� There is error detection through parity bit.
� There is no local error correction (data is recovered from L2).

For the L2 cache:

� There is error detection through ECC.
� There is local error correction (which makes it slower).
Chapter 3. IBM System z10 EC 211

3.22 Software/hardware cache optimization

Figure 3-22 HiperDispatch example

Software and hardware cache optimization
To achieve acceptable PU performance, the z10 EC design has the following rules:

� A very high percentage of instructions and data much be fetched from the L1/L1.5 caches
(hits). A target of more than 90% is desirable.

� In the case of an L1/L1.5 miss, it is expected that more than 90% of such (previous)
misses will be honored from the local (same book) L2 cache.

� In the case of a local L2 miss, it is expected that more than 90% of such (previous) misses
will be honored from remote (other book) L2 caches.

� In the case of a remote L2 miss, it is expected that more than 90% of such (previous)
misses will be honored from local (same book) central storage.

As you can see, only in a very small percentage of fetches may the instruction or operand be
fetched from the central storage of other books (the worst performance case).

To achieve such design goals, several functions are implemented:

� Each SC tries to keep the data it fetched (based on this book’s PU requests) from the
central storage or L2 of another book in its L2 cache book. In this way, the next fetch
request to the same data will be L2 local. (Note that the same piece of data has only one
copy in all four L2 caches, to avoid using serialization mechanisms to guarantee integrity.)

� LPAR always attempts to allocate all central storage for a logical partition within one book,
and attempts to dispatch a logical PU from this logical partition on a physical PU from that
212 ABCs of z/OS System Programming Volume 10

book. This behavior decreases the probability of needing to fetch data from other books
(L2 or central storage). Refer to “NUMA topology” on page 194 for more information about
this topic.

� Each LPAR tries to dispatch the same logical CPU in the same physical CPU.

� The z/OS dispatcher will try to dispatch the same TCB/SRB in the same logical CPU, or at
least in the same group of logical CPUs.

HiperDispatch
The last three functions are called HiperDispatch. HiperDispatch assures that, as much as
possible, the same TCB/SRB is dispatched in the same logical CPU and the same logical
CPU is dispatched in the same physical CPU. This smart dispatching tries to decrease the
number of addresses referenced by a physical CPU. This will improve directly the use of
cache, and consequently the use of TLBs and ALBs.

On the z10 EC with HiperDispatch, this is taken one step further: PR/SM and z/OS now work
in tandem to more efficiently use processor resources.

HiperDispatch is available only with the new z10 EC PR/SM through the vertical CPU
management (VCM) component and specialized z/OS V1R9 functions.

This function, as exploited by the z/OS dispatcher, is described in z/Architecture Principles of
Operations, SA22-7832, under the name Configuration Topology Facility. This facility
provides additional topology awareness to the operating system so that certain optimizations
can be performed to improve cache hit ratios and thereby improve overall performance.

HiperDispatch combines the dispatcher actions and the knowledge that PR/SM has about the
topology of the PUs in the server. For that purpose, the z/OS dispatcher manages multiple
TCB/SRB queues with an average number of four logical CPUs per queue. It uses these
queues to assign work to as few logical processors as are needed for a given LPAR
workload. So even if the LPAR is defined with a large number of logical processors,
HiperDispatch will optimize this number of processors nearest to the required capacity. The
optimal number of logical processors to be used is kept within a book boundary wherever
possible, thereby preventing L2 cache misses that would have occurred when the dispatcher
could dispatch work wherever a processor might be available.

Figure 3-22 on page 212 shows, on the left side, that with HIPERDISPATCH=NO, the physical
CPUs run different tasks from different logical partitions. On the right side of the figure, with
the option YES, the physical CPU 1 only switches between task A and task C from the same
logical partition.
Chapter 3. IBM System z10 EC 213

3.23 HiperDispatch

Figure 3-23 HiperDispatch considerations

HiperDispatch considerations
The HiperDispatch function is dynamically activated through HIPERDISPATCH=YES in the
IEAOPTxx member in parmlib. In this case, the Vary Logical CPU Management function of
IRD is automatically switched off.

The z/OS dispatcher tries to use a minimum number of active logical CPUs in an LPAR. This
is done to increase the probability of having the same logical CPU execute the same
dispatchable unit (TCB/SRB). (In order to dispatch a TCP/SRB in a logical CPU, the z/OS
dispatcher must be running in that logical CPU.) The HiperDispatch function engages in a
constant communication between the LPAR code and the z/OS dispatcher.

This feature is available with z/OS V1R9, and for z/OS V1R7 with a zIIP Web deliverable.

Logical CPUs (target is 4) assigned a node with consideration

for book boundaries based on PR/SM guidance

z/OS uses this to assign logical processors to nodes and work

to those nodes

Periodic rebalancing of task assignments

Assign work to the minimum number of logicals needed to use

weight. Expand use of remaining logical CPUs to use white

space

May require "tightening up" of WLM policies for important work

Single HIPERDISPATCH=YES z/OS IEAOPTxx parameter dynamically

activates HiperDispatch (full S/W and H/W collaboration) without IPL

With HIPERDISPATCH=YES, IRD management of LPs is turned OFF
214 ABCs of z/OS System Programming Volume 10

3.24 Central storage design

Figure 3-24 Central storage design

Central storage design
Central storage, as previously mentioned, is located in the four books.

Each basic memory element is the Dual in-line Memory Module (DIMM). The DIMM is a
series of random access memory integrated circuits (a bit is implemented through a flip-flop
circuitry).

Memory in a book is organized in two logical pairs:

� Logical pair 0 has two memory control units (MCU 0 and MCU1). Each MCU controls four
groups of three DIMMs.

� Logical pair 1 has two memory control units (MCU 2 and MCU 3). Each MCU controls four
groups of three DIMMs.

Within a logical MCU pair, the DIMM size (4 GB or 8 GB) must be the same. In addition, the
total memory capacity for each logical MCU pair must be the same. MCU implements a
non-associative memory concept; that is, the Storage Controller delivers an address and the
MCU returns the contents of central storage associated with that address.

The maximum capacity per book: 8 GB x 12 x 4 = 384 GB.
Chapter 3. IBM System z10 EC 215

Note that memory sizes in each book do not have to be similar; different books may contain
different amounts of memory.

Memory can be purchased in increments of 16 GB, up to a total size of 256 GB. From 256
GB, the increment size doubles to 32 GB until 512 GB. From 512 GB to 944 GB, the
increment is 48 GB. Beyond that, up to 1520 GB, a 64 GB increment is used.
216 ABCs of z/OS System Programming Volume 10

3.25 Addresses and addresses

Figure 3-25 Addresses and addresses

Addresses and addresses
During program execution, the instruction address is virtual in the PSW and its operand
addresses are also virtual in the base registers plus displacement. To access the instruction
and the operands in caches or central storage, these virtual addresses must be translated
and converted into other types of addresses. Figure 3-25 shows the stages during that
process:

� Virtual address to real address

Executed by DAT through the use of tables and TLB. The operating system sets up the
translate controls (CRs) and translate tables.

� Real address to a z/Architecture absolute address

Executed by the hardware function prefixing using the PVR register. The absolute address
allows each CPU to have a unique 8 KB PSA. Refer to z/Architecture Principles of
Operations, SA22-7832, to learn about the concept of prefixing. Prefixing proceeds as
follows:

– If the real address is equal to 0KB - 8 KB (PSA) - forward prefix

– If the real address is equal to the Prefix Register - reverse prefix

– If the real address is not equal to the PSA address, or not equal to the prefix register
address - then no prefix is used and the real address is an absolute address

� z/Architecture absolute address to z10 EC absolute address

Virtual address (CP) to a real address (DAT)

Real address (CP) to a z/Architecture
absolute address (Prefixing)

z/Architecture absolute address to z10 EC
absolute address (LPAR)

z10 EC absolute address (LPAR) to z10 EC
book/memory physical address (Storage
Controller)
Chapter 3. IBM System z10 EC 217

Executed by the LPAR, as follows:

– LPAR sets up the logical partition relocate offset at image activation time.

– Adds a “relocate” offset to a z/Architecture absolute address. If the LP is the first in
central storage, its relocate offset is the size of the HSA. If the logical partition is
second in central storage, its relocate address is the sum of HSA size plus the first LP
size.

� z10 EC absolute address to z10 EC book/memory physical address

The z10 EC absolute address is used to access the z10 EC Configuration Array to get the
z10 EC book’s memory physical address. This z10 EC book’s memory physical address
indicates the book number, the logical pair number, and the MCU requested.
218 ABCs of z/OS System Programming Volume 10

3.26 Hardware system area (HSA)

Figure 3-26 Hardware system area (HSA)

Hardware system area (HSA)
HSA is built along a power-on Reset (POR) HMC operation. It contains the description of the
channel subsystems, logical partitions, and I/O configuration. On top of that, it contains the
LPAR LIC code and a copy of the CFCC operating system LIC code. It is always located in
the central storage of the first book.

In z10 EC always occupies 16 GB of central storage. As a result, in a z10 EC, the installation
planning for the HSA size is eliminated. Also, the pre-planning for HSA expansion for
reconfiguration is eliminated because HCD/IOCP will, via the POR process, always reserve
the maximum size (16 GB) for the maximum I/O configuration possible. Note that there is
room in the HSA for 7665 K (127.75 K x 60 LPs) subchannels (or UCWs).

Note: HSA central storage is not included in the size of central storage that you purchase.

16 GB of HSA in any z10 EC model at power-on
Reset

Eliminates the installation pre-planning task for HSA
configuration and eventual expansion size

This size is able to contain:

4 CSSs

15 LPs in each CSS (total of 60 LPs)

Subchannel set-0 with 63.75k devices in each CSS

Subchannel set-1 with 64k devices in each CSS

All these are designed to be activated and used with
dynamic I/O changes
Chapter 3. IBM System z10 EC 219

3.27 Large page (1 M) support

Figure 3-27 Large page (1M) support

Large page (1M) support
The z/Architecture virtual storage implementation defines:

� Pages of 4 K addresses
� Segments of 1 M addresses
� Regions of 2 G addresses

Virtual addresses are sliced into page, segment, and region numbers to be translated by the
dynamic address translation (DAT) through the use of page tables, segment tables, and up to
three region tables.

The translation lookaside buffer (TLB) is a fast memory located in each PU. In the z10 EC, it
has 512 entries. Each entry contains the real address associated with the most referenced
512 pages. The TLB accelerates consistently the DAT translation performance because with
a TLB hit, DAT does not need to go to central storage in order to access the tables for
translation.

However, the expected use of virtual addresses above the bar (2 G) is causing an explosion
of pages. On the other hand, TLB sizes have remained relatively small due to low access
time requirements and hardware space limitations.

TLB coverage today represents a much smaller fraction of an application’s working set size
pages, thus leading to a larger number of TLB misses. Applications can suffer a significant

Due to the "exploding" number of getmained pages:

Applications suffer a significant performance penalty
because of TLB misses.

Not allowed to increase the number of TLB entries due
to performance constraints.

Solution: decrease the number of pages, making them
bigger. Instead of 4 K, we have 1 M long-running memory
access-intensive applications benefit.

Optionally requested in IEASYSnn member with the
following parameter: LFAREA=nn% | nnM | nnG.

Large pages are treated as fixed pages and only
available above 2 GB.
220 ABCs of z/OS System Programming Volume 10

performance penalty resulting from an increased number of TLB misses, as well as the
increased cost of each TLB miss.

So, if we are not allowed to increase the number of TLB entries, and virtual storage usage is
exploding, the solution is to decrease the number of pages by making them bigger. That is,
instead of 4 K, we have 1 M. Using large pages ensures that the TLB better represents the
working set, and suffers fewer misses by allowing a single TLB entry to cover more address
translations.

Exploiters of large pages are better represented in the TLB and are expected to perform
better; long-running memory access-intensive applications particularly benefit. Short
processes with small working sets see little or no improvement. The decision to use large
pages must be based on the knowledge you gain from measuring memory usage and page
translation overhead for a specific workload.

The large page size of 1 M addresses is optionally requested in the z/OS IEASYSnn member
of SYS1.PARMLIB with the following parameter:

LFAREA=nn% | nnM | nnG.

Note that after the large page size is selected, it cannot be dynamically changed without an
IPL. Large pages are treated as fixed pages and are never paged out. They are only available
for 64-bit virtual private storage such as virtual memory located above 2 GB.
Chapter 3. IBM System z10 EC 221

3.28 Connecting PU cage with I/O cages

Figure 3-28 Comparing z9 EC with z10 EC I/O interconnect technology

Comparing z9 EC with z10 EC I/O interconnect technology
The interconnect technology used in z9 EC was eSTI (self-time interconnect) with data rates
of 2.7 GB/sec. The eSTI cable connected two traffic processors: the MBA in the PU cage and
the STI-MP in the I/O cage. Each book has 8 MBAs (in fanout card) and each MBA connects
to two eSTIs. One STI-MP controls the I/O flow of an I/O cage domain. A domain is formed by
four I/O cards in the I/O cage.

As I/O cards continue to support higher data transfer rates to the devices, the connection
between the I/O cards and the CEC cage needs to provide a higher data rate, as well. The
connectivity to the I/O cages (I/O domains) in the System z10 is implemented by InfiniBand
technology, which provides a data rate of 6 GB/sec. Refer to “InfiniBand interconnect
technology” on page 226 for more information about this topic.

In the z10 EC I/O cage, the InfiniBand multiplexer (IFB-MP) card replaces the self-timed
interconnect multiplexer (STI-MP) card present in the z9. The z10 EC supports a combination
of old technology memory bus adapter (MBA) and host channel adapter (HCA) InfiniBand
fanout cards on the CEC cage. The MBA fanout cards are used exclusively for ICB-4
Coupling Facility links.

With the System z10, there are two types of HCAs in one book:

� The HCA2-C fanout connects via an IFB copper cable to an IFB-MP (InfiniBand -
Multiplex) card, installed in the I/O cages; see Figure 3-28.
222 ABCs of z/OS System Programming Volume 10

� The HCA2-O fanout connects via a CF link optical cable (external) to another z10 EC
server.

Each fanout has two ports to connect either a copper cable IFB (internal) or optical. There are
up to eight HCA2-C fanout cards per book. However, the maximum number of fanout cards
per server is 24 with 2 ports each.

Then, multiplying 24 x 2 x 6 MB/sec, we have a 288 GB/sec of total z10 EC aggregate data
rate.

I/O connectivity
The z10 EC has Host Channel Adapter (HCA) fanouts residing in the front of the book. There
are unique HCA fanouts supporting I/O features and Parallel Sysplex coupling links in the I/O
cage.

The z10 EC generation of the I/O platform is intended to provide significant performance
improvement over the current I/O platform used for FICON Express4, OSA-Express2, and
Crypto Express2. It will be the primary platform to support future high-bandwidth
requirements for FICON/Fibre Channel, Open Systems adaptors, and Crypto.
Chapter 3. IBM System z10 EC 223

3.29 Detailed connectivity

Figure 3-29 Detailed connectivity

Detailed connectivity
The optical cable is used for coupling link external connectivity, while the copper cable is
used for I/O cage connectivity. There are three different fanouts (Host Channel Adapter -
HCA) based on InfiniBand technology:

� HCA1-O (also called MBA as in the z9 server): connecting through CF links within system
z9, optical, up to 3 GB/sec, up to 150 meters. This is not used by z10 EC.

� HCA2-O: connecting through CF links with system:

– z10: optical, up to 6 GB/sec

– z9: more than 10 meters distance, optical, up to 3 GB/sec.

The rate is negotiable.

� HCA2-C: connecting internally with I/O cages, copper, up to 6 GB/sec.

Connectivity summary
The fiber cables are industry standard OM3 (2000 MHz-km) 50 micron multimode optical
cables with Multi-Fiber Push-On (MPO) connectors. The maximum cable length is 150
meters (492 feet).

Each fiber supports a link rate of 6 GBps (12x IB-DDR) if connected to a z10 EC server or
3 GBps (12x IB-SDR) when connected to a System z9 server. The link rate is auto-negotiated
to the highest common rate.
224 ABCs of z/OS System Programming Volume 10

3.30 HCA and I/O card connections

Figure 3-30 HCAs and I/O card connections

HCAs and I/O card connections
Figure 3-30 shows:

� HCA2-C adapters connected through copper cables with IFB-MP located in one I/O slot in
the I/O cage. The rate in this case is 6.0 GB/sec. This IFB-MP handles and manages the
flow of four I/O cards constituting a domain.

� HCA2-O adapters connected through optic fiber cables named Parallel Sysplex using
Infiniband (PSIFB) with HCA2-O located in other z10 EC server. The rate in this case is
6.0 GB/sec.

� MBA adapters connected through copper cables with an ICB-4. It is possible to hot swap
ICB-4 and InfiniBand hub cards.

New ICB-4 cables are needed for z10 EC.

The MBA fanout provides coupling links (ICB-4) to either z10 EC servers or z9, z990, and
z890 servers. This allows you to use the z10 EC and earlier servers in the same Parallel
Sysplex.

MBA fanouts are only for ICB-4 coupling links and cannot be used for any other purpose.
When upgrading to a z10 EC from a System z9 or z990 with ICB-4 coupling links, new ICB
copper cables are required because connector types used in the z10 EC are different from
the ones used for z9 and z990.

The ICB-4 feature cannot be ordered on a Model E64 server.
Chapter 3. IBM System z10 EC 225

3.31 InfiniBand interconnect technology

Figure 3-31 Communication stack

InfiniBand background and capabilities
InfiniBand is a powerful interconnect technology designed to deliver I/O connectivity for large
server and network infrastructures. It is supported by all major server vendors as a means to
deliver the next generation I/O interconnect standard for servers.

System z servers are able to do more and more work and in order to keep up with the
increasing performance, it becomes necessary to introduce an interconnect architecture that
is able to scale with the increasing performance of the platform to satisfy the I/O interconnect
requirements that go along with it. InfiniBand is a powerful interconnect architecture that is
better able to scale with increasing processor speeds.

In 1999, two competing input/output (I/O) standards called Future I/O (developed by Compaq,
IBM and Hewlett-Packard) and Next Generation I/O (developed by Intel®, Microsoft® and
Sun™) merged into a unified I/O standard called InfiniBand. The InfiniBand Trade
Association® (IBTA) is the organization that maintains the InfiniBand specification and is led
by a steering committee manned by members of the earlier mentioned corporations.

InfiniBand is an industry-standard specification that defines an input/output architecture used
to interconnect servers, communications infrastructure equipment, storage and embedded
systems. InfiniBand is a true fabric architecture that leverages switched, point-to-point
channels with data transfers up to 12 MB per second, both in chassis backplane applications
as well as through external copper and optical fiber connections. InfiniBand is a pervasive,
low-latency, high-bandwidth interconnect which requires low processing overhead and is
226 ABCs of z/OS System Programming Volume 10

ideal for carrying multiple traffic types (clustering, communications, storage, management)
over a single connection.

Advantages of InfiniBand
Following are some advantages of using InfiniBand:

Superior performance. InfiniBand provides superior latency performance and products
supporting up to 12 MB/sec connections.

Reduced complexity. InfiniBand allows for the consolidation of multiple I/Os on a single
cable or backplane interconnect, which is critical for blade servers, data center computers
and storage clusters, and embedded systems.

Highest interconnect efficiency. InfiniBand was developed to provide efficient scalability of
multiple systems. InfiniBand provides communication processing functions in hardware, thus
relieving the CPU of this task, and it enables full resource utilization of each node added to
the cluster.

Reliable and stable connections. InfiniBand provides reliable end-to-end data connections
and defines this capability to be implemented in hardware.

Figure 3-31 on page 226 shows the InfiniBand communications stack. Several types of
architected transactions can be used to execute a transaction with another user. Work is
posted on the appropriate queue, and the channel adapter executes the operation.

In case of a send operation, the channel adapter interprets the type of work, creates a
message, segments it (if needed) into multiple packets, adds the routing information, and
sends the packets to a port. Port logic is now responsible for sending the packet (or packets)
across the link through the fabric to its destination. When the packet arrives, the port logic
validates the packet, and the channel adapter puts it on the queue and executes it. If
requested, the channel adapter creates an acknowledgement and sends it back to its origin.
Chapter 3. IBM System z10 EC 227

3.32 I/O cage

Figure 3-32 I/O cage

I/O cage
Figure 3-32 shows a physical view of the I/O cage. The z10 EC server can have up to three
I/O cages to host the I/O and cryptographic cards required by a configuration. Each I/O cage
has 28 I/O slots and supports up to seven I/O domains (from A to G). Each I/O domain is
made up of up to four I/O slots and a IFB-MP, as shown.

Each I/O domain requires one IFB-MP card. All I/O cards within an I/O domain are connected
to its IFB-MP card via the back plane board. A full I/O cage requires eight IFB-MP cards,
which are half-high cards, using four slots.

If one I/O domain is fully populated with ESCON cards (each with 15 active ports and one
spare per card), then up to 60 (four cards x 15 ports) ESCON channels can be installed and
used. An I/O cage that has six domains fully populated with ESCON cards will have
360 (60 x 6 domains) ESCON channels.

Each IFB-MP card is connected to an HCA2-C port located in the book. Because each
IFB-MP card requires one port, up to eight ports are required to support one I/O cage.

The configuration process selects which slots are used for I/O cards and supplies the
appropriate number of I/O cages and IFB cables, either for a new build server, or for a server
upgrade.

A full I/O cage requires four IFB-MP cards (from A to G), which are half-high cards, using
three and a half slots. I/O cards can be installed or replaced concurrently. The I/O cards
228 ABCs of z/OS System Programming Volume 10

contain the channel where the I/O logic is executed and the I/O ports to connect to the
external devices, networks or to other servers.

All channels of an I/O card are served by the same SAP.

In addition, two Distributed Converter Assembly-Cage Controller (DCA-CC) cards plug into
the I/O cage.

The maximum number of channels in the server by type of channel is listed here:

� Up to 1024 ESCON channels (up to 960 on the model E12)

� Up to 120 FICON Express channels (when carried forward on upgrade only)

� Up to 336 FICON Express2 channels (when carried forward on upgrade only)

� Up to 336 FICON Express4 channels

� Up to 24 OSA-Express3 features

� Up to 24 OSA-Express2 features

� Up to 48 ISC-3 coupling links

� Up to 16 ICB-4 coupling links (up to 32 with RPQ 8P2337)

� Up to 32 InfiniBand coupling links

� Two External Time Reference (ETR) connections

z10 I/O cage
The z10 EC has a minimum of one CEC cage and one I/O cage in the A frame. The Z frame
can accommodate an additional two I/O cages, making a total of three for the entire system.
One I/O cage can accommodate the following card types:

� Up to eight Crypto Express2

� Up to 28 FICON Express4, FICON Express2, or FICON Express

� Up to 24 OSA-Express2 and OSA-Express3

� Up to 28 ESCON

It is possible to populate the 28 I/O slots in one I/O cage with any mix of these cards.
Chapter 3. IBM System z10 EC 229

3.33 The I/O data flow

Figure 3-33 I/O data flow tree in the z10 EC server

I/O data flow for a read - example
Here we follow a data flow experienced by a 4 KB DASD FICON read, through all the paths
that the data might travel:

1. From a disk track to the DASD controller cache - and it was a cache miss.
2. From the DASD controller cache to DASD controller host adapter buffer.
3. From the DASD controller host adapter buffer to the FICON switch director port buffer

(moved within FICON data frames).
4. From the FICON director port buffer (moved within FICON data frames) to the channel I/O

port buffer in one I/O card in one I/O cage.
5. From a channel I/O port buffer in one I/O card in an I/O cage, to an I/O port in the IFB-MP

card.
6. From an I/O port in the IFB-MP card to an HCA2-O buffer.
7. From an HCA2-O buffer to the L2 cache.

As shown in Figure 3-33, using a tree as an analogy for the z10 EC, the “top leaves” (I/O
channels) connect to a little branch, which connect to a larger branch to the trunk. All I/O
channels in one I/O card fork in the I/O card port. Four I/O card ports fork in a IFB-MP. Two
IFB-MPs fork in a HCA2-O (there are two IFB-MP links per HCA2-O fanout card). Eight
HCA2-Os fork in one L2-Cache. In all forks, traffic controllers allow, serially, all the confluent
flows (refer to Figure 3-28 on page 222).

I/O Channel
I/O channel

I/O channelI/O card

IFB-MP

IFB-MP

HCA2-O

HCA2-C
HCA2-O

L2 -Cache

I/O channel

I/O card
230 ABCs of z/OS System Programming Volume 10

3.34 Redundant I/O Interconnect

Figure 3-34 Redundant I/O Interconnect

Redundant I/O Interconnect
Redundant I/O Interconnect is a feature of the z10 EC server. It is accomplished by the
facilities of the IFB-MP card.

Each IFB-MP card is connected to an IFB jack located in the HCA2-C fanout card of a book.
IFB-MP cards are half-high cards and are interconnected, thus allowing redundant I/O
interconnect. If the IFB connection coming from a book ceases to function (such as when a
book is removed), the interconnect path is used. Figure 3-34 shows a conceptual view of how
Redundant I/O Interconnect is accomplished.

Normally, book 0 HCA2-C connects to the IFB-MP (A) card and services domain 0 I/O
connections (slots 01, 03, 06, and 08). Book 1 HCA2-C/IFB connects to the IFB-MP (B) card
and services domain 1 (slots 02, 04, 07, and 09).

If book 1 is removed, or if the connections from book 1 to the cage are removed, connectivity
to domain 1 is maintained by guiding the I/O to domain 1 through the interconnect between
IFB-MP (A) and IFB-MP (B).

......HCA2-C

z10 Book 0

......HCA2-C

z10 Book 1

 Interconnect

IFB-MP
B

IFB-MP
A

Slot
5

I/O Cage

6.0 GB/sec

CEC Cage

domain 0

domain 1
Chapter 3. IBM System z10 EC 231

3.35 z10 EC I/O features supported

Figure 3-35 I/O features supported

I/O features supported
Figure 3-35 shows all the types of channels and their limits in a z10 EC server.

The InfiniBand coupling (IFB), which is not shown in the figure, has a maximum of 32 ports
and does not have a PCHID associated to it. Refer to “Physical channel ID (PCHID)” on
page 240 for more information on PCHIDs.

The notes in the last column of Figure 3-35 refer to the following points:

� Notes 1,2 provide more detailed information about the two listed feature codes.

� Note 3 indicates that only FICON Express-4 (400 MB/sec) are natively available. FICON
Express-2 and FICON Express are only supported, if carried over, on an upgrade.

� Note 4 indicates that the maximum number of combined IB, ISC-3 and IC coupling links is
64.
232 ABCs of z/OS System Programming Volume 10

3.36 16-port ESCON channel card

Figure 3-36 A 16-port ESCON channel card

z9 EC 16-port ESCON feature
The 15 active ports on each 16-port ESCON feature are activated in groups of four ports via
Licensed Internal Code-Control Code (LIC-CC) by using the ESCON channel port feature
(FC 2324).

The first group of four ESCON ports requires two 16-port ESCON features. After the first pair
of ESCON cards is fully allocated (by seven ESCON ports groups, using 28 ports), single
cards are used for additional ESCON ports groups.

Ports are activated equally across all installed 16-port ESCON features for high availability. In
most cases, the number of physically installed channels is greater than the number of active
channels that are LIC-CC enabled. This is not only because the last ESCON port (J15) of
every 16-port ESCON channel card is a spare, but also because several physically installed
channels are typically inactive (LIC-CC protected). These inactive channel ports are available
to satisfy future channel adds.

z10 ESCON ports
z10 EC supports the MIDAW facility, previously exclusive to the z9. The System z9 I/O
subsystem supports a facility for indirect addressing, Modified Indirect Data Address Word
(MIDAW) facility, for both ESCON and FICON channels. The use of the MIDAW facility by
applications that currently use data chaining may result in improved channel throughput in
FICON environments. A maximum of 1024 ESCON ports can be activated on a z10 EC
server. This maximum requires 69 16-port ESCON channel cards to be installed.

LIC
C

C
 EN

A
B

LEM
EN

T

ESCON-16

J00
J01
J02
J03
J04
J05
J06
J07
J08
J09
J10
J11
J12
J13
J14
J15

ESCON-16

SPARE
CHANNEL

J00
J01
J02
J03
J04
J05
J06
J07
J08
J09
J10
J11
J12
J13
J14
J15

ESCON-16

J00
J01
J02
J03
J04
J05
J06
J07
J08
J09
J10
J11
J12
J13
J14
J15

ESCON-16

SPARE
CHANNEL

J00
J01
J02
J03
J04
J05
J06
J07
J08
J09
J10
J11
J12
J13
J14
J15

ADD 4
ESCON

ch
an

ne
ls

PCHID
Number

110
111

120
121

110
111

120
121

112
113

122
123
Chapter 3. IBM System z10 EC 233

3.37 FICON features and Extended Distance

Figure 3-37 FICON features and Extended Distance

FICON features
The FICON Express4 features are available in long wavelength (LX) and short wavelength
(SX). For customers exploiting LX, there are two options available for unrepeated distances
of up to 4 kilometers (2.5 miles) or up to 10 kilometers (6.2 miles). Both LX features use
9 micron single mode fiber optic cables.

The SX feature uses 50 or 62.5 micron multi-mode fiber optic cables.

Each FICON Express4 feature (I/O card) has 4 independent channels (ports) and can be
configured to carry native FICON traffic or Fibre Channel (SCSI) traffic. LX and SX cannot be
intermixed on a single feature, and the receiving devices must correspond to the appropriate
LX or SX feature. The maximum number of FICON Express4 features is 84 using three I/O
cages.

An enhancement to the industry standard FICON architecture (FC-SB-3) helps avoid
degradation of performance at extended distances by implementing a new protocol for
“persistent” Information Unit - IU (also named frames) pacing.

Control units that exploit the enhancement to the architecture can increase the pacing count
(the number of IUs allowed to be in flight from channel to control unit). Extended Distance
FICON also allows the channel to “remember” the last pacing update for use on subsequent
operations to help avoid degradation of performance at the start of each new operation.

Only FICON Express-4 (400 MB/sec). FICON
Express-2 and FICON Express are only available if
carried over, on an upgrade.

Express4 features:

Long wave (LX) 9 micron single mode fiber optic
cables. Two options for unrepeated distances of:

 Up to 4 kilometers (2.5 miles)

 Up to 10 kilometers (6.2 miles)

Short wavelength (SX). For short distances. Uses 50
or 62.5 micron multimode fiber optic cables.

FICON Extended Distance, new protocol for
Information Unit (IU) pacing.
234 ABCs of z/OS System Programming Volume 10

Improved IU pacing can help to optimize the utilization of the link (for example, to help keep a
400 MB/sec link fully utilized at 50 Km) and provide increased distance between servers and
control units.The requirements for channel extension equipment are simplified with the
increased number of commands in flight. This may benefit z/OS Global Mirror (Extended
Remote Copy, XRC) applications because the channel extension kit is no longer required to
simulate (or spoof) specific channel commands. Simplifying the channel extension
requirements may help reduce the total cost of ownership of end-to-end solutions. Extended
distance FICON is transparent to operating systems, and it applies to all the FICON Express4
and FICON Express2 features carrying native FICON traffic (CHPID type FC).

For exploitation, the control unit must support the new IU pacing protocol. The DS8000 series
License Machine Code (LMC) level 5.3.1xx.xx supports such protocol. The channel defaults
to current pacing values when operating with control units which cannot exploit extended
distance FICON.

z10 FICON support
The z10 EC generation of the I/O platform is intended to provide significant performance
improvement over the current I/O platform used for FICON Express4, OSA-Express2, and
Crypto Express2. It will be the primary platform to support future high-bandwidth
requirements for FICON/Fibre Channel, Open Systems adaptors, and Crypto.

As part of the high availability offered by z10 EC, FICON Cascaded Director continues to be
supported. Cascaded support is important for disaster recovery and business continuity
solutions. It can provide high availability and extended distance connectivity, and has the
potential for fiber infrastructure cost savings by reducing the number of channels for
interconnecting the two sites.

With high bandwidth, the z10 EC introduces InfiniBand as the internal interconnect protocol to
drive ESCON and FICON channels, OSA-Express2 and OSA-Express3 ports, and ISC-3
coupling links. As a connection protocol, InfiniBand supports ICB-4 links and InfiniBand
coupling (PSIFB) with up to 6 GBps link rate.

With wide connectivity, the z10 EC can be connected to an extensive range of interfaces such
as Gigabit Ethernet (GbE), FICON, ESCON, and coupling links.
Chapter 3. IBM System z10 EC 235

3.38 Channel subsystem (CSS)

Figure 3-38 Multiple CSSs

Channel subsystem (CSS)
The channel subsystem controls communication of internal (as IC and IQD) and external (as
FICON) channels to control units and devices. The configuration definitions of the CSS (at
HCD) define the operating environment for the correct execution of all system Input/Output
(I/O) operations. The channels permit transfer of data between main storage and I/O devices
(through controllers) or other servers under the control of a channel program. The CSS allows
channel I/O operations to continue independently of other operations within the CPs.

An important piece of the I/O z/Architecture is the SAP, which is a PU in charge of
guaranteeing the start of the I/O operation. It is a mainframe-unique feature that frees many
CPU cycles during I/O operations.

Multiple channel subsystems
A CSS, by definition, is made of up to 256 channels and does not include the SAPs. z10 EC
allows up to four CSSs, and makes it possible to have up to 1024 channels allowing
performance benefits for larger installations.

CHIPDs
Within the LP, the channel is accessed by the operating system through the one-byte CHPID,
as defined in z/Architecture. This one-bye CHPID limits the maximum number of channels
that can be accessed by a copy of the operating system in the LP. In order to allow more than
256 channels per server, the concept of CSS was introduced. In other words, CHPIDs are

DASD
LCUs

5

LP16LP2 LP3 LP14 LP15LP1

2 35

CSS 1

31

CSS 0

81 90 918081 90 9180

151 1E1 1F1141150 1E0 1F0140

LCSS

LPAR name

PCHID

MIF ID

CHPID

DASD
LCUs

Directors

Control
Units

and Devices

0201

LPAR ID 1A0B 0C 11 1300
236 ABCs of z/OS System Programming Volume 10

unique within an CSS ranging from 00 to FF. However, the same CHPID number range is
used again in the other three CSSs.

Then, each logical partition (LP) and its operating system can only access one CSS and
consequently up to a maximum of 256 channels. Different LPs (up to 15) may share the same
CSS or have a different CSS, but there can be just one CSS per LP.

Outside the LP scope as in a HCD definition, the channel is identified by the CHPID qualified
by the CSS ID, as shown in this IOCP statement:

CHPID PATH=(CSS(0),80),SHARED,PARTITION=((LP1,LP2,LP3),(=)),

The CHPID 80 from CSS 0 is shared (MIF-shared) between logical partitions LP1, LP2, and
LP3.

As shown in Figure 3-38 on page 236, in the same server (CEC) you can have several
channels (from different CSSs) with the same CHPID. CHPIDs 80, 81, 82 and 83 are
repeated, but in a distinct CSS. Thus, a single operating system instance still has a maximum
of 256 CHPIDs, but the server as a whole can have more than 256 CHPIDs.

Logical partition (LP) summary
A given logical partition (LP) is associated with a single CSS, and a single CSS has a
maximum of 256 CHPIDs. Multiple LPs may be associated with a given CSS, as follows:

� Each CSS may have from one to 256 channels.

� Each CHPID is qualified by its CSS ID.

� Each CSS can be configured with 1 to 15 logical partitions.

� The four CSSs can be configured to 60 logical partitions per server.

Figure 3-39 on page 238 illustrates the relationship between LPs, MIF IDs, CSSs, CHPIDs,
and PCHIDs. The concept of PCHIDs is illustrated in Figure 3-40 on page 240. The concept
of MIF IDs is explained in “LP ID, MIF ID, and spanning concepts” on page 238.

The I/O subsystem continues to be viewed as a single input/output configuration data set
(IOCDS) across the entire system with multiple CSSs. Refer to 6.4, “Hardware and software
configuration” on page 375 for more information on IOCDS. Only one hardware system area
(HSA) is used to describe, through control blocks, the multiple CSS.

The channel definitions of an CSS are not bound to a single book. A CSS may define
channels that are physically connected to all HCA2-C of all books in any multi-book z10 EC
model.
Chapter 3. IBM System z10 EC 237

3.39 LP ID, MIF ID, and spanning concepts

Figure 3-39 LP ID and MIF ID example

LP ID and MIF ID concepts
In this section we explain the concepts underlying LP IDs and MIF IDs and how they relate.

LP ID
An LP ID is an identification of the logical partition, together with the logical partition name
(LPname). Both are defined in the LPAR profile in the HMC and in HCD. When LPARs were
announced, the LP ID was defined with a one-half byte length from X’1’ to X’F’. Originally, this
limited the maximum number of LPs to 15.

The LP ID is used by several hardware and software functions, as explained here:

� An ESCON/FICON channel identifies itself to the I/O control unit in a multi-image facility
(MIF) setup, when the same channel may serve several LPs, by using the four-bit LP ID.

� For the CTC control unit logical address of the remote CTC, when a MIF channel path is
used.

� As data moved into storage by the STORE CP ID (STIDP) instruction

� To identify the z/OS system that sends the path group ID CCW to an I/O controller.

z10 LP support
With the z10 EC, the maximum allowed number of LPs is now 60. To accommodate this, a
new LP ID field is introduced with two hex characters (one byte), from X’00’ to X’3F’.

CSS 0

Partition
1

. . .Partition
2

Partition
14

Partition
15

Partition
16

Partition
17

Partition
18

Partition
60

. . .

MIF-1 MIF-2 MIF-F. . .

CSS 1

MIF-1 MIF-2 MIF-3 MIF-F

CHPID
00

CHPID
01

CHPID
02

CHPID
03

Share

PCHID
10B

PCHID
10C

PCHID
10D

PCHID
20E

. . .
CHPID

FF

PCHID
20A

CHPID
04

SPAN

CHPID
06

SPAN

PCHID
120

CHPID
00

CHPID
01

CHPID
05

Share

CHPID
22

CHPID
FF

PCHID
145

PCHID
146

PCHID
147

PCHID
158

PCHID
159

.

. . .
238 ABCs of z/OS System Programming Volume 10

However, all functions depending on an LP ID still expect a four-bit field. For example, the
ESCON/FICON protocol for implementing EMIF still works with an LP ID from X’1’ to X’F’.
The solution is the creation of the MIF ID as a replacement. The MIF ID is used instead of the
LP ID. To maintain the uniqueness of a MIF ID, it is qualified by the CSS.

MIF Image ID
The MIF Image ID is a number that is defined through HCD, or directly via the IOCP through
the RESOURCE statement. It is in the range '1' to 'F' and it is unique within an CSS, but it is
not unique within the z10 EC. Multiple CSSs may specify LPs with the same MIF Image ID.

Note the following summary points:

1. The logical partition names are specified in the I/O definition process (HCD or IOCP), and
must be unique for the logical partition across all CSSs in the z10 EC.

2. The logical partition MIF ID is specified in the I/O definition process (HCD or IOCP), and
must be unique x'0’ to ‘F' for all logical partitions across each CSS in the z10 EC.

3. The logical partition ID is specified (by the user) in the z10 EC image profile (for the LP in
the HMC), and must be unique x'00-3F' for the logical partition across all CSSs in the z10
EC.

In Figure 3-39 on page 238, LP 1 has a MIF ID of 1. In another CSS, LP 14 has a MIF ID of 1,
as well.

Spanning
A spanned channel is a channel belonging to more than one CSS. Using spanned channels
decreases the number of channels needed in your installation. With the z10 EC, the majority
of channel types can be defined as spanned. The exceptions are:

� ESCON channels defined with CHPID type CVC or CBY

� The following channels can be shared but not spanned:

– ESCON channels defined with CHPID type CNC or CTC

– FICON channels defined with CHPID type FCV

Comparing spanned and shared channels
The Multiple Image Facility (MIF) allows channels to be shared among multiple logical
partitions in a server.

� Shared channels can be shared by logical partitions within a channel subsystem.
� Spanned channels can be shared by logical partitions within and across CSSs.

All other channels can be shared and spanned, as such:

� FICON Express when defined as CHPID type FC or FCP

� FICON Express2 and FICON Express4

� OSA-Express and OSA-Express2

� Coupling links channels in peer mode: ICB-4, ICB-3, ISC-3

� Internal channels: IC and HiperSockets

HiperSockets
A spanned channel occupies the same CHPID number in all CSSs in which it is used. For
example, if a HiperSockets channel is CHPID 2C in CSS 0, it must be the same CHPID
number in CSS 1 (if CSS 1 is used, of course, and if that HiperSockets is also defined in
CSS1). A HiperSockets that connects LPs in different CSSs must be spanned.
Chapter 3. IBM System z10 EC 239

3.40 Physical channel ID (PCHID)

Figure 3-40 PCHIDs

Physical channel IDs (PCHIDs)
Before the introduction of the PCHID in zSeries, each CHPID was associated one-to-one,
with each channel also being a physical identification of such channel. With PCHIDs, the
CHPID is just a logical name or a nickname for the channel, and it no longer directly
corresponds to a hardware channel. On the other hand, the PCHID number identifies even
the physical slot location within an I/O cage.

This implementations increases the flexibility of defining I/O channel configurations. You may
keep the CHPID numbers (for example, 01, 21, 31,41 for DASD) even when migrating to
another server with other channels associated with other PCHIDs.

CHPIDs are not pre-assigned to channels. It is the customer’s responsibility to assign the
CHPID numbers through the use of the CHPID Mapping Tool (CMT) program, or directly with
HCD/IOCP program (which is not recommended). Assigning CHPIDs means that the CHPID
number is associated with a physical channel port location (PCHID) and a CSS containing
that channel. The CHPID number range is still from ‘00’ to ‘FF’ and must be unique within an
CSS. Any CHPID not connected to a PCHIDs fails validation when an attempt is made to
build a production IODF or an IOCDS.

Figure 3-40 shows the front view of the first I/O cage (at the bottom of the A frame), including
some I/O cards in slots 01 to 08, and the PCHID numbers of each port.

ISC-3 OSA-E FICON
Express2

. . .

I/O Cage 1 -
FrontI/O Cards

I/O Ports

01 02 03 04 05 06 07I/O Slots

110

111

120

121

140

141

142

143

PCHIDs

STI

STI

. . .

Crypto OSA-E

130

131

ESCON

160
161
162
163

16B

FICON
Express2

150

151

152

153

08
240 ABCs of z/OS System Programming Volume 10

A channel is identified by a three-digit PCHID, or physical channel identifier. A PCHID
number is defined for each potential channel interface. As an example, in the following IOCP
statement, the CHPID 80 of CSS 0 corresponds to the PCHID 0140:

CHPID PATH=(CSS(0),80),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0140

For ESCON channels, each ESCON I/O card has up to 16 adapters or channel interfaces.
16 PCHID numbers are reserved for each I/O adapter slot in each I/O cage. Not all I/O cards
provide 16 channels (FICON I/O card has four channels), but 16 PCHID numbers are
reserved for each possible I/O slot.

Each enabled I/O port has its own PCHID number, which is based on the following:

� Its I/O port or channel interface (also called the connect number)
� Its I/O slot (card) location
� Its I/O cage

Table 3-1 shows the PCHID numbering scheme.

Table 3-1 PCHID numbering scheme

As mentioned, it is the customer’s responsibility to perform these assignments of CHPIDs to
PCHIDs by using HCD and IOCP definitions and the assistance of the CHPID Mapping Tool
(CMT). Using CMT provides an IOCP source that maps the defined CHPIDs to the
corresponding PCHIDs of the server.

Note: The PCHID numbers allocated to each I/O adapter and port on that adapter are
fixed and cannot be changed by a user.

Cage Front PCHID ## Rear PCHID ##

I/O Cage 1 100 - 11F 200 - 21F

I/O Cage 2 300 - 31F 400 - 41F

I/O Cage 3 500 - 51F 600 - 61F

Server Cage 000 - 03F reserved for ICB-4s

Note: There is no absolute requirement to use CMT; you can assign CHPIDs to PCHIDs
directly in an IOCP source or through HCD. However, this is a very cumbersome process
for large configurations.

If you choose to perform a manual assignment of CHPIDs to PCHIDs (using HCD or
IOCP), it is your responsibility to distribute CHPIDs among the physical channel card ports
(PCHIDs) for availability and performance. The objective of CMT is to assist in performing
these tasks.
Chapter 3. IBM System z10 EC 241

3.41 Association between CHPIDs and PCHIDs

Figure 3-41 CHPIDs and PCHIDs

CHPIDs and PCHIDs
A z9 EC now supports up to 1024 physical channels (PCHIDs). In order for an operating
system running in a partition to make use of that PCHID, it must be mapped to a CHPID.
Each CHPID is uniquely defined in an CSS and mapped to an installed PCHID by the
customer through HCD, IOCP, or the CHPID Mapping Tool. A PCHID is eligible for mapping
to any CHPID in any CSS.

For internal channels, such as IC links and HiperSockets, CHPIDs are not assigned a PCHID.

Channels
Channels can be shared between logical partitions by including the partition name in the
partition list of a Channel Path ID (CHPID). I/O configurations are defined by the I/O
Configuration Program (IOCP) or the Hardware Configuration Dialog (HCD) in conjunction
with the CHPID Mapping Tool (CMT). The CMT is an optional, but strongly recommended,
tool used to map CHPIDs onto Physical Channel IDs (PCHIDs) that represent the physical
location of a port on a card in an I/O cage.

Operating systems
IOCP is available on the z/OS, z/VM and z/VSE operating systems, and as a standalone
program on the z10 EC HMC hardware console. HCD is available on z/OS and z/VM
operating systems.

Physical location is known as the PCHID,
assigned and reported by eConfig
Except for ESCON sparing and a
channel swap, a PCHID relates directly to
a jack location in a specific slot, in a
specific cage
CHPID numbers are no longer
pre-assigned
Customer responsibility to do this
assignment using:

HCD/IOCP Process
New CHPID Mapping Tool (CMT)

CHPID assignment:
Associate the CHPID number to a
physical channel port location
Associate the channel to an CSS
CHPIDs are still 00-FF and must be
unique within an CSS

Physical Channel IDs (PCHIDs)

102 103 104 110 200 201 202 3F1 320

Logical Partitions

LCSS0 LCSS1

12 52 EF4F 12 2F EF00 02

IOCDS
242 ABCs of z/OS System Programming Volume 10

3.42 Comparison between System z servers

Figure 3-42 Comparing LP IDs for the servers

Comparison between System z servers
Figure 3-42 shows a comparison of the current z9 EC implementation on LP ID and LP
names with the previous ones. We divide the System z family in two groups: previous (formed
by z800 and z900) and modern (formed by the z990, z890, z9 EC, and z9 BC). Figure 3-42
displays a comparison of the definition terms used with System z9 and zSeries servers, as
follows:

LP name In previous servers, this name is defined through HCD or in the IOCP logical
partition name in the RESOURCES statement in an IOCP. The names must be
unique across the server.

In modern servers, this is the same.

LP ID In previous servers, the logical partition identifier is used as the four-bit digit of the
operand stored by the Store CP ID instruction. This value must be in the range of
0 to F. The LP identifier must be unique for each active LP. The value is assigned
on the General Page of the Image Profile for the LP in the Hardware
Management Console (HMC), in the LPAR number parameter in HCD, and in the
RESOURCES statement in IOCP.

In modern servers, the LP ID is a value in the range of 00 to 3F. It is assigned in
the image profile through the support element (SE) or the HMC. This identifier is
returned by the Store CP ID (STIDP) instruction. It is unique across the z9 EC
server, and is also referred to as the user logical partition ID (UPID).

MIF ID In previous servers, this is the same entity as the LP ID.

Specified in HMC
Image Profile

LCSS 0 LCSS 1

Specified in
 HCD/IOCP

z10 EC, z9 EC, z9 BC, z990, z890

TST1 PROD1 PROD2 TST2 TST3 PROD3

02 04 0A 12 15 17

MIF ID
2

MIF ID
4

MIF ID
A

MIF ID
2

MIF ID
5

MIF ID
7

Logical Partition Name Logical Partition Name

Logical Partition ID Logical Partition ID

CSS

z800, z900
Specified in
HCD/IOCP

TST1 PROD1 PROD2

2 4 A

2 4 A

Logical Partition Name

Logical Partition ID

Logical Partition Number

Specified in
 HCD/IOCP
Chapter 3. IBM System z10 EC 243

In modern servers, the MIF ID is introduced because these servers allow more
than 15 LPs. Therefore, the LP ID cannot be used to implement MIF channels,
CTCA protocol, or the I/O control unit path group ID. Then, the MIF ID ranges
from X’1’ to X’F’ as demanded by such protocols, and it is unique within an CSS.
It is specified in HCD/IOCP in the LP number option.

I/O component comparison
Table 3-2 lists the number of I/O components supported on System z9 and zSeries servers.

Table 3-2 CSS comparison

z800 and z900 z890 z990 z9 BC z9 EC and z10 EC

CSSs 1 per server 2 per server 4 per server 2 per server 4 per server

Partitions 15 per server 15 per CSS
30 per server

15 per CSS
30 per server

15 per CSS, up to
30a per server

a. z9 BC model R07 (capacity setting A01 only) supports a maximum of 15 logical partitions per server.

15 per CSS, up to
60 per server

CHPIDs 256 per CSS
256 per server

256 per CSS
512 per server

256 per CSS
1024 per server

256 per CSS, up to
512 per server

256 per CSS, up to
1024 per server

Devices 63 K per server 63 K per CSS
126 K per server

63 K per CSS
252 K per server

63.75 K per CSSb, up
to 127.5 K per server

b. Multiple subchannel sets are supported.

63.75 K per CSSb, up
to 255 K per server
244 ABCs of z/OS System Programming Volume 10

3.43 IOCP statements example

Figure 3-43 IOCP example

IOCP statements example
In the example shown in Figure 3-43, the first appearance of the new parameters for the
modern servers is shown in bold font from the HCD-produced IOCP. As when the LP is
defined in RESOURCE statement, it is associated with the ID of the CSS, such as CSS(0).

The former LP ID is now the MIF ID, such as (LP1,1). The LP IDs are defined through HMC
panels.

MAXDEV keyword
MAXDEV reserves space in the HSA, based on the maximum number of UCWs
(subchannels), to allow Dynamic I/O Configuration. In a z10 EC server there is no longer any
need to reserve space in the HSA because a full 16 GB is reserved, so the use of MAXDEV is
unnecessary.

Defining CHPIDs
When defining a CHPID, it must be qualified by the CSS ID, such as CSS(0),80,81,90,91.
The CHPIDs must be mapped to a PCHID, as shown in the CHPID statement. This mapping
can be done by using the CHPID mapping tool.

Recommendation: Use HCD instead of coding IOCP statements.

ID MSG1=’BILLIOCP’,MSG2=’z10, 2 LCSS’,SYSTEM=(2097,1)
RESOURCE PARTITION=((CSS(0),(LP1,1),(LP2,2),LP3,3)), X

 (CSS(1),(LPA,1),(LPB,2),LPC,3))), X
 MAXDEV=((CSS(0),64512),(CSS(1),64512))

CHPID PATH=(CSS(0),80),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0140

CHPID PATH=(CSS(0),81),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0150

CHPID PATH=(CSS(0),90),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01E0

CHPID PATH=(CSS(0),91),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01F0

CHPID PATH=(CSS(1),80),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0141

CHPID PATH=(CSS(1),81),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0151

CHPID PATH=(CSS(1),90),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01E1

CHPID PATH=(CSS(1),91),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01F1

CNTLUNIT CUNUMBR=3000, X
 PATH=((CSS(0),80,81,90,91),(CSS(1),80,81,90,91)), X
 UNITADD=((00,256)),CUADD=0,UNIT=2105, X
 LINK=((CSS(0),20,21,20,21),(CSS(1),20,21,20,21))

CNTLUNIT CUNUMBR=3100, X
 PATH=((CSS(0),80,81,90,91),(CSS(1),80,81,90,91)), X
 UNITADD=((00,256)),CUADD=1,UNIT=2105, X
 LINK=((CSS(0),20,21,20,21),(CSS(1),20,21,20,21))

IODEVICE ADDRESS=(3000,032),CUNUMBR=(3000),STADET=Y,UNIT=3390B
Chapter 3. IBM System z10 EC 245

3.44 Configuration definition process

Figure 3-44 Configuration definition process

CHPID mapping tool (CMT)
Figure 3-44 shows a diagram containing the suggested steps needed to define a new build for
a z10 EC, z9 EC, z9 BC, z990, or z890 I/O configuration.

The old servers had fixed CHPID assignments. The modern servers (z990 and z9 EC) use a
concept called Channel CHPID Assignment where the CHPIDs are not permanently
assigned to a particular card slot, but instead are assigned as needed.

It is strongly recommended that you use the CHPID Mapping Tool to configure the
CHPID-to-PHCID assignments. The IODF that you created first should not have PCHID
assignments. CMT reads an IOCP source file sent by HCD with no PCHIDs. CMT also reads
the CF report and HW Config report (documents produced by IBM) and produces an IOCP
source file with the PCHIDs assigned. This data set is sent to HCD to finalize the
configuration in the IODF.

The CHPID Mapping Tool provides a way to customize the CHPID assignments for a z10 EC
system to avoid attaching critical channel paths to single points of failure, such as two
channels from the same I/O card reaching a same I/O control unit. This tool should be used
after the server order is placed and before the system is delivered for installation.

This mapping tool can also be used to remap CHPIDs after hardware upgrades that increase
the number of channels. The tool maps the CHPIDs from an IOCP file (usually generated by
HCD) to Physical Channel Identifiers (PCHIDs) which are assigned to the I/O ports. As

Assigning PCHIDs
 HCD

 1. Create IODF for your server
without PCHIDs.

 2. Create IODF (validated work
 IODF) - HCD option 2.12 =
 Build validated work I/O definition file.

 3. Create IOCP source without
 PCHIDs - HCD option 2.3 =
 Build IOCP input data set.

 5. Import IOCP source with PCHIDs
 into IODF - HCD option 5.1 =
 Migrate IOCP/OS data,
 Migrate option 3 (PCHIDs).

 6. Create a production IODF -
 HCD option 2.1 =
 Build production I/O definition file.

 CHPID mapping tool

 4. Run CHPID mapping tool.
 It will produce an IOCP source
 with PCHIDs assigned.

IODF
no PCHIDs

IODF
with

PCHIDs

IOCP
source

no PCHIDs

IOCP
source

with
PCHIDs

CF Report
or

 H/W
Config

Report for
your order

(CCN)

Reports
246 ABCs of z/OS System Programming Volume 10

mentioned, the PCHID assignments are fixed and cannot be changed. The CHPID Mapping
Tool is available from Resource Link as a standalone PC-based program.

CHPIDs
Existing software code works with single-byte CHPID numbers, producing the limitation of
256 CHPIDs. The difficulty is to extend this number while maintaining compatibility with
existing software. The 256 maximum CHPID number is reflected in various control blocks in
operating systems, software performance measurement tools, and even some application
code.

The new architecture provides multiple sets of channel definitions, each with a maximum of
256 channels. Existing operating systems would be associated with one channel subsystem
(CSS), and work with a maximum of 256 CHPIDs. Different logical partitions can be
associated with different channel subsystem definitions. Thus, a single operating system
instance (using existing code) still has a maximum of 256 CHPIDs, but the server as a whole
can have more than 256 CHPIDs. To exploit more than 256 channels, it is necessary to have
multiple operating images (in multiple LPs).

PCHIDs
A physical channel identifier (PCHID) reflects the physical identifier of a channel-type
interface. A PCHID number is based on the I/O cage location, the channel feature slot
number, and the port number of the channel feature. A CHPID does not directly correspond to
a hardware channel port on a z9 EC server, and may be arbitrarily assigned. A hardware
channel is now identified by a PCHID.

You can address 256 CHPIDs within a single channel subsystem. That gives a maximum of
1024 CHPIDs when four CSSs are defined. Each CHPID is associated with a single channel.
The physical channel, which uniquely identifies a connector jack on a channel feature, is
known by its PCHID number.

Using the CMT
The major result of using the CMT tool is an IOCP deck that maps the defined CHPIDs to the
corresponding PCHIDs of the server. Although there is no requirement to use the mapping
tool (you can assign CHPIDs to PCHIDS directly in an IOCP decks or through HCD), this is a
very cumbersome process for larger configurations and it is much easier and efficient to use
the tool to do channel mapping.

If customers choose to perform manual assignment of CHPIDs to PCHIDs (using HCD or
IOCP), it is their responsibility to distribute CHPIDs among the physical channel cards
(PCHIDs) for availability (to avoid single point of failures) and performance. The objective of
the tool is to help in performing these tasks.

Figure 3-44 on page 246 shows a diagram containing the suggested steps that an installation
can take in defining a new z9 EC I/O configuration.
Chapter 3. IBM System z10 EC 247

3.45 Channel availability features

Figure 3-45 Channel availability features

Channel availability features
There are two channel features in z10 EC that improve full system availability:

� System-initiated CHPID reconfiguration function

This function is designed to reduce the duration of a repair action and to minimize operator
interaction when an ESCON or FICON channel, an OSA port, or an ISC-3 link is shared
across LPs. When an I/O card is replaced for a repair, it usually has some failed and some
still functioning channels. To remove the card, all channels need to be configured offline
from all LPs sharing them.

Without system-initiated CHPID reconfiguration, the IBM customer engineer (CE) must
contact each LP z/OS operator and have the channels set offline, and then after the
repair, contact them again to configure channels back online.

With system-initiated CHPID reconfiguration, the Support Element sends a signal to the
IOP that a channel needs to be configured offline. IOP determines all the LPs sharing that
channel and sends an alert to all z/OS systems in those LPs. z/OS then configures the
channel offline without any operator intervention. This is repeated for each channel on the
card.

When the card is replaced back, the Support Element sends another signal to IOP for
each channel. This time the IOP alerts z/OS that the channel should be configured back
online. This is designed to minimize operator interaction to configure channels offline and
online.

There are two channel features in z10 EC that improve

full system availability:

System-initiated CHPID reconfiguration function.

Designed to reduce the duration of a repair action and

minimize operator interaction when an ESCON or

FICON channel, an OSA port, or an ISC-3 link is

shared across logical partitions.

Multipath IPL.

Designed to help increase availability and to help

eliminate manual problem determination when executing

an IPL.
248 ABCs of z/OS System Programming Volume 10

� Multipath IPL function

During IPL, if an I/O operation to the IPL device fails due to an I/O error, multipath IPL
retries the I/O using an alternate path. This function is applicable to ESCON and FICON
channels. z/OS supports multipath IPLs.
Chapter 3. IBM System z10 EC 249

3.46 Introduction to MIDAW

Figure 3-46 I/O operation scheme with MIDAWs

Modified Indirect Data Address Word (MIDAW) facility
z/Architecture supports a new facility for indirect addressing, the Modified Indirect Data
Address Word (MDAW) facility, for both ESCON and FICON channels and for z9 and z10 EC
servers. The use of the MIDAW facility, by applications that currently use data chaining, may
result in improved channel throughput in FICON environments. This facility may be heavily
used by VSAM media manager.

MIDAW facility is exploited by z/OS V1R7 plus APARs and I/O controller awareness for the
DS8000.

Results of internal DB2 table scan tests with extended format data sets on the z9 EC with the
MIDAW facility and the IBM TotalStorage DS8000 yielded the following results when using
FICON Express4 operating at 400 MB/sec on a z9 EC compared to FICON Express2
operating at 200 MB/sec in VSAM cluster:

� A 46% improvement in throughput for all reads (270 MB/sec versus 185 MB/sec)

� A 35% reduction in I/O response times

For more details about MIDAW performance, refer to “MIDAW performance results” on
page 260.

C S S
C
H
A
N
N
E
L

PATH

S A P

CCWs are
constructed
by Access
Methods

FLAGS: Key, Suspend, Format, Prefetch, Initial, Address Limit, LPM, Length

SSCH

@UCB

REG1
SID

@CCW

FLAGS

FLAGS:
8 CD USE @DADOS NEXT CCW
9 CC USE COMMAND NEXT CCW
10 SLI IGNORE ERROR IN SIZE
11 SKIP NO DATA TRANSFER
12 PCI CAUSES INTERRUPTION CCW FETCH

13 IDA IDA Bit is On
14 S SUSPEND CHANNEL PROGRAM

CMD FLGS COUNT @DATA

O
R
B

1

2

0

CCW (Memory)

CCW

CCW
CCW

CCW

Memory

3

Device

0

0 8 16 32

200 K

100 K

First IDAW

Second IDAW

CECs I/O cage

With the exception of the last
CCW, all flag bit 9s are on

I/O
C
O
N
T
R
O
L
L
E
R

250 ABCs of z/OS System Programming Volume 10

I/O operations summary
An I/O operation includes a dialog between a FICON (or ESCON) channel microprocessor
located on the FICON feature card, as shown at point (2) in Figure 3-46 on page 250.

The objective is the transfer of data between the server's real memory and a device media,
managed by that I/O controller. The channel is in command of the I/O operation, requiring
certain actions from the controller. To know what to order, the channel accesses, in real
storage, an already-written channel program, as shown at point (0) in Figure 3-46 on
page 250. As an analogy, the CPU executes programs comprised of instructions, and the I/O
channel executes channel programs composed of channel command words (CCWs). That is,
a channel program describes to the channel the actions it needs to order from the I/O
controller for an I/O operation. A CCW is the basic element of a channel program.

The CCW contents are explained here (refer to point (0) in Figure 3-46 on page 250):

� The first 8 bits (CMD) contain the command code; for example, X'02' is a read and X'01' is
a write.

� Flags (FLGS) indicate options.

� Byte count (COUNT) indicates the size of the physical block to be transferred by this
CCW. For a write, it is the number of bytes to be stored in the device. For a read, it is the
number of bytes to be transferred to storage.

� Data address (@DATA) specifies the address in storage for the physical block read or
write. This storage area is also called the I/O buffer.

For more information about CCWs, refer to “Channel command word (CCW) concept” on
page 252.
Chapter 3. IBM System z10 EC 251

3.47 Channel command word (CCW) concept

Figure 3-47 DASD channel program example

Channel command word (CCW) concepts
Following are definitions regarding the use of CCWs.

DEFINE EXTENT CCW
The DEFINE EXTENT CCW is always the first one in the channel program, and it is added by
the input output supervisor (IOS). This CCW deals with security, integrity, and DASD cache
control of the channel program.

LOCATE RECORD CCW
The LOCATE RECORD CCW indicates to the channel the physical address (cylinder, track,
and physical block number) in the DASD device of the physical block to be read or written.
This information is passed by the channel to the controller.

READ CCW
The READ CCW informs you that the physical block described by the LOCATE RECORD
CCW is to be moved from the DASD device to storage. Two informational items are key: the
address in storage, and the size of the physical block (for checking purposes).

Instead of the READ CCW, you can have a WRITE CCW that informs you that the physical
block already prepared in storage is to be moved to a DASD device location, as described by
the LOCATE RECORD CCW. Two informational items are also key: the address in storage,
and the size of the physical block to be written in the device track.

CCW Define Extent

Used for security, integrity, DASD cache management

CCW Locate Record

Tells the location of the physical record (cyl, track and

record) in the DASD device

CCW Read 4 KB,flags,10000

Reads 4096 bytes into contents of storage address

10000

Flag bits are used for indicating some options
252 ABCs of z/OS System Programming Volume 10

3.48 CCWs and virtual storage - IDAW Concept

Figure 3-48 IDAW concept

CCWs and virtual storage - IDAW concept
As shown in Figure 3-48 on page 253, an 8 KB output I/O buffer is aligned in a page
boundary starting at virtual address 12 M. The access method builds the following CCW:

CCW write,8-KB, flags,12-M

The access method is software and only understands virtual addresses. However, the
channel cannot reach the DAT that is located in the processor storage page within each PU.
The channel does not understand virtual addresses, only real addresses. Therefore, the z/OS
component I/O driver performs the translation.

In this example, the page starting at the 12 M virtual address is located in the frame starting at
real storage 200 KB. The next page, the one at 12 M plus 4 K, is located in the frame starting
at real storage 100 KB. As you can see, there is no I/O buffer continuity in real storage.

If the I/O driver only replaces the 12 M by 200 KB, the channel moves the 8 KB from storage
starting at frame 200 KB and continuing into frame 204 KB, which is clearly a mistake.

To avoid such a problem, the concept of indirect addressing was introduced. If the CCW flag
bit 13 is on, in the CCW, then the channel understands that the CCW-address field, instead of
containing a real address of the I/O buffers, contains the real address of a list of double
words, called indirect data address words (IDAWs).

Each IDAW contains a real address designating a 4 KB frame. When the first 4 KB frame is
exhausted, the channel keeps the I/O data transfer to the real address in the next IDAW in the

Virtual Storage Pages

Real Storage Frames

12 M

12 M+4K

100 K

200 K

Access Method writes:
CCW READ 8 KB, 12M

I/O Driver Writes:
CCW READ 8 KB, BIT 13 on, IDAL Address

200 K

100 K

IDAL address

IDAW 0

IDAW 1
Chapter 3. IBM System z10 EC 253

list. The list is called an indirect data address list (IDAL). Therefore, in our numeric example,
the first IDAW points to real address 200 K and the second points to real address 100 K.

Although the IDAW design allows the first IDAW in a list to point to any real address within a
page frame, subsequent IDAWs in the same list must point to the first byte in a page frame.
Also, all but the first and last IDAW in a list must deal with complete 4 KB units of data.

Observe that the CCW-address field only has 31 bits (up to 2 GB addresses). In order to have
an I/O buffer above the bar (higher than 2 GB real address), the IDAWS must be always used
for such I/O, because each IDAW has 64 bits in order to point beyond 2 GB.

CCW command chaining
An I/O physical block contains logical records. Its size is determined by the access method
parameter installation-defined BLKSIZE. On DASD or on tape, each physical block is
separated from others by gaps.

Generally speaking, each read or write CCW is able to transfer only one physical block.
However, it is possible in the same channel program to transfer more than one physical block.
To implement this, a flag bit called the command chain bit 9 is set.

The CPU default design is “when you finish one instruction, execute the next”. The channel
default design is “when you finish one CCW, quit (send an I/O interrupt informing the end of
the channel program execution)”. The command chaining flag is needed in order to make the
channel execute the next CCW. Therefore, all CCWs in a channel program (except the last
one) should have the command chaining bit on.

With sequential I/O processing it is very common, for performance reasons, to transfer
several physical blocks in just one channel program by using the command chaining facility.

Data chaining
Data chaining is a special case of command chaining. It is activated by flag bit 8 in the CCW.
Data chaining means that several CCWs, in sequence, with this flag on, operate on the same
physical record. Basically there are two reasons for this implementation:

� To read and write a physical block greater than 64 KB.

Keep in mind that the byte count in the CCW only allows 64 KB (it has 16 bits). Look at the
following channel program with virtual addresses:

CCW Write 64 KB, flag 8 On, 10 M
CCW Write 64 KB, flag 8 On, 10 M + 64 K
CCW Write 64 KB, flag 8 On, 10 M + 128 K
CCW Write 64 KB, flag 8 Off, 10 M + 192 K

As you can see, this channel program is writing just one physical block of 256 KB located
at 10 M virtual address.

� To read and write a “spread physical record (also called scatter-read or scatter-write)”.

As an example, with 3390 DASD, the physical record or block is usually comprised of two
items: a count with 8 bytes containing control information (transparent to the application),
and data which contains the data itself.

If an access method wants to read the specified count to an internal specific storage area
and the data to the I/O buffer, it can produce the following virtual channel program:

CCW Read 8, flag 8 On, 20 M
CCW Read 4 KB, flag 8 Off, 10 M

In this case, the count is read into 20 MB and the 4 KB data is read into 10 M.
254 ABCs of z/OS System Programming Volume 10

3.49 DASD extended format

Figure 3-49 Extended format

DASD extended format
You can allocate both sequential and VSAM data sets in extended format (EF) on a
system-managed data set. The DASD volume must be attached to a controller that supports
extended format. All the modern DASD controllers support this format.

It is recommended that you convert your data sets to extended format for better performance,
additional function, and improved reliability. For example, there are several VSAM functions
only available for EF data sets, such as:

� Data striping

� Data compression

� VSAM extended addressability

� Partial space release

� System-managed buffering

Extended format is a technique that affects the way count key data (CKD) is stored in a 3390
DASD track. It improves the performance and the reliability of an I/O operation.

COUNT COUNT

G
A
P

G
A
P

G
A
P

D A T A D A T A

32-byte suffix (in extended format)
Chapter 3. IBM System z10 EC 255

The major difference between those data sets and data sets that are not in extended format is
explained here:

� A 32-byte suffix is added to each physical record at the data component. This physical
block suffix may increase the amount of space actually needed for the data set, depending
on the blksize.

The 32-byte suffix contains the following:

– A relative record number used for data stripping.

– A 3-byte field to detect controller invalid padding, thus improving the availability of the
I/O operation. A discussion of this topic is beyond the scope of this IBM Redbook.

Record format on DASD
The physical record format and the suffix are transparent to the application; that is, the
application does not require internal or external modifications to create and use the extended
format data set.

DFSMS SMS-managed data sets
All extended format data sets must be system-managed; that is, they have an associated
storage class. To convert a non-extended format data set to an extended format, or to
allocate an extended format data set, you need to create an SMS data class (DC) with the
DATASETNAMETYPE field equal to EXT, and then assign the data sets to that data class.

Note: All channel programs accessing EF data sets must use data chaining to read the
32-byte suffix to a different area as a scatter-read or scatter-write I/O operation.
256 ABCs of z/OS System Programming Volume 10

3.50 Using MIDAWs

Figure 3-50 MIDAW CCW chaining

MIDAW facility
The MIDAW facility provides a more efficient CCW/IDAW structure for certain categories of
data chaining I/O operations, as described here:

� MIDAW can significantly improve FICON performance for extended format data sets.

– Non-extended data sets can also benefit from MIDAW.

� MIDAW can improve channel utilization and can significantly improve I/O response time.

– It reduces FICON channel connect time, director ports and control unit overhead.

IDAWs
MIDAW means Modified IDAW. An IDAW is an Indirect Address Word that is used to specify
real data addresses for I/O operations in a virtual environment. As discussed, the existing
IDAW design allows the first IDAW in a list to point to any address within a page. Subsequent
IDAWs in the same list must point to the first byte in a page. Also, all but the first and last
IDAW in a list must deal with a complete 4 KB of data.

MIDAW format
The MIDAW facility is a new method of gathering/scattering data from and into discontinuous
storage locations during an I/O operation. The modified IDAW (MIDAW) format is shown in
Figure 3-50.

CCW IDAW address

Command
(Read)

Flags
(MIDAW flag set)

Data count
(Number of bytes)

MIDAWs

3104

4 K
Pages

MIDAWs remove the 4K
boundary restrictions of

IDAWs

MIDAWs can start and
end at any location
within a 4K page

Format-1 CCW

02 01

reserved

reserved

reserved

real address

L

2K

32

1K

real address

real address

Count
Flags

(Last MIDAW in list)

MIDAWs are a new method of gathering/scattering data into/from
discontiguous storage locations during an I/O operation
Chapter 3. IBM System z10 EC 257

Each MIDAW has 128 bits. It is 16 bytes in length and is aligned on a quadword. Its most
important new field is the count describing the length of the I/O buffer piece described in the
MIDAW. With such count, we save CCWs in the channel program making it faster.

Figure 3-51 Modified IDAW (MIDAW) format

MIDAW CCW chaining
The use of MIDAWs is indicated by the MIDAW bit 7 in the CCW flags.The data count in the
CCW should equal the sum of the data counts in the MIDAWs. The CCW operation ends
when the CCW count goes to zero (0) or the last MIDAW (with the last flag) ends.

The combination of the address and count in a MIDAW cannot cross a page boundary; this
means the largest possible count is 4 K. The maximum data count of all the MIDAWs in a list
cannot exceed 64 K. (This is because the associated CCW count cannot exceed 64 K.)

The scatter-read or scatter-write effect of the MIDAWs makes it possible to efficiently send
small control blocks (as the count and the EF suffix) embedded in a physical record to
separate buffers than those used for larger data areas within the record. MIDAW operations
are on a single I/O block, in the manner of data chaining. (Do not confuse this operation with
CCW command chaining.)

Extended format data sets
z/OS extended format data sets use internal structures (usually not visible to the application
program) that require scatter-read (or scatter-write) operation. This means that CCW data
chaining is required, and this produces less than optimal I/O performance. Extended format
data sets were introduced in 1993 and are widely in use today. The most significant
performance benefit of MIDAWs is achieved with extended format (EF) data sets.

To process an I/O operation to an EF data set would normally require at least two CCWs with
data chaining. One CCW would be used for the 32-byte suffix of the EF data set. With
MIDAW, the additional CCW for the EF data set suffix can be eliminated.

MIDAWs benefit both EF and non-EF data sets. For example, to read twelve 4 K records from
a non-EF data set on a 3390 track, Media Manager (VSAM I/O driver) would chain 12 CCWs
together using data chaining. To read twelve 4 K records from an EF data set, 24 CCWs
would be chained (2 CCWs per 4K record). Now, by using Media Manager track-level
command operations and MIDAWs, a whole track can be transferred using a single CCW.

Performance benefits
Media Manager has the I/O channel programs support for implementing EF data sets; it
automatically exploits MIDAWs when appropriate. Today, most disk I/Os channel programs in
the system are generated using Media Manager.

0 40 48 64 127

reserved flags count data address (64 bits)

Flags:
Bit 40 - last MIDAW in list
Bit 41 - skip transfer to main storage Iike Skip in CCW)
Bit 42 - data transfer interruption control (like PCI in CCW)
258 ABCs of z/OS System Programming Volume 10

3.51 Reducing CCWs using MIDAW

Figure 3-52 Reducing CCWs through MIDAW

Reducing CCWs using MIDAW
By using MIDAW, Media Manager can transfer a whole track using a single CCW, without the
need of data chaining, as shown in Figure 3-52.

The modified indirect data address word (MIDAW) facility is a system architecture and
software exploitation designed to improve FICON performance. This facility is only available
on System z9 and IBM System z10 Enterprise Class servers, and is exploited by the Media
Manager in z/OS.

MIDAWs benefit both EF and non-EF data sets. For example, to read twelve 4 K records from
a non-EF data set on a 3390 track, Media Manager would chain 12 CCWs together using
data chaining. To read twelve 4 K records from an EF data set, 24 CCWs would be chained
(two CCWs per 4 K record). Using Media Manager track-level command operations and
MIDAWs, an entire track can be transferred using a single CCW.

Performance benefits
z/OS Media Manager has the I/O channel programs support for implementing EF data sets
and it automatically exploits MIDAWs when appropriate. Today, most disk I/Os in the system
are generated using media manager. Media Manager with the MIDAW facility can provide
significant performance benefits when used in combination applications that use EF data sets
(such as DB2) or long chains of small blocks.

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

CCW READ 4K

Non-EF data sets pre-MIDAWs

32 CCWs in total

CCW READ 32 byte
suffix

CCW READ 4K

CCW READ 32 byte
suffix

CCW READ 4K

CCW READ 32 byte
suffix

CCW READ 4K

CCW READ 32 byte
suffix

CCW READ 4K

CCW READ 32 byte
suffix

CCW READ 4K

64 CCWs in total

EF data sets Pre-MIDAWs

Track level CCW

Track level CCW

Track level CCW

Track level CCW

 EF or non-EF data sets
With MIDAWs

3 or 4 CCWs in total
Chapter 3. IBM System z10 EC 259

3.52 MIDAW performance results

Figure 3-53 MIDAW performance results

MIDAW exploiting
MIDAWs are used by two IOS drivers:

� The Media Manager (a VSAM-specific I/O driver) exploits MIDAWs when appropriate.

� Users of the EXCPVR IOS driver may construct channel programs containing MIDAWs,
provided that they construct an IOBE with the new IOBEMIDA bit set.

Note: Users of the EXCP driver may not construct channel programs containing MIDAWs.

MIDAW performance results
Media Manager contains the I/O channel program support for implementing Extended Format
data sets, and it automatically exploits MIDAWs when appropriate. Today, most disk I/Os in
the system are generated using Media Manager.

The MIDAW facility removes the 4 K boundary restrictions of IDAWs, and in the case of EF
data sets, reduces the number of CCWs. Decreasing the number of CCWs helps to reduce
the FICON channel utilization. Media Manager and MIDAWs will not cause the bits to move
any faster across the FICON link, but they do reduce the number of frames and sequences
flowing across the link, thus utilizing the channel resources more efficiently.

Use of the MIDAW facility with FICON Express4, operating at 4 Gbps, compared to use of
Indirect Data Address Words (IDAWs) with FICON Express2, operating at 2 Gbps, showed
an improvement in throughput of greater than 220% for all reads (270 MBps versus 84 MBps)
on DB2 table scan tests with extended format data sets.

0
20
40
60
80

100

1 2 3C
ha

nn
el

 B
us

y%

pre-MIDAWs MIDAWs

I/O Response Time (ms)

0

1

2

3

4

5

1 2 3 1 2 3
Number of DB2 partitions

pend connect
Pre-MIDAWs MIDAWs

0

50

100

150

200

1 2 3

Number of DB2 partitions
Th

ro
ug

hp
ut

(M

B
/s

ec
)

Configuration:
MIDAW : z/OS 1.7
Pre-MIDAW: z/OS 1.4

DB2 for z/OS Version 8
4000 byte row size
System z9 109
FICON® Express2
2 Gbit/sec link
DS8000 control unit
260 ABCs of z/OS System Programming Volume 10

These measurements are examples of what has been achieved in a laboratory environment
using one FICON Express4 channel operating at 4 Gbps (CHPID type FC) on a z9 EC with
z/OS V1.7 and DB2 UDB for z/OS V8.

The performance of a specific workload may vary, according to the conditions and hardware
configuration of the environment. IBM laboratory tests found that DB2 gains significant
performance benefits using the MIDAW facility in the following areas:

� Table scans

� Logging

� Utilities

� Using DFSMS striping for DB2 data sets

Figure 3-53 on page 260 illustrates the environment where the results were captured. By all
metrics, we observe a dramatic improvement in the I/O performance, as listed here:

� I/O connect time: more than 50% decrease, for three DB2 partitions

� Channel busy%: 30% decrease, for three DB2 partitions

� Throughput in MB/sec: 63% increase, for three DB2 partitions
Chapter 3. IBM System z10 EC 261

3.53 Cryptographic hardware features

Figure 3-54 Cryptographic hardware features

Cryptography
IBM has a long history of providing hardware cryptographic solutions, from the development
of Data Encryption Standard (DES) in the 1970s to delivering integrated cryptographic
hardware in a server to achieve the US Government's highest security rating FIPS 140-2
Level 4 for secure cryptographic hardware.

Today, e-business applications are increasingly relying on cryptographic techniques to
provide the confidentiality and authentication required in this environment. For example,
Secure Sockets Layer/Transport Layer Security (SSL/TLS) technology is a key technology for
conducting secure e-commerce using Web servers, and it is in use by a rapidly increasing
number of e-business applications, demanding new levels of security and performance.

z9 EC cryptographic features
Two types of hardware cryptographic features are available on the z10 EC:

� CP Assist Crypto Function (CPACF)

� Crypto Express 2

Note: The cryptographic features are usable only when explicitly enabled through IBM to
conform with US export requirements.

Crypto enablement feature (CPACF)

Crypto Express2

TKE workstation

TKE smart card reader
262 ABCs of z/OS System Programming Volume 10

All the hardware z10 EC cryptographic facilities are exploited by the z/OS component
Integrated Cryptographic Service Facility (ICSF) and the IBM Resource Access Control
Facility (RACF), or equivalent software products. They provide data privacy, data integrity,
cryptographic key installation and generation, electronic cryptographic key distribution, and
personal identification number (PIN) processing.

CP Assist Crypto Function (CPACF)
A microcode assist plus hardware component implemented in a co-processor (shared with
data compress function) within the PU chip in a MCM. Refer to “PU chip” on page 198.
CPACF provides high performance encryption and decryption support. It is a
hardware-synchronous implementation; that is, holding CPU processing of instruction flow
until the operation completes. Five instructions were introduced to invoke the CPACF:

KMAC Compute Message Authentic Code
KM Cipher Message
KMC Cipher message with chaining
KIMD Compute Intermediate Message Digest
KLMD Compute Last Message Digest

CPACF offers a set of symmetric (meaning that encryption and decryption use the same key)
cryptographic functions that enhance the encryption and decryption performance of clear key
operations or SSL, VPN, and data storing applications that do not require FIPS 140-2 level 4
security.

These functions are directly available to application programs, thereby diminishing
programming overhead. The CPACF complements, but does not execute, public key (PKA)
functions. Note that keys, when needed, are to be provided in clear form only. Clear key
means that the key used is located in central storage.

Crypto Express2
Each Crypto Express2 feature contains two PCI-X adapters. Each adapter can be configured
as a cryptographic co-processor (as the former PCICC) or accelerator (as the former PCICA).
During the feature installation, both PCI-X adapters are configured by default as
co-processors. The Crypto Express2 feature does not use CHPIDs from the channel
subsystem pool, but each feature is assigned two PCHIDs, one per PCI-X adapter. For more
information about this topic, refer to “Crypto Express2” on page 265.

TKE workstation
The TKE workstation is an IBM PCI bus-based personal computer. It is used to enter a
non-clear key (never stored in memory) into the Crypto Express2 hardware. You can use
smart cards as well.
Chapter 3. IBM System z10 EC 263

3.54 z10 EC crypto synchronous functions

Figure 3-55 Synchronous crypto functions in z10 EC

Cryptographic synchronous functions
Cryptographic synchronous functions are provided by CPACF. Synchronous means that the
function holds CP processing until the crypto operation has completed. Note that crypto keys,
when needed, are to be provided in clear form only, meaning that the key may be in central
storage.

The following algorithms are available:

� Data encryption and decryption algorithms

– Data Encryption Standard (DES)

• Double-length key DES
• Triple-length key DES (TDES)

– Advanced Encryption Standard (AES) for 128-bit, 192-bit, and 256-bit keys

� Hashing algorithms: SHA-1, SHA-256, SHA-384, and SHA-512

� Message authentication code (MAC):

– Single-key MAC
– Double-key MAC

� Pseudo Random Number Generation (PRNG) and Random Number Generation (RNG)
with 4096-bit RSA support

Data encryption/decryption algorithms

Data Encryption Standard (DES)

Double length-key DES

Triple length-key DES

Advanced Encryption Standard (AES) for 128-bit keys

Hashing algorithms: SHA-1 and SHA-256

Message authentication code (MAC):

Single-key MAC and

Double-key MAC

Pseudo random number generation (PRNG)
264 ABCs of z/OS System Programming Volume 10

3.55 Crypto Express2

Figure 3-56 Cryptographic Express2

Crypto Express2
The Crypto Express2 feature is an outboard co-processor. It is peripheral, being located in
the I/O cage in one I/O card. To make it simple, it looks like a channel coupled to a crypto
co-processor. All its processing is asynchronous because the CPU does not wait for the
crypto request completion. It provides a high-performance cryptographic environment with
added functions.

Each feature has two Peripheral Component Interconnect eXtended (PCI-X) cryptographic
adapters. Each PCI-X cryptographic adapter can be configured as a cryptographic
co-processor or a cryptographic accelerator.

PPCI-X cryptographic adapters, when configured as co-processors, are designed for FIPS
140-2 Level 4 compliance rating for secure cryptographic hardware modules. Note that
unauthorized removal of the adapter or feature zeroes its content.

The Crypto Express2 in z10 EC replaces PCIXCC and PCICA. The reconfiguration of the
PCI-X cryptographic adapter between co-processor and accelerator mode is exclusive to z10
EC and z9 servers, and is also supported for Crypto Express2 features brought forward from
z990 and z890 systems to the z9 and z10 EC.

� When the PCI-X cryptographic adapter is configured as a co-processor, the adapter
provides equivalent functions (plus some additional functions) to the PCICC card on
previous systems with a doubled throughput.

2.5V

PCI-X (64-bit, 133MHz)

3.3V

24V

Display &
RISCWatch
Connectors

1.8V

IFB-MP
Interface

500 MB/sec

Po
w

er

B
at

te
r y

B
at

t e
ry

PCIXCC
 Card

B
at t ery

PCIXCC
 Card

PCI-X
Bridge

PCI-X
Bridge

B
att er y
Chapter 3. IBM System z10 EC 265

� When the PCI-X cryptographic adapter is configured as an accelerator, it provides
PCICA-equivalent functions with an expected throughput of approximately three times the
PCICA throughput on previous systems.

The z10 EC supports up to eight Crypto Express2 features (up to sixteen PCI-X cryptographic
adapters) to be installed.

The security-relevant portion of the cryptographic functions is performed inside the secure
physical boundary of a tamper-resistant card. Master keys and other security-relevant
information is also maintained inside this secure boundary.

It does not use CHPIDs, but requires one slot in the I/O cage and one PCHID for each PCI-X
cryptographic adapter. The feature is attached to an IFB-MP (at 500 MB/sec) and has no
other external interfaces. Each PCI-X cryptographic adapter can be shared by any logical
partition defined in the system, up to a maximum of 16 logical partitions per PCI-X
cryptographic adapter.

The Crypto Express2 co-processor enables the user to:

� Encrypt and decrypt data utilizing secret-key (non-clear key) algorithms. Triple-length key
DES and double-length key DES algorithms are supported.

� Generate, install, and distribute cryptographic keys securely, using both public and secret
key cryptographic methods.

� Generate, verify, and translate personal identification numbers (PINs).

� Ensure the integrity of data by using message authentication codes (MACs), hashing
algorithms, and Rivest-Shamir-Adelman (RSA) public key algorithm (PKA) digital
signatures.

PR/SM and cryptography
PR/SM fully supports the Crypto Express2 feature co-processor to establish a logically
partitioned environment in which multiple LPs can use the cryptographic functions. There is
one master key per each LP. A 128-bit data-protection master key, and one 192-bit Public
Key Algorithm (PKA) master key are provided for each of 16 cryptographic domains that a
co-processor can serve. Each cryptographic coprocessor has 16 physical sets of registers or
queue registers, each set belonging to a domain, as follows:

� A cryptographic domain index, from 0 to 15, is allocated to a LP via the definition of the
partition in its image profile. The same domain must also be allocated to the ICSF instance
running in the LP via the Options Data Set.

� Each ICSF instance accesses only the Master Keys or queue registers corresponding to
the domain number specified in the LP image profile at the Support Element and in its
Options Data Set. Each ICSF instance is seeing a logical crypto coprocessor consisting of
the physical cryptographic engine and the unique set of registers (the domain) allocated to
this LP.

Note: While PCI-X cryptographic adapters have no CHPID type and are not identified as
external channels, all LPs in all CSSs have access to the co-processor (up to 16 LPs per
co-processor).

Note: Cryptographic co-processors are not tied to logical partition numbers or MIF IDs.
They are set up with PCI-X adapter numbers and domain indices that are defined in the
partition image profile. The customer can assign them to the partition and change or clear
them when needed.
266 ABCs of z/OS System Programming Volume 10

3.56 z10 EC crypto asynchronous functions

Figure 3-57 z10 EC crypto asynchronous functions

z10 EC crypto asynchronous functions
These functions are provided by the PCI-X cryptographic adapters.

The following secure key (not clear key) functions are provided as cryptographic
asynchronous functions. System internal messages are passed to the cryptographic
co-processors to initiate the operation, and messages are passed back from the
co-processors to signal completion of the operation.

� Data encryption and decryption algorithms

– Data Encryption Standard (DES)
– Double length-key DES
– Triple length- key DES

� DES key generation and distribution

� PIN generation, verification, and translation functions

� Pseudo random number generator (PRNG)

� Public Key Algorithm (PKA) Facility

– Importing RSA public-private key pairs in clear and encrypted forms

– Rivest-Shamir-Adelman (RSA)

• Key generation, up to 2048-bit
• Signature verification, up to 2048-bit
• Import and export of DES keys under an RSA key, up to 2048-bit

Data encryption/decryption algorithms

Data Encryption Standard (DES)

Double length-key DES

Triple length-key DES

DES key generation and distribution

PIN generation, verification and translation functions

Public Key Security Control (PKSC)

Public Key Algorithm (PKA) Facility
Chapter 3. IBM System z10 EC 267

– Public Key Encrypt (PKE)

Public Key Encrypt service is provided for assisting the SSL/TLS handshake. When
used with the Mod_Raised_to Power (MRP) function, it is also used to offload
compute-intensive portions of the Diffie-Hellman protocol onto the PCI-X cryptographic
adapter.

– Public Key Decrypt (PKD)

Public Key Decrypt supports a Zero-Pad option for clear RSA private keys. PKD is
used as an accelerator for raw RSA private operations such as those required by the
SSL/TLS handshake and digital signature generation. The Zero-Pad option is exploited
by Linux to allow use of PCI-X cryptographic adapter for improved performance of
digital signature generation.

– Derived Unique Key Per Transaction (DUKPT)

The service is provided to write applications that implement the DUKPT algorithms as
defined by the ANSI X9.24 standard. DUKPT provides additional security for
point-of-sale transactions that are standard in the retail industry. DUKPT algorithms
are supported on the Crypto Express2 feature co-processor for triple-DES with
double-length keys.

– Europay Mastercard Visa (EMV) 2000 standard

Applications may be written to comply with the EMV 2000 standard for financial
transactions between heterogeneous hardware and software. Support for EMV 2000
applies only to the Crypto Express2 feature co-processor of the z10 EC.

Other key functionalities of the Crypto Express2 feature serve to enhance the security of
public/private key encryption processing:

� Retained key support (RSA private keys generated and kept stored within the secure
hardware boundary)

� Support for 4753 Network Security Processor migration

� User-Defined Extensions (UDX) support, including:

– For Activate UDX requests:

• Establish Owner
• Relinquish Owner
• Emergency Burn of Segment
• Remote Burn of Segment

– Import UDX File function

– Reset UDX to IBM default function

– Query UDX Level function

UDX allows the user to add customized operations to a cryptographic co-processor.
User-Defined Extensions to the Common Cryptographic Architecture (CCA) support
customized operations that execute within the Crypto Express2 feature. UDX is supported via
an IBM, or approved third-party, service offering.
268 ABCs of z/OS System Programming Volume 10

3.57 Just-in-time capacity upgrades

Figure 3-58 Non-disruptive upgrades

Concurrent upgrades
The z9 EC allows non-disruptive (concurrent) upgrades, adding more capacity to the HW,
without an outage in the delivered service.

Given today's business environment, benefits of the concurrent capacity growth capabilities
provided by z9 EC servers are plentiful, and include:

� Enabling exploitation of new business opportunities
� Supporting the growth of e-business environments
� Managing the risk of volatile, high growth, high volume applications
� Supporting 24x365 application availability
� Enabling capacity growth during “lock down” periods

This capability is based on the flexibility of the z9 EC system design and structure, which
allows configuration control by the Licensed Internal Code (LIC) and concurrent hardware
installation.

Licensed Internal Code (LIC)-based upgrades
LIC-Configuration Control (LIC-CC) provides for server upgrade with no hardware changes
by enabling the activation of additional previously installed capacity. Concurrent upgrades via
LIC-CC can be done for:

� Processing units (CPs, IFLs, and ICFs) - require available spare PUs on installed books
� Memory - requires available capacity on installed memory cards

Data encryption/decryption algorithms

Data encryption standard (DES)

Double length-key DES

Triple length-key DES

DES key generation and distribution

PIN generation, verification and translation functions

Public Key Security Control (PKSC)

Public Key Algorithm (PKA) Facility
Chapter 3. IBM System z10 EC 269

� I/O card ports (ESCON channels and ISC-3 links) - requires available ports on installed
I/O cards

Hardware installation configuration upgrades can also be concurrent by installing additional:

� Books (which contain PUs, memory, and STIs) - require available book slots in the
installed server cage

� I/O cards - requires available slots on installed I/O cages; I/O cages cannot be installed
concurrently

Planned upgrades
Following is a list of the planned upgrades:

� Capacity Upgrade on Demand (CUoD) is planned and permanent capacity growth.

CUoD applies for PUs (CPs, ICFs, IFLs), memory and I/O ports. CUoD does not require
any special contract, but requires IBM service personnel for the upgrade. In most cases, a
very short period of time is required for the IBM personnel to install the LIC-CC and
complete the upgrade.

To better exploit the CUoD function, an initial configuration should be carefully planned to
allow a concurrent upgrade up to a target configuration. You need to consider planning,
positioning, and other issues to allow a CUoD no- disruptive upgrade. By planning ahead,
it is possible to enable non-disruptive capacity and I/O growth for the z9 EC, without
system power-down and no associated POR or IPLs.

� Customer Initiated Upgrade (CIU) is the capability for the z9 EC user to initiate a planned
and permanent upgrade for CPs, ICFs, IFLs and/or memory via the Web, using IBM
Resource Link.

CIU is similar to CUoD, but the capacity growth can be added by the customer. The
customer also has the ability to un-assign previously purchased CPs and IFLs. However,
CPs or IFLs un-assignment is a disruptive task. The customer will then be able to
download and apply the upgrade using functions on the HMC via the Remote Support
Facility, without requiring the assistance of IBM service personnel.

After all the prerequisites are in place, the whole process, from ordering to activation of the
upgrade, is performed by the customer. The actual upgrade process is fully automated
and does not require any on site presence of IBM service personnel.

CIU supports LIC-CC upgrades only, and does not support I/O upgrades. All additional
capacity required by a CIU upgrade must be previously installed. This means that
additional books and/or I/O cards cannot be installed via CIU. CIU may change the
server’s software model (7XX) but cannot change the z9 EC server model.

Before customers are able to use the CIU function, they have to be registered. After they
are registered, customers gain access to the CIU application by ordering the CIU
Registration feature from their salesperson.

� On/Off Capacity on Demand (On/Off CoD) is the ability for the user to temporarily turn on
unowned CPs available within the current server.

On/Off CoD uses the Customer Initiated Upgrade (CIU) process to request the upgrade
via the Web, using IBM Resource Link. (Note that this capability is mutually exclusive with
Capacity BackUp (CBU), because both use the same record type.)

The only resources eligible for temporary use are CPs. Temporary use of IFLs, ICFs,
memory, and I/O ports is not supported. Spare PUs that are currently unassigned and
unowned can be temporarily and concurrently activated as CPs via LIC-CC, up to the
limits of the physical server size.
270 ABCs of z/OS System Programming Volume 10

This means that an On/Off CoD upgrade cannot change the z9 EC server model, as
additional book(s) installation is not supported. However, On/Off CoD changes the
server’s software number (7XX).

Unplanned upgrades
There is one unplanned upgrade.

� Capacity BackUp (CBU) is offered to provide reserved emergency backup capacity for
unplanned situations where customers have lost capacity in another part of their
establishment, and want to recover by adding the reserved capacity on a designated z9
EC server.

CBU is the quick, temporary activation of central processors (CPs) in the face of a loss of
customer processing capacity due to an emergency or disaster/recovery situation.

CBU can only add CPs to an existing z9 EC servers CPs can assume any kind of
workload that could be running on IFLs and ICF PUs at the failed system or systems.
z/VM, Linux and CFCC (for Coupling Facility partitions) can also run on CPs.

� Capacity for Planned Events (CPE) plan is offered with the z10 EC to provide replacement
backup capacity for planned downtime events. For example, if a customer needs to
perform extension or repair work in a server room, replacement capacity can be installed
temporarily on another z10 EC in the customer’s environment CPE.

CPE is intended to replace capacity lost within the enterprise due to a planned event such
as a facility upgrade or system relocation. CPE is intended for short duration events
lasting up to a maximum of three days. Each CPE record, after it is activated, gives the
customer access to all dormant PUs on the server. Processing units can be configured in
any combination of CP or specialty engine types (zIIP, zAAP, SAP, IFL, ICF). The
capacity needed for a given situation is determined by the customer at the time of CPE
activation.

The processors that can be activated by CPE come from the available spare PUs on any
installed book. CPE features can be added to an existing z10 EC non-disruptively. There
is a one-time fixed fee for each individual CPE event. The base server configuration must
have sufficient memory and channels to accommodate the potential needs of the large
CPE-configured server. It is important to ensure that all required functions and resources
are available on the server where CPE is activated, including CF LEVELs for Coupling
Facility partitions, memory, and cryptographic functions, as well as connectivity
capabilities.

Note: CBU is for disaster/recovery purposes only, and cannot be used for peak load
management of customer workload.
Chapter 3. IBM System z10 EC 271

3.58 Capacity provisioning

Figure 3-59 z/OS Capacity provisioning

z/OS Capacity provisioning
z/OS Workload Manager (WLM) manages the workload by goals and business importance
(as defined by an installation WLM policy) on each z/OS system in a Parallel Sysplex. WLM
metrics (as resource delays and performance index) are available through existing interfaces
and are reported through RMF Monitor III, with one RMF gatherer per z/OS system.

Prior to z/OS 1.9, WLM controls, through the IRD feature, the distribution of physical CPUs
among the z/OS systems contained in an LPAR cluster. This task was executed by the
following WLM functions:

� WLM Vary Logical CPU Management, where the number of logical CPUs in a LP is
dynamically controlled by WLM

� WLM Vary Weight Management, where depending whether goals are being achieved or
not, the LP weights are dynamically modified taking CPU resource from an LP and
delivering to other in the same server.

With the z10 EC provisioning capability combined with the Capacity Provisioning
Management CPM component in z/OS, it is possible in a new, flexible and automated
process to control the activation of On/Off Capacity on Demand.

Also, previously WLM was only able to take CPU from an LP and give to other LP to decrease
the CPU delays causing important unhappy transactions. Now the CPM (WLM is included in
this function) is able to activate spare CPUs through On/Off Capacity on Demand to fix the
situation.
272 ABCs of z/OS System Programming Volume 10

The z/OS provisioning environment is shown in Figure 3-59 on page 272, along with all of its
components.

It works like this:

� RMF has a distributed data server (DDS) facility where all data captured by all RMFs in a
sysplex can be sent to a RMF focal point.

� The RMF Common Interface Module (CIM) providers and associated CIM models publish
the RMF Monitor III data.

CIM is a standard data model developed by a consortium of major HW/SW vendors
(including IBM) known as the Distributed Management Task Force (DMTF). It is a part of
the Web Based Enterprise Management (WBEM) initiative. It includes a set of standards
and technologies that provide management solutions for distributed network environment.
CIM creates an interface (API) where applications for example can ask system
management questions such as, how many jobs are running in the system? This query
must be converted to an API known by the running operating system. In z/OS, CIM is
implemented through the Common Event Adapter (CEA) address space.

� Then the Capacity Provisioning Manager (CPM), a function inside z/OS, retrieves critical
metrics from one or more z/OS systems through the Common Information Model (CIM)
structures and protocol. Depending on such metrics, CPM communicates to (local or
remote) support elements and HMCs, respectively, via the SNMP protocol to access
On/Off Capacity on Demand. The control over the Provisioning Infrastructure is executed
by the CPM through Capacity Provisioning Policy (CPP) that controls the Capacity
Provisioning Domain (CPD).

� Capacity Provisioning Policy (CPP) is created and managed by the Capacity Provisioning
Control Center (CPCC), which resides on a workstation providing a system programmer
front-end to administer such policies. CPCC is a Graphical User Interface (GUI)
component.These policies are not the ones managed by WLM and kept in the WLM
couple data set. The CPCC is not required for regular CPM operation.

� Refer to “Capacity Provisioning Domain” on page 274 for more information about CPD.
Chapter 3. IBM System z10 EC 273

3.59 Capacity Provisioning Domain

Figure 3-60 Capacity Provisioning Domain

Capacity Provisioning Domain
Capacity Provisioning Domain (CPD) represents the set of servers that are controlled by
CPM, the Capacity Provisioning Manager. The HMCs of the CPCs within a CPD must be
connected to the same processor LAN. Parallel Sysplex members can be part of a CPD.
There is no requirement that all z/OS members of a Parallel Sysplex must be part of the CPD,
but participating z/OS members must all be part of the same CPD.

Administrators work through the CPCC interface to define domain configurations and
provisioning policies, but is not needed during production. The CPCC is installed on a
Microsoft Windows® workstation.

CPM operates in four different modes allowing for different levels of automation:

� Manual mode

– Command driven mode - no CPM policy active

� Analysis mode

– CPM processes capacity provisioning policies and informs the operator when a
provisioning or deprovisioning action would be required according to policy criteria.

– It is up to the operator whether to ignore the information or to manually
upgrade/downgrade the system using either the HMC, the SE, or available CPM
commands.
274 ABCs of z/OS System Programming Volume 10

� Confirmation mode

– CPM processes capacity provisioning policies and interrogates the installed temporary
offering records. Every action proposed by the CPM needs to be confirmed by the
operator.

� Autonomic mode

– This mode is similar to the confirmation mode, but no operator confirmation is needed.

The provisioning policy defines the circumstances under which additional capacity may be
provisioned. There are three elements in the criteria:

� When provisioning is allowed (time condition):

– Start time - indicates when provisioning can begin

– Deadline - provisioning of additional capacity no longer allowed

– End time - deactivation of additional capacity should begin.

� Which work qualifies for provisioning, parameters include (workload condition):

– The z/OS systems that may execute eligible work

– Importance filter - eligible service class periods, identified by WLM importance

– Performance Indicator (PI) criteria:

• Activation threshold - PI of service class periods must exceed the activation
threshold for a specified duration before the work is considered to be suffering

• Deactivation threshold - PI of service class periods must fall below the deactivation
threshold for a specified duration before the work is considered to no longer be
suffering

– Included Service Classes - eligible service class periods

– Excluded Service Classes - service class periods that should not be considered

� How much additional capacity may be activated expressed in MSU (provisioning scope).
Specified in MSUs, number of zAAPs, and number of zIIPs; one specification per CPC
that is part of the Capacity Provisioning Domain.
Chapter 3. IBM System z10 EC 275

3.60 z10 EC new features

Figure 3-61 List of z10 new features

z10 EC new features
Figure 3-61shows the most important hardware and LIC features announced with the z10 EC
servers. With a few exceptions, these features are covered in this chapter.

HiperSockets Multiple Write Facility
For increased performance, HiperSockets performance has been enhanced to allow for the
streaming of bulk data over a HiperSockets link between logical partitions (LPs). The
receiving LP can now process a much larger amount of data per I/O interrupt.

This enhancement is transparent to the operating system in the receiving LPAR.
HiperSockets Multiple Write Facility is designed to reduce CPU utilization of the sending
LPAR. HiperSockets Multiple Write Facility on the z10 EC requires at a minimum z/OS 1.9
with PTFs.

HiperDispatch

Large page (1 M)

HSA of 16 GB

More than 200 new instructions

Hardware Decimal Floating-point Unit (HDFU)

L1.5 cache

InfiniBand links communication (included for STP)

FICON long distance

OSA-Express3 10 GbE (2Q08)

Capacity provisoning

Capacity for Planned Events (CPE) capacity upgrade

Enhanced CPACF SHA 512, AES 192 and 256-bit keys

Standard ETR Attachment

Program Directed re-IPL

HiperSockets Multiple Write Facility
276 ABCs of z/OS System Programming Volume 10

Chapter 4. System z connectivity

This chapter discusses the connectivity options available to connect the System z servers
with I/O control units, other System z servers and the network (LAN and WAN). It also
highlights the hardware and software components involved in such connectivity.

Officially the System z family of servers encompasses the z9 EC model, z9 BC model, and
the zSeries models.

Input/Output (I/O) channels are components of the Channel Subsystems (CSS). They provide
a pipeline through which data is exchanged between servers, or between a server’s external
devices usually managed by I/O control units.

The most common attachment to a channel is a control unit (CU) accessed via an Enterprise
Systems Connection (ESCON) or Fibre Connection (FICON) channel. The control unit
controls I/O devices such as disk and tape drives.

Server-to-server communications are most commonly implemented using InterSystem
Channels (ISC), Integrated Cluster Bus (ICB) channels, and channel-to-channel (CTC/FCTC)
connections. Internal Coupling (IC) channel, as well as HiperSockets and channel-to-channel
connections can be used for communications within a server (between logical partitions).

The Open System Adapter (OSA) provides direct, industry standard LAN and ATM network
connectivity and communications in a multivendor networking infrastructure.

This chapter contains the following:

� Connectivity highlights

� Channel subsystem concepts

� Channel type descriptions

4

© Copyright IBM Corp. 2008. All rights reserved. 277

4.1 Connectivity overview

Figure 4-1 Connectivity overview

I/O channels
A channel (333 MHz in the z9 EC) is in charge of a dialog with the I/O controller. The reason
for this dialog is the execution of an I/O operation. A channel is composed of circuitries and
buffers located in a card plugged in the z9 EC I/O Cage, plus one adapter.

Channels can only use one type of protocol to “speak” to the controller. The major channel
protocols in the z9 EC are: Enterprise Systems Connection (ESCON), Fibre Connection
(FICON) Express 2 and Fibre Channel Protocol (FCP).

Adapters can only be connected to links using Fiber Optic Technology. The FCP channel is
not supported by z/OS and is used by the Linux operating system running in a z9 EC model
server.

Channel connections
Channels are components of the System z Channel Subsystems (CSS). In a sense, they
provide a pipeline through which data is exchanged between servers, or between a server
and external devices including a network.

Channels connect in the following ways:

� Server-to-external I/O control unit (CU) such as disk and tape drives, accessed via an
ESCON or FICON Express or FCP channel.

Ethernet
Token-Ring
Fast Ethernet
155 ATM
Gigabit Ethernet
Coupling Facility
HyperSockets

ESCON
FICON

Multiple Rooms/Floors/Bldgs.

Tape

Printers

DASD

Hub

ControllerESCON
FICON

DASD
Farm

Tape
Vault

FICON
Director
(switch)

WANWAN

LAN

Router

Switch

37xx,Cisco,3174
278 ABCs of z/OS System Programming Volume 10

� Server-to-integrated built-in control units, such as:

– Open System Adapter (OSA) Express2 provides direct, industry standard LAN and
WAN network connectivity/communications in a multivendor networking infrastructure

– Crypto Express2 provides outboard cryptography; refer to “Cryptographic hardware
features” on page 163 for more information.

� Server-to-server, such as:

– z/OS-to-Coupling Facility (or Coupling Facility-to-Coupling Facility):

• Inter System (ISC) channels - external

• Integrated Cluster Bus (ICB) channels - external up to 7 meters

• Internal Coupling (IC) channels - internal

– Operating system-to-operating system:

• Among z/OSs: Channel-to-channel (CTC/FCTC) channels - external

• Among Linux and z/OSs and z/VMs: HiperSockets - internal

– Sysplex Timer (ETR)-to-server. Refer to ABCs of z/OS System Programming Volume 5
for more information about ETR links.
Chapter 4. System z connectivity 279

4.2 Multiple Image Facility channels

Figure 4-2 Multiple Image Facility (MIF)

I/O sharing
I/O sharing was already possible in a pre-EMIF ESCON environment, where multiple MVSs
could share control units, devices, and common links through ESCON Directors or even by
local attachments in the controllers. Channel assignment, however, was more static in
relation to logical partitions (LPs). Channels could only be defined as reconfigurable, enabling
them to be removed manually from one LP and attached to another. They were dedicated to
one LP at a particular instant (no concurrency), and could not be shared by other LPs.

Multiple Image Facility
The Multiple Image Facility (MIF) enables channel resources to be shared across LPs, within
a single channel subsystem (CSS), or across multiple CSSs (if spanned channels). Channels
receive the order for executing I/O operations from the z/OSs running in LPs (through an
SSCH instruction), flip-flopping from one z/OS to the other. A dedicated channel only serves
one LP. A shared channel may serve several LPs, where one I/O is for LP1 and the next I/O
may be for LP2. The following channel types can be used for MIF IDs:

� ESCON

� FICON

� OSA-Express

� Coupling Facility links

M I F

LP 1 LP 2 LP 3

DASD CU

Devices

DASD CU

Devices

MIFPre-MIF

Physical
ESCON or
 FICON
 Links

LP 1 LP 2 LP 3 LP 1 LP 2 LP 3
280 ABCs of z/OS System Programming Volume 10

z9 EC and z990 CSS and MIF channels
The structure of multiple CSSs is an extension to the z/Architecture servers. It provides
channel connectivity (up to 256 channels per LP) to the LPs in a manner that is transparent to
programs. The multiple CSS structure introduces new components and terminology that
differs from previous server generations.

Note the following HCD considerations:

� No LPs can be added until at least one CSS has been defined.

� LPs are now defined to a CSS, not to a server.

� An LP is associated with one CSS only.
� CHPID numbers are unique within an CSS; however, the same CHPID number can be

reused within all CSSs.

Sharing a channel across LPs in multiple CSSs is known as “spanning;” it was introduced
with the z990 server and is supported in the z9 EC server.

Dynamic addition or deletion of a logical partition name
On the z10 EC, all undefined logical partitions are reserved partitions. They are automatically
predefined in the HSA with a name placeholder and a MIF ID. This means that any logical
partition can be added or deleted dynamically, without performing a power-on Reset (POR).
Chapter 4. System z connectivity 281

4.3 Channel subsystem connectivity

Figure 4-3 Channel subsystem

Multiple channel subsystem (CSS)
The concept of channel subsystem (CSS) was introduced in z990 servers, and it is available
in the z9 EC. The z9 EC supports up to four channel subsystems (and 60 LPs), hence the
term “multiple channel subsystem.” The design of the z9 EC offers a considerable increase in
processing power, memory size, and I/O connectivity. In support of the larger I/O capability,
the channel subsystem has been scaled up correspondingly and the CSS concept facilitates
the architectural change that provides more logical partitions and channels than before.

Table 4-1 lists the number of LPs and CHPIDs supported.

Table 4-1 Logical partitions and CHPID numbers support

Figure 4-3 illustrates a number of important points for I/O connectivity:

� Two CSSs are shown; however, the z9 EC allows four CSSs.

Date CSS
supported

Number of
active LPs

Number of
defined LPs

Number of server
CHPIDs supported

z990 - 06/ 2003 CSS 0, 1 15 30 512

z990 - 10 2003 CSS 0, 1 30 30 512

z9 EC CSS 0, 1, 2, 3 60 60 1024

Disk
LCUs

5

LP16LP2 LP3 LP14 LP15LP1

2 3531

SS 0

81 90 918081 90 9180

151 1E1 1F1141150 1E0 1F0140

CSS

LPAR name

PCHID

MIF ID

CHPID

Disk
LCUs

Directors

Control Units
and Devices

6261

LPAR ID 1503 05 12 1301

CSS 0 CSS 1

z10 EC

MSS SS 1 SS 0 SS 1
282 ABCs of z/OS System Programming Volume 10

� An LP is associated with a specific CSS. Also note that LPs have unique names across
the complete system. LPAR naming and numbering has become somewhat more
complex, as discussed in “LP IDs, MIF IDs and spanning concepts” on page 138.

� Multiple LPs (up to 15) may be associated with an CSS.

� A CHPID is associated with a specific CSS. CHPID numbers are unique within that CSS,
but may be reused in other CSSs. (For example, there is a CHPID 80 in both CSSs.)

Note that CHPID numbers are arbitrarily selected. For example, we could change
CHPID 80 (in either or both CSSs in the illustration) to C3 simply by changing a value in
the IOCDS.

� A CHPID is associated with a PCHID, and PCHID numbers are unique across the server.

� Different channels on a single I/O adapter can be used by different LPs. As shown in
Figure 4-3 on page 282, PCHID 0140 is the first channel on the adapter in I/O cage 1,
slot 6. PCHID 0141 is the second channel on the same adapter.

Figure 4-3 on page 282 also illustrates the relationship between LPs, CSSs, CHPIDs, and
PCHIDs. The figure includes the I/O devices and switches used in an lIOCP example; refer to
2.26, “IOCP statements example” on page 145 for more information about this topic.

Multiple subchannel sets (MSSs)
Multiple subchannel sets (MSSs) provide relief for I/O device configurations in large System
z10 and System z9 environments. MSS are supported by ESCON, FICON, and z/OS, and
allow for increased device connectivity for Parallel Access Volumes (PAVs).

Because the IBM System Storage™ DS8000 and DS6000™ series and the System z10 and
System z9 support PAVs, there is symmetry between the server and the storage subsystem.
A pragmatic implementation approach can be used for the adoption of MSS in a System z
environment.

MSS functionality should not be confused with multiple channel subsystems. In most cases, a
subchannel represents an addressable device. A disk control unit with 30 drives uses 30
subchannels (for base addresses), and so forth. An addressable device is associated with a
device number and the device number is commonly (but incorrectly) known as the device
address.

Subchannel numbers (including their implied path information to a device) are limited to four
hexadecimal digits by architecture. Four hexadecimal digits provide 64 K addresses, known
as a set. IBM has reserved 256 subchannels, leaving more than 63 K subchannels for
general use.
Chapter 4. System z connectivity 283

4.4 CSS configuration management

Figure 4-4 CSS configuration management

CSS configuration management
The SAP PU schedules the I/O request towards a configured channel, and then the channel
to the control unit and device. The I/O Configuration Data Set (IOCDS) defines the channels,
control units, and devices to the designated logical partitions (LPs) within the CSS, within the
server. All this is defined using the Input/Output Configuration Program (IOCP).

The IOCP statements are typically built using the Hardware Configuration Dialog (HCD). This
interactive dialog is used to generate the Input/Output Definition File (IODF), invoke the IOCP
program, and subsequently build your Input/Output Configuration Dataset (IOCDS). The
IOCDS is loaded into the Hardware System Area (HSA) and initialized during Power-on
Reset. On a System z, the HSA allocation is controlled via the maximum number of possible
devices, as declared in HCD/IOCP. Refer to 6.4, “Hardware and software configuration” on
page 375, for more information.

In System z servers, the channel path identifiers are mapped to Physical Channel Identifiers
(PCHID) via the configuration build process. Refer to 2.23, “Physical channel ID (PCHID)” on
page 140 for more information.

The following tools are provided to maintain and optimize the I/O configuration of your z9 EC.

Hardware Configuration Definition (HCD)
HCD supplies an interactive dialog to generate your I/O definition file (IODF) and
subsequently your Input/Output Configuration Dataset (IOCDS). It is strongly recommended

Tools that maintain and optimize the I/O configuration of
System z processors:

Hardware configuration definition (HCD)

IBM configuration for e-business (eConfig)

Hardware Configuration Manager (HCM)

IBM System z CHPID Mapping Tool (CMT)
284 ABCs of z/OS System Programming Volume 10

that you use HCD to generate your IODF, as opposed to writing your own IOCP statements.
The validation checking that HCD performs as you enter data helps eliminate errors before
you implement your I/O configuration. Refer to 6.1, “What is HCD” on page 370 for more
information about this topic.

IBM Configurator for e-business (eConfig)
This tool is used by your IBM representative. It is used to configure new server features, or to
maintain features on your existing servers.

Hardware Configuration Manager (HCM)
The Hardware Configuration Manager (HCM) is a product that uses a graphical interface to
create a bridge between your installation and HCD.

System z CHPID Mapping Tool (CMT)
The System z CMT provides a mechanism for customizing the CHPID assignments for a
System z server. The purpose is to avoid connecting critical paths to single points of failure.
Additional enhancements have been built into the CMT to help with the new requirements of
the System z server. Refer to 2.27, “Configuration definition process” on page 146 for more
information about this topic.
Chapter 4. System z connectivity 285

4.5 Displaying channel types

Figure 4-5 Display CHPID Matrix command to display channel types

Displaying channel types
Figure 4-5 shows the D M=CHP command output. The symbol explanations shown on the
right side of the figure follow the information shown on the left on the operator console.

This z/OS operator command provides information about the status and type of channels.
There are two parts to the display:

1. The first section displays the channel path status. The channel path status is relative to the
z/OS where the command is issued. That is, a CHPID may be displayed as being offline,
but if this CHPID is shared (MIF) by other logical partitions, it may not be offline physically.

2. The second section displays the channel path type. Note that where the first section only
displays the status of channels available to the z/OS image, the second section provides
information about all channels installed on the server.

Channel path types
The channel subsystem may contain more than one channel type. Examples of channel path
types used by the channel subsystem are ESCON, FICON Express, FICON bridge and FCP.
The term “serial-I/O interface” is used to refer to the ESCON I/O interface, the FICON I/O
interface, and the FICON-converted I/O interface.

 ISF031I CONSOLE KHEWITT ACTIVATED
-D M=CHP
 IEE174I 10.40.41 DISPLAY M 628
 CHANNEL PATH STATUS
 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0 + + . . + . . .
 1 + + + + + + + + +
 8 + + + + + + + +
 9 + . . + + + - - + . . .
 A + + . . + + + +
 B + + + + + + + +
 D + + + +
 E + . . . + + + + + + + +

 ************** SYMBOL EXPLANATIONS **************
 + ONLINE @ PATH NOT VALIDATED - OFFLINE .
DOES NOT EXIST
 CHANNEL PATH TYPE STATUS
 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0 00 00 00 00 00 00 00 00 0B 0B 00 00 12 00 00 00
 1 05 05 09 04 05 05 04 04 12 00 00 00 00 00 00 00
 8 12 00 00 00 05 05 04 04 05 05 05 04 00 00 00 00
 9 05 05 05 04 01 01 01 00 09 05 04 04 12 00 00 00
 A 01 01 01 00 0B 0B 00 00 05 09 04 04 00 00 00 00
 B 05 05 05 04 12 00 00 00 05 05 04 04 01 01 01 00
 D 00 00 00 00 00 00 00 00 12 00 00 00 05 05 04 04
 E 12 00 00 00 05 05 05 04 09 05 04 04 01 01 01 00

************* SYMBOL EXPLANATIONS**********
00 UNKNOWN
01 PARALLEL BLOCK MULTIPLEX
02 PARALLEL BYTE MULTIPLEX
03 ESCON POINT TO POINT
04 ESCON SWITCH OR POINT TO POINT
05 ESCON SWITCHED POINT TO POINT
06 ESCON PATH TO A BLOCK CONVERTER
07 NATIVE INTERFACE
08 CTC POINT TO POINT
09 CTC SWITCHED POINT TO POINT
0A CTC SWITCHED OR POINT TO POINT
0B COUPLING FACILITY SENDER
0C COUPLING FACILITY RECEIVER
0D UNKNOWN
0E UNKNOWN
0F ESCON PATH TO A BYTE CONVERTER
10 RESERVED
 11 RESERVED
 12 OPEN SYSTEMS ADAPTER
 13 INTERNAL SYSTEM DEVICE
 14 RESERVED
 15 RESERVED
 16 CLUSTER BUS SENDER
 17 CLUSTER BUS RECEIVER
 18 INTERNAL COUPLING SENDER
 19 INTERNAL COUPLING RECEIVER
 NA INFORMATION NOT AVAILABLE

Channel type CHPID 9C = OSA

Display CHPID Matrix
286 ABCs of z/OS System Programming Volume 10

4.6 ESCON architecture

Figure 4-6 ESCON architecture

Fiber optic
ESCON channels have a channel-to-control-unit I/O interface that uses optical cables as a
transmission medium. Optical technology is less susceptible to errors caused by electrical
noise. Optics also have very low radiation properties, which make them more secure than
electrical cables. The fiber optic cable is physically a pair of optical fibers that provide two
dedicated, unidirectional serial-bit transmission lines. Information in a single optical fiber
always flows in the same direction. Thus, one optical fiber is used to receive data, while the
other is used to transmit data.

ESCON provides bidirectional (not concurrent) serial-bit transmission, in which the
communication protocol is implemented through sequences of special characters and
through formatted and architected defined sets of characters. A sequence is a set of
characters in a predefined order used to signal specific states or transition to states, such as
a port entering offline state. The ESCON I/O interface defines two types of frames, one to
control the link and associated elements, and another to control device operation. Each frame
contains addressing information that uniquely identifies the sender and the receiver.

An ESCON channel is composed of two parts:

� ESCON channel itself - a type of channel that uses an optical fiber communication link
between channels and control units and is in the I/O card in the I/O cage

� ESCON port - a connector in the same I/O card

Fiber optic

Point-to-point topology

Communicates from the

CECs to peripherals

Supports multiple path connections to

peripherals

Provides CTC processor-to-processor

communication

Provides routing information

Detects media connection and disruption

Identifies and verifies paths

MIF MIF

9032

CU

CECs

CU CU CU CU CU CU CU

Fiber optic

Point-to-point topology

Communicates from the

CECs to peripherals

Supports multiple path connections to

peripherals

Provides CTC processor-to-processor

communication

Provides routing information

Detects media connection and disruption

Identifies and verifies paths
Chapter 4. System z connectivity 287

ESCON Directors (ESCDs) add dynamic switching capability for ESCON channels, further
increasing connectivity and device sharing.

Point-to point topology
ESCON is essentially a point-to-point (or one channel-to-one control unit) topology that
establishes a serial protocol and media specification for the communication among channels
and control units. The ESCON channel implementation uses fiber optic technology, which is
ideally suited for high speed operation over long distances.

Communication from servers
ESCON I/O and the interconnect technologies become very important in a sysplex to speed
access to shared data on disk or tape, enhancing communication among systems. In
addition, these technologies offer improved availability.

Multiple path connections
The switching capabilities allow multiple connections between channels and control units
(using switches) without requiring static (dedicated) physical connections. The point-to-point
connections allow physical changes to the I/O configuration concurrently with normal
operations on other ESCON paths. Both topologies are implemented by defining an ESCON
channel as CNC.

ESCON CTC support
ESCON offers an effective and price-competitive replacement for previous
channel-to-channel hardware. With ESCON channels, a user can communicate at channel
speed between servers without requiring extra hardware. The ESCON channel-to-channel
(CTC) is an IOCP configuration option of an ESCON-capable server. The CTC option is
specified in the IOCP configuration, which results in the CTC LIC being loaded into the
ESCON channel hardware at power-on Reset (POR).

ESCON routing information
With point-to-point topology, the only way of reaching several control units is through routing
data using dynamic switches. The ESCON Director, under frame content control, routes
transmission streams from one port to any other port in the same ESCON Director, and
provides data and command exchange for multiple channels and control units.

ESCON disruption detection
With ESCON disruption detection, if one of the activated switch ports fails, the system
performs a call home to inform IBM. An IBM Service Representative will initiate the repair by
selecting the “Perform a Repair Action” icon at the Service task panel on the SE. This will
start the Repair & Verify procedure.

Identifies and verifies paths
Data is routed to control units using dynamic switches known as 9032 ESCON Directors
(ESCD). These directors can be used to connect multiple channels to the same control unit,
or multiple control units to the same channel. Also, they allow you to connect channels to
other channels (CTCs), and control units to other control units. ESCDs allow longer distances
and high flexibility in an I/O reconfiguration, mainly in a failure recovery situation.

The directors can be controlled and managed from host-based programs such as Auto
Operator and HCD. z/OS, when communicating with the ESCDs (when changing ports state,
for example), uses a specific device number (known as a CUP) and a specific unit address
assigned in the ESCD.
288 ABCs of z/OS System Programming Volume 10

EMIF
ESCON Multiple Image Facility (EMIF) allows the same physical channel to be shared among
multiple images from an LPAR. Today this feature is known as just MIF, to be used for
ESCON and FICON channels.
Chapter 4. System z connectivity 289

4.7 ESCON concepts

Figure 4-7 ESCON concepts

ESCON concepts
ESCON and the z/Architecture introduce extensions to the device addressing scheme
described previously. However, most of the changes are transparent to the application
program. Figure 4-7 shows the ESCON device path structure. The daisy-chained parallel
channel connecting to two different control units is shown for comparison. Remember that the
old parallel channels are not supported in the System z family of servers.

ESCON link
An ESCON channel may connect either directly to an ESCON-capable control unit (which is
known as a point-to-point connection), or connect to an ESCON-capable control unit through
an ESCON Director (known as a switched connection). Information in a single optical fiber
flows, bit by bit, always in the same direction. The ESCON link data rate is 20 MB/sec. At any
link interface, one optical fiber of the pair is used to receive data. The other optical fiber of the
pair is used to transmit data. The link is used to attach and interconnect other elements of the
ESCON I/O interfaces.

The ESCON environment provides increased connectivity by providing for each ESCON
channel to connect to up to 256 links. Each link (port) may attach to a control unit. Figure 4-7
shows one ESCON channel connecting to two different ESCON links, and therefore two
different physical control units. One of them is a CTC (connected to another server), and the
other refers to a control unit with different control unit images.

channel

ESCON
point-to-point

ESCON

link ESCON link

ESCON link

Destination
Link Addr

Control
unit

images

Channel
Subsystem

CTC

3A

01

DA=C3

Frame

Daisy-chained parallel

2AFrom: 2A 03
To: 3A 01

DA: C3
290 ABCs of z/OS System Programming Volume 10

Link address
The link address is a two-digit hex number, in the range 01-to-FE, which identifies the sender
and the receiver during the communication between an ESCON channel and its control units
through 1 KB frames. In other words, link addresses are used in the ESCON frame to identify
both destination and source link addresses. Link addresses 00 and FF are reserved by
hardware.

A link connects to an ESCON Director through a port. Each port in a ESCD has a port
number from 01 to FF.

The link address (when the channel is connected to a ESCD) corresponds to the ESCON
Director port number where the ESCON link attaches. If the channel is not connected to an
ESCD port, then the link address is FE.

Here is an example. A channel (sender) is starting a conversation with a control unit
(receiver), sending an ESCON frame through an ESCD. The receiver address is made up of
the following elements:

� A link address associated with the ESCD port number of the control unit (passed by the
installation in HCD). This information is used by the ESCD to route a frame originating in
the channel port to the appropriate link port where the physical control unit is connected.
The link address value is shown as 3A in Figure 4-7 on page 290.

� A control unit image (CUADD value). Some physical control units that support single-path
devices, such as the ESCON-capable DS8000 family, allow concurrent connections to
multiple hosts through the same physical interface, or control unit adapter. This support is
provided through the use of different Control Unit Images (CUI) or logical control units.

As with the link address, the CUI, also known as the control unit address (CUADD), forms
part of the device selection scheme in an ESCON environment. The control unit image
value is shown as 01 in Figure 4-7 on page 290.

� A device unit address. The device address is shown as C3 in Figure 4-7 on page 290.

The sender (or source) address indicates the following:

� A channel link address (port number in the ESCD). This information is not provided by the
HCD; instead, the channel obtains this value from the ESCD at initialization. This is shown
as 2A in Figure 4-7 on page 290.

� An LP MIF ID to allow the implementation of MIF, shown as 03 in Figure 4-7 on page 290.

When responding to the channel, the control unit swaps the receiver address and the sender
address in the new frame.

There are no MVS commands to display the ESCON components of a path to a device. Only
Auto Operator (which has the functions of the ESCON Manager product) commands can
display the link addresses used by channels supporting the paths to a device.
Chapter 4. System z connectivity 291

4.8 ESCD (switch) functions

Figure 4-8 ESCD (switch) functions

ESCD (switch) functions
To implement the switching functions of ESCON, a class of product was introduced known as
the ESCON Director (ESCD). It dynamically connects channels and control units only for the
duration of an I/O operation. The connection is “dynamic” because it is only held during the
conversation. After that, the same port can be used to connect to a different control unit or
different channel.

ESCDs do not introduce delays, and can switch millions of connections per second. ESCDs
are the centerpiece of the ESCON topology.

Switching functions
ESCDs switch connections between ports under the direction of the link address, as provided
by the channel and the attached ESCON control units within the frames. Because the ESCD
redrives the light signal, it can be used as a channel extender to communicate over long
distances.

Apart from dynamic switching, the ESCD can also be used for static switching (also called
dedicated), where a port is always connected to another port. When a channel and a control
unit are connected through two ESCDs (for longer-distance purposes), one of the
connections must be static, because in the frame there is only one sender link address and
only one receiver link address.

Switching function terminology

Prohibited Port

Allowed Port

Chained Connection

Dedicated Port
292 ABCs of z/OS System Programming Volume 10

To store configurations and handle errors the director has an integrated control unit, which is
addressed by the host like any other control unit. The director dynamically switches I/O
requests for itself to its own internal port.

Port connections
The ESCON Director (ESCD) temporarily connects ports for transmission. The connection
can remain in effect for the duration of the I/O operation while several frames are exchanged
between the ports. The connection is made (and broken) on request from a frame sent by
either the control unit or the channel.

ESCD ports are non-blocking, in the sense that there are enough internal paths so that all
ports can communicate simultaneously. Signals travel from one port to another, converting
from optical signals to electrical and back to optical. This allows for some “elasticity” in the bit
stream (source and destination ports do not have to be locked at exactly the same time), and
to power the optical signal, balancing for any losses at interfaces or on the fiber cables
themselves.

The ESCON Director also provides a control unit function that can be used to control port
connectivity. Ports can be dedicated to communicate with only one other port, prohibited from
communicating with certain other ports, or blocked from communicating altogether.

An ESCON channel path may pass through two ESCON Directors. However, the path
connection through one director must be defined on the director as static; that is, the internal
port communication for that link must be dedicated.
Chapter 4. System z connectivity 293

4.9 ESCON Director (ESCD) description

Figure 4-9 Example of dynamic connection in an ESCD

ESCON Director (ESCD) description
The ESCD consists of multiple bidirectional ports to which channels and control units may be
attached. The ports are capable of any-to-any connection, but the installation may restrict this
access by:

� Blocking ports (allowing no access at all)
� Prohibiting port-to-port connections
� Dedicating port-to-port connections
� Allowing connections (opposite of prohibiting)

Such restrictions can be used, for example, to prevent a test z/OS system from accessing the
production DASD; however, if a disaster occurs, automation acting upon the port's state may
reverse the situation. HCD uses the Auto Operator product to communicate with ESCON
Directors.

There are two types of ESCDs, the 9032 ESCD and the 9033 ESCD, as described here:

� The 9032 ESCD has from 28 to 60 external ports (in four-port increments). Each 9032 port
provides for the attachment of any ESCON channel, ESCON extended-distance channel,
control unit, 9034 or 9035 ESCON Converter, or another ESCD. The 9032 model 5 may
contain the FICON bridge card, which converts FICON protocol to ESCON.

� The 9033 ESCD has from 8 to 16 external ports. Each 9033 port provides for the
attachment of any ESCON channel or control unit, 9034 or 9035 ESCON Converter, or
another ESCD.

CU CU CU CU CU CU CU CU CU

Link

Channel
Path

ESCD Port

ESCON
Director

C1
C2

C4

C5

C6
C7 C8 C9

CA

CB

CC

CD

CE
CF

C3

C0

CPC A CPC B
CH03

CH02

CH01

 Channel
Subsystem

CH03

CH02

CH01

 Channel
Subsystem
294 ABCs of z/OS System Programming Volume 10

4.10 ESCON Director matrix

Figure 4-10 ESCD matrix

ESCON switch matrix
The port configuration is held in a switch port matrix in the ESCON Director. The port matrix
can be read and written from an attached host using the Auto Operator or the ESCD console.
An initial port matrix is held on the disk of a PC directly attached to the director; however, this
disk data is not directly addressable by the ESCON Manager and therefore cannot be
changed remotely.

Figure 4-10 shows an example of an ESCON switch matrix. The ESCON switch matrix can be
stored in a number of places:

� The active switch data is in the ESCD itself.

� The switch may have a copy of the active configuration on its support console disks.

� The Auto Operator may have a copy of the active configuration in its working storage,
being worked on as an ISPF table.

� The Auto Operator may have saved copies of possible configurations in ISPF tables.

� HCD may have configurations stored in the active production IODF.

� HCD may have configurations stored in other production IODFs.

� HCD may have configurations stored in work IODFs.

The recommendation for matrix configuration is to protect all ports and only allow access
where required. This simplifies I/O problem determination and reduces overhead in event
notification.

 Switch ID : AA Switch AA
 Switch configuration ID . : ESCD001A Default connection : Allow

 Ded --Dynamic Connection Ports Cx--
 / Port Name + B Con + 0 1 2 3 4 5 6 7 8 9 A B C D E F
 _ C0 TO_3990XA0_'E' N __ \ P P P P P P P P P P P P P P P
 _ C1 FROM_982A_CHPID_64 N __ P \ P P P P P P P P P P P P P P
 _ C2 FROM_982B_CHPID_B0 N __ P P \ P P P P P P P P P P P P P
 _ C3 TO_9034_P6 N F7 P P P \ P P P P P P P P P P P P
 _ C4 TO_3990XB0_'E' N __ P P P P \ P P P P P P P P P P P
 _ C5 TO_3172-MOD3_OSL N __ P P P P P \ P P P P P P P P P P
 _ C6 FROM_982B_CHPID_B1 N __ P P P P P P \ P P P P P P P P P
 _ C7 FROM_982A_CHPID_6C N __ P P P P P P P \ P P P P P P P P
 _ C8 TO_3990XC0_'E' N __ P P P P P P P P \ P P P P P P P
 _ C9 FROM_982A_CHPID_65 N __ P P P P P P P P P \ P P P P P P
 _ CA FROM_982B_CHPID_B8 N __ P P P P P P P P P P \ P P P P P
 _ CB TO_9034-AT2A N E9 P P P P P P P P P P P \ P P P P
 _ CC TO_3990XD0_'E' N __ P P P P P P P P P P P P \ P P P
 _ CD TO_OSL_SP-2 N __ P P P P P P P P P P P P P \ P P
 _ CE FROM_982B_CHPID_B9 N __ P P P P P P P P P P P P P P \ P
 _ CF TO_OSL_3172-3 N __ P P P P P P P P P P P P P P P \

Dedicated connection
from port C3 to port F7

Allowed connection from
port C2 to port CF
Chapter 4. System z connectivity 295

4.11 Channel-to-channel adapter

Figure 4-11 Channel-to-channel adapter (CTCA)

Channel-to-channel adapter
In a sysplex environment, the movement of data between z/OS systems through XCF is very
important. The classical equipment to implement such movement is called a
channel-to-channel adapter (CTCA). Logically a CTCA (sometimes shortened to CTC) is
composed of three connected pieces:

� A channel connected to an LP
� An special control unit
� A channel connected to another LP (may be in the same server as the previously

mentioned channel)

CTC operation
The CTC works as follows:

1. A program running under z/OS in LP1 wants to move data to its counterpart in z/OS in
LP2.

2. This program prepares a channel program (a set of CCWs), for writing 4 KB of data from
address 8-M in the memory of LP1.

3. z/OS (IOS code) in LP1 issues the SSCH instruction toward a specific device address (as
defined in HCD/IOCP).

4. The channel serving LP 1 is selected by SAP and tries to communicate with the control
unit.

C S S
C
H
A
N
N
E
L

PATH

S A P

CCWs

C S S

 C
 H
A
N
N
E
L

PATH

S A P

CCWs

C O N
T R O L
U N I T

C
T
C

C
N
C

296 ABCs of z/OS System Programming Volume 10

5. The control unit disconnects this channel and sends a signal to the channel in LP2, forcing
an attention I/O interrupt in z/OS from LP1. With the interrupt is passed a device address
(different from the one in the LP1).

6. z/OS, based on the device sending the interrupt, discovers through a Sense CCW that
there is a pending write. zOS then passes the control to the counterpart program in LP2,
posting it and informing about the pending write.

7. This program in LP2 prepares a channel program (a set of CCWs) for reading 4 KB of data
to address 12 MB in the memory of LP2.

8. z/OS (IOS code) issues the SSCH instruction in a specific device address (this may be
different from the one in LP1).

9. A channel serving LP 2 is selected by SAP, and it tries to communicate with the control
unit.

10.The control unit reconnects the channel from LP1 and the data transfers starts from
address 8-M in LP1 to address 12_M in LP2, both channels connected, until the full 4 KB
are transferred.

11.Both channels generate I/O interrupts to both z/OSs.
Chapter 4. System z connectivity 297

4.12 ESCON CTC support

Figure 4-12 ESCON CTCA support

ESCON CTCs
ESCON CTCs are used to allow inter-processor communications (connecting central storage
of one z/OS image to central storage of another z/OS image). This communication can be
among different LPs in the same server, or among different servers (locally or at long
distances).

In ESCON CTC architecture, there is no need for a physical control unit. An ESCON CTC
channel is a standard ESCON channel that is defined in HCD as TYPE=CTC. During the
initialization of the CHPID, the microcode is loaded into the channel to enable it to support the
CTC control unit function on top of the ESCON channel function.

Then, an ESCON CTCA channel path has an ESCON CTCA connection at one end, and
either an ESCON (CNC) or a FICON (FCV) channel (that is, a FICON channel converted to
ESCON) connection at the other end. To enable any two servers to communicate through an
ESCON channel path, the ESCON CTC connection can be at either server.

In order for each LP to communicate with another LP (in the same or distinct server) through
a shared (MIF) ESCON CTC channel path, you must specify the logical address of the
ESCON CTC control unit. The logical address used has the MIF ID, as defined in HCD/IOCP
of your LP.

 D M=CHP(4C)
 IEE174I 19.37.30 DISPLAY M 813
 DEVICE STATUS FOR CHANNEL PATH 4C
 0 1 2 3 4 5 6 7 8 9 A B C D E F
 401 + + + +
 402 + + + +
 403 + + + +
 404 + + + +
 ************************ SYMBOL EXPLANATIONS ********************
 + ONLINE @ PATH NOT VALIDATED - OFFLINE . DOES NOT EXIST
 * PHYSICALLY ONLINE $ PATH NOT OPERATIONAL

CNC CHP 1C

CNC

CTC CHP 4C

CTC

CTC CHP 2A CNC CHP 31

Chained
ESCDs

Point-to-point
connection

ESCD

SYS1

SYS2

SYS 3

DASD C.U.
298 ABCs of z/OS System Programming Volume 10

ESCON CTC communication
As shown in Figure 4-12 on page 298, an ESCON CTC channel must communicate with an
ESCON CNC channel; that is, a standard ESCON channel.

Note that an ESCON CNC channel communicating with an ESCON CTC channel can also
support other ESCON control units, such as DASD, through the ESCD. An ESCON CTC can
also be connected point-to-point to an ESCON CNC channel on another server.

Each ESCON CTC fiber can support up to 512 independent device addresses, each one
allocated by a distinct application, but sharing the same physical link.

Point-to-point CTC connection example
Consider Figure 4-12 on page 298 again, but this time with some CHPID and device
addresses. Imagine an I/O operation running through the CTC path represented by the
CHPID 2A from SYS1 and CHPID 31 from SYS2. An application in SYS1 wants to send data
(write) to its peer application in SYS2, which wants to receive such data (read).

Such an operation consists of the following steps:

1. IOS in SYS1 issues a SSCH in CHPID 2A–the channel program has a Write command.
The data transfer is halted.

2. IOS in SYS2 receives an I/O interrupt (named attention) in CHPID 31.

3. IOS in SYS2 issues a SSCH in CHPID 31–the channel program has a Sense command.
The response for that is the information received by IOS in SYS2, that CHPID 2A is
issuing a Write command.

4. IOS in SYS2 issues a SSCH in CHPID 31–the channel program has a Read command.
The data transfers starts.
Chapter 4. System z connectivity 299

4.13 FICON channels

Figure 4-13 FICON channels

FICON channels
FICON channel protocol (FC-SB-2) is based on Industry Standard Fibre Channel Architecture
from ANSI. FICON coexists with ESCON and relieves several limitations, such as:

� ESCON limitations in bandwidth, in the number of devices and number of control units

� The S/390 architecture limit of 256 channels per server. FICON provides relief because
you need fewer channels than ESCON for the same I/O workload. However, in the z9 EC
model servers, the limit is 1024 channels per channel subsystem (CSS).

� FICON supplements, but does not replace, ESCON. FICON channels use the same fiber
optic cables as ESCON channels.

A FICON channel can be native (FC) or bridge (FCV). With bridge, the FICON channel is
connected to an ESCD model 5, which converts the FICON protocol to ESCON protocol. This
conversion is done to reach control units with ESCON protocol, through FICON channels.

Figure 4-13 shows that the FICON FCV has a CHPID of FC and connects to switch port
number C4, which connects to eight control unit ports. One good reason to have FCVs is to
save CHPIDs. The FICON channel requires a FICON interface at the control unit, or needs to
be connected to a fiber channel switch port in a switch.

System z server
FCV
FC

Greater Bandwidth
Different Protocol
8 Concurrent Operations

958F8D 8E

8B

8C 96

97

C4

CHPID Type (FICON Bridge)
CHPID Number

 System z server
FC
E0

Greater Bandwidth
Different Protocol
'n' Concurrent Operations
More devices per CHPID
More devices per link
Extended distance

FICON Control Unit
Greater Data Capacity
Up to 16K devices addresses
64 Concurrent Operations
(Open Exchanges)

CHPID Type (FICON Native)
CHPID Number

Two types of FICON channels

FICON Bridge Native FICON

CU
#A00CU

#100
CU

#200
CU

#300
CU

#400
CU

#500
CU

#600
CU

#700
CU

#800
300 ABCs of z/OS System Programming Volume 10

FICON bridge
The FICON bridge topology, as we saw, is intended to help provide investment protection for
currently installed ESCON control units. The IBM 9032 Model 005 ESCON Director is the only
director that supports long wavelength FICON links through the use of a FICON bridge (one
port) feature.

One FICON bridge port feature provides connectivity to one FICON LX link. Up to 16 FICON
Bridge port features can be installed on a single IBM 9032 Model 005. Current IBM 9032
Model 005 ESCON Directors are field-upgradable to support the FICON bridge port feature,
which can coexist with the original ESCON port features in the same director.

FICON Express2 does not support an FCV (bridge) type of FICON topology.

FICON native (not through a bridge)
The transmission medium for the FICON interface is a fiber optic cable. Physically, it is a pair
of optical fibers that provide two dedicated, unidirectional, serial-bit transmission lines.
Information in a single optical fiber flows, bit by bit, in one direction. At any link interface, one
optical fiber is used to receive data, while the other is used to transmit data. Full duplex
capabilities are exploited for data transfer (not true for ESCON). The Fibre Channel Standard
(FCS) protocol specifies that for normal I/O operations, frames flow serially in both directions,
allowing several concurrent read and write I/O operations on the same link. There are three
types of FICON in System z servers: FICON (not supported by the z9 EC), FICON Express,
and FICON Express2.

FICON distance and capacity
There are two types of FICON adapters, the long wavelength (LX) and short wavelength (SX),
depending on the transceiver. The long wave is for large distances. FICON allows a distance
(between server and control unit) of up to 10 km or 29 km (RPQ) with no repeater; or
distances of up to 100 km with a repeater.

Each FICON channel allows up to 16,384 devices and up to 256 CUs (one-byte CUADD) with
significantly fewer connections, as fewer channels, ports, cables, patch panel ports, and so on
are required.
Chapter 4. System z connectivity 301

4.14 FICON conversion mode

Figure 4-14 FICON conversion mode (FCV)

FICON modes and topologies
System z servers allow FICON channel to operate in one of three modes:

� FICON conversion mode (FCV)

� FICON native mode (FC)

� Fibre Channel Protocol (FCP)

FICON conversion mode
A FICON channel in FICON conversion mode (CHPID type FCV) can access ESCON control
units through a FICON Bridge port feature installed in an IBM 9032 Model 005 ESCON
Director, as shown in Figure 4-14.

One FICON Bridge port feature provides connectivity to one FICON or FICON Express LX
link. Up to 16 FICON Bridge port features can be installed on a single IBM 9032 Model 005.
FICON Bridge port feature can coexist with the original ESCON port features in the same
Director.

FICON Bridge feature
The FICON Bridge port feature occupies one I/O slot in the IBM 9032 Model 5 cage. Each
feature has one FICON LX Bridge port, allowing simultaneous connections to 8 different
control units on eight different ESCON links. On average, one FCV may be equivalent

FICON Bridge

 FICON
Feature

9032-5
ESCD

ESCON
Links

FCV
ESCON

CU

ESCON
CU

ESCON
CU

FC Link

FICON
 Bridge
Feature
302 ABCs of z/OS System Programming Volume 10

(performance-wise) to up to four ESCON channels, depending on the utilization of the
eventually replaced ESCON channels.

Up to 16 FICON Bridge port features can be installed in a FICON-capable IBM 9032 Model 5.
These features plug into ESCON port feature locations in the director, reducing the number of
I/O slots available for ESCON ports.

The maximum FICON Bridge port feature configuration allows:

� 16 FICON LX Bridge ports (16 FICON Bridge port features)

� 120 ESCON ports (15 ESCON 8-port features)

I/O operation
An I/O operation is “FICON FCV mode-transferred” from the FICON channel to the
FICON Bridge port. The FICON Bridge port translates FC-SB-2 (INCITS standard)
frames into ESCON frames, and conversely, ESCON frames into FC-SB-2 frames. The
channel side of the FICON bridge port operates in a slightly modified FCS mode (full
duplex). The ESCON side operates in normal ESCON mode (half duplex).

Note: With FICON channels (in FCV mode), you can still preserve your ESCON control
unit investments.
Chapter 4. System z connectivity 303

4.15 Supported FICON native topologies

Figure 4-15 FICON native topologies

FICON native mode
A FICON channel in FICON native mode (CHPID type FC) can access FICON native
interface control units using the topologies shown in Figure 4-15, as explained here:

� Point-to-point (direct connection)

� Switched point-to-point (via a Fibre Channel Director)

� Cascaded FICON Directors (through two Fibre Channel Directors)

A FICON native channel also supports channel-to-channel communications. The FICON
channel at each end of the FICON CTC connection, supporting the FCTC control units, can
also communicate with other FICON native control units, such as disk storage devices and
tape.

Note that at least one end of the FICON CTC connection must be System z servers. In FCTC,
there is no need to define one of the channels as a CTC channel in HCD.

FICON
CU

FICON
CU

FICON
CU

FICON
CU

Point-to-point

Switched point-to-point

Cascaded FICON Directors

FC
Switch

FC
Switch

FC
Switch

FC

FC

FC

FC

Site A Site B

FC Link

FC Link

FC Link

FC Link

FC Link

FC Link

FC Link

FC
 Li

nk

FC Link

ISL

FCFICON
CU
304 ABCs of z/OS System Programming Volume 10

4.16 Fibre Channel Protocol (FCP)

Figure 4-16 System z FCP topologies

Fibre Channel Protocol mode (FCP)
This channel is not supported by z/OS. A FICON channel in Fibre Channel Protocol mode
(CHPID type FCP) can access FCP devices either through a single:

� Fibre Channel switch or multiple switches to an FCP device
� Fibre Channel switch or multiple switches to a Fibre Channel-to-SCSI bridge

The System z server FICON Express and FICON features provide support for Fibre Channel
and Small Computer System Interface (SCSI) devices in Linux environments. This support is
in conjunction with the Linux distributions from System z Linux distribution partners.

The zSeries FCP support allows Linux running on a zSeries server to access
industry-standard SCSI devices. For disk applications, these FCP storage devices utilize
Fixed Block (512-byte) sectors rather than Extended Count Key Data (ECKD™) format.

FCP and SCSI controllers and devices can be accessed by Linux for zSeries (64-bit mode) or
Linux for S/390 (31-bit mode) with the appropriate I/O driver support.

Linux may run either natively in an LP, or as a guest operating system under z/VM Version 4
Release 3 and later releases, to support FCP for Linux guests.

Note: zSeries FCP channel direct attachments in point-to-point or arbitrated loop
topologies are not supported as part of the zSeries FCP enablement.

FC switched
fabric

z990
server

z900 server

ESS

ESS

FC-to-SCSI
bridge

disks
SCSI

disks
FCP

FICON-Express

FICON
FCP mode

FCP mode

System z9

FICON
FCP mode
Chapter 4. System z connectivity 305

4.17 FICON improvements (1)

Figure 4-17 ESCON protocol analogy

FICON versus ESCON
The best way to understand a FICON channel facilities is to compare them with the ones in
ESCON; we assume that you are already familiar with ESCON concepts.

We can draw an analogy between this protocol comparison and two people talking on the
phone, as pictured in Figure 4-17 and in Figure 4-18 on page 308:

� ESCON protocol is like having two people (channel and controller) talking on the phone
about just one I/O operation; when one person talks, the other person listens.

� FICON protocol is like having two sets of people (channels and controllers) talking on
phones connected to a switchboard, about several subjects (I/O operations). Each person
is talking and each person is buffering what the other is saying for further analysis. In this
conversation, one person from one group may talk to more than one person of the other
group, concurrently.

Comparison conclusions
FICON provides all the strengths of ESCON, while increasing the link rate from 20 MB/sec all
the way up to 100 MB/sec on the FICON feature, and up to 200 MB/sec on the FICON
Express features. It also increases the extended (non-droop) distance from 9 km to 100 km.

Extended Distance FICON is an enhancement to the industry standard FICON architecture
(FC-SB-3) helps avoid degradation of performance at extended distances by implementing a
new protocol for “persistent” Information Unit - IU (also named frames) pacing.

T2: Man talks
Woman Listens
Subject: S

Man Woman

T1: Woman talks
Man Listens
Subject: S

ESCON

Man Woman

Man Woman Man Woman
306 ABCs of z/OS System Programming Volume 10

Control units that exploit the enhancement to the architecture can increase the pacing count
(the number of IUs allowed to be in flight from channel to control unit). Extended Distance
FICON also allows for example keep a 400 MB/sec link fully utilized at 50 km.

The FICON implementation enables full duplex data transfer, so data travels in both directions
simultaneously, rather than the half-duplex data transfer of the ESCON implementation. Also,
FICON enables multiple concurrent I/O operations, rather than the single-sequential I/O
operation of ESCON.

Comparing both methods, we can reach the following conclusions:

� Throughput is better in FICON protocol because it is full duplex, asynchronous (no waits
for the acknowledgements of CCWs and data), multiplexes different I/O requests, and
requires significantly fewer handshakes (fewer acknowledgements).

� Distance has less effect on throughput in FICON protocol, because there is no waiting for
acknowledgements.

� Higher throughput in FICON protocol means less I/O operation queue time.

� Service time per I/O operation is not clear: FICON protocol does not need synchronous
handshakes, but ESCON protocol is completely dedicated to the I/O operation.

� Recovery time in ESCON protocol, if needed, is shorter.

FICON provides expanded addressability
Many of the ESCON addressability constraints are relieved by FICON, as described in 4.19,
“FICON/ESCON numerical comparison” on page 310.
Chapter 4. System z connectivity 307

4.18 FICON improvements (2)

Figure 4-18 FICON protocol analogy

Higher data rate
A higher data rate (20 MB/sec for direct and 70 MB/sec for sequential) produces better
performance and better channel consolidation (fewer channels in the configuration). Note that
the nominal bandwidth of a FICON Express channel is 200 MB/sec. The reasons for such a
higher data rate are:

� FICON implementation enables full duplex data transfer, so data frames with 128 KB travel
in both directions simultaneously, rather than the ESCON half-duplex data transfer.

Also, multiple concurrent I/Os (up to 64 per FICON Express2 in the z9 EC) can occur on a
single FICON channel, where consecutive data frames may belong to distinct I/O
operations. Each concurrent I/O is called open exchange. This is a fundamental difference
between FICON and ESCON.

� FICON has asynchronous command execution and consequently, multiple concurrent
I/Os. It implements CCW Pipelining, where all CCWs are sent without waiting for channel
end (CE)/device end (DE). In other words, CCWs (CCW1-CCWn) are transferred to the
controllers without waiting for the first command response (CMR) from the controller or for
a CE/DE after each CCW execution. Although the device presents a DE to the control unit
after each CCW execution, for the last CCW of the chain, the control unit presents CE/DE
to the channel.

� FICON has asynchronous data transfer. The channel sends multiple data frames of the
same I/O operation along a write, without being delayed by acknowledgement signals from
the controller (and vice versa, for reads).

S1

S2

S5

S4

S3

S5

S1

Man 1

Man 2

Man 3

Woman 1

Woman 2

Switch
Board

FICON

Man Woman
1 2

Man Woman
1 2

Man Woman
2 1

Man Woman
3 2

Man Woman
3 1

Man Woman
1 2

Man Woman
2 1
308 ABCs of z/OS System Programming Volume 10

� FICON channels are almost always available. When migrating from ESCON to FICON,
you may see a decrease in Pending and Disconnect time and possibly some increase in
connect time, due to an internal multiplex or queue. However, in general, mainly in large
block sequential access, the net effect is faster I/O response time with FICON.

� The disconnect and reconnect protocols are eliminated between FICON channels and
FICON Host adapter controllers. When read cache missed data is finally in the cache, the
controller places the data frame in the output queue, waiting to be picked by the channel
polling mechanism; there is no reconnect mechanism.

� There are no port busy handshakes like the ones caused by the ESCON Director port
busy. Collisions within a FICON switch are completely eliminated. Data frames are
intermixed in the FICON switch ports. However, there is still internal FICON switch queue
time if the port becomes overloaded. This time is reported as pending time, but not under
DP Busy Delay in RMF.

However, because several I/Os are processed at the same time, there may be some increase
in the I/O internal queue time (shown in connect time). There is also no guarantee that the I/O
response time for a direct I/O (short block) always decreases when migrating from ESCON to
FICON. However, the throughput is much better. FICON channels experience minimal data
rate droop at distances up to 100 km (62 miles). The reasons are:

� Increased buffer sizes in the FICON channel card.

� There is only one handshake, due to the asynchronous data transfers and CCW execution
in FICON. There is only a propagation delay of 0.1 microseconds at each 10 km in FICON,
against 0.6 microseconds in ESCON.

FICON features
There are three types of FICON features available in System z servers:

� FICON - With a bandwidth of 100 MB/sec full duplex, with 60 to 80 MB/sec expected total
data rate, depending on the type of workload, fiber infrastructure, and storage devices in
place. FICON can deliver more than 4,000 I/Os/sec (4 KB blocks) per channel, compared
to 500 I/Os/sec (4 KB blocks) per channel in ESCON.

� FICON Express - With a bandwidth of 100 MB/sec or 200 MB/sec, delivering from 20% to
30% real improvement over FICON. Note that the control unit adapter (also called the host
adapter) needs to be able to communicate with a FICON Express channel. The link speed
is auto-negotiated, point-to-point, between channel and controller; it is transparent to
users and applications. Not all controllers support 200 MB/sec link data rates.

� FICON Express2 - Supported by z9 EC, z990, or z890 servers. Allows installing twice the
number of FICON channels in the same space while benefiting from increased
performance, as compared with the previous generation of FICON Express features. The
FICON Express2 SX and LX features have four independent ports, each feature
occupying a single I/O slot, utilizing four CHPIDs per feature, while continuing to support
100 MB/sec and 200 MB/sec link data rates.The FICON Express2 SX and LX features are
ordered in 4-port increments and designed to be added concurrently. This concurrent
update capability allows you to continue to run workloads through other channels while the
FICON Express2 features are being added. FICON Express2 (CHPID types FC and FCP)
can be defined as a spanned channel and consequently can be shared among LPs within
and across CSSs. FICON Express2 SX and LX features replace the current FICON
Express SX and LX features currently offered on z890 and z990. On the z9 EC model, we
may have 84 FICON features (all I/O slots in the three I/O cages) with 4 x 84 = 336 FICON
Express2 channels.
Chapter 4. System z connectivity 309

4.19 FICON/ESCON numerical comparison

Figure 4-19 FICON/ESCON numerical comparison

FICON/ESCON numerical comparison
Table 4-3 on page 311, and Table 4-4 on page 311 and Table 4-2, portray numerically some
of the differences between FICON and ESCON channels.

Concurrent operations, data rates, transfer buffers, and distance
Table 4-2 ESCON and FICON characteristics

ESCON channels FICON channels

Command execution Synchronous to CU Asynchronous to CU

Channel concurrent I/O operations 1 Up to 32

Link data rate 20 MB/ps Up to 200 MB/ps

Channel frame transfer buffers 1 KBytes 128 KBytes

Max distance without repeat 3 km 10 km
12 km at 200 MB/ps
RPQ
20 km at 100 MB/ps
RPQ

Max distance without droop 9 km 100 km

FICON surpasses ESCON in the following
numerics:

Control Unit images per physical control units

Unit addresses per channel

Unit addresses per physical control unit

Logical paths per port (in ESS)

Number of concurrent I/O operations

Link data rate

Channel frame transfer buffers

Max distance
310 ABCs of z/OS System Programming Volume 10

Control units and addresses/channel
Table 4-3 ESCON and FICON channel - maximum addressing

Logical paths in Enterprise Storage Server (ESS)
A logical path is a control block within the control units, where each instance of a channel is
registered. Each MIF image of a channel consumes one logical path. Table 4-4 lists the
addressing attributes in IBM Enterprise Storage Server® (ESS), ESCON channels, and
FICON channels.

Table 4-4 Control Unit addressing attributes

ESCON channels FICON channels

CU images (CUADD) / CU:

Architected 16 256

Implemented 16 256

Unit Addresses / channel:

Architected 1 M 16 M

Implemented 1 K 16 K

UAs/physical CU:

Architected 4 K 64 K

CU-implemented 4 K 4 K

Addressable by a channel 1 K 4 K

UAs/logical CU (CUADD) 256 256

IBM Enterprise Storage Server
Model 800

ESCON channels FICON channels

Logical paths/per port 64 256

Logical paths/logical control unit 128 128
Chapter 4. System z connectivity 311

4.20 FICON switches

Figure 4-20 FICON switches

FICON switches
FICON channels implement the switched point-to-point topology by using FICON switches to
connect FICON channels to control unit FICON adapters. These connections are established
as the server FICON channel discovers that there is a port switch between it and the control
unit. All FICON switch connections are dynamic. So static connections, which are possible in
an ESCON Director, are not supported in a FICON Director.

FICON/Fibre channel switch
The fibre channel switch (FC-SW) supports packet-switching, which provides better utilization
than the circuit-switching in the ESCON Director. It allows up to 32 simultaneous concurrent
I/O operations (read and write) from multiple FICON-capable systems to multiple FICON
control units.

Figure 4-20 shows a conceptual view of frame processing in a switched point-to-point
configuration for multi-system and multi-control unit environments.

 FC
switch

FICON Frames

FICON Frames

FICON Frames

FICON Frames

 FICON
Adapter

 FC links

F_Port

FICON Frames

FICON Frames

 FICON
CU & I/O

 FICON
CU & I/O

FICON
Channel

(FC)

 FC links

FICON
Channel

(FC)
FICON Frames

FICON Frames
312 ABCs of z/OS System Programming Volume 10

4.21 Cascaded FICON Directors

Figure 4-21 Cascaded FICON Directors with FICON switched fabric at two sites

FICON switched fabric
An important point to note regarding the FICON fabric switch is that there are no dedicated
links between a port in the first switch with a port in the second switch. All data transfer is
done through a common set of links named Inter-switch links (ISL). The result of this design is
better performance, and there is no need for static connections.

Cascaded FICON Directors
FICON native and FICON Express channels on System z servers support cascaded Fibre
Channel Directors. This support is for a two-Director configuration only. With cascading, a
FICON native channel, or a FICON native channel with channel-to-channel (FCTC) function,
can connect a server to a control unit or other server via two native connected Fibre Channel
Directors. Two director cascading requires a single vendor high integrity fabric. Directors must
be from the same vendor since cascaded architecture implementations can be unique.

FICON channels require z/OS V1R3 with PTFs (or later releases) to enable cascaded FICON
Directors. In addition, z/VM V4R4 provides this support. FICON support of cascaded
Directors is sometimes referred to as cascaded switching or 2-switch cascaded fabric.

This type of cascaded support is important for disaster recovery and business continuity
solutions because it can help provide high availability, extended distance connectivity, and
(particularly with the implementation of 2 Gb/sec Inter Switch Links) has the potential for fiber
infrastructure cost savings by reducing the number of channels for interconnecting the two
sites.

FICON
Channels

Servers Servers

FICON
Channels

Storage
Devices

Storage
Device

Site A Site B

Cascaded FICON Directors
FC Fabric

SwitchSwitch SwitchSwitch

Cascaded FICON Directors
FC Fabric

SwitchSwitch SwitchSwitch
Chapter 4. System z connectivity 313

FICON two-Director cascaded technology can allow for shared links, and therefore improved
utilization of intersite connected resources and infrastructure. Solutions such as
Geographically Dispersed Parallel Sysplex (GDPS) can benefit from the reduced inter-site
configuration complexity that Native FICON support of cascaded Directors provide. Refer to
ABCs of z/OS System Programming Volume 9 for more information on GDPS.

Data centers between two sites
While specific cost savings vary depending upon infrastructure, workloads, and size of data
transfers, generally customers who have data centers separated between two sites may
reduce the number of cross-site connections by using cascaded Directors. Further savings
may be realized in the reduction of the number of channels and switch ports.

Another advantage of FICON support of cascaded Directors is its ability to provide high
integrity data paths. The high integrity function is an integral component of the FICON
architecture when configuring FICON channel paths through a cascaded fabric.

Data integrity
End-to-end data integrity is designed to be maintained through the cascaded Director fabric.
Data integrity helps ensure that any changes to the customer's data streams are always
detected, and the data frames (data streams) are delivered to the correct end point, an end
point being a FICON channel port or a FICON Control Unit port.

For FICON channels, Cyclical Redundancy Checking (CRC) and Longitudinal Redundancy
Checking (LRC) are bit patterns added to the customer data streams to allow for detection of
any bit changes in the data stream.

With FICON support of cascaded switching, new integrity features are introduced within the
FICON channel and the FICON cascaded switch fabric to help ensure the detection and
reporting of any miscabling actions occurring within the fabric during operational use that may
cause a frame to be delivered to the wrong end point.
314 ABCs of z/OS System Programming Volume 10

4.22 FICON Channel to Channel Adapter (FCTC)

Figure 4-22 FCTC

FICON FCTC support
Here are major differences between the ESCON and FICON CTC implementation:

� ESCON CTC communication requires a pair of ESCON channels, where one of the
channels is dedicated to the ESCON CTC function and is defined as an ESCON CTC
channel, and the other channel of the pair is defined as a normal ESCON CNC channel.
For FICON, the FCTC function does not require a FICON channel to be dedicated to
support the FCTC function; only a normal FICON channel defined in FICON (FC) mode
channel is required. The same channel can also be used to support other I/O device-type
operations.

� The FICON FCTC communication can use either one FICON channel (only recommended
for a small number of images in the CTC complex), or two FICON channels. In the case of
one FICON channel, the connected LPs must reside in the same server.

� The number of unit address associated to an ESCON CTCS is 512; in an FCTC, it is 16 K.
� Data transfer bandwidth in the ESCON CTC is 12 - 17 MB/sec; in a FCTC, it is 60 - 90+

MB/sec.
� The number of concurrent I/O operations is one in the ESCON CTC; it up to 32 in FCTC.

As shown in Figure 4-22, the same FICON channel from Server 1 is doing the following:

� Establishing an FCTC connecting with LP1, LP2 and LP3
� Accessing the DASD Control unit
� Establishing an FCTC connecting the LPs from Server 1 with Server 2

FCTC supports cascade switches.

FICON
Director

Server 1 Server 2

FICON Channel
FICON native (FC)

Mode

Disk
Control

Unit

LP2 LP3LP1 LPB LPCLPA

FC FCFCFC
FICON Channel

FICON native (FC)
Mode
Chapter 4. System z connectivity 315

4.23 z9 Coupling Facility links

Figure 4-23 z9 Parallel Sysplex technology

Parallel Sysplex configurations
Parallel Sysplex technology is a highly advanced, clustered, commercial processing system.
It supports high performance, multisystem, read/write data sharing, enabling the aggregate
capacity of multiple z/OS systems to be applied against common workloads. A Parallel
Sysplex comprises one or more z/OS systems coupled through one or more Coupling
Facilities.

The z/OS systems in a Parallel Sysplex configuration have all the capabilities of the standard
z/OS system z system, and run the same applications. This allows users to harness the
power of multiple z/OS systems, as if they were a single, logical computing system. Its major
appeal is continuous availability (24x7), where all z/OSs are cloned (because of data sharing)
and consequently have no single points of failure (SPOF) along planned or unplanned
outages.

Coupling Facility
The Parallel Sysplex technology is centered around the implementation of a Coupling Facility,
an LP running the coupling facility control code (CFCC) operating system and high speed
coupling connections for inter-server and intra-server communications. The Coupling Facility
is responsible for providing high speed data sharing with data integrity across multiple z/OS
systems.

DASD DASD DASD

 z890/z900
server

1
2
3

4
567

8
9
10

1112 1
2
3

4
567

8
9
10

1112

CF02
 ICF

CF01
ICF

ESCON / FICON

Standalone
Coupling Facility

Sysplex Timer

z990/z900/z890
server

 z/OS
z/OS

ICB-3

ICB

ICB

z9 EC Server

IC

ISC-3

ISC-3

ISC-3

Coupling Facility
CF01 and CF02
316 ABCs of z/OS System Programming Volume 10

Coupling Facility (CF) links
The type and mode of CF links you can use to connect a CF to an operating system LP is
important. The type of coupling links used to connect a CF to an operating system logical
partition is important, because of the impact of the link performance on response times and
coupling overheads. For configurations covering large distances, the time spent on the link
can be the largest part of the response time.

There are two types of modes: old non-peer mode (also called sender/receiver), and new
peer mode.

Peer mode links
There are several advantages in using peer mode links:

� All peer mode links operate on a higher speed than the equivalent non-peer mode link.

� A single CHPID (one side of the link) can be both sender and receiver; this means that a
single CHPID can be shared between multiple OS LPs and one CF LP.

� The number of subchannels defined when peer mode links are used is seven (7) per LP
per link compared to two (2) per LP per link in compatibility mode. This is particularly
important with System-Managed CF Structure Duplexing.

� Peer links have 224 KB data buffer space compared to 8 KB on non-peer links; this is
especially important for long distances as it reduces the handshaking for large data
transfers.

The CF links in peer mode are the ones with a suffix of -3 or a -4 in the type name, as shown
in Figure 4-22 on page 315. With the exception of the IC channel, all the other channels have
a corresponding PCHID.

When z9 and z10 EC servers are connected through CF links, the mode is peer mode only.

Types of CF links
The following types of links are available to connect an operating system LP to a CF on a
System z:

� IC - A microcode-defined link to connect a CF LP to a z/OS LP in the same System z
server. IC links require two CHPIDs to be defined, and can only be defined in peer mode.
The link speed is greater than 2 GB/sec. A maximum of 32 IC links can be defined.

� ICB-4 - A copper link available to connect the z/OS LP and the CF LP (in different
servers). The maximum distance between the two servers is 7 meters (the maximum
cable length is 10 meters). The link speed is 2 GB/sec. ICB4 links can only be defined in
peer mode. The maximum number of ICB4 links is 16. They are directly connected to the
MBA in the server cage through a dedicated STI (in a z9) and a dedicated IFB (in a z10
EC). Refer to “Self-timed interconnect (STI) and domains” on page 127 for more
information. This link supports transmission of server time protocol (STP) messages.

� ISC-3 - A fiber link defined in peer mode available to connect System z servers (CF LP
and z/OS LP in different servers with a distance of more than 7 meters). The maximum
distances are: 10 km; 20 km with an RPQ; or 100 km with dense wave division
multiplexing (DWDM) connections. The link speed is 200 MB/sec (for distances up to
10 km), and 100 MB/sec for greater distances (RPQ). The maximum number of ISC links
is 48. These links are located in a special set of I/O cards named “mother “and
“daughters”. The System z ISC-3 mother card occupies one slot in the I/O cage. The
ISC-3 mother card supports up to two ISC-3 daughter cards. Each ISC-3 daughter card
has two independent ports, with one PCHID associated with each active port. ISC-3
supports transmission of STP messages.
Chapter 4. System z connectivity 317

4.24 z10 EC Coupling Facility connectivity options

Figure 4-24 z10 EC Coupling Facility connectivity options

z10 EC Coupling Facility connectivity options
In addition to the connectivity options described in “z9 Coupling Facility links” on page 316, in
z10 EC the following options are available:

� Parallel Sysplex using InfiniBand (PSIFB) - fiber connects a z10 EC to another z10 EC, or
a z10 EC to a standalone CF on a z9 EC or z9 BC. It supports a maximum distance of 150
meters. PSIFB coupling links are defined as CHPID type CIB, and operate at 6 GB/sec
when connected to a z10 EC, or at 3 GB/sec when connected to z9 standalone CF. The
maximum number of PSIFB links is 32 per z10 EC. PSIFBs supports transmission of STP
messages. Refer to “Connecting PU cage with I/O cages” on page 222.

� z10 EC has Host Channel Adapter (HCA) fanouts residing on the front of the book - there
are unique HCA fanouts supporting I/O features and Parallel Sysplex coupling links in the
I/O cage. The HCA2-O fanout provides an optical interface used for coupling links. The
two ports on the fanout are dedicated to coupling links to connect to z10 EC or z9 servers,
or to connect to a coupling port in the same server using a fiber cable. Each fanout has an
optical transmitter and receiver module, and allows dual simplex operation. Up to 16
HCA2-O fanouts per book are supported and provide up to 32 ports for coupling links.

� InfiniBand coupling links offer up to 6 Gigabytes per second of bandwidth between z10 EC
servers and up to 3 GBps of bandwidth between System z10 and z9. InfiniBand coupling
links (CHPID type CIB) are designed to complement and enhance the support provided by
traditional coupling link technology (ICB-4 and ISC-3). InfiniBand coupling links can be
used to carry Server Time Protocol (STP) messages.
318 ABCs of z/OS System Programming Volume 10

4.25 All z10 EC coupling link options

Figure 4-25 All z10 EC coupling link options

All z10 EC coupling link options
Figure 4-25 shows all the possibilities for connecting z10 EC Coupling Facility links. Coupling
links are required in a Parallel Sysplex configuration to provide connectivity from the z/OS
images to the Coupling Facility. A properly configured Parallel Sysplex provides a highly
reliable, redundant, and robust System z technology solution to achieve near-continuous
availability. A Parallel Sysplex comprises one or more z/OS operating system images
coupled through one or more Coupling Facilities.

The type of coupling links used to connect a CF to an operating system logical partition is
important because of the impact of the link performance on response times and coupling
overheads. For configurations covering large distances, the time spent on the link can be the
largest part of the response time.

The types of links that are available to connect an operating system logical partition to a
Coupling Facility are:

ISC-3 The ISC-3 feature is available in peer mode only. ISC-3 links can be used to
connect to z10 EC, z9 EC, z9 BC, z990, or z890 servers. They are fiber links that
support a maximum distance of 10 km, 20 km with RPQ 8P2197, and 100 km with
Dense Wave Division Multiplexing (DWDM). ISC-3s operate in single mode only.
Link bandwidth is 200 MBps for distances up to 10 km, and 100 MBps when RPQ
8P2197 is installed. Each port operates at 2 Gbps. Ports are ordered in increments
of one. The maximum number of ISC-3 links per z10 EC is 48. ISC-3 supports
transmission of STP messages.
Chapter 4. System z connectivity 319

ICB-4 Connects a System z10 to a z10, z9 EC, z9 BC, z990, or z890. The maximum
distance between the two servers is seven meters (maximum cable length is 10
meters). The link bandwidth is 2 GBps. ICB-4 links can only be defined in peer
mode. The maximum number of ICB-4 links is 16 per z10 EC. ICB-4 supports
transmission of STP messages.

PSIFB Parallel Sysplex using InfiniBand connects a System z10 to another z10 or a
System z10 to a standalone CF on z9 EC or z9 BC. PSIFB links are fiber
connections that support a maximum distance of up to 150 meters. PSIFB coupling
links are defined as CHPID type CIB. The maximum number of PSIFB links is 32
per z10. PSIFBs supports transmission of STP messages.

IC Licensed Internal Code-defined links to connect a CF to a z/OS logical partition in
the same z10 EC. IC links require two CHPIDs to be defined and can only be
defined in peer mode. The link bandwidth is greater than 2 GBps. A maximum of 32
IC links can be defined.
320 ABCs of z/OS System Programming Volume 10

4.26 OSA-Express

Figure 4-26 OSA-Express connectivity

OSA-Express
OSA-Express features provide significant enhancements over OSA-2 in function,
connectivity, bandwidth, data throughput. OSA-Express is the integration of a channel and a
telecommunication control unit in an I/O card within an I/O cage. This integration makes the
OSA-Express a unique channel, recognized by the hardware I/O configuration as one of the
following channel types:

� OSD (Queued Direct I/O), refer to 4.27, “QDIO architecture” on page 323 for more
information.

� OSE (non-Queued Direct I/O.)

The integrated control unit depends on the type of connected network.

There are two types of OSA-Express in z9 and z10 EC servers:

� OSA-Express2

– OSA-Express2 Gigabit Ethernet (GbE) Long Wavelength (LX), feature code 3364

– OSA-Express2 Gigabit Ethernet (GbE) Short Wavelength (SX), feature code 3365

– OSA-Express2 1000BASE-T Ethernet, feature code 3366

– OSA-Express2 Gigabit Ethernet 10 GbE LR, feature code 3368

� OSA-Express3

– The OSA-Express3 10 GbE LR

Ethernet

z990

FENET

10 GbE LR

1000BASE-T

FENET
GbE

4/16/100 Mbps4/16/100 Mbps

GbE

FENET

z890

155 ATM

GbE

4/16/100 Mbps

1000BASE-T

10
 G

bE
 LR

4/16/100 Mbps

GbE

155 ATM

z800

FENET

z900

Token Ring

ATM
Network

Token Ring

z9 ECGbE
FENET10 GbE LR1000BASE-T
Chapter 4. System z connectivity 321

Each feature is explained in more detail in the following sections.

OSA-Express2 GbE LX (FC 3364)
This feature occupies one slot in an I/O cage and has two independent ports, with one PCHID
associated with each port. Each port supports a connection to a 1 Gbps Ethernet LAN
through a 9-micron single-mode fiber optic cable terminated with an LC Duplex connector.
This feature utilizes a long wavelength (LX) laser as the optical transceiver.

OSA-Express2 GbE SX (FC 3365)
This feature occupies one slot in an I/O cage and has two independent ports, with one PCHID
associated with each port. Each port supports a connection to a 1 Gbps Ethernet LAN
through a 62.5-micron or 50-micron multimode fiber optic cable terminated with an LC Duplex
connector. The feature utilizes a short wavelength (SX) laser as the optical transceiver.

OSA-Express2 1000BASET-EN (FC 3366)
This feature occupies one slot in the I/O cage and has two independent ports, with one
PCHID associated with each port. Each port supports connection to either a 1000BASE-T
(1000 Mbps), 100BASE-TX (100 Mbps), or 10BASE-T (10 Mbps) Ethernet LAN. The LAN
must conform either to the IEEE 802.3 (ISO/IEC 8802.3) standard or the DIX V2
specifications.

OSA-Express2 10 GbE LR (FC 3368)
This feature occupies one slot in an I/O cage and has one port that connects to a 10 Gbps
Ethernet LAN through a 9-micron single-mode fiber optic cable terminated with an LC Duplex
connector. The feature supports an unrepeated maximum distance of 10 km. It does not
support auto-negotiation to any other speed, and runs in full duplex mode only. The
OSA-Express 10 GbE LR feature is defined as CHPID type OSD.

OSA-Express3 10 GbE LR
This feature occupies one slot in an I/O cage and has two ports that connect to a 10 Gbps
Ethernet LAN through a 9-micron single mode fiber optic cable terminated with an LC Duplex
connector. Each port on the card has a PCHID assigned. The feature supports an unrepeated
maximum distance of 10 km.

Compared to the OSA-Express2 10 GbE LR feature, the OSA-Express3 10 GbE LR feature
has double port density (two ports per feature) and improved performance for standard and
jumbo frames. It does not support auto-negotiation to any other speed, and runs in full duplex
mode only. The OSA-Express3 10 GbE LR feature is defined as CHPID type OSD. CHPID
type OSD is supported by z/OS, z/VM. z/VSE, TPF, and Linux on System z.
322 ABCs of z/OS System Programming Volume 10

4.27 QDIO architecture

Figure 4-27 QDIO and non-QDIO data paths

Queued direct I/O (QDIO)
Queued Direct I/O (QDIO) is a highly efficient data transfer mechanism that satisfies the
increasing volume of TCP/IP applications and increasing bandwidth demands. It dramatically
reduces system overhead, and improves throughput by using system memory queues and a
signaling protocol to directly exchange data between the OSA-Express microprocessor and
TCP/IP software. SNA support is provided through the use of TN3270 or Enterprise Extender.

QDIO is supported with OSA-Express GbE SX and LX, OSA-Express 1000BASE-T Ethernet,
OSA-Express FENET, OSA-Express Token Ring, and OSA-Express 155 ATM MM and SM
(when configured for Ethernet or Token Ring LAN emulation).

In QDIO mode, the OSA-Express microprocessor communicates directly with the server’s
communications program, using data queues in main memory and utilizing Direct Memory
Access (DMA).

QDIO components
The components that make up QDIO are Direct Memory Access (DMA), Priority Queuing
(z/OS only), dynamic OSA Address Table building, LP-to-LP communication, and Internet
Protocol (IP) Assist functions.

QDIO versus non-QDIO
Figure 4-27 illustrates the much shorter I/O process of the QDIO-enabled feature compared
with non-QDIO (which has the same I/O path as the OSA-2 features). Consequently, I/O

Host
Memory

Host
Memory

Control
Unit

IOP

Channel

OSA-Express
non-QDIO

OSA-Express
QDIO
Chapter 4. System z connectivity 323

interrupts and I/O path-lengths are minimized. The advantages of using QDIO are: 20%
improved performance versus non-QDIO; the reduction of System Assist Processor (SAP)
utilization; improved response time; and server cycle reduction.

QDIO exploiters
The QDIO exploiters are:

HiperSockets The HiperSockets implementation is based on the OSA-Express Queued
Direct Input/Output (QDIO) protocol, hence HiperSockets is called internal
QDIO (iQDIO). The LIC emulates the link control layer of an OSA-Express
QDIO interface. HiperSockets copies data synchronously from the output
queue of the sending TCP/IP device to the input queue of the receiving
TCP/IP device by using the memory bus to copy the data, via an I/O
instruction.

OSA-Express This integration of channel path with network port makes the OSA-Express
a unique channel, recognized by the hardware I/O configuration as one of
the following channel types:

� OSD (Queued Direct I/O)

� OSE (non-Queued Direct I/O)

FCP mode FICON channels in FCP mode use the Queued Direct Input/Output (QDIO)
architecture for communication with the operating system. The QDIO
architecture for FCP channels derives from the QDIO architecture that had
been defined for the OSA-Express features and for HiperSockets
communications. It defines data devices that represent QDIO queue pairs,
consisting of a request queue and a response queue. Each queue pair
represents a communication path between an operating system and the
FCP channel. It allows an operating system to send FCP requests to the
FCP channel via the request queue. The FCP channel uses the response
queue to pass completion indications and unsolicited status indications to
the operating system.
324 ABCs of z/OS System Programming Volume 10

4.28 HiperSockets connectivity

Figure 4-28 Spanned and non-spanned HiperSockets defined

HiperSockets connectivity
z9 EC, z9 BC, z990, and z890 servers support up to 16 HiperSockets being defined. Enabling
HiperSockets requires the definition of a CHPID as type=IQD using HCD and IOCP. This
CHPID is treated like any other CHPID, and is counted as one of the available channels
within the z9 EC, z9 BC, z990, and z890 server.

The HiperSockets LIC on z9 EC, z9 BC, z990, and z890 servers supports:

� Up to 16 independent HiperSockets

� For z/OS, z/VM, Linux, and VSE/ESA, the maximum number of TCP/IP stacks or
HiperSockets communication queues that can concurrently connect on a single z9 EC, z9
BC, z990, or z890 server is 4096.

� Up to 12288 I/O devices across all 16 HiperSockets

� Up to 16000 IP addresses across all 16 HiperSockets

A total of 16000 IP addresses can be kept for the 16 possible IP address lookup tables.
These IP addresses include the HiperSockets interface, as well as Virtual IP addresses
(VIPA) and dynamic Virtual IP Addresses (DVIPA) that are defined to the TCP/IP stack.

Each HiperSockets uses a Channel Path ID (CHPID). The values 03, 04, and 05 (shown in
Figure 4-28) are the CHPIDs assigned to the HiperSockets.

With the introduction of the new channel subsystem, transparent sharing of HiperSockets is
possible with the extension to the Multiple Image facility (MIF). HiperSockets channels can be

LCSS 0 LCSS 1

LP15LP14 LP18

MIF 1 MIF 2 MIF F MIF 1 MIF 2 MIF 3 MIF F

CHPID
00

CHPID
02

CHPID
01

CHPID
FF

PCHID
10B

PCHID
10D

PCHID
10C

PCHID
20A

CHPID
04

SPAN

CHPID
00

CHPID
05

Share

CHPID
01

PCHID
245

PCHID
246

CHPID
22

PCHID
248

CHPID
FF

PCHID
249

CHPID
03

Share

Linux

HiperSockets CHPID 04

z/VM
LP 17

z/OS

HiperSockets CHPID 05

LP30
LinuxLinux

z/VM
LP1

HiperSockets CHPID 03

Guest
 1

Guest
 2

Guest
 1

Guest
 1

Guest
 1

Guest
 2

Guest
 1
Chapter 4. System z connectivity 325

configured to multiple channel subsystems (CSS). They are transparently shared by any or all
of the configured logical partitions without regard to the CSS to which the partition is
configured. Figure 4-28 on page 325 reflects spanned HiperSockets defined on a z9 EC, z9
BC, z990, or z890 server.

zSeries HiperSockets is a technology that provides high-speed TCP/IP connectivity between
virtual machines (under z/VM) within System z servers. It eliminates the need for any physical
cabling or external networking connection between these virtual machines.

zSeries HiperSockets is Licensed Internal Code (LIC) of the zSeries server, and the
communication is through system memory. The connections between the virtual machines
form a virtual LAN. HiperSockets uses internal Queued Direct Input/Output (iQDIO) at
memory speed to pass traffic between the virtual machines.

HiperSockets can be used to communicate among consolidated images in a single System z
server. All the hardware boxes running separate Linux servers can be eliminated and a much
higher level of network availability, security, simplicity, manageability, performance, and cost
effectiveness is achieved, as compared with servers communicating across a LAN.
326 ABCs of z/OS System Programming Volume 10

4.29 Hardware Configuration Definition (HCD)

Figure 4-29 HCD processing

HCD processing
To define the I/O configuration for the channel subsystem, run the Input/Output Configuration
Program (IOCP). To run IOCP, you need to specify:

� Channel subsystem

� Logical partitions

� Channel paths on the server complex

� Control units attached to the channel paths

� I/O devices assigned to the control units

The Hardware Configuration Definition (HCD) can help you in such tasks; refer to 6.1, “What
is HCD” on page 370 for more information.

SYSPROG (TSO)

HCDHCD

IODF
Production

SQA (UCBs)

z/OS

UCWs

LPAR CODE

L
P
3

L
P
2

L
P
1

H
S
A

IOCP

IOCDS

Laptop

Support Element

POR

to HMC
PLEX

Describes the configuration for several
servers in the HMC PLEX

SQA (UCBs)
 z/OS

CFCC

IPL
Chapter 4. System z connectivity 327

328 ABCs of z/OS System Programming Volume 10

Chapter 5. Logical partition (LPAR)
concepts

This chapter explains what a logical partition (LP) is, and how to define LPs in a zSeries and
z9 processor. Here we use the acronym LPAR to describe the LIC software that partitions the
CPC and LP for each created logical partition.

zSeries and z9 servers are capable of running in two modes, LPAR mode and Basic mode, as
explained here:

LPAR mode Logically partitioned (LPAR) mode is a server Power-on Reset mode that
enables use of the Processor Resource/System Manager (PR/SM) feature. It
allows an operator to allocate server hardware resources (including CPs,
central storage, and channel paths) among logical partitions.

In LPAR mode, z/OS, as the operating system, runs in each LP in the
machine. You can divide your server complex into PR/SM logical partitions
(LPs).

Basic mode Basic mode is a server mode that does not use logical partitioning; the server
runs one copy of the z/OS operating system.

In LPAR mode, the resources of a server complex can be distributed among multiple control
programs that can run on the same server complex simultaneously. Each control program has
the use of resources defined to the logical partition in which it runs.

5

Note: The z990 and z9 servers only run in LPAR mode. Basic mode is not supported.
© Copyright IBM Corp. 2008. All rights reserved. 329

5.1 History of operating environments

Figure 5-1 History of operating environments

Uniprocessors
When S/360 was first announced, the available hardware at the time was a single CP server
containing less storage and fewer MIPS than the cheapest pocket calculator available
today—and it was also considerably larger and more expensive! As the business world
discovered more and more uses for this new tool, the demand for MIPS outpaced the rate at
which CP speed was progressing.

Multi-processors
As a result, IBM introduced the ability to add a second CP to the server. This provided more
power, and potentially more availability, since you could conceptually continue processing
even if one of your CPs failed. These machines were available either as Attached Processors
(APs), where only one CP had an I/O subsystem, and Multi-processors (MPs), where each
CP had access to its own I/O subsystem.

In addition to providing more capacity on an MP, the servers, I/O channels, and storage could
be physically “partitioned”, meaning that two separate copies of the operating system could
be run on the servers, if desired.

The next major hardware advance, in terms of flexibility for running multiple copies of the
operating system, was Processor Resource/System Manager (PR/SM) with the LPAR feature,
introduced on the IBM 3090™ range of processors. PR/SM provided the ability, even on a
server with just one CP, to run up to four logical partitions (LPs). This meant that you could
split your production applications across several system images, and have a separate

Uniprocessors (UP)

Multi-processors (MP) and physical partitioning

Introduction of PR/SM and LPAR mode

Base sysplex

Parallel Sysplex

Intelligent Resource Director
330 ABCs of z/OS System Programming Volume 10

development system, or a test system, all on a server with a single CP. Such a configuration
did not provide much protection from CP failures (if you had just one CP), but it did help
protect against software failures. It also provided the ability to create a test environment at a
lower cost, thus enabling you to ensure that all software was tested before your production
applications were run on it.

Base sysplex
All the enhancements to this point were aimed at providing the ability to break a single, large
system into a number of smaller, independent system images. However, as applications grew
and system management became a concern, a mechanism was required to provide closer
communication with, and control of, the systems. To address this need, MVS/ESA™ Version
4.1 introduced the concept of a “sysplex” (now called a Base sysplex, to differentiate it from a
Parallel Sysplex). This provided a new MVS component known as the Cross System Coupling
Facility (XCF), which allows applications running on multiple images to work more
cooperatively without having to incur significant overhead or complex programming. This step
laid the foundation for data sharing, which was introduced by the next significant advance
called Parallel Sysplex, introduced with MVS/ESA Version 5.1.

Parallel Sysplex
Parallel Sysplex allows a single image infrastructure to have multisystem data sharing with
integrity, availability, and scalability not possible with earlier data sharing mechanisms. These
benefits are enabled by a new external server/memory known as a Coupling Facility (CF).
Coupling facilities were initially run on dedicated servers (9674s), but have since been
enhanced to run in special LPs on the general purpose 9672s and, more recently, zSeries
and z9 servers.

Intelligent Resource Director (IRD)
This brings us to the present, with the announcement of the zSeries and z9 servers and the
z/OS operating system, and Intelligent Resource Director. A typical medium-to-large S/390
configuration contains a variety of server types and sizes, generally operating in LPAR mode,
and supporting images that run batch, OLTP, Web servers, application development,
Enterprise Resource Planning (such as SAP R/3®), Business Intelligence, and various other
workloads. Within each LP, WLM in Goal mode is responsible for allocating resources such
that it helps the most important workloads (as specified by the installation) meet their Service
Level Agreement objectives. WLM has been providing this capability since MVS/ESA 5.1, and
is generally considered to be very effective at this task. Moving up a level, there is PR/SM
Licensed Internal Code (LIC), with responsibility for allocating the physical CPU resource,
based upon an installation-specified set of weights for the LPs.

So, WLM manages the allocations of the resources that are given to the LP by PR/SM, and
PR/SM divides processing resources among the LPs on the server. WLM knows the relative
importance of the work running in each LP, and is ideally placed to decide what the weight of
each LP should be, so that PR/SM will give the CPU to whichever LP needs it the most in
order to help meet the goals of the business.

Allowing WLM and PR/SM to communicate is one of the functions delivered by IRD.
Chapter 5. Logical partition (LPAR) concepts 331

5.2 Server in basic mode

Figure 5-2 Server in basic mode

Server in basic mode
When a server is in basic mode, all server resources (CPs, storage, and channels) are
available to the one operating system. All the physical CPs are used in dedicated mode for
the one operating system. Any excess CP resource is wasted, since no other system has
access to it.

Situations still exist where servers are run in Basic mode (for example, if the z/OS system
needs to use the entire capacity of the server). However, because of the huge capacity of
modern servers, this is becoming less and less common.

1 operating system

z/OS

z9 EC
Server
332 ABCs of z/OS System Programming Volume 10

5.3 Server in LPAR mode

Figure 5-3 Server in LPAR mode

Server in LPAR mode
Processor Resource/System Manager (PR/SM) is a standard feature of IBM System z
servers. It consists of two capabilities:

� Multi High Performance Guest Support (MHPGS) in VM

This allows several preferred guests under z/VM, all with performance very close to that
available when running native.

� Logical Partitioning (LPAR)

This allows a server to be divided into multiple logical partitions. This capability was
designed to help in isolating workloads in different z/OS images, so you can run
production work separately from test work, or even consolidate multiple servers into a
single server.

An LP has the following properties:

� Each LP is a set of physical resources (CPU, storage, and channels) controlled by just one
independent image of an operating system, such as z/OS, Linux, CFCC, z/VM, or VSE.

� You can have up to 60 LPs in a server.

� Each LP is defined through IOCP/HCD. For example, the IOCP RESOURCE PARTITION
= ((LP1,1),(LP2,2)) statement defines two LPs. A power-on reset (POR) operation is
required to add or remove LPs.

1 to 60 Logical Partitions

z
/
V
M

L
I
N
U
X

z
/
O
S

z
/
O
S

L
I
N
U
X

z
/
O
S

z
/
O
S

z
/
O
S

z
/
O
S

z
/
O
S

z9 EC
Server

z
/
O
S

z
/
O
S

z
/
O
S

z
/
O
S

z
/
O
S

Chapter 5. Logical partition (LPAR) concepts 333

� LP options, such as the number of logical CPs, the LP weight, whether LPAR capping is to
be used for this LP, the LP storage size (and division between central storage and
expanded storage), security, and other LP characteristics are defined in the Activation
Profiles on the HMC.

� Individual physical CPs can be shared between multiple LPs, or they can be dedicated for
use by a single LP.

� Channels can be dedicated, reconfigurable (dedicated to one LP, but able to be switched
manually between LPs), or shared (if ESCON or FICON).

� The server storage used by an LP is dedicated, but can be reconfigured from one LP to
another with prior planning.

� Although it is not strictly accurate, most people use the terms LPAR and PR/SM
interchangeably. Similarly, many people use the term LPAR when referring to an individual
logical partition. However, the term LP is technically more accurate.
334 ABCs of z/OS System Programming Volume 10

5.4 Shared logical CPs example

Figure 5-4 Shared CPs example

Server CPs
Physical CPs can be dedicated or shared, as shown by the 10 CPs in Figure 5-4. If dedicated,
the physical CP is permanently assigned to a logical CP of just one LP. The advantage of this
is less LPAR overhead. An operating system running on a server in Basic mode gets
marginally better performance than the same server running z/OS as a single LP with
dedicated CPs. This is because, even with dedicated CPs, LPAR still gets called whenever
the LP performs certain operations (such as setting the TOD clock).

If you share CPs between LPs rather than dedicating them to a single LP, there is more LPAR
overhead. The LPAR overhead increases in line with the proportion of logical CPs defined in
all the active LPs to the number of shared physical CPs.

IBM has a tool (LPARCE) which estimates the overall LPAR overhead for various
configurations. Your IBM marketing representative can work with you to identify the projected
overhead of various configurations and workload mixes. If you are already in LPAR mode,
RMF reports this overhead in the LPAR Activity report.

While the use of shared CPs does cause more overhead, this overhead is nearly always more
than offset by the ability to have one LP utilize CP capacity that is not required by a sharing
LP. Normally, when an operating system that is using a shared CP goes into a wait, it releases
the physical CPs, which can then be used by another LP. There are a number of controls
available that let you control the distribution of shared CPs between LPs.

MVS5

z9 EC
Server
With 10

CPs

MVS4MVS3MVS2MVS1

CPCPCP CP
CP

CPCP CP CPCP

Dedicated
Physical CPs

Shared
Physical CPs

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

5-LPARs
MVS1 to MVS5
Chapter 5. Logical partition (LPAR) concepts 335

It is not possible to have a single LP use both shared and dedicated CPs, with the exception
of an LP defined as a Coupling Facility (CF).

One of the significant reasons for the increased number of LPs is server consolidation, where
different workloads spread across many small machines may be consolidated in LPs of a
larger server. LPAR also continues to be used to run different environments, such as system
programmer test, development, quality assurance, and production, in the same server.

LPAR management
Because LPAR management of the shared CP environment is central to both components of
WLM LPAR CPU Management, we describe it in some detail description of it here.

Figure 5-4 on page 335 shows a 10-CP IBM zSeries 990 16-way server. We use the term
“physical CP” to refer to the actual CPs that exist on the server. We use the term “logical CP”
to refer to the CPs each operating system has available on which to dispatch work. The
number of logical CPs in an LP must be less than or equal to the number of physical CPs.

As shown in Figure 5-4 on page 335, two CPs are dedicated to LP MVS1. The two dedicated
CPs are for use exclusively by MVS1. For this LP then, the number of physical CPs is equal to
the number of logical CPs.

The remaining eight CPs are shared between the LPs: MVS2, MVS3, MVS4, and MVS5.
Each of these LPs can use any of the shared physical CPs, with a maximum at any one time
equal to the number of online logical CPs in that LP. The number of logical CPs per LP is:

� Six logical CPs in LP MVS2
� Three logical CPs in LP MVS3
� Two logical CPs in LP MVS4
� Two logical CPs in LP MVS5

The number of physical CPs does not have to be equal to the number of logical CPs in an LP
when sharing CPs. An operator could vary logical CPs online and offline, as if they were
physical CPs. This can be done through the z/OS CONFIG command.

A LP cannot have more logical CPs online than the number defined for the LPs in the HMC.

In order to determine the correct number of logical CPs in an LP, take the following variables
into consideration: LPAR overhead; the level of parallelism you want; correct use of the
assigned weight; the number of physical CPs used by the LP; the desired logical CP speed.
Sometimes the correct value in the night shift is not the best for the mid-morning workload,
and at other times, it varies from one second to another. Refer to z/OS Intelligent Resource
Director, SG24-5952, for more comprehensive information about this topic.

Note: Capacity Upgrade on Demand (CUoD) provides the ability to define reserved CPs for
an LP. These reserved CPs represent future CPs that may be installed nondisruptively on
the server, and can then be nondisruptively added to the LP.
336 ABCs of z/OS System Programming Volume 10

5.5 LPAR dispatching and shared CPs

Figure 5-5 LPAR logical CP dispatching

LPAR dispatching
The code that provides the LPAR dispatching function is called LPAR Scheduler Licensed
Internal Code (LIC). LPAR LIC logic executes on all of the physical CPs. LPAR LIC dispatches
a logical CP on a physical CP (the one the LPAR LIC is currently running on) by issuing the
Start Interpretive Execution (SIE) instruction, with the logical CP represented by a state
control block, as a parameter.

This causes the operating system code or application code in the LP to execute on the
physical CP, through the logical CP. The logical CP is dispatched on the physical CP by
copying the LP’s logical CP status (PSW, registers, and so forth) from HSA to the
corresponding actual entities.

This function can even provide a different set of instructions for each LP, depending on the
architecture defined for the LP. For example, the one physical CP could be used to dispatch
z/OS, CFCC, and Linux LPs one after the other. When the logical CP is intercepted, the
logical CP status is saved in HSA and the LPAR LIC is automatically dispatched on the
physical CP again. This code then chooses another logical CP to dispatch, and the whole
process starts again.

Conceptually, this process is similar to the way that the z/OS dispatcher works. For example:

� The LPAR Scheduler LIC corresponds to z/OS dispatcher code.
� Each logical CP corresponds to an z/OS dispatchable unit (task, or service request).
� The logical CP state information stored in the HSA corresponds to the TCB or SRB.

Logical CP
ready queue Physical CPs

CP0 CP3CP2CP1
MVS2
LCP2

MVS3
LCP2

MVS3
LCP0

MVS2
LCP4

MVS4
LCP1

CP7

MVS2
LCP3

CP6

MVS4
LCP0

CP5

MVS3
LCP1

CP4

MVS5
LCP0

MVS2
LCP1

MVS2
LCP0

MVS5
LCP1

MVS2
LCP5

CPC in LPAR Mode

1

2

3

P R / S M4

5

Chapter 5. Logical partition (LPAR) concepts 337

� The SIE instruction corresponds to the LPSW (Load PSW) instruction.
� An intercept of a logical CP corresponds to an interrupt for a z/OS dispatchable unit.

Information about the possible intercepts for a logical CP is provided in 5.6, “Reasons for
intercepts” on page 339.

Figure 5-5 on page 337 illustrates the flow of execution, where we have eight shared physical
CPs. Let’s examine this now.

CP dispatching
Every logical CP represents a dispatchable unit to LPAR LIC. In Figure 5-5 on page 337,
MVS2 has 6 logical CPs, MVS3 has 3 logical CPs, MVS4 has 2 logical CPs, and MVS5 also
has 2 logical CPs. This gives us a total of 13 logical CPs, so LPAR LIC has up to 13
dispatchable units to manage in our environment. LPAR LIC is responsible for dispatching
logical CPs on physical CPs.

When a logical CP is ready to run (not in wait), it is placed on the logical CP ready queue.
This queue is ordered by a priority that is based on the LP weight and the number of logical
CPs, as declared by the installation. This is discussed in more detail in z/OS Intelligent
Resource Director, SG24-5952.

CP execution
So how does a logical CP move from being on the ready queue to executing on a physical CP,
and where is the processing performed that does this? As mentioned before, LPAR LIC,
sometimes referred to as the LPAR scheduler, is responsible for dispatching a logical CP on a
physical CP. LPAR LIC executes on each physical CP. When it is ready to dispatch a logical
CP on a physical CP, LPAR LIC issues a SIE instruction, which switches the LPAR LIC code
from the physical CP and replaces it with the code running on the logical CP.

The steps that occur in dispatching a logical CP, illustrated in Figure 5-5 on page 337,are as
follows:

1 - The next logical CP to be dispatched is chosen from the logical CP ready queue based on
the logical CP weight.

2 - LPAR LIC dispatches the selected logical CP (LCP5 of MVS LP) on a physical CP in the
server (CP0, in the visual).

3 - The z/OS dispatchable unit running on that logical server (MVS2 logical CP5) begins to
execute on physical CP0. It executes until its time slice (generally between 12.5 and 25
milliseconds) expires, or it enters a wait, or it is intercepted for some reason.

4 - As shown in Figure 5-5 on page 337, the logical CP keeps running until it uses all its time
slice. At this point the logical CP5 environment is saved and control is passed back to LPAR
LIC, which starts executing on physical CP0 again.

5 - LPAR LIC determines why the logical CP ended execution and requeues the logical CP
accordingly. If it is ready with work, it is requeued on the logical CP ready queue and step 1
begins again.

This process occurs on each physical CP. As shown in Figure 5-5 on page 337 with 8 physical
CPs shared, LPAR LIC code executes in each of them. This explains how a logical CP is
dispatched from the logical CP ready queue to a physical CP.
338 ABCs of z/OS System Programming Volume 10

5.6 Reasons for intercepts

Figure 5-6 Reasons for intercepts

Intercept reasons
Every time that a physical CP is taken away from a logical CP, we have an intercept. The
causes for an intercept are:

� End of the time slice. A time slice is the length of time that a logical CP is dispatched on a
physical CP. The use of time slicing ensures that a task in a loop cannot cause severe
performance problems in other LPs by monopolizing a physical CP.

The default duration for a time slice is limited to between 12.5 and 25 ms. The user can
override this and specify their own duration for a time slice. However, this is not
recommended as it is unlikely that the user’s specification is more efficient.

The formula used for the default time slice is:

(25 ms * number of physical CPs)
———
total number of logical CPs not in stopped state

� When it is running over its weight target, a logical CP is preemptable by an I/O for an
underweight target logical CP. See “LPAR weights” on page 343 to get more information
on this topic.

� z/OS is starting a spin loop and voluntarily gives up its current time slice. z/OS knows that
it is functioning in an LP. This is so that it can give control of a physical CP back to LPAR
LIC in certain circumstances (a spin loop, for example). Generally this happens when it is

A logical CP continues processing on a physical CP
until one of the following events (intercepts) occur:

Its time slice ends (12.5 - 25ms)
It enters a CPU wait state
When it runs over its weight target, it is preemptable by
an I/O for an underweight target logical CP
z/OS starts to spin waiting for an event (eg. waiting for
locks) - in this case, it will give up its current time slice

The duration of a time slice is based on either:
User option

User selects a time slice interval on the HMC
LPAR dynamically determined

LPAR determines dynamically best value
(recommended)
Chapter 5. Logical partition (LPAR) concepts 339

not doing any productive work, and is an example of an event-driven intercept. See “LPAR
event-driven dispatching” on page 341, for more information on this topic.

However, in general operations, z/OS behaves as if it is processing on a dedicated server
where the number of physical CPs is equal to the number of defined logical CPs. One
example of this is the determination of the SRM constant. Even though z/OS knows the
number of physical CPs that are actually installed in the server, WLM uses an SRM
constant (to convert CPU seconds to CPU service units) that is based on the number of
logical CPs in this LP.

For consistency this is the best approach; however, it does not take into consideration that
the MP effect is related to the number of physical CPs—and not to the number of logical
CPs. The SRM constant varies when the operator changes the number of logical CPs
online, through the CONFIG command.

� The operating system places the logical CP in a wait (because of a no work-ready
situation). This is another case of an event-driven intercept; refer to 5.7, “LPAR
event-driven dispatching” on page 341, for more information about the event-driven
function of LPAR.

Duration of time slice
Although we recommend against performing these actions, the installation can:

� Set the time slice value in HMC. Rather than letting PR/SM dynamically determine the
time slice, you can set a specific value, as low as 1 millisecond. See “LPAR event-driven
dispatching” on page 341 for more information about this topic.

� Inhibit event-driving dispatching. See “LPAR event-driven dispatching” on page 341 for
more information about this topic.

Note: The following case is not considered an intercept:

If the operating system wants to execute some action not allowed in LPAR mode, such as
changing the TOD clock (its contents are global and not local), the LPAR LIC gains control
to simulate the action and immediately returns control to the same logical CP.

The simulation provided by LPAR consists of keeping a TOD offset in the descriptor block
of the logical CP, so that when z/OS asks for the time, the contents of the real TOD are
adjusted by the amount contained in the offset.
340 ABCs of z/OS System Programming Volume 10

5.7 LPAR event-driven dispatching

Figure 5-7 LPAR event-driven dispatching

Event-driven dispatching
Event-driven dispatching is the ability of LPAR to take a physical CP away from a logical CP
before its time slice ends, generally because it is not doing any productive work. All cases of
intercepts, except where the time slice ends, are examples of event-driven intercepts. Setting
up your LPs to be event-driven (this is the default) is highly recommended because it ensures
the most efficient use of CP resources.

The opposite of event-driven is time-driven, where the only time a logical CP will be
intercepted is at the end of the time slice. Although this is not recommended, it can still be
specified by the installation.

As shown in Figure 5-7, the steps showing event-driven dispatching are as follows:

1 - LPAR LIC executing on physical CP0 selects LP MVS2 logical CP5 to dispatch on physical
CP0.

2 - LPAR LIC dispatches MVS2 logical CP5 on CP0 through the SIE instruction.

3 - The z/OS dispatchable unit on MVS2 logical CP5 is executing on physical CP0. If it were
to use all its time slice, it would execute for between 12.5 and 25 milliseconds (ms). In this
example, it does not use all of its time slice.

4 - MVS2 logical CP5 enters a valid wait after 8 ms. This is detected by the LPAR LIC and the
time slice is ended at 8 ms.

Physical CPs

CP0 CP3CP2CP1 CP7
MVS2
LCP3

CP6
MVS4
LCP0

CP5
MVS3
LCP1

CP4
MVS2
LCP0

MVS2
LCP1

MVS2
LCP0

MVS5
LCP1

MVS2
LCP5

CPC in LPAR Mode

Logical CP
ready queue

MVS2
LCP5

MVS3
LCP2

MVS3
LCP0

MVS2
LCP4

MVS4
LCP1

1

2

3

LL
PP
AA
RR

LL
II
CC

4

5

SIE MVS2
LCP5

Default time slice duration 12.5 - 25 ms

actual time slice

MVS2 LCP5 enters
a wait

8 ms
Chapter 5. Logical partition (LPAR) concepts 341

5 - MVS2 logical CP5 is returned to be requeued in a wait queue (waiting for an interrupt) and
another ready logical CP is chosen for dispatch on physical CP0.

Duration of time slice
The user has two options in the HMC to affect the event-driven dispatching function:

� Time slice value, which can be:

– Dynamically determined by the system (default). This is selected by checking the box
Dynamically determined by the system.

This indicates that the server is to use defaults. That is, event-driven dispatching is
turned on and the time slice duration is determined by the system. We highly
recommend that you use this default.

– Determined by the user. This is selected by checking the box Determined by the user.

In this case, you have to select your own time slice duration for use with event-driven
dispatch. LPAR still uses event-driven dispatching, but overrides the default time slice
duration with the value that the user has specified here.

� Switch off event-driven dispatching by checking the box Do not end the time slice if a
partition enters a wait state.

If you switch off event-driven dispatching, you must specify a value for the dispatching
interval. You can use the normal default values of between 12.5 and 25 milliseconds, or
select values of your own. Once again, we do not recommend using this option because
there are very few, if any, configurations that will perform better with event-driven
dispatching turned off.

The RMF LPAR Activity report shows the status of event-driven dispatching (Wait Completion
= NO means that event-driven dispatching is being used), and whether the time slice value is
determined dynamically or has been set by the user. This part of the LPAR Activity report is
shown here:

LPAR ACTIVITY REPORT

WAIT COMPLETION NO

DISPATCH INTERVAL DYNAMIC
342 ABCs of z/OS System Programming Volume 10

5.8 LPAR weights

Figure 5-8 LPAR weights

LPAR weights
LPAR weights are used to control the distribution of shared CPs between LPs. Therefore, LPs
with dedicated CPs do not use LPAR weights.

LPAR weights determine the guaranteed (minimum) amount of physical CP resource an LP
should receive (if needed). This guaranteed figure may also become a maximum when either:

� All the LPs are using all of their guaranteed amount (for example, if all LPs were
completely CPU-bound).

� The LP is capped using traditional LPAR capping.

An LP may use less than the guarantee if it does not have much work to do. Similarly, it can
use more than its weight if the other LPs are not using their guaranteed amount.

LPAR LIC uses weights and the number of logical CPs to decide the priority of logical CPs in
the logical CP ready queue. The following formulas are used by LPAR LIC in the process on
controlling the dispatching of logical CPs:

� WEIGHT(LPx)% = 100 * WEIGHT LPx / SUM_of_ACTIVE LPs WEIGHTs

� TARGET(LPx) = WEIGHT(LPx)% * (# of NON_DEDICATE_PHYS_CPs)

� TARGET(LCPx)% = TARGET(LPx) / (# of LCPs_in_LPx) * 100

MVS5MVS4MVS3MVS2

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Weight = 50 Weight = 15 Weight = 10 Weight = 25

Each Physical CP = 200 MIPS

CPCPCP CPCP CPCP CP
Chapter 5. Logical partition (LPAR) concepts 343

Formula definitions
The definitions of the formula terms are given here:

WEIGHT(LPx)% This indicates the percentage of the total shared physical CP capacity
that will be guaranteed to this LP. This percentage will vary depending
on the weights of all the active LPs. In the example, the MVS2 value is
50%, assuming all the LPs are active.

TARGET(LPx) This indicates, in units of shared physical CPs, how much CP resource
is guaranteed to the LP. This figure cannot be greater than the number
of logical CPs in the LP. This is because you cannot use more physical
CPs than the number of logical CPs you have defined—each logical CP
can be dispatched on only one physical CP at a time. So, even if there
are eight physical CPs available, an LP that has been defined with only
four logical CPs can only ever use four of the physical CPs at one time.

If you specify a weight that guarantees you more capacity than can be
delivered by the specified number of logical CPs, the additional
unusable weight will be distributed among the other LPs.

In the visual, MVS2’s WEIGHT(LPx)% is 50% of eight physical CPs,
meaning that this LP should be given the capacity of four physical CPs.

TARGET(LCPx)% This takes the TARGET(LPx) value (that is, the number of physical CPs
of capacity) and divides that by the number of logical CPs defined for
the LP. The result determines the percentage of a physical CP that
should be given to each logical CP. This in turn determines the effective
speed of each logical CP. As shown in Figure 5-8 on page 343, the
MVS2 value is 4 / 6 * 100, that is, each MVS2 logical CP will be
guaranteed 66% of the capacity of a physical CP.

Over time, the average utilization of each logical CP is compared to this
value. If Target is less than Current, then the logical CP is taking more
CP resource than the guarantee and its priority in the ready queue is
decreased. It does not mean that it is prohibited from consuming CP; it
simply means that it will tend to sit lower in the queue than other logical
CPs that have used less than their guaranteed share of the CP
resource. Also, these logical CPs are going to be preemptable by an I/O
interrupt for a logical CP that is behind its target.

If Target is greater than Current, then the logical CP is taking less CP
resource than the guarantee and its priority in the ready queue is
increased. This means that it has a better chance of being dispatched
on a physical CP. Also, these logical CPs are not going to be
preempted by an I/O interrupt for another logical CP.

The current logical CP utilization is shown by RMF in the CPU Activity report (LPAR Busy%)
and in the LPAR Activity report (Logical Processors Total).This figure includes the CPU time
used by LPAR LIC within the LP.

Determine optimum number of logical CPs
Now that we have described how logical CP dispatching works, and have explained the use of
the logical CP ready queue, we can address the question of what is the optimum number of
logical CPs for an LP.
344 ABCs of z/OS System Programming Volume 10

As shown in Figure 5-8 on page 343, MVS2 has six logical CPs, each of which must get a
share of the four physical CPs, as guaranteed by TARGET(LPx). This means that the
operating system in MVS2 can run six units of work simultaneously. But it also means that
each logical CP does not get a complete physical CP of service (it gets 66%, as we showed
previously).

If we change the number of logical CPs that MVS2 has to four, then each logical CP is
approximately equal to a physical CP, and will appear to have a higher effective speed. The
total amount of CP service the LPAR receives does not change.

When a logical CP does not equal a physical CP of service, the MIPS per logical CP appears
to be less than the MIPS of the physical CP. In Figure 5-8 on page 343, MVS5 is the only LP
where a logical CP equals a physical CP. The apparent server speed of each LP is listed in
Table 5-1.

Table 5-1 Apparent server speed of each LP

Each logical CP receives a number of time slices on a physical CP. The MIPS that a logical
CP delivers depends on how many time slices it receives over a period of time in comparison
to the number of time slices available during this time. The number of time slices the logical
CP receives depends on the priority in the ready queue, which depends on the LPs’s weight
and its number of logical CPs.

As shown in the visual, each logical CP in MVS2 gets a smaller number of time slices than
each logical CP on MVS5. This means that more concurrent units of work can be dispatched
in MVS2 than in MVS5, because MVS2 has six logical CPs. However (assuming that MVS2
and MVS5 are operating at the limit implied by their weights), each logical CP on MVS2
appears to be a slower CP compared to MVS5 because its four physical CPs of service are
divided between six logical CPs.

MVS5’s weight gives it two physical CPs of service divided between its two logical CPs.
Therefore, MVS5’s CPs appear to be faster than those of MVS2. It’s like the old question: “Is it
better to have a server with a large number of slower CPs, or one with a small number of fast
ones?”

LPAR
name

Weight Logical
CPs

Percent of
physical
CPs

Physical
CPs per
LP

MIPS per
logical CP

Total
MIPS
per LP

MVS2 50 6 50% 4 133 800

MVS3 15 3 15% 1.2 80 240

MVS4 10 2 10% 0.8 80 160

MVS5 25 2 25% 2 200 400

Totals 100 13 100% 8 NA 1600
Chapter 5. Logical partition (LPAR) concepts 345

5.9 z9 PU pools

Figure 5-9 z9 PU pools

z9 PU pools
Prior to the z9, there were two PU pools: CPs and the other types of PUs in a pool known as
an ICF pool. With the z9, there are the following pools: CPs, IFLs, ICFs, zAAPs and zIIPs.

New RMF reports show all LPs involved within all pools. The rules for managing pools are as
follows:

� Logical PUs are dispatched from a supporting pool only (for example, logical CPs are
dispatched from the CP pool only).

� The pool “width” limits the maximum number of shared logical PUs, when an LP is
activated.

� A PU is placed in its respective pool by the following actions:

– Activate (POR)

– Concurrent Upgrade – On/Off Capacity on Demand (CoD), Capacity BackUp (CBU),
Customer Initiated Upgrade (CIU), Capacity Upgrade on Demand (CUoD) MES

– Dedicated LP deactivation

– Dedicated LP configure logical PU OFF

� A PU is removed from its respective pools by the following actions:

– Concurrent downgrade – On/Off CoD, CBU, PU conversion MES

– Dedicated LP activation (“width” permitting)

Deriving Target LPx (10 CPs, 3 zAAPs,1 ICF,2 IFLs)Deriving Target LPx (10 CPs, 3 zAAPs,1 ICF,2 IFLs)

250 /100

750 /100
346 ABCs of z/OS System Programming Volume 10

– Dedicated LP configure logical PU ON (“width” permitting)

� Target LPx or PU sharing is calculated from the right pool, and in the HMC there is a
weight per each pool in the same LP.

Figure 5-9 on page 346 depicts the following:

� On the z990:

– Target (MVS1) = 10 x (250/1000) = 2.5 CP and 6 x (250/1000) = 1.5 zAAP.

The consequence of Weight applying to the ICF pool, which contains non-zAAP PUs,
is that your weight guarantee could be different than expected.

� On the z9:

– Target LPx (or LPAR Share) =

Pool PUs x (LPAR Pool Weight)/(Total Pool Weight)

• Cannot exceed number of online logical PUs in the LPx

• There are separate LPAR weights for CPs and zAAPs, as shown in Figure 5-9. The
weight for the CP is 250. The weight for the zAAP is 100.

– Pool PUs (Physical): CP =10, ICF =1, IFL=2, zAAP=3

– Total Pool Weights: CP = 1000, zAAP = 1000, IFL= 400, ICF= 100

– For LP MVS1: 10 x (250/1000) = 2.5 CP share and 3 x (250/1000) = 0.75 zAAPs

– There is no interaction among engine weights from different pools.
Chapter 5. Logical partition (LPAR) concepts 347

5.10 Capping workloads

Figure 5-10 Capping workloads

Capping workloads
Capping is used to limit, artificially, the CPU consumption rate of a specific set of dispatchable
units (as TCBs and SRBs), usually associated with user transactions workload.

Reasons for capping
Here we discuss common reasons why people cap LPs. (Although these may be common
reasons, we do not necessarily agree that capping is a good way to achieve your objective in
all these cases.)

� The LP is being paid for on a MIPS basis.

With many businesses outsourcing their computing environments, using capping becomes
an easy way to ensure that customers only get the CP resource they pay for. However, the
capping is implemented by a peak value, a limit that you cannot go beyond, and not as an
average.

� You want to isolate test system usage from production usage.

A test system is often placed on the same server as production systems. As with many
production systems, their utilization depends on the time of day; some systems may be
used for online processing, while other systems may be used for overnight batch
processing. Any spare CP resource is required for the production systems. By capping the
test system, you ensure that any available CP resource, above that guaranteed to the test
LP, will be available for use by the production systems.

Reasons for capping

Types of capping in System z:

LPAR capping (through Weights or by decreasing
the number of logical CPs), where the full LP is
capped

WLM Resource Group capping, where just a set of
service classes are capped

Soft capping (LPAR plus WLM), where the full LP is
capped

Discretionary capping (a hidden capping), where the
happy service classes are capped (not covered in
this text)
348 ABCs of z/OS System Programming Volume 10

While this is a popular use of capping, in our opinion, if you specify the right weights for the
test and production LPs, LPAR LIC will ensure that the production LP gets the capacity
that has been guaranteed by its weight. Keep in mind that capping the test LP does not
allow the production LP get more capacity if both LPs are 100% busy—all it does is stop
the test LP from using unused cycles above its Target(LPx).

� You want to be able to stop a CF LP from consuming all available CP resources.

As you probably know, the Coupling Facility Control Code operates in a continuous loop,
testing for new messages on its CF links. As a result, a CF LP will normally consume its
full share of the server, even when there is no real work to be done. If the CF LP is using
operating system CPs, as opposed to ICF CPs, this can impact the production LP,
stopping that LP from exceeding its Target(LPx).

However, the solution in this case is not to cap the test CF, but instead to use the Dynamic
Dispatching feature in the CFCC. With this, the CFCC does not loop when there is no
work. This should only be used for a test CF. Generally speaking, production CFs should
use an ICF or a standalone CF, rather than using operating system CPs. The use of
Dynamic CF Dispatching generally results in CF response times that are not acceptable
for a production CF.

� Some workloads are suspected to be in a loop.

If you have an application program that is in the habit of looping, but you do not want to
cancel it right away (you are not sure) and you do not want this LP to consume more than
its share of CP resources, you may use LPAR capping to limit the CP consumption of this
LP.

However, there are better ways to control this. The first, obviously, is to fix the application
to prevent it from looping. The other way is to use WLM to cap the service class containing
the looping program. One of the nice things about WLM capping compared to LPAR
capping is that WLM capping has finer granularity: you cap only the offending service
class, rather than the whole LP.

� Following an upgrade, some installations use capping to avoid a sudden significant
improvement in response time, which will then evaporate as the additional capacity gets
used up.

Types of capping
As indicated in Figure 5-10 on page 348, System z has the following types of capping:

� LPAR capping (through Weights or by decreasing the number of logical CPs), where the
full LP is capped

� WLM Resource Group capping, where just a set of service classes are capped

� Soft capping (LPAR plus WLM), where the full LP is capped

� Discretionary capping (a hidden capping), where the happy service classes are capped
(this case is not covered in this text)
Chapter 5. Logical partition (LPAR) concepts 349

5.11 LPAR capping

Figure 5-11 LPAR capping

LPAR capping
LPAR capping is a function used to ensure that an LP’s use of the physical CPs cannot
exceed the amount specified in its Target(LPx). LPAR capping is set on the processor page
for the LP in the HMC Image Profile.

Normally, an LP can get more CP resources than the amount guaranteed by its Target(LPx);
in 5.8, “LPAR weights” on page 343, we discuss how to calculate the Target(LPx) value.
Usually, this is a good thing, because if there is spare CP resource that is not required by
another LP, it makes sense to use it for an LP that needs more CP resource. This can happen
when the other LPs are not using all their share or are not active—remember that when an LP
is deactivated, the Target(LPx) of the remaining active LPs is re-calculated.

If you want to prevent an LP from ever being able to use more than its Target(LPx), even if
there is spare CP resource available, you would use the LPAR capping feature. LPAR capping
is implemented by LPAR LIC by observing the CPU resource consumed by a logical CP in a
capped LP, and acting if the utilization starts to exceed the logical CPs Target(LCPx).

At very frequent intervals (every few seconds or so), LPAR LIC compares the Target(LCPx) of
each logical CP of a capped LP to the amount of CP resource it has actually consumed over
last interval. Depending on the result of this comparison, LPAR LIC decides for what
percentage of the time in next interval that the logical CP should not be given access to a
physical CP.

Limits an LP CP service to < = its weight
Without capping, an LP can receive more CP service
than its weight allows:

When other LPs are not using all of their share
When an LP is deactivated
This is generally a good thing (you make the best use of
the available capacity)

Capping is needed to achieve the following:
The client LP is paying on a MIPS basis
You want to ensure spare MIPS are only used by
production LPs, and not test LPs
You want to ensure the priority of the test logical CPs
never exceeds the priority of the production logical CPs
Some workload suspected to be in loop
To hold back spare capacity (for example, immediately
after an upgrade)
350 ABCs of z/OS System Programming Volume 10

5.12 LPAR capped versus uncapped

Figure 5-12 Capped and uncapped LPs

Capped and uncapped LPs
Figure 5-12 illustrates what happens when there is spare CP resource and the server
contains capped and uncapped LPs. There are three LPs shown, as explained here:

� MVS1 has a weight of 45 and is uncapped.

� MVS2 has a weight of 40 and is uncapped.

� MVS3 has a weight of 15 and is capped.

The total weights equal 100, therefore each unit of weight is equal to 1% of server resource.
For example, a weight of 45 equals 45% of the total server.

Each LP’s weight is shown as a separate straight line in the chart. The total server utilization
is shown as a separate line close to the top of the chart. This line never exceeds 98%,
therefore indicating there is always some spare server resource.

At one time or another, each LP requires less than its guaranteed share of CP resources.
Therefore, this spare capacity can be used by either of the uncapped LPs. When an LP uses
more than its weight, its utilization line is above its weight line. This occurs for:

� MVS1 from time 60 to 150

� MVS2 from time 0 to 30

0 30 60 90 120 150 180 210

Time intervals

0
10
20
30
40
50
60
70
80
90

100
C

P
C

 P
er

ce
nt

 u
til

iz
at

io
n

MVS1 uncapped

MVS1 weight

MVS2 uncapped

MVS2 weight

MVS3 capped

MVS3 weight

CPC total utilization

CPC and LPAR utilization by time
Chapter 5. Logical partition (LPAR) concepts 351

For MVS3, which is capped, its utilization line never extends above its weight line. It reaches
its weight line and remains there even though there is spare CP resource, as shown by the
total CP utilization line being below 100%. A performance impact would be noticed on MVS3
if it required more than its 15% of CP resources.

This completes the review of LPAR shared CP handling. You should now have sufficient
knowledge of how LPAR works to be able to understand how the enhancements in WLM
LPAR CPU Management are implemented.

WLM goal mode capping
Be aware that WLM goal mode implements capping in its workloads as well, with the added
flexibility that there are two numbers in WLM; one for protection (smaller), and another for
capping (larger), instead of just one as in LPAR capping.

Other advantage is granularity: in WLM capping, you can cap a set of service classes within a
sysplex. With LPAR capping, you are capping the full LP.

A complete explanation of WLM capping is beyond the scope of this book. Refer to ABCs of
z/OS System Programming Volume 11, SG24-6327, for details about WLM capping.
352 ABCs of z/OS System Programming Volume 10

5.13 Soft capping

Figure 5-13 Soft capping

Soft capping
Workload charging (WLC) is a contract dealing with software fees. With WLC, the cost is
based on the consumption of the LP running the product, measured in a 4-hour rolling
average MSU/hour (captured along 5-minute intervals). Along this rolling average the
installation can have peaks, beyond the agreed values, which may be balanced by valleys.

An installation can implement soft capping (also called defined capacity) to enforce a limit on
LP consumption, and consequently to save in software fees.

Defined capacity is controlled by WLM and is executed by the LPAR code. As illustrated in the
example in Figure 5-13, the LPAR1 4-hour rolling average MSU/hour consumption is capped
at 40 MSU/hour.

Actual MSUs and 4-hour long
term rolling average (LPAR1)

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

time(hour)
M

SU
s defined cap MSUs (1)

actual MSUs (2)
long term 4-hours avg (3)

z/OS is priced based on 410 MSUs
DB2 is priced based on 150 MSUs
CICS is priced based on 260 MSUs

LPAR 3

150 MSUs
DB2
z/OS

LPAR 2

220 MSUs
CICS
z/OS

LPAR 1

40 MSUs
CICS
z/OS

LPAR 3

150 MSUs
DB2
z/OS

LPAR 2

220 MSUs
CICS
z/OS

LPAR 1

40 MSUs
CICS
z/OS

1

2

3

Sum of defined capacity as a basis for charge

Ability to handle workload spikes
Chapter 5. Logical partition (LPAR) concepts 353

5.14 Group capacity in soft capping

Figure 5-14 Group capacity in soft capping

Group capacity in soft capping
Group capacity is an extension of soft capping in z/OS V1R8 that adds more flexibility;
instead of soft capping each LP individually, an installation caps a group of LPs containing
shared logical CPUs. WLM/LPAR management balances capacity (in MSU/h) among groups
of LPs on the same server.

An installation defines a capacity group by entering the group name and group limit MSU/h
4-hour rolling average value (in HMC). Group capacity works together with
individually-defined capacity LP capping, and an LP can have both a single capacity and a
group capacity.

It is possible to define multiple groups on a server, but an LP can only belong to one group. A
capacity group is independent of a sysplex and an IRD LPAR cluster. That is, in the same
group, you can have z/OS from different sysplexes and different IRD LPAR clusters, but in the
same server.

Each WLM in one LP manages itself independently from all other LPs, but it is informed about
the consumption of all other LPs on the server. Each WLM calculates its defined share of the
capacity group, based on the LP weight, as described here:

� This share is the target for the LP, if all LPs of the group want to use as much CPU
resources as possible.

� If one or more LPs do not use their CPU resource share, this donated capacity is
distributed over the LPs which need additional CPU resource.

LPAR

LP A LP B LP C

Target MSU = 93 Target MSU = 67 Target MSU = 40

No Soft cap No Soft cap Soft cap = 30

Capacity Group Prod capping = 200 MSU/h

Maximum = 200 Maximum = 200 Maximum = 30

Protection = 93 Protection = 30Protection = 67
354 ABCs of z/OS System Programming Volume 10

� Even when an LP receives CPU resource from another LP, it never violates its defined
capacity limit (if one exists).

Looking at a server with three LPs (as portrayed in Figure 5-14 on page 354), based on the
weights and in the total server MSU capacity, the target MSU consumption for each LP is as
follows:

� 93 MSU/h for LP A

� 67 MSU/h for LP B

� 40 MSU/h for LP C

LP A and LP B are not soft capped, and C is soft capped at 30 MSU/h. The three belong to a
capacity group named Prod, which is capped at 200 MSU/h.

Here, we assume that the full server has CPU capacity higher than 200 MSU/h, and that the
number of logical CPUs in each LP is equal to the number of shared physical CPUs in the
server.

If each LP takes all possible CPU resource because the other two are idle, we may reach the
maximum figures:

� LP A can use up to 200 MSU/h, limited by the group capping.

� LP B can use up to 200 MSU/h, limited by the group capping.

� LP C can use up to 30 MSU/h because an individual softcap is defined.

If all three LPs want to use as much resource as possible at the same time, we may reach the
protection (guarantee) figures:

� LP A gets 93 MSU/h.

� LP B gets 67 MSU/h.

� LP C gets 30 MSU/h.
Chapter 5. Logical partition (LPAR) concepts 355

5.15 Intelligent Resource Director (IRD)

Figure 5-15 Intelligent Resource Director benefits

Intelligent Resource Director (IRD)
Intelligent Resource Director was announced in October 2000 as one of the new capabilities
available on the IBM zSeries and z9 range of servers and delivered as part of z/OS.

Intelligent Resource Director might be viewed as Stage 2 of Parallel Sysplex. Stage 1
provided facilities to let you share your data and workload across multiple system images. As
a result, applications that supported data sharing could potentially run on any system in the
sysplex, thus allowing you to move your workload to where the processing resources were
available.

However, not all applications support data sharing, and there are many applications that have
not been migrated to data sharing for various reasons. For these applications, IBM has
provided Intelligent Resource Director, which basically gives you the ability to move the
resource to where the workload is.

IRD and WLM
Intelligent Resource Director uses facilities in z/OS Workload Manager (WLM), Parallel
Sysplex, and PR/SM to help you derive greater value from your z/Series investment.
Compared to other platforms, z/OS with WLM already provides benefits from the ability to
drive a server at 100% while still providing acceptable response times for your critical
applications. Intelligent Resource Director amplifies this advantage by helping you make sure
that all those resources are being utilized by the right workloads, even if the workloads exist in
different logical partitions (LPs).

Example: Day shift

Batch (Importance 3)

OLTP
(Importance 1)

Business Intel
Importance 2.

Channel Subsystem

OLTP/Batch DASD Business Intel. DASD

Partition 1: Weight = 75
Partition 2:
Weight = 25

Batch
Importance 3

Business Intel.
Importance 2

Channel Subsystem

OLTP/Batch DASD Business Intel. DASD

Partition 1:
Weight = 25 Partition 2: Weight = 75

Using WLM, PR/SM, and Parallel Sysplex, resources are
dynamically moved to where they are needed

Example: Night shift
356 ABCs of z/OS System Programming Volume 10

IRD benefits
Figure 5-12 on page 351 provides a simplified view of what Intelligent Resource Director does
for you. It shows a Central Processing Complex (server) with two LPs. One LP contains an
OLTP workload, defined in WLM as being Importance 1, and a batch workload, defined in
WLM as being Importance 3. The other LP contains a Business Intelligence workload that is
defined to WLM as being Importance 2. Both the batch and the Business Intelligence
workloads are capable of using the capacity of the whole server if allowed to.

To provide the OLTP workload with the resources it requires to meet its goals during the prime
shift, Intelligent Resource Director sets the LPAR weight of that LP to 75. The weight of the
Business Intelligence LP is set at 25. However, in the evening shift when the OLTP workload
has gone away, Intelligent Resource Director will adjust the weights so that the Business
Intelligence LP, which is of higher importance than batch, now gets 75% of the server, and the
LP containing the batch workload now gets 25%.

You will also notice that during the prime shift, the OLTP DASD has more channels, whereas
in the evening, there are more paths to the Business Intelligence DASD. Intelligent Resource
Director has also automatically adjusted the channel configuration to provide more paths to
the DASD subsystem serving the more important workload.

IRD functions
Intelligent Resource Director is not actually a product or a system component; rather it is
three separate but mutually supportive functions:

� WLM LPAR CPU Management - see “WLM LPAR CPU management” on page 358.

� Dynamic Channel Path Management (DCM) - see “Dynamic Channel Path Management
(DCM)” on page 363.

� Channel Subsystem I/O Priority Queueing (CSS IOPQ) - see “Channel subsystem I/O
priority queueing” on page 365.

IRD support added
Intelligent Resource Director is implemented by new functions in:

� z/OS (in z/Architecture mode)

� Workload Manager (WLM) - see “Workload Manager (WLM) advantages” on page 360

� IBM System z machines

And by using existing function in the following system components:

� Hardware Configuration Dialog (HCD) - see “What is HCD” on page 370

� Dynamic I/O Reconfiguration

� I/O Supervisor (IOS)

Note: z10 EC servers have introduced a new LPAR function named HiperDispatcher,
whereby the LPAR and the z/OS dispatcher join efforts to improve the use of cache and
TLBs in physical PUs. Refer to “Software/hardware cache optimization” on page 212 for
more information about the HiperDispatcher function.
Chapter 5. Logical partition (LPAR) concepts 357

5.16 WLM LPAR CPU management

Figure 5-16 WLM LPAR CPU management

WLM LPAR CPU management
WLM LPAR CPU management is a new capability provided by z/OS. It is available on IBM
System z and later servers when the z/OS LP is running in WLM Goal mode. It is one of the
three components of Intelligent Resource Director.

Here we provide an introduction to this new capability, including information you need to
decide if WLM LPAR CPU management is appropriate for your environment. If you determine
that it is, the subsequent chapters in this part provide the information to plan for, implement,
and manage it.

WLM LPAR CPU management is implemented by z/OS Workload Manager (WLM) goal mode
and IBM System z PR/SM LPAR scheduler Licensed Internal Code (LIC). WLM LPAR CPU
management, as shown in Figure 5-16, actually consists of two separate but complementary
functions:

� WLM LPAR weight management

Its role is to dynamically change the LPAR weight of logical partitions to help a workload
that is missing its goal.

� WLM LPAR Vary CPU management

Its role is to dynamically change the number of online logical CPs in a logical partition
(LP), to bring the number of logical CPs in line with the capacity required by the LP.

There are two parts to WLM LPAR CPU management:

WLM LPAR Weight management
Automatically changes the weight of a logical partition

Based on analysis of current workloads by WLM

WLM Vary CPU management
Automatically varies a logical CP online or offline in an
LP

Based on analysis and requests from WLM

Software managing hardware resources:

Software - WLM Goal mode

Hardware - Shared CPs and logical partition weights

Parallel Sysplex - used to share WLM information
between systems
358 ABCs of z/OS System Programming Volume 10

WLM goal mode
Both functions require that the systems are running in WLM goal mode. It is also necessary
for the systems to be in a Parallel Sysplex, in order to share the WLM information between the
systems.

In order to effectively implement WLM LPAR CPU Management, it is important to understand
how both WLM Goal mode and LPAR mode work, so the next few figures provide a brief
overview of these components.

Important: Beginning with z/OS Version 1 Release 3, WLM compatibility mode has been
removed as an option. Goal mode is the only way WLM processes workloads.
Chapter 5. Logical partition (LPAR) concepts 359

5.17 Workload Manager advantages

Figure 5-17 WLM mode considerations

LPAR cluster
The Intelligent Resource Director (IRD) extends the concept of goal-oriented resource
management by allowing you to group system images that are resident on the same physical
server running in LPAR mode, and in the same Parallel Sysplex, into an “LPAR cluster”, as
shown in Figure 5-17. This gives Workload Management the ability to manage server and
channel subsystem resources, not just in a single image but across the entire cluster of
system images. A server can have multiple LPAR clusters supporting different Parallel
Sysplexes, and a Parallel Sysplex can in turn comprise multiple LPAR clusters in different
servers.

Workload Manager (WLM) advantages
The following descriptions are provided for background information about WLM and Goal
mode.

WLM is a z/OS component (it was actually introduced in MVS/ESA V5) responsible for
managing system resources in such a way that the workloads identified as being the most
important will achieve their objectives. In fact, WLM is present and responsible for certain
tasks, even if the system is in WLM compatibility mode. In goal mode, WLM provides the
following advantages, when compared to compatibility mode:

� Simplicity, since goals are assigned in the same terms as in existing Service Level
Agreements (instead of having to assign relative dispatching priorities in the IEAIPSxx),
and the use of an ISPF/TSO application to define such goals.

A system must be in goal mode to use CPU management

SYSPLEXLPAR Cluster 1

CPC 1 CPC 2
MVS1

LPAR Cluster 2

MVS4

MVS6

MVS5

Goal mode

Goal mode

Goal modeGoal mode

Weight = 40

Weight = 30

Weight = 30

Weight = 20

MVS3

MVS2
Goal mode

Goal mode

Weight = 45

Weight = 35

CPC1 total weight = 100
CPC2 total weight = 100

All systems in goal mode

Cluster 1
total

weight
always
equal
to 80

Cluster 2
total

weight
always
equal
to 70
360 ABCs of z/OS System Programming Volume 10

� It is more closely linked to the business’s needs. Workloads are assigned goals (for
example, a target average response time) and an importance. Importance represents how
important it is to the business that workload meet its goals. In compatibility mode, all
workloads are defined in terms of relative dispatching priority to the other workloads—and
these dispatching priorities do not necessarily reflect the business importance of the
associated workloads. Also, relative dispatching priorities mean that a workload may keep
getting resource whenever it requests it, even if it is overachieving its goal while other
workloads with a lower dispatching priority are missing their goals.

� WLM recognizes new transaction types, such as CICS, IMS™ DC, DDF, IWEB, UNIX
System Services (USS), DB2 parallel query, MQSeries®, APPC and so on, allowing
reporting and goal assignment for all of these workload types.

� It is particularly well-suited to a sysplex environment (either basic or Parallel) because
WLM in Goal mode has knowledge of the system utilization and workload goal
achievement across all the systems in the sysplex.

Note: This cross-system knowledge and control has a much more significant impact in an
IRD environment.

� It provides much better RMF reports, which are closely aligned to the workloads and their
specified goals. For example, if you defined a goal that 80% of transactions should
complete in 1 second, RMF will report the actual percent of transactions that completed
within the target time. The reports also include CICS and IMS internal performance data
that is not available from RMF in WLM compatibility mode.

� Averaged over a full day, WLM Goal mode will generally provide better performance than
compatibility mode. This is because WLM in Goal mode is constantly adjusting to meet the
goals of the current workload, whereas the IEAIPSxx in compatibility mode is usually
designed for a particular workload mix, but is less effective when the workload mix
changes, as it usually does over the course of a day.

� It provides dynamic control of the number of server address spaces, such as:

– Batch Initiators
– HTTP servers

� WLM plays a central role in dynamic workload balancing among z/OS images in a Parallel
Sysplex with data sharing. WLM Goal mode works with VTAM Generic Resources,
Sysplex Distributor for TCP/IP, CICS MRO, and IMS Shared Message Queues to route
transactions to the most appropriate system.

� WLM provides more effective use of the Parallel Access Volume feature of the IBM 2105
ESS.

� It provides the ability to decide which image a batch job can run in based on the availability
of a real or abstract resource (using the WLM Scheduling Environment feature).

� It provides the possibility of specifying both a minimum amount of CPU resource that a
Service Class Period is guaranteed if it needs it, and a maximum amount of CPU resource
that a Service Class Period can consume.

Workload Manager highlights
When operating in Goal mode, WLM has two sets of routines: Those that attempt to achieve
transaction goals (these strive to make the system as responsive as possible), and those that
attempt to maximize the utilization of the resources in the environment (these aim for
maximum efficiency).

� Enforcing transaction goals consists of the following:

– During the policy adjustment routines, WLM may change the priority of given tasks,
including the dispatching priority, the weight of an LPAR (a WLM LPAR CPU
Chapter 5. Logical partition (LPAR) concepts 361

Management function), the number of aliases for a given 2105 device, and the
specification of a channel subsystem I/O priority.

This function employs a donor/receiver approach, where an important workload that is
missing its goal will receive additional resources—resources that are taken away from
other workloads that are overachieving their targets or workloads and that are less
important (as defined by the installation). One of the objectives of this function is that
the workloads within a given importance level will all have a similar performance index
(PI), which is a measure of how closely the workload is meeting its defined goal.

– Server address space (AS) creation and destruction (AS server management
routines).

– Providing information to the dynamic workload balancing functions, like VTAM Generic
Resources or Sysplex Distributor, to help them decide on the best place to run a
transaction.

� Resource adjustment routines

These are designed to maximize the throughput and efficiency of the system. An example
would be the new WLM LPAR Vary CPU Management function, which will vary logical CPs
online and offline in an attempt to balance required capacity with LPAR overhead.

There are several types of goals, such as:

� Average response time (1 second, for example)
� Percentile response time (80% of the transactions with response time less than

2 seconds)
� Execution velocity, which is a measure of the amount of time the workload is delayed

waiting for a resource that WLM controls

To provide this information, WLM tracks transaction delays, such as:

� CPU delay
� Storage delay (page faults and swapping)
� I/O delay
� AS Server queue delay

The following are some reasons why an important goal might not be reached and how WLM
adjusts the way it manages system resources to compensate:

� CPU delay - the dispatching priority or LPAR weights are increased.

� Storage delay - storage isolation figures or swapping target multiprogramming level
(TMPL) or system think time are raised.

� I/O delay - the I/O priority is increased in the UCB, channel subsystem and 2105 control
unit queues, or an additional alias may be assigned to the device for devices that support
Parallel Access Volumes.

� AS Server queue delay - a new server address space is created.

For the sake of clarity, we wish to point out that the System Resource Manager (SRM)
component of z/OS still exists, regardless of whether the system is running in Goal or
compatibility mode. However, for the sake of simplicity, we do not differentiate between the
two in this book. While a particular action may be carried out by either SRM or WLM, we
always use the term WLM.

Note: For information about options, problems or prerequisites for WLM CPU
Management, refer z/OS Intelligent Resource Director, SG24-5952. For more information
about WLM, refer to ABCs of z/OS System Programming Volume 11, SG24-6327.
362 ABCs of z/OS System Programming Volume 10

5.18 Dynamic Channel Path Management (DCM)

Figure 5-18 Dynamic channel-path management (DCM) objectives

Dynamic Channel Path Management (DCM)
Dynamic Channel Path Management (DCM) is a new capability, designed to dynamically
adjust the channel configuration in response to shifting workload patterns. It is a function in
Intelligent Resource Director, together with WLM LPAR CPU Management and Channel
Subsystem I/O Priority Queueing.

Improve performance
DCM can provide improved performance by dynamically moving the available channel
bandwidth to where it is most needed. Prior to DCM, you had to manually balance your
available channels across your I/O devices, trying to provide sufficient paths to handle the
average load on every controller. This means that at any one time, some controllers probably
have more I/O paths available than they need, while other controllers possibly have too few.

DCM attempts to balance the responsiveness of the available channels by moving channels
to the controllers that require additional bandwidth, even when the system is in WLM
Compatibility mode.

Note: Prior to Dynamic Channel Path Management, all channel paths to I/O control units
had to be statically defined. In the event of a significant shift in workload, the channel path
definitions would have to be reevaluated, manually updated via HCD, and activated or
PORed into the configuration.

DCM objectives

Improve overall I/O performance

Simplify the I/O configuration definition task

Reduce skills required to manage z/OS

Maximize the utilization of installed hardware

Enhance availability

Reduce the need for more than 256 channels
Chapter 5. Logical partition (LPAR) concepts 363

Simplify I/O definitions
Because DCM can dynamically move I/O paths to the LCUs that are experiencing channel
delays, you can reduce the CU/channel-level capacity planning and balancing activity that
was necessary prior to DCM. Using DCM, you are only required to define a minimum of one
non-managed path and up to seven managed paths to each controller (although a realistic
minimum of at least two non-managed paths are recommended), with DCM taking
responsibility for adding additional paths as required, and ensuring that the paths meet the
objectives of availability and performance.

Skill to manage z/OS
It is still necessary to understand the performance and availability characteristics of all your
installed hardware. DCM can only work within the confines of the physical connectivity that
you design and implement. However, to the extent that DCM is self-tuning, it should be
possible to spend considerably less time on configuration management and monitoring and
capacity planning. This allows you to free up scarce technical resources to work on other
more valuable tasks.

Maximize use of installed hardware
As one part of the continuing drive to reduce the cost of computing for the zSeries and z9
platform, DCM can help you drive more traffic to your DASD subsystems without necessarily
having to invest in additional channels. DCM may let you increase the overall average
utilization of your channels, without adversely impacting the response time for the connected
subsystems.

Enhance availability
When attaching a DASD subsystem to a zSeries and z9 server, there are a number of things
to take into account in order to achieve maximum availability and performance from the
configuration. Within the server, there are a number of redundant components provided
(channel cards, STIs, MBAs, and so on). Ideally, you would attach a control unit to channels
that are spread over as many of these components as possible, minimizing the number of
single points of failure.

Reduce need for more channels
DCM can reduce the need for more channels by configuring every channel with the maximum
number of devices, while still delivering acceptable performance across all the control units.
Because DCM dynamically adjusts to changing workloads, if you happen to end up with
multiple busy control units on a channel (a situation that can easily happen today, and that will
result in degraded performance), DCM will react to the resulting increased Pending time or
Pend time) by adding idle or less busy channels to the control units that are suffering high
Pend times.

Note: DCM is implemented by exploiting new and existing functions in software
components (in z/OS 1.1), such as WLM, IOS, HCD, Dynamic I/O Reconfiguration; and in
hardware components, such as an IBM System z server, ESCON Directors, and DASD
controllers.

DCM provides the ability to have the system automatically manage the number of ESCON
and FICON Bridge (FCV) I/O paths available to supported DASD subsystems.
364 ABCs of z/OS System Programming Volume 10

5.19 Channel subsystem I/O priority queueing

Figure 5-19 Reasons for CSS I/O priority queuing

Channel subsystem I/O priority queuing
Channel Subsystem I/O Priority Queuing is a new capability delivered on IBM zSeries and z9
and subsequent servers, and exploited by z/OS. It is the third component of Intelligent
Resource Director.

Channel Subsystem Priority Queuing is an extension of the existing concept of I/O priority
queuing. Previously, I/O requests were handled by the channel subsystem on a first-in,
first-out basis. This could, at times, cause high priority work to be delayed behind low priority
work.

With Channel Subsystem Priority Queuing, if important work is missing its goals due to I/O
contention on channels shared with other work, it will be given a higher channel subsystem
I/O priority than the less important work. This function goes hand in hand with the Dynamic
Channel Path Management, as additional channel paths are moved to control units to help an
important workload meet goals. Channel Subsystem Priority Queuing ensures that the
important workload receives the additional bandwidth before less important workloads that
happen to be using the same channel.

Workloads and LPs
z/OS in WLM Goal mode uses this new function to dynamically manage the channel
subsystem priority of I/O operations for given workloads based on the performance goals for
these workloads as specified in the WLM policy.

Existing I/O priority addresses the queue on UCB and
IBM 2105 ESS

Channel subsystems handling more work:
Each LP typically runs a variety of workloads
Each CPC runs more LPs
Number of I/O requests/channel is increasing
Need to prioritize requests at the channel subsystem
level

New algorithm affects the queues:
Waiting for an available SAP
Waiting for an available channel

Companion function to Dynamic Channel Management:
Ensures channel bandwith added to busy CU is used by
high priority work
Chapter 5. Logical partition (LPAR) concepts 365

In addition, because Channel Subsystem I/O Priority queuing works at the channel
subsystem level, and therefore affects every I/O request (for every device, from every LP) on
the server, you can also specify a single channel subsystem I/O priority that is to be used for
all I/O requests from systems that do not actively exploit Channel Subsystem I/O Priority
Queueing.

I/O requests per channel prioritization
Channel Subsystem I/O Priority queuing applies to I/O requests to every type of device
that is attached to the system, even for those attached via the old parallel channels.
Channel Subsystem I/O Priority queuing addresses the most significant remaining
queuing points that up to now did not support the prioritization of I/O requests.

The I/O priority used for the UCB queue and the control unit queue is calculated based on
understanding which service class periods (SCPs) in the system are competing for the same
device. When WLM changes an I/O priority, it assesses the impact of the change only on
systems that are in the same sysplex and competing for the same resource.

However, neither of these functions has any effect on how I/O requests are handled when
they arrive at the channel subsystem. If you consider that a large modern server is capable of
driving many thousands of I/O requests per second, that results in a significant number of
requests hitting the channel subsystem.

Some of those requests will be from high importance workloads, and some will be from lower
importance workloads. Additionally, in an LPAR environment, some of the LPs may be
running production workloads, while other LPs may be running test or development (lower
importance) workloads.

Prior to the IBM zSeries, there was no way, at the channel subsystem level, to differentiate
between all these requests, meaning that high importance I/O requests may be delayed
behind other, lower importance requests. And as time goes on, and the number of supported
logical partitions per server and the processing power of the server increases, this situation
would have become even more critical if it had not been addressed. Channel Subsystem I/O
Priority queuing gives you the ability to differentiate between these requests at the channel
subsystem level.

Waiting for an SAP and channel
Prior to Channel Subsystem I/O Priority queuing, requests that were queued waiting for an
SAP or waiting for an available channel were handled in a first-in, first-out (FIFO) manner.
There was no discrimination between I/Os from discretionary workloads and production
online workloads, or between I/Os coming from the systems programmer sandbox LP and a
production LP.

DCM and channel bandwidth
In addition to giving you more control over the order in which I/O requests are processed,
Channel Subsystem I/O Priority queuing is designed to be supportive of Dynamic
Channel-path Management (DCM). DCM allows the channel bandwidth provided to control
units to be managed based on the WLM goals of the SCPs using the control unit.

However, adding bandwidth to a given control unit provides more resources to all work using
that control unit. If both high importance and low importance SCPs are using the same control
unit, a large amount of bandwidth might need to be provided to the control unit to ensure the
high importance work meets its goal, thus giving a free ride to the low importance work.
366 ABCs of z/OS System Programming Volume 10

Channel Subsystem I/O Priority queuing ensures that the added bandwidth benefits the
higher importance workloads first, by prioritizing those I/O requests to be selected by the
channel subsystem ahead of the requests from the less important SCP. Giving the high
importance SCP a higher channel subsystem priority minimizes the bandwidth required by
the high importance SCP to meet its goals, since the high importance SCP will not have to
queue behind the requests from the low importance SCP.

For more information about this topic, refer to z/OS Intelligent Resource Director, SG24-5952.
Chapter 5. Logical partition (LPAR) concepts 367

368 ABCs of z/OS System Programming Volume 10

Chapter 6. Hardware Configuration
Definition (HCD)

Several hardware components, including PR/SM and the channel subsystem (CSS) together
with the IBM z/OS operating system need to know what hardware resources (mainly I/O) and
other software information are available in the system and how these resources are
connected. This information is called the configuration and it is provided by your installation.
You must describe this configuration to be used at IPL by z/OS (software) and to be used at
power-on reset by the channel subsystem and PR/SM (hardware). In mainframes is not
possible to have the concept of “plug and play” (where the operating system discovers such
configuration) due to system complexity and security issues.

Hardware Configuration Definition (HCD) is a z/OS component used by your installation to
describe your hardware resources such as: servers, logical channel subsystems, logical
partitions, channels, switches, controllers, devices and some software informations, This is
done through a TSO interactive end-user interface. Then, HCD needs a running z/OS system.
A strong point about HCD is the validation checking that it does as you enter configuration
data, helping to eliminate errors before you attempt to use the I/O configuration.

HCD consolidates all this configuration information (that could span more than one server) -
to be used by hardware and software - in one output z/OS data set named IODF. Then, an
IODF is used to describe multiple hardware and software configurations.

A configuration consists mainly of I/O hardware resources available to the operating system
and the connections between these resources. When you define a configuration, you need to
provide both physical and logical information about these resources. For example, when
defining a device you provide physical information, such as its type and model, as well as
logical information such as the identifier you assign in the configuration definition.

Many of the concepts mentioned in this chapter are covered more deeply in chapters
Chapter 2, “IBM System z” on page 101, and Chapter 4, “System z connectivity” on page 277
of this volume 10 and it is truly recommended the reading in advance of such chapters.

6

© Copyright IBM Corp. 2008. All rights reserved. 369

6.1 What is HCD

Figure 6-1 HCD characteristics

Before HCD
Before HCD became available, you had to use I/O configuration program (IOCP) to define the
configuration to the channel subsystem at power-on reset (POR) and use the z/OS
Configuration Program (MVSCP) to define the configuration to the z/OS operating system.
With MVSCP and IOCP, you were limited to defining one server or one operating system per
input data set. This meant that you needed more than one input data set when you used
MVSCP or IOCP.

Multiple server configurations
The configuration you define with HCD (a z/OS component) may consist of multiple servers
with multiple logical channel subsystems (LCSS), each containing multiple logical partitions
with multiple channels, switches, I/O control units and devices. HCD stores the entire
configuration data in a central repository (a z/OS data set), called the input/output definition
file (IODF).

The IODF, as single source for all hardware and software definitions for a multi-server, or
multi-logical partition complex, eliminates the need to maintain several independent MVSCP
or IOCP data sets. This means that you enter the information only once, using an interactive
dialog.

Single definition
When you define a configuration, you need to provide both physical and logical information
about these resources. For example, when defining a device you provide physical information,

Combines hardware (IOCP) and software (MVSCP)
definitions into a single process

Allows multiple software and processor
configurations to be defined in a single database

Creates a single definition for each physical control
unit and device

Provides immediate online validation of
configuration data

Contains extensive online help

Provides dynamic I/O reconfiguration
370 ABCs of z/OS System Programming Volume 10

such as its type and model, as well as logical information such as device number (identifier),
or if its UCB should be located below or above the 16-M virtual address.

HCD provides an interactive interface that allows you to define the hardware configuration to
both the channel subsystem and the operating system. The hardware information generated
by the HCD is used by PR/SM and the channel subsystem (SAPs and channels)—and not by
the I/O control units.

Online validation of data
HCD consolidates the hardware and software I/O configuration processes under a single
interactive end-user interface. The validation checking that HCD does, as you enter data,
helps to eliminate errors before you attempt to use the I/O configuration.

Online help
HCD offers an extensive help facility. From any panel, you can get context-sensitive help by
pressing the F1=Help key.

Dynamic I/O reconfiguration
HCD, combined with the Dynamic I/O Reconfiguration Management function—mainly located
in the input output supervisor (IOS), a z/OS component—allows you to make changes to
either the hardware or software configurations without the need of a POR or an IPL. This
greatly enhances overall system availability by making possible the elimination of scheduled
outages that were previously necessary when parts of the configuration were changed.

See z/OS Hardware Configuration Definition: User's Guide, SC33-7988, and z/OS Hardware
Configuration Definition Planning, GA22-7525, for detailed information about using HCD.

Note: This chapter on HCD illustrates the many panels used in creating a new
configuration. It is not a complete definition and does not show all of the panels and the
various options needed. It is an attempt to familiarize you with the concepts available with
HCD.
Chapter 6. Hardware Configuration Definition (HCD) 371

6.2 IOCP example

Figure 6-2 IOCP example

IOCP example
Figure 6-2 shows a portion of an IOCP definition that describes one z-109 server system
element, as shown in Figure 6-3 on page 373, which illustrates the relationship between LPs,
LCSSs, CHPIDs, and PCHIDs. This illustration also includes the I/O devices and switches
used in the IOCP example shown in Figure 6-2. Even though, with HCD, you do not need to
write the IOCP statements, these statements are optionally produced by HCD based on how
you fill out the HCD panels.

This IOCP definition shows the implementation of logical channel subsystems (LCSS). They
are needed because existing software works with single-byte CHPID numbers, producing the
limitation of 256 CHPIDs. The new architecture in the z9 EC and z990 provides multiple sets
of channel definitions named LCSSs, each with a maximum of 256 channels. Existing
operating systems would be associated with just one LCSS and work with a maximum of 256
CHPIDs. Different LPs can be associated with different LCSS definitions.

Thus, a single operating system instance (using existing code) still has a maximum of 256
CHPIDs, but the system as a whole can have more than 256 CHPIDs. Then it is necessary to
have multiple operating images (in multiple LPARs) to exploit more than 256 channels, but
this is a common mode of operation in customer installations. Refer to 2.21, “Logical Channel
Subsystem (LCSS)” on page 136.

ID MSG1=’BILLIOCP’,MSG2=’z9-109 2 LCSS’,SYSTEM=(2094,1)
RESOURCE PARTITION=((CSS(0),(LP1,1),(LP2,3),LP3,5)), X

 (CSS(1),(LP14,2),(LP15,3),LP16,5))), X
 MAXDEV=((CSS(0),64512),(CSS(1),64512))

CHPID PATH=(CSS(0),80),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0140

CHPID PATH=(CSS(0),81),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0150

CHPID PATH=(CSS(0),90),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01E0

CHPID PATH=(CSS(0),91),SHARED,PARTITION=((LP1,LP2,LP3),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01F0

CHPID PATH=(CSS(1),80),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0141

CHPID PATH=(CSS(1),81),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=61,TYPE=FC,PCHID=0151

CHPID PATH=(CSS(1),90),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01E1

CHPID PATH=(CSS(1),91),SHARED,PARTITION=((LPA,LPB,LPC),(=)), X
 SWITCH=62,TYPE=FC,PCHID=01F1

CNTLUNIT CUNUMBR=3000, X
 PATH=((CSS(0),80,81,90,91),(CSS(1),80,81,90,91)), X
 UNITADD=((00,256)),CUADD=0,UNIT=2105, X
 LINK=((CSS(0),20,21,20,21),(CSS(1),20,21,20,21))

CNTLUNIT CUNUMBR=3100, X
 PATH=((CSS(0),80,81,90,91),(CSS(1),80,81,90,91)), X
 UNITADD=((00,256)),CUADD=1,UNIT=2105, X
 LINK=((CSS(0),20,21,20,21),(CSS(1),20,21,20,21))

IODEVICE ADDRESS=(3000,032),CUNUMBR=(3000),STADET=Y,UNIT=3390B
372 ABCs of z/OS System Programming Volume 10

6.3 IOCP elements

Figure 6-3 A server configuration

IOCP elements shown in the example
The partial IOCP file shown in Figure 6-2 on page 372, shows the elements of a z9 EC
configuration in this IOCP example, so let’s take a closer look at some of them now.

� LCSS definitions

The LCSSs used in the IOCDS created from this IOCP are stated in the RESOURCE
statement. In the example, here we define two LCSSs and indicate which LPs are
associated with each one. This defines the LCSSs without any need of a hardware install
procedure.

� Subchannel maximums

The MAXDEV parameter (in the RESOURCE statement) affects the HSA storage created
at power-on- reset (POR). It specifies the maximum number of subchannels (device
numbers) that can be defined in a logical partition of an LCSS. The MAXDEV value
includes the devices you have defined, plus whatever expansion number you need
through a dynamic I/O reconfiguration. Before the z9 EC, the maximum number of
subchannels (UCWs) allowed was almost 64K per LP. With the z9 EC, this number almost
doubled by the introduction of two sets of UCWS: the CSS 0 with almost 64K and CSS1
with 64K. The CSS1 is used by z/OS to map the alias addresses generated by the parallel
access volume (PAV) feature in the DASD controllers, as DS8000.

� LCSS number for CHPID

Each CHPID statement specifies its LCSS number as part of the PATH parameter for
unique identification purposes.

DASD
LCUs

5

LP16LP2 LP3 LP14 LP15LP1

2 35

LCSS 1

31

LCSS 0

81 90 918081 90 9180

151 1E1 1F1141150 1E0 1F0140

LCSS

LPAR name

PCHID

MIF ID

CHPID

DASD
LCUs

Directors

IBM 2105
Enterprise

Storage
System

6261

LPAR ID 1A0B 0C 11 1300

20 21 2120

CUADD 0 (3000-301F - Base addresses)
 (3080-30FF - Alias addresses)

CUADD 1 (3100-311F - Base addresses)
 (3180-31FF - Alias addresses)

Port number on switches
Chapter 6. Hardware Configuration Definition (HCD) 373

� PCHID number

Each CHPID statement must include a PCHID parameter to associate the CHPID with a
physical channel identification. The PCHID parameters can be added to the IOCP
definitions by the CHPID mapping tool, or through HCD definitions, or defined in a
standalone IOCP file, but the PCHID parameters must be present in all CHPID statements
when the IOCDS is created.

� LCSS number for PATH and LINK parameters

PATH and LINK parameters in CNTLUNIT statements must indicate the LCSS number
associated with each path and link.
374 ABCs of z/OS System Programming Volume 10

6.4 Hardware and software configuration

Figure 6-4 Hardware and software configuration flowchart

IODF and IOCDS data
An IOCDS is located in the hard disk of the service element (laptop). It is created by IOCP
reading the z/OS data set named input/output definition file (IODF) created by HCD. A major
difference between these data sets is that the IOCDS contains the configuration for a specific
server, while the IODF contains configuration data for multiple servers. IODF is required when
IPLing an LP.

System programmer interactions with HCD
Here we cover the steps for installing and initializing an IBM System z server.

� The system programmer, interactively with HCD panels, creates the IODF Production data
set. This data set contains the description of all the servers (in an HMCplex, which
consists of all the Service Elements (laptops) connected by a token ring LAN), including
Logical Channel Subsystems (LCSS), LPs, channels, switches, I/O control units, devices,
and software information (used at IPL). Note that MBAs and STIs are not described here.

� IOCP program - The next step is executed by the IOCP program, a z/OS batch
component, which can be invoked internally by HCD itself. IOCP may read the entire
configuration describing all the servers in the HMCPlex. This data is passed to the Service
Elements (SE). The configurations referring to other servers are sent by the SE through
the LAN to the respective SEs. The local ones are stored in the local IOCDS, just a file in
the hard disk laptop.

� Power-on reset (POR) - Next is the power-on reset (POR), an action started by the
operator through an icon of the hardware management console (HMC). In reality, HMC is

SYSPROG (TSO)

HCDHCD

IODF
Production

SQA (UCBs)

z/OS

UCWs

LPAR CODE

L
P
3

L
P
2

L
P
1

H
S
A

IOCP

IOCDS

Laptop

Support Element

POR

to HMC
PLEX

Describes the configuration for
several CECs in the HMC PLEX

SQA (UCBs)
 z/OS

CFCC

IPL
Chapter 6. Hardware Configuration Definition (HCD) 375

the name of the software running in the desktop connected by a LAN with the SEs of the
HMCPlex. Through these desktops, the operator staff has a focal point to operate all the
machines.

POR does many things, such as:

– Loading the microcode in the control storage of all PUs in the server.

Hardware system area (HSA) is allocated in the lower portion of book 0 in central storage.
HSA is a piece of central storage that does not belong to any LP. It contains, after the
POR:

– Millicode (a sort of subroutine from the microcode)
– PR/SM (LPAR) object code
– Copy of CFCC object code, to be copied to each Coupling Facility LP
– LP definitions from IOCDS
– I/O configuration data from IOCDS, constituted mainly by UCWs organized in one

UCW table per LP. When you dynamically activate a new configuration, HSA is updated
to reflect the new hardware I/O configuration definition.

If you plan to use dynamic I/O reconfiguration to add equipment to your configuration, you
must specify an HSA size big enough to contain the new information. It is done by defining
in HCD/IOCP the MAXDEV option, which tells how many devices will be supported. Refer
to 6.2, “IOCP example” on page 372 for an example of the MAXDEV option.

� Logical partition activation - At POR completion, all LPs are defined and the entire I/O
configuration is described in the HSA. The next step is to activate the LPs. In the HMC
console panels, the installation can define the LPAR profile, where the attributes of each
LP are defined, such as the number of logical CPUs, weight, central storage size, capping,
and so on. For the LP activation there is no need to access the IODF data set.

� Initial programming load (IPL) - The IODF production data set is read by the z/OS IPL
program, which reads the I/O configuration referring to the IPLed LP. For each device, a
UCB is created mainly in ESQA, together with the Eligible Device Table (EDT). This table
associates a set of devices with an esoteric name and the device preference list. This list
creates a sequenced priority of device types, to be used if you are allocating a new data
set and you have more than one possible device type as a candidate. Refer to “EDT and
esoterics” on page 392.
376 ABCs of z/OS System Programming Volume 10

6.5 HCD functions

Figure 6-5 What you can do with HCD

HCD functions
Figure 6-5 summarizes what you can do with HCD and how you can work with it.

Single point of control
With HCD you have a single source, the IODF production data set, for your configuration
data. This means that hardware and software definitions as well as FICON director (switch)
definitions and matrix connections can be done from HCD and can be activated with the data
stored in the IODF.

Increased system availability
HCD checks the configuration data when it is entered, thereby reducing the chance of
unplanned system outages due to inconsistent definitions.

Changing hardware definitions dynamically
HCD offers dynamic I/O reconfiguration management. This function allows you to change
your hardware and software definitions on the fly. You can add devices or change devices,
channel paths, and control units, without performing a POR or an IPL. You may also perform
software-only changes, even if the associated hardware is not installed. However, to add a
new LP or a new LCSS are not allowed. Refer to6.6, “Dynamic I/O reconfiguration” on
page 379.

Accurate
Configuration

Documentation

Guidance through
Interactive Interface

Increased
System

Availability

Single Point of Control

Changing Hardware
Definitions Dynamically

Batch Utilities

HCDHCD

HCD

Sysplex-wide activate

Cross operating system
support

LDAP interface
Chapter 6. Hardware Configuration Definition (HCD) 377

Sysplex-wide activate
HCD offers you a single point of control for systems in a sysplex. You can dynamically activate
the hardware and software configuration changes for systems defined in a sysplex or even
out of it, if the servers are in the same HMCplex.

Accurate configuration documentation
The actual configuration definitions for one or more servers in the IODF are the basis for the
reports you can produce with HCD. This means that the reports are accurate and reflect the
up-to-date definition of your configuration. HCD provides a number of textual reports and
graphical reports that can be either printed or displayed. The printed output can be used for
documentation purposes, thus providing the base for further configuration planning tasks.
The display function allows you to get a quick overview of your logical hardware configuration.

HCD also produces a PDS member with its view of the current configuration. Through a z/OS
command, the installation can ask z/OS to compare and display the deviations from reality.

There is a free software product called hardware configuration management (HCM) where
you enter your configuration graphically and HCM transforms it in an output to HCD. Refer to
6.63, “Hardware Configuration Manager (HCM)” on page 455.

Guidance through an interactive interface
HCD provides an interactive user interface, based on ISPF/TSO, that supports both the
hardware and the software configuration definition functions. The primary way of defining the
configuration is through the ISPF dialog. HCD consists of a series of panels that guide you
through all aspects of the configuration task. The configuration data is presented in lists.

HCD also offers extensive online help and prompting facilities. Help includes information
about panels, commands, data displayed, available actions, and context-sensitive help for
input fields. A fast path for experienced users is also supported.

Batch utilities
In addition to the interactive interface, HCD also offers a number of batch utilities. You can use
these utilities, for instance, to migrate your existing configuration data, to maintain the IODF,
or to print configuration reports.

Cross-operating system support
HCD allows you to define both MVS-type (for example, z/OS) and VM-type configurations
from z/OS.

LDAP interface capability
HCD provides search and update capabilities for IODF data via a Lightweight Directory
Access Protocol (LDAP) interface. LDAP is an Internet protocol standard based on TCP/IP.
LDAP is a protocol that makes directory information accessible. New entries can be added,
existing entries can be altered or deleted, and it is possible to search for all matching entries
using wildcards.
378 ABCs of z/OS System Programming Volume 10

6.6 Dynamic I/O reconfiguration

Figure 6-6 Dynamic I/O reconfiguration

Dynamic I/O reconfiguration
Dynamic I/O reconfiguration is the ability to select a new I/O configuration definition without
having to perform a power-on reset on the hardware or an IPL of the z/OS system.

It allows an installation to add, delete, or modify the definitions of channel paths, control units,
and I/O devices to the software and hardware configurations. You can change the I/O
configuration definitions for both software and hardware or for software only. It also allows you
to dynamically change the EDT and the Device Preference List. To use dynamic I/O
reconfiguration, HCD must be used to define the new configuration. However, with dynamic
I/O reconfiguration you cannot add a logical channel subsystem or a new logical partition.

To implement a dynamic I/O reconfiguration you need to perform the following steps:

1. Define an IODF production with the full new configuration, including the devices that will
not be changed, the new devices, and the devices to be changed. The devices to be
deleted are omitted.

2. Issue the ACTIVATE command through the z/OS console or HCD panel in one z/OS
image. Usually, changing the I/O hardware configuration should affect all the LPs of a
server. Then in one of the LPs you need a dynamic reconfiguration for hardware and
software, and in the others for software only. The z/OS where the hardware and software
reconfiguration was ordered reads the new configuration and generates a delta list that
includes the new elements and the ones to be deleted. This z/OS then synchronously
updates the software configuration (UCBs) and the hardware configuration (UCWs), using

Static devices

Dynamic devices

Installation-static devices

Hardware System Area (HSA)

Configuration token

Software-only changes

Software and hardware changes
Chapter 6. Hardware Configuration Definition (HCD) 379

a special instruction that is able to update the HSA. Also, a configuration token is kept in
HSA to uniquely identify such a configuration.

� Software-only changes and configuration token - These changes must be done using the
same IODF that was used to define the current hardware configuration in all the other LPs.
You can use the software-only change to synchronize the software definitions in the other
logical partitions with the hardware definition so that a subsequent hardware and software
change can be activated. When a software-only change executes, the token in the IODF
must match the current server configuration token in HSA for integrity purposes.

Dynamic I/O reconfiguration benefits
Dynamic I/O reconfiguration has the following benefits:

� It increases system availability by allowing you to change the I/O configuration while z/OS
is running, thus eliminating the POR and IPL for selecting a new or updated I/O
configuration.

� It allows you to make I/O configuration changes when your installation needs them, rather
than waiting for a scheduled outage to make changes.

� It minimizes the need to logically define hardware devices that do not physically exist in a
configuration (also known as over-defining a configuration).

If you have installed z/OS 1.4 (without the HCD exploitation facility) or an older release, the
hardware dynamic reconfiguration is only done in LCSS 0, because such releases of z/OS do
not support more than one LCSS.
380 ABCs of z/OS System Programming Volume 10

6.7 Dynamic I/O reconfiguration device types

Figure 6-7 I/O reconfiguration devices types

Dynamic reconfiguration management
This section introduces and explains a number of dynamic reconfiguration management
concepts. These concepts and terms are used in subsequent sections of this chapter when
discussing dynamic I/O reconfiguration.

Unit Information Module (UIM)
IOS does not understand the peculiarities of each possible device type. Each device type that
exists has an associated software routine called the unit information module (UIM), written by
the manufacturer, following a standard API, which is included in the IOS code. UIM contains
the device support code. UIMs are invoked by IOS at device initialization and by HCD for
testing the HCD definition of a specific I/O configuration that you may have. One of the
functions of UIM is to specify whether or not the device type supports dynamic I/O
configuration.

Device types
IOS treats device control information (for example, UCBs) differently depending upon whether
the device can be dynamically reconfigured or not. This state may also be declared in HCD or
through the DYNAMIC parameter at IODEVICE in IOCP. The possible device types are:

Static A static device is a device whose type as defined in its UIM does not
support dynamic I/O reconfiguration (usually an old device type). A
static device cannot be dynamically added, deleted, or modified in the
software configuration definition. Therefore, the device is not available

Static

 UIM does not support Dynamic I/O changes

Installation-static

 UIM supports Dynamic I/O

Specified with DYNAMIC=NO in HCD

Dynamic

 UIM supports Dynamic I/O

Specify DYNAMIC=YES in HCD
Chapter 6. Hardware Configuration Definition (HCD) 381

for use until the next IPL of z/OS. However, the device can be added,
deleted, and modified in the hardware configuration definition, but its
channel path information cannot be modified.

Installation-static This is a device whose type as specified in its UIM supports dynamic
I/O configuration, but which you have defined as DYNAMIC=NO
(default is NO) in the HCD definition. You might specify DYNAMIC=NO
if your installation has old software such as customer programs and
supplier programs and products that depend on specific device-related
data structures such as UCB and EDT, or use existing old z/OS
services that access these data structures, and are unprepared to
handle dynamic changes to these structures.

Installation-static devices can be dynamically added to the software
and hardware I/O configuration, but cannot be deleted or modified while
z/OS is running. Devices can be dynamically added, deleted, and
modified in the hardware configuration definition, but their channel path
information cannot be modified. Usually the UCBs of such devices are
located in SQA below the line. The control information for
installation-static devices can be accessed using either old UCB
services or the new ones. Defining devices as installation-static should
be considered an interim measure until all the programs accessing their
UCBs have been converted to the new UCB services.

Modifying or deleting an installation-static device requires two separate
dynamic I/O reconfigurations.

Firstly, change the installation-static device to dynamic by activating a
new IODF that defines the device as dynamic. No other device
characteristics for that device can be changed on the redefinition
activation.

Secondly, delete or modify the dynamic device (by activating another
IODF that contains the appropriate changes to the device).

Dynamic This is a device whose device type as defined in its UIM supports
dynamic I/O configuration (in software and hardware). In order to
dynamically add, modify, or delete such a device while z/OS is running,
it is also necessary that the device be defined as dynamic in HCD
(DYNAMIC=YES). Their UCBs reside in ESQA.

Eligible device table (EDT)
During dynamic I/O reconfiguration, it is possible to also change the EDT. Usually, z/OS uses
one EDT to process allocation requests. However, when you dynamically change your
system's software I/O configuration definition, z/OS may have to use two EDTs to process the
change:

� The primary EDT processes all current and new allocation requests. z/OS runs with only
the primary EDT until you make a dynamic I/O configuration change. z/OS activates a new
primary EDT for the new I/O configuration, which makes the former primary EDT the
secondary EDT.

� The secondary EDT receives no new allocation requests. The system deletes the
secondary EDT when it finishes the allocation requests issued before the dynamic I/O
change.
382 ABCs of z/OS System Programming Volume 10

6.8 IODF data set

Figure 6-8 IODF data set

I/O definition file (IODF) data set
The I/O definition file (IODF) is a VSAM linear data set that is built and maintained by HCD.
There are two types of IODF data set: the work IODF file, and the production IODF.

Work IODF file
A work IODF allows you to create a new I/O configuration definition or modify an existing one.
You can have multiple work IODFs, each with a unique name, and all work IODF names must
conform to the following convention:

'hhhhhhhh.IODFxx.yyyyyyyy.yyyyyyyy'

Where:

hhhhhhhh High level qualifier–up to eight characters

xx Hexadecimal number in the range of 00 through FF as the IODF suffix

yyyyyyyy Optional qualifiers–up to eight characters each

HCD provides considerable flexibility in the choice of work IODF names. It is, however,
recommended that you be more stringent in your naming conventions. It is recommended that
you use the following convention when choosing a name for an IODF for in this manner, you
can easily ascertain the type of the IODF:

'hhhhhhhh.IODFxx.WORK'
'hhhhhhhh.IODFxx'

Work IODF file

Naming conventions

SYSn.IODFnn.WORK for work IODF

SYSn.IODFnn for production IODF

IODF File is a VSAM data set

 Catalog considerations

Production IODF backup

IODF placement

Non-SMS-managed volume recommended
Chapter 6. Hardware Configuration Definition (HCD) 383

Production IODF
A production IODF is the data set used to obtain the definitions needed to run the system. A
production IODF is a read-only data set, which preserves the integrity of the IODF.

The naming convention of the production IODF is more restrictive. If the IODF is to be used
for IPL and dynamic activation, the production IODF must have the following format:

'hhhhhhhh.IODFxx'

The production IODF is the copy used at IPL, and as an input to IOCP. It is created from the
work IODF. During the IPL, the information in the production IODF is used to build the UCBs
of the devices accessed by that LP. At IPL the device number of the device where the IODF is
located is specified in the load parm at the hardware management console. In the LOADxx
PARMLIB member (used by the IPL process) you specify the data set name IODF
identification, such as:

xx: The suffix

hhhhhhhh The high-level qualifier

The following naming convention is a useful way to relate the current production IODF to its
work IODF, and is easily extendable as new IODF versions are created:

ACTIVE PRODUCTION IODF: 'hhhhhhhh.IODF30'
SUBSEQUENT WORK IODF: 'hhhhhhhh.IODF31.WORK'
RESULTING NEW PRODUCTION IODF: 'hhhhhhhh.IODF31'

Catalog considerations
In a multisystem environment, a single IODF can define several software (images) and
hardware (servers) configurations. Observe also that the IODF data set must be
z/OS-cataloged. In a scenario, where you wish to share an IODF data set among multiple
z/OSs and each system is using a separate master catalog, you must define (in the master
catalog of each system) an alias that relates to the user catalog on DASD that is shared
among the systems. Define aliases and the user catalog before using HCD to define IODF
data sets.

Production IODF backup
It is suggested that you maintain a backup copy of your production IODF on a separate
volume that is accessible to all systems that are sharing the production IODF. When the
primary IODF volume is inaccessible or the IODF itself is corrupted, the system can be IPLed
through a backup IODF on the alternate IODF volume.

IODF placement
The production IODF to be used during IPL processing must be placed on the IODF device,
pointed to by the load parm (L2) value on the IPL panel of your hardware management
console. In an SMS environment, care should be taken to ensure that either:

� If the production IODF data set is not managed by SMS (there is not a Storage Class
associated with the IODF), you might specify the IODF volume serial number when
creating a production IODF.

� If the production IODF is SMS-managed, then the ACS routines are set up to
automatically place the production IODFs on the IODF volume.

Multiple configurations in a single IODF
You can decide whether to create one IODF for each server, or to combine the I/O definitions
for two or more servers in a single IODF. The advantage of including the definitions of two or
more servers with shared devices (among the LPs in such servers) in one IODF is that all the
384 ABCs of z/OS System Programming Volume 10

information is centralized in just one place; as a result, there is less chance of error, more
control, and the data for shared devices has to be entered only once.

A second reason for considering maintaining configuration definitions for several servers in
one IODF is that it allows you to easily move configurations from one LP to another (in either
the same server or separate servers).

The general recommendation is to create one IODF for a logical server complex; that is, a
group of servers that share I/O devices, as a sysplex. In this way, one z/OS system can be
used for updating the IODF with the configuration changes, which minimizes the chance of
error.

If you have previously had multiple IODFs defining your complex, the HCD copy/merge
function can be used to copy relevant parts of configuration data from a source to a target
IODF, or even from areas within an IODF.
Chapter 6. Hardware Configuration Definition (HCD) 385

6.9 Definition order

Figure 6-9 Definition order

Definition order
You can define the objects of a configuration in almost any order, but at one point you have to
connect objects together. You can only connect objects that are already defined; therefore, it
is useful to define the objects in a logical order. For example, when defining I/O devices
during the hardware definition, you are prompted to add devices to existing operating system
definitions. Therefore, it is useful to define the operating system before defining the devices.

The suggested sequence for defining a configuration is shown in Figure 6-9 and is as follows:

� Operating systems
� EDTs (z/OS-type only)
� Esoterics (z/OS-type only))
� Switches
� Servers
� Logical Channel Subsystems
� Logical Partitions
� Channel paths
� Control units
� Devices
� Consoles

Recommended definition order within HCD

Operating system

EDTs

Esoterics

Switches

Ports

Processor

Partitions (LPAR only)

Channels (chpids)

Control units

Devices

Consoles
386 ABCs of z/OS System Programming Volume 10

6.10 HCD primary menu

Figure 6-10 HCD primary menu

HCD primary menu
On entering HCD, you are presented with the HCD Primary Menu panel. HCD provides an
action bar-driven interface that exploits many of the usability features of the Common User
Access® (CUA) interface. To select an item from a numbered selection list, type the number
you want to select in the input field (left of the first list item) and press Enter.

The first time you use HCD, you must enter the IODF data set name that you wish to use. If
this is not the name of an existing IODF, HCD creates a new work IODF for you.

An example of a numbered list is the HCD primary task selection panel, shown in Figure 6-10.
This panel is displayed when you start an HCD session.

To create a new IODF, specify a work IODF (choosing a name) as follows:

 I/O definition file . . . 'ROGERS.IODF05'

Then, enter 1 in the input field and press Enter.

If you have a production IODF, it is advisable to start from the active production IODF as a
base. This is mandatory for a dynamic environment. Enter the new IODF name enclosed in
single quotes, for example:

 'ROGERS.IODF05'

HCD then displays the Create Work IODF Definition File panel.

CBDPM000 z/OS V1.7 HCD
Command ===> ___

 Hardware Configuration

Select one of the following.

__ 1. Define, modify, or view configuration data
 2. Activate or process configuration data
 3. Print or compare configuration data
 4. Create or view graphical configuration report
 5. Migrate configuration data
 6. Maintain I/O definition files
 7. Query supported hardware and installed UIMs
 8. Getting started with this dialog
 9. What's new in this release

For options 1 to 5, specify the name of the IODF to be used.

I/O definition file . . . 'ROGERS.IODF05' +
Chapter 6. Hardware Configuration Definition (HCD) 387

6.11 Creating a new work IODF

Figure 6-11 Create work I/O definition file panel

Create work IODF file
Specify the volume you wish the IODF to be allocated to (prompting is available for this field)
and press F4 for a list of volumes. If your IODF is SMS-managed, the volume serial number is
not required.

Specify whether you want activity logging to be enabled. If you opt for this function, then the
activity log is displayed as the last panel when exiting following an update to the IODF.

At this time you must also specify the size of the new work IODF in terms of the number of
4 KB blocks.

z/OS V1.7 HCD

'ROGERS.IODF05'
388 ABCs of z/OS System Programming Volume 10

6.12 Defining configuration data

Figure 6-12 Define, modify, or view the configuration panel

Work with configuration data
The next panel displayed after choosing Option 1 from the primary option menu is shown in
Figure 6-12. This panel displays all the objects for which the HCD dialog provides action lists,
where you can define the characteristics and the relation between these objects.

From this panel, you can go step-by-step to define, change, or delete the following:

� Operating system configurations
� EDTs
� Generics
� Esoteric groups
� Servers
� Logical Channel Subsystem
� Logical Partitions (LPs)
� Channel paths
� Control units
� Devices
� Consoles

Before using the dialog of HCD to define a hardware configuration, you should have a plan of
what your configuration should look like, and what you have to do to accomplish that.
Preferably, the requirements of your configuration should be established in a configuration
plan. See z/OS Hardware Configuration Definition Planning, GA22-7525, for a z/OS
configuration.

z/OS V1.7 HCD

'ROGERS.IODF05'
Chapter 6. Hardware Configuration Definition (HCD) 389

6.13 Operating system definition

Figure 6-13 Operating system definition

Operating system definition
It is recommended to define the operating system configuration before you define anything
else. An operating system (OS) configuration defines the data that is used by z/OS at IPL, to
build its I/O control blocks. An IODF can contain more than one z/OS configuration. At IPL
time, one of them is selected.

Figure 6-13 shows the elements (I/O devices, EDTs, Esoteric, and NIP consoles) and their
relationship within the z/OS operating system. A NIP console is the console used by the
nucleus initialization program (NIP), a z/OS program running at IPL time. NIP is in charge of
initializing all z/OS components and subsystems during the IPL procedure. At early stages of
this initialization, there are no multiple-console support (MCS) consoles available for
communication with the operator. The NIP console is then used for such communication. The
first message, Specify System Parameter is displayed on this device.

At IPL, the z/OS PARMLIB members identify the IODF and the operating system
configuration (you may have more than one per IODF) and the EDT identifier.

Operating system
Configuration ID

Esoterics

EDTs

Esoterics

NIP ConsolesI/O Devices
390 ABCs of z/OS System Programming Volume 10

6.14 Defining an operating system

Figure 6-14 Operating system configuration list panel

Defining the operating system
You define the operating system from the HCD primary menu shown in 6.10, “HCD primary
menu” on page 387. From this menu, select Define, modify, or view configuration data.
When the next panel appears, select Operating system configurations.

Figure 6-14 shows two configurations already defined (L06RMVS1 and MVSW1). To add a
new configuration, use F11.

Add Operating System Configuration panel
Complete the Add Operating System Configuration panel with the name of the operating
system you would like to define. As shown in Figure 6-14, we have defined MVSNEW.

After you define the operating system, you can define the EDTs.
Chapter 6. Hardware Configuration Definition (HCD) 391

6.15 EDT and esoterics

Figure 6-15 EDT and esoterics

Eligible device table (EDT)
An eligible device table (EDT) has several lists of devices, where each list is associated with
an esoteric name. It is used at allocation time to generate a list of the devices that are
candidates to receive a new data set. A z/OS operating system may have more than one EDT,
but only one can be active at any one time. In Figure 6-15, the EDT would have an esoteric
list of devices for SYSDA, PRODDSK, and TESTDSK.

Understanding I/O device allocation in z/OS
When you submit a job, you should identify I/O devices required by the data sets required by
the job. The device information can be obtained from either a catalog (if the data set already
exists), SMS overrides, or specific UNIT parameters on DD statements. Before the job (and
its steps) can start execution, a z/OS initiator component must allocate all those devices to
the data sets required by the job. “Allocation” in this case means to establish a link between
the logical definition of the data set and the physical device where it is, or will be, located. It
can also mean to make a logical connection between a requiring task (such as a batch step
task) and the data set already located in a device. The allocation can also be done after the
start of the step execution by its code invoking the z/OS function of DYNALLOC.

There are three ways to specify a device where the data set will be allocated for a job using
the UNIT parameter on a DD card, by using:

� A specific device number
� A generic device type
� An esoteric device group described in EDT

Generic
Device
Types

PRODDSK

Specific
Device
Number

Esoteric
Group
Name

0180 0181 0182 0183 0190 0191 0192 0193

3380 3390

SYSDA

TESTDSK
392 ABCs of z/OS System Programming Volume 10

Indicating a specific device number
To request a device explicitly for a data set in the job, specify a device number on the UNIT=
parameter or on the corresponding dynamic allocation parameter in the DYNALLOC service.
If that device is available, z/OS allocates the device to the data set in the job. However, if the
device is unavailable (for example, a tape drive allocated to another job), your job may wait
until the device is available for allocation or being cancelled by timeout.

Specifying a generic device type
z/OS logically groups device types with similar characteristics and assigns the group a
generic name. Such a group is called a generic device type. z/OS, for example, groups
3390-1 and 3390-2 into a generic device type named 3390. Any time a program allocates a
3390, z/OS interprets it to mean any of the devices of that generic device type.

To request a device allocation, you can specify a generic device type on the UNIT=
parameter. z/OS allocates a device from the specified generic device type. If you code the
following DD statement, then z/OS allocates a device from generic device type 3390:

//OUTPUT DD UNIT=3390,...

However, generic device type 3390 should not be confused with specific four-hexabyte
character device number 3390. To avoid having your specification misinterpreted as a specific
device number, use the following notation for the device number:

//OUTPUT DD UNIT=/3390,...

Specifying an esoteric device group described in EDT
A job that specifies an esoteric device group is requesting z/OS to allocate any device from
that group. An esoteric device group can include devices of different generic device types. In
Figure 6-15 on page 392, we have PRDDSK and TESTDSK.

The device preference list indicates the preferred sequence of device type candidates to
which to allocate the data set. It is used when the esoteric definition has more than one
device type. Devices belong to one of the following classes:

� Channel-to-channel adapters
� Communication devices
� Direct access devices
� Display devices
� Character readers
� Tape devices
� Unit record devices

All of the devices that you assign to an esoteric device group must be of the same device
class with the following exception: you can define esoteric device groups that contain devices
from both DASD and tape device classes. To request device allocation, you can specify an
esoteric device group name on the UNIT= parameter on the DD JCL statement.

As shown in Figure 6-15 on page 392, SYSDA is the esoteric group name for three 3380s
(device numbers 0181, 0182, and 0183) and four 3390s (device numbers 0190 through
0193). When UNIT=SYSDA appears on a DD statement, units 0181, 0182, 0183, 0190, 0191,
0192, and 0193 are eligible candidate devices.

TESTDSK is the esoteric group name for two 3390 DASDs (device numbers 0191 and 0192).
PRODDSK is the esoteric group name for three 3380 DASDs (device numbers 0181, 0182,
and 0h183).
Chapter 6. Hardware Configuration Definition (HCD) 393

6.16 How to define an EDT (1)

Figure 6-16 Actions on selected operating systems panel

Defining an EDT
Before you can define EDTs, you must have defined an operating system. You define an EDT
as follows:

� On the primary task selection panel, select Define, modify, or view configuration data
On the resulting panel, select Operating system configurations. HCD displays the
operating system configuration list of all operating system configurations currently defined
in the IODF.

� On the Operating System Configuration List panel, select the z/OS configuration, shown in
Figure 6-16 as MVSNEW. The next panel displayed allows you to select to work with EDTs,
as shown on “How to define an EDT (2)” on page 395.

� Select an operating system from the OS Configuration List panel, using the / action key
and then select Work with EDTs Option 5 from the context menu.
394 ABCs of z/OS System Programming Volume 10

6.17 How to define an EDT (2)

Figure 6-17 EDT list panel

Defining an EDT for a new configuration
For a z/OS operating system, you have to define at least one eligible device table (EDT). An
EDT can consist of one or more esoteric device groups and names of the generic device
types. Esoteric device groups are installation-defined groupings of I/O devices.

A z/OS configuration can contain more than one EDT; z/OS is told which one to use at IPL
time. If there are no EDTs defined in the IODF, as shown in 6.17, “How to define an EDT (2)”
on page 395, the EDT list is empty. Use F11=Add to add a new EDT. The data-entry fields are
shown in Figure 6-18 on page 396 with sample data.

For background information about I/O device allocation in z/OS that you need to understand
before defining EDTs and esoteric groups, refer to z/OS Hardware Configuration Definition
Planning, GA22-7525.
Chapter 6. Hardware Configuration Definition (HCD) 395

6.18 Defining an EDT identifier

Figure 6-18 Add EDT panel

Defining the EDT identifier
An eligible device table (EDT) is an installation-defined and named representation of the I/O
devices that are eligible for allocation. Using HCD, you define EDT information in an IODF. At
IPL or dynamic configuration, information in the IODF and UIMs is used to select the EDT.

Add EDT panel
You specify an EDT identifier, 0A (any two alphanumeric characters) and choose a name
(MVSNEW) as the configuration ID, as shown at the top of Figure 6-18. After you press the
Enter key, HCD the displays the EDT List panel.

EDT List panel
The EDT List panel now shows the new EDT identifier, as illustrated in the lower part of
Figure 6-18.

LOADxx member for IPL
When you create the LOADxx member, you specify an IODF statement to identify the
production IODF to be used. Other PARMLIB members identify the operating system
configuration that is used to IPL the system. The IODF identified becomes the active IODF for
the system.
396 ABCs of z/OS System Programming Volume 10

6.19 How to add an esoteric

Figure 6-19 EDT list panel

How to add an esoteric
When defining eligible device tables (EDTs) for I/O devices:

� Decide how many EDTs to define.
� Specify a 2-digit identifier for each EDT, for example, 20.
� Decide how many esoteric device groups to define in each EDT.
� Specify a name for each esoteric group.

Esoteric device group
An esoteric device group identifies the I/O devices that are included in that group. The name
you assign to an esoteric device group is called the esoteric name. To request allocation of a
device from an esoteric device group, specify the esoteric name on the UNIT parameter of a
JCL DD statement. The name esoteric device group is often shortened to esoteric group or
simply esoteric.

Adding an esoteric
On the primary task selection panel, select Define, modify, or view configuration data. On
the resulting panel, select Operating system configurations. HCD displays the operating
system configuration list of all operating system configurations currently defined in the IODF.

On the Operating System Configuration List panel, select the z/OS configuration you are
working with. The next panel displayed allows you to select to work with EDTs by selecting
Option 5, Work with EDTs and from the next panel select the EDT identifier using the / action
Chapter 6. Hardware Configuration Definition (HCD) 397

key. Then, from the next panel, select Option 4 Work with esoterics from the context menu
as shown in Figure 6-19 on page 397, and press Enter.

To define an esoteric group in an EDT with device numbers, refer to 6.52, “Assigning a device
to an esoteric” on page 440.
398 ABCs of z/OS System Programming Volume 10

6.20 Adding an esoteric

Figure 6-20 Esoteric list panel

Add an esoteric
The Esoteric List panel appears, as shown on the top of Figure 6-20. Press F11 and the Add
Esoteric panel appears and then you can add an esoteric name. Figure 6-20 shows the
esoteric name SYSDA has been added.

Esoteric token and catalogs
The esoteric token is an optional value. In the past there have been access problems with
data sets cataloged with an esoteric device group name. HCD arranges esoterics
alphabetically, but the z/OS catalog contains the EDT index entry pointing to the esoteric.
After HCD has reordered the esoterics, allocation searches the incorrect device for a data set.
If you specify an esoteric token, this token will be used as the entry point to the catalog.
Specify the token such that your existing esoteric or non-alphabetic order is maintained.

You should be aware that deleting an esoteric name may cause catalog problems because
the catalog keeps the esoteric information used to allocate the data set at creation.

Virtual I/O (VIO)
Virtual I/O (VIO) refers to data set allocations that exist in paging storage only. z/OS does not
use a real device unless it must page out the data set to a paging device. Programs that use
VIO data sets access them just as if the data sets were allocated to a real I/O device. VIO is
usually only set on for the user-defined esoteric called VIO.
Chapter 6. Hardware Configuration Definition (HCD) 399

6.21 Defining switches

Figure 6-21 Switch list panel

Defining switches
Switches (also called directors) are kinds of devices with multiple bidirectional ports to which
channels and control units may be attached. There are two types of switches: ESCON and
FICON. To define switches and their associated ports in HCD, you need to:

� Define switch characteristics
� Define connections to CHPIDs, CUs, and other switches
� Define switch configuration data (port matrix)

On the primary task selection panel, select Define, modify, or view configuration data. On
the resulting panel, select Switches. HCD displays the list of all switches currently defined in
the IODF, as shown in Figure 6-21.

If there are more than one switch control unit and device, the list entry gets an indication (>,
which is not shown here).

With the F20=Right key, you can scroll to the right part of the Switch List panel. Up to nine
switch control units and devices can be shown. If there are more, an indication is given for the
corresponding entry (Yes in column More? on the right part of the Switch List panel). These
additional switch control units and devices can be viewed, for example, on the Port List for
port FE.
400 ABCs of z/OS System Programming Volume 10

Types of switches
Using HCD, you can define both ESCON switches (ESCON Directors, such as 9032-5) and a
FICON FC switch (type 2032) or a generic FC switch (type FCS). The FICON FC switch
supports an internal switch control unit and device (listed in the right side of the panel),
whereas the generic FCS switch does not.

To define switches in your configuration, you need to know the switch type (for example,
9032-3 or 9032-5). You need to decide on:

� Switch ID, such as 01.

� Switch control unit number and switch device number (also called CUP).

You must define a switch control unit and device to allow software to communicate with the
switch to update the switch configuration and to validate the switch data. When you specify
a control unit number and device number in the HCD Add Switch panel, a control unit and
device are defined to be the same type as the switch.

Switch connections
You also use HCD to define the connections of the switch ports to channels or control units,
and also to define a matrix of all possible connections between any two switch ports.

The matrix information can be migrated into HCD from an ISPF table containing a switch
configuration from an active ESCON Director (ESCD), a FICON Director, or from a saved
ESCD file. Use the Migrate Switch Configuration Data option on the HCD Migrate
Configuration Data panel.

Obviously, this matrix can also be changed through the switch console.
Chapter 6. Hardware Configuration Definition (HCD) 401

6.22 Adding switches

Figure 6-22 Add Switch panel

Adding a switch
Press F11 on the panel shown in Figure 6-21 on page 400 to add a switch. This displays the
panel shown in Figure 6-22.

When you fill in the fields on this panel, the Add Switch function results in HCD optionally
generating the switch's control unit and I/O device definitions used for host communication.
This CUP device can later be defined to the appropriate operating system configurations.

On this panel, HCD allows you to define the switch itself, the range of ports installed on your
director, the switch device number, and the switch control unit. If the switch control units
already exist, they are automatically connected to a control unit port on the newly defined
switch. This ensures that the definitions of switch control unit and switch device are
consistent. Likewise, when deleting a switch, the switch control unit and switch device are
deleted as well. However, you still have to perform the following HCD steps:

1. Connect the switch control unit to the server (this also establishes the switch device-server
connection).

2. Connect the switch device to the operating system.

After you have entered the new switch definition data, all defined switches are displayed in the
HCD Switch List panel.
402 ABCs of z/OS System Programming Volume 10

6.23 Defining servers

Figure 6-23 Defining server modes

Defining servers
When an HCD panel refers to processor, this means server.

You can define more than one server in an IODF, and for each defined server you can
configure server-related data at POR. On the primary task selection panel, select Define,
modify, or view configuration data, shown in Figure 6-10 on page 387. On the resulting
panel, select Processors (Option 3 shown in Figure 6-12 on page 389). HCD displays the
Processor List of all operating system configurations currently defined in the IODF, as shown
in Figure 6-23.

Adding a new server
Use F11=Add to add a new server to the Processor List, as shown in Figure 6-26 on
page 407.

A server can run in either of two modes:

� Basic mode
� LPAR (partitioned) mode

Basic mode
In Basic mode, you run only one operating system image on the server and it controls all the
resources (memory, channels, and so forth) of the server. This mode is no longer available for
z990 and z9 EC model servers.

Basic mode

Operating system has full use of entire
machine (not valid for z990 and z9)

LPAR mode

 Logical Partition (LPAR)
Chapter 6. Hardware Configuration Definition (HCD) 403

LPAR mode
The Processor Resource/Systems Manager™ (PR/SM) feature contains a function called
logical partition (LPAR), which allows a single server to run multiple isolated and independent
operating system images (including the Coupling Facility control code (CFCC), the operating
system of a Coupling Facility) in logically partitioned (LPAR) mode.

Each operating system has its own logical partition, which is a separate set of system
resources including:

� A portion of central storage (also called real storage)

� One or more CPUs. The CPU can be dedicated or shared to the logical partition (LP).
When the CPUs are shared, you assign a weight to guarantee the use for each partition of
a certain CPU share or to impose a limitation (capping).

� Channels, which can be shared (also called multiple image facility (MIF)), reconfigurable
or dedicated.
404 ABCs of z/OS System Programming Volume 10

6.24 z9 EC server elements

Figure 6-24 z9 EC order of definition for server elements

z9 EC considerations
Note the following points:

� There is no Basic mode. Therefore, all operating systems must run in LPAR mode.

� Up to 60 logical partitions.

� The server can contain up to four LCSSs, and the LCSSs contain the logical partitions
(LPs).

� All CHPIDs must be qualified by the LCSS identification.

� No LPs can be added until at least one LCSS has been defined.

� LPs are now defined to an LCSS, not to a server.

� An LP is associated with one LCSS only.
� All CHPIDs have a PCHID assignment. Channels can be dedicated, or spanned, across

logical channel subsystems. Spanned channels allow you to minimize the number of
physical CHPIDs, switch ports. and cables required. There are only logical spanned
channels, such as: IQD (HiperSockets) and IC (CF link).

� CHPID numbers are unique within an LCSS; however, the same CHPID number can be
reused within all LCSSs.

� The LP number as defined in HCD is not the LP ID, but the MIF ID.

� Each LCSS allows you to accommodate up to 256 CHPIDs and encompass up to 15 LPs.

CEC (or CPC)

Logical channel subsystem (LCSS)

Logical partitions (LP)

Regular channel paths (CHPID and PCHID)

Spanned channels
Chapter 6. Hardware Configuration Definition (HCD) 405

6.25 Information for defining a server

Figure 6-25 Information required when defining a new server

Information required to define a server
Figure 6-25 describes the information required to define a new server, as shown in
Figure 6-26 on page 407. To define servers in your configuration, you need to specify:

� Server ID - an 8-byte alphanumeric name that you assign to identify the server in HCD
(such as SCZP100).

� Support Level - depending on the server type/model, there may be more than one support
level for the server type. If the server has several support levels, HCD displays another
panel showing a list of available support levels for the server. The support level defines the
supported channel path types, and the features such as dynamic I/O reconfiguration,
EMIF, and Coupling Facility support, depending on the microcode level.

� Server Type and Model - such as 2084 B16.
� Configuration Mode: Basic or LPAR - if a server is in LPAR mode, you must define

partitions in your configuration.
� Number of channel subsystems, as you planned.
� Serial number - if you specify a serial number, the system uses the number to verify that it

is updating the correct server during IOCDS download.
� Description - text that you use to describe the server.
� SNA address (network name) and CPC name - for a server located in an S/390

microprocessor cluster (that is, several servers connected in a token-ring hardware
management console LAN), you need the system network architecture (SNA) address of
its support element in that LAN and its central processor complex name, usually the same
as the Server ID.

Processor type and model

SNA address of the support element

Serial number

Support level of the processor

Processor identifier name

Processor mode: BASIC or LPAR

Partition name

Partition number
406 ABCs of z/OS System Programming Volume 10

6.26 Defining a server

Figure 6-26 Add Processor panel

How to define a server
Figure 6-26 shows the panel used to define a server. To display this panel, select Define,
modify, or view configuration data, shown in Figure 6-10 on page 387. On the resulting
panel, select Processors (Option 3 shown in Figure 6-12 on page 389). This displays the list
of the servers that have been defined. From the Processor List panel, press F11 to add a
server. The data entry fields are shown with sample data in Figure 6-26.

On the Add Processor panel, you can specify the network name and the CPC name, when
the server is configured in an S/390 microprocessor cluster. Use Prompt on the Add
Processor panel for the SNA addresses for those servers that are currently configured in the
S/390 microprocessor cluster.

Number of LCSSs
As shown in Figure 6-26, the number of channel subsystems defined is two (LCSS0 and
LCSS1). See Figure 6-28 on page 409.
Chapter 6. Hardware Configuration Definition (HCD) 407

6.27 Working with LCSS

Figure 6-27 Processor List panel

Working with partitions
The top portion of Figure 6-27 shows the newly added server, SCZP100, on the Processor
List panel.

From the Processor List panel shown in the top portion of the visual, placing a forward slash
(/) next to the newly defined server displays the “Actions on selected servers” pop-up window
(shown in the bottom portion of Figure 6-27). From this panel, select Option 12 (Work with
channel subsystem).

From the HCD primary option menu you can define partitions as follows:

� On the primary task selection panel (shown in “Defining configuration data” on page 389),
select Define, modify, or view configuration data. On the resulting panel, select
Processors (Option 3). HCD displays the Processor List of servers currently defined in
the IODF, as shown in the top portion of Figure 6-27.

� On the Processor List panel, select the server and the Work with channel subsystems
action from the context menu. HCD displays the Channel subsystem list panel showing
the currently defined partitions for the designated server, as shown in Figure 6-28 on
page 409.
408 ABCs of z/OS System Programming Volume 10

6.28 Logical channel subsystems defined

Figure 6-28 Channel Subsystem List panel

Defining the channel subsystems
The channel subsystems were defined on the Add Processor panel; see Figure 6-26 on
page 407. The two channel subsystems defined are shown in Figure 6-28 on the Channel
Subsystem List panel.

Logical partitions defined to an LCSS
To assign partitions (LPs) to an LCSS, either type p or type a / next to the CSS ID.
Chapter 6. Hardware Configuration Definition (HCD) 409

6.29 Adding a logical partition (LP)

Figure 6-29 Add Partition panel

Defining logical partitions
For the z990 and z9 EC servers, logical partitions must be associated with an LCSS. The z9
EC supports up to 60 logical partitions.

To define partitions, you need to decide on:

� A unique LP name (such as MVSPROD), anyone you choose defined in HCD

� A logical partition ID to be defined in HMC

� A MIF ID to be defined in HCD in the option partition number

� Whether the LP is to be used by an operating system, such as z/OS (OS option), or by a
CFCC partition (CF option)
410 ABCs of z/OS System Programming Volume 10

6.30 z9 EC LPAR server configuration

Figure 6-30 LPAR server configuration

z9 EC LPAR server configuration
Figure 6-30 shows an example of an LPAR server configuration, where:

1. Logical partition names are specified in the I/O definition process (HCD or IOCP) and
must be unique for the logical partition across all LCSSs in the z9 EC.

2. Logical partition MIF ID is specified in the I/O definition process (HCD or IOCP) in the
partition number field and must be unique x'00’ to ‘0F' for all the logical partitions across
each LCSS in the z9 EC.

3. Logical partition ID is specified (by the user) in the z9 EC Image profile (for the LP) in HMC
and must be unique x'00-3F' for the LPs across all LCSSs in the z9 EC.

Channel spanning
The z9 EC LCSS is extended to provide the concept of spanning. This is an extension to the
MIF shared channel concept. Spanning channels provides the ability for the channel to be
configured to multiple LCSSs. Consequently, they may be transparently shared by all or any
of the configured LPs in all the LCSSs. This can be done regardless of the channel
subsystem to which the LP is defined. Refer to Figure 6-30, where the CHPID 04 is spanned.
Since it is not an external channel link, there is no PCHID assigned. CHPID 06 is an external
spanned channel and has a PCHID assigned. A channel is spanned if the same CHPID
number is assigned to the same PCHID in multiple LCSSs. In the case of internal channels
(IC links, HiperSockets), the same applies, but there is no PCHID association. The following
channel types can be spanned: HiperSockets, IC, FICON Express, FICON Express2, OSA
Express, OSA Express2, ICB4, ICB3 and ISC3.

LCSS0

Partition
1

. . .Partition
2

Partition
14

Partition
15

Partition
16

Partition
17

Partition
18

Partition
60

. . .

MIF-1 MIF-2 MIF-F. . .

LCSS1

MIF-1 MIF-2 MIF-3 MIF-F

CHPID
00

CHPID
01

CHPID
02

CHPID
03

Share

PCHID
10B

PCHID
10C

PCHID
10D

PCHID
20E

. . .
CHPID

FF

PCHID
20A

CHPID
04

SPAN

CHPID
06

SPAN

PCHID
120

CHPID
00

CHPID
01

CHPID
05

Share

CHPID
22

CHPID
FF

PCHID
145

PCHID
146

PCHID
147

PCHID
158

PCHID
159

.

. . .
Chapter 6. Hardware Configuration Definition (HCD) 411

6.31 Channel types operation mode

Figure 6-31 Channel operation modes

Channel operation modes
According to how operational modes are related with the LPs, a channel may be:

� Dedicated - If you want only one LP to access a channel path, specify that channel as
dedicated. You cannot reconfigure a dedicated channel path. This is the default mode. All
channels can be dedicated.

� Reconfigurable - If you want only one LP at a time to access a channel path and you want
to be able to manually reconfigure the channel from one LP to another, specify that
channel path as reconfigurable. All channel types can be reconfigurable. When defining a
reconfigurable channel, you decide which LP will be assigned to it at LP activation time
and the LPs that can be given access to the channel later on. This is indicated through a
Candidate list. Refer to “Defining an access and a candidate list” on page 420.

� Shared or MIF (multi-image facility) - If you want more than one LP to access a channel
simultaneously, specify that channel path as shared. Only the FCP channel cannot be
shared. With MIF, LPs can share the same device through a single shared physical
channel or set of shared channels. The major advantage of MIF is that it reduces the
number of channels, which allows a cheaper and simpler I/O configuration. MIF enables
resource sharing across LPs within a single LCSS or across multiple LCSSs. When a
channel is shared across LPs in multiple LCSSs, this is known as “spanning”. When
defining the shared channel, you decide which LPs will be assigned to the channel. This is
indicated through Access and Candidate lists. The default with HCD for shared channels
is to have all the partitions in the Access list so the channel is online to all LPs on the
server.

In relation with the use of a channel by a logical
partition (LP), a channel can be:

Dedicated

Reconfigurable

Shared or mutiple image facility (MIF)
412 ABCs of z/OS System Programming Volume 10

6.32 Channel types

Figure 6-32 Channel types

Channel types
Following is a short description of the channel types.

ESCON channels
An ESCON channel can be connected to an I/O controller (CNC) or can be connected to
other ESCON channel or a FICON convertor (FCV) - named channel-to-channel (CTC).
CTCs allow the flow of data between central storages of different LPs in the same or in
distinct servers. In each logical partition that can communicate with another server complex
through a shared ESCON CTC channel path, you must specify the logical address of the
ESCON CTC control unit. You can specify MIF IDs when defining LPs, and you can specify
these MIF IDs as the logical address for a CTC control unit.

FICON channels
FICON channels are based on the fibre architecture, with some differences to implement
more security. FICON channels increase the server’s I/O capacity; each FICON channel has,
on average, performance that is equivalent to four ESCON channels. The FICON channel
(FC) requires either a FICON interface at the controller, or it needs to be connected to a fiber
channel switch (director) port.

FICON bridge channel (FCV)
Using the FICON bridge feature on the 9032-005 ESCON Director, you can attach ESCON
controllers to a FICON channel. The FCVs offer a migration path for ESCON CNC channels.

ESCON (CNC or CTC)

FICON Native (FC)

FICON Bridge (FCV)

Fibre Channel Protocol (FCP) for Linux

Coupling Facility ISC channels (CFP)

Coupling Facility Integrated Cluster Bus (CBP)

Coupling Facility Internal Coupling (ICP)

Open Systems Adapter Express (OSD, OSA, OSC
and OSN)

HiperSockets QDIO (IQD)
Chapter 6. Hardware Configuration Definition (HCD) 413

An FCV channel path occupies eight port addresses on the switch. To model the FCV bridge
within HCD, consider the following: whenever you connect an eligible port address to an FCV
channel path, you must set all other port addresses occupied by the FCV bridge to
uninstalled.

Fibre channel protocol (FCP) channels
Fibre channel protocol (FCP) channels are a real implementation of the fibre channel
architecture, used in z9 EC by Linux LPs that are running (or not) under z/VM.

Coupling Facility (CF) channels (ICP, CBP, and CFP)
CF channels (also called CF links) connect z/OS with CFs, and connect CFs with CFs. The
types are as follows:

ICP This is a microcode-defined link to connect a CF to a z/OS LP in the
same z9 EC server. The CF link itself is known as an internal link (IC),
requiring two CHPIDs to be defined. The link rate is greater than 2
GB/sec.

CBP This is a copper link available to connect IBM System z servers; that
is, the z/OS LPs and the CF LPs are in different servers. The CF link
itself is known as an integrated cluster bus (ICB4), requiring a
maximum distance between the two servers of seven meters. The link
rate is 20 GB/sec. They are directly connected to the MBA in the
server cage through a dedicated STI.

CFP This is a fiber link defined in peer mode available to connect IBM
System z servers; that is, CF LPs and z/OS LPs are in different
servers with a distance greater than seven meters. The CF link itself is
known as intersystem channels (ISC3), requiring a maximum distance
between the two servers of 10 km with unrepeated channels, or 20 km
with an RPQ, or 40 km with Dense Wave Division Multiplexing
(DWDM) connections. The link speed is 200 MB/sec (for distances up
to 10 km), and 100 MB/sec for greater distances (RPQ).

Open systems adapters express (OSA-Express2)
OSA-Express2 comprises integrated network controllers packed together with I/O channels
located in the z9 EC I/O cages. Depending on the features installed in an OSA-Express2, we
may have access to different types of networks, such as 10 GbE LR, 1000BASE-T Ethernet,
and others. OSA-Express2 in z9 EC works as four different types of channels:

� OSD (queued direct I/O - QDIO)

� OSE (non-queued direct I/O)

� OSC (OSA-express integrated console controller)

� OSN (open system adapter for NCP)

HiperSockets or internal QDIO (IQD)
This is an LIC providing a logical channel with a very fast TCP/IP communication path
between LPs in the same server. The operating systems exploiting such a facility can be
z/OS, z/VM, VSE/ESA, and Linux. HiperSockets provide internal “virtual” LANs that act like
TCP/IP networks in IBM System z servers.
414 ABCs of z/OS System Programming Volume 10

6.33 Information required to add channels

Figure 6-33 Information required when defining channels to HCD

Information required to add channels
To define channel paths in your configuration, you first make your physical layout decisions
such as your CHPID numbers for channels, number of channel paths, channel path type, and
switch directors (ESCON and FICON) information, if channel paths are connected to a switch.
The switch information includes entry switch ID, ports, and dynamic switch ID.

Then you need to decide on an operation mode (dedicated, reconfigurable, or shared) and
the associated access and candidate lists.

Note: The icons shown in Figure 6-33 are for the instances and defined channel types
displayed on the Hardware Management Console.

CHPID and PCHID

Type of channel

Operation mode

Dedicated

Reconfigurable

Shared

DCM-managed

Access and candidate Lists

Dynamic entry switch ID

Entry switch ID

Entry port
Chapter 6. Hardware Configuration Definition (HCD) 415

6.34 Working with channel paths

Figure 6-34 Processor List HCD panel

Work with channel paths
We may say that channel and channel path are interchangeable terms with the same
meaning. Usually HCD manuals tend to use channel path instead of channels.

On the primary task selection panel, select Define, modify, or view configuration data. On
the resulting panel, select Processors. HCD displays the Processor List of servers currently
defined in the IODF.

On the Processor List panel, select the server you are working with (in this example, a z990)
by typing action code s.

HCD displays the Channel Subsystem List panel, in the bottom portion of Figure 6-34,
showing the two LCSSs (0 and 1) defined for the selected server.

Select an LCSS to add the channel
On the Channel Subsystem List panel, type action code s to display the Channel Path List
panel. Initially, this panel should be empty; after channel paths are defined, you see them in
the list.
416 ABCs of z/OS System Programming Volume 10

6.35 Adding channel paths dynamically

Figure 6-35 Channel Path List panel

Adding channel paths dynamically
The Channel Path List panel eventually shows all the channel paths defined for the selected
server for each logical channel subsystem.

To add a channel path, use F11=Add; this displays the Add Channel Path panel shown in
Figure 6-36 on page 418.

You can now add, modify, and delete channel path definitions. However, if you define a device
as static or installation-static, you cannot delete or modify the channel path definition to that
device. You may also be able to dynamically add, delete, or modify CF channels (links).

To dynamically add a channel path, use the following general steps:

� Describe the new I/O configuration definition in an I/O definition file (IODF) that you create
through HCD, including the new channel.

� Activate the new IODF through the Activate z/OS command or through an HCD panel.

� Install the new I/O components that you have dynamically added.
Chapter 6. Hardware Configuration Definition (HCD) 417

6.36 Adding a channel path

Figure 6-36 Add channel panel

How to add a channel path
Fill in the fields on the Add Channel Path panel. Because the server ID matches a z9 EC
previously defined, you can operate only in LPAR mode.

This panel is for LCSS 0. Next you define the channel path characteristics by defining the
following:

� Channel path ID (CHPID), shown as 00

� PCHID

� Number of CHPIDs, shown as 1

� Channel path type, shown as FICON native in “Channel types” on page 413

� Operation mode, shown as SHR (shared)

� Managed, shown as YES

Note: On a z9 EC server, you need to specify the physical channel identifier (PCHID)
associated with the channel path identifier (CHPID).

However, with the CHPID mapping tool (CMT) you can map CHPID and PCHIDs more
easily. It means that you are not forced to declare the PCHID now. Work without the
PCHID and after finishing the configuration, submit the IOCP (generated by HCD) to
the CMT for PCHID assignment.
418 ABCs of z/OS System Programming Volume 10

� HCD distinguishes between the dynamic and entry switch identification when defining the
connections of a channel path. The dynamic switch is the switch holding the dynamic
connection; the entry switch is the switch to which the channel path is physically plugged.
These IDs can be different when the switches are connected in a cascade of two.

� It is not mandatory to declare the Entry Port ID (D1 in the panel), describing the port ID in
the switch where the channel is connected. Each channel, during the initialization process,
can discover the switch port ID that it is connected to. This allows a double-check of the
definition.

After you press Enter on the Add Channel Path panel, HCD displays the Define Access List
panel.

Note: You can define an ESCON channel path as being managed by dynamic channel
path management (DCM), an IRD function. DCM dynamically switches the channel
connection among control units in order to optimize I/O activity and balance channel
utilization.

In order to implement DCM, a managed ESCON channel path must connect to an
ESCON dynamic switch, and may be used for control units that connect to the same
switch. If a channel path is defined as managed, it must be defined as shared and must
specify an I/O cluster name.

An I/O cluster is the sysplex that owns the managed channel path. All systems of the
sysplex on the given server are allowed to share the managed channel path. A
managed channel path cannot be declared as connected to a control unit in HCD.

DCM is not available for FICON channels.

Note: You can define multiple channels in one step. If you do so, and have also specified
an entry switch and entry port for the channel path, HCD displays another panel where you
can specify the entry switch and port number for the subsequent channel paths.
Chapter 6. Hardware Configuration Definition (HCD) 419

6.37 Defining an access and a candidate list

Figure 6-37 Define access and candidate list panels

Channel path access list
An LP that is on a shared channel's access list can access the channel when the LP is initially
activated. When a channel is dedicated, you specify one LP on the channel path access list.
When a channel is shared, you can specify more than one LP on the channel access list.
Figure 6-37, in the top portion, shows the access list with LP MVSPROD only.

Channel path candidate list
If you do not include all LPs in the access list, you are prompted for the candidate list (for
reconfigurable and shared channel paths) after pressing Enter. This panel is shown in the
lower portion of Figure 6-37, and a second partition, TEST, is then selected.

An LP that is on a channel's candidate list can eventually access the channel. An LP on this
list can access the channel when the channel is manually configured online (through a z/OS
Config command) to the LP.

In this example, we added CHPID 80 to the access list of MVSPROD and the candidate list of
TEST. Use the / key to select the LPs.
420 ABCs of z/OS System Programming Volume 10

6.38 Adding a control unit

Figure 6-38 Picture showing I/O configuration

Control units
An I/O control unit (or controller) provides the logical capabilities necessary to operate and
control a set of I/O devices, and adapts the characteristics of each device so that it can
respond to the standard form of control provided by the channel subsystem. Refer to
Chapter 7, “DS8000 series concepts” on page 457 for more information on DASD I/O
controllers.

Communication between the control unit and the channel subsystem takes place over a
channel path. The control unit accepts control signals from the channel, controls the timing of
data transfer over the channel path, and provides indications concerning the status of the
device.

The I/O device attached to the control unit may be designed to perform only certain limited
operations, or it may perform many different operations. A typical operation is moving a
recording medium and recording data. To accomplish its operations, the device needs
detailed signal sequences peculiar to its type of device. The control unit decodes the
commands received from the channel subsystem, interprets them for the particular type of
device, and provides the signal sequence required for the performance of the operation.

A control unit may be housed separately, or it may be physically and logically integrated with
the I/O device (DS8000), or the channel subsystem (OSA-Express2). For specific reasons in
certain cases, the same physical control unit must act as several control units called logical
control units, and in HCD you should define each logical control unit.

MVSPROD

TEST
9032/005
Switch 01

E01

2105

40

CHP 81
CHP B0

CHP 80

CHP B1
LCU
1700

LCU
1701

9032/005
Switch 02

E02

41

41

04

05

04

40

05
Chapter 6. Hardware Configuration Definition (HCD) 421

How to add a control unit
Here the expression control unit really means logical control unit. The configuration being
pictured in Figure 6-38 on page 421 is a 2105 (Shark) with two logical control units (1700 and
1701) using MIF channels attached to two ESCON directors. When defining control units, you
need to define the following:

� Control unit characteristics
� How the control unit is attached to a server

The steps for the configuration in Figure 6-38 on page 421 are as follows:

1. Define the ESCON channels, sharing them between TEST and MVSPROD LPs and
connecting them to the ESCD switches. In this example, shown in Figure 6-37 on
page 420, the channels have already been defined.

2. Define the two 2105’s control units, specifying the CHPIDs.

3. Define the DASD devices and connect them to the logical control units.
422 ABCs of z/OS System Programming Volume 10

6.39 Information required to define a control unit

Figure 6-39 List of items to define control units

Information required to define a control unit
Here we discuss the items needed to correctly define a control unit to HCD:

� Control unit type and model, such as 9343-1

� Control unit serial number

� Description - text that you use to describe the control unit

� Servers to which the control unit connects

� Control unit number, such as 1700 (just for HCD correlation)

� Connections to switches

� Channel path IDs (CHPIDs) where the control unit can connect

� Link address, the switch port number where the control unit is connected with the
respective channel in the switch. This information is mandatory, because the channel must
know this port ID in order to send an ESCON or FICON frame to the control unit.

� Information to attach the control unit to the channel path of the server:

– Device unit address ranges that the control unit recognizes
– I/O concurrency level - classification of a control unit based on its ability to concurrently

operate and control the activity of attached devices without causing loss of control or
data

– Logical address - known as the CUADD value

Control unit type and model

Control unit number

Connections to switches

Description: text

Channel path IDs

Link address

Unit address

Protocol

I/O concurrency level

CUADD value
Chapter 6. Hardware Configuration Definition (HCD) 423

6.40 Adding a control unit

Figure 6-40 Control unit list panel

Adding a control unit
On the primary task selection panel, select Define, modify, or view configuration data. On
the resulting panel, select Control units. HCD displays the Control Unit List panel showing all
control units currently defined in the IODF (on the first definition, this panel is empty).

Column #CSS shows the number of channel subsystems to which a control unit is connected.
The column contains a value only if the connection exists. Here the number five indicates five
LCSSs for sure located in different servers.

Column #MC shows the number of DCM managed channels defined for the connected
servers.

Observe that in Figure 6-40, we are not defining switches (2032 and 9032), we are just
defining the switches as control units (and later with CUP devices) so that the software can
set the connections of the ports.

Adding additional control units
Press F11 to add the second control unit. After filling in the details, press Enter to display the
Add Control Unit panel. Pressing Enter again returns you to the Control Unit List panel.

The following prerequisites must be met for this function:

� The control unit must support ESCON or FICON attachments and not be used for
channel-to-channel (CTC) connections.
424 ABCs of z/OS System Programming Volume 10

� The control unit must have physical switch/port connections (switch entry ports) defined.

� Channel paths that use the connected switch as a dynamic switch must exist.

HCD then automatically selects the channel paths and link addresses according to the
following rules for each server that has been defined:

� All channel paths that use a switch that connects to the control unit as a dynamic switch
are candidates for assignment.

� The channel paths are sorted ascending by the value of the reversed channel path ID. The
resulting sequence is again sorted ascending by the number of connected devices.

� The connected control unit ports are ordered ascending by the numbers of already
connected control units and path connections, respectively.

� For each connected switch port in the resulting sequence, the channel paths are tested in
sequence. If the switch port can be used as a link address, the CHPID/link address is
taken.

� A maximum number (up to 8) of possible CHPID/link address combinations is assigned.
Chapter 6. Hardware Configuration Definition (HCD) 425

6.41 Defining a 2105 control unit

Figure 6-41 Control Unit List panel

Defining a 2105 control unit
Figure 6-41 is showing the definition of the Shark 2105 control unit:

1. Select Control Units from the Define, Modify or View Configuration Data panel.

2. Press F11 to add a new control unit.

3. Fill in the fields on the panel as follows:

The Add Control Unit panel can also be used to specify the switches and ports the control
unit is attached to. In the example, this logical control unit is connected, respectively, to
switch 01 through port IDs 40 and 50; and to switch 02 through port IDs 40 and 50.

If you specify Yes for “Define more than eight ports,” a further panel is displayed to allow
you to specify up to 32 control unit switch/port connections.

If you specify Yes for “Propose CHPID/link addresses and unit addresses,” HCD suggests
control unit-to-server attachment parameters (channel path/link addresses and the unit
address range) based on the switch/ports the control unit is connected to. HCD proposes
up to eight channel path/link address pairs, starting with the channel path that has the
lowest number of devices attached to it.

4. After typing in the details, press Enter to display the Select server/Control Unit panel,
shown in Figure 6-42 on page 427.
426 ABCs of z/OS System Programming Volume 10

6.42 Selecting a processor/control unit

Figure 6-42 Select processor/CU panel

Select processor for control unit
Up to now, you have defined the control unit and established its links with switch ports. Still
missing are the channels and their servers that access such control units.

After pressing Enter on the Add Control Unit panel, HCD displays a list panel, shown in
Figure 6-42, that shows all the defined servers. Select the server you wish to attach the
control unit to by typing a slash (/), pressing enter, and then selecting the S Select
(connect, change) action from the context menu, as shown in Figure 6-43 on page 428.
Chapter 6. Hardware Configuration Definition (HCD) 427

6.43 Servers and channels for connecting control units

Figure 6-43 Select Processor/CU (Actions on selected processors)

Attaching servers and their channels to control units
When a control unit is attached to multiple servers, you can use the group connect action
from the context menu (or action code g). This group action is particularly useful when
performing symmetric changes, for example, on servers defined in an HMCPlex. The
changes are applied to all selected servers, when you issue the change action against a
group of servers.

When you issue a change or group connect action, the panel for dependent control unit
information is displayed, as shown in Figure 6-44 on page 429.
428 ABCs of z/OS System Programming Volume 10

6.44 Defining server attachment data

Figure 6-44 Select Processor/CU (Add Control Unit) panel

Defining server attachment data
The Add Control Unit panel specifies channels that connect the control unit to the server and
also the number of devices served by the control unit. If the control unit is attached to a
switch, you have to define a link address for each channel path. The link address is the port to
which the control unit attaches. If the control unit attaches only to one port, the link address is
the same for each channel. For addressing the target control unit in a fabric FICON containing
cascade switching (two connected switches), a 2-byte link address is used, which specifies
the switch address and the port address to which the control unit is attached.

You must also specify the unit address and the number of units, that is, the unit address range
of I/O devices that the control unit recognizes.

If the same physical control unit simulates several logical control units in the same link
address, you have to specify a logical address (CUADD parameter). This CUADD is used by
the channel for unique identification of the logical controller. Refer to 4.7, “ESCON concepts”
on page 290 to better understand the role of CUADD in ESCON and FICON channels.

The Protocol and I/O concurrency level applies to parallel channel interfaces. Such channels
are not supported by z9 EC and z990 servers.

Press Enter. HCD displays the updated Select Processor/ Control Unit panel. Repeat defining
processor attachment data for all processors the control unit should be attached to.

Press Enter to return to the Control Unit List panel.
Chapter 6. Hardware Configuration Definition (HCD) 429

6.45 Information required to define a device

Figure 6-45 Information required to define a device

Information required to define a device
Before you define a device to an operating system and to the channel subsystem (CSS), you
must have defined the operating system, server, channel path, and control unit. For example:

� You cannot define the server data for the device, if the device is not attached to a control
unit, or the control unit is not attached to a processor.

� You cannot define the EDT/esoteric group data for the device until you have defined an
EDT for the operating system.

To define I/O devices in your configuration, you need to define:

� Device type and model, such as 3390-6

� Device number and unit address you want assigned to the device

� Numbers of the control units to which the device attaches (devices only connect to one
logical control unit)

� Device parameters and features connected to the operating system, including whether the
device supports dynamic configuration or whether a tape device is automatically
switchable

� For esoteric device groups (that you named in the EDT as part of defining operating
system data), which I/O devices you include in each group

� I/O devices that you allow z/OS to use as NIP consoles

Device number

Control unit or units to which the device is to
attach

Device parameters

Esoteric device groups

Device
number
170A

DEVICE
430 ABCs of z/OS System Programming Volume 10

� SAP selecting algorithms

When SAP is selecting which channel should be tested first in order to start the I/O
operation towards the device, there are two algorithms:

– Rotate (the default), to distribute the device load by all channels reaching the device

– Preferred algorithm, where the same designated channel is always tried first,
recommended only for 3490 tapes
Chapter 6. Hardware Configuration Definition (HCD) 431

6.46 z/OS device numbering

Figure 6-46 Device numbering overview

z/OS device numbering
Operating systems need I/O device identification to uniquely address the devices for
communication with the installation. A device number is the number you assign to identify a
device in HCD. It is used for communication between z/OS and the operator. A device number
may be any hexadecimal number from X'0000' to X' FFFF', which results in a limitation of 64K
devices per z/OS image. In the z9 EC, there is the possibility of roughly reaching 128K
devices per LP. However, z/OS only uses the second set of 64K for alias addresses in PAV. So
the same device number is shared by the base PAV address and its aliases.

The channel subsystem (CSS) also needs such unique identification for performing I/O
operations to a specific device. For this purpose, the one-byte device address was introduced
(also called unit address), which together with the CUADD uniquely identifies the device for an
I/O operation. A unit address is defined in the control unit HCD panel and is a physical
address. There is a limitation of up to 256 devices per channel per logical control unit.

Both addresses are pictured in Figure 6-46. You need three steps to define an I/O device:

� Define device characteristics and control unit connection.

� Define CSS-related definitions for a device.

� Define OS-related definitions for a device (including EDT and esoteric group assignment).

CHANNEL
SUBSYSTEM

MVS
UCB

Device
number

Console msgs
Commands

JCL

UNIT =
Device number
Device group
Device type
Unit addres

170A
SYALLDA
3390
0A

(Esoteric)
(Generic)

Unit
addr '0A'

Device
number
170A

80

81
B0

B1
UA=0A

DEVDEVCUADD 0
432 ABCs of z/OS System Programming Volume 10

6.47 Defining a device

Figure 6-47 Add Device panel

How to define an I/O device
You can define a group of I/O devices of the same type and with consecutive device numbers
by specifying the first device number and the number of devices in the group. Then HCD
applies the definition to all devices in the group. On the I/O Device List panel, you can type
over the values that should be different.

Because the limitation of 64K device numbers is per LP, HCD allows you to assign the same
device number to more than one I/O device in the configuration; that is, device numbers alone
do not uniquely identify a device in one IODF. To clearly identify devices, HCD keeps track of
each occurrence of the same device number by appending an internal suffix to it.

The correlation of operating system to partition is important only when making changes to the
hardware and software definitions.

The device numbers (defined in the Add Device panel) are associated with unit addresses
(defined in the Add CU panel). The number of consecutive device numbers is associated with
the number of unit addresses.

The devices are defined as follows:

1. Select Devices from the Define, Modify or View Configuration Data panel.

2. Press F11 to add a new device. Complete the panel by specifying the device number,
number of devices, device type, and control unit numbers the devices are attached to, for
the devices you are adding.
Chapter 6. Hardware Configuration Definition (HCD) 433

3. Press F11 to add the 3390 devices to the 3990 control unit. Complete the panel by
specifying the device number, number of devices, device type, and control unit number.

4. After specifying the details, pressing Enter displays the Device/Processor Definition panel.

After confirming the responses on this panel, press Enter.

Devices supporting parallel access volume (PAV)
PAV allows several I/O requests being executed concurrently in the same 3390 logical
volume. As shown in Figure 6-47 on page 433, when you define a PAV device in HCD, you
define a device type that indicates PAV capability. Base devices are defined using a base
device type, for example '3390B'. Alias devices are defined using an alias device type, for
example '3390A''.
434 ABCs of z/OS System Programming Volume 10

6.48 Defining device CSS features (1)

Figure 6-48 Device/Processor Definition panel

Device/Processor definitions
On the Device/Processor Definition panel, you can specify the device and CSS-related
parameters and features by either typing over the fields in each column, or by selecting a
processor and pressing Enter. The Define Device/Processor panel shown in Figure 6-49 on
page 436 is then displayed.
Chapter 6. Hardware Configuration Definition (HCD) 435

6.49 Defining device CSS features (II)

Figure 6-49 Define Device/Processor panel

Defining CSS features for a device
You can restrict LP access to an I/O device on a shared channel path by using the explicit
device candidate list, to select which logical partitions can access that I/O device. On the
Define Device/Processor panel, enter Yes or No in the Explicit device candidate list field to
specify whether you want to restrict logical partition access to an I/O device:

YES Specifies that only your selected LPs can access this I/O device. Note that the LP
must also be in the channel access or candidate list to access the device. On the
Define Device to Operating Systems Configuration panel (Figure 6-50 on page 437),
place a s character to the left of each selected LP name.

NO Specifies that all LPs can access this I/O device. NO is the default; all LPs are in this
I/O device's candidate list.

Time-Out specifies whether the I/O interface time-out function is to be optionally active.

STADET specifies whether the status verification facility is enable or disable.

About Preferred CHPID, refer to 6.45, “Information required to define a device” on page 430.

After confirming the responses on this panel, press Enter to display the Define Device to
Operating System Configuration panel. If the last two characters of the device number are the
same as the unit address (not recommended), there is no need of defining the unit address
field. Remember that the device number is the device’s nickname, and the unit address plus
the CUADD is the physical identification of the device.
436 ABCs of z/OS System Programming Volume 10

6.50 Defining devices to the operating system

Figure 6-50 Define device to operating system configuration panel

Define devices to the operating system
Here, you may selectively, per device, either allow or not allow the access to a specific
operating system (LP). This capability is very important for security, for example to deny
physical access to production data bases from a developing logical partition.

Select the operating system to define the devices to, and then select the Select (connect,
change) action from the context menu (action code s). The next panel is displayed, shown in
Figure 6-51 on page 438.

Note: You can select all the operating systems at this time; HCD takes you through the
appropriate panels.
Chapter 6. Hardware Configuration Definition (HCD) 437

6.51 Defining operating system device parameters

Figure 6-51 Define Device Parameters/Features panel

Defining operating system device parameters
Figure 6-51 is displayed after you press Enter on the Define Device/Processor panel (shown
in Figure 6-49 on page 436) and when you select a processor on the Define Device to
Operating System Configuration panel that shows all the defined OS configurations. You can
then define the data about device parameters and features that is required by the operating
system configuration.

The Parameter/Feature fields vary, depending on the I/O device type and operating system
type, as follows:

� A plus sign (+) in the P column indicates that you can use F4=Prompt to get a list of
possible values for the parameter/feature in the same row.

� A Yes in the Req. field indicates that a value for the parameter/feature in the same row is
required.

You accomplish the change by accepting the default values or by changing the value entries
and pressing Enter. The default values are set by the UIM routines for the device type. For
parameters, you can specify different default values via the OS_PARM_DEFAULT keyword in
the HCD profile.

� After you have defined the device parameter and feature data and pressed Enter, HCD
displays the Assign/Unassign Device to Esoteric panel, shown in Figure 6-52 on
page 440.
438 ABCs of z/OS System Programming Volume 10

Operating system features
The following device-related z/OS operating system features should be reviewed:

� The OFFLINE feature defaults to the value specified in the UIM (which may not be
appropriate for tape devices and ESCON Directors). The OFFLINE value specified here
means the device is not available in z/OS (UCB) at IPL, and to the channel subsystem
(UCW) in relation to the associated z/OS image. However, it can be online through a
simple z/OS console VARY command.

� The DYNAMIC feature defaults to YES for devices that allow dynamic reconfiguration.
Refer to 6.6, “Dynamic I/O reconfiguration” on page 379.

� Check your subsystems and applications that manage their own devices to make sure
they support dynamically modified device control blocks (UCBs).

The status of a device may be changed from DYNAMIC=YES to DYNAMIC=NO, and vice
versa, by a software-only dynamic change to a configuration. When changing from
DYNAMIC=NO to DYNAMIC=YES, this must be the only change made to the device at
that time. You are allowed, however, to make changes to a device that is currently defined
as DYNAMIC=YES and at the same time change it to DYNAMIC=NO.

� The SHARED feature defaults to NO. Since many z/OS installations have more than one
image, this parameter should be checked and changed to YES if appropriate.

Press Enter to assign the esoterics:

1. Specify YES or NO to assign or unassign devices to the esoteric. If you do not want to
assign all the devices currently being defined to this esoteric, you can limit the devices
being assigned by specifying a starting device number and the number of devices to be
assigned.

2. Pressing Enter returns you to the I/O Device List panel.

Note: The DYNAMIC parameter is shown only when the appropriate device supports
the dynamic I/O configuration function.
Chapter 6. Hardware Configuration Definition (HCD) 439

6.52 Assigning a device to an esoteric

Figure 6-52 Assign/Unassign Device to Esoteric panel

Assign device to an esoteric
On the Assign/Unassign Device to Esoteric panel, overwrite the values in the Assigned
column to assign (Yes) or unassign (No) devices to the selected esoterics.

If you do not want to assign a complete group of devices, you can limit the range by specifying
a starting number and the number of devices. If you omit the number of devices, then 1 is
assumed.
440 ABCs of z/OS System Programming Volume 10

6.53 Defining an NIP console

Figure 6-53 Defining an NIP console

Defining an NIP console
The operator can complete the initialization process at IPL from the system console or
hardware management console. The system console is the NIP console defined at HCD. You
should remember that at NIP time the MCS consoles are not active yet. To define a NIP
console to the operating system, do the following:

� On the primary task selection panel, select Define, modify, or view configuration data.
On the resulting panel, select Operating system configurations. HCD displays the
Operating System Configuration List panel showing all OS configurations currently defined
in the IODF.

� Select an OS configuration and the Work with consoles action from the context menu (or
action code n). HCD displays the NIP Console List panel (depending on the type of the
selected operating system).

To define consoles, proceed as follows:

1. Define a console device and connect it to the operating system.
2. Select an Operating System Configuration and the Work with consoles action from the

context menu.
3. Press F11 to add an NIP console definition.

4. On the Add NIP Console panel, enter the device number of the device you want to define
as a NIP console and the order number of this console. Pressing Enter again displays the
panel, showing the console just defined.
Chapter 6. Hardware Configuration Definition (HCD) 441

6.54 Using the CHPID mapping tool

Figure 6-54 Using the CHPID mapping tool

CHPID mapping tool
Before you can build a production IODF for a z9 EC or z990 servers, with a validated work
IODF, you can use the CHPID mapping tool to accomplish the task of updating or inserting
required PCHIDs. Input to this tool is an IOCP input data set. To get this input, now use the
task Build IOCP input data set, as shown in Step 3 in Figure 6-54.

Build an IOCP data set
On the primary task selection panel, shown in Figure 6-10 on page 387, specify the name of
a validated work IODF and select Activate or process configuration data. On the resulting
panel, select Build IOCP input data set. HCD displays the Available Processors panel. On
that panel, select the processor for which you want to build the IOCP input data set.

HCD displays the Build IOCP input data set panel. On this panel, you can perform these
actions:

� Enter the identification information you want to be written on the first header line of the
IOCP input data set in the Title1 field.

� Specify the name of the IOCP input data set. The IOCP input data set will automatically be
allocated (record length 80, record format fixed block). If the data set already exists, you
will be asked to confirm replacing it with the new one.

� Specify whether to build the IOCP data set for standalone IOCP by specifying either YES
or NO. YES is the default. The generated IOCP statements can be used as input to
standalone IOCP programs.

Assigning PCHIDs
 HCD

 1. Create IODF for z990 without
PCHIDs

 2. Create IODF (validated work
 IODF) - HCD option 2.12 =
 Build validated work I/O definition file

 3. Create IOCP source without
 PCHIDs - HCD option 2.3 =
 Build IOCP input data set

 5. Import IOCP source with PCHIDs
 into IODF - HCD option 5.1 =
 Migrate IOCP/OS data,
 Migrate option 3 (PCHIDs)

 6. Create a production IODF -
 HCD option 2.1 =
 Build production I/O definition file

 CHPID mapping tool

 4. Run CHPID mapping tool.
 It will produce an IOCP source
 with PCHIDs assigned.

IODF
no PCHIDs

IODF
with PCHIDs

IOCP
source

no PCHIDs

IOCP
source

with PCHIDs

CF Report
or

 H/W
Config

Report for
your order

(CCN)

Reports
442 ABCs of z/OS System Programming Volume 10

Using the CHPID mapping tool
Because the input to the CHPID mapping tool must be a standalone IOCP, in the panel shown
in Figure 6-55 specifies the appropriate option.

Input to Stand-alone IOCP? Yes (Yes or No)

Figure 6-55 Building an IOC input data set

Proceed as follows:

� Use the CHPID mapping tool to get PCHIDs inserted or updated in the validated work
IODF. As soon as all PCHIDs are correct in the validated work IODF, the production IODF
can be built.

� Go back to the Activate or Process Configuration Data panel and use the task Build IOCP
input data set to export the I/O configuration from the validated work IODF to an IOCP
data set (with PCHIDs still missing or obsolete). The I/O configuration token is passed with
the IOCP statements (TOK keyword). This token is used to assure that, during the process
of assigning PCHID values, the content of the IODF is not changed. Download this IOCP
data set to the workstation where the CMT is running.

� Use the CHPID mapping tool with the downloaded IOCP data set. The output of a
successful CMT run is again an IOCP data set which contains the original I/O definitions,
together with inserted and/or updated PCHID values. The original I/O configuration token
is still contained in the generated statements.

� Upload the new IOCP data set to the host and use the HCD primary task Migrate
configuration data to import the PCHIDs from the updated IOCP data set into the
validated work IODF. During this task, you select:

migrate option ---> 3. PCHIDs

� If a PCHID migration has been successfully done, you can invoke the Build Production
IODF task (again). HCD now builds a production IODF that contains all the data that is
required to write the I/O configuration data set (IOCDS) via the IOCP program to the
Support Element (SE) of the machine, ready to be used for the next IML.

Specify or revise the following values.

IODF name : 'BOKA.IODF08'
Processor ID : CF01
Title1 : ___
Title2 : BOKA.IODF08 - 1999-07-02 15:42

IOCP input data set
__
Input to Stand-alone IOCP? Yes (Yes or No)

Job statement information
//WIOCP JOB (5765),'BOKA',NOTIFY=BOKA,CLASS=A,MSGCLASS=X,REGION=5M
//JOBLIB DD DSN=HCDTEST.IZPIOCP.FALC,DISP=SHR
//GO.HCDPROF DD DSN=HCDTEST.PROFILE(MIGENH51),DISP=SHR
//*
Chapter 6. Hardware Configuration Definition (HCD) 443

6.55 Build a production IODF

Figure 6-56 Build a production IODF panel

Build a production IODF
Although HCD validates configuration data as it is entered, a complete validation may not be
performed, because data may not be defined at this time. Therefore, a “post-validation” is
performed at “Build Production IODF” time. This validation might issue messages you have to
deal with, according to their severity. The production IODF is not created if any errors with a
severity higher than “warning” are produced.

During the validation, HCD invokes the IOCP program to perform checking on the channel
packaging rules. Therefore, note that the correct version of the IOCP program must be
accessible.

Depending on what is defined in the configuration, the work IODF must contain a definition for
at least one operating system, one server, or one switch.

� For a z/OS operating system, the IODF must contain at least one EDT and one device.

� For a server, the IODF must contain a definition for at least one channel path, one control
unit, and one device. If only channel paths of type CFP (Coupling Facility peer-to-peer) are
defined for a server, then control unit and device definitions can be omitted.

Production IODF on a z9 EC server
To build a production IODF, perform the following steps:

� On the primary task selection panel, select Activate or Process Configuration Data.

z/OS V1.7 HCD

'ROGERS.IODF05'
444 ABCs of z/OS System Programming Volume 10

� From the resulting panel, select Build Production I/O Definition File, shown in
Figure 6-57 on page 446. HCD validates the configuration data in the work IODF. If the
work IODF is valid, then a production IODF can successfully be built. For work IODFs
containing a z9 EC server definition, the correct PCHIDs must be defined in the work
IODF before you can build a production IODF. You can use the CHPID mapping tool to
either insert missing PCHIDs or to update PCHIDs in a work IODF. However, inserting or
updating PCHIDs into an IODF using the CHPID mapping tool is only possible with a
so-called validated work IODF that you can get in one of the following ways:

– Use the task Build validated work I/O definition file. This task validates a work IODF
for correctness and completion, and may issue messages that describe incomplete or
erroneous logical definitions. Missing PCHID values are not flagged as errors. If errors
occur, correct them and restart this task. After no more errors occur, the output from
this task is a validated work IODF.

– If you tried to build a production IODF without being aware of one or more missing
PCHIDs for z9 EC processors, but the work IODF satisfies all other validation rules,
then the output from the task “Build production I/O definition file,” too, is a validated
work IODF. A message will show all CHPIDs for which the required PCHIDs are
missing.

Production IODF
If you select option 1, which is the task work IODF at present (shown in Figure 6-57 on
page 446), then the content of the currently built production IODF is copied to the work IODF.
This ensures that the work IODF contains the latest configuration tokens of the IODF, and you
can continue to use the work IODF for further updates.

If you select option 2, which is the task new production IODF, then the content of the
production IODF is not mapped into the work IODF. In that case, you should start from the
newly built production IODF when performing further changes to the I/O configuration.
Chapter 6. Hardware Configuration Definition (HCD) 445

6.56 Define the descriptor fields

Figure 6-57 Define descriptor fields panel

Descriptor fields panel
After pressing Enter on the Build Production I/O Definition File panel, the panel shown in
Figure 6-58 on page 447 appears.

Here you specify the descriptor field 1, 2, or leave the default values. The descriptor fields
describe the IODF and will be part of the HSA token. If you specify asterisks (**) for the IODF
suffix in LOADxx, then z/OS uses the descriptor fields to find the current IODF. For further
details about this topic, refer to z/OS HCD Planning, GA22-7525. After the production IODF is
built, HCD displays a message.

If the work IODF has an activity log file defined for the work IODF, it is copied.

'ROGERS.IODF05'

z/OS V1.7 HCD

'ROGERS.IODF05'
446 ABCs of z/OS System Programming Volume 10

6.57 Production IODF created

Figure 6-58 Production IODF created message

Production IODF created
After the production IODF has been built, HCD informs you that the production IODF has
been created, as shown in Figure 6-58.

'ROGERS.IODF05'

z/OS V1.7 HCD
Chapter 6. Hardware Configuration Definition (HCD) 447

6.58 Activating a configuration with HCD

Figure 6-59 Activating new hardware configuration and software configuration panel

Activating a configuration with HCD
On the primary task selection panel, shown in Figure 6-10 on page 387, select Activate or
process configuration data. On the resulting panel, select Activate or verify configuration
dynamically. HCD displays the Activate or Verify Configuration panel.

Select what you want to activate. Figure 6-59 shows task 1. Activate new hardware and
software configuration was selected here. (The panels for selecting the other tasks are
similar.)

A configuration change is rejected if it includes a hardware delete for an I/O component that is
online to the logical partition from which you are making the change. This is true even if you
have entered YES in the Allow Hardware Deletes option field.

Therefore, you should vary offline any affected I/O component in all logical partitions. For
example, when changing a channel path from unshared to shared, you must allow hardware
deletes, and you must configure the channel path offline and vary offline the associated I/O
devices before you activate the configuration.

ROGERS.IODF04

z/OS V1.7 HCD

ROGERS.IODF05
448 ABCs of z/OS System Programming Volume 10

6.59 View an active IODF with HCD

Figure 6-60 View active configuration panel

How to display active IODF from the HCD panels
HCD allows you to view the name and status of the IODF that has been used for IPL or for the
last dynamic activation. The operating system configuration and EDT identifier and, if
applicable, the configuration token, which is currently active in the hardware system area
(HSA), are shown. Use the View Active Configuration function for an overview of the actual
status for dynamic activation, indicating whether hardware and software changes are allowed.

On the primary task selection panel, shown in Figure 6-10 on page 387, select Activate or
process configuration data, and then View active configuration.

The View Active Configuration panel is shown in Figure 6-60.

z/OS V1.7 HCD

ROGERS.IODF05

IODF05
Chapter 6. Hardware Configuration Definition (HCD) 449

6.60 Viewing an active IODF

Figure 6-61 Viewing the active IODF from a console

How to display active IODF from an z/OS console
You can display the active IODF and HSA usage from a z/OS console with the following
command, shown in Figure 6-61:

D IOS.CONFIG(ALL)

 IOS506I 18.56.28 I/O CONFIG DATA 245
 ACTIVE IODF DATA SET = SYS6.IODF69
 CONFIGURATION ID = L06RMVS1 EDT ID = 01
 TOKEN: PROCESSOR DATE TIME DESCRIPTION
 SOURCE: SCZP601 99-04-21 10:00:44 SYS6 IODF69
 HARDWARE SYSTEM AREA AVAILABLE FOR CONFIGURATION CHANGES
 248 PHYSICAL CONTROL UNITS
 1432 SUBCHANNELS FOR SHARED CHANNEL PATHS
 343 SUBCHANNELS FOR UNSHARED CHANNEL PATHS
 189 LOGICAL CONTROL UNITS FOR SHARED CHANNEL PATHS
 47 LOGICAL CONTROL UNITS FOR UNSHARED CHANNEL PATHS
 ELIGIBLE DEVICE TABLE LATCH COUNTS
 0 OUTSTANDING BINDS ON PRIMARY EDT

View active IODF from a system console

D IOS,CONFIG(ALL)

ROGERS.IODF05
450 ABCs of z/OS System Programming Volume 10

6.61 Displaying device status

Figure 6-62 Displaying device status with z/OS commands

How to display device status
The recommended sequence of display commands to determine the status of a device is:

D U,,,ddd,1 This command shows whether the device is online. No I/O operations are
performed to present the display for this command. Therefore, the status
displayed by the DISPLAY UNIT command shows the last known state of the
device, and may not represent the actual physical status.

D M=DEV(ddd) If the device is not online, it may be necessary to bring online a path to the
device. This command displays the channels that are defined to access the
device, and the state of the paths over those channels. The output of this
command may also display PATHS NOT VALIDATED. This text means that the
path status to the displayed device has not been tested.

DS P,dddd This command displays the actual physical state of the paths to a DASD or
tape device. If the path is not operational, then it is necessary to determine
the state of the ESCON link and channel supporting the path.

D M=CHP(cc) This command displays the state of the paths to devices defined as
accessible by this channel.

D M=CHP This command displays the state (online or offline) of the CHPID. Note that
the display is relative to the logical partition supporting the operating system
where the command is entered. Therefore, a channel shown as offline in this
display may only be logically, not physically, offline.

Display hierarchy

D u,,,dddd,1 Is the device offline

D M=DEV(dddd) What is the state of the paths to the device?

DS P,dddd Are the paths physically available ? (DASD or
tape)

D M=CHP(cc) What is the state of the paths on this CHPID?

D M=CHP What is the state of the CHPID?
Chapter 6. Hardware Configuration Definition (HCD) 451

6.62 HCD reports

Figure 6-63 HCD reports

Producing configuration reports
With HCD, you can create and print the following reports about the configuration data in an
IODF:

� Channel Subsystem (CSS) Report

� Switch Report

� Operating System (OS) Report

� CTC Connection Report

� IODF Compare Report

These reports give you a printed overview of your configurations. You can create or build
reports either with HCD panels or batch jobs.

Channel Subsystem Report
The Channel Subsystem Report contains all configuration data that is used by the channel
subsystem. This consists of data, in summary and detail, about your servers, partitions,
IOCDS, CHPIDs, switches, control units, and I/O devices.

If you have more than one server defined in your IODF, you can limit the report to the data for
one server or partition. When limiting the report to one partition, only those channels are
reported that have the designated partition in their access list. Likewise, only control units and
devices that can be reached through these channels are reported.

Two styles of reports are available with HCD
Text

CSS report
Switch report
OS report
CTC connection report
I/O path report (requires ESCON manager)
Compare IODF

Graphical
LCU report
CU report
CHPID report
Switch report
CF connection report
452 ABCs of z/OS System Programming Volume 10

Switch report
The Switch report contains details about your switch definition, the switch configurations for
each switch, and port definitions.

If your IODF contains data for more than one switch, you can limit the report to the data for
one switch and the configurations for that switch.

Operating System report
The Operating System report contains the configuration data that is used by the z/OS
operating system. If your IODF contains data for more than one operating system, you can
limit the report to the data for one operating system.

The Operating System report function can produce three principal types of reports: the
Device Report, the EDT Report, and the Console Report.

� The Device Detail report contains data about devices and has two parts:

– It contains detailed data about the devices.

– It also contains summary data. The operating system summary report is not printed if
you limit the OS device report to the data for one operating system.

� The EDT report contains data about all the EDTs of your configuration.

� The Console report contains data about all NIP consoles for z/OS.

CTC Connection report
The CTC Connection report shows CTC connections in your configuration that are defined
through an ESCON Director. In the case of incorrect definitions, the report contains a list of
messages with diagnostic information.

If the IODF contains more than one server or logical partition, you can limit the report to data
for one server or logical partition.

Compare IODFs
You can use the Compare IODFs function to compare two IODFs and report the differences
between them. For greater clarity, you can limit the compare reports to certain perspectives of
the IODF:

� The Processor Compare report shows differences in the properties of partitions, CHPIDs,
control units, and devices.

� The Switch Compare report shows differences in the properties of switches and switch
configurations.

� The OS Configuration Compare report shows differences in device parameters, in
features, in EDTs, in esoterics, in generics defined for EDTs, and consoles.

HCD graphical reports
It is possible with HCD to view and print graphical representations of your configuration.
These may be stored in a data set for later printing, or viewed on a graphics-capable terminal.

Note: Prerequisite software is required for these functions. Refer to z/OS Hardware
Configuration Definition: User's Guide, SC33-7988, for details.
Chapter 6. Hardware Configuration Definition (HCD) 453

Five graphical reports may be obtained as follows:

LCU Report Shows the CHPIDs, control units, and devices building one or more
LCUs for a designated server.

CU Report Takes a control unit as focal point and shows all attachments of the
control unit via switches up to the server. It also shows the devices
attached to the control unit.

CHPID Report Shows, for a given server, all defined channel paths and what is
attached to the CHPID (switches, CUs, and devices).

Switch Report Takes a switch (ESCON Director) as focal point and shows everything
attached to the switch. Free ports of the switch are also shown. If the
switch is connected to another switch, that switch is shown as well.

CF Connect Report Takes a Coupling Facility as focal point and shows all connections
(CFS/CFR channel pairs) that exist between the Coupling Facility and
the other servers defined in the IODF.

If “Include partitions” has been specified, the partitions are shown above each accessible
CHPID.
454 ABCs of z/OS System Programming Volume 10

6.63 Hardware Configuration Manager (HCM)

Figure 6-64 Hardware Configuration Manager

Hardware Configuration Manager (HCM)
Hardware Configuration Manager (HCM) is an optional feature of z/OS, and extends the
scope of configuration management provided by HCD.

HCM is a PC-based graphical user interface that allows you to easily navigate through the
configuration diagrams and make changes in the configuration. HCM uses a client/server
interface to HCD that combines the logical and physical aspects of z/OS hardware
configuration management.

All updates to your configuration are done via the HCMs intuitive graphical user interface and
most important, due to the client/server relationship with HCD, all changes of the logical I/O
configuration are written into the IODF and fully validated and checked for accuracy and
completeness by HCD, thus avoiding unplanned system outages due to incorrect definitions.

The logical information in the IODF represents the operating system and the channel
subsystem definitions (the physical information cabinets, patch ports, crossbar switches,
cables, locations, and so on), and this adds the infrastructure to the logical data. Furthermore,
the logical and physical information for each object in the configuration match because they
are created by the same process.

When you create an object, you add its logical and physical information at the same time. For
example, when you connect a control unit to a server, the selected control units are logically
defined to the selected CHPID through a control unit channel interface; the physical
connection, including the cable, is displayed visually in the configuration diagram.

APPC or TCP/IP
 as the Communication Protocol

HCD Client / Server

IODFs

Windows/95
Windows/NT 4.0
Windows 2000
Windows XP

WorkWork HCMHCM

ProdProd HCRHCR

Optional product
Extension of HCD
PC based product
Client server to HCD
Simplifies IODF generation by using a graphical
interface to define I/O configurations
Combines logical configuration data and physical
data together

HCM
Chapter 6. Hardware Configuration Definition (HCD) 455

456 ABCs of z/OS System Programming Volume 10

Chapter 7. DS8000 series concepts

This chapter broadly discusses the concepts and the reasons for existence of a DASD
controller, and specifically describes only the IBM TotalStorage DS8000 Series.

In a sense this chapter complements Chapter 3 (Storage Management Hardware) of ABCs of
z/OS System Programming - Volume 3. There, you have explanations covering RAID,
Seascape® architecture, copy services, and storage area network (SAN), along with covering
of the major aspects of the IBM ESS Shark controller, and just a little about the DS8000.

In this chapter, the following DS8000 topics are discussed:

� Characteristics

� Design

� Copy services

� Storage Hardware Management Console (S-HMC)

7

© Copyright IBM Corp. 2008. All rights reserved. 457

7.1 DASD controller capabilities

Figure 7-1 DASD controller capabilities

DASD controller capabilities
There were no DASD controllers in the first mainframes. All the logic for storing data on DASD
devices was kept in the devices. However, as DASD architecture emerged, the DASD
controllers materialized. Today, a DASD controller globally has all the intelligence that
previously existed in the devices, and much more.

The control unit accepts control signals from the channel, which controls the timing of data
transfer over the channel path, and provides indications concerning the status of the device. A
typical operation is reading a recording medium and recording data. To accomplish its
operations, the device needs detailed signal sequences peculiar to its type of device. The
control unit decodes the commands received from the channel subsystem, interprets them for
the particular type of device, and provides the signal sequence required for the performance
of the operation.

A control unit may be housed separately, or it may be physically and logically integrated with
the I/O devices, or the channel subsystem.

A DASD controller in a sense is a true complex system, with:

� Millions of software lines of code (called license internal code - LIC)

� Several state-of-art RISC processors

� Huge real memory for data caching and internal LIC functions

� Complex internal fabric connections

Caching
Multiple types of RAID
Multiple connections
Emulation of several control units
Logical partitioning
Copy services such as: Point-in-time Copy and
Remote Mirror and Copy
Multiple types of disks (capacity and rotation speed)
Multiple I/O requests ordered by z/OS priorities
Virtualization of DASD devices
Multiples I/Os in the same logical device
Possibility of hundreds of logical paths
458 ABCs of z/OS System Programming Volume 10

� DASD space capacity in tens of terabyte units

Then, each DASD controller provides:

� Caching services to improve performance by minimizing disk accesses

� Arrays of inexpensive disks (RAID)

There exists disk redundancy to avoid single-points-of-failure in the media that may cause
data loss. There are several types of RAID implementations and usually the same DASD
controller allows more than one type.

� There are multiple connections, through host adapters, with distinct channel protocols
such as: FICON, ESCON, SCSI, FCP (by direct connection or through SAN via a switch),
which implies storage sharing among multiple platforms such as: Windows, UNIX
instances, z/OS, and z/VM. A host adapter (HA) is a processor able to communicate with a
channel in order to execute an I/O operation.

� Emulation of several control units, named logical control units, each with 256 logical
devices

� Logical partitioning that allows the splitting of the DASD controller resources such as:
memory, processors, host adapters, and disk drives in logically independent and isolated
controllers

� Copy services such as: Point-in-time Copy (for non-disruptive backups) and Remote Mirror
and Copy (for business continuance)

� Multiple concurrent types of disks with different capacities and rotation speeds

� Multiple I/O requests being processed, ordered in internal queues, and having
z/OS-managed priorities

� Virtualization of DASD devices (such as 3390s), where all the software layers (including
the operating system code) and channels have just a logical view of such devices

� Multiple I/O devices in the same logical device (PAV and multiple allegiance)

� Possibility of hundreds of connecting I/O channel instances through the implementation of
logical paths

A logical path is an internal DASD controller control block that represents an I/O channel
instance that may communicate with such a controller. The same physical channel can
have several instances to the controller, when this channel is being exploited by the
multiple image facility, that is, the same physical channel serves several logical partitions
on the server.
Chapter 7. DS8000 series concepts 459

7.2 DS8000 characteristics

Figure 7-2 DS8000 characteristics

DS8000 models
The TotalStorage DS family (of which DS8000 is a component) is designed to offer high
availability, multiplatform support and simplified management tools. It offers performance,
which is up to 6 times higher than the previous IBM ESS model 800. The storage capacity
scales linearly from 1.1 TB up to 192 TB.

There are two models of the DS8000 DASD controllers whose characteristics are pictured in
Figure 7-2, which includes model 8100 (submodel 921) and model 8300 (submodels 922 and
9A2).

DS8000 processors
The DS8000 has several types of processors. The most important ones (where the
intelligence of the controller runs) have the latest pSeries® POWER5™ processor technology
that has a 64-bit width. The model 8100 utilizes two 2-way symmetric multiprocessors with
1.5 GHz and the 8300 two four-way with 1.9 GHz. Each two-way and each four-way is called
a complex.

Also, there are the host adapters in charge of communicating with I/O channels in the upper
level and the RAID device adapters interfacing with the disks. These processors are
implemented with PCI-X processors running at a 64-bit width at 133 Mhz.

2-Way (Model 8100)
Two dual-processor servers
Up to 128GB Cache
8 to 64 200 MB/sec FC/FICON – 4 to 32
ESCON Ports

16 to 384 HDD - Intermixable 73GB
15Krpm, 146/300GB 10Krpm

Physical capacity from 1.1TB up to 115TB

4-Way (Model 8300)
Two four-processor servers
Up to 256GB Cache
8 to 128 200 MB/sec FC/FICON – 4 to 64
ESCON Ports

16 to 640 HDD Intermixable 73GB
15Krpm, 146/300GB 10Krpm

Physical capacity from 1.1TB up to 192TB
460 ABCs of z/OS System Programming Volume 10

Cache
The DS8000 series offers up to 256 GB of volatile cache, which is up to 4 times as much as in
previous ESS models. There is also a non-volatile cache (NVS) or persistent memory used to
keep updated data generated by writes using “DASD fast write”. The cache implementation
minimizes access to the disks. It acts like a store-in memory for the disks. Any cache miss for
read forces a data movement from the disks, any write only causes a movement to disks
asynchronously when the cache is near to being full. The contents of the NVS cache are kept
nonvolatile due to the existence of internal batteries. However, because the contents of NVS
are written to the internal SCSI disks of the DS8000 processor complex in the case of a
power failure, the contents of NVS can be preserved indefinitely. This means that unlike the
DS6000 or ESS800, you are not held to a fixed limit of time before power must be restored.

Host adapters
Host adapters are processors in charge of communication with the I/O channels. The DS8000
offers four-port Fibre Channel/FICON host adapters. The 200 MB/sec Fibre Channel/FICON
Express2 host adapters, which are offered in long-wave and shortwave (which affects the
distance from the channel), can also auto-negotiate to 100 MB/sec link speeds. This flexibility
enables immediate exploitation of the benefits offered by the higher performance, 200 MB/sec
SAN-based solutions, while also maintaining compatibility with existing 100 MB/sec
infrastructures. In addition, the four ports on the adapter can be configured with an intermix of
Fibre Channel Protocol (FCP) and FICON. The DS8000 also offers two-port ESCON
adapters. A DS8000 can support up to a maximum of 32 host adapters, which provide up to
128 Fibre Channel/FICON ports. Host adapters reside in I/O enclosures.

RAID device adapters and disk drive modules DDMs
RAID device adapters are processors located in I/O enclosures in charge of accessing the
disks. A DS8000 can have up to 16 RAID device adapters arranged into eight pairs. Each
RAID device adapter has four ports.

The DS8000 offers a selection of disk drive modules (DDMs) and is an industry standard
called fibre channels. Also, the protocol for the communication between the RAID device
adapters and the DDMs is the switched fibre channel architected loop (FC-AL). There are up
to three frames able to contain the DDMs. There are different types of DDMs, as follows:

� 73 GB with 15K revolutions per minute (RPM)

� 146 GB with 10K RPM or 15K RPM

� 300 GB with 10K RPM

They can be intermixed in the same DS8000 for better price performance.

So, there is a maximum limit of 640 DDMs, which in combination with the 300 GB drives gives
a maximum capacity of 192 TB.
Chapter 7. DS8000 series concepts 461

7.3 DS8000 design

Figure 7-3 DS8000 design

DS8000 design
Figure 7-3 shows the major elements of a DS8000 controller, as follows:

� The host adapters are the N-way SMP RISC processors. The memory for these
processors is discussed in “DS8000 characteristics” on page 460.

� The higher bandwidth fault tolerant interconnect fabric is described in “Internal fabric and
I/O enclosures” on page 463.

� The N-way SMP processors and the cache are described in “DS8000 characteristics” on
page 460.

� LPAR concepts are described in “Logical partition (LPAR)” on page 473.

� The switched fabric to access the DDMs is presented in “Switched Fibre Channel
Arbitrated Loop (FC-AL)” on page 466.

� Volatile memory and persistent memory are other names for the volatile cache and
nonvolatile cache respectively

RAID
Adapters

RAID
Adapters

RAID
Adapters

Host
Adapters

Host
Adapters

Host
Adapters

Host
Adapters

Host
Adapters

Host
Adapters

Host
Adapters

Persistent
Memory

Volatile
MemoryN-way

SMP
N-way
SMP

Persistent
Memory

Volatile
Memory

Switched Fabric

Higher Bandwidth Fault Tolerant Interconnect

LPAR

LPAR

RAID
Adapters

LPAR

RAID
Adapters

RAID
Adapters
462 ABCs of z/OS System Programming Volume 10

7.4 Internal fabric and I/O enclosures

Figure 7-4 I/O Enclosures and RIO-G

Internal fabric
The internal fabric, also called higher bandwidth fault tolerant interconnect, uses an RIO-G
(Remote I/O) protocol. This fabric is used to connect the POWER5 N-way SMP processors
with host adapters and RAID device adapters. RAID device adapters and host adapters are
installed in I/O enclosures, which also provides connectivity to them. There are eight I/O
enclosures, each one having six slots. Two are used for RAID device adapters, the remaining
slots are available to install up to four host adapters per I/O enclosure. Do not confuse I/O
enclosures that contain adapters with disk enclosures that contain DDMs; refer to 7.5, “Disk
subsystem” on page 464.

RIO-G links
RIO-G links are designed as a high performance self-healing interconnect. They can operate
at 1 GHz frequency and offer a 2 GB per second sustained bandwidth per link.

There are two loops, the first involving four I/O enclosures and the second involving the other
four I/O enclosures. In each loop, each POWER5 N-way SMP processor provides two
external RIO-G ports, and each I/O enclosure provides another two.

Processor
Complex 0

RIO-G ports

Processor
Complex 1

RIO-G ports

I/O enclosure I/O enclosure

I/O enclosure I/O enclosure

I/O enclosure I/O enclosure

I/O enclosure I/O enclosure

Loop 0

Loop 1
Chapter 7. DS8000 series concepts 463

7.5 Disk subsystem

Figure 7-5 Disk enclosures

Disk subsystem
Figure 7-5 shows the I/O enclosures containing the host adapters and the RAID device
adapters connected by the RIO-G links. Also shown are the connections from the RAID
device adapters to the DDMs.

The disk subsystem is made up of the following components:

� The RAID device adapters located in the I/O enclosures

Each DS8000 device adapter (DA) card offers four 200 MB/sec FC-AL ports. These ports
are used to connect the processor complexes to the disk enclosures. The adapter is
responsible for managing, monitoring, and rebuilding the RAID arrays. The adapter
provides remarkable performance thanks to a new high-function high-performance
adapter called ASIC. A DS8000 can potentially have up to 16 of these adapters arranged
into eight pairs.

� Disk enclosures containing the following:

– Switched controller cards (also called SAN switches) that connect to the RAID device
adapters

This creates a switched Fibre Channel disk network. Each enclosure contains 20 of
such controller cards. Of these 20 ports, 16 are used to attach to the 16 disks in the
enclosure and the remaining four are used to either interconnect with other enclosures
or to the RAID device adapters. Each disk plugs into the disk enclosure backplane. The
backplane is the electronic and physical backbone of the disk enclosure.

S
er

ve
r0

S
er

ve
r1

RIO-GI/O Enclosure

DAHAHA HAHA DA

S
to

ra
ge

 e
nc

lo
su

re
 p

ai
r

Switched loop 1

Switches

Switched loop 2

I/O Enclosure

DAHAHA HAHA DA
464 ABCs of z/OS System Programming Volume 10

– Disks, commonly referred to as disk drive modules (DDMs)

Each DS8000 disk enclosure contains a total of 16 DDMs.

DS8000 frames
Each DS8000 frame contains either eight disk enclosures (first frame) or 16 disk enclosures
(expansion frames). Then, in the first frame, there is space for a maximum of 128 DDMs.
Every expansion frame can contain 256 DDMs.

DS8000 disk drives
The physical capacity for the DS8000 is purchased via disk drive sets. A disk drive set
contains 16 identical disk drives, which have the same capacity and the same revolution per
minute (RPM).

Each DDM is reached by an industry standard FC-AL; refer to 7.6, “Switched Fibre Channel
Arbitrated Loop (FC-AL)” on page 466.
Chapter 7. DS8000 series concepts 465

7.6 Switched Fibre Channel Arbitrated Loop (FC-AL)

Figure 7-6 Switched FC-AL picture

Switched fibre channel architected loop (FC-AL)
In the DS8000, the topology and communication protocol between pairs of RAID device
adapters and DDMs is a switched FC-AL implementation. Switched FC-AL uses the standard
FC-AL protocol, but the physical implementation is different. Before we explain switched
FC-AL, let us discuss the FC-AL topology first.

FC-AL topology
In a standard FC-AL disk enclosure, all of the disks are arranged in a loop. This loop-based
architecture means that data flows through all disks before arriving at either end of the RAID
device adapter.

The main problems with standard FC-AL access to DDMs are:

� The full loop is required to participate in data transfer. Full discovery of the loop via loop
initialization protocol (LIP) is required before any data transfer. Also, loop stability can be
affected by DDM failures.

� In the event of a disk failure, it can be difficult to identify the cause of a loop breakage,
leading to complex problem determination.

� There is a performance drop off when the number of devices in the loop increases.

� To expand the loop it is normally necessary to partially open it. If mistakes are made, a
complete loop outage can result.

Persistent memory

Volatile
memoryN-way

SMP
Persistent memory

Volatile
memory N-way

SMP

RIO-G

Complex 0

Complex 1

RIO-G Device adapterDevice adapter

Fi
br

e
ch

an
ne

l s
w

itc
hFront storage

enclosure with
16 DDMs

Rear storage
enclosure with

16 DDMs

Fi
br

e
ch

an
ne

l s
w

itc
h

Fi
br

e
ch

an
ne

l s
w

itc
h

Fi
br

e
ch

an
ne

l s
w

itc
h

466 ABCs of z/OS System Programming Volume 10

Switched FC-AL offers a point-to-point connection to each drive and RAID device adapter.
Refer to Figure 7-6 on page 466, which shows that there are four paths available from each
DDM to the pair of RAID device adapters. Each pair of RAID device adapters (with four ports
each) accesses two device enclosures of 16 DDMs each. The key features of switched FC-AL
technology are:

� Standard FC-AL communication protocol from DA to DDMs.

� Direct point-to-point links are established between DA and DDM.

� Isolation capabilities in case of DDM failures, providing easy problem determination.

� Predictive failure statistics.

� Simplified expansion—for example, no cable rerouting required when adding another disk
enclosure.

Switched FC-AL advantages
The DS8000 architecture employs dual redundant switched FC-AL access to each of the disk
enclosures. The key benefits of doing this are:

� Two independent networks to access the disk enclosures.

� Four access paths to each DDM.

� Each RAID device adapter port operates independently.

This is double the bandwidth of traditional FC-AL loop implementations with 250-500 MB/sec
bandwidth to a Raid Rank. ESS was 40-250 MB/sec.

In Figure 7-6 on page 466, each DDM is depicted as being attached to two separate Fibre
Channel switches. This means that with two device adapters, we have four effective data
paths to each disk, each path operating at 200 MB/sec.

When a connection is made between the RAID device adapter and a disk, the connection is a
switched connection, which uses an arbitrated loop protocol. This means that a mini-loop is
created between the device adapter and the disk.

Whenever the RAID device adapter connects to a disk, it uses a switched connection to
transfer data. This means that all data travels via the shortest possible path.

DDM path redundancy
Each DDM in the DS8000 is attached to two 20-switched controller card ports (SAN
switches). These switches are built into the disk enclosure controller cards. Each DDM has
two separate connections to the backplane, which allows it to be simultaneously attached to
both switches. If either disk enclosure controller card is removed from the enclosure, the
switch that is included in that card is also removed. However, the switch in the remaining
controller card retains the ability to communicate with all the disks and both device adapters
(DAs) in a pair. Equally, each RAID DA has a path to each switch, so it also can tolerate the
loss of a single path. If both paths from one DA fail, then it cannot access the switches.
However, the other DA retains connection.
Chapter 7. DS8000 series concepts 467

7.7 Redundant array of independent disks (RAID)

Figure 7-7 Types of RAID

RAID architecture
Redundant array of independent disks (RAID) is a direct access storage implementation
where, through redundancy, in the event of the loss of some disks, there is no loss of data.

The original idea was to replace the physically big and sometimes reliable disks, like the
3390s, by many small computer system interface (SCSI) disks. The envisioned advantages of
such an implementation are:

� Performance (due to parallelism).

� Cost (SCSIs are commodities).

� By implementing the logical disk concept (a sort of virtualization), different operating
systems may share the same DASD controller.

� Environment (space and energy).

However, this approach would have increased the chances of malfunction due to media and
disk failures and the fact that the logical device is now residing on many physical disks. The
solution was to add redundancy to the design. By improving availability but wasting space
(due to redundancy), this also caused performance problems such as “write penalty” and
“free space reclamation.”

To address this performance issue, large caches are implemented in modern controllers,
which decreases disk accesses. All the modern controllers now implement the RAID design.
There are different types of RAID devices and different numbers of disks per array.

Raid-1

Primary Alternate

Data+ Parity Data+ Parity

Raid-5

Raid- 3

Data Parity

RAID Disks

Data+ Parity Data+ Parity

DataData

Record X

ABCDEF
Record X

ABCDEF

1/3 Record X

CD

1/3 Record X

EF

Parity bits

PP

Parity
PPPPPP
Record T
QRUBXA

Record B
PQRSTU
Record V
CDERST

Record Y
#IJKLM
Parity

PPPPPP

Record X

Record W
ABCDEF

TRSVAB

1/3 Record X

AB

VOL 1 Vol 2 VOL 3 Vol 4
468 ABCs of z/OS System Programming Volume 10

RAID description
Following is a simple description of each RAID, as certified by the RAID Architecture Board:

RAID-1 Just disk mirroring, like dual copy. Does not affect performance because it is done
in parallel.

RAID-5 Refer to Figure 7-7 on page 468. There is one array of n disks (four in the figure).
The three data physical blocks (record X, Y, and B) are logically connected to the
same parity physical block stored in Volume 4. So, when X is written, the parity
bits associated with X, Y, and B need to be updated as well. In RAID-5 there is no
specific volume in the array to contain the parity bits. In the example, for records
W, V, and T the parity bits are in Volume 2. The access arms move independently.
Strong caching is necessary to avoid the write penalty; that is, four disk I/Os per
write—two reads (old record contents plus old parity) and two writes (new record
contents plus new parity). RAID-5 has a high read I/O rate for sequential
processing because of natural striping. RAID-5 does the following:

– It reads data from an undamaged disk. This is just one single disk I/O
operation.

– It reads data from a damaged disk, which implies (n-1) disk I/Os, to recreate the
lost data, where n is the number of disks in the array.

– For every write to an undamaged disk, RAID-5 does four disk operations in
order to store a correct parity block; this is called a write penalty. This penalty
can be relieved with strong caching and a slice triggered algorithm (coalescing
disks updates from cache into a single parallel I/O).

– For every write to a damaged disk, RAID-5 does n-1 reads and one parity write.

RAID-3 Looks like RAID-5, but in the array all the parity bits are written in just one disk. It
is not used by modern controllers.

RAID-6 This has an array with two parity physical blocks and I/O requests in parallel with
extra-record striping. Its access arms move independently (Reed/Salomon P-Q
parity). The parity physical blocks are spread by the array disk. The write penalty
is greater than RAID-5, with six disk accesses per write. However, you can
survive without data loss with two disk failures in the same array.

RAID-6+ A RAID-6 without write penalty (due to log-structured file, or LFS), and has
background free-space reclamation. The access arms all move together for
writes. It is used by the RVA DASD controller.

RAID-0 There is no redundancy, only striping. In a sense this is not a type of RAID. The
same 3390 logical volume is striped in several disks. Good performance for
sequential reads and sequential writes because of parallelism.

RAID-10 This is a composition of RAID-0 (with striping) plus RAID-1 (with mirroring).
Chapter 7. DS8000 series concepts 469

7.8 DS8000 types of RAID

Figure 7-8 DS8000 types of RAID

DS8000 types of RAID
The DS8000 can be configured as RAID-5, RAID-10, or a combination of both. For the two
types of RAID, there is a need to allocate DDMs that constitute the RAID array or rank.

The DS8000 arrays are across loops (AAL). With AAL, an array site is actually split into two
halves. Half of the site is located on the first disk loop of a DA pair and the other half is located
on the second disk loop of that DA pair. It is implemented primarily to maximize performance.
However, in RAID-10 we can take advantage of AAL to provide a higher level of redundancy.
The DS8000 Reliability Availability Serviceability (RAS) code deliberately ensures that one
RAID-0 array is maintained on each of the two loops created by a DA pair. This means that in
the extremely unlikely event of a complete loop outage, the DS8000 would not lose access to
the RAID-10 array. This is because while one RAID-0 array is offline, the other remains
available to service disk I/O.

RAID-5
RAID-5 offers excellent price/performance for many customer applications (mainly for read
only applications), while RAID-10 can offer better performance at a higher price.

� A RAID-5 array contains seven or eight disks depending on whether the array is supplying
a spare.

– A 7-disk array uses one disk for parity, so it is referred to as a 6D+P array (where the P
stands for parity).

– An 8-disk array with one spare, referred to as a 6D+P+S.

DS8000 may have disk arrays RAID-5 (less
expensive and less performance) or RAID-10 (more
expensive and more performance) or both

RAID-5 arrays

6D+P

6D+P+S

7D+P

RAID-10 arrays

3D+S+3D+S

4D + 4D
470 ABCs of z/OS System Programming Volume 10

– An 8-8 disk array without spare, referred to as a 7D+P array.

When a disk drive module (DDM) fails in a RAID-5 array, the RAID device adapter starts
an operation to reconstruct the data that was on the failed drive onto one of the spare
drives. The spare that is used will be chosen based on a smart algorithm that looks at the
location of the spares and the size and location of the failed DDM. The rebuild is
performed by reading the corresponding data and parity in each stripe from the remaining
drives in the array, performing an exclusive-OR operation to recreate the data, then writing
this data to the spare drive.

While this data reconstruction is going on, the device adapter can still service read and
write requests to the array from the hosts. There may be some degradation in
performance while the sparing operation is in progress, because some DA and switched
network resources are being used to do the reconstruction. Due to the switch-based
architecture, this effect will be minimal. Additionally, any read request for data on the failed
drive requires data to be read from the other drives in the array and then the DA performs
an operation to reconstruct the data. The replacement of the failed disk will be the next
spare.

RAID-10
In the DS8000 the RAID-10 implementation is achieved using eight DDMs. If spares exist on
the array site then six DDMs are used to make a 3-disk RAID-0 array, which is then mirrored
(3D + S + 3D + S). If spares do not exist on the array site then eight DDMs are used to make
a 4-disk RAID-0 array which is then mirrored (4D + 4D).

When a disk drive module (DDM) fails in a RAID-10 array, the RAID device adapter starts the
reconstruction from the failed drive onto one of the hot spare drives. The spare that is used
will be chosen based on a smart algorithm that looks at the location of the spares and the size
and location of the failed DDM. While this data reconstruction is going on, the DA can still
service read and write requests to the array from the hosts. There may be some degradation
in performance while the sparing operation is in progress, because some DA and switched
network resources are being used to do the reconstruction. Due to the switch-based
architecture of the DS8000, this effect will be minimal. Read requests for data on the failed
drive should not be affected because they can all be directed to the good RAID-1 array.
Performance of the RAID-10 array returns to normal when the data reconstruction onto the
spare device completes.
Chapter 7. DS8000 series concepts 471

7.9 Logical subsystems (LSS)

Figure 7-9 A logical subsystem set up of logical volumes

Logical subsystems
A logical subsystem (LSS) is a set of up to 256 logical volumes. In z/OS, LSS is also named
logical control unit. This logical concept was introduced because in ESCON/ FICON
protocols each channel can refer to only 256 logical devices (volumes) per controller. Then,
each DS8000 emulates up to 256 LSSs in order to offer many more logical devices than just
256.

On the DS8000, it is up to the installation to associate a logical device address to an LSS.
There is no fixed binding between any RAID rank (array) and any LSS. The capacity of one or
more ranks can be aggregated into an extent pool. Extent pools, belong to one DS8000
server (complex), that is, server 0 or server 1.

Logical volumes are configured into extent pools. Different logical volumes on the same
logical subsystem can be configured in different extent pools but in the same server. Then,
LSSs have an affinity to the servers.

All even-numbered LSSs (X’00’, X’02’, X’04’, up to X’FE’) belong to server 0 and all
odd-numbered LSSs (X’01’, X’03’, X’05’, up to X’FD’) belong to server 1.

When creating logical volumes and assigning their logical volume numbers (also called
device numbers), users should consider whether Parallel Access Volumes (PAV) are required
on the LCU and reserve some of the addresses on the LCU for alias addresses.

Address group X'1x' CKD

LSSX'10'

LSSX'12'

LSSX'14'

LSSX'16'

LSSX'18'

LSSX'1A'

LSSX'1C'

LSSX'1E'

X'1E00'

X'1E01'

LSSX'11'

LSSX'13'

LSSX'15'

LSSX'1E'

X'1500'

LSSX'17'

LSSX'19'

LSSX'1B'

LSSX'1D'

X'1D00'

LSSX'20'

LSSX'22'

LSSX'24'

LSSX'26'

LSSX'2E'

X'2800'

LSSX'21'

LSSX'23'

LSSX'25'

LSSX'2E'

X'2100'

Address group X'2x': FB

LSSX'2C'

LSSX'2A'
LSSX'28'

LSSX'2D'

LSSX'2B'

LSSX'27'

LSSX'29'

X'2101'

Extent Pool FB-1

Extent Pool CKD-1 Extent Pool CKD-2

Extent Pool FB-2

Extent Pool FB-2

Volume' D

Rank-a

Rank-b

Rank-c

Rank-d

Rank-w

Rank-x

Rank-y

Rank-z

S
er

ve
r1

Se
rv

er
0

472 ABCs of z/OS System Programming Volume 10

7.10 Logical partition (LPAR)

Figure 7-10 Logical partition

Logical partition (LPAR)
The DS8300 model 9A2 allows you to logically partition the system into two virtual storage
system images with the following properties:

� Equal partitions for processors, cache, links, adapters, and disks between images

� Robust isolation between images via hardware and PowerPC® hypervisor microcode
(firmware), that is, one logical partition cannot take down another

� Each logical partition can run its own level of code

DS8300 Model 9A2
exploits LPAR
technology, allowing to
run two separate
storage server imagesLUN 0

LUN 1

LUN 2

LUN 0

LUN 2

Workload
A

Workload
B

Logical
Partition

A

Logical
Partition

B

DS8000

LUN 0

LUN 1

LUN 2

LUN 0LUN 0

LUN 1LUN 1

LUN 2LUN 2

LUN 0LUN 0

LUN 2LUN 2

Workload
A

Workload
B

Logical
Partition

A

Logical
Partition

B

DS8000
Chapter 7. DS8000 series concepts 473

7.11 Copy Services classification criteria

Figure 7-11 Copy services classification criteria

Copy services classification
Copy services is a collection of functions that provide disaster recovery, data migration, and
data duplication functions. It implies that the controller itself is able to copy data from one
logical volume (3390 for example) to another logical volume. With the copy services functions,
for example, you can create backup data with little or no disruption to your data base
executing transactions, and you can mirror your application data to a remote site for a disaster
recovery implementation.

Many design characteristics of the DS8000 copy services features (data copying and
mirroring capabilities) contribute to the protection of your data, 24 hours a day and seven
days a week, implying a continuous availability environment.

Copy services criteria
Conceptually, we may classify the copy services by different criteria, such as:

� Locality

– Local—the primary and secondary logical volumes are located in the same DASD
controller.

– Remote—the primary and the secondary volumes are not located in the same DASD
controller, which can be any distance apart.

� Granularity

– The copy is done at the data set level.

Locality
Local
Remote

Granularity
 Data set level
 Logical volume level

Timing for ending the copy
Point-in-time (or T0 copy)
Remote copy

Purpose
Fast backups
Disaster recovery

Syncrhonous or asynchronous
474 ABCs of z/OS System Programming Volume 10

– The copy is done at the logical volume level.

� Timing for ending the copy

– Point-in-time (or T0) copy, where the copy is made as a snapshot (freezing the time)
and after that no further updated data in the primary volume is copied into the
secondary volume.

– Remote copy, where the copy (mirroring) of the primary logical volume into the
secondary theoretically never ends.

� Purpose

– Fast backups

– Disaster recovery

� Synchronous or asynchronous

– Synchronous, meaning that the application task that requires a write I/O on the primary
logical volume waits till the copy into the secondary is completed.

– Asynchronous, meaning that the application task that requires a write I/O on the
primary logical volume does not wait till the copy into the secondary is completed.

� Agent

– The DASD controller is in charge of implementing the copy service.

– Software is in charge (together with the awareness of the controller) of implementing
the copy services.
Chapter 7. DS8000 series concepts 475

7.12 Consistency group concept

Figure 7-12 Example of consistency group

Consistency group
Consistency group is a function to keep data consistency in the backup or mirrored copy. Data
consistency means that the order of dependent writes is kept in the copy. In the following
example, we have a database operation involving a log volume and a data volume:

1. Write to log volume: Data Record #2 is being updated.

2. Update Data Record #2 on data volume.

3. Write to log volume: Data Record #2 update complete.

If the copy of the data contains any of the following combinations, then the data is consistent,
even if a data loss situation would occur:

� Operation 1, 2, and 3
� Operation 1 and 2
� Operation 1

If the copy of the data contains any of the following combinations, then the data is inconsistent
(the order of dependent writes was not preserved):

� Operation 2 and 3
� Operation 1 and 3
� Operation 2
� Operation 3

Sequence of I/Os in the source:
1. Write to log volume: Data Record #2 is being updated
2. Update Data Record #2 on data volume
3. Write to log volume: Data Record #2 update complete

Combinations of I/Os in the copy where data is consistent:
Operation 1, 2, and 3
Operation 1 and 2
Operation 1

Combinations of I/Os in the copy where data is
inconsistent:

 Operation 2 and 3
 Operation 1 and 3
 Operation 2
 Operation 3
476 ABCs of z/OS System Programming Volume 10

Implementing consistency groups
To implement consistency groups, the controller must understand the sequence of the writes,
and if one of them could not be copied by a reason such as “extended long busy”, then the
next ones should be held. This extended long busy state is usually set by the controller when
it cannot copy the data to the other controller.

A situation where the sequence of dependent writes could not be copied in the same
sequence is in a “rolling over disaster”, where due to fire or flood, the primary I/O controllers
do not stop at the same time. The best disaster is always an explosion, as far as the
sequence of dependent writes is concerned. Refer to 7.17, “Consistency groups in Metro
Mirror” on page 485 and to 7.15, “Consistency group in FlashCopy” on page 482 for more
information about the implementation of consistency groups in a DS8000.
Chapter 7. DS8000 series concepts 477

7.13 Copy services in DS8000

Figure 7-13 Copy services in DS8000

Copy services in DS8000
Figure 7-13 shows the different types of copy services available in DS8000. All of them are
priced products. You can manage the copy services functions through a command-line
interface, the IBM TotalStorage DS CLI, and a new Web-based interface, the IBM
TotalStorage DS Storage Manager.

FlashCopy

Remote Mirror and Copy (PPRC)

Metro mirror (synchronous PPRC)

Global copy (PPRC extended distance)

Metro/Global mirror (asynchronous PPRC)

Global Mirror for zSeries/z9 (XRC)

Metro/Global Mirror for zSeries/z9
478 ABCs of z/OS System Programming Volume 10

7.14 FlashCopy

Figure 7-14 FlashCopy example

FlashCopy
FlashCopy has the following copy services properties: local, data set level or logical volume
level, point-in-time, fast backup purpose, synchronous and done by the DS8000. Refer to
Figure 7-11 on page 474.

With FlashCopy®, it instantaneously looks at T0 as the secondary copy is created. After T0,
all the updates in the primary volume set are not propagated to the secondary because the
target copy in the secondary volume must be coherent.

The point-in-time copy created by FlashCopy is typically used where you need a copy of the
production data to be produced with little or no application downtime (depending on the
application). The copy looks exactly like the original source volume and is almost instantly
available in a binary copy mode. The copies produced by FlashCopy are used for:

� Data backups to be used in an eventual restore

� Data copies to be used in application development testing

� Data copies for data mining applications

FlashCopy operation setup
When you set up a FlashCopy operation, a relationship is established between the source
and target pair of volumes, and a bitmap of the source volume is created in seconds (in those
seconds, no writes should be allowed in the source). Refer to Figure 7-14. Once this
relationship and bitmap are created, both volumes (primary and secondary) can be accessed

FlashCopy provides a point-in-time copy

FlashCopy command issued

T
im

e

Copy almost immediately
available

Read and write to both
source and target is
possible

Write Read

When physical copy is complete,
relationship between
source and target ends

Source Target

Read

Write

T0
Chapter 7. DS8000 series concepts 479

(for reads and writes), as though all the data had been physically copied. Optionally, a
background process physically copies the tracks from the source to the target logical volume.

If you access the source or the target volumes before the optional background copy is
completed, then FlashCopy manages these I/O requests, as follows:

� Read from the source volume

When you read some data from the source volume, it is simply read from the source
volume.

� Read from the target volume

When you read some data from the target volume, FlashCopy checks the bitmap, and if
the backup data is already copied to the target volume, it is read from the target volume. If
the backup data is not copied yet, it is read from the source volume.

� Write to the source volume

When you write some data to the source volume, at first the updated data is written to the
data cache and persistent memory (NVS cache), as usual. And when the updated data is
destaged to the source volume, FlashCopy checks the bitmap and:

– If the backup data is already copied, it is simply updated on the source volume.

– If the backup data is not copied yet, first the backup data is copied synchronously to the
target volume and after that it is updated on the source volume.

� Write to the target volume

When you write some data to the target volume, it is written to the data cache and NVS
cache. FlashCopy manages the bitmaps to not overwrite this latest data (produced by this
write) by the background process.

No background copy option
The physical background copy may have a slight impact on your application, because the
physical copy needs some DS8000 storage resources. But the impact is minimal because the
host I/O priority is larger than the background copy. However, if you want, you can issue
FlashCopy with the “no background copy” option.

In this case the FlashCopy relationship is established without initiating a background copy.
Therefore, you can minimize the impact of the background copy. The only case where we
have a physical copy is when an update comes to a source track; then a copy of the
point-in-time data is copied to the target volume so that it is available when the data from the
target volume is accessed. This option is useful for customers that just want to take a backup
copy of the target (usually to tape).

FlashCopy options
There are several FlashCopy options that an installation may use:

� Refresh target volume (also known as Incremental FlashCopy), which provides the ability
to refresh a target volume involved in a FlashCopy relationship. When a subsequent
FlashCopy operation is initiated, only the tracks changed on both source and target need
to be copied from source to the target. The direction of the refresh can also be reversed.

� Data set FlashCopy instead of volume FlashCopy (only in z/OS)

� Multiple relationship FlashCopy allows a source to have FlashCopy relationships with
multiple targets simultaneously.

� Establish FlashCopy on existing Remote Mirror and Copy (PPRC) primary volume. This
option allows you to establish a FlashCopy relationship where the target is also a remote
480 ABCs of z/OS System Programming Volume 10

mirror primary volume. This enables you to create full or incremental point-in-time copies
at a local site and use remote mirroring commands to copy the data to the remote site.

� Persistent FlashCopy allows the FlashCopy relationship to remain even after the copy
operation completes. You must explicitly delete the relationship.
Chapter 7. DS8000 series concepts 481

7.15 Consistency group in FlashCopy

Figure 7-15 Consistency group in FlashCopy

Consistency group in FlashCopy
If a consistent point-in-time copy across many logical volumes is required, then you must use
consistency group FlashCopy to create a consistent copy across multiple logical volumes in
multiple storage controllers. Refer to 7.12, “Consistency group concept” on page 476.

Firstly, in order to create consistency groups in FlashCopy, it is necessary to have the
possibility of freezing (temporarily queue) write I/O activity to a volume. The installation would
issue a set of Establish FlashCopy commands with the freeze option, which will hold off host
I/O to the source volumes. In other words, consistency group FlashCopy provides the
capability to temporarily queue (at the host I/O level, not the application level) subsequent
write operations to the source volumes that are part of the consistency croup. During the
temporary queueing, Establish FlashCopy is completed and this condition is reset (allowing
the write operations to resume) by the Consistency Group Created command or the time-out
value expires (the default is two minutes).

Secondly, in the event of an extended long busy situation, all the subsequent primary volumes
in the consistency group are temporarily not copied.

Server1

Server2 write requests

LSS11

LSS12

Wait

Wait

FlashCopy

FlashCopy

LSS11

LSS12

Wait

Wait

FlashCopy

FlashCopy

LSS11

LSS12

Wait

Wait

FlashCopy

FlashCopy

Consistency Group

Waiting write operation
until Consistency Group Created
command is invoked.

DS8000 #1, #2, #3, …

Stop

Stop
482 ABCs of z/OS System Programming Volume 10

7.16 Remote Mirror and Copy (example: PPRC)

Figure 7-16 Metro Mirror sequence of events

Remote Mirror and Copy
The Remote Mirror and Copy feature can operate in the following modes: metro mirror (for
example, sync PPRC), global copy (for example, PPRC-XD) and Global Mirror (for example,
async PPRC). In all of these, the primary and the secondary volumes are not in the same
controller. It is recommended, if you intend to create a framework to allow disaster recovery,
that all the primary volumes be in one controller (site).

The connection between the two controllers is through FCP links with an aggregate data rate
of 200 MB/sec.

Metro Mirror (for example, sync PPRC)
Metro Mirror has the following copy services properties: remote, logical volume level, non
point-in-time, disaster recovery predominantly, synchronous, and executed by the DS8000.
Refer to 7.11, “Copy Services classification criteria” on page 474.

Metro Mirror provides real-time mirroring of logical volumes between two DS8000s that can
be located up to 300 km from each other. It is a synchronous copy solution where write
operations are completed on both copies (local and remote site) before they are considered
to be complete and the waiting task is posted.

Going into deeper detail: the primary controller receiving a write request from the channel
moves the data to both caches and disconnects the channel (if ESCON), then sends the data
to the secondary, which moves the data to both caches and sends an acknowledgement

2

3

1

4

Server write
Write to secondary

I/O interrupt

Secondary
acknowledges
the write
Chapter 7. DS8000 series concepts 483

signal back to the primary, which sends a device end status to the channel, and if this write is
the last CCW in the channel program, generates an I/O interrupt. Finally, IOS receives the I/O
interrupt and posts the waiting task.

Theoretically, there is no data loss with Global Mirror, but there is a slight performance impact
on the application task indicated by a higher I/O disconnect time.

HyperSwap
The secondary volumes are not online to the z/OS systems reaching the secondary
controller. Then, no writes and no reads are allowed. HyperSwap provides the ability to
nondisruptively swap from using the primary volume of a metro mirror pair to using what had
been the secondary volume. Prior to the availability of HyperSwap, an IPL was required on
every system if you wished to switch over to run off the secondary volumes, meaning that it
was not possible to maintain application availability across a switch from primary to
secondary volumes. With HyperSwap, such a move can be accomplished with no IPL and
with just a brief pause in application availability. The HyperSwap function is designed to be
completely controlled by automation, allowing all aspects of the site switch to be controlled via
GDPS (a key product to handle disaster recovery problems). HyperSwap can be invoked in
two ways:

� Planned HyperSwap

This might be invoked in advance of planned disruptive maintenance to a control unit, for
example. A planned HyperSwap is invoked manually using GDPS facilities.

� Unplanned HyperSwap

An unplanned HyperSwap is invoked automatically by GDPS, triggered by events that
indicate the failure of a primary disk device.

In both cases, the systems that are using the primary volumes will experience a temporary
pause in processing. During this pause, the PPRC sessions are changed (mirroring may be
established in the opposite direction, depending on the option selected), the UCBs for the
primary devices are updated to point to the former secondary volumes, and then the systems
resume operation.
484 ABCs of z/OS System Programming Volume 10

7.17 Consistency groups in Metro Mirror

Figure 7-17 Global Mirror consistency group scenario

Global Mirror consistency group scenario
In this scenario we have two primary DASD controllers (1 and 3) in the main site connected
through FCP links to two secondary DASD controllers (2 and 4, respectively) in the alternative
site. The DB2 table spaces are in a logical volume in controller 1 and DB2 logs are in a
volume in controller 2 (it is recommended that they be in different controllers). GDPS is
installed in both sites.

When the number of modified pages in the DB2 buffer pools exceeds a certain threshold,
DB2 orders a huge I/O operation to flush those buffer pools to the volume in controller 1. After
that, a record is written in the DB2 log telling the end of the flushing. Those writes are
dependent and DB2 forces the sequence by waiting between the first and the second write:

1. Write buffer

2. Wait

3. Write log

To avoid log information being invalid, the write in the log should not come before the write in
the data base. By the way, DB2 is not aware that the Metro Mirror function is available.

When setting Metro Mirror copy service, the installation asks for CRITICAL=NO (as
recommended), that is, if there is a failure in the FCP link or a failure in the secondary
controller, the requesting task (DB2) is not informed of any problem, and the primary is
updated. As you can see, even with Metro Mirror there is a chance of data loss. The primary

DB2 BPs

SITE A SITE B

Channel

C.U.1 C.U.2

C.U.3

P S

SP

Log

Data BaseChannel

Log

GDPS

Data base

Link

Link

C.U.4

GDPS
Chapter 7. DS8000 series concepts 485

controller keeps the information about all tracks changed and not mirrored. As soon as the
failure is corrected, these changes are copied in the background to the secondary controller,
thus reestablishing the synchronism.

Disaster scenario
Now let us imagine a bad scenario (without GDPS in the primary site and without a controller
supporting consistence groups), where a rolling-over disaster initially only destroys the link
between controller 1 and its secondary (2). Due to the CRITICAL=NO option, there is no
mirroring of DB2 data and the DB2 task is posted normally. Getting out of the wait state, the
DB2 task writes to the log the information about the ending of the flush and in this moment the
FCP link between the primary controller 3 and its secondary (4) is still up—remember that it is
a rolling-over disaster. The bottom line is that in the secondary site the log tells that the flush
occurred and the data base does not have the updates—in other words, the integrity was
totally lost.

To avoid that scenario, we need the concept of consistency group and GDPS running in the
primary site. Let us see the same scenario, but with GDPS up and with DS8000.

When the mirroring in controller 1 is broken, the controller generates an I/O interrupt with an
extended long busy status. This interrupt is treated by IOS, which issues a specific message
to the z/OS console. This message is captured by GDPS automation. GDPS communicates
with controller 1 to freeze the write I/O operation. Freeze here means that the controller will
not send (holds) the “device end” I/O interrupt that will post the DB2 task. Now, GDPS knows
that the log volume (in 3) belongs to the same consistency group as the data base volume (in
1). Then, GDPS communicates with controller 3 asking for a break in the mirroring of the log
volume—in other words, to cancel the Metro Mirror of the log volume in controller 3. After that,
GDPS takes the data base volume in controller 1 from the frozen state. As a consequence,
the “device end” I/O interrupt is generated, getting DB2 out of the wait state. Now DB2 issues
the write to the log. However, this write will not be mirrored by Metro Copy and hence the
integrity of the data base is guaranteed in the second site. As you can see, there is data loss
but no loss of integrity.

For completeness, some of the possible functions executed by GDPS in the survival site
follow:

� CBU activation.

� Logical partition activation.

� IPL some z/OS systems.

� Execute HyperSwap.

� Activate a new I/O configuration.

� Ensure that secondary PPRC volumes and CF structures are time-consistent.

� Start new address spaces.

� Catalog data sets.

� Start monitors.

� Restore backed-up files.
486 ABCs of z/OS System Programming Volume 10

7.18 Global Copy (example: PPRC XD)

Figure 7-18 Global Copy

Global Copy
Global Copy has the following copy services properties: remote, logical volume level, non
point-in-time, data migration predominantly, non-synchronous, and executed by the DS8000.
Refer to 7.11, “Copy Services classification criteria” on page 474.

Global Copy is an asynchronous remote copy function for z/OS and open systems for longer
distances than are possible with Metro Mirror. With Global Copy, write operations complete on
the primary storage system before they are received by the secondary storage system, so the
I/O disconnect time is not increased. This capability is designed to prevent the primary
system’s performance from being affected by wait time from writes on the secondary system.
Therefore, the primary and secondary copies can be separated by any distance. This function
is appropriate for remote data migration, off-site backups, and transmission of inactive
database logs at virtually unlimited distances. When operating in Global Copy mode, the
primary controller sends a periodic, incremental copy of updated tracks of the source volume
to the target volume instead of a constant stream of updates. This causes less impact to
application writes for source volumes and less demand for bandwidth resources, while
allowing more flexible use of the available bandwidth.

Global Copy does not keep the sequence of write operations. Therefore, the copy is normally
fuzzy. In order to avoid that, refer to 7.19, “Global Mirror (example: async PPRC)” on
page 488.

2

1
Server write

Write to secondary
(non-synchronously)

I/O interrupt
Chapter 7. DS8000 series concepts 487

7.19 Global Mirror (example: async PPRC)

Figure 7-19 Global Mirror

Global Mirror (example: async PPRC)
Global Mirror has the following copy services properties: remote, logical volume level, time
driven point-in-time, disaster recovery predominantly, synchronous/non-synchronous, and
executed by the DS8000. Refer to 7.11, “Copy Services classification criteria” on page 474.

Global Mirror provides a very-long-distance remote copy feature across two sites using
asynchronous technology. This solution is based on the existing Global Copy and FlashCopy.
With Global Mirror (as in Global Copy), the data that the host writes to the storage unit at the
local site is asynchronously shadowed to the storage unit at the remote site.

At a certain point in time, a consistency group is created using all of the primary volumes (A)
even if they are located in different DS8000 controllers. This has no application impact
because the creation of the consistency group is very quick (on the order of milliseconds).

Once the consistency group is created, the application writes can continue updating the
primary volumes. Global Mirror goes-to-sync and the increment of the consistent data is sent
synchronously to the secondary volumes (B) using the existing Global Copy relationship.
Once the data reaches the B volumes, it is FlashCopied to the C volumes. Refer to
Figure 7-19.

The C volumes now contain the consistent copy of the data. Because the B volumes usually
contain a fuzzy copy of the data from the local site (not when doing the FlashCopy), the C
volumes are used to hold the last point-in-time consistent data while the B volumes are being

2

1
Server write

Write to secondary
(non-synchronously)

I/O interrupt

A
B

C

FlashCopy
(automatically)

Automatic cycle in active session
488 ABCs of z/OS System Programming Volume 10

updated by the Global Copy relationship. After establishment of the FlashCopy, you can
change the Remote Mirror and Copy (PPRC) mode back to the non-synchronous mode.

When you implement Global Mirror copy services, you set up the FlashCopy between the B
and C volumes with no background copy and start change recording options. It means that
before the latest data is updated to the B volumes, the last consistent data in the B volume is
moved to the C volumes. Therefore, at some time, a part of consistent data is in the B volume,
and the other part of consistent data is in the C volume. If a disaster occurs during the
FlashCopy of the data, special procedures are needed to finalize the FlashCopy.

Global Mirror operations
Global Mirror operations provide the following benefits:

� Support for virtually unlimited distances between the local and remote sites, with the
distance typically limited only by the capabilities of the network and the channel extension
technology. This unlimited distance enables you to choose your remote site location based
on business needs and enables site separation to add protection from localized disasters.

� A consistent and restartable copy of the data at the remote site, created with minimal
impact to application performance at the local site.

� Data currency where, for many environments, the remote site lags behind the local site
typically by 3 to 5 seconds, minimizing the amount of data exposure in the event of an
unplanned outage. The actual lag in data currency that you experience can depend upon
a number of factors, including specific workload characteristics and bandwidth between
the local and remote sites.

� Dynamic selection of the desired recovery point objective, based upon business
requirements and optimization of available bandwidth.

� Session support, whereby data consistency at the remote site is internally managed
across up to eight storage units that are located across the local and remote sites.

� Efficient synchronization of the local and remote sites with support for failover and failback
modes, helping to reduce the time that is required to switch back to the local site after a
planned or unplanned outage.

Note: Remote Mirror and Copy (PPRC) can do failover and failback operations. A failover
operation is the process of temporarily switching production to a backup facility (normally
your recovery site) following a planned outage, such as a scheduled maintenance period or
an unplanned outage, such as a disaster. A failback operation is the process of returning
production to its original location. These operations use Remote Mirror and Copy functions
to help reduce the time required to synchronize volumes after the sites are switched during
a planned or unplanned outage.
Chapter 7. DS8000 series concepts 489

7.20 z/OS Global Mirror (example: XRC)

Figure 7-20 z/OS Global Mirror

z/OS Global Mirror (example: XRC)
z/OS Global Mirror has the following copy services properties: remote, logical volume level,
no point-in-time, disaster recovery predominantly, non-synchronous, and executed by the
z/OS DFSMS component system data mover (SDM). Refer to 7.11, “Copy Services
classification criteria” on page 474.

All the copy activity is done by SDM, that is, reading from primary volumes and writing into
secondary volumes. There is no link between primary and secondary DS8000. The
secondary controller does not need any special feature and can be any DASD controller.
SDM may run in a local or a remote system, so it clearly needs channel connections
(including channel extensions) to all primary and secondary controllers.

The z/OS Global Mirror function mirrors data on the storage unit to a remote location for
disaster recovery. It protects data consistency across all volumes that you have defined for
mirroring. The volumes (primary and secondary) can reside on several different DASD
controllers. The z/OS Global Mirror function can mirror the volumes over several thousand
kilometers from the source site to the target recovery site (as for any non-synchronous copy
services). With z/OS Global Mirror, you can suspend (not terminate) or resume (restart) copy
services during an outage. Only data that changed during the outage needs to be
resynchronized between the copies.

A chronology of events covering z/OS Global Mirror, showing how the sequence of depending
writes is guaranteed, follows:

2

1
Server write

I/O interrupt Write
ashynchronously

Primary server

System
Data
Mover

Secondary server

System Data Mover is
managing data consistency

1
2

490 ABCs of z/OS System Programming Volume 10

T0: IOS in the primary server adds a time stamp to a physical record to be written; the
SSCH is issued towards a logical 3390 volume in DS8000 A; the requesting task is in wait
state.

DS8000 A keeps a physical block with the time stamp in both caches and returns device
end to the channel; the channel generates an I/O interrupt; IOS posts the requesting task,
indicating the end of the I/O operation.

T1: Several sequences of the T0 events happen in DS8000 B in primary logical 3390
volumes.

T2: Several sequences of theT0 events happen in DS8000 A in primary logical 3390
volumes.

T3: SDM gets the control running in the secondary server; asks (through channel
connection) for all updates (with the time stamps) from DS8000 A and B.

T4: SDM classifies all the updates per volume by time stamp. A cut-off time stamp is
determined. It is the least recent of the two most recent time stamps in A and B updates.
All time stamps older than the cut-off will not be copied to the secondary volumes. They
will be in the next SDM cycle. This procedure guarantees the sequence of all writes in the
secondary volumes.

If you have more than one system running in different servers in the primary site, a Sysplex
Timer is mandatory for time stamp coherency.
Chapter 7. DS8000 series concepts 491

7.21 Parallel Access Volume (PAV)

Figure 7-21 Parallel access volume (PAV)

Parallel access volume (PAV)
The z/OS system Input Output Supervisor (IOS) maps a device in a unit control block (UCB).
Traditionally this I/O device does not support concurrency, being treated as a single resource,
serially used. Then, high I/O activity towards the same device can adversely affect
performance. This contention is worse for large volumes with many small data sets. The
symptom that is displayed is extended IOSQ time, where the I/O request is queued in the
UCB. z/OS cannot attempt to start more than one I/O operation at a time to the device.

The ESS and DS8000 support concurrent data transfer operations to or from the same
3390/3380 devices from the same system. A device (volume) accessed in this way is called a
parallel access volume (PAV).

PAV exploitation requires both software enablement and an optional feature on your
controller. PAV support must be installed on each controller. It enables the issuing of multiple
channel programs to a volume from a single system, and allows simultaneous access to the
logical volume by multiple users or jobs. Reads, as well as writes to different extents, can be
satisfied simultaneously. The domain of an I/O consists of the specified extents to which the
I/O operation applies, that corresponds to the extents of the same data set. Writes to the
same domain still have to be serialized to maintain data integrity, and so it is for reads and
write.

The implementation of N parallel I/Os to the same 3390/3380 device consumes N addresses
in the logical controller, then decreasing the number of possible real devices. Also, UCBs are

z/OS Image

z/OS Image

Storage Server

Logical Subsystem (LSS) 0800

Base UA=01
Alias UA=F0

Alias UA=F1

Base UA=02
Alias UA=F2

Alias UA=F3

UCB 08F3
UCB 08F2

UCB 0802

UCB 08F1
UCB 08F0

UCB 0801

Applications
do I/O to base

volumes

Applications
do I/O to base

volumes

UCB 08F3
UCB 08F2

UCB 0802

UCB 08F1
UCB 08F0

UCB 0801

Applications
do I/O to base

volumes

Applications
do I/O to base

volumes
492 ABCs of z/OS System Programming Volume 10

not prepared to allow multiples I/Os due to software products compatibility issues. Support is
then implemented by defining multiple UCBs for the same device.

The UCBs are of two types:

� Base address

This is the actual unit address. There is only one for any volume.

� Alias address

These addresses are mapped back to a base device address. I/O scheduled for an alias is
executed against the base by the controller. No physical disk space is associated with an
alias address. Alias UCBs are stored above the 16 MB line.

PAV benefits
Workloads that are most likely to benefit from PAV function being available include:

� Volumes with many concurrently open data sets, such as volumes in a work pool

� Volumes that have a high read-to-write ratio per extent

� Volumes reporting high IOSQ times

Candidate data sets types are:

� High read-to-write ratio

� Many extents on one volume

� Concurrently shared by many readers

� Accessed using media manager or VSAM-extended format (32-byte suffix)

PAVs can be assigned to base UCBs either:

� Manually (static) by the installation

� Dynamically - WLM can move alias UCBs from one base UCB to another base UCB in
order to:

– Balance device utilizations

– Honor the goal of transactions suffering I/O delays because of long IOSQ time. All
WLMs in a sysplex must agree with the movement of alias UCBs

The following differences are addressed by the HyperPAV implementation:

– Any change must be decided by all WLMs in a sysplex using XCF communication.

– The number of aliases for one device must be equal in all z/OS systems.

– Any change implies a dynamic I/O configuration.

To solve such problems HyperPAV is introduced, where all alias UCBs are located in a pool
and are used dynamically by IOS.
Chapter 7. DS8000 series concepts 493

7.22 HyperPAV feature for DS8000 series

Figure 7-22 HyperPAV implementation

DS8000 feature
HyperPAV is an optional feature on the DS8000 series, available with the HyperPAV indicator
feature number 0782 and corresponding DS8000 series function authorization (2244-PAV
HyperPAV feature number 7899). HyperPAV also requires the purchase of one or more PAV
licensed features and the FICON/ESCON Attachment licensed feature. (The FICON/ESCON
Attachment licensed feature applies only to the DS8000 Turbo Models 931, 932, and 9B2).
HyperPAV allows many DS8000 series users to benefit from enhancements to PAV with
support for HyperPAV. HyperPAV allows an alias address to be used to access any base on
the same control unit image per I/O base. This capability also allows different HyperPAV hosts
to use one alias to access different bases, which reduces the number of alias addresses
required to support a set of bases in a System z environment with no latency in targeting an
alias to a base. This functionality is also designed to enable applications to achieve equal or
better performance than possible with the original PAV feature alone, while also using the
same or fewer z/OS resources. The HyperPAV capability is offered on z/OS V1R6 and later.

HyperPAV implementation
HyperPAV allows an alias address to be used to access any base on the same control unit
image per I/O base. This capability also allows different HyperPAV hosts to use one alias to
access different bases, which reduces the number of alias addresses required to support a
set of bases in a System z environment with no latency in targeting an alias to a base. This
functionality is also designed to enable applications to achieve equal or better performance
than possible with the original PAV feature alone, while also using the same or fewer z/OS
resources.

HyperPAV - New feature of PAV Volumes in DS8000

Reduces the number of PAV-aliases needed per
logical subsystem (LSS)

By an order of magnitude but still maintaining optimal
response times

This is accomplished by no longer statically binding
PAV-aliases to PAV-bases

WLM no longer adjusts the bindings

In HyperPAV mode, PAV-aliases are bound to
PAV-bases only for the duration of a single I/O
operation, thus reducing the number of aliases
required per LSS significantly
494 ABCs of z/OS System Programming Volume 10

7.23 HyperPAV and IOS

Figure 7-23 HyperPAV and IOS

HyperPAV and IOS
The man depicted in Figure 7-23 represents the role of the z/OS component Input Output
Supervisor (IOS). The graphic shows that there is an outstanding I/O operation towards
device number 0280. Its only UCB (base) is busy due to an ongoing I/O operation. So, IOS
goes to a “box” of free UCB aliases and picks one of them. This alias UCB binds to the base
device and the I/O is started successfully. When the I/O operation finishes, the alias UCB is
returned to the box by IOS.

As shown in the figure, all the devices shown with an alias UCB have the base and the alias
UCB in a busy state. A device can be assigned as many alias UCBs as needed.

UCB
(BUSY)
BASE

UCB

BASE

UCB

ALIAS

UCB

BASE

ALIAS

UCB

BASE

UCB

BASE

UCB UCB UCB

UCBUCBUCB

ALIAS ALIAS

ALIASALIASALIAS

UCB

ALIAS

UCB

BASE

UCB

ALIAS

IOS

Free UCB aliases

0280

0281

0282

0283
0284

0285
Chapter 7. DS8000 series concepts 495

7.24 HyperPAV implementation

Figure 7-24 HyperPAV implementation

New HyperPAV scheme
With the IBM System Storage DS8000 Turbo model and the IBM server synergy feature, the
HyperPAV together with PAV, Multiple Allegiance, and support for IBM System z MIDAW
facility can dramatically improve performance and efficiency for System z environments.

7.24, “HyperPAV implementation” on page 496 shows a different number of UCB aliases in
the same device in different z/OS systems. The UCB Alias pool containing free UCBs is also
depicted. In HyperPAV mode, PAV-aliases are no longer statically bound to PAV-bases, but
instead are bound only for the duration of a single I/O operation, thus reducing the number of
aliases required for an LCU. This offers several advantages, such as an increase of available
storage space without change of device geometry, and an elimination of multisystem alias
management overhead.

With HyperPAV technology:

� z/OS uses a pool of UCB aliases.

� As each application I/O is requested, if the base volume is busy with another I/O, the
following actions occur:

– z/OS selects a free alias from the pool, quickly binds the alias device to the base
device, and starts the I/O.

– After the I/O completes, the alias device is used for another I/O on the LSS or is
returned to the free alias pool.

UCB 08F1

Storage Server

Logical Subsystem (LSS) 0800

Base UA=01

Alias UA=F0
Alias UA=F1

Base UA=02

Alias UA=F2
Alias UA=F3

UCB 08F3

UCB 0802

UCB 08F0
UCB 0801

Applications
do I/O to base

volumes

Applications
do I/O to base

volumes

UCB 08F3

UCB 08F0
UCB 0802

UCB 08F1

UCB 08F2

UCB 0801

Applications
do I/O to base

volumes

Applications
do I/O to base

volumes

UCB 08F2

P
O
O
L

P
O
O
L

z/OS Image

z/OS Image
496 ABCs of z/OS System Programming Volume 10

If too many I/Os are started simultaneously, then the following actions will occur:

� z/OS will queue the I/Os at the LSS level.

� When an exposure frees up that can be used for queued I/Os, they are started.

� Queued I/O is done within an assigned I/O priority.

For each z/OS image within the sysplex, aliases are used independently:

� WLM is not involved in alias movement so it does not need to collect information to
manage HyperPAV aliases.

HyperPAV implementation
HyperPAV is implemented in the parmlib member as follows:

SYS1.PARMLIB(IECIOSxx) with HYPERPAV=YES|NO|BASEONLY

Where:

� YES means attempt to initialize LSSes in HyperPAV mode.

� NO means do not attempt to initialize LSSes in HyperPAV mode.

� BASEONLY means attempt to initialize LSSes in HyperPAV mode, but only start I/Os on base
volumes.

Enhanced z/OS commands
The following commands are enhanced:

� SETIOS HYPERPAV=YES | NO | BASEONLY

� SET IOS=xx

� D M=DEV

� D IOS,HYPERPAV

� DEVSERV QPAV,dddd
Chapter 7. DS8000 series concepts 497

7.25 Display M=DEV command

Figure 7-25 Display M=DEV command

Display M=DEV command
7.25, “Display M=DEV command” on page 498 shows the output of this command. Note that
there are four aliases in the pool.

d m=dev(0710)
IEE174I 23.35.49 DISPLAY M 835
DEVICE 0710 STATUS=ONLINE
CHP 10 20 30 40
DEST LINK ADDRESS 10 20 30 40
PATH ONLINE Y Y Y Y
CHP PHYSICALLY ONLINE Y Y Y Y
PATH OPERATIONAL Y Y Y Y
MANAGED N N N N
CU NUMBER 0700 0700 0700 0700
MAXIMUM MANAGED CHPID(S) ALLOWED: 0
DESTINATION CU LOGICAL ADDRESS = 07
SCP CU ND = 002107.000.IBM.TC.03069A000007.00FF
SCP TOKEN NED = 002107.900.IBM.TC.03069A000007.0700
SCP DEVICE NED = 002107.900.IBM.TC.03069A000007.0710
HYPERPAV ALIASES IN POOL 4
498 ABCs of z/OS System Programming Volume 10

7.26 RMF DASD report

Figure 7-26 RMD DASD report

RMF DASD report
As shown in 7.26, “RMF DASD report” on page 499, the PAV column now contains an H,
which indicates that HyperPAV is active in the volume.

D I R E C T A C C E S S D E V I C E A C T I V I T Y

PAGE 1
z/OS V1R8 SYSTEM ID S5A DATE 03/20/2006 INTERVAL 14.58.578

RPT VERSION V1R8 RMF TIME 03.15.01 CYCLE 1.000 SECONDS

TOTAL SAMPLES = 899 IODF = 25 CR-DATE: 03/19/2006 CR-TIME: 22.47.41 ACT: ACTIVATE

DEVICE AVG AVG AVG AVG AVG AVG AVG % % % AVG % %
STORAGE DEV DEVICE VOLUME PAV LCU ACTIVITY RESP IOSQ CMR DB PEND DISC CONN DEV DEV DEV NUMBER ANY MT
GROUP NUM TYPE SERIAL RATE TIME TIME DLY DLY TIME TIME TIME CONN UTIL RESV ALLOC ALLOC PEND

THRASH1 1000 33903 MM1000 1.0H 000D 0.092 0.6 0.0 0.0 0.0 0.2 0.0 0.4 0.00 0.00 0.0 0.0 100.0 0.0
THRASH1 1001 33903 MM1001 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 1002 33903 MM1002 1.0H 000D 0.107 0.7 0.0 0.0 0.0 0.2 0.3 0.2 0.00 0.01 0.0 0.0 100.0 0.0
MBOCA01 1003 33903 MM1003 1.3H 000D 155.552 3.2 0.0 0.1 0.0 0.2 0.5 2.5 31.08 37.26 0.1 15.7 100.0 0.0
MBOCA01 1004 33903 MM1004 1.2H 000D 153.981 3.1 0.0 0.1 0.0 0.2 0.5 2.4 30.52 36.80 0.0 15.6 100.0 0.0
MBOCA01 1005 33903 MM1005 1.2H 000D 154.219 3.1 0.1 0.1 0.0 0.2 0.5 2.4 30.39 36.41 0.1 15.5 100.0 0.0
MBOCA01 1006 33903 MM1006 1.2H 000D 152.245 3.2 0.0 0.1 0.0 0.2 0.5 2.5 31.27 37.63 0.0 15.4 100.0 0.0
MBOCA01 1007 33903 MM1007 1.2H 000D 160.826 3.2 0.1 0.1 0.0 0.2 0.5 2.4 31.22 37.45 0.0 17.2 100.0 0.0
MBOCA01 1008 33903 MM1008 1.3H 000D 154.879 3.1 0.1 0.1 0.0 0.2 0.5 2.4 29.15 35.13 0.0 15.6 100.0 0.0
MBOCA01 1009 33903 MM1009 1.3H 000D 155.022 3.2 0.0 0.1 0.0 0.2 0.5 2.5 30.60 36.72 0.0 15.5 100.0 0.0
MBOCA01 100A 33903 MM100A 1.3H 000D 154.061 3.3 0.1 0.1 0.0 0.2 0.5 2.5 29.04 34.66 0.0 15.5 100.0 0.0
MBOCA01 100B 33903 MM100B 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 100C 33903 MM100C 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 100D 33903 MM100D 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 100E 33903 MM100E 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 100F 33903 MM100F 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 1.0 100.0 0.0

LCU 000D 77.555 1.7 0.0 0.1 0.0 0.1 0.3 1.3 15.20 18.25 0.0 7.3 100.0 0.0

Column PAV
changed

'H' means
HyperPAV
Chapter 7. DS8000 series concepts 499

7.27 RMF I/O Queueing report

Figure 7-27 RMF I/O Queuing report

RMF I/O Queueing report
There are two new fields in this report connected with HyperPAV: HyperPAV Wait, and
HyperPAV Max, as explained here.

HyperPAV Wait
This field indicates:

� The ratio of the number of times an I/O could not start and the total number of I/O
requests.

� The ratio of HyperPAV Wait might indicate that the pool of alias devices was not large
enough.

� An expanding pool may reduce I/O queue time, and thus, CPU overhead.

HyperPAV Max
This field indicates:

� The maximum number of concurrently in-use HyperPAV alias devices for that LCU within
that interval.

– In this case, HyperPAV Max approaches the number of configured HyperPAV alias
devices for the LSS pool for the peak intervals, so you can reduce the I/O queue time
by adding more alias devices to the LSS pool.

D I R E C T A C C E S S D E V I C E A C T I V I T Y

PAGE 1
z/OS V1R8 SYSTEM ID S5A DATE 03/20/2006 INTERVAL 14.58.578

RPT VERSION V1R8 RMF TIME 03.15.01 CYCLE 1.000 SECONDS

TOTAL SAMPLES = 899 IODF = 25 CR-DATE: 03/19/2006 CR-TIME: 22.47.41 ACT: ACTIVATE

DEVICE AVG AVG AVG AVG AVG AVG AVG % % % AVG % %
STORAGE DEV DEVICE VOLUME PAV LCU ACTIVITY RESP IOSQ CMR DB PEND DISC CONN DEV DEV DEV NUMBER ANY MT
GROUP NUM TYPE SERIAL RATE TIME TIME DLY DLY TIME TIME TIME CONN UTIL RESV ALLOC ALLOC PEND

THRASH1 1000 33903 MM1000 1.0H 000D 0.092 0.6 0.0 0.0 0.0 0.2 0.0 0.4 0.00 0.00 0.0 0.0 100.0 0.0
THRASH1 1001 33903 MM1001 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 1002 33903 MM1002 1.0H 000D 0.107 0.7 0.0 0.0 0.0 0.2 0.3 0.2 0.00 0.01 0.0 0.0 100.0 0.0
MBOCA01 1003 33903 MM1003 1.3H 000D 155.552 3.2 0.0 0.1 0.0 0.2 0.5 2.5 31.08 37.26 0.1 15.7 100.0 0.0
MBOCA01 1004 33903 MM1004 1.2H 000D 153.981 3.1 0.0 0.1 0.0 0.2 0.5 2.4 30.52 36.80 0.0 15.6 100.0 0.0
MBOCA01 1005 33903 MM1005 1.2H 000D 154.219 3.1 0.1 0.1 0.0 0.2 0.5 2.4 30.39 36.41 0.1 15.5 100.0 0.0
MBOCA01 1006 33903 MM1006 1.2H 000D 152.245 3.2 0.0 0.1 0.0 0.2 0.5 2.5 31.27 37.63 0.0 15.4 100.0 0.0
MBOCA01 1007 33903 MM1007 1.2H 000D 160.826 3.2 0.1 0.1 0.0 0.2 0.5 2.4 31.22 37.45 0.0 17.2 100.0 0.0
MBOCA01 1008 33903 MM1008 1.3H 000D 154.879 3.1 0.1 0.1 0.0 0.2 0.5 2.4 29.15 35.13 0.0 15.6 100.0 0.0
MBOCA01 1009 33903 MM1009 1.3H 000D 155.022 3.2 0.0 0.1 0.0 0.2 0.5 2.5 30.60 36.72 0.0 15.5 100.0 0.0
MBOCA01 100A 33903 MM100A 1.3H 000D 154.061 3.3 0.1 0.1 0.0 0.2 0.5 2.5 29.04 34.66 0.0 15.5 100.0 0.0
MBOCA01 100B 33903 MM100B 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0

MBOCA01 100C 33903 MM100C 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 100D 33903 MM100D 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 100E 33903 MM100E 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 100.0 0.0
MBOCA01 100F 33903 MM100F 1.0H 000D 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 1.0 100.0 0.0

LCU 000D 77.555 1.7 0.0 0.1 0.0 0.1 0.3 1.3 15.20 18.25 0.0 7.3 100.0 0.0

Column PAV
changed

'H' means
HyperPAV
500 ABCs of z/OS System Programming Volume 10

7.28 DS8000 Capacity on Demand

Figure 7-28 DS8000 Capacity on Demand (CoD)

Capacity on Demand
To further help meet the changing storage needs of growing businesses, the DS8000 series
can use the IBM Standby Capacity on Demand option (CoD), which is designed to allow
clients to access extra capacity quickly whenever the need arises.

A Standby CoD disk set contains 16 disk drives of the same capacity and RPM (10 000 or 15
000). With this offering, up to four Standby CoD disk drive sets (64 disk drives) can be factory-
or field-installed into your system.

To activate, you logically configure the disk drives for use—a nondisruptive activity that does
not require intervention from IBM; just download a software key. Upon activation of any
portion of the Standby CoD disk drive set, you must place an order with IBM to initiate billing
for the activated set. At that time you can also order replacement Standby CoD disk drive
sets.

DS8000 series can use the priced IBM Standby
Capacity on Demand (CoD) option:

Standby CoD disk set contains 16 disk drives of the
same capacity and RPM (10 000 or 15 000).

Activate by a nondisruptive activity that does not
require intervention from IBM

Upon activation of any portion of the Standby CoD disk
drive set, you must place an order with IBM to initiate
billing for the activated set
Chapter 7. DS8000 series concepts 501

7.29 DS command line interface (CLI)

Figure 7-29 DS CLI

IBM TotalStorage DS command line interface (CLI)
The DS CLI is a single CLI that has the ability to perform a full set of commands for logical
configuration and Copy Services activities. It is now possible to combine the DS CLI
commands into a script. This can enhance your productivity since it eliminates the previous
requirement to create and save a task using the GUI. The DS CLI can also issue Copy
Services commands to an ESS Model 750, ESS Model 800, or DS6000 series system.

The following list highlights a few of the specific types of functions that you can perform with
the DS command line interface:

� Check and verify your storage unit configuration

� Check the current Copy Services configuration that is used by the storage unit

� Create new logical storage and Copy Services configuration settings

� Modify or delete logical storage and Copy Services configuration settings

Storage management
ESS CLI commands that are used to perform storage management on the ESS 800, are
issued to a process known as the infoserver. An infoserver runs on each cluster, and either
infoserver can be used to perform ESS 800 storage management. Storage management on
the ESS 800 will continue to use ESS CLI commands. Storage management on the DS8000
will use DS CLI commands.

Open systems
host

Network interface

ESS CLI softwareDS CLI software

CLI script

Cluster 1

CS Server A

CS Client

Cluster 2
ESS 800

CS Client

CS Server B

Server 0 Server 1
DS8000

CLI interfaceCLI interface

Storage HMC

CLI
interpreter

Dual
internal
network

interfaces

External
network
interface
502 ABCs of z/OS System Programming Volume 10

7.30 Storage Hardware Management Console (S-HMC)

Figure 7-30 S-HMC

S-HMC
The DS8000 offers a new integrated management console. This console is the service and
configuration portal for up to eight DS8000s in the future. Initially there will be one
management console for one DS8000 storage subsystem. The S-HMC is the focal point for
configuration and Copy Services management, which can be done by the integrated
keyboard display or remotely via a Web browser.

In the entirely new packaging there are also new management tools such as the DS Storage
Manager and the DS command line interface (CLI), which allow for the management and
configuration of the DS8000 series as well as the DS6000 series.

The DS CLI software must authenticate with the S-HMC or CS Server before commands can
be issued. An initial setup task will be to define at least one userid and password and save the
authentication details in an encrypted file. A profile file can then be used to identify the name
of the encrypted password file. Scripts that execute DS CLI commands can use the profile file
to get the password needed to authenticate the commands.

SFI-1

Port for
Customer
Network

Pair of Ethernet switches
Ports for S-HMC #2

Ethernet ports for private
S-HMC network

SFI-1

SFI-1

SFI-2

SFI-2

S-HMC

S-HMC and a pair of Ethernet switches

- Storage Facility Image (SFI)
Chapter 7. DS8000 series concepts 503

504 ABCs of z/OS System Programming Volume 10

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 506.
Note that some of the documents referenced here may be available in softcopy only.

� IBM eServer zSeries 990 Technical Introduction, SG24-6863

� IBM System z Connectivity Handbook, SG24-5444

� IBM System z9 Enterprise Class Technical Guide, SG24-7124

� IBM eServer zSeries 990 Technical Guide, SG24-6947

� Technical Introduction: IBM eServer zSeries 800, SG24-6515

� z/OS Intelligent Resource Director, SG24-5952

� ABCs of z/OS System Programming Volume 11, SG24-6327

Other publications
These publications are also relevant as further information sources:

� z/Architecture Reference Summary, SA22-7871

� z/Architecture Principles of Operations, SA22-7832

� z/OS Hardware Configuration Definition: User's Guide, SC33-7988

� z/OS Hardware Configuration Definition Planning, GA22-7525

Online resources
These Web sites and URLs are also relevant as further information sources:

� Fibre Channel standards

http://www.t10.org
http://www.t11.org

� zSeries I/O connectivity

http://www.ibm.com/servers/eserver/zseries/connectivity

� Parallel Sysplex

http://www.ibm.com/servers/eserver/zseries/pso

� zSeries networking

http://www.ibm.com/servers/eserver/zseries/networking

� IBM documentation and tools

http://www.ibm.com/servers/resourcelink
© Copyright IBM Corp. 2008. All rights reserved. 505

http://www.t10.org
http://www.t11.org
http://www.ibm.com/servers/eserver/zseries/connectivity
http://www.ibm.com/servers/eserver/zseries/pso
http://www.ibm.com/servers/eserver/zseries/networking
http://www.ibm.com/servers/resourcelink

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks
506 ABCs of z/OS System Programming Volume 10

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

ABCs of z/OS System
 Program

m
ing Volum

e 10

ABCs of z/OS System
 Program

m
ing

Volum
e 10

ABCs of z/OS System
 Program

m
ing

Volum
e 10

ABCs of z/OS System
 Program

m
ing Volum

e 10

ABCs of z/OS System
 Program

m
ing

Volum
e 10

ABCs of z/OS System
 Program

m
ing

Volum
e 10

®

SG24-6990-03 ISBN 0738431508

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

ABCs of z/OS System
Programming
Volume 10

z/Architecture, IBM
System z processor
design and
connectivity

LPAR concepts, HCD,
z9, z10

DS8000 DASD
controller

The ABCs of z/OS System Programming is an 11-volume collection that provides
an introduction to the z/OS operating system and the hardware architecture.
Whether you are a beginner or an experienced system programmer, the ABCs
collection provides the information that you need to start your research into z/OS
and related subjects. If you would like to become more familiar with z/OS in your
current environment, or if you are evaluating platforms to consolidate your
e-business applications, the ABCs collection will serve as a powerful technical
tool. This IBM Redbooks publication, Volume 10, provides an introduction to
z/Architecture, zSeries processor design, zSeries connectivity, LPAR concepts,
Hardware Management Console (HMC), Hardware Configuration Definition (HCD),
and DS8000.
The contents of the other volumes are as follows:
Volume 1: Introduction to z/OS and storage concepts, TSO/E, ISPF, JCL, SDSF, and
z/OS delivery and installation
Volume 2: z/OS implementation and daily maintenance, defining subsystems,
JES2 and JES3, LPA, LNKLST, authorized libraries, SMP/E, Language
Environment
Volume 3: Introduction to DFSMS, data set basics storage management hardware
and software, catalogs, and DFSMStvs
Volume 4: Communication Server, TCP/IP, and VTAM
Volume 5: Base and Parallel Sysplex, System Logger, Resource Recovery
Services (RRS), global resource serialization (GRS), z/OS system operations,
automatic restart management (ARM), Geographically Dispersed Parallel Sysplex
(GDPS)
Volume 6: Introduction to security, RACF, digital certificates and PKI, Kerberos,
cryptography and z990 integrated cryptography, zSeries firewall technologies,
LDAP, and Enterprise Identity Mapping (EIM)
Volume 7: Printing in a z/OS environment, Infoprint Server and Infoprint Central
Volume 8: An introduction to z/OS problem diagnosis
Volume 9: z/OS UNIX System Services
Volume 10: Introduction to z/Architecture, System z processor design, System z
connectivity, LPAR concepts, HCD, and DS8000
Volume 11: Capacity planning, performance management, WLM, RMF, and SMF

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. Introduction to z/Architecture
	1.1 Computer architecture overview
	1.2 Concept of a process
	1.3 Process states and attributes
	1.4 System components
	1.5 Processing units (PUs)
	1.6 z/Architecture enhancements
	1.7 64-bit address space map
	1.8 Addressing mode
	1.9 64-bit dynamic address translation
	1.10 CP registers (general)
	1.11 Floating point registers
	1.12 Current program-status word (PSW)
	1.13 Next sequential instruction address
	1.14 Program-status-word format
	1.15 Prefixed save area (PSA)
	1.16 Several instruction formats
	1.17 Microcode concepts
	1.18 z/Architecture components
	1.19 z/Architecture data formats
	1.20 Interrupts
	1.21 Interrupt processing
	1.22 Types of interrupts
	1.23 Supervisor call interrupt
	1.24 Storage protection
	1.25 Storage protection logic
	1.26 Addresses and address spaces
	1.27 z/Architecture address sizes
	1.28 Storage addressing
	1.29 Real storage locations
	1.30 Dynamic address translation (DAT)
	1.31 Dynamic address translation
	1.32 Page faults
	1.33 Dual address space (cross memory)
	1.34 Access register mode (dataspaces)
	1.35 CPU signaling facility
	1.36 Time measurement TOD
	1.37 Time measurement (CP timer)
	1.38 Sysplex Timer expanded availability configuration
	1.39 Server Time Protocol (STP)
	1.40 Data center and I/O configuration
	1.41 Channel subsystem
	1.42 Multiple CSS structure (z10 EC)
	1.43 Control units
	1.44 Device number
	1.45 Subchannel number
	1.46 Subchannel numbering
	1.47 Control unit address
	1.48 Unit addresses
	1.49 Map device number to device address
	1.50 Multiple channel paths to a device
	1.51 Start subchannel (SSCH) logic
	1.52 SAP PU logic
	1.53 Channel processing
	1.54 I/O interrupt processing
	1.55 I/O summary

	Chapter 2. IBM System z
	2.1 z9 EC models overview
	2.2 z9 BC models overview
	2.3 Processor unit (PU) instances
	2.4 z9 EC frames and cages
	2.5 PU cage and books
	2.6 z9 EC Multichip module (MCM)
	2.7 Pipeline in z9 EC
	2.8 Processor unit caches
	2.9 Cache and PU, SC, SD, and MSC chips
	2.10 Instruction and execution units
	2.11 A book (logical view)
	2.12 Physical book design
	2.13 L2 cache and book connection
	2.14 Self-timed interconnect (STI) and domains
	2.15 STIs and I/O cards
	2.16 The I/O data flow
	2.17 z9 EC I/O cage
	2.18 Redundant I/O Interconnect
	2.19 I/O operation in a multi-book server
	2.20 16-port ESCON channel card
	2.21 Logical Channel Subsystem (LCSS)
	2.22 LP IDs, MIF IDs and spanning concepts
	2.23 Physical channel ID (PCHID)
	2.24 Association between CHPIDs and PCHIDs
	2.25 Comparison between System z servers
	2.26 IOCP statements example
	2.27 Configuration definition process
	2.28 Introduction to MIDAW
	2.29 Using MIDAWs
	2.30 Channel command word (CCW) concept
	2.31 CCWs and virtual storage - IDAW Concept
	2.32 DASD extended format
	2.33 Reducing CCWs using MIDAW
	2.34 MIDAW facility
	2.35 MIDAW performance results
	2.36 Cryptographic hardware features
	2.37 Crypto Express2
	2.38 z9 EC crypto synchronous functions
	2.39 z9 EC crypto asynchronous functions
	2.40 Non-disruptive upgrades
	2.41 z9 EC new features
	2.42 z9 BC functions and comparisons

	Chapter 3. IBM System z10 EC
	3.1 z10 EC overview
	3.2 IBM System z nomenclature
	3.3 z10 EC naming summary
	3.4 System design numeric comparison
	3.5 The power of GHz (high frequency)
	3.6 Processor unit (PU) instances
	3.7 z10 EC hardware model
	3.8 z10 EC sub-capacity models
	3.9 z10 EC frames and cages
	3.10 Book topology comparison
	3.11 NUMA topology
	3.12 z10 EC Books
	3.13 Multi-chip module (MCM)
	3.14 PU chip
	3.15 Book element interconnections
	3.16 Pipeline in z10 EC
	3.17 Pipeline branch prediction
	3.18 About each z10 EC PU
	3.19 z10 EC storage controller (SC) chip
	3.20 Recapping the z10 EC design
	3.21 Three levels of cache
	3.22 Software/hardware cache optimization
	3.23 HiperDispatch
	3.24 Central storage design
	3.25 Addresses and addresses
	3.26 Hardware system area (HSA)
	3.27 Large page (1 M) support
	3.28 Connecting PU cage with I/O cages
	3.29 Detailed connectivity
	3.30 HCA and I/O card connections
	3.31 InfiniBand interconnect technology
	3.32 I/O cage
	3.33 The I/O data flow
	3.34 Redundant I/O Interconnect
	3.35 z10 EC I/O features supported
	3.36 16-port ESCON channel card
	3.37 FICON features and Extended Distance
	3.38 Channel subsystem (CSS)
	3.39 LP ID, MIF ID, and spanning concepts
	3.40 Physical channel ID (PCHID)
	3.41 Association between CHPIDs and PCHIDs
	3.42 Comparison between System z servers
	3.43 IOCP statements example
	3.44 Configuration definition process
	3.45 Channel availability features
	3.46 Introduction to MIDAW
	3.47 Channel command word (CCW) concept
	3.48 CCWs and virtual storage - IDAW Concept
	3.49 DASD extended format
	3.50 Using MIDAWs
	3.51 Reducing CCWs using MIDAW
	3.52 MIDAW performance results
	3.53 Cryptographic hardware features
	3.54 z10 EC crypto synchronous functions
	3.55 Crypto Express2
	3.56 z10 EC crypto asynchronous functions
	3.57 Just-in-time capacity upgrades
	3.58 Capacity provisioning
	3.59 Capacity Provisioning Domain
	3.60 z10 EC new features

	Chapter 4. System z connectivity
	4.1 Connectivity overview
	4.2 Multiple Image Facility channels
	4.3 Channel subsystem connectivity
	4.4 CSS configuration management
	4.5 Displaying channel types
	4.6 ESCON architecture
	4.7 ESCON concepts
	4.8 ESCD (switch) functions
	4.9 ESCON Director (ESCD) description
	4.10 ESCON Director matrix
	4.11 Channel-to-channel adapter
	4.12 ESCON CTC support
	4.13 FICON channels
	4.14 FICON conversion mode
	4.15 Supported FICON native topologies
	4.16 Fibre Channel Protocol (FCP)
	4.17 FICON improvements (1)
	4.18 FICON improvements (2)
	4.19 FICON/ESCON numerical comparison
	4.20 FICON switches
	4.21 Cascaded FICON Directors
	4.22 FICON Channel to Channel Adapter (FCTC)
	4.23 z9 Coupling Facility links
	4.24 z10 EC Coupling Facility connectivity options
	4.25 All z10 EC coupling link options
	4.26 OSA-Express
	4.27 QDIO architecture
	4.28 HiperSockets connectivity
	4.29 Hardware Configuration Definition (HCD)

	Chapter 5. Logical partition (LPAR) concepts
	5.1 History of operating environments
	5.2 Server in basic mode
	5.3 Server in LPAR mode
	5.4 Shared logical CPs example
	5.5 LPAR dispatching and shared CPs
	5.6 Reasons for intercepts
	5.7 LPAR event-driven dispatching
	5.8 LPAR weights
	5.9 z9 PU pools
	5.10 Capping workloads
	5.11 LPAR capping
	5.12 LPAR capped versus uncapped
	5.13 Soft capping
	5.14 Group capacity in soft capping
	5.15 Intelligent Resource Director (IRD)
	5.16 WLM LPAR CPU management
	5.17 Workload Manager advantages
	5.18 Dynamic Channel Path Management (DCM)
	5.19 Channel subsystem I/O priority queueing

	Chapter 6. Hardware Configuration Definition (HCD)
	6.1 What is HCD
	6.2 IOCP example
	6.3 IOCP elements
	6.4 Hardware and software configuration
	6.5 HCD functions
	6.6 Dynamic I/O reconfiguration
	6.7 Dynamic I/O reconfiguration device types
	6.8 IODF data set
	6.9 Definition order
	6.10 HCD primary menu
	6.11 Creating a new work IODF
	6.12 Defining configuration data
	6.13 Operating system definition
	6.14 Defining an operating system
	6.15 EDT and esoterics
	6.16 How to define an EDT (1)
	6.17 How to define an EDT (2)
	6.18 Defining an EDT identifier
	6.19 How to add an esoteric
	6.20 Adding an esoteric
	6.21 Defining switches
	6.22 Adding switches
	6.23 Defining servers
	6.24 z9 EC server elements
	6.25 Information for defining a server
	6.26 Defining a server
	6.27 Working with LCSS
	6.28 Logical channel subsystems defined
	6.29 Adding a logical partition (LP)
	6.30 z9 EC LPAR server configuration
	6.31 Channel types operation mode
	6.32 Channel types
	6.33 Information required to add channels
	6.34 Working with channel paths
	6.35 Adding channel paths dynamically
	6.36 Adding a channel path
	6.37 Defining an access and a candidate list
	6.38 Adding a control unit
	6.39 Information required to define a control unit
	6.40 Adding a control unit
	6.41 Defining a 2105 control unit
	6.42 Selecting a processor/control unit
	6.43 Servers and channels for connecting control units
	6.44 Defining server attachment data
	6.45 Information required to define a device
	6.46 z/OS device numbering
	6.47 Defining a device
	6.48 Defining device CSS features (1)
	6.49 Defining device CSS features (II)
	6.50 Defining devices to the operating system
	6.51 Defining operating system device parameters
	6.52 Assigning a device to an esoteric
	6.53 Defining an NIP console
	6.54 Using the CHPID mapping tool
	6.55 Build a production IODF
	6.56 Define the descriptor fields
	6.57 Production IODF created
	6.58 Activating a configuration with HCD
	6.59 View an active IODF with HCD
	6.60 Viewing an active IODF
	6.61 Displaying device status
	6.62 HCD reports
	6.63 Hardware Configuration Manager (HCM)

	Chapter 7. DS8000 series concepts
	7.1 DASD controller capabilities
	7.2 DS8000 characteristics
	7.3 DS8000 design
	7.4 Internal fabric and I/O enclosures
	7.5 Disk subsystem
	7.6 Switched Fibre Channel Arbitrated Loop (FC-AL)
	7.7 Redundant array of independent disks (RAID)
	7.8 DS8000 types of RAID
	7.9 Logical subsystems (LSS)
	7.10 Logical partition (LPAR)
	7.11 Copy Services classification criteria
	7.12 Consistency group concept
	7.13 Copy services in DS8000
	7.14 FlashCopy
	7.15 Consistency group in FlashCopy
	7.16 Remote Mirror and Copy (example: PPRC)
	7.17 Consistency groups in Metro Mirror
	7.18 Global Copy (example: PPRC XD)
	7.19 Global Mirror (example: async PPRC)
	7.20 z/OS Global Mirror (example: XRC)
	7.21 Parallel Access Volume (PAV)
	7.22 HyperPAV feature for DS8000 series
	7.23 HyperPAV and IOS
	7.24 HyperPAV implementation
	7.25 Display M=DEV command
	7.26 RMF DASD report
	7.27 RMF I/O Queueing report
	7.28 DS8000 Capacity on Demand
	7.29 DS command line interface (CLI)
	7.30 Storage Hardware Management Console (S-HMC)

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

