
ibm.com/redbooks

Front cover

z/OS Version 1 Release 9
Implementation

Paul Rogers - Paul-Robert Hering
Lutz Kuehner - Jean-Louis Lafitte

Marcos Minatto - Jaqueline Mourao
Meganen Naidoo - Gil Peleg

Evanir Philipi - Giancarlo Rodolfi

JES2, JES3, GRS, SMF, WLM, z/OS
UNIX, zFS

Health Checker, SDSF, System
REXX, Binder, DFSMS

Message flood, XML, CIM,
z/OS base

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

z/OS Version 1 Release 9 Implementation

December 2007

SG24-7427-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2007)

This edition applies to Version 1 Release 9 of z/OS (5694-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface .xv
The team that wrote this book . xvi
Become a published author . xvii
Comments welcome. xvii

Chapter 1. z/OS Version 1 Release 9 . 1
1.1 z/OS V1R9 enhancements . 2
1.2 BCP miscellaneous enhancements . 4
1.3 z/OS support for IBM System z servers . 4
1.4 z/OS UNIX System Services. 4
1.5 z/OS Workload Manager . 6
1.6 Console message flood. 7
1.7 System Logger . 7
1.8 SMF use of System Logger. 7
1.9 Coupling Facility enhancements . 7
1.10 GRS 64-bit exploitation . 8
1.11 Sysplex failure management . 9
1.12 Program management binder . 9
1.13 XCF Couple Data Set . 10
1.14 Language Environment . 10
1.15 DFSMS enhancements . 11
1.16 z/OS Communications Server . 13
1.17 z/OS security . 17
1.18 Spool Display . 18
1.19 System REXX . 18
1.20 IBM Health Checker for z/OS . 18
1.21 Alternate Library for REXX . 19
1.22 RRS. 19
1.23 ISPF . 19
1.24 Common Information Model . 20
1.25 Metal C runtime library . 20
1.26 XML System Services . 21
1.27 z/OS dbx enhancements. 21
1.28 Unicode . 21

Chapter 2. Installation considerations . 23
2.1 Ordering z/OS V1R9 . 24

2.1.1 Hardware requirements. 24
2.1.2 Export control features . 24

2.2 New base elements. 24
2.2.1 Alternate Library for REXX . 25
2.2.2 Metal C Runtime Library . 25
2.2.3 Elements changed in z/OS V1R9 . 25

2.3 Functions withdrawn from z/OS V1R9 . 25
2.4 Functions withdrawn in a future release . 26

2.4.1 Changes to driving system requirements . 26
© Copyright IBM Corp. 2007. All rights reserved. iii

2.5 Changed base elements and optional features. 27
2.6 Coexistence, fallback, and migration . 28
2.7 54-way support with the z9 EC . 29
2.8 New address spaces. 29
2.9 System z New Application License Charges (zNALC) . 30

2.9.1 zNALC support . 30
2.9.2 NALC users. 33
2.9.3 zNALC and SCRT and APAR OA20314. 34

Chapter 3. Coupling Facility enhancements. 35
3.1 CF duplexing performance enhancements . 36

3.1.1 CFLEVEL 15 . 37
3.2 CF measurement enhancements . 39

3.2.1 RMF enhancements . 40
3.3 RMF Monitor III Data Portal for z/OS . 42
3.4 CF maintenance mode . 46

3.4.1 Migration and coexistence . 47
3.4.2 Using the CF maintenance mode . 47

Chapter 4. ICSF support for PKCS #11 . 53
4.1 PKCS #11 overview . 54
4.2 z/OS ICSF overview . 54
4.3 ICSF: PKCS #11 support . 55

4.3.1 PKCS #11 integration into z/OS . 55
4.3.2 Updating your ICSF definition to support PKCS #11 . 56
4.3.3 RACF and z/OS PKCS #11 token services. 57
4.3.4 Migration considerations . 59

4.4 Using PKCS11 token browser utility panels . 60
4.4.1 Running ICSF in a sysplex environment . 61

Chapter 5. Allocation dynamic storage improvements . 63
5.1 Overview . 64
5.2 Allocation improvements in z/OS V1R9 . 65

Chapter 6. System Logger enhancements . 67
6.1 System Logger overview. 68

6.1.1 Log stream exploiters . 70
6.1.2 z/OS V1R8 improvements of log stream data sets recall 71

6.2 z/OS V1R9 improvements of log stream data set recalls . 72
6.3 Cleanup of CF list entries for unconnected log streams . 74
6.4 System Logger publication updates . 74

Chapter 7. SMF recording to log streams . 75
7.1 SMF overview . 76

7.1.1 SMF and log streams with z/OS V1R9 . 77
7.2 Installation of SMF log streams. 79

7.2.1 Defining SMF log streams. 79
7.2.2 Updating the CFRM policy for SMF CF structure logstream. 82
7.2.3 Updating the SMFPRMxx parmlib member. 83
7.2.4 SMFPRMxx parmlib member considerations . 85
7.2.5 Switching to log stream mode. 86

7.3 Dumping the SMF log stream data set . 88
7.3.1 Using the SWITCH command with log streams . 91
iv z/OS Version 1 Release 9 Implementation

7.4 Migration considerations . 91

Chapter 8. GRS enhancements . 93
8.1 Global resource serialization overview . 94

8.1.1 Setting address space ENQ limits. 94
8.1.2 Contention notification system movement . 97

8.2 GRS storage constraint relief with z/OS V1R9 . 99
8.2.1 Ensure that GRSCNFxx is used properly for GRS=NONE 101
8.2.2 GRS exit routines in cross-memory mode . 101
8.2.3 ISGADMIN enhancement . 102

8.3 GRS performance enhancements with z/OS V1R9 . 103
8.4 GRS debugging improvements . 103

Chapter 9. Message Flood Automation . 105
9.1 Message Flood Automation overview . 106
9.2 Message Flood Automation implementation . 106

9.2.1 Message flood problems. 107
9.2.2 MPF processing . 107
9.2.3 MPF processing exit . 108

9.3 Installing Message Flood Automation . 109
9.3.1 Message Flood Automation exits . 109
9.3.2 Loading and activating . 113

9.4 Customization and tuning . 115
9.4.1 Providing a MSGFLDxx parmlib member . 115
9.4.2 Types of message classes processed . 116
9.4.3 Message class controls. 117
9.4.4 Message Flood Automation guidelines . 120
9.4.5 Turning Message Flood Automation ON or OFF . 122
9.4.6 Displaying your policy . 123

9.5 Command summary . 124

Chapter 10. WLM enhancements . 127
10.1 Promote jobs which have been cancelled. 128

10.1.1 z/OS V1R9 enhancement . 128
10.1.2 Migration and coexistence considerations . 128

10.2 Start a minimum number of servers . 129
10.2.1 z/OS V1R9 enhancement . 129
10.2.2 Exploiters of the new service request . 131

10.3 WLM enhancements for blocked workloads . 131
10.3.1 Promote higher dispatch priority . 132

10.4 RMF enhancements for blocked workloads . 133
10.4.1 RMF CPU Activity report . 133
10.4.2 RMF Workload Activity report . 134
10.4.3 New SMF record types . 135
10.4.4 RMF Distributed Data Server . 136

10.5 Improved assist processor routing services . 136
10.5.1 Sysplex routing services IWMSRSRS improvements . 137
10.5.2 Sysplex routing services IWM4SRSC improvements . 141
10.5.3 IWMWSYSQ service . 143
10.5.4 Migration and coexistence considerations . 144

10.6 Group capacity limit. 144
10.6.1 Defined capacity review . 144
10.6.2 Group capacity definition rules . 146
10.6.3 Group capacity example . 147
 Contents v

10.6.4 Hardware and software for group capacity . 147
10.6.5 Group capacity limit example . 149
10.6.6 RMF and SMF updates to support group capacity limit 150
10.6.7 Examples related to usage of group capacity limit . 150

Chapter 11. C/C ++ enhancements . 155
11.1 SUSv3 implementation in z/OS V1R9. 156

11.1.1 z/OS V1R9 and SUSv3. 156
11.1.2 Compiling an SUSv3 application. 157
11.1.3 Invoking Threads support . 158
11.1.4 Setting environment variables affects run-time behavior 159
11.1.5 New APIs . 160
11.1.6 New Threading interfaces . 161
11.1.7 Modified APIs . 162
11.1.8 Migration and coexistence considerations . 162

Chapter 12. ISPF enhancements . 163
12.1 Edit and browse z/OS UNIX files . 164

12.1.1 ISPF enhancement in z/OS V1R9 . 164
12.2 ISPF personal data set lists . 168
12.3 EDIT primary commands support . 169
12.4 EDIT macro command support . 173
12.5 ISPF services support . 174
12.6 PDF installation-wide data set allocation exit . 176
12.7 Support for editing ASCII data . 176
12.8 Mixed case in ISPF command tables . 178

Chapter 13. Security enhancements . 181
13.1 RACF enhancements . 182

13.1.1 Password phrase minimum length change . 182
13.1.2 Writable key ring functions . 183
13.1.3 UTF8 characters support in digital certificates . 185
13.1.4 REFRESH warning message after RACDCERT commands 185

13.2 Java security API . 186
13.3 System SSL enhancements . 189

13.3.1 Introduction to the SSL protocol . 189
13.3.2 Certificate revocation lists (CRLs) granularity . 191
13.3.3 Rehandshake notification . 193
13.3.4 Host name validation . 194
13.3.5 Hardware-to-software switch notification . 195

13.4 PKI Services enhancements . 196
13.4.1 Automatic certificate renewal processing . 196
13.4.2 RACF-style distinguished name . 198
13.4.3 E-mail notification for administrators . 198
13.4.4 Longer validity period for certificates. 199
13.4.5 Query on expiring certificates . 199

Chapter 14. z/OS Communication Server . 201
14.1 zIIP-assisted IPSec . 202

14.1.1 Implementation of zIIP-assisted IPSEC . 202
14.1.2 Example of zIIP-assisted IPSec implementation. 203

14.2 Policy-based routing . 212
14.2.1 Policy-based routing implementation . 214
14.2.2 Policy-based routing implementation example . 217
vi z/OS Version 1 Release 9 Implementation

Chapter 15. System REXX for z/OS . 237
15.1 Introduction to System REXX (SYSREXX) . 238
15.2 SYSREXX address space (AXR) . 238

15.2.1 SYSREXX from consoles . 239
15.2.2 AXREXX macro service . 239

15.3 Customizing System REXX. 241
15.4 Using System REXX . 242
15.5 Usage and migration considerations. 245

15.5.1 Writing REXX execs . 245
15.5.2 Using input and output files. 246
15.5.3 Other AXREXX parameters . 247
15.5.4 Arguments and variables within a REXX exec . 247

Chapter 16. z/OS XL C/C++ Metal option. 251
16.1 Metal option introduction . 252

16.1.1 XL C Metal compiler option. 252
16.2 XL C Metal option . 253

16.2.1 Metal option overview . 254
16.2.2 Using the Metal option . 254
16.2.3 Linkage conventions . 256
16.2.4 AR-mode and the Metal option . 256
16.2.5 Metal C runtime library . 257

16.3 Decimal floating point . 258
16.3.1 The need for decimal arithmetic . 258
16.3.2 Extended precision floating-point numbers . 258
16.3.3 New floating-point data types . 259
16.3.4 Decimal arithmetic context . 259
16.3.5 XL C/C++ support for decimal floating point data types 260
16.3.6 XL C/C++ run-time library . 261
16.3.7 UNIX System Services dbx debugger. 261

16.4 dbx support of WebSphere remote debuggers . 262
16.5 Specialized hardware instructions support . 266

16.5.1 Available new built-in functions. 267
16.6 Migration considerations . 268
16.7 PreInit tracing . 268

16.7.1 Migration considerations . 269
16.7.2 PreInit tracing characteristics . 269

16.8 DLL diagnostics. 272
16.8.1 Language Environment IPCS support . 274

Chapter 17. z/OS UNIX System Services . 275
17.1 Automove consistency . 276

17.1.1 Problems with sysplex-aware file systems without the new support. 277
17.1.2 New automove enhancements . 278
17.1.3 Migration and coexistence considerations . 282

17.2 zFS small enhancements . 283
17.2.1 IOEAGFMT and IOEAGSLV authorization . 283
17.2.2 Concurrent log recovery . 286
17.2.3 Improved dynamic grow . 286
17.2.4 Improved hang detection . 287
17.2.5 Hang detection messages . 287
17.2.6 Analyzing hang conditions . 287
17.2.7 z/OS V1R9 enhancements . 289
 Contents vii

Chapter 18. SDSF enhancements . 291
18.1 SDSF and the REXX programming language. 292

18.1.1 SDSF REXX and System REXX. 292
18.1.2 Authorization for SDSF and REXX . 292

18.2 Setting up the SDSF host command environment . 293
18.2.1 Issuing SDSF commands in a REXX program . 294
18.2.2 Special REXX variables . 295

18.3 Examples of using ISFEXEC . 296
18.3.1 The WHO and QUERY commands. 297
18.3.2 Issuing operator commands . 298
18.3.3 Issuing action characters . 300
18.3.4 Browsing job output . 301
18.3.5 Printing job output . 303

18.4 Executing REXX execs . 304
18.4.1 Diagnosing errors in an SDSF REXX exec. 304

18.5 SDSF migration considerations. 305

Chapter 19. New faces of z/OS. 307
19.1 Introduction to the new face of z/OS . 308

19.1.1 z/OS ease of use enhancements . 308
19.2 z/OS V1R9 and new faces of z/OS . 309

19.2.1 System REXX . 310
19.2.2 SDSF REXX . 311
19.2.3 Using REXX to write health check routines. 311
19.2.4 XL C Metal compiler option. 311
19.2.5 Common event adapter . 312

19.3 Common Information Model . 312
19.3.1 z/OS V1R9 enhancements for CIM. 313
19.3.2 CIM cross-platform management . 314
19.3.3 CIM components and dependencies . 315

19.4 CIM server overview . 318
19.4.1 CIM server support in z/OS V1R9. 318

19.5 CIM client-to-CIM server access . 321
19.6 CIM server runtime update and enhancements . 323

19.6.1 Automatic Restart Manager support . 323
19.6.2 SSL certificate-based authentication . 324
19.6.3 Logging facility changed to syslog daemon . 326
19.6.4 New command-line utility: cimsub. 326

19.7 CIM client API for Java . 327
19.8 Instrumentation in z/OS V1R9. 328

19.8.1 Required parmlib updates. 330
19.8.2 Instrumentation for logical disk volumes . 331
19.8.3 Instrumentation of batch jobs . 331
19.8.4 Instrumentation for a sysplex . 331
19.8.5 DFSMSrmm CIM provider. 335
19.8.6 RMF CIM monitoring . 335

19.9 Migration and coexistence considerations . 338
19.9.1 General migration considerations . 338
19.9.2 Cloning considerations . 339

Chapter 20. Program management enhancements . 341
20.1 New Binder options . 342

20.1.1 The MODMAP Binder option. 342
20.1.2 The INFO Binder option . 343
viii z/OS Version 1 Release 9 Implementation

20.2 Enhanced Binder control statements . 343
20.3 SYSLMOD record format verification . 344
20.4 Binder C/C++ API . 345
20.5 Support for side deck definition files in archive files . 347
20.6 Binder fast data access enhancements . 348

Chapter 21. JES2 and JES3 enhancements . 351
21.1 JES2 enhancements . 352
21.2 SSI requests authorization enhancements . 352

21.2.1 SSI 11 - User destination validation/conversion service 353
21.2.2 SSI 70 - Scheduler facilities function. 353
21.2.3 SSI 71 - JES job information services. 353
21.2.4 SSI 75 - Notify user message service call. 355
21.2.5 SSI 79 - SYSOUT application programming interface (SAPI). 355
21.2.6 SSI 80 - Extended status function call . 355
21.2.7 SVC 99 - spool browse . 356

21.3 $C Job command enhancements . 356
21.4 $TRACE facility enhancements . 357

21.4.1 TRACE initialization statement and $T TRACE command 357
21.4.2 INTRDR tracing. 359

21.5 Changes to JES2 exits . 361
21.5.1 $JCT eye catcher . 361
21.5.2 Exit 8 - User environment $CBIO . 361
21.5.3 Exit 31 - Allocation SSI . 361
21.5.4 Exit 42 and exit 45 . 361

21.6 JES3 enhancements . 362
21.6.1 Relief of the OSE buffer number limit . 362
21.6.2 Coexistence considerations . 362
21.6.3 More efficient use of spool space . 363

Chapter 22. IBM Health Checker for z/OS . 365
22.1 System REXX check support . 366
22.2 Defining a REXX check. 366

22.2.1 REXX check structure. 368
22.2.2 DEBUG mode . 369
22.2.3 Scheduling a REXX check . 369
22.2.4 DELETE FORCE=YES . 369
22.2.5 Procedure to implement a REXX check . 370

22.3 Extended SDSF CK support . 371
22.4 New checks available with z/OS V1R9 . 372

Chapter 23. DFSMS enhancements . 375
23.1 Basic Access Methods (BAM) performance . 376

23.1.1 Long-term page fixing for BSAM data buffers . 377
23.1.2 BSAM and QSAM support for MULTACC. 377
23.1.3 QSAM support for MULTSDN. 378

23.2 VSAM system managed buffering (SMB) enhancements . 379
23.2.1 SMB overview . 379
23.2.2 Installation considerations. 380

23.3 Multi-volume data set in the same storage facility image . 381
23.3.1 Storage facility image (SFI) overview . 382
23.3.2 DFSMS volume selection enhancement . 382
23.3.3 Storage Facility Image (SFI) attributes . 382
23.3.4 DFSMS volume selection with SFI attribute . 383
 Contents ix

23.3.5 Migration considerations . 384
23.4 Object access method (OAM) enhancements . 384

23.4.1 Using OAM enhancements . 384
23.4.2 Miscellaneous enhancements. 387
23.4.3 Migration considerations . 388

23.5 DFSMShsm enhancements . 388
23.5.1 Abend 878 reduction. 389
23.5.2 Functional statistics record (FSR) improvements . 390
23.5.3 Return priority (RP) exit ARCRPEXT changes . 392

23.6 DFSMSrmm enhancements . 393
23.6.1 Task management support . 393
23.6.2 Multitasking of utilities . 398
23.6.3 Control data set (CDS) serialization . 406
23.6.4 Migration and coexistence considerations . 409
23.6.5 Common Information Model (CIM) provider . 409
23.6.6 JCL data set names . 414
23.6.7 Data set names in RMM subcommands . 416
23.6.8 Shared parmlib support. 420
23.6.9 TSO subcommands . 422
23.6.10 3592 Model E05 software support . 430
23.6.11 Migration and coexistence considerations . 431

23.7 Network File Systems (NFS) enhancements . 432
23.7.1 24-bit addressing relief . 432
23.7.2 Multi TCP/IP stack support . 432
23.7.3 Usage and invocation . 433
23.7.4 AddDS operator command . 433
23.7.5 RACF data labeling. 434
23.7.6 NFS v4 client support . 435
23.7.7 Client Attribute syntax . 436
23.7.8 Server Ctrace upgrade . 436
23.7.9 Terminal ID based restricted MVSLOGIN. 438

Chapter 24. Large format data sets . 439
24.1 Large format data set overview. 440
24.2 TSO/E and large format data sets. 441
24.3 TSO PRINTDS command . 442
24.4 REXX and CLIST LISTDSI function . 442
24.5 Enhanced I/O capability in TSO/E for CLIST and REXX . 443
24.6 Messages related to new support . 443
24.7 Migration and coexistence considerations . 444

Chapter 25. RMF enhancements . 445
25.1 RMF enhancements for FICON . 446

25.1.1 SMF record changes. 447
25.2 RMF Monitor III Data Portal . 447

25.2.1 Sort capability for full Monitor III reports . 449
25.3 SpreadSheet Reporter enhancements . 451

25.3.1 New RMF Spreadsheet options . 451
25.3.2 zAAP and zIIP support . 452
25.3.3 Report Class periods . 454
25.3.4 RMF XCF Activity Report . 455
25.3.5 Process user-defined overview records . 457
x z/OS Version 1 Release 9 Implementation

Chapter 26. XML enhancements . 459
26.1 XML System Services . 460
26.2 Performance improvements . 460
26.3 C/C++ APIs . 461

26.3.1 Sample project . 462
26.3.2 How to compile . 464
26.3.3 zAAP considerations. 465

Chapter 27. RRS enhancements . 467
27.1 ATRQSRV batch support . 468

27.1.1 ATRQSRV utility . 468
27.2 Resource manager unregister. 470

Chapter 28. Language Environment . 475
28.1 iconv() enhancements. 476

28.1.1 Migration actions. 477
28.2 CEEDUMP enhancement . 478

28.2.1 Enhanced traceback section. 479
28.3 edcmtext utility . 481
28.4 HEAPPOOLS performance improvement . 482
28.5 z/OS UNIX support for ceebldtx utility . 483
28.6 CLER run-time option change support . 485
28.7 New and modified callable services . 485
28.8 CEE3DLY and CEEDLYM callable services . 486
28.9 AMODE 64 CELQPIPI service vector . 487
28.10 AMODE 64 CEETBCK and CEEHGOTO . 488

28.10.1 __far_jump() function . 489
28.10.2 __le_traceback() function . 489

28.11 XPLINK enhancements. 489

Appendix A. Metal option of XL C compiler. 491
A.1 JCL procedure METACALG . 492

Appendix B. System REXX for z/OS . 495
B.1 REXX exec WHOIAM . 496

Appendix C. z/OS Communications Server . 499
C.1 IPSEC policy configuration for SC70 . 500
C.2 IPSEC policy configuration for SC65 . 503
C.3 SC65 pbr configuration files . 507
C.4 SC70 pbr configuration files . 507
C.5 SC65 netstat -A command . 508
C.6 SC70 netstat -A command . 510
C.7 pasearch -R command . 512

Related publications . 515
IBM Redbooks . 515
Other publications . 515
Online resources . 516
How to get Redbooks. 517
Help from IBM . 517

Index . 519
 Contents xi

xii z/OS Version 1 Release 9 Implementation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. xiii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AD/Cycle®
AIX®
BookManager®
C/370™
CICS®
CUA®
Domino®
DB2®
DFSMS™
DFSMSdfp™
DFSMSdss™
DFSMShsm™
DFSMSrmm™
DFSORT™
DRDA®
DS6000™
DS8000™
eServer™
ELX®

EPILOG®
FICON®
GDPS®
HiperSockets™
i5/OS®
IBM®
IMS™
Language Environment®
Lotus®
MQSeries®
MVS™
MVS/ESA™
NetView®
OMEGAMON®
OS/390®
Parallel Sysplex®
RACF®
Redbooks®
Redbooks (logo) ®

REXX™
RMF™
S/390®
System z™
System z9™
System Storage™
System/390®
SAA®
SYSREXX™
Tivoli®
VM/ESA®
VTAM®
WebSphere®
xSeries®
z/Architecture®
z/OS®
z/VM®
zSeries®
z9™

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation and/or
its affiliates.

Java, Javadoc, Solaris, StorageTek, Sun, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Expression, Internet Explorer, Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xiv z/OS Version 1 Release 9 Implementation

Preface

This IBM® Redbooks® publication describes the functional enhancements to IBM z/OS® for
Version 1 Release 9 (z/OS V1R9). These enhancements are designed to help installations
install, tailor, migrate, and configure z/OS V1R9.

This book describes the new enhancements as follows:

� z/OS Version 1 Release 9 overview

� Installation and migration to z/OS V1R9

� Coupling Facility enhancements

� ICSF support for PKCS #11

� Allocation dynamic storage improvements

� System Logger enhancements

� SMF recording to log streams

� GRS enhancements

� Message Flood Automation

� Workload Manager (WLM) enhancements

� C/C ++ enhancements

� ISPF enhancements

� Security enhancements

� z/OS Communication Server

� New faces of z/OS

� System REXX™ for z/OS

� z/OS XL C Metal option

� z/OS UNIX® System Services

� SDSF enhancements

� Program management enhancements

� JES2 and JES3 enhancements

� IBM Health Checker for z/OS

� DFSMS™ enhancements

� Large format data sets

� RMF™ enhancements

� XML enhancements

� RRS enhancements

� Language Environment®
© Copyright IBM Corp. 2007. All rights reserved. xv

The team that wrote this book

This IBM Redbooks publication was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie Center.

Paul Rogers is a Consulting IT Specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM classes
worldwide on various aspects of z/OS, z/OS UNIX , JES3, and Infoprint Server. Before joining
the ITSO 19 1/2 years ago, Paul worked in the IBM Installation Support Center (ISC) in
Greenford, England for seven years, providing OS/390® and JES support for IBM EMEA. He
also worked in the Washington Systems Center for three years, and has been with IBM for
more than 40 years.

Paul-Robert Hering is an IT Specialist at the ITS Technical Support Center, Mainz, Germany
who provides support to customers with z/OS and UNIX System Services-related questions
and problems. He has participated in several ITSO residencies since 1988, writing about
UNIX-related topics. Prior to supporting OS/390 and z/OS, Paul-Robert worked for many
years with VM and all its different flavors (VM/370, VM/HPO, VM/XA, and VM/ESA®).

Lutz Kuehner is a z/OS IT Specialist working in IBM Global Services, Germany. He has 21
years of experience in the mainframe field and has contributed to several IBM Redbooks
publications.

Jean-Louis Lafitte is a Senior System Architect at GATE Informatic SA, an IBM Premier
Business Partner in Switzerland. He has 36 years of experience on IBM Large Enterprise
Systems, has worked on different parallel machines (IBM RP3, CM2, KSR1, IBM SP1, SP2
and BG/L), and has been associated with Parallel Sysplex® since 1984. He holds a Ph.D.
degree in Theoretical Computer Science and several patents in System/390® architecture.
He is a member of ACM and IEEE.

Marcos Minatto is a System Programmer at Banco do Brasil in Brazil. He has four years of
experience in the z/OS field and holds a degree in Information Systems. His areas of
expertise include z/OS, installation, maintenance, capacity planning, and Workload Manager.

Jacqueline Mourao is a Systems Programmer at Banco do Brasil, an IBM customer. She
has five years of mainframe experience and holds a degree in Information Systems. Her
areas of expertise include z/OS, installation and maintenance, Parallel Sysplex and security.

Meganen Naidoo is a Technical Architect with Business Connexion, a large outsourcing IBM
business partner in South Africa. He has more than 23 years of mainframe experience,
working on VM, z/OS and Linux® system platforms, and has contributed to several IBM
Redbooks publications. Meganen’s areas of expertise include a variety of technical topics
about z/OS, CICS® and Storage Management.

Gil Peleg is a z/OS System Programmer working for Tangram-Soft LTD in Israel. He has nine
years of experience in mainframe systems and holds a degree in Computer Science. Gil is
responsible for supporting zSeries® customers in Israel and teaching zSeries-related
courses.

Evanir Philipi is a Certified z/OS IT Specialist working with IBM Global Services, Brazil. He
has worked with IBM mainframes for 35 years. Evanir is a z/OS instructor and a z/OS
Technical Leader (Banco do Brasil).

Giancarlo Rodolfi is a zSeries Certified Consultant TSS in Brazil. He has 21 years of
experience in the zSeries field. His areas of expertise include zSeries and Linux . He has
written extensively about z/OS Communication Server.
xvi z/OS Version 1 Release 9 Implementation

Thanks to the following people for their contributions to this project:

Rich Conway, Roy Costa
International Technical Support Organization, Poughkeepsie Center

Ray Mansell
Scalable Systems, IBM Research Hawthorne

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii z/OS Version 1 Release 9 Implementation

Chapter 1. z/OS Version 1 Release 9

With z/OS V1R9, IBM extends the value of the mainframe operating system with
improvements in all of its core competencies, including scalability, availability, and resource
optimization. There are advancements in ease of use for both new and existing IT
professionals coming to z/OS. There is an enhanced centralized policy-based tailoring for
application networking and security. For Web-based applications, centralized encryption key
management is introduced. There is also autonomic policy-based application performance
management.

z/OS V1R9 helps to provide constraint relief and improve overall performance and/or
scalability of the following items:

� Coupling Facility (CF) Duplexing

� CF performance monitoring

� GRS management of ENQs

� XCF Couple Data Set

� Language Environment heap pools

With increased focus on simplifying z/OS for IT professionals, plans for z/OS V1R9 include
improvements to:

� IBM Health Checker for z/OS

� IBM Configuration Assistant for z/OS

� Communications Server

� DFSMSrmm™

� ISPF

� Hardware Configuration Manager (HCM)

� Coupling Facility services

� A new dbx GUI

1

© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 z/OS V1R9 enhancements

As mentioned, with z/OS V1R9, IBM plans to extend the value of the flagship mainframe
operating system with improvements in all of its core competencies, including scalability,
availability, and resource optimization. With increased focus on simplifying z/OS for IT
professionals, plans for z/OS V1R9 include improvements to the IBM Health Checker for
z/OS, the IBM Configuration Assistant for z/OS Communications Server, DFSMSrmm, ISPF,
Hardware Configuration Manager (HCM), and Coupling Facility services, as well as a new
dbx GUI. Additional enhancements to z/OS are planned to make the operating system more
powerful in applying centralized policy-based rules for defining and controlling how your
applications behave.

Figure 1-1 describes the enhancements to z/OS V1R9 in terms of the type of change the new
functions apply. This is more or less the roadmap for the changes to be made in z/OS in this
and future releases.

Figure 1-1 Overview of the functional areas of change with z/OS V1R9

Scalability, performance and availability
In z/OS V1R9, enhancements are provided to extend system limits in support of system
availability and data and application workload growth. Support is provided that can improve
the availability of Consoles component, System Logger, z/OS UNIX System Services and
z/OS UNIX File System, and Sysplex Failure Management function.

� Support up to 54-way for capacity growth and vertical scalability within a single system
image. 54-way support is the sum of Central Processors (CPs), IBM System z9™
Integration Information Processors (zIIPs), and IBM System z™ Application Assist
Processors (zAAPs).

� Improve consoles message handling with policy-driven Message Flood Automation.

Availability
Consoles, CF

Duplexing, zFSScalability &
Performance

54-way support, SMF data
management, Language

Environment, Parallel Sysplex

Optimization and
Management
Capabilities
WLM performance

routing, priority settings,
and cancel functionality;

EWLM; CIM

Enhancing
Security

RACF, FTP, System
SSl, PKI Services

Usability
and Skills
System REXX,
Health Checker,

ISPF, HCM

Integrating Apps
and Supporting

Industry and
Open Standards

PKCS#11, Language
Environment, UNIX System

Services

Extending the Network
Communication Server policy-based
networking, Policy Agent, Network
Security Services, Configuration

Assistant

z/OSz/OS
R9R9
2 z/OS Version 1 Release 9 Implementation

� Allow SMF to be configured to use System Logger to write data to a log stream. This is
expected to improve the scalability, collection, and the overall management of SMF data.

� Relieve virtual storage constraints for the BCP allocation, the I/O Supervisor, and
DFSMShsm™.

� Provide performance improvements for Parallel Sysplex couple data sets, CF Duplexing,
z/OS UNIX File System (zFS), and Language Environment.

� In addition to the current hex and binary floating-point formats, z/OS XL C/C++ supports in
z/OS V1R9 (with a possible roll-back to z/OS V1R8) the decimal floating-point formats.

Despite the widespread use of binary arithmetic, decimal computation remains essential
for many applications. Not only is it required whenever numbers are presented for human
inspection, but it is also often a necessity when fractions are involved. The hardware
implementation of this arithmetic is expected to significantly accelerate a wide variety of
applications. This support is available on the IBM System z9 BC and IBM System z9 EC,
and is activated at the XL compiler in C/C++ via a new DFP option.

Application integration
To embrace open and industry standards to support requirements for application portability,
z/OS V1R9 has several important functions intended to extend existing applications, integrate
new applications, and support industry and de facto standards.

� Adopting the PKCS#11 standard allows mainframe encryption and centralized key
management to be used by Web-based applications and networking environments.

� There are improvements to LDAP enable application registries to be more easily
centralized, managed, and recovered.

� There are improvements to z/OS UNIX System Services help enable porting of UNIX
applications to z/OS.

� Language Environment has enhancements to language, currency, multicast source
filtering, and XPLINK support.

Security enhancements
z/OS V1R9 improves and extends the world-class security capabilities of the platform in the
following enhancements to PKI Services, RACF®, and SAF. These enhancements improve
the creation, authentication, renewal, and management of digital certificates.

� z/OS System SSL and Application Transparent-TLS are opened up to more application
exploiters.

� RACF has added infrastructure for password phrase support and AES cryptography.

� z/OS Communication Server has introduced many functions for centralized security and
policy-based management.

Optimization and management capabilities
z/OS V1R9 offers outstanding overall resource utilization capabilities and policy-based
workload management.

� The z/OS Workload Manager (WLM) is enhanced with improved performance routing,
priority settings, and cancel functionality.

� z/OS supports the latest Common Information Model (CIM) standard to help z/OS to
integrate with more industry tools.

� EWLM is enhanced to include Open Group's ARM 4.1 (Application Response Manager)
extensions for z/OS.
Chapter 1. z/OS Version 1 Release 9 3

Networking
Communications Server for z/OS V1R9 enters into a new era of z/OS middleware enablement
by enhancing the security and control of network communications. Security capabilities have
enhancements with expanded application-transparent security for TN3270 and FTP. Control
enhancements are planned in the areas of network traffic and sysplex operations. z/OS
Communications Server is enhanced to include a new function: policy-based routing.

Ease of use
With increased focus on simplifying z/OS for IT professionals, z/OS V1R9 provides
improvements to the IBM Health Checker for z/OS, the Configuration Assistant for the z/OS,
Communications Server, DFSMSrmm, ISPF, Hardware Configuration Manager (HCM),
Coupling Facility configuration, and CF performance monitoring, and also provides a new dbx
GUI. These improvements can help simplify systems management, improve system
programmer and operator productivity, and make the functions easier to understand and use.
System REXX (SYSREXX™) makes possible execution of REXX routines in an authorized
environment. SYSREXX execs can be used to automate complex operator commands and
other system functions.

1.2 BCP miscellaneous enhancements

The maximum specifiable size of the MVS™ system trace is changed from the current value
of 999 K per CPU. The practical maximum will be in the order of many MBs per CPU. It will
vary depending on the size of the LPAR and the applications that contend for real storage.

1.3 z/OS support for IBM System z servers

Starting with z/OS V1R6, up to 32 processors are supported in a single logical partition on
IBM System z9 EC and z990 servers. With z/OS V1R9, support is provided for z/OS to run up
to 54 processors in a single logical partition on z9 EC servers.

1.4 z/OS UNIX System Services

In z/OS V1R9, enhancements for z/OS UNIX System Services improve management of
automount file systems that are managing a directory located in an automove (unmount) file
system. The automount file system now inherits the automove (unmount) attribute rather than
mounting as automove (yes). Note that IBM Health Checker for z/OS flags this inconsistency
when automount is mounted as automove (yes).

SUSv3 standard
To enable and protect customer investment by addressing open and de facto standards,
UNIX03, also known as Single UNIX Specification Version 3 (SUSV3), is the latest UNIX
standard ratified by the Open Group and then by other standards organizations in 2001 and
2002. This newest standard defines C/C++ APIs needed by Enterprise Applications
workloads. Although z/OS UNIX has not pursued compliance with a new UNIX standard since

Note: The total number of processors defined in a z/OS logical partition is the sum of
general purpose processors (CPs), System z9 Application Assist Processors (zAAPs), and
System z9 Integrated Information Processors (zIIPs).
4 z/OS Version 1 Release 9 Implementation

OS/390 Release 2, new incremental functions are provided as required for applications such
as SAP® and PeopleSoft®. The functions mandated by the SUSV3 standard will allow z/OS
to host customer applications and allow ISVs greater portability and flexibility.

� These utility enhancements provide function available on other UNIX platforms.

� The UNIX system services kernel effort is in support of the Language Environment
initiative.

� Completion of the pthread functions will benefit applications porting to z/OS.

� Changes in the Language Environment run-time library allow applications to target SUSv3
and XSI environments, and support SUSv3 and XSI behaviors during run-time where
differences exist.

z/OS UNIX file system
Enhancements are also provided for the z/OS UNIX file system to make the following
reliability, availability, and serviceability improvements.

� Record UNIX file and directory deletion with a new subtype of the SMF type 92 records.

� In a shared file system configuration, provide more consistent (and predictable) file system
shutdown/recovery behavior based on the file system AUTOMOVE setting. In prior
releases, the AUTOMOVE specification is not honored if the file system is mounted in a
mode in which the physical file system (PFS) provides “sysplex-aware” capability.

� The F BPXOINIT,FILESYS=FIX command adds support to allow the FIX option to detect
and correct CDS serialization state information when MEMBER GONE (failed system
recovery) processing is in progress. Do not attempt to perform file system-specific
recovery.

� The F BPXOINIT, RECOVER=LATCHES command now takes multi-address space
multi-system dumps for file system problems. Logic is added in file system mainline paths
to detect when PFS operations are outstanding, and provide multi-address space and the
multi-system dump utility that handles RECOVER=LATCHES to capture file system SVC
dumps. In doing this, it reduces use of the mount latch and enhances
RECOVER=LATCHES to terminate system tasks in some circumstances.

� The USS file system provides for I/O completion notifications via standard message
queues. This gives an unauthorized application complete control over what thread in a
process receives notification of Asyncio completions.

� Enhancements to some z/OS UNIX commands

Enhancements to some z/OS UNIX commands are intended to help enable the porting of
UNIX applications and shell scripts to the z/OS platform and the development of portable
applications. The enhancements include changes to the following commands:

awk, bc, ed, file, mailx, od, sed, tr, uuencode, and uudecode

SMF record 92
Within the UNIX System Services file system, SMF record 92 is enhanced for
record-to-record file deletes to simplify system administration tasks. This is in response to
multiple customer requests for this support. The SMF component of the BCP element that
collects data for accounting is enhanced to process SMF job and job-step accounting records
by identifying processes by specific identifiers. The SMF file system records currently
describe numerous file system events (such as file open, file memory map, file system mount,
change of ownership). Therefore, a subtype 14 record is being added to the SMF 92 records
for reporting file and directory deletion.
Chapter 1. z/OS Version 1 Release 9 5

USS kernel
USS Kernel provides support for pthread_cancel. It allows pthread_cancel() to terminate
non-USS lineage threads or suspended threads with FRRs.

zFS file systems
zFS shared file system performance is improved by its becoming sysplex-aware for
read-write file systems. zFS and HFS are already sysplex-aware for file systems that are
mounted read-only. Because zFS is sysplex-aware, USS now sends file requests directly to
the zFS physical file system (PFS) without forwarding them to the USS file system owner.
zFS uses XCF communications to forward requests to the owning zFS PFS when necessary.
In addition, end- of-memory (EOM) recovery support for the zFS sysplex code enables zFS to
recover from end-of-memory conditions that occur while executing the new zFS code added
for zFS sysplex file.

zFS support has been implemented to handle NFS V4 share reservations for when zFS runs
in sysplex-aware mode using its token management mechanism. This removes restrictions
for the z/OS NFS V4 server when running zFS file systems in a shared file system
environment. It also improves performance for the z/OS NFS V4 server when using zFS file
systems in a shared file system environment.

1.5 z/OS Workload Manager

The z/OS Workload Manager (WLM) is enhanced with improved performance routing, priority
settings, and cancel functionality, further improving on the mainframe's leadership position in
workload management capabilities. With z/OS WLM, you can define business and
performance goals customized for your applications. The z/OS system decides how much
resource, such as CPU and storage, should be given to applications that serve the workload
to meet the goal.

WLM constantly monitors the system and adapts resource applications to meet application
goals. It takes into account not only server resources but also network traffic, router
bottlenecks, application health, and transaction prioritization as well, thus providing
autonomic, policy-based z/OS performance management that can be tuned to meet the
needs of your applications.

WLM is changed to increase the priority of canceled address spaces. This is expected to help
them be terminated more quickly. This can eliminate the need to reset the priority of a
canceled job, task, or user to speed address space termination when resolving resource
contention issues.

WLM adds a new parameter on the IWMSLIM service, which allows the server region to tell
WLM that a number of minimum server regions should be started in parallel. The new
parameter can allow applications to control whether WLM should start server regions in
parallel or sequentially.

WLM is enhanced for discretionary work. During periods of 100% CPU utilization, it is
possible that discretionary workloads (workloads defined by your installation to have lower
dispatch priority) will not be dispatched for execution. These discretionary workloads may
obtain and hold serially reusable resources required by other workloads, which may block the
progress of higher dispatch priority workloads.

In z/OS V1R9, it is possible to specify that any address spaces and enclaves that have work
that is ready to run but do not get CPU service within a certain time interval can be
6 z/OS Version 1 Release 9 Implementation

temporarily promoted to a higher dispatch priority. RMF supports this function by reporting
relevant measurements.

The EWLM application response measurement (ARM) V4.1 support implements extensions
to provide z/OS support for monitoring applications based on an asynchronous messaging
model. ARM V4.1 is currently a draft standard and is expected to be published by the Open
Group. Additional extensions for asynchronous messaging are provided for applications
running under CICS using the WLM delay monitoring services.

The WLM routing services are enhanced to recognize the zAAP and the zIIP capacity of a
System z server.

1.6 Console message flood

In z/OS V1R9, the consoles component is integrating the message flood automation function
that was made available via APAR OA17514 for z/OS V1R6 and higher. Message flood
automation provides a specialized, policy-driven automation for dealing with high volumes of
messages occurring at very high message rates. The policy can be set in a PARMLIB
member and examined and modified through operator commands.

1.7 System Logger

System Logger with z/OS V1R9 improves availability by providing support for log stream data
set asynchronous recalls that allows for multiple, concurrent, migrated data set recall
requests to be processed by System Logger.

1.8 SMF use of System Logger

z/OS V1R9 enhances SMF data management by allowing SMF to be configured to use
System Logger to write data to a log stream. This is expected to allow the system to support
far higher data write rates than can be supported when using SYS1.MAN data sets when the
Coupling Facility (CF) is used. The use of DASDONLY log streams is also supported.

Also, this design allows a specification that different SMF record types be written to separate
log streams, for which different retention periods can be specified. This can help improve both
scalability and SMF data management.

1.9 Coupling Facility enhancements

z/OS V1R9 includes support for a number of usability enhancements to the CF structure, as
described here.

REALLOCATE process
The SETXCF START, REALLOCATE system command was enhanced originally for z/OS V1R4
and higher via APAR OA08688. The REALLOCATE process itself provides a simple,
easy-to-use mechanism for dynamically optimizing the placement of CF structures among the
CFs in a Parallel Sysplex. It determines the “most preferred” CF locations for the CF structure
Chapter 1. z/OS Version 1 Release 9 7

instances based on the CFRM policy and current conditions, and serially moves the
structures to those most preferred CFs in a nondisruptive fashion.

With z/OS V1R9, REALLOCATE now includes the following enhancements:

� A structure-level CFRM policy control allows selected structures to be bypassed by
REALLOCATE processing, if necessary

� Support is included to automatically initiate duplexing for CF structures that should be
duplexed

� The capability is included to complete a pending policy change for structures without
rebuilding the structure, whenever possible

� Also included is improved processing of structures which make use of the exclusion list
(EXCLLIST) option in the CFRM policy

CF maintenance mode
z/OS V1R9 includes support for placing Coupling Facilities into a new state known as
maintenance mode. When a CF is in maintenance mode, it is logically ineligible for CF
structure allocation purposes, as if it had been removed from the CFRM policy entirely
(although no CFRM policy updates are required to accomplish this). Subsequent rebuild or
REALLOCATE processing will also tend to remove any CF structure instances that were
already allocated in that CF at the time it was placed into maintenance mode.

In conjunction with the REALLOCATE command, the new maintenance mode support can
greatly simplify operational procedures related to taking a CF down for maintenance or
upgrade in a Parallel Sysplex. In particular, you no longer have to laboriously update or
maintain several alternate copies of the CFRM policy that omit a particular CF which is to be
removed for maintenance.

Synchronization protocols
The Coupling Facility-to-Coupling Facility (CF) synchronization protocols for CF Duplexing
have been streamlined, thus resulting in improved performance (service time) and throughput
for duplexed requests that can take advantage of this enhancement. This enhancement can
help reduce the overhead of CF Duplexing, and may help make duplexing a more viable
alternative for use in providing high availability for CF structure data. A new CF level is
required, which is planned to be supported on System z9 servers.

1.10 GRS 64-bit exploitation

GRS is enhanced to further exploit 64-bit addressing. This can dramatically increase the
number of concurrent enqueues that can be supported on a z/OS system. This new function
extends the GRS existing 64-bit support for Star-mode control blocks. With z/OS V1R9, the
majority of GRS enqueue-related control blocks reside in storage above the 2 GB bar. This
support is supported for all three GRS modes, None, Ring, and Star. This should significantly
reduce CMSEQDQ lock hold time and provide much better performance for ISGENQ and
ENQ/DEQ/RESERVE LINKAGE=SYSTEM users.

Note: RMF is planned to provide information about the CF processor resources consumed
by each Coupling Facility (CF) structure. This information is provided by both
Postprocessor and Monitor III. These enhancements are intended to allow better CF
performance monitoring and problem determination by tracking utilization at a CF structure
level. A CF level 15 is required, which is supported on System z9 servers.
8 z/OS Version 1 Release 9 Implementation

In addition, GRS is enhanced to insure that future demands for more concurrent ENQs are
successfully satisfied.

1.11 Sysplex failure management

Sysplex failure management (SFM) allows you to define a sysplex-wide policy that specifies
the actions that MVS is to take when certain failures occur in the sysplex. A number of
situations might occur during the operation of a sysplex when one or more systems need to
be removed so that the remaining sysplex members can continue to do work. The goal of
SFM is to allow these reconfiguration decisions to be made and carried out with little or no
operator involvement.

The sysplex failure management function in z/OS V1R9 is enhanced to support a new policy
specification for how long a system should be allowed to remain in the sysplex when it
appears unresponsive because it is not updating its system status on the sysplex couple data
set, yet is still sending XCF signals to other systems in the sysplex. A system that is in this
state is definitely not completely inoperable (since it is sending XCF signals), and yet it may
not be fully functional either, so it may be causing sysplex sympathy sickness problems for
other active systems in the sysplex.

The new SFM policy externally provides a way for installations to limit their exposure to
problems caused by such systems, by automatically removing them from the sysplex after a
specified period of time.

This new SFM function supports a new policy specification to indicate that, after a specified
period of time, the system may automatically terminate XCF members which have been
identified as stalled and who also appear to be causing sympathy sickness problems. If
allowed to persist, these stalled members can lead to sysplex-wide hangs or other problems,
not only within their own XCF group, but also for any other system or application functions
that depend on the impacted function. Automatically terminating these members is intended
to provide improved application availability within the sysplex.

1.12 Program management binder

The binder has been enhanced as follows:

� A C front-end to binder APIs is designed to simplify using both the regular binder APIs and
fastdata APIs for C and C++ programmers.

� Definition Side-Files in z/OS UNIX archives are intended to allow programmers to
package their Dynamic Link Library (DLL) side-decks in UNIX archive files produced by
the ar utility.

� The fastdata API rewrite is designed to provide improved reliability for fastdata APIs.

� Improvements to AMBLIST XREF are intended to provide improved execution time and
capability when processing cross-reference information of large programs.

� RECFM=U verification is designed to provide the same protection against writing
programs into non-program PDS libraries as is provided for PDSE libraries.

� A new binder INFO option will list all installed PTFs in the binder SYSPRINT output.

� The binder is modified to recognize and process definition side-decks (which contain
IMPORT control statements), which are members of z/OS UNIX archive files.
Chapter 1. z/OS Version 1 Release 9 9

� The binder is modified to optionally provide a module map as part of a program object or
load module, for the use by dbx, potentially other debuggers, or module map type utilities.
Equivalent information can be obtained via multiple binder API calls, but keeping the
information in the loaded part of the module, and in one place, is faster and is usable when
the module itself is not available (as in IPCS dumps). It is an optional feature, because it
increases the virtual storage size of the loaded module (this is expected to be particularly
true of C++ programs).

� The binder is modified to enhance the CHANGE and REPLACE control statements with a
new IMMED option which will cause them to operate against any content previously
included in the module being bound. This allows more freedom in the positioning of those
control statements and enables them to be more easily used to alter the contents of a
multi-object input file. This was previously available only when using the API.

1.13 XCF Couple Data Set

z/OS V1R9 includes support for improved parallelism in XCF Couple Data Set access
channel programs for all supported types of Couple Data Sets. By more granularly expressing
whether or not a particular channel program intends to update any data, channel programs
that could not have run in parallel previously will now be able to do so, resulting in improved
I/O performance and throughput. This enhancement was originally made available for z/OS
V1R4 and higher with APAR OA15409.

In z/OS V1R9, enhancements for the D XCF, COUPLE, TYPE=BPXMCDS command include the
current defined values for MAXSYSTEMS, MOUNTS and AMTRULES for the
TYPE(BPXMCDS) couple data set. Because these values can be updated dynamically, it will
be easier to keep track of changes that could impact the shared file system configuration.

1.14 Language Environment

Language Environment enhancements help improve the performance of applications using
heap pools in the following manner:

� Allow the heap pool control data and individual cells to be aligned, to better optimize use
of the processor cache

� Eliminate stack transitions in an XPLINK environment

� Design heap pools cells to always align cells on a 16-byte boundary under AMODE 64

Language Environment now also eliminates stack transitions during long division and long
multiplication in an XPLINK environment.

The Language Environment CEEBLDTX utility is now designed to run in a UNIX shell
command. This utility is made available as a shell command.

The CICS CLER function is enhanced for displaying and modifying Language Environment
run-time options.

Implementing the functionality of CEE5DLY on z/OS now enables LE-conforming programs to
suspend execution and then allow the code using ILBOWAT to be replaced without requiring
in-house assembler code.

Language Environment now provides AMODE 64 equivalents of the 31-bit callable service,
CEETBCK, which is a callable service that assists in tracing the call chain backwards, and of
10 z/OS Version 1 Release 9 Implementation

CEEGOTO, which is a callable service that provides the capability to perform a “goto” to a
known location within the program stack.

In addition, Language Environment also provides support for XPLINK applications running as
IMS™ transactions. Support is added for IMS regions running with or without Language
Environment Library Routine Retention (LRR) active.

In z/OS V1R9, CELQPIPI (the Language Environment pre-initialization facility for AMODE64)
provides the service exit points currently available in 31-bit CEEPIPI (minimally, the program
LOAD/UNLOAD service), in AMODE64.

New locales available from CLDR Repository are added to make z/OS more usable with as
many languages as possible. Additionally, ASCII versions for a set of existing euro and
pre-euro locales will be added. Locales for Turkey are updated to make use of the new
Turkish Lira currency.

1.15 DFSMS enhancements

DFSMS provided support for DSNTYPE=LARGE data sets which can contain more than
65,535 tracks beginning with z/OS V1R7. In z/OS V1R9, the following TSO/E functions are
are updated in order to utilize this support:

� LISTDSI, used in REXX execs and CLISTs

� PRINTDS command

� TRANSMIT and RECEIVE commands

The serialization used by DFSMSrmm for its CDS is changed to use a new resource name
that includes the CDS ID. This avoids conflicts when multiple RMMplexes run in the same
sysplex.

DFSMSdfp
DFSMSdfp™ OAM (Object Access Method) introduces two new sublevels into the tape level
of the OAM storage hierarchy. This effectively expands OAM's storage hierarchy into four
levels: disk, optical, tape sublevel 1 (TSL1), and tape sublevel 2 (TSL2). In addition to
enabling the ability to write and read object data directly to and from a given sublevel, this
support provides the ability to transition object data within the tape family (for example: from
VTS to native tape) during an OSMC storage group cycle. Prior to this support, data
movement within the tape family could only be accomplished manually via the MOVEVOL or
RECYCLE commands.

z/OS V1R9 has enhancements to Access Method Services which allow data set name
masking on delete requests.

DFSMShsm
The amount of storage that DFSMShsm uses below 16 MB is now reduced in an effort to
address storage-related abends (878, 80A, and so on). Additional fields are added to the
DFSMShsm function statistics records (FSRs) to improve the data available for statistical
analysis of the DFSMShsm environment.

DFSMSrmm
DFSMSrmm interaction with system managed volumes in an IBM system managed library is
improved through multiple changes which are expected, especially in larger VTS installations,
to result in shorter elapsed time and more flexibility during inventory management.
Chapter 1. z/OS Version 1 Release 9 11

DFSMSrmm is enhanced so that you can now control long-running local subsystem requests.
These requests can be ended, held, and released. This enhancement will enable better
management when required either by system automation or by the operator because of
operational priorities.

The DFSMSrmm CIM provider code is updated to support OpenPegasus CIM Server with
2.5.1 and the subclasses supported are planned to be extended to cover
allDFSMSrmm-managed resources.

System symbols are now supported for DFSMSrmm parmlib members. This enhancement is
designed to allow sharing of DFSMSrmm parmlib members more easily. Additionally,
indirection can be used to point to another parmlib member that might contain system-specific
options.

DFSMSrmm SEARCH subcommands with CLIST are enhanced so that it is possible to
optionally append to an existing CLIST data set. Almost any format of CLIST data set is
supported, and the subcommands support a way to break the results into chunks for easier
results management.

DFSMSrmm is enhanced to support almost any unqualified data set name up to 44
characters. The product version can be alphanumeric and volumes and data sets can be
declassified.

Network File System V4 client
z/OS V1R9 now supports the Network File System (NFS) V4 industry-standard protocol. This
maintains z/OS NFS client competitiveness with the clients provided by other platforms by
allowing the exploitation of the NFS v4 protocol.

The NFS V4 client support in previous versions accessed shared file systems by mounting
them from an NFS server machine. Mount was used to obtain the filehandle. Subsequent
locking was done by the network lock manager (NLM).

With this release, NFS Version 4 integrates these disparate elements into a single protocol
that uses a well-defined port that enables NFS to more easily transit firewalls to enable
support for the internet. The single, integrated protocol eliminates the need for the ancillary
mount and NLM protocols, and introduces the concept of mandatory locking in addition to
advisory locking and a host of new verbs (like OPEN and CLOSE) which can be nested within
the RPC COMPOUND to reduce network round-trip latency.

NFS RAS and constraint relief improvements in V1R9 include the following enhancements:

� Establish z/OS NFS EAL4 compliance by creating low level design documents for all
security-related code paths to aid auditors in evaluating z/OS NFS compliance with the
EAL4 standard, and implement data labeling support in the z/OS NFS server (NFSS).

� Implement 24-bit addressing relief in the z/OS NFS server, eliminating 24-bit addressing
restrictions wherever possible. This implementation is available for z/OS NFS V1R7 and
V1R8.

� NFS serviceability improvements include updating the z/OS NFS server Ctrace. This
update of the Ctrace function is done to exploit the enhanced capabilities developed as
part of the z/OS NFS Client Ctrace deployment in z/OS V1R8 NFS.

The separate GFSCMAIN NFS client load module is eliminated by merging it with the
GFSCINIT load module.

An AddDS operator command implements a new set of F NFS,xxxxx operator commands to
support the dynamic replacement of the NFS server mounthandle database (MHDB) and
locking database (LDB) data sets without requiring an NFS server restart.
12 z/OS Version 1 Release 9 Implementation

� The z/OS NFS V4 RPCSEC_GSS security function is enhanced to support multi TCP/IP
stack system configurations, eliminating the single stack restriction.

1.16 z/OS Communications Server

Additional enhancements to z/OS make the operating system more powerful in applying
centralized policy-based rules for defining and controlling how your applications behave.
They also include the planned ability to provide centralized policy services and policy-based
routing (along with the ability to apply security, intrusion detection/defense, qualities of
service, as well as other features). z/OS can help customize the network to suit the needs of
applications, and it does so in a simplified, centralized, manageable, and auditable manner
that is anticipated to be transparent to the application.

With z/OS V1R9, CSA/ECSA usage has been reduced for VTAM® by taking the following
actions:

� Reducing the size of the ACDEB used by Telnet

� Moving the ISTRIVL that is provided to the ACB Monitor exit to VTAM private

� Eliminating the usage of the FMCB/FMCB extension for most SSCP-LU sessions

Communications Server for z/OS V1R9 is providing new capabilities for z/OS middleware
enablement by enhancing the security and control of network communications. Security is
changed by providing expanded application-transparent security for TN3270 and FTP.
Control enhancements are made in the areas of network traffic and sysplex operations.

Policy-based routing
z/OS Communications Server is enhanced to include a new function: policy-based routing.
Policy-based routing enables the TCP/IP stack to make routing decisions that take into
account criteria other than simply the destination IP address/subnet (as is done with both
static and dynamic routing). The additional criteria can include the job name, source port,
destination port, protocol type (TCP or UDP), source IP address, NetAccess security zone,
and security label.

With policy-based routing, you can define policy to select the network that will be used for
outbound traffic based on the application originating the traffic. The IBM Configuration
Assistant for z/OS Communications Server is enhanced to support policy-based routing.

With policy-based routing, you can define policy to select the network that will be used for
outbound traffic based on the application originating the traffic. To provide dynamic routing
characteristics (for example, best route calculation, route availability awareness, and so on)
to policy-based routing, the policy-based routing is built on top of a dynamic routing
foundation. The policy-based routing function interfaces with OMPROUTE to obtain dynamic
routes to populate the policy-based route tables.

Policy Agent
Policy Agent is enhanced to take on additional roles that support the goal of centralized policy
management. Policy Agent can be configured to act as a policy server. In this role, it not only

Note: Policy-based routing applies only to IPv4 TCP and UDP traffic that originates at the
TCP/IP stack. Traffic using protocols other than TCP and UDP, all traffic being forwarded by
the TCP/IP stack, and all IPv6 traffic, will always be routed using the main route table, even
when policy-based routing is in use.
Chapter 1. z/OS Version 1 Release 9 13

reads and installs local policies for a set of TCP/IP stacks, but also loads policies on demand
for policy clients. This allows all policies for a set of systems to be administered on a single
system.

Policy Agent can be configured to act as a policy client. In this role it connects to the policy
server and retrieves remote policies that are then installed in the local TCP/IP stacks. The
choice of local or remote policies may be made for each policy type (AT-TLS, IDS, IPSec,
QoS) and for each TCP/IP stack.

IBM Configuration Assistant for z/OS Communications Server
The IBM Configuration Assistant for z/OS Communications Server is extended to include
support for policy-based routing (PBR) and Network Security Services (NSS) configuration.
This support allows an administrator to configure IPSec, Application Transparent TLS, QoS,
IDS, and PBR policy using a consistent user interface.

Other new function in the IBM Configuration Assistant for z/OS Communications Server
allows the configuration information for all of these technologies to be managed collectively,
providing health check operations designed to insure consistent configuration across the
supported technologies. The configuration information can be saved and accessed on a z/OS
system or on a Windows®-based file system. The Configuration Assistant for z/OS
Communications Server is a separate download.

Multicast support
z/OS Communications Server has enhanced its multicast support to allow an application to
filter the datagrams it receives based on the source address. z/OS Communications Server
also supports the following:

� Support new APIs to allow applications to specify source filter lists. This allows the local
system to filter on source addresses even if the system is not attached to a multicast
router, which supports source address filtering.

� Host support for IGMPv3 and MLDv2. The system responds to queries from multicast
routers and reports the source filter state of each interface.

Multicast datagrams destined for the specified multicast address coming over the specified
interface are given to the application. However, all multicast datagrams which meet that
criteria, regardless of the source address, are delivered to the application. This architecture is
now referred to as any-source multicast (ASM).

It is possible for multiple multicast servers to be sending out datagrams for the same multicast
address. An application can receive multicast datagrams from servers which it was not
intending to receive. To avoid such collisions, an extension to the original ASM model was
developed called source-filtered multicast (SFM). SFM specifies a set of API extensions
which allow an application to filter the datagrams it receives based on the source address.

To complement these new source filtering APIs, new versions of the Internet Group
Management Protocol for IPv4 (IGMPv3) and the multicast listening discovery protocol for
IPv6 (MLDv2) are supported. With these new versions of the protocols, multicast routers are
informed of the source IP filtering of any applications on a system. This allows the multicast

Note: z/OS V1R9 Communications Server no longer supports the LDAP protocol
Version 2 for Policy Agent communication with an LDAP server.

For QoS and IDS LDAP policies in Policy Agent, use an LDAP protocol Version 3 server.
LDAP protocol Version 3 has improvements in internationalization, authentication, referral,
and deployment.
14 z/OS Version 1 Release 9 Implementation

router to send only multicast datagrams that the system has applications interested in
receiving. Even if a system is not attached to a multicast router which supports IGMPv3 or
MLDv2, an application can still filter by source address. However, the local system will have
to discard any unwanted multicast datagrams.

FTP and Unicode pages
FTP now supports for more Unicode code pages for file storage and file transfer. For file
transfer, FTP is planned to add support for code pages UTF-16, UTF-16LE, and UTF-16BE.
For file storage, FTP supports code page UTF-16. FTP always stores Unicode files in big
endian format.

TN3270E Telnet server
Prior to z/OS V1R6, the TN3270E Telnet server runs as a subtask of the TCPIP address
space. In z/OS V1R6 through z/OS V1R8, users can run the TN3270E Telnet server as a
separately started address space from TCPIP, or continue to run the TN3270E Telnet server
as a subtask of the TCPIP address space. In z/OS V1R9, the TN3270E Telnet server is
supported only when run in its own address space.

Enterprise Extender
Enterprise Extender (EE) autonomics provides two potential performance enhancements in
z/OS V1R9:

� It enables VTAM to learn of changing MTU sizes associated with an Enterprise Extender
connection. With this knowledge, VTAM can avoid packet fragmentation when the MTU
size is decreased. Also, in some instances, this function allows VTAM to pass larger
packets to TCP/IP to better utilize the current interface associated with an EE connection.

� It provides more optimal routes for existing Enterprise Extender connections when new
routes are learned by TCP/IP.

The Enterprise Extender (EE) logical data link control (LDLC) inactivity timer function is
controlled by three LDLC timer operands coded on PORT definition statement. These LDLC
timer operands (LIVTIME, SRQTIME and SRQRETRY settings) apply to all EE connections.
In z/OS V1R9 Communications Server, the LDLC inactivity timer function has been enhanced
to support unique inactivity timer settings for each local IP address (static VIPA). As a result,
the LDLC timer operands may now be specified on either the PORT or on individual GROUP
definition statements.

Summary information about Enterprise Extender connections is reported on the network
management interface (NMI). The EE summary global record contains LDLC timer
information as specified or defaulted on the PORTdefinition statement. In z/OS V1R9
Communications Server, the EE summary IP address record has been enhanced to contain
LDLC timer information specified on the GROUP definition statement.

High performance routing
The high performance routing (HPR) function is enhanced in z/OS Communications Server
V1R9 in three ways, as follows:

1. Various inefficiencies within the HPR path switch logic are enhanced to reduce
unnecessary processing and optimize code paths.

2. Redundant HPR path switch messages are reduced. The HPR path switch message
reduction function provides performance and diagnostic improvements for large

Note: z/OS Communications Server does not support any multicast routing protocols and
therefore does not support any multicast routing functions of IGMPv3 or MLDv2.
Chapter 1. z/OS Version 1 Release 9 15

installations which have hundreds or thousands of RTP endpoints on z/OS
Communications Server. Performance gains are achieved by saving CPU cycles through
the reduction of the number of HPR operator console messages that occur for large scale
path switch events. Diagnostic procedures are improved by providing an organized,
easy-to-read summary of the path switch events which took place, allowing you to more
easily determine the scope and size of an outage.

This function is not associated with the message-flooding prevention table. For predictable
results, the IST1494I message should not be coded in the message-flooding prevention
table when the HPR path switch message reduction function is enabled.

3. Improvements to HPR activation and deactivation messages are provided. HPR activation
and deactivation messages have been enhanced, by providing you additional information
which should be useful when diagnosing RTP problems.

When an RTP pipe is activating, you will now receive a message group identifying the
RTP PU name, whether this is the active or passive end of the pipe, the partner CPNAME,
priority, associated APPNCOS and the APPN route the pipe is traversing. When an RTP
pipe is deactivating, you will now receive a message group identifying the RTP PU name,
whether this is the active or passive end of the pipe, and the partner CPNAME, along with
the priority and associated APPNCOS.

TSO VTAM support
Visibility to the CGCSGID for a TSO session is provided. Users may want to use this
information as criteria to permit or deny access to an application through use of a logon exit.
TSO/VTAM supports a GTTERM macro that the user can use to acquire information about a
terminal. A new keyword, CODEPG, has been added to the GTTERM processing to allow the
user to retrieve the CGCSGID in use for a TSO session. The SNA TSOUSER display has
been enhanced to report the CGCSGID in use for a TSO user.

Generic resource resolution preferences
Generic resource resolution preferences are used to control the distribution of sessions to
generic resources. These preferences previously could only be set globally in the generic
resource exit. This function allows you to use VTAM definitions to customize generic resource
resolution preferences for individual generic resources. In addition, a new generic resource
resolution preference is also being introduced that allows a generic resource resolution
during third-party initiated (CLSDST-PASS) sessions to favor a generic resource on the origin
host of a session.

MPC groups
In z/OS V1R9 CS, activations of MPC groups that fail to meet the one read/one write
requirement are put on hold, provided any needed read and/or write subchannel is an offline
CTC or one that has no valid path available to the connecting host. The hold continues until all
the needed subchannels come online or the group is deactivated.

New messages signal when the hold begins and when activation resumes. The display of an
MPC group indicates when its activation is on hold.

Other existing output in that display identifies the offline subchannels, so appropriate action
can be taken to bring enough of them online to cause activation of the MPC group to
complete. FICON® CTC recovery is enabled by default, with a new start option (MPCACT)
that can be used to disable the function whenever manual retry is desired.
16 z/OS Version 1 Release 9 Implementation

1.17 z/OS security

z/OS V1R9 has security improvements on the z/OS platform in the following areas:

� PKI Services

� RACF for added infrastructure for password phrase support and AES cryptography

� SAF to help improve the creation, authentication, renewal, and management of digital
certificates

� z/OS System SSL

� Application Transparent-TLS are opened up to more application exploiters

� z/OS Communications Server for centralized security and policy-based management.

ICSF and PKCS #11 standard
The z/OS Integrated Cryptographic Service Facility (ICSF) is enhanced to include the PKCS
#11 standard. ICSF is the fundamental base of z/OS mainframe encryption which enables
you to encrypt and decrypt data, generate and manage cryptographic keys, and perform
other cryptographic functions dealing with data integrity and digital signatures. With adoption
of the PKCS #11 standard, the strength of mainframe encryption and secure centralized key
management can be brought to and used by Web-based application and networking
environments more easily.

This ICSF support of PKCS #11 provides an alternative to the IBM Common Cryptographic
Architecture (CCA), and broadens the scope of cryptographic applications that can make use
of zSeries cryptography. RACF provides PKCS#11 support with the RACF RACDCERT
command to provide token management of certificate, public key, and private key objects.

Public Key Cryptography Standards (PKCS) is offered by RSA Laboratories of RSA Security
Inc. PKCS #11, also known as Cryptoki, is the cryptographic token interface standard. It
specifies an application programming interface (API) to devices, referred to as tokens. The
PKCS #11 API is an industry-accepted standard commonly used by cryptographic
applications. PKCS #11 applications developed for other platforms can be recompiled and
run on z/OS.

RACF password phrase
In z/OS V1R9, an extension is added to the password phrase that was introduced in z/OS
V1R8. The minimum length of a password phrase has been lowered from 14 characters to 9.
Password phrases from 9 to 13 characters in length can be used in conjunction with a new
password phrase exit (ICHPWX11) which you can write to determine whether to accept them.
A sample exit is provided, which uses the new System REXX facility to call a REXX exec in
which you can code password phrase quality rules. A sample REXX exec is also provided.
Also, password change logging and enveloping functions are extended to include RACF
password phrases.

AES cryptographic algorithm
The z/OS Network Authentication Service is enhanced to support the AES cryptographic
algorithm. This support enhances interoperability with other Kerberos implementations by
extending the z/OS cipher suite. Because RACF can act as the registry for the z/OS Network
Authentication Service, RACF provides the management interfaces for cryptographic keys.
RACF commands are planned to be extended to allow the specification of AES as a
supported cipher.
Chapter 1. z/OS Version 1 Release 9 17

LDAP directory server
z/OS V1R9 enhances the LDAP directory server, known as IBM Tivoli® Directory Server for
z/OS. This new server enables an installation to collapse user registries typically used by
distributed applications on z/OS. This can help to simplify enterprise management and
disaster recovery.

The existing Integrated Security Services LDAP Server continues to be available in z/OS
V1R8 in addition to the new IBM Tivoli Directory Server for z/OS. You must apply the
enabling PTF for APAR OA19286, when available, and all of its prerequisite APARs to use
this function.

z/OS Communications Server
z/OS Communications Server provides a new Network Security Services function to
centralize certificate services, monitoring and management for IPSec security across z/OS
systems within and across sysplexes. Network Security Services allows IPSec certificates to
be kept in a single location, rather than having them reside on each z/OS node. The z/OS
Communications Server IKE daemon is planned to be enhanced so that it can be configured
to act as a Network Security client. Configuration is on a per-stack basis, such that each
NSS-enabled stack will appear to the Network Security Server as an independent client. For
TCP/IP stacks that are not configured to use Network Security Services, the IKE daemon will
continue to manage certificates out of a local key ring.

The FTP server, FTP client, and TN3270 server now use Application Transparent TLS
(AT-TLS) to manage TLS security. AT-TLS supports several security functions that the FTP
server, FTP client, and TN3270 servers do not. In addition, AT-TLS provides improvements
over TLS implemented by the FTP server and client which are intended to improve
performance. Security defined in the TN3270 server profile and FTP.DATA continues to be
available.

1.18 Spool Display

Spool Display (SDSF) is being enhanced to add the capability to provide access to SDSF
functions through REXX variables. The variables will be loaded with data from the SDSF
panels, enabling scripts to access the data programmatically. The data can also be changed;
this provides a capability similar to action characters and overtyping.

1.19 System REXX

System REXX (SYSREXX) is a component that makes possible the execution of REXX
routines in an authorized environment. SYSREXX execs can be used to automate complex
operator commands and other system functions. SYSREXX execs can be invoked by a
program interface, and by operator command. This new component is made available for
z/OS V1R8 via a Web deliverable.

1.20 IBM Health Checker for z/OS

IBM Health Checker for z/OS now supports checks that are written in REXX using the
SYSREXX function. Also, health checks are planned for z/OS UNIX, TSO/E, the virtual
storage manager component of the z/OS BCP, and z/OS Communications Server.
18 z/OS Version 1 Release 9 Implementation

1.21 Alternate Library for REXX

New in z/OS V1R9 is the Alternate Library for REXX that enables users who do not have the
REXX on zSeries library installed to run compiled REXX programs. It contains a language
processor that transforms the compiled programs and runs them with the REXX interpreter
which is shipped as part of the z/OS operating system.

With this implementation, software developers are no longer required to distribute the
Alternate Library for REXX with their compiled REXX programs. Installations that have the
REXX on zSeries Library installed may see the performance benefits of running compiled
REXX. Installations that use the Alternate Library for REXX may still run the programs as
interpreted.

Benefits with Alternate Library for REXX
By including the Alternate Library for REXX with z/OS, software developers gain the benefits
of shipping compiled REXX programs without the source code, as follows:

� Maintenance of the program is simplified, because the code cannot be modified
inadvertently.

� Compiled programs can be shipped in load module format, thus simplifying packaging and
installation.

� The Alternate Library for REXX does not need to be shipped and installed with the
software program.

� Maintenance of the Alternate Library for REXX is handled by the z/OS system
administrator.

1.22 RRS

In z/OS V1R9, RRS now has a batch interface that has commands and parameters to gather
the same information that the online interface provides. This implementation allows RRS
information to be collected when needed, and then to use this information for problem
determination if any failure should occur later.

1.23 ISPF

In z/OS R9, ISPF provides the ability to edit ASCII data sets from the ISPF editor directly
without converting them to EBCDIC first. Within the ISPF editor, the user may issue the
SOURCE ASCII command to begin editing in ASCII mode. The RESET SOURCE command will
revert to EBCDIC (normal) editing mode. Additionally, a LF command can be used to
“massage” the data, splitting ASCII lines correctly in an FB dataset, or example.

The ISPF editor will also be enhanced to allow files in zFS to be edited, rather than having to
use oedit and obrowse. Lastly, a change was made to the ISPF command tables to allow
lower case characters to be stored.

Additional ISPF enhancements are listed here:

� ISPF is enhanced to share profile variables across multiple systems in a Parallel Sysplex.
This can eliminate the need for multiple profile data sets in a sysplex.
Chapter 1. z/OS Version 1 Release 9 19

� It provides support to use system symbols within data set names when entered in ISPF
panels.

� It offers improved ISPT Edit Undo processing even after the ISPF Edit save command is
issued and the data being edited has been saved. Edit undo buffers will be retained by
ISPF. This is intended to allow you to remove changes from edited data even after a save
command.

� It provides support for editing and browsing z/OS UNIX and ASCII files.

� It offers enhanced DSLIST command table support, and REXX variables processing.

1.24 Common Information Model

The z/OS V1R9 Common Information Model (CIM) has updated the cross-platform support to
a new version of the CIM Schema and the OpenPegasus CIM Server. Along with these
updates, the CIM Server is enhanced to register with z/OS Automatic Restart Manager (ARM)
and to allow clients to be authenticated through SSL certificates. CIM provides an
industry-standard way to externalize information about computing systems so that it can be
processed by common tools.

The Common Information Model is a standard data model for describing and accessing
systems management data in heterogeneous environments. It allows system administrators
or vendors to write applications (CIM monitoring clients) that measure system resources in a
network with different operating systems and hardware. With z/OS CIM, it is possible to use
the DMTF CIM open standard for systems management which is also implemented on other
major server platforms (Linux on zSeries, Linux on xSeries®, i5/OS®, and AIX®).

z/OS CIM implements the CIM server which is based on the OpenPegasus Open Source
project. A CIM monitoring client invokes the CIM server that in turn collects z/OS metrics from
the system and returns then to the calling client. To obtain the z/OS metrics, the CIM server
invokes the z/OS RMF monitoring provider which retrieves the metrics associated with z/OS
system resources. The z/OS RMF monitoring provider uses RMF Monitor III performance
data.

The metrics obtained by this new API are common across server platforms, so you can use it
to create end-to-end monitoring applications.

1.25 Metal C runtime library

The XL C Metal compiler option, introduced in z/OS V1R9, generates code that does not
have access to the Language Environment support at run time. Instead, the Metal option
provides C-language extensions that allow you to specify assembly statements that call
system services directly. Using these language extensions, you can provide almost any
assembly macro, and your own function prologs and epilogs, to be embedded in the
generated HLASM source file. When you understand how the Metal-generated code uses
MVS linkage conventions to interact with HLASM code, you can use this capability to write
freestanding programs.

Prior to z/OS V1R9, all z/OS XL C compiler-generated code required Language Environment.
In addition to depending on the C runtime library functions that are available only with
Language Environment, the generated code depended on the establishment of an overall
execution context, including the heap storage and dynamic storage areas. These
20 z/OS Version 1 Release 9 Implementation

dependencies prohibit you from using the XL C compiler to generate code that runs in an
environment where Language Environment did not exist.

1.26 XML System Services

With z/OS V1R9, the XML System Services parser is a follow-on release to the XML System
Services component that shipped in z/OS V1R8 and implements performance optimizations,
C/C++ interfaces, and functional enhancements allowing the caller to change parser features
with a control request. This release also implements support for zAAPs that enhances the
cost and performance usage for XML parsing on z/OS.

XML System Services is now very useful for IBM and external exploiters such as ISV and
customers because assembler and PL/X skills are becoming increasingly rare. There is
widespread availability of C and C++ language development and performance tools that such
applications can take advantage of, and many programs are already written in C/C++ and will
no longer need to switch into PL/X or assembler to invoke XML system services or make
inter-language calls without the benefit of C/C++ header files.

1.27 z/OS dbx enhancements

z/OS V1R9 provides z/OS dbx support for IBM WebSphere® Developer Debugger for
System z V7.0 (5724-N06) and WebSphere Developer for System z V7.0 (5724-L44). The
z/OS dbx enhancements are planned to provide an Eclipse-based graphical user interface
(GUI) for interactive, source-level debugging capabilities for compiled System z applications.
Running under z/OS UNIX System Services, dbx is designed to enable developers to
examine, monitor, and control the running of z/OS UNIX System Services application
programs written in C, C++, and High Level Assembler on a z/OS system.

IBM WebSphere Developer for System z V7.0 (5724-L44) includes new support for XL C/C++
mainframe development. The support is available for z/OS V1R8 XL C/C++, whose function
can be ordered in the z/OS V1R8 C/C++ Without Debug feature. Core features include the
following:

� XL C/C++ support for development, editing, content assist, enhanced code navigation,
and remote syntax checking

� XL C/C++ builds on MVS or z/OS UNIX System Services

� Integrated client debugging via Debug Tool

� Debugging via z/OS dbx

� Access to z/OS and z/OS UNIX file system resources

1.28 Unicode

Unicode is a universal encoding scheme allowing applications to store data regardless of
code pages and character sets such as ASCII and EBCDIC. The Unicode services element of

Note: The z/OS dbx support for WebSphere Developer Debugger for System z V7.0 and
WebSphere Developer for System z V7.0 is planned to be supported on z/OS V1R8 in the
second quarter of 2007.
Chapter 1. z/OS Version 1 Release 9 21

z/OS provides general purpose programming interfaces (APIs) which applications such as
DB2® can use to convert data to and from Unicode. The value of storing data in Unicode
derives from the ability to store data in any language using the same data server. It enables
database consolidation and better interoperability with other platforms (Microsoft® and
Java™ applications).

In z/OSV1 R9, Unicode adds function to change iconv() to call Unicode Services. Today, we
have two mechanisms for character code conversion: Language Environment's iconv() and
Unicode conversion services. iconv() does not use zArchitecture instructions for conversion.
Rather than enhance iconv() to use the new instructions, a change is made to use Unicode
conversion services. This will make use of the hardware instructions, which will eliminate the
need for Language Environment to ship conversion tables, and allow for future investments to
be made in a common code base.

TBCS or triple-byte character set is becoming very important to support languages such as
Chinese. z/OS currently does not support TBCS. TBCS support will help emerging markets to
be competitive. Unicode service upgrade allows customers to use these services at the latest
possible levels. New locale support enables customers to use the newest euro locales. The
z/OS V1R9 changes are as follows:

� Along with single, double, quadruple and mixed byte character set, z/OS now supports
triple byte character set. This support needs to be added for tables such as CCSID - 964
(EBCDIC Traditional Chinese EUC). “

� TBCS support will allow CCSID and others to be added in the “to/from CCSIDs” when
using Unicode Character Conversion Services.
22 z/OS Version 1 Release 9 Implementation

Chapter 2. Installation considerations

z/OS consists of base elements and optional features. The base elements (or simply
elements) deliver essential operating system functions. When you order z/OS, you receive all
of the base elements. The optional features (or simply features) are orderable with z/OS and
provide additional operating system functions.

The program number for z/OS Version 1 Release 9 is 5694-A01. When ordering this program
number, remember to order all the optional features that you were licensed for in previous
releases of z/OS.

In many countries you may order z/OS electronically through ShopzSeries. ShopzSeries
provides customers a self-service capability for planning and ordering S/390® software (and
service) upgrades over the Web. It is the strategic worldwide self-service ordering system for
zSeries software. You can order products through ShopzSeries and have them delivered
electronically in some countries.

In most countries, ShopzSeries provides electronic ordering and electronic delivery support
for z/OS Service. You can access it directly off the ShopzSeries Web site at:

http://www.ibm.com/software/shopzseries

When you order the z/OS product on ServerPac from ShopzSeries, you can choose to have it
electronically delivered to you. This electronic ability was made generally available on
January 10, 2005.

2

© Copyright IBM Corp. 2007. All rights reserved. 23

http://www.ibm.com/software/shopzseries

2.1 Ordering z/OS V1R9

Ensure you order the optional priced and unpriced features that you were using in previous
releases of z/OS. It is possible to order z/OS V1R9 electronically via ShopzSeries at GA. You
can choose to have an electronic ServerPac.

2.1.1 Hardware requirements

z/OS V1R9 is planned to run on the following IBM System z servers:

� z9 BC
� z9 EC
� z990
� z890
� z900
� z800

2.1.2 Export control features

Remember your export-controlled features, if you desire. Here is the list:

� z/OS Security Level 3

� Communications Server Security Level 3

2.2 New base elements

z/OS consists of base elements and optional features. The base elements (or simply
elements) deliver essential operating system functions. The base elements that are new with
z/OS V1R9 are listed in Table 2-1. When you order z/OS, you receive all of the base
elements.

Table 2-1 New base elements with z/OS V1R9

Note: There is no longer any ordering considerations for Tivoli NetView® and System
Automation since msys for Operations (a former base element) has been removed in z/OS
V1R8.

New base elements Description

Alternate Library for REXX New nonexclusive base element
(FMID HWJ9143, JWJ9144 Japanese)

Metal C Runtime Library New base element
(FMID HSD7740)

BCP - new component for future
functionality

Component of BCP base element
(FMID HPV7740)
24 z/OS Version 1 Release 9 Implementation

2.2.1 Alternate Library for REXX

Alternate Library for REXX enables users to run compiled REXX programs. This base
element is new in z/OS V1R9. It is nonexclusive to z/OS because the following programs
provide equivalent function:

� The Alternate Library portion of the priced product IBM Library for REXX on zSeries V1R4
(5695-014). The Alternate Library consists of FMIDs HWJ9143 (ENU) and JWJ9144
(JPN). These are the same FMIDs that are now in the z/OS base element.

� The no-fee Web download Alternate Library for REXX on z/OS.

The fact that the Alternate Library function is now built into z/OS should make the function
easier to use.

2.2.2 Metal C Runtime Library

The Metal C Runtime Library is a set of LPA-resident C functions that can be called from a C
program created using the z/OS XL C compiler Metal option. This base element is new in
z/OS V1R9.

As of z/OS V1R9, the BCP also includes Capacity Provisioning (FMID HPV7740) and System
REXX for z/OS Base.

2.2.3 Elements changed in z/OS V1R9

The function in FMID HBB77SR, System REXX for z/OS base, is integrated in the BCP in
z/OS V1R9. It was a Web deliverable on z/OS V1R8 (System REXX Support for z/OS V1R8
and z/OS.e V1R8).

Capacity Provisioning is new in base element BCP with FMID HPV7740.

Java CIM and SLP client is new in base element CIM with FMID JPG290B. Common
Information Model (CIM) is a standard data model for describing and accessing systems
management data in heterogeneous environments. It allows system administrators to write
applications that measure system resources in a network with different operating systems
and hardware. To enable z/OS for cross-platform management, a subset of resources and
metrics of a z/OS system are mapped into the CIM standard data model. CIM was new in
z/OS V1R7.

In z/OS V1R9, the new FMID JPG290B was added to CIM. JPG290B contains a Java
programming interface for CIM client applications. Transport layer security (TLS) encryption
is performed for CIM by base element Communications Server. CIM does not implement any
of its own encryption algorithms.

Deleted FMIDs
The FMID for the DFSMSdfp English panels, JDZ118E, has been eliminated and the panels
have been merged into the base FMID, which is HDZ1190.

2.3 Functions withdrawn from z/OS V1R9

The following functions have been withdrawn from z/OS in z/OS V1R9.
Chapter 2. Installation considerations 25

APPC Application Suite
z/OS V1R9 Communications Server discontinues support of the APPC Application Suite. For
most of the functions provided by the APPC Application Suite, more full-featured alternative
applications exist in modern integrated SNA/IP networks.

z/OS.e V1R8
The following information is an important consideration when using z/OS.e.

2.4 Functions withdrawn in a future release

IBM plans that z/OS V1R9 will be last release to support English and Japanese ISPF panels
in DFSORT™. There will be no replacement for this limited interactive facility. Support for
JCL to sort, copy, or merge will continue to be available.

z/OS V1R9 is planned to be the last release of z/OS Communications Server that will support
the configuration of Traffic Regulation (TR) policy as part of the Quality of Service discipline.
The TR configuration function remains supported, but IBM recommends that you implement it
as part of the Intrusion Detection Services (IDS) policy configuration made available in z/OS
V1R8.

Note that this change is only for the TR policy configuration. The TR policy functions
themselves remain unaffected. For more information, refer to the following publications:

� In z/OS Communications Server IP Configuration Guide, see Chapter 16 “Intrusion
Detection Services (IDS)”

� In z/OS Communication Server IP Configuration Reference, see Chapter 23 “Intrusion
Detection Services (IDS) policy”

2.4.1 Changes to driving system requirements

The minimum driving system level for installing z/OS V1R9 is z/OS V1R7 or z/OS.e V1R7.
(For installing z/OS V1R8, it was z/OS V1R5 or z/OS.e V1R5.)

If a Customized Offerings Driver (5655-M12) is being used to install z/OS V1R9, the level
required is V2.3.1. V2.2 could be used to install z/OS V1R8.

If you are migrating to z/OS V1R8 from z/OS V1R7, or if you will have a different product set
than your previous release, you will see increased need for DASD. How much more depends
on what levels of products you are running. Keep in mind the DASD required for your z/OS
system includes (per the z/OS Policy). That is, it includes all elements, all features that
support dynamic enablement, regardless of your order, and all unpriced features that you
ordered. This storage is in addition to the storage required by other products you might have
installed. All sizes include 15% freespace to accommodate the installation of maintenance.

z/OS.e V1R8 (5655-G52) is planned to be the last release of z/OS.e. Marketing, ordering,
support, and service for z/OS (5694-A01) remain unaffected.

z/OS.e V1R8 remains orderable until its planned withdrawal from marketing in October
2007. In accordance with the z/OS (5694-A01) and z/OS.e service policy (to provide
service support for each release for three years following its general availability date), IBM
intends to withdraw service for z/OS.e V1R8 in September 2009.
26 z/OS Version 1 Release 9 Implementation

DASD space requirements
For z/OS V1R9, the total storage required for all the target data sets is 6400 cylinders on a
3390 device. The total storage required for all the distribution data sets listed in the space
table is 8900 cylinders on a 3390 device.

The total file system storage is as follows:

� 2,900 cylinders on a 3390 device for the ROOT file system

� 50 cylinders for the /etc file system

� 50 cylinders for the VARWBEM file system (new for CIM element)

The total storage required for the SMP/E SMPLTS is 0 3390 cylinders (there are no load
modules in z/OS V1R9 that are both cross-zone and use CALLLIBs, thus the SMPLTS is not
needed for permanent storage).

If you are migrating to z/OS V1R9 from a very old operating system release, or if you will have
a different product set than your previous release, you will see increased need for DASD
space, as shown in Table 2-2; note that sizes are in 3390 cylinders.

Table 2-2 DASD space requirements for installing z/OS V1R9

2.5 Changed base elements and optional features

There are a number of base elements and optional features that have changed in z/OS V1R9.
In z/OS V1R9, the z/OS elements and features are re-structured as follows:

� Changed base elements:
– CIM
– Communications Server
– Cryptographic Services
– DFSMSdfp
– Distributed File Service
– HCD
– Integrated Security Services
– ISPF
– JES2
– Language Environment
– Library Server
– NFS
– Run-Time Library Extensions
– TSO/E
– z/OS UNIX

� Changed optional features:
– C/C++ without Debug Tool
– Communications Server Security Level 3
– DFSMSdss™
– DFSMShsm
– DFSMSrmm

z/OS V1R4 z/OS V1R5 z/OS V1R6 z/OS V1 R7 z/OS V1R8 z/OS V1R9

Target 4840 5244 5277 5225 5625 6400

DLIB 6446 6930 7338 7286 7325 8900

HFS 2250 2200 2800 2800 2800 2900
Chapter 2. Installation considerations 27

– DFSMStvs
– HCM
– JES3
– RMF
– SDSF
– Security Server
– z/OS Security Level 3

2.6 Coexistence, fallback, and migration

Prior to z/OS V1R6, four consecutive releases were supported for coexistence, fallback, and
migration. Starting with z/OS V1R6, the coexistence, fallback, and migration policy was
aligned with the service policy. Because the service policy is a 3-year policy and because
z/OS V1R6 was the start of the annual release cycle, three releases will be supported for
coexistence, fallback, and migration over a period of three years.

The current policy represents an increase of one year over the two-year period provided by
the previous coexistence, fallback, and migration policy of four releases under a six-month
release cycle. The intention of the current policy is to simplify and provide greater
predictability to aid in release migrations. Therefore, with z/OS V1R9 the following conditions
exist; see Figure 2-1.

� Coexistence of a V1R9 system with a V1R9, V1R8, or V1R7 system is supported.

� Fallback from a V1R9 system to a V1R8 or V1R7 system is supported.

� Migration to a V1R9 system from a V1R8 or V1R7 system is supported.

Figure 2-1 Coexistence releases with z/OS V1R9

z/OS releases and the hardware
Figure 2-2 on page 29 shows all models of the hardware over the current and previous years,
and the z/OS releases that used to be supported by the hardware. It also shows which z/OS
releases since z/OS Release 4 up to z/OS Release 11 support the System z hardware.

The hardware here also includes the IBM Total Storage products DS8000™, DS6000™, and
TS1120. The IBM System Storage™ TS1120 Tape Drive (TS1120 tape drive) offers a
solution to address applications that need high capacity, fast access to data or long-term data
retention. It is supported in IBM tape libraries, IBM frames that support standalone
installation, and in an IBM 3592 Tape Frame Model C20 (3592 C20 frame) attached to a
Sun™ StorageTek™ 9310 library.

z/OS
V1R5

 z/OS
 V1R9

z/OS
V1R8

z/OS
V1R7

z/OS
V1R6

z/OS
V1R4

Coexistence Releases
 with z/OS V1R8

Coexistence Releases
 With z/OS V1R9
28 z/OS Version 1 Release 9 Implementation

The tape drive uses IBM 3592 cartridges, which are available in limited capacity (100 GB) for
fast access to data, and standard capacity (500 GB) or extended capacity (700 GB), which
help to reduce resources to lower total cost. All three cartridges are available in rewritable or
Write Once Read Many (WORM) format.

Figure 2-2 z/OS support summary

2.7 54-way support with the z9 EC

z/OS V1R9 has 54-way support on IBM System z9 EC servers. The 54-way support is the
sum of CPs, zIIPs, and zAAPs in one z/OS LPAR. The IBM System z9 54-way CPU will be
able to process 1 billion transactions per day, which is more than double the performance of
its predecessor, the z990. Moreover, reliability improvements in the IBM System z9 design
means less customer planned downtime.

z/OS V1R9 is designed to help provide constraint relief, improve overall scalability and
performance, and enhance measurement capabilities. It offers new designs to help provide
up to 54-way single image support, which includes:

� Improved SMF data collection and management

� Improved performance for Coupling Facility (CF) duplexing

� Global resource serialization (GRS)

� Couple data set (CDS) I/O

� Applications using Language Environment heap pools

2.8 New address spaces

There are three new address spaces with z/OS V1R9. There is nothing for you to do to start,
manage, or stop these new address spaces. However, if you have staff who want to be kept
aware of changes to the system, notify them that these address spaces exist:

� Common event adapter (CEA)

The common event adapter (CEA) provides the ability to deliver z/OS events to C
language clients, such as the z/OS CIM server. The CEA address space is started
automatically during z/OS initialization and does not terminate.

End of
Service

Coexists
with

z/OS...

Planne
d Ship
Date

3/07 1.7

3/07 1.8

9/07 1.8

9/08* 1.9

9/09* 1.10*

9/10* 1.11* 9/07

9/11* 1.12* 9/08*

9/12* 1.13* 9/09*

R10* x x x x x x

z/OS
G5/G6

Multiprise®
3000

z800 z890 z900 z990 z9 EC z9 BC

x
x

R4
R5
R6

R7

R8

x
x
x

x

x

x1

x
x

x

x

x
x
x

x

x

x1

x
x

x

x

x1

x
x

x

x

x1

x
x

x

x

R9 x x x x x x

R11* x x x x
x

DS8000
DS6000

x
x
x

x

x

x

xx x
x

TS1120

x1

x
x

x

x

x

x

Chapter 2. Installation considerations 29

� ARCnXXXX

One of these DFSMSdss address spaces is started automatically by DFSMShsm
whenever a dump, restore, migration, backup, recover, or CDS backup function is
invoked. (A DFSMSdss address space is not started for recall tasks.) These DFSMSdss
address spaces can reduce the storage used in the DFSMShsm address space, thus
enabling more tasks to be started within the DFSMShsm address space.

When DFSMShsm invokes DFSMSdss through the DFSMSdss cross-memory application
interface, DFSMShsm requests that DFSMSdss use a unique address space identifier for
each unique DFSMShsm function and host ID. The address space identifier for each
function is in the form ARCnXXXX, where n is a unique DFSMShsm host ID and XXXX is
an abbreviation of a DFSMShsm function. The abbreviations and corresponding functions
are:

– DUMP for dump
– REST for restore
– MIGR for migration
– BACK for backup
– RCVR for recover
– CDSB for CDS backup

For instance, migration for DFSMShsm host ID 1 would result in a generated address
space identifier of ARC1MIGR. The address space terminates automatically when
DFSMShsm terminates.

� DSSFRDSR

The purpose of this DFSMSdss address space is to recover up to 64 data sets
concurrently from one or more copy pool backup versions. The address space is started
automatically by DFSMShsm whenever a data set is recovered from DASD using the
FRRECOV DSNAME command. The address space terminates automatically when
DFSMShsm terminates.

2.9 System z New Application License Charges (zNALC)

zNALC replaces New Application License Charges (NALC) and z/OS.e, and is to be the IBM
strategic z/OS offering for new workloads. zNALC offers a reduced price for z/OS operating
system on LPARs where you are running a qualified “new workload” application.

zNALC became available in March 2007. z/OS.e runs only on the z800, z890, z9 BC servers
and it now not supported with z/OS V1R9.

zNALC is available only on LPARs where a qualified application is present, among other
requirements.

2.9.1 zNALC support

zNALC offers a reduced price for the z/OS operating system on LPARs where you are
running a qualified new workload application (Qualified Application).

The zNALC offering extends the IBM commitment to sub-capacity pricing, allowing
installations with a Qualified Application to obtain a reduced price for z/OS where charges are
based on the size of the LPAR(s) executing a Qualified Application, assuming all applicable
terms and conditions are met.
30 z/OS Version 1 Release 9 Implementation

Qualified Applications
The zNALC offering extends the IBM commitment to sub-capacity pricing, allowing customers
with a Qualified Application to obtain a reduced price for z/OS where charges are based on
the size of the LPAR(s) executing a Qualified Application, assuming all applicable terms and
conditions are met.

z/OS with zNALC provides many benefits over previous new workload pricing offers. It
provides a strategic pricing model available on the full range of System z servers for
simplified application planning and deployment. zNALC provides similar pricing benefits to
both z/OS.e pricing and z/OS with NALC pricing. zNALC allows for aggregation across a
qualified Parallel Sysplex, which can provide a lower cost for incremental growth across new
workloads that span a Parallel Sysplex. zNALC is the IBM strategy, replacing the z/OS.e
operating system and the NALC pricing metric.

zNALC is available only on LPARs where a Qualified Application is present, among other
requirements. In general, Qualified Applications are those that IBM considers 'new workload,'
such as Java language business applications running under WebSphere Application Server,
Domino®, SAP, PeopleSoft, or Siebel®.

To implement zNALC, one of the following ways can be selected:

� Full-Capacity zNALC - charges are based on the full zSeries server capacity where each
zNALC product executes

� Sub-Capacity zNALC - charges are based on the utilization of the LPAR or LPARs where
a zNALC product executes

Hardware requirements
zNALC is available only on IBM z/Architecture® servers (z900, z990, z9 EC, z800, z890, z9
BC, or later) running the z/OS (5694-A01) operating system. z/OS middleware running on the
IBM z/Architecture server which qualifies for Workload License Charges (WLC) or Entry
Workload License Charges (EWLC) must be priced WLC/EWLC in order for z/OS to be
eligible for zNALC charges.

z/OS is eligible for zNALC pricing when running in an LPAR where the Qualified Application is
executing. The only other products that may execute in this LPAR are those products that
support the Qualified Application. The LPAR must be used exclusively for the Qualified
Application and for programs that support the Qualified Application and for no other purpose.

Any logical partition (LPAR) that is designated as a zNALC LPAR must identify itself in one of
two ways:

� By using the naming convention ZNALxxxx, where xxxx may be any letters or numbers.

� By using the LICENSE=ZNALC IPL parameter. This IPL parameter is available on z/OS
Version 1 Release 6 or later systems which have APAR OA20314 applied.

Criteria to determine which applications are Qualified Applications
An application is a computer program that is used to accomplish specific business tasks
(such as Customer Relationship Management (CRM), Enterprise Resource Planning (ERP),
Supply Chain Management (SCM), business information warehouse, accounting, and
inventory control programs), including the database server used for that task. In this
definition, an application is not a standalone database management system or systems

Note: zNALC is not available on any server where OS/390 or z/OS.e is licensed or
running, or on any server where the pricing metric for z/OS is NALC. Sub-Capacity zNALC
is not available on any LPARs where z/OS is running as a guest of z/VM®.
Chapter 2. Installation considerations 31

management tool (that is, related to the management or operation of the computer itself or of
other computer programs).

Examples of software that is not considered applications are operating system software,
database products (except those qualifying as described in section b), transaction managers,
tools, utilities, and games.

An application may be considered a Qualified Application if:

a) It is currently generally commercially available, supported by its manufacturer, and
enabled to run under z/OS, and that same Application (with substantially the same
functionality) is simultaneously generally commercially available, supported by its
manufacturer on, and enabled to run under a UNIX operating system (for example, AIX,
HP-UX, Linux, or Solaris™), or Microsoft Windows (collectively, “Distributed Platforms”).

b) It is a database server running under z/OS and it is operating solely in support of a
software program that is currently generally commercially available, supported by its
manufacturer, and running in a client/server environment where the business logic (for
example, application server) is running on a Distributed Platform.

c) It is a Java language business application running under WebSphere Application
Server (or equivalent). These do not include systems management tools.

IBM will determine whether a particular program is a Qualified Application.

To determine whether other applications can qualify, refer to “How to qualify applications”.

Examples of Qualified Applications
You may already have an application that has been previously approved. Following are
examples of approved Qualified Applications:

� DB2 for z/OS in support of SAP
� DB2 for z/OS in support of PeopleSoft
� DB2 for z/OS in support of Siebel
� Lotus® Domino

This is not a complete list of Qualified Applications, and more will be added over time.

How to qualify applications
If your application is not on the list shown in “Examples of Qualified Applications” (for
example, a Java language business application running under WebSphere Application
Server), then you will need to provide some information in order to get it qualified.

In an e-mail or on company letterhead, describe your application (including the name of the
application or workload and a brief explanation of its business purpose) and submit it to IBM
for review via your IBM sales representative or IBM Business Partner.

Note: If you already have one of these applications, then simply contact your IBM
representative to see what your System z New Application License Charge (zNALC)
charges for z/OS will be for that application LPAR.
32 z/OS Version 1 Release 9 Implementation

zNALC and traditional workloads on the same processor
When z/OS is licensed for both zNALC and non-zNALC (traditional) LPARs on the same
machine, IBM will not permit the total billable z/OS MSUs to exceed the reported z/OS peak
(the highest simultaneous rolling 4-hour average of all z/OS LPARs). Here are the mechanics
for a typical situation:

� Traditional (WLC/EWLC) MSUs and zNALC MSUs are billed as reported on the SCRT
Report.

� Traditional MSUs + zNALC MSUs exceed the z/OS peak MSUs:

– Traditional MSUs are billed as reported on the SCRT Report and zNALC MSUs will be
reduced such that the sum of the Traditional MSUs plus the zNALC MSUs equals the
z/OS peak MSUs.

– If zNALC MSUs are reduced to the announced 3 MSU minimum, but the sum of the
Traditional MSUs plus the zNALC MSUs still exceeds the z/OS peak MSUs, then the
Traditional MSUs will be reduced such that the sum of the Traditional MSUs plus the
3 MSUs for zNALC equals the z/OS peak MSUs.

Ordering zNALC
IBM has established a certification process whereby customers must complete a form when
they establish zNALC charges, and the form must be renewed each year to maintain zNALC
charges. This form requires customers to certify that they meet all the requirements to be
eligible for z/OS with zNALC charges. IBM may cancel zNALC charging if a customer fails to
submit an annual certification. IBM has the right to audit servers with z/OS with zNALC
charges to ensure compliance with all zNALC terms and conditions.

2.9.2 NALC users

Prior to the announcement of zNALC, there was another price metric called New Application
License Charges (NALC). In the zNALC announcement, IBM released a Statement of
General Direction stating that IBM intends to replace both the z/OS.e operating system and
the NALC pricing metric with the zNALC pricing metric, which is available on both IBM
z/Architecture high-end and midrange systems.

NALC remains available until withdrawn to customers who dedicate an entire mainframe
server to a qualifying e-business workload, such as WebSphere or a qualifying enterprise
application workload such as SAP or PeopleSoft. For a product with the NALC pricing metric,
there is a single low price per MSU per product and software charges are based upon the
capacity of the machine where the product executes. NALC is available to PSLC and WLC
customers. NALC provides lower price points for certain features of z/OS, OS/390 and
Domino Version 5.

NALC is available on a dedicated e-business mainframe that participates in a Parallel
Sysplex environment. Although NALC-priced products are not eligible for aggregation, other
non-NALC middleware on the NALC machine may aggregate with middleware across the

Note: If the business application is commercially available from a vendor, you need to
supply the vendor name, application Web site, and a short description of the application,
including specifically whether it is a commercially available application that is supported on
z/OS, UNIX, Microsoft Windows, and/or Linux, and is currently running on z/OS—or
whether it is a commercially available application running on z/OS, UNIX, Windows, and/or
Linux that accesses data on z/OS (for example, DB2 for z/OS over DRDA® via TCP/IP
connection).
Chapter 2. Installation considerations 33

Parallel Sysplex environment, if all terms are met. In the case that a machine is dedicated to
e-business, and also Sub-Capacity Workload License Charges, then the billable z/OS MSUs
and/or Domino NALC MSUs will be based on the values that appear in the monthly
Sub-Capacity Reports. This is the only time when IBM terms permit NALC MSUs to be less
than full machine-capacity.

For a list of NALC qualifying applications, visit the NALC section of the System z9 and
zSeries Software Contracts Web site.

2.9.3 zNALC and SCRT and APAR OA20314

In July 2007, IBM made Sub-Capacity Reporting Tool (SCRT) Version 14 Release 1.0
available for download. In order to take advantage of the new SCRT V14.1.0 support for
System z New Application License Charges (zNALC) in an LPAR which does not use the
ZNALxxxx naming convention, customers must also have the BCP APAR OA20314 applied
to their z/OS system prior to collecting SMF data.

IEASYSxx parmlib member
The IEASYSxx parmlib member LICENSE parameter is now enhanced to allow
LICENSE=ZNALC to be specified as the licensed environment. With LICENSE=ZNALC
specified, there is no longer a requirement for LPARs to be named in the form ZNALxxxx in
order to qualify for zNALC subcapacity pricing. The use of LICENSE=ZNALC is not a
requirement, however, and customers can still opt to use the LPAR name in the form
ZNALCxxx to also take advantage of zNALC subcapacity pricing.

SMF record type 89
Along with the enhanced LICENSE parameter, the SMF type 89 record is updated by this
APAR, with a new bit indicator for recording when the system is IPLed with zNALC
subcapacity pricing requested. This support also adds a new field to the SMF type 89 record,
to record the LPAR name when z/OS is run as a VM guest.

D IPLINFO command
The D IPLINFO command was also enhanced to show LICENSE=zNALC when a system was
IPLed with zNALC pricing requested, whether via ZNALxxxx LPAR name or by the use of the
LICENSE=ZNALC system parameter.

This APAR allows customers to use a LICENSE=ZNALC IPL parameter in place of the
zNALC LPAR naming convention.

Note: With the introduction of zNALC pricing, it is suggested that customers interested in
running new workloads on the System z platform no longer rely on NALC or z/OS.e but
rather upon zNALC to obtain reduced price points for environments with new workload
applications.

Note: SCRT V14.1.0 is the first version of the program to support zNALC customers who
wish to exploit the new LICENSE=ZNALC parameter made possible through z/OS APAR
OA20314. The other changes coming with V14.1.0 are listed on the Web at:

http://ibm.com/zseries/swprice/scrt/scrt_new.html
34 z/OS Version 1 Release 9 Implementation

http://ibm.com/zseries/swprice/scrt/scrt_new.html

Chapter 3. Coupling Facility enhancements

With z/OS v1R9, there is improved duplexing performance using the new CFLEVEL=15 to
CFLEVEL=15 duplexing. With this new support, you can improve duplexing performance
significantly by duplexing between two Coupling Facilities at CFLEVEL=15 or higher on an
IBM System z9 109 (z9-109) server. However, the system will only optimize performance
between two CFLEVEL=15 Coupling Facilities when there are no path busy or other delay
conditions affecting requests to the Coupling Facility.

New support is added to put a Coupling Facility into maintenance mode. In preparation for
removing a Coupling Facility from the sysplex, you can place it in maintenance mode. This
step prevents systems from allocating any structures in that Coupling Facility while you
prepare to take it down for upgrade procedures. Operator commands can move structures
from a Coupling Facility that is to be placed into maintenance mode to another Coupling
Facility.

In this chapter we describe the following enhancements to the Coupling Facility in z/OS
V1R9:

� CF duplexing performance, accounting and measurement enhancements

� CF maintenance mode

� CFCC level 15

3

© Copyright IBM Corp. 2007. All rights reserved. 35

3.1 CF duplexing performance enhancements

System-managed duplexing rebuild allows the system to allocate another structure in a
different Coupling Facility for the purpose of duplexing the data in the structure. It was
introduced in z/OS V1R2 and provides a recovery mechanism in a Parallel Sysplex supplying
availability to the environment.

The new control facility control code (CFCC) provides support to streamline the CF-to-CF
synchronization protocols currently involved in CF duplexing. This enhancement reduces the
overhead of CF duplexing, and may help make duplexing a more viable alternative for use in
providing high availability for CF Structure data.

The new CFCC also provides additional CF measurement information to provide CF
processor and CF structure execution time for enhanced accounting of CF and CF structure
utilization.

This CFCC support is associated with a new CFLEVEL 15. This enhancement reduced the
overhead of CF duplexing, improved performance (service time) and throughput for duplexed
requests, and high availability for CF structure data. With this new support, duplexing
performance is improved significantly by duplexing between two Coupling Facilities at
CFLEVEL=15 or higher on IBM System z9 processors.

The CFCC support includes enhancements in the following support:

� There are CF duplexing performance enhancements that provide an internal protocol
improvement for performance benefit. There are no new exploiter changes associated
with this support.

� There are XES Coupling Facility measurement enhancements that can be seen in RMF
reports. The additional CF measurement extensions are exposed through the IXLMG
interface on the IXLYAMDA accounting and measurement data area. New information is
added to the IXLYAMDA data area mapping for Coupling Facility, and for Coupling Facility
structure information, allowing RMF to display the following:

– Dynamic CF dispatch indication to show whether or not dynamic CF dispatching is
active for the CF

– Counts of shared and dedicated CF processors to indicate the number of shared or
dedicated processors in the Coupling Facility

– CF processor weights indicate the weight assigned to the processor

– CF structure execution time specifies the total number of microseconds that any
processor is in command execution or in execution of a background process for the
particular list/lock structure, and specifies the total number of microseconds that any
processor is in command execution or in execution of a background process for the
particular cache structure

Information: System-managed duplexing rebuild is a process managed by the system that
allows a structure to be maintained as a duplexed pair. The process is controlled by CFRM
policy definition as well as by the subsystem or exploiter owning the structure. The process
can be initiated by operator command (SETXCF) or programming interface (IXLREBLD), or it
can be MVS-initiated.

Note: The support applies to system-managed duplexing.
36 z/OS Version 1 Release 9 Implementation

3.1.1 CFLEVEL 15

The control facility control code (CFCC) level 15 contains CFCC multitasking enhancements
to provide an increase in the number of supported CF tasks, from 48 to 112. If you are
migrating to a new CFCC level, you have to make appropriate Coupling Facility structure size
updates in the z/OS Coupling Facility resource management (CFRM) policy. These new
multitasking enhancements provide improved CF performance and throughput in Parallel
Sysplex configurations, as follows:

� The enhancements allow many coupling links and subchannels, and therefore allow many
concurrent CF operations to execute in the CF.

� They use system-managed CF structure duplexing as a high availability mechanism for
CF structure data.

� They operate at extended distances between the z/OS systems and the Coupling Facility,
such as in GDPS® configurations.

Migration to CFLEVEL 15
When migrating to CFLEVEL 15 from earlier CFLEVELs, the multitasking enhancements will
create significant growth in the size of many CF structures. If the structures are not
appropriately resized to allow for this growth, then problems or outages may result from an
unexpected reduction in the number of usable structure objects in a CF structure.

Before you install CFLEVEL 15, you must plan for this structure size growth. It is possible that
structures previously usable with a given structure size may not even be able to be allocated
in a CFLEVEL 15 with the same structure size.

When migrating to a new CFCC level, run the Coupling Facility Structure Sizer (CFSIZER)
tool. This tool sizes structures, taking into account the amount of space needed for the
current CFCC levels. The tool sizes for the most currently available level, and you may find
that the results are oversized if you use an earlier CFCC level. You can find the CFSIZER tool
at:

http://www.ibm.com/servers/eserver/zseries/cfsizer/

Then, you can make the corresponding structure size updates to the CFRM policies and
activate the updated CFRM policy to be used in the sysplex.

Coexistence: The CF duplexing performance enhancements will only apply if a z/OS
V1R9 system (or downlevel system with the support) allocates the structure. A structure
allocated to take advantage of the CF duplexing enhancements can be used by, and can
coexist with, z/OS systems without the support.

The support is included in z/OS V1R9 and is available via a PTF on lower level releases
(V1R6 through V1R8) via APAR OA17055.

Note: To support migration from one Coupling Facility level to the next, you can run
different levels of the Coupling Facility concurrently as long as the Coupling Facility LPs
are running on different processors.

CF LPs running on the same processor share the same Coupling Facility control code EC
level. A single processor cannot support multiple Coupling Facility levels.
Chapter 3. Coupling Facility enhancements 37

http://www.ibm.com/servers/eserver/zseries/cfsizer/

Structure size growth
When you are migrating CF levels, then you may have to increase lock, list, and cache
structure sizes in order to support the new function. This adjustment can impact the system
when it allocates structures or copies structures from one Coupling Facility to another at
different CF levels. The Coupling Facility structure sizer tool is designed to size structures for
you, and takes into account the amount of space needed for the current CFCC levels.

The amount of per-structure size growth for a variety of CF structure types, when migrating
from CFLEVEL 14 to 15, is a real consideration. Growth may be somewhat larger if migrating
to CFLEVEL 15 from a CFLEVEL prior to 14. The expected amount of CF structure growth is
a fixed and absolute amount per structure, not a percentage increase based on the current
allocated structure size. Therefore, the current size of the structure is not a factor in
determining the amount of the increase. Instead, the size increase is a function of the
maximum data entry size supported by the particular CF structure exploiters.

Hardware requirements
The hardware required to support the CFCC level 15 are the z9 EC or z9 BC with support
element and HMC version 2.9.2 plus MCLs.

Potential problems with CFLEVEL 15 installed
The enhancements for CF duplexing available with CFLEVEL 15 are designed to improve
performance and this performance improvement can be affected and not realized when the
following conditions occur:

� Path busy conditions

When a sysplex experiences a significant level of path busy conditions, you will rarely be
able to exploit the performance enhancements possible in a CFLEVEL=15 to
CFLEVEL=15 duplexing configuration.

� Heavily used Coupling Facilities

When installed at CFLEVEL=15 and the Coupling Facilities are used heavily or overused,
to the extent that it causes some delay of requests to the Coupling Facility, the system will
not be able to exploit the performance improvement.

Attention: The amount of storage in CF images may need to be increased to
accommodate this growth. Also evaluate the need to provide an adequate amount of
unused CF storage space for recovery in the event of the loss of a CF image.

Note: In this case, you should consider upgrading your configuration to increase
Coupling Facility link capacity. For example, you might use dedicated Coupling Facility
links (rather than shared) or provide additional shared Coupling Facility links to resolve
the path busy conditions.

Note: In this case, you should consider upgrading your configuration to include
additional Coupling Facility capacity. For example, you might add more processors, use
dedicated processors, or turn off dynamic dispatching to add more Coupling Facility
capacity.
38 z/OS Version 1 Release 9 Implementation

3.2 CF measurement enhancements

The enhancement of streamlining the processing in the CF duplexing protocols is expected to
yield a measurable performance improvement to the duplexed CF service time—and this is
an elapsed time benefit. The benefit is based on the configuration and the specific structure,
depending on how many of the requests are duplexed. Savings may be quite significant at
extended distances.

Additional Coupling Facility measurement extensions have been added to provide CF
processor and CF structure execution time for enhanced accounting of CF and CF structure
utilization. These enhancements allow for:

� Better accounting of the processor utilization of the CFs and CF structures

� Better tuning and capacity planning for CF processor resources as a result of the more
granular information

� Improved CF tuning and capacity planning on a structure basis

D CF command
The D CF command output is enhanced to report on the following new information:

� The number of shared and dedicated processors in the Coupling Facility

� The dynamic CF dispatching setting for the Coupling Facility

This information can be displayed from any z/OS system with the software support installed,
for every Coupling Facility that is at CFLEVEL 15 that contains this support, and is connected
and managed. You can view this information in the DISPLAY CF command output, as shown in
Figure 3-1.

Figure 3-1 Display CF command output

-D CF
 IXL150I 11.43.35 DISPLAY CF 762
 COUPLING FACILITY 002094.IBM.02.00000002991E
 PARTITION: 0F CPCID: 00
 CONTROL UNIT ID: FFF5
 NAMED CF1
 COUPLING FACILITY SPACE UTILIZATION
 ALLOCATED SPACE DUMP SPACE UTILIZATION
 STRUCTURES: 184832 K STRUCTURE DUMP TABLES: 0 K
 DUMP SPACE: 2048 K TABLE COUNT: 0
 FREE SPACE: 770560 K FREE DUMP SPACE: 2048 K
 TOTAL SPACE: 957440 K TOTAL DUMP SPACE: 2048 K
 MAX REQUESTED DUMP SPACE: 0 K
 VOLATILE: YES STORAGE INCREMENT SIZE: 512 K
 CFLEVEL: 15
 CFCC RELEASE 15.00, SERVICE LEVEL 00.18
 BUILT ON 03/26/2007 AT 12:25:00
 COUPLING FACILITY HAS 1 SHARED AND 0 DEDICATED PROCESSORS
 DYNAMIC CF DISPATCHING: ON

Note: Dynamic CF dispatching does not apply to dedicated processors.
Chapter 3. Coupling Facility enhancements 39

The Coupling Facility processor information included is:

� Indication of whether the processor is shared or dedicated

� Indication of the weight assigned to the processor

The Coupling Facility structure information included is:

� The percentage of the total Coupling Facility CPU (execution time) that was consumed by
each structure in the CF during a given interval of time

3.2.1 RMF enhancements

By exploiting CF level 15 (CFLEVEL 15), RMF provides additional data in the Monitor III
Coupling Facility reports and the Postprocessor Coupling Facility Activity report.

For example, the reports display CF utilization per structure and whether dynamic CF
dispatching is turned on, as shown in Figure 3-1 on page 39.

With the extended D CF command architecture that is introduced by a CFLEVEL 15, new
support for granular CF processor utilization accounting is implemented in addition to other
minor accounting and measurement extensions.

The processor busy time is provided not only for the CF as a whole, but on a per-structure
basis. In addition to this the CF dynamic dispatching setting, the number of shared and
dedicated processors, and the subchannel busy value is integrated in the existing the RMF
CF reports to improve the CF diagnosis possibilities.

RMF will report the new CF metrics only if the extended CF command architecture is
available. On systems running pre-z/OS V1R9, XCF APAR OA17055 has to be installed.

In addition, RMF provides new overview conditions for the post processor based on SMF
record 74-4.

RMF post processor Coupling Facility Activity report
The RMF post processor Coupling Facility Activity report is extended by including the
following information, which is shown in Figure 3-2 on page 41:

� CF processor utilization by structure

� Dynamic CF dispatching status

� Number of dedicated or shared processors

� Average weight of shared processors

The structure summary section of the Coupling Facility Activity Usage summary groups the
structure summary data by structure type. The values shown for each structure are extended
by % of CF utilization, which shows the structure-related processor busy time for an allocated
structure compared to the total CF processor busy time.

Note: These values are only reset when the structure is initially allocated. This support is
associated with the Coupling Facility control code (CFCC) CFLEVEL 15, which is exclusive
for System z9.

Note: The RMF support is included in z/OS V1R9 and is available via a PTF on lower level
releases (V1R6 through V1R8) via APAR OA17070.
40 z/OS Version 1 Release 9 Implementation

The calculation is shown as follows:

Structure execution time
% OF CF UTIL = --------------------------------------- * 100

CF busy time

Figure 3-2 and Figure 3-3 on page 42 show the new fields.

Figure 3-2 Coupling Facility Activity report - Structure Summary

Note: The new column % OF CF UTIL sums to less than 100%, which is expected, because
not all CF processor time is attributable to structures. N/A is shown in this field if the
required CF level is missing or the software prerequisite (XCF APAR OA17055 or z/OS
V1R9) is not installed.

 COUPLING FACILITY USAGE SUMMARY

--
 STRUCTURE SUMMARY

--

 % OF % OF % OF AVG LST/DIR DATA LOCK DIR REC
 STRUCTURE ALLOC CF # ALL CF REQ/ ENTRIES ELEMENTS ENTRIES DIR REC
 TYPE NAME STATUS CHG SIZE STOR REQ REQ UTIL SEC TOT/CUR TOT/CUR TOT/CUR XI'S

 LIST DB8FU_SCA ACTIVE 9M 0.9 0 0.0 6.2 0.00 6464 13K N/A N/A
 112 425 N/A N/A
 ISTMNPS ACTIVE 13M 1.3 0 0.0 0.0 0.00 4163 8308 N/A N/A
 1 0 N/A N/A
 IXC_DEFAULT_1 ACTIVE 32M 3.4 19953 11.5 12.0 2.77 5767 5747 N/A N/A
 1 16 N/A N/A
 IXC_DEFAULT_3 ACTIVE 17M 1.8 2243 1.3 3.6 0.31 2061 2047 N/A N/A
 1 32 N/A N/A
 RRS_DELAYEDUR_1 ACTIVE 13M 1.3 2156 1.2 0.9 0.30 3525 10K N/A N/A
 6 48 N/A N/A
 RRS_MAINUR_1 ACTIVE 13M 1.3 2156 1.2 1.6 0.30 2933 12K N/A N/A
 6 48 N/A N/A
 RRS_RESTART_1 ACTIVE 13M 1.3 1330 0.8 0.3 0.18 6729 6730 N/A N/A
 5 32 N/A N/A
 RRS_RMDATA_1 ACTIVE 13M 1.3 31190 18.0 6.2 4.33 19K 19K N/A N/A
 5 32 N/A N/A
 SYSTEM_LOGREC ACTIVE 17M 1.8 8 0.0 0.0 0.00 2027 16K N/A N/A
 PRIM 68 329 N/A N/A
 SYSTEM_OPERLOG ACTIVE 33M 3.5 817 0.5 0.8 0.11 29K 29K N/A N/A
 SEC 20K 22K N/A N/A

 LOCK DB8FU_LOCK1 ACTIVE 8M 0.9 0 0.0 2.4 0.00 11K 0 2097K N/A
 0 0 0 N/A
 IGWLOCK00 ACTIVE 14M 1.5 0 0.0 39.3 0.00 33K 0 2097K N/A
 0 0 21 N/A
 ISGLOCK ACTIVE 9M 0.9 113494 65.5 9.3 15.76 0 0 1049K N/A
 0 0 2805 N/A

 CACHE SYSIGGCAS_ECS ACTIVE 5M 0.5 0 0.0 0.2 0.00 980 970 N/A 0
 0 0 N/A 0
 SYSZWLM_WORKUNIT ACTIVE 12M 1.3 0 0.0 0.2 0.00 1052 2093 N/A 0
 0 0 N/A 0

 ------- ------ ------- ----- ------ -------
 STRUCTURE TOTALS 217M 23.2 173347 100 83.0 24.08
Chapter 3. Coupling Facility enhancements 41

Figure 3-3 Coupling Facility Activity report - Processor Summary section

3.3 RMF Monitor III Data Portal for z/OS

The z/OS RMF Distributed Data Server (DDS) provides a Web front-end to sysplex-wide
RMF Monitor III online performance data. The performance data with z/OZ V1R9 is enhanced
to display CF duplexing information.

Using a Web browser that can display XML documents using XSL style sheets (like Mozilla
1.4 or above, Netscape 7.0 or above, or Microsoft Internet Explorer® 5.5 or above), it
provides an easy-to-use interface to RMF online performance monitoring data.

Starting the Distributed Data Server
If RMF Monitor III is up and running, simply use an MVS console to start the RMF Distributed
Data Server on exactly one system in the sysplex by entering the following command:

START GPMSERVE

Starting the Web browser interface
Open your favorite Web browser and type the following URL into the location bar:

http://<yourhost ip address>:8803/

The DDS is running on <yourhost> and uses default DDS TCP/IP port 8803. The port number
and other settings of the DDS can be configured in GPMSRVxx PARMLIB member. The first
display is the RMF Monitor III Data Portal for z/OS home page, as shown in Figure 3-4 on
page 43.

PROCESSOR SUMMARY

--

 COUPLING FACILITY 2094 MODEL S18 CFLEVEL 15 DYNDISP ON

 AVERAGE CF UTILIZATION (% BUSY) 0.0 LOGICAL PROCESSORS: DEFINED 1 EFFECTIVE 1.0
 SHARED 1 AVG WEIGHT 10.0

Note: N/A is shown in the % OF CF UTIL column if the required CF level is missing or the
software prerequisite (XCF APAR OA17055 or z/OS V1R9) is not installed.
42 z/OS Version 1 Release 9 Implementation

Figure 3-4 RMF Monitor III Data Portal for z/OS home page

New RMF reports
Figure 3-5 on page 44 shows the new RMF reports with z/OS V1R9 that display the following:

� XCFGROUP (XCF Group Statistics)
� XCFOVW (XCF Systems Overview
� XCFPATH (XCF Path Statistics)
� XCFSYS (XCF System Statistics)

RMF Monitor III Coupling Facility Overview report
The RMF Monitor III Coupling Facility Overview report, CFOVER as shown in Figure 3-5 on
page 44, is enhanced to provide the following new information:

� Dynamic CF dispatching setting
� Number of dedicated processors
� Number of shared processors
� Average weight of shared processors
Chapter 3. Coupling Facility enhancements 43

Figure 3-5 Panel that displays the full RMF reports showing new reports

Your can see this new information in Figure 3-6.

Figure 3-6 Part of Coupling Facility Overview report

Coupling Facility Activity (CFACT) report
You select the RMF Monitor III Coupling Facility Activity report by clicking CFACT, as shown
in Figure 3-5. CFACT report is enhanced to show the following new fields in Figure 3-7 on
page 45:

� Structure status

� CF utilization percentage of an active structure

This is the processor utilization percentage for an allocated structure. The structure
execution time is related to the total CF-wide processor busy time. The sum of the values
in this column is less than 100%, because not all CF processor time is attributable to
structures.

New

New
44 z/OS Version 1 Release 9 Implementation

N/A is shown in this field if the CF level is lower than 15.

Figure 3-7 Part of Coupling Facility Activity report

The RMF Monitor III Coupling Facility Systems View report, report CFSYS in Figure 3-5 on
page 44, is enhanced to display the following:

� Subchannel Delay %

This is the percentage of all Coupling Facility requests that z/OS had to delay because it
found all Coupling Facility subchannels busy.

� Subchannel busy value

This is the percentage of the Coupling Facility subchannel utilization. This value is
calculated from the sum of synchronous and asynchronous Coupling Facility request
times related to the MINTIME.

New
Chapter 3. Coupling Facility enhancements 45

Figure 3-8 Part of Coupling Facility Systems View report

3.4 CF maintenance mode

z/OS V1R9 provides an easier way to prepare Coupling Facilities for maintenance. New
support includes placing Coupling Facilities into a new state, called maintenance mode. CF
maintenance mode provides a mechanism to prevent usage of the CF for structure allocation,
and provides an improvement to the process of moving CF structures out of Coupling
Facilities in preparation for maintenance.

The XCF allocation algorithm eliminates it from the list of Coupling Facilities that are eligible
for structure allocation (without any CFRM policy update).

The new maintenance mode support can greatly simplify operational procedures related to
taking down a CF for maintenance or upgrade in a Parallel Sysplex. In particular, the need to
laboriously update or maintain several alternate copies of the CFRM policy that omit a
particular CF which is to be removed for maintenance is avoided.

A subsequent rebuild or REALLOCATE command processing will also remove any CF structure
instances that were already allocated in that CF at the time it was placed into maintenance
mode. In conjunction with the REALLOCATE command, the new maintenance mode support can
greatly simplify operational procedures related to taking down a CF for maintenance or
upgrade in a Parallel Sysplex.

This enhancement can eliminate some of the complexity of managing Coupling Facilities in
preparation for a maintenance or upgrade action. For CFRM policy updates, removing the CF
or maintaining multiple CFRM policies can be avoided.

New

Important: A CF may only be placed into and out of maintenance mode by a system
running z/OS V1R9.
46 z/OS Version 1 Release 9 Implementation

3.4.1 Migration and coexistence

A Coupling Facility may only be placed into and out of maintenance mode by a system
running z/OS V1R9. z/OS systems running V1R8 down to V1R6 with APAR OA17685
installed can recognize that a CF is in maintenance mode and is not eligible for CF structure
allocation. But the down-level systems cannot place a CF into or out of maintenance mode,
even with the APAR installed.

z/OS systems running V1R8 down to V1R6 with this support installed can recognize that a CF
is not eligible for CF structure allocation, and messages IXC361I, IXC362I, IXC367I, IXL015I,
IXC574I, and IXC463I have been modified with a new message insert indicating ALLOCATION
NOT PERMITTED.

3.4.2 Using the CF maintenance mode

A new SETXCF command is provided that allows a Coupling Facility to be placed into and
taken out of maintenance mode. You place the CF that will be removed from the environment
into maintenance mode by using the following command:

SETXCF START,MAINTMODE,CFNAME=(cfname1,[cfname2,]...)

Place a CF into maintenance mode
Following is a typical procedure to place a particular Coupling Facility into maintenance
mode.

1. Place CF1 into maintenance mode.

Figure 3-9 Start maintenance mode command

When a Coupling Facility is placed in maintenance mode, it is ineligible for CF structure
allocation purposes. This step prevents systems from allocating any structures in this CF.

Use the D XCF,CF,CFNM=cfname command to confirm that the CF went in maintenance
mode, as shown in Figure 3-10 on page 48. This figure shows that CF1 is in maintenance
mode, but it still has allocated structures. Two other Coupling Facilities (CF2 and CF3) are
shown, and are not in maintenance mode.

Important: A sysplex that is falling back to a configuration without any z/OS V1R9 systems
may leave a CF stuck in maintenance mode. Before any fallback actions are taken, ensure
that all the CFs are taken out of maintenance mode. A CF maintenance mode indication
will be cleared by a sysplex-wide IPL.

-SETXCF START,MAINTMODE,CFNAME=CF1
 IXC369I THE SETXCF START MAINTMODE REQUEST FOR COUPLING FACILITY
 CF1 WAS SUCCESSFUL.
Chapter 3. Coupling Facility enhancements 47

Figure 3-10 Display of CF1, CF2, and CF3

2. Use the REALLOCATE command.

Next, use the SETXCF START, REALLOCATE command to evaluate and process the CF
structures. This will move the CF structures out of the CF that has been placed into
maintenance mode. This will not move any CF structures into the CF that has been placed
into maintenance mode.

The CF that has been placed into maintenance mode is now empty and ready for upgrade
action or maintenance. Any new CF structure allocation will also avoid placing structures
in a CF that is in maintenance mode because when a Coupling Facility is placed in
maintenance mode it is ineligible for CF structure allocation purposes.

Part of the REALLOCATE command output was extracted, as shown in Figure 3-11 on
page 49. Note that REALLOCATE processes each structure sequentially.

-D XCF,CF,CFNM=CF1
 IXC362I 15.54.43 DISPLAY XCF 869
 CFNAME: CF1
 ALLOCATION NOT PERMITTED
 MAINTENANCE MODE
 STRUCTURES:
 DB8FU_LOCK1 DB8FU_SCA IGWLOCK00
 ISGLOCK ISTMNPS IXC_DEFAULT_1
 IXC_DEFAULT_3 RRS_DELAYEDUR_1 RRS_MAINUR_1
 RRS_RESTART_1 RRS_RMDATA_1 SYSIGGCAS_ECS
 SYSTEM_LOGREC(OLD) SYSTEM_OPERLOG(NEW) SYSZWLM_WORKUNIT

-D XCF,CF,CFNM=CF2
 IXC362I 15.47.48 DISPLAY XCF 862
 CFNAME: CF2
 STRUCTURES:
 EJESGDS_WTSCPLX4 IXC_DEFAULT_2 IXC_DEFAULT_4
 SYSARC_PLEX0_RCL SYSTEM_OPERLOG(OLD)

-D XCF,CF,CFNM=CF3
 IXC362I 15.47.53 DISPLAY XCF 864
 CFNAME: CF3

 STRUCTURES:
 ISTGENERIC SYSTEM_LOGREC(NEW) SYSZWLM_991E2094

Note: The existing REALLOCATE process uses the XCF allocation algorithm, which has
changed in support of maintenance mode. It will view a CF that is in maintenance mode
as being ineligible for structure allocation purposes. It will also view a CF in
maintenance mode as an undesirable location, so that it will serially relocate structures
out of CFs that are in maintenance mode as part of its normal processing.

The new maintenance mode support, in conjunction with the REALLOCATE process,
provides a simpler way to prepare their Coupling Facilities for maintenance.
48 z/OS Version 1 Release 9 Implementation

Figure 3-11 Part of REALLOCATE command output

The REALLOCATE process removes all structures from a CF and reallocates the structures
on the other CFs in the environment as defined in CFRM policy. When it finishes,
messages IXC545I and IXC543I are issued to the operator.

An empty CF in maintenance mode is ready to be removed from a sysplex. As shown in
Figure 3-12 on page 50, CF1 is empty and ready to be removed from the sysplex for
maintenance and all structures are allocated in CF2 and CF3.

-SETXCF START,REALLOCATE
 IXC543I THE REQUESTED START,REALLOCATE WAS ACCEPTED.
 IXC521I REBUILD FOR STRUCTURE IGWLOCK00
 HAS BEEN STARTED
 IXC526I STRUCTURE IGWLOCK00 IS REBUILDING FROM
 COUPLING FACILITY CF1 TO COUPLING FACILITY CF2.
 REBUILD START REASON: OPERATOR INITIATED
 INFO108: 00000028 00000028.
 IXC521I REBUILD FOR STRUCTURE IGWLOCK00
 HAS BEEN COMPLETED
 IXC521I REBUILD FOR STRUCTURE ISGLOCK
 HAS BEEN STARTED...
 ...
 IXC544I REALLOCATE PROCESSING FOR STRUCTURE IXC_DEFAULT_4
 WAS NOT ATTEMPTED BECAUSE
 STRUCTURE IS ALLOCATED IN PREFERRED CF
 IXC545I REALLOCATE PROCESSING RESULTED IN THE FOLLOWING:
 13 STRUCTURE(S) REALLOCATED - SIMPLEX
 2 STRUCTURE(S) REALLOCATED - DUPLEXED
 0 STRUCTURE(S) POLICY CHANGE MADE - SIMPLEX
 0 STRUCTURE(S) POLICY CHANGE MADE - DUPLEXED
 6 STRUCTURE(S) ALREADY ALLOCATED IN PREFERRED CF - SIMPLEX
 0 STRUCTURE(S) ALREADY ALLOCATED IN PREFERRED CF - DUPLEXED
 0 STRUCTURE(S) NOT PROCESSED
 59 STRUCTURE(S) NOT ALLOCATED
 20 STRUCTURE(S) NOT DEFINED

100 TOTAL

 0 ERROR(S) ENCOUNTERED DURING PROCESSING
 IXC543I THE REQUESTED START,REALLOCATE WAS COMPLETED.

Note: Enhancements for the REALLOCATE process are provided by APAR OA08688.
Chapter 3. Coupling Facility enhancements 49

Figure 3-12 The result of the REALLOCATE process

When the upgrade action or maintenance finishes and the CF is back in the sysplex, the
CF must be placed out of the maintenance mode in order to accept allocation of
structures. You might use the following command to take a CF out of maintenance mode:

SETXCF STOP,MAINTMODE,CFNAME=(cfname1,[cfname2,]...)

Figure 3-13 displays the stop maintenance mode command output.

Figure 3-13 Stop maintenance mode command output

The REALLOCATE command can be used to move structures back into the CF, as shown in
Figure 3-14 on page 51, with the distribution of the allocated structures on CF1, CF2, and
CF3 after the REALLOCATE process.

-D XCF,CF,CFNM=CF1
 IXC362I 15.57.54 DISPLAY XCF 989
 CFNAME: CF1
 ALLOCATION NOT PERMITTED
 MAINTENANCE MODE

 NO STRUCTURES ARE IN USE BY THIS SYSPLEX IN THIS COUPLING FACILITY

-D XCF,CF,CFNM=CF2
 IXC362I 15.57.59 DISPLAY XCF 993
 CFNAME: CF2
 STRUCTURES:
 DB8FU_LOCK1 DB8FU_SCA EJESGDS_WTSCPLX4
 IGWLOCK00 ISGLOCK ISTMNPS
 IXC_DEFAULT_1 IXC_DEFAULT_2 IXC_DEFAULT_3
 IXC_DEFAULT_4 RRS_DELAYEDUR_1 RRS_MAINUR_1
 RRS_RESTART_1 RRS_RMDATA_1 SYSARC_PLEX0_RCL
 SYSIGGCAS_ECS SYSTEM_LOGREC(NEW) SYSTEM_OPERLOG(OLD)
 SYSZWLM_WORKUNIT

-D XCF,CF,CFNM=CF3
 IXC362I 15.58.03 DISPLAY XCF 995
 CFNAME: CF3
 STRUCTURES:
 ISTGENERIC SYSTEM_LOGREC(OLD) SYSTEM_OPERLOG(NEW)
 SYSZWLM_991E2094

-SETXCF STOP,MAINTMODE,CFNAME=CF1
 IXC369I THE SETXCF STOP MAINTMODE REQUEST FOR COUPLING FACILITY
 CF1 WAS SUCCESSFUL.
50 z/OS Version 1 Release 9 Implementation

Figure 3-14 CF1, CF2, and CF3 after the REALLOCATE process

Modifications to existing messages
Existing messages for structure allocation evaluation are updated to support a new reason for
not using a CF that is in maintenance mode. The following messages are updated:

IXC574I - Message IXC574I is issued for the specified structure during
structure allocation of the new instance during a CF Structure rebuild or
allocation process.

IXC463I - Message IXC463I is issued when the system attempted to allocate the
structure, but no Coupling Facility was suitable.

IXL015I - Message IXL015I is issued when a program attempted to connect or
rebuild-connect to a Coupling Facility structure and the connect processing
returned structure allocation information.

IXC369I - Message IXC369I is issued with the result of the SETXCF command
processing for each CF

IXC569I - Message IXC569I is issued as hard copy message only to the syslog
whenever a Coupling Gacility has been placed into or taken out of Maintenance
Mode.

IXC361I - Message IXC361I is issued when a DISPLAY XCF,CF command was entered
to display summary information about the Coupling Facilities defined in this
sysplex. A new status line will be issued when the CF is in Maintenance mode.

IXC362I - Message IXC362I is issued when a DISPLAY XCF,CF command was entered
to display detailed information about the Coupling Facilities defined in this
sysplex. A new status line will be issued when the CF is in Maintenance mode.

-D XCF,CF,CFNM=CF1
 IXC362I 16.12.01 DISPLAY XCF 334
 CFNAME: CF1
 STRUCTURES:
 DB8FU_LOCK1 DB8FU_SCA IGWLOCK00
 ISGLOCK ISTMNPS IXC_DEFAULT_1
 IXC_DEFAULT_3 RRS_DELAYEDUR_1 RRS_MAINUR_1
 RRS_RESTART_1 RRS_RMDATA_1 SYSIGGCAS_ECS
 SYSTEM_LOGREC(OLD) SYSTEM_OPERLOG(NEW) SYSZWLM_WORKUNIT

-D XCF,CF,CFNM=CF2
 IXC362I 16.12.06 DISPLAY XCF 336
 STRUCTURES:
 EJESGDS_WTSCPLX4 IXC_DEFAULT_2 IXC_DEFAULT_4
 SYSARC_PLEX0_RCL SYSTEM_OPERLOG(OLD)

-D XCF,CF,CFNM=CF3
 IXC362I 16.12.09 DISPLAY XCF 338
 CFNAME: CF3
 STRUCTURES:
 ISTGENERIC SYSTEM_LOGREC(NEW) SYSZWLM_991E2094
Chapter 3. Coupling Facility enhancements 51

52 z/OS Version 1 Release 9 Implementation

Chapter 4. ICSF support for PKCS #11

RSA Laboratories of RSA Security Inc. offers its Public Key Cryptography Standards (PKCS)
to developers of computers that use public key and related technology. PKCS #11, also
known as Cryptoki, is the cryptographic token interface standard. It specifies an application
programming interface (API) to devices, referred to as tokens, that hold cryptographic
information and perform cryptographic functions. The PKCS #11 API is an industry-accepted
standard commonly used by cryptographic applications.

With z/OS V1R9, ICSF supports PKCS #11, which provides an alternative to the IBM
Common Cryptographic Architecture (CCA) and broadens the scope of cryptographic
applications that can make use of zSeries cryptography. PKCS #11 applications developed
for other platforms can be recompiled and now run on z/OS.

In this chapter, the PKCS #11 support in z/OS is introduced as follows:

� PKCS #11 overview

� z/OS ICSF overview

� ICSF: PKCS #11 support

4

© Copyright IBM Corp. 2007. All rights reserved. 53

4.1 PKCS #11 overview

PKCS #11 specifies an application programming interface (API) to devices (virtual or real),
referred to as tokens. Tokens hold cryptographic information and perform cryptographic
functions. PKCS #11 was designed by RSA as a standard for talking to smart cards. The
major advantage of PKCS #11 over other, competing standards such as OpenSSL is that the
persistent storage and retrieval of objects is part of the standard, where objects are
certificates, keys, and even application-specific data objects.

On most single-user systems, a token is a smart card or other plug-installed cryptographic
device, accessed through a card reader or slot. The PKCS #11 specification assigns numbers
to slots, known as slot IDs. An application identifies the token that it wants to access by
specifying the appropriate slot ID. On systems that have multiple slots, it is the application’s
responsibility to determine which slot to access. PKCS #11 is becoming very popular on other
platforms.

z/OS must support multiple users, each potentially needing a unique keystore. In this
multiuser environment, the system does not give users direct access to the cryptographic
cards installed as if they were personal smart cards. Instead, z/OS PKCS11 tokens are
virtual, conceptually similar to RACF (SAF) key rings. An application can have one or more
z/OS PKCS11 tokens, depending on its needs.

Typically, PKCS #11 tokens are created in a factory and initialized either before they are
installed, or upon their first use. In contrast, z/OS PKCS11 tokens can be created using
system software such as RACF, the gskkyman utility, or by applications using the C API. Each
token has a unique token name, or label, that is specified by the end user or application at the
time that the token is created.

PKCS #11 terminology
Following are some terms that are defined in PKCS #11.

TOKEN Logical view of a crypto device: for example, a smart card

SLOT Logical view of a card reader; numbered 0-n

OBJECT Item stored on a token; for example a certificate or, key

USER Owns the private data on the token knowing the PIN

Security Officer (SO) Person who initializes a token

4.2 z/OS ICSF overview

ICSF is a software element of z/OS. ICSF works with the hardware cryptographic features
and the Security Server (RACF element) to provide secure, high-speed cryptographic
services in the z/OS environment. ICSF provides the application programming interfaces by
which applications request the cryptographic services. ICSF is also the means by which the
secure cryptographic features are loaded with master key values, allowing the hardware
features to be used by applications. The cryptographic feature is secure, high-speed
hardware that performs the actual cryptographic functions. Your processor hardware
determines the cryptographic feature available to your applications.

Note: Additional information on PKCS #11 can be found at the following URL:

http://www.rsa.com/rsalabs/node.asp?id=2133
54 z/OS Version 1 Release 9 Implementation

4.3 ICSF: PKCS #11 support

Prior to z/OS V1R9, z/OS ICSF provided the interface to the cryptographic hardware on
System z servers. The application programming interface (API) used is the IBM Common
Cryptographic Architecture (CCA). In order to broaden the scope of cryptographic
applications that are able to make use of zSeries cryptography, ICSF on z/OS V1R9 provides
support for an additional API called Public Key Cryptography Standards #11 (PKCS #11).

PKCS #11 is an API commonly used in cryptographic applications by developers of computer
systems employing public key and related technology. PKCS #11 is the cryptographic token
interface standard. It specifies an API to devices which hold cryptographic information and
perform cryptographic functions. It supports a new VSAM data set similar to the existing ICSF
cryptographic keys data set (CKDS) and public keys data set (PKDS). This new data set, the
token data set (TKDS), is the repository for cryptographic keys, certificates, and data used by
PKCS #11 applications. With the TKDS and with token management callable services
provided by ICSF, IBM middleware products such as RACF, SSL, and Java can use a
common repository for keys and tokens and deprecate usage of their individual key stores.

4.3.1 PKCS #11 integration into z/OS

PKCS #11 is now a subcomponent of ICSF. To integrate PKCS #11 into ISCF, the following
changes needed to be made to the standard support.

� With standard PKCS #11, security is controlled by knowledge of a PIN. This does not work
well on a multi-user system because multiple applications and users must share same
PIN.

With PKCS #11 on z/OS, however, tokens are not cryptographic devices but rather virtual
smart cards. New tokens can be created at any time. These tokens can be
application-specific or system-wide, depending on the RACF access control you have
defined. PINs are not used. The token access in z/OS is controlled by a new CRYPTOZ
RACF resource class.

� With standard PKCS #11, applications store keys on smart cards. There is only so much
space on a single cryptographic card with z/OS. z/OS applications should not have to
know what cards are available, because ICSF does not provide direct access to cards.

With this new support, tokens are virtual smart cards. Each is a collection of certificates,
keys, and data objects as needed by a given application such as a RACF key ring.

Token names (labels) can be up to 32 characters (such as A-Z, 0-9, the period (.), @,#,
and $). Applications do not access crypto cards directly. In ICSF, tokens and their
contents are stored in a new VSAM data set, called the token key data set (TKDS). Now,
ICSF has three VSAM data sets, CKDS, PKDS, and the new TKDS. In addition to the
PKCS #11 C API, there are also some low level callable services.

Note: ICSF, the cryptographic element of z/OS, only provides support for Common
Cryptographic Architecture (CCA). This puts z/OS at a disadvantage when it come to
application enablement. PKCS #11 is not as low-level as CCA is, so this makes it easier to
use with C- based applications. With some minor exceptions, RACF, System SSL, and
Java (JSSE) all use different key stores with RACF key rings, System SSL key databases,
and Java key stores. Providing PKCS #11 native to ICSF provides an opportunity to have a
common key store usable by all three.
Chapter 4. ICSF support for PKCS #11 55

The RACF RACDCERT command and System SSL’s gskkyman utility can be used to create
and manage tokens.

The token browser provides a means of examining PKCS #11 tokens that may have been
created or modified outside of ICSF (for example, by an application program). The browser
is not intended for full token management; instead, you can use RACF or System SSL for
that. However, it does have some minor editing capability, such as allowing you to alter
object labels.

4.3.2 Updating your ICSF definition to support PKCS #11

A new RACF (SAF) class is created for defining the token protection profiles called
CRYPTOZ. There are two CRYPTOZ class resources for each token: one for the SO role,
and one for the user role, as shown in Table 4-1.

� The RACF token-specific resources are for a USER role and a SO role.

� The three PKCS #11 access types for SAF access levels are User R/W, SO R/W, and
User R/O.

� The three z/OS unique access types are Weak SO, Weak User, and Strong SO.

The two roles and three levels provide the six possible access levels. The User R/O, SO R/W,
and User R/W access levels are the standard PKCS #11 roles. For example, the security
officer (SO) R/W can initialize tokens. The Weak SO, Weak User, and Strong SO access
levels are unique to z/OS.

Table 4-1 Token access control using the CRYPTOZ resource class

Using the resource class access
The resource names are formed from the label of the token being protected: SO for the
security officer role, and USER for the User role. Generic profiles can be used to protect
multiple tokens. The access levels unique to z/OS are as follows.

Weak SO With this resource you can define the trust policy for a token (the trusted CA
certificates), but cannot initialize tokens. This level of access might be
appropriate for a corporate trust policy officer or auditor.

Note: This new support is useful for PKCS #11 applications that are ported to z/OS.

CRYPTOZ
resource

READ UPDATE CONTROL

SO token-label Weak SO -
read/create/delete/
modify/use public objects

SO R/W - Weak SO plus
create/delete tokens

Strong SO - SO RW
plus read (but not use)
private objects, create/
delete/modify private
objects

User token-label User R/O - read/use
public and private objects

Weak User - User R/O
plus create/delete/modify
private and public objects
(cannot
add/delete/modify
certificate authority
objects)

User R/W - Weak User
plus add
/delete/modify
certificate authority
objects
56 z/OS Version 1 Release 9 Implementation

Strong SO With this resource you can initialize tokens and populate them, but not use
the keys. This level of access might be appropriate for an application
administrator.

Weak User With this resource you have access to everything in the token, but cannot
alter the trust policy of the token. This level of access might be appropriate for
a server daemon user ID.

Implementing PKCS #11 support
You need to provide the following two actions on an existing ICSF definition to support
PKCS #11:

� You have to define a TKDS VSAM data set. ICSF provides a sample TKDS allocation job
(member CSFTKDS) in SYS1.SAMPLIB. The TKDS must be a key-sequenced data set
with spanned variable length records and must be allocated on a permanently resident
volume.

� The TKDSN option is the name of an existing TKDS or an empty VSAM data set to be
used as the TKDS. If the TKDSN option is not specified in the ICSF installation options
data set, no PKCS #11 services will be provided.

PKCS #11 tokens and objects
PKCS #11 tokens and objects are stored in a VSAM data set called the token data set
(TKDS). The TKDS contains individual entries for each token and object that is added to it.
ICSF maintains two copies of the TKDS: a disk copy, and an in-storage copy. Only token
objects are stored in the TKDS; session objects are stored in a data space.

New tokens can be created at any time. These tokens can be application-specific or
system-wide, depending on the RACF access control you have defined.

4.3.3 RACF and z/OS PKCS #11 token services

Tokens are containers that hold digital certificates and keys. z/OS supports PKCS #11 tokens
with tokens provided and managed by ICSF.

Figure 4-1 on page 58 shows an architectural view of the entire support. Everything below the
dashed line is the ICSF address space. Above the dashed line is the users’ address space.
The human user interfaces are the token browser panels, for the RACDCERT command and the
gskkyman utility.

The others are programming interfaces shown in Figure 4-1 on page 58 at the callable
service level.

� The C application-level programming interfaces are distributed as follows.

– 31-bit, 31-bit XPLINK, 64-bit DLLs and sidedecks shipped in SYS1.SIEALNKE.

– UNIX versions also shipped in /usr/lib and /usr/lpp/pkcs11/lib.

– csnpdefs.h is shipped in SYS1.SIEAHDR.H and /usr/include.

– Sample code and makefiles are shipped in /usr/lpp/pkcs11/samples.

� The existing SSL applications (both System SSL and JSSE) can make use of tokens in
place of key stores. System SSL’s gskkyman is another utility for managing certificates
and keys. The gskkyman UNIX command line utility is enhanced to manage tokens similar
Chapter 4. ICSF support for PKCS #11 57

to key database (.kdb) files. Like RACDCERT, it too has been modified to provide token
management support.

While gskkyman has token support, the System SSL runtime services have not been
modified to support reading tokens directly through SAF key ring services and can use
tokens the same as key rings. To get System SSL to read a token indirectly (through
R_Datalib), use the key ring naming convention as follows:

TOKEN/<+fn=Arial+fs=12+fx=0+fe=1>token-name>

The gskkyman command line options work just like their key database equivalents.

� You can authorize applications to use the R_datalib (IRRSDL00 or IRRSDL64) callable
service to read and extract token information. This is the service SSL applications use to
read RACF key rings. Note that a caller of R_Datalib (System SSL and JSSE) does not
have to change to use tokens instead of key rings. You can tell it to read a token instead of
a key ring simply by prefixing the token name with *TOKEN*/.

For example, a keyfile directive in Webserver’s httpd.conf file is as follows:

keyfile *TOKEN*/VENDOR.TOK SAF

� You can use resources in the CRYPTOZ class to control access tokens.

Figure 4-1 Architectural view of the entire support with ICSF and PKCS #11

Note: For details, see z/OS Security Server RACF Callable Services, SA22-7691.

Note: See z/OS Cryptographic Services Integrated Cryptographic Services Facility
Writing PKCS #11 Applications, SA23-2231, for additional programming
considerations.

ICSF
(z/OS PKCS11)

PKCS #11 “C” Interface

C_function()

Callable Servces
PC Interface

TKDS – VSAM KSDS
Each record holds one object

Assembler
Programs

Token Browser
(ISPF Panels)

Session Object
Dataspace

New “C” Applications

Token Management
SSL (gskkyman)

RACF (RACDCERT)
Token Management

Check Access

RACF (R_Datalib)
Key ring Services

SSL (runtime)

Existing SSL
Applications

Token key
data set
TKDS

Cache

RACF
58 z/OS Version 1 Release 9 Implementation

RACF RACDCERT command
The RACF RACDCERT command now has support for tokens, similar to the key ring support.
There are six new subfunctions, all of which call the new ICSF token management callable
services. You can use RACF in the following ways to define and manage certain certificate
objects in a token (certificates, public keys, and private keys).

ADDTOKEN Defines a new empty token.

DELTOKEN Deletes an existing token and all its contents.

LISTTOKEN Displays information about the objects contained in the token.

BIND Connects a RACF certificate, its public key, and (in some cases) its private
key, to an existing token.

UNBIND Removes a certificate and its keys from an existing token.

IMPORT Adds a certificate to RACF from an existing token.

ICSF will check access to TKDS functions via RACF calls for CRYPTOZ resource class.
RACF will check access to certificate functions similar to other commands such as the
FACILITY class checks.

See z/OS Security Server RACF Command Language Reference, SA22-7687, for syntax and
usage information about these functions of the RACDCERT command.

Token management
Because tokens are managed by ICSF, and not RACF, other applications can use ICSF
functions to change tokens without updating the certificate information in the RACF database.
Similarly, RACF changes to digital certificates already bound to a token are not reflected in
the token information maintained by ICSF. Therefore, the following restrictions apply:

� Deleting, altering, or renewing a RACF certificate that is bound to a token has no affect on
the equivalent token objects managed by ICSF.

� Deleting or altering a certificate object in a token has no effect on the following objects:

– The equivalent RACF certificate

– The equivalent certificate objects in other tokens

Entering cryptographic objects into the TKDS
You can store public key objects, private key objects, secret key objects, certificate objects,
and data objects in the token data set (TKDS) through the use of ICSF callable services.
ICSF provides a set of callable services that allow applications to update the TKDS.
Applications can use these services to create, delete, list, set and get attribute values from
the TKDS.

The keys stored in the TKDS are not encrypted. Therefore, it is recommended that you
RACF-protect data set access to the TKDS. (This is in addition to the RACF protection of the
individual tokens via the CRYPTOZ class.) This will provide additional security for your
installation.

Also, you can use the ICSF panel on ISPF to create, delete, manage, and list your tokens.

4.3.4 Migration considerations

Restarting the ICSF started procedure is required to get ICSF to recognize the setup
changes. Additional changes to the RACF CRYPTOZ resource class after restarting do not
require another restart.
Chapter 4. ICSF support for PKCS #11 59

IBM provides a sample PKCS #11 program called testpkcs11. The program is passed the
name of a PKCS #11 token, and performs the following tasks:

� Creates a token that has the name passed

� Generates an RSA key-pair

� Encrypts some test data using the public part of the key-pair

� Decrypts the data using the private part of the key-pair

� Deletes the key-pair and the token

This UNIX utility is accessed via /usr/lpp/pkcs11/bin/testpkcs11. The source code is shipped
in /usr/lpp/pkcs11/samples.

4.4 Using PKCS11 token browser utility panels

The PKCS11 token browser allows management of PKCS11 tokens and objects in the TKDS.
The PKCS11 token browser is Option 5.7, shown in Figure 4-2, which on the ICSF utilities
panel is Option 7:

PKCS11 TOKEN - Management of PKCS11 tokens

The user must have SAF authority to manage tokens and SAF authority to a token to manage
the objects of a token.

The ICSF Token Management panel shown in Figure 4-2 has four options. The options
Create a new token, Delete an existing token and Manage an existing token expect you
to supply the full token name below. The option Delete an existing token will ask you to
confirm the delete.

If you want to manage an existing token and are not sure of the token name, or you want to
manage multiple tokens, use the List existing tokens option. This option will list all the tokens
you have access to. Or, if you wish to narrow down the search, you can enter a partial token
name. Any token that begins with the value specified will be listed, if you have access.

Figure 4-2 ICSF Token Management panel for PKCS #11

Two of the ICSF existing panels have changed: the ADMINCTL panel, and the
OPTSTAT.OPTIONS. These panels now display the active TKDS name if it is set up.

The ADMINCTL panel, Option 4 from the primary panel, is shown in Figure 4-3 on page 61.
60 z/OS Version 1 Release 9 Implementation

Figure 4-3 ICSF Administrative Control Functions panel updated for TKDS

The OPTSTAT.OPTIONS, Option 3.1 from the primary panel, is shown in Figure 4-4.

Figure 4-4 ICSF Installation Option Display panel updated for TKDS

4.4.1 Running ICSF in a sysplex environment

ICSF is supported in a sysplex environment. The CKDS, PKDS, and TKDS can be shared
across systems in a sysplex.

TKDS management in a sysplex
The systems sharing a TKDS may be different LPARs on the same system, or different
systems across multiple System z processors. It is not required to share the TKDS across a
sysplex, but it is recommended to allow your application to be dynamically routed to any
image safely. Each system may have its own TKDS.

A sysplex may have a combination of systems that share a TKDS, and individual systems
with separate TKDSs. There is no requirement that the DOMAINs must be the same to share
a TKDS.
Chapter 4. ICSF support for PKCS #11 61

When sharing the TKDS, observe these precautions:

� Dynamic TKDS services update the DASD copy of the TKDS and the in-storage copy on
the system where it runs. The SYSPLEXTKDS option in the ICSF installation options data
set provides for sysplex-wide consistent updates of the DASD copy of the TKDS, and the
in-storage copies of the TKDS on all members of the sysplex sharing the same TKDS.

All members of the sysplex sharing the TKDS must be running ICSF HCR7740 or later in
order to participate in the sysplex-wide consistency of TKDS data.

If SYSPLEXTKDS(YES,FAIL(xxx)) is coded in the installation options data set, a sysplex
broadcast message will be issued informing sysplex members of the TKDS update, and
requesting them to update their in-storage TKDS copy.

If SYSPLEXTKDS(NO,FAIL(xxx)) is coded in the installation options data set, there is no
sysplex broadcast of the update.

� If multiple sysplexes share a TKDS, or if a sysplex and other non-sysplex systems share a
TKDS, there is no provision for automatic update of the in-storage copies of the TKDS on
the systems which are not in the same sysplex as the system initiating the TKDS update.

Changing parameters in the installation options data set
The ICSF installation options, SYSPLEXTKDS(YES or NO,FAIL(fail-option)), can be defined
and changed as follows:

SYSPLEXTKDS(NO,FAIL(fail-option)) Indicates no XCF signalling will be performed
when an update to a TKDS record occurs.

SYSPLEXTKDS(YES,FAIL(fail-option)) Indicates the system will be notified of updates
made to the TKDS by other members of the
sysplex who have also specified
SYSPLEXTKDS(YES,FAIL(fail-option)).

SYSPLEXTKDS(YES,FAIL(YES)) Indicates ICSF will terminate abnormally if there is
a failure creating the TKDS latch set.

SYSPLEXTKDS(YES,FAIL(NO)) Indicates ICSF initialization processing will
continue even if the request to create a TKDS latch
set fails with an environment failure.

This system will not be notified of updates to the
TKDS by other members of the ICSF sysplex
group.

If you do not specify the SYSPLEXTKDS option, the default value is:

SYSPLEXTKDS(NO,FAIL(NO))
62 z/OS Version 1 Release 9 Implementation

Chapter 5. Allocation dynamic storage
improvements

The allocation dynamic storage enhancements are designed to improve scalability by moving
dynamic area storage above the 16 Mb line. This gives allocation more space for recursive
retry logic. It is done as part of allocation recovery, and reduces the chances of allocation
failures and possible ABEND 878 in the allocation code. This improvement frees storage
below the 16 Mb line for use by programs that do require storage with that attribute.

Also, by having more working space, improved performance of allocation can occur over
time.

This chapter describes the component changes that relieve dynamic storage in all ASIDs.

� Allocation overview

� Allocation improvements in z/OS V1R9

5

© Copyright IBM Corp. 2007. All rights reserved. 63

5.1 Overview

Allocation is the process by which the system assigns, or allocates, I/O resources to your job.
An I/O resource is a ddname-data set combination, with any associated volumes and devices.

Deallocation is the process by which the system releases, or deallocates, I/O resources that
were allocated to your job.

There are two basic types of allocation: job step allocation and dynamic allocation. The two
types allocate resources at different points in program processing. Job step allocation assigns
resources to your program before your program runs, and dynamic allocation assigns
resources to your program while it is running. The needs of your program determine which
type of allocation you should use.

Characteristics of job step allocation
When using job step allocation, you request I/O resources through JCL. The system allocates
those I/O resources before your program runs, as part of initiating the job step, and
deallocates resources after your program runs, as part of job step termination. This type of
allocation ensures that the resources you request are available before your program runs, and
throughout program execution.

Characteristics of dynamic allocation
When using dynamic allocation, you request I/O resources by coding the DYNALLOC macro
and filling in the fields of the SVC 99 parameter list. The system allocates and deallocates
those I/O resources while your program is running. Dynamic allocation also allows you to
request information about your allocation environment, and to deallocate or modify
characteristics of your allocation environment that were acquired either dynamically or
through JCL.

Dynamic allocation allows you to tailor your device allocations based on input to your
program. You can design your program to dynamically allocate only those devices that are
necessary in a particular programming path, rather than allocating all possible device
requirements before your program runs.

Dynamic allocation also allows you to use common resources more efficiently. When there is
high contention for a resource, dynamic allocation allows you to acquire an I/O resource just
before you need it and to release it just after you need it, so that your program holds the
resource for a shorter length of time.

Allocation virtual storage constraints
In order to process any data set, the system must allocate it to your program before you can
open it. There are many control blocks that allocation creates in the user private area. To
handle more than 100 K devices as some DB2 users do, an excessive amount of virtual
storage is used by allocation.

A great deal of effort has been invested in moving these areas above the line in previous
releases, but until now some areas were still gotten in 24-bit addressing, thereby causing
constraints in this area and limiting the number of data sets that could be allocated.

In the following sections we describe the allocations improvements provided by z/OS V1R9.
64 z/OS Version 1 Release 9 Implementation

5.2 Allocation improvements in z/OS V1R9

In z/OS V1R9, all the requirements to get storage in 24-bit were eliminated, and then all these
dynamic areas were moved to 31-bit addressing. The following improvements are introduced:

� Reduce the chance of S878 in storage-constrained environments. In the past some
abend878 or abend80A ABENDs occurred because there was not enough available
storage in 24-bit of the user private area. With this improvement the abends caused by
allocation excessive virtual storage usage were eliminated, so installations will see fewer
of these types of ABENDs.

� Extends limits of our recursive allocation retry processing.

� Results in fewer failed allocations causing jobs to fail. Now, some jobs that had storage
constraints in 24-bit mode can allocate more data sets.

� Using storage above 16 MB frees storage for required users.

� Having more space allows the compiler to generate more efficient code.

� The storage manager was changed to obtain these areas in large buffer pools, so
allocation handles large buffers more efficiently and does not need to run this process so
often.

Allocation use of storage
In past releases of MVS, the allocation component used storage below the 16 MB line for its
dynamic area. The services invoked by allocation required storage with that attribute.
However, over time, these requirements have been eliminated, leaving allocation still using
those resources for no good reason. Even though most components allow above-the-line
storage, there are still reasons to use below-the-line storage. Because installations are
consolidating work on z/OS, there is less below-the-line storage free for everyone to use.
Also, storage use by allocation modules is generally growing over time. And finally, by using
that constrained resource, the recursive processing that helps ensure jobs get the resources
they need to run is limited, resulting in abends and failed jobs.

With z/OS V1R9, allocation moves its dynamic areas where there is more room to grow above
the 16 MB line. In the process of doing this, the storage manager is updated to obtain storage
in larger chunks, to improve the efficiency of the load modules. The benefit of these changes
is to free storage for others to use, allow more working room, and reduce the chances of 878
abends due to out-of-storage conditions.

This changes, for this line item, an intrinsic part of the allocation component. Therefore, the
support is invoked by all MVS allocation invokers, namely MVS batch processing and
dynamic allocation, used to allocate devices and data sets at run time.

Allocation improvement considerations
The two types of allocation are invoked by the MVS scheduler component: one responsible
for batch allocation, and the other by any other subsystem or application wanting to perform a
dynamic allocation. Therefore, all changes are internal to the component, so there are no new
or changed externals.

For any exploiters doing an allocation, such as the DB2 subsystem, TSO users, or batch jobs,
the use of allocation exits has always been required to be AMODE 31. Those exits may now
see changes in addressing due to the above-the-line storage for parameter lists.

Note that these changes only affect z/OS V1R9 systems; lower-level systems will see no
changes in allocation.
Chapter 5. Allocation dynamic storage improvements 65

66 z/OS Version 1 Release 9 Implementation

Chapter 6. System Logger enhancements

System Logger is an MVS component that allows an application to log data from a sysplex.
You can log data from one system or from multiple systems across the sysplex. A system
logger application can write log data into a log stream, which is simply a collection of data.

This chapter describes a general overview and some improvements in the system logger
function (IXGLOGR) in z/OS V1R9. The following topics are discussed:

� System Logger overview

� Recall processing for log stream migrated data set

� Cleanup of CF list entries for unconnected log streams

� General documentation improvements

6

© Copyright IBM Corp. 2007. All rights reserved. 67

6.1 System Logger overview

System logger is a set of services that allows an application to write, browse, and delete log
data. You can use system logger services to merge data from multiple instances of an
application, including merging data from different systems across a sysplex.

Suppose you are concurrently running multiple instances of an application in a sysplex, and
each application instance can update a common database. It is important for your installation
to maintain a common log of all updates to the database from across the sysplex, so that if
the database should be damaged, it can be restored from the backup copy. You can merge
the log data from applications across the sysplex into a log stream, which is simply a
collection of data in log blocks residing in the Coupling Facility and on DASD.

Log stream
A log stream is an application-specific collection of data that is used as a log. The data is
written to and read from the log stream buffers by one or more instances of the application
associated with the log stream. A log stream can be used for such purposes as a transaction
log, a log for recreating databases, a recovery log, or other logs needed by applications.

A system logger application can write log data into a log stream, which is simply a collection
of data. Data in a log stream spans two kinds of storage:

� Interim storage, where data can be accessed quickly without incurring DASD I/O

� DASD log data set storage, where data is hardened for longer term access

When the interim storage medium for a log stream reaches a user-defined threshold, the log
data is offloaded to DASD log data sets.There are two types of log streams:

� Coupling Facility log streams

� DASD-only log streams

The main difference between the two types of log streams is the storage medium that system
logger uses to hold interim log data:

� In a Coupling Facility log stream, interim storage for log data is in Coupling Facility list
structures.

� In a DASD-only log stream, interim storage for log data is contained in local storage
buffers on the system. Local storage buffers are data space areas associated with the
system logger address space, IXGLOGR.

Your installation can use just Coupling Facility log streams, just DASD-only log streams, or a
combination of both types of log streams. The requirements and preparation steps for the two
types of log streams are somewhat different.

Some key considerations for choosing either Coupling Facility log steams or DASD-only log
streams are:

� The location and concurrent activity of writers and readers to a log stream's log data

� The volume of log data written to a log stream.

Coupling Facility log streams are required when:

– There needs to be more than one concurrent log writer and/or log reader to the log
stream from more than one system in the sysplex.

– There are high volumes of log data being written to the log stream.
68 z/OS Version 1 Release 9 Implementation

DASD-only log streams can be used when:

� There is no need to have more than one concurrent log writer and/or log reader to the log
stream from more than one system in the sysplex.

� There are low volumes of log data being written to the log stream.

Coupling Facility log stream
Figure 6-1 shows how a Coupling Facility log stream spans two levels of storage; the
Coupling Facility for interim storage, and DASD log data sets for more permanent storage.
When the Coupling Facility space for the log stream fills, the data is offloaded to DASD log
data sets. A Coupling Facility log stream can contain data from multiple systems, thus
allowing a system logger application to merge data from systems across the sysplex.

Figure 6-1 Log stream data on the Coupling Facility and DASD

When a system logger application writes a log block to a Coupling Facility log stream, system
logger writes it first to a Coupling Facility list structure. System logger requires that a Coupling
Facility list structure be associated with each log stream.

When the Coupling Facility structure space allocated for the log stream reaches the
installation-defined highoffload threshold, system logger moves (offloads) the log blocks from
the Coupling Facility structure to VSAM linear DASD data sets, so that the Coupling Facility
space for the log stream can be used to hold new log blocks. From a user’s point of view, the
actual location of the log data in the log stream is transparent.

Note: Because DASD-only log streams always use staging data sets, high volume writers
of log data may be throttled back by the I/O required to record each record sequentially to
the log stream's staging data sets.

SYS1

application

Youngest data Oldest data

Coupling Facility DASD log data set

Structure
Chapter 6. System Logger enhancements 69

DASD-only log stream
Figure 6-2 shows a DASD-only log stream spanning two levels of storage; local storage
buffers for interim storage, which is then offloaded to DASD log data sets for more permanent
storage.

A DASD-only log stream has a single-system scope; only one system at a time can connect
to a DASD-only log stream. Multiple applications from the same system can, however,
simultaneously connect to a DASD-only log stream.

Figure 6-2 Log stream data in local storage buffers and DASD log data sets

When a system logger application writes a log block to a DASD-only log stream, system
logger writes it first to the local storage buffers for the system and duplexes it to a DASD
staging data set associated with the log stream. When the staging data set space allocated
for the log stream reaches the installation-defined highofflload threshold, system logger
offloads the log blocks from local storage buffers to VSAM linear DASD data sets. From a
user’s point of view, the actual location of the log data in the log stream is transparent.

Both a DASD-only log stream and a Coupling Facility log stream can have data in multiple
DASD log data sets; as a log stream fills log data sets on DASD, system logger automatically
allocates new ones for the log stream.

6.1.1 Log stream exploiters

There are several log stream exploiters, each one with very specific use; there is no unique
recommendation to define a log stream. You must follow the application’s recommendations
to define each log stream.

CICS uses two log streams (DFHLOG and DFHSHUNT) for transaction recovery. As soon the
transaction ends, it deletes all entries from log stream. It is acceptable that all these log
stream entries reside in the interim buffer and do not go to the DASD log data set; if you
handle all the CICS log stream entries in the buffer, you will enjoy better performance.

SYS1

application

Youngest data Oldest data

SYS1 local
storage buffers DASD log data set
70 z/OS Version 1 Release 9 Implementation

OPERLOG uses a log stream to record all the SYSLOG messages for long periods of time on
data sets. These data sets usually are managed by HSM or a similar product.

Any application using IXGLOGR can retrieve data from the log data that resides on DASD;
when they are migrated, it calls the HSM to recall them.

Prior to z/OS V1R7, there was just one task in the IXGLOGR ASID for recalls that were
performed synchronously. If several recall requests arrived at the same time, a recall queue
was built up. If a problem occurred with the first recall on the queue, then the remainder of the
queue would wait for a long period of time until the problem was corrected, thus causing
issues for applications. Also, there was a performance problem if several requests came at
the same time.

6.1.2 z/OS V1R8 improvements of log stream data sets recall

Starting with z/OS V1R8, you can separate log streams into two groups, PRODUCTION and
TEST. This means that you can separate system logger processing for TEST log streams
from your PRODUCTION work log streams on a single system or sysplex. Your
PRODUCTION log streams are then protected from a hang or failure in the System Logger
test environment.

To separate log streams into PRODUCTION and TEST log streams, you can use the
GROUP(PRODUCTION | TEST) parameter in the following ways:

� To group log streams using a batch program, use the GROUP(PRODUCTION | TEST)
parameter on the DEFINE or UPDATE requests on the administrative data utility,
IXCMIAPU.

� To group log streams using a program, use the new GROUP(PRODUCTION | TEST)
parameter on the DEFINE or UPDATE requests on the IXGINVNT service.

When you have log streams separated into PRODUCTION and TEST groups, System
Logger will do data set processing, such as data set allocations, data set recalls, and other
functions for the two log stream groups in two different sets of tasks. In addition, system
logger limits resource consumption of TEST log streams as follows:

� TEST log streams are limited to using a maximum of 25% of the connections allowed,
whereas PRODUCTION log streams can use at least 75% of connection slots.

� TEST log streams are limited to using a maximum of 25% of LOGR couple data set
extents allowed, whereas PRODUCTION log streams can use at least 75%.

By default, log streams are PRODUCTION log streams. This means that existing log streams
with no GROUP designation are PRODUCTION log streams.

Using structures with grouped log streams
A Coupling Facility structure can only have one type of log stream assigned to it, either TEST
or PRODUCTION. If you try to assign a TEST log stream, for example, to a STRUCTURE
with PRODUCTION log streams, the request will fail with a reason code of
IxgRsnCodeBadGroup (X'08E9').

The first log stream that is defined to a structure determines what type of log streams can be
defined to that structure. If the first log stream defined to a structure is a TEST log stream,
you can only define TEST log streams to that structure. If you specify or default to
PRODUCTION for the first log stream defined to a structure, you can only define other
PRODUCTION log streams to that structure.
Chapter 6. System Logger enhancements 71

Other support for separating TEST and PRODUCTION log streams
The following interfaces support the separation of TEST and PRODUCTION log streams:

� The DISPLAY LOGGER command displays the group designation for log streams.

� The IXCMIAPU utility LIST LOGSTREAM request displays the group designation for log
streams.

� SMF record type 88, subtype 1, Log Stream section, includes field SMF88GRP to display
the group designation for each log stream.

� IXGQUERY will return the log stream group designation as long as you specify a large
enough buffer length (200 bytes or greater).

� ENF signal 48 for DEFINE and UPDATE log stream requests will identify the group of the
log stream.

z/OS V1R8 log stream recall processing limitations
Although z/OS V1R8 increased the log stream recall capacity using two groups, it did not
solve the performance or hung problems of the log stream recall processing because the
same situation could occur in each group.

System Logger has single-threaded, synchronous handling of recall requests for migrated log
stream data sets. This means that each data set recall must be satisfied (successfully or
otherwise) before the next migrated data set recall is requested. This occurs in two tasks; one
for the PRODUCTION group, and one for the TEST group.

This can cause limited or slower access to the log stream resources. For example, a recall
request could be necessary during a log stream's offload activity, or when an application is
browsing log data that can result in interference between different log stream activities. A
recall request for one log stream data set could hold up a recall request for another log
stream data set. These problems are addressed in z/OS V1R9, as described in the following
section.

6.2 z/OS V1R9 improvements of log stream data set recalls

z/OS V1R9 continues using two sets of tasks to process the PRODUCTION and TEST log
streams. Now, however, the recalls are processed asynchronously and up to 24 concurrent
requests for PRODUCTION log streams are allowed, and up to 8 concurrent requests for
TEST log streams are allowed.

DFSMShsm or an equivalent function is required. The ability to display data sets being
recalled by System Logger and to have System Logger stop waiting on a data set recall are
enhanced. This provides relief for all System Logger exploiters when an installation makes
use of data set migration/recall capabilities, and it helps to reduce the interference previously
caused by the recall request of one log stream data set needing to be completely satisfied
before System Logger starts the next recall request.

New command support
New command parameters are created to manage the recall environment:

� Use the D LOGGER,ST,REC command to see the status of the recalls as shown in Figure 6-3
on page 73.

RECALLS or REC - This new keyword is a filter that requests a display of all the outstanding
asynchronous recall requests that system logger has made to DFSMShsm using the
ARCHRCAL service.
72 z/OS Version 1 Release 9 Implementation

This command also shows data set recalls waiting for a significant number of seconds.

Figure 6-3 Display logger shows the recalls pending progress

� Use the SETLOGR FORCE command to clean up log stream or data set resources related to a
system logger log stream. The command is useful for managing a log stream when a log
stream becomes unusable. The command is also useful for causing Logger to no longer
wait on a particular migrated data set being recalled. System Logger will attempt to
release all the related resources for the log stream or data set based on the request.

Use the SETLOGR FORCE command to stop waiting on an outstanding asynchronous recall
request for a named data set, as shown in Figure 6-4. The new parameter NOREC or
NORECALL directs Logger to stop waiting on an outstanding asynchronous recall request for
the named data set and displays if the recall has been waiting too long. It can be forced,
so applications waiting on the recall request can continue.

Recall requests can also hold up offloads, and messages IXG310, IXG311, and IXG312
can be shown on the console. In these situations, a SETLOGR FORCE,NORECALL request can
be issued to stop waiting on the recall, to allow the affected applications to continue
processing.

Figure 6-4 SETLOGR FORCE recall command example

Use the SETLOGR FORCE command when a System Logger service task is not progressing
properly and you receive some of the following messages:

IXG281I, IXG272E, IXG312E and IXG115A

When more than one request is waiting on the same outstanding recall, the SETLOGR
FORCE command will affect all them. Note that these two commands only execute in
z/OS V1R9; in previous releases, a syntax error occurs. This implementation is completely
transparent to the System Logger exploiters, they will get this benefit without any change.

D LOGGER,ST,REC
 IXG601I 16.52.38 LOGGER DISPLAY 719
 SYSTEM LOGGER STATUS
 SYSTEM SYSTEM LOGGER STATUS
 ------ --------------------
 SC70 ACTIVE
 LOGGER DATA SET RECALLS
 GROUP: PRODUCTION
 SECONDS DATA SET NAMES

00000038 IXGLOGR.PROD.STREAM01.A0000001
00000137 IXGLOGR.PROD.STREAM35.A0000041

 GROUP: TEST
 NO DATA SET RECALLS WAITING

setlogr force,norec,dsn=IXGLOGR.PROD.STREAM01.A0000025
IXG651I SETLOGR FORCE NORECALL COMMAND ACCEPTED FOR
DSNAME=IXGLOGR.PROD.STREAM01.A0000025
IXG280I IXGLOGR RECALL REQUEST STOPPED BY SETLOGR COMMAND FOR
DSN=IXGLOGR.PROD.STREAM01.A0000025
IXG661I SETLOGR FORCE NORECALL PROCESSED SUCCESSFULLY FOR
DSNAME=IXGLOGR.PROD.STREAM01.A0000025
Chapter 6. System Logger enhancements 73

6.3 Cleanup of CF list entries for unconnected log streams

In previous releases, if the LOGR CDS indicated a log stream was never connected or there
are no current systems connected (and no failed persistent connections), then there should
be no CF structure list header information or entries and elements on the lists associated with
the log stream. If this mismatch occurred, the application could not connect to the log stream
structure and it would fail. A similar situation could occur with the log stream structure if a
failed persistent connection occurred and it did not match with the LOGR CDS view.

In both cases, there was no way to clean up log stream structure header information so as to
allow the application to connect to the structure. The System Logger should ensure the list
headers for a log stream are established as in a new state when a log stream had no current
connections.

With z/OS V1R9, if there is a mismatch of information between the LOGR CDS view and the
log stream structure header information, the first system that tries to connect to a log stream
structure will use the LOGR CDS view information to clean up the log stream structure header
information, thus allowing the application to connect to structure. If the cleanup is successful,
then the connection to the log stream can continue. If the cleanup is not successful, then
System Logger fails the log stream connection with an error return and reason code
information along with diagnostic messages to the hardcopy log to aid the invoking program
and installation.

This implementation helps to improve System Logger reliability and availability.

6.4 System Logger publication updates

In z/OS V1R9, informational updates are made to publications that have System Logger
descriptions:

� Using the LOGR CDS has more explicit guidance on sysplex IPL implications.

� An authorized services guide section was created and moved from an unauthorized
publication to z/OS MVS Programming: Authorized Assembler Services Guide,
SA22-7608. The new chapter is “Using System Logger Services”. Also added is ENF48
usage descriptions.

� Section “A.2.4.2 LOGR couple data set use considerations” was rewritten in z/OS MVS
Setting up a Sysplex, SA22-7625.

� The explanation of message IXC287I now refers to a rewritten section “LOGR couple data
set use considerations” in z/OS MVS System Messages, Volume 10 (IXC-IZP),
SA22-7625.

� The chapter “Using System Logger Services” was updated and this relevant section was
moved to z/OS MVS Programming: Assembler Services Guide, SA22-7627. Another
topic, “Expired Log Stream Token”, was added.

� Other documentation changes for the z/OS V1R9 enhancements are in the following
publications:

– z/OS MVS System Commands, SA22-7627

– z/OS MVS Programming: Assembler Services Reference, Volume 2
(IAARR2V-XCRLX), SA22-7607

– z/OS MVS Programming: Authorized Assembler Services Reference, Volume 2
(EDTINFO-IXGWRITE), SA22-7610
74 z/OS Version 1 Release 9 Implementation

Chapter 7. SMF recording to log streams

System Management Facility (SMF) collects and records system and job-related information
for an installation. SMF formats the information that it gathers into system-related records (or
job-related records). System-related SMF records include information about the
configuration, paging activity, and workload. Job-related records include information on the
CPU time, SYSOUT activity, and data set activity of each job step, job, APPC/MVS
transaction program, and TSO/E session.

To record SMF records in SMF data sets, an installation must allocate direct access space
and catalog the SMF data sets. IBM recommends that you catalog the SMF data sets in the
master catalog. SMF should have a minimum of two data sets for its use, and IBM
recommends that you run with a minimum of three SMF data sets to ensure availability.

With z/OS V1R9, SMF can optionally utilize the System Logger to record SMF records into
log streams, which can improve the write rate and increase the volume of data that can be
recorded.

In this chapter we introduce the new SMF records write capability to a log stream using the
System Logger facility.

� SMF overview

� SMF exploring log streams

� Processing SMF log streams

7

© Copyright IBM Corp. 2007. All rights reserved. 75

7.1 SMF overview

SMF is a system component that captures system execution informations and records them
into the SYS1.MANx data set. Also, it has one interface that any application can invoke and
report their performance flow and delays. This information is captured in a user-defined
interval time and recorded in a data set for future processing.

Some installations use the SMF information simply to manage their system and make
performance adjustments in their system definitions. Others installations use the SMF
information to bill their customers.

The amount of SMF record data has increased over the time. SMF writes these records in
one VSAM data set called the SYS1.MANx data set, shown in Figure 7-1, and when it fills up
it switches to another one and marks the first one as dump required.

When a subsystem or user program wishes to write an SMF record, they invoke the SMF
record macro, SMFEWTM. This macro takes the user record and invokes SMF code to locate
an appropriate buffer in the SMF address space and copy the data there, as shown in
Figure 7-1. If the record is full, another SMF program is scheduled to locate full SMF buffers
and write them to the SYS1.MANx data set. Each buffer is numbered to correspond to a
particular record in the SMF data set. This allows the records to be written in any order and to
place them correctly in the data set.

Although this is not shown in Figure 7-1, when all records have been written and the
SYS1.MANx data set is full, SMF switches to a new SYS1.MANx data set, and marks the full
one as DUMP REQUIRED. That data set cannot be used again until it is dumped and
cleared. Scheduling the SMF dump program must be done in a timely manner to ensure that
the SMF MANx data set is returned to use as soon as possible to ensure that no data is lost
due to an “all data sets full” condition.

Figure 7-1 Overview of current SMF data record flow

Ctrl Info

Buffer

Ctrl Info

Buffer

Ctrl Info

Buffer
Ctrl Info

Buffer

Ctrl Info

Buffer

Ctrl Info

Buffer
Ctrl Info

Buffer

Ctrl Info

Buffer

Ctrl Info

Buffer

Ctrl Info

Buffer

Record
Record

Record

Record

Ctrl Info

Buffer

Ctrl Info

Buffer

SMF Address Space

Program

Record

Program requests to write a
SMF record
Locates appropriate buffer in
SMF A.S. to write the record
When ready to write, writes full
buffers to the SMF data set
Note: Each buffer is numbered
to correspond to a particular
record in the SMF data set

SYS1.MANx
76 z/OS Version 1 Release 9 Implementation

Current implementation deficiencies
The current implementation deficiencies are addressed by the new support in z/OS V1R9.
Following are the current problems that have new options:

� Several SYS1.MANx data sets can be defined. SMF records may be lost if all the
SYS1.MANx data sets are filled up and not dumped, or during the SMF switch data set.

� There are situations when that system can generate a significant amount of SMF records,
exceeding the system capacity to write them into the SYS1.MANx data sets.

� The current implementation of SMF can lose data if writes are being held up, when all
SYS1.MANx data sets have become full or across SMF data set switch processing.

� In addition to the possibility of losing data when recording, the SMF dump program is
required to read and write every record to move the data to archive data sets, where it can
then be processed by other programs (such as for sorting), or by the SMF dump program
again to further filter and partition the data for use. This can result in the data being read
by the SMF dump program several times, as it is read and copied for use by the various
exploiters of SMF data.

� The SMF records are written in any order, so they need to be sorted for post processing
and in a sysplex environment, it is necessary to merge all system information in order to
have a sysplex-wide analysis.

� Many installations have already set up automation to dump the SMF data sets using
IFASMFDP as a post processor and they are satisfied with this function. This support
continues the same. However, for installations that need more SMF data record write
capacity, or for those whose SMF records are lost during a data set switch, it is
unacceptable.

7.1.1 SMF and log streams with z/OS V1R9

z/OS V1R9 introduces an additional capability to write SMF records to log streams managed
by System Logger. With this new capability you can define several log stream for several
groups of SMF records. You can define one log stream to write just the RMF records types, so
during the post processor they are already isolated. When you define one log stream you
have to define the SMF records type that will be written to this log stream. You can define a
default log stream to write all the remaining SMF records types not defined to a specific log
stream.

This new support uses the following functions and improvements:

� Utilize System Logger to improve the write rate and increase the volume of data that can
be recorded.

� System Logger utilizes modern technology such as the Coupling Facility and media
manager to write more data at much higher rates than the current SMF SYS1.MANx data
set allows.

� Provide better management of the data by enhancing SMF to record its data to multiple
System Logger log streams, based on record type. The record data is buffered in
dataspaces, instead of the SMF address space private storage, thus allowing increased
buffering capacity.

� Providing keywords on the OUTDD keyword of dump program that allows data to be read
once and written many times. By recording different records to different log streams, SMF
dump processing is also improved because a dump program per log stream can be
submitted, with each being more efficient, since less records are read and ignored. This
reduces processing time because there is less filtering needed by the dump program.
Chapter 7. SMF recording to log streams 77

� One SMF record type can be written to more than one log stream. By selecting log
streams based on record type, the data can be partitioned at the point of its creation,
resulting in less reprocessing by the SMF dump program, which means less data read per
dump program instance.

� For each SMF log stream, a dataspace is created as a buffer in the SMF ASID, so each
buffer is 2 GB. Within SMF, each dataspace will have a task dedicated to writing its data to
a particular log stream, increasing the rate at which you can record data to the Logger.

z/OS V1R9 SMF recording to log streams
When recording to log streams, as shown in Figure 7-2, subsystems or user programs still
invoke the SMFEWTM macro to take the user record and invoke SMF code. However, instead
of locating a buffer in SMF private storage, SMF locates a dataspace corresponding to the
user’s record type and log stream where the record will be written. A buffer with space to hold
the record is located and the record is copied there. When the record is full, a writer task is
posted.

Unlike the scheduled approach in SMF data set recording, this task is already started and
ready to write. In addition, writes to System Logger are done at memory-to-memory speeds,
with System Logger accumulating many, many records to write out, resulting in an improved
access currently not possible with current SMF data set recording.

Using a dataspace to hold the records for a given log stream allows a full 2 GB of pageable
memory to be used for buffering records in the event of delays in log stream writing in System
Logger. This allows more data to be buffered than SMF data set recording, which is limited to
the amount of available private storage in the SMF address space.

Figure 7-2 SMF data flow using log streams

The benefit in all this is that you can write more data faster, with more functionality. The
System Logger was created to handle large volumes of data. With minimal SMF switch
processing and no record numbering schemes to maintain, this eliminates the switch SMF
command bottleneck.

Program requests to write a SMF record
SMF locates correct dataspace
Locates appropriate buffer to write the record
If full, buffer passed to task to be written to log
stream

Record

Program

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer
Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

BufferCtl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer
Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

BufferCtl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

Ctl Inf

Buffer

..

DS1 description

DS2 description

DS2 description

DSn description
.

Dataspace 1 Dataspace 2

Writer
 Task

Writer
 Task

CF CF

DASD Log
Data Sets

..
78 z/OS Version 1 Release 9 Implementation

Coupling Facility or DASD-only log streams
There are two types of log streams, and SMF logging supports both of them:

� Coupling Facility log streams

Data is stored in a Coupling Facility structure and then offloaded to DASD. A Coupling
Facility log stream is ideal for merging SMF data from multiple systems. Make sure that a
system’s SMF ID (SID) is unique within the sysplex.

� DASD-only log streams

Data is stored in local storage buffers and then offloaded to DASD. DASD-only log streams
can only be single-system in scope, and only one system can write data to any given
DASD-only log stream.

7.2 Installation of SMF log streams

The following items are prerequisites for installation of this new function to use SMF recording
of log data using the System Logger and log streams.

IXCMIAPU utility
Use the IXCMIAPU utility with TYPE=LOGR to create the log streams. Remember to plan the
retention period, offload data set size, staging data set size, and whether the log stream will
be CF-based or DASD-only.

Ensure sufficient SMS resources for peak recording periods and offload data sets.

SMFPRMxx parmlib member
Update the SMFPRMxx parmlib member to define the use of log streams and consider the
following criteria:

� Plan to retain your SMF MANx data sets as a fallback plan.

� Update the procedures for SMF SWITCH processing and IEFU29 and IEFU29L exits.

� Update the procedures to indicate how the data will be archived when using log streams.

7.2.1 Defining SMF log streams

Define the log streams and Coupling Facility structures (for Coupling Facility log streams) in
the LOGR policy couple data set using the administrative data utility (IXCMIAPU) utility. You
need to define one new log stream in the LOGR couple data set (CDS) for each LSNAME
statement defined and another (optional) for the DEFAULTLSNAME statement.

You need to consider and define:

� The log stream names and how many log streams to use.

� If you use DASD-only (no automatically merged) or CF structure log (automatically
merged in the CF if more than one system use the same log stream).

� The use of staging data sets.

� Structure names.

Note: The use of log streams for SMF Data is optional. Existing SYS1.MANx function
continues to exist for installations satisfied with this functionality.
Chapter 7. SMF recording to log streams 79

� Retention period.

� Autodelete.

� System Logger requires that you have SMS installed and active, although the SMF log
stream data set and staging data sets do not need to be SMS-managed.

IXCMIAPU utility example
An example of defining SMF log streams is shown in Figure 7-4 on page 82. In this example,
three log streams are defined and shown in Figure 7-4 on page 82. One log stream is
DASD-only and the other two are CF structure log streams. For a CF structure log stream, it is
necessary to associate the log stream definition with the structure definition as shown in the
example. In this example we associated one log stream to one structure, so you can have
better control in the CF structure size and the HIGHOFFLOAD threshold; however, you can
associate several log streams to one structure.

Consider the following specifications in the examples shown in Figure 7-3.

� Define the Coupling Facility structures in the CFRM policy couple data set using the
IXCMIAPU utility.

� Review the LOGR CDS (DSEXTENT) definition, to be able to control all the data sets that
the SMF log streams create for a long retention period. Defining DSEXTENT(10), allows
LOGR to control up to 1680 LOGR data sets for all kinds of log stream data sets.
Changing this keyword requires a reallocate of the LOGR CDS.

� Ensure that there is enough DASD space for the new SMF log stream data set that is
dynamically allocated until that space is migrated. If the LOGR policy migrates the file in
two days, then you need guarantee DASD space for at least two or three days.

Figure 7-3 System Logger configuration for SMF recording to log streams

Consider the following specifications in the examples shown in Figure 7-4 on page 82.

� For a DASD-only SMF log stream, you must specify the LOGR policy MAXBUFSIZE
parameter to define the maximum log block size, in bytes, that the system can write to the
DASD-only log stream.

IBM suggests a MAXBUFSIZE for a DASD-only log stream of 65532. You are required to
define a MAXBUFSIZE of at least 33024.

Logger
Address
Space

Log records duplexing

Offload Data Sets
Data

Dataspace

Log
Block

z/OS

LOGR
Couple

Data Set

Staging
Data Set

CFRM
Couple

Data Set

OffloadsLog
Data Set

DASD
Log

Data Set

 SMF
Address
 Space
80 z/OS Version 1 Release 9 Implementation

� For a Coupling Facility log stream, you must specify the LOGR policy MAXBUFSIZE
parameter to define the maximum log block size, in bytes, that the system can write to the
log stream assigned to the structure you are defining.

IBM suggests that you define a MAXBUFSIZE value between 33024 and 65532. SMF
issues an error message if the MAXBUFSIZE value specified is too small.

� The size of the SMF log stream is defined by the LS_SIZE keyword. If you define
LS_SIZE(100000), this allocates each data set with 556 cylinders.

� Defining AUTODELETE(YES) and RETPD(365) for a log stream means that data sets are
automatically deleted after 365 days. Defining AUTODELETE(NO) indicates to delete the
entries after 365 days using System Logger services which must be provided as a
user-written application.

� HIGHOFFLOAD specifies the percent value you want to use as the high offload threshold
for the Coupling Facility space allocated for this log stream. When the Coupling Facility is
filled to the high offload threshold point or beyond, System Logger begins offloading data
from the Coupling Facility to the DASD log stream data sets. The default HIGHOFFLOAD
value is 80%. You can specify the default in the following way:

HIGHOFFLOAD(80)
Chapter 7. SMF recording to log streams 81

Figure 7-4 JCL example to define an SMF log stream to the LOGR CDS

7.2.2 Updating the CFRM policy for SMF CF structure logstream

CFRM policy is defined using IXCMIAPU utility and it is unique in z/OS sysplex; the new SMF
structure must be appended to the current policy. You need to get a copy of the last CFRM
policy definition using the IXCMIAPU utility and include the statements for the new SMF
structures.

//SMFLOGD JOB 'ACCTNO,ACCTINFO','FIRST LASTNAME',
// MSGLEVEL=(1,1),CLASS=A,NOTIFY=&SYSUID.,MSGCLASS=A
//EXEC1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=X
//SYSIN DD *
 DATA TYPE (LOGR)
 DEFINE STRUCTURE NAME(SMF_PERF)
 LOGSNUM(5)
 AVGBUFSIZE(32767)
 MAXBUFSIZE(65532)
 DEFINE STRUCTURE NAME(SMF_REMIND)
 LOGSNUM(5)
 AVGBUFSIZE(32767)
 MAXBUFSIZE(65532)
 DEFINE LOGSTREAM NAME(IFASMF.PERF)
 DASDONLY(NO)
 STRUCTNAME(SMF_PERF)
 STG_DUPLEX(YES)
 LS_SIZE(100000)
 AUTODELETE(YES)
 RETPD(365)
 HLQ(LOGR)
 HIGHOFFLOAD(80)
 LOWOFFLOAD(0)

DEFINE LOGSTREAM NAME(IFASMF.DEFAULT)
 DASDONLY(NO)
 STRUCTNAME(SMF_REMIND)
 STG_DUPLEX(YES)
 LS_SIZE(100000)
 AUTODELETE(YES)
 RETPD(365)
 HLQ(LOGR)
 HIGHOFFLOAD(80)
 LOWOFFLOAD(0)
 DEFINE LOGSTREAM NAME(IFASMF.JOB)
 DASDONLY(YES)
 MAXBUFSIZE(65532)
 LS_SIZE(30000)
 STG_SIZE(30000)
 AUTODELETE(YES)
 RETPD(365)
 HLQ(LOGR)

HIGHOFFLOAD(80)
 LOWOFFLOAD(0)
/*
82 z/OS Version 1 Release 9 Implementation

Figure 7-5 has an example of the CFRM statements that you need to include in your current
policy.

Figure 7-5 CFRM statements to include in policy

After you define a new policy, you must activate it using the following command:

SETXCF START,POLICY,TYPE=CFRM,POLNAME=CFRMPOL1

7.2.3 Updating the SMFPRMxx parmlib member

During initialization, SMF searches the SMFPRMxx parmlib member to see whether the
system is using log streams or SMF data sets to record SMF data. To use the new SMF log
stream facility you need to include some new statements in the SMFPRMxx parmlib member.

SMF MANx data sets can still be defined in the SMFPRMxx parmlib member if log streams
are to be used. This allows for a fallback to SMF data sets if the exploitation of log streams
encounters unexpected problems.

The new keywords are as follows:

RECORDING(DATASET | LOGSTREAM)
DEFAULTLSNAME(logstreamname)
LSNAME(logstreamname,TYPE{aa,bb}|({aa,bb:zz}))

Choosing log stream names
The statement LSNAME specifies the log stream name that will be used for a particular group
of SMF records type to be captured by this log stream. You can define a default log stream
name on DEFAULTLSNAME, and request particular record types go to particular log streams
using the TYPE subparameter on the LSNAME parameter. You can define several LSNAME
statements to segregate the SMF records.

LSNAME(logstreamname,TYPE({aa,bb}|{aa,bb:zz})

TYPE specifies the SMF record types that SMF is to collect to the specified log stream on
the LSNAME parameter. aa, bb, and zz are the decimal notations for each SMF record
type. You cannot specify subtypes on the TYPE subparameter for LSNAME. A colon (:)
indicates the range of SMF record types (bb through zz) to be recorded.

Value Range: 0-255 (SMF record types)

Default: TYPE (0:255) (all types)

 STRUCTURE NAME(SMF_PERF)
 SIZE(30000)
 INITSIZE(30000)
 PREFLIST(CF2,CF1)
 REBUILDPERCENT(1)

 STRUCTURE NAME(SMF_REMIND)
 SIZE(30000)
 INITSIZE(30000)
 PREFLIST(CF1,CF2)
 REBUILDPERCENT(1)
Chapter 7. SMF recording to log streams 83

The log stream name must be composed as follows:

� The first seven characters must be IFASMF. and if the first six characters are not IFASMF,
the system issues an error message.

� You must have a minimum of 8 characters. A log stream name should be a unique
descriptive identifier, made up of two or more qualifiers (each 1 to 8 characters in length)
separated by periods (.) which you must count as characters.

Each qualifier can contain up to eight numeric, alphabetic, or national ($, #, or @)
characters. The first character of each qualifier must be an alphabetic or national
character.

� You must have a maximum of 26 characters.

� It must conform to other log stream naming conventions as documented in IXGINVNT in
z/OS MVS Programming: Assembler Services Reference, Volume 2 (IARR2V-XCTLX),
SA22-7607.

Choose SMF recording type
If the member specifies RECORDING(LOGSTREAM), SMF will write the SMF data to the log
streams specified on the DEFAULTLSNAME and LSNAME parameters of the SMFPRMxx
parmlib member. You can define DATASET or LOGSTREAM. The default is DATASET.

RECORDING(DATASET | LOGSTREAM)

Although you can identify both SMF data sets and log streams in the SMFPRMxx parmlib
member, only one recording mechanism can be in use at a time. Use the following command
to easily switch between recording types.

SETSMF RECORDING(DATASET|LOGSTREAM)

This facilitates both exploitation of the new function, as well as fallback in case of errors.

Choose default log stream name
The optional statement DEFAULTLSNAME specifies the log stream name that will be used to
capture the SMF records type not defined in any of the LSNAME statements. You should
define another log stream name for the DEFAULTLSNAME following the same convention as
for the of LSNAME statement.

DEFAULTLSNAME(IFASMF.SSID.DEFAULT.SMF)

SMF record types to log streams
If you specify the same record type on two or more different LSNAME parameters, the system
writes the record to all specified log streams. Figure 7-6 on page 85 shows one example of
how to define the new statements in SMFPRMxx. In this case:

� Record type 30 will be written to both log streams IFASMF.PER and IFASMF.JOB.
� Record type 89 will be written to the IFASMF.PERF log stream.
� Record type 04 will be written to the IFASMF.JOB log stream.
� All the other SMF record types will be written to the IFASMF.DEFAULT log stream.

Note: You can use system symbols and the &SID symbol in SMF log stream names. The
resolved substitution text for the &SID system symbol is the system identifier specified on
the SID parameter in SMFPRMxx.

Be aware that &SID can be used only to name resources in SMFPRMxx; you cannot
specify &SID in other parmlib members.
84 z/OS Version 1 Release 9 Implementation

Figure 7-6 SMFPRMxx new statements for log streams

In Figure 7-7, with the use of a colon (:), a range of SMF record types (from 70 to 79) are
recorded to log stream IFASMF.PERF and SMF record types 30 and 4 are recorded on log
stream IFASMF.JOB. All the other SMF record types will be written to the IFASMF.DEFAULT
log stream.

Figure 7-7 SMFPRMxx log stream statements segregating RMF records

7.2.4 SMFPRMxx parmlib member considerations

When defining the new statements and keeping the old data set definition in the SMFPRMxx
parmlib member, it is possible to switch between the two recording methods using the SETSMF
command. During an IPL, the recording method statement definition is used or the default is
used.

To use the SETSMF command to switch between modes, you are required to define the option
PROMPT(LIST) or PROMPT(ALL) in the current SMFPRMxx parmlib member.

It is recommended that you define the DEFAULTLSNAME statement for those SMF record
types that do not have a specific log stream defined. If a mismatch occurs between the SMF
record type that is defined in the SYS or SUBSYS statement and the SMF record type that
has been captured by any LSNAME statement, and you are switching from data set mode to
log stream mode, then the system will not complete the SET SMF=XX command execution and
it will continue recording in data set mode.

If you are running with log stream mode and switch to another log stream mode and the
mismatch occurs, the system will continue with the old log stream mode until you fix the
mismatch and reuse the SET SMF=XX command.

If you are IPLing your system to run in log stream mode and the mismatch occurs, the system
will buffer the SMF records until you fix the problem and reissue the SET SMF=XX command.

DEFAULTLSNAME(IFASMF.DEFAULT)
LSNAME(IFASMF.PERF,TYPE(30,89))
LSNAME(IFASMF.JOB,TYPE(30,04))
RECORDING(LOGSTREAM)

DEFAULTLSNAME(IFASMF.DEFAULT)
LSNAME(IFASMF.PERF,TYPE(70:79))
LSNAME(IFASMF.JOB,TYPE(30,04))
RECORDING(LOGSTREAM)

Note: This specification can result in duplicate records being recorded.

Note: For SMF log stream recording, you can direct record types to particular log streams
by using the TYPE subparameter on LSNAME. You still select the records you want to
write with the TYPE/NOTYPE option of SYS or SUBSYS.

This means it is possible to specify record types on the TYPE subparameter of LSNAME
that the system is not actually recording, because they are not specified on SYS or
SUBSYS.
Chapter 7. SMF recording to log streams 85

If a mismatch occurs during a change of the SMFPRMxx parmlib member parameters switch,
or an IPL is done, then the following messages may be issued:

IFA702I NO LOGSTREAMS WERE SPECIFIED FOR THE FOLLOWING RECORD TYPES n1-nx
IFA710I LOGSTREAM PARAMETERS WILL NOT BE USED DUE TO ERROR
IFA717I LOGSTREAMS ARE NOT USABLE BY SMF. DATA BEING BUFFERED TIME=hh.mm.ss

7.2.5 Switching to log stream mode

There are several ways to switch to the SMF log stream recording mode:

� Use the SETSMF command if your current SMFPRMxx parmlib member has both (data sets
and log stream) definitions and the PROMPT keyword.

SETSMF RECORDING(LOGSTREAM)

� Use the SET SMF=xx command, if you defined a new SMFPRMxx parmlib member with log
stream definitions.

SET SMF=XX

� When you are IPLing the system and pointing to the new SMFPRMxx parmlib member
that specifies RECORDING(LOGSTREAM), however, this is not the preferred way to
migrate to SMF log streams. This is because, if you have definition problems, the system
will buffer the SMF records in a dataspace until you fix it.

The preferable way to migrate is to create a new SMFPRMxx parmlib member that
includes the new statements, and then use the SET SMF=XX command because most
members use the NOPROMPT option. You will receive the messages shown in the IPL
example in Figure 7-8, Figure 7-9 on page 87, and Figure 7-10 on page 88.

Figure 7-8 Setting the access to a specific SMFPRMxx parmlib member during IPL

SET SMF=10
 IEE252I MEMBER SMFPRM10 FOUND IN SYS1.PARMLIB
 IEE967I 10.04.06 SMF PARAMETERS 977
 MEMBER = SMFPRM10
 MULCFUNC -- DEFAULT

.......

.......
SID(SC70) -- DEFAULT
DEFAULTLSNAME(IFASMF.DEFAULT) -- PARMLIB

 PROMPT(LIST) -- PARMLIB
 DSNAME(SYS1.SC70.MAN3) -- PARMLIB
 DSNAME(SYS1.SC70.MAN2) -- PARMLIB
 DSNAME(SYS1.SC70.MAN1) -- PARMLIB
 ACTIVE -- PARMLIB
*155 IEE357A REPLY WITH SMF VALUES OR U
86 z/OS Version 1 Release 9 Implementation

Figure 7-9 IPL messages (continued)

R 155,U
IEE600I REPLY TO 155 IS;U

.......
IEE974I 10.04.34 SMF DATA SETS 007
 NAME VOLSER SIZE(BLKS) %FULL STATUS
 P-SYS1.SC70.MAN1 SBOXD5 1500 0 ALTERNATE
 S-SYS1.SC70.MAN2 SBOXD5 1500 67 ACTIVE
 S-SYS1.SC70.MAN3 SBOXD5 1500 0 ALTERNATE
 IEF196I IGD100I 6E16 ALLOCATED TO DDNAME SYS00132 DATACLAS ()
 IEF196I IEF237I 6E16 ALLOCATED TO SYS00133
 IXC582I STRUCTURE SMF_PERF ALLOCATED BY SIZE/RATIOS. 010
 PHYSICAL STRUCTURE VERSION: C09A71D3 A709EB4B
 STRUCTURE TYPE: LIST
 CFNAME: CF2
 ALLOCATION SIZE: 30208 K
 POLICY SIZE: 30000 K
 POLICY INITSIZE: 30000 K
 POLICY MINSIZE: 0 K
 IXLCONN STRSIZE: 0 K
 ENTRY COUNT: 678
 ELEMENT COUNT: 41802
 ENTRY:ELEMENT RATIO: 1 : 65
 ALLOCATION SIZE IS WITHIN CFRM POLICY DEFINITIONS
 IXL014I IXLCONN REQUEST FOR STRUCTURE SMF_PERF 011
WAS SUCCESSFUL. JOBNAME: IXGLOGR ASID: 0017
 CONNECTOR NAME: IXGLOGR_SC70 CFNAME: CF2
 IXL015I STRUCTURE ALLOCATION INFORMATION FOR 012
 STRUCTURE SMF_PERF, CONNECTOR NAME IXGLOGR_SC70
 CFNAME ALLOCATION STATUS/FAILURE REASON
 -------- ---------------------------------
 CF2 STRUCTURE ALLOCATED AC001800
 CF1 PREFERRED CF ALREADY SELECTED AC001800
 IEF196I IGD100I 836A ALLOCATED TO DDNAME SYS00134 DATACLAS ()
 IEF196I IEF237I 836A ALLOCATED TO SYS00135
IXC582I STRUCTURE SMF_REMIND ALLOCATED BY SIZE/RATIOS. 016
PHYSICAL STRUCTURE VERSION: C09A71D4 33740214
 STRUCTURE TYPE: LIST
 CFNAME: CF1
 ALLOCATION SIZE: 30208 K
 POLICY SIZE: 30000 K
 POLICY INITSIZE: 30000 K
 POLICY MINSIZE: 0 K
 IXLCONN STRSIZE: 0 K
 ENTRY COUNT: 678
 ELEMENT COUNT: 41802
 ENTRY:ELEMENT RATIO: 1 : 65
 ALLOCATION SIZE IS WITHIN CFRM POLICY DEFINITIONS
 IXL014I IXLCONN REQUEST FOR STRUCTURE SMF_REMIND 017
 WAS SUCCESSFUL. JOBNAME: IXGLOGR ASID: 0017
 CONNECTOR NAME: IXGLOGR_SC70 CFNAME: CF1
 IXL015I STRUCTURE ALLOCATION INFORMATION FOR 018
 STRUCTURE SMF_REMIND, CONNECTOR NAME IXGLOGR_SC70
Chapter 7. SMF recording to log streams 87

Figure 7-10 Final IPL messages and display of current SMF log stream allocations

7.3 Dumping the SMF log stream data set

With z/OS V1R9, a new SMF dump program called IFASMFDL is available. The IFASMFDP
utility is used to process the SMF MANx data sets, isolate the records, create files to be
post-processed, and clean the MAN data sets. Now, with log steam data sets, the new
IFASMFDL utility reads the log streams and can create several different files as required in
just one step.

The record data from the new SMF dump program IFASMFDL should be virtually
indistinguishable from data dumped by the SMF data set dump program IFASMFDP. You will
just need to change your JCL to use the new IFASMFDL utility.

IFASMFDL dump program utility
The SMF log stream dump program dumps the contents of one or more log streams to
sequential data sets on either tape or direct access devices. The SMF log stream dump
program allows the installation to route different records to separate files and produce a
summary activity report.

A new feature in the SMF log stream dump program is the addition of filters on the OUTDD
statements. Previously, each OUTDD would receive all the records specified on the main filter
keywords of DATE/START/END/SID. If it was required to create different OUTDD data sets
with different records from the same input, it was necessary to run the dump program a
second time to create that second data set.

Now, with the new IFASMFDL utility, it is possible to specify those same filters on the OUTDD
statement, allowing the capability to read the log stream one time, and partition the output,
sending different records to different data sets. This should result in fewer invocations of the
dump program being required, in turn causing less impact to the system by reading the log
stream only once.

IFASMFDL utility example
In the example shown in Figure 7-11 on page 89, the three OUTDD statements refer to the
three data sets defined in the JCL, and they specify the SMF record types to be written to
each data set. The JCL is explained as follows:

� The DCB= keyword has been coded for the output data set defined by OUTDD2. Any
block size 4096 or greater may be specified. Choosing a block size suitable for the device
type being used will improve storage resource use. For this job, the data set specified by

IFA711I LOGSTREAM PARAMETERS ARE IN EFFECT
 IEE536I SMF VALUE 10 NOW IN EFFECT
 D SMF
 IFA714I 10.04.36 SMF STATUS 032
 LOGSTREAM NAME BUFFERS STATUS
 A-IFASMF.DEFAULT 4325 CONNECTED
 A-IFASMF.PERF 0 CONNECTED
 A-IFASMF.JOB 0 CONNECTED

Note: A feature in the SMF dump program for log streams allows you to partition output
data based on date, time, and SMF ID (SID).
88 z/OS Version 1 Release 9 Implementation

OUTDD1 will have a system-determined block size. The data set specified by OUTDD2
will have a block size of 32000.

� The LRECL= keyword has been coded for an output data set defined as OUTDD3. For this
job, the data set specified by OUTDD3 will have an LRECL of 32760. For OUTDD1 and
OUTDD2, the LRECL will default to 32767.

� The LSNAME parameters contain the names of three log streams to be dumped.

� The OUTDD parameters contain filters selecting the SMF record types to be dumped:

– OUTDD1 specifies that you want to dump record types 0,2,10,15-30, and subtype 1 of
record type 33 starting with those issued at 7:30 am and ending at 6:50 pm.

– OUTDD2 specifies that you want to dump record types 10 through 255 from dates
October 1, 2006 through November 30, 2006.

– OUTDD3 specifies that you want to dump record types 10 through 255.

� The DATE parameter specifies, for those OUTDD statements which do not include the
DATE subparameter, that data from January 1, 2006 through December 31, 2006 is to be
written.

� The SID parameters specify that data will be dumped for systems 308A and 308B.

Figure 7-11 Sample job for dumping SMF log streams

IFASMFDL utility output
If you want to use the SMF log stream facility to take advantage of the high speed services
that IXGLOGR can provide, and you also want to keep your old way of storing your SMF data,

//IFASMFDL JOB accounting information
//STEP EXEC PGM=IFASMFDL
//OUTDD1 DD DSN=SMFREC.FEWTYPES,DISP=(NEW,CATLG,DELETE)
//OUTDD2 DD DSN=SMF.TYPE10.TYPE255,DISP=(NEW,CATLG,DELETE),
// DCB=BLKSIZE=32000
//OUTDD3 DD DSN=SMF.TYPE10.TYPE255B,DISP=(NEW,CATLG,DELETE),
// DCB=LRECL=32760
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 LSNAME (IFASMF.DEFAULT)
 LSNAME (IFASMF.PERF)
 LSNAME (IFASMF.JOB)
 OUTDD (OUTDD1,TYPE(0,2,10,15:30,33(1)),START(0730),END(1850))
 OUTDD (OUTDD2,TYPE(10:255)),DATE(2006274,2006334)
 OUTDD (OUTDD3,TYPE(10:255))
 DATE (2006001,2006365)
 SID (308A)
 SID (308B)

END(2400) - DEFAULT
START(0000) - DEFAULT

Note: There can be any number of input (LSNAME) or output (OUTDD) parameters in the
SMF log stream dump program. The log streams are dumped in reverse order.

For example, in Figure 7-11 on page 89, three log streams are specified. After the SMF log
stream dump program is processed, the output files contain the records from log stream
IFASMF.JOB first, IFASMF.PERF next, followed by the records from IFASMF.DEFAULT.
Chapter 7. SMF recording to log streams 89

then you can do it using this new utility. You can define your retention period as long as you
need to copy them. The job output will provide the summary activity report shown in
Figure 7-12.

Figure 7-12 SYSOUT output from IFASMFDL dump program execution

 SUMMARY ACTIVITY REPORT
START DATE-TIME 05/17/2007-23:55:41 END DATE-TIME 05/21/2007-12:22:38
RECORD RECORDS PERCENT AVG. RECORD MIN. RECORD MAX. RECORD RECORDS
TYPE READ OF TOTAL LENGTH LENGTH LENGTH WRITTEN
 0 2,538 2.14 % 74.00 74 74 1,137
 2 0 3
 3 0 3
 5 45 .04 % 148.64 145 161 0
 14 2,367 2.00 % 471.79 344 716 1,612
 15 1,457 1.23 % 347.11 344 380 1,400
 17 17 .01 % 100.00 100 100 21
 18 9 .01 % 144.00 144 144 3
 20 360 .30 % 97.09 91 107 485
 22 58 .05 % 52.00 52 52 120
 23 51 .04 % 134.00 134 134 59
 26 78 .07 % 444.98 442 449 0
 28 14 .01 % 188.00 188 188 21
 32 6 .01 % 320.00 296 416 8
 34 6 .01 % 215.00 215 215 8
 35 6 .01 % 152.00 152 152 8
 40 23,307 19.65 % 76.43 74 890 21,456
 41 203 .17 % 332.00 332 332 192
 42 12,608 10.63 % 556.93 176 23,796 10,512
 60 52 .04 % 592.82 344 691 34
 61 32 .03 % 327.18 279 420 30
 62 5 .00 % 188.00 188 188 8
 64 8 .01 % 458.00 458 458 16
 65 23 .02 % 339.26 300 395 14
 66 48 .04 % 335.18 286 420 26
 71 303 .26 % 1,752.00 1,752 1,752 286

72 29,997 25.29 % 1,177.61 1,076 2,296 28,314
 73 304 .26 % 19,704.00 19,704 19,704 286
 74 23,048 19.43 % 16,393.68 236 32,720 21,736
 75 1,515 1.28 % 264.00 264 264 1,430
 78 606 .51 % 11,588.00 1,888 21,288 572
 80 1,229 1.04 % 327.36 231 421 780
 88 5,508 4.64 % 234.01 161 308 5,172
 89 102 .09 % 1,737.76 290 3,146 92
 92 12,632 10.65 % 216.05 168 348 10,758
 94 50 .04 % 348.00 348 348 48
TOTAL 118,592 100 % 3,731.88 52 32,720 106,650
NUMBER OF RECORDS IN ERROR 0

Note: SMF recording to the MANx data sets is retained in this release and the current
configuration can remain as it is. In this release, the record data from the new SMF dump
program IFASMFDL should be virtually indistinguishable from data dumped by the SMF
data set dump program IFASMFDP.

There are expected changes to vendor code that uses “live” SMF data, that is, data that is
still resident in the SMF “MAN” data sets. Vendor programs that read data from data sets
created by the SMF dump program, as indicated above, are not affected.
90 z/OS Version 1 Release 9 Implementation

7.3.1 Using the SWITCH command with log streams

When you need to dump an SMF log stream in order to archive the data to a permanent
medium so that an existing user-written analysis routine can run against the dump data sets,
you can dump SMF log stream data by issuing the SWITCH SMF command. This command first
dumps the SMF data in the buffers out to the log streams, and then passes control to the
IEFU29L SMF log stream dump exit. Use the SMF log stream dump program IFASMFDL to
dump the specified log stream data to dump data sets. For more information about the
IEFU29L exit, refer to z/OS MVS Installation Exits, SA22-7593.

Note that this differs from the MANx SMF data set dump program, because there is no
CLEAR option on the log stream dump program to delete data. When you use log streams to
record SMF data, there is no reason to delete data during the dump process. System Logger
allows you to manage log data retention using options on the log stream definition in the
LOGR couple data set specified using the administrative data utility IXCMIAPU, as shown in
Figure 7-4 on page 82.

7.4 Migration considerations

SMF MANx data sets can still be defined in the SMFPRMxx parmlib member. This allows a
fallback to SMF data sets if the exploitation of log streams encounters unexpected problems.

Although you can identify both SMF data sets and log streams in the SMFPRMxx parmlib
member, only one recording mechanism can be in use at a time. The SETSMF
RECORDING(DATASET|LOGSTREAM) command allows you to easily switch between recording
types. This facilitates both exploitation of the new function, and fallback in case of errors.

Consider a situation where you need to change the end location of your data to keep the data
completely partitioned throughout (that is, from time of creation to time of archival or deletion).
For example, you may not want to change the location of billing data without the concurrence
of the data’s users. In terms of coexistence, you can use either DASD-only or CF-based log
streams. If multiple systems record to the same log stream, be sure to have unique SMF IDs
(SIDs) for each system.

Migration examples
Consider the following ways to migrate from the current SMF recording to the use of log
streams and the System Logger.

Example 1
You can set up one log stream to write data to a DASD-only log stream, simply replacing SMF
MANx data sets. This is probably the simplest approach to using log streams because you
will have better performance using a log stream as opposed to using SMF MANx data sets.
The benefit of this approach is to familiarize yourself with using the log stream.

Use DEFAULTLSNAME(IFASMF.xxx) or LSNAME(IFASMF.xxx,TYPE(0:255)) to specify the
log stream and either use the DEFAULTLSNAME or LSNAME keywords to indicate which log
stream to write the records. Then use the new SMF dump program IFASMFDL to extract and
dump the records.
Chapter 7. SMF recording to log streams 91

Example 2
You can set up several log streams, with each log stream for a particular purpose:

� Specify one log stream is to receive all performance-related records, using a log stream
named IFASMF.PERF.DATA

Record types 30, 70-72 and 99

� Specify a log stream to receive all audit-related records, such as RACF might need, using
a log stream named IFASMF.AUDIT.DATA

Record types 30, 80, 81, and 83

� Specify a log stream for DB2 data, which can be extensive, named IFASMF.DB2.DATA

� Specify a log stream for everything else that can be routed to a default log stream for
retention or deletion as required

With four separate log streams, four separate SMF dump programs can be used to dump and
archive the data. Each dump program can run faster because there are fewer records to
process, filter, or ignore.

The retention and offload parameters of each log stream can be tuned via the IXCM2APU
utility with TYPE=LOGR to ensure proper retention and performance.
92 z/OS Version 1 Release 9 Implementation

Chapter 8. GRS enhancements

z/OS provides multiple ways of providing serialized access to data on single or multiple
systems, but global resource serialization (GRS) is a fundamental way for programs to get
the control they need and ensure the integrity of resources in a multisystem environment.

Because global resource serialization is automatically part of a z/OS system and is present
during z/OS initialization, it provides the application programming interfaces that are used by
the applications on the system. The enhancements are designed to make better use of 64-bit
addressing to improve performance for ISGENQ and ENQ/DEQ/RESERVE
LINKAGE=SYSTEM users.

This chapter describes the enhancements to global resource scheduling (GRS) in z/OS
V1R9:

� Global resource serialization (GRS) overview

� Performance enhancements for LATCH processing

� GRS storage constraint relief

� ISGECA API support

� Performance enhancements for CMSEQDQ lock processing

8

© Copyright IBM Corp. 2007. All rights reserved. 93

8.1 Global resource serialization overview

In a star complex, global resource serialization (GRS) uses an XES lock structure to serialize
requests for global resources. All systems in a star complex must be members of the same
sysplex and be connected to a Coupling Facility containing the global resource serialization
lock structure (ISGLOCK) to manage contention for global resources. For practical purposes,
where global resource serialization star complex is concerned, the terms sysplex and complex
are synonymous. No channel-to-channel (CTC) connection of systems, other than those
managed by XCF, are supported by global resource serialization in a star complex.

ISGLOCK lock structure
When a system in a star complex issues an ENQ, DEQ, ISGENQ, or RESERVE request for a
global resource, global resource serialization converts the request to a lock request against
the ISGLOCK lock structure. Global resource serialization uses the ISGLOCK lock structure
to coordinate the requests to ensure proper resource serialization across all systems in the
complex. The status of each request is returned to the system that originated the request.
Based on the results of these lock requests, global resource serialization will respond to the
requester with the outcome of the serialization request.

Global ENQ/DEQ processing overview
In a star complex, requests for ownership of global resources will be handled through
ISGLOCK, the lock structure, on a Coupling Facility that is fully connected with all the
systems in the sysplex. Global resource serialization uses the ISGLOCK lock structure to
reflect a composite system-level view of the interest in every global resource, for which there
is at least one requester. In general, global resource serialization alters this composite view
each time you change the set of requesters for the resource.

Each time an ENQ request is received, global resource serialization processing analyzes the
state of the resource request queue for the resource. If the new request alters the composite
state of the queue, an IXLLOCK macro request is made to reflect the changed state of the
resource for the requesting system. If the resource is immediately available, the requester is
then granted ownership of the resource.

If the resource is not immediately available, global resource serialization will maintain the
request in the waiting state. When the appropriate DEQ request is received, global resource
serialization will either resume or post the requester (depending on the ENQ options).

8.1.1 Setting address space ENQ limits

GRS enforces a limit on the maximum number of concurrent ENQ, ISGENQ, RESERVE,
GQSCAN, and ISGQUERY requests issued by an address space. The general purpose of
enforcing a limit is to prevent a runaway ENQ address space from exhausting GRS private
storage. In z/OS releases prior to V1R8, the maximum number of concurrent requests is:

� 4,096 for unauthorized requests

� 250,000 for authorized requests

These are system-wide maximums. They apply to all address spaces in the system. Note that
ENQ RET=CHNG, ENQ RET=TEST, and their equivalent ISGENQ requests do not increase
the number of concurrent requests. However, GQSCAN and ISGQUERY REQINFO=QSCAN
requests, where the filled answer area results in a request token for continuation, do increase
the number of concurrent requests.
94 z/OS Version 1 Release 9 Implementation

Current application ENQ problems
As installations grow and applications get more complex, the number of concurrent ENQ
requests may rise to exceed the maximum values. An unauthorized workload such as CICS
may already exceed the current maximum values in your environment. Future authorized
workloads such as DB2 V8 may pose a similar problem. Some installations are already
zapping the maximum values to allow for a greater number of concurrent ENQs than the
system-wide defaults.

New limits for ENQs
GRS is enhanced in z/OS V1R8 to allow greater flexibility and control over the system-wide
maximums. In z/OS V1R8, the default values are:

� 16,384 for unauthorized requests

� 250,000 for authorized requests

z/OS V1R8 allows you to set the system-wide maximum values. Furthermore, it is now
possible for an authorized caller to set its own address space-specific limits. These new
values substantially increased STAR mode capacity. The majority of the persistent ENQs are
global ENQs as they are data set related. However, z/OS V1R8 only provided minimal relief
for GRS=NONE, GRS=RING mode systems, and systems running some ISV serialization
products.

Current installation modifications
In order to provide support for setting the maximums, some non-programming interfaces with
the z/OS V1R8 are changed. If you are already zapping the maximums at your installation (a
non-programming interface), the changes in z/OS V1R8 may cause some incompatibilities.
Prior to z/OS V1R8, it was necessary to zap the GVTCREQ and GVTCREQA fields in the
GVT to change the maximums. When you upgrade to z/OS V1R8, there is a new
mechanisms for setting the maximums.

To check whether you are currently zapping the maximums in the GVT at your installation,
follow this procedure (remember this is only true for pre-z/OS V1R8 releases):

� From ISPF, you can use ISRDDN as follows:

ISRDDN provides a BROWSE command for browsing storage and loaded modules. We
use the BROWSE command to check the values in the GVT fields.

� From the ISRDDN command line, enter this command:

BROWSE 0.+10?+1B0?

This command uses the pointer at offset X’1B0’ of the CVT to get to the GVT. The pointer
to the CVT is located at offset X’10’ in virtual storage. After issuing the command, a
browse screen is displayed.

� To verify you are really looking at the GVT, check for the “GVT” eye catcher at offset X’0’,
as shown in Figure 8-1 on page 96.

� Check the GVTCREQ field value at offset X’80’ and the GVTCREQA field value at offset
84.

If you see the default values in the GVTCREQ and GVTCREQA fields, then you are not
zapping the GVT in your installation. When using the default values, the GVTCREQ field
holds a value of 4,096 (X’1000’) and the GVTCREQA field holds a value of 250,000
(X’3D090’), as displayed in Figure 18-1 on page 376.

Note: The GVTCREQ and GVTCREQA fields are no longer zappable with z/OS V1R8.
Chapter 8. GRS enhancements 95

� Check the GVTCREQ field value at offset X’80’ and the GVTCREQA field value at offset
84.

If you see the default values in the GVTCREQ and GVTCREQA fields, then you are not
zapping the GVT in your installation.

Figure 8-1 Verifying GVT fields using the ISRDDN BROWSE command

ISGADMIN service
The ISGADMIN service allows you to programmatically change the maximum number of
concurrent ENQ, ISGENQ, RESERVE, GQSCAN, and ISGQUERY requests in an address
space. This is useful for subsystems such as CICS and DB2, which have large numbers of
concurrently outstanding ENQs, query requests, or both. Using ISGADMIN, you can set the
maximum limits of unauthorized and authorized concurrent requests. It is impossible to set
the maximums lower than the system-wide default values.

New keywords in the GRSCNFxx parmlib member
To allow you to control the system-wide maximums, two new keywords are added to the
GRSCNFxx parmlib member:

ENQMAXU(value) Identifies the system-wide maximum of concurrent ENQ requests for
unauthorized requesters. The ENQMAXU range is 16,384 to
99,999,999. The default is 16,384.

ENQMAXA(value) Identifies the system-wide maximum of concurrent ENQ requests for
authorized requesters. The ENQMAXA range is 250,000 to
99,999,999. The default is 250,000.

SETGRS ENQMAXU and SETGRS ENQMAXA operator commands
z/OS V1R8 provides operator commands to allow you to dynamically set the system-wide
maximums. Use the SETGRS ENQMAXU command to set the system-wide maximum number of
concurrent unauthorized requests, and the SETGRS ENQMAXA command to set the system-wide
maximum number of concurrent authorized requests.

The format of the new operator commands is shown in Figure 8-2 on page 97.

Note: When using the default values, the GVTCREQ field and the GVTCREQA field
holds a value of 250,000 (X’3D090’), as displayed in Figure 8-1 on page 96.
96 z/OS Version 1 Release 9 Implementation

Figure 8-2 Format of the SETGRS ENQMAXU and ENQMAXA operator commands

GRS messages for concurrent requests
When an address space exceeds 80% of the maximum concurrent requests, GRS issues the
ISG368E message. When the number of concurrent requests in the address space drops
below 75% of the maximum, the ISG369I message is issued and the ISG368E message is
DOMed. You can use the NOPROMPT parameter to automate the response to message
ISG368E.

In general, the SETGRS ENQMAXU and SETGRS ENQMAXA commands are intended for
emergency situations and not for normal operations. Keep in mind that the system-wide
maximums are intended to protect GRS from runaway ENQ address spaces. Increasing the
system-wide maximums makes GRS more vulnerable to run away ENQ address spaces.

If you have an address space that requires a higher maximum than the system-wide
maximums, the recommended action is to change the application to use the ISGADMIN
service to request a higher address space-specific maximum.

8.1.2 Contention notification system movement

Resource contention can result in poor system performance. When resource contention lasts
over a long period of time, it can result in program starvation or deadlock conditions.

When running in ring mode, each system in the GRS complex is aware of the complex-wide
ENQs, which allows each system to issue the appropriate ENF 51 contention notification
event. However, when running in star mode, each system only knows the ENQs that are
issued by itself.

To ensure that the ENF 51 contention notification event is issued on all systems in the GRS
complex in a proper sequential order, one system in the complex is appointed as the
sysplex-wide contention notifying system (CNS). All ENQ contention events are sent to the
CNS, which then issues a sysplex wide ENF 51.

GRS provides two APIs to query for contention information:

ISGECA Obtains waiter and blocker information for GRS managed resources.

ISGQUERY Obtains the status of resources and requester of those resources.

GRS issues an event notification facility (ENF) signal 51 to notify monitoring programs to
track resource contention. This is useful in determining contention bottlenecks, preventing
bottlenecks, and potentially automating correction of these conditions.

During an IPL, or if the CNS can no longer perform its duties, any system in the complex can
act as the CNS. You can determine which system is the current CNS with the D GRS
command. In the example shown in Figure 8-3 on page 98, you can see that the CNS is
SC64.

SETGRS ENQMAXU=nnnnnnnn[,NOPROMPT|NP]

SETGRS ENQMAXA=nnnnnnnn[,NOPROMPT|NP]
Chapter 8. GRS enhancements 97

Figure 8-3 Output of the DISPLAY GRS command

The SETGRS CNS operator command
The CNS can take up a considerable amount of system resources. You may prefer that it
does not reside on your main production system, or you may prefer that it does not reside on
a test system with insufficient capacity to handle the function. Starting with z/OS V1R8, you
can choose the system to act as the CNS with the SETGRS CNS command. The format of
this command is shown in Figure 8-4.

Figure 8-4 Format of the SETGRS CNS command

Figure 8-5 shows an example of changing the CNS from system SC64 to system SC70.

Figure 8-5 Setting the CNS using SETGRS command

Setting CNS during the IPL
It is currently not possible to set the CNS from the GRSCNFxx parmlib member, because
GRSCNFxx parsing is done too early in system initialization for setting the CNS across the
sysplex. If you require the CNS to reside on a specific system, it is recommended that you
use the SETGRS CNS operator command with the NOPROMPT parameter. You can add the

D GRS
ISG343I 15.44.37 GRS STATUS 544
SYSTEM STATE SYSTEM STATE
SC65 CONNECTED SC64 CONNECTED
SC70 CONNECTED SC63 CONNECTED
GRS STAR MODE INFORMATION
 LOCK STRUCTURE (ISGLOCK) CONTAINS 1048576 LOCKS.
 THE CONTENTION NOTIFYING SYSTEM IS SC64
 SYNCHRES: YES
 ENQMAXU: 16384
 ENQMAXA: 250000
 GRSQ: CONTENTION

SETGRS CNS=system-name[,NOPROMPT|NP]

SETGRS CNS=SC70
*092 ISG366D CONFIRM REQUEST TO MIGRATE THE CNS TO SC70. REPLY CNS=SC70
TO CONFIRM OR C TO CANCEL.

092CNS=SC70
 IEE600I REPLY TO 092 IS;CNS=SC70
 IEE712I SETGRS PROCESSING COMPLETE
 ISG364I CONTENTION NOTIFYING SYSTEM MOVED FROM SYSTEM SC64 TO SYSTEM SC70.

OPERATOR COMMAND INITIATED.
D GRS
 ISG343I 15.54.47 GRS STATUS 565
 SYSTEM STATE SYSTEM STATE
 SC65 CONNECTED SC64 CONNECTED
 SC70 CONNECTED SC63 CONNECTED
 GRS STAR MODE INFORMATION
 LOCK STRUCTURE (ISGLOCK) CONTAINS 1048576 LOCKS.
 THE CONTENTION NOTIFYING SYSTEM IS SC70
 SYNCHRES: YES
 ENQMAXU: 16384
 ENQMAXA: 250000
 GRSQ: CONTENTION
98 z/OS Version 1 Release 9 Implementation

command to the COMMNDxx parmlib member to have it issued automatically at IPL. An
example of the SETGRS CNS command with NOPROMPT is shown in Figure 8-6.

Figure 8-6 Setting the CNS using the SETGRS command with NOPROMPT

Coexistence with down-level systems
The support for CNS movement across systems in a GRS star complex requires that all
systems in the complex run z/OS V1R8. Systems running z/OS V1R7 with APAR OA11382
are also supported. If any system in the complex is an earlier release than z/OS V1R7, the
SETGRS CNS command cannot be issued by any member of the complex.

If the CNS system fails, one of the remaining systems in the complex automatically becomes
the new CNS. You can use automation for the rare case when the CNS moves from one
system to another. Depending on the trigger (operator command or system failure), the
system issues one of the following messages in case the CNS moves from one system to
another:

ISG364I CONTENTION NOTIFYING SYSTEM MOVED FROM SYSTEM xxxx TO SYSTEM yyyy.
OPERATOR COMMAND INITIATED.

ISG364I CONTENTION NOTIFYING SYSTEM MOVED FROM SYSTEM xxxx TO SYSTEM yyyy.
SYSTEM INITIATED.

8.2 GRS storage constraint relief with z/OS V1R9

GRS has its own internal storage management system to make the best overall use of its
private storage and maintain performance for its various services. In systems with many data
sets left open for long periods of time, it is possible to exhaust storage. If left unchanged, this
problem would only worsen as system capacity increases.

z/OS V1R9 provides storage constraint relief for all GRS modes by using 64-bit addressing
for storage used to represent all ENQs in all GRS modes. Users that keep more than 100 k
data sets allocated have exhausted the GRS private area to represent all these ENQs. All the
control blocks now reside in 64-bit mode.

SETGRS CNS=SC64,NP
IEE712I SETGRS PROCESSING COMPLETE
 ISG364I CONTENTION NOTIFYING SYSTEM MOVED FROM SYSTEM SC70 TO SYSTEM SC64.

OPERATOR COMMAND INITIATED.
D GRS
 ISG343I 16.04.36 GRS STATUS 746
 SYSTEM STATE SYSTEM STATE
 SC65 CONNECTED SC64 CONNECTED
 SC70 CONNECTED SC63 CONNECTED
 GRS STAR MODE INFORMATION
 LOCK STRUCTURE (ISGLOCK) CONTAINS 1048576 LOCKS.
 THE CONTENTION NOTIFYING SYSTEM IS SC64
 SYNCHRES: YES
 ENQMAXU: 16384
 ENQMAXA: 250000
 GRSQ: CONTENTION
Chapter 8. GRS enhancements 99

The enhancements for this new support in z/OS V1R9 have the following new interfaces:

� A new MOVEWAITER function for the existing ISGADMIN service is being added for
specific queue manipulation required by ISVs.

� A new resource instance token for resources local to the current system is presented to
some ISV-oriented installation exits and also returned by ISGQUERY. This allows the ISV
to be able to coordinate events between exits.

� The ENQTOKEN representing the instance of an ENQ requester’s interest in the resource
(a QEL) is presented to the queued (ISGNQXITQUEUED1) exit.

During the rewrite of these enhancements, the following improvements were made that
provide better performance for ENQ intensive environments and better serviceability:

� The quality of dump contents improves, which helps to insure better first failure data
capture.

� A significantly reduced CMSEQDQ lock hold time will be experienced.

� Much better performance should be seen for ISGENQ and ENQ/DEQ/RESERVE
LINKAGE=SYSTEM users.

� A detailed system trace is now issued for all ENQ-related services.

� The time that an ENQ/RESERVE/ISGENQ is issued is externalized via GRS IPCS reports
and ISGQUERY. The ENQ time can be useful for problem determination or run time
checks. It has been captured by GRS in previous releases, but had not been externalized.

Some serialization products reference and sometimes alter GRS control blocks. With z/OS
V1R8, to access these control blocks, GRS provides APIs as required so they no longer need
to directly reference GRS blocks. Now with z/OS V1R9, ISGECA, ENF 51, or ISGQUERY
may be used as an alternative to run GRS queue control blocks.

Discontinue using the ISGERQA parameter in with z/OS V1R9
ISGERQA is a non-documented parameter in the DIAGxx parmlib member that could be used
under IBM service recommendation to control the amount of virtual storage below the 2 GB
bar that GRS reserves for the extended resource queue area (ERQA). The ERQA is used
mainly for ENQ-related control blocks and in z/OS V1R9, they were moved above the 2 GB
bar.

SYS1.PARMLIB(DIAGxx) keyword ISGERQA is an undocumented control that can increase
the size of the GRS below the bar control block storage area (ERQA). It has been used by
various installations to increase the GRS ENQ capacity on older releases. However, it is only
to be used with Level2 support assistance because it can reduce the amount of other virtual
storage available to the GRS address space.

Note: These enhancements should provide a major increase in capacity for all GRS
modes. It should be noted that GRS RING is not designed for large ENQ capacity and as
such will perform poorly with many outstanding ENQs. Installations should migrate to GRS
STAR if running a RING that is planned to support a large number of ENQs. This
enhancement provides ENQ storage constraint relief and should provide better DB2
performance because more data sets can be concurrently opened.

Note: If this parameter has been defined previously, you must delete it so that this area
can be used for others GRS functions.
100 z/OS Version 1 Release 9 Implementation

If you are sharing the parmlib with down-level systems, then isolate the DIAGxx ISGERQA to
those systems only. The reason for this is because the ERQA still exists and the DIAGxx
ISGERQA is still supported and the reason for previously increasing the ERQA has been
eliminated (all ENQ-related persistent blocks are now above the bar). The below the bar
virtual that the ERQA is consuming can be much smaller. The new GRS defaults will insure
that the GRS address space has enough below the bar virtual for other required functions.

8.2.1 Ensure that GRSCNFxx is used properly for GRS=NONE

Prior to z/OS V1R8, the GRSCNFxx parmlib member was not processed when global
resource serialization was operating in NONE mode. Starting with z/OS V1R8, GRSCNFxx is
parsed when IEASYSxx keyword GRS is set to NONE. If you specify GRS=NONE and a
GRSCNFxx member, the GRSCNFxx member must now be syntactically correct.

In addition, the following keywords are now relevant for all modes including GRS=NONE:

� SYNCHRES
� CTRACE
� ENQMAXA
� ENQMAXU

Step verification
To avoid warning messages and to ensure proper function in GRS=NONE mode, ensure that
the GRSCNFxx member is accessible and contains the correct configuration parameters for a
GRS=NONE mode system. If global resource serialization is not active and GRSCNFxx is not
accessible, the following messages can be issued:

� The system issues message ISG313I when mode-irrelevant keywords are found in
GRSCNFxx parsing.

� The system issues WTOR message ISG163D when GRSCNFxx cannot be accessed. If
you press Enter for this WTOR message, the system continues to issue message
ISG372E to indicate that the GRSDEF defaults are used.

GRSCNF00 is the parmlib member selected if you do not specify GRSCNF=xx in parmlib
member IEASYSxx. A copy of GRSCNF00 is shipped with the system, but it might need
customizing.

8.2.2 GRS exit routines in cross-memory mode

In previous releases, the exit routines ISGNQXITBATCH, ISGNQXITBATCHCND,
ISGNQXITPREBATCH, and ISGNQXITQUEUED1 were called in non-cross-memory mode.
With z/OS V1R9, these exits are called in cross-memory mode.

If your installation uses any of these exit routines, or if any of your ISV software uses these
exit routines, you must ensure that the exit routines run in a cross-memory environment prior
to implementing z/OS V1R9. A failure in any of these exit routines could cause a data integrity
problem or system failure.

Step verification
Determine whether any of the affected exit routines are currently in use on your system by
using the DISPLAY PROG,EXIT command, as shown of Figure 8-7 on page 102.

Note: APAR OA11382 rolled back this facility to z/OS V1R7 and some facility to z/OS
V1R8, so this APAR should be applied for both previous releases.
Chapter 8. GRS enhancements 101

If you are using any of the affected exit routines, do the following:

� If any of the exit routines are owned by ISVs that you did not contact for new z/OS V1R9
support, contact those ISVs to ensure that you have the latest updates.

� If any of the exit routines are owned by your installation, ensure that these exit routines
have been modified to enable execution in a cross-memory environment.

Figure 8-7 displays the D PROG,EXIT output.

Figure 8-7 D PROG,EXIT output

ISGNQXIT EQDQ exit
The installation-oriented EQDQ exit environment is not being changed. If using the
ISGNQXIT EQDQ exit installed, then consider converting it to the ISGNQXITFAST exit
because it is a better performer. However, unlike the ISGNQXIT exit, the ISGNQXITFAST
exit can be called in a cross-memory environment.

8.2.3 ISGADMIN enhancement

A new function known as MOVEWAITER was introduced in the ISGADMIN services. It allows
one application to move one ENQ WAITER to another position in the queue and optionally
changes its control type via the NEWCONTROL keyword.

D PROG,EXIT
 CSV460I 14.58.17 PROG,EXIT DISPLAY 418
 EXIT DEF EXIT DEF EXIT DEF
 ISGNQXITFAST E SYS.IEFACTRT E SYSSTC.IEFACTRT E
 SYS.IEFUJI E SYSSTC.IEFUJI E SYS.IEFU83 E
 SYSSTC.IEFU83 E CSVDYLPA E CSVDYNEX E
 HZSADDCHECK E IEASDUMP.QUERY E IEASDUMP.GLOBAL E
 IEASDUMP.LOCAL E IEASDUMP.SERVER E IXC_ELEM_RESTART E
 IXC_WORK_RESTART E ISGNQXIT E ISGCNFXITSYSTEM E
 ISGCNFXITSYSPLEX E ISGNQXITBATCH E ISGNQXITQUEUED1 E
 ISGENDOFLQCB E ISGNQXITPREBATCH E ISGNQXITBATCHCND E
 ISGDGRSRES E CNZ_MSGTOSYSLOG E IEHINITT_EXIT E
 IEF_ALLC_OFFLN E IEF_SPEC_WAIT E IEF_VOLUME_ENQ E
 IEF_VOLUME_MNT E IEFDB401 E CEE_ABEND_EXIT E
 CNZ_WTOMDBEXIT E IEFJFRQ E SYSSTC.IEFUSO E
 SYSSTC.IEFUJP E SYSSTC.IEFU85 E SYSSTC.IEFU84 E
 SYSSTC.IEFU29 E SYS.IEFU29 E SYS.IEFUTL E
 SYS.IEFUSO E SYS.IEFUJP E SYS.IEFUSI E
 SYS.IEFUJV E SYS.IEFU85 E SYS.IEFU84 E
 IRREVX01 E IGDACSDX E BPX_PREPROC_INIT E
 BPX_POSPROC_INIT E BPX_IMAGE_INIT E BPX_PREPROC_TERM E
 HASP.$EXIT0 E CBRUXTVS_EXIT E

Note: This function is intended to only be used by third-party serialization products. Its
misuse can result in deadlocks, incorrect serialization, or loss of data integrity.
102 z/OS Version 1 Release 9 Implementation

8.3 GRS performance enhancements with z/OS V1R9

As CPU power has increased over time, more ASIDs are created and installations have noted
an increase in GRS CPU consumption time, mainly in a sysplex environment. In z/OS V1R9,
changes have been effected in order to obtain better performance with GRS processing.

The cost of a hardware cache miss has been increasing over machine generations. To reduce
cache misses off a free queue, it is better to keep a separate queue per CPU on its own
cache boundary and then have each CPU only take elements off its queue. This technique
has shown to provide performance improvements.

The GRS latch function has been modified to use such an algorithm for its free queues and to
use the new multi-header CPOOL (one header per CPU) support for some of its CPOOL
service-managed storage pools. This benefits all users of GRS latch including z/OS UNIX,
RACF, System Logger, IOS, and ISV software.

GRS latch support
Because the multi-header technique can increase storage demands in the latch set creator
address space, GRS latch support provides the following additional functions:

� A new ISGLCRT_LOWSTGUSAGE latch set create option to allow latch owners to force
the old algorithm to be used because they know their address space is
storage-constrained. To date, no one is known to have used this function. The default is to
use the multi-header approach.

� The ability for the GRS latch function to detect and react to a storage constraint in the latch
set creator’s address space. When constrained, GRS latch will revert the latch set back to
the old.

To support the movement of most of the control blocks above the bar, several GRS modules
are rewritten to provide better performance in the following areas:

� Reduce contention on the internal CMSEQDQ lock
� Reduce path length for ISGENQ and ENQ/DEQ/RESERVE LINKAGE=SYSTEM
� LATCH processing

8.4 GRS debugging improvements

A new system trace was added in z/OS V1R8 for PC ENQ for LINKAGE=SYSTEM or
ISGENQ. The PC, SSRV (new trace) and PR (return) can be used to determine the call
sequence. In z/OS V1R9, the trace is now cut for any type of ISQENQ, ENQ/RESERVE, or
DEQ for LINKAGE=SYSTEM for SVC ENQs. The SSRV trace contains detailed information

Note: To execute one instruction, all referenced storage must be in the L1 cache of the
processor. If the execution of one latch request starts in one processor and ends in
another, then the references to these storages in the second processor cause a cache
missing.

This new performance algorithm is the default in z/OS V1R9, and it can cause a slight
increase in the latch set creator’s private storage usage. In the unlikely case that the space
is constrained, latch processing will revert back to the old algorithm automatically.
Applications that know their address space storage constrains can force the old algorithm
by using a new ISGLCRT_LOWSTGUSAGE latch set create option.
Chapter 8. GRS enhancements 103

on the return address, QNAME, return code, scope, disposition, and if RNLs or exits changed
request.

System trace entries
GRS has provided system trace entries for the execution of ENQ/RESERVE (SVC X’38’) and
DEQ (SVC X’30’) forever.

Now, GRS creates one system entry for any execution of the ENQ/RESERVE,
DEQ/RELEASE and ISGENQ, executing in SVC mode, LINKAGE=SYSTEM or PC mode. As
a result, you can now determine the true execution sequence in the trace.

SSRV trace entries
The SSRV system trace entries provides many details on the return address:

� What was requested by issuer
– QNAME/UCB - RNAME is not provided
– Disposition: Exclusive/Shared request
– Request scope: STEP, SYSTEM, SYSTEMS
– Was a reserve issued
– What RET was specified: NONE, HAVE, CHNG, USE, ECB, or TEST
– Last element of list issued
– RNL=YES/NO
– Is the TCB specified

� What change was complemented or attempted
– An exit changed the request
– RNLs changed the scope
– Included, excluded, and converted bits to show how change occurred
– Final scope issued
– If a reserve, the UCB address is provided

� Final result
– Return or abend code issued

IPCS VERBX GRSTRACE
With z/OS V1R8, the IPCS VERBX GRSTRACE command formats the time stamp information and
the request type. Also, the resource creation time stamp is informed; that is, for how long a
period you could have a contention in this resource.

With z/OS V1R9, the IPCS VERBX GRSTRACE command formats the status of each ENQ
request, if it is the:

� /OWN = owner
� /WAIT = waiter
� /USE = indicates a MASID request where the user is considered an owner via the MASID

target

When using the ENQ or RESERVE requests from authorized callers, use the MASID
(matching ASID) and MTCB (matching TCB) parameters to allow a further conditional
control of a resource.

One task issues an ENQ or RESERVE for a resource specifying a matching ASID. If the
issuing task does not receive control, it is notified whether the matching task has control
(which allows the issuing task to use the resource even though it could not acquire the
resource itself). This process requires serialization between the issuing and requesting
tasks.
104 z/OS Version 1 Release 9 Implementation

Chapter 9. Message Flood Automation

Many z/OS systems are troubled by cases where a user program or a z/OS process itself
issues a large number of messages to the z/OS consoles in a short time. Cases of hundreds
(or even thousands) of messages a second are not uncommon. These messages are often
very similar or identical, but are not necessarily so. Techniques to identify similar messages
can be very difficult and time-consuming.

Message Flood Automation addresses this problem. This implementation does not claim to
identify all cases of erroneous behavior, or to take the “correct” action in all cases. Its
intention is to identify runaway WTO conditions that can cause severe disruptions to z/OS
operation, and to take installation-specified actions in these cases.

The problem that Message Flood Automation is attempting to solve has been with the
operating system since the earliest days. It is most often caused by malfunctioning input or
output devices that flood the system with a very large number of error messages, usually
within a matter of seconds. Message floods can also be caused unintentionally by improperly
designed programs that get stuck in a message loop, as well as by malicious programs that
deliberately generate large volumes of messages in an attempt to cause a system outage.

Message floods are a concern because they monopolize system resources and prevent the
operator (and automation) from seeing and reacting to other system messages in a timely
manner. In some cases, message floods so monopolize system resources that resource
shortages develop and a system outage occurs.

This chapter provides an overview of the Message Flood Automation that was incorporated
into z/OS Version 1 Release 9. In this chapter, the following topics are described:

� Message Flood Automation overview

� Problem statement and solution

� Installation, loading and activating

� Customization and tuning

� Operator commands

9

© Copyright IBM Corp. 2007. All rights reserved. 105

9.1 Message Flood Automation overview

Message Flood Automation is a new component of z/OS console support that was made
available as a small programming enhancement (SPE) for z/OS Version 1 Release 6,
Release 7 and Release 8 at the end of November 2006. Message Flood Automation is being
incorporated into z/OS Version 1 Release 9. The parent APAR is OA17514, and the SPE is
shipped as follows:

� Release 709 (z/OS v1R6): UA30810 available 06/11/29 (F611)

� Release 720 (z/OS V1R7): UA30811 available 06/11/29 (F611)

� Release 730 (z/OS V1R8): UA30812 available 06/11/29 (F611)

If the Message Flood Automation function is being used prior to z/OS V1R9, the relevant
documentation is available in a user’s guide which can be found at the following link:

http://publibz.boulder.ibm.com/zoslib/pdf/mfaguide.pdf

You are strongly encouraged to read the user’s guide fully before attempting to set up and
activate Message Flood Automation.

9.2 Message Flood Automation implementation

Message Flood Automation is designed to detect and react to a message flood before those
consequences have had an opportunity to occur. A defined installation policy allows
installations to tailor Message Flood Automation to an individual environment by deciding how
quickly the Message Flood Automation should react to a potential message flood and then,
what actions should be taken if a message flood occurs. Depending on the policy that is
established, Message Flood Automation can prevent message buffers from filling, console
queues from becoming overly long, and console displays from becoming unreadable.

Because Message Flood Automation deals with the flood messages as they are being
generated, large numbers of flood messages do not have the opportunity to accumulate in
message buffers or in various queues. This means that there is no need to take action, either
automated or manual, to “flush” these unwanted messages from buffers or queues. (In past
releases, this was one of the more serious aspects of dealing with message floods, that is,
flushing unwanted messages from the queues of each console.)

Furthermore, Message Flood Automation deals with the messages going to all of the various
consoles, including the EMCS consoles used by SDSF and by automation products such as
Tivoli NetView and Tivoli System Automation.

Note: If you have already been running Message Flood Automation and are now installing
a newer level, read the topic “Considerations when migrating from one level to another” in
Message Flood Automation User’s Guide—for z/OS releases prior to z/OS V1R9.

With z/OS V1R9, documentation is available with the standard manuals.
106 z/OS Version 1 Release 9 Implementation

http://publibz.boulder.ibm.com/zoslib/pdf/mfaguide.pdf

9.2.1 Message flood problems

Message Flood Automation is a new implementation designed to handle disruptions that are
caused due to the following situations:

� Large numbers of messages to the z/OS consoles can obscure important messages and
delay them from being acted on.

� Large numbers of messages to the automation system can delay the processing of normal
messages.

� Messages can use excessive CPU and storage resources. Buffering excessive message
traffic may use large amounts of virtual and real storage, and can cause SQA to overflow
into CSA. This can cause jobs, subsystems, and even complete systems to be delayed or
fail.

Messages can be produced at very high volumes due to:

� Malfunctioning I/O devices such as DASD, DASD controllers
� ESCON/FICON switches
� Malfunctioning network devices
� Errant programs (unintentional)
� Malicious programs

Message Flood Automation can react to potential message flooding situations in a matter of
tens or hundreds of messages (specifiable by the installation), well before buffers have begun
to fill, well before console queues have begun to build, and well before console message
rates have begun to become enormous.

Furthermore, its actions do not result in residual buffers or queues of messages that must be
“worked down” to return to normal processing. Because its processing is targeted to the
messages that are causing the problem, very few uninvolved messages are acted upon.

By contrast, the act of flushing console queues (with the K Q command) can result in throwing
away many innocent and often important messages. Message Flood Automation can
potentially eliminate the need to issue the K Q command by preventing flood messages from
ever reaching a console. Message Flood Automation has a policy that allows installations to
target individual messages, individual jobs, or started tasks. By targeting specific messages
and units of work, Message Flood Automation is able to minimize the disruption to other work
in the system.

9.2.2 MPF processing

The message processing facility (MPF) controls message processing for an MVS system.
Message Flood Automation runs as part of MPF processing, which occurs after the control
block that represents the message has been created. Message Flood Automation is able to
see and alter any processing of the message that occurs prior to the creation of this control
block.

Note: Some automation products replace the Write-To-Operator (WTO) Supervisor Call
(SVC) with their own code and then invoke the WTO code when they are finished.
Message Flood Automation is able to see and react to messages that have been
“front-ended” by other automation in this way.
Chapter 9. Message Flood Automation 107

MPFLSTxx parmlib member
The IEAVMXIT installation exit or an MPF installation exit (one that you specify on the
USEREXIT parameter in an MPFLSTxx parmlib member) allows you to modify message
processing in a system or sysplex. IEAVMXIT is the general-purpose exit routine that
performs processing that is common to many messages (WTOs). See 9.3.1, “Message Flood
Automation exits” on page 109 an explanation about the detailed use of this exit with
Message Flood Automation support.

Because all messages are processed by MPF, the MPFLSTxx parmlib member tells MPF
what to do with each message. The following is a list of changes that can be made to a
particular message or set of messages:

Suppression Message appears in a hardcopy log but not on a console.

SUP(YES/NO)

Automation This lets the automation subsystem know to process a particular
message.

AUTO(YES/NO/token)

Specifying AUTO(YES) will route the message to EMCS consoles with
the AUTO attribute.

Presentation This controls color, highlighting, and intensity attributes that the
system uses when displaying messages on an operator console. You
can specify these attributes on the .MSGCOLR statement.

9.2.3 MPF processing exit

MPF processing is specific to a certain type of message or a particular message ID that is
defined in the MPFLSTxx parmlib member. Figure 9-1 on page 109 shows when MPF
processing is invoked when a message is issued.

This exit is used primarily to do the following kinds of processing of a message:

� Modify the presentation of a message
� Modify the routing of a message
� Suppress or affect the automation of a message

Message flood use of this exit
Message Flood Automation is implemented as a message processing facility (MPF)
IEAVMXIT routine that is called as a part of z/OS WTO processing. The exit examines each
message in the z/OS system, and attempts to identify when too many WTOs are being issued
and by whom.

It then takes appropriate action, usually to suppress the message from being displayed at a
z/OS console, and to indicate that automation processing is not required. It can also issue
commands to cancel the user or process.
108 z/OS Version 1 Release 9 Implementation

Figure 9-1 Message processing exit (MPF or IEAVMXIT)

9.3 Installing Message Flood Automation

Message Flood Automation does not ship a part named IEAVMXIT because this might cause
the Message Flood Automation function to be inadvertently installed and activated when it is
not desired to use this function. Message Flood Automation consists of the following load
modules in SYS1.LINKLIB:

� CNZZCMXT
� CNZZVMXT

9.3.1 Message Flood Automation exits

Message Flood Automation uses two system exit points; IEAVXMIT as a general message
exit, and CNZZCMXT as a system command exit. The following sample assembly language
programs are in SYS1.SAMPLIB. You select one of the sample programs from
SYS1.SAMPLIB, then assemble it and link it to the Message Flood Automation CNZZVMXT
load module.

� CNZZVXT1
� CNZZVXT2

Issuing System Receiving System(s)

SSI

WTO(R)WTO(R)

MPF

Hardcopy
Log

JES

NetView

........

MCS
Queuing

XX
CC
FF

SS
ee
rr
vv
ii
cc
ee
ss

JES

NetView

........

MCS
Queuing

SSI

Note: Refer to z/OS MVS Installation Exits, SA22-7593, for additional information about
the installation and use of the message and command exits. Install the IEAVMXIT in every
SYS1.LINKLIB you use.
Chapter 9. Message Flood Automation 109

IEAXVMXIT migration considerations
Either CNZZVXT1 or CNZZVXT2 can be used if you do not already have an IEAVMXIT
message exit. CNZZVXT1 is the simplest to use, but CNZZVXT2 can be used without
change, if desired. The difference is that CNZZVXT2 has additional complexity that
CNZZVXT1 does not.

� CNZZVXT1 provides a stub if there is no IEAVMXIT routine installed and Message Flood
Automation is required; CNZZVXT1 will invoke the CNZZVMXT routine.

� CNZZVXT2 invokes the Message Flood Automation message exit CNZZVMXT using a
slightly modified calling mechanism. CNZZVXT2 is documented to show how to place
installation function in the exit both before and after the invocation of the Message Flood
Automation message exit CNZZVMXT.

If you already have an IEAVMXIT exit installed, you will need to do one of the following:

� Either put the invocation of Message Flood Automation into your IEAVMXIT using sample
program CNZZVXT2 as an example of how to do this.

� Or fit your existing IEAVMXIT logic into the sample program CNZZVXT2 and rename it
IEAVMXIT.

MPFLSTxx parmlib member
At IPL, the system uses the MPFLSTxx member or members indicated on the MPF keyword
on the INIT statement in CONSOLxx parmlib member. You can specify multiple MPFLSTxx
members on the MPF keyword. In a sysplex, MPF processing has system scope; thus, you
must plan MPF processing on each system in the sysplex.

The MPFLSTxx parmlib member contains statements that can affect the display, automation
and retention of messages. During MPF processing, the RETAIN®, AUTO and SUP
parameters on an MPFLSTxx parmlib member are processed first. Then either a user exit
(specified by the USEREXIT parameter) is invoked or IEAVMXIT is invoked—but not both. A
small part of a MPFLSTxx parmlib member is shown in Figure 9-2.

Figure 9-2 MPFLSTxx parmlib member

Note: In this implementation, CNZZVMXT returns to CNZZVXT2, not to the caller of
CNZZVXT2. The CNZZVXT1 implementation has CNZZVMXT return to the caller of
CNZZVXT1, not to CNZZVXT1.

.NO_ENTRY,SUP(NO),RETAIN(I),AUTO(YES)

.DEFAULT,SUP(NO),RETAIN(NO),AUTO(NO)
IST1051I,SUP(YES),RETAIN(YES),AUTO(YES)
IST1062I,SUP(YES),RETAIN(YES),AUTO(YES)
AOF*,SUP(NO),RETAIN(NO),AUTO(YES)
CSA*,SUP(YES),RETAIN(NO),AUTO(YES)
EQQ*,SUP(NO),AUTO(YES)
EVJ*,SUP(NO),AUTO(YES)
IXG054A,USEREXIT(MPFOPLOC)
IEF125I,USEREXIT(MPFASID),RETAIN(NO),SUP(NO),AUTO(YES)
IEF403I,USEREXIT(MPFASID),RETAIN(NO),SUP(NO),AUTO(YES)
IEF126I,USEREXIT(MPFASID),RETAIN(NO),SUP(NO),AUTO(YES)
IEF404I,USEREXIT(MPFASID),RETAIN(NO),SUP(NO),AUTO(YES)
IEE391A,USEREXIT(MPFSMFC)
IEE366I,USEREXIT(MPFSMFC)
BDT3130,USEREXIT(MPFSBDTN)
110 z/OS Version 1 Release 9 Implementation

Using the IEAVMXIT exit
Message Flood Automation message processing runs as IEAVMXIT. Therefore, it can
override the RETAIN, AUTO and SUP specifications set by the MPFLSTxx entry for the
message or set by the NO_ENTRY specification.

Figure 9-3 indicates the point at which the IEAVMXIT exit is entered during MPF processing.
For the message IDs shown in Figure 9-2 on page 110, the ones with the USEREXIT
parameter will use the specific MPF exit specified as shown in Figure 9-3. All other messages
will use the IEAVMXIT exit, which goes through Message Flood Automation; this explains why
individual messages do not go through both paths. Therefore, Message Flood Automation
cannot override specifications set by individual MPF exits.

Figure 9-3 Message Flood Automation IEAVMXIT exit

The level of the message exit and the level of the command exit must be the same because
they both map the same shared data area. There is code in both to ensure that they are at the

Note: If an MPFLSTxx entry does not exist for a message, then the settings from the
NO_ENTRY specification are applied. NO_ENTRY allows you to specify the default
processing you want for messages that are not identified in any of the active MPFLSTxx
parmlib members.

Note: Use CNZZVXT2 and either integrate your existing IEAVMXIT function into it, or use
CNZZVXT2 as an example of how to place the invocation of Message Flood Automation
into your existing IEAVMXIT message exit. See z/OS MVS Planning: Operations,
SA22-7601, for additional interface information.

WTO(R)WTO(R)

MPFLSTxx look-up

 Message
 Flood
Automation

 Specific
 MPF
 Exits

SSI

JES

NetView

........

MPF

IEAVMXIT
Chapter 9. Message Flood Automation 111

same level. This is primarily a concern for GDPS customers who are migrating from a GDPS
level of Message Flood Automation to the z/OS level of Message Flood Automation.

The selection of the SYS1.SAMPLIB member and assembly should be done as follows:

1. Assemble it with the high-level assembler.

2. Link the assembled member to CNZZVMXT using the linkage editor or Binder.

3. Make changes in the CONSOLxx parmlib member and the MPFLSTxx parmlib members.

Assemble sample code for the exit
Figure 9-4 shows sample JCL to assemble CNZZVXT1 and place it into an existing data set
userid.SAMPLIB.OBJ.

Figure 9-4 JCL model to assemble CNZZVXT1

Linking CNZZVXT1 or CNZZVXT2 with CNZZVMXT
Figure 9-5 shows sample JCL to link either CNZZVXT1 or CNZZVXT2 to CNZZVMXT. The
result of the link will be a part named IEAVMXIT in SYS1.LINKLIB. For the SYSLMOD, you
may use any data set in the LINKLIB concatenation.

CNZZVXT1, CNZZVXT2, CNZZVMXT and CNZZCMXT are all AMODE=31 and
RMODE=ANY.

Figure 9-5 JCL model to link either CNZZVXT1 or CNZZVXT2 to CNZZVMXT

//ASM EXEC PGM=ASMA90,REGION=6144K,
// PARM=('OBJECT,NODECK,XREF(SHORT),LIST(133),ALIGN',
// 'MACHINE(ZS-2,LIST),GOFF')
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(20,5)),DSN=&SYSUT1
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(20,5)),DSN=&SYSUT2
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(20,5)),DSN=&SYSUT3
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD DUMMY
//SYSLIN DD DSN=userid.SAMPLIB.OBJ(CNZZVXT1),DISP=OLD
//SYSIN DD DSN=SYS1.SAMPLIB(CNZZVXT1),DISP=SHR

//LKED EXEC PGM=IEWL,REGION=0M,
// PARM='XREF,LIST,RENT,REUS,AC(0)'
//SYSPRINT DD SYSOUT=A
//BASE DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSLIN DD DSN=userid.SAMPLIB.OBJ(CNZZVXT1),DISP=SHR
// DD *
 SETCODE AC(0)
 INCLUDE BASE(CNZZVMXT)
 ENTRY IEAVMXIT
 NAME IEAVMXIT(R)

Important: The attribute RF was removed from members CNZZCMXT and CNZZVMXT in
SYS1.LINKLIB in z/OS Version 1 Release 9. You must remove the parameter REFR from
your linking JCL when you execute in a Version 1 Release 9 system.
112 z/OS Version 1 Release 9 Implementation

Creating an SMP/E ++USERMOD
As an alternative to manually assembling and linking CNZZVXT1 or CNZZVXT2 with
CNZZVMXT, you can use SMP/E to perform the operation for you, creating an SMP/E
++USERMOD.

IBM recommends using the SMP/E ++USERMOD approach because that method allows
SMP/E to automatically determine if and when your user exit must be relinked. It is necessary
to keep both the user exit and the IBM load modules synchronized, and SMP/E is best
positioned to do this automatically for you.

CONSOLxx and MPFLSTxx parmlib member considerations
Installing the Message Flood Automation code into the system libraries is not sufficient. You
must also make changes to two SYS1.PARMLIB members:

� MPFLSTxx parmlib member (using CNZZCMXT)

Add a (dot) .CMD USEREXIT entry in a MPFLSTxx parmlib member. The .CMD entry
causes the Message Flood Automation command exit to be automatically loaded at IPL or
whenever a SET MPF= command is processed. For example:

.CMD USEREXIT(CMDRPL,CMDMVS,CMDGSYS,CMDCPF,CNZZCMXT)

Where CNZZCMXT is the Message Flood Automation command exit and the other exit
names are installation-defined. If you already have one or more command exits specified,
simply add CNZZCMXT to the existing specification.

Add CNZZCMXT either before or after any existing exits. The .CMD statement supports a
maximum of 6 exit specifications.

� CONSOLxx parmlib member (using IEAVMXIT)

Add a UEXIT(Y) parameter to the INIT statement in the CONSOLxx parmlib member.
UEXIT(Y) is the default and it is recommended that you explicitly code UEXIT(Y) in order
to cause the automatic loading of the Message Flood Automation message exit at IPL and
when K M,UEXIT command is processed. This is not strictly necessary because the default
is UEXIT(Y), but explicitly specifying UEXIT(Y) can serve to remind you that a user exit is
in use.

INIT MLIM(1500)
 RLIM(999)
 LOGLIM(6000)
 AMRF(Y)
 APPLID(SCSMCS&SYSCLONE.)
 UEXIT(Y)

You must make sure that the INIT statement in the CONSOLxx parmlib member being
used does not have UEXIT(N) specified.

9.3.2 Loading and activating

The Message Flood Automation code can be loaded dynamically; there is no need to do an
IPL. If you use the Link List Look aside facility, you will need to perform a Link List Lookaside
refresh to bring the Message Flood Automation code into storage.

Note: As an example of SMP/E ++USERMOD, refer to “Creating an SMP/E
++USERMOD” in z/OS MVS Planning: Operations, SA22-7601.
Chapter 9. Message Flood Automation 113

The CNZZCMXT command exit routine will be automatically loaded into storage after it has
been link-edited into a data set in the LINKLIB concatenation and an LLA refresh (or IPL) has
been performed.

� If you make the command exit available by changing the libraries referred to in the
LINKLIST concatenation, you must issue the following command:

SETPROG LNKLST,UPDATE,JOB=*MASTER*

If you manipulate the libraries that are in your link list concatenation, refer to z/OS MVS
Planning: Operations, SA22-7601, for details about using the SETPROG command.

After the Message Flood Automation code has been placed into storage, a K M,UEXIT=Y
command can be used to actually load and enable the Message Flood Automation message
exit. Likewise, a SET MPF= command can be used to load and activate the Message Flood
Automation command exit.

Because the command exit uses data structures that are set up by the message exit, it is best
to load and activate the command exit after loading and enabling the message exit. The
reverse sequence will also work, but the command exit will be unable to perform any
Message Flood Automation commands until the message exit has been loaded and creates
the shared data structures.

Do the following in order to load and activate Message Flood Automation dynamically:

1. Use a F LLA,REFRESH command to load the Message Flood Automation code.

2. Use a K M,UEXIT=Y command to activate IEAVMXIT and CNZZVMXT.

3. Use a SET MPF= command to reload MPFLSTxx and cause the .CMD entry to be
processed, loading the Message Flood Automation command exit.

Figure 9-6 Expected messages to load and enable Message Flood Automation

F LLA,REFRESH
CSV210I LIBRARY LOOKASIDE REFRESHED
K M,UEXIT=Y
CNZZ016I Message Flood Automation policy initialized.
IEE712I CONTROL PROCESSING COMPLETE
SET MPF=J3
IEE252I MEMBER MPFLSTJ3 FOUND IN SYS1.PARMLIB
IEE712I SET MPF PROCESSING COMPLETE
D MF,STATUS
CNZZ042I Message Flood Automation V2R0M00 DISABLED. 289
Policy INITIALIZED. Using PARMLIB member: internal
Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF
Message rate monitoring DISABLED. 0 msgs 0 secs

Note: These commands load and enable Message Flood Automation message exit
(IEAVMXIT) and command exit (CNZZCMXT) with the internal policy. After this, you must
load your policy by using the SET MSGFLD= command, and turn Message Flood Automation
on by issuing a SETMF ON command.
114 z/OS Version 1 Release 9 Implementation

9.4 Customization and tuning

An installation policy to control message flooding situations is specified through the new
MSGFLDxx parmlib member.

Message Flood Automation is performed on all subsequent messages using either default
actions or actions specified through a MSGFLDxx parmlib member after a SETMF ON
command is issued that activates Message Flood Automation.

9.4.1 Providing a MSGFLDxx parmlib member

Prepare one or more MSGFLDxx members of PARMLIB and customize the message
threshold values provided before enabling Message Flood Automation on your system.

You may have as many MSGFLDxx parmlib members as you want, but Message Flood
Automation only supports one member being active at a time. Message Flood Automation
processing requires that the MSGFLDxx suffix (the xx) be alphabetic or numeric. National or
other special characters are not supported.

IBM provides a usable sample MSGFLDxx parmlib member named CNZZMFxx in the
SYS1.SAMPLIB library. However, it is recommended that you customize this sample
MSGFLDxx member before you attempt to use it.

MSGFLDxx statements
The following statement types are provided in MSGFLDxx parmlib member:

� Comment statements

� Msgtype statements

REGULAR, ACTION, and SPECIFIC

� DEFAULT statements

The DEFAULT statement specifies the default action to be taken for a specific address
space that exceeds the job threshold message rate, or a specific message that exceeds
the message threshold message rate.

� DEFAULTCMD statements

The DEFAULTCMD statement specifies the default command that will be issued if a CMD
action has been specified for the address space.

� JOB statements

JOB statements identify up to 10 specific jobs for which specific actions are to be taken if
REGULAR or ACTION messages from the job are involved in a message flood.

� MSG statements

The MSG statement defines up to 30 specific messages for which specific actions are to
be taken if the message is involved in a message flooding situation.

Figure 9-7 on page 116 displays the sample MSGFLDxx parmlib member CNZZMFXX that is
supplied in SYS1.SAMPLIB.
Chapter 9. Message Flood Automation 115

Figure 9-7 Sample MSGFLDxx parmlib member

9.4.2 Types of message classes processed

The Message Flood Automation processing handles three separate types of message
classes. The definitions of how these classes are defined is in the MSGFLDxx parmlib
member. Each class of messages is handled separately.

Message Flood Automation can take action against “privileged” messages which are queued
to consoles even in storage shortage situations. The message classes are as follows:

� SPECIFIC messages

A set of messages identified by the installation that are to be handled separately

/*---*/
/* Sample MSGFLDxx PARMLIB member. */
/*---*/
/*---*/
/* REGULAR message specifications. */
/*---*/
REGULAR MSGTHRESH=50,JOBTHRESH=20,INTVLTIME=1
REGULAR SYSIMTIME=2,JOBIMTIME=2
DEFAULT LOG,NOAUTO,NODISPLAY,NOCMD
DEFAULTCMD '&,CANCEL & -- cancelled by Message Flood Automation'
JOB AOC%NV* AUTO
JOB LLA* AUTO
JOB ZAP1 CMD
/*---*/
/* ACTION message specifications. */
/*---*/
ACTION MSGTHRESH=50,JOBTHRESH=20,INTVLTIME=1
ACTION SYSIMTIME=2,JOBIMTIME=2
DEFAULT LOG,NOAUTO,NODISPLAY,NOCMD,NORETAIN
DEFAULTCMD '&,CANCEL & -- cancelled by Message Flood Automation'
JOB AOC%NV* AUTO,RETAIN
JOB LLA* AUTO
JOB ZAP2 CMD
/*---*/
/* SPECIFIC message specifications. */
/*---*/
SPECIFIC MSGTHRESH=50,INTVLTIME=1
SPECIFIC SYSIMTIME=2
SPECIFIC MSGIMTIME=2
SPECIFIC MSGLIMIT=20
DEFAULT LOG,NOAUTO,NODISPLAY,NORETAIN
MSG IOS001E
MSG IOS003A
MSG IOS050I
MSG IOS051I
MSG IOS071I
MSG IOS251I
MSG IOS444I
MSG IOS450E

Note: Refer to z/OS MVS Planning: Operations, SA22-7601, for more detailed information
about the parameters.
116 z/OS Version 1 Release 9 Implementation

� ACTION messages

Messages that have one or more of the following descriptor codes set:

– 1 - System failure messages (typically messages with a W (wait) message ID suffix)

– 2 - Immediate action required messages (typically messages with an A (action) or D
(decision) message ID suffix)

– 3 - Eventual action required messages (typically messages with an E (eventual action)
message ID suffix)

– 11 - Critical eventual action required messages (typically messages with an E (critical
eventual action) message ID suffix)

� REGULAR messages

Messages that do not fall into any of the preceding categories.

9.4.3 Message class controls

Each class has its own set of controls, as shown in Figure 9-8. Message Flood Automation
classes run in one of two modes: normal or intensive. Each set of controls operate
independently; for example, the system may be in intensive mode for regular messages but
not for action messages. The effect is that action messages will still be processed by z/OS in
the normal way.

Figure 9-8 Message class controls that are defined in parmlib

The use of these message class controls for each message class is shown in Figure 9-9 on
page 121.

Message class modes
The Message Flood Automation normal and intensive class modes are explained here.

Normal mode In normal mode, messages are counted. When a threshold number
(MSGTHRESH) of messages has been counted, the time taken to count
those messages is determined. If the time is less than a limit value
(INTVLTIME), the system is placed into intensive mode. It is expected
that this determination is likely to be done relatively infrequently, every 50
to 100 messages or more. The INTVLTIME value should be set to
identify high message rates. A value of 5 seconds for INTVLTIME

Note: REGULAR messages include the “command echo” messages which put the text of
a command into the display area of a console and place the text of a command into the
SYSLOG and OPERLOG. Descriptor codes describe the significance of messages.

They indicate whether the system or a task stops processing, waits until some action is
completed, or continues. This code also determines how the system will display and delete
the message.

INTVLTIME (Interval limit time)
 JOBIMTIME (Job inter-message mean time) - not supported for SPECIFIC
 JOBTHRESH (job message threshold) - not supported for SPECIFIC
 MSGIMTIME (Message inter-message time) - not supported for REGULAR and ACTION
 MSGLIMIT (Message threshold limit) - not supported for REGULAR and ACTION
 MSGTHRESH (Message threshold)
 SYSIMTIME (System inter-message time)
Chapter 9. Message Flood Automation 117

indicates an average rate of 20 messages per second if MSGTHRESH is
set to 100.

The processing overhead in normal mode is therefore very small. Only a
very small number of instructions are executed in the exit for each
message. No dynamic storage is obtained or freed, and no recovery
environment is established.

Intensive mode In intensive mode, each message is subject to extra processing.
Messages are counted for each address space (up to a maximum of 10)
issuing messages and compared to a further limit value (JOBTHRESH).
If any one address space issues JOBTHRESH messages within
INTVLTIME, then it is subject to action from that time on. This action may
be installation-specified, but is typically defaulted to be no-display and
no-automation.

At the end of each interval of MSGTHRESH messages, a check is made
to see if intensive mode should be maintained, and whether address
spaces in “act-upon mode” should remain so. Message bursts can end
suddenly. The address space that issues them may suddenly exit a
tightloop condition and resume normal processing. In this circumstance,
it is likely that subsequent messages are important and should be
processed normally. To allow this to happen, there are two further
controls: system inter-message time (SYSIMTIME), and job (or
message) inter-message time (JOBIMTIME or MSGIMTIME).

When in intensive mode, if the time since the last message is greater than
SYSIMTIME, then intensive mode is discontinued. This ensures that the
first message after a break is not acted upon.

Similarly, if an address space is in act-upon mode, and the time since its
last message exceeds the JOBIMTIME, then it is removed from act-upon
mode. For specific messages, if a message is in act-upon mode, and the
time since the last message exceeds the MSGIMTIME, then the
message is removed from act-upon mode.

Use of message class controls
Table 9-1 on page 119 shows the combinations of message class control keywords that are
supported for each message class. As mentioned, each class of messages is handled
separately, and has its own set of controls (MSGTHRESH, INTVLTIME, and so on). Each set
of controls operates independently; the system can be in intensive mode for regular
messages, but not for action messages. z/OS still processes action messages in the normal
way.

The control algorithms for regular and action messages are identical and are as described
previously. For specific messages, the control algorithm is similar although it is applied to
individual messages and not to jobs or address spaces.

The MSGLIMIT parameter performs the same function in specific message processing that
the JOBTHRESH parameter performs in regular and action message processing. The
MSGIMTIME parameter performs the same function in specific message processing that the
JOBIMTIME parameter performs in regular and action message processing, although it is
applied against specific messages rather than address spaces.
118 z/OS Version 1 Release 9 Implementation

Table 9-1 Message class type and keyword combinations

Message class control default values
The system default values, either before the MSGFLDxx parmlib member is read, or
accepting the IBM defaults, are as follows:

REGULAR MSGTHRESH=50
REGULAR JOBTHRESH=20
REGULAR INTVLTIME=1
REGULAR SYSIMTIME=2
REGULAR JOBIMTIME=2

ACTION MSGTHRESH=50
ACTION JOBTHRESH=20
ACTION INTVLTIME=1
ACTION SYSIMTIME=2
ACTION JOBIMTIME=2

SPECIFIC MSGTHRESH=50
SPECIFIC MSGLIMIT=20
SPECIFIC INTVLTIME=1
SPECIFIC SYSIMTIME=2
SPECIFIC MSGIMTIME=2

Message class control value ranges
The value for JOBTHRESH, MSGLIMIT, and MSGTHRESH is a positive, non-zero integer
count of messages in the range 1 to 999999999.

The value for INTVLTIME is a positive, non-zero integer time in seconds in the range 1 to
999999999.

The value for SYSIMTIME, JOBIMTIME and MSGIMTIME is a positive, non-zero floating
point time in seconds in the range 0.000001 to 16777215.0.

Operator commands to display individual Message Flood Automation
The values specified for each of the message class controls can be displayed by the following
operator command. The command can be used is any of the following forms:

DISPLAY MSGFLD,MSGTYPE=msgtype,keyword
DISPLAY MF,MSGTYPE=msgtype,keyword
D MSGFLD,MSGTYPE=msgtype,keyword
D MF,MSGTYPE=msgtype,keyword

msgtype=regular msgtype=action msgtype=specific

INTVLTIME INTVLTIME INTVLTIME

JOBIMTIME JOBIMTIME

JOBTHRESH JOBTHRESH

MSGIMTIME

MSGLIMIT

MSGTHRESH MSGTHRESH MSGTHRESH

SYSIMTIME SYSIMTIME SYSIMTIME
Chapter 9. Message Flood Automation 119

For example:

D MF,MSGTYPE=REGULAR,MSGTHRESH
CNZZ301I Value of REGULAR MSGTHRESH is 20

9.4.4 Message Flood Automation guidelines

Message Flood Automation thresholds should be set based on the mean (most common)
message rate, not on the maximum message rates. The following guidelines should be used
when defining the message class controls:

� The REGULAR message threshold (MSGTHRESH) should be set somewhat higher than
the mean message rate, and your REGULAR message inter-message time (SYSIMTIME)
at or slightly below the mean message rate inter-message time.

� The ACTION job message threshold (JOBTHRESH) must be set to a value less than that
of MSGTHRESH. A JOBTHRESH value that is 30 to 40% of MSGTHRESH is a useful
starting point.

� The SPECIFIC MSG message threshold (MSGLIMIT) must be set to a value less than that
of MSGTHRESH. A MSGLIMIT value that is 15 to 20% of MSGTHRESH is a useful
starting point.

Guideline examples
Setting MSGTHRESH=50 and INTVLTIME=1 specifies a message rate of
50 messages/second. Setting MSGTHRESH=100 and INTVLTIME=2 also specifies a
message rate of 50 messages/second. You can use different combinations of threshold and
interval to trade off message flood detection responsiveness and message flood detection
overhead.

The general idea is to set the various thresholds high enough that they are not being triggered
by normal fluctuations in message rates but are triggered when sudden, very high message
rates are encountered. For REGULAR messages, using one of the suggested threshold
values provided by the CNZZ043I message is a good first approximation. Set your thresholds
high enough that Message Flood Automation is not constantly oscillating into and out of
intensive mode.

Using the MSGTHRESH=50 and INTVLTIME=1 specification makes Message Flood
Automation more responsive to detecting message flooding situations because only 50
messages are counted between computations of the message rate. However, the overhead
of the message rate computation is incurred twice as frequently as the MSGTHRESH=100
and INTVLTIME=2 specification.

Message Flood Automation message rate monitoring
It is very important that the message rate thresholds be properly set in the Message Flood
Automation policy. You can determine the values that are appropriate for your system by
using the Message Flood Automation Message Rate Monitoring function, which can be run
without enabling any other Message Flood Automation function.

Run the Message Rate Monitoring function on the system that you intend to run Message
Flood Automation on, and not on a test system. It is also very important that you obtain a
representative sample. We recommend that you run the Message Rate Monitoring function
for a 24-hour period that encompasses some of your busiest processing time.
120 z/OS Version 1 Release 9 Implementation

Enable message rate monitoring
You enable the Message Rate Monitoring function using the SETMF MONITORON command.
When you have obtained a representative sample, Message Rate Monitoring should be
turned off using the SETMF MONITOROFF command.

The D MF,MSGRATE command will display a graph of the message rates that were observed
and recommendations for setting the message threshold values.

Run Message Rate Monitoring periodically (or whenever your processing load increases) to
ensure that the message threshold values that you are using are still valid.

Figure 9-9 Commands to ENABLE/DISPLAY/DISABLE message rate monitoring

SETMF MONITORON
CNZZ902I Message rate monitoring ENABLED.
D MF,STATUS
CNZZ042I Message Flood Automation V2R0M00 DISABLED.
Policy INITIALIZED. Using PARMLIB member: internal
Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF
Message rate monitoring ENABLED. 120186 msgs 1167 secs
D MF,MSGRATE,10
CNZZ043I Message Flood Automation
 Instantaneous Message Rates
 120187 messages in 1183 seconds 101.595 msg/sec
% of time at msg rate 67113 messages w/most common rate
 100.000%| *****************
 90.000%| ********************
 80.000%| *********************
 70.000%| *********************
 60.000%| **********************
 50.000%| **********************
 40.000%| ***********************
 30.000%| ***********************
 20.000%| ************************
 10.000%| ************************
 0+--+>-+--+--+--+--+---+-|+-<-----------------
 0 1 8 64 1K 8K messages/second

 Suggested threshold for 95% is 1
 Suggested threshold for 96% is 200
 Suggested threshold for 97% is 1198
 Suggested threshold for 98% is 1686
 Suggested threshold for 99% is 2523
SETMF MONITOROFF
CNZZ903I Message rate monitoring DISABLED.
D MF,STATUS
CNZZ042I Message Flood Automation V2R0M00 DISABLED.
Policy INITIALIZED. Using PARMLIB member: internal
Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF
Message rate monitoring DISABLED. 0 msgs 0 secs

Note: For more detailed information graph parameters, refer to z/OS MVS Planning:
Operations, SA22-7601.
Chapter 9. Message Flood Automation 121

Tuning MSGFLDxx parmlib member
Set the REGULAR message MSGTHRESH value from the “suggested threshold” values
provided at the bottom of the Message Rate Monitoring graph. We recommend using the
99% threshold value. This means that in the sample, 99% of the messages occurred at a
message rate lower than the threshold value. Use of this threshold value will ensure that
Message Flood Automation is not taking action unnecessarily.

The interval time value should be set to one for all of the message types. Setting the value to
one will allow Message Flood Automation to be responsive without entailing undue overhead.

For the REGULAR and ACTION message types, the job threshold must always be less than
the overall message threshold. These relationships are checked and will cause warning
messages to be produced when the policy is loaded, or when the various values are
displayed by operator command. A useful value for the job threshold is 20 to 30% of the
respective overall message threshold.

For the SPECIFIC message type, the message limit must be less than the overall message
threshold. This relationship is checked and will cause a warning message to be produced
when the policy is loaded, or when the various values are displayed by operator command. A
useful value for the message threshold is 10 to 15% of the respective overall message
threshold.

The ACTION and SPECIFIC MSGTHRESH values should be set lower than the REGULAR
MSGTHRESH value because the messages in these classifications typically occur much less
frequently than more common messages.

9.4.5 Turning Message Flood Automation ON or OFF

Message Flood Automation command processing becomes active as soon as the message
exit and command exits are loaded and enabled. This will occur automatically during an IPL
and whenever a SET MPF= command is processed that has a (dot) .CMD entry for the
Message Flood Automation command exit.

Message Flood Automation message processing will be loaded and enabled automatically at
IPL and whenever a K M,UEXIT(Y) command is processed. Although Message Flood
Automation message processing is automatically loaded and enabled, no message
processing will occur until it is explicitly turned on by operator command.

Note that Message Flood Automation can be affected by SET MPF=xx commands that have
nothing to do with Message Flood Automation processing. For example, if a SET MPF=
command loads an MPFLSTxx parmlib member that does not have the .CMD statement for
loading the command exit and Message Flood Automation was previously active, Message
Flood Automation command processing will be deactivated. (The symptom for this is that
none of the Message Flood Automation commands will be recognized.)

After the Message Flood Automation code has been installed in the system libraries and the
various parmlib members have been customized, you can use the following commands to
turn Message Flood Automation On or OFF:

� Load your Message Flood Automation policy

SET MSGFLD=xx

or

T MSGFLD=xx

where xx is the suffix of a MSGFLDxx parmlib member.
122 z/OS Version 1 Release 9 Implementation

� Turn Message Flood Automation message processing ON

SETMF ON

� Turn Message Flood Automation message processing OFF

SETMF OFF

Figure 9-10 Expected messages when loading and enabling Message Flood Automation

9.4.6 Displaying your policy

Almost all of the currently active Message Flood Automation policy can be displayed using
the DISPLAY MSGFLD,parameters command.

Almost all of the Message Flood Automation policy can be modified, when necessary, by the
operator using the SETMF command. Consult z/OS MVS Planning: Operations, SA22-7601, for
details of the SETMF command syntax. Because changes made by the SETMF command will
persist only until the next IPL, IBM recommends that changes that you want to be permanent
be made in your MSGFLDxx parmlib member. You may find the SETMF command useful
during Message Flood Automation testing and during emergency situations.

� Display your Message Flood Automation policy, as follows:

– DISPLAY MSGFLD,PARAMETERS

The PARAMETERS option displays in tabular form all of the threshold values and all of
the time periods over which they are evaluated.

SET MSGFLD=00
CNZZ016I Message Flood Automation policy initialized.
CNZZ401I Message Flood Automation loading: MSGFLD00
CNZZ410I Message Flood Automation loading of MSGFLD00 complete.
SETMF ON
CNZZ041I Message Flood Automation ENABLED. PARMLIB member:MSGFLD00
D MF,STATUS
CNZZ042I Message Flood Automation V2R0M00 ENABLED.
Policy INITIALIZED. Using PARMLIB member: MSGFLD00
Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF
Message rate monitoring DISABLED. 0 msgs 0 secs
SETMF OFF
CNZZ041I Message Flood Automation DISABLED. PARMLIB member:MSGFLD00
D MF,STATUS
CNZZ042I Message Flood Automation V2R0M00 DISABLED.
Policy INITIALIZED. Using PARMLIB member: MSGFLD00
Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF
Message rate monitoring DISABLED. 0 msgs 0 secs

Note: You cannot use a COMMNDxx parmlib member to issue SET MSGFLD commands to
load the MSGFLDxx parmlib member because COMMNDxx processing occurs prior to the
availability of the system services required to read SYS1.PARMLIB.

Also, you cannot use COMMNDxx to issue the SETMF ON command to enable Message
Flood Automation because COMMNDxx processing occurs before the CNZZCMXT
command exit is automatically loaded by the system during IPL.
Chapter 9. Message Flood Automation 123

– DISPLAY MSGFLD,DEFAULTS

The DEFAULTS option will display in tabular form all of the default actions that will be
taken for each of the three message classes: SPECIFIC messages, ACTION
messages and REGULAR messages.

– DISPLAY MSGFLD,JOBS

The JOBS option will display in tabular form the names of all of the jobs that will have
unique actions taken for them.

– DISPLAY MSGFLD,MSGS

The MSGS option will display in tabular form the identifiers of all of the messages that
will have unique actions taken for them.

� Dynamically modify your Message Flood Automation policy with the following command:

– SETMF command

9.5 Command summary

Operator commands exist to do the following functions for Message Flood Automation:

� Enable message flood checking
� Disable message flood checking
� Reinitialize the counts, indicators and actions, and read the specified MSGFLDxx parmlib

member
� Display the status of the Message Flood Automation function
� Display whether intensive mode is active for the different classes of messages
� Display the counts and parameters used by Message Flood Automation
� Modify the counts and parameters used by Message Flood Automation
� Enable message rate information gathering
� Disable message rate information gathering
� Display message rate information
� Free the common storage area that is used by Message Flood Automation

All of these commands are implemented through a formal z/OS command exit (CNZZCMXT).

Message Flood Automation SET, SETMF, and DISPLAY commands do not perform authorization
checks and therefore cannot be restricted through the installation's security product.

You can use the following to perform DISPLAY, SET, and SETMF Message Flood Automation
commands.

DISPLAY MSGFLD command
Figure 9-11 on page 125 displays commands for all of the Message Flood Automation
parameters.

Note: Refer to z/OS MVS Planning: Operations, SA22-7601, for more detailed information
about the commands.
124 z/OS Version 1 Release 9 Implementation

Figure 9-11 DISPLAY MSGFLD command

SET MSGFLD command
Use this command to change to a new policy.

Figure 9-12 SET MSGFLD command

SETMF commands
To modify the Message Flood Automation parameters being used, use the SETMF command.
The SETMF commands, shown in Figure 9-13 on page 126, use the same msgtype and
keyword specifications as the DISPLAY MSGFLD command, so any value that may be displayed
by DISPLAY MSGFLD may be set using the SETMF command.

One or more keyword=value pairs may be specified, separated by a comma.

DISPLAY MSGFLD,PARAMETERS
DISPLAY MSGFLD,DEFAULTS
DISPLAY MSGFLD,JOBS
DISPLAY MSGFLD,MSGS
DISPLAY MSGFLD,MODE
DISPLAY MSGFLD,MSGRATE[,n]
DISPLAY MSGFLD,STATUS

DISPLAY MSGFLD,MSGTYPE=ACTION{,JOBTHRESH}
 {,MSGTHRESH}
 {,INTVLTIME}
 {,JOBIMTIME}
 {,SYSIMTIME}

DISPLAY MSGFLD,MSGTYPE=REGULAR{,JOBTHRESH}
 {,MSGTHRESH}
 {,INTVLTIME}
 {,JOBIMTIME}
 {,SYSIMTIME}

DISPLAY MSGFLD,MSGTYPE=SPECIFIC{,MSGTHRESH}
 {,INTVLTIME}
 {,SYSIMTIME}
 {,MSGIMTIME}
 {,MSGLIMIT}

DISPLAY may be abbreviated D and MSGFLD may be abbreviated MF.

SET MSGFLD=xx

SET may be abbreviated T.
Chapter 9. Message Flood Automation 125

Figure 9-13 SETMF commands

SETMF ON
SETMF OFF
SETMF FREE
SETMF MONITORON
SETMF MONITOROFF

SETMF MSGTYPE=ACTION{,JOBTHRESH=value}
 {,MSGTHRESH=value}
 {,INTVLTIME=value}
 {,JOBIMTIME=value}
 {,SYSIMTIME=value}

where value is a count of messages, or time in seconds
or fractions of a second (SYSIMTIME and JOBIMTIME only)

SETMF MSGTYPE=ACTION,
 DEFAULT=action[,action]

SETMF MSGTYPE=ACTION,JOB=jobname,
 [,action][,action]

where action is LOG|NOLOG, DISPLAY|NODISPLAY,
 AUTO|NOAUTO, RETAIN|NORETAIN,
 CMD|NOCMD
SETMF MSGTYPE=REGULAR{,JOBTHRESH=value}
 {,MSGTHRESH=value}
 {,INTVLTIME=value}
 {,JOBIMTIME=value}
 {,SYSIMTIME=value}

where value is a count of messages, or time in seconds
or fractions of a second (SYSIMTIME and JOBIMTIME only)

SETMF MSGTYPE=REGULAR,
 DEFAULT=action[,action]

SETMF MSGTYPE=REGULAR,JOB=jobname
 [,action][,action]
SETMF MSGTYPE=SPECIFIC{,MSGTHRESH=value}
 {,INTVLTIME=value}
 {,SYSIMTIME=value}
 {,MSGIMTIME=value}
 {,MSGLIMIT=value}

where value is a count of messages, or time in seconds
or fractions of a second (SYSIMTIME and MSGIMTIME only)

SETMF MSGTYPE=SPECIFIC,
 DEFAULT=action[,action]

SETMF MSGTYPE=SPECIFIC,MSG=msgid
 [,action][,action]
126 z/OS Version 1 Release 9 Implementation

Chapter 10. WLM enhancements

The z/OS Workload Manager (WLM) is enhanced with improved performance routing, priority
settings, and cancel functionality, further improving on the mainframe's leadership position in
workload management capabilities. With z/OS WLM, you can define business and
performance goals customized for your applications. The z/OS system decides how much
resource, such as CPU and storage, should be given to applications that serve the workload
to meet the goal. WLM constantly monitors the system and adapts resource applications to
meet application goals, taking into account not only server resources, but network traffic,
router bottlenecks, application health, and transaction prioritization as well, thus providing
autonomic, policy-based z/OS performance management that can be tuned to meet your
applications' needs.

This chapter provides information about the WLM enhancements introduced in z/OS
Version 1 Release 9. The following improvements are discussed:

� Promote jobs which have been cancelled

� Start minimum number of servers

� WLM/SRM enhancements for blocked workloads

� RMF enhancements for blocked workloads

� zAAPs and zIIPs support stage 3 routing

10
© Copyright IBM Corp. 2007. All rights reserved. 127

10.1 Promote jobs which have been cancelled

Occasionally you may need to cancel an address space because it is holding up other work,
and you need to get that address space out of the system quickly. Sometimes, however,
cancel processing takes a long time to complete because the job is being pre-emptied by
higher priority work and hence is not dispatched. When an address space is cancelled, the
majority of cancel processing runs in the address space being cancelled, so it is running at
the dispatch priority of the address space. The process of canceling this address space may
take a long time to terminate because all processors are too busy processing work with
higher importance.

10.1.1 z/OS V1R9 enhancement

WLM is now changed to increase the priority of canceled address spaces. SRM can now
promote the address space being cancelled to a higher dispatch priority in order to give the
address space sufficient access to a CP in order to have it terminate faster. This can
eliminate the need to reset the priority of a canceled job, task, or user to speed address space
termination when resolving resource contention issues.

10.1.2 Migration and coexistence considerations

The BRINGIN SYSEVENT, an internal service used during cancel processing, is no longer
used by the z/OS operating system and is removed with z/OS V1R9. While the BRINGIN
SYSEVENT was not a public interface, use of this function by other than the operating system
can cause problems in production environments. If the current job in an address space has
been canceled and if the BRINGIN service were not issued, an address space that had been
swapped out because of a shortage might be kept out until the shortage had been relieved.

Use of this SYSEVENT with z/OS V1R9 causes an ABEND of the caller, abend code x’15F‘,
reason code 4.

A new CANCEL SYSEVENT is now used to request a swap in and promote of an address
space. This allows for operator or user CANCEL processing to be done more quickly and
release system resources. This new service is used to accelerate the cancel process.

When the CANCEL command for an address space has been accepted by the command
processor, the command processor notifies SRM that cancel processing is starting for the
address space.

Note: Refer to z/OS MVS System Codes, SA22-7626, for more information about the
abend code x’15F’ and reason code 4.

Note: System events (SYSEVENTs) are indicated by an entry to system resources
manager (SRM) through direct branch or SVC 95 (SVC X'5F'). SYSEVENTs appear in the
generalized trace facility (GTF) and system trace records.
128 z/OS Version 1 Release 9 Implementation

10.2 Start a minimum number of servers

Workload management creates as many server address spaces as are needed to meet the
goals of the work running in the servers, unless the application has limited the number of
server instances that workload management can create using IWM4SLI.

WLM starts and stops server address spaces depending on the workload and the system
capabilities. This self-optimization logic is enhanced by an additional parameter that allows
the application to decide in which way the minimum amount of servers are to be started by
WLM.

10.2.1 z/OS V1R9 enhancement

The IWM4SLI service should be used to tell WLM the total number of server instances which
are supported by the application. WLM will ensure that no more server instances will be
started in the system.

Use the AE_SERVERMAX parameter to establish a maximum number, which is particularly
useful for applications such as MQSeries® and workflow that connects to back-end
applications supporting a limited number of parallel connections. Use the AE_SERVERMIN
parameter to establish a minimum number, because this allows an application to keep a
number of servers active, even during low utilization periods. In addition, you can specify
AE_SPREADMIN=YES to ensure that the defined minimum number of servers are distributed
evenly across all of the service classes used to execute work requests in the application
environment.

New parameters
The new parameters that can be specified using the IWM4SLI service are:

� START_MINIMUM=SERIAL

� START_MINIMUM=PARALLEL

When AE_SERVERMIN=ae_servermin is specified it indicates whether WLM will start the
minimum number of servers one by one or in parallel. The default is
START_MINIMUM=SERIAL.

START_MINIMUM=SERIAL The server tasks specified in AE_SERVERMIN will be
started one by one. This means the next server will only be
started if the previous server has connected to WLM.

START_MINIMUM=PARALLEL The server tasks specified in AE_SERVERMIN will be
started in parallel. This means WLM will start additional
servers even when the previous servers have not
connected to WLM.

In such environments, the startup of the minimum servers can be accelerated. This new
service used by WLM started server address spaces is called by the first server address
space, which then decides in which way the remaining servers will be started.

Note: The IWM4SLI service was introduced with z/OS V1R6 to support the 64-bit address
space.
Chapter 10. WLM enhancements 129

Server region support
When the first request is queued to an application environment, workload management
detects that there are no active servers for the request, and automatically starts one. The
MVS procedure name and start parameters are taken from the application environment
definition in the service definition. As the workload fluctuates, workload management adjusts
the number of server address spaces so the goals of the work are met.

When the server initializes, it must establish itself as a server address space using the
IWM4CON service with SERVER_MANAGER=YES parameter, and indicate which
application environment it is servicing. The subsystem type and name specified on the server
connect must match the values specified on the associated queueing manager connect.
Immediately after invoking the IWM4CON service, the server region optionally establishes a
maximum and/or minimum number of server instances that can be started for a given
application environment.

The first server region that connects decides the minimum amount of server address spaces
and also decides in which way they will be started (serial or parallel), as shown in Figure 10-1.
If any server uses this service to define limits, the limits apply for all servers of the application
environment, regardless of whether or not other servers use the service.

If a server defines new limits during execution, WLM attempts to meet the new limit definitions
as soon as possible. If the maximum limit for servers is reduced during execution, it is not
predictable when WLM is able to meet the new maximum definition. This depends highly on
the execution time of the running work requests. Therefore, changing the limits during
execution should be done very carefully and primarily during times of low application
utilization.

Figure 10-1 Server regions connecting to WLM

The logic that decides how many servers can be in which states is changed and has been
extended by the special case that the minimum amount of servers is not reached. The new
parameter on IWM4SLI decides if the servers need to connect before the next server start will
be initiated by WLM, as shown in Figure 10-2 on page 131.

Connect (Iwm4con)
Limit (iwm4sli)

Disconnect (iwm4dis)

Select (iwm4ssl)
Begin (iwm4stbg)

End (iwm4sten)

W
L
M

Control Region

Connect (IWM4CON)

Classify (IWMCLSFY)

Insert (IWM4QIN)

Disconnect (IWM4DIS)

Server Region
130 z/OS Version 1 Release 9 Implementation

Figure 10-2 Server regions establishing a minimum or maximum number

The syntax of the WLM service IWM4SLI is described in z/OS MVS Programming: Workload
Management Services, SA22-7619.

10.2.2 Exploiters of the new service request

Every application that uses the WLM services to manage its server address spaces and has
a minimum limit for the amount of servers can use this new parameter.

The usage of this new parameter makes only sense if the application suffers from a long
startup time of the minimum amount of servers specified on the IWM4SLI service.

If the long startup time is caused by a long processing time of the servers before they connect
to WLM, this new parameter may speed up the total time needed to start up the minimum
amount of servers.

10.3 WLM enhancements for blocked workloads

During periods of 100% CP utilization, it is possible that discretionary workloads (workloads
defined by your installation to have lower dispatch priority) are not dispatched for execution.
These discretionary workloads may obtain and hold serially reusable resources required by
other workloads, which may block the progress of higher dispatch priority workloads. In z/OS
V1R9, it is possible to specify that any address space and any enclave that has work that is
ready to run but does not get CP service within a certain time interval can be temporarily
promoted to a higher dispatching priority. Resource measurement facility (RMF) supports this
function by reporting relevant measurements.

When low priority work obtains a resource and then gets suspended in favor of higher
importance work, the resource that the high importance work needs is then blocked. The high
priority work is now in effect blocked by the lower priority work and WLM resolves this with
z/OS V1R9 by granting limited CP access to work units which could not get hold of a CP for
an extended period of time. WLM periodically examines the IN-queue and identifies work

Server States

Starting

Initializing

Connected

AS-Create

Connect to WLM

three servers can be in this state at once

If START_MINIMUM is SERIAL, only
one server per application environment
can be in one of these states at once.

If START_MINIMUM is PARALLEL
and ServerMin is not reached, multiple
servers can be in these states.

As soon as ServerMin is reached, the
parameter has no meaning anymore.
Chapter 10. WLM enhancements 131

units which have been CP denied. The dispatching priority of these work units is temporarily
raised to allow execution of a small number of instructions. This assumes that such short
periods of CP access does not harm high importance work and could help low importance
work to release locks and other critical resources.

10.3.1 Promote higher dispatch priority

WLM defined goals allow high importance work better access to system resources than lower
importance work, but these goals cannot guarantee that all work will always get access to the
system resources within a certain period of time. Given the high utilization of some systems,
WLM is not able to ensure that all work can actually run in the system. In many cases this is
not a problem, and installations are aware of the fact that lower importance work has to wait
until resources become available. However, in certain cases, this can lead to unwanted
consequences.

Because there are cases where WLM does not know what work is holding important
resources, WLM gives work that did not get access to a CP for some elongated time period a
small amount of access to the CPU. The z/OS V1R9 support periodically examines the
IN-queue and identifies work units which have been CP-starved for an extended period of
time. WLM can then promote these work units and guarantee that the promoted work gets
access to a CP, but cannot take over the CP.

This can eliminate the need to manually increase the priority of low priority work holding a
resource to accelerate resolving resource contention issues.

Blocked workload implementation
The support is invoked by using two new parameters, BLWLTRPCT and BLWLINTHD, in the
IEAOPTxx parmlib member to control the percentage of CPU spent for promotion.

BLWLINTHD This specifies the threshold time interval for which a blocked address space
or enclave must wait before being considered for promotion.

If the CPU utilization of a system is at 100%, then workloads with low
importance (low dispatch priority) might not get dispatched anymore. This
can lead to problems if the low priority work holds a resource that is
required by high priority workloads. Therefore, if an address space or
enclave has ready-to-run work units (TCBs or SRBs) but does not get CPU
service for the specified time interval because of its low dispatch priority, it
will be temporarily promoted to a higher dispatch priority. Address spaces
that are swapped out are not considered for promotion.

Minimum is 5 seconds. Maximum is 65535 seconds.

Default is 60 seconds.

BLWLTRPCT This specifies how much of the CPU capacity is to be used to promote
blocked workloads.

This parameter does not influence the amount of CPU service that a single
blocked address space or enclave is given. Instead, this parameter
influences how many different address spaces or enclaves can be
promoted at the same point in time. If the value specified with this
parameter is not large enough, blocked workloads might need to wait
longer than the time interval defined by BLWLINTHD.

Minimum is 0 units. Maximum is 200 units (=20%). (0% implies trickle
should not occur.)

Default is 5 (=0.5%), max is 200 (=20%).
132 z/OS Version 1 Release 9 Implementation

For detailed information about the new IEAOPTxx parameters, refer to z/OS MVS
Initialization and tuning Reference, SA22-7592.

10.4 RMF enhancements for blocked workloads

RMF enhances the Workload Activity report and the CPU Activity report to provide
information about the handling of blocked workload. In addition, RMF provides new overview
conditions for the Postprocessor based on SMF record 72-3. This new functionality is
available as SPE and needs to be installed as APAR OA18244. If the CPU utilization of a
system is at 100%, workloads with low importance (low dispatch priority) might not get
dispatched anymore. This could cause problems if the work holds a resource and by that
holds up more important workloads. Therefore, any address space or enclave which has
ready-to-run work units but does not get CPU service within a certain time interval due to its
low dispatch priority will be temporarily promoted to a higher dispatch priority. RMF supports
this function by reporting relevant measurements in the new Blocked Workload Promotion
section of the Postprocessor CPU Activity report. The Postprocessor Workload Activity report
provides the CPU time, that transactions of a certain service or report class were running at a
promoted dispatching priority.

10.4.1 RMF CPU Activity report

The CPU Activity report is extended by a BLOCKED WORKLOAD ANALYSIS section. This
new section lists the number of blocked dispatchable units that may get promoted in their
dispatch priority to help blocked workloads (promote rate). This value is derived from the OPT
parameters BLWLTRPCT and BLWLINTHD. To help customers tune those new OPT
parameters, the new section also lists the average exploitation of the promote rate during the
measurement interval. A value below 100% indicates that not all blocked workloads could be
promoted. To assess the amount of workload still being blocked, the average number of
address spaces and enclaves found blocked (waiters for promote) is listed. The average
across the measurement interval might be quite low although there might be considerable
peaks of blocked workload. Thus, the peak value detected during the measurement interval is
listed as well.

Blocked workload analysis
The field WAITERS FOR PROMOTE, shown in Figure 10-3 on page 134, displays the
“number of waiters”. This report can be used to adjust the BLWLTRPCT parameter. As long
as the number of waiters is greater than 0, the system has blocked work, indicating a need to
increase BLWLTRPCT. The Blocked Workload Analysis section lists the number of blocked
dispatchable work units that are eligible for dispatching priority promotion. This section also
lists the defined average promotion rate and the percentage used during the measurement
interval. A value below 100% indicates that not all blocked workloads could be promoted. To
assess the amount of workload still being blocked, the average and peak number of address
spaces and enclaves found blocked is also listed and defined as follows:

DEFINED Average number of blocked dispatchable work units which may get
promoted in their dispatching priority per second. This value is derived
from OPT parameter BLWLTRPCT.

USED (%) The utilization percentage of the defined promote rate during the
reporting interval.

AVG Average number of address spaces and enclaves found blocked
according to BLWLINTHD during the report interval.

PEAK Highest number of address spaces and enclaves found blocked during
the report interval.
Chapter 10. WLM enhancements 133

Figure 10-3 Blocked workload analysis in CPU Activity Report

If you experience a problem with blocked work holding resources for too long but you see no
waiters in the RMF data, you might want to decrease BLWLINTHD. Also SMF Record 99
Subtype 1 shows the number of address spaces or enclaves waiting longer than the
threshold. The field name is SMF99_CCTRCWTR and is shown in Table 10-1.

Table 10-1 System state information section for SMF record type 99

For more information about SMF Record 99 Subtype 1, including details of the new fields,
refer to z/OS MVS System Management Facilities, SA22-7630.

10.4.2 RMF Workload Activity report

Using the RMF WLMGL report, you can analyze the following areas:

� Identify service classes running work units at a promoted dispatching priority

� Monitor the amount of CPU time that transactions of the service or report class (period)
were running at a promoted dispatching priority

The amount of CPU time transactions that were running at a promoted dispatching priority is
provided in the SERVICE TIMES block.

In Figure 10-4, the field PROMOTED shows the CPU time in seconds that transactions in this
group were running at a promoted dispatching priority.

Figure 10-4 Field PROMOTED in Workload Activity Report

C P U A C T I V I T Y
z/OS V1R9

CPU 2094 MODEL 714 H/W MODEL S18

BLOCKED WORKLOAD ANALYSIS

OPT PARAMETERS: BLWLTRPCT (%) 0.5 PROMOTE RATE: DEFINED 50000 WAITERS FOR PROMOTE: AVG 0.001
 BLWLINTHD 60 USED (%) 95 PEAK 15

Offsets Name Length Format Description

28 120 SMF99_CCTINTHD 2 Binary OPT parameter BLWLINTHD
starvation threshold

29 122 SMF99_CCTTRPCT 2 Binary OPT parameter BLWLTRPCT for
percentage of CP trickling

31 138 SMF99_CCTRCWTR 4 Binary Number of address spaces or
enclaves waiting longer than the
threshold

W O R K L O A D A C T I V I T Y

-TRANSACTIONS- TRANS-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE TIMES-- ----APPL%---- -----STORAGE-----
AVG 10.07 ACTUAL 1.00.895 SSCHRT 20.8 IOC 96199 CPU 1.400 CP 0.20 AVG 980.42
MPL 10.07 EXECUTION 59.616 RESP 2.8 CPU 266554 SRB 0.200 AAPCP 0.00 TOTAL 9868.59
ENDED 1 QUEUED 1.278 CONN 0.2 MSO 9131 RCT 0.000 IIPCP 0.00 SHARED 127.67
END/S 0.00 R/S AFFIN 0 DISC 0.0 SRB 39610 IIT 0.200
#SWAPS 30 INELIGIBLE 0 Q+PEND 0.5 TOT 411494 HST 0.000 AAP 0.00 --PAGE-IN RATES--
EXCTD 0 CONVERSION 0 IOSQ 2.0 /SEC 457 AAP 0.000 IIP N/A SINGLE 0.0
AVG ENC 0.00 STD DEV 0 IIP N/A BLOCK 0.0
REM ENC 0.00 ABSRPTN 45 SHARED 0.0
MS ENC 0.00 TRX SERV 45 PROMOTED 0.333 HSP 0.0
134 z/OS Version 1 Release 9 Implementation

10.4.3 New SMF record types

SMF record type 70 subtype 1 and 72 subtype 3 are handled consistently within RMF. New
fields are appended to the end of the respective data sections. If SMF records without the
new fields are formatted by the RMF Postprocessor, the appropriate report fields are reported
with ZERO values. No compatibility PTFs are required. This support is rolled back as SPE
APAR OA18244.

The CPU control section is updated with information about blocked workloads as described in
Table 10-2. The RMF Postprocessor CPU activity report uses this information to format the
BLOCKED WORKLOAD ANALYSIS section.

Table 10-2 SMF record type 70 subtype 1 (CPU Activity) – CPU control section

The service or report class period data section of SMF record type 72-3 is extended with a
new field holding the CPU time at promoted dispatching priority to help blocked workloads,
and it is shown in Table 10-3. This field is used to format the PROMOTED field in the
Resource Consumption Section of the WLM Workload Activity Report.

Table 10-3 SMF record type 72 subtype 3 (Workload Activity) – SC/RC period data section

In addition, two new overview control statements are provided based on this new SMF record
type 72-3 fields, as shown in Table 10-4 on page 136.

Offset Name Length Format Description

5 5 SMF70STF 1 Binary Flag BIT 0 to 4 meaning not changed.
BIT 5 = OPT parameter BLWLTRPCT changed.
BIT 6 = OPT parameter BLWLINTHD changed
BIT 7 = reserved

96 60 SMF70PMI 4 Binary Accumulated number of blocked dispatchable
units per second that may get promoted in their
dispatch priority. To get the average promote
event rate, divide SMF70PMI by SMF70SAM.

100 64 SMF70PMU 4 Binary Number of blocked dispatchable units being
promoted during the interval

100 64 SMF70PMW 4 Binary Accumulated number of address spaces and
enclaves being blocked during the interval. To get
the average number of waiters for promote, divide
SMF70PMW by SMF70SAM.

108 6C SMF70PMP 4 Binary Maximum number of address spaces and
enclaves found being blocked during the interval.

112 70 SMF70PMT 2 Binary 1/1000s of a CP for promote slices (OPT
parameter BLWLTRPCT).

114 72 SMF70PML 2 Binary Swapped-in starvation threshold. When an
address space or enclave has not received CPU
service within this time interval, it is considered
being blocked (OPT parameter BLWLINTHD).

Offset Name Length Format Description

576 240 R723TPDP 8 Float Total CPU time at promoted dispatching priority
(in 1024 microsecond units)
Chapter 10. WLM enhancements 135

Table 10-4 New overview conditions based on SMF record 72-3

10.4.4 RMF Distributed Data Server

There are new metrics for the RMF Distributed Data Server. For resource type MVS_IMAGE,
the CPU time at promoted dispatching priority is provided by:

� WLM workload
� WLM service class and service class period
� WLM report class and report class period

Exploit the new metrics with RMF PM or the RMF Monitor III Data Portal for z/OS.

10.5 Improved assist processor routing services

The zSeries platform recently introduced specialty processors that can be deployed and
exploited by qualified workloads on z/OS. This includes support for the following processors:

� zAAP (zSeries Application Assist Processor)

These processors can be used for JAVA application workloads on z/OS (including
workloads running under z/OS WebSphere Application Server).

� zIIP (System z Integrated Information Processor)

These processors can be used by qualified z/OS DB2-related workloads.

When the Sysplex Distributor routes incoming connections based on Workload Manager
(WLM) system weights (in addition to using WLM information about general CPU capacity), it
will optionally (if all systems in the sysplex are V1R9 or later) consider available zAAP CPU
capacity, available zIIP CPU capacity, or both. When configured on the VIPADISTRIBUTE
statement, a composite WLM weight is determined based on the available capacity of each
processor type and the expected use of each processor type by this application.

The sysplex routing services provide routing recommendations to help distributed programs
make the routing decisions. The recommendations are based on processor capacities. The
sysplex routing services allow work associated with a server to be distributed across a
sysplex. They enable distributed client/server environments to balance work among multiple
servers.

With zAAPs and zIIPs two new processor types are introduced for z/OS systems. It is now
possible that a substantial amount of work is executed on the assist processors in addition to

Condition Condition Name Source Algorithm

Percentage of CPU
time at promoted
dispatching priority

PROMPER R723TPDP Sum(R723TPDP) /
Interval length x 100

Time at promoted
dispatching priority in
seconds

PROMSEC R723TPDP Sum(R723TPDP)

Note: Both overview conditions can be specified with a service class (period), report class
(period), workload or the POLICY qualifier.
136 z/OS Version 1 Release 9 Implementation

regular CPs. In previous releases, the routing recommendation is based on the capacity of
regular CPs only.

With z/OS Version 1 Release 9, routing services provide individual weights for all processor
types and also a combined server weight based on usage of all processors. The benefit is
better routing recommendations in environments with assist processors.

Prior to z/OS V1R9, the routing services only return weights based on capacity of regular
CPs, but the capacity of assist processors influence how the work can be processed. Routing
services now provides individual weights for all processor types and also a combined server
weight based on usage of all processors. This provides better routing recommendations in
environments with assist processors such as zIIPs and zAAPs.

10.5.1 Sysplex routing services IWMSRSRS improvements

In previous releases the routing recommendation is based on the capacity of regular CPs
only. With z/OS V1R9, routing recommendations now take the capacity of assist processors
(zAAPs and zIIPs) into account.

This new support is invoked by the following WLM services:

� IWMSRSRS FUNCTION=SELECT or IWMSRSRS FUNCTION=SPECIFIC

The existing calls now return a list of registered servers in a sysplex along with 4 weight
values for each server (3 individual, 1 combined) which tell the caller the relative number
of requests to send to the server

� IWM4SRSC

This existing call now returns the weight(s) for one specific server that is identified by its
STOKEN.

� IWMWSYSQ EXTENDED_DATA=YES

This existing call returns capacity information for all processor types of all systems in the
sysplex.

For more information about WLM services, refer to MVS Programming: Workload
Management Services, SA22-7619.

IWMSRSRS service
The IWMSRSRS service, shown in Figure 10-5 on page 138, provides three functions:
SELECT, QUERY and SPECIFIC. This call returns a list of registered servers known to the
system on which the service is invoked.

When either the SELECT or the SPECIFIC function is chosen, IWMSRSRS returns a list of
servers in the sysplex which are associated with the input location name along with a relative
weighting for each server. These servers are identified by their Network ID and LU name,
which were previously registered using the sysplex router register service, IWMSRSRG,
which allows a caller to register as a server.
Chapter 10. WLM enhancements 137

Figure 10-5 IWMSRSRS service

IWMSRSRS routing recommendation
Each system in the sysplex has information about all registered servers and all processor
capacities.To get a routing recommendation, you can call the IWMSRSRS service with a
LOCATION parameter on any system in the sysplex. It returns recommendations, called
weights (numbers between 0 and 64) for each server that was registered under that
LOCATION ID. Then you would use those weights to distribute the incoming request between
the servers according to the size of their weights, as shown in Figure 10-5. The base
calculation for FUNCTION=SPECIFIC and FUNCTION=SELECT is the same as in previous
releases.

In previous releases:

� Only one weight (SYSR_WEIGHT) is returned and it is based only on regular CP capacity.

� A system was not returned if it had less than 5% of displaceable capacity at the selected
importance level

With z/OS Version 1 Release 9:

� SYSR_WEIGHT now is the combined weight of all available processor resources.

� The individual weights have been added:

– SYSR_CPU_WEIGHT (corresponds to SYSR_WEIGHT of previous releases)

– SYSR_ZAAP_WEIGHT

– SYSR_ZIIP_WEIGHT

� A system is not returned if it has no displaceable capacity for regular CPs at the selected
importance level

– As a result, potentially more systems may be returned.

– If a system has no displaceable capacity for an assist processor, it is returned and
missing capacity is reflected in the weight.

IWMSRSRS details - Step 1
The IWMSRSRS service calculates the CP system weight to find the importance level where
at least 5% of displaceable capacity is available. This results in an importance level 5. A

Server B

Server A
Server B
Server C

SYS 2

Server C

Server A
Server B
Server C

SYS 3
Server A

Server A
Server B
Server C

SYS 1

IWMSRSRS

SYS1: avail. Capacities
SYS2: avail. Capacities
SYS3: avail. Capacities

50%
Routing
Manager

 20 SYS 3 C
 30 SYS 2 B
 50 SYS 1 A
 Weight System Server 30%

20%

 Web
Requests
138 z/OS Version 1 Release 9 Implementation

shown in Figure 10-6, systems B and C meet the criteria. As shown in Figure 10-7, however,
system A does not meet the criteria.

Figure 10-6 Results from the calculation of the system weights

Figure 10-7 Capacity for regular CPs

IWMSRSRS details - Step 2, 3, and 4

With z/OS V1R9, three new output weights have been introduced: the CPU weight, the zAAP
weight and the zIIP weight. The CPU weight is computed the same way as the weight prior to
V1R9, taking only CPU data into account. The zAAP and the zIIP weights are computed
taking only zAAP, respectively zIIP, data into account. The weight (also referred to as “mixed”
weight) is a combination of these three processor weights.

With z/OS V1R9, the new support from this service now attempts to include special purpose
processors in the calculation of the weights, as explained here.

� Step 2
– Calculate the system weights for the assist processors.
– Systems which have been excluded in step 1 are no longer considered.
– In this step, no system is excluded.

� Step 3
– Calculate the server weight.
– Use the proportion of the work using the processor types to calculate a system weight

for the server and scale the resulting weight to 64.

Note: Prior to z/OS V1R9, system A would have been removed from the list of eligible
systems. Now with the new changes, system A is still considered because the
consumption is not zero.

40=700*64/1130CPU System Weight for System C
22=390*64/1130CPU System Weight for System B

2=40*64/1130CPU System Weight for System A
1130=40+390+700Total capacity at level 5

5=Selected Importance Level

013007 (Free)

360412006 (Disc)

35700133902405

459003090081604

701400601800306003

7515007021007014002

8517009027009018001

1002000100300010020000 (System)

%SUs%SUs%SUs

System CSystem BSystem ALevel
Chapter 10. WLM enhancements 139

� Step 4
– Include other weight factors (zAAPs and zIIPs).

The results are shown in Figure 10-8.

Figure 10-8 Calculation of the weights

Server weights on System C
During Step 4, the following calculations for system C servers are as explained here.

� Calculate the server weights.

� Divide the system weights by the number of servers on system.

� Only for function=SPECIFIC: include other server performance factors.

� In case one of the servers has a mixed weight=0: return only 1 server (and undivided
weight): the server with maximum performance.

The results are shown in Figure 10-9 on page 141.

2915207zIIPs
051154zAAPs

402225Regular CPs
System CSystem BSystem AImportanceProcType

Processor Weights - Step 2

No zAAPs

zIIPzAAPCPzIIPzAAPCPzIIPzAAPCP

20

50

0

0

20

100

60

300

33

200

33

200

802033Portion

200100200Service

System CSystem BSystem AServer X

Calculation

Scaling

27289Resulting System Weight

373812System weight (unscaled)

System CSystem BSystem A

Server System Weights - Step 4

Server Processor Usage - Step 3

∑ ••
i

)]ProcType(i)[Portion(i
100

1

∑
•

i
ight(i)UnscaledWe

ight(i)UnscaledWe64
140 z/OS Version 1 Release 9 Implementation

Figure 10-9 Server weight calculation for System C

IWMSRSRS additional enhancements
The restriction that no more than 96 servers per system could be returned is now relieved.
With z/OS V1R9, up to 300 servers per system will be returned from the IWMSRSRS service.
This is also valid for IWMSRSRS FUNCTION=QUERY service calls.

This support is available for z/OS V1R6 and above via APAR OA18531. In addition, the C
interface to IWMSRSRS IWMDNSRV has also been extended to return the new weights.

10.5.2 Sysplex routing services IWM4SRSC improvements

The IWM4SRSC service provides information about how well a server is suitable to receive
work from a WLM point of view. The IWM4SRSC service allows you to check a specific
server before routing work to it from WLM. Thus, the information obtained can be used for
making balanced routing decisions with programs like Sysplex Distributor and their exploiters
(for example, TCP/IP).

The input to the IWM4SRSC service is the STOKEN of an address space. The output is an
indicator of how well the address space itself and the transactions or enclaves (if it is a
registered transaction server, an enclave server or an enclave owner) are performing relative
to their WLM goal and to the displaceable capacity for its WLM importance on that system.

The service returns an indicator that can be used for load balancing by comparing it to calls of
this service for other servers. The indicator output is a weight. This weight is calculated based
on six factors, as follows:

� It is a combination of the three processor weights (CPU weight, zAAP weight and zIIP
weight) and

� The respective consumed service units (CPU weight, zAAP weight and zIIP weight)

System CServer Weights - Step 4

66%25%100%Server performance
factors (PI, Queue
Time)

3 # of Servers

Server C_3Server C_2Server C_1Server

10

10

29

zIIP
W

4

9

27

W

0

0

0

zAAP
W

13

13

40

CPU
W

9

9

27

W

6

13

40

CPU
W

0

0

0

zAAP
W

8

13

40

CPU
W

5

10

29

zIIP
W

606Server Weights

1009Divided weights

29027System Weight

zIIP
W

zAAP
W

WProcessor
Chapter 10. WLM enhancements 141

Figure 10-10 IWM4SRSC service for non-registered servers with LPAR scope

Weight calculation
The CPU, zAAP and zIIP weights are each computed based on the following four factors:

� The first factor is how well this server, or the transactions or enclaves it is related to, fulfill
their goals.

� The second factor is how much other work with lower importance can be displaced, if it
receives more work to handle on this system.

� The third factor is the abnormal termination factor. This depends on the ratio of abnormal
terminations to normal terminations as reported by the IWMRPT service. If no
terminations were reported by IWMRPT, this factor is neutral (=1).

� The fourth factor is the health factor of this server. It is dependent on the health indicator
which was reported to WLM for this server by the IWM4HLTH service or by IWMSRSRG. If
no health indicator was reported, this factor is also neutral.

Create output weight as a number
These four factors are combined to create the output weight as a number.

To make it easier for the caller to determine, how far the weights were influenced by the
abnormal terminations and health factors, those values can also be output through the
optional parameters ABNORM_COUNT and HEALTH.

The processor weights are returned through the optional CPUWEIGHT, ZAAPWEIGHT, and
ZIIPWEIGHT parameters. The respective parts of these weights in the WEIGHT are returned
through the optional parameters CPUPROPORTION, ZAAPPROPORTION, and
ZIIPPROPORTION.

The WEIGHT is equal to the sum of these three proportion fields. As WLM computes the
values with higher precision, and rounds them before output, the WEIGHT actually returned is
probably greater than the sum of the returned proportion fields by one or two units.

Work Requests

Routing
Manager

SYSA

SYSC

SYSB

IWM4SRSC
SERV A

IWM4SRSC
SERV B

IWM4SRSC
SERV C

SERV A

SERV C

SERV B

Routing
Recommendation

IWM4SRSC
Service for non-registered Servers
with LPAR Scope
142 z/OS Version 1 Release 9 Implementation

IWM4SRSC new and changed parameters
There are required output parameters, which contain the weight of how well the server is
performing. When all systems in the sysplex are running z/OS V1R9, the weight is based on
capacities of all processor types. Otherwise, WEIGHT and CPUWEIGHT will be identical.
The parameters are as follows:

,CPUWEIGHT=cpuweight
An optional output parameter, which contains the weight of how well the server
is performing on regular CPs. This is equivalent to the old weight returned on
z/OS V1R8 or before.

,ZAAPWEIGHT=zaapweight
An optional output parameter, which contains the weight of how well the server
is performing on zAAPs. ZAAPWEIGHT will return 0 if there is at least one
systems in the sysplex with a z/OS level prior to V1R9.

,ZIIPWEIGHT=ziipweight
An optional output parameter, which contains the weight of how well the server
is performing on zIIPs. ZIIPWEIGHT will return 0 if there is at least one
systems in the sysplex with a z/OS level prior to V1R9.

,CPUPROPORTION=cpuproportion
An optional output parameter. When all systems in the sysplex are running z/OS
V1R9 the returned WEIGHT value (specified above) is a composite value that is
based on the amount of each processor type that a server is consuming. The
returned value of this parameter will be the proportion of CPUWEIGHT that was
used to determine the composite WEIGHT for this application.

,ZAAPPROPORTION=zaapproportion
An optional output parameter. When all systems in the sysplex are running z/OS
V1R9 the returned WEIGHT value (specified above) is a composite value that is
based on the amount of each processor type that a server is consuming. The
returned value of this parameter will be the proportion of ZAAPWEIGHT that was
used to determine the composite WEIGHT for this application.

ZIIPPROPORTION=ziipproportion
An optional output parameter. When all systems in the sysplex are running z/OS
V1R9 the returned WEIGHT value (specified above) is a composite value that is
based on the amount of each processor type that a server is consuming. The
returned value of this parameter will be the proportion of ZIIPWEIGHT that was
used to determine the composite WEIGHT for this application.

The returned weights are a number between 0 and 64.

10.5.3 IWMWSYSQ service

The purpose of this service is to query information about the systems in the sysplex that are
in goal mode. The query system information service, IWMWSYSQ, returns a list of systems
running in goal mode and information related to available CPU capacity and resource
constraints.

The enhancement for z/OS V1R9 is available via a new parameter EXTENDED_DATA
where:

� EXTENDED_DATA=YES
Chapter 10. WLM enhancements 143

Using this option allows additional information to be returned in the output area, as
follows:

– The system level which contains the total system capacity has been added.
– Data is returned for all processor types.
– In addition the following information is supplied:

• Uniprocessor speed of a single processor.
• zAAP and zIIP normalization factors (deviation from regular processor speed if

applicable).
� EXTENDED_DATA=NO

Using this option returns the output area the same as in previous releases

10.5.4 Migration and coexistence considerations

When pre-z/OS V1R9 systems are active in a sysplex, the weights are based on regular CP
capacity as before because there is no information available about zAAP and zIIP capacities
from the older releases.

In a z/OS V1R9 system, you automatically get the new combined server weights without
changes to the service invocation.

10.6 Group capacity limit

In z/OS V1R8 and z/OS V1R9, the WLM defined capacity mechanism is extended to handle
LPAR groups instead of a single LPAR. This is called group capacity limit support. Since the
use of defined capacity began some years ago, there is a requirement to have more flexibility
when defining capacity limits for LPARs, so an enhanced mechanism is needed.

The group capacity limit balances the capacity between groups of partitions on the same
processor. This requirement, related to WLM, requires the use of IBM System z9 and z/OS
V1R8 and higher. The software support allows grouping of LPARs in the same processor and
the LPARs are then managed on a group basis using the existing WLM defined capacity
mechanism.

10.6.1 Defined capacity review

The enhancement to WLM to support group capacity limits requires an understanding of all
the concepts of, processors in LPAR mode, shared logical CPs, LPAR dispatching, LPAR
weights, and the 4-hour rolling average.

Defined capacity
As part of the z/OS support of Workload License Charges, you can set a defined capacity
limit, also called a soft cap, for the work running in a logical partition. This defined capacity
limit is measured in millions of service units per hour (MSUs). It allows for short-term spikes in
the CPU usage, while managing to an overall, long-term, rolling 4-hour rolling average. It
applies to all work running in the partition, regardless of the number of individual workloads
the partition may contain.

LPAR weights
LPAR weights are used to control the distribution of shared CPs between LPs. Therefore, LPs
with dedicated CPs do not use LPAR weights.
144 z/OS Version 1 Release 9 Implementation

LPAR weights determine the guaranteed (minimum) amount of physical CP resource an LP
should receive (if needed). This guaranteed figure may also become a maximum when either:

� All the LPs are using all of their guaranteed amount (for example, if all LPs were
completely CPU-bound).

� The LP is capped using traditional LPAR capping.

An LP may use less than the guarantee if it does not have much work to do. Similarly, it can
use more than its weight if the other LPs are not using their guaranteed amount.

LPAR LIC
LPAR LIC uses weights and the number of logical CPs to decide the priority of logical CPs in
the logical CP ready queue. The following formulas are used by LPAR LIC in the process on
controlling the dispatching of logical CPs:

� WEIGHT(LPx)% = 100 * WEIGHT LPx / SUM_of_ACTIVE LPs WEIGHTs

This indicates the percentage of the total shared physical CP capacity that will be
guaranteed to this LP. This percentage will vary, depending on the weights of all the active
LPs.

� TARGET(LPx) = WEIGHT(LPx)% * (# of NON_DEDICATE_PHYS_CPs)

This indicates, in units of shared physical CPs, how much CP resource is guaranteed to
the LP. This figure cannot be greater than the number of logical CPs in the LP. This is
because you cannot use more physical CPs than the number of logical CPs you have
defined—each logical CP can be dispatched on only one physical CP at a time. So, even if
there are eight physical CPs available, an LP that has been defined with only four logical
CPs can only ever use four of the physical CPs at one time. If you specify a weight that
guarantees you more capacity than can be delivered by the specified number of logical
CPs, the additional unusable weight will be distributed among the other LPs.

� TARGET(LCPx)% = TARGET(LPx) / (# of LCPs_in_LPx) * 100

This takes the TARGET(LPx) value (that is, the number of physical CPs of capacity) and
divides that by the number of logical CPs defined for the LP. The result determines the
percentage of a physical CP that should be given to each logical CP. This is turn
determines the effective speed of each logical CP.

Over time, the average utilization of each logical CP is compared to this value. If Target is
less than Current, then the logical CP is taking more CP resource than the guarantee and
its priority in the ready queue is decreased. It does not mean that it is prohibited from
consuming CP; it simply means that it will tend to sit lower in the queue than other logical
CPs that have used less than their guaranteed share of the CP resource.

Also, these logical CPs are going to be preemptable by an I/O interrupt for a logical CP
that is behind its target. If Target is greater than Current, then the logical CP is taking less
CP resource than the guarantee and its priority in the ready queue is increased. This
means that it has a better chance of being dispatched on a physical CP. Also, these
logical CPs are not going to be preempted by an I/O interrupt for another logical CP.

4-hour rolling average
WLM enforces the defined capacity limit by tracking the partition's CPU usage and continually
averaging it over the past 4 hours. Spikes above the defined capacity limit are possible, as
shown in Figure 10-11 on page 146 with the dashed line, as long as they are offset by low
points that keep the 4-hour average at or below the defined capacity limit. When this 4-hour
average goes over the defined capacity limit, then WLM caps the partition (soft cap). At that
point, it can use no more than the defined capacity limit, until the average drops below the
limit.
Chapter 10. WLM enhancements 145

At IPL, WLM defaults to a 4-hour time interval that contains no partition CPU usage. This
allows the defined capacity limit to be exceeded at IPL and therefore avoids capping during
this time.

Figure 10-11 Defined capacity example showing 4-hour rolling average with three LPARs

10.6.2 Group capacity definition rules

Each partition manages itself independently from all other partitions and the group capacity
you define is based on defined capacity. Therefore, a 4-hour rolling average of the group
MSU consumption is used as a base for managing the partitions of the group.

Each partition is going to see the consumption of all the other LPARs on the processor. If the
partition belongs to a group, it identifies the other partitions in the same group and calculates
its defined share of the capacity group based on the partition weight (compared to the group).
This share is the target for the partition if all partitions of the group want to use as much CPU
resources as possible.

If one or more LPARs do not use their share, this donated capacity is distributed over the
LPARs which need additional capacity. Even when a partition receives capacity from another
partition, it never violates its defined capacity limit (if one exists).

Defining group capacity limits
A capacity group has to be defined using the following rules:

� Consists of multiple LPARs on the same processor.
� LPARs must run at least z/OS V1R8 or higher.
� It is possible to define multiple groups on a processor.
� A partition can only belong to one group.
� A group member can have a defined capacity also.
� A capacity group is independent of a sysplex and an LPAR cluster.

0 5 10 15 20

Time (hours)

M
S

U
s

Defined Capacity Utilization 4-hour Rolling Average

IPL

LPAR1

LPAR3

LPAR2

Defined capacity

Defined capacity

PR/SM and WLM work together to:

Enforce the capacity defined for
the group

Enforce the capacity optionally
defined for each LPAR
146 z/OS Version 1 Release 9 Implementation

10.6.3 Group capacity example

This implementation should make the use of use soft capping easier to utilize CPU capacity
across multiple logical partitions on the same processor. With group capacity limits, it is no
longer necessary to worry about the SCRT reporting period in order to balance the defined
capacity across two LPARs. In the following example:

� Assume a processor with a total capacity of 500 MSU and two partitions named PROD
and TEST in which the MSU consumption should be controlled via soft capping.

� LPAR PROD should use a defined capacity limit of up to 300 MSU and LPAR TEST of up
to 100 MSU.

� During certain periods LPAR PROD needs more capacity while at the same time LPAR
TEST does not need all of its capacity.

Current LPAR support
Without group capacity, you must now perform the following steps to ensure that the SCRT
reporting agrees with the IBM contract in order to avoid additional charges:

1. Reduce the defined capacity limit of partition TEST by 50 MSU. The new defined capacity
limit is now 50 MSU for TEST.

2. Wait for one hour to assure that the SCRT reporting period contains this change.

3. Now you can increase the defined capacity limit for partition PROD to 350 MSU.

This requires some planning in advance.

Using group capacity support
With group capacity, the situation becomes much easier because you must define a group for
the LPARs PROD and TEST and a group limit of 400 MSU. Now you have two options
regarding how you can configure your partitions to ensure that a CPU consumption of 300
MSU is guaranteed for PROD and 100 MSU for TEST, as follows:

1. Ensure that the partition weights for PROD and TEST entitle partition PROD to a ¾ share
and TEST to a ¼ share. For example, set the weights to 300 for PROD and 100 for TEST.
So the actual weight setting must confirm your objectives with other partitions which might
run on the system. With such a setting, PROD is now able to obtain ¾ of the 400 MSU and
TEST ¼ of it. During periods where one partition uses much less capacity than the other
partition, that LPAR is able to get up to 400 MSU.

2. If you want to ensure that PROD can get everything and TEST not more than the 100
MSUs, you can also set an individual defined capacity limit of 100 MSU for TEST. Now
TEST is only able to receive 100 MSU while PROD gets always at least 300 MSU and can
use up to 400 MSU if TEST does not need the capacity.

Both examples assume that the partition weights of all partitions on the processor allow
PROD and TEST to consume the desired amount of service.

10.6.4 Hardware and software for group capacity

Group capacity limit is available with z/OS V1R8. The hardware requires is an IBM System z9
with a new microcode level.

Using the HMC or SE of the new microcode level installed processor, there are two new input
values in the LPAR configuration panel. These are “Group Name” and “Group Limit”, as
shown in Figure 10-12 on page 148.
Chapter 10. WLM enhancements 147

Figure 10-12 HMC LPAR configuration panel allowing group capacity limit definitions

New HMC panels
The group name and limit field are available in processor activation Profile and also in
Change Dynamic LPAR configuration panel.

Customers can define a capacity group by entering the group name and group limit value for
the partitions which should belong to the same group. The group limit definition is
independent from the defined capacity definition. Both limits can be defined and both work
together.

Group capacity considerations
Here are the other hints and tips of new group capacity limit mechanism

� Capacity group consists of multiple LPARs on the same processor.

� All LPARs that are exist in a group must run z/OS V1R8; otherwise, the group limit may
not be enforced correctly.

� WLM only manages partitions with shared CPs. Dedicated partitions and partitions with
weight completion equal to YES are ignored. If they have been defined to a group, they will
be excluded from the group. Only the partitions with wait completion equals NO and
shared processors are managed towards the capacity limit.

� It is possible to define multiple groups on a processor

� A capacity group is independent of a sysplex and an LPAR cluster. Your test system and
prod system can be in the same group if there are running in the same processor.

� A partition can only belong to one group

� Each z/OS system manages itself independently from all the other partitions.

� Group capacity is based on defined capacity. Therefore, a 4-hour rolling average of the
group MSU consumption is used as base for managing the partitions of the group.

� Each partition sees the consumption of the other partitions on the processor. It identifies
the other partitions that are exist with it on the same group. Each partition calculates its
defined share of the capacity group based on the partition weight. This share is target for
the partition if all partitions of the group want to use as much CPU resources as possible.
If one or more LPARs do not use their share, this donated capacity will be distributed over
the LPARs which need additional capacity that are in the same group. Even when a
148 z/OS Version 1 Release 9 Implementation

partition receives capacity from another partition, it never violates its defined capacity limit
if one exists.

10.6.5 Group capacity limit example

In the example shown in Figure 10-13, there are five z/OS partitions in the processor.
Partitions A, B, and C belong to group1. Partitions D and E do not belong to any group. The
limit that is defined for group1 is 200 MSUs. The processor has a higher capacity than 200
MSUs.

Figure 10-13 Sample processor LPAR configuration

The weights that have been defined for each partition make the target MSU consumption
based on the weight the values shown in Figure 10-13.

Partition A
Partition A can use up to 200 MSUs based on the 4-hour rolling average. If all three partitions
want to use as much as possible, partition A will only get up to 93 MSUs.

Partition B
Partition B can use up to 80 MSUs because an individual soft cap is defined. If all three
partitions want to use as much as possible, partition B can only get up to 67 MSUs.

Partition C
Partition C can use up to 30 MSUs because the defined capacity is smaller than the target
based on partition weight. If the other partitions does not need more, partition C cannot use
more than 30 because of its individual soft cap definition of 30 MSUs.

Group capacity after an IPL
Considering the defined capacity 4-hour rolling average startup after an IPL, the group-wide
capping starts when the 4-hour rolling group average reaches the group limit.

When a system is IPLed and joins a group, it does not have the history of the MSU
consumption of the complete group. Therefore, it can take up to 4 hours until all systems in
the group have the same view. During that time period, the group limit cannot be guaranteed.
The group might use more than the group limit because the new partition does not have the
complete history. If this happens, the other partitions will be reduced in their capacity based
on their weight in the group.

Removing a member from the group
A partition can be dynamically removed from a group. A partition can be dynamically added to
another group. In this situation, the changed partition has no knowledge about unused
capacity of the new group, and also it does not keep a history from its previous activity.
Therefore, all systems must again learn the new situation and the limit cannot be guaranteed.

n/an/a50n/an/aE

120n/a100n/an/aD

304030Group1C

806750Group1B

n/a9370

200

Group1A

Defined Capacity
(Softcap) [MSU]

Target MSU
consumption
based on Weight

WeightGroup Limit
[MSU]

Group NamePartition

n/an/a50n/an/aE

120n/a100n/an/aD

304030Group1C

806750Group1B

n/a9370

200

Group1A

Defined Capacity
(Softcap) [MSU]

Target MSU
consumption
based on Weight

WeightGroup Limit
[MSU]

Group NamePartition
Chapter 10. WLM enhancements 149

Group capacity limit and IRD
Group capacity limits can work together with Intelligent Resource Director (IRD) weight
management. IRD weight management may change the weight of partitions in a capacity
group and thus change the target share of the partition in the capacity group.

Group capacity limits can also work together with the IRD VARY CPU ON/OFF command
management. Both functions should have no influence on each other.

10.6.6 RMF and SMF updates to support group capacity limit

The RMF Monitor I CPU Activity Report and Monitor III CPC Capacity Report are changed to
support group capacity limits. New Overview conditions are also added related to the usage
of group capacity limit. The Group Capacity Report example shown in See Figure 10-14 gives
all the information needed to understand how the MSUs are used in the group. For more
detailed information about RMF enhancements related to group capacity limits, refer to
Figure 10-14.

Figure 10-14 RMF Monitor I Group Capacity Report

SMF records
The SMF type 70 record contains group name, group membership and group MSU limit. The
SMF type 99 record trace data has a new subtype 11 to analyze group capacity data.

10.6.7 Examples related to usage of group capacity limit

Following are two different examples related to use of group capacity limit. In the first
example there are partitions with individual defined capacities. In the second example, there
are partitions which have no individual defined capacity.

Note: The Intelligent Resource Director extends the concept of goal-oriented resource
management by allowing you to group system images that are resident on the same
physical server running in LPAR mode, and in the same parallel sysplex, into an “LPAR
cluster.” This gives Workload Management the ability to manage processor and channel
subsystem resources, not just in one single image but across the entire cluster of system
images.
150 z/OS Version 1 Release 9 Implementation

Example 1
In the first example, usage of group capacity limits are with partitions that have individual
defined capacities. There are three LPARs (IRD3, IRD4 and IRD5) in the same processor.
They are grouped and have a group capacity limit of 50 MSUs. The individual defined
capacities and weights are shown in Figure 10-15. Following the period after the IPL, you can
see the usage or bonus given to IRD4 and IRD5. Following this initial period of the IPF, the
partitions are then capped to 5 MSUs.

Figure 10-15 Group capacity limit usage for example 1

Example 2
The second example shows the group capacity limit effects on partitions without individual
defined capacities. IRD3, IRD4, and IRD5 are the LPARs.Their weights and group limit are
shown in Figure 10-16 on page 152, along with the actual MSU values consumed by the
LPARs.

Actual MSU values

0

20

40

60

80

100

120

140

160

180

200

17
:12

 (4
5)

17
:22

 (4
7)

17
:32

 (4
9)

17
:42

 (5
1)

17
:52

 (5
3)

18
:02

 (5
5)

18
:12

 (5
7)

18
:22

 (5
9)

18
:32

 (6
1)

18
:42

 (6
3)

18
:52

 (6
5)

19
:02

 (6
7)

19
:12

 (6
9)

19
:22

 (7
1)

19
:32

 (7
3)

19
:42

 (7
5)

19
:52

 (7
7)

20
:03

 (7
9)

20
:12

 (8
1)

20
:23

 (8
3)

20
:32

 (8
5)

20
:42

 (8
7)

20
:53

 (8
9)

21
:03

 (9
1)

21
:13

 (9
3)

21
:23

 (9
5)

21
:33

 (9
7)

21
:43

 (9
9)

21
:53

 (1
01

)

22
:03

 (1
03

)

22
:13

 (1
05

)

22
:23

 (1
07

)

22
:33

 (1
09

)

22
:43

 (1
11

)

22
:53

 (1
13

)

23
:03

 (1
15

)

23
:13

 (1
17

)

23
:23

 (1
19

)

23
:33

 (1
21

)

23
:43

 (1
23

)

23
:53

 (1
25

)

00
:03

 (1
27

)

00
:13

 (1
29

)

IRD5 IRD4 IRD3

Actual MSU values

0

20

40

60

80

100

120

140

160

180

200

17
:12

 (4
5)

17
:22

 (4
7)

17
:32

 (4
9)

17
:42

 (5
1)

17
:52

 (5
3)

18
:02

 (5
5)

18
:12

 (5
7)

18
:22

 (5
9)

18
:32

 (6
1)

18
:42

 (6
3)

18
:52

 (6
5)

19
:02

 (6
7)

19
:12

 (6
9)

19
:22

 (7
1)

19
:32

 (7
3)

19
:42

 (7
5)

19
:52

 (7
7)

20
:03

 (7
9)

20
:12

 (8
1)

20
:23

 (8
3)

20
:32

 (8
5)

20
:42

 (8
7)

20
:53

 (8
9)

21
:03

 (9
1)

21
:13

 (9
3)

21
:23

 (9
5)

21
:33

 (9
7)

21
:43

 (9
9)

21
:53

 (1
01

)

22
:03

 (1
03

)

22
:13

 (1
05

)

22
:23

 (1
07

)

22
:33

 (1
09

)

22
:43

 (1
11

)

22
:53

 (1
13

)

23
:03

 (1
15

)

23
:13

 (1
17

)

23
:23

 (1
19

)

23
:33

 (1
21

)

23
:43

 (1
23

)

23
:53

 (1
25

)

00
:03

 (1
27

)

00
:13

 (1
29

)

IRD5 IRD4 IRD3

IPL bonus for IRD4 and IRD5 based on their
defined capacities is expired. The partitions
IRD4 and IRD5 are capped now to 5 MSU

IPL bonus for the group is expired. Partition IRD3
is now capped too but can use around 40 MSU
because IRD4 and IRD5 only use 5 MSU each
Chapter 10. WLM enhancements 151

Figure 10-16 Group capacity limit usage for example 2

In Figure 10-17, you see the same LPARs with 4-hour rolling average values within the same
interval as in Figure 10-16. The IPL bonus that is given can be seen significantly in this
example.

Figure 10-17 Group capacity limit usage example with the 4-hour rolling average

In Figure 10-18 on page 153, LPAR IRD3 capping and unused capacity values are shown, as
well as the actual MSU values for both the capped and uncapped portions.

Actual MSU values

0

20

40

60

80

100

120

140

19
:03

 (4
5)

19
:23

 (4
9)

19
:43

 (5
3)

20
:03

 (5
7)

20
:23

 (6
1)

20
:43

 (6
5)

21
:03

 (6
9)

21
:23

 (7
3)

21
:43

 (7
7)

22
:03

 (8
1)

22
:23

 (8
5)

22
:43

 (8
9)

23
:03

 (9
3)

23
:23

 (9
7)

23
:43

 (1
01

)

00
:03

 (1
05

)

00
:23

 (1
09

)

00
:43

 (1
13

)

01
:03

 (1
17

)

01
:23

 (1
21

)

01
:43

 (1
25

)

02
:03

 (1
29

)

02
:23

 (1
33

)

02
:43

 (1
37

)

03
:03

 (1
41

)

03
:23

 (1
45

)

03
:43

 (1
49

)

04
:03

 (1
53

)

04
:23

 (1
57

)

04
:43

 (1
61

)

05
:03

 (1
65

)

05
:23

 (1
69

)

05
:43

 (1
73

)

06
:03

 (1
77

)

06
:23

 (1
81

)

06
:43

 (1
85

)

07
:03

 (1
89

)

07
:23

 (1
93

)

07
:43

 (1
97

)

08
:03

 (2
01

)

08
:23

 (2
05

)

08
:43

 (2
09

)

09
:03

 (2
13

)

09
:23

 (2
17

)

09
:43

 (2
21

)

10
:03

 (2
25

)

10
:23

 (2
29

)

IRD4 IRD3 IRD5

IRD5 gets
24-25 MSU

IRD3 gets
7.6-9 MSU

IRD4 gets 16.5-
18.3 MSU

High demand all partitions CPU demand only on IRD3 and IRD4

IRD5 uses less than 3 MSU
and donates 22 MSU

IRD3 gets 16-19 MSU
(additional 8 MSU)

IRD4 gets 30-32 MSU
(additional 14 MSU)

4 Hour Averages

0

10

20

30

40

50

60

70

80

90

19
:03

 (4
5)

19
:23

 (4
9)

19
:43

 (5
3)

20
:03

 (5
7)

20
:23

 (6
1)

20
:43

 (6
5)

21
:03

 (6
9)

21
:23

 (7
3)

21
:43

 (7
7)

22
:03

 (8
1)

22
:23

 (8
5)

22
:43

 (8
9)

23
:03

 (9
3)

23
:23

 (9
7)

23
:43

 (1
01

)

00
:03

 (1
05

)

00
:23

 (1
09

)

00
:43

 (1
13

)

01
:03

 (1
17

)

01
:23

 (1
21

)

01
:43

 (1
25

)

02
:03

 (1
29

)

02
:23

 (1
33

)

02
:43

 (1
37

)

03
:03

 (1
41

)

03
:23

 (1
45

)

03
:43

 (1
49

)

04
:03

 (1
53

)

04
:23

 (1
57

)

04
:43

 (1
61

)

05
:03

 (1
65

)

05
:23

 (1
69

)

05
:43

 (1
73

)

06
:03

 (1
77

)

06
:23

 (1
81

)

06
:43

 (1
85

)

07
:03

 (1
89

)

07
:23

 (1
93

)

07
:43

 (1
97

)

08
:03

 (2
01

)

08
:23

 (2
05

)

08
:43

 (2
09

)

09
:03

 (2
13

)

09
:23

 (2
17

)

09
:43

 (2
21

)

10
:03

 (2
25

)

10
:23

 (2
29

)

IRD4 IRD3 IRD5

IPL Bonus

4 Hour Averages

0

10

20

30

40

50

60

70

80

90

19
:03

 (4
5)

19
:23

 (4
9)

19
:43

 (5
3)

20
:03

 (5
7)

20
:23

 (6
1)

20
:43

 (6
5)

21
:03

 (6
9)

21
:23

 (7
3)

21
:43

 (7
7)

22
:03

 (8
1)

22
:23

 (8
5)

22
:43

 (8
9)

23
:03

 (9
3)

23
:23

 (9
7)

23
:43

 (1
01

)

00
:03

 (1
05

)

00
:23

 (1
09

)

00
:43

 (1
13

)

01
:03

 (1
17

)

01
:23

 (1
21

)

01
:43

 (1
25

)

02
:03

 (1
29

)

02
:23

 (1
33

)

02
:43

 (1
37

)

03
:03

 (1
41

)

03
:23

 (1
45

)

03
:43

 (1
49

)

04
:03

 (1
53

)

04
:23

 (1
57

)

04
:43

 (1
61

)

05
:03

 (1
65

)

05
:23

 (1
69

)

05
:43

 (1
73

)

06
:03

 (1
77

)

06
:23

 (1
81

)

06
:43

 (1
85

)

07
:03

 (1
89

)

07
:23

 (1
93

)

07
:43

 (1
97

)

08
:03

 (2
01

)

08
:23

 (2
05

)

08
:43

 (2
09

)

09
:03

 (2
13

)

09
:23

 (2
17

)

09
:43

 (2
21

)

10
:03

 (2
25

)

10
:23

 (2
29

)

IRD4 IRD3 IRD5

IPL Bonus

4 Hour Averages

0

10

20

30

40

50

60

70

80

90

19
:03

 (4
5)

19
:23

 (4
9)

19
:43

 (5
3)

20
:03

 (5
7)

20
:23

 (6
1)

20
:43

 (6
5)

21
:03

 (6
9)

21
:23

 (7
3)

21
:43

 (7
7)

22
:03

 (8
1)

22
:23

 (8
5)

22
:43

 (8
9)

23
:03

 (9
3)

23
:23

 (9
7)

23
:43

 (1
01

)

00
:03

 (1
05

)

00
:23

 (1
09

)

00
:43

 (1
13

)

01
:03

 (1
17

)

01
:23

 (1
21

)

01
:43

 (1
25

)

02
:03

 (1
29

)

02
:23

 (1
33

)

02
:43

 (1
37

)

03
:03

 (1
41

)

03
:23

 (1
45

)

03
:43

 (1
49

)

04
:03

 (1
53

)

04
:23

 (1
57

)

04
:43

 (1
61

)

05
:03

 (1
65

)

05
:23

 (1
69

)

05
:43

 (1
73

)

06
:03

 (1
77

)

06
:23

 (1
81

)

06
:43

 (1
85

)

07
:03

 (1
89

)

07
:23

 (1
93

)

07
:43

 (1
97

)

08
:03

 (2
01

)

08
:23

 (2
05

)

08
:43

 (2
09

)

09
:03

 (2
13

)

09
:23

 (2
17

)

09
:43

 (2
21

)

10
:03

 (2
25

)

10
:23

 (2
29

)

IRD4 IRD3 IRD5

IPL Bonus
4 Hour Average for the Group

< Group Limit + 1.5 MSU
(Reason: Cap Pattern being used)
152 z/OS Version 1 Release 9 Implementation

Figure 10-18 Group capacity limit usage for example 2 with LPAR IRD3 in detail

Unused Capacity and Capping

0

10

20

30

40

50

60

70

80

19
:04

 (4
5)

19
:24

 (4
9)

19
:44

 (5
3)

20
:04

 (5
7)

20
:24

 (6
1)

20
:44

 (6
5)

21
:04

 (6
9)

21
:24

 (7
3)

21
:44

 (7
7)

22
:04

 (8
1)

22
:24

 (8
5)

22
:44

 (8
9)

23
:04

 (9
3)

23
:24

 (9
7)

23
:44

 (1
01

)

00
:04

 (1
05

)

00
:24

 (1
09

)

00
:44

 (1
13

)

01
:04

 (1
17

)

01
:24

 (1
21

)

01
:44

 (1
25

)

02
:04

 (1
29

)

02
:24

 (1
33

)

02
:44

 (1
37

)

03
:04

 (1
41

)

03
:24

 (1
45

)

03
:44

 (1
49

)

04
:04

 (1
53

)

04
:24

 (1
57

)

04
:44

 (1
61

)

05
:04

 (1
65

)

05
:24

 (1
69

)

05
:44

 (1
73

)

06
:04

 (1
77

)

06
:24

 (1
81

)

06
:44

 (1
85

)

07
:04

 (1
89

)

07
:24

 (1
93

)

07
:44

 (1
97

)

08
:04

 (2
01

)

08
:24

 (2
05

)

08
:44

 (2
09

)

09
:04

 (2
13

)

09
:24

 (2
17

)

09
:44

 (2
21

)

10
:04

 (2
25

)

10
:24

 (2
29

)

MSU Uncapped MSU Capped ImgLimit Donated

No Capping as long
as IPL bonus exists

IRD3 demands
nearly 60 MSUs

MSUs donated by
other partitions

(IRD5) from which
IRD3 gets around 8

MSUs

Capping using cap patterns
because allowed consumption

exceeds weight

Notice: Higher fluctuation in real
MSU consumption (leads to

deviation for Group Average)

Capping using phantom
weight because allowed

consumption is below weight

Notice: No fluctuation in real
MSU consumption
Chapter 10. WLM enhancements 153

154 z/OS Version 1 Release 9 Implementation

Chapter 11. C/C ++ enhancements

The C language is a general purpose, versatile, and functional programming language that
allows a programmer to create applications quickly and easily. C provides high-level control
statements and data types as do other structured programming languages. It also provides
many of the benefits of a low level language.

The C++ language is based on the C language and includes all of the advantages of C. In
addition, C++ also supports object-oriented concepts, generic types or templates, and an
extensive library. The C++ language introduces classes, which are user-defined data types
that may contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from existing
classes by adding data descriptions and functions. New classes can inherit properties from
one or more classes. Not only do classes describe the data types and functions available, but
they can also hide (encapsulate) the implementation details from user programs. An object is
an instance of a class. The C++ language also provides templates and other features that
include access control to data and functions, and better type checking and exception
handling. It also supports polymorphism and the overloading of operators.

This chapter describes:

� SUSv3 implementation in z/OS V1R9

� Compiling an SUSv3 application

� Invoking thread support

� Setting environment variables affects run-time behavior

� New APIs

� New Threading Interfaces

� Modified APIs

� Software Dependencies

� Migration and coexistence considerations

� Language Environment C run-time is missing SUSv3 support

11
© Copyright IBM Corp. 2007. All rights reserved. 155

11.1 SUSv3 implementation in z/OS V1R9

Single Unix Specification version 3 (SUSv3) incorporates POSIX.1, POSIX.2, and their
subsequent amendments, as well as the core volumes of the Single Unix Standard, Version
2.

Language Environment’s implementation of SUSv3 is based on IEEE Std 1003.1-2004, which
is comprised of IEEE STD 1003.1-2001 and the two subsequent corrigenda issued after the
initial release of the new standard.

From the C/C++ and LE point of view, many standards have been implemented in the latest
z/OS releases and we continue with this implementation in z/OS V1R9.

Today, C applications use APIs and expect behaviors that were not implemented in the
Language Environment C run-time prior to z/OS V1R9. z/OS V1R9 has updated the XL
C/C++ run-time Library with changes designed to meet the X/Open System Interface
extension as defined in the Single Unix Specification, Version 3. z/OS V1R9 has
enhancements to make it easier to develop, port, and deploy contemporary C/C++
applications on z/OS in the following areas:

� Support for the thread option (pthread interfaces)

� Addition of any other missing headers, APIs, and functionality

11.1.1 z/OS V1R9 and SUSv3

The SUSv3 implementation adds a number of new functions to the XL C/C++ Run-Time
Library, while applying modifications to the signatures of some existing functions in SUSv3 as
result of the following behaviors:

� Addition or removal of arguments

� Use of const declarator

� Specialization of argument types

� Use of restrict keyword

The SUSv3 namespace excludes all withdrawn headers, functions, external variables, and
constants. The specification further targets additional symbols for removal in a future version
of the standard.

Note: Language Environment C run-time APIs are compatible with most of SUSv3,
although not fully compliant.

Note: Applications compiled for SUSv3 are also implicitly C99, and therefore there is no
need to define feature test macro _ISOC99_SOURCE when _XOPEN_SOURCE 600 or
_POSIX_C_SOURCE 200112L is defined.

Another behavioral difference is the change in the return value of most threads functions.
The POSIX.4a, draft 6 threads behavior indicates a return of -1 on failure with the error
code set in errno. In SUSv3, the majority of these functions now return the error code on
failure rather than a value of -1. With the exception of pthread_getspecific(), the z/OS
implementation will continue to set errno in addition to returning the error code.
156 z/OS Version 1 Release 9 Implementation

Feature test macros
Many of the symbols that are defined in headers are “protected” by a feature test macro
(FTM). These protected symbols are invisible to the application unless the user defines the
feature test macro with #define, using either of the following methods:

� In the source code before including any header files.

� On the compilation command

With z/OS V1R9, the following feature test macros are new:

� _IEEEV1_COMPATIB

� __STDC_WANT_DEC_FP__

� _UNIX03_THREADS

� _UNIX03_WITHDRAWN

11.1.2 Compiling an SUSv3 application

C++ applications can access C99 run-time library functions by using feature test macros. To
expose C99 interfaces, C++ applications can define the appropriate feature test macros
before including the identified header.

Single UNIX Specification, Version 3 aligns with ISO/IEC 9899:1999, and is commonly
referred to as the “C99 language standard”. In some cases, SUSv3 extends the C99
definition, although in the case of a conflict, it always defers to the C99 standard. For this
reason, applications compiled for SUSv3 are also implicitly C99, and you do not need to
define feature test macro _ISOC99_SOURCE when _XOPEN_SOURCE 600 or
_POSIX_C_SOURCE 200112L is defined. Some applications define feature test macros to
inform the compiler and to expose a namespace, as follows:

� _POSIX_C_SOURCE 200112L

This defines the SUSv3 POSIX symbols and prototypes, and incorporates the
namespaces defined by _POSIX_SOURCE, _POSIX1_SOURCE, _MSE_PROTOS, and
_ISOC99_SOURCE. These feature test macros are redundant in this context and do not
need to be defined separately.

� _XOPEN_SOURCE 600

This defines the X/Open System Interface (XSI) symbols and prototypes, and incorporates
all the namespace of _POSIX_C_SOURCE 200112L as well as those of
_UNIX02+THREADS, _OPEN_SYS_MUTEX_EXT, and _LARGE_FILE (if compiling with
langlvl(longlong) or its equivalent). These feature test macros are redundant in this context
and do not need to be defined separately.

_UNIX03_SOURCE
This feature test macro exposes new Single UNIX Specification, Version 3 interfaces. It does
not change the behavior of existing APIs, nor expose interfaces controlled by feature test
macros such as _XOPEN_SOURCE_EXTENDED. Functions and behavior exposed by
_UNIX03_SOURCE are a subset and not the complete implementation of the Single UNIX
Specification, Version 3.

Note: The LANGLVL compiler option does not define or undefine these macros.
Chapter 11. C/C ++ enhancements 157

It defines the functions that were added prior to z/OS V1R9. The following functions have
been added under _UNIX03_SOURCE:

� z/OS V1R06: dlclose(), dlerror(), deopen(), and dlsym()

� z/OS V1R07: sched vield(), strerror_r(), and unsetenv()

� z/OS V1R08: flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(), getchar_unlocked(),
putc_unlocked(), and putchar_unlocked()

� z/OS V1R09: posix_openpt(), pselect(), and sockatmark()

Functions withdraw in SUSv3
If it is necessary to continue using the following functions in an application written for Single
UNIX Specification, Version 3, then define the feature test macro _UNIX03_WITHDRAWN
before including any standard system headers. The macro exposes all interfaces and
symbols removed in Single UNIX Specification, Version 3.

Following are the functions, headers, and constants withdrawn from SVSv3:

� Functions: advance(), brk(), chroot(), compile(), cuserid(), gamma(), getdtablesize(),
getpagesize(), getpass(), getw(), putw(), re_comp(), re_exec(), regcmp(), regex(), sbrk(),
sigstack(), step(), ttyslot(), and valloc()

� Headers: <re_comp.h>, <regexp.h>, and <varargs.h>

� Constants: loc1, _loc1, loc2, locs, L_cuserid, NOSTR, and YESSTR

11.1.3 Invoking Threads support

Several other implementation-specific feature test macros impact support of SUSv3. An
application may request SUSv3 threads support by defining _UNIX03_THREADS or as part
of XSI. Because the Threads Option is a required component of XSI, you do not need to
define _UNIX03_THREADS when _XOPEN_SOURCE 600 is defined. Another new macro,
_UNIX03_WITHDRAWN, preserves symbols withdrawn from the UNIX standard, making
them visible in the SUSv3 namespace.

Language Environment provides additional support in the C/C++ run-time library for SUSv3,
including new APIs and behaviors for the Thread functions, as follows:

� _UNIX03_THREADS

It provides support for SUSv3 threads option. The same support is provided if you define
_XOPEN_SOURCE 600, unless there is an override.

� _OPEN_THREADS

It supports the POSIX.4a, draft 6 threading model. It is mutually exclusive with #define
_UNIX03_THREADS.

Note: Program developers have the option of writing SUSv3 applications that still use the
old threads behavior. An application may override the implicit XSI threads behavior by
defining both _OPEN_THREADS and _XOPEN_SOURCE 600, if there is a reason to
maintain the previous POSIX.4a, draft 6 behavior.

On the other hand, concurrent definition of the _UNIX03_THREADS and
_OPEN_THREADS macros is not allowed and will generate a compile-time error
message.
158 z/OS Version 1 Release 9 Implementation

� _OPEN_THREADS 2

Adds support to SUSv3 pthread APIs introduced in z/OS V1R7 to POSIX.4a base.

– Functions: pthread_getconcurrency(), pthread_setconcurrency(),
pthread_setcancelstate(), pthread_setcanceltype(), pthread_sigmask()
pthread_testcancel(), pthread_key_delete()

– Constants: PTHREAD_CANCEL_ENABLE, PTHREAD_CANCEL_DISABLE,
PTHREAD_CANCEL_DEFERRED, PTHREAD_CANCEL_ASYNCHRONOUS

� _OPEN_THREADS 3

Adds support to SUSv3 pthread APIs introduced in z/OS V1R7 and z/OS V1R9 to
POSIX.4a base.

– Functions: pthread_atfork(), pthread_attr_getguardsize(),
pthread_attr_getschedparam(), pthread_attr_getstack(), pthread_attr_getstackaddr(),
pthread_attr_setguardsize(), pthread_attr_setschedparam(), pthread_attr_setstack(),
pthread_attr_setstackaddr()

– Constants: PTHREAD_CANCEL, PTHREAD_COND_INITIALIZER,
PTHREAD_CREATE_DETACHED, PTHREAD_CREATE_JOINABLE,
PTHREAD_EXPLICIT_SCHED

11.1.4 Setting environment variables affects run-time behavior

The following z/OS XL C/C++ specific environment variables are supported to provide various
functions. z/OS XL C/C++ variables have the prefix _CEE_ or _EDC_. Do not use these
prefixes to name your own variables. The following environment variables affect run-time
behavior:

� _EDC_SUSV3

This indicates behavioral changes that are provided for SUSV3 compliance in an error
path. The affected interfaces are typically setting errno to values that were not used before
and, in some cases, returning failure for conditions that had not been tested before
SUSV3. By default, the affected interfaces will not check for these conditions. When the
value of _EDC_SUSV3 is set to 1, the SUSV3 behavior is enabled.

Note 1: The feature test macros _UNIX03_THREADS and _OPEN_THREADS may not be
used together. If both are defined, the features.h header will generate an error during
compile time.

Note 2: Defining _XOPEN_SOURCE 600 assumes _UNIX03_THREADS support for the
application, but a user may choose to override the pthread behavior by defining
_OPEN_THREADS with one of its allowed values. This combination allows the possibility
of getting all the new SUSv3 support (except for threads) while maintaining POSIX.4a
draft6 behavior in an existing application.

Note 3: Either _UNIX03_THREADS or _XOPEN_SOURCE 600 establish a complete
SUSv3 implementation of the Threads option.

Note 4: One major difference between SUSv3 thread interfaces and the POSIX.4a Draft 6
implementation concerns failures. Most of the SUSv3 versions return an error value if they
do not complete successfully, whereas the Draft 6 versions return -1 and set errno. The
Language Environment implementation of SUSv3 continues to set errno in these functions
in addition to returning the errno value on failure.

Note 5: SUSv3 adds support for static initialization of condition variables.
Chapter 11. C/C ++ enhancements 159

Existing programs using these interfaces and running with _EDC_SUSV3=1 might fail in
z/OS V1R9 with an errno, where in the past, they might have appeared to succeed. The
user must set _EDC_SUSV3=1 to get the new behavior.

z/OS XL C/C++ Run-Time Library Reference documents the use of _EDC_SUSV3 in
individual interface descriptions. The functions that are affected by the _EDC_SUSV3
environment variable are: setenv(), readdir(), getnameinfo(), and tcgetsid().

The _EDC_SUSV3 environment variable can be set with the function:

 setenv("_EDC_SUSV3","1",1)

Value Description

1 Enable SUSv3 behavior for setenv(), readdir(), getnameinfo(), and tcgetsid().

0 Functions perform without SUSV3 behavior. This is the default. It is equivalent
to unsetting the environment variable.

� _EDC_EOVERFLOW

This sets the behavior of the ftell(), fseek(), fstat(), lstat(), stat(), and mmap() functions. By
default, these functions will not check for the EOVERFLOW error condition. Setting
_EDC_EOVERFLOW to YES enables testing for this condition, and if overflow is
detected, setting errno to EOVERFLOW and returning an error.

The _EDC_EOVERFLOW environment variable can be set with the function:

setenv("_EDC_EOVERFLOW,"YES", 1)

Value Description

YES Check for EOVERFLOW error conditions.

<other> Ignore setting of EOVERFLOW. This is the default. It is equivalent to
unsetting the environment variable.

EOVERFLOW indicates a file offset or some other file attribute too large to represent in its
container (that is, the datatype is too small). It is not possible to reach this error in a 64-bit
application. _EDC_EOVERFLOW is provided as a way to give users the option to turn off the
new behavior in applications in which the affected functions may have appeared successful
and were not setting the EOVERFLOW errno.

11.1.5 New APIs

The following new functions are introduced with SUSv3:

� posix_openpt() - Open a pseudo-terminal device

The posix_openpt() function establishes a connection between a master device for a
pseudo-terminal and a file descriptor. The file descriptor is used by other I/O functions that
refer to that pseudo-terminal. This complements existing functions: grantpt(), ptsname(),
unlockpt() associates a file descriptor with a master device for a given pseudo-terminal

� pselect() - Monitor activity on files/sockets/message queues

The pselect() and select() functions monitor activity on a set of sockets and/or a set of
message queue identifiers until a timeout occurs, to see if any of the sockets and message

Note: The guideline for integrating new behavior into existing library code was that
recompilation of an existing application could not lead to different results with respect to
success or failure on the call to the affected function. This class of change was seen as an
extension rather than needing a separate SUSv3 interface. Functions not meeting this
criterion were introduced in a separate interface, or isolated with an environment variable.
160 z/OS Version 1 Release 9 Implementation

queues have read, write, or exception processing conditions pending. This call also works
with regular file descriptors, pipes, and terminals. This is very similar to select(), except
that pselect() supports timeout expressions using nanoseconds sigmask as an argument
modification of the timeout object upon successful completion. pselect() is not affected by
_OPEN_MSGQ_EXT or _OPEN_SYS_HIGH_DESCRIPTORS.

� sockatmark() - Determine if socket is at the out-of-band data mark

The sockatmark() function determines whether the socket specified by the descriptor s is
at the out-of-band data mark. If the protocol for the socket supports out-of-band data by
marking the stream with an out-of-band data mark, the sockatmark() function returns 1
when all data preceding the mark has been read and the out-of-band data mark is the first
element in the receive queue. The sockatmark() function does not remove the mark from
the stream. If the protocol for the specified socket supports marking out-of-band data, then
sockatmark() returns one of the following:

1 Stream has been marked and all data preceding the mark has been read.

0 No mark, or data in the receive queue still precedes the mark.

-1 Error; errno is set.

� netinet/tcp.h - Definitions for the Internet Transmission Control Protocol (TCP)

This is a new header, first released in Issue 6. It is derived from the XNS, Issue 5.2
specification.

� sys/select.h - Type definitions for select() / pselect()

This is a new header, first released in Issue 6. It is derived from IEEE Std 1003.1g-2000.

11.1.6 New Threading interfaces

Several Thread attribute accessors are added:

� pthread_attr_getguardsize(), pthread_attr_setguardsize()

pthread_attr_getguardsize() gets the guardsize attribute from attr and stores it into
guardsize. attr is a pointer to a thread attribute object initialized by pthread_attr_init(). The
retrieved guardsize always matches the size stored by pthread_attr_setguardsize(),
despite internal adjustments for rounding to multiples of the PAGESIZE system variable.

� pthread_attr_getstack(), pthread_attr_setstack()

The pthread_attr_getstack() function gets both the base (lowest addressable) storage
address and size of the initial stack segment from a thread attribute structure and stores
them into addr and size respectively. attr is a pointer to a thread attribute object initialized
by pthread_attr_init(). Get and set the thread stack size and stack address attributes. It is
used for application-specified stack. It is not recommended on z/OS, but is available for
compliance. It is better to let Language Environment handle the stack.

� pthread_attr_getstackaddr(), pthread_attr_setstackaddr()

The pthread_attr_getstackaddr() function gets the stackaddr attribute from attr and stores
it into addr. The stackaddr attribute holds the storage location of the created thread's initial
stack segment. attr is a pointer to a thread attribute object initialized by pthread_attr_init().
Get and set the thread stack address attribute. It is also used for application-specified
stack. It is not recommended on z/OS (or in the UNIX standard), but required for
compliance, even though marked obsolescent in the SUSv3 standard.

� pthread_attr_getschedparam(), pthread_attr_setschedparam()

pthread_attr_getschedparam() gets the scheduling priority attribute from attr and stores it
into param. attr is a pointer to a thread attribute object initialized by pthread_attr_init().
Chapter 11. C/C ++ enhancements 161

param points to a user-defined scheduling parameter object into which
pthread_attr_getschedparam() copies the thread scheduling priority attribute. Get and set
the thread schedparam attribute. Being of minimal implementation, it is included for
compliance. z/OS services always control scheduling on the platform. It is an implemented
the interface for registering and executing fork handlers.

� pthread_atfork()

The pthread_atfork() function registers fork handlers to be called before and after fork(), in
the context of the thread that called fork(). Fork handler functions may be named for
execution at the following three points in thread processing:

– The prepare handler is called before fork() processing commences.
– The parent handler is called after fork() processing completes in the parent process.
– The child handler is called after fork() processing completes in the child process.

This function registers 3-tuples of fork handlers (prepare, parent, and child) to be run
immediately before the fork and in the child and parent after a successful fork. Not all three
need to be present.

11.1.7 Modified APIs

The following APIs are modified in z/OS V1R9;

� sysconf() now supports required SUSv3 constants.

� confstr() now supports required SUSv3 constants.

� getnameinfo() is enhanced to use NI_NUMERICSCOPE and EAI_OVERFLOW.

� gai_strerror() is extended to support EAI_OVERFLOW.

� sigwait() prototype adds a second arg to return the signal ID.

� getdate() handles a new %C format specifier for century number.

11.1.8 Migration and coexistence considerations

The z/OS C/C++ compiler must be C99-compliant if SUSV3 applications use features of C99
that require this compiler level (for example, complex.h functionality).

Set environment variable _EDC_OVERFLOW=YES to allow EOVERFLOW reporting in ftell(),
fseek(), fstat(), lstat(), stat(), and mmap()

Set environment variable _EDC_SUSV3=1 to get new SUSv3 error handling for setenv(),
readdir(), getnameinfo(), and tcgetsid().

Compile with the _UNIX03_WITHDRAWN feature test defined to preserve visibility of
elements removed from SUSv3, such as Legacy Feature Group from SUSv2.

Review differences in SUSv3 function signatures and behavior.

Note: Default settings of _EDC_OVERFLOW and _EDC_SUSV3 preserve old behavior, so
these environment variables do not raise a migration issue. However, users should be
aware of the behavioral differences in the application environment when setting them.
162 z/OS Version 1 Release 9 Implementation

Chapter 12. ISPF enhancements

This chapter describes the enhancements to ISPF in z/OS V1R9. The enhancements in z/OS
V1R9 concentrate mostly on cross-platform support.

The following topics are discussed:

� Edit and browse z/OS UNIX files

� Support for editing ASCII files

� Mixed case characters in ISPF command tables

12
© Copyright IBM Corp. 2007. All rights reserved. 163

12.1 Edit and browse z/OS UNIX files

In z/OS V1R8, ISPF was enhanced to process z/OS UNIX files. The z/OS V1R8 support
includes the ability to edit, browse, create, delete, rename, copy and replace z/OS UNIX files.
This support is implemented as a directory list utility. The utility is available as option 17, z/OS
UNIX Directory List Utility, under the ISPF Utilities menu (option 3 from the main ISPF panel).

The z/OS UNIX Directory List Utility provides a subset of the functions supported by ISHELL.
The functions supported by the directory list utility are aimed to assist with basic tasks
undertaken by ISPF users such as programmers, and not z/OS UNIX administrators. The
z/OS UNIX Directory List Utility was designed to behave and support commands similar to
the data set list utility (ISPF option 3.4). The intention is to assist users already familiar with
ISPF functions to work with z/OS UNIX files in an interface similar to what they are already
used to, instead of OMVS or ISHELL.

In z/OS V1R8, however, the OEDIT and OBROWSE commands, used to edit and browse
z/OS UNIX files, use the EDIF and BRIF services to interface with the ISPF EDIT and
BROWSE functions. This does not provide the full functionality available with the native ISPF
EDIT and BROWSE functions.

12.1.1 ISPF enhancement in z/OS V1R9

In z/OS V1R9, the ISPF EDIT, VIEW and BROWSE functions are enhanced to support z/OS
UNIX files. This includes support for z/OS UNIX files via options 1 and 2 on the main ISPF
panel, as well as the ISPF EDIT, VIEW and BROWSE service interfaces. In addition, the Edit
Entry, Browse/View Entry, Edit Copy, Edit Move and Edit Create panels are modified so that
the “Other” data set name field is a scrollable field which supports z/OS UNIX files and path
names up to 1023 characters in length. ISPF assumes a z/OS UNIX path name is entered in
this field when the first character is one of the following:

/ (forward slash) Identifies an absolute path name
~ (tilde) Represents the path name for the user’s home directory.
. (dot) Represents the path name for the current working directory.
.. (dot dot) Represents the path name for the parent directory of the current

working directory.

Following are examples of the use of these characters:

� Assuming a user’s home directory is /u/smith, specifying ~/test/tst1.sh is the equivalent of
specifying the absolute path name /u/smith/test/tst1.sh.

� Specifying ./pgma.c is the equivalent of specifying the absolute path name
/u/proj1/dev/pgma.c when the current working directory is /u/proj1/dev/.

� Specifying ../test/pgma.c is the equivalent of specifying the absolute path name
/u/proj1/test/pgma.c when the current working directory is /u/proj1/dev/.

ISPF Edit Entry Panel
Figure 12-1 on page 165 displays the new look of the “Other” data set name field on the Edit
panels, as follows:

Other Partitioned, Sequential or VSAM Data Set, or z/OS UNIX file:

As shown in Figure 12-1 on page 165, the new Edit Entry Panel and View Entry Panel now
support z/OS UNIX file names on the “Other” data set name field.
164 z/OS Version 1 Release 9 Implementation

Record length field
Another new field on these panels is the Record length field. The Record length field is added
to allow a record length to be specified when browsing a z/OS UNIX file. The value entered in
this field is used by ISPF to display the data in the file as fixed-length records, rather than
using the new line character to delimit each record. This is useful for browsing files which
would otherwise have very long records if the new line character is used as the record
delimiter.

Figure 12-1 z/OS UNIX files support on the Edit Entry Panel

Browsing z/OS UNIX files
On the Edit Entry Panel, the Record length field has a slightly different affect than on the View
Entry Panel. With EDIT, ISPF normally treats z/OS UNIX files as having variable length
records. The Record length field on the Edit Entry Panel allows you to specify a record length
which ISPF EDIT will use to load the records from the file into the edit session as fixed length
records. When the file is saved, it is saved with fixed length records. So the Record length
field allows you to convert a variable length records file into a fixed length records file.

Figure 12-2 on page 166 and Figure 12-3 on page 166 show the difference when browsing a
z/OS UNIX file without specifying a record length and when browsing a z/OS UNIX file with
record length of 40 specified. The z/OS UNIX file that is browsed is:

/Z19RB1/samples/magic

Note: The Record Length field can be used when editing a z/OS UNIX file. It allows you to
specify a record length which is used by the editor to load the records from the file into the
edit session as fixed-length records. When the file is saved, it is saved with fixed length
records. So the Record Length field allows you to convert a variable length file to a fixed
length file.

The value specified in the Record Length field must be able to accommodate the largest
record in the file. If the editor finds a record that is larger than the length specified, an error
message is displayed and the edit session does not proceed.
Chapter 12. ISPF enhancements 165

Figure 12-2 Browsing a z/OS UNIX file, no record length specified

Figure 12-3 illustrates browsing a z/OS UNIX file with record length of 40 specified.

Figure 12-3 Browsing a z/OS UNIX file, record length of 40 specified

ISPF Edit Entry Panel usage
From Figure 12-1 on page 165 with the z/OS UNIX file specified (/u/peleg), when the Enter
key is used, the z/OS UNIX Directory List utility is invoked by ISPF to display the contents of
the directory, as shown in Figure 12-4 on page 167.

Figure 12-4 on page 167 now shows that previously file names, aaaa, bapi.c and mylibar.c,
have been edited by specifying a record length. This is seen in the Fmat field with the
specification of the file format shown as nl (new line).
166 z/OS Version 1 Release 9 Implementation

Figure 12-4 The z/OS UNIX Directory List panel

Table 12-1 Possible file formats for z/OS UNIX files

ISPF ENQ requests on z/OS UNIX files
If you enter a forward slash (/) in the Command field next to one of the file names, the
following Directory List Actions panel pops up, as shown in Figure 12-5 on page 168.

To avoid possible data corruption, ISPF issues an exclusive ENQ request to prevent two or
more users from editing the same z/OS UNIX file at the same time. The ENQ major name is
SPFEDIT. The ENQ minor name is a 12-byte string compromising these three binary
integers:

� The file’s i-node number (4 bytes)
� The file’s device number (4 bytes)
� A sysplex indicator (4 bytes) is set to 1 when z/OS UNIX is running with SYSPLEX(YES)

Note: Beginning with z/OS V1R8, z/OS UNIX files could have a file format. The possible
file formats are listed in Table 12-1 on page 167.

Value Format options

NA not specified

BIN binary data file

Value Text data delimeters

NL new line

CR carriage return

LF line feed

CRLF Carriage Return followed by Line Feed

LFCR Line Feed followed by Carriage Return

CRNL Carriage Return followed by New Line
Chapter 12. ISPF enhancements 167

This is the same ENQ that is issued by the OEDIT command.

Figure 12-5 Directory List Actions panel

12.2 ISPF personal data set lists

ISPF personal data set lists are enhanced in z/OS V1R9 to support saving and retrieving
z/OS UNIX file path names. Retrieval of path names is supported on the ISPF Edit, View, and
Browse panels to allow a path name to be entered in the “Other” data set name field.
Retrieval of path names is also supported on the z/OS UNIX Directory List Entry panel. Users
can also add path names manually to their personal data set lists.

Personal data set lists are a good way to group (by project, for example) data sets and z/OS
UNIX file path names that you use frequently. You can use personal data set lists to avoid
typing in data set names and z/OS UNIX file path names, and to create customized data set
lists similar to those using ISPF Option 3.4.

Figure 12-6 on page 169 shows an example of an ISPF personal data set list with z/OS UNIX
file names mixed together with MVS data sets.

REFACTD command
The REFACTD command can be used to display the same Personal Data Set List panel. If you
have one or more personal data set lists, ISPF displays the current list. If you have no
personal data set lists, ISPF displays the reference list called REFLIST, which is updated by
ISPF whenever a new data set is used by ISPF.
168 z/OS Version 1 Release 9 Implementation

Figure 12-6 ISPF personal data set list with z/OS UNIX file names

12.3 EDIT primary commands support

While you are using the PDF editor to edit or view data, the following primary commands can
be entered on the command line, as they now support the specification of a z/OS UNIX path
name as an operand with z/OS v1R9:

� COMPARE command
� COPY command
� CREATE command
� MOVE command
� REPLACE command

The pathname is new and is specified in the same format accepted by the “Other” data set
name field on the edit panels. If these commands are used when editing a z/OS UNIX file, the
“|” character can be specified as the first character of the path name to represent the directory
name of the directory containing the file currently being edited.

The COMPARE command
The COMPARE command can now be used to compare a member, data set or z/OS UNIX file
being edited with another member, data set, or z/OS UNIX file. The new syntax of the
COMPARE command is shown in Figure 12-7 on page 170, where dsname is the name of a
member, data set, or z/OS UNIX file to which the current file is compared.

Note: For more information about the syntax of these commands, refer to z/OS ISPF Edit
and Edit Macros, GC34-4820.
Chapter 12. ISPF enhancements 169

Figure 12-7 Syntax of the COMPARE command

Figure 12-8 displays an ISPF edit screen for file /u/rogers/rich.txt. You can see, on the
Command line, the command compare /u/peleg/aaaa. When the Enter key is pressed, file
/u/rogers/rich.txt is compared to file /u/peleg/aaaa.

Figure 12-8 Using the COMPARE command to compare to z/OS UNIX files

If the file pathname specified to be compared against is larger than the number of characters
that can be entered on the Command line, then specify the dsname / to indicate a long path
name is required. A pop-up window containing a scrollable field for entering the long path
name is displayed, as shown in Figure 12-9.

Figure 12-9 Specify a long path name for the COMPARE command

The COPY command
The COPY command can now be used to copy data from a z/OS UNIX file into a member, data
set or z/OS UNIX file currently being edited. To do this, specify the path name for the z/OS
UNIX file as a parameter with the COPY command. You can also specify the path name on the
Edit/View Copy panel that is displayed when no data source is specified with the COPY
command. If the path name for a directory is specified, the z/OS UNIX Directory List utility is
invoked to allow you to select the regular file to be copied.

The new syntax of the COPY command is shown in Figure 12-10 on page 171.

>>--COMPARE--|-dsname-----|--|---------|--|------|--|-------|------------><
 |-NEXT-------| |-EXCLUDE-| |-SAVE-| |-SYSIN-|
 |-|-SESSION--|
 |- * ------|
 |- / ------|
170 z/OS Version 1 Release 9 Implementation

Figure 12-10 Syntax of the COPY command

For example, if editing file /u/usr1/prog1 entering on the command line, copy /u/usr1/src1,
copies data from file src1 into the current file being edited.

The CREATE command
The CREATE command can now be used to create a z/OS UNIX regular file from the data
currently being edited. If currently editing a z/OS UNIX file and the CREATE command is used
to create a new z/OS UNIX file, then the file permissions for the new file are set to the same
values as the file permissions of the file being edited. If currently editing a sequential data set
or a member and the CREATE command is used to create a new z/OS UNIX file, then the file
permissions are set to 700 (rwx --- ---).

The new syntax of the CREATE command is shown in Figure 12-11.

Figure 12-11 Syntax of the CREATE command

Where pathname is used to specify the path name of a regular z/OS UNIX file to be created.

In Figure 12-12, the CREATE command is used to create a member in the file system. PDS
member ROGERS.JCL.VERS5(GENER) is created as file GENER in directory /u/rogers.

Figure 12-12 Using the CREATE command to create a file in the file system

>>--COPY--|----------------|--|--------|--label--------------------------><
 |-member---------| |-AFTER--|
 |-(member)-------| |-BEFORE-|
 |-dsname---------|
 |-dsname(member)-|
 |-pathname-------|
>--<

|-start_line--end_line-|

>>---CREATE--><
|-CRE----| |-member---------| |-labela--labelb-|

|-(member)-------|
|-dsname(member)-|
|-dsname---------|
|-pathname-------|
Chapter 12. ISPF enhancements 171

The MOVE command
The MOVE command can now be used to move data from a z/OS UNIX file into the data being
edited. To do this, specify the path name for the z/OS UNIX regular file as a parameter with
the MOVE command. You can also specify the path name on the Edit/View Move panel that is
displayed when no data source is specified with the MOVE command. If the path name for a
directory is specified, the z/OS UNIX Directory List utility is invoked to allow you to select the
regular file to be moved.

The new syntax of the MOVE command is shown in Figure 12-13.

Figure 12-13 Syntax of the MOVE command

Where pathname is used to specify the path name of a regular z/OS UNIX file to be moved.

Use the MOVE command to move a file into the file that is currently being edited, as shown in
Figure 12-14 where the file named data in directory /u/rogers is moved into /u/rogers/cbprnt
following the first statement.

Figure 12-14 MOVE command to move an existing file into a file being edited

Figure 12-15 Warning window regarding the MOVE command

Note: The z/OS UNIX regular file is deleted after the data is moved.

>>--MOVE--><
|-member---------| |---AFTER-----label-|
|-(member)-------| |-BEFORE-|
|-dsname---------|
|-pathname-------|

Note: The file being moved is deleted. A warning window appears prior to the move to
indicate this, as shown in Figure 12-15 on page 172.

 Move has been requested for z/OS UNIX file:
 /u/rogers/rich.txt
 Moved files are deleted.

 Instructions:

 Press ENTER key to confirm move request.
 (Moved files will be deleted.)

 Enter END or EXIT command to return to the
 edit session without moving data.
172 z/OS Version 1 Release 9 Implementation

The REPLACE command
The REPLACE command can now be used to replace the data in a z/OS UNIX regular file using
the data being edited. If the z/OS UNIX file does not exist, it is created.

The new syntax of the REPLACE command is shown in Figure 12-16.

Figure 12-16 Syntax of the REPLACE command

Where pathname is used to specify the path name of a regular z/OS UNIX file to be replaced.

Figure 12-17 shows the REPLACE command the replaces the data in the file named gener at
/u/rogers with the existing data in the edit screen /u/rogers/cbprnt. Before the replace takes
place, a window appears with the following text.

Press the Enter key to do the replace.

Figure 12-17 REPLACE command to replace an existing file with the current file

12.4 EDIT macro command support

You can use edit macros, which look like ordinary editor commands, to extend and customize
the editor. You create an edit macro by placing a series of commands into a data set or
member of a partitioned data set. Then you can run those commands as a single macro by

>>---REPLACE---><
|-REPL----| |-member---------| |-labela--labelb-|
|-REP-----| |-(member)-------|

|-dsname(member)-|
|-dsname---------|
|-pathname-------|

Replace has been requested for data set:
 /u/rogers/gener
Data will be over-written.

Instructions:

 Press ENTER key to confirm replace request.
 (Data set will be replaced.)

 Enter END or EXIT command to return to edit
 session without replacing data.
Chapter 12. ISPF enhancements 173

typing the defined name in the command line. Edit macros can be either CLISTs or REXX
EXECs written in the CLIST or REXX command language, or program macros written in a
programming language (such as FORTRAN, PL/I, or COBOL).

The following EDIT macro commands now support z/OS UNIX file path names as sources or
targets for data:

� COPY
� CREATE
� MOVE
� REPLACE

The macros have the same syntax as the EDIT primary commands described in 12.3, “EDIT
primary commands support” on page 169.

Furthermore, the following EDIT macro commands are enhanced to support z/OS UNIX file
names:

� DATASET - Now returns a z/OS UNIX file path name when editing a z/OS UNIX file
� BLKSIZE - Now returns the value of 0 (zero) when editing a z/OS UNIX file

12.5 ISPF services support

ISPF services help you develop interactive ISPF applications. These services can make your
job easier because they perform many tedious and repetitious operations. In z/OS V1R9, the
EDIT, BROWSE, VIEW and FILEXFER ISPF services are enhanced to support z/OS UNIX
files.

The EDIT ISPF service
The EDIT service can now be called by ISPF applications to edit the data in z/OS UNIX files.
The new FILE parameter is used to pass the name of an ISPF variable with a value set to the
path name of the z/OS UNIX file to be edited. The new RECLEN parameter is used to specify
a numeric value for the record length to be used when editing a z/OS UNIX file. This
parameter causes the records to be loaded into the editor as fixed length and saved back in
the file as fixed length.

The new syntax of the EDIT ISPF service is shown in Figure 12-18.

Figure 12-18 Syntax of the EDIT ISPF service

Where file-var is the name of an ISPF variable containing the path name of a z/OS UNIX
regular file or directory, and rec-len is the record length to be used when editing the file.

ISPEXEC EDIT FILE(file-var) [PANEL(panel-name)]
[MACRO(macro-name)]
[PROFILE(profile-name)]
[FORMAT(format-name)]
[MIXED(YES|NO)]
[LOCK(YES|NO)]
[CONFIRM(YES|NO)]
[WS(YES|NO)]
[PRESERVE]
[PARM(parm-var)]
[RECLEN(rec-len)]
174 z/OS Version 1 Release 9 Implementation

The BROWSE ISPF service
The BROWSE service can now be called by ISPF application to display the data in z/OS
UNIX files. The new FILE parameter is used to pass the name of an ISPF variable with a
value set to the path name of the z/OS UNIX file to be browsed. The new RECLEN parameter
is used to specify a numeric value for the record length to be used when browsing the z/OS
UNIX file. This parameter causes new line characters in the data to be ignored as record
delimiters.

The new syntax of the BROWSE ISPF service is shown in Figure 12-19.

Figure 12-19 Syntax of the BROWSE ISPF service

The z/OS V1R9 changes are where file-var is the name of an ISPF variable containing the
path name of a z/OS UNIX regular file or directory, and rec-len is the record length to be
used when browsing the file.

The VIEW ISPF service
The VIEW service can now be called by ISPF applications to display and manipulate the data
in z/OS UNIX files. The new FILE parameter is used to pass the name of an ISPF variable
with a value set to the path name of the z/OS UNIX file to be viewed.

The new syntax of the VIEW ISPF service is shown in Figure 12-20.

Figure 12-20 Syntax of the VIEW ISPF service

Where file-var is the name of an ISPF variable containing the path name of a z/OS UNIX
regular file or directory to view.

The FILEXFER ISPF service
The FILEXFER service can now be called by ISPF applications to upload data into or
download data from z/OS UNIX files to the workstation. The syntax of the FILEXFER ISPF
service is unchanged from previous version. However, the value of the ISPF variable
specified with the HOST parameter can now be set to the path name of the z/OS UNIX
regular file to be uploaded or downloaded.

ISPEXEC BROWSE FILE(file-var) [PANEL(panel-name)]
[FORMAT(format-name)]
[MIXED(YES|NO)]
[RECLEN(rec-len)]

ISPEXEC VIEW FILE(file-var) [PANEL(panel-name)]
[MACRO(macro-name)]
[PROFILE(profile-name)]
[FORMAT(format-name)]
[MIXED(YES|NO)]
[CONFIRM(YES|NO)]
[WS(YES|NO)]
[CHGWARN(YES|NO)]
[PARM(parm-var)]

Note: For additional information, refer to z/OS ISPF Services Guide, SC34-4819.
Chapter 12. ISPF enhancements 175

12.6 PDF installation-wide data set allocation exit

The PDF installation-wide data set allocation exit allows you to create, delete, allocate, and
deallocate data sets instead of using those functions provided by PDF. Note that allocations
done by ISPF, the TSO ALLOCATE command, or TSO commands are not handled by the exit.

In z/OS V1R9, the PDF data set allocation exit is changed to support the allocation of z/OS
UNIX files to a DD. Two additional parameters are now passed to the exit:

Path name pointer A pointer to an area of storage containing the absolute path name of
the z/OS UNIX file to be allocated.

Path name length A full word binary integer that is the length of the z/OS UNIX file path
name.

When the exit receives control due to an allocation request, the SVC 99 parameter list that is
passed to the exit contains the following additional parameters:

� PATHNAME, key 8017

Path name of the z/OS UNIX file to allocate. Path name is of the form /dev/fdnnn, where
nnn is the file descriptor number. The real path name can be obtained via the path name
pointer and path name length parameters. Maximum length for PATHNAME is 1023 bytes.

� PATHOPT, key 8018

A 4-byte field containing the file options for the z/OS UNIX file.

� FILEORG, key 801D

A 1-byte field indicating the organization of the z/OS UNIX file.

12.7 Support for editing ASCII data

With the increasing use of Java and WebSphere products on z/OS, more and more data is
stored in ASCII files on z/OS. One example is XML documents for WebSphere Application
Server. Prior to z/OS V1R9, there were few facilities available in z/OS to display and change
ASCII data, especially under ISPF. In general, it is necessary for ISPF users to download their
ASCII files to a workstation that supports the ASCII character set, edit the files on the
workstation, and upload them back to the z/OS system.

In z/OS V1R9, an ASCII editing facility is provided through the ISPF editor. The ASCII editing
facility translates ASCII data in a file to EBCDIC before displaying it at the terminal and
translates EBCDIC data to ASCII when receiving input from the terminal to write to the file. A
new SOURCE primary command for the ISPF editor is provided in z/OS V1R9 to control the
ASCII editing facility.

To activate the ASCII editing facility for a file, perform these steps:

1. Start editing the file as you would for a normal EBCDIC file.
2. Then, enter the following command: SOURCE ASCII

After SOURCE ASCII is issued, the ISPF editor treats the source data as ASCII data and
converts it from ASCII to the Coded Character Set ID (CCSID) of the terminal for display
purposes. The data in the file remains unchanged. When you input or modify data at the

Note: Existing data set allocation exits will continue to function without any changes to
process these additional parameters.
176 z/OS Version 1 Release 9 Implementation

terminal, the ISPF editor translates the data entered from the CCSID of the terminal to ASCII
before storing the data in the file.

To change back to the normal editing mode, where the data is not translated from and to
ASCII when displaying and receiving input from the terminal, issue the primary EDIT
command: RESET SOURCE.

Handling line feed characters
Many times ASCII files contain line feed characters. When such an ASCII file is uploaded
from the workstation to a fixed length data set, the data may not be structured correctly
according to the line feed characters. The LF primary command is a new ISPF editor primary
command that restructures the data in the file based on the line feed characters.

Figure 12-21 shows an ASCII file opened in the ISPF editor. As noticed, the data in the file is
unreadable, since it is in the ASCII character set.

Figure 12-21 ASCII file in the ISPF editor without the ASCII editing facility

After starting the editor, we issue the SOURCE ASCII and LF primary commands in order to
activate the ASCII editing facility and restructure the ASCII file according to the line feed
characters it contains. The result is shown in Figure 12-22.

Figure 12-22 ASCII file in ISPF editor with the ASCII editing facility started (source ASCII command)

LF command
The LF primary command allows you to realign the data being edited by interpreting the ASCII
line feed character X'0A'.

Note: The ASCII editing facility uses the z/OS Unicode Conversion Services to translate
the data between ASCII (CCSID 850) and the CCSID supported by the terminal. It is
required that z/OS Unicode Conversion Services be installed and the required translations
specified to it, in order for the ASCII editing facility to be operable.

Note: After issuing the LF command, if the data is saved, it is saved in the realigned state.
There is no command to reverse the alignment. The command should not be executed
twice against the data, because the blanks following the line feed character will be
interpreted as part of the data for the next line.
Chapter 12. ISPF enhancements 177

12.8 Mixed case in ISPF command tables

Prior to z/OS V1R9, the ISPF Command Table Utility (option 3.9 from the primary ISPF
menu) converted all characters in the Action field to upper case. This prevented users from
defining commands with actions that required lower case characters or case sensitivity, such
as z/OS UNIX commands.

In z/OS V1R9, ISPF allows you to define commands in ISPF command tables with lower case
characters using the ISPF Command Table Utility. A new option field is added to the
Command Table Utility – Extended Command Entry panel (panel ISPUCMX) to allow mixed
case data entered in the Action field to be saved in the command table as mixed case. An
example of this is shown in Figure 12-23 on page 179. If this option is not selected, data
entered in the Action field is converted to upper case before being saved in the command
table.

The column headings on the panel shown in Figure 12-23 on page 179 are:

Verb The command verb, which is the name of the command you are defining in the
command table. A command verb must be 2 to 8 characters long, inclusive, and
must begin with an alphabetic character. The content of this column is assigned
to the ZCTVERB system variable.

Trunc The minimum number of characters that you must enter to find a match with the
command verb. If this number is zero or equal to the length of the command verb,
you must enter the complete command verb. For example, in Figure 119 the
PREPARE command has a truncation value of 4. Therefore, for the TST
application used as the example in the figure, only the first four letters, PREP,
must be entered to call this command. The content of this column is assigned to
the ZCTTRUNC system variable.

Action The actual coding of the action to be carried out when you enter the command.
The action length must not be greater than 240 characters. The content of this
column is assigned to the ZCTACT system variable.

For the mixed case support with z/OS V1R9, follow these steps to enter data on the panel
shown in Figure 12-23 on page 179.

To enter or edit the coding for the action:

1. Enter the E command table line command to display the Extended Command Entry panel
(ISPUCMX).

2. Type the required coding in the Action lines.

Normally, any text you type in lower case is translated to upper case before it is saved. To
define some of the parameters in lower case, select the option Allow mixed-case in
Action field on the Extended Command Entry panel. The case of the text you type is not
translated and is saved as you input it.

3. Optionally, type a brief description of the purpose of the command in the Description lines.

4. Press PF3 to return to the Command Table Editing panel.

Note: When you select the Allow mixed-case in Action field option:

� The first word must be input in upper case.

� If you use &ZPARM to obtain parameters from the command line, the parameters
may be translated to upper case (regardless of the setting of the Allow mixed-case
in Action field option).
178 z/OS Version 1 Release 9 Implementation

Figure 12-23 New field on the Command Table Utility - Extended Command Entry panel

The mixed case support is further extended to support Dialog Tag Language (DTL) CMD
tags. A new MIXC keyword can now be specified with the CMDACT tag to prevent the
command action specified with the CMD tag from being converted to upper case.
Chapter 12. ISPF enhancements 179

180 z/OS Version 1 Release 9 Implementation

Chapter 13. Security enhancements

This chapter discusses the enhancements to security components in z/OS V1R9.

The following z/OS components are discussed:

� RACF

� Java Security API (JSec)

� z/OS Cryptographic Services - System SSL

� z/OS Cryptographic Services - PKI Services

13
© Copyright IBM Corp. 2007. All rights reserved. 181

13.1 RACF enhancements

13.1.1 Password phrase minimum length change

Password phrase support was introduced in z/OS V1R8. A password phrase is a character
string consisting of mixed-case letters, numbers, and special characters including blanks.
Password phrases have security advantages over passwords in that they are long enough to
withstand most hacking attempts, and yet are unlikely to be written down because they are so
easy to remember.

You can issue the PHRASE operand of the ADDUSER or ALTUSER command to assign a password
phrase for a user. This enables the user to authenticate using a password phrase instead of a
password when using an application that supports password phrases. For example:

ALTUSER ARUNDATI PHRASE('sm@llthings')

Currently, the only z/OS V1R9 application that supports user authentication using a password
phrase is the Hardware Configuration Manager (HCM).

Password phrases can also provide an interoperability solution. Most platforms allow
passwords longer than 8 characters. z/OS allows a maximum of 8 characters. Using
password phrases, you can keep your z/OS password in sync with other platforms.

RACF enforces the following rules on the value of a new password phrase:

� Must be a text string of 14 to 100 characters

� Must not contain the user ID (as sequential upper case or sequential lower case
characters)

� Must contain at least 2 alphabetic characters (A-Z, and a-z)

� Must contain at least 2 non-alphabetic characters (numerics, punctuation, or special
characters)

� Must not contain more than 2 consecutive characters that are identical

These rules cannot be altered or overridden. The original decision on a minimum length of 14
characters for a password phrase is based on the premise that at least 14 characters are
needed, with this limited set of rules applied to them, to be at least as secure as an 8
characters password with the SETROPTS password rules available.

However, if you want to use password phrase as an interoperability solution, you may run into
problems, because you cannot set passwords with a length between 9 and 13 characters.
This is due to the fact that normal passwords are limited to an 8-character maximum, and
password phrases are limited to a 14-character minimum.

RACF in z/OS V1R9 allows you to change the minimum length of new password phrases to
9 characters. To do so, a new RACF exit, ICHPWX11, must be installed. With the ICHPWX11
RACF exit installed, the minimum length of password phrases is 9 characters. When the exit
is not installed, the minimum stays 14 characters, as on z/OS V1R8.

The new password phrase exit is invoked by RACROUTE REQUEST=VERIFY processing
and the ADDUSER, ALTUSER, PASSWORD, and PHRASE commands. The exit gains control when a
new password phrase is processed, and can examine the value specified for the password
phrase and enforce installation rules in addition to the RACF rules. For example, although
RACF does not allow the user ID to be part of the password phrase, the exit could perform
182 z/OS Version 1 Release 9 Implementation

more complex tests to also disallow the company name, the names of months, and the
current year in the password phrase.

To allow you to easily perform your own tests on the password phrase, a sample ICHPWX11
exit is shipped in member RACEXITS in SYS1.SAMPLIB. The sample exit uses the new
System REXX component in z/OS V1R9 to invoke a sample REXX exec. The sample REXX
exec is shipped as member IRRPHREX in SYS1.SAMPLIB. The exit passes all its input
information to the REXX exec, so you can perform all your installation-specific tests on the
password phrase from within the REXX exec.

The REXX language is known for its strong string manipulation functions and therefore allows
you to examine the password phrase easily. Furthermore, after the exit is installed, the REXX
exec can be changed without requiring a re-IPL, as opposed to the other RACF exits.

To install the sample exit provided by IBM, do the following:

1. Install the ICHPWX11 exit in the link pack area so that RACF finds it during initialization.

2. Copy the REXX exec from member IRRPHREX in SYS1.SAMPLIB to SYS1.SAXREXEC.

3. Re-IPL your system.

If you change the password phrase quality rules that are coded in the IRRPHREX exec, you
do not need to re-IPL. The changes you make to IRRPHREX take effect immediately when
you save them. If you make changes to ICHPWX11, you must re-IPL to activate your
changes.

13.1.2 Writable key ring functions

You can use RACF to create, register, store, and administer digital certificates and their
associated private keys, and build certificate requests that can be sent to a certificate
authority for signing. You can also use RACF to manage key rings of stored digital
certificates. Digital certificates and key rings are managed in RACF primarily by using the
RACDCERT command, or by using an application that invokes the R_datalib callable service
(IRRSDL00 or IRRSDL64).

The R_datalib callable service provides an application programming interface to the
Common Data Security Architecture (CSDA) data library functions, and is used by System
SSL to establish secure sessions between servers. RACF has three categories for managing
digital certificates:

� User certificate

This is a certificate that is associated with a RACF user ID and is used to authenticate the
user's identity. The RACF user ID can represent a traditional user, or be assigned to a
server or started procedure.

� Certificate-authority certificate

This is a certificate that is associated with a certificate authority and is used to verify
signatures in other certificates.

� Site certificate

This is a certificate that is associated with an off-platform server or other network entity,
such as a peer VPN server. This category of certificate can also be used to share a single
certificate and its private key among multiple RACF user IDs. When used for sharing, a
certificate may be referred to as a placeholder certificate.

Prior to z/OS V1R9, there was no mechanism available to applications that wanted to
programmatically populate certificates in RACF.
Chapter 13. Security enhancements 183

In z/OS V1R9, the R_datalib callable service is enhanced with new functions to create or
delete key rings, add or delete certificates to or from RACF, and connect or remove
certificates from key rings. Using the new functions of the R_datalib callable service,
applications can programmatically manage certificates in RACF.

Five new function codes are defined for the new R_datalib functions:

X’07’ NewRing Create a new key ring or remove all the certificates from an existing
key ring.

X’08’ DataPut Add a certificate to the RACF database (if it does not already exist),
and connect it to a key ring.

X’09’ DataRemove Remove a certificate from the key ring, and optionally delete it from the
RACF database if the certificate is not connected to any other rings.

X’0A’ DelRing Delete a key ring.

X’0B’ DataRefresh Refresh the in-storage certificates in the RACF database if the
DIGTCERT class is RACLISTed. If the DIGTCERT class is not
RACLISTed, no action is performed. DataRefresh might be required
after calling DataPut or DataRemove.

The RDATALIB RACF class
In addition to the new function codes, a new RACF class is now provided to allow more
granular access control over the users of the R_datalib functions. The new RACF class name
is RDATALIB. The format of the profiles in the RDATALIB class is:

<ring_owner>.<ring_name>.<function>

The new R_datalib functions in z/OS V1R9 are considered update functions. Therefore, their
profiles are of the form:

<ring_owner>.<ring_name>.UPD

The older functions, prior to z/OS V1R9, only list the RACF database and therefore their
profiles are of the form:

<ring_owner>.<ring_name>.LST

For a virtual key ring, the profile format is:

<ring_owner>.IRR_VIRTUAL_KEYRING.LST

For a virtual key ring owner, the possible IDs are SITE, CERTAUTH, or an ordinary RACF ID.

If the new profiles are absent, R_datalib reverts to checking authorization using the old
IRR.DIGICERT.* profiles in the FACILITY class.

For example, suppose that an application running under user ID CERTSRVR needs to be
able to install certificates in all the key rings that start with MYC, and are owned by MYCJOB
in the RACF database. Issue the commands shown in Figure 13-1 to authorize CERTSRVR:

Figure 13-1 RDATALIB class RACF commands example

RDEFINE RDATALIB MYCJOB.MYC*.UPD UACC(NONE)
PERMIT MYCJOB.MYC*.UPD CLASS(RDATALIB) ID(CERTSRVR) ACCESS(UPDATE)
184 z/OS Version 1 Release 9 Implementation

13.1.3 UTF8 characters support in digital certificates

As described in 13.1.2, “Writable key ring functions” on page 183, you can use RACF to store
digital certificates. Prior to z/OS V1R9, RACF had a limitation that prevented certificates
containing multibyte UTF8 characters in the Subject Distinguished Name or Subject Alternate
Names of a certificate from being stored in the RACF database. This limitation prevented
some applications from being able to store their certificates in the RACF database.

In z/OS V1R9, RACF allows you to store certificates containing multibyte UTF8 characters in
the Subject Distinguished Name or Subject Alternate Names and for such certificates to be
used for authentication to RACF.

However, a limitation still exists. To be able to store a certificate with multibyte UTF8
characters in the RACF database, the UTF8 characters must be convertible to characters in
the IBM-1047 code page. The reason for this limitation is that RACF uses z/OS Unicode
Conversion Services internally to convert the UTF8 characters in the Distinguished Names
and Subject Alternate Names to IBM-1074 characters before storing them in the RACF
database.

Certificates containing UTF8 characters are supported by the RACDCERT RACF command,
the initACEE callable service and the R_datalib callable service.

13.1.4 REFRESH warning message after RACDCERT commands

On releases before z/OS V1R9, RACF did not issue a warning message indicating a
SETROPTS REFRESH command is required to pick up changes in the DIGTCERT or DIGTNMAP
classes even if they were RACLISTed. The lack of a warning message may cause users to
forget to issue a SETROPTS REFRESH command after changing profiles in these RACF classes.

Therefore, in z/OS V1R9, RACF issues a warning message to remind you to issue a SETROPTS
REFRESH command against the DIGTCERT and DIGTNMAP classes after a RACDCERT
command. For example, assume that the DIGTCERT class is RACLISTed. Then issue the
following command:

RACDCERT ADD(mycert) WITHLABEL(‘My Cert’)

This message is issued by RACF:

IRRD175I The new profile for DIGTCERT will not be in effect until a SETROPTS
REFRESH has been issued.

The warning message is issued, if necessary, after RACDCERT GENCERT, ADD, MAP,
DELETE, DELMAP, ALTER, REKEY and IMPORT.

Note: UTF8 support is not available for PKI Services yet. You cannot use a certificate with
UTF8 characters as the PKI Services CA certificate.

Note: The DIGTRING class is not involved. Changes in key rings do not require SETROPTS
REFRESH because in-storage key ring information is not used in any key ring-related
process.
Chapter 13. Security enhancements 185

13.2 Java security API

Starting with z/OS V1R9, a Java interface is provided for performing RACF functions. The
Java security API (JSec) provides easy integration into a security environment that runs other
Java code, on or off z/OS, and provides easy mapping to the RACF user and group
administration commands (such as ADDUSER, ALTUSER, CONNECT, and so on) while providing
RACF extensibility.

JSec is shipped with z/OS V1R9 in two jar files in the HFS:

� /usr/include/java_classes/userregistry.jar

� /usr/include/java_classes/RACFuserregistry.jar

No other steps are required to install JSec support in z/OS V1R9. To use JSec on another
platform, download the JSec jar files to that platform and include them on your CLASSPATH.
The following are required to run a Java application that uses JSec:

� The client system where the JSec program is running on must be running at least
Java(TM) 2 Runtime Environment V5.

� The z/OS system with the RACF database you wish to administer must be running IBM
Tivoli Directory Server (LDAP server) configured with an SDBM back-end.

To compile a Java program that uses the JSec interface, the JSec jar files must be included in
the program’s CLASSPATH environment variable. In z/OS UNIX, this can be achieved by
using the command shown in Figure 13-2:

Figure 13-2 Adding JSec jar files to the CLASSPATH

JSec returns RACF user and group data as Attributes, a common Java class used to describe
pairs of names and values. Attribute names follow the format segmentName_fieldName. For
example, the attribute name for the UID field in the OMVS segment is OMVS_UID.

JSec classes
The JSec Java classes are packaged in two packages:

� com.ibm.security.userregistry
� com.ibm.eserver.zos.racf.userregistry

Package com.ibm.security.userregistry contains three interfaces:

� SecAdmin

This is the interface for security administration of users and groups.

� User

This interface extends java.security.Principal by providing methods to get the attributes of
user and the groups that the user belongs to.

� UserGroup

This interface extends java.security.acl.Group to return attributes of the group and to allow
group membership to have qualifying attributes. UserGroup is intended to be a group of
individual users.

export CLASSPATH=$CLASSPATH:/usr/include/java_classes/userregistry.jar:usr/include/java_
classes/RACFuserregistry.jar
186 z/OS Version 1 Release 9 Implementation

Package com.ibm.security.userregistry also contains an Exception SecAdminException,
which is a super class of all exceptions thrown from this package.

Package com.ibm.eserver.zos.racf.userregistry contains the following classes:

� RACF_Group

This class implements UserGroup interface for RACF groups.

� RACF_remote

RACF_remote defines characteristics and connection parameters of a remote RACF to be
accessed via LDAP/SDBM.

� RACF_SecAdmin

This class implements SecAdmin interface to RACF and provides additional utility
methods (including cloning a user ID, and the ability to display attributes in alphabetical
order).

� RACF_User

This class implements the User interface for RACF users.

� RACFattribute

This is a data structure that keeps track of the data, behavior, and so on that is associated
with each RACF attribute.

� Segment

This is a simple data class that keeps three pieces of information for each RACF non-base
segment.

The complete Javadoc™ for the JSec API classes and sample programs can be found at:

http://www-03.ibm.com/servers/eserver/zseries/software/java/

Example
Figure 13-3 on page 188 shows an example of how to use the JSec interface to connect to a
remote RACF database and list the attributes for user JAVA1. We use the RACF_remote
class constructor to connect to a z/OS LDAP server with an SDBM back-end running on our
test system SC60. System SC60’s DNS address is wtsc60.itso.ibm.com, and the z/OS LDAP
server SDBM back-end is listening on port 3389. User JAVA1 with password JAVA1 is used
for the LDAP bind. The SDBM suffix is O=ITSORACF.

After a connection with RACF on SC60 is established, we use the RACF_SecAdmin class to
define a RACF administrator. The RACF administrator is then used to create a User object for
user JAVA1. The User object is used to get JAVA1’s attributes from the RACF database.
Finally, JAVA1’s RACF attributes are output using the displayAttributes() method of the
RACF_SecAdmin object.
Chapter 13. Security enhancements 187

http://www-03.ibm.com/servers/eserver/zseries/software/java/

Figure 13-3 Using JSec to list user attributes

The output from this example is shown in Figure 13-4 on page 189. Note that some attributes
are shown with the value No values. These are attributes with a Boolean value, meaning they
either exist for the RACF entity or do not.

For example, a BASE_OPERATIONS attribute exists for user JAVA1. This attribute has no
value; it is only there to indicate that the user has the OPERATIONS attribute in RACF.

import com.ibm.eserver.zos.racf.userregistry.*;
import com.ibm.security.userregistry.*;
import javax.naming.*;
import javax.naming.directory.*;

public class TestJSec {

 public static void main(String[] args) {

 RACF_remote SC60_RACFdb = new RACF_remote(
 "ldap://wtsc60.itso.ibm.com:3389",
 "simple",
 "JAVA1",
 "JAVA1", // password during testing
 "o=itsoracf"
);

 try {
 SecAdmin racfAdmin = new RACF_SecAdmin(SC60_RACFdb);
 if (racfAdmin != null) {
 User JAVA1 = racfAdmin.getUser("JAVA1");

 BasicAttributes attrJAVA1 = JAVA1.getAttributes();

 System.out.println("Attributes returned for JAVA1:");
 RACF_SecAdmin.displayAttributes(attrJAVA1);
 }
 }
 catch (Exception e) {
 System.out.println("Exception in TestJSec.java " +
 e.getMessage() + "\n");
 e.printStackTrace();
 }
 }
}

188 z/OS Version 1 Release 9 Implementation

Figure 13-4 JSec program output

13.3 System SSL enhancements

System SSL is part of the System SSL Cryptographic Services base element of z/OS. Some
parts of System SSL ship in HFS files and some in PDS and PDSE data sets. System SSL
has three FMIDs:

� HCPT390 - Cryptographic Services System SSL (base element)
� JCPT391 - Cryptographic Services Security Level 3 (optional priced feature)
� JCPT39J - Japanese

13.3.1 Introduction to the SSL protocol

Secure Sockets Layer (SSL) is a communications protocol that provides secure
communications over an open communications network, for example, the Internet. The SSL
protocol is a layered protocol that is intended to be used on top of a reliable transport, such as
TCP/IP.

SSL provides data privacy and integrity, as well as server and client authentication based on
public key certificates. After an SSL connection is established between a client and server,
the SSL protocol transparently adds encryption and integrity to the data communications
between the client and the server. System SSL supports the SSL V2.0, SSL V3.0 and
Transport Layer Security (TLS) V1.0 protocols. TLS V1.0 is the latest version of the secure
sockets layer protocol.

PELEG @ SC65:/u/peleg>java TestJSec
Attributes returned for JAVA1:
BASE_CREATED: 03.268
BASE_DAYS: ANYDAY
BASE_DFLTGRP: SYS1
BASE_LAST-ACCESS: 07.149/15:17:38
BASE_NAME: JAVA1 USER
BASE_OPERATIONS: No values
BASE_OWNER: WELLIE2
BASE_PASS-INTERVAL: 254
BASE_PASSDATE: 07.149
BASE_PASSWORD: Password Exists
BASE_SPECIAL: No values
BASE_TIME: ANYTIME
BASE_USERID: JAVA1
OMVS: No values
OMVS_HOME: /u/java1
OMVS_PROGRAM: /bin/sh
OMVS_UID: 0000000000
TSO: No values
TSO_ACCTNUM: MVS
TSO_COMMAND: ISPPDF
TSO_MAXSIZE: 00000000
TSO_PROC: BPXPROC
TSO_SIZE: 02000000
TSO_UNIT: SYSDA
Chapter 13. Security enhancements 189

System SSL provides a set of SSL C/C++ callable application programming interfaces that,
when used with the z/OS Sockets APIs, provide the functions required for applications to
establish this secure sockets communication.

In addition to providing the API interfaces to exploit the SSL and TLS protocols, System SSL
is also providing a suite of Certificate Management APIs. These APIs give the capability to
create and manage your own certificate databases, utilize certificates stored in key
databases, key rings or tokens for purposes other than SSL, and to build and process
PKCS #7 standard messages.

In addition to providing APIs for applications to use for both SSL and certificate management
support, System SSL also provides a certificate management utility called gskkyman. This
utility allows for the management of certificates stores in a key database file or z/OS
PKCS #11 token.

An overview of how SSL works
The SSL protocol begins with a handshake. During the handshake, the client authenticates
the server, the server optionally authenticates the client, and the client and server agree on
how to encrypt and decrypt information. In addition to the handshake, SSL also defines the
format used to transmit encrypted data.

X.509 (V1, V2 or V3) certificates are used by both the client and server when securing
communications using System SSL. The client must verify the server's certificate based on
the certificate of the Certificate Authority (CA) that signed the certificate, or based on a
self-signed certificate from the server. The server must verify the client's certificate (if
requested) using the certificate of the CA that signed the client's certificate. The client and the
server then use the negotiated session keys and begin encrypted communications.

The SSL protocol runs above the TCP/IP and below higher-level protocols such as HTTP. It
uses TCP/IP on behalf of the higher-level protocols. Figure 13-5 on page 191 shows a
schematic description of the SSL protocol.
190 z/OS Version 1 Release 9 Implementation

Figure 13-5 Overview of the SSL protocol

The capabilities of SSL address several fundamental concerns about communication over the
Internet and other TCP/IP networks:

� SSL server authentication

This allows a client application to confirm the identity of the server application. The client
application through SSL uses standard public-key cryptography to verify that the server's
certificate and public key are valid and has been signed by a trusted CA that is known to
the client application.

� SSL client authentication

This allows a server application to confirm the identity of the client application. The server
application through SSL uses standard public-key cryptography to verify that the client's
certificate and public key are valid and have been signed by a trusted CA that is known to
the server application.

� An encrypted SSL connection

This requires all information being sent between the client and server application to be
encrypted. The sending application is responsible for encrypting the data and the
receiving application is responsible for decrypting the data. In addition to encrypting the
data, SSL provides message integrity. Message integrity provides a means to determine
whether the data has been tampered with since it was sent by the partner application.

13.3.2 Certificate revocation lists (CRLs) granularity

System SSL supports X.509 certificates and certificate revocation lists (CRLs). CRLs provide
a means for certificates to be revoked prior to their expiration time. Certificate revocation may
be required due to several reasons; for example, the issuer of the certificate is no longer
trustable, or the keys associated with the certificate have been compromised. System SSL
supports CRLs that are stored in LDAP directories.

Client ServerClient HELLO

Server HELLO

Cipher suite
negotiation

Server certificate

Request client certificate

Client certificate(optional)

Handshake complete

Encrypted data
transfer
Chapter 13. Security enhancements 191

Prior to z/OS V1R9, when System SSL was performing validation of a certificate against CRL
entries in an LDAP directory, System SSL did not require a CRL entry to exist for a certificate.
Furthermore, System SSL would fail the validation of a certificate if CRL checking was
specified and the application could not contact (bind to) the LDAP server. The application had
no control of how to enforce the use of CRLs during the validation process. However, some
applications may require a more strict enforcement, while other applications may be satisfied
with a less restricted enforcement.

To give more flexibility to the applications, a new tuning environment variable and
environment attribute is added in z/OS V1R9 to define the SSL environment. The tuning
variables allow the application to specify one of the following:

High security Certificate validation requires the LDAP server to be contactable and a
CRL to be defined.

Medium security Certificate validation requires the LDAP server to be contactable, but
does not require a CRL to be defined. This is the same behavior as
previous releases and is the default.

Low Security Certificate validation will not fail if the LDAP server cannot be
contacted.

The new CRL controls are set at the SSL environment level and apply to all secure
connections within that SSL environment. An SSL environment defines common attributes
that will apply to all the application’s secure connections.

There are two ways to set the CRL security granularity level:

� Setting the environment variable GSK_CRL_SECURITY_LEVEL to HIGH, MEDIUM or
LOW. Figure 13-6 shows an example of how to set the environment variable to HIGH:

Figure 13-6 Setting the CRL security level using an environment variable

Refer to Appendix A of System SSL Programming Guide, SC24-5901, for more
information about environment variable settings.

� Using the SSL API function gsk_attribute_set_enum to set attribute
GSK_CRL_SECURITY_LEVEL to one of the following:

– GSK_CRL_SECURITY_LEVEL_HIGH

– GSK_CRL_SECURITY_LEVEL_MEDIUM

– GSK_CRL_SECURITY_LEVEL_LOW

Figure 13-7 shows an example of setting the GSK_CRL_SECURITY_LEVEL attribute to
HIGH.

Figure 13-7 Setting the CRL security level using the SSL API

export GSK_CRL_SECURITY_LEVEL=HIGH

rc = gsk_attribute_set_enum(
env_handle,
GSK_CRL_SECURITY_LEVEL,
GSK_CRL_SECURITY_LEVEL_HIGH

);
192 z/OS Version 1 Release 9 Implementation

For more information about parameters of the gsk_attribute_set_enum API function, refer
to System SSL Programming Guide, SC24-5901, as well as the SSL header file
/usr/lpp/gskssl/include/gskssl.h.

13.3.3 Rehandshake notification

Prior to z/OS V1R9, after an SSL handshake had completed establishing a secure
connection, the application could cause a rehandshake to occur in order to have new session
keys established for the connection or to have the session’s cipher algorithm reset. This
rehandshake is known as a renegotiation of the secure connection. Either side of the secure
connection can initiate a rehandshake. The TLS Protocol Version 1.0 RFC (RFC 2246) allows
application data to flow during the handshake renegotiation. However, some implementations
do not tolerate data flow during the renegotiation.

In z/OS V1R9, rehandshake notification callback support allows applications to suspend the
flow of data until the rehandshake is complete, if they desire to do so, and thus be able to
support more implementations of the SSL/TLS protocol.

In order for an application to be notified when a handshake is being renegotiated or
completed, the application is required to register callback routines with System SSL. Callback
routines are routines that reside in the application and are passed control by System SSL
when a particular condition is met or a certain event occurs. In this case, the callback
functions receive control when a secure connection is being renegotiated or when the
renegotiation is completed.

Two rehandshake notification functions are provided by System SSL. The first callback
function is intended to give applications the capability of knowing when a rehandshake is
occurring. The second function gives applications the capability of knowing when a
rehandshake has completed. Effectively, these two callback functions also allow applications
to know when the connection is being renegotiated, and when it is again ready for normal
secure communications.

The identification of the callback routines is done through the gsk_attribute_set_callback
API function. Use the gsk_reset_callback structure to point to the application’s callback
functions. Then, use gsk_attribute_set_callback to identify the functions to System SSL.

An example is shown in Figure 13-8 on page 194. This example focuses on statistics
gathering, but the same concept can be used to control the flow of application data during a
handshake renegotiation. The callback routines can suspend application data flow when the
rehandshake is initiated, and resume data flow after the rehandshake complete callback is
called.

Note: This support is limited to the SSL V3.0 and TLS V1.0 protocols. SSL V2.0 does not
support renegotiation of established secure connections.
Chapter 13. Security enhancements 193

Figure 13-8 Setting System SSL rehandshake callback functions

In the example, whenever a rehandshake is initiated, the application’s Reset_Init function is
called. When the handshake has completed, the Reset_Complete function is called.

13.3.4 Host name validation

System SSL provides an API function, gsk_validate_server, for applications to validate a
server’s certificate by specifying the host name associated with the server. The server
certificate must contain the specified server’s host name as either the common name (CN)
element of the subject name or as a DNS entry for the subject alternate name extension.
System SSL first compares the host name against the value of the CN in the certificate and if
no match is found, proceeds to compare against the DNS value in the subject alternate name
extension.

The RFC for HTTP over TLS (RFC 2818) and several other Internet protocol standards
require that the DNS subject name in the subject alternate name extension be compared to
first and only if that is not present, a check against the CN in the certificate should be
performed. Prior to z/OS V1R9, this was not achievable by the System SSL API.

In z/OS V1R9, System SSL adds a new API function that gives applications the flexibility to
specify the order and how comparisons are to be performed against the host name and the
X.509 certificate. The new API function is called gsk_validate_hostname. It allows you to
specify a value option that controls the composition and the order of the host name validation
process. Four options are available:

� GSKCMS_VALIDATE_HOSTNAME_CN

This validates the host name against the CN of the certificate first and then against the
DNS entry for the subject alternate name extension if no match is found in the CN.

� GSKCMS_VALIDATE_HOSTNAME_CN_ONLY

This validates the host name against the CN of the certificate only.

/* Callback 1 - Rehandshake init */
int rehandshakes_initiated = 0;
void Reset_Init(gsk_handle con_handle) {
 rehandshakes_initiated++;
};

/* Callback 2 - Rehandshake complete */
int rehandshakes_completed = 0;
void Reset_Complete(gsk_handle con_handle) {
 rehandshakes_completed++;
};

...

gsk_reset_callback rehandshake_callbacks;

rehandshake_callbacks = {Reset_Init, Reset_Complete};

rc = gsk_attribute_set_callback(
 env_handle,
 GSK_SESSION_RESET_CALLBACK,
 rehandshake_callbacks
);
194 z/OS Version 1 Release 9 Implementation

� GSKCMS_VALIDATE_HOSTNAME_DNS

This validates the host name against the DNS entry in the subject alternate name
extension first and, only if that is not present, validates the host name against the CN.

� GSKCMS_VALIDATE_HOSTNAME_DNS_ONLY

This validates the host name against the DNS entry in the subject alternate name
extension only.

Figure 13-9 shows an example of using gsk_validate_hostname to set the validation process
to check the DNS entry first and then CN.

Figure 13-9 Controlling the System SSL host name validation process

13.3.5 Hardware-to-software switch notification

System SSL uses the Integrated Cryptographic Service Facility (ICSF) if it is available. ICSF
provides hardware cryptographic support which will be used instead of the System SSL
software algorithms. System SSL checks for the hardware support during its runtime
initialization processing, and will use the hardware support if available.

System SSL also takes advantage of the CP Assist for Cryptographic Function (CPACF)
when available. CPACF is a set of cryptographic instructions available on all CPs of a z990,
z890, and z9 EC and z9 BC processors. The SHA-1 algorithm is always available. The
SHA-256 algorithm is available on the z9 EC and z9 BC. CPACF DES/TDES Enablement,
feature 3863, provides for clear key DES and TDES instructions. On the z9 EC and z9 BC,
this feature also includes clear key AES for 128-bit keys. ICSF is not required in order for
System SSL to use the CPACF.

On top of that, System SSL contains software implementations for every cryptographic
algorithm that it requires. If a severe ICSF error occurs during a cryptographic operation,
System SSL stops using the hardware support and reverts to using the software algorithms.
The switch to software support is done transparently to the application. Prior to z/OS V1R9,
System SSL did not issue a notification of the switch to software support, so no corrective
action could have been taken by the system programmers.

Starting with z/OS V1R9, the System SSL started task, GSKSRVR, issues two new
notification messages when a switch occurs. The messages are:

GSK01051E jobname/ASID - Hardware encryption error. ICSF hardware encryption
processing is unavailable

GSK01052W jobname/ASID - Hardware encryption error. algorithm encryption
processing switched to software

In order to provide notification about the switch from hardware to software, the System SSL
started task GSKSRVR must be started before any application using System SSL. This
allows System SSL to detect the switch and inform the started task of the event. The
GSKSRVR started task initially displays message GSK01051E to inform about the switch
from hardware to software. The GSKSRVR system log contains more detailed messages

#include <gskcms.h>

gsk_validate_hostname(
x509_certificate,
hostname,
GSKCMS_VALIDATE_HOSTNAME_DNS

);
Chapter 13. Security enhancements 195

about the actual encryption function that converted to System SSL’s software
implementation.

These messages provide the system programmers with an indication that the switch has
occurred. The system programmers need to ensure that ICSF hardware encryption services
are up and functioning correctly.

13.4 PKI Services enhancements

z/OS Cryptographic Services PKI Services allow you use z/OS to establish a PKI
infrastructure and serve as a certificate authority for your internal and external users, issuing
and administering digital certificates in accordance with your own organization's policies. The
users in the organization can use a PKI Services application to request and obtain certificates
through their own Web browsers, while the authorized PKI administrators approve, modify, or
reject these requests through their own Web browsers.

The Web applications provided with PKI Services are highly customizable, and a
programming exit is also included for advanced customization. You can allow automatic
approval for certificate requests from certain users and, to provide additional authentication,
add host IDs, such as RACF user IDs, to certificates you issue for certain users. You can also
issue your own certificates for browsers, servers, and other purposes, such as virtual private
network (VPN) devices, smart cards, and secure e-mail.

PKI Services supports Public Key Infrastructure for X.509 version 3 (PKIX) and Common
Data Security Architecture (CDSA) cryptographic standards. It also supports the following:

� The delivery of certificates through the Secure Sockets Layer (SSL) for use with
applications that are accessed from a Web browser or Web server.

� The delivery of certificates that support the Internet Protocol Security standard (IPSEC) for
use with secure VPN applications or IPSEC-enabled devices.

� The delivery of certificates that support Secure Multipurpose Internet Mail Extensions
(S/MIME), for use with secure e-mail applications.

z/OS is certified as IdenTrust-compliant. This allows z/OS installations to participate in the
IdenTrust infrastructure by configuring PKI Services to operate as an IdenTrust compliant
certificate authority (CA).

13.4.1 Automatic certificate renewal processing

Prior to z/OS V1R9, certificate owners had to manually renew their certificates after they
received an expiration notification. To make renewal of certificates easier, PKI Services in
z/OS V1R9 support automatically sending a renewed certificate to the owner before the old
certificate expires.

Automatic certificate renewal is done through the PKI Services configuration file, pkiserv.conf,
and the template file, pkiserv.tmpl.

Note: To utilize hardware encryption again, after the problem is fixed, a restart of the SSL
application or process is needed. The GSKSRVR started task does not need to be
restarted.
196 z/OS Version 1 Release 9 Implementation

The relevant parameters in pkiserv.conf are:

� ExpireWarningTime=

This parameter indicates how soon before certificate expiration to send a warning
message or a renewed certificate (that is, the number of days or weeks before the day and
time the certificate expires). If automatic certificate renewal is active, this parameter
indicates how soon before certificate expiration to renew the certificate and send it to the
owner.

This parameter is optional. Its absence indicates no expiration checking is performed and
no automatic certificate renewal occurs. Also, if the parameter is present but has an
incorrect value or if PKI Services is configured to operate without LDAP, no expiration
checking or automatic certificate renewal is done.

� RenewCertForm=

The full path name or data set name containing the “renewed certificate”. Defaults to no
certificate sent.

In addition, update the pkiserv.tmpl file with the following:

� The AUTORENEW tag

This tag determines whether the certificate is to be automatically renewed when it
approaches expiration. This tag has the form <AUTORENEW=value>, where value can
have the value Y, y, N, or n. If the AUTORENEW tag has any other value, or does not
immediately follow the NICKNAME tag, PKI Services operates as if the tag is not present.
The tag has the following meanings:

– AUTORENEW tag not present means that the certificate is not set up for automatic
renewal.

– AUTORENEW=Y means that the certificate is enabled for automatic renewal.
AUTORENEW=N means that the certificate is eligible for automatic renewal, but
automatic renewal is disabled.

� The notification e-mail address of the receiver

A renewed certificate gets all the information from the original certificate, but with a new
expiration date which is set from the expiration date of the original certificate plus the NotAfter
value from template. Furthermore, exit hooks can be set up to add criteria to disallow
automatic renewal and to perform post processing for the renewed certificate.

Example
We want to set up PKI Services so that all the certificates generated from the “1-Year PKI
SSL Browser Certificate” template are renewed 30 days before they expired. We update the
pkiserv.conf file, as shown in Figure 13-10.

Figure 13-10 Example updates to pkiserv.conf

We also update the pkserv.tmpl file, as shown in Figure 13-11 on page 198.

Note: Adding the AutoRenew=Y tag does not enable all certificates to be automatically
renewed. It enables only the newly issued certificates after the template is been
updated.

ExpireWarningTime=30d
RenewCertForm=/etc/pkiserv/renewcertmsg.form
Chapter 13. Security enhancements 197

Figure 13-11 Example updates to pkiserv.tmpl

Now 30 days before the certificate expires, an e-mail with a renewed certificate will be sent.

13.4.2 RACF-style distinguished name

The AuthName1 parameter in pkiserv.conf is used to specify the LDAP administrator’s
Distinguished Name (DN). The value specified in the AuthName1 parameter is used by PKI
Services to perform LDAP binding. LDAP binding is the process of authenticating a DN to the
LDAP server. The DN is used to identify unambiguously a collection of attributes in the
directory.

In z/OS V1R9, the LDAP administrator DN specified in the PKI Services configuration file can
now be a RACF-style DN. underlying RACF data. A RACF-style DN for a user or group
contains two required attributes plus a suffix. The required attributes are racfid, which
specifies the user ID or group ID, and profiletype, which specifies user or group. The suffix
specifies the SDBM suffix. The suffix for SDBM may contain additional attributes.

To use the new support, explicitly specify a RACF-style DN for theAuthName1 parameter in
pkiserv.conf. An example is shown in Figure 13-12.

Figure 13-12 Specifying a RACF-style DN in pkiserv.conf

You can also implicitly specify a RACF-style DN for the PKI Services LDAP administrator
using the BindProfile1 parameter in pkiserv.conf. For example, to define an LDAP bind profile
named MY.LDAP.SERVER1 in RACF with the equivalent attributes as the previous example,
use the RACF command in Figure 13-13, then specify BindProfile1=MY.LDAP.SERVER1 in
pkiserv.conf.

Figure 13-13 Specifying a RACF-style DN using a RACF bind profile

13.4.3 E-mail notification for administrators

In z/OS V1R9, PKI Services support sending an e-mail notification to the PKI Services
administrators to notify them of requests waiting for their approval.

Otherwise, the PKI Services administrators have no way of knowing about new requests,
other than by logging on to the PKI Services Web application periodically.

<TEMPLATE NAME=1-Year PKI SSL Browser Certificate>
<TEMPLATE NAME=PKI Browser Certificate>
<NICKNAME=1YBSSL>
 <AUTORENEW=Y>
...
%%NotifyEmail%%

AuthName1=RACFID=ADMIN,PROFILETYPE=USER,O=RACFDB,C=US
AuthPwd1=secret

RDEFINE LDAPBIND MY.LDAP.SERVER1 PROXY(LDAPHOST(ldap://some.ldap.host:389)
BINDDN('RACFID=ADMIN,PROFILETYPE=USER,O=RACFDB,C=US') BINDPW('secret‘))
198 z/OS Version 1 Release 9 Implementation

New parameters are added to pkiserv.conf for the new e-mail notification support:

� AdminNotifyNew<n>

The e-mail address to which notification should be sent immediately when a request is
created and requires approval. The notification is only sent once. There can be multiple
entries, where <n> is 1 for the first entry and increases sequentially for additional entries.

� AdminNotifyReminder<n>

The e-mail address to which reminder notifications of requests pending approval should
be sent when PKI Services starts, and once a day thereafter. There can be multiple
entries, where <n> is 1 for the first entry and increases sequentially for additional entries.

� AdminNotifyForm

The full path name or data set name containing the request(s) pending for approval
message form. Defaults to no notification sent.

It is possible to use AdminNotifyNew, AdminNotifyReminder, or both.

13.4.4 Longer validity period for certificates

Starting with z/OS V1R9, PKI Services allows specifying a certificate validity period greater
than 10 years, which was the limitation on previous releases. The new limit is 9999 days,
which is about 27 years.

This enhancement allows you to define certificates with longer validity periods. For example,
to set up a template for certificates with validity for 20 years, specify the following in
pkiserv.tmpl, as shown in Figure 13-14.

Figure 13-14 Example of specifying a certificate validity period

The R_PKIServ callable service supports a NotAfter parameter for the GENCERT, REQCERT,
GENRENEW and REQRENEW function codes. The NotAfter parameter now also supports
values greater than 10 years.

13.4.5 Query on expiring certificates

The PKI Services administration Web pages allow PKI administrators to process certificate
requests, preregistration records, and individual certificates. In addition, the PKI Services
administration Web pages allow administrators to perform searches for certificate requests,
preregistration records, and certificates.

Prior to z/OS V1R9, there was no interface allowing administrators to search for certificates
based on the number of days they will expire in. So the administrators could not easily know
which certificates were about to expire.

In z/OS V1R9, the administration Web pages are enhanced to allow administrators to search
certificates using future days until expiration as a search criteria. Figure 13-15 on page 200
shows the new Web page for the administrator to perform searches on certificates and
certificate requests.

<CONSTANT>
%%NotAfter=7300%%
</CONSTANT>
Chapter 13. Security enhancements 199

Figure 13-15 Web page for searching certificates that are about to expire
200 z/OS Version 1 Release 9 Implementation

Chapter 14. z/OS Communication Server

This chapter describes some of the z/OS Communication Server enhancements introduced in
z/OS Version 1 Release 9:

� zIIP-assisted IPSec

� Policy-based routing

For complete information about all the new functions introduced in this release (as well as the
past three releases) regarding IP and SNA functions, refer to z/OS Communication Server:
New Function Summary, GC31-8771.

14
© Copyright IBM Corp. 2007. All rights reserved. 201

14.1 zIIP-assisted IPSec

zIIP-assisted IPSec enables z/OS Communications Server to direct CPU-intensive IPSec
processing to an IBM System z9 Integrated Information Processor (zIIP). In z/OS V1R9
Communications Server, this function can lower the computing cost incurred by the IPSec
protocols, while at the same time increasing the processing capacity of your general purpose
central processors (CPs).

This function can also be enabled on machines with no zIIPs, so that you can project the
effectiveness of zIIP for your current IPSec workload. When this function is enabled on a z/OS
server with no zIIPs, MVS accounts for the zIIP-eligible workload that was processed on CPs,
in SMF record types 30 and 7x. You can use this accounting information to project the
percentage of your workload that would be zIIP-eligible, if you had zIIPs configured to your
MVS image.

IBM System z9 Integrated Information Processor (zIIP) was introduced at the beginning of
2006. zIIP is a specialty engine designed to free up general purpose CPs and lower the
software costs for selected workloads.

In the following text, the word “ipse” is spelled in two different ways with different meanings,
as follows:

IPSec This refers to the VIrtual Private Network (VPN) IP Security (IPsec), a
pee-to-peer IP tunnel.

IPSEC This refers to the IPSEC feature in z/OS Communication Server that
provides TCP/IP filtering (firewall) and VPN IPsec.

Communication Server’s IPSec is the second IBM’s exploiter of the zIIP assist processor. The
first one was DB2 V8. It uses the System z9 crypto hardware, Crypto Express2 (CE2), for the
following:

� Data encryption and decryption

� Authentication

Even using the CE2, some bulk workloads such as FTP or Tivoli Storage Manager (TSM) can
utilize a significant amount of CPU. The cost of CPU is relative to the amount of data being
moved.

In some cases, when running an LPAR at a high utilization level, the usage of IPSec could be
a problem. In most of the cases the TCP/IP address space has a high priority and depending
on the workload priority, this problem can be magnified. To minimize the problem the IPSec
workload could run on a different TCP/IP address space with a lower priority, but the CPU
consumption problem will remain.

For more information on the zIIP configuration, see and perform a search on zIIPs:

http://www.ibm.com/support/techdocs

14.1.1 Implementation of zIIP-assisted IPSEC

A new option was included in the GLOBALCONFIG statement to enable the SRB-mode
IPSec Authentication header (AH) and Encapsulating Security Payload (ESP) protocols to be
processed on zIIP. Figure 14-1 on page 203 shows the GLOBALCONFIG statement to
configure the zIIP-assisted IPSec function.
202 z/OS Version 1 Release 9 Implementation

http://www.ibm.com/support/techdocs

Figure 14-1 zIIP IPSec configuration

The other option (the default) is ZIIP NOIPSECURITY, which leaves the IPSec processing
running on general CPs.

Configuring GLOBALCONFIG ZIIP IPSECURITY causes inbound ESP and AH Protocol
traffic to be processed in enclave SRBs, and targeted to available zIIPs. Outbound ESP and
AH protocol traffic may also be processed on available zIIPs in the following cases:

� When the application invoking the send() function is already running on a zIIP

� When the data to be transmitted is in response to normal TCP flow control (for example,
data transmitted in response to a received TCP acknowledgement or window update)

If the machine does not have a zIIP installed, there is an option to project the CPU in the
IEAOPTxx parmlib member called PROJECTCPU. Figure 14-2 shows how to configure this
option.

Figure 14-2 IEAOPTxx PROJECTCPU configuration example

14.1.2 Example of zIIP-assisted IPSec implementation

In our test environment we implemented the zIIP-assisted IPSec function by defining a VPN
IPSec tunnel between two z/OS images, SC70 and SC65.

Network configuration
To define a VPN in z/OS is necessary to configure the following components:

� IPSECURITY in the TCP/IP profile.

� Policy Agent (PAGENT) address space to handle all the configurations and install them in
the TCP/IP stack.

� Traffic Regulation Management Daemon (TRMD) address space to log all the IPSEC
messages.

� Internet Key Exchange daemon (IKED) address space to perform the key management.

� SYSLOGD address space to write the messages on a log file.

IPSECURITY
On a System z9, an additional assist for IPSec protocol traffic is available with the z9
Integrated Information Processor (zIIP). To enable zIIP IP security in Communications Server,
specify ZIIP IPSECURITY on the GLOBALCONFIG statement. With zIIP IP security enabled,
traffic using the AH and ESP protocols can be processed on available zIIPs. When enabled
on a z9 z/OS image that includes zIIPs, the zIIP IP security function can reduce the IPSec
processing load on general purpose central processors, beyond what is achievable using just
CPACF or the z9 Cryptographic Coprocessor.

When zIIP IP security is enabled, you might need to modify some Workload Manager (WLM)
definitions. The IPSec traffic that can be processed on available zIIP processors is assigned
to an independent WLM enclave. The WLM independent enclave encapsulates the IPSec

GLOBALCONFIG
 ZIIP IPSECURITY

PROJECTCPU=YES
Chapter 14. z/OS Communication Server 203

workload as execution units that are separately classified and managed in a WLM service
class.

IPSECURITY is configured by using the IPCONFIG statement shown in Figure 14-3.

Figure 14-3 IPCONFIG configuration

When IPSECURITY is configured, the TCP/IP automatically installs an implicit deny all
firewall rule, blocking all the traffic to the stack. In our implementation we defined a rule to
allow all the traffic to flow before defining the other rules using the Pagent configuration.
VPNs are only supported by using the pagent IPSEC configuration rules. The IPSEC
definition in the TCP/IP profile is called the default policy.

IPSEC statement
The IPSEC statement to define the IPSEC default policy is shown in Figure 14-4. This
configuration will install the default policy allowing all traffic to flow in and out the stack.

Figure 14-4 IPSEC configuration example

The instructions on how to configure the PAGENT, TRMD, IKED, and SYSLOGD daemon
can be found in the following publications:

� Communication Server for z/OS V1R7 TCP/IP Implementation, Volume 4: Policy-Based
Network Security, SG24-7169

� Sysplex eBusiness Security z/OS V1R7 Update, SG24-7150

� z/OS Communication Server IP Configuration Guide, SC31-8775

� z/OS Communication Server IP Configuration Reference, SC31-8776

The following definition shows the PAGENT configuration for both systems, SC70 and SC65.
Figure 14-5 and Figure 14-6 show the main pagent configuration file. This file points to

IPCONFIG
 IPSECURITY

Important: Be careful when defining the IPSECURITY on TCP/IP. The TCP/IP stack has
to be restarted or activated to use this function. If the TCP/IP stack is activated with no
rules defined, either by the IPSEC statement or by the PAGENT daemon, then all traffic to
and from the stack will be blocked.

If you attempt to use the zIIP IPSECURITY support (to direct IPSec AH|ESP protocol
processing to zIIP), issue Netstat STATS (or onetstat -S) while IPSec workload is running.
The inbound and outbound counters Packets Handled by zIIP will be rising if IPSec
workload is in fact being processed on zIIP(s).

If these counters are not rising while IPSec traffic is flowing, verify both of the following
items:

� GLOBALCONFIG ZIIP IPSEC parameters are specified in the TCPIP profile (use
NETSTAT Config/-f to verify).

� zIIP(s) are configured to the z/OS image (use MVS D M=CPU command to verify).

IPSEC
 IPSECRULE * * NOLOG PROTOCOL *
ENDIPSEC
204 z/OS Version 1 Release 9 Implementation

configuration files to specific TCP/IP stacks. In our configuration we have only one TCP/IP
address space called TCPIP.

Figure 14-5 SC70 pagent configuration file referenced by the pagent daemon

Figure 14-6 SC65 pagent configuration file referenced by the pagent daemon

Figure 14-7 and Figure 14-8 show the configuration files for the TCPIP stack in both systems.
They point to another file which contains the IPSEC policy definitions.

Figure 14-7 SC70 TCPIP stack policy

Figure 14-8 SC65 TCPIP stack policy

Appendix C.1, “IPSEC policy configuration for SC70” on page 500 shows the IPSEC
configuration for the SC70 system. It was generated using the IBM Configuration Assistance
for z/OS CS V1R9.

Appendix C.2, “IPSEC policy configuration for SC65” on page 503 shows the IPSEC
configuration for the SC65 system. It was also generated using the IBM Configuration
Assistance for z/OS Communications Server V1R9.

There are only two IPSEC rules defined on each of the preceding examples:

� One rule that allows all inbound and outbound traffic in the TCP/IP stack. Usually this rule
does not exist, but in our example we defined it to facilitate the tests.

� Another rule that creates a VPN on demand between SC70 and SC65 when any type of
traffic occurs. “On demand” means that the VPN will be activated when any traffic
matching a specific rule is encountered.

Note that an implicit rule denying all traffic is always created either having the default policy
rules or the pagent policy.

To start the VPN between the systems, we issue a ping command to the other side or
generate any kind of traffic between the two systems.

For this implementation we created two REXX programs that are kept in a loop. Each one of
the systems, SC70 and SC65, will have a client and a server version talking to each other and
sending packets. This programs only send (client) and receive (server) data. This is the only
traffic we tested in our implementation.

Figure 14-9 shows the Server REXX program.

LogLevel 127
TcpImage TCPIP /u/rodolfi/policy/sc70/tcpip.policy purge flush

LogLevel 127
TcpImage TCPIP /u/rodolfi/policy/sc65/tcpip.policy purge flush

TcpImage TCPIP
IPSecConfig /u/rodolfi/policy/sc70/tcpip.policy.ipsec

TcpImage TCPIP
IPSecConfig /u/rodolfi/policy/sc65/tcpip.policy.ipsec
Chapter 14. z/OS Communication Server 205

Figure 14-9 REXX server

Figure 14-10 on page 207 shows the Client rexx program.

/* REXX */
 parse arg port .
 src=Socket('Initialize','ziips')
 s=Word(Socket('Socket'),2)
 ipaddress=Word(Socket('GetHostId'),2)
 src=Socket('Bind',s,'AF_INET' port ipaddress)
 src=Socket('Listen',s,10)
 src=Socket('Ioctl',s,'FIONBIO','OFF')
 say 'ZIIPS: Waiting on' ipaddress port '...'
 parse value Socket('Accept',s) with . ns . np nia .
 say 'ZIIPS: Connected by' nia 'on port' np 'and socket' ns
 call Socket 'Ioctl',ns,'FIONBIO','OFF'
 call Time 'R'
 bytes=0
 do forever
 parse value Socket('Read',ns) with rc size .
 if rc<>0 then leave
 bytes=bytes+size
 if Time('E')>10
 then do
 say 'ziips throughput:' port ipaddress np nia size,
 Format(bytes/Time('E')/1204/1024,5,3)
 if bytes=0 then leave
 bytes=0
 call Time('R')
 end
 end
 call Socket 'Close',ns
 call Socket 'Terminate'
 exit
206 z/OS Version 1 Release 9 Implementation

Figure 14-10 REXX client

We have to start the client and the server on each side by using the following commands:

Figure 14-11 REXX startup example

After starting the programs, we can monitor the zIIP-assisted IPSec environment and
configuration.

/* REXX */
 parse arg image port .
 src=Socket('Initialize','ziipc')
 s=Word(Socket('Socket'),2)
 src=Socket('Connect',s,'AF_INET' port '9.12.4.'image)
 trace off
 nb=64000
 data=Copies('*',nb)
 call Time 'R'
 bytes=0
 do forever
 parse value Socket('Write',s,data) with rc nb .
 bytes=bytes+nb
 if Time('E')>10
 then do
 say 'ziipc throughput:' image port nb,
 Format(bytes/Time('E')/1024/1204,5,3)
 bytes=0
 call Time('R')
 end
 end
 src=Socket('Terminate')
 exit

On SC70:

ziips1 1952 (1952 is the listening port)

On SC65:

ziips1 1952

On SC70:

ziipc1 48 1952 (48 is the last octet of the ip address and 1952 the TCP port)

On SC65:

ziipc1 202 1952
Chapter 14. z/OS Communication Server 207

First we have to check whether the zIIP is available to be used. We issue the D M=CPU
command.

Figure 14-12 D M=CPU command

As you can see in Figure 14-12, we have two zIIPs available in the system (CPU ID 04 and
05), and they are online.

D M=CPU
IEE174I 13.47.59 DISPLAY M 523
PROCESSOR STATUS
ID CPU SERIAL
00 + 16991E2094
01 + 16991E2094
02 +A 16991E2094
03 +A 16991E2094
04 +I 16991E2094
05 +I 16991E2094

CPC ND = 002094.S18.IBM.02.00000002991E
CPC SI = 2094.710.IBM.02.000000000002991E
CPC ID = 00
CPC NAME = SCZP101
LP NAME = A16 LP ID = 16
CSS ID = 1
MIF ID = 6

+ ONLINE - OFFLINE . DOES NOT EXIST W WLM-MANAGED
N NOT AVAILABLE

A APPLICATION ASSIST PROCESSOR (zAAP)
I INTEGRATED INFORMATION PROCESSOR (zIIP)
CPC ND CENTRAL PROCESSING COMPLEX NODE DESCRIPTOR
CPC SI SYSTEM INFORMATION FROM STSI INSTRUCTION
CPC ID CENTRAL PROCESSING COMPLEX IDENTIFIER
CPC NAME CENTRAL PROCESSING COMPLEX NAME
LP NAME LOGICAL PARTITION NAME
LP ID LOGICAL PARTITION IDENTIFIER
CSS ID CHANNEL SUBSYSTEM IDENTIFIER
MIF ID MULTIPLE IMAGE FACILITY IMAGE IDENTIFIER
208 z/OS Version 1 Release 9 Implementation

The netstat -S command in Figure 14-13 shows how many packets are being handled in a
zIIP processor.

Figure 14-13 Netstat -S command example

The netstat -f (configuration) command in Figure 14-14 can be used to check whether the zIIP
support is enabled.

Figure 14-14 Netstat -f command example

The Resource Measurement Facility (RMF) monitor can be used to check how much CPU is
being used by the zIIP. In our test we used the Monitor III to show some details of how the
zIIP is being utilized by LPARs and address spaces.

RODOLFI @ SC65:/u/rodolfi>netstat -S
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 14:31:01
IP Statistics
 Packets Received = 1095389266
 Inbound Calls from Device Layer = 0
 Inbound Frame Unpacking Errors = 0
 Inbound Discards Memory Shortage = 0
 Received Header Errors = 0
 Received Address Errors = 22
 Datagrams Forwarded = 1
 Unknown Protocols Received = 0
 Received Packets Discarded = 0
 Received Packets Delivered = 1095282062
 Output Requests = 1170732490
 Output Discards No Route = 216
 Output Discards DLC Sync Errors = 0
 Output Discards DLC Async Errors = 1
 Output Discards Memory Shortage = 0
 Output Discards (other) = 0
 Reassembly Timeouts = 0
 Reassembly Required = 0
 Reassembly Successful = 0
 Reassembly Failures = 0
 Datagrams Successfully Fragmented = 0
 Datagrams Failing Fragmentation = 0
 Fragments Created = 0
 Fragments Created = 0
 Inbound Packets handled by zIIP = 1074645575
 Outbound Packets handled by zIIP = 873127703

RODOLFI @ SC65:/u/rodolfi>netstat -f
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 14:37:00
Global Configuration Information:
TcpIpStats: No ECSALimit: 0000000K PoolLimit: 0000000K
MlsChkTerm: No XCFGRPID: IQDVLANID: 0
SegOffload: No SysplexWLMPoll: 060
ExplicitBindPortRange: 00000-00000
Sysplex Monitor:
 TimerSecs: 0060 Recovery: Yes DelayJoin: No AutoRejoin: No
 MonIntf: No DynRoute: No
zIIP:
 IPSecurity:Yes
Chapter 14. z/OS Communication Server 209

The CPC Capacity screen in Monitor III shows how the CPU is being used by partitions; see
Figure 14-15.

Figure 14-15 RMF CPC Capacity example

Figure 14-15 displays how the partitions are using zIIP, A16 (SC70), and A11 (SC65).

The next RMF examples, Figure 14-16 and Figure 14-17 on page 211, show how the zIIP is
being used by the address spaces on SC70 and SC65 systems in the RMF Processor Usage
screen.

Figure 14-16 SC70 RMF Processor Usage example

As we can see in Figure 14-16, the TCPIP address space is using most of the CPU. It is
responsible for the ESP and AH protocol processing, encrypting and decrypting all the data.
Figure 14-17 on page 211 shows the SC65 system and we can see that most of the CPU
utilization was displaced to the zIIPs.

 RMF V1R9 CPC Capacity Line 1 of 61

 Samples: 119 System: SC65 Date: 05/16/07 Time: 12.04.00 Range: 120 Sec

 Partition: A11 2094 Model 710
 CPC Capacity: 640 Weight % of Max: **** 4h Avg: 29 Group: N/A
 Image Capacity: 256 WLM Capping %: 0.0 4h Max: 52 Limit: N/A

 Partition --- MSU --- Cap Proc Logical Util % - Physical Util % -
 Def Act Def Num Effect Total LPAR Effect Total

 *CP 66.0 6.1 64.3 70.3
 A11 0 37 NO 2.0 28.2 28.8 0.1 5.6 5.8
 A16 0 33 NO 2.0 24.8 25.5 0.1 5.0 5.1
 *IIP 12.0 2.1 77.1 79.2
 A11 NO 2.0 39.2 39.5 0.3 39.2 39.5
 A16 NO 2.0 37.7 38.0 0.3 37.7 38.0

 RMF V1R9 Processor Usage Line 1 of 11

 Samples: 119 System: SC70 Date: 05/16/07 Time: 12.04.00 Range: 120 Sec

 Service --- Time on CP % --- ----- EAppl % -----
 Jobname CX Class Total AAP IIP CP AAP IIP

 RODOLFI3 O SYSSTC1 24.4 0.0 0.0 24.4 0.0 0.0
 RODOLFI4 O SYSSTC1 8.9 0.0 0.0 8.9 0.0 0.0
 TCPIP SO SYSSTC 4.8 0.0 0.0 4.8 0.0 74.0
 RMFGAT SO SYSSTC 1.5 0.0 0.0 1.5 0.0 0.0
 XCFAS S SYSTEM 0.7 0.0 0.0 0.7 0.0 0.0
 WLM S SYSTEM 0.6 0.0 0.0 0.6 0.0 0.0
 VTAM44 S SYSSTC 0.2 0.0 0.0 0.2 0.0 0.0
 MASTER S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
 SMSVSAM S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
 JES2 S SYSSTC 0.1 0.0 0.0 0.1 0.0 0.0
 CATALOG S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
210 z/OS Version 1 Release 9 Implementation

Figure 14-17 SC65 RMF Processor Usage example

It is possible to enable and disable the zIIP usage by using the OBEYFILE command. We just
have to change the option in GLOBALCONFIG to ZIIP NOIPSECURITY and update the
profile to disable the zIIP utilization. To enable, simply configure back to ZIIP IPSECURITY.
Now we can turn the zIIP off on SC65 and see how the system will behave, as shown in
Figure 14-18.

Figure 14-18 SC65 RMF Processor Usage example 2

The jobname TCPIP represents the TCP/IP address space and the jobnames rodolf3 and
rodolfi4 are the REXX server and client programs, respectively. Without the zIIP, the CPU
utilization was displaced back to the general CPs. For the CPC activity screen, see the
Figure 14-19 on page 212.

 RMF V1R9 Processor Usage Line 1 of 16

 Samples: 119 System: SC65 Date: 05/16/07 Time: 12.04.00 Range: 120 Sec

 Service --- Time on CP % --- ----- EAppl % -----
 Jobname CX Class Total AAP IIP CP AAP IIP

 RODOLFI3 O SYSSTC1 28.7 0.0 0.0 28.7 0.0 0.0
 RODOLFI4 O SYSSTC1 8.7 0.0 0.0 8.7 0.0 0.0
 TCPIP SO SYSSTC 5.5 0.0 0.0 5.5 0.0 76.9
 RMFGAT SO SYSSTC 1.4 0.0 0.0 1.4 0.0 0.0
 XCFAS S SYSTEM 0.8 0.0 0.0 0.8 0.0 0.0
 WLM S SYSTEM 0.6 0.0 0.0 0.6 0.0 0.0
 AOPMSGS SO STC 0.4 0.0 0.0 0.4 0.0 0.0
 VTAM44 S SYSSTC 0.3 0.0 0.0 0.3 0.0 0.0
 HZSPROC SO STC 0.3 0.0 0.0 0.3 0.0 0.0
 VAINI T TSO 0.3 0.0 0.0 0.3 0.0 0.0
 MASTER S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
 GRS S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
 SMSVSAM S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
 IXGLOGR S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
 CATALOG S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
 GPMSERVE SO STC 0.1 0.0 0.0 0.1 0.0 0.0

 RMF V1R9 Processor Usage Line 1 of 11

 Samples: 120 System: SC65 Date: 05/16/07 Time: 12.21.00 Range: 120 Sec

 Service --- Time on CP % --- ----- EAppl % -----
 Jobname CX Class Total AAP IIP CP AAP IIP

 TCPIP SO SYSSTC 46.1 0.0 0.0 46.1 0.0 0.0
 RODOLFI4 O SYSSTC1 30.7 0.0 0.0 30.7 0.0 0.0
 RODOLFI3 O SYSSTC1 15.7 0.0 0.0 15.7 0.0 0.0
 RMFGAT SO SYSSTC 1.3 0.0 0.0 1.3 0.0 0.0
 XCFAS S SYSTEM 0.6 0.0 0.0 0.6 0.0 0.0
 WLM S SYSTEM 0.6 0.0 0.0 0.6 0.0 0.0
 RMF S SYSSTC 0.5 0.0 0.0 0.5 0.0 0.0
 AOPMSGS SO STC 0.4 0.0 0.0 0.4 0.0 0.0
 VTAM44 S SYSSTC 0.2 0.0 0.0 0.2 0.0 0.0
 MASTER S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
 GPMSERVE SO STC 0.1 0.0 0.0 0.1 0.0 0.0
Chapter 14. z/OS Communication Server 211

Figure 14-19 RMF CPC Capacity example 2

A white paper called “Capacity Planning for zIIP-assisted IPSec” is available at the following
link. It describes in detail how to plan for zIIP capacity.

http://www.ibm.com/support/docview.wss?rs=852&uid=swg27009459

14.2 Policy-based routing

When TCP/IP has to route a packet to the network, the decision is based on the destination
address in the packet IP header. All traffic sent to a destination address has to use the same
route. You can have more than one network interface being used to the same route (multipath
route); for example, having two OSA cards connected to the same network.

Because the System z9 has the capability of having multiple interfaces, running many
different workloads, with different requirements. The only way to accomplish that today is
running the application in another partition, or creating another TCP/IP stack with different
route tables. In one z/OS image, it is possible to have up to eight TCP/IP stacks, which allows
the possibility of having up to eight route tables.

This new policy-based routing allows the packet route to be selected based on one or more of
the following criteria:

� Source IP address
� Destination IP address
� Source TCP port
� Destination TCP port
� Protocol (UDP and TCP)
� Jobname
� Netaccess security zone
� Multi-level security (MLS) label

The routing decision is always taken for outbound traffic (data being sent from z/OS). The
outbound traffic that meets any subset of the criteria listed can be targeted to a specific
network interface and first-hop routers.

 RMF V1R9 CPC Capacity Line 1 of 61

 Samples: 120 System: SC65 Date: 05/16/07 Time: 12.21.00 Range: 120 Sec

 Partition: A11 2094 Model 710
 CPC Capacity: 640 Weight % of Max: **** 4h Avg: 31 Group: N/A
 Image Capacity: 256 WLM Capping %: 0.0 4h Max: 57 Limit: N/A

 Partition --- MSU --- Cap Proc Logical Util % - Physical Util % -
 Def Act Def Num Effect Total LPAR Effect Total

 *CP 66.0 5.6 68.0 73.6
 A11 0 66 NO 2.0 51.5 51.7 0.0 10.3 10.3
 A16 0 26 NO 2.0 19.4 20.0 0.1 3.9 4.0

 *IIP 12.0 1.3 32.5 33.8
 A11 NO 2.0 0.0 0.0 0.0 0.0 0.0
 A16 NO 2.0 32.4 32.6 0.2 32.4 32.6
212 z/OS Version 1 Release 9 Implementation

http://www.ibm.com/support/docview.wss?rs=852&uid=swg27009459

Now the TCP/IP can have multiple routing tables:

� At least one, the main routing table, defined in the TCP/IP profile
� Zero (0) or more policy-based routing tables

A policy-based routing table works the same way as the main routing table. It can contain:

� Static routes only.
� Dynamic routes only.
� A combination of static and dynamic routes.
� The static routes can be replaceable or non-replaceable (replaceable or not by using

dynamic routing via OMPROUTE).

The routes in a policy-based route (PBR) table is limited to specific link or next hops by:

� Static routes: by defining static routes for the route table using only specific links ad
first-hops.

� Dynamic routes: by configuring the links and first-hops to be considered by OMPROUTE.
OMPROUTE will only generate routes for the links and first-hops that were specified in the
routing table.

PBR is implemented using a pagent policy. The PBR is a new policy in the pagent
configuration file. A PBR policy can be created based on a subset of the various criteria.

Traffic that matches a certain criteria, like the jobname for example, can be defined to use up
to eight different route tables, plus the main routing table, optionally, as a backup. All traffic
that does not match any defined criteria will use the main routing table, if it is defined.

Look at the example in Figure 14-20.

Figure 14-20 Routing scenario example
Chapter 14. z/OS Communication Server 213

In the example we have two different routing tables:

� The main routing table spreading the traffic between three different links: LINK1, LINK2,
and LINK3.

� A PBR policy redirecting all the traffic to a specific link, LINK3. Any criteria could be
specified in the PBR policy to utilize this PBR table, like a specific jobname.

The route table is selected as follows:

1. Each route table defined for a specific traffic is searched, in the order they are defined, for
a route to the traffic destination.

2. If any active route to the destination (from the more specific to more general, host, subnet,
network, supernet, or default) matched the packet destination, then that route is used.

3. The main route table will be searched last, if it defined to be used as a backup.

The routing selection algorithm performed for a single PBR table is the same as the algorithm
used for the main route table.

The only type of traffic supported by the PBR policy is the locally originated IPv4 TCP and
UPD. The main route table will always be used for:

� All IPv6 traffic
� All forwarded traffic
� All traffic using IP protocols other than TCP and UDP, including ICMP (ICMP Echo

requests, PING, will continue to be routed using the main route table).

14.2.1 Policy-based routing implementation

The PBR policy is configured in a pagent flat-file. It consists of:

� Routing rules
� Routing actions
� Routing tables

The LDAP is not supported for the PBR policy, only flat-files are supported. The IBM
Configuration Assistant for z/OS Communication Server can be used to generate the PBR
configuration flat file. In our implementation we demonstrate how to create a simple PBR
policy using the configuration assistant.

Routing rules
A routing rule specify a set of traffic characteristics and an action to be taken for outbound
traffic that matches those characteristics.

Note: The routing selection algorithm works the following way:

1. If a route exists to the destination address, a host route, then it is used.

2. If no host route exists to the destination address, then:

a. If subnet, network or supernet routes exists to the destination, then the route with
the most specific network mask (the mask with most of the bits on) will be used.

b. If the destination is a multicast destination and a multicast default route exists, then
that route is used.

3. Default routes are used when no other route exists to a destination.
214 z/OS Version 1 Release 9 Implementation

A routing rule definition consist of:

� Source IP address:
� Destination IP address
� Traffic descriptor (characteristics)
� Priority
� Time condition
� A reference to a routing action

The source and the destination IP address can be specified as a single IP address, a
prefix/mask specification, a range of IP addresses, or it can reference a group of IP
addresses.

The traffic descriptor specifies the following characteristics of outbound traffic:

� Source port, single or a range of ports
� Destination port, single or a range of ports
� TCP or UDP protocol
� Job name: a trailing asterisk (*) can be used as a wild card
� Security zone: netaccess security zone
� Security label: Multi-level security

The traffic descriptor can be specified inline, as a reference, or as a reference to a group of
traffic descriptors.

The priority controls the order in which rules are searched for a match. Some rules for priority
specification:

� Can be specified from 1 to 2.000.000.000 (2 billion)
� Default is 1 (lowest priority)
� If a packet can match more than one rule, priority should be used to ensure that the rules

are searched in the intended order.
� For rules with the same priority, the order in which the rules are searched is unpredictable.

The time condition specifies when the routing rule is to be active. It is possible to specify a
specific date, a date range, a mask for months of the year and days of the week.

Important: The source IP address for an outbound TCP connection or an outbound UDP
packet can be influenced by a number of configuration and application options. See the
source IP address information in z/OS Communications Server: IP Configuration Guide for
the hierarchy of ways that the source IP address of an outbound packet is determined.

For the following source IP address selection methods, a route lookup is needed to
determine the source IP address:

� SOURCEVIPA: static VIPA address from the HOME list
� HOME IP address of the link over which the packet is sent

Do not use the IP source address as a selector for traffic that relies on one of the above
two methods to select its source IP address. At the time the route lookup is done, the
source IP address is not known.

Note: Priority is not explicitly configured when the Configuration Assistant is used to
generate the routing configuration file. The rule priority is determined by the order of the
rules as shown on the rules panel.
Chapter 14. z/OS Communication Server 215

Routing action
Routing action specifies the routing tables to be used for traffic that matches a routing rule.
Up to eight routing tables can be specified for a routing action, and they are searched in the
order specified.

There is an option to use or not the main route table, specified in the TCP/IP profile, if no
active route is found in any of the specified policy-based route tables.

Route table
The route table defines a policy-based route table. The maximum number of policy-based
route tables that can be defined for a TCP/IP stack is 255. Only active route tables are
installed in the TCP/IP stack. Route tables are considered active if it is referenced by an
active routing rule and its associated action.

A policy-based route table can contain static routes, dynamic routes or both (IPv4 routes
only). A route table definition consists of:

� Table name
� Route entries (static routes)
� Dynamic routing parameters entries (controls the calculation of dynamic routes by

OMPROUTE)
� Advanced parameters

The route table name uniquely identify a policy-based route table and has to be 1 to 8
characters long. The name EZBMAIN and ALL in upper case, lower case, or mixed case are
reserved. The EZBMAIN is the main route table, defined in the TCP/IP profile. We
recommend you define all the route table names either all in upper case or all in lower case.

A route entry defines a static route and the syntax is similar to that of BEGINROUTES
statement in TCP/IP profile.

The dynamic routing parameters are used by OMPROUTE to control the dynamic routes
added to the policy-based route table. Multiple dynamic routing parameters can be configured
on a route table. Each dynamic routing table parameter consists of a link name and a first hop
IP address.

The advanced parameters are:

� Multipath: the main route table uses the multipath definition in TCP/IP profile. If a different
multipath definition is needed, the options are:
– Use global (as defined in the IPCONFIG statement in TCP/IP profile)
– Per connection
– Per packet
– Disable (use only the first active route to a destination)

� Ignore path mtu update: indicates whether IPv4 ICMP Fragmentation Needed messages
should be ignored for this route table.

� Dynamic XCF routes: indicates whether direct routes to dynamic XCF addresses on other
TCP/IP stacks should be added to this route table

For a complete description of the PBR implementation and statements syntax, refer to the
following publications:

� SC31-8775 - z/OS V1R9 Communication Server IP Configuration Guide

� SC31-8776 - z/OS V1R9 Communication Server IP Configuration Reference
216 z/OS Version 1 Release 9 Implementation

14.2.2 Policy-based routing implementation example

Here we describe how to implement a simple PBR policy using the configuration assistant.
Keep these considerations in mind when using the configuration assistant for PBR policy
definitions:

� Only stack-specific routing policy files are created (no common routing policy).

� Use the RoutingConfig statement in pagent configuration file to specify the routing policy
file name.

� Routing rules are called “connectivity rules” within the Configuration Assistant.

� The routing action is combined with the routing rule as a single object to configure.

� The routing rule priority value is not manually configured. Priority is set based on the order
of rules as displayed on rules panel.

� The policy agent configuration statements that are generated will be read by policy agent
with no syntax errors.

Now start the configuration assistance. Figure 14-21 on page 218 shows the first screen.

Important: Considerations on FLUSH/NOFLUSH and PURGE/NOPURGE policy agent
options for policy-based routing:

� FLUSH/NOFLUSH:

– NOFLUSH option is not supported.

– Routing policies are always deleted prior to installing new policies at the following
times:

• Policy agent startup.

• TcpImage/PEPInstance statement added.

• MODIFY/REFRESH command issued.

� PURGE/NOPURGE:

– PURGE option is not supported.

– Routing policies are never deleted during policy agent shutdown or when a
TcpImage/PEPInstance statement is deleted.

To remove all routing policies from a TCP/IP stack, delete the RoutingConfig statement
from the policy agent image configuration file for the stack.
Chapter 14. z/OS Communication Server 217

Figure 14-21 Configuration assistance main screen

The configuration assistance in z/OS 1.9 has some improvements from the previous release.
Previously, for a particular policy like AT_TLS or IPSEC, configuration assistance stored the
policies configuration in different files, one for each policy. Now, all the policies are kept in a
single configuration file.

In the main screen we have now different technologies, called perspectives, for each possible
policy.

First we created the z/OS images, SC65 and SC70. With the right mouse button, we clicked
Work with z/OS images then selected add new z/OS image. Figure 14-22 shows the screen
where you enter the name of the image.

Figure 14-22 Configuration assistance image creation

We clicked OK to create the image. Then we repeated the same steps to create the SC70
image. After inserting an image, a question popped up asking if we wanted to add a stack for
the image we created. We answered No. After creating the images, the following screen
displayed.
218 z/OS Version 1 Release 9 Implementation

Figure 14-23 Configuration assistance images created

Now we have to enable the policies we want to work with. We selected the PBR policy and
enabled it by clicking Enable. Then we clicked Add New TCP/IP Stack, and Figure 14-24
displayed.

Figure 14-24 Configuration assistance new stack

After adding the stack, TCPIP, for both systems, we had to enable the PBR policy again for
the stack on every image. We selected the stack on one of the images as shown in
Figure 14-25 on page 220, then selected the PBR policy and clicked Enable.
Chapter 14. z/OS Communication Server 219

Figure 14-25 Configuration assistance stack policy enablement

The status of the policy will appear as Incomplete, in red, because there is no configuration
defined for the stack; see Figure 14-26.

Figure 14-26 Configuration assistance stack policy enablement 2
220 z/OS Version 1 Release 9 Implementation

We clicked Configure. The configuration assistance asked if we wanted to configure a
connectivity rule; we clicked Yes and reached Figure 14-27.

Figure 14-27 Configuration assistance rule name

We choose the name TO65 for this rule, and then clicked Next. Now we had to define a traffic
descriptor to be used for that rule. In our case we used the same REXX programs from the
zIIP IPSec implementation. We added a TCP traffic descriptor as shown in Figure 14-28 on
page 222.
Chapter 14. z/OS Communication Server 221

Figure 14-28 Configuration assistance traffic descriptor creation

We selected Yes - Specify the Traffic Descriptor parameters:, and then clicked Add.
Figure 14-29 displayed, showing the characteristics of the traffic we wanted.

Figure 14-29 Configuration assistance new traffic type
222 z/OS Version 1 Release 9 Implementation

For Source, we selected All ports, for Destination we selected All ports and all jobnames
initiating by RODOLFI*, then clicked OK. Figure 14-30 then displayed.

Figure 14-30 Configuration assistance traffic descriptor defined

Now the traffic descriptor is defined. We clicked Next. Now we specified an IP source
address (in our case, 9.12.4.202) for the SC70 image; see Figure 14-31 on page 224.
Chapter 14. z/OS Communication Server 223

Figure 14-31 Configuration assistance source ip address

Then we clicked Next to configure the destination IP address, 9.12.4.48, as shown in
Figure 14-32 on page 225.
224 z/OS Version 1 Release 9 Implementation

Figure 14-32 Configuration assistance destination IP address

Then we clicked Next to define a route table, as shown in Figure 14-33 on page 226.
Chapter 14. z/OS Communication Server 225

Figure 14-33 Configuration assistance new route table

We created a new route table. As an example, we defined a new route redirecting the traffic
for the two partitions from the OSA card to the XCF links. In our configuration we had the
iQDIO defined. All traffic flowing between these two partitions will be done by using the iQDIO
links. See the main routing tables for both partitions, SC65 and SC70, in Figure 14-34 and
Figure 14-35 on page 227.

Figure 14-34 SC65 main routing table

RODOLFI @ SC65:/u/rodolfi>netstat -r
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 16:32:22
Destination Gateway Flags Refcnt Interface
----------- ------- ----- ------ ---------
Default 9.12.4.1 UGS 000000 OSA2020LNK
9.12.4.0/22 0.0.0.0 US 000003 OSA2020LNK
9.12.4.48/32 0.0.0.0 UH 000000 OSA2020LNK
9.12.4.49/32 0.0.0.0 UH 000000 STAVIPA1LNK
10.1.101.0/24 0.0.0.0 US 000000 IQDIOLNK0A016541
10.1.101.63/32 0.0.0.0 UHS 000000 IQDIOLNK0A016541
10.1.101.64/32 0.0.0.0 UHS 000000 IQDIOLNK0A016541
10.1.101.65/32 0.0.0.0 H 000000 EZASAMEMVS
10.1.101.65/32 0.0.0.0 UH 000000 IQDIOLNK0A016541
10.1.101.70/32 0.0.0.0 UHS 000000 IQDIOLNK0A016541
127.0.0.1/32 0.0.0.0 UH 000000 LOOPBACK
226 z/OS Version 1 Release 9 Implementation

Figure 14-35 SC70 main routing table

We redirected the traffic from the OSA card, OSA2020 link, to the iQDIO links, IQDIOLNNK*.
Next we created a new route table. We clicked New, as shown in Figure 14-33 on page 226.
Then Figure 14-36 on page 228 was shown.

RODOLFI @ SC70:/u/rodolfi>netstat -r
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 16:30:58
Destination Gateway Flags Refcnt Interface
----------- ------- ----- ------ ---------
Default 9.12.4.1 UGS 000000 OSA2020LNK
9.12.4.0/22 0.0.0.0 US 000003 OSA2020LNK
9.12.4.202/32 0.0.0.0 UH 000000 OSA2020LNK
9.12.4.203/32 0.0.0.0 UH 000000 STAVIPA1LNK
10.1.101.0/24 0.0.0.0 US 000000 IQDIOLNK0A016546
10.1.101.63/32 0.0.0.0 UHS 000000 IQDIOLNK0A016546
10.1.101.64/32 0.0.0.0 UHS 000000 IQDIOLNK0A016546
10.1.101.65/32 0.0.0.0 UHS 000000 IQDIOLNK0A016546
10.1.101.70/32 0.0.0.0 H 000000 EZASAMEMVS
10.1.101.70/32 0.0.0.0 UH 000000 IQDIOLNK0A016546
127.0.0.1/32 0.0.0.0 UH 000000 LOOPBACK
Chapter 14. z/OS Communication Server 227

Figure 14-36 Configuration assistance adding a route table

We choose 65HS (65 via HiperSockets™) as the route table name. Then we added a new
static rule by clicking Add under the static routes list (empty now). Figure 14-37 on page 229
was displayed.
228 z/OS Version 1 Release 9 Implementation

Figure 14-37 Configuration assistance new rule parameters

The static rule will contain the following parameters:

� Destination address: 9.12.4.48 (OSA address for partition SC65)

� First hop address: 12.1.101.65 (XCF link address for partition SC65)

� Link name: IQDIOLNK0A016546 (the link name for the iQDIO)

� MTU size: 1500

Then we clicked OK to create this static rule. Figure 14-38 on page 230 displayed.
Chapter 14. z/OS Communication Server 229

Figure 14-38 Configuration assistance new route table created

Then we clicked OK to complete the process of creating a PBR rule. Figure 14-39 on
page 231 displayed.
230 z/OS Version 1 Release 9 Implementation

Figure 14-39 Configuration assistance finishing the pbr rule

Then we clicked Finish and the SC70 definitions were created. Figure 14-40 on page 232
displayed.
Chapter 14. z/OS Communication Server 231

Figure 14-40 Configuration assistance SC70 pbr rule created

We clicked Apply Changes to save the configuration under the image. Then we repeated the
same steps for the system SC65 using the following parameters:

� Connectivity rule name: TO70

� Same traffic descriptor

� IP source address: 9.12.4.48

� IP destination address: 9.12.4.202

� Route table name: 70HS

� Static rule entry:

– Destination address: 9.12.4.48

– First hop address; 10.1.101.70

– Link name: IQDIOLNK0A016541

– MTU size: 1500

Now we had both systems configured by the configuration assistance. Appendix C.3, “SC65
pbr configuration files” on page 507 and Appendix C.4, “SC70 pbr configuration files” on
page 507 show how the PBR configuration file will look for both systems.

Next we had to install all the policies on both systems by:

� Transferring the files using the configuration assistance or any other FTP client

� Updating the pagent configuration

To transfer the policies to the systems, we clicked one of the images in the left panel, as
shown in Figure 14-41 on page 233.
232 z/OS Version 1 Release 9 Implementation

Figure 14-41 Configuration assistance transferring the files

Then we clicked Install Configuration Files, and the following screen displayed.

Figure 14-42 Configuration assistance file transfer options

We selected the file to transfer and clicked FTP. Note that the Sent information displays No.
That means the FTP policy configuration was changed in that file and has not transferred to
z/OS yet. Each time we perform a change in any configuration that affects a configuration file,
this field will display No, indicating that we have to transfer the file to z/OS. After clicking FTP,
Figure 14-43 on page 234 will display.
Chapter 14. z/OS Communication Server 233

Figure 14-43 Configuration assistance FTP parameters

We completed the FTP information to send the file and then clicked Send to transfer the
configuration file to the appropriate system and location.

After the file is successfully transferred, you need to update the pagent configuration file to
point to the PBR configuration and update the configuration by using the modify command on
z/OS console.

The new pagent configuration file for both systems are shown in the following figures.

Figure 14-44 SC70 pagent configuration file for stack tcpip

RODOLFI @ SC70:/u/rodolfi/policy/sc70>cat tcpip.policy
TcpImage TCPIP
IPSecConfig /u/rodolfi/policy/sc70/tcpip.policy.ipsec
RoutingConfig /u/rodolfi/policy/sc70/tcpip.policy.pbr
234 z/OS Version 1 Release 9 Implementation

Figure 14-45 SC70 pagent configuration file for stack tcpip

Next, we activated the new configuration by using the modify update command on the pagent
address space.

Figure 14-46 Pagent update command

To verify if the new policies are being used in both systems, you can issue the command
netstat -A. This command shows for each connection whether a PBR policy is being used;
refer to the examples in Appendix C.5, “SC65 netstat -A command” on page 508 and
Appendix C.6, “SC70 netstat -A command” on page 510.

In both systems, for the connections established by the REXX programs, the PBR policy is
being used. The pasearch command was also changed to support the new PBR policy. The
-R option was added to display the policies; refer to the example in Appendix C.7, “pasearch
-R command” on page 512.

RODOLFI @ SC65:/u/rodolfi/policy/sc65>cat tcpip.policy
TcpImage TCPIP
IPSecConfig /u/rodolfi/policy/sc65/tcpip.policy.ipsec
RoutingConfig /u/rodolfi/policy/sc65/tcpip.policy.pbr

F PAGENT65,UPDATE
EZZ8443I PAGENT MODIFY COMMAND ACCEPTED
EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIP : ROUTING
Chapter 14. z/OS Communication Server 235

236 z/OS Version 1 Release 9 Implementation

Chapter 15. System REXX for z/OS

System REXX for z/OS Base is part of the simplification trend introduced with the “New Face
of z/OS”. SYSREXX (or System REXX) is to provide an infrastructure through which REXX
execs may be run outside the normal TSO/E or batch environments, using a simple
programming interface. This enables the leveraging of base operating system components by
new style applications that will, over time, lead to simplified interaction and more intuitive
system management capabilities on z/OS.

The possibilities for exploiting existing REXX code through the use of SYSREXX are vast,
whether to provide operator assists or to provide routines that can be leveraged by new
strategic initiatives. System REXX provides a gateway for new style applications to interface
with z/OS components

While the New Face matures, System REXX adds real value today through exploitation
possibilities for operator assists and also certain system management processes.

15
© Copyright IBM Corp. 2007. All rights reserved. 237

15.1 Introduction to System REXX (SYSREXX)

System REXX is a new base element in z/OS V1R9. As a new part of the BCP, System REXX
includes an addition to the Capacity Provisioning component (FMID HPV7740) and the
System REXX for z/OS base component. System REXX for z/OS base was a Web deliverable
in z/OS V1R8, known as System REXX Support for z/OS V1R8 and z/OS.e V1R8, and was
identified by FMID HBB77SR.

The introduction of System REXX in z/OS is due to a requirement to provide an infrastructure
to support Web-based interactions with z/OS components as part of the “New Face of z/OS”
initiative for simplifying z/OS management. The cornerstone of this new infrastructure is
SYSREXX, which allows execs to be run simply and independently from traditional TSO/E
and batch environments. This implementation has two interfaces:

� A single program interface (AXREXX)

� Operator exploitation directly from a console

The expected benefit of this implementation is to:

� Enable rapid development and deployment of system programmer tools and operator
assists

� Be exploited by new and old style applications

� Allow health checks to be written in REXX

As a beginning in z/OS V1R9, SYSREXX is the required environment for CIM and Health
Checker REXX execs to be written.

15.2 SYSREXX address space (AXR)

AXR is a subsystem that is started during master subsystem initialization. It reads the AXR00
parmlib member and allocates the REXXIN data set. When REXX work arrives via a PC
directly into the appropriate server, SYSREXX or console-initiated REXX execs are detected
by the AXR SSI listener, converted to F AXR command format, and queued to the command
server’s CIB control block. Then, in turn they are selected and scheduled for processing.

Removing the AXR address space
The System REXX address space, AXR, is non-cancelable, but can be terminated by
invoking the following command:

FORCE AXR,ARM

When the AXR address space terminates, an ENF signal 65 with a qualifier of 40000000x is
issued. AXR can be restarted by starting the AXRPSTRT procedure, which can be found in
SYS1.PROCLIB. When the AXR address space initializes, an ENF signal of 80000000x is
issued. To restart the AXR address space, issue:

S AXRPSTRT

Note: System REXX is a new facility shipped in z/OS V1R9 and was available via a Web
deliverable in z/OS V1R8. It runs REXX execs in an authorized environment, and these
REXX execs can invoke TSO/E commands. This new support is made available with a
TSO/E APAR OA20186 that enables this capability for z/OS V1R8 systems.
238 z/OS Version 1 Release 9 Implementation

15.2.1 SYSREXX from consoles

When REXX work requests originate from an operator console, that is detected by an AXR
SSI listener function (shown in Figure 15-1), or a program interface called using the AXREXX
macro service (shown in Figure 15-2 on page 240).

Figure 15-1 AXR listener function that intercepts commands for SYSREXX

15.2.2 AXREXX macro service

AXREXX provides a macro interface for System REXX services. Before issuing the AXREXX
macro service, the caller does not have to place any information into any general purpose
register (GPR) or access register (AR) unless using the input register in register notation for a
particular parameter, or using it as a base register.

The AXREXX invoker can limit the amount of time that an exec can run by using the
TIMELIMIT/TIMEINT keywords. When the time limit is reached, System REXX invokes HALT
interpretation on the REXX environment where the exec is running. If the exec still does not
complete after waiting for some time, the task running the exec is detached. Invokers who
specify a time limit should realize that time out is an error condition and that for SYNC=YES
invokers, the final values of output arguments and variables will not be returned to the
AXREXX invoker.

AXREXX supports an interface to CANCEL an exec. SYNC=NO AXREXX invokers can obtain
the Request Token via the OREQTOKEN parameter for later input to AXREXX CANCEL
command. Cancel is processed as if the exec timed out.

MGCR(E)

MPF command
 user exit

SSI

Hardcopy

Consoles

AXR Listener

(Listens for operator commands)

Commands

Note: See z/OS MVS Programming: MVS Authorized Assembler Services Reference,
Volume 1 (ALESERV-DYNALLOC), SA22-7609, for a complete description of AXREXX
macro parameters.
Chapter 15. System REXX for z/OS 239

Using the AXREXX macro service
The System REXX environment provides a functional package that allows a REXX exec to
invoke system commands and to return the results back to the invoker in a variety of ways.
When System REXX execs are initiated through an assembler macro interface called
AXREXX or through an operator command, there are two different execution environments
that are supported:

TSO=NO When TSO=NO is specified on the AXREXX invocation, the exec is
executed in an MVS host command environment, sharing the address
space where it is executing with up to 63 other concurrently running
TSO=NO execs. Data set allocation, other than provided by the AXREXX
macro, is not supported in the TSO=NO environment.

TSO=YES The TSO=YES environment supports all of the host commands that
TSO=NO supports, along with some of the host commands supported by
TSO/E. If TSO=YES is specified on the AXREXX invocation, the exec will
run isolated in a single address space, and can safely allocate data sets
without concern of a DDNAME conflict with a concurrently running exec. If
the exec were to exit with data sets allocated, System REXX will free the
allocations. The TSO environment is established by the dynamic TSO
service (IKJTSOEV) and does not support all of the TSO functionality.
Running under the MASTER subsystem further restricts what TSO host
commands will work.

Applications that perform input/output to data sets other than those
specified on the REXXINDSN and REXXOUTDSN AXREXX keywords
should use TSO=YES.

As shown in Figure 15-2, the REXX server controls a group of worker subtasks that attach
daughter subtasks to process TSO=NO requests. Initially 4 are started, but up to 64 are
started as required.

The TSO server controls a group of worker subtasks that start between 1 to 8 address spaces
to process TSO=YES requests.

Figure 15-2 System REXX overview of REXX exec processing

AXR Listener

AXREXX TSO=NO AXREXX TSO=YES

REXX Server TSO ServerCMD Server

AXR Address
 Space

PC PC
Commands, REXX execs

Up to 64 subtasks Up to 8 subtasks
240 z/OS Version 1 Release 9 Implementation

15.3 Customizing System REXX

The customization necessary to use System REXX involves the AXRxx parmlib member and
the user ID to be associated with System REXX and CPF command prefix for issuing console
commands.

AXR00 parmlib member
During AXR address space initialization, the AXRxx parmlib member is read. A sample
member is supplied in SYS1.SAMPLIB with member AXR00, as shown in Figure 15-3.

CPF defines a 1 to 8 character command prefix value for System REXX that can be used
instead of specifying the F AXR command. This prefix may be defined as either SYSTEM or
SYSPLEX in scope, where:

SYSTEM System scope indicates that the CPF will only be recognized on the system it
is defined on.

SYSPLEX Sysplex scope indicates that it will be recognized throughout the SYSPLEX,
and the command will be routed to the system on which it is defined.

Using the defaults could result in a very unusual prefix. For example, if the SYSCLONE value
is 63, then the CPF prefix is REXX63.

Figure 15-3 SYS1.SAMPLIB member AXR00

Following is parameter setting in the AXR00 member in parmlib to set the CPF character to @
and having a sysplex scope:

CPF('@',SYSPLEX) /* DEFINES @AS A SYSPLEX WIDE CPF VALUE */

AXRUSER specification and security
The AXRUSER parameter in the AXRxx parmlib member specifies a 1 to 8 character user ID
that is used to define the security environment that an exec initiated using the AXREXX
macro when SECURITY=BYAXRUSER is specified. The exec will run with the level of
authorization associated with the specified user ID. The installation needs to provide the
user ID with SAF access to the resource SYSREXX.<userid>. If this parameter is omitted,
then the default is AXRUSER.

Note: In both environments the exec runs in problem state, key 8, in an APF authorized
address space under the MASTER subsystem; thus any modules that are loaded, linked or
attached from the exec must reside in an APF authorized library.

Also in both cases, the REXX exec runs under the WLM enclave of the AXREXX invoker.
Neither the TSO=YES nor the TSO=NO environments support UNIX System Services host
commands.

CPF('REXX&SYSCLONE.',SYSPLEX) /* Defines REXXnn as a sysplex
 wide cpf value */
AXRUSER(AXRUSER) /* AXREXX security=axruser results in the
 exec running in a security environment
 defined by the userid AXRUSER */
Chapter 15. System REXX for z/OS 241

The following security considerations are necessary for a SYSREXX environment.

� AXREXX is an authorized system service, therefore, security controls are essential for:

– Access to APF library

– Permissions, standard security administration to determine what can be accessed or
run.

� EXECs by default use the invoker’s security environment, but alternatively access can be
given as follows:

– Access authority of a third party

– A special user ID assigned to AXRUSER

� EXECs use the invoker’s enclave service class, so this can do the following:

– Prevent CPU priority inversion and excessive resource usage

– Allow resource usage to be charged back to the enclave service class

The SECURITY and UTOKEN parameters on the AXREXX macro service determine the
security environment that the exec runs in. If omitted, the exec will run under the same
security environment as its invoker. The security environment determines the data sets that
may be accessed and the commands and programs that may be invoked.

� When SECURITY=BYUTOKEN is specified, the invoker can provide a UTOKEN to define
the specific security environment that the exec should run under (see z/OS Security
Server RACROUTE Macro Reference).

� When SECURITY=BYAXRUSER is specified, the exec will run under the security
environment associated with the value (user ID) of the AXRUSER parameter specified in
the AXR00 parmlib member. This could be useful if the installation wants to invoke
AXREXX in an address space that does not have a security environment, such as the
MASTER address space. The exec should not invoke any services that alter the security
environment of the task running the exec.

In all cases, the REXX exec runs under a WLM enclave of the AXREXX invoker.

15.4 Using System REXX

System REXX allows REXX execs to be executed outside of conventional TSO/E and batch
environments. The possibilities for exploiting REXX code through the use of System REXX
are vast, whether to provide operator assists or to provide an easy way to process files and
strings. The System REXX environment provides a function package that allows a REXX
exec to invoke the system commands and to return results back to the invoker in a variety of
ways. System REXX execs may be initiated through an assembler macro interface called
AXREXX, or through an operator command.

SYS1.SAXREXEC data set
The SYS1.SAXREXEC data set contains execs that IBM has provided. These execs should
never be deleted or modified in any way.

This data set is where user-written execs should be added. These user-written execs should
not start with the letters A through I, because those letters are reserved for use by IBM.
242 z/OS Version 1 Release 9 Implementation

New functions for writing execs
When executing, the invoked REXX exec has three specific new functions:

AXRCMD Issue a console command and return command responses.

AXRCMD is used to issue a system command from within the exec and
obtain one or more command responses. The arguments that can be
specified are:

� Command text - the system command to be invoked. This is an optional
argument. If it is omitted, no command will be issued, but a response
from the last command issuance will be returned if one exists.

� Msgstem - the stem of a list of variables into which AXRCMD places the
command response message text. This is an optional argument. If it is
omitted, the command text must be specified. To place the message text
into compound variables which allows for indexing, msgstem should end
with a period (.) as in “messg.” for example.

AXRCMD places each line of the retrieved message into successive
variables. For example, if the command response is a 3-line message,
messg.1 contains line 1, messg.2 contains line 2 and messg.3 contains
line 3. messg.0 will contain the number of lines.

If msgstem does not end with a period, the variable names are appended
with consecutive numbers. For example, suppose you specify msgstem
as “conmsg” (without a period). If AXRCMD retrieves a message that
has two lines of message text, AXRCMD places the text in the variables
consmsg1 and consmsg2. The variable consmsg0 contains the number
of lines in the message text, which is 2.

� Time – The amount of time in seconds that AXRCMD should wait for a
command response. This is an optional argument. If it is omitted,
AXRCMD will not wait before attempting to determine whether a
command response was returned. A value of 0 – 21474535 seconds
may be specified.

AXRWTO Issue a single line message to a console

AXRMLWTO Issue a multiline line message to a console

REXX exec example
Using the new REXX exec functions, Figure 15-4 on page 244 is an example of an exec that
issues the D IPLINFO command.

Important: The SYS1.SAXREXEC data set is unique in the system. Therefore, take great
care that a regular backup of this SYS1.SAXREXEC data set is taken as follows:

� User-written execs be easily restored in case of a restore of the resident volume

� IBM execs be easily restored in case of an human error while editing other members of
this PDS
Chapter 15. System REXX for z/OS 243

Figure 15-4 Sample REXX exec names IPLINFO in SYS1.SAXREXEC

Figure 15-5 shows the REXX exec IPLINFO issued on a console. The F AXR,IPLINFO
command gives the same result.

Figure 15-5 REXX exec @IPLINFO issued on a console

SYSREXX status command
You can use the F AXR command to either obtain status about System REXX, or to initiate the
execution of a REXX exec. You can also use the prefix defined in the CPF parameter of the
AXR00 parmlib member to replace the F AXR command. Figure 15-6 on page 245 displays
the use of the specified CPY prefix, @, to issue the status command.

/* REXX */
MYRESULT = AXRCMD('D IPLINFO',VAR.,5)
GADCON = 'FIRSTLINE'
X = AXRWTO('D IPLINFO')
X = AXRMLWTO(SUBSTR(VAR.1,1,50),'GADCON','C')
DO I = 2 TO VAR.0
 X = AXRMLWTO(SUBSTR(VAR.I,1,50),'GADCON','D')
END
X = AXRMLWTO(,'GADCON','E')
EXIT 0

@IPLINFO
IEE254I 17.13.09 IPLINFO DISPLAY
 SYSTEM IPLED AT 14.34.13 ON 07/09/2007
 RELEASE z/OS 01.09.00 LICENSE = z/OS
 USED LOADS8 IN SYS0.IPLPARM ON C730
 ARCHLVL = 2 MTLSHARE = N
 IEASYM LIST = XX
 IEASYS LIST = (R3,70) (OP)
 IODF DEVICE C730
 IPL DEVICE D31C VOLUME Z19RC1

Note: When System REXX execs are invoked from a console, the execs are always run in
a TSO=YES environment.
244 z/OS Version 1 Release 9 Implementation

Figure 15-6 SYSREXX status command

SYSREXX supported commands
For MVS commands and TSO commands, the following are supported with SYSREXX:

MVS LINK, LINKMVS, ATTACH, ATTCHMVS, ATTCHPGM, CPICOMM, LU62, and
APPCMVS

TSO ALLOCATE (excludes the SYSOUT operand), FREE, ALTLIB, ATTRIB, CALL,
DELETE, EXEC, HELP, PROFILE, SMCOPY, and TIME

15.5 Usage and migration considerations

The potential for having SYSREXX available has many possible benefits:

� It represents an easy way for Web-based servers to run commands or functions and get
back pertinent details.

� It provides a method for system and application components to exploit REXX parsing
strengths.

� It allows you to leverage REXX coding skills, which are extensive and span all operating
systems.

� It allows new health checks to be written quickly.

� It provides simplified operator assist functions and quick fixes when necessary.

� It presents exploitative possibilities for customer code, IBM, and ISV components and
products.

15.5.1 Writing REXX execs

From a programming point of view, SYSREXX can be invoked by a new AXREXX macro
service, and the following list of environments can be used:

� Caller must be authorized.

� Two environments of execution:

– TSO=NO Limited data sets support.

@SR ST
AXR0200I SYSREXX STATUS DISPLAY 296
 SYSTEM REXX STARTED AT 14.35.42 ON 07/09/2007
 PARMLIB MEMBERS: AXR00
 CPF: @ (SYSTEM) AXRUSER: STC
 TIMEINT: 30
 SUBSYSTEM: AXR
 REQUESTS QUEUED: 0 ACCEPTING NEW WORK
 REXX WORKER TASKS: ACTIVE: 0 TOTAL: 4
 IDLE: 4 MAX: 64
 ASYNC: 0 SYNC: 0
 UNTIMED: 0
 TSO SERVER SPACES: ACTIVE: 0 TOTAL: 0
 IDLE: 0 MAX: 8
 ASYNC: 0 SYNC: 0
Chapter 15. System REXX for z/OS 245

– TSO=YES Full data sets support permitted (no sysout).

� Two modes of execution

– SYNC=YES
– SYNC=NO

When REQUEST=EXECUTE is specified, you can specify an optional parameter that
indicates whether the request is synchronous. The default is SYNC=YES.

– SYNC=YES Indicates the request is synchronous.
– SYNC=NO Indicates the request is asynchronous.

� Two operations are supported

– REQUEST=EXECUTE | CANCEL

� Arguments and variables are used to pass input to and receive output from the REXX
exec.

� The parameter list is mapped by the AXRZARG macro.

� Data types supported:

– Input is converted to strings.

– Output is returned as signed or unsigned, char, binary, hex.

� The security environment of requester is used.

� No STORAGE external function.

� No dubbing.

� Time limitations are applied to execs; the default is 30 seconds.

� Cancellation of the REXX exec using API with OREQTOKEN parameter.

� REXX execs are read from SYS1.SAXREXEC (cataloged, unique; that is, no
concatenation).

15.5.2 Using input and output files

If you are using input and output data sets, they may either be sequential or partitioned. If
partitioned, then the REXXINMEMNAME or REXXOUTMEMNAME keywords must be
specified. If the output data set does not exist, System REXX creates a sequential or
partitioned data set consisting of 3 primary blocks, 3 secondary blocks and 1 directory block
(if it is a PDS) where each block is 27920 bytes. The data set is kept when the exec
completes, and any excess space is released.

Note: From a REXX exec perspective, to differentiate whether it is called from a TSO/E
environment or from a SYSREXX (either TSO=YES or TSO=NO) environment, you can
rely on the contents of AXREQTOKEN. If it is equal to itself, it means that the REXX exec is
running in a TSO/E environment. Otherwise, it is running in a SYSREXX environment.

A more detailed example can be found in Appendix B, “System REXX for z/OS” on
page 495. The example illustrates how, from within the exec itself, to differentiate when it is
running in a TSO=YES or NO environment, and whether it has been invoked from a
console or from a program using the AXREXX macro service.
246 z/OS Version 1 Release 9 Implementation

When using the AXREXX macro service, there are many parameters that can be used during
processing of the REXX exec, for example:

� Using input data sets

AXREXX allows TSO=NO invokers to pass an input data set via the REXXINDSN
parameter and both TSO=NO and TSO=YES invokers to specify an output data set via the
REXXOUTDSN parameter. The input data set is used by REXX functions that require
input from a user such as PARSE EXTERNAL, or could be read directly via EXECIO,
using the DDNAME specified by the REXX variable AXRINDD.

� Using output data sets

If an output data set is specified, any SAY or TRACE output from the exec is directed
there. Data may also be written to the output data set via EXECIO using the DDNAME
specified by the REXX variable AXROUTDD. Any error messages that the REXX
interpreter issues are also directed to the output data set. If no output data set is supplied,
then SAY, TRACE, and REXX messages are directed to the console specified by the
CONSNAME keyword as part of a multi-line WTO AXR0500I.

The AXREXX user should be careful not to flood the system with messages and be
especially careful when using REXX Tracing when the output is directed to a console. If
CONSNAME and REXXOUTDSN are both not specified, the output is lost.

If System REXX detects that the output data set runs out of space, the exec is terminated
and a return code of 8 is returned to the AXREXX invoker. If there is no data for the
PARSE EXTERNAL command in the input data set, a null string is returned.

15.5.3 Other AXREXX parameters

When the request is issued with the SYNC=YES option, the invoker is suspended and the
results of the request are provided to the invoker upon resumption. For SYNC=NO, when a
failure occurs in attempting to process the exec and System REXX cannot pass a return code
back to the AXREXX invoker, message AXR0203I is issued to the console specified on the
CONSDATA keyword. If the request is successful, no message is issued.

When command text is specified, AXRCMD invokes the MGCRE macro to issue the
command. When the START command is invoked, AXRDIAG contains the return code from
MGCRE in hexadecimal, followed by the ASID of the new address space (also in
hexadecimal), separated by a blank.

15.5.4 Arguments and variables within a REXX exec

Within a REXX exec invoked through the AXREXX macro service, 20 arguments and 256
variables are supported. Currently, a maximum supported length is 512 bytes. The total
variable storage available for each request is 128 KB.

The REXX exec calling program can, beforehand, allocate storage for variables in one of the
following ways:

� In the requester’s (or other) address space
� In high virtual storage above the bar
� In dataspaces as ALET qualified addresses are supported

Note: The actual location of arguments and variables is totally transparent to the called
REXX exec.
Chapter 15. System REXX for z/OS 247

AXRZARG macro service
The AXRZARG macro provides an argument list mapping, and the following special variables
are set by AXR:

AXRREQTOKEN 32 Hex Request Token

AXRINDD 8 Char If RexxInDsn Specified

AXROUTDD 8 Char If RexxOutDsn Specified

Using variables and arguments
The AXREXX macro allows the invoker to specify up to 20 arguments and 256 variables by
specifying the REXXARGS or REXXVARS parameter, respectively. To use the REXXARGS
and REXXVARS parameters, the AXREXX invoker must create a header section mapped by
AXRARGLST followed in contiguous storage by 1 or more AXRARGENTRY sections. The
mappings for AXRARGLST and AXRARGENTRY can be found in AXRZARG.

� AXRARGLST contains the following:

– AxrArgLstId - set this to either AxrArgLstAcro or AxrVarLstAcro, depending on
whether this is for the RexxArgs parameter or the RexxVars parameter.

– AxrArgLstVer - set to 0 (the current version).

– AXRARGLstNumber- set to the number of arguments or variables; that is, the number
of AXRARGLstEntrys that follow.

– Other fields must be cleared to zero (0).

� AXRARGLSTEntry contains the following:

– AXRARGAddr - set this to the 64-bit address of the buffer containing the argument or
variable. If the argument or variable resides below 2 G, use AXRARGAddrLow and
make sure AXRARGAddrHigh is zero (0).

– AxrNameAddr - set this to the 64-bit address of the buffer containing the name of the
argument or variable. This field can be set to zero (0) if this is for an input-only
argument. If this name resides below 2 G, use AXRNameAddrLow and set
AXRNameAddrHigh to zero (0).

– AXRARGLength - set this to the length of the buffer containing the argument or
variable. Note that different argument/variable types have specific requirements
regarding lengths.

– AXRARGAlet - set this to the ALET of the argument/variable. It must be on the DUAL of
the task that invokes AXREXX. If the argument/variable resides in the invoker’s
primary address space, set this to zero (0).

– AXRARGNameAlet - set this to the ALET of the buffer containing the name of the
argument/variable. It must be in the DUAL of the task that invokes AXREXX. If the
name resides in the invoker’s primary address space, set this to zero (0).

– AXRArgOutLength - System REXX sets this to the length of data returned to the
invoker. Note that this value is in units of bytes for types Signed, Unsigned and Char; it
is in units of hex digits (half bytes) for type HexString, and it is in units of bits for type
BitString.

– AxrArgNameLength - set this to the length of the name of the argument. This must
contain the actual length of the argument or variable and not include any trailing
blanks.

– AxrArgType - set this to the type of the argument/variable.

– AXRARGInput - set this if the argument/variable in the REXX exec is to be initialized to
a value on entry to the exec.
248 z/OS Version 1 Release 9 Implementation

– AXRArgOutput - set this if you want to retrieve the final value of the argument and
variable on exit from the exec for a SYNC=YES request. Note that if the variable is not
set by the exec, System REXX will fail the request.

– Other fields must be cleared to zero (0).

REXX supported data types
Because the only data type in REXX is the character string, System REXX must first convert
input arguments or variables into this format. The invoker must specify the data type of the
argument or variable in AXRARGTYPE.

The following data types are supported:

� Unsigned (AXRARGTYPEUNSIGNED) - the input is treated as an unsigned integer value.
The length must either be 4 bytes or 8 bytes.

� Signed (AXRARGTYPESIGNED) - the input is treated as 2s complement signed integer
value. The length must either be 4 bytes or 8 bytes.

� Character (AXRARGTYPECHAR)- the input is treated as a character string. The length
can be from 0 to 512 bytes.

� Hexadecimal (AXRARGTYPEHEXSTRING) - the input is treated as a hexadecimal string.
The length is specified in hexadecimal digits (2 per byte) and can be from 0 to 512
hexadecimal digits in length.

� Bit (AXRARGTYPEBITSTRING) – The input is treated as a bit string. The length is
specified in bits (8 per byte), and can be from 0 to 32.

Error conditions
If AXREXX encounters an error while attempting to control the invoker’s input into an REXX
argument or variable, System REXX indicates in AXRARGLstEntryInError the number of the
argument or variable that caused the error. AXREXX then returns a specific reason code
indicating the problem with the argument or variable and abort the request.

If the exec successfully completes (no run time errors), and the AXREXX invocation specifies
SYNC=YES, then System REXX will attempt to obtain the final values of any output
arguments or variables (that is, those that have indicated AXRARGOUTPUT), convert them
into the specified data type and insert their converted values into the AXREXX invoker’s
buffers specified by AXRARGADDR and AXRARGALET.

If there is any failure with attempting to process a single output argument or variable, System
REXX will abort and not attempt to retrieve subsequent arguments or variables. Because
output arguments are retrieved prior to output variables, if System REXX fails to process an
output argument, no subsequent output arguments are processed and no output variables
are processed.

In addition to output arguments and variables, System REXX also returns the return code
from the exec in the AXRDIAGEXECRETCODE area in the AXRDIAG (see AXRZARG for the
mapping). The return code is returned as a 31-bit signed binary value. If it cannot be
converted into such a value, or if the exec does not return a return code, then
AXRDIAGNOEXECRETCODE will be set on.

Variables provided by AXREXX
In addition to any input argument or variables that the AXREXX invoker may provide, System
REXX sets the following variables:

� AXREQTOKEN - contains a 16-byte value which uniquely identifies the AXREXX
invocation request.
Chapter 15. System REXX for z/OS 249

� AXRINDD - if the REXXINDSN keyword is specified, this variable will contain the name of
the DD used for allocating the input data set; otherwise, it is not set.

� AXROUTDD - if the REXXOUTDSN keyword is specified, this variable will contain the
name of the DD used for allocating the output data set; otherwise, it is not set.
250 z/OS Version 1 Release 9 Implementation

Chapter 16. z/OS XL C/C++ Metal option

This chapter describes the performance and usability enhancements provided by z/OS XL
C/C++ for the z/OS V1R9 release. Two major areas of support are described: one for
developing a C-coded system program (through a new Metal option), and the other for
supporting decimal floating-point formats (DFP) assisting in avoiding potential rounding
problems. Other usability and performance enhancements are also provided.

16
© Copyright IBM Corp. 2007. All rights reserved. 251

16.1 Metal option introduction

The z/OS XL C compiler-generated object code relies on the support provided by the
Language Environment. In addition to depending on the C run-time library functions that are
only available in the Language Environment, the XL C generated object code also depends
on the establishment of an overall execution environment, which includes automatic storage.
This dependency on the Language Environment prohibits you from using the XL C compiler
to generate code to run in an environment where the Language Environment does not exist.

Prior to z/OS V1R9, all z/OS XL C compiler-generated code required Language Environment.
In addition to depending on the C runtime library functions that are available only with
Language Environment, the generated code depended on the establishment of an overall
execution context, including the heap storage and dynamic storage areas. These
dependencies prohibit you from using the XL C compiler to generate code that runs in an
environment where Language Environment did not exist.

The Metal C Runtime Library is a set of LPA-resident C functions that can be called from a C
program created using the z/OS XL C compiler Metal option. This is a new base element in
z/OS V1R9.

16.1.1 XL C Metal compiler option

The XL C Metal compiler option, introduced in z/OS V1R9, generates code that does not
have access to the Language Environment support at run time. Instead, the Metal option
provides C language extensions that allow you to specify assembly statements that call
system services directly. Using these language extensions, you can provide almost any
assembly macro, and your own function prologs and epilogs, to be embedded in the
generated HLASM source file. When you understand how the Metal-generated code uses
MVS linkage conventions to interact with HLASM code, you can use this capability to write
freestanding programs.

Figure 16-1 on page 253 lists the overall enhancements for IBM z/OS XL C/C++.

The Metal-generated object code does not depend on any run-time environment. Any system
services that the program needs can be obtained directly by using the system macros
supplied by the operating system.
252 z/OS Version 1 Release 9 Implementation

Figure 16-1 Overall enhancements for IBM z/OS XL C/C++

C/C++ support for decimal floating-point formats
z/OS XL C/C++ supports, in release 8 and 9, the decimal floating-point (DFP) formats in
addition to the current hex and binary floating-point formats. This support is available on the
IBM System z9 BC and IBM System z9 EC models, and is activated at the XL compiler in
C/C++ via a new DFP option when LANGLVL is set to EXTENDED. The decimal formats are
specified by the revised IEEE 754 floating point standard.

This support assists with avoiding potential rounding problems, which can result from using
binary or hexadecimal floating-point types to handle decimal calculations. z/OS XL C/C++
provides the following:

� Decimal type specifiers through the _Decimal32, _Decimal64, and _Decimal128 reserved
keywords

� Decimal literal support

� Conversion between decimal types and the other floating-point types

16.2 XL C Metal option

The XL C compiler generated code needs Language Environment to execute. However, a
need exists to run C programs where Language Environment is not available or is
undesirable, such as with the long-awaited support for AR mode programming.

Therefore, the XL C compiler provides a new option called Metal, reflecting the idea of a
programming environment closed to the bare Metal (or silicon) of the chip. This new option
allows the opportunity to do the following:

� Enable code generation with no Language Environment dependencies

� Provide support for programmer supplied prolog/epilog code

XLC Arch () Hardware facility Hardw.
arch.

machine
models

XLC min
level

XLC
option Note

AR-mode 31/64 1.9 METAL no LE
Envrt

decimal floating point z9 1.8 DFP

7 extended-immediate
facility z9

6 long/displacement
facility

z990
z890

5 64-bit mode ESAME z900
z800 1.2

4 long long operations ESA/390 z900
z800

3 IEEE (binary) floating-pt G5-G6

2 Branch Relative and
Halfword Immediate (G2-G4)

1 Logical String Assist G1
9021

0
produced code is
executable on all

models

default for
TARGET(z/OS 7)
and above

 LANGLVL
(EXTENDED)

x - xlation
 2

x- xlation
 3
Chapter 16. z/OS XL C/C++ Metal option 253

� Provide support for programmer-embedded HLASM statements within the C code

� Provide support for AR mode programming from the C language

16.2.1 Metal option overview

A new mode of code generation is added to the XL C compiler. The Metal option serves as
the switch to enable this new mode of code generation so that the code generated follows the
standard MVS linkage conventions and does not have Language Environment dependencies.

In the new mode of code generation, you can specify:

� The #pragma prolog/epilog directives that can be used to supply a programmer’s own
prolog and epilog code

� The __asm syntax that can be used to supply embedded HLASM statements

� The new language constructs and facilities to support accessing data stored in data
spaces

� The subset of C library functions available for this mode

With this new mode of code generation, it is therefore possible to use C language to:

� Write installation exits

� Develop programs that runs without Language Environment assistance

� Have a much simpler way of writing AR mode programs

By definition, a C function needs a stack space to store function scope variables and
temporary storage for compiler-generated code. Normally, Language Environment supplies
the stack space. When the generated code has no Language Environment at hand, the stack
space may need to be supplied by the programmer.

Without Language Environment, C library functions are unavailable. Thus, there needs to be
a way for the C function to enlist system services directly. Therefore, the code has to be
compatible with the linkage expected by corresponding MVS system components. For more
information about this topic, refer to z/OS Metal C Programming Guide and Reference,
SA23-2225.

16.2.2 Using the Metal option

The term “Metal” can denote “raw” and “fundamental”. Thus, the code generated by this
option should be the fundamental code sequence that can run with minimal environmental
dependencies, as follows:

� The linkage convention mostly follows those described in z/OS MVS Programming:
Assembler Services Guide, SA22-7627.

� With the Metal option, other capabilities are enabled such as supplying a user’s own
prolog and epilog code, embedding a user’s own HLASM statements in the C source
code, and AR mode programming.

� Some other compiler options become meaningless (such as XPLINK, DLL, RENT, and so
on).

Note: The Metal option is only available for programs written in strict C language. There is
no support whatsoever for C++ programs.
254 z/OS Version 1 Release 9 Implementation

� The application build process now requires an additional step to invoke the assembler to
assemble the compiler-generated code; see Figure 16-2. An equivalent JCL procedure
can be found in Appendix A, “Metal option of XL C compiler” on page 491.

Figure 16-2 New sequence in application build

� The C-generated programs can now be mixed with programs written in HLASM.

� AMODE 64 code is also supported.

� z/Architecture hardware is required.

GENASM option
To allow programmer-injected HLASM statements, the compiler needs to produce code in
HLASM source code. The GENASM option can be used to name the output HLASM source
file.

The GENASM option also enables the compiler to process the __asm statements. The –S flag
on the xlc command is equivalent to specifying the GENASM option. Currently, the GENASM
option can only be used with the Metal option.

Programmer-supplied prolog and epilog code
The compiler generates default prolog and epilog code which operates on a 1 M stack space.
It may be necessary for the programmer to supply prolog and epilog code to set up whatever
the environment is.

There are several ways to supply customized prolog and epilog code:

� Using the #pragma prolog/epilog directives to apply the prolog/epilog to a single function

� Using the PROLOG and EPILOG® options to apply the same prolog and epilog to all
extern functions in the source file

Global set symbols are used to communicate compiler information to the user code; the
intended use of this capability is for the programmer to specify a macro that contains the
prolog/epilog code.

Programmer-embedded HLASM statements
An example of a printf like __asm statement for embedding user HLASM statements using
the following syntax is shown here.

__asm (code_format_string : output : input : clobbers)

Where:

� code_format_string is a string literal similar to a printf format specifier.

� output is a comma-separated list of output operands; the list is optional.

� input is a comma separated list of input operands; the list is optional.

� clobbers is a comma-separated list of clobber registers; the list is optional.

The colons separating output, input, and clobbers are required because these components
are specified by position. Any or all of these components can be omitted. Trailing colons as a

xlc –S –qMetal foo.c produces foo.s
as –c foo.s produces foo.o
ld –o foo –e MAIN foo.o produces the executable foo
Chapter 16. z/OS XL C/C++ Metal option 255

result of omitting one or more components can be omitted. Input and output have the
following general syntax.

constraint (C_expression) , constraint (C_expression) , ...

Each constraint (C_expression) pair represents one operand. Zero (0), one, or more can be
specified, separated by commas.

Keep in mind that using standard hw_builtin functions is preferred, rather than using __asm
statements. Overall, the programmer is fully responsible for the correctness of the supplied
HLASM statements. This __asm function can be called from a C program, using the Metal
option, in the following way.

int main() {
 struct WTO_PARM {
 unsigned short len;
 unsigned short code;
 char text[80];} wto_buff = { 4+11, 0, "hello world" };

__asm(" WTO MF=(E,(%0)) " : : "r"(&wto_buff));

return 0;
}

16.2.3 Linkage conventions

The standard register convention used is as follows:

� The 72-byte standard save area is used for AMODE 31 code.

� The 144-byte F4SA save area is used for AMODE 64 code.

� The 216-byte F7SA save area is used when the function has calls to AR mode functions.

� A Next Available Byte (NAB) convention is adopted to supply stack space to the called
functions. To use NAB, a sizable stack frame has to be established for the whole program
calling chain; meanwhile, there is no provision for detecting the stack floor condition.

Prolog and epilog code
The compiler generates default prolog and epilog code which operates on a 1 M stack space.
It may be necessary for the programmer to supply a specific prolog or epilog code to set up
whatever environment is necessary.

There are two ways to supply customized prolog and epilog code:

� Using the #pragma prolog and epilog directives to apply the prolog and epilog to a single
function

� Using the PROLOG and EPILOG options to apply the same prolog and epilog to all extern
functions in the source file.

16.2.4 AR-mode and the Metal option

The XL C compiler provides AR-mode programming support under the Metal option. An
AR-mode function can access data stored in data spaces by using the hardware access
registers.

For more information about AR-mode, see z/OS MVS Programming: Assembler Services
Guide, SA22-7605. A non-AR-mode function is said to be in primary mode.
256 z/OS Version 1 Release 9 Implementation

A C language construct is provided for:

� Marking a function to be an AR mode function by the __attribute__((armode)) attribute

� Qualifying a pointer to be a far pointer by the __far qualifier.

There is also an option ARMODE for marking every function in the source file to be AR-mode
functions. Built-in functions are provided for manipulating far pointers. The constructors are
as follows:

� void * __far __set_far_ALET_offset(unsigned int alet, void * offset);

� void * __far __set_far_ALET(unsigned int alet, void * __far offset);

� void * __far __set_far_offset(void * __far alet, void * offset);

The extractors are as follows:

� unsigned int __get_far_ALET(void * __far p);

� void * __get_far_offset(void * __far p);

Standard string and memory functions are provided as “far-versions” for processing data
stored in data spaces.

16.2.5 Metal C runtime library

Although the compiler generates default prolog and epilog code that allows the Metal C code
to run, you might be required to supply your own prolog and epilog code to satisfy runtime
environment requirements. Metal C avoids excessive acquisition and release operations by
providing a mechanism that allows a called function to rely on preallocated stack space. This
mechanism is the next available byte (NAB). All Metal C runtime library functions, as well as
functions with a default prolog code, use it and expect the NAB address to be set by the
calling function.

A new runtime library provides useful utility functions for users of the Metal C compiler such
as:

� Utility functions for manipulating data

� Memory management

� Does not support floating point or I/O

� Supports AMODE 31 and AMODE 64

� Requires Primary ASC mode (except for “far-versions”, all data has to be in primary
address space)

The Metal C runtime library has LPA-resident functions which are made available during the
IPL and are called through system vectors. Corresponding standard header files are provided
for these functions which are completely independent of Language Environment.

A starter set of standard C functions is provided, such as:

� Data manipulation, conversion

� Character classification

� Memory management

For a complete list of functions, refer to z/OS Metal C Programming Guide and Reference,
SA23-2225.
Chapter 16. z/OS XL C/C++ Metal option 257

16.3 Decimal floating point

Decimal arithmetic is the norm in human calculations, and human-centric applications must
use a decimal floating-point arithmetic to achieve the same results.

Initial benchmarks indicate that some applications spend 50% to 90% of their time in decimal
processing, because software decimal arithmetic suffers a 100× to1000× performance
penalty over hardware. The need for decimal floating-point in hardware is there.

Existing designs, however, either fail to conform to modern standards or are incompatible
with the established rules of decimal arithmetic. This chapter introduces a new approach
available in the IBM System z9 models and provided by z/OS V1R9, consisting of decimal
floating-points—which not only provides the strict results necessary for commercial
applications, but also meets the constraints and requirements of the IEEE 854 standard that
is being finalized.

The hardware implementation of this arithmetic is expected to significantly accelerate a wide
variety of applications.

16.3.1 The need for decimal arithmetic

Despite the widespread use of binary arithmetic, decimal computation remains essential for
many applications. Not only is it required whenever numbers are presented for human
inspection, but it is also often a necessity when fractions are involved.

Decimal fractions (rational numbers whose denominator is a power of ten) are pervasive in
human endeavours, yet most cannot be represented by binary fractions; the value 0.1, for
example, requires an infinitely recurring binary number. If a binary approximation is used
instead of an exact decimal fraction, results can be incorrect even if subsequent arithmetic is
exact.

For example, consider a calculation involving a 5% sales tax on an item (such as a $0.70
telephone call), rounded to the nearest cent. Using double-precision binary floating-point, the
result of multiplying 0.70 by 1.05 is a little under 0.73499999999999999, whereas a
calculation using decimal fractions would yield exactly 0.735. The latter would be rounded up
to $0.74, but using the binary fraction the result returned would be the incorrect $0.73.

For this reason, financial calculations (or, indeed, any calculations where the results achieved
are required to match those which might be calculated by hand), are carried out using
decimal arithmetic.

Further, numbers in commercial databases are predominately decimal. Commercial
databases contain identifiably numeric data, and of these the majority is decimal (such as the
SQL NUMERIC). A large number of those that are non-decimal are integer types which could
have been stored as decimals.

16.3.2 Extended precision floating-point numbers

Since introduction, z/Architecture predecessors have introduced different formats of
floating-points which can be depicted as shown in Figure 16-3 on page 259.
258 z/OS Version 1 Release 9 Implementation

Figure 16-3 z/Architecture floating points

16.3.3 New floating-point data types

z/OS XL C/C++ provides three z/Architecture floating-point number data types:

� Single precision (32 bits), declared as float

� Double precision (64 bits), declared as double

� Extended precision (128 bits), declared as long double

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

z/OS XL C/C++ also supports IEEE 754 floating-point representation (base 2 or binary
floating-point formats). By default, float, double, and long double vales are represented in
z/Architecture floating-point formats (base-16 floating-point formats).

However, the IEEE 754 floating-point representation is used if you specify the FLOAT(IEEE)
compiler option.

As of z/OS V1R9, XL C/C++ also supports IEEE 754 decimal floating-point representation
(base-10 floating-point formats), with the types _Decimal32, _Decimal64, and _Decimal128,
if the DFP compiler option is specified.

16.3.4 Decimal arithmetic context

Decimal arithmetic is implemented as a set of specific operation codes handling DFP number
operands stored under a defined encoding format. The whole is handled as part of the

121 base-2 FP instructions
87 - IEEE binary floating point (BFP) - facility
26 - Hexadecimal floating point (HFP) - extension
8 - FPS extensions - 4 to convert HFP and BFP

12 additional floating point (AFP) registers
 AFP control bit (Control Register 0 bit 45)
 Floating Point Control (FPC) register

S/390 Hexadecimal FP instructions
54 standard S/390 hexadecimal floating point instructions

57 new FP instructions
45 new - Decimal floating point (DFP) - facility
12 new - FPS (convert to/from DFP) instruct.
2 new Rounding Modes in FPC

G5-G6 / xlc arch(3)

CR0

45

FP regs (0,2,4,6)

AFP regs (1,3,5,7,8-15)

FPC reg

Data exception codes

pic 007

DXC

Extended status
control

RM
Chapter 16. z/OS XL C/C++ Metal option 259

common I-stream of the application, but within a context to which two characteristics have
been added: commercial rounding and precision, as explained in the following sections.

Commercial rounding
The extra rounding mode is known as round-half-up, which is a requirement for many
financial calculations (especially for tax purposes and in Europe). In this mode, if the digits
discarded during rounding represent greater than or equal to half (0.5) of the value of a one in
the next left position, then the result should be rounded up. Otherwise, the discarded digits
are ignored.

This is in contrast to round-half-even, the default IEEE 854 rounding mode, where if the
discarded digits are exactly half of the next digit, then the least significant digit of the result
will be even.

z/Architecture implementations offer two further rounding modes:

� Round-half-down (where a 0.5 case is rounded down)

� Round-up (round away from zero)

The rounding modes in IEEE 854, together with these three modes, are the same set as
those available in Java.

Precision
The working precision setting in the context is a positive integer which sets the maximum
number of significant digits that can result from an arithmetic operation. It can be set to any
value up to the maximum length of the coefficient, and lets the programmer choose the
appropriate working precision.

In the case of software (which may well support unlimited precision), this lets the programmer
set the precision and hence limit computation costs. For example, if a daily interest rate
multiplier R is 1.000171 (0.0171%, or roughly 6.4% per annum), then the exact calculation of
the yearly rate in a non-leap year is R**365.

Calculating this to give an exact result requires 2191 digits, but a much shorter result that is
correct to within one unit in the last place (ulp) will almost always be sufficient and could be
calculated much faster.

In the case of hardware, precision control has little effect on performance, but it does allow
the hardware to be used for calculations of a different precision from the available “natural”
register size. For example, one proposal for a concrete representation suggests a maximum
coefficient length of 33 digits; this would be unsuitable for implementing the new COBOL
standard (which specifies 32-digit intermediate results) if precision control in some form were
not available. Note that to conform to IEEE 854 §3.1 the working precision should not be set
to less than 6.

16.3.5 XL C/C++ support for decimal floating point data types

Decimal floating point data types are provided by XL C/C++ of z/OS V1R9 under the form of
_Decimal32, _Decimal64 and _Decimal128 for single, double and quad precision
respectively. New suffixes for Decimal Floating Point literal values are df, dd, dl, or DF, DD,
and DL.

Hardware decimal floating point instructions are generated to carry out decimal floating point
operations. A set of built-in functions is provided to allow specific hardware decimal floating
260 z/OS Version 1 Release 9 Implementation

point instructions to be generated. Debug support for the new Decimal Floating Point data
types is also provided.

Overall, C/C++ applications can utilize the new decimal floating point data types, which allows
users to avoid the rounding problems associated with the typical binary representation of
fractional data.

16.3.6 XL C/C++ run-time library

The C/C++ run-time library (RTL) is enhanced to provide:

� New functions and macros for getting and setting the rounding mode for decimal floating
point operations.

� New macros for defining decimal floating point limits and evaluation formats.

� Updated floating point environment functions for manipulating the decimal floating point
environment.

� New and updated decimal floating point math functions and macros.

� New functions for converting character strings, and wide character strings, to decimal
floating point types.

� New functions for casting floating point numbers between binary, hexadecimal, and
decimal floating point.

� New optional prefixes for indicating the size of decimal floating point arguments for printf()
and scanf() families of functions, with the following warning:

16.3.7 UNIX System Services dbx debugger

Debugger dbx, part of UNIX System Services, supports decimal floating point data types so
that customers can debug decimal floating point data types and register representations in
their applications. Expression® handling and the assignment and display of decimal floating
point data types in program data and registers are provided by dbx.

Support for debugging of _Decimal32, _Decimal64, _Decimal128 data types and new register
representations, such as new register symbols, as follows:

$frdX with X = 0..15
print $frd5
assign $frd8=2.2

Value formatting is handled the same way as other primary data types

� “print” subcommand (formats value)

– print mydec64

– 2.2003

� “whatis” subcommand (formats definition)

– whatis mydec64

– _Decimal64 mydec64;

� dbx expressions such as ‘mydec64+2.3’ are promoted internally to long double binary,
same as other floating point data.

� Evaluated DFP register precision is set by $fl_precision (4, 8 or 16); the default is 8.
Chapter 16. z/OS XL C/C++ Metal option 261

16.4 dbx support of WebSphere remote debuggers

dbx supports the IBM WebSphere Developer for System z (WDz), and the IBM WebSphere
Developer Debugger for System z (WDDz), both at V7.0.

Both graphical user interfaces run on user workstations under Windows.

� The WDz or WDDz remote debuggers user interface runs on the user’s workstation (under
Windows) and communicates with the dbx engine through a TCP/IP socket running on
z/OS that is debugging the z/OS application or dump.

The program being debugged or dump, source files and debug information resides on the
z/OS server running the dbx engine. The socket shell is the dbx shell that will
communicate with a user interface over TCP/IP sockets, as depicted in Figure 16-4 on
page 262, where:

– To the left of the “dbx Engine” block is the current Command Line Shell that gives the
user a line/page interface to their terminal.

– To the right of the “dbx Engine” block is the new socket shell that communicates over a
TCP/IP link to the Remote Debugger UI (WDz or WDDz) that is running on their
workstation.

– The dbx engine at the core remains the same for both shells.

� Start up WDz/WDDz UI on a specific port, then use the –p option to tell dbx the machine
name or IP address and the port to connect to.

– Any further user interactions to the dbx engine will be done from the user interface.

– If no port is specified, the default port of 8001 will be used.

Figure 16-4 on page 262 illustrates the dbx remote debuggers support.

Figure 16-4 dbx remote debuggers support

z/OS UNIX
Terminal

dbx
Command

Line
Shell

dbx
Engine

dbx
Socket
Shell

Remote
Debugger UI

dbx Shells

TCP/IP
socket

stdin
stdout
stderr
262 z/OS Version 1 Release 9 Implementation

dbx debugging example
Figure 16-5 on page 263 and Figure 16-6 on page 264 are examples of using WDDz as the
user interface to the dbx engine.

� A typical debugging session is in progress for a source level view of a program.

� The Debug window shows one thread, the program being debugged, and that main()
called function f1(), then f2(), then f3(), and that dbx is the target engine on a z/OS system.

� The Source window (with title tsimple.c) shows the entry breakpoint in f3(), which is the
current source line and a line breakpoint at 22.

� The Breakpoint window shows that an entry breakpoint and a line breakpoint have been
set.

� The Modules window show there is currently one .c file in this simple program with four
functions.

� The Variable window shows there are three local variables in f3(). Variables that have
children (struct/union/class/array) will have a plus [+] sign next to the name to indicate it
can be expanded.

� The Monitors window shows we set various expression monitors with their current values.

� Right-clicking most items will bring up an action menu. For example, right-clicking a line in
the Source window will allow line breakpoint to be set.

� Right-clicking a variable value will allow the value to be changed.

� Various execution options are supported such as step into, step over, step return and
resume.

Figure 16-5 dbx remote debugger example
Chapter 16. z/OS XL C/C++ Metal option 263

dbx remote debugging example
Figure 16-6 on page 264 shows a typical debugging session in progress for a machine level
view of a program.

� The Debug window shows one thread, the program being debugged, and that main()
called function f1(), then f2(), then f3(), and that dbx is the target engine on a z/OS system.

� The Source window (with title tsimple_f3_320.dsm) shows the disassembly view with an
address breakpoint.

� The Breakpoint window shows an address breakpoint.

� The Memory window shows a hex and EBCDIC representation of the storage.

� The Registers window shows the PSW group and the GPR register group expanded. Nine
other register groups are for the floating point registers to show HFP, BFP, and DFP
representations of the floating point registers in float, double, and long double sizes.

� Right-clicking most items will bring up an action menu. For example, right-clicking a line in
the Disassembly window will allow an address breakpoint to be set.

Figure 16-6 Another example of dbx remote debugging

dbx debugging example
Figure 16-7 on page 265 shows a typical debugging session in progress for a source level
view of a multi-threaded program.

� The Debug window shows three threads, the program being debugged and the selected
stack context in the second thread.

� The Source window shows the source location for the current stack frame and the current
thread.

� The Debug Console shows two dbx commands were entered and the output.
264 z/OS Version 1 Release 9 Implementation

� The properties shows the properties for the selected item (in this case, the stack
information for the selected stack frame).

Figure 16-7 dbx remote debugging of a multi-threaded program

dbx debugging example
Figure 16-8 on page 266 is a typical debugging session in progress for a source level view of
a multi-process program.

� The program forked and the user selected “follow both” in a GUI displayed pop-up.

� The fork pop-up also allows “follow parent” and “follow child” selections.

� The Debug window shows two processes with a focus on a stack frame in the child.

� On a fork follow both, dbx forks off a new dbx and does a “dbx –A” to the child, connecting
back to the UI on the same port to allow debugging of both the parent process and the
child process.

� On a fork follow parent, dbx detaches the child and allows the child to run without any
further dbx interaction and overhead. The parent can continue to be debugged.

� On a fork follow child, dbx detaches the parent and allows the parent to run without any
further dbx interaction and overhead. The child can continue to be debugged.
Chapter 16. z/OS XL C/C++ Metal option 265

Figure 16-8 dbx remote debugging of a multi-process program

16.5 Specialized hardware instructions support

XL C/C++ in z/OS V1R9 provides access to specialized hardware instructions simplifying
software logic. In this way, the XL C/C++ compilers pursue the goal of more optimized code
by providing:

� A new set of hardware instruction built-in functions

� Fine tuning of instruction selection and sequence

The net benefit is better performing C/C++ applications.

A new set of built-in functions, as explained here:

Instructions from the extended-translation facilities (1, 2, and 3) which may be available on a
model implementing z/Architecture.

� Extended-translation facility 1, introduced in ESA/390 (ARCH(5)=z900), is standard in
z/Architecture and provides the instructions:

– CONVERT UNICODE TO UTF-8

– CONVERT UTF-8 TO UNICODE

– TRANSLATE EXTENDED

� Extended-translation facility 2 (ARCH(6)=z990) performs operations on double-byte,
ASCII, and decimal data. The double-byte data may be Unicode(c) data that uses the
binary codes of the Unicode Worldwide Character Standard and enables the use of
266 z/OS Version 1 Release 9 Implementation

characters of most of the world’s written languages. The facility provides the following
instructions:

– COMPARE LOGICAL LONG UNICODE

– MOVE LONG UNICODE

– PACK ASCII

– PACK UNICODE

– TEST DECIMAL

– UNPACK ASCII

– UNPACK UNICODE

� Introduced by ETF2-Enhancement Facility (ARCH(7)):

– TRANSLATE ONE TO ONE

– TRANSLATE ONE TO TWO

– TRANSLATE TWO TO ONE

– TRANSLATE TWO TO TWO

� For cases where either or both facility 1 and facility 2 are not installed on the machine,
both facilities are simulated by the MVS CSRUNIC macro instruction, which is provided in
OS/390 Release 10 and z/OS.

� Extended-translation facility 3 ((ARCH(7)=z9) may be available on a model implementing
z/Architecture. The facility performs operations on Unicode and Unicode-transformation-
format (UTF) characters. It also includes a right-to-left TRANSLATE AND TEST operation.
The facility provides the following instructions:

– CONVERT UTF-16 TO UTF-32

– CONVERT UTF-32 TO UTF-16

– CONVERT UTF-32 TO UTF-8

– CONVERT UTF-8 TO UTF-32

– SEARCH STRING UNICODE

– TRANSLATE AND TEST REVERSED

� Convert-to-Binary (CVB and CVBG) and Convert-to-Decimal (CVD and CVDG).

� Compare-Logical-Long-Extended (CLCLE) and Move-Long-Extended (MVCLE).

� Zero-and-Add (ZAP).

New application capabilities are provided in dealing with UNICODE data and other special
purpose operations. Instruction selection and scheduling have been fine tuned to avoid
Address Generation Interlock (AGI) delays.

16.5.1 Available new built-in functions

The corresponding new built-in functions are available as follows:

� ARCH(0) option: CVB, CVD, ZAP

� ARCH(2) option: CLCLE, MVCLE

� ARCH(5) option: CVBG, CVDG, TRE

� ARCH(6) option: CLCLU, MVCLU, PKA, UNPKA, PKU, UNPKU, TP
Chapter 16. z/OS XL C/C++ Metal option 267

� ARCH(7) option:

– TROO, TROT, TRTO, TRTT

– CU41, CU42, CU12, CU14, CU21, CU24

– SRSTU, TRTR

16.6 Migration considerations

Hardware
When the ARCH compiler option is used, the resulting program can only be run on the
architecture level specified by the option, or higher. The LP64 option requires ARCH(5) or
higher. The default is ARCH(5).

When the DFP option is used, the resulting program can only be run on the hardware that has
the hardware Decimal Floating Point instructions.

Software
The SQL option requires DB2 to be installed on the system. This is needed both during
compilation and execution of the program. The compiler supports interaction with the DB2 V7
(and up) SQL statement coprocessor.

16.7 PreInit tracing

PreInit Tracing offers new support to help diagnose problems with a commonly-used interface
to Language Environment.

To help Language Environment PreInit exploiters understand what sequence of events
occurred, which services were used (storage management and so on), and what error
indications have resulted when the interface is used, z/OS LE V1R9 adds the following:

� Trace support to PreInit

� IPCS support for PreInit trace and control blocks

This support is provided to improve diagnostics for PreInit Applications and allow
programmers to quickly debug problems, thus avoiding ambiguities in determining the flow of
control within the code.

The support provides users with additional diagnostic information that will assist them with
debugging PreInit problems. It is now possible to use:

� The LEDATA IPCS verbexit command to display information about PreInit environments
and their trace tables

� The PreInit Trace to determine the sequence of PreInit calls that occurred prior to failure
268 z/OS Version 1 Release 9 Implementation

16.7.1 Migration considerations

A new keyword has been added to the LEDATA IPCS verbexit command:

� PTBL (value) - requests that PreInit information be formatted according to the following
values:

– CURRENT - If current is specified, the PreInit table associated with the current or
specified TCB is displayed.

– address - if an address is specified, the PreInit table located at that address is
displayed.)

– * - all active and dormant PreInit tables within the current address space are displayed;
note that this option is resource-consuming.

– ACTIVE - all TCBs in the address space have their PreInit tables displayed.

– PTBL LEDATA output is comprised of:

• Formatted PreInit control block

• Formatted PreInit trace table

The LEDATA ALL parameter also generates PreInit information; when used, ALL defaults to
PTBL(CURRENT).

16.7.2 PreInit tracing characteristics

Tracing is always active; it begins when the PreInit environment is initialized and ends when
the environment is terminated. Trace is kept in an in-storage trace table; it is of a fixed size
and wraps around when the end is reached.

Formatted trace entries are displayed from oldest to newest. In addition, the active PreInit
routine is now identified in the traceback (previously, CEEPIPI/CELQPIPI was always shown)
in Figure 16-9.

Figure 16-9 LEDATA example

=== > VERBEXIT LEDATA ‘PTBL(CURRENT)’

PreInitialization Programming Interface Trace Data
 CEEPIPI Environment Table Entry and Trace Entry :
 Active CEEPIPI Environment (Address 25805CB0)
 Eyecatcher : CEEXIPTB
 TCB address : 008D1B08

CEEPIPI Environment :
 Non-XPLINK Environment
 Environment Type : MAIN
 Sequence of Calls not active
 Exits not established
 Signal Interrupt Routines not registered
 Service Routines are not active

 CEEPIPI Environment Enclave Initialized
 Number of CEEPIPI Table Entries = 2
Chapter 16. z/OS XL C/C++ Metal option 269

The output in Figure 16-10 on page 270 is from a dump of a 31-bit PreInit environment. Note
that the internal PreInit table name CEEXPTBL has changed to CEEXIPTB (CELQIPTB for
64-bit), and the customer PreInit table name remains as CEEXPTBL.

If there are service routines specified in the PreInit driver, then their names and routine
addresses will be displayed.

Figure 16-10 Example of a table

As depicted in Figure 16-11, information about each routine in the PreInit table is displayed in
two ways, as follows:

� Each field formatted, flag meanings interpreted,

� Raw storage dump

Empty rows in the PreInit Table are not displayed.

Figure 16-11 Raw storage dump of a table

As depicted in Figure 16-12 on page 271, trace entries contain some input/output parameters
for each service call, and each service return code value is displayed along with a meaningful
explanation.

CEEPIPI Table Entry Information :
 CEEPIPI Table Index 0 (Entry 1)
 Routine Name = HLLCRTN
 Routine Type = C/C++
 Routine Entry Point = A5810B38
 Routine Function Pointer = A5810CC0
 Routine Entry is Non-XPLINK
 Routine was loaded by Language Environment
 Routine Address was resolved
 Routine Function Descriptor was valid
 Routine Return Code = 0
 Routine Reason Code = 0

Entry of routine in CEEPIPI Table for Index 0 (25805DB8)

 +000000 25805DB8 A5810CC0 25811B30 80000000 00000000
 00000000 00000000 00000000 00000000
 |va...a..........................|
 +000020 25805DD8 00000000 00000000 00000000 A5810B38
 00000003 258117C8 00000003 25810B38
 |............va.......a.H.....a..|
 +000040 25805DF8 A5810B38 000014C8 C8D3D3C3 D9E3D540
 00000000 00000000 00000000 00000000
 |va.....HHLLCRTN|

 CEEPIPI Table Index 1 (Entry 2) not in use.
270 z/OS Version 1 Release 9 Implementation

Figure 16-12 A trace table entry

As can be noticed in Figure 16-13 and Figure 16-14, the sample application issued an
ABEND during the last CALL_MAIN, so the return, reason and feedback codes as well as the
service return code were not set in the trace entry.

Figure 16-13 CEEPIPI trace table entry

Figure 16-14 shows the CEEPIPI trace table entry follow-on.

Figure 16-14 CEEPIPI trace table entry follow-on

Entry of routine in CEEPIPI Table for Index 0 (25805DB8)

 +000000 25805DB8 A5810CC0 25811B30 80000000 00000000
 00000000 00000000 00000000 00000000
 |va...a..........................|
 +000020 25805DD8 00000000 00000000 00000000 A5810B38
 00000003 258117C8 00000003 25810B38
 |............va.......a.H.....a..|
 +000040 25805DF8 A5810B38 000014C8 C8D3D3C3 D9E3D540
 00000000 00000000 00000000 00000000
 |va.....HHLLCRTN|

 CEEPIPI Table Index 1 (Entry 2) not in use.

CEEPIPI Trace Table Entries :
 Call Type = INIT_MAIN
 PIPI Driver Address = A5800A82
 Load Service Return Code = 0
 Load Service Reason Code = 0
 Most Recent Return Code = 0
 Most Recent Reason Code = 0
 An ABEND will be issued if storage can not be obtained
 PreInit Environment will not allow EXEC CICS commands
 Service RC = 0 :A new environment was initialized

Call Type = DELETE_ENTRY
 Routine Table Index = 1
 Routine Name = HLLCOBOL
 Routine Address = A5812E20
 Service RC = 0 :The routine was deleted from the
 PreInit table.

 Call Type = CALL_MAIN
 Routine Table Index = 0
 Enclave Return Code = 0
 Enclave Reason Code = 0
 Routine Feedback Code = 0000000000000000
 Service RC = 0 :The environment was activated and
 the routine called.
Chapter 16. z/OS XL C/C++ Metal option 271

16.8 DLL diagnostics

z/OS V1R9 Language Environment DLL diagnostics support is being provided to help reduce
the amount of time required for debugging DLL failures, which can be difficult to diagnose
because of error messages that are too general, and a lack of DLL failure diagnostics.

This support provides the following:

� A new C/C++ environment variable that allows users to tell the z/OS XL C/C++ Run-Time
Library how to handle DLL errors.

� A new Language Environment control block chain that will contain DLL failure diagnostics.

The new environment variable is _EDC_DLL_DIAG. It indicates whether additional DLL
diagnostic information should be generated upon failure for the following DLL functions (it has
no effect on implicit DLLs):

� dllload()
� dllqueryfn()
� dllqueryvar()
� dllfree()
� dlopen()
� dlsym()
� dlclose()

_EDC_DLL_DIAG can take the different possible values:

 MSG Issues DLL error messages to the Language Environment message file.

 TRACE Same as MSG, but also calls the ctrace() function to produce a traceback for
each error.

 SIGNAL Same as TRACE, but also signals a condition for each error’s feedback code.

 QUIET Turns off all _EDC_DLL_DIAG error diagnostics. This is the default setting.

_EDC_DLL_DIAG also provides improved error messages:

Several improved error messages can be issued by _EDC_DLL_DIAG. The error messages
that were available in previous releases via perror() and strerror() will continue to be available
with perror() and strerror().

For example, _EDC_DLL_DIAG=MSG and when dllload() is attempted, but the module is not
found, the following message is issued by _EDC_DLL_DIAG:

 CEE3501S The module module-name was not found.

And the following message is issued by perror():

 EDC5205S DLL module not found.

Note: _EDC_DLL_DIAG values must be specified in upper case letters in order to be
recognized.
272 z/OS Version 1 Release 9 Implementation

Figure 16-15 shows a few of the possible ways to set the _EDC_DLL_DIAG environment
variable.

Figure 16-15 _EDC_DLL_DIAG Examples

CEEDLLF – DLL Failure Control Block
DLL Failure Control Block is a new Language Environment control block containing failure
diagnostics for an implicit or explicit DLL failure:

� It contains diagnostics for up to 10 of the most recent DLL failures are available in circular
chain of CEEDLLF control blocks.

� It is language-neutral, and available to all Language Environment languages that support
DLLs.

Because the CEEDLLF chain is anchored off the Common Anchor Area (CAA), which is
thread-based, each thread can have its own CEEDLLF chain.

CEECAA_CEEDLLF
This is the anchor for the CEEDLLF chain. It contains the address of the most recent DLL
failure’s CEEDLLF and is located at offset 996 (x3E4) in the 31-bit CAA, and 648 (x288) for
the 64-bit CAA.

The CEEDLLF chain is not allocated until the first DLL error. Therefore, CEECAA_CEEDLLF
will be zero until the first DLL error.

Figure 16-16 shows some of the CEEDLLF Fields.

Figure 16-16 Some of the CEEDLLF fields

Using the setenv() C/C++ API:
 setenv(“_EDC_DLL_DIAG”,”MSG”,1)
From the Unix File System:
 export _EDC_DLL_DIAG=TRACE
From the console using RTO Parmlib:
 SETCEE ceedopt,ENVAR("_EDC_DLL_DIAG=SIGNAL")

MVS load reason codeCEEDLLF_RSNCODE2

MVS load return codeCEEDLLF_RETCODE2

Unix File System load reason codeCEEDLLF_RSNCODE1

Unix File System load return codeCEEDLLF_RETCODE1

Length of DLL function/variable nameCEEDLLF_SYMBOL_NAME_LEN

Length of DLL nameCEEDLLF_DLL_NAME_LEN

Pointer to DLL function/variable nameCEEDLLF_SYMBOL_NAME

Pointer to DLL nameCEEDLLF_DLL_NAME

Feedback token for this failureCEEDLLF_FBTOK

Pointer to next CEEDLLF in chainCEEDLLF_NEXT

Pointer to previous CEEDLLF in chainCEEDLLF_PREV

Load type attempted (MVS, UNIX File System, or both)CEEDLLF_LOAD_TYPE

DLL reference type (explicit or implicit)CEEDLLF_REFERENCE_TYPE

DLL service that failed (load, query function, free, and so on)CEEDLLF_SERVICE
Chapter 16. z/OS XL C/C++ Metal option 273

16.8.1 Language Environment IPCS support

The thread-specific control blocks section of VERBX LEDATA contains CEEDLLF diagnostic
information (formatted after the CAA).

Figure 16-17 is an example of a formatted CEEDLLF control block.

Figure 16-17 Language Environment IPCS support

Only in-use CEEDLLF control blocks are formatted via VERBX LEDATA. In other words, the
only CEEDLLF control blocks that are formatted are those which have been populated with
DLL failure diagnostics. If no DLL failures occurred before the dump was taken, then no
CEEDLLF control blocks are formatted.

If a thread has encountered any DLL failures, the thread-specific control blocks section of the
Language Environment dump contains diagnostic information in one or more CEEDLLF
control blocks.The format is similar to that displayed in IPCS.

CEEDLLF: 2581EBD0

+000000 EYE:CEEDLLF VERSION:01 FLAGS:00 SIZE:0060 SERVICE:03
+00000D REFERENCE_TYPE:02 LOAD_TYPE:03 PREV:2581EB70

+00001C NEXT:2581E870 FBTOK:00030DAD 59C3C5C5 00000001 (CEE3501S)
+000034 DLL_NAME:2581EC38 SYMBOL_NAME:00000000

+000040 DLL_NAME_LEN:0000000F SYMBOL_NAME_LEN:00000000
+000048 RETCODE_1:00000081 RSNCODE_1:053B006C
+000050 RETCODE_2:00000008 RSNCODE_2:053B006C
CEEDLLF_DLL_NAME: 2581EC38

+000000 2581EC38 896D8496 95A36D85 A789A2A3 4BA29600 2581E000 00000020 896D8496
95A36D85 |i_dont_exist.so..a......i_dont_e|

Explicit load MVS and Unix File System loads were attempted

Feedback token and (message number)

MVS load return and reason codes

Unix File System load ret and rsncodes

CEE3501S The module module-name was not found.
274 z/OS Version 1 Release 9 Implementation

Chapter 17. z/OS UNIX System Services

The z/OS Distributed File Service zSeries File System (zFS) is a z/OS UNIX System Services
(z/OS UNIX) file system that can be used in addition to the hierarchical file system (HFS). zFS
file systems contain files and directories that can be accessed with z/OS UNIX application
programming interfaces (APIs). These file systems can support access control lists (ACLs).
zFS file systems can be mounted into the z/OS UNIX hierarchy along with other local (or
remote) file system types (for example, HFS, TFS, AUTOMNT and NFS).

In this chapter the new functions for z/OS UNIX System Services and small enhancements to
zFS are described, as follows:

� Automove consistency

� IOEAGFMT batch utility authorization enhancement

� Concurrent log recovery

� Improved dynamic grow

� Improved hang detection

17
© Copyright IBM Corp. 2007. All rights reserved. 275

17.1 Automove consistency

Shared file system availability is improved through more consistent and predictable shutdown
and recovery actions based on the file system AUTOMOVE attribute to provide AUTOMOVE
consistency.

The AUTOMOVE attribute, specified on a MOUNT statement in the BPXPRMxx parmlib
member or on the MOUNT command, controls the shared file system processing for various
shutdown and recovery scenarios. The following values can be specified:

AUTOMOVE The file system is eligible to move to any system.

NOAUTOMOVE The file system is not eligible to move. This is typically for system-specific
file systems.

UNMOUNT The file system is unmounted during shutdown or recovery processing.
Again, this is typically for system-specific file systems.

System list A list of eligible or ineligible systems to move the file system to is
provided.

You can distinguish between the two different types of PFS capabilities for a specified mount
mode, either read-write (RDWR) or read-only (RO), and these specifications can now be
either sysplex-unaware and sysplex-aware with z/OS V1R9.

� A file system that is mounted in a mode that a PFS is sysplex-unaware is referred to as a
“sysplex-unaware file system”.

� A file system that is mounted in a mode that a PFS is sysplex-aware is referred to as a
“sysplex-aware file system”.

Sysplex-unaware file systems can only be locally accessed by one owner system in the
specified mount mode (RDWR or RO). All other systems access the file system through
function shipping to the owner.

Figure 17-1 shows a display of a sysplex-unaware file system from a client system named
SY1. Note that the file system owner is system SY2, and also note that CLIENT=Y. This
indicates a function-shipping client, which is presumably for a sysplex-unaware file system.
This is an HFS file system mounted RDWR.

Figure 17-1 Display of a sysplex-unaware file system from a client system

Sysplex-aware file systems can be locally accessed by all systems in the specified mount
mode.

Note: HFS is sysplex-unaware for RDWR mounts.

 D OMVS,F,N=FS1*
 BPXO045I 16.50.49 DISPLAY OMVS 796
 OMVS 000E ACTIVE OMVS=(BE)
 TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
 HFS 26 ACTIVE RDWR 02/27/2007 L=35
 NAME=FS1.HFS 16.50.23 Q=35
 PATH=/fs1
 OWNER=SY2 AUTOMOVE=Y CLIENT=Y
276 z/OS Version 1 Release 9 Implementation

Figure 17-2 shows a display of a sysplex-aware file system from a client system. It is captured
from system SY1. Note that the file system owner is SY2 and that CLIENT=N. This indicates
a sysplex-aware file system mounted locally on the client system.

Figure 17-2 Display of a sysplex-aware file system from a client system

17.1.1 Problems with sysplex-aware file systems without the new support

Inconsistencies in the processing of the various shutdown and recovery scenarios based on
the AUTOMOVE setting and PFS capabilities resulted in confusing results, impacting desired
availability.

The inconsistencies primarily resulted in the various recovery flows, where the automove
setting was ignored and treated as AUTOMOVE=YES for sysplex-aware file systems.

Shutdown or crash scenarios for read-only file systems
We list several problems with the old behavior mainly based on the inconsistent behavior in
different situations.

File system mounted read-only with automove set to UNMOUNT
File system mounted on system SC65 with Automove=Unmount, SC65 crashes and the file
system is moved to SC70. The automove setting is kept.

System SC65 gets re-IPLed, finds it the file system mounted already, and can work with it
with no problems.

A soft shutdown on SC70 unmounts the file system and applications on SC65 using the file
system get into trouble and may stop working.

File system mounted read-only with automove set to NOAUTOMOVE
File system mounted on SC65 with Automove=No, Sc65 crashes and the file system is moved
to SC70 with automove set to YES.

Taking down SC70 will move the file system again.

Note: HFS and zFS are sysplex-aware for RO mounts. In z/OS V1R9, zFS is
sysplex-aware for RDWR mounts. NFS is sysplex-aware for RDWR and RO mounts.

 D OMVS,F,N=FS1*
 BPXO045I 16.53.03 DISPLAY OMVS 800
 OMVS 000E ACTIVE OMVS=(BE)
 TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
 HFS 26 ACTIVE READ 02/27/2007 L=35
 NAME=FS1.HFS 16.50.23 Q=35
 PATH=/fs1
 OWNER=SY2 AUTOMOVE=Y CLIENT=N

Note: A documentation APAR OA12251 and a detailed description named USS APAR
OA12251 were created in 2005 to document the recovery and shutdown scenarios for USS
file system sharing.
Chapter 17. z/OS UNIX System Services 277

File system mounted read-only and having an automove include list set
File system mounted on SC65 with Automove=i,SC65.

If SC65 crashes the file system is moved to another system, for example SC70, and the
automove setting is changed to YES.

Using F OMVS,SHUTDOWN as part of a clean shutdown processing ends up with the problem
situation shown in Figure 17-3 and Figure 17-4.

Figure 17-3 Message BPXM054I on trying to move file system with an automove include list

Figure 17-4 shows the even worse follow-on message.

Figure 17-4 Message BPXI066E on F OMVS,SHUTDOWN if no new file system owner can be found

17.1.2 New automove enhancements

The solution is to honor the specified AUTOMOVE setting. This has the benefit that recovery
and shutdown processing are more predictable and process as desired. Furthermore, the file
system availability is increased and administration is easier.

In z/OS V1R6, the support was changed such that a file system mounted with
NOAUTOMOVE or a system list were converted to AUTOMOVE if mounted in a
sysplex-aware mount mode. This support is now removed and NOAUTOMOVE and System
List are honored as specified.

No sysplex-aware and sysplex-unaware characteristics need to be considered any longer.

The following shutdown and recovery scenarios are discussed in detail:

� “Soft shutdown processing” (OMVS Shutdown and F BPXOINIT,SHUTDOWN=FILESYS
or FILEOWNER)

� Member gone recovery on hard failures

� PFS termination

� Multi-file system moves using SETOMVS,FROMSYS=

 BPXM054I FILE SYSTEM OMVS.TEST.LOCAL FAILED TO MOVE. RET CODE = 00000079,
RSN CODE = 119E04B6

 BPXI066E OMVS SHUTDOWN COULD NOT MOVE OR UNMOUNT ALL FILE SYSTEMS
*82 BPXI070E USE SETOMVS ON ANOTHER SYSTEM TO MOVE NEEDED FILE SYSTEMS, THEN
REPLY WITH ANY KEY TO CONTINUE SHUTDOWN.

Note: OMVS shutdown is halted due to a read-only file system with a SYSLIST failing to
move the file system. Since the owning system, the only system listed in the INCLUDE
SYSLIST, is being taken down, there is no way left to move the file system. Hence, they
should have just been unmounted, rather than halting the OMVS shutdown processing.

Note: The new support especially implements the requests addressed with marketing
request MR0606057538 (“Shared HFS behavior with various flavors of AUTOMOVE and
sysplex-awareness should be consistent.”) in 2005.
278 z/OS Version 1 Release 9 Implementation

Soft shutdown processing
Soft shutdowns are commands to clean up USS file system processing which are normally
run as part of system shutdown processing:

� F BPXOINIT,SHUTDOWN=FILESYS

� F BPXOINIT,SHUTDOWN=FILEOWNER

� F OMVS,SHUTDOWN

Table 17-1 Soft shutdown processing

Figure 17-5 shows an example for a file system mounted read-only on a z/OS V1R9 system
using an automove system list setting.

Figure 17-5 Mounting a file system read-only using a system list on z/OS V1R9

Just for information, this USS file system sharing environment is a mixture of z/OS V1R8 and
z/OS V1R9 systems. However, this fact does not influence the following processing.

Figure 17-6 on page 280 demonstrates that this file system is unmounted now if a soft
shutdown is performed on system SC70.

Automove setting Behavior

NOAUTOMOVE or UNMOUNT An attempt to unmount the file system occurs. The
unmount will fail if there are other file systems mounted
on it.

AUTOMOVE Move the file system to any system.

System List Move the file system to any specified eligible system in
the system list. If no new owner can be found, then the
file system is unmounted as long as no other file
systems are mounted on it.

Note: Automount-managed file systems are unmounted by a soft shutdown operation if
this system is the file system owner and the file system is not being locally used. If the file
system is being accessed by another system, then it is moved to that system. This
behavior has not been changed.

#> sysvar SYSNAME
SC70
#> echo $(uname -I) Version $(uname -Iv).$(uname -Ir)
z/OS Version 01.09.00
#> pwd
/u/hering
#> /usr/sbin/mount -t zfs -ra include,SC70 -f OMVS.HERING.TEST.ZFS test
#> df -v test | grep Aggregate
Aggregate Name : OMVS.HERING.TEST.ZFS
#> df -v test | grep Owner
File System Owner : SC70 Automove=I Client=N
#> df -v test | grep Include
System List (Include) : SC70
Chapter 17. z/OS UNIX System Services 279

Figure 17-6 Performing soft shutdown on system SC70 unmounts the file system

The sequence of zFS messages shown in Figure 17-6 is a result of zFS internal processing
based on the information received from OMVS. The messages are listed simply for reference.
The important fact is that the file system is unmounted as the result of a soft shutdown.

This only works easily if you avoid mounting any file systems directly on a version root file
system. We suggest that you replace mount point directories by symlinks pointing to a central
location directly or close under the sysplex root file system.

Member gone recovery on hard failures
Table 17-2 lists and describes the new hard failure behavior. Hard failure normally means a
system failure.

Table 17-2 Member gone recovery and partition recovery on hard failures

Note: Using F BPXONIT,SHUTDOWN=FILESYS in a USS sysplex sharing environment is only
useful if you want to continue using USS and mount file systems again.

If you want to perform a system shutdown, then F BPXOINIT,SHUTDOWN=FILEOWNER or F
OMVS,SHUTDOWN are the preferable choices.

SC70: F BPXOINIT,SHUTDOWN=FILESYS
...
SC65: IOEZ00044I Aggregate OMVS.HERING.TEST.ZFS attached successfully.
SC70: IOEZ00416I Aggregate OMVS.HERING.TEST.ZFS moved to system SC65 at

shutdown.
...
SC70: BPXM044I BPXOINIT FILESYSTEM SHUTDOWN COMPLETE.
SC65: IOEZ00048I Detaching aggregate OMVS.HERING.TEST.ZFS
SC70: D OMVS,F,N=OMVS.HERING.TEST.ZFS
SC70: BPXO042I 23.04.21 DISPLAY OMVS 505
 OMVS 0011 ACTIVE OMVS=(9A)
 OMVS.HERING.TEST.ZFS NOT FOUND

Note: A direct benefit of this is that you now can have an automove inclusion list containing
all systems currently using the same version root mounted as read-only. As soon as the
last system using the file system leaves the sysplex and the file system becomes obsolete,
it is unmounted automatically.

Automove setting Behavior

NOAUTOMOVE The file system becomes UNOWNED. The file system remains
unowned until the prior owner system restarts.

UNMOUNT File system is unmounted, as well as all file systems mounted within it.

AUTOMOVE Move the file system to any system. If no new owner, then the file
system becomes UNOWNED.

System List Move the file system to any specified eligible system in the system list.
If no new owner, then the file system as well as all file systems mounted
within it are unmounted.
280 z/OS Version 1 Release 9 Implementation

PFS termination
PFS termination means one of the following situations:

� Stopping a PFS, for example zFS: F OMVS,STOPPFS=ZFS

� Generally taking down a PFS like NFS client: C NFSC

� PFS has hard failure and terminates

Table 17-3 lists and describes PFS termination recovery processing.

Table 17-3 PFS termination recovery processing

Assume file system OMVS.HERING.TEST.ZFS is mounted the same way as shown in
Figure 17-5 on page 279. Stopping zFS now will force unmounting of the file system because
no new owner can be found. This is shown in Figure 17-7.

Figure 17-7 Stopping zFS on system SC70 unmounts the file system

Moving multiple file systems to a specific target system
This is done with the MVS system command SETOMVS as shown in Figure 17-8.

Note: For automount-managed file systems, which are normally mounted with
Automove=YES, no attempt to take over is performed if the file system is not being used
locally. If no system is locally using the file system, then the file system is unmounted. If
another system is referencing the file system, it is moved to that system. This behavior has
not been changed.

Automove setting Behavior

NOAUTOMOVE The file system is unmounted, as well as all file systems mounted
within it.

UNMOUNT File system is unmounted, as well as all file systems mounted within it.

AUTOMOVE Move the file system to any system. If no new owner is found, then the
file system as well as all file systems mounted within it are unmounted.

System List Move the file system to any specified eligible system in the system list.
If no new owner is found, then the file system as well as all file systems
mounted within it are unmounted.

Note: The prior behavior for Automove=UNMOUNT was to move the file system to another
owner. In case of NOAUTOMOVE or when using a system list, the automove setting was
changed to AUTOMOVE as in the situations discussed.

SC70: F OMVS,STOPPFS=ZFS
SC70: *054 BPXI078D STOP OF ZFS REQUESTED. REPLY 'Y' TO PROCEED. ANY OTHER
 REPLY WILL CANCEL THIS STOP.
SC70: R 54,Y
SC70: IEE600I REPLY TO 054 IS;Y
SC70: BPXF063I FILE SYSTEM OMVS.HERING.TEST.ZFS WAS SUCCESSFULLY UNMOUNTED.
SC63: BPXF063I FILE SYSTEM OMVS.HERING.TEST.ZFS WAS SUCCESSFULLY UNMOUNTED.
SC64: BPXF063I FILE SYSTEM OMVS.HERING.TEST.ZFS WAS SUCCESSFULLY UNMOUNTED.
...
SC65: BPXF063I FILE SYSTEM OMVS.HERING.TEST.ZFS WAS SUCCESSFULLY UNMOUNTED.
Chapter 17. z/OS UNIX System Services 281

Figure 17-8 Moving multiple file systems to a specific target system

Table 17-4 shows the new behavior for moving multiple file systems.

Table 17-4 PFS termination recovery processing

Moving multiple file systems to any target system
This is done with the MVS system command SETOMVS as shown in Figure 17-9.

Figure 17-9 Moving multiple file systems to any target system

Table 17-5 lists and describes the new behavior for moving multiple file systems.

Table 17-5 PFS termination recovery processing

17.1.3 Migration and coexistence considerations

The following facts need to be taken into account or simply accepted.

Review the BPXPRMxx ROOT and MOUNT statements and make sure that the AUTOMOVE
value is the desired behavior for sysplex-aware file systems.

SETOMVS FILESYS,FROMSYS=SY1,SYSNAME=SY2

Automove setting Behavior

NOAUTOMOVE Move is not attempted.

UNMOUNT Move is not attempted.

AUTOMOVE Move is attempted to the target system.

System List Move is attempted to the target system; the system list is ignored.

Note: The prior behavior for Automove=UNMOUNT was to move the file system to another
owner. In case of NOAUTOMOVE, or when using a system list, the automove setting was
changed to AUTOMOVE as in the situations discussed.

SETOMVS FILESYS,FROMSYS=SY1,SYSNAME=*

Automove setting Behavior

NOAUTOMOVE Move is not attempted.

UNMOUNT Move is not attempted.

AUTOMOVE Move the file system to any system.

System List Move is attempted to an eligible target systems only.

Note: The prior behavior for Automove=UNMOUNT was to move the file system to another
owner. In case of NOAUTOMOVE, or when using a system list, the automove setting was
changed to AUTOMOVE as in the situations discussed.
282 z/OS Version 1 Release 9 Implementation

The new support only applies to z/OS V1R9 systems. As a result, you will have a mixture of
behaviors until z/OS V1R9 is the lowest release level that is used.

� If there is a file system mounted read-only with the UNMOUNT attribute, prior releases will
ignore the setting, but z/OS V1R9 will honor it.

� In case of a file system mounted read-only with NOAUTOMOVE on a system suffering a
hard failure, prior releases will take ownership and convert to the automove setting to
YES.

17.2 zFS small enhancements

z/OS V1R9 has small enhancements and simplifications that are added to zFS using APARs
to rollback to previous releases what was requested. The z/OS V1R9 enhancements are:

� zFS authorization to create a zFS aggregate is not the same as HFS

– User is required to be a superuser to format a zFS aggregate

– With R9, allow ALTER authority to format a zFS aggregate (rollback to R8 and R7)

� Concurrent log recovery

� Improved dynamic grow

� Improved hang detection

� zFS R/O mount sometimes fails due to need to replay log

– zFS needs to handle R/O mount log recovery automatically

– With R9, allow an option to handle R/O mounts

17.2.1 IOEAGFMT and IOEAGSLV authorization

Prior to z/OS V1R9, in order to run the IOEAGFMT format utility to format a zFS aggregate,
you need to be a superuser with either one of the following:

� A UID=0

� READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the UNIXPRIV class.

With z/OS v1R9, the new check being made does not add any additional protection. The idea
is to ensure that users who could format a zFS aggregate would also need some UNIX
authority because they could overwrite existing data. But anyone who has UPDATE authority
to the data set can do that anyway. So, the UID=0 check during format is was really not
needed.

Furthermore, this behavior was unwanted because when creating an HFS data set, you need
ALTER authority to the data set profile only.

The zFS behavior is now changed and makes it more like HFS. The enhancement requires
ALTER access for the authorization to use the IOEAGFMT and IOEAGSLV utilities.
Table 17-6 lists and describes the associated APAR numbers to make this change available
on previous releases.

Table 17-6 APAR numbers for IOEAGFMT and IOEAGSLV authorization enhancement

z/OS release PTF release APAR number

z/OS V1R7 and z/OS V1R8 370 and 380 OA18981
Chapter 17. z/OS UNIX System Services 283

APAR OA20613 for z/OS V1R9
This APAR removes the authorization check for a UID using the IOEAGFMT and IOEAGSLV
utilities, and the user does not have to have a UID=0.

For the IOEAGFMT utility, the user must have ALTER authority to the VSAM LDS, or be
UID 0, or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the RACF
UNIXPRIV class. In fact, UPDATE authority to the VSAM LDS is sufficient for format, but zFS
will not be able to set the zFS bit in the catalog unless the issuer has ALTER authority.

For the IOEAGSLV utility, the user needs UPDATE authority for the specified VSAM LDS, or
be UID 0, or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the
RACF UNIXPRIV class.

Set the zFS bit in the catalog, which can be displayed with IDCAMS or the TSO LISTCAT ALL
command as seen in Figure 17-10 (shown before setting the bit) and Figure 17-12 on
page 285 (shown after setting the bit).

Figure 17-10 Defining a new zFS aggregate and listing LDS attributes

After defining the aggregate, you can format it using IOEAGFMT (in JCL) or in non-superuser
mode (using an external link from USS). This is shown in Figure 17-11 on page 285.

z/OS V1R9 390 OA20613

ioezadm define -aggregate omvs.testfmt.zfs -storageclass openmvs -cylinders 1 1
IOEZ00248I VSAM linear dataset omvs.testfmt.zfs successfully created.
listcat entries('omvs.testfmt.zfs') all
CLUSTER ------- OMVS.TESTFMT.ZFS
...

ATTRIBUTES
 KEYLEN-----------------0 AVGLRECL---------------0 BUFSPACE------
 RKP--------------------0 MAXLRECL---------------0 EXCPEXIT------
 SHROPTNS(3,3) RECOVERY UNIQUE NOERASE LINEAR
 UNORDERED NOREUSE NONSPANNED
...

z/OS release PTF release APAR number
284 z/OS Version 1 Release 9 Implementation

Figure 17-11 Formatting the zFS aggregate without being authorized

The parameters used in Figure 17-11 for zfsformat are the same that you would use with
IOEAGFMT JCL.

Figure 17-12 shows that IOEAGFMT also set on the zFS bit in the catalog. zFS would also try
to set the bit during mount processing if it is not set already.

Figure 17-12 Listcat output showing the LDS is marked as a zFS aggregate

zFS utility considerations
The utility IOEAGFMT now allows you to create and format a zFS aggregate in a job if you
have ALTER access to the data set profile. With an external link like zfsformat, you can do the
same from a USS shell environment.

$> id
uid=888(HERING) gid=2(SYS1) groups=1047(USSTEST)
$> swsu ln -e IOEAGFMT bin/zfsformat
$> zfsformat -aggregate omvs.testfmt.zfs -compat
IOEZ00004I Formatting to 8K block number 90 for primary extent of
OMVS.TESTFMT.ZFS.
IOEZ00005I Primary extent loaded successfully for OMVS.TESTFMT.ZFS.
IOEZ00535I *** Using initialempty value of 1.
*** Using 89 (8192-byte) blocks
*** Defaulting to 13 log blocks(maximum of 1 concurrent transactions).
IOEZ00327I Done. OMVS.TESTFMT.ZFS is now a zFS aggregate.
IOEZ00048I Detaching aggregate OMVS.TESTFMT.ZFS
IOEZ00071I Attaching aggregate OMVS.TESTFMT.ZFS to create HFS-compatible file
system
IOEZ00074I Creating file system of size 720K, owner id 888, group id 2,
permissions x1ED
IOEZ00048I Detaching aggregate OMVS.TESTFMT.ZFS
IOEZ00077I HFS-compatibility aggregate OMVS.TESTFMT.ZFS has been successfully
created

Notes:

� Utility swsu is used to run exactly one command in superuser mode if you have read
access to FACILITY profile BPX.SUPERUSER. For more information about this topic,
refer to z/OS Distributed File Service zSeries File System Implementation z/OS V1R7,
SG24-6580.

� The value x”1ED” is the well-known o755.

listcat entries('omvs.testfmt.zfs') all
CLUSTER ------- OMVS.TESTFMT.ZFS
...

ATTRIBUTES
KEYLEN-----------------0 AVGLRECL---------------0 BUFSPACE------

 RKP--------------------0 MAXLRECL---------------0 EXCPEXIT------
 SHROPTNS(3,3) RECOVERY UNIQUE NOERASE LINEAR
 UNORDERED NOREUSE NONSPANNED ZFS
...
Chapter 17. z/OS UNIX System Services 285

The other zFS utility, IOEAGSLV, the salvager, is also included in this change. IOEAGSLV
can now be used successfully if you have UPDATE authority for the data set profile. There is
no need anymore for running in superuser mode or having READ authority to the
SUPERUSER.FILESYS.PFSCTL profile in the UNIXPRIV class.

Nevertheless, note that even when only verifying a zFS aggregate using option -verifyonly,
IOEAGSLV still accesses the aggregate exclusively—so, the aggregate cannot be mounted.

Figure 17-13 lists a JCL sample.

Figure 17-13 Using IOEAGSLV in a job

Figure 17-14 shows the successful case.

Figure 17-14 Output of a successfully running salvager verification

Finally, Figure 17-15 shows the unsuccessful case because the zFS aggregate
OMVS.HERING.TEST.ZFS is mounted.

Figure 17-15 Output if salvager is unable to access the zFS aggregate

17.2.2 Concurrent log recovery

A new IOEFSPRM keyword, recovery_max_storage=, is available to indicate the maximum
amount of zFS address space storage to use for concurrent log recovery during multiple
concurrent aggregate mounts (attaches).

This allows multiple concurrent mounts to occur when sufficient storage is available for
multiple concurrent log recovery processing. The specifications are:

Default Value: 256M
Expected Value: A number in the range of 128M - 512M.
Example: recovery_max_storage=128M

17.2.3 Improved dynamic grow

A new specification on the zfsadm define command can be used to improve the possibility
that a dynamic grow succeeds.

zfsadm define -cylinders primary [secondary]

//SALVAGE EXEC PGM=IOEAGSLV,REGION=0M,
// PARM=('-aggregate OMVS.TESTFMT.ZFS -verifyonly')
//SYSPRINT DD SYSOUT=*

Verifying OMVS.TESTFMT.ZFS
Processed 1 vols 6 anodes 1 dirs 0 files 0 acls
Done. OMVS.TESTFMT.ZFS checks out as zFS aggregate.

IKJ56225I DATA SET OMVS.HERING.TEST.ZFS ALREADY IN USE, TRY LATER+
IKJ56225I DATA SET IS ALLOCATED TO ANOTHER JOB OR USER
IEF237I JES2 ALLOCATED TO SYSOUT
IOEZ00003E While opening minor device 1, could not open dataset
OMVS.HERING.TEST.ZFS.
286 z/OS Version 1 Release 9 Implementation

This new option specifies the primary and, optionally, the secondary allocation size for the
VSAM LDS in cylinders. The VSAM LDS must have a secondary allocation size specified, if
you want to use dynamic grow.

The dynamic grow option for an aggregate can be specified using the following an aggrgrow
option, as follows:

� IOEFSPRM member

� MOUNT commands

� ISHELL specification on mounts

17.2.4 Improved hang detection

The zFS hang detector monitors the current location of the various tasks processing in zFS.
At a set interval, the hang detector thread wakes up and scans the current user requests that
have been called into zFS. The hang detector processes this list of tasks and notes various
pieces of information that allow it to determine the location of the task.

When the hang detector determines that a task has remained in the same location for a
predefined period of time, it attempts to determine why it is hung and if so, the hang detector
flags the task as a potential hang and either issues message IOEZ00524I and produces a
dump, or issues IOEZ00547I to the console.

If, on a subsequent iteration, the hang detector recognizes that this task has finally
progressed, it will DOM the message (remove it from the console). If the message is
removed, it means that the hang condition cleared.

17.2.5 Hang detection messages

Messages IOEZ00524I and IOEZ00547I are also issued and cleared when a slowdown
occurs. This is not an indication of a real hang, but instead that things are progressing slowly
because of a stressful workload or some other issue. In this case, you can discard the dump.

Continually monitor for the following messages:

IOEZ00524I zFS has a potentially hanging thread caused by: UserList where:
UserList is a list of address space IDs and TCB addresses causing the hang.

IOEZ00547I zFS has a potentially hanging XCF request on systems: Systemnames
where: Systemnames is the list of system names.

17.2.6 Analyzing hang conditions

To start investigating, enter the D OMVS,W command to check the state of sysplex messages
and waiters. Message IOEZ00547I (hanging XCF request) can indicate an XCF issue. Check
any outstanding message that might need a response to determine if a system is leaving the
sysplex or not (for example, IXC402D). This might look like a zFS hang until that message
gets a response. Then do the following:

� Enter the F ZFS,QUERY,THREADS command to determine if any zFS threads are hanging
and why.

Note: The type and amount of information displayed as a result of this command is for
internal use and can vary between releases or service levels.
Chapter 17. z/OS UNIX System Services 287

� Enter the D A,ZFS command to determine the zFS ASID.

� Enter the F ZFS,QUERY,THREADS command at one- to two-minute intervals for six minutes.

� Interrogate the output for any user tasks (tasks that do not show the zFS ASID) that are
repeatedly in the same state during the time you requested F ZFS,QUERY,THREADS. If there
is a hang, this user task will persist unchanged over the course of this time span. If the
information is different each time, there is no hang.

� Verify that no zFS aggregates are in the QUIESCED state by checking their status using
the zfsadm lsaggr or zfsadm aggrinfo command. For example, quiesced aggregates
display as follows:

DCESVPI:/home/susvpi/> zfsadm lsaggr

IOEZ00106I A total of 1 aggregates are attached
SUSVPI.HIGHRISK.TEST DCESVPI R/W QUIESCE
DCESVPI:/home/susvpi/> zfsadm aggrinfo
IOEZ00370I A total of 1 aggregates are attached.
SUSVPI.HIGHRISK.TEST (R/W COMP QUIESCED): 35582 K free out of total 36000
DCESVPI:/home/susvpi/>

Resolve the QUIESCED state, continuing to determine if there is a real hang condition. The
hang condition message can remain on the console for up to a minute after the aggregate is
unquiesced.

Final considerations
Finally, if the previous steps do not clear the hang, do one of the following:

� Enter the F ZFS,HANGBREAK command to attempt to break the hang condition. The F
ZFS,HANGBREAK command posts any threads that zFS suspects are in a hang condition
with an error and can cause abends and dumps to occur, which you can ignore.

After entering the F ZFS,HANGBREAK command, the hang message can remain on the
console for up to one minute. When the F ZFS,HANGBREAK command completes, it issues
message IOEZ00025I.

However, IOEZ00025I does not mean the system cleared the hang. Enter the F
ZFS,QUERY,THREADS command to check the output for indication the hang is clear. It is
possible that the F ZFS,HANGBREAK command can clear the current hang condition only to
encounter yet another hang. You may have to enter the F ZFS,HANGBREAK command
several times.

� If users are hung in the file system, forcefully unmount the file system by entering the F
ZFS,ABORT command.

Note: Message IOEZ00581E appears on the system that contains at least one zFS
aggregate that is quiesced. There is a time delay between when the aggregate is quiesced
and when the message appears. When there are no quiesced zFS aggregates on the
system, this message is DOMed.

There is also a delay between when the last aggregate is unquiesced and when the
message is DOMed. This message is handled by a thread that wakes up every 30 seconds
and checks for any quiesced aggregates owned by this system.

It is possible for an aggregate to be quiesced and unquiesced in the 30-second sleep
window of the thread and no quiesce message to appear. This message remains if one
aggregate is unquiesced and another is quiesced within the 30-second sleep window.
288 z/OS Version 1 Release 9 Implementation

17.2.7 z/OS V1R9 enhancements

WIth z/OS V1R9, a new IOEFSPRM specification can be used to improve hang detection.

hang_detection_interval=45 - default is 45 seconds

This improves potential hangs to avoid reporting false hangs. The hang detection can be
turned on and off with a modify command with an operator command, as follows:

F ZFS,HANGDETECT,ON - to turn on
F ZFS,HANGDETECT,OFF - to turn off
hang_detection=on is default
Chapter 17. z/OS UNIX System Services 289

290 z/OS Version 1 Release 9 Implementation

Chapter 18. SDSF enhancements

This chapter describes the SDSF support for the REXX programming language, added in
z/OS V1R9. Using REXX with SDSF provides a simpler and more powerful alternative to
using SDSF in batch.

Today, prior to z/OS V1R9, SDSF batch supports only simple programs that issue action
characters and (with the ISFAFD flavor of batch) modify values. With REXX, you can include
logic that does things like examine values and make decisions based on the values. You can
access almost all of SDSF’s function. Using REXX, it is possible to do things that are
impossible to do with SDSF interactively.

The following topics are described, along with examples:

� Issuing SDSF commands

� Issuing operator commands

� Issuing SDSF action characters

� Browsing job output

� Printing job output

� Diagnosing errors with SDSF REXX execs

18
© Copyright IBM Corp. 2007. All rights reserved. 291

18.1 SDSF and the REXX programming language

REXX is an interpreted programming language. Its free format, built-in functions, debugging
capabilities, and extensive parsing capabilities make it easy for both beginners and
professionals to write REXX programs.

Starting with z/OS V1R9, SDSF allows access to SDSF data and functions using the REXX
programming language. Using SDSF REXX support provides a simpler and more powerful
alternative to using SDSF in batch.

REXX support includes all of the SDSF panels that are supported interactively, with the
exception of SYSLOG and output descriptors (which is displayed with the Q action character
from job and output panels).The SDSF REXX support is provided by means of:

� A dynamic REXX host command environment

� SDSF REXX environment commands

� Special SDSF REXX variables

This chapter describes only a subset of the SDSF REXX support, along with examples. For a
more detailed description of SDSF REXX support, refer to the following resources:

� SDSF Operation and Customization, SA22-7670

� An IBM Redbooks publication, Implementing REXX support in SDSF, SG24-7419

� The REXXHELP command from any SDSF interactive panel

Use the REXXHELP command to access SDSF’s online help regarding SDSF REXX
support. REXXHELP includes links to descriptions of commands, action characters and
overtypable columns, which are not included in any other manuals.

18.1.1 SDSF REXX and System REXX

SDSF REXX support is also available under System REXX. If you invoke SDSF REXX using
System REXX, you need to be aware of the following:

� You must set up the ISFJESNAME variable, a new special REXX variable, to identify the
JES2 subsystem. A new optional parameter, JESNAME, on the SDSF command specifies
the JES2 subsystem that SDSF is to process, as follows:

SDSF ISFJESNAME

� You must be authorized to invoke SDSF functions from REXX

JESNAME parameter on SDSF command must be protected using SAF with the following
resource name:

• ISFCMD.OPT.JESNAME

18.1.2 Authorization for SDSF and REXX

You must be authorized to use SDSF from REXX, and you must be authorized to the SDSF
functions that you invoke from REXX. In some cases, invoking an SDSF function from REXX
when you are not authorized to the function causes the exec to fail and the SDSF session to
end.

Using the SDSF function from a REXX exec is protected just as using SDSF interactively is
protected, with the same SAF resources and ISFPARMS parameters. Where special REXX
292 z/OS Version 1 Release 9 Implementation

variables correspond to SDSF commands, the authorization for those special variables is the
same as for the associated command.

To control which group in ISFPARMS a user is assigned to, you can use either SAF or
ISFPARMS. Using SAF is the recommended approach, as it is more dynamic and allows you
to assign users to the same group regardless of the environment from which they invoke
SDSF (interactive, batch, or REXX). To determine group membership, SDSF checks the SAF
resource, as follows:

GROUP.group-name.server-name in the SDSF class

RDEFINE SDSF GROUP.group-name.server-name UACC(NONE)
PERMIT GROUP.group-name.server-name CLASS(SDSF) ID(userid or groupid)
 ACCESS(READ)

18.2 Setting up the SDSF host command environment

You invoke the SDSF function with a new host command environment, SDSF, new ISFEXEC
and ISFACT commands, and REXX variables. Data and SDSF messages are returned in
REXX variables. Accessing the SDSF function with REXX requires use of the following SDSF
functions:

� The ISFCALLS command - to add and delete the SDSF host command environment.

� The ISFEXEC command, for SDSF commands such as the commands that access SDSF
panels and to issue / and WHO commands.

� The ISFACT command, for action characters and overtyping columns.

� Special REXX variables, to provide function equivalent to other SDSF commands, and for
messages and table data and they contain the values for SDSF panels, and allow you to
control results.

Before calling any of the SDSF host commands in a REXX program, you must set up the
SDSF host command environment. To set up the SDSF host command environment, use the
isfcalls command. The following call to isfcalls dynamically sets up the SDSF host
command environment.

rc = isfcalls(‘ON’)

Once the SDSF host command environment is set up, use address SDSF to issue the SDSF
environment commands under REXX.

To delete the SDSF host command environment call isfcalls as follows:

rc = isfcalls(‘OFF’)

Return codes
A return code of 0 indicates that the isfcalls command completed successfully. The return
codes are:

00 Function completed successfully

01 Host command environment query failed, environment not added

02 Host command environment add failed

03 Host command environment delete failed
Chapter 18. SDSF enhancements 293

18.2.1 Issuing SDSF commands in a REXX program

After setting up the SDSF host command environment, you can start issuing SDSF
commands in a REXX program. To issue SDSF commands under REXX, use the ISFEXEC
command. ISFEXEC allows you to issue SDSF panel commands (such as ST or DA) and the
slash (/) command. In addition, special REXX variables provide functionality equivalent to
many other SDSF commands such as PREFIX, FILTER, or SORT. Figure 18-1 shows the syntax
of the ISFEXEC command.

Figure 18-1 Syntax of the ISFEXEC command

Where:

An sdsf-command can be any SDSF command that accesses an SDSF panel, the slash (/)
command, and the WHO and QUERY commands. The maximum length of commands entered
with ISFEXEC, including the parameters, cannot exceed 42 characters. The LOG and ULOG
commands are not supported through ISFEXEC. See 18.3.2, “Issuing operator commands”
on page 298 for a description of how the access data in the ULOG panel.

Data returned from the ISFEXEC command
SDSF panels have a tabular nature. Therefore, the ISFEXEC command returns each
column’s data in a stem variable. A successful call to ISFEXEC creates a stem variable for
each returned column. The format of each stem variable is column-name.row-number. The
column name used to create the stem variable for each column is different than the column
title that is displayed in the SDSF interactive panels. ISFEXEC uses the same name that is
used in the FLD statement in ISFPARMS. For example, in the ST panel, the job name is listed
under the JOBNAME title. The matching FLD name for JOBNAME is JNAME. Thus the stem
variable names for the JOBNAME column are JNAME.0, JNAME.1, JNAME.2, and so on.

The value for stem variable 0 contains the number of variables returned. This number should
be the same for all stem variables returned by a call to ISFEXEC. In addition, a special REXX
variable named isfrows contains the number of rows returned by the last call to ISFEXEC,
and a special REXX variable name isfcols contains the names of all returned columns.

ISFEXEC also returns a stem variable named TOKEN. A TOKEN variable in the format
TOKEN.row-number is returned for each row. The row token is used to identify a specific row
when issuing an action character against the row. See 18.3.3, “Issuing action characters” on
page 300 for more information about issuing action characters.

ISFEXEC options
The ISFEXEC options is an optional list of options for the command. The closing parenthesis
is optional. The following options can be used to provide enhanced functionality to ISFEXEC
commands:

ALTERNATE Requests the panel’s alternate field list.

DELAYED Specifies that delayed-access columns be included in the command’s
output (Use COLSHELP to check which columns are delayed-access
columns).

address SDSF “ISFEXEC sdsf-command (options)”

Tip: Use the COLSHELP command in SDSF under ISPF to see a list of all columns in all
SDSF panels and their respective FLD names.
294 z/OS Version 1 Release 9 Implementation

NOMODIFY Specifies that row tokens for use in modifying rows should not be returned.
Use this to improve performance if you do not intend to modify any values.

PREFIX Value specifies a prefix for column name and TOKEN variables that are
created; use this to ensure that variable names do not conflict between
different ISFEXEC commands. The prefix can be up to 24 characters long,
and should not begin with ISF.

VERBOSE Adds diagnostic messages to the isfmsg2 stem variable. The messages
describe each row variable created by SDSF.

Special variables that provide support for SDSF commands
The special REXX variables provide support that is equivalent to SDSF commands. The
variables are grouped by command type, as follows:

� SDSF command - Use the following special variables for function that is equivalent to the
parameters on the SDSF command.

ISFSERVER names the SDSF server and ISFJESNAME names the JES2 subsystem to
process

� Filter commands - Use the following special variables for function that is equivalent to the
filter commands, such as FILTER and PREFIX.

ISFDEST, ISFFILTER, ISFINPUT, ISFOWNER, ISFPREFIX, and ISFSYSNAME

� Options commands - Use the following special variables for function that is equivalent to
the options commands, such as the SET commands.

ISFACTIONS, ISFCONS, ISFDELAY, ISFDISPLAY, ISFINPUT, ISFSCHARS, and
ISFTIMEOUT

� Trace commands

ISFTRACE and ISFTRMASK

For example, where the variable is associated with an SDSF command, the parameters for
the variable are the same as for the command, with the exception that the parameter is not
supported in REXX. Substitute the variable for the command, as shown in this example:

SDSF command: PREFIX RJONES*
Variable: isfprefix="RJONES*"

18.2.2 Special REXX variables

The SDSF special REXX variables provide a mechanism to issue SDSF commands which
are not panel commands, through REXX. With the use of these variables, the following can
be useful in writing REXX execs:

� Testing the value of the SDSF special REXX variables after a call to ISFEXEC to get more
information about the returned data.

� Setting the value of some SDSF special REXX variables prior to calling ISFEXEC to
control the returned data.

The examples that follow in this chapter use many of the SDSF special REXX variables and
are explained prior to the example. A complete list of the SDSF special REXX variables is
found in z/OS SDSF Operation and Customization, SA22-7670.
Chapter 18. SDSF enhancements 295

Special variables are variables defined by SDSF and are used as follows:

� Names start with characters ISF; some examples are:

– isfprefix=* which corresponds to the command PREFIX *

– isfowner=ken which corresponds to the command OWNER KEN

– isffilter=jprio gt 5 which corresponds to the command FILTER GT 5

� Used to specify additional options or limit the response

� Assign value in exec prior to invoking ISFEXEC or ISFACT

18.3 Examples of using ISFEXEC

Figure 18-2 shows an example of using ISFEXEC to access the ST panel. This example is
explained as follows:

� In the first line, ISFCALLS adds the REXX host command environment.

� Before accessing the panel, the isfprefix special REXX variable is used to limit the job
names to be displayed in the same manner that the SDSF PREFIX command is used.

� The isfsort special REXX variable is used to indicate that the data returned by ISFEXEC
is to be sorted by job ID in descending order.

� The value of isfcols is set to a list of only the specific columns required for the program.
This requires less storage and improves performance.

� The isfdisplay special REXX variable is used to print the filtering and sorting criteria
used by ISFEXEC.

– The ALTERNATE and DELAYED options are used with the ISFEXEC call in order for
the program to be able to access the DATEE and TIMEE columns.

– Because only data is displayed in this REXX program, and does not modify any data,
just add the NOMODIFY parameter to the ISFEXEC call to improve performance.
296 z/OS Version 1 Release 9 Implementation

Figure 18-2 Example of using ISFEXEC

The output from the example in Figure 18-2 on page 297 is shown in Figure 18-3.

Figure 18-3 ISFEXEC example output

18.3.1 The WHO and QUERY commands

The SDSF WHO and QUERY commands are supported with ISFEXEC. These commands are
different than other SDSF commands in the sense that they do return data, but not in a panel.
Therefore, ISFEXEC does not create column stem variables for the data returned from the
WHO and QUERY commands. Instead, an SDSF special REXX variable is used. The variable

/* REXX */
x = isfcalls('ON')

isfprefix = 'PELEG*'
isfsort = 'JOBID D'

isfcols = 'JNAME JOBID OWNERID QUEUE RETCODE DATEE TIMEE'

address SDSF "ISFEXEC ST (ALTERNATE DELAYED NOMODIFY"
say isfdisplay
say ' '

do i = 1 to isfrows
 say left(JNAME.i, 8),
 left(JOBID.i, 8),
 left(OWNERID.i, 8),
 left(QUEUE.i, 9),
 left(RETCODE.i, 10),
 left(DATEE.i, 8),
 left(TIMEE.i, 8)
end
x = isfcalls('OFF')

PREFIX=PELEG* DEST=(ALL) OWNER=* SORT=JOBID/D SYSNAME=

PELEG TSU29877 PELEG EXECUTION 2007.122 09:35:55
PELEG TSU29751 PELEG PRINT CC 0000 2007.121 09:24:36
PELEGIDC JOB29825 PELEG PRINT CC 0000 2007.121 18:01:01
PELEGBR5 JOB29771 PELEG PRINT CC 0000 2007.121 11:30:55
PELEGBR4 JOB29770 PELEG PRINT CC 0000 2007.121 11:30:55
PELEGBR3 JOB29769 PELEG PRINT CC 0000 2007.121 11:30:55
PELEGBR2 JOB29768 PELEG PRINT CC 0000 2007.121 11:30:55
PELEGBR1 JOB29767 PELEG PRINT CC 0000 2007.121 11:30:55
PELEGBR1 JOB29766 PELEG PRINT CC 0000 2007.121 11:30:16

Note: Use ISFEXEC to access tabular panels (DA, ST, PS, PR, INIT, and so on). You
cannot access the LOG panel. The options on ISFEXEC are new options for ISFEXEC,
and should not to be confused with SDSF command parameters.
Chapter 18. SDSF enhancements 297

is named isfresp, and is a stem variable. isfresp.0 contains the number of lines returned
from the command. Iterate isfresp to access the command’s returned data.

Figure 18-4 shows an example of issuing the WHO command using ISFEXEC, and printing the
output to the use terminal.

Figure 18-4 Example of using ISFEXEC to issue the SDSF WHO command

The output from the example in Figure 18-4 is displayed in Figure 18-5 on page 298.

Figure 18-5 SDSF REXX support WHO command output example

18.3.2 Issuing operator commands

Another command that can be issued using ISFEXEC is the SDSF slash (/) command. The
SDSF slash (/) command allows you to enter operator commands to the system. The W and I
prefix parameters of the slash (/) command are not supported through ISFEXEC. Instead, use
the WAIT and INTERNAL parameters. The maximum length of slash (/) commands entered
using ISFEXEC must not exceed 126 characters.

In an interactive SDSF session, the output of the slash (/) command is displayed in the ULOG
panel. The ULOG panel is not accessible using the ISFEXEC command. To access the output
of a slash (/) command under REXX, a special REXX variable is provided by SDSF REXX

/* REXX */

x = isfcalls('ON')

address SDSF "ISFEXEC WHO"

do i = 1 to isfresp.0
 say isfresp.i
end

x = isfcalls('OFF')

USERID=PELEG
PROC=IKJACCNT
TERMINAL=SC38TCA9
GRPINDEX=1
GRPNAME=ISFSPROG
MVS=z/OS 01.09.00
JES2=z/OS 1.9
SDSF=HQX7740
ISPF=N/A
RMF/DA=NOTACC
SERVER=YES
SERVERNAME=SDSF
JESNAME=JES2
MEMBER=SC70
SYSNAME=SC70
SYSPLEX=SANDBOX
COMM=NOTAVAIL
298 z/OS Version 1 Release 9 Implementation

support. The name of the special REXX variable is isfulog. isfulog is a stem variable, with
isfulog.0 holding the number of lines that were returned by the last slash (/) command.

You may want to change the name of the EMCS console that SDSF automatically activates
when you issue an operator command using the slash (/) command. SDSF provides the SET
CONSOLE command when in an interactive session. The SDSF REXX equivalent to the SET
CONSOLE command is the isfcons special REXX variable.

Example
Figure 18-6 on page 299 shows an example of using ISFEXEC to issue a slash (/) command.
The sample REXX program receives an operator command as a parameter and prints its
output back to the user terminal. In the example, we use the REXX built-in random function to
generate a random EMCS console name. The WAIT parameter is used with the ISFEXEC
command to indicate that SDSF should wait the full delay interval before retrieving the
responses to the slash (/) command. The delay interval is set using the isfdelay special
REXX variable. The operator command output is then displayed by iterating the isfulog stem
variable.

Figure 18-6 Example of issuing an operator command using the slash (/) command

Figure 18-7 shows a sample output of the example in Figure 18-6, when executed with the
parameter D U,IPLVOL.

Figure 18-7 Slash (/) command example output

/* REXX */

arg opCmd

if opCmd == '' then do
 say 'Please specify an operator command'
 exit 4
end

isfcons = 'PELEG' || random(999)
isfdelay = 2

x = isfcalls('ON')

address SDSF "ISFEXEC '/"opCmd"' (WAIT"

do i = 1 to isfulog.0
 say strip(isfulog.i)
end

x = isfcalls('OFF')

SC70 2007122 16:47:59.93 ISF031I CONSOLE PELEG574 ACTIVATED
SC70 2007122 16:47:59.93 -D U,IPLVOL
SC70 2007122 16:47:59.94 IEE457I 16.47.59 UNIT STATUS 516
UNIT TYPE STATUS VOLSER VOLSTATE
D14E 3390 S Z19RA1 PRIV/RSDNT
Chapter 18. SDSF enhancements 299

18.3.3 Issuing action characters

SDSF REXX support allows you to issue action characters against rows returned by SDSF
REXX commands. The support is provided by the ISFACT command under address SDSF.
Using ISFACT, it is also possible to modify overtypable columns in SDSF panels. Figure 18-8
describes the syntax of the ISFACT command.

Figure 18-8 Syntax of the ISFACT command

command is the same SDSF command, including the same parameters, that was previously
issued using ISFEXEC to retrieve the panel’s columns.

token is the value of the TOKEN stem variable returned by ISFEXEC and matching the row
you wish to issue an action character against, or change an overtypable column value in.

The PARM parameter is used to identify the columns you wish to change, and value you wish
to update them with. A single call to ISFACT can update multiple columns. The format of the
PARM parameter is a field-name new-value pair. Where field-name is the FLD name, as
defined in ISFPARMS, of the field to be updated, and new-value is the new value to update
the field with. You may specify more than one pair in the PARM parameter.

Examples
The first REXX program, shown in Figure 18-9, is an example of how to use ISFACT to issue
an action character. In the example, we list all jobs with prefix PELEGBR* and then issue the
P (purge job) action character against each one of them.

Figure 18-9 Example of issuing an action character using ISFACT

The second REXX program, shown in Appendix 18-10, “Example of modifying an overtypable
field using ISFACT” on page 301, is an example of how to use ISFACT to modify an
overtypable field. In the example, we list all jobs with prefix PELEG* in the DA panel and then
change their service class to the one specified as a parameter to the REXX program. Note

address SDSF “ISFACT command TOKEN(‘”token”’) PARM(field-value-pairs)”

Note: Tokens returned by ISFEXEC in the TOKEN stem variable are intended to be used
shortly after the call to ISFEXEC and by the same caller. Tokens represent jobs at the time
they are generated. They should not be saved for later use by a different caller or REXX
program. Furthermore, the format of tokens may change incompatibly with service or new
releases of SDSF.

/* REXX */

x = isfcalls('ON')

isfprefix = 'PELEGBR*'
address SDSF "ISFEXEC ST"

do i = 1 to isfrows
 address SDSF "ISFACT ST TOKEN('"TOKEN.i"') PARM(NP P)"
end

x = isfcalls('OFF')
300 z/OS Version 1 Release 9 Implementation

that SDSF REXX will activate an EMCS console to issue the RESET operator command used
to change a job’s service class. Therefore, we use the isfcons special REXX variable to
generate a random console name.

Figure 18-10 Example of modifying an overtypable field using ISFACT

18.3.4 Browsing job output

SDSF REXX support provides two new action characters, SA and SJA, which are not
supported by the interactive SDSF panels. SA is used to allocate all spool data sets
associated with the row it was issued against. The SA and SJA action characters can be
issued in the DA, H, I, JDS, O and ST panels. For example, when SA is issued next to a job
name in the ST panel, all the job’s spool data sets are allocated for the REXX program. But if
SA is next to a DD name in the job data sets (JDS) panel, only that spool data set is allocated
to the REXX program. SJA is used in the same way as SA to allocate only the job’s JCL data
set. After a spool data set is allocated by SDSF REXX, it can be read using the EXECIO
REXX command.

Two special REXX variables are used in support of the SA and SJA action characters:

isfddname A stem variable that contains the system-generated DD names returned by
the allocation. It is not the same as the application specified DD name (that is
contained in the DDNAME stem variable returned by ISFACT).
ISFDDNAME.0 contains a count of the number of variables that follow.

isfsdname A stem variable that contains the application-specified data set name that has
been allocated by SDSF. The variables have a one-to-one correspondence
with the variables in ISFDDNAME. ISFDSNAME.0 contains a count of the
number of variables that follow.

Example
The REXX program in Figure 18-11 on page 302 is an example of browsing a job’s spool data
set. The example program implements a function similar to the tail UNIX shell command.
The program receives as parameters a job ID and a DD name to print. The program prints
only the last lines of the specified DD. The amount of last lines printed can be set by the third
parameter of the REXX program. The default is to print the last 20 lines.

In the example, the program first lists the job on the ST panel, by using ISFEXEC. Then, the ?
action character is issued next to the job by using ISFACT. Later, the SA action characters are

/* REXX */

arg srvCls

x = isfcalls('ON')

isfcons = 'PELEG' || random(999)
isfprefix = 'PELEG*'
address SDSF "ISFEXEC DA"

do i = 1 to isfrows
 address SDSF "ISFACT DA TOKEN('"TOKEN.i"') PARM(SRVCLASS "srvCls")"
end

x = isfcalls('OFF')
Chapter 18. SDSF enhancements 301

issued next to the specified DD name. The stem variable ddname is created by the first call to
ISFACT.

Figure 18-11 Example of browsing a job spool data set

/* REXX */

arg jobid taildd lines#

if jobid == '' then do
 say 'Please specify a job id'
 exit 4
end
if taildd == '' then do
 say 'Please specify a DD name'
 exit 4
end
if lines# == '' then
 lines# = 20

x = isfcalls('ON')

isffilter = 'JOBID EQ 'jobid
address SDSF "ISFEXEC ST"

/* get a list of the job's DD names */
isffilter = ''
address SDSF "ISFACT ST TOKEN('"TOKEN.1"') PARM(NP ?)"

/* remember what row the DD is on */
do i = 1 to isfrows
 if ddname.i == taildd then do
 row# = i
 i = isfrows
 end
end

/* allocate spool data sets */
address SDSF "ISFACT ST TOKEN('"TOKEN.row#"') PARM(NP SA)"

address TSO "EXECIO * DISKR" isfddname.1 "(STEM sysout. FINIS"

say taildd 'contains a total of' sysout.0 'lines.'
say 'The last' lines# 'lines are:'

/* print the last ## lines of the sysout */
startix = sysout.0-lines#+1
if startix < 1 then
 startix = 1
do i = startix to sysout.0
 say sysout.i
end

x = isfcalls('OFF')
302 z/OS Version 1 Release 9 Implementation

18.3.5 Printing job output

SDSF provides four action characters for printing a job’s output, as explained here.

� The X action character is used to print all the job’s data sets using default settings.
� The XD action character is used to print all the job’s data sets to a specified data set.
� The XF action character is used to print all the job’s data sets to a file already allocated to

a specified DD name.
� The XS action characters is used to print all the job’s data sets to a specified SYSOUT file.

All four action characters are also available under SDSF REXX support using the ISFACT
command. Under an interactive SDSF session, these action characters open the print panel.
Under SDSF REXX, you use special REXX variables as the equivalent to filling in values in
the print panel fields.

Example
The example in Figure 18-12 on page 304 receives a job ID and a data set name as
parameters and prints the job’s spool data sets to the specified data set. First, we list the job
in the ST panel. Then we use ISFACT to issue the XD command next to the job, on the NP
field. At the end of the REXX program, we issue the XDC action characters against the job to
close the print data set. Several SDSF special REXX variables are used in the example to
control the attributes of the data set the program prints to:

isfprtdisp Disposition

isfprtrecfm Record format

isfprtlrecl Logical record length

isfprtblksize Block size

isfprtspacetype Space allocation units

isfprtprimary Primary space allocation

isfprtsecondary Secondary space allocation

isfprtdsname Data set name

There are many more special REXX variables that can be used to control the print action
characters. For a full list, refer to SDSF Operation and Customization, SA22-7670.
Chapter 18. SDSF enhancements 303

Figure 18-12 Example of printing a job’s data sets to a data set

18.4 Executing REXX execs

You can run an interpreted or compiled REXX program with syscall commands from the
following:

TSO/E

MVS batch jobs

z/OS UNIX shells

A program

18.4.1 Diagnosing errors in an SDSF REXX exec

SDSF REXX support provides several ways to diagnose errors in SDSF REXX programs.

/* REXX */

arg jobid dsn

if jobid == '' then do
 say 'Please specify a job id'
 exit 4
end
if dsn == '' then
 dsn = userid() || '.SDSFPRT.' || jobid || '.LIST'

x = isfcalls('ON')

isffilter = 'JOBID EQ 'jobid
address SDSF "ISFEXEC ST"

isffilter = ''

/* define the output data set attributes */
isfprtdisp = 'NEW'
isfprtrecfm = 'FB'
isfprtlrecl = '240'
isfprtblksize = '3120'
isfprtspacetype = 'CYLS'
isfprtprimary = '5'
isfprtsecondary = '5'
isfprtdsname = dsn

/* print the job's output */
address SDSF "ISFACT ST TOKEN('"TOKEN.1"') PARM(NP XD)"
address SDSF "ISFACT ST TOKEN('"TOKEN.1"') PARM(NP XDC)"

x = isfcalls('OFF')
304 z/OS Version 1 Release 9 Implementation

Return codes
SDSF REXX commands set a return code in the standard REXX rc variable, as do many
other REXX commands. It is considered good practice to check the reason code after every
call to an SDSF REXX command. A return code higher that zero indicates the command did
not complete successfully, and that further diagnosis is required.

Special REXX variables
When an SDSF REXX command does not complete successfully, it sets two special REXX
variables to indicate the problem. The first variable is isfmsg, which contains the SDSF short
message describing the reason for not completing the request successfully. The second
variable is isfmsg2, which is a stem variable. isfmsg2 contains the numbered SDSF
messages regarding the error. In case of an error, check these two variables to receive more
details about the error.

Another SDSF special REXX variable is isfdiag. It contains internal reason codes that are
intended for use by IBM service personnel.

The VERBOSE option
Both ISFEXEC and ISFACT support a VERBOSE optional parameter. When the VERBOSE
parameter is specified, SDSF REXX support adds diagnostic messages to the isfmsg2 stem
variable. The messages describe each row that is created by ISFEXEC or ISFACT.

Trace
It is also possible to activate SDSF’s tracing facility under SDSF REXX support. To do so, set
the special REXX variable isftrace to ‘ON’. Use the special REXX variable isftrmask to
control the mask of traced events.

18.5 SDSF migration considerations

There is a new version of SDSF with z/OS V1R9. There a re a number of migration issues
that need to be considered when using this new version.

User modifications to SDSF
Although modifying SDSF source modules or macros is not a normally supported technique,
some modifications may have been made in this way. The proper way modify SDSF is to
implement a user exit routine.

Beginning with z/OS V1R9, many SDSF source modules and macros that were distributed
previously are no longer distributed. You should review any user modifications you have and
assess alternatives.

JES2 and SDSF version levels
Before z/OS V1R9, you had to use the latest level of SDSF with your currently-installed JES2.
For example, when migrating to z/OS V1R8, you needed to migrate to the z/OS V1R8 level of
SDSF, even if you postponed migrating to the z/OS V1R8 level of JES2.

Starting with z/OS V1R9, SDSF and JES2 are “coupled” in the sense that the release level of
your SDSF and JES2 must be the same. This means that:

� When you migrate to the z/OS V1R9 level of JES2, you must migrate to the z/OS V1R9
level of SDSF.
Chapter 18. SDSF enhancements 305

� The possible migration scenarios because of SDSF and JES2 being “coupled” are as
follows:

– If you are running the z/OS V1R8 level of JES2 with z/OS V1R9, you must run the z/OS
V1R8 level of SDSF.

– If you are running the z/OS V1R7 level of JES2 with z/OS V1R9, you can run either the
z/OS V1R8 or z/OS V1R7 level of SDSF.
306 z/OS Version 1 Release 9 Implementation

Chapter 19. New faces of z/OS

z/OS V1R9 introduces the first steps of a series of ongoing efforts designed to simplify the
management, administration and configuration of the system. The goal is to simplify and
modernize z/OS management for “zNextGen”, the new generation of IBM System z9 and
eServer™ zSeries IT professionals. For example, a new management console powered by
IBM Tivoli OMEGAMON® technology is in the works, as well as other enhancements to z/OS
to make it fundamentally easier to set up and manage.

These efforts include the creation of the following:

� New user interfaces (UIs)

� The enablement of remote access technologies on z/OS

� Extensions to base operating system components to allow for such management

Marketplace forces, including the “graying” of the z/OS work force, added to the difficulty of
attracting and training new skills to this platform due to the perception that the management
tools are archaic, and demanded that the platform improve and modernize accessibility in a
way that is common to the rest of the IT industry.

This chapter describes the following implementation and changes made with z/OS V1R9:

� Introduction to the new face of z/OS

� z/OS V1R9 and the new face of z/OS

� Common Information Model (CIM)

� CIM server overview

� CIM client-to-CIM server access

� CIM server runtime update and enhancements

� CIM client API for Java

� Instrumentation in z/OS

� Migration and coexistence considerations

19
© Copyright IBM Corp. 2007. All rights reserved. 307

19.1 Introduction to the new face of z/OS

z/OS users today must master an assortment of user interface (UI) styles: TSO command
line, ISPF panels, graphical user interfaces (GUIs), even Web-style UIs. To complete a task
such as applying service, they often must interact with different UIs while flipping through a
variety of publications. Starting in 2005, a new z/OS management console was introduced to
provide a central management for z/OS tasks.

The first release of the console was built on IBM Tivoli OMEGAMON technology and
leverages the Tivoli Enterprise Portal console. Health monitoring is the focus of the first
release. Using this console, IT staff will be able to monitor the availability of sysplex and
system resources and respond to problems. They will also be able to monitor health checks
run by the IBM Health Checker for z/OS. Over time, the console will grow to include tasks
beyond heath monitoring.

19.1.1 z/OS ease of use enhancements

To address the skill base for z/OS, a new approach has been developed to increase skills to
help less experienced members of the zSeries IT community feel at home in the following
areas:

� z/OS basics

In collaboration with the ITSO, z/OS development is creating an IBM Redbooks
publications “basics” library for z/OS. If you are new to z/OS systems programming and
have recently assumed the role of system programmer or system analyst after transferring
from another area in your organization, this new series of publications, z/OS Basics:, will
help you develop your understanding of the various aspects of the z/OS system.

� Configuration and operations

The OMEGAMON z/OS Management Console is a no-charge availability monitoring
product that includes a GUI for z/OS management and is designed to help the new
generation of IT workers. It is designed to help automate, eliminate, and simplify many
z/OS management tasks. The OMEGAMON z/OS Management Console helps deliver
real-time, health check information provided by the IBM Health Checker for z/OS, and
configuration status information for z/OS systems and sysplex resources.

IBM Health Checker for z/OS is a base function for z/OS V1R7. It provides a foundation to
help simplify and automate the identification of potential configuration problems before
they impact system availability. It compares active values and settings to those suggested
by IBM or defined by your installation.

� Software maintenance

SMP/E V3.4 has been enhanced to provide Internet Service Retrieval. This capability
allows you to automate ordering and delivery of PTFs and HOLDDATA. The PTFs and
HOLDDATA can be processed in the same job step. This can help eliminate manual tasks
currently required for ordering and delivery of IBM PTFs using current methods.

� Networking

Would you like to dramatically reduce the amount of time that is required to create
configuration files? The z/OS Network Security Configuration Assistant is a GUI that you
can use to generate the configuration files for both Application Transparent-Transport
Layer Security (AT-TLS) and IP Security (IPSec).

The z/OS Network Security Configuration Assistant is a standalone application that runs
under the Windows operating system and requires no network connectivity or setup. You
can download the GUI from the Communications Server family downloadable tools Web
308 z/OS Version 1 Release 9 Implementation

page. Through a series of wizards and online help panels, you can use the GUI to create
both AT-TLS and IPSec configuration files for any number of z/OS images with any
number of TCP/IP stacks per image.

� Academic initiative

The IBM Academic Initiative brings together interested colleges and universities, zSeries
customer partners, and IBM resources to provide a link between the academic world and
the business world and potential future job opportunities. The goal is to increase student
awareness of our platform while developing zSeries skills to meet the current and future
programmer needs of our zSeries customers.

Membership in the Scholars zSeries Program includes access to a native z/OS system via
the Internet for course exercises, system programmer assistance to instructors for setting
up and teaching their classes on z/OS, access to zSeries course material, and
opportunities for free faculty education. A current focus of the program is working with
zSeries customers to help them find schools to partner with to develop zSeries skills.

� A LibraryCenter

The LibraryCenter provides a view of z/OS BookManager® documentation and presents
the information in a Windows Explorer format. The LibraryCenter contains documentation
for z/OS elements, features, software products and selected z/OS-related IBM Redbooks
publications.

There are multiple library centers, one for each release, and also one for z/VM.

� Security

These RACF-based products can help you manage security and monitor compliance:

– Partnership with Vanguard Integrity Professionals, Inc. including the following products:
Administrator, Advisor, Analyzer, Enforcer, and SecurityCenter

– IBM Tivoli administration for RACF - lower function alternative

19.2 z/OS V1R9 and new faces of z/OS

With z/OS V1R9, various steps have been taken to lay the foundation for simplified access to
the z/OS platform.
Chapter 19. New faces of z/OS 309

Figure 19-1 New faces of z/OS

These “new faces” are embodied under the cover of different functions in z/OS V1R9—with a
set of new tools enhancing the “MVS face” of z/OS, as shown in Figure 19-1, to provide the
following new functions.

19.2.1 System REXX

System REXX is a z/OS component that allows REXX execs to be executed outside of
conventional TSO/E and batch environments. REXX has long been considered one of the
fastest development languages for system exit and utilities work on z/OS. The possibilities for
exploiting REXX code through the use of System REXX are vast, whether to provide operator
assists or to provide an easy way to process files and strings.

The System REXX environment provides a function package that allows a REXX exec to
invoke the system commands and to return results back to the invoker in a variety of ways.
System REXX execs may be initiated through an assembler macro interface called AXREXX,
or through an operator command.

The System REXX address space, AXR, is non-cancelable, but can be terminated by
invoking the FORCE AXR,ARM command. When the AXR address space terminates, ENF
signal 65 with a qualifier of 40000000x is issued. AXR can be restarted by starting the
AXRPSTRT procedure, which can be found in SYS1.PROCLIB. When the AXR address
space initializes, an ENF signal of 80000000x is issued.

MVS

USS
(open)

tcp/ip

CIM provider
 A

CIM server

CEA

asynch view

synch view

 axr

 xcfas

ARM
 console

 SDSF
server

 (E)MCS

Batch

 (E)MCS

STC
TSO/E

 EMCS

 axr01

 axr02
 axr03

process

 (E)MCS

CIM provider
 B

Health Checker Rexx C language MVS exits
 SDSF
REXX

CIM
client

Note: See Chapter 15, “System REXX for z/OS” on page 237, for a detailed description of
this new support.
310 z/OS Version 1 Release 9 Implementation

19.2.2 SDSF REXX

SDSF is being enhanced to add the capability to provide access to SDSF functions through
REXX variables. The variables are loaded with data from the SDSF panels. This enables
them to be processed by REXX execs. The data can also be changed, which provides
capabilities similar to those provided in the SDSF dialog by action characters and overtyping.

You can now access SDSF function with the REXX programming language. Using REXX with
SDSF provides a simpler and more powerful alternative to using SDSF in batch.

19.2.3 Using REXX to write health check routines

IBM Health Checker for z/OS supports checks that are written in REXX using the new
SYSREXX facility available with z/OS V1R9. This new SYSREXX facility makes it easier for
you to write your own checks.

A REXX exec check consists of REXX language instructions that are interpreted and
executed by System REXX. A REXX exec check runs in a System REXX address space in an
environment defined by System REXX. IBM Health Checker for z/OS provides REXX
functions as interfaces (HZSLSTART, HZSLFMSG, and HZSLSTOP) between a check and
IBM Health Checker for z/OS and System REXX.

19.2.4 XL C Metal compiler option

Before z/OS V1R9, all z/OS XL C compiler-generated code required Language Environment.
In addition to depending on the C runtime library functions that are available only with
Language Environment, the generated code depended on the establishment of an overall
execution context, including the heap storage and dynamic storage areas. These
dependencies prohibit you from using the XL C compiler to generate code that runs in an
environment where Language Environment did not exist.

With z/OS V1R9, the XL C Metal compiler option generates code that does not have access
to the Language Environment support at run time. Instead, the Metal option provides
C-language extensions that allow you to specify assembly statements that call system
services directly. Using these language extensions, you can provide almost any assembly
macro, and your own function prologs and epilogs, to be embedded in the generated HLASM
source file. When you understand how the Metal-generated code uses MVS(TM) linkage
conventions to interact with HLASM code, you can use this capability to write freestanding
programs.

Note: See Chapter 18, “SDSF enhancements” on page 291, for a detailed description of
this new support.

Note: See Chapter 22, “IBM Health Checker for z/OS” on page 365, for a detailed
description of this new support.

Note: See Chapter 16, “z/OS XL C/C++ Metal option” on page 251, for a detailed
description of this new support.
Chapter 19. New faces of z/OS 311

19.2.5 Common event adapter

Common event adapter (CEA) is a new component in the z/OS base with z/OS V1R9. Its has
to be up and running in order for the CIM server to properly operate. It provides the ability to
deliver z/OS events to C-language clients, such as the z/OS CIM server.

A CEA address space is started automatically during initialization of every z/OS V1R9
system. CEA has two modes of operation:

� Full function mode

In this mode, both internal z/OS components and clients (such as CIM providers) using
the CEA application programming interface can use CEA functions.

� Minimum mode

In this mode, only internal z/OS components can use CEA functions.

The common event adapter (CEA) provides the ability to deliver z/OS events to C-language
clients, such as the z/OS CIM server. The CEA address space is started automatically during
z/OS initialization and does not terminate.

A set of new functions providing an “open face” through a client/server structure is
implemented by the Common Information Model (CIM), also known as Pegasus. CIM
instrumentations are z/OS extensions for providing the CIM server with information such as:

� z/OS cluster resource manager instrumentation
� Couple data sets instrumentation
� Jobs instrumentation

Displaying the CEA environment
Use the F CEA,DISPLAY command to display information about the common event adapter
(CEA) address space.

F CEA,DISPLAY
CEA0004I COMMON EVENT ADAPTER 734
 STATUS: ACTIVE-FULL CLIENTS: 0 INTERNAL: 0
 EVENTS BY TYPE: #WTO: 0 #ENF: 0 #PGM: 0

The information displayed shows which activities are being monitored by CEA, and on behalf
of which internal z/OS components and clients using the CEA application programming
interface.

19.3 Common Information Model

The Common Information Model (CIM) is a standard data model developed by a consortium
of major hardware and software vendors (including IBM) known as the Distributed
Management Task Force (DMTF) as part of the Web Based Enterprise Management
(WBEM) initiative. CIM was introduced in z/OS with z/OS V1R7.

Note: It is possible in some circumstances to have CEA start in full function mode without
this setup being performed. This is because of the way RACF could be configured to
handle tasks that do not have user IDs of their own.

If CEA is running in minimum mode, you can change to full function mode by making these
security definitions and then issuing the command MODIFY CEA,MODE=FULL.
312 z/OS Version 1 Release 9 Implementation

Web Based Enterprise Management initiative
The Web Based Enterprise Management (WBEM) initiative includes a set of standards and
technologies that provide management solutions for a distributed network environment.
Interoperability is a major focus of WBEM, and using WBEM technologies can help you
develop a single set of management applications for a diverse set of resources.

19.3.1 z/OS V1R9 enhancements for CIM

The following enhancements are introduced with z/OS V1R9 for CIM:

� Automatic restart using the Automatic Restart Manager

To extend the server availability, the CIM server is enabled to exploit the features of the
Automatic Restart Manager (ARM). If an Automatic Restart Manager policy has been
defined for CIM and the CIM server is authorized to register with ARM, then the CIM
server will be automatically restarted by ARM.

� New class IBMzOS_LogicalDisk

The base operating system instrumentation is extended to support logical disk volumes. A
new class IBMzOS_LogicalDisk is introduced, which inherits from CIM_LogicalDisk and is
associated to CIM_ComputerSystem through the IBMzOS_LogicalDiskDevice
association.

� New command line utility: cimsub

A new CIM server command line utility lets you manage CIM indications on the local CIM
server. This command can list, enable, disable, and remove indication subscriptions,
filters and handlers.

� Authentication based on SSL certificates

The CIM server is enabled to exploit the AT-TLS facilities to authenticate CIM clients.
AT-TLS provides a feature to enable and use SSL/TLS connections and encryption for
communication with the CIM clients. Now the CIM server is aware of AT-TLS, and CIM
clients can be authenticated through certificates.

� CIM client for Java

New with z/OS V1R9, the CIM Client for Java library from the SBLIM project is included
with z/OS CIM. The CIM Client for Java is a programming API that enables z/OS
applications written in Java for local and remote access of CIM instrumentation through
the CIM-XML over HTTP access protocol. It consists of a Java library and associated
online Java documentation.

� Logging facility is changed to use the System Logger

The CIM server logging facility is replaced by using the System Logger facility of the z/OS
Communication Server. The logging to the z/OS system console is unchanged.

� New instrumentation for job and sysplex management

Instrumentation for server resources on the system are called providers. The providers,
which are based on a subset of the standardized CIM classes, gather data on a system.
CIM clients can work with these data by accessing the providers through the CIM server.

New instrumentation has been added for the management of jobs, sysplex, and Coupling
Facility resources through CIM.

� New and changed z/OS-specific messages

Many new and changes messages are introduced with z/OS V1R9.
Chapter 19. New faces of z/OS 313

19.3.2 CIM cross-platform management

As shown in Figure 19-2, with CIM, management applications from different vendors can
manage a heterogeneous environment of systems via the same technology. All applications
operate on the same set of common data, such as the standard CIM Schema, using the same
CIM-XML over HTTP access protocol. There is no need for vendors of management
applications to either ship their own set of instrumentation nor to install their own agent
technology on the systems to be managed.

Specific attributes of the various platforms are still available through CIM and can be either
ignored or dynamically discovered by management applications. It is also still possible to
create management applications for a specific platform only, by exploiting the extended CIM
classes created for that platform. In providing this, it avoids the need for multiple
management agents to be installed on the managed systems. The infrastructure for all types
of management is the generic CIM Server.

As shown in Figure 19-2, a CIM client application requests the CIM server to return
information about z/OS resources, which in this case is about basic z/OS data as well as RMF
metrics. The CIM server invokes the appropriate CIM providers, which retrieve the requested
data associated to z/OS system resources. The z/OS RMF monitoring provider invokes the
RMF Distributed Data Server (DDS), which in turn collects RMF Monitor III performance data.
The CIM server consolidates the data from the providers and returns them back to the calling
client through the CIM/XML over HTTP access protocol.

Figure 19-2 Cross-platform management

Note: The CIM-XML over HTTP protocol is an implementation of the standardized formats
for communication between clients and the CIM server “Representation of CIM in XML”
and “CIM Operations over HTTP”. For more information about these standards, see the
WBEM Web site.

Sys4
i5OS

Sys5
z/OS, z/VM, Linux

Sys6
Windows

Sys3
AIX Sys1

Windows

Sys2
Linux

IBM

C
IM

 C
lient

CIM Server

C
IM

 C
lient

C
IM

 C
lient

C
IM

 C
lient

CIM Server

CIM Server

CIM Server
CIM ServerCIM Server

cimXML over HTTP

Management
Applications Managed Systems / Resources

CIM Clients
CIM Servers
314 z/OS Version 1 Release 9 Implementation

19.3.3 CIM components and dependencies

The overall goal of this open architecture is to provide simplified systems management
functionality through a common, easy-to-use interface. However, you cannot just “slap” a GUI
onto the operating system and expect something worthwhile to happen. The ability to interact
with z/OS resources requires a concerted effort from the user interface (UI), to a remote
interface, to a set of abstractions that organize the management operations functions
provided by the operating system into understandable resource models, down to the low level
functions that carry out these operations on z/OS itself.

With support for the CIM server on systems running z/OS, users have the ability to access
z/OS resources through an extendible industry standard model. The CIM server, shown in
Figure 19-3 on page 317, is used to receive client requests, collect the requested
metrics/data from the managed system, and return the results to the client.

CIM server support with z/OS V1R9
Starting with z/OS 1R9, the CIM server exploits the functionality of common event adapter
(CEA). CEA is a z/OS component that provides the ability to deliver z/OS events to
C language clients. A CEA address space is started automatically during initialization of every
z/OS system. In order for the address space to start successfully, you must configure CEA to
work with z/OS. Failure to do so will cause CEA to run in a minimum function mode. For
details, refer to the z/OS installation planning publication.

CIM provider access control permits the Communications Server CIM providers to gather
CIM data when the user ID associated with the client of the z/OS CIM server is not defined as
a superuser.

CIM providers
CIM data instrumentation is supplied by CIM components called providers. The providers
gather data on a system in support of the CIM classes. Clients can retrieve the data through
the Common Information Model Object Manager. On z/OS, this function is provided by the
z/OS CIM server.

This CIM provider function resides in the /usr/lpp/tcpip/lib directory. There is no configuration
necessary to activate this CIM provider support. The z/OS CIM server must be configured
and activated for the data supported by the Communications Server CIM providers to be
available to clients.

The z/OS Communications Server CIM classes are shipped with the z/OS CIM server. The
files that define these classes and any platform-specific properties are also installed in the
/usr/lpp/tcpip/mof directory.

Using CIM provides a consistent, modeled approach to providing system interfaces. The CIM
server technology allows for clients to be running either on the same system or on other
systems in the network.

The CIM providers describe and realize the model for each of the manageable resources on
the system:

� Provide the XML interface for external callers

� Provide the interface code to enable an external caller (in this case, systems management
applications) to obtain and alter state of various resources in the system
Chapter 19. New faces of z/OS 315

Cluster instrumentation
The cluster instrumentation work enables the cluster CIM provider to invoke the proper
system interfaces to obtain and change the status of cluster-related resources:

� Internal services callable only by the Cluster Provider

� SYSREXX routines

In so doing, the providers extend the reach of sysplex systems management up to the CIM
Server.

System REXX (SYSREXX)
System REXX enables an authorized program to invoke a REXX script without having to go
through the typical setup and management of either invoking the TSO TMP or having to
manage REXX environments. Hence, using a simple programming interface, it may be run
outside the normal TSO/E or batch environments.

It enables a low level program access to:

� Powerful parsing and string/character manipulation

� The ability to issue system commands and parse the results

It enables rapid development and deployment of system programmer tools, such as:

� Operations scripts

� Health checks

Common event adapter
The z/OS common event adapter (CEA) enables a z/OS UNIX process to subscribe to
various “legacy” asynchronous BCP events by type and matching criteria, as shown in
Figure 19-4 on page 318, are as follows:

� WTO
� ENF
� Program-specified event

It extends the reach of “legacy” events to z/OS UNIX processes while components with
existing events do not have to be reimplemented to communicate with CIM indication
providers.

Note: IBM has developed providers for z/OS that support basic operating system
information and some performance metrics. A CIM provider is the link between the CIM
server and the system. This interface allows CIM to access and manage the resources.
Each CIM provider makes accessible the resources it represents in a standard way.
316 z/OS Version 1 Release 9 Implementation

Figure 19-3 CIM Components and dependencies

Jobs instrumentation
The jobs instrumentation enables the jobs and process CIM provider to invoke the proper
system interfaces to obtain and change the status of batch jobs and z/OS UNIX processes;
see Figure 19-4 on page 318.

The jobs instrumentation extends the reach of JES and z/OS UNIX Systems Services
management up to the CIM server.

CIM Client

 CIM Server
 CIM providers for Server,
 Cluster, and Systems Management

 z/OS Cluster RIM
 Instrumentation

z/OS Common
Event Adapter

 Cluster Instrumentation
 extensions for CDS

 Jobs Instrumentation

 SYSREXX: TSO=YES Server
 Address Space Support

 SYSREXX for z/OS base

z/OS
Chapter 19. New faces of z/OS 317

Figure 19-4 Cluster and jobs instrumentation

19.4 CIM server overview

For z/OS V1R7, a provider always ran in the same address space as the z/OS CIM server.
This design had several undesirable side effects; for example, providers were able to crash
the CIM server or other providers, intentionally or accidentally. To solve these problems,
starting with z/OS V1R8, the Out-of-Process provider feature from OpenPegasus is ported to
the z/OS CIM server and is enhanced to comply with the guidelines for z/OS security. The
Out-of-Process feature manages providers in separate address spaces rather than loading
and calling provider libraries directly within the CIM server process.

As mentioned, CIM data instrumentation is supplied by CIM components called providers.
The providers gather data on a system in support of the CIM classes. Clients can retrieve the
data through the Common Information Model Object Manager. On z/OS, this function is
provided by the z/OS CIM server.

The CIM Object Manager (CIMOM), also known as a CIM server, is the software entity that
receives, validates, and authenticates the CIM requests from the CIM client. It then directs
the requests to the appropriate component or device provider.

19.4.1 CIM server support in z/OS V1R9

The CIM server for z/OS V1R9 has new components, as shown in Figure 19-5 on page 319.

Component
Provided Rexx

Scripts

CIM Model
(provider)

Component
Interfaces

Component
Interfaces

CIM Server
System REXX

Parsing
System command/response
support

(EMCS console)

z/OS

Common Event Adapter
 Process unsolicited events
 Extract needed info
 Pass data to owning CIM provider

WTO

ENF

Other events

USS/LE
Environment

CIM Model
(provider)

CIM Model
(provider)

Component
Interfaces

BCP
Environment

Event Data

Application code
Happy

Systems
Manager

Management
Applications

CIM over HTTP protocol
Existing z/OS code

New z/OS Code
318 z/OS Version 1 Release 9 Implementation

Figure 19-5 CIM server overview

These new components are described here:

� CIM client API for Java

The CIM client for Java library from the SBLIM project is included with z/OS CIM. The CIM
Client for Java is a programming API that enables z/OS applications written in Java for
local and remote access of CIM instrumentation through the CIM-XML over HTTP access
protocol. It consists of a Java library and associated online Java documentation.

� CIM server runtime

The CIM server runtime environment security is split into authentication and authorization.
Authentication is always enabled for the CIM server. The CIM server supports
authorization via the RACF class WBEM, in which currently the single profile CIMSERV
restricts access to the CIM server. With z/OS V1R9, this environment is enhanced with the
following function support:

– General updates and improvements

– Automatic Restart Manager (ARM) support

To extend the server availability, the CIM server is enabled to exploit the features of
the Automatic Restart Manager (ARM). If an Automatic Restart Manager policy has
been defined for CIM and the CIM server is authorized to register with ARM, then the
CIM server will be automatically restarted by ARM.

– SSL certificate-based authentication

The CIM server is enabled to exploit the AT-TLS facilities to authenticate CIM clients.
AT-TLS provides a feature to enable and use SSL/TLS connections and encryption for
communication with the CIM clients. Now the CIM server is aware of AT-TLS, and CIM
clients can be authenticated through certificates.

– Logging facility is changed to use the syslog daemon

– New command-line utility: cimsub

The cimsub utility is a new CIM server command-line utility that allows you to manage
CIM indications on the local CIM server. This command can list, enable, disable, and
remove indication subscriptions, filters, and handlers.

CIM Server
Runtime

CMPI Provider Adapter

Client
Applications

...Resource
Provider

Resource
Provider

Resource
Provider

OS Mngt
Instr. Updt.

secure

CIM Client API
for Java

Other
API’s

CIM Schema
(Data Model)

Platform Schema
 Extensions

Repository

CIM over HTTP protocol
Chapter 19. New faces of z/OS 319

� Operating system management instrumentation update

The CIM base classes is extended with a new class, IBMzOS_LogicalDisk, which
provides support for logical disk volumes. New instrumentation for job and sysplex
management has been added for the management of jobs, sysplex, and Coupling Facility
resources through CIM.

CIM security
Because this support allows for the modification of key system resources, maintaining
appropriate authorization is key, as follows:

1. The CIM server authenticates the end user.

2. The CIM server checks the authority of the user based on provider-level checks.

3. The credentials of the user are propagated from the CIM server, through the provider,
down to the CEA, SYSREXX and other component interfaces, where authorization checks
are made.

The secure check, shown in Figure 19-5 on page 319, requires the following security
customization definitions when CEA is to be started in full function mode:

� Configure CEA to work with z/OS by updating the RACF database to permit CEA to use
the Automatic Restart Manager (ARM). Use this command:

ADDUSER CEA DFLTGRP(SYS1) OMVS(UID(0) HOME(’/’) FILEPROCMAX(1024)) SPECIAL
RDEFINE STARTED CEA.** STDATA(USER(CEA) GROUP(SYS1) TRACE)

� Define the OMVS segment that allows CEA to work in the UNIX environment. Use this
command:

ADDUSER userid DFLTGRP(SYS1) OMVS(UID(0) HOME(’/’) FILEPROCMAX(1024))
SPECIAL

The RACF user ID may be CEA but, because CEA is a started task, it does not have to be. If
the STARTED class or started procedures table (ICHRIN03) contains another user ID, CEA
will have that user ID assigned to it.

For example, a generic entry might specify that a user ID such as STCUSER or IBMUSER
should be assigned to any started task that is not defined with its own entry. If the user ID
CEA was not set up and assigned to the started task, then the generic entry would be used
and an IEF695I message would indicate that START CEA was assigned to the generic
user ID.

If the default user ID that is assigned does not have an OMVS segment, a default OMVS
segment is sought through the FACILITY class profile BPX.DEFAULT.USER. RACF does not
use the default OMVS segment unless the task is running with a RACF-defined user ID.

CMPI provider adapter
CMPI is a C-based programming interface for providers designed for binary compatibility. All
management instrumentation included with the z/OS CIM server was developed following the
CMPI standard, and CMPI is the only supported provider programming interface for the z/OS
CIM server. Documentation about the CMPI Technical Standard is available from The Open
Group and is not repeated in any documentation available for z/OS.

Developers of management instrumentation for z/OS need to be familiar with the CMPI and
CIM/WBEM standards. The information contained here explains the specific aspects that
need to be considered for developing CMPI.
320 z/OS Version 1 Release 9 Implementation

Management instrumentation is implemented by developing a provider. A provider is a
dynamic load library (DLL) that implements a given interface and contains the program code
used by the CIM server to interact with the system resource described by a certain CIM class,
for example CIM_Processor.

Providers are registered with the CIM server for a defined CIM class, allowing the CIM server
to route all client requests directed against this class to the provider for interacting with the
resource. A provider logically acts as an extension of the CIM server for interfacing directly
with the managed resources.

There are also a few samples for CMPI providers available on the OpenPegasus CVS
Repository. They can be obtained the same way as the header files, by navigating to the
pegasus/src/Providers/sample/CMPI directory.

19.5 CIM client-to-CIM server access

Communication between the CIM server and a CIM client using AT-TLS and RACF uses a
client's user ID and a password. Starting with release the z/OS V1R9 CIM server, you can

Important: Users familiar with CVS can check out these files using a CVS client on any
platform by following the instructions in the CVS Overview section at

http://www.openpegasus.org/

The required files are located in directory pegasus/src/Pegasus/Provider/CMPI. To get the
correct version of the files, they need to be checked out with the RELEASE_2_5_1 tag.

Users who are not familiar with using CVS should obtain the files through a Web browser
starting at:

http://www.openpegasus.org/

From the main page switch to the Web CVS section, where you can navigate to the
required CMPI files by clicking the following directory names:

pegasus (see Figure 17) > src > Pegasus > Provider > CMPI

Note: Before you can start to develop a CMPI provider, you first need to have the CIM
class model containing descriptions for the resource to be instrumented in the form of a
CIM class. Such a class should follow the standards from DMTF Standards and Initiatives,
and in particular it should be consistent with the CIM Schema supported by the CIM server.

Usually, a CIM class for which a provider is written is derived from one of the classes in the
CIM Schema provided by the DMTF, and named with a vendor-specific class name prefix.
For example, the prefix IBMzOS_ is used for all classes provided by IBM for the z/OS
operating system.

This naming scheme also helps to prevent conflicts with the resources that have already
been instrumented for CIM by IBM or other vendors. In general it is not recommended to
create new providers for resources that have already been instrumented by IBM.

The DMTF CIM Schema defines an information model for representing systems
management functions. For z/OS V1R9, CIM Schema version 2.11 is supported by the
CIM server.
Chapter 19. New faces of z/OS 321

use SSL certificates and encryption for communication with the CIM clients, because AT-TLS
is enabled to authenticate CIM clients by SSL certificates in cooperation with RACF, as
shown in Figure 19-6. The CIM client sends an SSL certificate to AT-TLS, AT-TLS sends the
certificate to RACF, and RACF associates the certificate to the appropriate user ID, which
then can access the CIM server. Vice versa, the CIM server returns its responses to the
client's requests using SSL certificates.

Figure 19-6 CIM client logging on to a CIM server

CIM server
For the CIM server for z/OS, users log in over HTTP or HTTPS using basic authentication.
When logging in, users are authenticated using their z/OS user ID and password as defined,
for example, in the Resource Access Control Facility (RACF).

A CIM user must have at least READ access to the CIMSERV RACF profile in the WBEM
class to access the CIM server. In order to use any of the administrative command line tools
of the CIM server, a user instead requires CONTROL access to the CIMSERV profile.

The CIM server authenticates users with the z/OS Security Server RACF to determine which
users can log into it. Authentication is performed for every new connection (local or remote)
before a user is granted access to the CIM server, as shown in Figure 19-6.

The CIM server offers an optional authorization check. This check is optionally performed on
a per provider basis, meaning that a RACF profile in the WBEM class can be related to a
single provider library. Correlation between a provider and a RACF profile occurs during
provider registration by the addition of a property in the PG_Provider class.

The provider-based authorization is defined by the vendor of a provider rather than by the
CIM server administrator. Therefore, specific RACF requirements will need to be documented
on a per provider basis.

CIM Server

CIM Client

 User ID
Password

CIM-XML
Request

User ID

Server Certificate
 Public Key

Pegasus CIM Server
 Process

AT-TLS
encrypted

communication
HTTP

TC
P/

IP SSL
Pe

ga
su

s
H

TT
P

Au
th

en
ic

at
or

CMPI Provider
 Threads

CMPI context
 Principal

Providers
Server Cert
Private key
Public Key
322 z/OS Version 1 Release 9 Implementation

19.6 CIM server runtime update and enhancements

The objective of the CIM updates for z/OS V1R9 is to keep the CIM server for z/OS up to date
and at same level with other e-Server platforms.

It consists of the following enhancements:

� TCP/IP restart toleration

This allows TCP/IP to be stopped and started. Requests currently running are terminated.
A single error message is issued:

CFZ09100I: TCP/IP temporary unavailable

After restarting TCP/IP, all sockets are reconnected again without operator invention.

� CIM error support

This is an extension to incorporate the DMTF-defined functionality to allow CIM_Error
instances to be created by the server and passed to the client as components of
CIM/XML.

� Support for embedded instances

This support aims to integrate embedded instances into the Pegasus infrastructure,
handling the encoding, parsing, and manipulation of embedded instance properties and
parameters in the same manner as numerics, strings, embedded and objects.

The following topics are enhancements to the CIM server in order to receive benefit of z/OS
qualities of service.

� ARM support
� SSL certificate authentication
� CIM logging to syslog daemon (syslogd)
� cimsub command

19.6.1 Automatic Restart Manager support

The CIM server (only if started as a started task) automatically registers with Automatic
Restart Manager (ARM), in which case it issues the following successful registration
message:

CFZ12532I: The CIM server successfully registered to ARM using element name
CFZ_SRV_SC63

The CIM server will be de-registered from ARM during the normal shutdown procedure. In
case of failure, the following message is issued and if you do not plan to use ARM, ignore the
warning message:

CFZ12533W: The CIM server failed to register with ARM using element name
CFZ_SRV_SC63 : return code 0x08, reason code 0x0134.

ARM element name
The ARM element name CFZ_SRV_<SYSNAME> has to be defined as shown in Figure 19-7
on page 324.
Chapter 19. New faces of z/OS 323

Figure 19-7 Sample ARM policy

In a sysplex, no cross-system restarts are allowed, because there is always one CIM server
per MVS image.

SAF configuration for ARM
For security reasons, the IXCARM.DEFAULT.CFZ_SRV_* profile has to be defined in the
FACILTY class of RACF and the CIM server UID must have UPDATE access to that profile,
as shown here:

RDEFINE FACILITY IXCARM.DEFAULT.CFZ_SRV_* UACC(NONE)
PERMIT IXCARM.DEFAULT.CFZ_SRV_* CLASS(FACILITY) +
 ID(CFZADM) ACCESS(UPDATE)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST (FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

19.6.2 SSL certificate-based authentication

The CIM server for z/OS V1R9 provides an additional authentication mechanism using
certificates, as shown in Figure 19-8 on page 325. The CIM server is using the z/OS
Communications Server Application Transparent Transport Layer (AT-TLS) and more
specifically it is using its Policy Agent. The CIM server is AT-TLS-aware, and it queries
AT-TLS for the z/OS User ID.

Certificate management must be performed by an SAF-compliant product (for example
RACF), which does the following:

� Stores CA and CIM server certificates into key-rings

� Maps certificate subjects to a z/OS user ID, either one-to-one or many-to-one

DEFINE POLICY NAME(CFZARMPO) REPLACE(YES)

 RESTART_GROUP(CFZCIMRESGRP)
 /* List all systems where the CIM Server can be started */
 TARGET_SYSTEM(SC63,SC70)
 /* Wait 10 sec before restarting to free resources */
 RESTART_PACING(10)

 ELEMENT(CFZ_SRV_*)
 RESTART_ATTEMPTS(3,300)
 RESTART_TIMEOUT(300)
 READY_TIMEOUT(300)
 /* cross-system restart is not allowed. */
 /* No restart after system failure */

 TERMTYPE(ELEMTERM)
 RESTART_METHOD(ELEMTERM,STC,'S CFZCIM')
324 z/OS Version 1 Release 9 Implementation

Figure 19-8 SSL certificate-based authentication

SSL certificate-based authentication configuration
The SSL certificate-based authentication configuration is executed through the cimconfig
command, as follows:

-enableHttpsConnection=true
-httpsPort=5989

The AT-TLS configuration
The definitions are performed through a Policy Agent rule, which is part of z/OS
Communications Server configuration, as follows:

“Jobname” or “Username” for policy selection.
“LocalPortRange” must match httpsPort of CIM Server
“HandshakeRole” set to ServerWithClientAuth
“ClientAuthType” set to SAFCheck
“TTLSKeyringParms” set to the SAF managed keyring
“ApplicationControlled” set to OFF

When using SSL client authentication with the z/OS CIM server, in AT-TLS the parameter
HandshakeRole has to be set to ServerWithClientAuth. Otherwise, the HandshakeRole has
to be set to Server on the inbound AT-TLS policy configuration.

The z/OS CIM server requires the HandshakeRole=ServerWithClientAuth or
HandshakeRole=Server AT-TLS policy option to be set. If not set, the connection will be
rejected.

Note that the AT-TLS policy values Full and Required for the property ClientAuthType are not
recommended settings for the z/OS CIM Server, because an additional HTTP Basic
authentication (user ID/password) is then required.

The CIM client is verified according to one of the following rules shown in Figure 19-9 on
page 326.

CIM
Server

59
88

59
89

Client

In
di

ca
tio

n

z/OS
Comm. Server

AT-TLS

Client
Cert

z/OS
SAF-Product
(e.g. RACF)

zosuser

password
zosuser

CA-
Cert

CIM Sever
Cert

CA-
Cert

Encrypted

.

Chapter 19. New faces of z/OS 325

Figure 19-9 Client verification mode

19.6.3 Logging facility changed to syslog daemon

In CIM with z/OS V1R9, files *.log within the /var/wbem/logs directory are no longer used.
Instead, the syslog daemon (syslogd), part of the z/OS Communication Server, is used. If this
daemon is not yet active, refer to the following publications for detailed explanations about
how to start it:

� z/OS Communications Server: IP Configuration Reference, SC31-8776

� z/OS Communication Server: IP Configuration Guide, SC31-8775

The logging utility that is available for the CIM server, and which is interfacing with syslog, is
initially enabled and cannot be disabled. However, you can configure the utility by choosing
the log level that you want to use: TRACE, INFORMATION, SEVERE or FATAL.

TRACE returns the most detailed trace information, while FATAL only produces trace output
for fatal errors.

You can change the logging level by using the logLevel parameter of the cimconfig
command while the CIM server is running. For example, you can go into the USS shell and
type the following command while the CIM server is running:

cimconfig -s logLevel=INFORMATION

19.6.4 New command-line utility: cimsub

The cimsub command lets you manage CIM indications on the local CIM server. The
command can list, enable, disable and remove indication subscriptions, filters and handlers.
However, you cannot modify or create a handler or a filter. The CIM indication must be
created or modified by a CIM client program.

In order to use the cimsub command, the CIM server must be running on the local system and
a user needs to have CONTROL access to profile CIMSERV in WBEM class.

The client has to provide a valid certificate and this
certificate is associated with a user ID. No HTTP
Basic authentication is done.

SAFCheck

The client has to provide a valid certificate. The CIM
Server only does HTTP Basic authentication if it is
valid. User ID/password still required!

Required
(Not Recommended)

If the client provides a certificate, it is validated.
Whether or not it is valid, HTTP Basic authentication
is done. User ID/password still required!

Full
(Not Recommended)

The client is not prompted for a certificate. The
authentication is done through HTTP Basic
authentication (user ID/password).

PassThru

z/OS CIM Server behaviorAT-TLS Policy parameter
ClientAuthType
326 z/OS Version 1 Release 9 Implementation

The following example lists all subscriptions in the namespace root/PG_InterOP in verbose
mode when issuing the following command and receiving the following messages:

cimsub -ls -v
Namespace: root/PG_InterOp Filter:
root/PG_InterOp:IndicationTest_indicationFilter
Handler: root/PG_InterOp:CIM_ListenerDestinationCIMXML.IndicationTest
Query: "SELECT * FROM TestIndication"
Destination: http://test.server.com/
SubscriptionState: Enabled

To disable the subscription specified by -F and -H, and display the result in verbose mode,
issue the following command and receive the following messages:

cimsub -d -F IndicationTest_indicationFilter -H IndicationTest cimsub -ls -v
Namespace: root/PG_InterOp
Filter: root/PG_InterOp:IndicationTest_indicationFilter
Handler: root/PG_InterOp:CIM_ListenerDestinationCIMXML.IndicationTest
Query: "SELECT * FROM TestIndication"
Destination: http://test.server.com/
SubscriptionState: Disabled

19.7 CIM client API for Java

A CIM client API for Java is provided to address the requirement of a Java-based client API to
exploit the CIM server on z/OS; see Figure 19-10 on page 328. This is expected to enable
vendors and other exploiters to write CIM client applications in Java on z/OS.

It supports the CIM-XML over HTTP(S) protocol. The interface, which is not yet standardized,
uses JSR. The code is located at /usr/lpp/wbem/jclient. Version 1.3 is shipped under the form
of a client library named sblimCIMClient.jar, with a configuration file located in cim.defaults.
API Java documentation is available in sblim-cim-client-doc.zip. Further information can be
found at:

http://sourceforge.net/projects/sblim/

The SBLIM CIM client is a pure Java-based implementation of the following:

� The WBEM operations API

� The CIM metamodel representation

� An indication listener

In CIM terminology, an indication is the representation of the occurrence of an event. For
example, an event can be the unexpected termination of a program, or the modification of
a property value of a CIM instance. There is not necessarily a one-to-one correspondence
between events and indications. In particular, multiple indications can be generated for the
same underlying event if multiple CIM client applications had subscribed for the event.

An event can also occur without causing a related indication to be raised (for example, if
no subscription was made for the event).
Chapter 19. New faces of z/OS 327

Figure 19-10 CIM client API for Java

19.8 Instrumentation in z/OS V1R9

The CIM standard provides the ability to develop management applications that work with
systems management data. To work with CIM, developers should have a thorough
understanding of the CIM standard defined by the DMTF.

IBM has developed providers for z/OS that support basic operating system information and
some performance metrics. A CIM provider is the link between the CIM server and the
system. This interface allows CIM to access and manage the resources. Each CIM provider
makes accessible the resources it represents in a standard way.

The CIM Server provides interfaces that allow CIM clients to get and set management
information on the system. The management information is based on the CIM model of
managed objects and is provided to clients in CIM-HTML format. The models contain
schemas of classes used to represent managed objects, and the associations between the
classes.

Note: Additional examples are available from the SBLIM OpenSource project and can be
downloaded from:

http://www.sblim.org

Although the CIM providers from SBLIM apply to Linux platforms only, they are useful
examples of how to write CIM providers in general. The SBLIM project also provides a
number of useful tools and documents related to provider development.

network

http server

object mgr / broker

repository

pr
ov

id
er

 in
te

rfa
ce

instrumentation

instrumentation

instrumentation

http client
CIM Server

model

business abstraction layer

core application
management application

operations

http clienthttp serverslp ua

cim-xml (de-)coder

indications

indications wbem operations

cim-xml (de-)coder

sl
p

sa

Note: For more information about the CIM standard, see Common Information Model
(CIM) Standards on the DMTF web site. For information about z/OS CIM, see z/OS
Common Information Model User's Guide, SC33-7998.
328 z/OS Version 1 Release 9 Implementation

The classes are static descriptions of managed object types. Dynamic data about the state of
physical managed objects is obtained from CIM providers, and is used to create instances of
the classes. CIM instrumentation in z/OS V1R9 has been enhanced by a certain number of
new CIM classes.

A part of z/OS CIM is the eServer OS management profile. It provides access to, and
management of, the base IT resources, as follows:

� zSeries LPARs
� z/OS operating system images
� z/OS address spaces

CIM client/server implementation
The z/OS base element Common Information Model (z/OS CIM) implements the CIM server,
based on the OpenPegasus open source project. A CIM monitoring client invokes the CIM
server, which in turn collects z/OS metrics from the system and returns it to the calling client.

Figure 19-11 on page 330 illustrates how the CIM server works in the z/OS environment, as
follows:

1. A CIM client application requests the CIM server to return information about z/OS
resources, in this case about basic operating system (OS) data as well as RMF metrics.

2. The CIM server invokes the appropriate CIM providers, which retrieve the requested data
associated to z/OS system resources.

3. The z/OS RMF monitoring provider invokes the RMF Distributed Data Server (DDS),
which in turn collects RMF Monitor III performance data.

4. The CIM server consolidates the data from the providers and returns them back to the
calling client through the CIM-XML over HTTP protocol.

In addition, Figure 19-11 on page 330 shows two types of CIM providers:

� RMF monitoring providers that use the RMF DDS to access the z/OS system data

A CIM monitoring client invokes the CIM server which, in turn, collects z/OS metrics from
the system and returns it to the calling client. To get the z/OS metrics, the CIM server
invokes the z/OS RMF monitoring provider, which retrieves the metrics associated with
z/OS system resources. The z/OS RMF monitoring provider uses existing and extended
RMF Monitor III performance data. The metrics obtained by this new API are common
across eServer platforms, so you can use it to create end-to-end monitoring applications.

� z/OS operating system management providers that access the z/OS system data directly

IBM-supplied providers
CIM classes have been implemented as IBM-supplied providers, and this is implemented
according to the DMTF dynamic metrics model. You can find more information about this data
model in the CIM Metrics white paper (DSP0141), which is available at the DMTF Web page
in the CIM White Paper section at the following URL:

http://www.dmtf.org
Chapter 19. New faces of z/OS 329

Figure 19-11 Client/Server requests for data to z/OS using CIM

19.8.1 Required parmlib updates

The following parmlib parameters have to be defined to enable the job and cluster providers:

� MAXCAD limit

This parameter defaults to 50. If the installation sets a lower limit, it may be necessary to
increase this setting to accommodate the Common Event Adapter (CEA) Common Area
Data Space (CADS).

� APF authorize SYS1.MIGLIB

The following must be added to the installation’s PROGxx member in PARMLIB to enable
the CFRM-related CIM providers to function:

APF ADD DSNAME(SYS1.MIGLIB) VOLUME(******)

� REXX alternate library

The couple data set providers require the use of compiled REXX execs provided as part of
the z/OS V1R9 SYSREXX support. These execs require the use of the REXX alternate
library. The following addition to the installation’s PROGxx member in PARMLIB is one
way to accomplish this:

LNKLST ADD,NAME(LNKLST00),DSN(REXX.V1R3M0.SEAGALT),ATTOP

RMF monitoring
 providers

 RMF Distributed
Data Server (DDS)

RMF Monitor III
gathers and returns
metrics to the DDS

CIM Server

CIM Client
Application

OS management
 providers

Native z/OS data

CIM/XML RequestResponse

Request RequestProvideProvide

Note: A sample TSO CLIST is provided that performs the necessary RACF setup to permit
CEA to use Automatic Restart Manager (ARM), and to permit CEA to operate in UNIX
System Services (USS) with the cluster, couple data set, and JES2/JES3 jobs CIM
providers.
330 z/OS Version 1 Release 9 Implementation

19.8.2 Instrumentation for logical disk volumes

The base operating system instrumentation is extended to support logical disk volumes. A
new IBMzOS_LogicalDisk class is introduced, which inherits from CIM_LogicalDisk and is
associated to CIM_ComputerSystem through the IBMzOS_LogicalDiskDevice association.

For basic operating system management data, a set of CIM classes is provided, such as the
logical disk volumes, the properties of which are as shown in Figure 19-12.

Figure 19-12 IBMzOS_LogicalDisk – implemented properties

CIM instrumentation added for logical disk allows monitoring of logical disk volumes through
open standards. This enhancement is designed for the heterogeneous management of
operating systems.

19.8.3 Instrumentation of batch jobs

With z/OS V1R9, IBM z/OS instrumentation of batch jobs allows the CIM provider to obtain
generic information about a z/OS jobs, such as its jobname, priority, JES properties, and
status (Cancel, Hold, Release, Restart).

It also allows the CIM provider to obtain generic information about the name of the subsystem
and its characteristics (JES2 or JES3, primary subsystem or not), sysout data sets and any
details of this kind.

IBMzOS_Job is a new class that represents a z/OS job. Jobs are associated with a
subsystem, such as JES2, JES3, or MSTR. Some properties may require significant
overhead, including I/O, to obtain their data. These properties are identified with the qualifier
of Expensive. To reduce system overhead, the provider will only return the values for these
expensive properties if they are explicitly requested by name.

19.8.4 Instrumentation for a sysplex

A large set of CIM instrumentation regarding a sysplex is added in z/OS V1R9, as shown in
Figure 19-13 on page 332.

[0] = "Unknown"CIM_MSEuint16 OperationalStatus

CIM_LDev

CIM_LDev

CIM_LDev

CIM_LDev

CIM_LDev

CIM_LDev

CIM_ELE

CIM_MSE

CIM_ME

CIM_ME

CIM_ME

Schema Class

[0]=Device Node Element Description obtained from the NEDID field of
the matching IHACDR control block.String[] OtherIdentifyingInfo

[0]=“Device Node Element Descriptor”String[] IdentifyingDescriptions

Channel Device ID obtained from UCBCHAN.string DeviceID [key]

Mapped from the UCBONLI and UCBBOX values.
(See next chart for mapping) uint16 EnabledState

The systems fully qualified hostname (see
IBMzOS_ComputerSystem::Name)string SystemName [key]

Always returns “IBMzOS_ComputerSystem”string SystemCreationClassName [key]

Always returns “IBMzOS_LogicalDisk”string CreationClassName [key]

Volume Serial Number obtained from UCBVOLI.string Name

Same as Name (Volume Serial Number)string ElementName

Always returns “Represents a storage volume as seen by z/OS”string Description

Always returns “z/OS Storage Volume”string Caption

CommentsProperty Name
Chapter 19. New faces of z/OS 331

Figure 19-13 CIM Instrumentation: Cluster/Sysplex resources

Each sysplex node (that is, LPAR) is instrumented as shown in Figure 19-14.

Figure 19-14 CIM Instrumentation: SysplexNode/LPAR

The Coupling Facility is itself instrumented as shown in Figure 19-15 on page 333.

Cluster/Sysplex Resources Update SFM Policy information
Obtain the sysplex name and the set of active z/OS
system members of the sysplex
Obtain the set of Coupling Facilities and the set of
sysplex couple data sets in use by the z/OS
sysplex
Start or stop a Reallocate command against the CF
structures in use by the sysplex
Notified when the z/OS sysplex is capable of
supporting CIM instrumentation functions

CDSCDS
CC

CC

Query SFM Policy attributes, parmlib attributes
Obtain the z/OS sysplex name of where this
z/OS system is a member
Obtain the set of CF structure connectors that
are running on this system
Obtain the set of Coupling Facilities that have
connectivity to this system
Notification when a z/OS system joins the
sysplex

Cluster/Sysplex Resources
SysplexNode/LPARSysplexNode/LPAR

CDS
332 z/OS Version 1 Release 9 Implementation

Figure 19-15 CIM instrumentation: Coupling Facility

Each Coupling Facility structure is instrumented as depicted in Figure 19-16.

Figure 19-16 CIM instrumentation: CF structure

Cluster/Sysplex Resources

Coupling Facility

Obtain the CF’s name, LPAR ID, storage and
processor information
Obtain the CF node descriptor
Start or stop maintenance mode on the CF

SysplexNode/LPARSysplexNode/LPAR

CDS

Coupling Facility

Cluster/Sysplex Resources

SysplexNode/LPARSysplexNode/LPAR

CF Structure Obtain the structure’s name, type,
size, etc.
Determine whether it is duplexed
Start or stop duplexing
Initiate a rebuild

CDS
Chapter 19. New faces of z/OS 333

CF connectors are instrumented as depicted in Figure 19-17.

Figure 19-17 CIM instrumentation: CF connector

The cluster CDS resources class provides instrumentation for coupling function, as shown in
Figure 19-18.

Figure 19-18 CIM instrumentation: coupling function

Other subclasses of Cluster CDS Resources are instrumented as depicted in Figure 19-19 on
page 335.

Obtain the connector’s name, state, jobname
etc.
Determine whether it allows (system-managed
processes) duplexing, rebuild, alter, ratio
Force the asynchronous deletion of a failed
connector

SysplexNode/LPARSysplexNode/LPAR
Coupling Facility

CF Structure
CF Connector

Cluster/Sysplex Resources

CDS

Cluster/Sysplex Resources

SysplexNode/LPARSysplexNode/LPAR
Coupling Facility

CF Structure
CF Connector

Cluster CDS Resources

 Obtain the coupling function name and
active Policy information
Policy Operations: Stop, Start, Delete
CDS Operations: Switch Primary, Make
Alternate and Duplicate
Obtain the set of couple data sets
associated with the coupling function

CDSCDS
CC

CC

Coupling Function
334 z/OS Version 1 Release 9 Implementation

Figure 19-19 CIM instrumentation: sysplex subclasses

19.8.5 DFSMSrmm CIM provider

 The following DFSMSrmm CIM classes are added with this release:

� IBMrmm_LogicalMedia (abstract class)
� IBMrmm_PhysicalMedia (abstract class)
� IBMrmm_StorageMediaLocation (abstract class)
� IBMrmm_Identity (abstract class)
� IBMrmm_Product (main class)
� IBMrmm_PolicyRule (main class)
� BMrmm_Control (main class)

The main classes now offer the invokeMethod function to request a list of DFSMSrmm
resources by name. This function is particularly useful when a client wants to use the
CONTINUE feature to obtain chunks of data, rather than to receive a huge collection of
objects at once. It is strongly recommended that you use this function, in conjunction with the
CONTINUE operand, to obtain a large number of objects.

All aspects of a volume to a location or shelf location are now modelled by various new
association classes. Volume chains and PolicyRule (VRS) chains are also supported with
release V1R9.

19.8.6 RMF CIM monitoring

Cross-platform management intends to have the same performance metrics be used on
various IBM server platforms, including z/OS, Linux (on z), i5/OS, and so on, whenever
possible.

Meanwhile, platform-specific extensions such as zAAP or zIIP support, whenever required,
are still using the standard-based API and network transport mechanisms.

Sysplex Couple Dataset

SysplexNode/LPARSysplexNode/LPAR
Coupling Facility

CF Structure
CF Connector

Cluster CDS Resources

Coupling Function
Couple data sets

CFRM couple data set
CFRM Policy

CDSCDS
CC

CC

Cluster/Sysplex Resources

Chapter 19. New faces of z/OS 335

New metrics have been added to RMF CIM in V1R9 in order to analyze more detailed CPU
consumption (including speciality engines) and disk drive or volume statistics.

In order to express WLM-related details, DMTF advanced metrics Breakdown dimensions are
exploited.

RMF CIM providers have a prerequisite on the following address spaces:

� RMF (on every system)
� RMFGAT (on every system)
� GPMSERVE (once per sysplex)
� CFZCIM (on every system) - where RMF CIM is located

As in previous releases, it is recommended that you integrate those address spaces in the
automation policy so they are always available.

New resource class IBMz_CEC
This resource represents the System z system including processors, memory, I/O drawers,
machine, power supplies, and so on; see Figure 19-20. It is a subclass of
CIM_ComputerSystem, which is returned only if RMF is installed.

Figure 19-20 IBMz_CEC

Following are the metrics associated to the IBMz_CEC class:

� TotalCPTimePercentage – CEC level overall CP utilization time percentage (physical)

� TotalIIPTimePercentage, TotalAAPTimePercentage: same for zIIPs and zAAPs

� TotalSharedCPTimePercentage, TotalSharedIIPTimePercentage,
TotalSharedAAPTimePercentage, TotalSharedICFTimePercentage,
TotalSharedIFLTimePercentage: CEC level overall utilization percentages for shared
engines only

� NumberOfSharedCPs, NumberOfSharedAAPs, NumberOfSharedIIPs

� NumberOfDefinedCPs, NumberOfDefinedAAPs, NumberOfDefinedIIPs,
NumberOfDefinedICFs, NumberOfDefinedIFLs

Note: The source code of a client monitoring application is delivered with RMF in
SYS1.SAMPLIB(ERBWBEM1. You can compile and run this program with the appropriate
Pegasus library. Detailed information about its function and usage is contained within the
code.

Number of configured LPARs of that CECuint16ConfiguredPartitions

System capacity in MSU/houruint32Capacity

Like “715”StringMachine Type

Like “2094”StringMachine Family

Value “IBMz_CEC”StringCreationClassName (key)

CEC/CPC serial numberStringName (key)

DescriptionTypeProperty
336 z/OS Version 1 Release 9 Implementation

� NumberOfDedicatedCPs, NumberOfDedicatedAAPs, NumberOfDedicatedIIPs

� SumOfCPsAcrossLPARs: number of shared logical CPs. For example, if you have four
shared CPs in a CEC and they are shared between 10 partitions, with all four being
defined to all 10 partitions, then SumOfCPsAcrossLPARs is 40.

� SumOfIIPsAcrossLPARs, SumOfAAPsAcrossLPARs, SumOfOnlineCPsAcrossLPARs,
SumOfOnlineAAPsAcrossLPARs, SumOfOnlineAAPsAcrossLPARs

� LPARWeightForCP, LPARWeightForIIP, LPARWeightForAAP, LPARWeightForICF,
LPARWeightForIFL: total of defined weights on CEC level

New resource class IBMz_ComputerSystem
This resource represents a System z LPAR; see Figure 19-21. Like IBMz_CEC (representing
LPARs) and IBMzOS_ComputerSystem (representing the home operating system), it is a
subclass of CIM_ComputerSystem.

Figure 19-21 IBMz_ComputerSystem

Following are the metrics associated to IBMz_ComputerSystem class:

� PartitionDefinedCapacityUsedPercentage – percentage of defined MSUs actually used by
the given LPAR

� PartitionDefinedCapacity - MSU capacity of the LPAR

� PartitionCapacityFourHourAverage – MSU 4-hour rolling average

� PartitionCapacityCappedPercentage – percentage of time WLM soft-capped the partition

� TotalCPTimePercentage, TotalIIPTimePercentage, TotalAAPTimePercentage – physical
CPU utilization percentages for engines type CP, zIIP, zAAP

� NumberOfDefinedCPs, NumberOfDefinedIIPs, NumberOfDefinedAAPs,
NumberOfDefinedICFs, NumberOfDefinedIFLs, NumberOfDefinedIIPs

� NumberOfOnlineCPs, NumberOfOnlineIIPs, NumberOfOnlineAAPs,
NumberOfOnlineICFs, NumberOfOnlineIFLs

� NumberOfSharedCPs, NumberOfSharedIIPs, NumberOfSharedAAPs

� NumberOfDedicatedCPs, NumberOfDedicatedIIPs, NumberOfDedicatedAAPs

� TotalAAPonCPTimePercentage, TotalIIPonCPTimePercentage

� LPARWeightForCP, LPARWeightForIIP, LPARWeightForAAP, LPARWeightForIFL

Enabled / disabled / unknownuint16VaryCPUManagement

enabled / disabled / unknownuint16WeightManagement

enabled / disabled / unknownuint16InitialCappingForIIP

enabled / disabled / unknownuint16InitialCappingForAAP

enabled / disabled / unknownuint16InitialCappingForCP

Name of the CEC this LPAR exists onStringCECName

LPAR namestringName

DescriptionTypeProperty
Chapter 19. New faces of z/OS 337

Additional metrics associated to IBMzOS_OperatingSystem resources
Additional metrics have been added to show specific resources of the z/OS world (without
Breakdown Dimensions):

� InternalViewIIPTimePercentage, InternalViewAAPTimePercentage: MVS view of
utilization percentage of zAAPs and zIIPs

� TotalIIPTimePercentage, TotalAAPTimePercentage: total utilization percentage of
zIIPs/zAAPs defined for this OperatingSystem image

Breakdown dimensions
Some metrics have a breakdown dimension of WLM Service Class Period in the
IBMzOS_BaseMetricDefinition.BreakdownDimensions property. If you retrieve metric values
for those definitions, you get back multiple instances with different breakdown values, with
IBMzOS_BaseMetricValue.BreakdownDimension being set to the WLM Service Class
Period.

For example, Local Performance Index with the WLM Service Class Period breakdown
dimension may retrieve metrics as follows:

� BreakdownValue = "GOLDSCP.1", MetricValue = "0.7"

� BreakdownValue = "DONTCARE.4", MetricValue = "5.0"

� BreakdownValue = "WAS.1", MetricValue = "1.2"

19.9 Migration and coexistence considerations

If you are migrating from z/OS V1R8:

� An automatic repository upgrade to DMTF CIM Schema Version 2.11 will be done at CIM
Server startup, issuing the following messages:

CFZ12552I: Starting automatic repository upgrade.

CFZ12563I: Automatic repository upgrade completed successfully.

If you are migrating from z/OS V1R7:

� Use the CFZRCUST migration job on the IPLed target system.

If you are migrating from a z/OS V1R8 CIM server to a z/OS V1R9 CIM server:

� The migration of the CIM repository is done automatically by the CIM server at its first
startup. However, you must perform the following important action:

– In the environment file /etc/wbem/cimserver_planned.conf, ensure that the logdir,
enableNamespaceAuthorization, and httpAuthType properties do not exist. If they
exist, delete them.

The contents of z/OS RMF CIM V1R9 are rolled back to z/OS V1R7, with an SPE for z/OS
CIM.

19.9.1 General migration considerations

Generally, the following steps should be done in order to take benefit of the new
functionalities:

� Update CFZCIM started task procedure
338 z/OS Version 1 Release 9 Implementation

� Update /etc/wbem/cimserver.env

– Copy /usr/lpp/wbem/cimserver.env

� Update /etc/wbem/cimserver_planned.conf

– Remove logdir, enableNamespaceAuthorization and httpAuthType properties

or...

– Copy /usr/lpp/wbem/cimserver_planned.conf

� Add ARM support

� Configure SSL certificate based authentication

� Configure AT-TLS

� Activate syslogd (if not already active)

19.9.2 Cloning considerations

In a context with a sysplex-wise single hierarchical structure deployed, proper settings should
be done regarding some of the file systems:

� A file system (the one mounted on /usr/lpp/wbem) is read-only and sysplex-wide unique

� The other file systems are read-write and a specific instance is mandatory for each
system:

– For each target system: create its own /etc/wbem directory and /var/wbem

– Place the /var/wbem on an extra file system data set (about 150MB zFS)

� Special attention should be given in preserving the file tags (CCSID=ISO8859-1) of the
repository.

Figure 19-22 illustrates cloning considerations.

Figure 19-22 Cloning considerations

/

/etc/wbem/cimserver.env
/etc/wbem/cimserver_planned.conf

/usr/lpp/wbem

System-specific data
(Read/Write)

Global Data
(Read Only)

/var/wbem

HLQ.$SYSTEM.VARWBEM.ZFS

File Tags have to be preserved!

.

/logs
/repository
repository_status
Chapter 19. New faces of z/OS 339

340 z/OS Version 1 Release 9 Implementation

Chapter 20. Program management
enhancements

This chapter discusses the enhancements introduced in z/OS V1R9 to the program
management Binder.

In this chapter we describe the following:

� Two new Binder control options: MODMAP and INFO

� Changes to the CHANGE and REPLACE control statements

� SYSLMOD DD record format verification

� Binder C/C++ API

� Support for side-deck files in archive libraries

� Fast data access services enhancements

20
© Copyright IBM Corp. 2007. All rights reserved. 341

20.1 New Binder options

The z/OS V1R9 program management Binder is enhanced with two new Binder options: the
MODMAP Binder option and the INFO Binder option.

20.1.1 The MODMAP Binder option

Obtaining needed information about entry points and other external symbols in a program
object often requires many calls to the Binder API. Applications can avoid this for load
modules by reading the PDS member directly and find most of the needed information in the
CESD. However, this option is not available for programs stored in a PDSE or in UNIX files.

The z/OS V1R9 Binder provides a module map. The Binder module map is used to store the
information in the module in a manner that can be read directly or retrieved with a single
Binder API call. When it exists, the module map is part of the saved module.

The creation of the module map is controlled by the MODMAP Binder option. The syntax of
the MODMAP option is shown in Figure 20-1.

Figure 20-1 Syntax of the MODMAP Binder option

NO Indicates no module map is to be created by the Binder. This is the default
value.

LOAD Indicates the Binder should build the module map in a loadable class. This is
supported for both program objects (all formats) and load modules.

NOLOAD Indicates the Binder should build the module map in a non-loadable class. This
is supported only for program objects.

When the module map is in a loadable class, it is accessed in the following ways:

� By the IEWBMMP address constant.

� The Binder builds entry IEWBLIT for program objects that contain multiple text classes or
user-defined classes. If IEWBLIT exists, the entry for class B_MODMAP, which is the
module map class, will contain the address of that class in the loaded module.

� The module map is located at the end of the first segment, that is, the segment containing
the entry points. The last double word of the module map contains the offset of the
beginning of the module map from the load point of the segment.

When the module map is in a non-loadable class, it is accessed using the Binder API GETD
call. The section name is IEWBMMP and the class name is B_MODMAP.

Module map entries are organized in a hierarchy of segment, class, section and entry or
segment, class, section and part. For each class, a class entry is followed by section entries
for all sections which contribute to the class. Section entries correspond to ED ESD entries in
the module. Each section entry is followed by entry points entries (corresponding to LD ESD
records) or parts entries (corresponding to PD ESD records) in that section and class. The
entries are ordered by segment and then offset within segment.

MODMAP(NO|LOAD|NOLOAD)

Note: When a strong reference to IEWBMMP exists in the module, it is regarded as the
equivalent to specifying MODMAP(LOAD), unless MODMAP(NO) is specified.
342 z/OS Version 1 Release 9 Implementation

Coexistence
APAR OA17827 handles the case when a module with a module map is rebound on a
pre-z/OS V1R9 system. In that case, the APAR causes the pre-z/OS V1R9 system to delete
the module map from the module.

20.1.2 The INFO Binder option

The INFO Binder option is a new option in z/OS V1R9 that provides a way to report service
applied to the Binder, such as PTFs and USERMODs, as part of the Binder listing. Use the
INFO Binder option when it is required to determine the level of the Binder being executed in
a given job beyond the Binder release level. The syntax of the INFO option is shown in
Figure 20-2.

Figure 20-2 Syntax of the INFO Binder option

NO Specifies that a level information report is not to be included in the Binder listing.
This can also be specified as NOINFO. This is the default option.

YES Specifies that a level information report will be included in the Binder listing.

The report is produced at the end of the Binder listing, just before the message summary. An
example of the Binder level information report is shown in Figure 20-3.

Figure 20-3 Example of the Binder level information report

Only sections in the main Binder module IEWBIND are reflected in the level information
report.

20.2 Enhanced Binder control statements

The CHANGE statement causes an external symbol to be replaced by the symbol in
parentheses following the external symbol. The external symbol to be changed can be a
control section name, a common area name, an entry name, an external reference, or a
pseudo register. More than one such substitution can be specified in one CHANGE
statement.

The REPLACE statement is used to replace or delete external symbols. The external symbol
can name a section, an entry point, an external reference, or a pseudo register. One section
can be replaced with another. All references within the input module to the old section are
changed to the new section. Any external references to the old section from other modules
are unresolved unless changed.

INFO=NO|YES

*** START BINDER LEVEL INFORMATION ***
MODULE COMPILE DATE PTF LEVEL
IEWBACTL 06293 UA10162
IEWBBARN 06293 UA15580
IEWBBBIE 06293 UA20277
IEWBBCDS 06293 UA20277
*** END BINDER LEVEL INFORMATION ***
Chapter 20. Program management enhancements 343

Prior to z/OS V1R9, both the CHANGE and REPLACE Binder control statements had to
precede the module containing the external reference replaced, or the INCLUDE Binder
control statement specifying that module. This was due to the fact that the scope of the
CHANGE and REPLACE statements was across the next object module, load module, or
program object.

The CHANGE and REPLACE statements behavior prior to z/OS V1R9 made it difficult to
handle multi-object input files. Many times it was required to split apart or edit the multi-object
input.

In z/OS V1R9, a new -IMMED optional parameter is added to both the CHANGE and
REPLACE Binder control statements. The new parameter affects CHANGE and REPLACE in
the same manner. When specified, it indicates that the scope of the CHANGE or REPLACE
statements is across the current object module, load module or program object. Therefore,
they should not be placed before the module or INCLUDE statement specifying the module,
but rather after them.

The new syntax of the CHANGE statement is shown in Figure 20-4.

Figure 20-4 Syntax of the CHANGE Binder control statement

The new syntax of the REPLACE statement is shown in Figure 20-5.

Figure 20-5 Syntax of the REPLACE Binder control statement

Example
Figure 20-6 shows an example of using the REPLACE Binder control statement with the
-IMMED option to delete section WTO1DEL from module WTO1.

Figure 20-6 Example of using the REPLACE -IMMED Binder control statement

20.3 SYSLMOD record format verification

Starting with z/OS V1R9, the Binder does not allow saving a module into a SYSLMOD data
set of type PDS unless the data set’s record format is undefined (RECFM=U). This
enhancement should help to prevent accidently saving modules into the wrong PDS. When
the Binder saves a module to a PDS that did not have RECFM=U, the PDS’s RECFM is

CHANGE [-IMMED,]externalsymbol(newsymbol)[,externalsymbol(newsymbol)]...

REPLACE [-IMMED,]externalsymbol1[(externalsymbol2)]...

Note: The -IMMED option is not allowed during autocall processing.

//SYSLIB DD DISP=SHR,DSN=PELEG.LOAD
//SYSLIN DD *
 INCLUDE SYSLIB(WTO1)
 REPLACE -IMMED,WTO1DEL
 ENTRY WTO1
 NAME WTO1(R)
/*
344 z/OS Version 1 Release 9 Implementation

changed to RECFM=U which may cause the other members in the PDS to become
unreadable.

With z/OS V1R9, when the Binder tries to save a module into a PDS with record format other
than RECFM=U, it ends with return code 12 and does not save the module. In addition, the
following message is issued:

IEW2735S DA0F OUTPUT DATA SET FOR DDNAME SYSLMOD HAS INVALID RECORD FORMAT.
RECFM=U IS REQUIRED.

For PDSE data sets, this is already the case prior to z/OS V1R9.

If you still want to deliberately save a module into a PDS data set with record format other
than RECFM=U, you must specify RECFM=U on the SYSLMOD DD card in the JCL. When
RECFM=U is specified in the JCL, the Binder honors the request and saves the module, even
if the original PDS was not allocated with RECFM=U.

20.4 Binder C/C++ API

The Binder provides an API to assembler programs in the form of the IEWBUFF and
IEWBIND macros. The IEWBUFF macro is used to generate, initialize, and map the data
buffers required during binder processing. The IEWBIND macro is used to call the Binder
functions. Prior to z/OS V1R9, it was possible to call the Binder API from high level languages
such as C and C++, but the caller had to provide a certain environment, buffers, and
parameter lists. This made it very difficult to use the Binder API in high level languages.

Starting with z/OS V1R9, the Binder provides an API to C/C++ programs. The Binder’s C/C++
API is a C code interface that implements the initialization and access functions of the Binder
API and fast data access services. The Binder C/C++ API saves you the need to manage
buffers in your application. The Binder C/C++ API manages the buffer storage automatically
within the API. The Binder C/C++ API also loads and deletes Binder interface modules
automatically.

The Binder C/C++ API provides a header file named __iew_api.h to allow C/C++ programs to
interface with the Binder API and fast data access services in a standard way. The header file
is installed in the /usr/include z/OS UNIX directory. The header file includes:

� API data types

The API data types are used by API access and utilities functions. They allow for data
encapsulation and a convenient way for parameter passing.

� Buffer header and entry definition for each buffer type

The buffer header and buffer entry definition for each buffer type are based on the version
6 of API buffer formats as described in Appendix D of z/OS MVS Program Management:
Advanced Facilities, SA22-7644. An application can use the appropriate buffer type to cast
the return buffer after calling some API access functions.

� Binder API and fast data access services access functions

Access functions allow users to access the Binder API functions.

� Binder API and fast data access services utilities functions

Utilities functions allow users to access return values and enable the creation of Binder
API buffers for API calls that require buffers as input.
Chapter 20. Program management enhancements 345

The actual code for the Binder C/C++ API is provided in a non-XPLink DLL installed in the
/usr/lib z/OS UNIX directory. Under /usr/lib you can find the side deck file iewbndd.x and the
DLL file iewbndd.so.

Table 20-1 lists the Binder API functions provided by the Binder C/C++ API.

Table 20-1 Binder C/C++ API functions

Note: The Binder C/C++ API header file, side deck file, and DLL file are only installed in
the z/OS UNIX environment.

Binder API Binder C/C++ API function

Add alias __iew_addA()

Align text __iew_alignT()

Alter workmod __iew_alterW()

Perform incremental autocall __iew_autoC()

Bind workmod __iew_bindW()

Close workmod __iew_closeW()

Get compile unit list __iew_getC()

Get data __iew_getD()

Get ESD data __iew_getE()

Get names __iew_getN()

Import a function or external variable __iew_import()

Include module via DEPTR (BLDL) __iew_includeDeptr()

Include module via NAME __iew_includeName()

Include module via POINTER __iew_includePtr()

Include module via SMDE __iew_includeSmde()

Include module via DEPTR (CSVQUERY) __iew_includeToken()

Insert section __iew_insertS()

Load workmod __iew_loadW()

Open workmod __iew_openW()

Order sections __iew_orderS()

Put data __iew_putD()

Rename symbolic references __iew_rename()

Reset workmod __iew_resetW()

Save workmod __iew_saveW()

Set library __iew_setL()

Set option __iew_setO()

Start segment __iew_startS()
346 z/OS Version 1 Release 9 Implementation

Table 20-2 lists the fast data access services functions provided by the Binder C/C++ API.

Table 20-2 Binder C/C++ API fast data access functions

A detailed example of using the Binder C/C++ API is provided in MVS Program Management:
Advanced Facilities, SA22-7644.

20.5 Support for side deck definition files in archive files

The Binder supports autocall from z/OS UNIX archive libraries. These archive libraries may
contain members that are object files in OBJ, XOBJ, and GOFF format and with special
directory information similar to that contained in C370LIB object libraries. Archive libraries are
created by the z/OS UNIX ar command. While the ar command is typically used to create
archive libraries of object files, it can also be used to create archive libraries of non-object
files, or archive libraries containing a combination of object files and non-object files.

In z/OS V1R9, the Binder is able to process non-object files which are side files with IMPORT
control statements, or other files of control statements, that are contained in a z/OS UNIX
archive library.

To be processed by the Binder, non-object files must have the following characteristics:

� For members that are side files (containing IMPORT control statements), an IMPORT
statement must be the very first statement in the file, in the same format produced by the
Binder when it writes to the SYSDEFSD DD.

� For members that are files specifically identified as containing Binder control statements,
the first statement must contain the string *! in the first two columns, followed by the string
IEWBIND INCLUDE. These two strings may be separated by blanks, but must be contained
in a single statement.

Adding the *! IEWBIND INCLUDE string to a file containing Binder control statements is a way
to generalize the Binder’s support for side files to files containing other control statements.
The Binder supports side files in archive libraries even if they do not begin with the *!
IEWBIND INCLUDE string, as long as the IMPORT statement is the first statement in the file.

Figure 20-7 on page 348 shows an example of how to add a comment to a side deck
definition file contained in an archive library.

Fast data access service Binder C/C++ API function

End a session __iew_fd_end()

Get compile unit list __iew_fd_getC()

Get data __iew_fd_getD()

Get ESD data __iew_fd_getE()

Get names __iew_fd_getN()

Open a session __iew_fd_open()

Starting a session with BLDL data __iew_fd_startDcb()

Starting a session with a System DCB __iew_fd_startDcbS()

Starting a session with a DD name or path __iew_fd_startName()

Starting a session with a CSVQUERY token __iew_fd_startToken()
Chapter 20. Program management enhancements 347

Figure 20-7 Example of a side deck file contained in a z/OS UNIX archive library

A non-object file must be positioned as the first member of the archive library, not including
the symbol table member __.SYMDEF. The Binder processes that member as if it had been
explicitly included as binder input. In case several non-object files are contained in the archive
library, at least one of those files must be positioned as the first member of the archive library.
The Binder processes that first member and then includes any other such members that are
included in the archive library.

20.6 Binder fast data access enhancements

The Binder fast data access services provide a more efficient alternative for a subset of the
Binder API functionality. Fast data access services allow you to inspect and obtain information
about program object only. Internally, fast data access does not provide recovery (ESTAE or
ESPIE) and does not rebuild program objects to a common internal format, thus providing
better performance. Fast data access is optimized for minimum overhead when reading
program object residing on DASD.

Starting with z/OS V1R9, the Binder’s fast data access services are changed to exploit the
64-bit address space for internal data, instead of a data space. To use the fast data access
services in z/OS V1R9, the program must run with MEMLIMIT>0 set in the SMFPRMxx
parmlib member, JCL, or the IEFUSI exit. Otherwise, the Binder fails with return code 12,
reason code 1080002F and the following message is issued:

IEW2091S IEWBFDAT UNABLE TO GET nnnn MB OF 64-BIT STORAGE, IARV64 CODE xxxx

In addition, in z/OS V1R9, fast data access services provide a trace facility. The trace is
controlled by the existence of the IEWTRACE DD. No particular DCB parameters are required
for the IEWTRACE DD and it can be allocated to a SYSOUT or a sequential data set. The
trace is intended for IBM use.

Figure 20-8 on page 349 shows an example of the trace output.

*! IEWBIND INCLUDE
*
* my side-file for my-product
*
 IMPORT CODE,'mydll','mylib2func'
348 z/OS Version 1 Release 9 Implementation

Figure 20-8 Fast data access trace example

Trace format: (mod,proc,id,v1) (w2) (w3)
proc: see TRACE ENTRIES in module listing
id=00: ENT, v1 is nr. of parms in w2 and/or w3
id=FF: XIT, v1=retcode, w2=reason, w3=returnaddr
else if v1=08: CHR, w2,w3 is text
else: INT, v1 is nr. of words traced in w2 and/or w3

------ IEWBQINI = 205050C8
02010000 00000000 00000000 qini entered
02010101 00000000 00000000 getmain return code
------ IEWBQRED = 20501E10
03010001 00000001 00000000 qred entered, parm=1
03020002 C2C2D6D6 D9C24040 open_sb for BBOORB
03100000 00000000 00000000 create_smde entered
03100102 00000000 00000000 deserv rc=0, rs=0
0310FF00 00000000 20502524 return 0 to 20502524
0302FF00 00000000 20501F78 return 0 to 20501F78
03130000 00000000 00000000 get_po_len entered
03090000 00000000 00000000 read_bpam entered
03090101 00000000 00000000 read offset = 0
03090208 C9C5E6D7 D3D4C840 PO+0 contains 'IEWPLMH '
0309FF00 00000000 20504A18 return 0 to 20504A18
0313FF00 00000000 20501FA6 return 0 to 20501FA6
0301FF00 00000000 20505346 return 0 to 20505346
Chapter 20. Program management enhancements 349

350 z/OS Version 1 Release 9 Implementation

Chapter 21. JES2 and JES3 enhancements

This chapter discusses the changes introduced to JES2 and JES3 in z/OS V1R9.

For JES2, the following topics are discussed:

� SSI requests authorization enhancements

� $C Job command enhancements

� $TRACE facility enhancements

� Changes to JES2 installation exits

For JES3, the following topics are discussed:

� Relief of the OSE buffer number limit

� More efficient use of spool space

21
© Copyright IBM Corp. 2007. All rights reserved. 351

21.1 JES2 enhancements

z/OS V1R9 has enhancements to JES2 in the following areas.

� SSI updates to these SSI codes:

– Destination Validation/Conversion (11)

– SWB Modify (70)

– JES2 router SSI (71) to do the following:

• Obtain/Return JOBCLASS information

• Spool read

• Convert device id (DEVID) to device name

• Obtain/Return monitor information

– Notify User (75)

– SAPI (79)

– Unauthorized spool browse (81)

� Cancel jobs during job select

A cancel job ($CJ) has been extended to be possible during job select.

� $TRACE enhancements for better diagnostic data

� $DSPL performance

Logic for the $DSPL command was extremely inefficient when displaying status of
DRAINING volumes, possibly causing noticeable performance degradation.

� Stunted volume processing

When starting a spool volume, there may not be enough room in the track group map for
the entire volume. Operators are given a chance to decide if they want to use as much as
possible space for the volume or not via the HASP811 ($SSPL command) or HASP853
(initialization) message. If they reply YES, then that is what we call a stunted volume. It will
remain that way unless the volume is drained and restarted.

Beginning With z/OS V1R9, JES2 detects stunted volumes when appropriate and
expands them to full defined capacity.

21.2 SSI requests authorization enhancements

JES2 supports a rich set of APIs that allows applications to manage jobs and SYSOUT data
sets. This API is implemented through the subsystem interface (SSI). Prior to z/OS V1R9,
most of the JES2 SSI requests required callers to be authorized, running in supervisor state,
or by system key. This requirement poses a security threat to the system because authorized
callers can bypass system security and potentially harm the system. It was up to callers to
ensure that they did not compromise the system.

JES2 in z/OS V1R9 addresses this security issue by enhancing much of the authorization
requirements for the SSI requests it supports. Many JES2 SSI requests are updated in z/OS
V1R9 to allow unauthorized callers. JES2 SSI requests are changed to access data passed
by the caller in the caller’s key. This is now done for unauthorized callers as well as authorized
callers. Moreover, RACF authorization checks are added to protect sensitive JES2 data that is
returned by some of the JES2 SSI requests.
352 z/OS Version 1 Release 9 Implementation

Unlike authorized callers who run with system key, mistakes or errors in an unauthorized
caller application might cause S0C4 ABENDs because they are not be able to access some
storage areas or pass bad storage areas to JES2 SSI. Such an S0C4 ABEND causes JES2
to issue an SVC dump even though the S0C4 ABEND is actually an application error and is
not interesting to JES2. Therefore, JES2 recovery routines are designed to internally convert
S0C4 ABENDs that occur when accessing user passed data to a new ABEND code S1E0.
S1E0 ABENDs should be regarded as application error and not a system or JES2 error.

For more information about SSI see MVS Using the Subsystem Interface, SA22-7642.

21.2.1 SSI 11 - User destination validation/conversion service

The user destination validation/conversion service (SSI function code 11) provides a
requesting program with the ability to convert or validate a remote destination.

SSI 11 does not functionally change in z/OS V1R9. The only change is that SSI 11 now
supports unauthorized callers. The storage passed by the caller (such as the SSOB, SSUS,
and so on) is now referenced in the SSI request caller’s key.

21.2.2 SSI 70 - Scheduler facilities function

The scheduler facilities function (SSI function code 70) provides a requesting program with
the ability to modify those characteristics of SYSOUT data sets that are controlled by
Scheduler Work Block Text Unit (SWBTU) data. JES2 supports one function type of this SSI
function code, SWB Modify. SWB Modify allows a user to modify SWBTU data associated
with a SYSOUT data set. SWBTU data consists of dynamic output values such as
ADDRESS, CLASS, COPIES, FORMS, NOTIFY, and so on.

The SWB modify service is now available to unauthorized callers. In addition, a new minimal
authorization check is implemented for authorized callers only. To request the new
authorization check, set bit SSSFSECL in SSSFFLG1. The new option tells JES2 to bypass
security checking unless Multi Level Security is active on the system (MLACTIVE set in
RACF).

If MLACTIVE is set, then JES2 ensures proper SECLABEL dominance checking instead of
the regular JESSPOOL or ISFAUTH check. If an unauthorized caller attempts to request
SECLABEL dominance checking, a return code indicating an error is returned to the SSI
caller, as follows:

� SSSFREAS=SSSFINRI, indicating invalid input to request

� SSSFMREA=SSSFMSCI, indicating invalid security request

Furthermore, extra validation of the SSOB is now being done by SSI 70 and a new reason
code is returned as SSSFMREA=SSSFMIVX if the SSOB extension is too small to perform
the service.

21.2.3 SSI 71 - JES job information services

The JES job information services (SSI function code 71) allow a user-supplied program to
obtain information about jobs in the JES2 queues. SSI 71 supports these subfunctions:

� Spool read service

The service now issues a new RACF call to verify the caller is authorized to read the data
on the spool. The new RACF call is always issued for unauthorized callers.
Chapter 21. JES2 and JES3 enhancements 353

By default, the new RACF call is not issued for authorized callers. However, authorized
callers can set the SPIORACF bit in SPIOOPT to force the RACF call. The entity name
and class passed on to the RACF call depends on whether the service is able to locate the
security token (RTOKEN) associated with the user that owns the control block, as
explained here:

� If the associated security token is located, then a JESSPOOL check will be made passing
a profile in the format node.userid.jobname.jobid.SPOOLIO.cbname and the RTOKEN
found.

� If the associated security token is not found, then a JESJOBS class check is issued
passing a profile in the format SPOOLIO.node.jobname.jobid.cbname and the JES2
address space security token as RTOKEN.

Additional data is added to the HDB, IOT, and SWBIT data areas to help the spool read
service locate the security token for these data areas. The new fields are not populated by
older releases of JES2, so reading these data areas that were created on a pre-z/OS
V1R9 release will default to the JESJOBS class check.

� JES2 health monitor information

In addition to changing this subfunction to support unauthorized callers, the JES2 monitor
SSI is updated to return information about JES2 storage usage. The sub function now
returns the same information that is returned by the $JD DETAILS(STORAGE) and
$JD HISTORY(STORAGE) commands.

Figure 21-1 shows a sample output of the $JD DETAILS(STORAGE) command to
demonstrate the information returned by this SSI subfunction.

Figure 21-1 Output of the $JD DETAILS(STORAGE) command

� Job class information

The job class information service provides the attributes of a job class. This subfunction
does not functionally change in z/OS V1R9. It is only changed to support unauthorized
callers.

� Convert device ID service

The Convert device ID service translates a binary device ID into its EBCDIC device name.
This subfunction does not functionally change in z/OS V1R9. It is only changed to support
unauthorized callers.

� Checkpoint version information service

This subfunction is not changed in z/OS V1R9. You must be authorized to call this service.

Note: The new RACF checks and additional I/O adds a significant overhead to the
spool read service. Using the extended status function call (SSI 80), when possible, is
more efficient.

$JD DETAILS(STORAGE)
$HASP9103 D DETAIL 585
$HASP9108 JES2 STORAGE USAGE (PAGES) SINCE 2007.131 15:00:00
AREA REGION USAGE LOW HIGH AVERAGE
------------ ------- ------- ------- ------- -------
<16M USER 2,042 249 249 249 249
<16M SYSTEM 2,042 66 66 67 66
>16M USER 377,856 65,234 65,234 65,234 65,234
>16M SYSTEM 377,856 2,601 2,601 2,601 2,601
354 z/OS Version 1 Release 9 Implementation

21.2.4 SSI 75 - Notify user message service call

The notify user message service call (SSI function code 75) provides a requesting program
the ability to send a message to other users who are either on the same networking node or
on another node.

SSI 75 now supports unauthorized callers. The service allows the caller to provide it with a
security token to associate with the caller (field SSNUTKNA). It is undesirable to allow
unauthorized callers to alter the security environment. Therefore, support for passing of a
security token is restricted only to authorized callers. If an unauthorized caller passes a
security token to the service, the notify message is sent, but the security token is ignored and
the service returns with SSOBRETN=4 and SSNUERCD=40.

In addition, JES2 now supports passing a member name for the SEND command in the
SSNUMEMB field. If an invalid member name is specified, SSNUERCD is set to
SSNUMEME.

21.2.5 SSI 79 - SYSOUT application programming interface (SAPI)

SAPI (SSI function code 79) allows JES to function as a server for applications needing to
process SYSOUT data sets residing on JES spool. Use of the SAPI SSI call allows a
user-supplied program to access JES SYSOUT data sets independently from the normal
JES-provided functions (such as print or network). Users of this function are typically
application programs operating in address spaces external to JES. SAPI supports multiple,
concurrent requests from the applications' address spaces.

SSI 79 does not functionally change in z/OS V1R9. The only change is that SSI 79 now
supports unauthorized callers. The storage passed by the caller (such as the SSOB, SSS2,
and so on) is now referenced in the SSI request caller’s key.

21.2.6 SSI 80 - Extended status function call

The extended status function call (SSI function code 80) allows a user-supplied program to
obtain detailed status information about jobs and SYSOUT in the JES queue. Both JES2 and
JES3 subsystems support job status information.

SSI 80 now supports unauthorized callers. SSI 80 is also enhanced with a RACF SECLABEL
dominance check. The SECLABEL check is optional for authorized callers and mandatory for
unauthorized callers. The SECLABEL dominance check is only performed if MLACTIVE is set
in RACF.

Additionally, a number of new indicator fields are now returned from the service, including:

� Job is being processed for End of Memory

� Job is on the JES2 rebuild queue

� Position of the job on the class queue or phase queue

� Submitter’s security group name

� APPC TP job name, TP job ID, entry start time and time, execution start time and
accounting information

New filters are now supported, including:

� Select IP or non IP routed SYSOUT

� Select local vs. network routed SYSOUT
Chapter 21. JES2 and JES3 enhancements 355

� Select SYSOUT based on the OUTDISP values (one bit for each of write, hold, keep, and
leave)

Furthermore, for performance reasons, the ability to pass multiple values for certain filters is
added in z/OS V1R9. The multiple value fields function as OR filters. The multiple value fields
apply to job name, job class, job destination and job phase, as well as SYSOUT class and
SYSOUT destination.

21.2.7 SVC 99 - spool browse

SVC 99 is the dynamic allocation service. SVC 99 also supports non-JCL dynamic allocation
functions. The non-JCL dynamic allocation functions are used to ask the system for data set
information that has no equivalent JCL parameters. One of the non-JCL dynamic allocation
functions represents allocation of a subsystem data set (the DALSSREQ key). JES2 provides
support for browsing spool data sets through the SVC 99 non-JCL dynamic allocation
function. To use the DALSSREQ key, the caller must be authorized.

Externally, spool browse is not an SSI. However, when an application uses SVC 99 to browse
a spool data set, the system issues an SSI 6 request internally to ask JES2 for the service.

In z/OS V1R9, the spool browse service is changed to support unauthorized callers. The
DALSSREQ key still requires the caller to be authorized. An unauthorized caller can use a
new key, DALUASSR, to request spool browse. When the user uses the DALUASSR key to
ask for spool browse, the system issues an SSI 81 request internally, instead of an SSI 6
request. SSI 81’s support for spool browse is the same as SSI 6, as on pre-z/OS V1R9
systems.

21.3 $C Job command enhancements

When an initiator is ready to run a new job, it uses the job select SSI request (SSI 5) to
request JES2 to scan the job queue and select a new job to run under this initiator. In the
early stages of job select processing, while JES2 and MVS are still building the environment
required to run the job under the initiator, the initiator is no longer acting like an initiator, but it
does not yet have the job that is it about to run.

Therefore, the MVS CANCEL and FORCE commands cannot act on jobs or initiators in early
stages of job selection. When trying to cancel an initiator in this stage, for example using a
C INIT,A=n command, the following message is issued:

IEE341I INIT NOT ACTIVE IN SPECIFIED ADDRESS SPACE

From the system’s point of view, the address space is no longer an initiator and thus cannot
be canceled or forced using the CANCEL or FORCE commands. At this stage, only JES2
knows which job is assigned to the initiator.

Starting with z/OS V1R9, the JES2 $C Job command is enhanced to support canceling jobs in
early stages of job select. In z/OS V1R9, the JES2 cancel command uses the CALLRTM
system service to terminate the job. Requesting a dump is also supported by the
$C Jnnn,DUMP command.

Tip: To change your application to run unauthorized and to use the DALUASSR key
instead of DALSSREQ, simply replace the DALSSREQ key with DALUASSR. Both keys
have the same count, length, and data.
356 z/OS Version 1 Release 9 Implementation

When a job is terminated using the $C Job command, the address space ABEND code is
S422 and the reason code is X’00010204’. When a job is terminated using the $C Jnnn,DUMP
command, the address space ABEND code is S422 and the reason code is X’00020204’.

Figure 21-2 shows an example of terminating a job in early stages of job select using the
JES2 $C Job command.

Figure 21-2 Using the $C J command to terminate an address space

However, there are cases where the $C Job command cannot cancel a job. To handle these
situations, a new FORCE parameter is introduced in z/OS V1R9 for the $C Job command.
When $C Jnnn,FORCE is used, JES2 issues the CALLRTM TYPE=MEMTERM system service
to terminate the initiator address space. The address space is ended with ABEND code S422
and a reason code of X’00030208’.

21.4 $TRACE facility enhancements

The $TRACE facility allows JES2 diagnostic information to be collected in order to help
debugging problems in the system. On large systems, the amount of collected trace
information is huge. Sometimes it is difficult to locate the interesting information in the trace
output, because the trace is flooded with information that is irrelevant to the current problem.

In z/OS V1R9, it is now possible to specify filters by address space ID, job name, job number
and TCB address for the $TRACE facility. By using the filters, the amount of data written to
the trace data set is significantly reduced to include events that occur only for the desired
jobs. In addition, the precision of the time stamps in the trace output is increased.

21.4.1 TRACE initialization statement and $T TRACE command

To control trace filters, new keywords are added to the TRACE initialization statement and
the $T TRACE command. The new keywords are:

ASID= Specifies the ASID used when filtering this JES2 trace point.

JOBNAME= Specifies the job name used when filtering this JES2 trace point.

JOB_NUMBER= Specifies the job number used when filtering this JES2 trace point.

TCB_ADDRESS= Specifies the TCB address in order to further limit tracing to the
specified TCB. This is in addition to any filtering that is applied. This
operand is ignored if ASID=. JOBNAME=, and JOB_NUMBER= are
not specified.

$cj18
JOB00018 $HASP890 JOB(JOBT)
$HASP890 JOB(JOBT) STATUS=(EXECUTING/IBM1),CLASS=A,
$HASP890 PRIORITY=9,SYSAFF=(ANY),HOLD=(NONE),
$HASP890 CANCEL=YES
STC00017 IEF450I INIT INIT - ABEND=S422 U0000 REASON=00010204
 TIME=19.36.10
STC00017 $HASP395 INIT ENDED
JOB00018 $HASP310 JOBT TERMINATED AT END OF MEMORY

Note: The filters do not support masking or generics.
Chapter 21. JES2 and JES3 enhancements 357

Using trace filters
The ASID=, JOBNAME=, and JOB_NUMBER= filters are treated as OR filters by JES2.
Trace data is collected if any one of the filters is matched. The TCB_ADDRESS= filter is
treated as an AND filter. When specified, it must always match the current TCB address in
the PSA field PSATOLD to allow trace data to be collected. How the ASID=, JOBNAME= and
JOB_NUMBER= filters are applied depends on the current address space and JES2 task in
control.

When the JES2 main task or subtasks running in the JES2 address space are in control, the
values specified in ASID=, JOBNAME= and JOB_NUMBER= always refer to the job that
JES2 is processing. The PCEASID field is checked for the ASID= filter and the JQE pointed
by PCEJQE is checked for the JOBNAME= and JOB_NUMBER= filters. The TCB address
specified on the TCB_ADDRESS= filter must match the current TCB address in the JES2
address space to allow trace data to be collected.

Outside the JES2 address space, for example in a job running under an initiator, an FSS or an
application using SAPI, the ASID=, JOBNAME=, JOB_NUMBER= and TCB_ADDRESS=
filters apply to the address space where the trace is being taken. The filters are checked
against fields in the ASCB and, when available, the SJB.

After the trace filters are set by the $T TRACE command for a trace ID, you can use the
$S TRACE(n) or $T TRACE(n),START=YES command to start the trace. Use the $P TRACE(n) or
$T TRACE(n),START=NO to stop the trace.

$TRACE examples
Figure 21-3 on page 359 shows an example of using the new filter keywords to set up a trace.
In the example, the first $T TRACE command sets filters for ASID number X’AB’ and a job
name of PELEGTSO. ASID X’AB’ is actually a TSO/E user who is just about to submit a job
by the name PELEGTSO.

Use the START=YES parameter to start trace IDs 1, 2, 18 and 19 to see all the JQE request
processor (JQRP PCE) calls to $SAVE and $RETURN and subsequent phases. Our trace
does not include input processing since the INTRDR trace is not active. See Figure 21-4 on
page 360 for an example that includes INTRDR tracing.

Use the $T TRACEDEF command to start the $TRACE facility and set the output class and log
size.

Use the $T TRACEDEF command to stop the trace. The SPIN parameter tells JES2 to spin off
the $TRCLOG trace data set.

To turn off trace IDs 1, 2, 18 and 19, use the $P TRACE command.
358 z/OS Version 1 Release 9 Implementation

Figure 21-3 Using filters on the $T TRACE command

21.4.2 INTRDR tracing

New keywords are added to the INTRDR initialization statement and $T INTRDR to control
internal reader trace filters. These filters are used only when INTRDR TRACE=NO is
specified. The filter are treated as OR filters by JES2. Trace data is collected if any one of the
filters is matched. When TRACE=YES is set, the filters do not apply and all internal reader
PUTs in the system are traced. Generics are not supported for any of the INTRDR filters.

The new keywords are:

ASID_TRACE= Specifies the ASID used when filtering this internal reader.

JOBNAME_TRACE= Specifies the job name used when filtering this internal reader.

JOB_NUMBER_TRACE= Specifies the job number used when filtering this internal
reader.

$T TRACE(1-2,18-19),START=YES,ASID=AB,JOBNAME=PELEGTSO
$HASP667 TRACE(1)
$HASP667 TRACE(1) START=YES,ASID=00AB,
$HASP667 JOBNAME=PELEGTSO
$HASP667 TRACE(2)
$HASP667 TRACE(2) START=YES,ASID=00AB,
$HASP667 JOBNAME=PELEGTSO
$HASP667 TRACE(18)
$HASP667 TRACE(18) START=YES,ASID=00AB,
$HASP667 JOBNAME=PELEGTSO
$HASP667 TRACE(19)
$HASP667 TRACE(19) START=YES,ASID=00AB,
$HASP667 JOBNAME=PELEGTSO
$T TRACEDEF,ACTIVE=YES,LOG=(START=YES,CLASS=A,SIZE=10000)
$HASP698 TRACEDEF
$HASP698 TRACEDEF ACTIVE=YES,TABLES=3,PAGES=9,
$HASP698 TABWARN=80,TABFREE=3,LOG=(CLASS=A,
$HASP698 START=YES,SIZE=10000),
$HASP698 STATS=(TOTDISC=0,DISCARDS=0,IDS=(1,2,
$HASP698 18,19))
$HASP800 $TRCLOG THE JES2 EVENT TRACE LOG IS NOW ACTIVE
$T TRACEDEF,ACTIVE=NO,SPIN
$HASP698 TRACEDEF
$HASP698 TRACEDEF ACTIVE=NO,TABLES=3,PAGES=9,
$HASP698 TABWARN=80,TABFREE=2,LOG=(CLASS=A,
$HASP698 START=YES,SIZE=10000),
$HASP698 STATS=(TOTDISC=0,DISCARDS=0,IDS=(1,2,
$HASP698 18,19))
$HASP801 $TRCLOG JES2 EVENT TRACE LOG QUEUED TO CLASS A (OUTDISP=WRITE)
$P TRACE(1-2,18-19)
$HASP667 TRACE(1) START=NO,ASID=00AB,JOBNAME=PELEGTSO
$HASP667 TRACE(2) START=NO,ASID=00AB,JOBNAME=PELEGTSO
$HASP667 TRACE(18) START=NO,ASID=00AB,JOBNAME=PELEGTSO
$HASP667 TRACE(19) START=NO,ASID=00AB,JOBNAME=PELEGTSO
Chapter 21. JES2 and JES3 enhancements 359

INTRDR trace examples
Figure 21-4 shows an example of using the $TRACE facility and setting internal reader filters.
After the filters for the internal reader are defined, turn on the selective trace IDs 11 and 12 to
trace $SAVE and $RETURN for the internal reader.

Figure 21-4 Using filters on the $T INTRDR command

$T TRACE(1-2,18-19),START=YES,ASID=AB,JOBNAME=PELEGTSO
$HASP667 TRACE(1)
$HASP667 TRACE(1) START=YES,ASID=00AB,
$HASP667 JOBNAME=PELEGTSO
$HASP667 TRACE(2)
$HASP667 TRACE(2) START=YES,ASID=00AB,
$HASP667 JOBNAME=PELEGTSO
$HASP667 TRACE(18)
$HASP667 TRACE(18) START=YES,ASID=00AB,
$HASP667 JOBNAME=PELEGTSO
$HASP667 TRACE(19)
$HASP667 TRACE(19) START=YES,ASID=00AB,
$HASP667 JOBNAME=PELEGTSO
$T INTRDR,TRACE=NO,ASID=AB,JOBNAME=PELEGTSO
$HASP838 INTRDR
$HASP838 INTRDR AUTH=(DEVICE=YES,JOB=YES,SYSTEM=YES),
$HASP838 BATCH=YES,CLASS=A,HOLD=NO,HONORLIM=NO,
$HASP838 PRTYINC=0,PRTYLIM=15,SYSAFF=(ANY),
$HASP838 TRACE=NO,ASID_TRACE=00AB,
$HASP838 JOBNAME_TRACE=PELEGTSO
$T TRACE(11-12),START=YES
$HASP667 TRACE(11) START=YES
$HASP667 TRACE(12) START=YES
$T TRACEDEF,ACTIVE=YES,LOG=(START=YES,CLASS=A,SIZE=10000)
$HASP698 TRACEDEF
$HASP698 TRACEDEF ACTIVE=YES,TABLES=3,PAGES=9,
$HASP698 TABWARN=80,TABFREE=3,LOG=(CLASS=A,
$HASP698 START=YES,SIZE=10000),
$HASP698 STATS=(TOTDISC=0,DISCARDS=0,IDS=(1,2,
$HASP698 11,12,18,19))
$T TRACEDEF,ACTIVE=NO,SPIN
$HASP698 TRACEDEF
$HASP698 TRACEDEF ACTIVE=NO,TABLES=3,PAGES=9,
$HASP698 TABWARN=80,TABFREE=2,LOG=(CLASS=A,
$HASP698 START=YES,SIZE=10000),
$HASP698 STATS=(TOTDISC=0,DISCARDS=0,IDS=(1,2,
$HASP698 11,12,18,19))
$P TRACE(*)
$HASP667 TRACE(1) START=NO,ASID=00AB,JOBNAME=PELEGTSO
$HASP667 TRACE(2) START=NO,ASID=00AB,JOBNAME=PELEGTSO
$HASP667 TRACE(11) START=NO
$HASP667 TRACE(12) START=NO
$HASP667 TRACE(18) START=NO,ASID=00AB,JOBNAME=PELEGTSO
$HASP667 TRACE(19) START=NO,ASID=00AB,JOBNAME=PELEGTSO
360 z/OS Version 1 Release 9 Implementation

21.5 Changes to JES2 exits

Some exit routines may have to be changed in order to support the changes to JES2 in z/OS
V1R9.

21.5.1 $JCT eye catcher

One change that affects most exits is a change to the JES2 JCT eye catcher field name in the
$JCT mapping macro. Prior to z/OS V1R9, the $JCT eye catcher field name was JCTID. In
z/OS V1R9, the $JCT eye catcher field name is changes to JCTIDENT. This change is done
to resolve the conflict between the JES $JCT mapping macro eye catcher and the MVS JCT
mapping macro which also has an eye catcher field named JCTID.

If your exit routines refer to the JCTID field in the $JCT, you have to change them to refer to
the new field name JCTIDENT.

21.5.2 Exit 8 - User environment $CBIO

Prior to z/OS V1R9, JES2 exit 8 used the MTTR parameter to specify a track address.
Starting with z/OS V1R9, JES2 exit 8 uses the MQTR parameter instead. The MQTR
parameter was introduced in z/OS V1R7 for large spool volumes. The use of MQTR will
eventually replace the use of MTTR.

If you have exit routines that examine field CBMTTR, change them to examine field CBMQTR
instead of field CBMTTR.

21.5.3 Exit 31 - Allocation SSI

Prior to z/OS V1R9, there was no mapping macro for the exit 31 parameter list. There was
simply an area pointed to by a register, with the contents at all applicable offsets described in
JES2 documentation. Starting with z/OS V1R9 JES2, exit 31 uses the $XPL data area
instead.

If you use exit 31, you will have to change your exit routine. The $XPL is passed in R0 and
contains the same information as the old parameter list. R1 still points to an area that maps
the same as the old parameter list, except for the condition and response bytes. These are no
longer at offsets +1 and +2 in the area pointed to by R1. They are only in the $XPL.

21.5.4 Exit 42 and exit 45

As described under 21.2, “SSI requests authorization enhancements” on page 352, the notify
user and SWB modify SSIs in z/OS V1R9 allow unauthorized callers. The SSOB extensions
they pass are now potentially in a user key. The storage the SSOB extensions are allocated
in must be referenced and updated using the caller’s key. To help exit writers, the fields in the
SSOB and extensions are now passed individually to the exit in the $XPL.

When writing exits 42 or 45, there are now two ways to reference fields in the SSOB
extensions passed to the exits, either change the exits to use keyed machine instructions to
process the SSOB extensions, or use the new individual fields in the $XPL. The pointer to the
SSOB extensions in the $XPLs for these two exits is renamed. This is done to cause
assembly errors if there is an unmodified reference to the SSOB extensions.
Chapter 21. JES2 and JES3 enhancements 361

21.6 JES3 enhancements

In this section we describe the enhancements introduced in z/OS V1R9 JES3. The
enhancements to z/OS V1R9 JES3 aim to allow jobs to run longer without having to be
recycled due to internal JES3 spool record management limitations.

21.6.1 Relief of the OSE buffer number limit

Prior to z/OS V1R9, the JES3 output service was limited by its original design to 2 bytes for
the Output Scheduling Element (OSE) buffers for each job. On top of that, the JES3 code that
worked with the buffer numbers did so with signed instructions. As a result, the JES3 output
service had a limit of 32 K OSE buffers per job. In January 2003, APAR OW55574 introduced
changes to JES3 to process the 2 bytes fields with unsigned instructions. This reduced the
problem by allowing for 64 K OSE buffers per job.

Long-running applications which allocate a lot of SYSOUT data sets, such as printing
applications, may reach the 64 K limit. When JES3 reaches the maximum number of buffers
for the OSE chain of a job, it issues the following message:

IAT6718 OSE BUFFER LIMIT REACHED

When the OSE buffers limit is reached, JES3 ABENDs the job with an S1FB completion code
and reason code 0000006E.

In z/OS V1R9 JES3, all the 2 bytes OSE buffer numbers are extended to 4 bytes. This makes
it possible for a job to have 64 K times as many buffers as it had before z/OS V1R9. The
support for extended OSE buffer numbers is enabled by default when you IPL your JES3
global on a z/OS V1R9 system. It is not required to read the initialization deck to take this
default. After the support for extended OSE buffer numbers is enabled, jobs are able to create
OSE buffers after the old limit is reached.

To enable fallback to previous versions of JES3 and for migration purposes, a new keyword is
provided on the OUTSERV initialization statement to control the creation of extended OSE
buffer numbers beyond the old limit. The new keyword is EXTOSENUM= and it takes the
values of YES or NO. The default is YES. Specifying EXTOSENUM=NO requires a hot start
with refresh.

21.6.2 Coexistence considerations

When the JES3 global is running on a z/OS V1R9 system, extended OSE buffer numbers
support is enabled and there are other systems in the sysplex running JES3 on a lower level
release of z/OS, then some restrictions apply:

� The job’s output cannot be processed by a JES3 global on a lower release. A DSI to a
processor running a lower release or a fallback to a lower release causes the following
message to be issued for each job that exceeds the old limit:

IAT7604 JOB jobname(jobid) EXCEEDS OSE BUFFER NUMBER LIMIT, JOB REMOVED FROM
OUTPUT SERVICE

In this case, you must dump and restore the job using the dump job (DJ) facility before its
output can be processed again by the JES3 global.

� The output for the job that was created after the limit was exceeded cannot be processed
by a process SYSOUT (PSO) application that is running on a JES3 local at an earlier
release. Examples of PSO applications include the IBM-supplied external writer, the TSO
362 z/OS Version 1 Release 9 Implementation

OUTPUT command, and some vendor printing products. Note that this limitation does not
apply to applications using the SYSOUT application programming interface (SAPI).

The fallback support is provided by APAR OA16731. The APAR allows earlier releases of
JES3 to use the dump job (DJ) facility to dump a job that exceeded the old OSE buffers limit
to tape and then restore it back to the spool. When the job is restored, JES3 renumbers the
OSE buffer records and removes any gaps. This allows the job’s output to be processed on a
JES3 release earlier than z/OS V1R9. Keep in mind that in the unlikely situation that there are
no gaps in the job’s OSE buffer records, the job cannot be restored by DJ on an earlier
release.

21.6.3 More efficient use of spool space

Prior to z/OS V1R9, when a spool data set was spun off and printed, the spool space for the
job was not reclaimed. Additional spool data sets allocated by the job could not reuse the
space of spun off and printed spool data sets, and would rather use more spool space until
the job is ended and purged. Long-running jobs would sometimes need to be recycled in
order to reclaim the spool space they no longer use.

Starting with z/OS V1R9, JES3 uses spool space for OSEs more efficiently. This results in
greater reuse of spool space for jobs that spin off many data sets. A new control block is
introduced to keep a list of available spool records (ASR). The control block is mapped by
macro IATYASR.

JES3 uses the ASR to keep a list of unused OSE and WOSE records for a job. Then, when
new OSE or WOSE records are needed for the job, JES3 scans the job’s ASR to check if
there are any available spool records that can be reused instead of allocating a new record
and increasing the spool space allocated to the job.

The ASR is shown when a job is snapped. Using the *START,DC command, you can also
request to snap only the job’s ASR, as show in Figure 21-5:

Figure 21-5 Using *START,DC to snap a job’s ASR

*S DC OPTION=(SNP=ASR) J=15456
Chapter 21. JES2 and JES3 enhancements 363

364 z/OS Version 1 Release 9 Implementation

Chapter 22. IBM Health Checker for z/OS

The IBM Health Checker for z/OS has been enhanced to make it easier to write and view
checks. This chapter introduces several new checks and enhancements. The following topics
are discussed:

� System REXX Check support

� Extended SDSF Health Checker support

� New checks

22
© Copyright IBM Corp. 2007. All rights reserved. 365

22.1 System REXX check support

Checks can now be written in REXX and are scheduled to run under System REXX. It is
expected that SYSREXX will increase the number of user and third party checks, because
REXX is much easier to code than assembler. A REXX exec check consists of REXX
language instructions that are interpreted and executed by System REXX. System REXX
execs can run in a non-TSO environment or a TSO environment.

IBM Health Checker for z/OS provides REXX functions as interfaces between a check and
IBM Health Checker for z/OS and System REXX, as follows:

HZSLSTART A REXX interface indicating that the check has started running, this is the
interface to the assembler HZSCHECK REQUEST=OPSTART macro.

HZSLFMSG To issue a message with check results in your REXX check exec, you must
use the HZSLFMSG function. Use the HZSLFMSG function to:

� Indicate that you want to issue a message with a
HZSLFMSG_REQUEST="CHECKMSG" request.

� Indicate the message number you want to issue with a
HZSLFMSG_MESSAGENUMBER=msgnum input variable.

� Define the number of variables and the variables themselves for a
message with the HZSLFMSG_INSERT input variable.

� The HZSLFMSG_RC output variable reports the return code for the
HZSLFMSG function.

HZSLSTOP Invoke HZSLSTOP to indicate that the check has completed an iteration.
The check usually invokes this function at the very end of the check exec.
This function saves and returns the HZS_PQE_CHKWORK variable
containing the 2 K work area for the check.

22.2 Defining a REXX check

REXX checks can be added in the HZSPRMxx parmlib member or via the MODIFY (F)
command using:

� ADD | ADDREPLACE

The HZSADDCK macro is used by the HZSADDCHECK dynamic exit routine to add a check
to IBM Health Checker for z/OS. Adding a check includes defining default values, the
parameters and routines required to run the check. The exit routine and the check routines
run in the IBM Health Checker for z/OS address space.

REXX checks use a traditional message table generated by HZSMSGEN. The same
message table may be used for a non-REXX check and a REXX check, and no special REXX
keywords are required.

REXX checks are defined as TSO(YES|NO), indicating that these execs will run in a non-TSO
environment or a TSO environment.

Note: The general rules and limitations of System REXX apply to REXX checks.
366 z/OS Version 1 Release 9 Implementation

ADD | ADDREPLACE
You can specify the following parameters for REXX exec checks in either the ADD |
ADDREPLACE HZSPRMxx parmlib member or their equivalents in the HZSADDCK macro.

Figure 22-1 New ADD|ADDREPLACE parameters for check

The following are brief descriptions of the parameters for an ADD | ADDREPLACE check:

CHECKROUTINE This required parameter specifies a module name for the check you
are adding or replacing. The system gives control to the entry point of
this module to run the check. The check routine module must be in an
APF-authorized library.

EXEC This parameter, required for a REXX exec check, specifies the name
of the REXX exec containing the check or checks. The REXX exec
must reside in SYS1.SAXREXEC.

REXXHLQ This parameter, optional for a REXX exec check, specifies the high
level qualifier for any input or output data set for the check.

REXXTIMELIMIT This parameter specifies the number of seconds that the exec can run
under the AXREXX service before it is canceled. The default is
forever.

REXXTSO=YES|NO This parameter, required for a REXX exec check, specifies whether
the check runs in a TSO environment or a non-TSO environment. The
default is REXXTSO(YES).

REXXIN=YES|NO This parameter, optional for a REXX exec check, specifies whether or
not a non-TSO check requires an sequential input data set. The name
of the REXXIN data set will consist of the high level qualifier specified
in the HLQ parameter, the exec name specified in the EXEC
parameter, and an optional entry code specified in the ENTRYCODE
parameter.

Note: There are two REXX exec samples in SYS1.SAMPLIB:

� HZSSXCHK - Sample REXX exec check routine

� HZSSMSGT - Sample message input

{ADD|ADDREPLACE},
CHECK=(check_owner,check_name),
{ CHECKROUTINE=routinename
 | EXEC=execname
 ,REXXHLQ(hlq) [,REXXTIMELIMIT=timelimitvalue]
 { [,REXXTSO=YES]
 | [,REXXTSO=NO
 [,REXXIN={NO | YES]]
} }

Note: Health Checker does not check for the existence of the specified REXX check.

Note: You can only specify REXXIN(YES) if you specify REXXTSO(NO). REXX execs that
are compiled should use the %TESTHALT compiler option to ensure that halt interpretation
is honored if REXXTIMELIMIT is used.
Chapter 22. IBM Health Checker for z/OS 367

All other keywords, not shown in Figure 22-1 on page 367, are applicable to both REXX and
non-REXX checks.

HZSADDCK macro
The HZSADDCK macro is used by the HZSADDCHECK dynamic exit routine to add a check
to the IBM Health Checker for z/OS. Adding a check includes defining default values, the
parameters and routines required to run the check.

Figure 22-2 HSZADDCK parameters

REMOTE=NO | YES This is an optional parameter that identifies the location of the check.
The default is REMOTE=NO, which indicates that the check runs
locally in the address space of IBM Health Checker for z/OS.
REMOTE=YES indicates that the check runs remotely. Specify
REMOTE=YES to indicate that the HZSADDCK macro call comes
from a remote check routine.

22.2.1 REXX check structure

The following REXX variables are set when IBM Health Checker for z/OS calls a REXX
check.

� HZS_Handle is a REXX variable the check should not touch. It is implicit input to check
functions.

� HZS_PQE_Entry_Code is the entry code specified when the check was added.

� HZS_PQE_Function_Code is one of the following:

– INITRUN is invoked once for the life of the check which lasts until the check is deleted
or deactivated.

– RUN is called to indicate that the remote check should run and do check cleanup after
the initial run (INITRUN) of the check, at the specified interval.

� HZS_PQE_CHKWORK is a 2 k work area that is initialized to nulls. Its contents are saved
when HZSLSTOP is called. The saved value is available the next time the check is called
and calls HZSLSTRT.

HZSADDCK ...
 { REMOTE=NO …
 |REMOTE=YES …
 [{ REXX=NO …
 |REXX=YES
 ,EXEC=xexec
 [,ENTRYCODE=.xentrycode]
 [,TIMELIMIT=.xtimelimit]
 ,REXXHLQ=xrexxhlq
 ,{ REXXTSO=YES
 |REXXTSO=NO
 ,{ REXXIN=NO
 |REXXIN=YES …

Note: The HZSADDCK macro has the same “rules” as the REXX checks that are added
with ADD | ADDREPLACE CHECK.
368 z/OS Version 1 Release 9 Implementation

The following are new IBM Health Checker for z/OS callable services for System REXX
checks:

� HZSLSTRT is used to indicate that the check has started.

� HZSLFMSG is used to issue check messages.

� HZSLSTOP is used to indicate that a check has completed.

22.2.2 DEBUG mode

You can turn on debug mode for a check that is not running properly by using the DEBUG
parameter in the MODIFY hzsproc command, in HZSPRMxx, or by overtyping the DEBUG
field in SDSF to ON. Running in debug mode can help you debug your check, because in
debug mode:

� Each message line is prefaced by a message ID, which can be helpful in pinpointing the
problem. For example, report messages are not prefaced by message IDs unless a check
is running in debug mode.

� Debug messages, which may contain information about the error, are issued only when
the check is in debug mode.

22.2.3 Scheduling a REXX check

The check routine will do the following:

� Check if the System REXX address space (AXR) is up and accepting new requests.

– The Health Checker for z/OS will monitor System REXX ENFs event code 67.

– All active and enabled REXX checks are run when System REXX availability toggles
from unavailable to available.

� The Health Checker for z/OS uses the assembler macro interface (AXREXX) to queue the
exec to System REXX.

� The AXREXX completion exit (HZSAXRCE) will then:

– Test to see if HZSLSTRT was issued.

– Issue information message(s) to check message buffer.

– Issue HZSCHECK REQUEST=OPCOMPLETE.

� HZSTKCMD will do “complete” processing when a REXX check is running or scheduled,
and the matching System REXX AXR address space goes down.

22.2.4 DELETE FORCE=YES

The AXREXX cancel service uses the “Request Token” returned when a check is scheduled.
It is currently a “program only” interface. There is no AXR modify command to cancel a check.
The AXR Request Token is displayed for a running or scheduled REXX check on DISPLAY
CHECK(owner,name),DIAG.

Important: Make sure that the REXXOUTDSN is enabled when the check is DEBUG(ON).

All REXX output (SAY, TRACE) is saved to the REXXOUTDSN. If REXXOUTDSN is not
enabled, REXX output is lost.
Chapter 22. IBM Health Checker for z/OS 369

22.2.5 Procedure to implement a REXX check

Start off by using the samples provided in the SYS1.SAMPLIB data set and follow these
simple steps:

� Compile REXX sample HZSSXCHK into SYS1.SAXREXEC using the REXXC procedure
in CPAC.PROCLIB.

� Thereafter, run job HZSMSGNJ in SYS1.SAMPLIB, which invokes the REXX procedure
HZSMSGEN to build input assembler code for the message table HZSSMSGT.

� Run an assembler compile and link (ASMLKED) of HZSSMSGT from the library
‘userid.TEMP.ASM’ which was created by the REXX HZSMSGEN, into a linklist data set
that is APF authorized.

� Add the statements shown in Figure 22-3 to the HZSPRMxx member and bounce the
HZSPROC started task.

Figure 22-3 ADD a REXX check to a parmlib member

� You will get the following output displayed in Figure 22-4 when HSZPROC comes up.

Figure 22-4 Health Checker display in the SYSLOG

� On completion, do a checks (CK) display in SDSF to see your newly added REXX check,
as shown in Figure 22-5 on page 371.

Adding a new check
If you have a check that you have defined with parameters and it does not accept the
parameters, you can clear the parameter error by issuing the following command to update
the check with a null parameter string:

F hzsproc,UPDATE,CHECK=(checkowner,checkname),PARM()

ADD ,CHECK(IBMSAMPLE,HZS_SAMPLE_REXXIN_CHECK)
 ,EXEC(HZSSXCHK)
 ,HLQ(IBMUSER)
 ,REXXTSO(NO)
 ,REXXIN(YES)
 ,MSGTBL(HZSSMSGT)
 ,ENTRYCODE(1)
 ,USS(NO)
 ,VERBOSE(NO)
 ,PARMS('LIMIT(047)')
 ,SEVERITY(LOW)
 ,INTERVAL(ONETIME)
 ,DATE(20070919)
 ,REASON('A SAMPLE CHECK TO DEMONSTRATE AN ' ,
 'EXEC CHECK USING REXXIN.')

HZS0001I CHECK(IBMSAMPLE,HZS_SAMPLE_REXXIN_CHECK): 675
HZSH0011E There are 0000000A (decimal 10) remaining available special
widgets. This is below the limit.

Note: By following this procedure you should be able to write your own REXX checks (with
messages) and add it to the Health Checker.
370 z/OS Version 1 Release 9 Implementation

Deleting the check
After defining a System REXX check in the HZSPRMxx parmlib member using the F
hzsproc,ADD | ADDREPLACE,CHECK command, the check is deleted using the DELETE
command. Now, you want to bring it back again, so the ADD, CHECK command is issued. The
command fails, with a message specifying the check already exists, even though it does not
appear in SDSF or in a display output. This is because when deleting the check, the check
definition is still there in the HZSPRMxx parmlib member, and is still loaded in the system.

To correct this situation, and to get the check to run again, issue an ADDREPLACE,CHECK
statement containing the check definition into a parmlib member, and issue the F
hzsproc,ADD,PARMLIB= command; the check is now ready to run.

22.3 Extended SDSF CK support

There are five new columns (Einterval, Execname, Locale, Verbose and Origin) added to the
SDSF Health Checker CK display panel, as shown in Figure 22-5.

Figure 22-5 SDSF CK display showing the new columns for REXX execs

The new columns in the SDSF CK display are explained as follows:

EInterval This is an exception interval that specifies how often the check should run after
the check has found an exception. The EInterval={SYSTEM / HALF / hhh:mm}
parameter allows you to specify a shorter check interval for checks that have
found an exception.

SYSTEM, which is the default, specifies that the EINTERVAL is the same as
the INTERVAL.

HALF specifies that the exception interval is defined to be half of the normal
interval.

hhh:mm provides a specific exception interval for the check. After raising an
exception, the check will run at the exception interval specified. hhh indicates
the number of hours, from 0 to 999. mm indicates the number of minutes, from
0 to 59.

ExecName This is required for a REXX exec check and specifies the name of the REXX
exec containing the check or checks.

Note: Only the Einterval and Verbose fields have values that you can overtype.
Chapter 22. IBM Health Checker for z/OS 371

Locale This specifies where the check is running. The value could be HZSPROC,
REMOTE or REXX.

Verbose This specifies the verbose mode desired (either NO or YES).

- NO specifies that you do not want to run in verbose mode.

- YES specifies that you want to run in verbose mode. Running in verbose
mode shows additional messages about non-exception conditions, if the check
supports verbose mode.

Origin This specifies the origin of the check, which will be HSZADDCK, MODIFY, or
HZSPRMxx.

22.4 New checks available with z/OS V1R9

The following are new checks defined in z/OS V1R9:

� RACF check
� UNIX System Services check
� TSO/E checks
� Communications Server Health checks
� PDSE check
� VSAMRLS checks
� System Logger checks
� Contents supervisor checks
� New supervisor checks

RACF check
The following new check is available:

CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES) is an existing check that was
updated for z/OS V1R9. Data set name SYS1.SAXREXEC is the exec library for System
REXX. The check verifies that the data set is cataloged, and does not have UACC(UPDATE).
RACF checks are part of the RACF program product.

UNIX System Services check
The following new check is available:

CHECK(IBMUSS,USSPARMLIB) compares z/OS UNIX System Services current system
settings with those specified in the BPXPRMxx parmlib members used during initialization. It
verifies the current USS setting to assure a consistent USS environment for the next IPL. All
of the parameters are checked.

For the FILESYSTYPE statement, the types specified in the BPXPRMxx parmlib members
will be compared to what Physical File Systems are currently running. For the ROOT/MOUNT
FILESYSTEM statements, the following will be checked:

� Mount point
� Mount mode (RDRW or READ)
� AUTOMOVE setting
� Parm(' ')

For the NETWORK statement, only the MAXSOCKETS value is checked for AF_INET and
AF_INET6.
372 z/OS Version 1 Release 9 Implementation

TSO/E checks
The following new checks are available:

� CHECK(IBMTSOE,TSOE_USERLOGS) verifies that USERLOGS are in effect for the
SEND command. If USERLOGs are not enabled, contention on the broadcast data set can
cause performance problems.

� CHECK(IBMTSOE,TSOE_PARMLIB_ERROR) verifies whether there were problems
setting the groupings of settings (authorized commands, authorized programs, send
settings, and so on) when the IKJTSOxx parmlib members were processed. Syntax errors
in IKJTSOxx parmlib members can result in unexpected results in TSO/E processing.
Messages are already issued when IKJTSOxx is processed, but may have been lost after
the IPL.

Communications Server checks
The following new checks are available:

� Check(IBMCS,CSTCP_SYSPLEXMON_RECOV_TCPIPStackname) verifies that
GLOBALCONFIG SYSPLEXMONITOR RECOVERY is specified when IPCONFIG
DYNAMICXCF or IPCONFIG6 DYNAMICXCF is configured.

� Check(IBMCS,CSVTAM_VIT_SIZE) verifies that the VTAM Internal Trace Table (VIT)
size is at the maximum value, which provides optimal trace information for problem
determination.

� Check(IBMCS,CSVTAM_VIT_OPT_PSSSMS) verifies that the VTAM Internal Trace
(VIT) PSS and SMS options are active. We suggest that these options always be active
for VIT tracing for optimal problem determination.

� Check(IBMCS,CSVTAM_VIT_DSPSIZE) verifies the size of the VTAM Internal Trace
(VIT) dataspace. We suggest that the VIT dataspace size be set to the maximum of 5 to
capture sufficient trace entries for optimal problem analysis.

� Check(IBMCS,CSVTAM_VIT_OPT_ALL) verifies that not all VTAM Internal Trace (VIT)
options are active. When all VIT options are concurrently active, performance might be
less than optimal.

� Check(IBMCS,CSVTAM_T1BUF_T2BUF_EE) verifies that the T1BUF and T2BUF buffer
pool allocations are not the defaults when Enterprise Extender is in use.

� Check(IBMCS,CSVTAM_T1BUF_T2BUF_NOEE) verifies that T1BUF and T2BUF buffer
pool allocations are sufficient for use when Enterprise Extender is not in use.

PDSE check
The following new check is available:

� CHECK(IBMPDSE,PDSE_SMSPDSE1) verifies that the PDSE restartable address space
is enabled. If a PDSE-related problem should occur, a system outage could be avoided

Note: If CHECK(IBMUSS,USSPARMLIB) is deleted, z/OS UNIX must be restarted to
re-add the check. This is because it is a remote check.

Note: Neither check has any parameters.

Note: Checks CSVTAM_VIT_SIZE, CSVTAM_VITOPT_PSSSMS, and
CSVTAM_VIT_OPT_ALL are designed to verify that the correct trace options are set, in
order to ensure that first failure data capture does not adversely affect performance.
Chapter 22. IBM Health Checker for z/OS 373

with a restart of the SMSPDSE1 address space. The use of the SMSPDSE1 restartable
address space is recommended.

VSAMRLS checks
The following new checks are available:

� CHECK(IBMVSAMRLS,VSAMRLS_DIAG_CONTENTION) verifies that there is no
VSAMRLS latch contention.

� Check(IBMVSAMRLS,VSAMRLS_SINGLE_POINT_FAILURE) detects and flags single
points of failure in the Share Control Data Sets (SHCDS). We recommend that the SCDSs
be on unique volumes.

System Logger checks
The following new checks are available:

� CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL) detects any logstreams that
have encountered structure full conditions.

� CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL) detects any LOGGER Staging
datasets that have encountered structure full conditions.

� CHECK(IBMIXGLOGR,IXGLOGR_ENTRYTHRESHOLD) detects any logstreams that
have encountered entry threshold problems.

Contents supervisor checks
The following new checks are available:

� CHECK(IBMCSV,CSV_LNKLST_NEWEXTENTS) verifies that the number of extents
used by each data set in the LNKLST has not changed since the LNKLST was activated.

� CHECK(IBMCSV,CSV_LNKLST_SPACE) verifies that partition data sets defined in any
active LNKLST are allocated with only primary space.

� CHECK(IBMCSV,CSV_APF_EXISTS) verifies that the data sets described by entries in
the APF list are consistent with data sets that exist on the system.

� CHECK(IBMCSV,CSV_LPA_CHANGES) detects changes in LPA from IPL to IPL. LPA
modules size or area are checked.

New supervisor checks
The following new checks are available:

� CHECK(IBMSUP,IEA_ASIDS) detects abnormal ASID usage, and detects and warns
when an IPL may become necessary due to usage trends in ASIDs

� CHECK(IBMSUP,IEA_LXS) detects abnormal linkage index (LX, ELX®, SYSLX and
SYSELX) usage.

Note: APAR OA12777 is applicable for z/OS R1.4 to R1.8.

Note: This applies to z\OS R1.9 only.
374 z/OS Version 1 Release 9 Implementation

Chapter 23. DFSMS enhancements

Data Facility Storage Management Subsystem (DFSMS) is an integral component of z/OS
system software that automatically manages data from creation to expiration. DFSMS
provides allocation control for availability and performance, backup/recovery and disaster
recovery services, space management, tape management, and reporting and simulation for
performance and configuration tuning. Today's z/OS customers want to extend, leverage, and
modernize their system environment while protecting their investments, and they require
improved management of their infrastructure and applications. In addition, z/OS must enable
customers platform for growth and remove growth related constraints and inhibitors for both
horizontal (parallel sysplex) and vertical (single system image) growth.

In this chapter we describe the functional enhancements and new functions that are available
in DFSMS. The changes we introduce include the following:

� Basic Access Methods (BAM) performance

� VSAM System Managed Buffering (SMB) enhancements

� Allocate Multi-Volume Data Set in the same Storage Facility Image (SFI)

� Object Access Method (OAM) enhancements

� DFSMShsm enhancements

� DFSMSrmm enhancements

� Network File System (NFS) enhancements

23
© Copyright IBM Corp. 2007. All rights reserved. 375

23.1 Basic Access Methods (BAM) performance

In z/OS V1R9, you can use the MULTSDN parameter of the DCBE macro with QSAM. In
previous releases, QSAM ignored the MULTSDN parameter. This new support for MULTSDN
allows the system to calculate a more efficient default value for the DCB's BUFNO parameter,
and reduces the situations where you need to specify a BUFNO value.

z/OS V1R9 DFSMS provides the following enhancements to BSAM and QSAM, as follows:

� Long-term page fixing for BSAM data buffers with the FIXED=USER parameter

� BSAM and QSAM support for the MULTACC parameter

� QSAM support for the MULTSDN parameter

The DCB extension (DCBE) macro must be coded for these enhancements. The format of the
DCBE macro is shown in Figure 23-1.

Figure 23-1 DCBE macro format

Where:

FIXED=USER With this DCBE option, the caller ensures that the data areas will remain
fixed from the time the READ and WRITE macro instruction is issued
through the completion of the CHECK or WAIT macro instructions.
Failure to keep them fixed may result in a system integrity exposure as
the channel program is using the real addresses associated with the data
areas. This keyword is new with z/OS V1R9.

MULTACC=n Allows the system to process BSAM I/O requests more efficiently by not
starting I/O until a number of buffers have been presented to BSAM.

MULTSDN=n Requests a system-defaulted NCP.

BSAM support
For BSAM in V1R9, if you code a nonzero MULTACC value, OPEN calculates a default
number of READ or WRITE requests that you are suggesting the system queue more
efficiently. OPEN calculates the number of BLKSIZE-length blocks that can fit within 64 KB,
then multiplies that value by the MULTACC value. If the block size exceeds 32 KB, then OPEN
uses the MULTACC value without modification (this can happen only if you are using LBI, the
large block interface). The system then tries to defer starting I/O requests until you have

[label] DCBE [,BLKSIZE=n]
 [,BLOCKTOKENSIZE={LARGE|SMALL}]
 [,CAPACITYMODE=XCAP]
 [,EODAD=relexp]
 [,FIXED=USER]
 [,GETSIZE={YES|NO}]
 [,NOVER={YES|NO}]
 [,PASTEOD={YES|NO}]
 [,RMODE31={BUFF|NONE}]
 [,SYNAD=relexp]
 [,SYNC={SYSTEM|NONE}]
376 z/OS Version 1 Release 9 Implementation

issued this number of READ or WRITE requests for the DCB. BSAM will never queue (defer)
more READ or WRITE requests than the NCP value set in OPEN.

QSAM support
For QSAM in V1R9, if you code a nonzero MULTACC value, OPEN calculates a default
number of buffers that you are suggesting the system queue more efficiently. OPEN
calculates the number of BLKSIZE-length blocks that can fit within 64 KB, then multiplies that
value by the MULTACC value. If the block size exceeds 32 KB, then OPEN uses the
MULTACC value without modification (this can happen only if you are using LBI, the large
block interface). The system then tries to defer starting I/O requests until that number of
buffers has been accumulated for the DCB. QSAM will never queue (defer) more buffers than
the BUFNO value that is in effect.

23.1.1 Long-term page fixing for BSAM data buffers

To improve performance, in z/OS V1R9 BSAM allows certain calling programs to specify that
all their BSAM data buffers have been page fixed. This specification frees BSAM from the
CPU-time intensive work of fixing and freeing the data buffers itself. The only restriction is:

� The calling program must be APF authorized, or be in system key or supervisor state.

� The format of the data set must be either basic format, large format, PDS, or extended
format.

The DCBE macro option “FIXED=USER” must be coded to specify that the calling program
has done its own page fixing and indicates that the user has page fixed all BSAM data buffers.

A bit in the DCBE control block (DCBEBENEFIX) is set on to indicate that a program can
benefit from specifying “FIXED=USER” on the DCBE macro. In addition, a bit in the data
extent block (DEB2XUPF) is set on to indicate that “FIXED=USER” is in effect.

The caller can ensure that the data areas are fixed by doing either of these:

� Issuing the PGSER FIX macro.

� Using the GETMAIN or STORAGE macro for a page fixed subpool.

To avoid duplicate page fixing, the user program can test whether it is running on the
appropriate release. To do that, the user program can test whether DFARELS is equal to or
greater than X’03010900’.

23.1.2 BSAM and QSAM support for MULTACC

In z/OS V1R9, the MULTACC parameter of the DCBE macro is expanded, to optimize
performance for tape data sets with BSAM, and to support QSAM with optimized
performance for both tape and DASD data sets. The calculations used to optimize
performance for BSAM with DASD data sets are also enhanced.

When dealing with a tape data set, OPEN supports MULTACC for BSAM and QSAM.

Note: Compressed format data sets are not supported.
Chapter 23. DFSMS enhancements 377

BSAM support
For BSAM it will work as documented for DASD.

� If you code a nonzero MULTACC value, OPEN will calculate a default number of read or
write requests that you are suggesting the system queue more efficiently.

� The system will try to defer starting I/O requests until you have issued this many read or
write requests for the DCB.

QSAM support
If you code a nonzero MULTACC value, OPEN will calculate a default number of buffers that
you are suggesting the system queue more efficiently.

The system will try to defer starting I/O requests until that many buffers have been
accumulated for the DCB.
=

23.1.3 QSAM support for MULTSDN

In z/OS V1R9, you can use the MULTSDN parameter of the DCBE macro with QSAM. In
previous releases, QSAM ignored the MULTSDN parameter. This new support for MULTSDN
allows the system to calculate a more efficient default value for the DCB's BUFNO parameter,
and reduces the situations where you need to specify a BUFNO value.

The user can use MULTSDN to give a hint to OPEN so it can calculate a better default value
for QSAM BUFNO instead of 1, 2 or 5. The user will not have to be dependent on device
information such as blocks per track or number of stripes.

QSAM accepts a MULTSDN value for the following data sets:

� Tape data sets.

� DASD data sets of the following types:

– Basic format

– Large format

– Extended format (non-compressed)

– PDS

For these supported data sets types, the system uses MULTSDN to calculate a more efficient
value for BUFNO when the following conditions are true:

� The MULTSDN value is not zero.

� DCBBUFNO has a value of zero after completion of the DCB OPEN exit routine.

� The data set block size is available.

When MULTSDN is specified, note that the default number of buffers may be less than what
would have been derived without MULTSDN, as shown in Figure 23-2 on page 379.

Note: BSAM will never queue or defer more read or write requests than the number of
channel programs (NCP) value set in OPEN.

Note: QSAM will never queue (defer) more buffers than the BUFNO value that is in effect.
IBM recommends setting MULTACC to one half of the MULTSDN value. If you code a
MULTACC value that is too large for the system to use, the system ignores the excess
amount. However, the absolute upper limit for MULTACC is 255.
378 z/OS Version 1 Release 9 Implementation

Figure 23-2 Default buffer numbers for QSAM (with and without MULTSDN)

23.2 VSAM system managed buffering (SMB) enhancements

The JCL AMP parameter's SMBVSP keyword lets you limit the amount of virtual buffer space
to acquire for direct optimized processing when opening a data set. Before z/OS V1R9,
changing that value required editing the JCL statement, which was not practical when running
a batch job. In z/OS V1R9, VSAM provides a simpler, more efficient way of modifying the
SMBVSP value, by specifying it for a data class using ISMF. The system managed buffering
field on ISMF's DATA CLASS DEFINE/ALTER panel lets you specify the value in kilobytes or
megabytes, which SMB then uses for any data set defined to that data class. With this
method, the effect of modifying the SMBVSP keyword is no longer limited to one single job
step, and no longer requires editing individual JCL statements.

In addition, a new JCL AMP keyword, MSG=SMBBIAS, lets you request a message which
displays the record access bias that is specified on the ACCBIAS keyword or chosen by SMB
in the absence of a user selection. The message, IEC161I, is issued for each data set that is
opened. The new keyword is optional and default is to not issue a message. You should avoid
the keyword when a large number of data sets are opened in quick succession.

23.2.1 SMB overview

System-managed buffering (SMB), a feature of DFSMSdfp, supports batch application
processing. SMB uses formulas to calculate the storage and buffer numbers needed for a
specific access type. Each algorithm is called an access bias. SMB takes the following
actions, as follows:

� It changes the defaults for processing VSAM data sets. This enables the system to take
better advantage of current and future hardware technology.

� It initiates a buffering technique to improve application performance. The technique is one
that the application program does not specify. You can choose or specify any of the four
processing techniques that SMB implements:

Direct Optimized (DO) The DO processing technique optimizes for totally random
record access. This is appropriate for applications that
access records in a data set in totally random order. This

15TSO terminal
55Others (including Dummy)

MULTSDN * number of blocks per
track

5PS, PDS
33IBM 2540 card reader or card punch

MULTSDN * number of blocks in 64
KB

5Block size less than 32 KB (tape)

MULTSDN2Block size equal to or greater than 32
KB (tape)

MULTSDN * number of stripes *
number of blocks per track

2 * number of stripes * number of
blocks per track

Extended format data set (not in the
compressed format)

11UNIX file

11Extended format data set in the
compressed format

11PDSE Member

DCBBUFNO default with
MULTSDN

DCBBUFNO default without
MULTSDN

Data Set Type

This item decreases the need for the user to set a value for BUFNO.
Chapter 23. DFSMS enhancements 379

technique overrides the user specification for nonshared
resources (NSR) buffering with a local shared resources
(LSR) implementation of buffering.

Sequential Optimized (SO) The SO technique optimizes processing for record access
that is in sequential order. This is appropriate for backup
and for applications that read the entire data set or a large
percentage of the records in sequential order.

Direct Weighted (DW) The majority is direct processing; some is sequential. DW
processing provides the minimum read-ahead buffers for
sequential retrieval and the maximum index buffers for
direct requests.

Sequential Weighted (SW) The majority is sequential processing; some is direct. This
technique uses read-ahead buffers for sequential requests
and provides additional index buffers for direct requests.
The read-ahead will not be as large as the amount of data
transferred with SO.

23.2.2 Installation considerations

Using the new SMB enhancement, you can:

� Set the storage limit used by SMB DO from the DFSMS data class as shown in
Figure 23-3.

Figure 23-3 SMB value set in the data class

An ISMF list of the data class, showing the resulting SMBVSP value is shown in Figure 23-4
on page 381.
380 z/OS Version 1 Release 9 Implementation

Figure 23-4 SMBVSP value in data class list

� Code MSG=SMBBIAS in JCL to request a VSAM open message indicating what access
bias SMB actually is used for a particular component being opened, as shown in
Figure 23-5.

Figure 23-5 AMP MSG=SMBBIAS in JCL

The message format is shown in Figure 23-6.

Figure 23-6 SMB message format

23.3 Multi-volume data set in the same storage facility image

The DFSMSdss data set fast replication function requires that all volumes of a data set reside
in the same storage facility image (SFI). To take advantage of data set fast replication,
DFSMS volume selection is enhanced to prefer candidate volumes that are in the same SFI,
when allocating or extending an SMS-managed multi-volume data set that has point-in-time
copy volumes requested. The point-in-time copy volumes are requested when the
accessibility field in the storage class is set to CONTINUOUS or CONTINUOUS
PREFERRED.

To make the best use of the fast replication function, ensure that enough volumes are on one
SFI to accommodate the likely increase in allocations to volumes in these storage groups and
SFIs.

15.00.02 SYSTEM1 JOB00028 IEC161I
001(DW)-255,TESTSMB,STEP2,VSAM0001,,,SMB.KSDS,,
IEC161I SYS1.MVSRES.MASTCAT
15.00.02 SYSTEM1 JOB00028 IEC161I 001(0000002B 00000002 00000000
00000000)-255,TESTSMB,STEP2,
IEC161I VSAM0001,,,SMB.KSDS,,SYS1.MVSRES.MASTCAT

IEC161I 001(Actual Access Bias being used)-255
For Non-DO, extra message indicating buffer numbers:
IEC161I 001(AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD)-255
 WHERE AAAAAAAA = HEX VALUE OF BASE BUFND
 BBBBBBBB = HEX VALUE OF BASE BUFNI
 CCCCCCCC = HEX VALUE OF PATH BUFND
 DDDDDDDD = HEX VALUE OF PATH BUFNI
Chapter 23. DFSMS enhancements 381

23.3.1 Storage facility image (SFI) overview

A storage facility image (SFI) is a storage device image in a physical storage device. For
non-LPAR storage device, such as DS6000 or the legacy control unit, each physical box is
viewed as an SFI by the software. For newer storage devices that have LPAR capability, such
as the DS8000 Model 9A2, each physical box may contain two SFIs.

Each SFI acts like as a separate storage device. Flashcopy requires the source and target
volumes to be in the same SFI.

23.3.2 DFSMS volume selection enhancement

DFSMS volume selection prefers volumes in the same SFI when allocating or extending a
multi-volume data set that has Accessibility=Continuous or Continuous Preferred. Volume
selection is based on the four available accessibility parameters as follows:

Continuous Specifies that DFSMS must select point-in-time copy volumes and
reject non-point in time copy volumes.

Continuous Preferred Specifies that DFSMS prefers point-in-time copy volumes over
non-point-in-time copy volumes.

Standard Specifies that DFSMS prefers non-point-in-time copy volumes over
point-in-time copy volumes.

Nopref Specifies that DFSMS ignores point-in-time copy capability and
treats both point-in-time and non-point-in-time copy volumes equally.

23.3.3 Storage Facility Image (SFI) attributes

The storage facility attributes are listed as follows:

� The DFSMS storage group may have volumes on one or multiple SFIs.

� SFI is considered when allocating a multi-volume data set with Accessibility=Continuous
or Continuous Preferred.

� A new volume preference attribute with medium importance (i.e. less important than
threshold, volume status, etc.)

� Primary volume must meet all volume selection criteria.

– Volume that does not meet SFI attribute is not a primary volume.

� Secondary volumes that meet SFI attribute are ranked higher when more important
preference attributes are equal.

The SFI attribute is not considered in the following cases.

� Accessibility=Standard or Nopref, where point-in-time copy volume is less preferred or not
preferred.

Note: DFSMS will not prefer volumes in the same SFI when no SFIs have a sufficient
number of volumes to meet the number of volume required for allocation.

Note: Do not confuse this LPAR capability inside the storage subsystem with the LPAR
that z/OS is running on. They have nothing to do with each other!
382 z/OS Version 1 Release 9 Implementation

� Single volume data set.

� Requested volsers for guaranteed space request are on different SFIs.

� Data set already exists on different SFIs.

� No storage groups have sufficient volumes in the same SFI.

� No storage groups have sufficient unique controllers in the same SFI to meet the stripe
count.

� Space constraint relief processing is in effect.

� DFSMS issues message IGD17395I to indicate why a multi-volume data set is not
allocated in the same SFI.

23.3.4 DFSMS volume selection with SFI attribute

When an allocation is eligible for SFI affinity, DFSMS volume selection takes the SFI attribute
into consideration on all types of allocations. We will discuss the effect of SFI on each of
these allocations.

� Normal allocation

– Volumes meet SFI criteria if the SFI has a sufficient number of volumes for selection.
DFSMS uses all volume preference attributes, including SFI, to rank all candidate
volumes.

– DFSMS will randomly select the best volume among all eligible storage groups.

– DFSMS then selects the remaining volumes from the most preferred volume pool that
are in the selected storage group and SFI. If this is not possible, DFSMS will randomly
select a volume from this highest ranked volume pool.

� Striping allocation

– Volumes meet SFI criteria if the SFI has a sufficient number of primary volumes to
meet the stripe count. Each unique controller can have only one primary volume.

– DFSMS randomly selects a storage group and SFI that has a sufficient number of
primary volumes.

– DFSMS then randomly selects primary volumes from the selected SFI until the stripe
count is met.

� Best-fit allocation

– Volumes meet SFI criteria if they are in the same SFI as the highest ranked volume in
each storage group.

– DFSMS selects the storage group and SFI that has the most available space.

– DFSMS then selects the highest ranked volume and the volumes that are in the same
storage group and SFI.

– Used mainly by DFDSS for restore and copy. The primary space can be allocated on
multiple volumes if none of the volumes can provide sufficient space.

� EOV new volume extend

– Volumes meet the SFI criteria if they are in the same SFI as the one the data set
resides in.

Note: Primary space may span volumes.
Chapter 23. DFSMS enhancements 383

– DFSMS uses all volume preference attributes to rank the candidate volumes. It then
randomly selects one of the best volumes from the highest ranked volume pool.

23.3.5 Migration considerations

This enhancement allocates or extends multi-volume data sets to the volumes that are in the
same SFI. Therefore, the volumes and storage groups that meet SFI requirement will see
more multi-volume data sets and may have higher space utilization.

23.4 Object access method (OAM) enhancements

Currently, the OAM storage hierarchy consists of three levels (disk, optical and tape). This
enhancement offers further granularity of the tape level by creating two sublevels of tape.
This effectively expands OAM’s storage hierarchy into four levels:

� disk

� optical

� tape sublevel 1 (TSL1)

� tape sublevel 2 (TSL2)

In addition to enabling the ability to write and read object data directly to and from a given
tape sublevel, OAM provides the ability to transition object data within the tape family (for
example: from VTS to native tape). An installation will be able to move data freely in and out
of all four hierarchy levels via the OSREQ macro and the OAM storage management
component (OSMC) functions.

23.4.1 Using OAM enhancements

The following topics lists the types of tasks and associated procedures that you must
complete to fully use this enhancement.

� Update DFSMS storage class constructs

� Defining tape sublevel parameters to OAM

� Modifying the SETOAMxx keywords

� Displaying the new OAM tape level settings

Update DFSMS Storage Class constructs
Set the new OAM Sublevel parameter in ISMF to modify existing storage class constructs or
create new storage class constructs associated with tape sublevels TSL1 and TSL2 as
shown in Figure 23-7 on page 385. Pre-existing tape storage classes will default to TSL1.
These storage class construct changes may necessitate updates to ACS routines. Each level
of the storage hierarchy is associated with SMS storage class (SC) constructs. These
constructs were previously defined with the Initial Access Response Seconds (IARS) and the
Sustained Data Rate (SDR) keywords in the ISMF storage class definition panels. The tape
sublevel support adds a new OAM Sublevel (OSL) parameter to the storage class, to indicate
the sublevel associated with that storage class

� Initial access response seconds (IARS):

– 0 = DASD

– 1-9999 = removable media
384 z/OS Version 1 Release 9 Implementation

� Sustained data rate (SDR):

– 0-2 = Optical

– 3-999 = Tapev

� OAM sublevel (OSL):

– 1 = OAM sublevel 1 (default)

– 2 = OAM sublevel 2

Figure 23-7 OAM Sublevel Storclas parameter

Defining tape sublevel parameters to OAM
The OAM component’s parmlib member is CBROAMxx, where xx is the unique suffix
specified by the use of OAM=xx parameter in the OAM started procedure, the START
command for the OAM started procedure, or in the F OAM,RESTART command. This
PARMLIB member is used by OAM during the OAM address space initialization process to
determine parameters and configuration information to be used while the address space is
active.

New keywords, L2TAPEUNITNAME and L2DATACLASS have be added to the SETOAM
statement in the CBROAMxx member of parmlib in support of the new tape sublevel function
added in this release. These new keywords will provide the installation with the ability to
specify a tape sublevel that will be used at the global and storage group level.

L2DATACLASS(name) is optional parameter that specifies the SMS data class to be used
when storing objects to TSL2 for object storage groups that do not have their own
L2DATACLASS specification on the STORAGEGROUP subparameter of the SETOAM
statement. Tape Sublevel is associated with the OAM Sublevel parameter specified in the
DFSMS Storage Class construct.

Note: A storage class defined with IARS=1, SDR=3 and OSL=2 would equate to TSL2.

Note: There is NO global level OAM default L2DATACLASS.
Chapter 23. DFSMS enhancements 385

L2TAPEUNITNAME(unitname) is a required subparameter of the STORAGEGROUP
parameter, if using the TSL2 function. Tape Sublevel is associated with the OAM Sublevel
parameter specified in the DFSMS Storage Class construct. For unitname, specify the name
of a valid MVS esoteric (group of devices defined to a group name) or a generic unit name.
Valid generic unit names are:

3480 A base 3480 device

3480x A3480 device with the IDRC feature, or a base 3490 device

3490 A 3490E device

3590-1 A 3590 device (or a device that emulates a 3590-1)

Figure 23-8 shows an example of a SETOAM statement in the CBROAMxx parmlib member.

Figure 23-8 SETOAM statement in a CBROAMxx parmlib member

Modifying the SETOAMxx keywords
You can use the F OAM,UPDATE,SETOAM command to add or change the current
L2DATACLASS and L2TAPEUNITNAME specifications for a storage group, or to add or
change the L2DATACLASS specification at the global level.

This following command updates the L2DATACLASS value of the SETOAM statement in the
CBROAMxx parmlib member, with dataclas signifying the data class to be used for scope.
Specify UPDATE,SETOAM with the L2DATACL or L2TAPEUN keyword.

F OAM,UPDATE,SETOAM,scope,L2DATACL,dataclas

This example updates the L2TAPEUNITNAME value of the SETOAM statement in the
CBROAMxx PARMLIB member, with unitname signifying the unit name to be used for scope.

F OAM,UPDATE,SETOAM,scope,L2TAPEUN,unitname

OAM operator commands
The following operator commands have been changed to include the new
L2TAPEUNITNAME and L2DATACLASS keywords for the SETOAM statement, as shown in
Figure 23-9 on page 387.
386 z/OS Version 1 Release 9 Implementation

Figure 23-9 OAM operator commands

Displaying the new OAM tape level settings
The F OAM,DISPLAY commands show the new tape level 2 settings, if any are in effect at the
global and group levels as shown in Figure 23-10.

Figure 23-10 OAM display command

23.4.2 Miscellaneous enhancements

A new SUBLEVEL column is added to OAM’s TAPEVOL table in DB2 to indicate which tape
sublevel (TSL1 or TSL2) each tape volume is associated with. Valid values are 1, 2 and blank
which means the following:

� The volume is associated with TSL1.

� The volume is associated with TSL2.

� The volume is not associated with a sublevel. This only applies to OAM scratch or backup
volumes.

The ODLOCFL column in OAM’s Object Directory Table which indicates on what storage
hierarchy the primary copy of a given object resides, was updated with a new indicator “U” for
TSL2.

F OAM,D,SETOAM,GROUP00
CBR1075I GROUP00 value for SGMAXTPS is 1
CBR1075I GROUP00 value for SGMAXTPR is 1
CBR1075I GROUP00 value for EXPDATE is /
CBR1075I GROUP00 value for TFULLTHR is 0
CBR1075I GROUP00 value for TFULLPER is 100
CBR1075I GROUP00 value for TAPEUNIT is
CBR1075I GROUP00 value for L2TAPEUN is
CBR1075I GROUP00 value for DMWT is 0
CBR1075I GROUP00 value for DATACL is
CBR1075I GROUP00 value for L2DATACL is MHLTAPE
CBR1075I GROUP00 value for TCOMP is N
CBR1075I GROUP00 value for TDRVSTRT is 9999
CBR1075I GROUP00 value for SGMAXREC is 1

 --- Changed ---
Operator Command New Syntax Results
F OAM,UPDATE,SETOAM No Yes Yes
F OAM,DISPLAY,SETOAM No No Yes
F OAM,DISPLAY,VOL No No Yes
F OAM,START,RECYCLE No Yes Yes
D SMS,STORGRP(grp-name),DETAIL No No Yes
D SMS,OSMC,TASK(OSMC-task) No No Yes

F OAM,START,MOVEVOL No No No
F OAM,START,RECOVERY No No No
Chapter 23. DFSMS enhancements 387

The values for this column are now:

D = DASD

R = Recalled

Blank = Optical

T = Tape (TSL1)

U = Tape (TSL2)

SMF (type 85)
SMF type 85 records have been enhanced to reflect information regarding tape sublevel
information. Several SMF OAM subtypes are modified to report tape sublevel information as
follows:

Subtype 2 OSREQ STORE

Subtype 3 OSREQ RETRIEVE

Subtype 6 OSREQ DELETE

Subtype 32 OSMC Storage Group Processing

Subtype 40 Tape RECYCLE Command

Subtype 78 LCS Write Tape Request

Subtype 79 LCS Read Tape Request

Subtype 87 Demount Tape Volume

23.4.3 Migration considerations

Regardless of whether or not your installation intends to exploit the new function, you must
modify and run the OAM DB2 migration job “CBRSMR19” from SYS1.SAMPLIB to add the
new TSL column to the DB2 TAPEVOL table, and prime it with:

� “1” for grouped volumes and

� blank for scratch and backup volumes.

If the customer is running in an OAMplex, and is sharing data across systems, the system
administrator must ensure all systems are capable of tape sublevel support, prior to enabling
the new support. To ensure all systems are capable of tape sublevel support, all systems in
the OAMplex must have the OAM, ISMF and SMS modifications for tape sublevel support
installed. (OA17812, PTFs UA32908, UA32909, UA32910 for V1R6, V1R7 and V1R8
respectively)

23.5 DFSMShsm enhancements

DFSMShsm is a licensed program that automatically performs space management and
availability management in a storage device hierarchy. DFSMShsm makes sure that space is
available on your Direct Access Storage Device (DASD) volumes so that you can extend your
old data sets and allocate new ones. DFSMShsm also makes sure that backup copies of your
data sets are always available if your working copies are lost or corrupted.

The following enhancements are:

� Abend 878 reduction

� Functional statistics record (FSR) improvements
388 z/OS Version 1 Release 9 Implementation

� Return priority (RP) exit changes

23.5.1 Abend 878 reduction

DFSMShsm captures UCBs in storage below the 16MB line because various functions that it
invokes require that UCBs be captured below the line. Because DFSMShsm has the
capability to process thousands of volumes, it captures thousands of UCBs below the 16MB
line. Sites that are heavy users of DFSMShsm, especially those that might be running many
tasks simultaneously, have experienced 878 abends.These abends are the result of
exhausting below the line storage in DFSMShsm's private area.

In z/OS V1R9, DFSMShsm will invoke DFSMSdss via its cross-memory application interface
for all functions except “Recall”. Invoking DFSMSdss in a separate address space will reduce
the amount of storage used in the DFSMShsm address space. DFSMShsm will request a
unique DFSMSdss address space for each function and Host ID.

Details of Abend 878 reduction
The address space identifier for each non-fast replication function will be in the format of
“ARCnXXXX”, where:

� n is the unique DFSMShsm Host ID

� XXXX represents the function, as follows:

– DUMP – HSM Dump

– REST – HSM Restore

– MIGR – HSM Migration

– BACK – HSM Backup

– RCVR – HSM Recover

– CDSB – HSM CDS Backup

ARC1MIGR is the name of the DFSMSdss address space started for migration tasks on Host
1.

Display the address spaces
To see the spawned address spaces, issue a display command as shown in Figure 23-11 on
page 390.

Note: The address spaces are started automatically when the functions are invoked on the
DFSMShsm host. The address spaces exist until DFSMShsm is shut down. The address
spaces automatically terminate when DFSMShsm is shut down.
Chapter 23. DFSMS enhancements 389

Figure 23-11 DFSMShsm address spaces

You can also do a SDSF display to see the HSM DFSMSdss address spaces as shown in
Figure 23-12.

Figure 23-12 SDSF display active

23.5.2 Functional statistics record (FSR) improvements

The function statistics record (FSR) is a control block that contains statistics for a particular
function that is performed on a data set. It is maintained in the DFSMShsm work space until
the data set processing has completed. Upon completion of the function, the record is written
to the DFSMShsm log and accumulated by category into daily statistics records (DSR) and
volume statistics records (VSR) in the migration control data set.

Functional statistics records are key to performing problem analysis with DFSMShsm. This
enhancement includes a number of additions to the information recorded in the FSR as
follows:

� Indicate in the FSR when a recall caused a tape takeaway.

� Record in the recall FSR the number of times a migrated data set had been recycled
before it was eventually recalled.

� Add the recycle source volume volser to the FSR.

D A,DFSMSDSS
IEE115I 13.26.58 2007.131 ACTIVITY 219
 JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00014 00025 00008 00038 00046 00008/00050 00027
 DFSMSDSS ARC3MIGR IEFPROC NSW * A=00A8 PER=NO SMC=000
 PGN=N/A DMN=N/A AFF=NONE
 CT=000.022S ET=01.05.11
 WUID=STC03360 USERID=STC
 WKL=STCTASKS SCL=STC P=1
 RGP=N/A SRVR=NO QSC=NO
 ADDR SPACE ASTE=78B1FA00
 DFSMSDSS ARC3CDSB IEFPROC NSW * A=0074 PER=NO SMC=000
 PGN=N/A DMN=N/A AFF=NONE
 CT=000.071S ET=104.695S
 WUID=STC03361 USERID=STC
 WKL=STCTASKS SCL=STC P=1
 RGP=N/A SRVR=NO QSC=NO
 ADDR SPACE ASTE=78B20D00

Note: These address spaces where created when issuing a DFSMShsm migrate and
CDS backup command on a LPAR who’s DFSMShsm HOST ID is “3”.

SDSF DA SC70 SC70 PAG 0 CPU/L/Z 10/ 9/ 0 LINE 1-2 (2)
COMMAND INPUT ===> SCROLL ===> CSR
NP JOBNAME StepName ProcStep JobID Owner C Pos DP Real Paging SIO
 IEESYSAS ARC3CDSB IEFPROC STC03361 STC NS F4 726 0.00 0.00
 IEESYSAS ARC3MIGR IEFPROC STC03360 STC NS F4 717 0.00 0.00
390 z/OS Version 1 Release 9 Implementation

� Provide the CPU time used for a partial release (FSR type 18) and the expiration of a
backup version (FSR type 19).

� Record the number of tracks needed when an error occurred due to not enough ML1
space.

� The FSRSTAT program was updated to analyze the new FSR field for recall tape
takeaway.

Details of the FSR enhancement
Each FSR contains values for some fields defined in the ARCFSR macro. Some fields have
multiple use. The same field means different things based on the FSRTYPE or function. One
new bit called FSRF_RECALL_TAKEAWAY is added although the size of the FSR record
remains the same. DFSMShsm modules have been changed to calculate the new field and
save it in FSR record.

The following FSR tables in Figure 23-13 and Figure 23-14 on page 392 list the FSR field
name, type and information provided.

Figure 23-13 FSR table1
Chapter 23. DFSMS enhancements 391

Figure 23-14 FSR table2

You can use the DFSMShsm REPORT command or SMF records to view the FSR information.

23.5.3 Return priority (RP) exit ARCRPEXT changes

The return-priority exit (ARCRPEXT) is taken as each delete, recall, or recover request, in the
form of a management work element (MWE), is about to be queued on one of DFSMShsm's
functional subtask queues for processing. For a recall request, this exit is invoked by the host
initiating the recall.

Extent reduction
Extent reduction is part of HSM’s primary space management (PSM). The extent threshold is
defined by SETSYS MAXEXTENTS(x) command. During PSM, if DFSMShsm finds a data
set that is not eligible for migration (too young) but has exceeded the MAXEXTENTS value;
HSM will schedule a migrate and immediate recall just for extent reduction.

The problem was that, DFSMShsm did not invoke the ACS routines for recall processing and
always recalled the dataset back to it’s original volume.

The ARCRPEXT exit has been enhanced to give you a choice for dataset recall during extent
reduction processing. A field has been added to the Exit to enable customers to indicate that
ACS routines should be invoked for extent reduction.

Enhancement details
A new bit field “EXTRDCTN” is added to the output parameter list for exit ARCRPEXT.

On return from exit ARCRPEXT, this field is set to either “0” or "1".

� If the bit field is “0”, the dataset will be recalled to it’s original volume.

� If the bit field is “1”, set “MWEFEXT_SAMEVOL = OFF” is set.

– The existing algorithm for ACS routines is then followed.

Note: The bit field added to the output parameter list is initialized to “0”. This is the default.
392 z/OS Version 1 Release 9 Implementation

23.6 DFSMSrmm enhancements

With DFSMSrmm, you can manage your removable media as one enterprise-wide library
across systems and sysplexes, and manage your installation's tape volumes and the data
sets on those volumes. DFSMSrmm also manages the shelves where volumes reside in all
locations except in automated tape libraries.

In this chapter we discuss the following enhancements:

� Task management support

� Multitasking of utilities

� Control data set (CDS) serialization

� CIM provider

� JCL data set names

� Shared parmlib support

� TSO subcommands

� 3592 MODEL E05 software support

23.6.1 Task management support

Any task in the system that requests DFSMSrmm subsystem services and fails, or is
interrupted because a TSO-user used Attention (ATTN), or is cancelled by the operator,
results in any corresponding long-running subsystem request failing. In addition, there are
checkpoints built into long-running requests so that when the requestor ends (such as a job
being cancelled), DFSMSrmm processing is interrupted at a safe and convenient point. Long
running local tasks are DFSMSrmm subsystem requests that last long enough to be included
in the results of a QUERY ACTIVE command, and the task token can be obtained and used.

If the requester is inventory management, the results of the partial processing are available in
the MESSAGE file. Long running tasks that support interruption are:

� EDGHSKP inventory management, VRSEL, DSTORE, EXPROC, RPTEXT, and
CATSYNCH. EDGHSKP ends with return code 12 when cancelled.

� SEARCHxx subcommands.These end with return code 4, reason code 16 when
cancelled.

� EDGINERS when building lists of volumes to process. EDGINERS processing is still
attempted even though one or more search requests of the DFSMSrmm control data set
may have been cancelled by the operator. Also, cancelling a task that is processing on
behalf of EDGINERS does not cause EDGINERS to be cancelled. To cancel EDGINERS
processing, you have to cancel the batch job.

� ADDxx and DELETExx subcommands with COUNT specified. These end with return code
4, reason code 12 when cancelled.

Additional operator controls are provided to enable simpler management of queued and
active tasks running in the DFSMSrmm address space. These controls will allow long running
inventory management tasks to be stopped, interrupted, and then restarted. This will enable
better management either by system automation or by the operator because of operational
priorities.

In previous releases, if a task or address space ended while waiting for DFSMSrmm
processing to complete, the processing would continue and only when it was completed
would DFSMSrmm check and discover that the requester had ended. Figure 23-15 on
Chapter 23. DFSMS enhancements 393

page 394 shows the previous DFSMSrmm task management process. When a task or
address space ends while it is waiting for DFSMSrmm processing to be complete, the control
blocks identifying the requests are updated to reflect that the requester task has ended. It is
only when the subsystem request completes that DFSMSrmm checks if the requester is still
waiting and only if still waiting is the requester notified.

Figure 23-15 DFSMSrmm previous task management process

New support in z/OS V1R9
In z/OS V1R9, DFSMSrmm long running local requests now check on the requester's status
and if the requester has ended, the current processing is interrupted and ended early. For
example, if a batch inventory management job is cancelled, DFSMSrmm is notified and
inventory management ends early. Also, if a TSO user uses an attention (ATTN),
DFSMSrmm is notified and any long-running command may be interruptedDFSMSrmm
changed task management process

Long running tasks
Long running local tasks are DFSMSrmm subsystem requests which last long enough to be
included in the DFHSMrmm QUERY ACTIVE command display and the task token to be
obtained and used. If the requester is inventory management the results of the partial
processing will be available in the message file.

Long running tasks which support interruption are:

� Inventory management

– VRSEL, DSTORE, EXPROC, RPTEXT, and CATSYNCH

� ADD, DELETE, and SEARCH TSO subcommands.

� EDGINERS when building lists of volumes to process.

They all run within the DFRMM address space and check at key points in processing whether
they should hold, release or end processing.

Note: Task management applies only to long running local tasks.

User Address
Space

RMM Address
Space
394 z/OS Version 1 Release 9 Implementation

Operator commands
In z/OS V1R9, DFSMSrmm operator commands also allow long running requests to be held,
cancelled, and released, and allow new requests to be held and released. The STOP
command processing is changed to prevent DFSMSrmm from stopping if inventory
management is running. The operator must now request that inventory management is to
end, in order for a STOP and MODIFY command to process immediately.

Additional operator commands provide ways to manage the running local subsystem
requests which can be displayed by QUERY ACTIVE operator commands. When CANCEL, HOLD,
or RELEASE operator commands are used the command is accepted and the appropriate local
tasks marked with the operators request, unless the task is already processing the same
operator command. When (ALL/ACTIVE) is used only those local tasks which meet the
processing criteria are affected.

The QUERY ACTIVE command has been extended to display the subsystem function name
rather than by number, and the current task management status as shown in Figure 23-16.

Figure 23-16 DFSMSrmm QUERY ACTIVE command

New operator commands
The following new operator commands have been added:

� F DFRMM,CANCEL (token/HSKP/ACTIVE)

The CANCEL command option allows the operator to interrupt a long running local task.
HOLD is used to interrupt a long running local task and cause the task to wait until you are
ready to continue. RELEASE is used to resume processing When a task has been held.

� F DFRMM,HOLD (token/HSKP/ACTIVE/NEW/ALL)

DFSMSrmm will find the first available task running Inventory Management and processes
the CANCEL/HOLD/RELEASE. You can easily see the first available HSKP task, if any, in
the results of the QUERY ACTIVE command.

� F DFRMM,RELEASE (token/HSKP/ACTIVE/NEW/ALL)

A CANCEL/HOLD/RELEASE(ALL/NEW/ACTIVE) allows DFSMSrmm to inform all local
and server tasks to process the CANCEL/HOLD/RELEASE.

– Using ‘HOLD(ALL)’ you interrupt all local long running active RMM subsystem request
processing and prevent new requests from starting. Using ‘RELEASE(ALL)’ you

F DFRMM,Q A
EDG1119I DFSMSrmm STATUS IS ACTIVE. JOURNAL ENABLED. LISTENER ACTIVE. 152
EDG1120I Function System Task Name Started Token S IP Status
EDG1113I ADD JOB=RMMUSERS 06:15:27 00400009 : :
EDG1113I HSKP JOB=INVMGMTS 05:29:27 00300002H : :
EDG1113I ADD SC70 JOB=RMMUSERS 06:15:49 0060000B+Re<06:17:09
EDG1113I C/S SC70 STC=DFRMM 00:00:00 00700001 Re>06:16:52
EDG1114I LOCAL TASKS 10, ACTIVE 2, SERVER TASKS 2, ACTIVE 2
EDG1122I HELD 1 HELD 0
EDG1118I 1 QUEUED REQUESTS, INCLUDING 0 NOWAIT 0 CATALOG
EDG1123I NEW REQUESTS ARE HELD
EDG1121I DEBUG: DISABLED, PDA TRACE LEVEL: 1-2-3-4- RESERVE:+06:16:45
EDG1101I DFSMSrmm MODIFY COMMAND ACCEPTED

Note: Refer to message EDG1113I for a list of Functions and their meaning.
Chapter 23. DFSMS enhancements 395

resume all active RMM subsystem request processing and enable new requests to
start.

– Using HOLD(NEW)’ you prevent DFSMSrmm from processing any new, local
subsystem requests. Using ‘RELEASE(NEW)’ you allow DFSMSrmm to processing
any new, local subsystem requests.Using ‘ACTIVE’ you affect only the long running
currently active local subsystem requests.

– You should be aware that while you have tasks in HOLD the requester is also in a WAIT
and may impact other processing in the system. When you HOLD(ALL) you can
release tasks individually via RELEASE(token/HSKP/ACTIVE), but to enable new
requests to be processed you must use RELEASE(ALL/NEW).

Figure 23-17 shows the DFSMSrmm messages you will receive after issuing commands:

� F DFRMM,HOLD(HSKP)

� F DFRMM,RELEASE(HSKP)

� F DFRMM,CANCEL(HSKP)

Figure 23-17 DFSMSrmm messages

Restarting the DFSMSrmm subsystem
The DFSMSrmm subsystem temporarily stops and reinitializes itself with the new options.
Before stopping, DFSMSrmm completes any requests that it is processing. New and queued
requests are not processed until reinitialization is completed. The operator response to
restarting DFSMSrmm is shown in Figure 23-18. To restart DFSMSrmm and implement new
parmlib options, use the following command:

� F DFRMM,M=xx

Figure 23-18 DFSMSrmm restart command

Stopping the DFSMSrmm subsystem
Before you can shut down the DFSMSrmm subsystem, you must wait until all current
requests are completed and any outstanding requests are flushed from the request queues.
Also, DFSMSrmm cannot stop if inventory management is already running. If any long

EDG2320I PROCESSING HELD BY OPERATOR COMMAND AT 06:43:55

EDG2318I PROCESSING RELEASED BY OPERATOR COMMAND AT 06:44:04

EDG2319I PROCESSING CANCELLED BY OPERATOR COMMAND AT 06:44:12
EDG2303E DFSMSrmm INVENTORY MANAGEMENT TASK ABEND U2223
EDG6901I UTILITY EDGHSKP COMPLETED WITH RETURN CODE 12

Restarting the RMM
Subsystem

Restart DFRMM

F DFRMM,M=xx
396 z/OS Version 1 Release 9 Implementation

running task prevents DFSMSrmm from stopping, you can use this command to interrupt
processing:

F DFRMM,CANCEL(TaskToken/HSKP)

First, issue the QUERY ACTIVE command to determine the task that is actually preventing the
stopping of DFSMSrmm. If any requests are subject to HOLD processing, you must
RELEASE or CANCEL them in order for DFSMSrmm to STOP. If you want to end long
running tasks in order to STOP DFSMSrmm, issue the CANCEL command. You can use this
command to display the status of the tasks:

F DFRMM,QUERY ACTIVE

You must decide whether to cancel the tasks that have been HELD or to release them. To
allow the existing tasks to complete while preventing new tasks starting, issue:

F DFRMM,HOLD(NEW)

Then to release the tasks that are HELD, issue:

F DFRMM,RELEASE(ALL)

If you decide to cancel the tasks instead, issue:

F DFRMM,CANCEL(ALL)

In either case, you can now stop the DFSMSrmm subsystem task by issuing:

P DFRMM

DFSMSrmm will not successfully shutdown if another address space is using it’s resources.
For example, there might be an DFSMSrmm WTOR outstanding for a batch job. If
DFSMSrmm shutdown is delayed, DFSMSrmm issues a message to inform you of the delay.

QUIESCE the DFSMSrmm subsystem
To quiesce the DFSMSrmm subsystem use the following command:

� F DFRMM,QUIESCE

DFSMSrmm completes any requests being processed and then stops all activity. Queued
request are not processed until you issue a command to take DFSMSrmm out of the
quiesced state and reinitialization is completed. If you stop DFSMSrmm from the quiesced
state and any requests are outstanding, message EDG1107D prompts you with your choices
of action. The quiesce command together with the operator responses are shown in
Figure 23-19 on page 398.

Note: DFSMSrmm cannot stop if:

� Inventory management is already running.

� If any long running task are in held.

� If new tasks are in HOLD processing.

Note: DFSMSrmm cannot be quiesced if any long running task are in HELD.
Chapter 23. DFSMS enhancements 397

Figure 23-19 DFSMSrmm QUIESCE command

23.6.2 Multitasking of utilities

DFSMSrmm utilities, EDGUTIL and EDGHSKP, interaction with system managed volumes in
an IBM system managed library is improved through multiple changes that should, especially
in larger VTS installations, result in shorter elapsed time and more flexibility. The following
are discussed:

� EDGHSKP EXPROC

� EDGUTIL

� EDGSPLCS

EDGHSKP EXPROC
In z/OS V1R9, DFSMSrmm scratching of system managed volumes can be handled either by
writing control statements to an output file to be processed once EXPROC has completed or
synchronously as is done today. The trigger is the new processing parameter that can be
specified along with the selection options.

When you specify the EXPROC execution parameter an optional SYSIN file allows you to
select which subset of the available locations, and volume entries is to be processed during
expiration. By default, all volumes in all eligible locations are processed.

Figure 23-20 on page 399 is an example of using EXPROC.
398 z/OS Version 1 Release 9 Implementation

Figure 23-20 EXPROC JCL

EXPROC command
The SYSIN EXPROC command does the following:

� Selects the volumes to be processed.

� Specifies when the volumes are to be scratched.

The EDGSPLCS DD:

� Is written during EDGHSKP EXPROC if EDGSPLCS(YES) specified in SYSIN.

� Instead of scratching the volumes housekeeping creates statements to be used with the
EDGSPLCS Utility.

Figure 23-21 shows the format of the EDGHSKP EXPROC SYSIN statement.

Figure 23-21 EDGHSKP EXPROC - SYSIN statement

Use this command one time only to specify the selection criteria for EXPROC processing.
The selection criteria you specify selects volumes for processing by EXPROC which includes
the following aspects of expiration processing:

� releasing expired volumes.

� setting and processing individual release actions.

� returning volumes to scratch status.

If you have specified the EXPROC job step parameter but neither VRSEL nor DSTORE
Global confirmed actions and moves are not processed.

The operands are all optional and are as follows:

LOCATIONS This operand allows you to select a subset of the available volumes,
based on the volume current location, for processing.

//NAIDOOCN JOB (POK,999),MSGCLASS=T,NOTIFY=&SYSUID
/*JOBPARM SYSAFF=SC63
//HSKP EXEC PGM=EDGHSKP,
// PARM='EXPROC'
//MESSAGE DD DISP=SHR,DSN=NAIDOO.HSKP.MESSAGES
//EDGSPLCS DD DISP=SHR,DSN=NAIDOO.SPLCS.DATA
//SYSIN DD *
EXPROC VOLUMES(DV0*,T*,MARY01) EDGSPLCS(YES)
Chapter 23. DFSMS enhancements 399

VOLUMES This operand allows you to specify a list of volumes to be processed.

VOLUMERANGES Beginning and end of range to be processed.

EDGSPLCS Use this operand to request that instead of DFSMSrmm returning
system managed volumes to scratch, that statements are generated
for use with EDGSPLCS instead.

Figure 23-22 and Figure 23-23 shows an example of the statements in the EDGSPLCS file
and MESSAGE file. These statements were generated when we ran the EXPROC job in
Figure 23-20 on page 399.

Figure 23-22 EDGSPLCS file

A scratch “S” statement is written to the EDGSPLCS file for each volume for which
DFSMSrmm processing would normally have issued a CUA® (change use attribute) request
to OAM to return the volume to scratch when EDGSPLCS(NO) is specified.

Figure 23-23 MESSAGE file

If the run of EDGHSKP includes parameters other than EXPROC:

� DFSMSrmm processing will process all volumes but only the selected volumes will be
subject to EXPROC.

� Global confirmed actions and moves are completed if DSTORE or VRSEL are specified.

S TS4285 LIB1
S DV0042 LIB2
S DV0053 LIB2
S DV0061 LIB2

EDG6001I INVENTORY MANAGEMENT STARTING ON 2007/135 AT 09:20:44
 PARAMETERS IN USE ARE DATEFORM(J),EXPROC
EDG6013I THE SYSIN OPTIONS CURRENTLY IN USE ARE
 EXPROC
 EDGSPLCS(YES)
 VOLUMES(DV0*,T*,MARY01)
EDG2309I THE PARMLIB OPTIONS CURRENTLY IN USE ARE
........
EDG2308I CHANGES HAVE BEEN MADE TO VRS POLICIES SINCE THE PREVIOUS INVEN
EDG2420I PHYSICAL VOLUMES READ = 2151
EDG2420I LOGICAL VOLUMES READ = 15
EDG2424I TOTAL VOLUMES, THIS RUN, SET PENDING RELEASE = 0
EDG2425I TOTAL VOLUMES RETURNED TO SCRATCH = 1
EDG2426I TOTAL NUMBER OF SCRATCH RECORDS WRITTEN = 4
EDG2429I MAIN INVENTORY MANAGEMENT UPDATES HAVE COMPLETED SUCCESSFULLY
EDG2307I INVENTORY MANAGEMENT TASK EXPROC COMPLETED SUCCESSFULLY
EDG6901I UTILITY EDGHSKP COMPLETED WITH RETURN CODE 0
400 z/OS Version 1 Release 9 Implementation

EDGUTIL
In z/OS V1R9, DFSMSrmm utility EDGUTIL is no longer considered to be part of inventory
management processing. EDGUTIL can run at any time, even in parallel with other EDGUTIL
instances. The requirement for MEND to be run against an unused CDS is unchanged.

� A subset of volumes can be selected to be processed on a run of EDGUTIL. An optional
SYSIN file allows you to select the subset from the available locations, and volume entries
during verification of volumes.

Verification processing of volumes includes:

� VERIFY/MEND(SMSTAPE/VOLCAT)

� VERIFY or MEND

� VERIFY/MEND(ALL)

� VERIFY/MEND(VOL)

Processing subsets of volumes
By default, all volumes are verified. The SYSIN commands in Figure 23-24 can be used to
select the subset of volumes.

Figure 23-24 EDGUTIL SYSIN statement

You can specify only one INCLUDE and one EXCLUDE statement, in any order. The
command operands are all optional.

You can specify one or more of the operands, which are as follows:

LOCATIONS This operand allows you to select a subset of the available volumes
based on the volume current location for processing. For 3-way audit
and VOLCAT you should specify system managed library location
names. For VOL processing any system managed library, or storage
location name known to DFSMSrmm, or SHELF can be specified.

VOLUMES This operand allows you to specify a list of volumes to be processed.

VOLUMERANGES Use the VOLUMERANGES operand to select a subset of volumes
based on starting and ending volser.
Chapter 23. DFSMS enhancements 401

Processing stacked volumes
In Z/OS V1R9 when a subset of volumes is processed, VERIFY/MEND(VOL) does not
consider stacked volume processing. For stacked volumes, VERIFY/MEND(VOL) checks the
consistency of exported logical volumes with stacked volumes.

Deferred correcting TCDB and LM database
Correction of the tape configuration database (TCDB) and the library management database
(LM) based on the RMM CDS information was previously done by using EDGUTIL with
PARM=‘MEND(SMSTAPE)’. The correction was done synchronously to the verify processing,
resulting in a long elapsed time.

In z/OS V1R9, by using EDGUTIL with PARM=‘VERIFY(SMSTAPE)’ and EDGSPLCS DD
and the EDGSPLCS utility:

� Control statement are generated in the EDGSPLCS output file by EDGUTIL.

� Volumes can be corrected once EDGUTIL processing is completed by using these
statements as an input for the EDGSPLCS utility.

Figure 23-25 is a example of using the deferred TCDB and LM database correction method.

Figure 23-25 EDGUTIL VERIFY(SMSTAPE)

Figure 23-26 is the output from SYSPRINT DD.

Figure 23-26 SYSPRINT DD output

//NAIDOOMN JOB (POK,999),MSGCLASS=T,NOTIFY=&SYSUID
/*JOBPARM SYSAFF=SC63
//HSKP EXEC PGM=EDGUTIL,PARM='VERIFY(SMSTAPE)'
//EDGSPLCS DD DISP=SHR,DSN=NAIDOO.SPLCS.DATA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
INCLUDE VOLUMES(M*,V*,T*)
/*

Note: The EDGSPLCS DD:

� Is written during VERIFY(SMSTAPE).

� If specified it causes EDGUTIL to create statements to be used with the EDGSPLCS
utility.

INCLUDE VOLUMES(M*,V*,T*)
EDG6433I STARTING VERIFICATION OF VOLUME RECORDS
EDG6824I VOLUME TST020 IS IN VOLUME CATALOG ERROR STATUS 0004 SECURITY CONFLICT
EDG6846I VOLUME CATALOG UPDATE REQUIRED - STATEMENT WRITTEN TO EDGSPLCS FILE
FOR VOLUME TST020
EDG6824I VOLUME TST021 IS IN VOLUME CATALOG ERROR STATUS 0004 SECURITY CONFLICT
EDG6846I VOLUME CATALOG UPDATE REQUIRED - STATEMENT WRITTEN TO EDGSPLCS FILE
FOR VOLUME TST021
EDG6418W CONTROL DATA SET VERIFY COMPLETED WITH ERRORS
EDG6901I UTILITY EDGUTIL COMPLETED WITH RETURN CODE 4
402 z/OS Version 1 Release 9 Implementation

The explanation of message EDG6846I is:

� You are running the DFSMSrmm EDGUTIL utility to VERIFY SMS information for volumes.
DFSMSrmm found inconsistencies between the DFSMSrmm information for the volume
and the volume catalog and Library Manager database. This message indicates that the
error can be corrected. A control statement has been written to the data set represented
by the EDGSPLCS DD statement.

Figure 23-27 is the corresponding EDGSPLCS generated statements.

Figure 23-27 EDGSPLCS DD statements

3-way audit
For 3-way audit with system managed libraries, VERIFY(SMSTAPE), MEND, and
MEND(SMSTAPE) processing exploits the use of a host library interface to return multiple
volumes in a single request. In addition, DFSMSrmm allows the selection of libraries and
subsets of volumes. This processing reduces the EDGUTIL elapsed time. EDGUTIL
constructs a series of requests for the libraries containing the volumes to be verified. The
information is retrieved as required and is processed together with entries from the TCDB and
volume information from the DFSMSrmm control data set. When a mismatch is detected
between the TCDB, DFSMSrmm control data set, and the library manager data, DFSMSrmm
uses the CBRXLCS QVR request so that any timing related change can be detected.
Processing of all volumes, regardless of function, is subject to the subsetting through location
and volume selection.

Figure 23-28 EDGUTIL 3-way audit

S TST020 LIB1
P TST021 LIB1

CDSCDS

VCINOUT SORT
Exit 35

Include/
Exclude

Exit 15
CBRXVOL

TYPE=TAPE
FUNC=GETVOL

TCDB

LIBSERV
REQTYPE=INVENTORY

LM data base 1

LM data base 2

LM data base 3

SSDA
buf 1

SSDA
buf 2

SSDA
buf 3

1. First check

2. Missmatch found

CDSCDS
TCDB & LM
volume info CBRXLCS QVR

TCDB

LM data base 2

LIBSERV
REQTYPE=INVENTORY

LIBSERV
REQTYPE=INVENTORY
Chapter 23. DFSMS enhancements 403

Using the diagram in Figure 23-28 the following, 1) First check, explains how 3-way audit
works:

� The TCDB volume entries are retrieved from all connected volume catalogs, sorted and
the volume subset extracted via the INCLUDE/EXCLUDE statements, and written into the
VCINOUT file.

� The CDS and the VCINOUT are read sequential in parallel, and the data for each volume
are compared.

� If a volume is recorded in VCINOUT (that is in the TCDB) and not in the CDS, or a volume
is recorded in the CDS but not in the VCINOUT (that is, it is not in the TCDB), or a
mismatch is found between the data in the CDS and TCDB the processing continues at
point 2.

� If the volume is not in the buffer, a LIBSERV REQTYPE=INVENTORY is sent to the
Library manager of the according library, and 100 records are read at once and saved in
buffer. There is 1 buffer for each library. The volume information from the CDS and TCDB
are compared to the ones in the buffer.

� If a volume is recorded in the CDS and TCDB but not in the LM data base, or a mismatch
is found between the data in the CDS, TCDB and LM the processing continues at point 2.

2) Mismatch Found
� Because the data in VCINOUT (from TCDB) and in the buffered data from LM could be out

of date, the LM data base and TCDB are read once more by using the CBRXLCS QVR
macro. These data are compared once more with the volume information from the CDS.

� If the volume is defined to TCDB but not defined to RMM, then it is reported to the
MESSAGE file.

� If the volume is defined to RMM but not defined to TCDB, then it is reported to the
MESSAGE file, and if MEND(SMSTAPE) and the Library is an MTL then manual cartridge
entry is done.

� If the volume is defined to RMM and to TCDB but not defined to LM, then it is reported to
the MESSAGE file.

� If a mismatch found then it is reported to the MESSAGE file and if VERIFY(SMSTAPE)
and EDGSPLCS DD specified then control statements are written to use with the
EDGSPLCS Utility.

� If MEND then RMM volume records are fixed using the TCDB and LM data.

� If MEND(SMSTAPE) TCDB and LM volume records are fixed using the RMM data.

� If MEND(VOLCAT) then the processing is similar, but without LM processing.

EDGSPLCS
You can use the EDGSPLCS utility to issue supported commands to OAM for
system-managed volumes. DFSMSrmm builds the input commands for this utility
automatically during EDGUTIL VERIFY(SMSTAPE) processing and EDGHSKP EXPROC
processing when you request them.

You can run multiple copies of EDGSPLCS. Using different parameters, EDGSPLCS can be
processing in parallel for multiple libraries, but this utility does not ensure that each parameter
is different from any other currently running. You need RACF ALTER authority to the relevant
volume catalog in order to use the EDGSPLCS utility to update the TCDB. For example, if you
use just one volume catalog and use the default volume catalog prefix, you need ALTER
access to SYS1.VOLCAT.VGENERAL.

Figure 23-29 on page 405 shows the execution parameters for EDGSPLCS.
404 z/OS Version 1 Release 9 Implementation

Figure 23-29 EDGSPLCS EXEC parameters

ACTION(ALL/S/P/I/X/M/E)

� Specifies that only the specified requests in the input file are processed. You can
optionally provide the name of a library to restrict the processing to only those requests.
You can specify one or more of the possible actions.

– S Set to Scratch status.

– P Set to Private status.

– I Import volume.

– X EXport volume.

– M Manual cartridge entry.

– E Eject volume.

If you do not specify the ACTION parameter, the default value is ALL.

LOCATION(library_name)

Specifies the name the system-managed library for which the EDGSPLCS utility will process
commands during this run. By default, all locations are considered. However, you can select a
subset based on the library name using this parameter.

EDGSPLCS utility example
You can run multiple copies of EDGSPLCS each using different parameters so that
processing can be done in parallel for multiple libraries. This is shown in Figure 23-30.

Figure 23-30 EDGSPLCS utility example
Chapter 23. DFSMS enhancements 405

Figure 23-31 shows the output file for each of the JCL EXEC statements run against the input
file.

Figure 23-31 EDGSPLCS OUTPUT file

23.6.3 Control data set (CDS) serialization

DFSMSrmm now requires you to supply a control dataset identifier in the CSDID parameter of
SYS1.PARMLIB member ERBRMMxx, specifying the identifier of the CDS to be used on that
system. DFSMSrmm uses the CSDID as part of the ENQ name used to serialize updates to
the RMM CDS. The DFSMSrmm CIM Provider also uses the CSDID to distinguish between
multiple control data sets. If the CSDID is not yet set in the CDS you can optionally use
EDGUTIL UPDATE to set it, otherwise DFSMSrmm will set the CSDID when first started. We
recommend that you use a unique CSDID for each CDS.

CSD serialization change
The serialization used by DFSMSrmm for its CDS is changed to use a new resource name
that includes the CDSID. This avoids conflicts when multiple RMMplexes run in the same
sysplex. Lets look at the scenario in Figure 23-32 on page 407.
406 z/OS Version 1 Release 9 Implementation

Figure 23-32 CDS serialization

In previous DFSMSrmm releases, even though the Production and the Test RMM are
independent from each other, a write access to the Test CDS would cause an exclusive ENQ
of the SYSZRMM MASTER.RESERVE resource. If you use global reserve, the accesses to
the Production CDS and to the Test CDS are serialized each after the other. With z/OS V1R9
DFSMSrmm write accesses to the Production CDS and write accesses to the Test CDS are
serialized independent from each other.

For example, if your production and test RMM run in the same sysplex, you will get two
exclusive SYSTEMS enqueues for write access. One for production and the other for test in
parallel as shown in Figure 23-33.

Figure 23-33 SYSTEM ENQ for write access

CDSID parmlib option
There is a new option in the EDGRMMxx parmlib member called CDSID. The format od
CDSID is as follows:

CSDID(ID) Specifies the identifier of the control data set that must be used on this
system. Specify a value one to eight alphanumeric characters long.

Following is the CDSID parmlib option.

OPTION OPMODE(P) -
 DSNAME(RMM.CONTROL.DSET) -
 JRNLNAME(RMM.JOURNAL.DSET) -
 CDSID(SC70) -

SYSTEM ENQ STATUS ROW 1 TO 3
MAJOR NAME PREFIX . . . SYSZRMM (SYSDSN, SPFEDIT, ETC)
 MAJOR MINOR TYPE
+----------+--+-----+
SYSZRMM	MASTER.RESERVE.CDSPRODA	SYSS
SYSZRMM	MASTER.RESERVE.CDSTEST1	SYSS
SYSZRMM	RMM.ACTIVE	SYS
+----------+--+-----+

TEST SYSTEM PROD SYSTEM 1

Production RMM

PROD SYSTEM 2

Production RMM Test RMM

Production
(shared) CDS

Test
(shared) CDS

SYSPLEX
Chapter 23. DFSMS enhancements 407

CREATE and UPDATE EDGUTIL parameters
With EDGUTIL when creating a new CDS, the CDSID is set in the CDS control record.

The following JCL statements show=s how the CDSID is created using EDGUTIL.

//EDGUTIL EXEC PGM=EDGUTIL,PARM='CREATE'
 :
//SYSIN DD *
 CONTROL CDSID(SC70)

Provide a CDSID to an existing RMM system
We recommend that you provide a CDSID prior to the V1R9 installation. Ensure that each
control data set has a unique CDSID. By using the RMM LISTCONTROL command, check
whether the data element CDSID is filled or not as shown in the following RMM
LISTCONTROL command:

RMM LISTCONTROL ALL
System options:
PARMLIB Suffix = 02
SMF audit = 0 SMF security = 0 CDS id =

If the CDSID field is empty, as is the case in our example, run EDGUTIL with the UPDATE
parm as shown in the JCL example that follows and change your parmlib member according:.

//EDGUTIL EXEC PGM=EDGUTIL,PARM='UPDATE'
//SYSIN DD *
 CONTROL CDSID(SC70)

DFSMSrmm messages
The following warning message is issued during DFSMSrmm startup.

EDG0237E MISSING IDENTIFIER FOR THE CONTROL DATA SET

Explanation: During initialization DFSMSrmm checks to ensure that you have a
CDSID specified in the EDGRMMxx parmlib member. A CDSID is mandatory.

System Action: DFSMSrmm initialization stops.

You also get a EDGUTIL message if no CSDID is provided during CREATE and UPDATE
SYSIN control statements. EDGUTIL CREATE returns these messages in Figure 23-34 when
the CDSID is not provided.

Figure 23-34 EDGUTIL message for missing CSDID

Global resource serialization (GRS)
When you change the CSDID, any running systems that share the control data set detects the
change in CDSID and changes the ENQ name they use for serialization. Ensure that the
GRSRNLxx parmlib member is updated to reflect and CDSID changes you make. RNLDEF
must be updated so that each system has a reserve with that systems CDSID specified. This
is so that RMM can issue the ENQ on a per system basis.

EDG6007E IKJ56701I MISSING IDENTIFIER FOR THE CONTROL DATA SET
EDG6414E CONTROL DATA SET CONTROL RECORD CREATE FAILED
EDG6901I UTILITY EDGUTIL COMPLETED WITH RETURN CODE 12
408 z/OS Version 1 Release 9 Implementation

Depending on how you have determined the GRS parameters, you should also update the
GRS resource name list in SYS1.PARMLIB(GRSRNLxx) as shown in Figure 23-35.

Figure 23-35 GRS RNLDEF statements

Alternatively the TYPE(SPECIFIC) can be changed to TYPE(GENERIC).

23.6.4 Migration and coexistence considerations

When a V1R9 system will ENQ with the new enqueue name, all lower systems in the
SYSPLEX, which are using the same shared CDS, must do the ENQ with the same new
enqueue name, too. With the coexistence APAR OA17965 the following functions are
installed on lower releases (V1R6 to V1R8):

� Does the ENQ with the new enqueue name, if the CDSID enqueue setting is enabled.

� Displays the CDSID enqueue setting with LISTCONTROL, REXX and SFI.

� A warning message appears if the lower system has not provided the parameter CDSID in
PARMLIB.

23.6.5 Common Information Model (CIM) provider

The RMM CIM provider is the link for a customer to obtain real-time RMM data within a
Common Information Model (CIM) environment. This functionality will enable a CIM client
such as a PC to obtain RMM data.

In z/OS V1R8 DFSMSrmm shipped a Common Information Model (CIM) Provider for use with
the OpenPegasus CIMOM. The provider supported a subset of the resources managed by
DFSMSrmm. The CIM model supported by DFSMSrmm is further extended in this release to
cover all of the resources managed by DFSMSrmm. The CIM provider is updated to support
out-of-process mode functionality added to OpenPegasus CIM Server with 2.5.1. This has an
impact on the way that the DFSMSrmm provider code is installed and run.

In addition, the RMM extensions to the CIM object model are based on the latest CIM V2.11
specification. To further enable selection of resources via the API the SEARCH
subcommands are all now capable of specifying continuation, enabling "chunking" of returned
entries.

RMM CIM classes
Four new abstract super-classes have been introduced as an intermediate layer between
native CIM schema classes and RMM classes. These abstract classes hold a common set of
keys for their child classes. Abstract classes can‘t have instances. Derived child classes can
have instances.

Note: A lower system never switches on the CDSID enqueue setting. This is only be done
by a z/OS V1R9 DFSMSrmm system.
Chapter 23. DFSMS enhancements 409

Four new abstract super-classes have been introduced as an intermediate layer between
native CIM schema classes and RMM classes. These abstract classes hold a common set of
keys for their child classes. Abstract classes can‘t have instances, but derived child classes
can have.

The DFSMSrmm CIM interface has been completed by implementing the remaining
resources, not covered in V1R8, which are:

IBMrmm_Product
IBMrmm_PolicyRule
IBMrmm_Control

The following CIM classes are new in z/OS V1R9:

IBMrmm_LogicalMedia (abstract class)
IBMrmm_PhysicalMedia (abstract class)
IBMrmm_StorageMediaLocation (abstract class)
IBMrmm_Identity (abstract class)
IBMrmm_PhysicalVolume
IBMrmm_LogicalVolume
IBMrmm_Dataset
IBMrmm_Owner
IBMrmm_Location
IBMrmm_ShelfLocation
IBMrmm_Product
IBMrmm_PolicyRule
IBMrmm_Control

CIM association classes
All aspects of a volume to a location or shelf location are now modelled by various new
association classes as follows:

IBMrmm_PhysicalLogicalVolume (association 1:1)
IBMrmm_LogicalVolumeDataset (association 1:N)
IBMrmm_LogicalVolumeOwner (association N:1)
IBMrmm_DatasetOwner (association)
IBMrmm_PhysicalVolumeCurrentLocation (association N:1)
IBMrmm_PhysicalVolumeDestinationLocation (association N:1)
IBMrmm_PhysicalVolumeHomeLocation (association N:1)
IBMrmm_PhysicalVolumeLoanLocation (association N:1)
IBMrmm_PhysicalVolumeOldLocation (association N:1)
IBMrmm_PhysicalVolumeRequiredLocation (association N:1)
IBMrmm_PhysicalVolumeCurrentShelfLocation (association 1:1)
IBMrmm_PhysicalVolumeDestinationShelfLocation (association 1:1)
IBMrmm_PhysicalVolumeOldShelfLocation (association 1:1)

An example being traversing IBMrmm_PhysicalVolumeDestinationLocation left-to-right will
return the destination location of a volume, which moves because of an inventory
management run. Vice versa, when traversing right-to-left, all volumes are listed, that are
intended to move into a specific location.

Volume chains and PolicyRule (VRS) chains are also supported with release V1R9 as
follows:

IBMrmm_LogicalVolumeChainedLogicalVolume (association 1:1)
IBMrmm_LogicalVolumeLogicalVolumeInChain (association 1:N)
IBMrmm_LocationShelfLocation (association 1:N))
IBMrmm_ProductLogicalVolume (association 1:N)
410 z/OS Version 1 Release 9 Implementation

IBMrmm_PolicyRuleNextPolicyRule (association N:1)
IBMrmm_PolicyRuleAndPolicyRule (association N:1)
IBMrmm_PolicyRulePolicyRuleInChain (association 1:N)
IBMrmm_PolicyRuleLocation (association N:1)
IBMrmm_PolicyRuleOwner (association N:1)
IBMrmm_SearchOperands (aux class for search type operations)
IBMrmm_DeleteOperands (aux class for delete operation)

The association IBMrmm_LogicalVolumeChainedLogicalVolume let you traversing through a
chain of volume, back and forth. IBMrmm_LogicalVolumeLogicalVolumeInChain returns the
whole set for a given chain member. The same is true for
IBMrmm_PolicyRulePolicyRuleInChain.

IBMrmm_PolicyRuleNextPolicyRule let you traverse through normally chained policy rules,
while IBMrmm_PolicyRuleAndPolicyRule let you traverse through logical policy rules.

Supported CIM operations
A new method invokeMethod() is introduced from the MethodProvider2 interface as shown in
Figure 23-36. Search is the only supported method name for the invokeMethod function. It
returns a list of objects from DFSMSrmm by name. It is particularly useful when working with
the CONTINUE operand for search requests. Only the number of objects that are actually
returned to the client are specified by the LIMIT operand. The client is able to get the list
incrementally, in an interactive way.

Figure 23-36 CIM invokeMethod

Search operands
Whereas in z/OS V1R8 the IBMrmm_SearchOperands class has no special importance, it
gains importance in z/OS V1R9 in conjunction with the CONTINUE operand. The CONTINUE
operand is added to the search string within the instances of IBMrmm_SearchOperands.

The CIM search method (enumerateInstanceNames) does not allow passing the search
operand. Therefore, any operands are set (1) before in the corresponding instance of the
class IBMrmm_SearchOperands, which is later used during the search operation (2) as
shown in Figure 23-37 on page 412.

Note: A policy rule can have more than one previous rule, that’s why the N:1 relationship.
Chapter 23. DFSMS enhancements 411

To make use of the CONTINUE operand, you have to add it to an instance of
IBMrmm_SearchOperands.

The V1R9 CIM provider fully supports the new CONTINUE operand, to divide a huge set of
returned volumes or data sets into multiple sub-sets. You can either specify the CONTINUE
operand in the appropriate instance of IBMrmm_SearchOperands or use the new API method
invokeMethod(). Following is an example of listing all volumes from DFSMSrmm is groups of
ten, as follows:

� Point 1 lets the provider incrementally pull chunks of data from RMM, but finally returns the
whole matching set to the client, as follows in wbevcli mii:

http://<userid>:<password>@<cimon_uri:<port>
/root/cimv2:IBMrmm_SearchOperands

� Point 2 passes the concept of chunking down to the client, and the client has to keep
requesting data until the set is complete and no more data is available, as follows in
wbemcil ein:

http://<userid>:<password>@<cimon_uri>:<port>
/root/cimv2:IBMrmm_LogicalVolume

Figure 23-37 CIM search operands

Software dependencies
A fully functional Pegasus CIM Server is a fundamental prerequisite for the RMM
CIM-Provider.

� For z/OS the Pegasus CIM Server is preinstalled in /usr/lpp/wbem and must be invoked as
Unix System Service (USS) process. Refer to the eServer zSeries Common Information
Model User's Guide, SC33-7998 for how to setup the CIM server, particularly the
necessary RACF settings for the CIM server and client user IDs.

� For LINUX, the provider files has to be downloaded from /usr/lpp/dfsms/rmm to the Linux
system. The Pegasus CIM Server 2.5.3 has to be downloaded from the following website:

http://www.openpegasus.org

Search volumes22

11
Set
instance

Volume(*) Owner(*)
Limit(10) Continue

Instance of
IBMrmm_SearchOperands
412 z/OS Version 1 Release 9 Implementation

� The minimum supported Java level is 1.4.2. The designated Java libraries are required to
be added to the CLASSPATH. Refer to Figure 23-38 for a list of these libraries. For how to
setup the CLASSPATH please refer to the “Exports” sections in the readme file
rmmcim.txt.

Figure 23-38 CLASSPATH - Java libraries

CIM installation
Use script rmmutil.sh or alternatively, load CIM classes and register providers manually by
invoking from the shell:

� cimmof -I. -nroot/cimv2 rmmcimp.mof

� z/OS: cimmofl -I. -nroot/PG_InterOp -R/var/wbem rmmcimpr.mof

� Linux: cimmofl -I. -nroot/PG_InterOp rmmcimpr.mof

Set the environmental variables:

� export RMMCIM_NAMESPACE=root/cimv2

� export RMMCIM_CONFIG=/var/rmm/rmm.properties

Set external link (z/OS only):

� ln -e EDGXHCLL libEDGXHCLL.so (within $LIBPATH)

Migration and coexistence considerations
IBM WebSphere Application Server (v5.02 or higher) and the z/OS CIM Server V1R9 has to
be up and running on the target z/OS system in order to work with the RMM CIM provider
V1R9. If running under Linux, OpenPegasus CIM Server 2.5.3 or above has to be installed.
The RMM CIM provider readme with setup instructions can be found under
/usr/lpp/dfsms/rmm/rmmcim.txt within the Unix System Services (USS).

In addition the physical file system (PFS) after the First IPL, requires the following:

Note: The “Miscellaneous Tests” menu offers various post-installation tests, which we
highly recommended you execute, before actually working with the provider. For example
the web service or direct API can be tested, to make sure the underlaying communication
channels work properly.

Note: The external link is necessary to be able to connect to the direct API C++ DLL
EDGXHCLL, which actually resides in SYS1.SIEALNKE.
Chapter 23. DFSMS enhancements 413

The customer has to unregister the V1R8 CIM providers and unload all V1R8 CIM classes, by
using the rmmutil.sh tool. Following this, the complete set of V1R9 providers must be
registered and the V1R9 CIM classes must be loaded, by using the same tool.

23.6.6 JCL data set names

The data set naming requirements for tape data sets supported by the TSO subcommands
and API are relaxed so that any 44 character string can be used. This enables use of
unqualified data set names such as those that are accepted by the MVS JCL DSNAME
keyword. Quoted data set name strings allow any character string to be specified for a data
set name except for leading blank and leading hex zero which are not supported.

The following are the rules for a “quoted” data set name.

� ‘My Data/Set“Name“.123!’

– Can include special characters

– Can contain lower case characters

– Can be any string

– Max 44 characters long

– Must not start with BLANK

The following are the rules for an “un-quoted” data set name.

� MVS.DATA.SET.NAME

– Prefix may be applied

– Translated to upper case

– Must follow MVS naming convention

RMM subcommands
Data set name validation is only performed when a data set or VRS data set name record
might be created in the CDS. This includes:

� AD dsname

� CD NEWDSNAME

� CV DSNAME

� AV DSNAME

� AS DSNAME

In all other cases the validation of a data set name is minimal so that any data set recorded or
already defined to RMM can be listed changed, searched or deleted.

You can define a retention policy for a specific data set by using a fully qualified data set
name in a vital record specification. The vital record specification defined in this example

Note: Customers migrating from z/OS V1R7 should follow the migration steps documented
for migration to V1R8 before completing the V1R9 registration steps.

Note: Quotes make the difference!
414 z/OS Version 1 Release 9 Implementation

defines the retention policy for one data set, PRITCHAR.BACKUP.DATA. All copies of the
data set should be retained for five days.

RMM ADDVRS DSNAME('PRITCHAR.BACKUP.DATA') DAYS COUNT(5)

DFSMSrmm does not check quoted data set names for valid characters. Any string of up to
44 characters is accepted, except those that start with a blank or x'00'. Data set names
without quotes must pass these data set naming rules:

Creating a CDS record
When a CDS record is created, DFSMSrmm does not check quoted data set names or data
set name masks for valid characters; any string of up to 44 characters is accepted except
those which start with a blank or x'00'. Unquoted data set names and data set name masks
must pass the data set naming rules which are described here one time and are as follows:

� A data set name can be one or more qualifiers.

� Each qualifier is 1 to 8 characters, the first of which must be alphabetic (A to Z) or national
(# @ $). The remaining seven characters are either alphabetic, numeric (0 - 9), national, or
a hyphen (-).

� Qualifiers are separated by a period (.).

� DFSMSrmm adds your TSO PROFILE PREFIX value as the high-level qualifier.

� The data set name must not include a member name.

In addition data set name masks must pass the following data set mask naming rules:

� You can use *, %, or ¬ in a data set name mask.

� *

– A single * represents a single qualifier of any number of characters.

– A single * when used within a qualifier represents zero or more characters.

– More than one single * can be used within a qualifier as long as a character precedes
or follows the *.

� .**

– represents zero or more qualifiers. At the end of the mask, ** indicates to ignore any
remaining characters.

� **

– indicates to select all data sets. You can use this mask to define a vital record
specification that sets your installation default retention criteria for data sets that are
not covered by other vital record specifications.

� % (percent sign)

– A place holder for a single character.

� ¬ (not sign)

– A place holder for a single character. The ¬ has special meaning in a VRS data set
name mask and is used to specify a pseudo-GDG data set name.
Chapter 23. DFSMS enhancements 415

23.6.7 Data set names in RMM subcommands

When an existing record in the CDS is being processed, the checks are as follows:

� The name is 1 to 44 characters, enclosed in quotes if any special characters are included.
If the data set name is not enclosed in quotes PROFILE PREFIX is applied but there is no
check against data set naming or data set mask naming rules.

� Data set names are validated differently when:

– Creating new data sets.

– Using existing data sets.

This differentiation is shown in Figure 23-39 and explain points 1, 2 and 3 in the diagram.

Figure 23-39 RMM subcommands

Examples of RMM subcommands
With reference to Figure 23-39, following are some examples os specifying data set names:

1. Validation of an unquoted data set name when a data set is created.

a. The data set name must follow the standard MVS naming convention. The creation of
the these data set names will give the following results.

AD TEST.NEW Data set USERID.TEST.NEW will be added.

AD spec/ IKJ56702I INVALID DATA SET NAME, spec/ial” will be issued.

2. Validation of a quoted data set name when a data set is created.

a. The data set name must not start with blank or null and the max length is 44
characters. The creation of these data set name will give the following results.

AD ‘01/file‘ Data set name ‘01/file’ is added.

AD ‘ text1‘ IKJ56702I INVALID DATA SET NAME is issued because the data set
name starts with a blank.
416 z/OS Version 1 Release 9 Implementation

3. Validation of a data set name when an existing data set is used.

a. The maximum data set name length is 44 character. The display of the data set name
will give the following results.

LD ‘001/file‘ The data set is listed.

LD ‘ text1‘ EDG3201I THE ENTRY IS NOT DEFINED TO DFSMSrmm is issued
because the file was not created in point 2 above.

Data set name masks
Data set names masks are validated differently when using data set name masks as follows:

� RMM subcommands for creating a VRS

� RMM subcommands for existing generic data set names and masks

This differentiation is shown in Figure 23-40 and explain points 1, 2, 3 and 4 in the diagram.

Figure 23-40 Masks in RMM subcommands

With reference to Figure 23-40, consider the following:

1. Validation of an unquoted data set name VRS at create time (AS).

a. Data set name mask must follow standard MVS naming convention.

a. Must follow common filtering and GDG rules (*,**,%, ¬).

2. Validation of a quoted Data Set Name VRS at create time (AS).

a. Must follow filtering rules for period and blank which are:

i. Data set name must not start with blank or null.

i. Must not start or end with period nor use consecutive periods.

a. Must follow common filtering and GDG rules (*,**,%, ¬).

a. Max length is 44 characters.

3. Validation of a Data Set Name Mask when an existing mask is used (LS, DS, CS).

a. Max length is 44 characters.
Chapter 23. DFSMS enhancements 417

4. Validation of a Data Set Name Mask when an existing mask is used in SEARCH
subcommands (SS, SD).

a. When a data set name mask does not follow common filtering or GDG rules or filtering
rules for period and blank:

i. SEARCH subcommand is processed with fully qualified data set name.

a. Max length is 44 characters.

Figure 23-41 shows a few examples of data set name masks in RMM subcommands.

Figure 23-41 Examples of Masks in RMM

Changes in vital record specification (VRSEL) processing
The new naming convention rules for data set names and data set name masks apply only on
z/OS V1R9 and later releases. Caution should be used when creating new data set name
VRSes which include special characters or do not conform to the data set naming rules. The
new masks may not be able to be processed by lower level systems, so ensure that VRSEL
runs on a z/OS V1R9 or later release system.

In z/OS V1R9 DFSMSrmm VRSEL processing data set names are not translated to upper
case. This is shown in Figure 23-42 on page 419.
418 z/OS Version 1 Release 9 Implementation

Figure 23-42 Changes in VRSEL processing

For data sets with lower or mixed case names that have been created prior to V1R9 the
following migration aid must be honored. To check whether you have any lowercase or mixed
case data set names that are on volumes that are VRS-retained, do the following:

� From a lower-level system with access to the z/OS V1R9 SYS1.SAMPLIB, copy the
SAMPLIB member EDGGDSNM to your own report library (userid.REPORT.LIB).
Although the report is ready to use, you can modify this EDGGDSNM sample to create
you own tailored report.

� Using the DFSMSrmm report generator, generate the JCL to be used to create the report.
If you do not have an existing report extract data set available to be used as input for the
report, select the option to have the generated JCL create a new extract.

� Run the report. The report lists only those data sets that have lowercase or mixed case
data set names that are on volumes that are VRS-retained. Note that when you run a
report extract data set created for a release earlier than z/OS V1R9, there is no matching
VRS information listed because earlier z/OS releases did not maintain this information for
mixed case or lowercase data set names.

If the report indicates that you have lowercase or mixed case data set names on volumes that
are VRS-retained, identify the VRSes that retain the data sets. If any of the matching
DSNAME VRSes contain uppercase letters that match the lowercase or mixed case letters in
the data set names, the VRSes will no longer match the data set names in z/OS V1R9. You
must create new VRSes or change the existing VRSes for the data sets. Data sets that match
generic characters in the VRS data set name masks are not affected.

Figure 23-43 on page 420 is a example output of the migration aid (EDGGDSNM).

Note: While you run VRSEL vital record processing on releases below z/OS V1R9, you
should not delete any VRSes that retain data sets with lowercase or mixed case letters, or
you might lose data.
Chapter 23. DFSMS enhancements 419

Figure 23-43 Example output of migration aid

23.6.8 Shared parmlib support

Some information in the EDGRMMxx parmlib may need to be specific to a subset of your
systems. For example, the REJECT or VLPOOL entries may need to be different across
systems. To enable this information to be handled on a system by system basis you can
specify a second parmlib member to be used.

Visual overview
Use the MEMBER operand in the primary DFSMSrmm parmlib to identify a second parmlib
member that contains overriding or additional parmlib options. Some information in the
EDGRMMxx parmlib member may need to be specific to a subset of your systems. For
example, the REJECT or VLPOOL entries need to be different as shown in Figure 23-44 on
page 421.
420 z/OS Version 1 Release 9 Implementation

Figure 23-44 Second Parmlib overview

OPTION MEMBER(xx)
The parmlib_suffix must be any 2 characters used as the suffix of the EDGRMMxx parmlib
member name. Starting with z/OS V1R9, you can use system symbols (for example,
&SYSCLONE) to enable easier sharing of the EDGRMMxx parmlib member. The system
symbol must resolve to 2 characters used as the suffix of the EDGRMMxx parmlib member
name.

DFSMSrmm processes the commands in the EDGRMMxx parmlib member and then if there
is a second member named processes the second member. Any OPTION operands
specified, other than MEMBER override the values set in the first member. Any other parmlib
commands can add to, but not replace, update or duplicate any command from the first
parmlib member. The processing by DFSMSrmm is as if all of the parmlib contents of both
members had been specified in a single parmlib member, as follows:

OPTION DSNAME(DFRMM.CONTROL.DATASET)
 JRNLNAME(DFRMM.JOURNAL.DATASET)
 CDSID(SC70)

MEMBER(70)

LISTCONTROL OPTION
The LISTCONTROL OPTION output has been extended to display the second parmlib
member name suffix as shown in Figure 23-45 on page 422.
Chapter 23. DFSMS enhancements 421

Figure 23-45 LISTCONTROL OPTION command

DFSMSrmm installation wizard
Figure 23-46 shows the new V1R9 wizard version to enable a common parmlib member for
multiple systems and system specific parmlibs that have different values for each system. The
URL for the wizard is:

http://www.ibm.com/servers/eserver/zseries/zos/wizards/dfsms/rmmv1r9/.

Figure 23-46 DFSMSrmm installation wizard

23.6.9 TSO subcommands

TSO subcommand parsing rules are further relaxed to support different product versions and
declassification of data sets and volumes. The following topics are discussed.

� Changes in subcommand parsing.

– The rules for the Product Level have changed.

– A new NOSECLEVEL parameter was introduced to reset the SECLEVEL for a volume
or data set.

� CLIST enhancements.

– New parameters START and ADD were introduced to enable the user to either
overwrite or add to an existing CLIST data set.

RMM LISTCONTROL OPTION
System options:
PARMLIB Suffix = 02 70
Operating mode = P Retention period: Default = 0 Maximum = NOLIMIT
 Catalog = 6 hours
Control data set name = RMM.CONTROL.DSET
Journal file data set name = RMM.JOURNAL.DSET
Journal threshold = 75%
Catalog SYSID = Notset
Scratch procedure name = EDGXPROC
422 z/OS Version 1 Release 9 Implementation

– Any existing or user specified DCB record format parameters are now supported.

� Search command enhancements.

– A new CONTINUE parameter was introduced for all search commands as a way to
break down search results into manageable quantities.

– There is a new STORAGEGROUP parameter for the Search Volume command.

� Report 17

– A new report, REPORT 17, is added to the EDGRRPTE exec. It summarizes
information for logical and stacked volumes to support stacked volume management.

Changes in subcommand parsing
The product LEVEL specifies a software product's version. The form is VxxRxxMxx,
indicating the Version, Release, and Modification level. Until now ‘x’ had to be numeric. With
this release ‘x’ can be alphanumeric or national.

This change affects the following commands:

� AddProduct

� ChangeProduct

� ListProduct

� AddVolume

� ChangeVolume

NOSECLEVEL parameter
The SECLEVEL specifies a volume or data sets security class, that is defined for your
installation. To remove the security classification for a volume or data set a new parameter
was introduced with DFSMSrmm V1R9 called NOSECLEVEL. The command syntax is as
shown in Figure 23-47.

Figure 23-47 NOSECLEVEL parameter

The following commands are affected by this change:

� ChangeVolume

� ChangeDataset

Note: The default value is V01R01M00, Version 1, Release 1, Modification 0.

Attention: Using ISPF panels you can reset the security level by clearing the SECLEVEL
field. This will cause the appropriate execs to use the NOSECLEVEL parameter, when
they generate the appropriate command.
Chapter 23. DFSMS enhancements 423

CLIST enhancements
With the CLIST parameter for all search commands you have the option to extend the results
of your search to executable commands and to route these into a data set. Until now RMM
generated a new CLIST data set (VB format, LRECL 255) for each command issued. With the
new START/ADD parameters the user now has the choice to either add records to an existing
data set or, as before, to replace the existing records in the CLIST data set.

The default value is START, what means write the records to the start of the data set, which
will replace any existing records. If you specify ADD, the records will be appended at the end
of the data set. In addition to the subcommand request, the disposition of the allocated
RMMCLIST data set is taken into account. DISP=MOD overrides the START operand.

Like the CLIST parameter START / ADD can be specified in any SEARCH subcommand. The
syntax of the START / ADD parameters is shown in Figure 23-48.

Figure 23-48 START/ADD parameter

Sample JCL for SEARCH subcommand
Figure 23-49 on page 425 contains two JCL samples to issue a SEARCH subcommand and
write data to a CLIST data set.

� In the first sample ddname RMMCLIST &SYSUID..CLIST.DATA is specified in the JCL
and the RMM subcommand request specifies parameter ADD.

– Data will be appended to data set &SYSUID..CLIST.DATA.

� In the second sample the same RMMCLIST data set is specified in the JCL and the
subcommand request specifies parameter START. Since DISP=MOD is specified for the
RMMCLIST data set, the result will be the same as in the first sample.

– Data will be appended to data set &SYSUID..CLIST.DATA.

Note: If DISP=MOD is coded, records will always be appended to the RMMCLIST data
set.
424 z/OS Version 1 Release 9 Implementation

Figure 23-49 JCL samples

User defined format of CLIST data set
Until now the format of the RMM CLIST data set was fixed to VB 255. With release z/OS
V1R9 DFSMSrmm starts to honor the DCB attributes of an existing CLIST data set. This
means that you can pre-allocate data sets in a format you prefer and RMM will leave this
format unchanged.

The following restrictions apply:

� Pre-allocated data sets can be fixed or variable format

� LRECL must be at least long enough to contain the CLIST information for the record type
you are searching.

� If LRECL is too short, RMM increases LRECL to the minimum needed. If this is
impossible, message EDG3360E is issued.

� The maximum LRECL supported is 32760.

� If data set doesn‘t exist, defaults are LRECL 255, VB format.

Search command enhancements
When you issue a subcommand that you know you may wish to continue, you specify the
CONTINUE operand without any value. You use the LIMIT operand to specify how many search
result entries you can manage each time you continue the search. After the first command
you process the data returned and the continue_information returned, and, if more records
exist, you repeat the command (now with continue_information) until all results are returned.
This is shown in Figure 23-50 on page 426.

The continue_information must be passed back to DFSMSrmm unchanged in order to
continue the previous search. You should also specify the exact same subcommand
unchanged, just changing the CONTINUE value on each additional command required.

//*--
//* WILL APPEND RECORDS TO AN EXISTING DATA SET
//*--
//CL1 EXEC PGM=IKJEFT01
//RMMCLIST DD DSN=&SYSUID..CLIST.DATA,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
 RMM SV OWNER(*) CLIST ADD

//*--
//* WILL APPEND RECORDS TO AN EXISTING DATA SET
//*--
//CL1 EXEC PGM=IKJEFT01
//RMMCLIST DD DSN=&SYSUID..CLIST.DATA,DISP=MOD
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
 RMM SV OWNER(*) CLIST START
Chapter 23. DFSMS enhancements 425

Figure 23-50 CONTINUE command

The content of the continue_information depends on the type of search done. In Figure 23-51
you see a complete list of RMM search commands and the appropriate continue_information.
In general, the continue_information contains a valid key for the specific RMM resource
searched for. For example:

� If you are searching for volumes, the continue_information will contain a volser.

– VOLUME('V10035') or VOLUME('V10071').

� if you are searching for data sets, the continue_information will contain data set name plus
volser plus file sequence number.

– DSNAME('RMMUSER.DATA36')VOLUME('V10003')FILESEQ(6).

Figure 23-51 CONTINUE_INFORMATION information
426 z/OS Version 1 Release 9 Implementation

In Figure 23-52 we see a typical SEARCH example of using the CONTINUE parameter. If you
issue a search command from TSO environment, you get a table of resources returned and at
the end of this table, there will be messages:

� EDG3203I SEARCH COMPLETE - MORE ENTRIES MAY EXIST

� EDG3012I xxxx ENTRIES LISTED

If you specify the CONTINUE parameter, there will be a new additional message now:

� EDG3025I continue_information

You can use this information to build a new search command, pulling in the next RMM
resources in sequence.

Figure 23-52 CONTINUE_INFORMATION volume

When you issue a search command from REXX and you request results as REXX variables,
the EDG@CONT variable contains the character string you should use to continue the
subcommand. When you use the API, and data is requested back as SFI the CONT SFI
contains the character string you should use. This is shown in Figure 23-53.

Figure 23-53 REXX and API search
Chapter 23. DFSMS enhancements 427

When you use the High Level Language API or the RMM Web Service and data is requested
back as XML, you will find message EDG3025I, containing the continue_information, in the
group at the end of the returned resources as follows:

</VOLUME>
<INFO>
<RTNC>4</RTNC>
<RSNC>2</RSNC>
<MSGT>EDG3012I 1000 ENTRIES LISTED </MSGT>
<MSGT>EDG3025I VOLUME('A11021') </MSGT>
</INFO>

Any continue_information you enter is handled as is by the RMM command processor. The
case you specify is retained and used by RMM, so that CONTINUE(VOLUME(‘ab1000’)) and
CONTINUE(VOLUME(‘AB1000’)) are different continuation points as shown in Figure 23-54.
RMM does not change any values in the CONTINUE operand to upper case.

The last command in our example requests 1000 resources, but only 27 are returned.
returned. This means there are no more resources to return. In this case there is NO
continue_information returned. No EDG3025I is issued and EDG@CONT will also be blank.

Figure 23-54 Case sensitive CONTINUE

You will see no change in the ISPF panels for use of the CONTINUE parameter but under the
covers the search execs will exploit this new feature. When the LIMIT value is either set to * or
is larger than 2000, the execs will use CONTINUE as shown in Figure 23-55 on page 429.

The EDGRxSCH execs will internally handle the panel request for a limit >2000 and specify
LIMIT on the SEARCHxxxx subcommand accordingly, using LIMIT(2000) until the last
SEARCH when LIMIT is set to panel_specified_limit-(n*2000).

SV VOLUME(*) OWNER(*) LIMIT(1000) CONTINUE CLIST NOLIST START
EDG3012I 1000 ENTRIES LISTED
EDG3025I VOLUME(‘ab1000’)

SV VOLUME(*) OWNER(*) LIMIT(1000) CONTINUE(VOLUME(‘ab1000’)) CLIST NOLIST ADD
EDG3012I 1000 ENTRIES LISTED
EDG3025I VOLUME(‘AB1000’)

SV VOLUME(*) OWNER(*) LIMIT(1000) CONTINUE(VOLUME(‘AB1000’)) CLIST NOLIST ADD
EDG3012I 27 ENTRIES LISTED

Note: RMM returns continue_information values delimited with quotes.
428 z/OS Version 1 Release 9 Implementation

Figure 23-55 LIMIT larger than 2000

STORAGEGROUP parameter
For the SearchVolume command the new STORAGEGROUP parameter was introduced.

� RMM SEARCHVOLUME STORAGEGROUP(storage_group_name)

– You can specify the storage group name to select a subset of volumes based on the
assigned storage group name.

– A storage group name is one-to-eight alphanumeric characters.

– A storage group name can be a value that matches to a VLPOOL NAME value but
does not need to be defined on a VLPOOL definition.

– DFSMSrmm accepts the abbreviation STORGRP.

– Use the STORAGEGROUP operand to build lists of exportable volumes which are in
the same VTS physical volume pool.

REPORT17
When a stacked volume, containing exported logical volumes, is ejected from the library, as
the logical volumes expire, RMM places the volumes in a "pending release" state and then
when the logical volumes are imported into the library, RMM completes the return to scratch
process enabling the volumes to be reused. As the exported logical volumes expire, you need
the ability to do off-site stacked volume management so you can determine when to bring a
stacked volume back on-site for possible reuse. RMM has enough information in its database
for you to create and run reports, however, a specific stacked volume management report did
not exist.

With z/OS V1R9, RMM provides a new stacked volume management report for customers to
customize and run, that includes the ability to report on the percentage of active data on a
stacked volume and to also report on the percentage of active logical volumes on a stacked
volume. A new report, REPORT17, is added to EDGRRPTE reporting exec which
summarizes information for logical and stacked volumes. The stacked volumes are presented
in order of increasing percentage of active number of volumes and percentage used. The
least used stacked volumes are listed first. Figure 23-56 on page 430 shows an example of a
REPORT17 report.
Chapter 23. DFSMS enhancements 429

Figure 23-56 REPORT17 printout

The report columns are explained as follows:

% Act Percentage of the contained logical volumes which are active.

Active The number of active logical volumes. Active logical volumes are all
those which are neither scratch nor pending release.

Logical The number of contained logical volumes.

% Use The approximate percentage of active data.

Capacity The size of the stacked volume in MB.

Retention Date When VRS retained this is the VRS calculated retention date
otherwise it is the latest expiration date of all contained active
volumes.

Export Date The date when the stacked volume was exported from a VTS.

Export Time The time when the stacked volumes was exported from a VTS.

23.6.10 3592 Model E05 software support

Using the existing media types (MEDIA5, MEDIA6, MEDIA7 and MEDIA8) and the two
extended length future media types (MEDIA9 and MEDIA10), an encryption enabled 3592
Model E05, reads and writes using the new Enterprise Encrypted Format 2 (EEFMT2)
recording technology. It can also read and write using the Enterprise Format 1 (EFMT1) and
Enterprise Format 2 (EFMT2) non-encrypted recording technologies.

In order to request EEFMT2 in the stand-alone and in the system-managed IBM tape library
environment, a DFSMS dataclass must be used which specifies EEFMT2 as its recording
technology, otherwise EFMT2 is the default recording technology that is used. Dataclass can
also be used to request the EFMT1 recording format and to explicitly request the EFMT2
format. A mix of recording formats is not supported on the same tape cartridge. An enhanced
3592 Model E05 that does not have the encryption feature enabled, can only read and write
in the non-encryption formats (EFMT1 and EFMT2) which is the same as the base 3592
Model E05. In a mixed 3592 environment, new microcode is also needed for the 3592 Model
J and the base 3592 Model E05 so that it recognizes a volume with the new EEFMT2
recording technology.

Change summary
New recording format external for encrypted media (EEFMT2).

� enterprise encrypted format 2.
430 z/OS Version 1 Release 9 Implementation

Encryption requested through DFSMS data class.

� through specification of the new recording format EEFMT2 (EE2).

� if the encrypted format (EEFMT2) is not specified, the non-encrypted formats EFMT1 or
EFMT2 are used.

Encryption is supported with all existing 3592 media types.

� MEDIA5 – MEDIA10 (including WORM media).

Existing data class options, performance scaling and performance segmentation is also
supported with encryption.

Figure 23-57 shows where you specify EEFMT2 in the DFSMS data class.

Figure 23-57 EEFMT2 in recording technology field

23.6.11 Migration and coexistence considerations

The following APARS must be researched and installed on the relevant systems.

RMM preconditioning APAR OA16523 (V1R6 – V1R8)

RMM toleration APAR OA16524 (V1R4 – V1R8)

RMM tape encryption APAR OA15698 (V1R6 – V1R7)

APAR OA17574 (V1R8)

� The toleration APAR OA16524 is based on OA15623 (preconditioning).

� The tape encryption APARs OA15698 and OA17574 are based on OA16524 (toleration).

� For the installation on a client/server RMMplex is mandatory:

– Install pre-conditioning PTF on all systems of the RMMplex.

– Then install the toleration PTF on all systems.

– ONLY then the RMM tape encryption PTF can be installed.

� Pre-Conditioning and Toleration APARs contain a ++HOLD(MULTSYS) text, which
describes this dependency.
Chapter 23. DFSMS enhancements 431

Label anomaly processing
APAR OA18455 was created to prevent DFSMSrmm from setting the PENDING REALEASE
ACTION INIT flag, when a “servo track format error” is detected. The tape is not blocked
anymore by DFSMSrmm, with the message:

� EDG4033I VOLUME xxxxxx REJECTED. THE VOLUME IS WAITING TO BE
REINITIALIZED.

23.7 Network File Systems (NFS) enhancements

Network File System (NFS) is a base element of z/OS, that allows remote access to z/OS
host processor data from workstations, personal computers, or any other system on a TCP/IP
network that is using client software for the Network File System protocol.

The following topics will be discussed:

� 24-bit Addressing Relief

� Multi TCP/IP Stack Support

� AddDS Operator Command

� RACF Data Labeling

� NFS v4 Client Support

� Client Attribute syntax

� Server CTrace Upgrade

� Terminal ID based restricted MVSLOGIN

23.7.1 24-bit addressing relief

Currently all z/OS NFS Server tasks that interact with z/OS MVS data sets have their stacks
and heaps defined below the 16MB line. This puts major constraints on the number of z/OS
NFS Server tasks that can exist.

In z/OS V1R9 NFS task structures have been modified to permit stacks and heaps above the
16 MB line. This will enable NFS server tasks to allow more parallel NFS request processing.

23.7.2 Multi TCP/IP stack support

Currently there is a restriction limiting the z/OS NFS RPCSEC security mechanism to only
support a single IP address, limiting it to a single TCPIP stack. z/OS NFS Server V1R9 will
now be able to successfully interact with multiple TCPIP Stacks, including VIPA (Virtual IP
Assignment).

z/OS supports the ability to have multiple TCPIP stacks on a single system, including Virtual
IP Assignment (VIPA). These multiple stacks and VIPA are useful for providing enhanced
system reliability, providing alternate message paths should a given stack break.

The z/OS NFS RPCSEC security mechanism has been modified to allow it to successfully
interact with multiple TCPIP Stacks.

Note: There will be a performance improvement due to more parallel NFS request
processing.
432 z/OS Version 1 Release 9 Implementation

23.7.3 Usage and invocation

To set up the multiple TCP/IP stack support you must do the following:

� The BPXPRMxx parmlib member must be updated to include all stacks.

– One Stack must be marked as DEFAULT.

� Portmapper/rpcbind must be defined as generic server.

– No stack affinity is allowed.

� NFS server must be defined as a generic server.

– No stack affinity is allowed.

� Must have a TCPIP profile defined for each stack.

� For Kerberos, since each stack has its own hostname and IP a keytab must be created for
each stack.

The CINET configuration in the BPXPRMxx parmlib member to start a single NFS server in a
multi stack environment is shown, as follows:

FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
 NETWORK TYPE(CINET)
 DOMAINNAME(AF_INET)
 DOMAINNUMBER(2)
 MAXSOCKETS(64000)
 INADDRANYPORT(4901)
 INADDRANYCOUNT(100)
 NETWORK TYPE(CINET)
 DOMAINNAME(AF_INET6) /* activate IPV6 */
 DOMAINNUMBER(19)
 SUBFILESYSTYPE TYPE(CINET) NAME(TCPIPRX) ENTRYPOINT(EZBPFINI) DEFAULT
 SUBFILESYSTYPE TYPE(CINET) NAME(TCPIPRY) ENTRYPOINT(EZBPFINI)

23.7.4 AddDS operator command

The new AddDS operator command will allow a z/OS System Programmer to specify a
replacement for one of the NFS control data sets. This is useful in the event one of these
control data sets becomes unusable.

� Using the AddDS operator command, a z/OS system programmer can replace the following
types of NFS control data sets:

– Lock data sets

– Mount handle database data sets

Note: For more information about configuring multiple TCP/IP stacks, see z/OS UNIX
System Services Planning and z/OS Communications Server: IP Configuration Reference.

Note: Common Inet Sockets is intended to be used only if multiple network socket file
systems (such as 2 TCPIP's) are to be active at one time. There is a performance
degradation with using Common Inet Sockets with just a single sockets physical file
system.
Chapter 23. DFSMS enhancements 433

� The addds command requires the existing NFS control data set to be freed before this
command is issued.

– This can be achieved using the new freeds operator command.

� It is only possible to free the currently inactive data set of the MHDB, or LDB, pair.
Therefore, if the active data set is the one to be freed, it is necessary to first swap the data
set pair.

– This can be accomplished with a new swapmhdb, or swapldb, command. This
command swaps the active and inactive data sets in the database. Once this is done, it
is then possible to free the previously active data set.

Command syntax
The syntax of the addds command is:

MODIFY mvsnfs,ADDDS=ddname(dsname)

Where:

� mvsnfs is the name of the procedure in the system PROCLIB that was used to start the
server.

� ddname is the ddname of the NFS server control data set which is to be replaced.

– The valid ddnames are FHDBASE, FHDBASE2, LDBASE and LDBASE2.

� dsname is the name of the lock data set or mount handle data set to be enabled for use by
the z/OS NFS server.

The syntax of the freeds command is:

MODIFY mvsnfs,FREEDS=ddname

Where:

� mvsnfs is the name of the procedure in the system PROCLIB that was used to start the
server.

� ddname is the ddname of the NFS server control data set which is to be freed.

– The valid ddnames are FHDBASE, FHDBASE2, LDBASE and LDBASE2.

The syntax of the swap commands is:

MODIFY mvsnfs,SWAPMHDB

Where:

� mvsnfs is the name of the procedure in the system PROCLIB that was used to start the
server.

23.7.5 RACF data labeling

The z/OS NFS Server currently does not provide support for the RACF Data Labeling option
MLNAMES (also known as Name-Hiding). z/OS V1R9 NFS Server will now provide this
support, enabling active MVS data set names to be hidden from NFS users who do not have
at least READ access to the data sets.

MLNAMES overview
� When this option is active MVS data set names will be hidden from NFS users who do not

have at least READ access to the data sets. Therefore, it may change the contents of an
MVS data set index list when requested via the ”ls -l” command.
434 z/OS Version 1 Release 9 Implementation

� The z/OS NFS server only supports this option in SAF or SAFEXP SECURITY mode.

� This function only applies to MVS data set access, not to z/OS Unix file access.

� The name-hiding function can degrade system performance because it requires
authorization checks for every object for which a non-SPECIAL user attempts to list the
name.

This option is activated by RACF command:

SETROPTS MLNAMES

and is deactivated by RACF command:

SETROPTS NOMLNAMES

23.7.6 NFS v4 client support

Unlike previous z/OS releases, z/OS NFS Client V1R9 now provides support for the NFS v4
Protocol. It exploits the enhancements in the v4 protocol in the areas of internet performance
and cross-platform inter operability

NFS V4 protocol
The Network File System (NFS) version 4 is a distributed file system protocol which owes it’s
heritage to NFS protocol version 2 and 3. Unlike earlier versions the NFS V4 protocol
supports traditional file access while integrating support for file locking and the mount
protocol. In addition, support for strong security, compound operations, client caching and
internationalization have been added. Attention has been applied to make NFS V4 operate
well in an internet environment.

The client application interface to the NFS Client does not change with the NFS version 4
protocol. It is the NFS Client’s responsibility to convert the application requests to the
appropriate V4 requests. From an NFS Client perspective, the functional characteristics of
this protocol are partitioned into several major areas.

� Security

� Name Space and Pseudo File Systems

� Client ID

� Locking

� Attribute

Restrictions
The z/OS NFS v4 Client in V1R9 does not currently include:

� RPCSEC_GSS Security

� Locking

The NFS Version 4 Protocol is an industry wide standard. Therefore, the z/OS NFS V1R9
NFS Client, which is implementing that standard, should successfully communicate with any
NFS Server (e.g. AIX/SUN) which adheres to that standard.

� Since this standard requires continued support of the NFS Version 2 and Version 3
Protocols as well, the z/OS NFS V1R9 Client should also successfully communicate with
any NFS V2/V3 Server.
Chapter 23. DFSMS enhancements 435

Mount command
The NFS V4 protocol has been added to the vers parameter of the mount command.

� mount -o vers=n

Where “n” specifies the NFS protocol version to be used

� 2 or 3 for Linux.

� 2, 3 or 4 for others.

23.7.7 Client Attribute syntax

A new public option and stringprep option has been added to the z/OS NFS client attribute
syntax.

public Forces the use of the public file handle when connecting to the NFS
server. This option is valid only during mount processing.

stringprep(Y/N) Specifies whether z/OS NFS Client is to enable or disable stringprep
normalization. Stringprep normalization is the NFS version 4
internationalization function for converting inbound strings to UTF-8
format.

23.7.8 Server Ctrace upgrade

The NFS Server Ctrace function has been upgraded to use the common underlying support
functions with the Client. This upgrade enables the NFS Server to exploit all of the function
enhancements which were implemented for the NFS Client and improves serviceability.

Enhancements with z/OS V1R9
The following enhancements have been made:

� The “MODIFY mvsnfs,FLUSHCTR” operator command has been removed. The function
performed by this command will now be performed automatically when the Component
Trace external writer is stopped. It will no longer be necessary to explicitly execute this
command first to flush the buffer.

� NFS component trace status and active options can be displayed by using the MVS
display command:

– DISPLAY TRACE, COMP= mvsnfs (for the NFS server)

– DISPLAY TRACE, COMP= mvsnfsc (for the NFS client)

Figure 23-58 on page 437 shows the result of a DISPLAY TRACE command for the NFS server.

Note: The public keyword is valid only for the NFS version 4 protocol.

Note: The stringprep attribute default value is “N”.
436 z/OS Version 1 Release 9 Implementation

Figure 23-58 DISPLAY TRACE command

� Four new trace record types have been added:

Buffer Buffer Management (i.e BUFNODE)

Lock_Request Control Block Lock Requests

Lock_Result Control Block Lock Request results (lock granted, lock in use,
error, etc.)

Lock_Release Control Block Lock Release

� Trace command option values where added for the new record types listed above.

Msg Error, Warning and Info Records

Wait Suspend and Resume record types

Queue Schedule and Dispatch record types

Lock Lock_Req, Lock_Result and Lock_Release record types

� The ability to turn off individual options was added.

– An option can be turned off by preceding the option value with a minus sign (e.g.
OPTIONS=(-GENERAL)).

– Options are processed from left to right, first processing all values to turn on options
and then processing all values to turn off options. Thus all options except network can
be turned on with the following options specification: OPTIONS=(ALL,-NETWORK).

– If an options value of “-ALL” is specified, the option revert back to a setting of MIN.

� The trace buffer size can be specified either by the BUFSIZE value in the startup parmlib
member, or it can continue to be specified via the “DSPS=” startup parameter. The new
default BUFSIZE value of 10 MB also applies to the NFS Client.

� NFS component trace buffers captured in an MVS dump, or a Component Trace data set,
may be viewed using the IPCS CTRACE command.

Migration and coexistence considerations
APAR OA18325 must be applied to z/OS V1R7 and R8. The APAR is for rollback of the NFS
V1R9 support to allow server ctrace to start even if the BUFSIZE parameter is present. The

DISPLAY TRACE,COMP=NFSMVS
IEE843I 13.24.41 TRACE DISPLAY 240
 SYSTEM STATUS INFORMATION
 ST=(ON,0256K,01536K) AS=ON BR=OFF EX=ON MO=OFF MT=(ON,064K)
 COMPONENT MODE BUFFER HEAD SUBS
 --
 NFSMVS ON 0010M
 ASIDS *NOT SUPPORTED*
 JOBNAMES *NOT SUPPORTED*
 OPTIONS FFDC INFO WARNING ERROR
 WRITER *NONE*

Note: A value of “-MIN” is invalid and will be ignored.

Note: The size of the trace buffer may still not be altered after startup.
Chapter 23. DFSMS enhancements 437

BUFFER parameter is added to the CTRACE DEFINE macro and the BUFSIZE parameter in
the CTINFSxx parmlib member is then ignored.

23.7.9 Terminal ID based restricted MVSLOGIN

When the z/OS NFS Server is used in SECURITY (SAF or SAFEXP) mode, it is necessary
for users on NFS clients to issue an NFS Client Enabling Utility “MVSLOGIN” command from
the NFS client system before they can access any files on the NFS Server. Normally,
assuming the user has a valid z/OS userid and password, this is not a problem and will
successfully provide the user with access to the z/OS system through NFS.

However, with the appropriate RACF configuration specifications, the z/OS NFS server also
provides the ability to restrict MVSLOGINs based on an NFS client's IP address. In order to
support this capability, the z/OS NFS server transforms an NFS client's IP address into an
8-byte character string, which is then used as the Terminal ID (termid) for that NFS Client.
Each decimal number of the IP address is transformed into two hex digits. For example the
following IP addresses are transformed into hexadecimal numbers:

12.15.16.32 0C0F1020
9.157.161.12 099DA10C

To use this capability, the z/OS system administrator must do the following:

� Activate the RACF class “TERMINAL” with this RACF command.

SETROPTS CLASSACT(TERMINAL)

� Define the proper resource in the TERMINAL class with this RACF command.

RDEFINE TERMINAL termid UACC(NONE)

� Grant permission to some users (for example, CIANKA and KEEGAN) from the NFS client
with IP address 9.157.161.12 to successfully execute the MVSLOGIN NFS client enabling
utility with this RACF command.

PERMIT 099DA10C CLASS(TERMINAL) ID(CIANKA KEEGAN) ACCESS(ALTER)

Note: If a termid value of 099DA10C is specified, then non-SPECIAL users on the NFS
client with IP address 9.157.161.12 will not be able to execute the MVSLOGIN NFS Client
Enabling Utility.
438 z/OS Version 1 Release 9 Implementation

Chapter 24. Large format data sets

Prior to z/OS V1R7, most sequential data sets were limited to 65535 tracks on each volume,
although most hardware storage devices supported far more tracks per volume. To support
this hardware capability, z/OS V1R7 and above allows you to create new large format data
sets, which are physical sequential data sets with the ability to grow beyond the previous size
limit. Large format data sets reduce the need to use multiple volumes for single data sets,
especially very large ones like spool data sets, dumps, logs, and traces. Large format data
sets can be either cataloged or uncataloged and SMS-managed or not.

In this chapter, the following topics are discussed:

� Large track data set overview

� TSO transmit and receive large format data sets > 64K tracks

� TSO PRINTDS command

� REXX and CLIST LISTDSI function

� Enhanced I/O capability in TSO/E for CLIST and REXX

� Messages

� Migration and coexistence considerations

24
© Copyright IBM Corp. 2007. All rights reserved. 439

24.1 Large format data set overview

As mentioned, large format data sets are physical sequential data sets, with generally the
same characteristics as other non-extended format sequential data sets but with the
capability to grow beyond the basic format size limit of 65 535 tracks on each volume. (This is
about 3 500 000 000 bytes, depending on the block size.)

Large format data sets reduce the need to use multiple volumes for single data sets,
especially very large ones like spool data sets, dumps, logs, and traces. Unlike
extended-format data sets, which also support greater than 65 535 tracks per volume, large
format data sets are compatible with EXCP and do not need to be SMS-managed. Data sets
defined as large format must be accessed using QSAM, BSAM, or EXCP.

z/OS V1R9 enhancements
Several commands and services have been updated in z/OS V1R9 to ensure that they can
use large format sequential data sets, as follows:

� Transmit and receive large format data sets > 64 K tracks.

� Use PRINTDS to print from or to large format data sets.

� Use REXX EXECIO DISKR/DISRW/DISKRU for REXX I/O to or from large format data
sets.

� Use CLIST OPENFILE/GETFILE/PUTFILE for CLIST I/O to or from large format data sets.

� Use the REXX LISTDSI function or CLIST LISTDSI statement for gathering size and
DSNTYPE for large format data sets.

� Use large format data sets on the TSO stack

Updates have been made to the following commands and service to ensure that each can
handle large format data sets:

� TSO TRANSMIT, RECEIVE

� PRINTDS

� REXX LISTDSI function

� CLIST LISTDSI statement

� REXX EXECIO command

� CLIST OPENFILE/GETFILE/PUTFILE I/O processing

Types of sequential data sets
Large format data sets have the following characteristics:

� A large format data set is one of the three sequential data set types. This data set might
not actually contain a large amount of data. But the fact that it is large format means that it
has the capability to grow large in size, beyond 64 K (65535) tracks.

Restriction: The following types of data sets cannot be allocated as large format data
sets:

� PDS, PDSE, and direct data sets
� Virtual I/O data sets, password data sets, and system dump data sets

Note: Most of the changes are internal and simply provide extended capabilities for
TSO/E, REXX, and CLIST users.
440 z/OS Version 1 Release 9 Implementation

� A large data set simply refers to one that contains a large amount of data, typically
something near the maximum size of a basic format data set.

The three types of sequential data sets are as follows:

Basic format A traditional data set, as existed prior to z/OS V1R7. These data sets
cannot grow beyond 64 K tracks per volume.

Large format A data set (introduced in z/OS V1R7) that has the capability to grow
beyond 64 K tracks. The maximum size is x’FFFFFE’ or approximately
16 M tracks per volume.

Extended format An extended format data set must be DFSMS-managed. This means
that it must have a storage class. These data sets can be striped, and
can grow up to x’FFFFFFFE’ tracks per volume.

24.2 TSO/E and large format data sets

In releases prior to z/OS V1R9, the TSO/E TRANSMIT and RECEIVE commands cannot handle
large format data sets (DSNTYPE=LARGE) because the 4-byte INMSIZE text unit (key
X'102C'), which holds the file size in bytes, is limited to 2 GB.

The function of previous TRANSMIT/RECEIVE commands has been extended to the new large
data set type.

� A new TSO/E TRANSMIT/RECEIVE text unit, INMLSIZE, allows file size of the transmitted file
specified in megabytes (MB).

– As mentioned, in releases prior to z/OS V1R9, the TSO/E TRANSMIT and RECEIVE
commands could not handle large format data sets (DSNTYPE=LARGE) because the
4-byte INMSIZE text unit, which holds the file size in bytes, is limited to 2 GB.

In z/OS V1R9, however, a 4-byte text unit called INMLSIZE is introduced to hold the
size of the TRANSMIT and RECEIVE command operations in MB (up to 4096 TB). If the
size of a data set being transmitted is 2 GB or more, INMLSIZE is used instead of
INMSIZE.

� The TRANSMIT command has a new WARN/NOWARN operand to allow or suppress
warning message INMX034I when writing to OUTDA.

WARN WARN means that you can request that the TRANSMIT command issues
warning message INMX034I when the warning threshold is initially met,
and thereafter whenever the warning interval is met. This is the default if
neither WARN nor NOWARN is specified.

NOWARN NOWARN means that you can request that the TRANSMIT command does
not issue warning message INMX034I when the warning threshold is
initially met, nor thereafter whenever the warning interval is met.

� When you use the TRANSMIT command for large files, ensure that you have defined
sufficient JES spool space.

– The TRANSREC statement’s OUTLIM operand in IKJTSOxx parmlib member limits the
maximum number of records that can be transmitted over the network.

Note: The TRANSMIT command was also changed to ignore the OUTLIM operand when a
TRANSMIT is directed to a data set (OUTDA).
Chapter 24. Large format data sets 441

TRANSMIT/RECEIVE examples
To create a flat file from a PDS, in a local output data set, the NOWARN parameter indicates
that no INMX034I warning messages should be displayed. If the number of records exceeds
the max number that is allowed by the OUTLIM operand of the TRANSREC statement in
IKJTSOxx parmlib member, the transmission to an output data set will not stop.

transmit sc70nje.naidoo da(‘naidoo.largeds’) outda(‘naidoo.temp.largeds’)
nowarn

Following is a RECEIVE command to retrieve the file from the flat file created with the
previous TRANSMIT command and the messages that occur.

RECEIVE INDA(‘naidoo.temp.largeds’)
INMR901I Dataset NAIDOO.LARGEDS from NAIDOO on SC70NJE
INMR906A Enter restore parameters or 'DELETE' or 'END' +
DA(‘naidoo.new.largeds’)

24.3 TSO PRINTDS command

The TSO PRINTDS command allows users to print data sets. You can now use PRINTDS to print
from or to large format data sets.

In the following example, the PRINTDS command is used to write a large format data set to a
TODATASET. When the PRINTDS command allocates the output data set, it will also be large
format.

PRINTDS da(‘naidoo.largeds’) todataset(‘naidoo.image.largeds’) notitle

24.4 REXX and CLIST LISTDSI function

You can use the LISTDSI (list data set information) function to retrieve detailed information
about a data set’s attributes. The attribute information is stored in variables, which can be
displayed or used within instructions. The function call is replaced by a function code that
indicates whether the call was successful. The LISTDSI function can be used only in REXX
execs that run in the TSO/E address space.

The list data set information (LISTDSI) function is very powerful and can provide a significant
amount of useful information about an allocated DD or a data set. The REXX LISTDSI
function or CLIST LISTDSI statement can now report information about large format data
sets. Most of the LISTDSI support is also available in z/OS V1R8.

� In z/OS V1R9, LISTDSI handles large format data set > 64 K tracks. The following are
LISTDSI variables:

– SYSSEQDSNTYPE returns BASIC, LARGE, EXTENDED.

– SYSUSED returns the correct size, for < 64 K tracks and > 64 K tracks.

Important: When PRINTDS writes to an output TODATASET, PRINTDS may be unable to
correctly determine the size needed, as when writing a single member of a PDS or PDSE.
Or PRINTDS may be unable to allocate the TODATASET, if more than one volume is
needed.

In either case, you can pre-allocate the TODATASET of sufficient size and direct the
PRINTDS output to the pre-allocated data set.
442 z/OS Version 1 Release 9 Implementation

The following REXX exec illustrates using LISTDSI with these variables and lists the returned
data set values in parenthesis.

/* rexx */
trace n
 say 'list large dataset attributes'
 call listdsi 'naidoo.large.dataset'
 say sysdsname(NAIDOO.LARGE.DATASET)
 say sysvolume(SBOXFH)
 say sysdsorg) (PS)
 say sysprimary) (70000)
 say sysseconds) (15000)
 say sysdssms) (SEQ)
 say sysunits) (TRACK)
 say sysseqdsntype) (LARGE)
 say sysused) (183)
exit

24.5 Enhanced I/O capability in TSO/E for CLIST and REXX

REXX EXECIO reads information from a data set with either the DISKR or DISKRU operands.
Using these operands, you can also open a data set without reading its records. EXECIO
writes information to a data set with the DISKW operand. In z/OS V1R9, REXX EXECIO has
been enhanced to read and write to large format data sets.

Similarly, the CLIST OPENFILE, GETFILE and PUTFILE functions have been enhanced to
read and write to large data sets.

24.6 Messages related to new support

The following are new and updated messages:

IKJ59042I Terminated. Size of the OUTPUT data set needed exceeds the maximum
size that PRINTDS can allocate for a TODATASET.

INMX220I TRANSMIT command terminated. Data set or file being transmitted
exceeds maximum size allowed.

INMR908AThe input file attributes are: DSORG=, RECFM=, BLKSIZE=, LRECL=, File
size= bytes (File sizes can be specified in K-Bytes or M-Bytes).

INMX034I WARNING: nnn records transmitted. Your installation limit is mmm
records.

INMX033I You have EXCEEDED the MAXIMUM TRANSMISSION SIZE set by your
installation.

Note: The OUTWARN operand of the TRANSREC statement of the IKJTSOxx parmlib
member indicates on what interval the warning message INMX034I should be issued
during TRANSMIT. Issuing TRANSMIT with the NOWARN operand suppresses the
message.
Chapter 24. Large format data sets 443

24.7 Migration and coexistence considerations

The following points should be considered when moving files between different levels of the
operating system.

� If you TRANSMIT a data set greater than 2 GB from z/OS V1R8 to V1R9, TSO/E
RECEIVE may get an x37 (out-of-space condition) abend on V1R9 because the V1R8
TRANSMIT cannot send a INMSIZE bigger than x‘7FFFFFFF’ bytes.

– The z/OS V1R8 system would be able to send the data set, but with incorrect size.

– If you pre-allocate a data set of sufficient size on V1R8, you should be able to
RECEIVE into it.

� If you TRANSMIT a data set greater than 2 GB from a z/OS V1R9 system to a V1R8 or
earlier, the earlier system will not recognize the new INMLSIZE giving the size in MB (max
= x’FFFFFFFF’ MB, or approximately 4096 TB).

– If you pre-allocate a large data set of sufficient size on the z/OS V1R8 system and
point the RECEIVE command at it, RECEIVE should be able to receive the V1R9 data.

� In some situations, TRANSMIT may not accurately determine the size of a data set being
transmitted (for example, when transmitting a single member of a PDS or PDSE).

– Based on the INMSIZE or INMLSIZE sent in the TRANSMIT data, RECEIVE may
either not get a data set of sufficient size, or it may get a data set significantly larger
than needed.

You can avoid wasting space on the RECEIVE side by pre-allocating the receive data
set of sufficient size, and then using the RECEIVE command to receive the data into
that data set.

Note: With z/OS V1R9, when TRANSMIT is directed to an OUTDA, the OUTLIM maximum
is no longer applicable. The TRANSMIT does not terminate when this limit is reached, and
message INMX033I is not issued.

However, this limit still applies when transmitting to the NJE network.
444 z/OS Version 1 Release 9 Implementation

Chapter 25. RMF enhancements

Many different activities are required to keep your system running smoothly, and to provide
the best service on the basis of the available resources and workload requirements.
Resource Measurement Facility (RMF) is the tool that helps you to perform these tasks. RMF
consists of several components that work together in providing the capabilities you need for
performance management.

This chapter describes the changes and enhancements made to RMF in z/OS V1R9.

� RMF enhancements for FICON

� RMF Monitor III Data Portal

– Sort capability for full Monitor III reports

� RMF Spreadsheet Reporter enhancements to simplify performance analysis

25
© Copyright IBM Corp. 2007. All rights reserved. 445

25.1 RMF enhancements for FICON

The Monitor I I/O Queuing Activity report is changed to include two new columns:

� The estimated Average Number of Open Exchanges

� The Data Transfer Concurrency within the LCU summary row

The average number of concurrently active I/O operations is provided in the LCU summary
line of the Postprocessor I/O Queuing Activity report if at least one FICON channel is
connected to the LCU.

Figure 25-1 shows the Postprocessor I/O Queuing Activity Report, with two new columns at
the end of the report line. In the previous release, a status message appeared indicating that
the LCU had been dynamically changed. If a status message is being provided, it is moved
now into an extra line immediately following the normal summary line.

Figure 25-1 RMF I/O Queuing Activity report

Field descriptions
RMF uses the connect and disconnect time values to calculate the estimated average
number of open exchanges and the data transfer concurrency. Because these counts are
currently only available on a device level, device gathering must be active for all devices of
those logical control units (LCUs), where the new data should be reported in the I/O Queuing
Activity report. Figure 25-2 on page 447 shows the new field descriptions.

Note: Open exchanges are the number of I/Os that are concurrently active on a machine.
446 z/OS Version 1 Release 9 Implementation

Figure 25-2 New field calculations

25.1.1 SMF record changes

SMF 78-3 was changed to include the new fields, as shown in Figure 25-3. The I/O queuing
data section is extended by new counts, used to calculate the estimated average number of
open exchanges and the data transfer concurrency.

Figure 25-3 SMF 78-3 record changes

25.2 RMF Monitor III Data Portal

The Resource Measurement Facility (RMF)) is an IBM-licensed program that measures
selected areas of system activity and presents the data collected in the format of printed
reports, System Management Facility (SMF) records, or display reports. RMF is used to
evaluate system performance and identify reasons for performance problems. RMF Monitor
III is a browser-based interactive monitor that collects data and reports contention for
resources and their users. The data allows identification of system bottlenecks and
determination of the reasons for possible system performance degradations.

OMEGAMON XE on z/OS provides a launch of the Monitor III data portal from the sysplex
Enterprise Overview workspace. You enable the launch by providing the location of the
browser on the client host system and the URL of the Monitor III Web interface. You can
Chapter 25. RMF enhancements 447

configure the launch using the Create or Edit Launch Definitions window in the Tivoli
Enterprise Portal, or from a command line by using the LaunchConfig command.

The z/OS RMF Distributed Data Server (DDS) provides a Web front-end to sysplex-wide
RMF Monitor III online performance data. This Web front-end is called the RMF Monitor III
Data Portal. By using a Web browser such as Mozilla 1.4 or above, Netscape 7.0 or above, or
Microsoft Internet Explorer 5.5 or above, it is possible to display XML documents with XSL
style sheets. With the browser, there is instant access to more than 600 z/OS performance
metrics.

You must start DDS as follows:

F RMF,DDS

From a Web browser, enter the following:

http://<hostname>:8803

Figure 25-4 shows the first screen that appears on the browser.

Figure 25-4 RMF Monitor III Data Portal

The RMF Monitor III Data Portal uses the same data model as the RMF PM Java client. The
same set of resources and metrics are available. Basically, a resource can be monitored by
the selection of one ore more metrics from the corresponding metrics list. For a
comprehensive analysis, you might possibly associate a complete Monitor III report with a
specific resource.

The Monitor III sysplex-wide reports have been assigned to the sysplex resource and the
Monitor III single system reports have been assigned to the MVS_IMAGE resource.

� Monitor III reports assigned to the sysplex are:

– CACHDET, CACHSUM, CFACT, CFOVER, CFSYS, and SYSSUM

� Monitor III reports assigned to an MVS_IMAGE are:

– CHANNEL, CPC DELAY, DEV, DEVR, DSND, ENCLAVE, IOQ, OPD, PROC, PROCU,
STOR, STORC, STORCR, STORF, STORS, and SYSINFO
448 z/OS Version 1 Release 9 Implementation

25.2.1 Sort capability for full Monitor III reports

With RMF for z/OS V1R9, RMF Monitor III Data Portal is enhanced to fully support the sorting
of Monitor III reports. You can select any column to sort the values in this column in either
ascending or descending order. Reports which consist of blocks of lines logically belonging
together will keep these blocks as one while sorting is executed.

After you have navigated to the resource you are interested in (in the Data Portal), select the
report containing the desired performance information. In our example, we use the Coupling
Facility activity (CFACT) report on the SANDBOX sysplex. The CFACT report will then be
displayed in your browser. Figure 25-5 shows the lines in the table in the same default sorting
order as they would appear in the corresponding ISPF Monitor III report.

Figure 25-5 RMF CFACT report

To sort the CF Utilization % column, simply click the column header as shown in Figure 25-6
on page 450. Two arrows are displayed to visualize the sort order (descending, in our
example). In addition, the color of the column which was used as the sort criterion changes to
yellow to indicate this currently active sort criterion.

Note: A second click on the column header will reverse the sort order to ascending in our
current example.
Chapter 25. RMF enhancements 449

Figure 25-6 RMF CFACT report sort capability

In cases where a single line does not contain all necessary information within itself, the
sorting needs some special treatment which takes the dependency on the row’s neighbors
into account. Monitor III reports which require this special treatment are:

� Sysplex reports

CFACT The first column of the table represents the CF structure name. Each CF
structure section consists of multiple lines which would lose their context
through generic sorting. The sort procedure will keep these structure
blocks together and sort according to highest (for descending sort order) or
lowest (for ascending sort order) value within the block.

CFSYS The first column of the table represents the CF name. It follows the same
argument and solution as in the CFACT report, keeping blocks together.

SYSSUM The first column of the table represents the WLM entity name (group or
class). The report will be sorted line by line, filling in the WLM entity name
in the first column where this information is missing.

� System reports

CPC Sorting is done only within an area with the same processor type. The lines
marked with *CP, *ICF and PHYSICAL are summary lines which will be
kept at the beginning or end of each block during the sort.

DELAY The first column of the table represents a job name. The rows marked with
an asterisk in front of the job name are summary lines except for
MASTER. After sorting, the report will consist of two sections. The first
section contains all summary lines. The second section will contain all the
remaining lines.

DEVR This report contains blocks of lines that belong together and must be sorted
as one item.

IOQ This report shows rows with values for a single CHPID (marked ‚C’ in the
last column), summary lines for DCM-managed CHPIDs belonging to the
same LCU (marked ‚D’ in the last column) and summary lines for all
450 z/OS Version 1 Release 9 Implementation

CHPIDs belonging to an LCU (marked ‘S’ in the last column). The sort
procedure will keep these blocks with the same CHPID and LCU together
and sort according to highest (for descending sort order) or lowest (for
ascending sort order) value within the block.

STORC: The report will be sorted like the DELAY report. Summary lines start with an
asterisk (*) and also with a percent (%) sign.

STORS: The report will be sorted like the SYSSUM report (filling in missing
information into the first column).

SYSINFO: This report will be sorted like the DELAY report (building two blocks of
sorted lines). Additionally, missing information will be filled into the first
column like in SYSSUM report.

25.3 SpreadSheet Reporter enhancements

The RMF Spreadsheet Reporter is the powerful workstation solution for graphical
presentation of RMF Postprocessor data. It is used to convert your RMF data to spreadsheet
format and generate representative charts for all performance-relevant areas.

RMF Spreadsheet Reporter enhancements include:

� New RMF Spreadsheet options
� zAAP and zIIP support
� Report Class Periods
� RMF XCF Activity Report
� Process user-defined overview records

25.3.1 New RMF Spreadsheet options

The Spreadsheet Reporter GUI is enhanced to offer two new Report Options:

� Workload Activity (Report Classes)

– Enable this option to create a Workload Activity RMF Postprocessor Report with
Report Class and Report Class Period information.

– When set, the following postprocessor option is used.

• SYRPTS(WLMGL(RCLASS,RCPER,WGROUP,POLICY))

� XCF Activity

– Enable this option to create an XCF Activity RMF Postprocessor Report.

– When set, the following postprocessor option REPORTS(XCF) is used.

The new Spreadsheet Reporter options are shown in Figure 25-7 on page 452.
Chapter 25. RMF enhancements 451

Figure 25-7 Spreadsheet Reporter options

25.3.2 zAAP and zIIP support

The Workload Activity report spreadsheet is based on the RMF Workload Activity
Postprocessor Report. The spreadsheet is enhanced to support the new zAAP and zIIP
metrics.

The RepExcD sheet, as shown in Figure 25-8 on page 453, displays Using and Delay
samples for selected Workloads. In addition, zIIP and zAAP Using and Delay samples are
also available.
452 z/OS Version 1 Release 9 Implementation

Figure 25-8 RepExcd report

The ApplTrd sheet, shown in Figure 25-9, reports application execution time for a selected
workload as a trend chart.

The following metrics are reported:

� APPL % CP

� APPL % AAP

� APPL % AAP on CP

� APPL % IIP

� APPL % IIP on CP

Figure 25-9 ApplTrd report
Chapter 25. RMF enhancements 453

The LPAR Trend report spreadsheet is based on the RMF Partition Data Postprocessor
Report. The spreadsheet is enhanced to support the new zAAP and zIIP processor types and
metrics.

As shown in Figure 25-10, on the LparInt sheet for each partition the related CP, AAP, IIP, ICF,
IFL and IIP performance data is reported. The user can select the Interval which is reported,
and also select the metric which is displayed on the chart.

The available metrics for the charts are:

� Logical Effective Dispatch Time %

� Physical Effective Dispatch Time %

� # Logical Processors

� Actual Weight

� Actual Weight %

Figure 25-10 Interval Summary report

25.3.3 Report Class periods

The Workload Activity report spreadsheet is based on the RMF Workload Activity
Postprocessor Report. The spreadsheet is enhanced to support Report Class Periods.

As shown in Figure 25-11 on page 455, below the listed service classes and service class
periods you will find now the report class and report class periods in the list.

Note: The new processor types are also honored on the LparType, OneLparTrd, LparsTrd
and RepWeight sheets.
454 z/OS Version 1 Release 9 Implementation

Figure 25-11 RepGoals report

25.3.4 RMF XCF Activity Report

The new XCF Activity report spreadsheet macro is based on the RMF XCF Activity
Postprocessor Report. You can combine interval reports from several systems to create a
sysplex performance view.

In the macro you will find several sheets for XCF Transport Class and XCF Path performance
metrics. The following three sheets report XCF Transport Class performance data:

� TCOverview:

– This provides an overview of the Transport Class Buffer Size.

� TCSystems:

– Based on the XCF Usage by System Section of the XCF Activity Report, several
selectable Outbound Request metrics are reported.

– You can reduce the content with a filter for: Sending System, Receiving System, and
Transport Class.

– If you set the Sending System filter to *All Systems, the spreadsheet will summarize
the data of the selected system reports, generating a sysplex view. If you just select
one sending system, a single system view is generated.

– Additionally, you can specify the reporting category for which the data is reported:

• by Sending System
• by Receiving System
• by Transport Class

� TCBuffers

– Based on the XCF Usage by System Section of the XCF Activity Report, this chart
reports the distribution of the Outbound Requests for the categories: SML, FIT, BIG
(without OVR), BIG (with OVR).

– Additionally, a selectable metric is reported on the secondary Y axis.

– You can set a filter to specify the Sending System, Receiving System, and Transport
class.
Chapter 25. RMF enhancements 455

Figure 25-12 shows a XCF Outbound Request Summary report and the Filter and the Metric
selection scroll-down fields.

Figure 25-12 XCF Activity report

You can also set a filter to specify the Sending System, Receiving System, Transport class,
and Path. Based on the XCF Path Statistic Section of the XCF Activity Report, the chart in
Figure 25-13 on page 457 reports the distribution of the Outbound Requests for the following
categories:

� Path Available

� Busy and Retries

Additionally, a selectable metric is reported on the secondary Y axis. A filter can be used to
specify the Sending System, Receiving System, Transport class, and Path.
456 z/OS Version 1 Release 9 Implementation

Figure 25-13 PathSystemsOut report

25.3.5 Process user-defined overview records

The new Overview Report spreadsheet is able to process any working set, based on
user-defined overview records. It automatically creates charts from the data. Additionally, the
user can customize the charts. On the setup sheet, the user can customize the chart titles
and the metric description.

The following charts are generated:

IntervalChart Data from one interval is reported. The user can select the interval that
should be reported. Additionally, the user can specify the metrics that are
reported in the charts (a subset from the available data).

DayChart Data from one day is reported. The user can select the day that should
be reported. It is also possible to select the chart type: line chart, stacked
array chart, or array chart (depending on the metrics of the user-defined
overview record). Additionally, the user can specify the metrics that are
reported in the charts (a subset from the available data).

TrendChart Data is reported as a trend chart. The user can select the chart type from
a line chart, stacked array chart, or array chart (depending on the metrics
of the user-defined overview record). Additionally, the user can specify
the metrics that are reported in the charts (a subset from the available
data).

Figure 25-14 on page 458 shows a DayChart. When you select Chart Options, it shows you
only a subset of the available data (for example, only OCPU1 and OCPU2).
Chapter 25. RMF enhancements 457

Figure 25-14 DayChart report
458 z/OS Version 1 Release 9 Implementation

Chapter 26. XML enhancements

z/OS XML System Services (z/OS XML), a BCP component introduced in z/OS V1R8, is a
system-level XML parser intended for use by system components, middleware, and
applications that need a simple, efficient, non-validating XML parser. It provides a buffer-in,
buffer-out processing model in which the document to parse is provided by the caller in one
buffer, and the z/OS XML parser creates a parsed record stream in another buffer, also
provided by the caller. Arbitrarily large documents can be processed by replenishing the input
buffer with more data and reusing the output buffer or specifying a new one when it is filled.

z/OS XML can natively handle the following character set encodings: UTF-8, UTF-16 (big
endian), EBCDIC-1047, and EBCDIC-037. z/OS XML is invoked as a callable service and
provides an assembler interface for callers to use.

It is accessible from normal environments such as batch and UNIX System Services, as well
as from more esoteric environments such as SRB mode and cross-memory.

This chapter describes the modifications for XML system services made in z/OS V1R9.

� Improved performance of XML System Services parser

� C/C++ APIs

� Enabling the parser to run on zAAP specialty engines

26
© Copyright IBM Corp. 2007. All rights reserved. 459

26.1 XML System Services

DB2 was the primary driver of the design requirements, used for their expanded XML
features. The reasons for implementing the parser are:

� To provide an XML parser that is part of the BCP and requires no extra installation or
downloading. This allows other z/OS components to exploit the function, and makes the
function always available for use by customers and middleware.

� To meet the requirements for z/OS-specific environments, such as X-memory mode or
SRB mode. XML System Services runs in key and state of the caller, and supports all
z/OS operating environments.

� To address the version and service-level issues that the z/OS XML Toolkit has
experienced with multiple exploiters.

� To have new z/OS features dependent on a separate installable package.

� Open software APIs are often not stable. The APIs change and are deprecated. With z/OS
XML System Services, it is a typical BCP component, with support of downward
compatibility, as is usually expected with z/OS.

� To exploit the widespread availability of C and C++ language development and
performance tools that such applications can take advantage of. Many programs are
already written in C/C++ and will no longer need to switch into PL/X or assembler to
invoke XML System Services, or make inter-language calls without the benefit of C/C++
header files.

26.2 Performance improvements

The combination of C/C++ APIs and zAAP specialty engine support makes z/OS attractive for
applications that require non-validating XML parsing. This will be very useful for IBM and
external (that is, ISV and customer) exploiters because assembler and PL/X skills are
becoming increasingly rare; there is widespread availability of C language development and
performance tools that such applications can take advantage of; and many programs are
already written in C/C++ and will no longer need to switch into PL/X or assembler to invoke
XML System Services or make inter-language calls without the benefit of C/C++ header files.

There are mostly changes to the internals to improve performance. There is approximately a
30% improvement of cycles per bytes parsed with z/OS V1R9 over previous releases.

Some feature changes are not available on a control call, such as recovery and jobsteps that
own storage features. A control reset enhancement was requested by DB2, but may be used
by any caller of XML System Services.

Features that can be changed on the control call include the following:

� XEC_FEAT_STRIP_COMMENTS

– This effectively strips comments from the document by not returning any comments in
the parsed data stream. Default: off.

Note: The Metal is a new option on the C compiler. The Metal compiler option, which is
provided with z/OS V1R9, generates code that does not have Language Environment
run-time dependencies. In addition, language features are provided to embed small pieces
of HLASM source within C statements.
460 z/OS Version 1 Release 9 Implementation

� XEC_FEAT_TOKENIZE_WHITESPACE

– This sets the default token value for white space preceding markup in the root element
to an explicit white space value. Default: off; white space is returned as character data.

� XEC_FEAT_CDATA_AS_CHARDATA

– This returns CDATA in records with a CHARDATA token type. The content of these
records may contain text that would normally have to be escaped to avoid being
handled as markup. Default: off.

26.3 C/C++ APIs

The combination of C/C++ APIs and zAAP specialty engine support makes z/OS attractive for
applications that require non-validating XML parsing.This will be very useful for IBM and
external (that is, ISV and customer) exploiters because assembler and PL/X skills are
becoming increasingly rare; there is widespread availability of C language development and
performance tools that such applications can take advantage of; and many programs are
already written in C/C++ and will no longer need to switch into PL/X or assembler to invoke
XML System Services or make inter-language calls without the benefit of C/C++ header files.

Table 26-1 lists the functions available to invoke XML C/C++ APIs.

Table 26-1 C/C++ APIs for XML

Note: The C/C++ APIs are also available to z/OS 1.6 and 1.7 with APAR OA18713.

C/C++ API Function

gxlpControl This is a general purpose service which provides control functions for
interacting with the z/OS XML parser. The function performed is selected by
setting the ctl_option parameter using the constants defined in gxlhxec.h.
These functions include:

GXLHXEC_CTL_FIN

The caller has finished parsing the document. Reset the necessary
structures so that the PIMA can be reused on a subsequent parse, and
return any useful information about the current parse.

GXLHXEC_CTL_FEAT

The caller wants to change the feature flags. A XEC_CTL_FIN function will
be done implicitly.

gxlpInit This callable service initializes the PIMA and records the addresses of the
caller's system service routines (if any). The PIMA storage is divided into
the areas that will be used by the z/OS XML parser to process the input
buffer and produce the parsed data stream.

gxlpParse This callable service parses a buffer of XML text and places the result in an
output buffer.

gxlpQuery This service allows a caller to obtain the XML characteristics of a document.
The XML characteristics are either the default values, the values contained
in an XML declaration, or a combination of both.
Chapter 26. XML enhancements 461

What is a PIMA
In addition to control information, the PIMA is used as a memory area to store temporary data
required during the parse. When the z/OS XML parser needs more storage than was
provided in the PIMA, additional storage is allocated. Everything that the z/OS XML parser
needs to complete the parse of a document is kept in the PIMA, and any associated memory
extensions that parser may allocate during the parse process.

The caller must also provide input and output buffers on each call to gxlpInit. In the event that
either the text in the input buffer is consumed, or the parsed data stream fills the output buffer,
the z/OS XML parser will return XRC_WARNING, along with a reason code indicating which
buffer (possibly both) needs the caller’s attention. It also indicates the current location, and
the number of bytes remaining in each buffer, by updating the buffer_addr and
buffer_bytes_left parameters passed on the parse request.

This process is referred to as buffer spanning. If the entire document has been processed
when the z/OS XML parser returns to the caller, the parse is complete and the caller
proceeds accordingly. If the caller needs to parse another document, it will have to call
gxlpInit again to either completely reinitialize the existing PIMA area or initialize a new PIMA
area from scratch.

Another option is to use the finish/reset function of the gxlpControl z/OS XML parser service
to reset the PIMA so that it can be reused. This is a lighter-weight operation that preserves
certain information that can be reused across parsing operations for multiple documents. This
improves the performance for subsequent parses, because this information can be reused
instead of being rebuilt from scratch. Reusing the PIMA in this way is particularly beneficial to
callers that need to handle multiple documents that use the same symbols (for example,
namespaces and local names for elements and attributes). The PIMA can only be reused in
this way when the XML documents are in the same encoding and the same z/OS XML parser
options are used.

26.3.1 Sample project

To demonstrate how to use the new introduced APIs a small program is created. The C
source is shown in Figure 26-1 on page 463. The program first initializes the XML System
services using gxlpInit. Next, a sample is shown using XML Services to parse with the
function gxlpParse. At the end, the buffers are removed and a release of the PIMA is done
using the gxplControl. To terminate XML Services completely, use the gxlpTerminate
function.

gxlpTerminate The gxlpTerminate callable service releases all resources obtained
(including storage) by the z/OS XML parser and resets the PIMA so that it
can be reinitialized or freed.

C/C++ API Function
462 z/OS Version 1 Release 9 Implementation

Figure 26-1 Sample C program for using XML

 * function : invoke the XML System Services *
* history : 24.05.2007 Lutz first creation *
#include <gxlhxml.h> /* include XML Services */
 /* located in /usr/lib or */
 /* /usr/lib/Metal */
 /* SYS1.SIEANDRV.H */
 #include <stdlib.h>
 #include <stdio.h>
int main(){
 int rc, rsn; /* return and reason codes */
 void * PIMA; /* Parse Instance Memory Area */
 long lPIMA = GXLHXEC_MIN_PIMA_SIZE; /* */
 int ccsid = GXLHXEC_ENC_IBM_1047; /* set Coded Character Set ID */
 int feature_flags; /* which parser features used */
 void * inputBuffer; /* define input area */
 void * outputBuffer; /* define output area */
 void * outputBufferStart; /* define inputarea start point */
 long * ctl_data; /* */
 void * CTL_DATA_PTR; /* */
 long input_buffer_len = 0; /* initialyze */
 long output_buffer_len = 0; /* some */
 int option_flags = 0; /* variables */
 int i; /* loop counter */
 int *array;
 CTL_DATA_PTR = &ctl_data; /* pointer to control data */
struct _GXLHXSV testing_struct;
 testing_struct.XSV_COUNT = 0; /* no exits passed in */
 /*--*/
 /* start main program */
 /*--*/
 printf("starting test program for XML System Services\n");
 PIMA =(void*) malloc(GXLHXEC_MIN_PIMA_SIZE);
 if(PIMA == NULL) return -1; /* allocate PIMA */
 inputBuffer = (void *) malloc(1000); /* allocate input buffer */
 /* allocate output buffer */
 outputBufferStart = outputBuffer = (void*) malloc(4000);
 feature_flags = 0; /* no special features */
 /* invkoke gxlpInit to initialyze environment */
 gxlpInit(PIMA,lPIMA,ccsid,0,testing_struct,NULL,&rc,&rsn);
 printf("gxlpInit: rc = %d rsn = %x\n", rc, rsn);
 /* fill input buffer for gxlpParse */
 sprintf((char *) inputBuffer,"<?xml version=\"1.0\" encoding=\"IBM-1047\"?> <a> /a>");
input_buffer_len = 49;
 output_buffer_len = 4000;
 /* invkoke gxlpParse */
 gxlpParse(PIMA, &option_flags,&inputBuffer, &input_buffer_len, &outputBuffer, &output_buffer_len,
&rc, &rsn);
 printf("gxlpParse: rc = %d rsn = %x\n", rc, rsn);
 array = (int *) outputBufferStart;
 /* print the result of gxlpParse */
 for (i = 0; i < 30; i++)
 printf("%8.8x ", array[i]);
 printf("\n");
 /* finishing parsing and reset PIMA */
 gxlpControl(PIMA,GXLHXEC_CTL_FIN,CTL_DATA_PTR,&rc,&rsn);
 printf("gxlpControl: rc = %d rsn = %x\n", rc, rsn);
 /* release all storage and release PIMA */
 gxlpTerminate(PIMA, &rc, &rsn);
 printf("gxlpTerminate: rc = %d rsn = %x\n", rc, rsn);
 free(PIMA); /* free */
free(inputBuffer); /* allocated */
 free(outputBuffer); /* buffers */
return 0; }
Chapter 26. XML enhancements 463

26.3.2 How to compile

To create the needed load module, you use the regular C compiler shipped with z/OS.
Figure 26-2 shows a sample call of the C compiler for a 64-bit environment.

Figure 26-2 Invoke Compiler for 64-bit

Figure 26-3 shows the same, but with the XP-LINK option.

Figure 26-3 Invoke compiler with XP-LINK

To create a MVS load module, use the job shown in Figure 26-4.

Figure 26-4 Compile in batch

Compiling the source program requires a new include library called gxlhxml.h. This is
provided by z/OS in the libraries listed in Table 26-2.

Table 26-2 Compile and link environments

cxx -Wc,lp64,expo,"langlvl(extended)" -c -o xmltest64.o -I/u/lutz xml.c
cxx -Wl,lp64 -o xmltest64 -L/u/lutz xmltest64.o /usr/lib/gxlxxml4.x

cxx -Wc,xplink,expo,"langlvl(extended)" -c -o xmltestxp.o -I/u/lutz xml.c
cxx -Wl,xplink -o xmltestxp -L/u/lutz xmltestxp.o /usr/lib/gxlxxml1.x

Important: You can use the same source code for both 31-bit and 64-bit load modules.
You only use different compiler/linker options and a separate import library.

//XMLTEST JOB ,'COMPILE',NOTIFY=LUTZ,REGION=512M,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),TIME=1440
/*JOBPARM S=SC70
//COMP EXEC EDCCL,
// INFILE='LUTZ.SOURCE(XMLTEST)',
// OUTFILE='LUTZ.LOADLIB(XMLTEST),DISP=SHR',
// CPARM='XPLINK,EXPO,"LANGLVL(EXTENDED)"',
// LPARM='MAP'
//COMPILE.SYSLIB DD DSN=SYS1.SIEAHDRV.H,DISP=SHR
//LKED.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=CEE.SCEELKEX,DISP=SHR
// DD DSN=CEE.SCEEBND2,DISP=SHR
//XMLINCL DD DSN=SYS1.SIEALNKE,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE XMLINCL(GXLCXML1)
 NAME XMLTEST(R)
/*
//

Environment Compiler headers Link library

z/OS UNIX /usr/include /usr/lib/gxlxxml1.x XP-LINK
/usr/lib/gxlxxml4.x 64-bit
464 z/OS Version 1 Release 9 Implementation

After compilation, you need to link the load module. Therefore you must include the XML
System Services link stub called gxlxxml1.x (for XP-LINK)or gxlxxml4.x (for 64-bit
applications). Figure 26-5 shows the output of our sample program.

Figure 26-5 Output of the sample program

26.3.3 zAAP considerations

z/OS XML System Services provides the ability for parsing operations to be run on a zSeries
Application Assist Processor (zAAP). The z/OS XML parser, when executing in TCB mode, is
eligible to run on a zAAP in environments where one or more zAAPs are configured. Ancillary
z/OS XML System Services, such as the query service and the control service, as well as the
StringID exit and memory management exits, are not eligible to run on a zAAP.

Execution of z/OS XML System Services parsing operations on a zAAP occurs transparently
to the calling application. The XML code provided with z/OS V1R9 switches automatically
over to zAAP specialty engines prior to parsing a document if there is at least one zAAP
processor available in the system. There is currently no way to prevent this behavior. There is
no switch done to zAAP when running in SRB mode.

To determine whether your system has a zAAP installed or not, use the DISPLAY M=CPU z/OS
system command. Figure 26-6 on page 466 is an example of this command; it shows there
are two zAAP processors installed (02 and)3) and eligible XML work.

z/OS UNIX with Metal option /usr/include/Metal /usr/lib/gxlxxml1.x XP-LINK
/usr/lib/gxlxxml4.x 64-bit

z/OS SYS1.SIEAHDRV.H SYS1.SIEALNKE
SYS1.SIEASID side decks

LUTZ:/u/lutz: >./xmltestxp
starting test program for XML System Services
gxlpInit: rc = 0 rsn = 0
gxlpParse: rc = 4 rsn = 1301
f00f0000 00000020 00000000 00000000 00000000 00000064 00000000 00000000 f01f0000
0000001f 00000003 f14bf000 000008c9 c2d460f1 f0f4f700 000000f0 2f000000 00001500
00000181 00000000 00000000 f07f8000 00000010 00000004 4061816e 00000000 00000000
00000000 00000000 00000000
gxlpControl: rc = 0 rsn = 1301
gxlpTerminate: rc = 0 rsn = 1301
LUTZ:/u/lutz: >

Environment Compiler headers Link library

Note: The zAAP support for XML System Services is also available to z/OS 1.6 and 1.7
with APAR OA20308.
Chapter 26. XML enhancements 465

Figure 26-6 Display of installed CPs and zAAPs

ISF031I CONSOLE LUTZ ACTIVATED
D M=CPU
IEE174I 15.06.38 DISPLAY M 412
PROCESSOR STATUS
ID CPU SERIAL
00 + 16991E2094
01 + 16991E2094
02 +A 16991E2094
03 +A 16991E2094
04 +I 16991E2094
05 +I 16991E2094

CPC ND = 002094.S18.IBM.02.00000002991E
CPC SI = 2094.710.IBM.02.000000000002991E
CPC ID = 00
CPC NAME = SCZP101
LP NAME = A16 LP ID = 16
CSS ID = 1
MIF ID = 6

+ ONLINE - OFFLINE . DOES NOT EXIST W WLM-MANAGED
N NOT AVAILABLE

A APPLICATION ASSIST PROCESSOR (zAAP)
I INTEGRATED INFORMATION PROCESSOR (zIIP)
CPC ND CENTRAL PROCESSING COMPLEX NODE DESCRIPTOR
CPC SI SYSTEM INFORMATION FROM STSI INSTRUCTION
CPC ID CENTRAL PROCESSING COMPLEX IDENTIFIER
CPC NAME CENTRAL PROCESSING COMPLEX NAME
LP NAME LOGICAL PARTITION NAME
LP ID LOGICAL PARTITION IDENTIFIER
CSS ID CHANNEL SUBSYSTEM IDENTIFIER
MIF ID MULTIPLE IMAGE FACILITY IMAGE IDENTIFIER
466 z/OS Version 1 Release 9 Implementation

Chapter 27. RRS enhancements

Resource Recovery Services (RRS) provides a set of services that implement the two-phase
commit protocol on the z/OS platform. Your resource manager follows the two-phase commit
protocol to protect resources by invoking these services and providing exit routines.

This chapter provides information about the new functions in ATRRRS with z/OS V1R9. The
following new functions are described:

� ATRQSRV batch support

� Resource manager unregister

27
© Copyright IBM Corp. 2007. All rights reserved. 467

27.1 ATRQSRV batch support

RRS has support for displaying RRS information via ISPF panels. Figure 27-1 shows a
sample ISPF RM detail information panel. In order to obtain any information about RRS
resources, it was necessary to navigate through multiple panels; there was no way to display
information using batch.

Figure 27-1 RM detail ISPF panel

27.1.1 ATRQSRV utility

RRS information can be especially useful in problem determination. Another method for
capturing RRS information is by using the ATRQSRV batch utility. Figure 27-2 shows a
sample job for obtaining RRS RM information.

Figure 27-2 Sample JCL for ATRQSRV use

//LUTZRRS JOB ,'KUEHNER',NOTIFY=&SYSUID,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),TIME=1440
//LISTATR EXEC PGM=ATRQSRV
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 RMINFO RMNAME(IGWTV070020071121456262931740000)
/*
//
468 z/OS Version 1 Release 9 Implementation

SYSIN DD statement
The SYSIN DD statement defines the control data set. The control data set normally resides
in the input stream; however, it can be defined as a member in a partitioned data set or
PDSE.

The SYSIN DD statement is required for each use of ATRQSRV. The block size for the SYSIN
data set must be a multiple of 80. Any blocking factor can be specified for this block size.

You can pass several control statements to the ATRQSRV via the SYSIN DD statement, as
shown in Table 27-1. It also possible to pass more than one control statement to the
ARTQSRV program.

Table 27-1 Control statements given to ATRQSRV

Table 27-2 lists the possible return codes returned by the ATRQSRV program.

Table 27-2 Possible return codes given by ATRQSRV

Figure 27-3 on page 470 shows the output of the sample batch job.

Statement Meaning

LOGINFO Browse the Archive, Main/Delayed UR, Restart and RM Data log streams

URINFO Query unit of recovery (UR) information

RMINFO Query resource manager (RM) information

WMINFO Query work manager (WM) information

SYSINFO Query RRS sysplex and logging group information

REMOVINT Remove interest(s) from URs

COMMIT Force an InDoubt transaction to the COMMIT state

BACKOUT Force an InDoubt transaction to the BACKOUT state

DELETERM Delete a resource manager from RRS

UNREGRM Unregister RM to clean up the a resource manager's involvement with RRS

Return Code Description

0 Service completed successfully

4 Errors detected. Messages appear in SYSPRINT DD.

8 Errors writing to the SYSPRINT DD.

12 Errors opening SYSPRINT DD.

16 Errors closing SYSPRINT DD.

4095 Unexpected error.
Chapter 27. RRS enhancements 469

Figure 27-3 Sample output of the ATRQSRV utility

Figure 27-4 shows an example of invoking ATRQSRV from REXX. The output of the sample
ATRQSRV is done using the variable atrprint.

Figure 27-4 REXX sample to invoke ATRQSRV

27.2 Resource manager unregister

Resource manager unregister processing can be requested by one of the following means:

� Exit back-end processing as a result of RRS detecting an RM exit failed exit failure

� Registration services unregister exit (ATRBMUNR)

RMINFO 2007/05/14 15:30:48 -- ATRQSRV - HBB7740 - 2006331 --
RMINFO RMNAME(IGWTV070020071121456262931740000)
 DEFAULTS: GNAME(SANDBOX) SYSNAME(SC70) METADATA(NO)
RMNAME RMTOKEN STATE
IGWTV070020071121456262931740000 00000000000000000000000000000000 Reset

/* REXX ***/
/* */
/* function : issue RRS functions */
/* */
/* */
/* history : 15.05.2007 ITSO first creation */
/* */
/**/
/* check parameters */
/**/
address tso "alloc f(SYSIN) new" /* allocate temporarly */
 /* dataset for SYSIN */
address tso "alloc f(SYSPRINT) new" /* allocate temporarly */
 /* dataset for SYSPRINT */
queue 'SYSINFO' /* pass function to ATRQSRV */
 /* */
address tso 'execio 1 diskw SYSIN (finis' /* write SYSIN control */
 /* statement to temporarly */
 /* SYSIN file */
address tso 'ATRQSRV' /* invoke ATRQSRV service */
 /* */
address tso 'execio * diskr SYSPRINT (stem atrprint.'
 /* read the program output */
do i=1 to atrprint.0 /* print or manage the */
 say atrprint.i /* output */
end /* */
 /* */
address tso "free f(SYSPRINT)" /* deallocate SYSPRINT */
address tso "free f(SYSIN)" /* deallocate SYSIN */
exit /* good buy */
470 z/OS Version 1 Release 9 Implementation

In either case, RRS performs the RM unregister processing to mark all UR interests for the
failing RM as failed and unset the RM’s RRS exits, as well as the RM unregistration
processing with the registration services. If RRS experiences an internal failure before
completing the RM unset processing, RM could be left in an unregistered state with
registration services but was still set with RRS. This situation cannot currently be resolved
without recycling RRS and its resource managers, which is undesirable. These means that
prior to z/OS 1.8, you have to cancel the RRS address space. Starting with z/OS 1.8, you can
use the SETRRS CANCEL function to recycle the RRS address space.

Currently there are three ways to unregister RMs:

� RRS ISPF panels
� Applications via the updated ATRSRV interface
� JCL via the ATRQSRV batch utility

In the process of restarting, a resource manager will call the CRGSEIF, Set_Exit_Information,
service to notify RRS of its intent to work with RRS.

When the resource manager is still set with RRS, CRGSEIF will return a code of 8004,
ATR_RM_ACTIVE_ON_ANTOHER_SYSTEM, meaning that the resource manager currently
has exits set. Any of the ATR services, such as ATRIBRS, Begin_Restart, would fail with a
701 return code ATR_RM_STATE_ERROR, meaning that the resource manager is not in set
state. Most likely the resource manager is in RUN state. From the RRS ISPF panels Option 2,
Display Resource Manager information, use the UNREGISTER RM command to unregister the
resource manager with RRS.

New ISPF panels
Figure 27-5 on page 472 shows the new Unregister RM command in the commands list.

Tip: The command will only work if the resource manager is unregistered with registration
services, but still registered with RRS.
Chapter 27. RRS enhancements 471

Figure 27-5 New ISPF Unregister RM command

After you type the unregister action character to the desired resource and press Enter, you
receive a confirmation panel similar to the one shown in Figure 27-6 on page 473.
472 z/OS Version 1 Release 9 Implementation

Figure 27-6 Confirmation dialog

After confirmation, and assuming the RM is unregistered with registration services, the RM is
unregistered with RRS and new message ATR534I is displayed to indicate a successful
unregister. The RM is left on the panel but its state changed to reset. The RM can now
restart.

In some cases, the RM may not be valid for unregister; for example:

� If the new message ATR536I is displayed following the unregister request, it means that
the RM selected for unregister is still registered with registration services and cannot be
unregistered with RRS.

� If the new message ATR537I is displayed following the unregister request, it means that a
resource manager in the reset or unset state is already considered unregistered with RRS,
so it cannot be unregistered again.

Updated ATRSRV interface
The ?ATRSRV callable service has been extended with an additional keyword
REQUEST(UNREGRM, as shown in Figure 27-7 on page 474.
Chapter 27. RRS enhancements 473

Figure 27-7 Modified ATRSRV service

?ATRSRV + REQUEST(REMOVINT)
 + REQUEST(COMMIT)
 + REQUEST(BACKOUT)
 + REQUEST(REMOVRM)
 + REQUEST(UNREGRM) [RMNAME(xrmname)]
 [GNAME({xgname | current_gname})]
 [SYSNAME({xsysname | current_sysname})]
 [RCTABLE({xrctable | 0})
 RCNUM({xrcnum})]
 RETCODE = retcode
 RSNCODE = rsncode

Restriction: If the service is routed to a non z/OS V1R9 system, the following message is
issued:

ATR538I The ATRSRV request was processed on a downlevel RRS system that
could not honor the request.
474 z/OS Version 1 Release 9 Implementation

Chapter 28. Language Environment

Language Environment (LE) provides a common run-time environment for IBM versions of
certain high level languages (HLLs), namely C, C++, COBOL, Fortran, and PL/I, in which you
can run existing applications written in previous versions of these languages as well as in the
current Language Environment-conforming versions. Before Language Environment, each of
the HLLs had to provide a separate run-time environment.

Language Environment combines essential and commonly used run-time services (such as
routines for run-time message handling, condition handling, storage management, date and
time services, and math functions) and makes them available through a set of interfaces that
are consistent across programming languages. With Language Environment, you can use
one run-time environment for your applications, regardless of the application's programming
language or system resource needs because most system dependencies have been
removed. Language Environment provides compatible support for existing HLL applications;
most existing single-language applications can run under Language Environment without
being recompiled or relink-edited. POSIX-conforming C applications can use all Language
Environment services.

This chapter describes the following enhancements:

� inconv() enhancements

� Enhancements of CEEDUMP

� Enhancements of IPCS BERBX LEDATA

� edcmtext

� fdlibm replacement

� HEAP pools performance improvement

� ASCII locale support and Turkish locale update.

� z/OS UNIX support for CEEBLDTX

� CLER run-time option change support

� CEELRR ACTION=INIT,XPLINK=YES

� AMODE 64 CELQPIPI Service Vector (LOAD/DELETE)

� XPLINK enhancements

28
© Copyright IBM Corp. 2007. All rights reserved. 475

28.1 iconv() enhancements

The iconv() family of functions supports conversion of a sequence of characters encoded in
one character set to a sequence of characters in another character set. Similar support is
available from Unicode Services. Continued standalone support of conversion services via
the iconv() family of functions is redundant. Additionally, Unicode Services supports
conversion of many more to/from character sets than iconv().

The iconv() family of functions has been modified to utilize Unicode Services Conversion
Services under the covers. The modifications are transparent to existing applications. The
iconv() family function interfaces remain unchanged for existing conversions except where
noted in the migration section of this document. Thousands of additional to/from character set
conversions are now supported.

Two new environment variables and four new errno values have been introduced and are
described here.

New error codes
Following are the new error codes:

ECUNNOENV A CUN_RS_NO_UNI_ENV error was issued by Unicode Services.

Action: Refer to Support for Unicode: Unicode Services
documentation for user action.

ECUNNOCONV A CUN_RS_NO_CONVERSION error was issued by Unicode
Services

Action: Refer to Support for Unicode: Unicode Services
documentation for user action.

ECUNNOTALIGNED A CUN_RS_TABLE_NOT_ALIGNED error was issued by Unicode
Services.

Action: Refer to Support for Unicode: Unicode Services
documentation for user action.

ECUNERR iconv() encountered an unexpected error while using Unicode
Services. Refer to message EDC6258 for additional information.

Message EDC6258 will indicate an error code and reason code
issued from Unicode Services which can be used by users to search
Unicode: Unicode Services documentation for additional user action.

New environment variables
The following environment variables are new in z/OS V1R9:

� _ICONV_MODE

The _ICONV_MODE environmental variable selects the behavior mode for the iconv_open(),
iconv(), and iconv_close() family of functions. Table 28-1 on page 477 lists the
_ICONV_MODE values that can be set.

Important: As mentioned, these changes are transparent to existing applications.
476 z/OS Version 1 Release 9 Implementation

Table 28-1 _ICONV_MODE values

� _ICONV_TECHNIQUE

This variable tells Unicode conversion services which conversion technique to use during
conversions. The default value is LMREC. All possible values are listed in Table 28-2.

Table 28-2 _ICONV_TECHNIQUE values

28.1.1 Migration actions

The iconv() users who have created their own conversion tables and want the iconv() family
of functions to use them will need to set the _ICONV_MODE environment variable to C. The
_ICONV_UCS2 and _ICONV_PREFIX environment variables do not have any meaning when
using Unicode Services. The Iconv() function returns the number of nonidentical conversions
performed during a conversion.

Value Meaning

C A user has created its own iconv() converter. Use the user-created converter first. If
the user-created converter is not located, then use Unicode Services to perform the
conversion.

U The user uses Unicode conversion services to perform all conversions. This is the
default value for _ICONV_MODE.

Value Meaning

R Roundtrip conversion. Roundtrip conversions between two CCSIDs assure that all
characters making the roundtrip arrive as they were originally.

E Enforced Subset conversion. Enforced Subset conversions map only those characters
from one CCSID to another that have a corresponding character in the second CCSID. All
other characters are replaced by a substitution character.

C Customized conversion. Customized conversions use conversion tables that have been
created to address some special requirements.

L Language Environment behavior conversion. Environment behavior conversions use
tables that map characters like the iconv() function of the Language Environment Runtime
library does. These conversions differ from others primarily in their mapping of the
EBCDIC newline (NL) character to ASCII and the Unicode linefeed (LF) character.

M Modified Language Environment behavior conversion. Modified Language Environment
behavior conversions use tables that map characters as the iconv() function of the
Language Environment Runtime library does for converters ending with C (for example,
IBM-932C).

0-9 User-defined conversions. User-defined conversions are supported. For more information,
refer to Appendix C, “Defining CCSIDs and conversion tables” in the publication Support
for Unicode: Unicode Services, document number SA22-7649.

Note: ICONV_UCS2 and _ICONV_PREFIX environment variables will be honored while
searching for user-created converters. They will not be honored while using Unicode
Services.
Chapter 28. Language Environment 477

Beginning in z/OSV1R9, a more strict interpretation of a nonidentical conversion will be used
by iconv(). Thus it is possible that the nonidentical conversion count will be higher in
z/OSV1R9 than in previous releases when converting the same input buffer contents.

In pre-z/OSV1R9 releases, iconv() used either a single byte or a double-byte substitution
character in mixed (converters containing both single and multibyte data) character set
conversions, never both. In z/OSV1R9, iconv() will use a single byte substitution character
when converting single-byte characters and a multibyte substitution character when
converting multibyte characters in a mixed character set conversion.

28.2 CEEDUMP enhancement

The following enhancements were made for dump processing:

� There is a new runtime option to control characteristics of a CEEDUMP data set.

� There is an enhanced traceback section of a Language Environment dump.

� There is an enhanced condition information section of a Language Environment dump.

� Job information is added to the Language Environment dump page header.

� New messages identify the start and end of a Language Environment dump.

� Language Environment dump processing is suppressed when the CEEDUMP ddname is
defined as dummy.

CEEDUMP run-time option
The CEEDUMP run-time option is used to specify options to control the processing of the
Language Environment dump report. It is now possible to control the Language Environment
dump processing. IFigure 28-1 shows the syntax of the new CEEDUMP option.

Figure 28-1 CEEDUMP control statement

The default setting for CEEDUMP is for all environments (non-CICS, CICS, AMODE64).

CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR)

Table 28-3 on page 479 lists detailed descriptions of all supported CEEDUMP options. Note
that some of these options are ignored in some environments.

The SYSOUT=, FREE=, and SPIN= suboptions do not have any effect on a CEEDUMP
report taken under CICS. If a CEEDUMP DD card is explicitly coded in a job step, Language
Environment ignores any SYSOUT class, form-name, FREE, or SPIN specified in the
CEEDUMP run-time. The SYSOUT=class suboption is overridden by _CEE_DMPTARG
when this environment variable is used at the same time to indicate the SYSOUT class. The
page_len suboption is overridden by the CEE3DMP PAGESIZE option.

CEEDUMP(pagelen,
 SYSOUT=*|SYSOUT=class|SYSOUT=(class,,form),
 FREE=END|FREE=CLOSE,
 SPIN=UNALLOC|SPIN=NO)
478 z/OS Version 1 Release 9 Implementation

Table 28-3 CEEDUMP option list

Migration considerations
Users of CEEUOPT or CELQUOPT created with HLE7740 and link-edited with an application
that will run on a older release of Language Environment may have run-time options ignored
without notification. In this case, users should install APAR PK29028 on down-level systems.

28.2.1 Enhanced traceback section

In prior releases, Traceback was only one section. Very long program unit names were
truncated. The names of executables in the z/OS UNIX file system were not shown. This
caused problems during diagnoses of LE dumps. Figure 28-2 shows an example of a
traceback taken from a z/OS V1R8 system.

Figure 28-2 Traceback before V1R9

Option Description

pagelen � Default value is 60.
� Valid values are 0, and 10 through 999999999.
� A value of 0 indicates that there should be no page breaks in the dump

report.
� This option can be overridden by the pagesize parameter on the call to

the CEE3DMP callable service.

SYSOUT Class:
� Default class is *
� Valid values for class are A through Z, 0 through 9 or *
� This option can be overridden by _CEE_DMPTARG if this environment

variable is used to indicate the sysout class.
Form:
� There is no default form name.
� Valid values for form-name are made up of 1 to 4 alphanumeric or

national ($,#,@) characters according to JCL rules.

FREE � FREE=END – CEEDUMP data set is unallocated at the end of the last
step that references the data set.

� FREE=CLOSE - CEEDUMP data set is unallocated when it is closed.

SPIN � SPIN=UNALLOC – CEEDUMP data set is available for processing
immediately when it is unallocated.

� SPIN=NO – CEEDUMP data set is available for processing as a part of
the output at the end of the job, regardless of when the data set is
unallocated.

Note: When you set CEEDUMP to DUMMY inside your JCL, then no CEE dump will be
produced during an abend.

Traceback:
 DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
 20A43E80 //'POSIX.CRTL.C(CELDLL)'
 20DC83B0 +0000012E dump_n_perc 20DC83B0 +0000012E 34 CELDLL 1.3.B Call
 20A43DC8 0CD0F628 -00000106 CEEPGTFN 0CD0F4C8 +0000005A CEEPLPKA Call
 20A40CA8 CEEHDSP 0CC55518 +000024D0 CEEHDSP 0CC55518 +000024D0 CEEPLPKA UK20433 Call
 20A40208 //'POSIX.CRTL.C(CELSAMP)'
 20A26478 +000009BA main 20A26478 +000009BA 150 *PATHNAM 1.1.D Exception
 20A400F0 0E284606 +000000C2 EDCZMINV 0E284606 +000000C2 CEEEV003 Call
 20A40030 CEEBBEXT 0CC25418 +000001B6 CEEBBEXT 0CC25418 +000001B6 CEEPLPKA HLE7730 Call
Chapter 28. Language Environment 479

Figure 28-3 shows the traceback from the same dump, but taken on a z/OS V1R9 system.
The report is more flexible and more easily readable, and is similar to what is currently
produced for AMODE 64 programs. The compile date and compile attributes columns are
new. The Fully Qualified Names section displays long program unit and pathnames of
executables in the z/OS UNIX file system.

Figure 28-3 Traceback in V1R9

The Traceback produced by the IPCS Verbexit LEDATA is also changed. However, it does
not have the Fully Qualified Names section and never displays statement numbers.

Enhanced condition information section
The possible bad branch location only appears for 0C1 and 0C4 abends when the Entry
offset is zero or negative. Only a small portion of the GPREG STORAGE section is shown,
but the section does include storage around all 16 registers. Figure 28-4 shows example
output of a 0C1 system abend. The new, added information is shown in bold text, and it
provides more useful information to use for diagnostic purposes.

Figure 28-4 Enhanced condition information

Traceback:
 DSA Entry E Offset Statement Load Mod Program Unit Service Status
 1 dump_n_perc +0000012E 34 CELDLL CELDLL 1.3.B Call
 2 CEEPGTFN +0000005A CEEPLPKA Call
 3 CEEHDSP +000024BC CEEPLPKA CEEHDSP D1908 Call
 4 main +000009BA 150 celsamp.exe CELSAMP 1.1.D Exception
 5 EDCZMINV +000000C2 CEEEV003 Call
 6 CEEBBEXT +000001B6 CEEPLPKA CEEBBEXT D1908 Call

 DSA DSA Addr E Addr PU Addr PU Offset Comp Date Compile Attributes
 1 210F6E80 2147B3B0 2147B3B0 +0000012E 20070105 C/C++ POSIX EBCDIC HFP
 2 210F6DC8 20BA7EB8 20BA8018 -00000106 20061215 LIBRARY POSIX
 3 210F3CA8 20AEC068 20AEC068 +000024BC 20061215 CEL POSIX
 4 210F3208 20A26478 20A26478 +000009BA 20070105 C/C++ POSIX EBCDIC HFP
 5 210F30F0 20F930EE 20F930EE +000000C2 20061215 LIBRARY POSIX
 6 210F3030 20ABADB8 20ABADB8 +000001B6 20061215 CEL POSIX

 Fully Qualified Names
 DSA Entry Program Unit Load Module
 1 dump_n_perc //'POSIX.CRTL.C(CELDLL)' CELDLL
 4 main //'POSIX.CRTL.C(CELSAMP)' ./celsamp.exe

Condition Information for Active Routines
 Condition Information for (DSA address 20FCB2B0)
 CIB Address: 20FCBC70
 Current Condition:
 CEE0198S The termination of a thread was signaled due to an unhandled condition.
 Original Condition:
 CEE3201S The system detected an operation exception (System Completion Code=0C1).
 Location:
 Program Unit: Entry: funca Statement: Offset: -20900978
 Possible Bad Branch: Statement: Offset: +0000005A
 Machine State:
 ILC..... 0002 Interruption Code..... 0001
 PSW..... 078D1400 80000002
 GPR0..... 20FCB350 GPR1..... 20FCB2A0 GPR2..... 20FCB2A0 GPR3..... 209009B2
 GPR4..... A09A0BBC GPR5..... 20912648 GPR6..... 20900AA4 GPR7..... 20900098
 GPR8..... 00000030 GPR9..... 80000000 GPR10.... A0E699E2 GPR11.... A09A0AD8
 GPR12.... 209139B0 GPR13.... 20FCB2B0 GPR14.... A09009D4 GPR15.... 00000000

 Storage dump near condition, beginning at location: 00000000
 +000000 00000000 Inaccessible storage.
 GPREG STORAGE:
 Storage around GPR0 (20FCB350)
 -0020 20FCB330 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
 +0000 20FCB350 0808CEE1 20FCB2B0 20FCE470 A09D6B3A A09EFFD8 20FCB350 20FCB7A8 20912648 |..........U...,....Q...&...y.j..|
480 z/OS Version 1 Release 9 Implementation

Additional job information
New page headers in the Language Environment dump provide additional information about
the causing job or z/OS UNIX-related information. Table 28-4 lists the additional information
that is added to the dump headlines listed by the calling environment.

Table 28-4 Added fields list

New messages for dump status
Two new messages are introduced in z/OS V1R9. The first message indicates the beginning
of the dump taken. The second message is shown after the dump is taken by the system.
Figure 28-5 displays an example of these new messages for dump processing.

Figure 28-5 New dump processing messages

This mechanism might help you to separate multiple LE dumps produced by a single job.

28.3 edcmtext utility

Because of the reuse of the same errno values in multiple failure paths, both within a function
and cross-function, it is sometimes difficult to identify the cause of a failure. An additional
error indicator was needed to help identify the specific failure. This support will help both
customers and IBM support personnel to diagnose application problems.

The solution was to provide errno2 support in the z/OS XL C/C++ Run-Time Library, similar to
the errno2 support provided in z/OS UNIX System Services. The goal of the errno2 work for
the C run-time library is to produce a unique errno2 value for each failure path where errno is
also set. Each errno2 value will be used only once. The errno2 values themselves will not be
programming interfaces.

Calling environment Added fields information

BATCH POSIX(ON) ASID
Job ID
Job name
Step name
PID
Parent PID
User name

BATCH POSIX(OFF) ASID
Job ID
Job name
Step name
UserID

z/OS UNIX shell ASID
PID
Parent PID
User name

CICS Task Number
Transaction ID

CEE3845I CEEDUMP processing started.
CEE3846I CEEDUMP processing completed
Chapter 28. Language Environment 481

However, a new utility, edcmtext, is provided that can be used to query the description of the
failure and the recommended action to resolve the problem. Note that the bpxmtext utility will
call edcmtext when the errno2 value is in the range reserved for the C run-time library
(0xC0000000 through 0xCFFFFFFF). The edcmtext utility can also be called independent of
bpxmtext. IFigure 28-6 shows an example of calling edcmtext.

Figure 28-6 Example of calling edcmtext

Part of the work involved in making the edcmtext utility useful to the customer is the addition
of errno2 values into the C run-time library. The addition of these values makes it beneficial to
change the default of perror() messages to display both the errno and errno2 values.

The display of the errno2 value in the messages is controlled by the value of the
_EDC_ADD_ERRNO2 variable. Thus, the _EDC_ADD_ERRNO2 variable will be changed
such that when it is unset, errno2 will be added to perror() messages.

fdlibm replacement
With z/OS V1R9, certain IEEE754 fdlibm math functions are replaced. The earlier versions of
functions that are more closely aligned with the C99 standard are no longer available. Neither
the _IEEEV1_COMPATIBILITY feature test macro nor the _EDC_IEEEV1_COMPATIBILITY
environment variable can be used to affect these functions.

The earlier versions of functions with performance and accuracy enhancements are still
available. To use earlier versions of the IEEE754 fdlibm math functions, use either of the
following methods:

� When using the FLOAT(IEEE) compiler option, use the _IEEEV1_COMPATIBILITY
feature test macro.

� When variable mode is in effect, use environment variable
_EDC_IEEEV1_COMPATIBILITY_ENV=ON.

28.4 HEAPPOOLS performance improvement

The HEAPPOOLS and HEAPPOOLS64 run-time options is used to control an optional heap
storage management algorithm known as heap pools. This algorithm is designed to improve
performance of multi threaded C/C++ applications with high usage of malloc(), calloc(),
realloc() and free(). When active, heap pools virtually eliminates contention for heap storage.

LUTZ:/u/lutz: >edcmtext C9330011

JrEdcWexpEnospace01: Attempt to allocate an internal buffer failed

Action: An internal call to malloc failed. Look for errno value set
for further information about the cause of this failure.

Source: edcowexp.c

LUTZ:/u/lutz: >

Note: To modify your source code to use the new performance and accuracy
enhancements, use the information in Table 18 in z/OS XL C/C++ Compiler and Run-Time
Migration Guide for the Application Programmer, GC09-4913.
482 z/OS Version 1 Release 9 Implementation

The problem in the past was the cache contention that occurs when two CPs try to update the
same storage address at the same time. This contention may be unavoidable. But cache
contention may also occur when two CPs update different storage addresses that are close
together at the same time.

This new ALIGN option eliminates some of this type of contention by rearranging how the
heap pool structures are laid out in storage. However, doing so uses more virtual storage.
Figure 28-7 shows the syntax of the new HEAPPOOLS runtime options.

Figure 28-7 Syntax of the modified HEAPPOOLS option

HEAPPOOLS64 options
Table 28-5 lists the descriptions of all possible values of the HEAPPOOLS parameter.

Table 28-5 New options for HEAPPOOLS

Migration considerations
When an application linked with a CEEUOPT or CELQUOPT that specified ALIGN for the first
suboption of the HEAPPOOLS or HEAPPOOLS64 runtime option is executed on lower
releases, ALIGN is treated like ON. There is no toleration APAR associated with this
enhancement.

As mentioned, for AMODE 64 applications, heap pool cells are now always aligned on
quadword boundaries, which causes an increase in virtual storage usage from prior releases
for cell sizes that are not a multiple of 16.

28.5 z/OS UNIX support for ceebldtx utility

The ceebldtx utility creates several files from the message source file. It creates an
assembler source file, which can be assembled into an object (text) file and link-edited into a

HEAPOOLS64=((ALIGN | ON | OFF,............

Value Meaning

ON Specifies that Language Environment uses the Heap Pool Manager to
manage heap storage requests against the initial heap.

OFF Specifies that Language Environment does not use the Heap Pools
Manager.

ALIGN Specifies that Language Environment structures the storage for cells in a
heap pool so that a cell less than or equal to 248 bytes, or 240 bytes for
64-bit, does not cross a cache line. For cells larger than 248 bytes, two cells
never share a cache line.

Important: Using the ALIGN suboption might cause an increase in the amount of heap
storage used by an application. Examine the storage report and adjust storage tuning
when first using the ALIGN suboption.

For AMODE 64 applications, heap pool cells are now always aligned on quadword
boundaries. This will cause an increase in virtual storage usage from prior releases for cell
sizes that are not a multiple of 16.
Chapter 28. Language Environment 483

module in an MVS load library. When the name of the module is placed in a message module
table, the Language Environment message services can dynamically access the messages.

The ceebldtx utility optionally creates secondary input files, which contain declarations for the
condition tokens associated with each message in the message source file. When a program
uses the secondary input file, the condition tokens can then be used to reference the
messages from the message table. The :msgname. tag indicates the symbolic name of the
condition token. The syntax for calling the ceebldtx utility is shown in Figure 28-8. In prior
releases of z/OS, the CEEBLDTX only shipped as a CLIST.

Figure 28-8 Syntax of the ceebldtx utility

Where:

in_file The name of the file containing the message source.

out_file The name of the resulting assembler source file containing the
messages, inserts, and others items, suitable for input into the
High Level Assembler. An extension of .s is assumed if none is
present.

-C csect_name This option is used to explicitly specify the CSECT name. An
upper case version of the CSECT name will be used. By default,
the CSECT name is the output file base name.

-I secondary_file_name The -I (uppercase i) option provides the name of the secondary
input file generated for the language specified with the -l (lower
case L) option.

If no suffix is present in the secondary_file_name specified, the
extension will be .h for C, .fortran for FORTRAN, and .copy for
all others.

-P This option is used to save previous prologs, if files being
generated already exist in the directory and contain prologs. By
default, previous prologs are not reused.

-S This option is used to indicate sequence numbers should be
generated in the files produced. By default, no sequence
numbers are generated.

-c class The class option is used to specify the default value for
:msgclass in cases where the tag is not coded.

-d APOST | ' | QUOTE | " - This option is used to specify which
COBOL delimiter to use and is used in combination with the -l
(lower case L) COBOL option. By default, APOST is used as the
delimiter.

-l BAL | C | COBOL | FORTRAN | PL1 - The -l (lower case L)
option is used to specify the language to be used in generating a
secondary input file and is used in combination with the I
secondary_file_name option. The file will contain declarations for
the condition tokens associated with each message in the

ceebldtx

 [-C csect_name][-I secondary_file_name]
 [-P] [-S] [-c class] [-d APOST | ' | QUOTE | "]
 [-l BAL | C | COBOL | FORTRAN | PLI] [-s id]
 in_file out_file
484 z/OS Version 1 Release 9 Implementation

message source file. The language is accepted in lower case
and upper case. C370 is also supported.

-s id The id option is used to specify the default value for :msgsubid.
in cases where the tag is not coded.

28.6 CLER run-time option change support

The CICS transaction CLER run-time option allows you to display all the current Language
Environment run-time options for a region, and to also have the capability to modify a subset
of these options. The following run-time options can be modified with the CLER transaction:

� ALL31(ON|OFF)
� CBLPSHPOP(ON|OFF)
� CHECK(ON|OFF)
� INFOMSGFILTER(ON|OFF)
� RPTOPTS(ON|OFF)
� RPTSTG(ON|OFF)
� TERMTHDACT(QUIET|MSG|TRACE|DUMP|UAONLY|UATRACE| UADUMP|UAIMM)
� TRAP(ON|OFF)

Setting RPTOPTS(ON) or RPTSTG(ON) in a production environment can significantly
degrade performance. Also, if ALL31(OFF) is set in a production environment, the stack
location will be set to below the 16 MB line, which could cause the CICS region to abend due
to lack of storage. The LAST WHERE SET column of the Language Environment run-time
options report will contain CICS CLER Trans for those options that were set by CLER.

28.7 New and modified callable services

z/OS V1R8 provides new callable services for Language Environment applications. These
callable services can be invoked from applications generated with the following IBM compiler
products:

� IBM z/OS XL C/C++
� C/C++ for MVS/ESA™
� IBM SAA® AD/Cycle® C/370™
� Enterprise COBOL for z/OS
� Enterprise PL/I for z/OS
� IBM COBOL for OS/390 and VM
� IBM COBOL for MVS and VM
� IBM PL/I for MVS and VM

You can also invoke the Language Environment callable services from assembler programs
that use the CEEENTRY and associated macros.

Restriction: The ceebldtx utility only works with z/OS UNIX files. MVS data sets are not
applicable.

Important: CICS TS 3.1 and higher supports XPLINK programs in a CICS environment.
The CLER transaction does not affect the run-time options for these programs.
Chapter 28. Language Environment 485

CEE3MC2 callable service
The CEE3MC2 callable service is similar to the CEE3MCS callable service. The new service
provides the current currency symbol and the international currency symbol. The usage is
shown in Figure 28-9.

Figure 28-9 Format of the CEE3MC2 callable service

The CEE3MC2 callable service has the following call and return parameter:

country_code (input) This is a 2-character fixed-length string
representing one of the country codes found in
Table 28 in the z/OS Language Environment
Programming Reference, SA22-7562.
country_code is not case-sensitive. If no value
is specified, then the default country code, as
set by the COUNTRY run-time option or the
CEE3CTY callable service, is used.

currency_symbol (output) This is a 4-character fixed-length string
returned to the calling routine. It contains the
default currency symbol for the country
specified. The currency symbol is left-justified
and padded on the right with blanks, if
necessary.

international_currency_symbol (output) This a 3-character alphabetic fixed-length
string returned to the calling routine. It
contains the international currency symbol for
the country specified.

fc (output) This is a feedback code, optional in some
languages, that indicates the result of this
service.

The following Feedback Codes can result from this service:

CEE000 The service completed successfully.

CEE3C2 The country code country_code was invalid for CEE3MC2. The default
currency symbol currency_symbol was returned. No international currency
symbol was returned.

28.8 CEE3DLY and CEEDLYM callable services

The CEE5DLY functionality is currently a LE/VSE callable service. CEE5DLY enables a
LE-conforming program to suspend execution for a specified number of seconds. There is no
equivalent functionality in Language Environment on z/OS, causing portability concerns for
VSE applications using CEE5DLY. The existing code currently uses ILBOWAT0 (from a
pre-LE COBOL run-time library) routine, which requires an AMODE24 parameter below the
16 M line, leading to virtual constraint problems. Sites are currently required to develop and
maintain in-house assembler routines. It would be easier to have a similar callable service on

CEE3MC2 (country_code , currency_symbol , international_currency_symbol , fc)

Note: The default currency symbol for the US is $. The international currency symbol for
the US is USD.
486 z/OS Version 1 Release 9 Implementation

z/OS that would facilitate portability for VSE applications and eliminate the additional tasks of
creating and maintaining assembler routines. For more flexibility, a separate callable service,
CEEDLYM, is created for times lower than a second.

Both callable services put the active enclave to sleep for the given time. The CEE3DLY
callable service expects the time in seconds as the first parameter; see Figure 28-10.

Figure 28-10 Format of the CEE3DLY callable service

The CEE3DLY callable service expects the time in milliseconds as the first parameter; see
Figure 28-11.

Figure 28-11 Format of the CEE3DLYM callable service

28.9 AMODE 64 CELQPIPI service vector

Language Environment preinitialization (PreInit) is commonly used to enhance performance
for repeated invocations of an application or for a complex application where there are many
repetitive requests and where fast response is required. For instance, if an assembler routine
invokes either a number of Language Environment-conforming HLL routines or the same HLL
routine a number of times, the creation and termination of that HLL environment multiple
times is needlessly inefficient. A more efficient method is to create the HLL environment only
once for use by all invocations of the routine.

PreInit lets an application initialize an HLL environment once, perform multiple executions
using that environment, and then explicitly terminate the environment. Because the
environment is initialized only once (even if you perform multiple executions), you free up
system resources and allow for faster responses to your requests.

In the 64-bit environment, CELQPIPI provides the interface for preinitialized routines. Using
CELQPIPI, you can initialize an environment, invoke applications, terminate an environment,
and add an entry to the PreInit table. (The PreInit table contains the names and entry point
addresses of routines that can be executed in the preinitialized environment.)

In previous releases, when running in AMODE 31, the PREINIT LE facility could replace the
IBM-supplied LOAD, DELETE, GETSTOR, FREESTOR, EXCEPTRTN and MSGRTN
routines using the CELQPIPI interface.

AMODE 64 support
z/OS V1R9 provides support for running in AMODE 64, and that exploits the PREINIT LE
facility to replace the IBM-supplied LOAD and DELETE using the CELQPIPI interface if the
loaded modules are obtained from a non-hierarchical file system (HFS).

The AMODE 64 LOAD and DELETE routines can perform additional useful processing each
time Language Environment LOADs or DELETEs a non-HFS module (for example, logging,
caching, substitution, statistics, accounting, diagnostics, and so on).

This support is invoked using one assembler PreInit driver program that calls macro
CELQPIPI to start the PreInit interface:

Call CELQPIPI(init_xxx, ,service_rtns,)

CEE3DLY (seconds, fc)

CEEDLYM (milliseconds, fc)
Chapter 28. Language Environment 487

The previously-reserved third parameter for CELQPIPI can now optionally point to a service
routine vector (similar to AMODE 31 CEEPIPI calls).

To specify replacement LOAD and DELETE routines, the third parameter of the CELQPIPI
INIT_MAIN or INIT_SUB call must point to an AMODE 64 Service routine vector.

The layout of this service routine vector is shown in the Language Environment Programming
Guide for 64-bit Virtual Addressing Mode. In simplified terms, the layout is:

� 4 bytes of zeros

� Count of doublewords that follow in the vector

� Userword (passed through to the LOAD and DELETE routines)

� Pointer to AMODE 64 Function Descriptor for the LOAD replacement routine (or 0 = no
replacement)

� Pointer to AMODE 64 Function Descriptor for the DELETE replacement routine (or 0 = no
replacement)

� Five more doublewords of zeros (reserved) – optional, but must be present if the count
is 9

The LOAD and DELETE replacement routines get control in AMODE64 with the usual
register and parameter passing conventions. The stack to be used is usually the normal
Language Environment stack, but in some cases may be a special fixed-sized stack with
room for a 4096-byte DSA (dynamic storage area).

The LOAD and DELETE routines need to pass back output and return to Language
Environment. Either both or neither of the LOAD and DELETE routines must be replaced (it is
not possible to replace just LOAD or just DELETE).

28.10 AMODE 64 CEETBCK and CEEHGOTO

CEETBCK and CEEHGOTO services are available for AMODE 31 applications, and not to
AMODE 64 applications.

� This release changed the _far_jump() function to include the CEEHGOTO services in
AMODE 64 C runtime library. _far_jump() is already supported for XPLINK.

The function __far_jump() can be used in a signal catcher, exception handler, or debugger
to return control to the application.

� There is a new AMODE 64 only, C runtime library interface: _le_traceback() that is
equivalent to the CEETBCK callable services.

The function __le_traceback() can be used to generate a traceback instead of calling
ctrace() or cdump() when the user wants a different format or different location for the
traceback.

In prior releases, AMODE 64 PreInit applications may have gotten away with non-zero
contents in the reserved third parameter of CELQPIPI INIT_MAIN or INIT_SUB calls. Now,
this third parameter must be 0 or point to a valid service routine vector (similar to
AMODE 31).
488 z/OS Version 1 Release 9 Implementation

28.10.1 __far_jump() function

The __far_jump() interface performs a function similar to longjmp(). However, it does not
require a setjmp() to be performed previously. The information required to perform this
nonlocal goto is provided by the user in the __jumpinfo structure. This information includes
registers and signal mask.

The target address of the jump is not supplied separately. It is supplied as two of the register
values in the GPR set in the __jumpinfo structure: Register 4 for the target DSA address, and
Register 7 for the target code address.

The format is:

#include <edcwccwi.h>
void __far_jump (struct __jumpinfo * JumpInfo);

28.10.2 __le_traceback() function

The __le_traceback() function assists in tracing the call chain. It identifies the language,
program unit, entry point, current location, caller’s DSA, and other information from the
address of a DSA for a program unit. This is essential for creating meaningful traceback
messages.

The format is:

#include <__le_api.h>
void __le_traceback(int cmd, void* cmd_parms, _FEEDBACK *fc);

The _le_traceback() function uses a single structure and the arguments are:

int cmd The following __le_traceback() command is used:
__TRACEBACK_FIELDS information that can be used to create a
traceback message is returned in individual fields.

void* cmd_parms A pointer to a structure that contains additional command-specific
parameters. For the command __TRACEBACK_FIELDS, this
parameter must point to a __tf_parms_t.

_FEEDBACK* fc A 16-byte feedback code is returned in this parameter.

28.11 XPLINK enhancements

Extra performance linkage (XPLINK) is a call linkage between programs that has the potential
for a significant performance increase when used in an environment of frequent calls between
small functions or subprograms.

The objective of XPLINK is to significantly speed up the linkage for C and C++ routines by
using a downward-growing stack and by passing parameters in registers. It includes support
for reentrant and non-reentrant code, for calls to functions in DLLs, and compatibility with old
code.

With XPLINK, the linkage and parameter passing mechanisms for C and C++ are identical. If
you link to a C function from a C++ program, you should still specify extern C to avoid name
mangling.

The primary objective of XPLINK is to make subroutine calls as fast and efficient as possible
by removing all nonessential instructions from the main path.
Chapter 28. Language Environment 489

XPLINK has been improved to support new environments. z/OS V1R9 supports application
running in AMODE 31 using the XPLINK and with Library Routine Retention (LRR) in an IMS
environment.

IMS applications can now take advantage of XPLINK (with or without LRR) if required.
AMODE 31 XPLINK applications can take advantage of LRR (without IMS), if required.

The support is invoked by a non-LE-enabled assembler program, as shown in Figure 28-12.

Figure 28-12 CEELRR callable service

CEELRR ACTION=INIT,XPLINK=YES
490 z/OS Version 1 Release 9 Implementation

Appendix A. Metal option of XL C compiler

This appendix provides different cases of the Metal option of the XL C compiler that have
been tested.

� JCL procedure for CATACALG

� Example of using CATACALG

A

© Copyright IBM Corp. 2007. All rights reserved. 491

A.1 JCL procedure METACALG

Example A-1 shows a JCL procedure called METACALG that is used to run the Metal option.

Example: A-1 C-compile, assemble, link-edit,go

//METACALG PROC INFILE=, < INPUT ... REQUIRED
// ASMFILE=, < OUTPUT C ... REQUIRED
// CRUN=, < COMPILER RUNTIME OPTIONS
// CPARM=, < COMPILER OPTIONS
// CPARM2=, < COMPILER OPTIONS
// CPARM3=, < COMPILER OPTIONS
// LIBPRFX='CEE', < PREFIX FOR LIBRARY DSN
// LNGPRFX='CBC', < PREFIX FOR LANGUAGE DSN
// CLANG='EDCMSGE', < NOT USED IN THIS RELEASE. KEPT FOR COMPATIBILITY
// DCB80='(RECFM=FB,LRECL=80,BLKSIZE=3200)', <DCB FOR LRECL 80
// DCB3200='(RECFM=FB,LRECL=3200,BLKSIZE=12800)', <DCB FOR LRECL 3200
// TUNIT='SYSALLDA', < UNIT FOR TEMPORARY FILES
// TSPACE='(32000,(30,30))' < SIZE FOR TEMPORARY FILES
//*
//**
//*** METACALG
//*
//**
//* *
//* THIS PROCEDURE
//*
//* 1-COMPILES A C PROGRAM WITH z/OS XL C/C++ AND THE Metal OPTION
//* 2-RUNS THE HIGH LEVEL ASSEMBLER,
//* 3-LINK-EDITS THE NEWLY ASSEMBLED PROGRAM
//* 4-RUNS THE PROGRAM WHEN THE LINK-EDIT IS SUCCESSFULLY ACCOMPLISHED.
//*
//*
//*---
//* C COMPILE STEP:
//*---
//C EXEC PGM=CCNDRVR,REGION=144M,
// PARM=('&CRUN/Metal &CPARM &CPARM2 &CPARM3')
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&LNGPRFX..SCCNCMP,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DUMMY,DSN=&LNGPRFX..SCBC3MSG(&CLANG),DISP=SHR
//SYSIN DD DSNAME=&INFILE,DISP=SHR
//SYSLIB DD DSNAME=&LIBPRFX..SCEEH.H,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEEH.SYS.H,DISP=SHR
//SYSLIN DD DSNAME=&ASMFILE,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=&TUNIT.,SPACE=&TSPACE.,DCB=&DCB80
//SYSUT5 DD UNIT=&TUNIT.,SPACE=&TSPACE.,DCB=&DCB3200
//SYSUT6 DD UNIT=&TUNIT.,SPACE=&TSPACE.,DCB=&DCB3200
//SYSUT7 DD UNIT=&TUNIT.,SPACE=&TSPACE.,DCB=&DCB3200
//SYSUT8 DD UNIT=&TUNIT.,SPACE=&TSPACE.,DCB=&DCB3200
//SYSUT9 DD UNIT=&TUNIT.,SPACE=&TSPACE.,
492 z/OS Version 1 Release 9 Implementation

// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=&TUNIT.,SPACE=&TSPACE.,
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT16 DD UNIT=&TUNIT.,SPACE=&TSPACE.,
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT17 DD UNIT=&TUNIT.,SPACE=&TSPACE.,
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//*
//*---
//* ASSEMBLE STEP:
//*---
//A EXEC PGM=ASMA90,PARM=(OBJECT,NODECK),COND=(8,LT,C)
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,SPACE=(4096,(120,120),,,ROUND),UNIT=VIO,
// DCB=BUFNO=1
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD SYSOUT=B
//SYSLIN DD DSN=&&OBJ,SPACE=(3040,(40,40),,,ROUND),UNIT=VIO,
// DISP=(MOD,PASS),
// DCB=(BLKSIZE=3040,LRECL=80,RECFM=FBS,BUFNO=1)
//SYSIN DD DSNAME=&ASMFILE,DISP=SHR
//*
//*---
//* LINK-EDIT STEP:
//*---
//L EXEC PGM=HEWL,PARM='MAP,LET,LIST,NCAL',COND=(8,LT,A)
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN2,DISP=SHR
// DD DSNAME=&LNGPRFX..SCCNCMP,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
//SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(1,1,1)),
// DSN=&&GOSET(GO)
//SYSUT1 DD DSN=&&SYSUT1,SPACE=(1024,(120,120),,,ROUND),UNIT=VIO,
// DCB=BUFNO=1
//SYSPRINT DD SYSOUT=*
//*
//*---
//* GO STEP:
//*---
//G EXEC PGM=*.L.SYSLMOD,COND=((8,LT,C),(8,LT,L))

METACALG example
Example A-2 illustrates the JCL for using METACALG.

Example: A-2 JCL for using METACALG

//LAFITTEG JOB 'LAFITTE',MSGLEVEL=(1,1),NOTIFY=&SYSUID
/*JOBPARM SYSAFF=SC63
//**
//**
//Metal EXEC PROC=METACALG,
// INFILE='LAFITTE.ESSAIS.C(STRCOPY)',
// ASMFILE='LAFITTE.ESSAIS.ASM(STRCOPY)',
Appendix A. Metal option of XL C compiler 493

// CPARM='LSEARCH(''''LAFITTE.HDRS.+'''')',
// PARM.A='NOLIBMAC',
// PARM.L='MAP,LET,LIST,INFO,MODMAP(LOAD)'
//

Note: In procedure METACALG, there is a variable &ASMFILE for a dataset (and its
member) in which the assemble code generated by the C-compiler is set aside. It simply
permits you to examine the code generated but has no value by itself and can easily be
changed into a temporary file passed between the C-compile and assemble steps.
494 z/OS Version 1 Release 9 Implementation

Appendix B. System REXX for z/OS

This appendix contains a System REXX exec.

� WHOIAM REXX exec

B

© Copyright IBM Corp. 2007. All rights reserved. 495

B.1 REXX exec WHOIAM

Example B-1 is a System REXX exec that illustrates how to determine, from within the exec
itself, which kind of environment it is running into.

Example: B-1 WHOIAM

/* */
/* This is an example of the logic to develop */
/* in order to figure, from within an exec, */
/* whether it has been invoked */
/* from classical TSO environment (IKJJEFT01)*/
/* from Console thru F AXR command */
/* from AXREXX API interface */
/* */
/* Then Say it to the world */
/* */
/* J.-L. Lafitte*/
/* 05/22/2007 */
/* */
/* Do not go too far, without asking obvious question */

If AXREQTOKEN ^= 'AXREQTOKEN' Then Do;
 Say 'Invoked from TSO/E classical environment'
 Exit 0;
End;

/* Now we should be in the SYSTEM Rexx envrt */

MyName = 'WHOIAM';
MyCmd = 'F AXR,SYSREXX ST,D';

 Result = AXRCMD(MyCmd, OutputVar. ,10);

 If Result = 0 Then Do;

 CallerName = ' '

 Do LineNum = 1 to OutputVar.0 While(CallerName=' ');
 Parse var OutputVar.LineNum 'EXEC=' MyName Rest.1 ;
 Parse var Rest.1 'CJBN=' CallerName Rest.2 ;
 Parse var Rest.2 'TSO=' YesorNo Rest.3 ;

 If CallerName ^= ' ' Then Do;

 line2 =LineNum+1
 Parse var OutputVar.line2 'REQTOKEN=' MyToken Rest.9 ;

 If MyToken = AXRREQTOKEN Then Do ;

 If CallerName = 'AXR' Then Do;
 If YesorNo ^= 'Y' Then Do;
 Say 'There is a problem, a SYSREXX exec invoked '
 Say 'from Console, cannot be but TSO=YES'
 Exit 20;
496 z/OS Version 1 Release 9 Implementation

 End;
 Else Do;
 Say 'Invoked from Console with TSO=YES';
 Exit 0;
 End;
 End;
 Else Do;
 End;
 If YesorNo = 'Y' Then Do;
 Say 'Invoked thru API by ' CallerName ' with TSO=YES';
 Exit 0;
 End;
 Else Do;
 Say 'Invoked thru API by ' CallerName ' with TSO=NO';
 Exit 0;
 End;
 End;
 End;
 End;
 If CallerName = ' ' Then Do;
 MyRetcode = 24;
 Say 'Something wrong, couldnot find self'
 End;
 Else Do; /* CallerName not equ ' ' */
 MyRetcode = 28;
 say 'Something went wrong, should never be here'
 End;
 End; /* end of cmd result equ 0 */

 Else Do; /* cmd result not equ 0 */
 MyRetcode = 32;
 Say ' Command ' MyCmd ' did not go right';
 End;
 /* should come here ONLY */
Exit MyRetcode; /* when somethg went wrong */

Example B-2 illustrates a more system-oriented exec which finds its ASTE address from a
given JOBNAME.

Example: B-2 Locate the ASTE of ‘JOBNAME’

/* From a JobName */
/* Get Address of Primary Adress Space ASTE */
/* Get Address of Primary Adress Space ASTE */
/* Assign it to var OutAste@ var */
/* so it can be retrieved by an ASM pgm */
/* if such is the caller */
/* */
NUMERIC DIGITS 25
ARG InJobname
 MyCmd = 'D JOBS,' || Strip(InJobname);
 Result = AXRCMD(MyCmd, OutputVar. ,10);
 IF Result = 0 THEN
 DO;
 OutAste@ = ' '
 DO LineNum = 1 TO OutputVar.0 WHILE(OutASTE@=' ');
Appendix B. System REXX for z/OS 497

 PARSE var OutputVar.LineNum 'ASTE=' OutAste@
 END;
 IF OutAste@ = ' ' THEN
 DO;
 MyRetcode = 8;
 OutAste@ = 0;
 END;
 ELSE /* OutAste@ not equ ' ' */
 MyRetcode = 0;
 say 'ASTE <--' OutAste@
 END;
 ELSE /* result not equ 0 */
 DO;
 MyRetcode = 12;
 OutAste@ = 0;
 END;
EXIT MyRetcode;
498 z/OS Version 1 Release 9 Implementation

Appendix C. z/OS Communications Server

This appendix provides information related to z/OS Communications Server with z/OS V1R9.

� IPSEC policy configuration for SC70

� IPSEC policy configuration for SC65

� SC65 pbr configuration files

� SC70 pbr configuration files

� SC65 netstat -A command

� SC70 netstat -A command

� pasearch -R command

C

© Copyright IBM Corp. 2007. All rights reserved. 499

C.1 IPSEC policy configuration for SC70

Example: C-1 SC70 IPSEC policy configuration

IPSec Policy Agent Configuration file for:
Image: SC70
Stack: TCPIP

Created by the IBM Configuration Assistant for z/OS Communications Server
Version 1 Release 8
Date Created: Fri May 04 10:08:14 EDT 2007

Copyright = None

NOTE -- Generated IpGenericFilterAction Permit~LogNo
IpGenericFilterAction Permit~LogNo
{
 IpFilterAction Permit
 IpFilterLogging No
}

IpGenericFilterAction IpSec~LogNo
{
 IpFilterAction IpSec
 IpFilterLogging No
}

KeyExchangeOffer KEO~1
{
 HowToEncrypt 3DES
 HowToAuthMsgs SHA1
 HowToAuthPeers PresharedKey
 DHGroup Group1
 RefreshLifetimeProposed 480
 RefreshLifetimeAccepted 240 1440
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

IpDataOffer IPSec__Gold~R
{
 HowToEncap Transport
 HowToEncrypt 3DES
 HowToAuth ESP Hmac_Sha
 RefreshLifetimeProposed 240
 RefreshLifetimeAccepted 120 480
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

IpDataOffer IPSec__Gold~R~2
{
 HowToEncap Transport
500 z/OS Version 1 Release 9 Implementation

HowToEncrypt AES
 HowToAuth ESP Hmac_Sha
 RefreshLifetimeProposed 240
 RefreshLifetimeAccepted 120 480
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

NOTE -- Generated IpService IKE~Gen
IpService IKE~Gen
{
 Protocol UDP
 SourcePortRange 500
 DestinationPortRange 500
 Direction BiDirectional
 Routing Local
}

IpService All_other_traffic
{
 Protocol All
 Direction BiDirectional
 Routing Local
}

IpService All_other_traffic~3
{
 Protocol All
 Direction BiDirectional
 Routing Either
}

IpDynVpnAction IPSec__Gold
{
 Initiation Either
 VpnLife 1440
 Pfs None
 IpDataOfferRef IPSec__Gold~R
 IpDataOfferRef IPSec__Gold~R~2
}

Connectivity Rule 2 combines the following items:
Local data endpoint 2~ADR~1
Remote data endpoint 2~ADR~2
Topology HH
Requirement Map VPN7065
All_other_traffic => IPSec__Gold

IpAddr 2~ADR~1
{
 Addr 9.12.4.202
}

IpAddr 2~ADR~2
{
Appendix C. z/OS Communications Server 501

 Addr 9.12.4.48
}

LocalSecurityEndpoint 2~LSE~4
{
 Identity IpAddr 9.12.4.202
 LocationRef 2~ADR~1
}

RemoteSecurityEndpoint 2~RSE~3
{
 Identity IpAddr 9.12.4.48
 LocationRef 2~ADR~2
}

KeyExchangeRule 2~5
{
 LocalSecurityEndpointRef 2~LSE~4
 RemoteSecurityEndpointRef 2~RSE~3
 KeyExchangeActionRef 2
 SharedKey Ebcdic iked
}

KeyExchangeAction 2
{
 HowToInitiate Main
 HowToRespond Either
 KeyExchangeOfferRef KEO~1
 AllowNat No
}

NOTE -- Generated IpFilterRule 2~6
IpFilterRule 2~6
{
 IpSourceAddrRef 2~ADR~1
 IpDestAddrRef 2~ADR~2
 IpServiceRef IKE~Gen
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule 2~7
{
 IpSourceAddrRef 2~ADR~1
 IpDestAddrRef 2~ADR~2
 IpServiceRef All_other_traffic
 IpGenericFilterActionRef IpSec~LogNo
 IpDynVpnActionRef IPSec__Gold
}

Connectivity Rule 1 combines the following items:
Local data endpoint All4
Remote data endpoint All4
Topology None (Permit/Deny only)
Requirement Map Permit_All
All_other_traffic => Permit
502 z/OS Version 1 Release 9 Implementation

IpFilterRule 1~1
{
 IpSourceAddr All4
 IpDestAddr All4
 IpServiceRef All_other_traffic~3
 IpGenericFilterActionRef Permit~LogNo
}

KeyExchangePolicy
{
 AllowNat No
 KeyExchangeRuleRef 2~5
}

IpFilterPolicy
{
 PreDecap OFF
FilterLogging ON
 IpFilterLogImplicit No
 AllowOnDemand Yes
 IpFilterRuleRef 2~6
 IpFilterRuleRef 2~7
 IpFilterRuleRef 1~1
}

C.2 IPSEC policy configuration for SC65

Example: C-2 SC65 IPSEC policy configuration

IPSec Policy Agent Configuration file for:
Image: SC65
Stack: TCPIP

Created by the IBM Configuration Assistant for z/OS Communications Server
Version 1 Release 8
Date Created: Fri May 04 10:08:44 EDT 2007

Copyright = None

NOTE -- Generated IpGenericFilterAction Permit~LogNo
IpGenericFilterAction Permit~LogNo
{
 IpFilterAction Permit
 IpFilterLogging No
}

IpGenericFilterAction IpSec~LogNo
{
 IpFilterAction IpSec
Appendix C. z/OS Communications Server 503

 IpFilterLogging No
}
KeyExchangeOffer KEO~1
{
 HowToEncrypt 3DES
 HowToAuthMsgs SHA1
 HowToAuthPeers PresharedKey
 DHGroup Group1
 RefreshLifetimeProposed 480
 RefreshLifetimeAccepted 240 1440
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

IpDataOffer IPSec__Gold~R
{
 HowToEncap Transport
 HowToEncrypt 3DES
 HowToAuth ESP Hmac_Sha
 RefreshLifetimeProposed 240
 RefreshLifetimeAccepted 120 480
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

IpDataOffer IPSec__Gold~R~2
{
HowToEncap Transport
 HowToEncrypt AES
 HowToAuth ESP Hmac_Sha
 RefreshLifetimeProposed 240
 RefreshLifetimeAccepted 120 480
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

NOTE -- Generated IpService IKE~Gen
IpService IKE~Gen
{
 Protocol UDP
 SourcePortRange 500
 DestinationPortRange 500
 Direction BiDirectional
 Routing Local
}

IpService All_other_traffic
{
 Protocol All
 Direction BiDirectional
 Routing Local
}
IpService All_other_traffic~3
{
 Protocol All
504 z/OS Version 1 Release 9 Implementation

 Direction BiDirectional
 Routing Either
}

IpDynVpnAction IPSec__Gold
{
 Initiation Either
 VpnLife 1440
 Pfs None
 IpDataOfferRef IPSec__Gold~R
 IpDataOfferRef IPSec__Gold~R~2
}

Connectivity Rule 2 combines the following items:
Local data endpoint 2~ADR~1
Remote data endpoint 2~ADR~2
Topology HH
Requirement Map VPN6570
All_other_traffic => IPSec__Gold

IpAddr 2~ADR~1
{
Addr 9.12.4.48
}

IpAddr 2~ADR~2
{
 Addr 9.12.4.202
}

LocalSecurityEndpoint 2~LSE~4
{
 Identity IpAddr 9.12.4.48
 LocationRef 2~ADR~1
}

RemoteSecurityEndpoint 2~RSE~3
{
 Identity IpAddr 9.12.4.202
 LocationRef 2~ADR~2
}

KeyExchangeRule 2~5
{
 LocalSecurityEndpointRef 2~LSE~4
 RemoteSecurityEndpointRef 2~RSE~3
 KeyExchangeActionRef 2
 SharedKey Ebcdic iked
}

KeyExchangeAction 2
{
 HowToInitiate Main
 HowToRespond Either
 KeyExchangeOfferRef KEO~1
Appendix C. z/OS Communications Server 505

 AllowNat No
}

NOTE -- Generated IpFilterRule 2~6
IpFilterRule 2~6
{
 IpSourceAddrRef 2~ADR~1
 IpDestAddrRef 2~ADR~2
 IpServiceRef IKE~Gen
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule 2~7
{
 IpSourceAddrRef 2~ADR~1
 IpDestAddrRef 2~ADR~2
 IpServiceRef All_other_traffic
 IpGenericFilterActionRef IpSec~LogNo
 IpDynVpnActionRef IPSec__Gold
}

Connectivity Rule 0 combines the following items:
Local data endpoint All4
Remote data endpoint All4
Topology None (Permit/Deny only)
Requirement Map Permit_All
All_other_traffic => Permit

IpFilterRule 0~1
{
 IpSourceAddr All4
 IpDestAddr All4
 IpServiceRef All_other_traffic~3
 IpGenericFilterActionRef Permit~LogNo
}

KeyExchangePolicy
{
 AllowNat No
 KeyExchangeRuleRef 2~5
}

IpFilterPolicy
{
 PreDecap OFF
FilterLogging ON
 IpFilterLogImplicit No
 AllowOnDemand Yes
 IpFilterRuleRef 2~6
 IpFilterRuleRef 2~7
 IpFilterRuleRef 0~1
}
506 z/OS Version 1 Release 9 Implementation

C.3 SC65 pbr configuration files

Example: C-3 SC65 pbr configuration files

##
PBR Policy Agent Configuration file for:
Image: SC65
Stack: TCPIP
##
Created by the IBM Configuration Assistant for z/OS Communications Server
Version 1 Release 9
Backing Store = C:\Program Files\IBM\zCSConfigAssist\V1R8\files\demo
FTP History:
##
RoutingRule TO70
{
 IpSourceAddr 9.12.4.48
 IpDestAddr 9.12.4.202
TrafficDescriptorGroupRef TO70~
 Priority 500000
 RoutingActionRef TO70
}

Action for RoutingRule:TO70
RoutingAction TO70
{
 UseMainRouteTable Yes
 RouteTableRef 70HS
}

RouteTable 70HS
{
 Route 9.12.4.202 10.1.101.70 IQDIOLNK0A016541 MTU 1500 NoRepl
}

TrafficDescriptorGroup TO70~
{
 TrafficDescriptor
 {
 Protocol TCP
 SourcePortRange 0
 DestinationPortRange 0
 Jobname RODOLFI*
 }
}

C.4 SC70 pbr configuration files

Example: C-4 SC70 pbr configuration files

##
PBR Policy Agent Configuration file for:
Appendix C. z/OS Communications Server 507

Image: SC70
Stack: TCPIP
##
Created by the IBM Configuration Assistant for z/OS Communications Server
Version 1 Release 9
Backing Store = C:\Program Files\IBM\zCSConfigAssist\V1R8\files\demo
FTP History:
##
RoutingRule TO65
{
 IpSourceAddr 9.12.4.202
 IpDestAddr 9.12.4.48
 TrafficDescriptorGroupRef TO65~
 Priority 500000
 RoutingActionRef TO65
}

Action for RoutingRule:TO65
RoutingAction TO65
{
 UseMainRouteTable Yes
 RouteTableRef 65HS
}

RouteTable 65HS
{
 Route 9.12.4.48 10.1.101.65 IQDIOLNK0A016546 MTU 1500 NoRepl
}

TrafficDescriptorGroup TO65~
{
 TrafficDescriptor
 {
 Protocol TCP
 SourcePortRange 0
DestinationPortRange 0
 Jobname RODOLFI*
 }
}

C.5 SC65 netstat -A command

Example: C-5 SC65 netstat -A command

RODOLFI @ SC65:/SC65/tmp>netstat -A -P 1953
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 17:56:58
Client Name: RODOLFI3 Client Id: 000000C6
Local Socket: 9.12.4.48..1953 Foreign Socket: 0.0.0.0..0
 Last Touched: 15:16:14 State: Listen
 BytesIn: 0000000000 BytesOut: 0000000000
 SegmentsIn: 0000000000 SegmentsOut: 0000000000
 RcvNxt: 0000000000 SndNxt: 0000000000
508 z/OS Version 1 Release 9 Implementation

 ClientRcvNxt: 0000000000 ClientSndNxt: 0000000000
 InitRcvSeqNum: 0000000000 InitSndSeqNum: 0000000000
 CongestionWindow: 0000000000 SlowStartThreshold: 0000000000
 IncomingWindowNum: 0000000000 OutgoingWindowNum: 0000000000
 SndWl1: 0000000000 SndWl2: 0000000000
 SndWnd: 0000000000 MaxSndWnd: 0000000000
 SndUna: 0000000000 rtt_seq: 0000000000
 MaximumSegmentSize: 0000000536 DSField: 00
 Round-trip information:
 Smooth trip time: 0.000 SmoothTripVariance: 1500.000
 ReXmt: 0000000000 ReXmtCount: 0000000000
 DupACKs: 0000000000 RcvWnd: 0000032768
 SockOpt: 00 TcpTimer: 00
 TcpSig: 00 TcpSel: 00
 TcpDet: C0 TcpPol: 00
 QOSPolicyRuleName:
 RoutingPolicy: No
 ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384
 ConnectionsIn: 0000000001 ConnectionsDropped: 0000000000
CurrentBacklog: 0000000000 MaximumBacklog: 0000000010
 CurrentConnections: 0000000001 SEF: 100
 Quiesced: No

Client Name: RODOLFI3 Client Id: 000000CC
Local Socket: 9.12.4.48..1953 Foreign Socket: 9.12.4.202..1027
 Last Touched: 21:56:58 State: Establsh
 BytesIn: 2513414894 BytesOut: 0000000000
 SegmentsIn: 0196800828 SegmentsOut: 0068522197
 RcvNxt: 0265183782 SndNxt: 2045797254
 ClientRcvNxt: 0265183782 ClientSndNxt: 2045797254
 InitRcvSeqNum: 2046736183 InitSndSeqNum: 2045797253
 CongestionWindow: 0000005644 SlowStartThreshold: 0000065535
 IncomingWindowNum: 0265216550 OutgoingWindowNum: 2045830022
 SndWl1: 0265182383 SndWl2: 2045797254
 SndWnd: 0000032768 MaxSndWnd: 0000032768
 SndUna: 2045797254 rtt_seq: 2045797253
 MaximumSegmentSize: 0000001411 DSField: 00
 Round-trip information:
 Smooth trip time: 1.000 SmoothTripVariance: 1124.000
 ReXmt: 0000000000 ReXmtCount: 0000000000
 DupACKs: 0000015382 RcvWnd: 0000032768
 SockOpt: 00 TcpTimer: 00
 TcpSig: 14 TcpSel: 40
 TcpDet: E0 TcpPol: 00
 QOSPolicyRuleName:
RoutingPolicy: Yes
 RoutingTableName: 70hs
 RoutingRuleName: TO202
 ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384
 ReceiveDataQueued: 0000000000
 SendDataQueued: 0000000000

Client Name: RODOLFI4 Client Id: 000000CA
Local Socket: 9.12.4.48..1025 Foreign Socket: 9.12.4.202..1953
 Last Touched: 21:56:58 State: Establsh
Appendix C. z/OS Communications Server 509

 BytesIn: 0000000000 BytesOut: 0687437550
 SegmentsIn: 0062680271 SegmentsOut: 0184224483
 RcvNxt: 2046673459 SndNxt: 2733177595
 ClientRcvNxt: 2046673459 ClientSndNxt: 2733189645
 InitRcvSeqNum: 2046673458 InitSndSeqNum: 2045740044
 CongestionWindow: 0001237066 SlowStartThreshold: 0000016384
 IncomingWindowNum: 2046706227 OutgoingWindowNum: 2733177595
 SndWl1: 2046673459 SndWl2: 2733177595
 SndWnd: 0000000000 MaxSndWnd: 0000032768
 SndUna: 2733177595 rtt_seq: 2733176059
 MaximumSegmentSize: 0000001399 DSField: 00
 Round-trip information:
 Smooth trip time: 1.000 SmoothTripVariance: 0.000
 ReXmt: 0000000204 ReXmtCount: 0000000000
 DupACKs: 0000045256 RcvWnd: 0000032768
 SockOpt: 00 TcpTimer: 22
TcpSig: 10 TcpSel: C0
 TcpDet: E0 TcpPol: 02
 QOSPolicyRuleName:
 RoutingPolicy: Yes
 RoutingTableName: 70hs
 RoutingRuleName: TO202
 ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384
 ReceiveDataQueued: 0000000000
 SendDataQueued: 0000012050
 OldQDate: 05/16/2007 OldQTime: 21:56:58

C.6 SC70 netstat -A command

Example: C-6 SC70 netstat -A command

RODOLFI @ SC70:/u/rodolfi>netstat -A -P 1953
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 17:58:56
Client Name: RODOLFI3 Client Id: 000000BF
Local Socket: 9.12.4.202..1953 Foreign Socket: 0.0.0.0..0
 Last Touched: 15:15:47 State: Listen
 BytesIn: 0000000000 BytesOut: 0000000000
 SegmentsIn: 0000000000 SegmentsOut: 0000000000
 RcvNxt: 0000000000 SndNxt: 0000000000
 ClientRcvNxt: 0000000000 ClientSndNxt: 0000000000
 InitRcvSeqNum: 0000000000 InitSndSeqNum: 0000000000
 CongestionWindow: 0000000000 SlowStartThreshold: 0000000000
 IncomingWindowNum: 0000000000 OutgoingWindowNum: 0000000000
 SndWl1: 0000000000 SndWl2: 0000000000
 SndWnd: 0000000000 MaxSndWnd: 0000000000
 SndUna: 0000000000 rtt_seq: 0000000000
 MaximumSegmentSize: 0000000536 DSField: 00
 Round-trip information:
 Smooth trip time: 0.000 SmoothTripVariance: 1500.000
 ReXmt: 0000000000 ReXmtCount: 0000000000
 DupACKs: 0000000000 RcvWnd: 0000032768
510 z/OS Version 1 Release 9 Implementation

 SockOpt: 00 TcpTimer: 00
 TcpSig: 00 TcpSel: 00
 TcpDet: C0 TcpPol: 00
 QOSPolicyRuleName:
 RoutingPolicy: No
 ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384
 ConnectionsIn: 0000000001 ConnectionsDropped: 0000000000
CurrentBacklog: 0000000000 MaximumBacklog: 0000000010
 CurrentConnections: 0000000001 SEF: 100
 Quiesced: No

Client Name: RODOLFI3 Client Id: 000000C2
Local Socket: 9.12.4.202..1953 Foreign Socket: 9.12.4.48..1025
 Last Touched: 21:58:56 State: Establsh
 BytesIn: 1935416832 BytesOut: 0000000000
 SegmentsIn: 0185143649 SegmentsOut: 0063042031
 RcvNxt: 3981156877 SndNxt: 2046673459
 ClientRcvNxt: 3981156877 ClientSndNxt: 2046673459
 InitRcvSeqNum: 2045740044 InitSndSeqNum: 2046673458
 CongestionWindow: 0000005644 SlowStartThreshold: 0000065535
 IncomingWindowNum: 3981189645 OutgoingWindowNum: 2046706227
 SndWl1: 3981155772 SndWl2: 2046673459
 SndWnd: 0000032768 MaxSndWnd: 0000032768
 SndUna: 2046673459 rtt_seq: 2046673458
 MaximumSegmentSize: 0000001411 DSField: 00
 Round-trip information:
 Smooth trip time: 1.000 SmoothTripVariance: 1124.000
 ReXmt: 0000000000 ReXmtCount: 0000000000
 DupACKs: 0000017363 RcvWnd: 0000032768
 SockOpt: 00 TcpTimer: 00
 TcpSig: 14 TcpSel: 40
 TcpDet: E0 TcpPol: 00
 QOSPolicyRuleName:
RoutingPolicy: Yes
 RoutingTableName: 65hs
 RoutingRuleName: TO48
 ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384
 ReceiveDataQueued: 0000000000
 SendDataQueued: 0000000000

Client Name: RODOLFI4 Client Id: 000000C6
Local Socket: 9.12.4.202..1027 Foreign Socket: 9.12.4.48..1953
 Last Touched: 21:58:56 State: Establsh
 BytesIn: 0000000000 BytesOut: 3897220096
 SegmentsIn: 0068866782 SegmentsOut: 0197824762
 RcvNxt: 2045797254 SndNxt: 1648988984
 ClientRcvNxt: 2045797254 ClientSndNxt: 1648988984
 InitRcvSeqNum: 2045797253 InitSndSeqNum: 2046736183
 CongestionWindow: 0000344273 SlowStartThreshold: 0000016384
 IncomingWindowNum: 2045830022 OutgoingWindowNum: 1649021752
 SndWl1: 2045797254 SndWl2: 1648988984
 SndWnd: 0000032768 MaxSndWnd: 0000032768
 SndUna: 1648988984 rtt_seq: 1648972600
 MaximumSegmentSize: 0000001399 DSField: 00
 Round-trip information:
Appendix C. z/OS Communications Server 511

 Smooth trip time: 1.000 SmoothTripVariance: 0.000
 ReXmt: 0000000199 ReXmtCount: 0000000000
 DupACKs: 0000037131 RcvWnd: 0000032768
 SockOpt: 00 TcpTimer: 00
TcpSig: 10 TcpSel: C0
 TcpDet: E0 TcpPol: 02
 QOSPolicyRuleName:
 RoutingPolicy: Yes
 RoutingTableName: 65hs
 RoutingRuleName: TO48
 ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384
 ReceiveDataQueued: 0000000000
 SendDataQueued: 0000000000

C.7 pasearch -R command

Example: C-7 pasearch -R command

RODOLFI @ SC65:/SC65/tmp>pasearch -R -e * display polic rules and actions

TCP/IP pasearch CS V1R9 Image Name: TCPIP
 Date: 05/16/2007 Time: 18:22:33
 Routing Instance Id: 1179327310

policyRule: TO202
 Rule Type: Routing
 Version: 4 Status: Active
 Weight: 500000 ForLoadDist: False
 Priority: 500000 Sequence Actions: Don't Care
 No. Policy Action: 1
 policyAction: TO202
 ActionType: Routing
 Action Sequence: 0
 Time Periods:
 Day of Month Mask:
 First to Last: 1111111111111111111111111111111
 Last to First: 1111111111111111111111111111111
 Month of Yr Mask: 111111111111
 Day of Week Mask: 1111111 (Sunday - Saturday)
 Start Date Time: None
 End Date Time: None
 Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
 Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
 Routing Condition Summary: NegativeIndicator: Off
 IpSourceAddr Address:
 FromAddr: 9.12.4.48
 ToAddr: 9.12.4.48
 IpDestAddr Address:
 FromAddr: 9.12.4.202
 ToAddr: 9.12.4.202
512 z/OS Version 1 Release 9 Implementation

 TrafficDescriptor:
 Protocol: TCP (6)
 SourcePortFrom 0 SourcePortTo 0
 DestinationPortFrom 0 DestinationPortTo 0
 JobName RODOLFI* SecurityZone
 SecurityLabel

 Routing Action: TO202
 Version: 4 Status: Active
 UseMainRouteTable Yes
 RouteTable: 70hs

RODOLFI @ SC65:/SC65/tmp>pasearch -R -T * displau the route tables

TCP/IP pasearch CS V1R9 Image Name: TCPIP
 Date: 05/16/2007 Time: 18:24:29
 Routing Instance Id: 1179327310

 Route Table: 70hs
 Version: 1 Status: Active
 IgnorePathMtuUpdate No Multipath UseGlobal
 DynamicXCFRoutes No
 Route
 Destination:
 ipaddress 9.12.4.202
 First Hop:
 gateway_addr 10.1.101.70
 link_name IQDIOLNK0A016541
 MTU size 1500
 Replaceable No
 MaximumRetransmitTime 120.000
 MinimumRetransmitTime 0.500
 RoundTripGain 0.125
 VarianceGain 0.250
 VarianceMultiplier 2.000
 DelayAcks Yes
InstanceId: 1179327310
 LastPolicyChanged: Wed May 16 10:55:10 2007
Appendix C. z/OS Communications Server 513

514 z/OS Version 1 Release 9 Implementation

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 517.
Note that some of the documents referenced here may be available in softcopy only.

� z/OS Version 1 Release 2 Implementation, SG24-6235

� z/OS Version 1 Release 3 and 4 Implementation, SG24-6581

� z/OS Version 1 Release 5 Implementation, SG24-6326

� z/OS Version 1 Release 6 Implementation, SG24-6377

� z/OS Version 1 Release 7 Implementation, SG24-6755

� z/OS Version 1 Release 8 Implementation, SG24-7265

� Implementing REXX support in SDSF, SG24-7419

� z/OS Distributed File Service zSeries File System Implementation z/OS V1R7,
SG24-6580

� Communication Server TCP/IP Implementation, Volume 4: Policy-Based Network
Security, SG24-7169

� Sysplex eBusiness Security z/OS V1R7 Update, SG24-7150

Other publications

These publications are also relevant as further information sources:

� z/OS Planning for Installation, GA22-7504

� z/OS MVS Using the Subsystem Interface, SA22-7642

� z/OS MVS Setting up a Sysplex, SA22-7625

� z/OS MVS Planning: Operations, SA22-7601

� z/OS MVS System Messages, Volume 10 (IXC-IZP), SA22-7625

� z/OS MVS System Codes, SA22-7626

� z/OS MVS System Commands, SA22-7627

� z/OS MVS Installation Exits, SA22-7593

� z/OS MVS Programming: Workload Management Services, SA22-7619

� z/OS MVS Programming: Assembler Services Guide, SA22-7627

� z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608

� z/OS MVS Programming: Assembler Services Reference, Volume 2 (IAARR2V-XCRLX),
SA22-7607
© Copyright IBM Corp. 2007. All rights reserved. 515

� z/OS MVS Programming: MVS Authorized Assembler Services Reference, Volume 1
(ALESERV-DYNALLOC), SA22-7609

� z/OS MVS Programming: Authorized Assembler Services Reference, Volume 2
(EDTINFO-IXGWRITE), SA22-7610

� z/OS MVS Program Management: Advanced Facilities, SA22-7644

� z/OS Security Server RACF Callable Services, SA22-7691

� z/OS Security Server RACF Command Language Reference, SA22-7687

� z/OS Cryptographic Services Integrated Cryptographic Services Facility Writing PKCS
#11 Applications, SA23-2231

� z/OS Cryptographic Services System Secure Sockets Layer Programming, SC24-5901

� z/OS Cryptographic Services Integrated Cryptographic Service Facility System
Programmer's Guide, SA22-7520

� z/OS Cryptographic Services Integrated Cryptographic Service Facility Administrator’s
Guide, SA22-7521

� z/OS Cryptographic Services Integrated Cryptographic Service Facility Application
Programmer’s Guide, SA22-7522

� z/OS Communications Server: IP Configuration Reference, SC31-8776

� z/OS Communication Server: IP Configuration Guide, SC31-8775

� z/OS Communication Server: New Function Summary, GC31-8771

� z/OS Common Information Model User's Guide, SC33-7998

� z/OS Metal C Programming Guide and Reference, SA23-2225

� z/OS SDSF Operation and Customization, SA22-7670

� z/OS XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer,
GC09-4913

� z/OS Language Environment Programming Reference, SA22-7562

� eServer zSeries Common Information Model User's Guide, SC33-7998

� z/OS SDSF Operation and Customization, SA22-7670

� z/OS MVS Program Management: Advanced Facilities, SA22-7644

Online resources

These Web sites are also relevant as further information sources:

� The message flood automation function is accompanied by a User’s Guide which can be
found at the following link:

http://publibz.boulder.ibm.com/zoslib/pdf/mfaguide.pdf

� The CFSIZER web site to recalculate the size of CF structures in a CFLEVEL 15 Coupling
Facility is:

http://www.ibm.com/servers/eserver/zseries/cfsizer/

� Information on PKCS #11

http://www.rsa.com/rsalabs/node.asp?id=2133Description3

� You can access the ShopzSeries Web site at:

http://www.ibm.com/software/shopzseries
516 z/OS Version 1 Release 9 Implementation

� Examples from the SBLIM OpenSource project and can be downloaded from:

http://www.sblim.org

� CIM Metrics White Paper (DSP0141), which is available at the DMTF web page in the CIM
White Paper section at the following URL:

http://www.dmtf.org

� The URL for the DFSMSrmm wizard is:

http://www.ibm.com/servers/eserver/zseries/zos/wizards/dfsms/rmmv1r9/

� The Pegasus CIM Server 2.5.3 website:

http://www.openpegasus.org

� For more information on the zIIP configuration, see and perform a search on zIIPs:

http://www.ibm.com/support/techdocs

� A whitepaper is available at the following link called Capacity Planning for zIIP Assisted
IPSec which describe in details how to plan for zIIP capacity.

http://www.ibm.com/support/docview.wss?rs=852&uid=swg27009459

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 517

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

518 z/OS Version 1 Release 9 Implementation

Index

Symbols
$C Job command 356
$DSPL performance 352
$JCT 361
$JD DETAILS(STORAGE) 354
$JD HISTORY(STORAGE) 354
$SSPL command 352
$T TRACE 357
$TRACE facility 357
&SYSCLONE 421
*START,DC 363
__far_jump() 489
__iew_api.h 345
__le_traceback() 489
_UNIX03_SOURCE 158
_UNIX03_THREADS 158

Numerics
3592 Model E05 430
3-way audit 403

A
Abend 878 reduction 389
ABEND code 353
access bias 379
AD dsname 414
AddDS 433
ADDUSER 182
AES 195
aggrgrow option 287
ALIGN option

HEAPPOOLS 483
Alternate Library for REXX 19, 25
ALTUSER 182
APAR OA08688

REALLOCATE enhancement 49
APAR OA16731 363
APAR OA17055

coexistence CF duplexing 37
RMF and CF 40
XCF CF level 41

APAR OA17070
coexistence RMF 40

APAR OA17514
console message flood 7
message flood automation 106

APAR OA17685
coexistence CF maintenance mode 47

APAR OA17827 343
APAR OA18244

RMF SPE blocked workloads 133
APAR OA18531

IWMSRSRS enhancements 141
© Copyright IBM Corp. 2007. All rights reserved.
APAR OA20186 238
APAR OA20314

zNALC 34
ZNALxxxx LPAR name 34

APAR OW55574 362
APAR PK29028

LE coexistence 479
ARC1MIGR 389
archive libraries 347
ARCRPEXT 392
ARM 313
ARM element name

CFZ_SRV_ 323
ARTQSRV program 469
AS DSNAME 414
ASCII 176
ATRQSRV Batch Utility 468
ATRRRS Batch Support 468
ATRSRV interface 473
AT-TLS facilities

CIM server 313
Automatic Restart Manager

CIM 313
CIM Server 20

AUTOMOVE consistency 276
AV DSNAME 414
available spool records (ASR) 363
AXR address space 310
AXREXX

assembler macro interface 240
AXREXX cancel service 369
AXREXX macro service 239, 242
AXRPSTRT procedure 238
AXRxx parmlib membe 241

B
BACK 389
BACKOUT 469
Basic Access Methods (BAM) 376
best-fit allocation 383
Binder C/C++ 345
Binder C/C++ API 345
Binder C/C++ API DLL file 346
Binder C/C++ API header file 345
Binder C/C++ API side-deck file 346
Binder control statement 343, 347
Binder data set 344
Binder fast data access services 348
Binder module map toleration 343
Binder option 342–343
blocked workload

RMF support 133
BLWLINTHD

blocked workloads 132
 519

BLWLTRPCT
blocked workloads 132

bpxmtext utility 482
BPXPRMxx 433
BRIF 164
BRINGIN SYSEVENT 128
BROWSE 164
Buffer 437

C
CALLRTM 356
CANCEL 356
CANCEL SYSEVENT 128
CBROAMxx 385
CBROAMxx parmlib member 386
CBRSMR19 388
CBRXLCS 403
CCA 55
CD NEWDSNAME 414
CDS 406
CDSA 196
CDSB 389
CDSID parmlib option 407
CEE3MC2 callable service 486
CEE5DLY 486
ceebldtx utility 483
CEEDLYM 487
CEEDUMP option 478
CEEDUMP report 478
CEEHGOTO 488
CEELRR 490
CEETBCK 488
CELQPIPI 487
CELQPIPI interface 487
Certificate Authority (CA) 190
certificate revocation lists (CRLs) 191
CF duplexing 36
CFCC 36
CFCC multitasking enhancements 37
CHANGE 343
CHECKROUTINE 367
CIM 20, 312
CIM client application 314
CIM Client for Java 313
CIM client for Java API 319
CIM data instrumentation 318
CIM monitoring clients 20
CIM provider 315–316

DFSMSrmm 412
CIM security 320
CIM server

logging facility 313
CIM server runtime 319
CIM/XML over HTTP 314
cimconfig command 325

logLevel parameter 326
CIMSERV RACF profile 322
cimsub 319
cimsub command

CIM indications 326

CIM-XML over HTTP 314
CIM-XML over HTTP protocol 314
CLASSPATH environment variable 186
CLER run-time option 485
CLIST Enhancements 424
CNZZCMXT 113
CNZZCMXT command exit 123
CNZZCMXT command exit routine 114
CNZZMFxx

SYS1.SAMPLIB member 115
CNZZVXT1 or CNZZVXT2 110
Command Table Utility 178
COMMIT 469
COMMNDxx parmlib member

MSGFLD commands 123
Common Cryptographic Architecture 55
Common Data Security Architecture 183, 196
Common Information Model 20, 312
Common Information Model (CIM) 409
Communications Server

policy-based routing 13
COMPARE command 169
CONSOLxx parmlib member

INIT UEXIT(Y) 113
MPF keyword 110

CONTINUE 412
continue_information 426
CONTINUOUS 381
Continuous 382
Continuous Preferred 382
CONTINUOUS PREFERRED. 381
control facility control code

CFLEVEL 15 36
COPY command 169–170
Coupling Facility

maintenance mode 46
Coupling Facility log stream

SMF recording 79
CP Assist for Cryptographic Function (CPACF) 195
CPACF 195
CPOOL service

GRS latch support 103
CREATE 408
CREATE command 169, 171
CRL 192
Crypto Express2 (CE2) 202
cryptographic keys data set 55
Cryptographic Services Security Level 3 FMID 189
Cryptographic Services System SSL FMID 189
CRYPTOZ

new RACF class 56
CRYPTOZ resource class 55, 59
CSDID 406
Ctrace 436
CV DSNAME 414

D
D A,ZFS command 288
D CF command

CFLEVEL 15 40
520 z/OS Version 1 Release 9 Implementation

D IPLINFO command
LICENSE=zNALC 34

D LOGGER,ST,REC command 72
D MF,MSGRATE command 121
D OMVS,W command 287
daily statistics records (DSR) 390
DASDONLY log streams

SMF recording 7
DASD-only log streams

SMF recording 79
Data Facility Storage Management Subsystem

DFSMS 375
dataclass 430
DayChart 457
DB2 performance

GRS enhancements 100
DCBE 377
DDS 42
DEBUG mode 369
decimal floating-point 253
defined capacity 144
DELETERM 469
DES 195
DFHSMrmm

QUERY ACTIVE command 394
DFHSMrmm QUERY ACTIVE 394
DFP 253
DFSMShsm 388

REPORT command 392
DFSMSrmm 393
DIAGxx parmlib member

ISGERQA parameter 100
Dialog Tag Language (DTL) 179
DIGTCERT 185
DIGTNMAP 185
DIGTRING 185
Direct Access Storage Device (DASD) 388
Direct Optimized (DO) 379
Direct Weighted (DW) 380
Directory List Actions panel 167
disk 384
DISPLAY CF command 39
DISPLAY LOGGER command 72
DISPLAY MSGFLD command 123
DISPLAY PROG,EXIT command

GRS exits 101
Distinguished Name 198
Distributed Data Server 448
Distributed Management Task Force 312
DLL diagnostics 272
DMTF 312
DSTORE 399
DUMP 389
dump job (DJ) facility 362

E
Eclipse-based graphical user interface 21
edcmtext utility 482
EDG@CONT 427
EDG0237E 408

EDG3012I 427
EDG3025I 427
EDG3203I 427
EDG3360E 425
EDGGDSNM 419
EDGHSKP 398
EDGINERS 393
EDGRMMxx 420
EDGRMMxx parmlib member 420–421
EDGRRPTE 423, 429
EDGSPLCS 398
EDGSPLCS utility 404
EDGUTIL 398, 401
EDGUTIL message 408
EDIF 164
EDIT 164
Edit Entry Panel 164
EDIT macro commands 174
EInterval 371
ENF signal 65

cancel AXR 238
ENQ request

ISPF z/OS UNIX files 167
Enterprise Encrypted Format 2 (EEFMT2) 430
Enterprise Format 1 (EFMT1) 430
Enterprise Format 2 (EFMT2) 430
enumerateInstanceNames 411
EOV new volume extend 383
errno2 support 481
EXEC 367
ExecName 371
exit 31 361
exit 42 361
exit 45 361
EXPROC 398
EXPROC command 399
Extended OSE buffer numbers toleration 363
Extent Reduction 392
extern functions 255–256
EXTRDCTN 392

F
F AXR command 241
F DFRMM,M=xx 396
F OAM,DISPLAY command 387
F OAM,RESTART 385
F ZFS,ABORT command 288
F ZFS,HANGBREAK command 288
F ZFS,QUERY,THREADS command 287–288
FACILITY class 184
fdlibm math functions 482
FILEXFER 175
filters 357
FIXED=USER 377
FLD name 294
FMID 189
FMID HBB77SR

System REXX 25
System REXX with V1R8 238

FMID JDZ118E
 Index 521

DFSMSdfp English panels 25
FMID JPG290B

CIM clients 25
FORCE 356
FSRSTAT program 391
FSRTYPE 391
Functional Statistics Record (FSR) 390

G
GENASM option 255
GETFILE 443
Global Resource Serialization (GRS) 408
GLOBALCONFIG statement

zIIP IPSec function 202
GLOBALCONFIG ZIIP IPSECURITY 203
GPMSRVxx PARMLIB member

DDS settings 42
group capacity limit 144
group capacity limits 150
GRS complex 97
GRS latch function 103
GRSRNLxx parmlib member 408
gsk_attribute_set_callback 193
gsk_attribute_set_enum 192
GSK_CRL_SECURITY_LEVEL 192
gsk_reset_callback 193
gsk_validate_hostname 194
gsk_validate_server 194
GSKCMS_VALIDATE_HOSTNAME_CN 194
GSKCMS_VALIDATE_HOSTNAME_CN_ONLY 194
GSKCMS_VALIDATE_HOSTNAME_DNS 195
GSKCMS_VALIDATE_HOSTNAME_DNS_ONLY 195
gskkyman 57, 190
gskkyman command 57
GTTERM macro 16
gxlpInit 462
gxlpParse 462
gxlpTerminate 462

H
Hardware Configuration Manager 182
HCM 182
HCPT390 189
HEAPPOOLS runtime options 483
HiperSockets 228
HLL environment 487
host command environment

SDSF REXX 293
HSM DFSMSdss address spaces 390
HZSADDCK macro 368

I
IBM System z9

group capacity limit 144
IBM WebSphere Application Server 413
IBM WebSphere Developer Debugger for System z 21
IBM WebSphere Developer for System z 262
IBM-1074 185

IBMrmm_Control 410
IBMrmm_PolicyRule 410
IBMrmm_Product 410
IBMrmm_SearchOperands 411
IBMzOS_LogicalDisk

CIM 313
IBMzOS_LogicalDisk class 331
ICHPWX11 182
iconv() 22, 477
ICSF 195
ICSF installation options

TKDSN option 57
ICSF started procedure 59
IdenTrust 196
IEAOPTxx parmlib member

CPU management constants 132
PROJECTCPU 203

IEASYSxx parmlib member
LICENSE parameter 34

IEAVMXIT exit
message flood automation 108

IEAVMXIT installation exit 108
IEAVMXIT message exit

existing installed exit 111
IEC161I 379
IEFU29L

SMF log stream dump exit 91
IEFUSI exit

MEMLIMIT 348
IEWBIND 345
iewbndd.so 346
iewbndd.x 346
IEWBUFF 345
IFASMFDL

new SMF dump program 91
IFASMFDL utility

new SMF dump program 88
IKJTSOEV

dynamic TSO service 240
IKJTSOxx parmlib member

TRANSREC statement 442
IMPORT 347
INFO 343
initACEE 185
Initial Access Response Seconds (IARS) 384
INMLSIZE 441
INMX033I 443
INMX034I 441
installation wizard 422
Integrated Cryptographic Service Facility (ICSF) 195
Intelligent Resource Director 150
IntervalChart 457
invokeMethod() 411
IOEAGFMT utility 283

ALTER authority 284
IOEAGSLV utility 283

UPDATE authority 284
IPSEC 196
IPSec 202
IPSEC statement 204
522 z/OS Version 1 Release 9 Implementation

iQDIO links 226
IRD 150
IRRPHREX 183
IRRSDL00 183
IRRSDL64 183
ISFACT 300
ISFACT command 293
ISFCALLS command 293
ISFEXEC command 293–294
ISGNQXIT EQDQ exit 102
ISGNQXITFAST exit 102
ISHELL 164
ISPF function 164
IWM4SLI service 129
IWMWSYSQ service 143
IXCM2APU utility

create log streams 79
IXCMIAPU utility

LIST LOGSTREAM request 72

J
Java security API 186
JCL AMP keyword, MSG=SMBBIAS 379
JCPT391 189
JCPT39JCryptographic Services Japanese FMID 189
JCT 361
JES2 $TRACE facility 357
JES2 exit 361
JES2 exit 8 361
JES2 initialization statement 357
JES3 64k OSE buffers support 362
JES3 command 363
JES3 global 362
JES3 local 362
JESJOBS 354
JESSPOOL 354
JSec 186

K
K M,UEXIT command

Message Flood Automation 113
K M,UEXIT(Y) command

activate IEAVMXIT 122

L
L2DATACLASS 385
L2TAPEUNITNAME 385
Label Anomaly processing 432
Large format data sets 439
large format data sets 440
LDAP 186, 191, 198
LEDATA IPCS verbexit command 269
LF 177
LF command

realign ascii data 177
LibraryCenter 309
LIBSERV 404
LICENSE=ZNALC parameter 34

List Data Set Information (LISTDSI) 442
LISTCONTROL 421
Locale 372
Lock_Release 437
Lock_Request 437
Lock_Result 437
Locking 435
logical disk volumes

CIM 331
LOGINFO 469
Long Running Tasks 394
Long-term page fixing 377
LPAR LIC 145
LPAR Trend report 454
LPAR weights 145

M
maintenance mode 46
masks 417
media types 430
MEND(SMSTAPE) 403
message flood automation

SPE 106
message processing facility (MPF)

message flood processing 108
Message Rate Monitoring function 121
METAL 460
Metal C Runtime Library 25
Metal C runtime library 257
METAL option 254
MethodProvider2 411
MIGR 389
MIXC keyword 179
MLACTIVE 353, 355
MLNAMES 434
MODMAP 342
mount command 436
MOVE command 169, 172
MPFLSTxx parmlib member

CNZZCMXT 113
USEREXIT parameter 108

MSGFLDxx parmlib member
message flood automation 116
statement types 115

msys for Operations 24
MULTACC 376
multiple TCPIP stacks 432
Multitasking of utilities 398
MULTSDN 376, 378
MVS command 356
MVS JCL DSNAME 414

N
NALC 30
Name-Hiding 434
Network File System (NFS) 432
New Application License Charges 30
new SYSREXX support for V1R8 238
NFS 432
 Index 523

NFS Client 436
NFS client enabling utility 438
NFS control data set 434
NFS Server 436
NFS Server tasks 432
NFS V4 protocol 435–436
NFS v4 Protocol 435
Nopref 382
normal allocation 383
NOSECLEVEL 422

O
OAM Operator Commands 386
OAM storage management component (OSMC) 384
OAM Sublevel (OSL) 384
Object Access Method (OAM) 384
OBROWSE 164
ODLOCFL column 387
OEDIT 164
OMVS 164
OPENFILE 443
OpenPegasus CIM Server 2.5.3 413
OpenPegasus CIMOM 409
OpenPegasus CVS Repository 321
OPERLOG

System Logger 71
optical 384
Origin 372
OSE 362
OSREQ macro 384
OUTLIM operand 441
Output Scheduling Element (OSE) 362
Overview Report spreadsheet 457

P
PAGENT configuration 204
Password phrase 182
PDF editor 169
PDF installation-wide data set allocation exit 176
Pegasus CIM Server 412
Pegasus CIM Server 2.5.3 412, 517
Personal Data Set List panel 168
personal data set lists 168
PHRASE 182
PIMA 462
PKCS #11 54–55, 190
PKCS #11 tokens 54
PKCS #7 190
PKI Services 196
PKIX 196
Postprocessor I/O Queuing Activity Report 446
PreInit 487
PreInit driver program 487
PreInit environment 269
PRINTDS 442
PROFILE PREFIX 416
public 436
Public Key Infrastructure for X.509 196
public keys data set 55

public-key cryptography 191
PUTFILE 443

Q
Qualified Application

zNALC 30
QUERY ACTIVE command 395
quiesce the DFSMSrmm subsystem 397
quoted 417

R
R_datalib 183, 185
R_PKIServ 199
RACDCERT 183, 185
RACEXITS 183
RACF class

WBEM 319
RACF Data Labeling 434
RCVR 389
RDATALIB 184
REALLOCATE command 46
Record length 165
Record length field

ISPF panel 165
Redbooks Web site 517

Contact us xvii
REFACTD command

personal data set list 168
registration services

RRS 471
REJECT 420
REMOVINT 469
REPLACE 343
REPLACE command 169, 173
REPORT 17 423
Report Class Periods 454
report generator 419
REPORT17 429
RESET 177
Resource Measurement Facility 445
REST 389
restart DFSMSrmm 396
Return Priority (RP) 392
REXX 183, 291, 366
REXX EXECIO 443
REXX HZSMSGEN procedure 370
REXX on zSeries Library 19
REXX variables

SDSF support 293
REXXC procedure 370
REXXHLQ 367
REXXIN data set 238
REXXIN=YES/NO 367
REXXTIMELIMIT 367
REXXTSO=YES/NO 367
RFC 2246 193
RFC 2818 194
RMF Distributed Data Server 42

CIM client/server 314
524 z/OS Version 1 Release 9 Implementation

RMF enhancements for FICON 445
RMF metrics

CIM client/server 314
RMF Monitor III Data Portal 445
RMF PM Java client 448
RMF Spreadsheet Reporter 451
RMF Spreadsheet Reporter Enhancements 445
RMINFO 469
RMM CIM classes 409
RMM CIM provider 409
RMM CIM provider v1.9 413
RMM SUBCOMMANDS 414
RMM Web Service 428
RPCSEC_GSS Security 435

S
S/MIME 196
S0C4 353
S1E0 353
SAF or SAFEXP 438
SBLIM project 328
Scheduler Work Block Text Unit (SWBTU) 353
SCRT reporting period 147
SDBM 198
SDBM backend 186
SDSF 291
SDSF CK 371
SDSF display 390
SDSF source modules and macros 305
SearchVolume 429
SECLABEL 353, 355
Secure Sockets Layer 189
SEND command 355
Sequential Optimized (SO) 380
Sequential Weighted (SW) 380
SET MPF= command

message flood exit 113
SET MPF=xx command

activte message flood commands 122
SET SMF=XX command

SMF log streams 85
SETLOGR FORCE command 73
SETMF command 125
SETMF MONITOROFF command 121
SETMF MONITORON command 121
SETMF ON command

activate message flood 115
SETOAM statement 386
SETOAMxx keywords 386
SETROPTS 182
SETROPTS MLNAMES 435
SETROPTS NOMLNAMES 435
SETROPTS REFRESH 185
SFI 381
SHA-1 195
SHA-256 195
Shared parmlib support 420
slash (/) command 298
SMBVSP keyword 379
SMF dump program

IFASMFDL 91
SMF record 92

z/OS UNIX 5
SMF record type 72-3

blocked workloads 135
SMF record type 88 72
SMF type 70 record

group capacity limits 150
SMF type 89 record

IPL with zNALC 34
SMF type 99 record

group capacity data 150
SMFPRMxx parmlib member

LSNAME parameter 84
SMF recording 83

soft cap 144
soft shutdown 280
Sort capability 449
SOURCE 176
Special REXX variables 295
SSI 11 353
SSI 6 356
SSI 70 353
SSI 71 353
SSI 75 355
SSI 79 355
SSI 80 355
SSI 81 356
SSL 189, 196
SSRV

new trace for ENQ/RESERVE/DEQ 103
stacks and heaps 432
Standard 382
storage class (SC) 384
storage facility image 381
STORAGEGROUP 429
stringprep 436
striping allocation 383
Stunted volume processing 352
SUBLEVEL 387
subsystem interface (SSI) 352
SUPERUSER.FILESYS.PFSCTL profile 283
Sustained Data Rate (SDR) 384
SUSv3 156
SVC 99 176, 356
swapldb 434
swapmhdb 434
SWITCH SMF command

dumping log stream data 91
syntax of the addds 434
syntax of the freeds 434
syntax of the swap 434
SYS1.LINKLIB

IEAVMXIT exit 112
SYS1.MAN data sets 7
SYS1.PROCLIB

AXRPSTRT procedure 238
SYS1.SAMPLIB

Health Checker REXX execs 367
member CSFTKDS 57
 Index 525

SYS1.SAMPLIB(ERBWBEM1
RMF CIM client monitoring application 336

SYS1.SAXREXEC 370, 372
Health checker REXX execs 367

SYS1.SIEALNKE 57
SYSINFO 469
SYSLMOD 344
syslog daemon

CIM logging 326
Sysplex Distributor

WLM routing servcies 136
Sysplex wide reports 448
sysplex wide reports

RMF 448
SYSPLEXTKDS option

ICSF 62
SYSPLEXTKDS(YES,FAIL(xxx))

ICSF 62
SYSREXX 366
SYSSEQDSNTYPE 442
System Logger

SMF recording 7
system managed buffering 379
System Managed Buffering (SMB) 379
System REXX 25, 183, 310
System service 356
System SSL 183, 189
System SSL API 192
System SSL environment variable 192
System SSL runtime services 58
system-managed duplexing rebuild 36
SYSUSED 442
SYSZRMM MASTER.RESERVE 407

T
tape and DASD data sets

QSAM 377
tape configuration database (TCDB) 402
tape data sets

BSAM 377
tape sublevel 1 (TSL1) 384
tape sublevel 2 (TSL2) 384
TCBuffers 455
TCOverview 455
TCP/IP 189
TCSystems 455
TDES 195
tilde 164
TKDS 55, 57
TLS 189
TOKEN 300
token data set 55
TRACE 357
Traceback

LE dump 479
Traditional MSUs 33
Transport Layer Security 189
TRANSREC statement

OUTLIM operand 441
traversing 410

TrendChart 457
TS1120 Tape Drive 28

U
UEXIT(Y) parameter 113
Unicode conversion services 477
UNIXPRIV class 283
unquoted 417
UNREGISTER RM command 471
UNREGRM 469
UPDATE 408
URINFO 469
UTF8 185

V
VCINOUT 404
verbexit command 268
Verbose 372
VERIFY(SMSTAPE), MEND 403
VERIFY/MEND(VOL) 402
VIEW 164
View Entry Panel 164
VIrtual Private Network (VPN) IP Security (IPsec) 202
vital record specification (VRSEL) 418
VLPOOL 420
volume statistics records (VSR) 390
VPN 183, 196
VRSEL 399
VRSEL processing data set names 418

W
WARN/NOWARN

TSO TRANSMIT 441
WBEM 313
WBEM class 322, 326

RACF class for CIM 322
WHO command 293
WMINFO 469
Workload Activity 451
Workload Activity report 454
Workload License Charges 144
WOSE 363

X
X.509 190
XCF Activity 451
XCF Activity report 455
XCF Path performance 455
XCF Transport Class 455
XL C compiler 253

METAL option 253
xlc command 255
XML parser 460, 465
XML System Services 459–460, 465
XP-LINK 464
XPLINK enhancements 489
526 z/OS Version 1 Release 9 Implementation

Z
z/OS CIM Server v1.9 413
z/OS Cryptographic Services 196
z/OS NFS RPCSEC 432
z/OS RMF Distributed Data Server 42
z/OS Unicode Conversion Services 177, 185
z/OS UNIX Directory List Utility 164
z/OS XML parser 465
z/OS XML Toolkit 460
z/OS.e

planned withdrawal 30
z890 195
z9 BC 195
z9 EC 195
z990 195
zAAP 465

XML System Services 465
zAAP and zIIP 452
zfsadm define

dynamic grow 286
zNALC 30
 Index 527

528 z/OS Version 1 Release 9 Implementation

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

z/OS Version 1 Release 9 Im
plem

entation

z/OS Version 1 Release 9
Im

plem
entation

z/OS Version 1 Release 9
Im

plem
entation

z/OS Version 1 Release 9 Im
plem

entation

z/OS Version 1 Release 9
Im

plem
entation

z/OS Version 1 Release 9
Im

plem
entation

®

SG24-7427-00 ISBN 0738488607

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

z/OS Version 1 Release 9
Implementation

JES2, JES3, GRS, SMF,
WLM, z/OS UNIX, zFS

Health Checker, SDSF,
System REXX, Binder,
DFSMS

Message flood, XML,
CIM, z/OS base

This IBM Redbooks publication describes the functional
enhancements to IBM z/OS for Version 1 Release 9 (z/OS V1R9).
These enhancements help installations to install, tailor, migrate,
and configure z/OS V1R9.

IBM z/OS Version 1 Release 9 overview
Installation and migration to z/OS V1R9
Coupling Facility enhancements
ICSF support for PKCS #11
Allocation dynamic storage improvements
System Logger enhancements
SMF recording to log streams
Message Flood Automation
C/C ++ enhancements
Security enhancements
z/OS Communication Server
New faces of z/OS
System REXX for z/OS
z/OS XL C Metal option
z/OS UNIX System Services
SDSF enhancements
Program management enhancements
JES2 and JES3 enhancements
IBM Health Checker for z/OS
Large format data sets
GRS, WLM, ISPF, DFSMS, RMF, XML, and RRS enhancements
Language Environment

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. z/OS Version 1 Release 9
	1.1 z/OS V1R9 enhancements
	1.2 BCP miscellaneous enhancements
	1.3 z/OS support for IBM System z servers
	1.4 z/OS UNIX System Services
	1.5 z/OS Workload Manager
	1.6 Console message flood
	1.7 System Logger
	1.8 SMF use of System Logger
	1.9 Coupling Facility enhancements
	1.10 GRS 64-bit exploitation
	1.11 Sysplex failure management
	1.12 Program management binder
	1.13 XCF Couple Data Set
	1.14 Language Environment
	1.15 DFSMS enhancements
	1.16 z/OS Communications Server
	1.17 z/OS security
	1.18 Spool Display
	1.19 System REXX
	1.20 IBM Health Checker for z/OS
	1.21 Alternate Library for REXX
	1.22 RRS
	1.23 ISPF
	1.24 Common Information Model
	1.25 Metal C runtime library
	1.26 XML System Services
	1.27 z/OS dbx enhancements
	1.28 Unicode

	Chapter 2. Installation considerations
	2.1 Ordering z/OS V1R9
	2.1.1 Hardware requirements
	2.1.2 Export control features

	2.2 New base elements
	2.2.1 Alternate Library for REXX
	2.2.2 Metal C Runtime Library
	2.2.3 Elements changed in z/OS V1R9

	2.3 Functions withdrawn from z/OS V1R9
	2.4 Functions withdrawn in a future release
	2.4.1 Changes to driving system requirements

	2.5 Changed base elements and optional features
	2.6 Coexistence, fallback, and migration
	2.7 54-way support with the z9 EC
	2.8 New address spaces
	2.9 System z New Application License Charges (zNALC)
	2.9.1 zNALC support
	2.9.2 NALC users
	2.9.3 zNALC and SCRT and APAR OA20314

	Chapter 3. Coupling Facility enhancements
	3.1 CF duplexing performance enhancements
	3.1.1 CFLEVEL 15

	3.2 CF measurement enhancements
	3.2.1 RMF enhancements

	3.3 RMF Monitor III Data Portal for z/OS
	3.4 CF maintenance mode
	3.4.1 Migration and coexistence
	3.4.2 Using the CF maintenance mode

	Chapter 4. ICSF support for PKCS #11
	4.1 PKCS #11 overview
	4.2 z/OS ICSF overview
	4.3 ICSF: PKCS #11 support
	4.3.1 PKCS #11 integration into z/OS
	4.3.2 Updating your ICSF definition to support PKCS #11
	4.3.3 RACF and z/OS PKCS #11 token services
	4.3.4 Migration considerations

	4.4 Using PKCS11 token browser utility panels
	4.4.1 Running ICSF in a sysplex environment

	Chapter 5. Allocation dynamic storage improvements
	5.1 Overview
	5.2 Allocation improvements in z/OS V1R9

	Chapter 6. System Logger enhancements
	6.1 System Logger overview
	6.1.1 Log stream exploiters
	6.1.2 z/OS V1R8 improvements of log stream data sets recall

	6.2 z/OS V1R9 improvements of log stream data set recalls
	6.3 Cleanup of CF list entries for unconnected log streams
	6.4 System Logger publication updates

	Chapter 7. SMF recording to log streams
	7.1 SMF overview
	7.1.1 SMF and log streams with z/OS V1R9

	7.2 Installation of SMF log streams
	7.2.1 Defining SMF log streams
	7.2.2 Updating the CFRM policy for SMF CF structure logstream
	7.2.3 Updating the SMFPRMxx parmlib member
	7.2.4 SMFPRMxx parmlib member considerations
	7.2.5 Switching to log stream mode

	7.3 Dumping the SMF log stream data set
	7.3.1 Using the SWITCH command with log streams

	7.4 Migration considerations

	Chapter 8. GRS enhancements
	8.1 Global resource serialization overview
	8.1.1 Setting address space ENQ limits
	8.1.2 Contention notification system movement

	8.2 GRS storage constraint relief with z/OS V1R9
	8.2.1 Ensure that GRSCNFxx is used properly for GRS=NONE
	8.2.2 GRS exit routines in cross-memory mode
	8.2.3 ISGADMIN enhancement

	8.3 GRS performance enhancements with z/OS V1R9
	8.4 GRS debugging improvements

	Chapter 9. Message Flood Automation
	9.1 Message Flood Automation overview
	9.2 Message Flood Automation implementation
	9.2.1 Message flood problems
	9.2.2 MPF processing
	9.2.3 MPF processing exit

	9.3 Installing Message Flood Automation
	9.3.1 Message Flood Automation exits
	9.3.2 Loading and activating

	9.4 Customization and tuning
	9.4.1 Providing a MSGFLDxx parmlib member
	9.4.2 Types of message classes processed
	9.4.3 Message class controls
	9.4.4 Message Flood Automation guidelines
	9.4.5 Turning Message Flood Automation ON or OFF
	9.4.6 Displaying your policy

	9.5 Command summary

	Chapter 10. WLM enhancements
	10.1 Promote jobs which have been cancelled
	10.1.1 z/OS V1R9 enhancement
	10.1.2 Migration and coexistence considerations

	10.2 Start a minimum number of servers
	10.2.1 z/OS V1R9 enhancement
	10.2.2 Exploiters of the new service request

	10.3 WLM enhancements for blocked workloads
	10.3.1 Promote higher dispatch priority

	10.4 RMF enhancements for blocked workloads
	10.4.1 RMF CPU Activity report
	10.4.2 RMF Workload Activity report
	10.4.3 New SMF record types
	10.4.4 RMF Distributed Data Server

	10.5 Improved assist processor routing services
	10.5.1 Sysplex routing services IWMSRSRS improvements
	10.5.2 Sysplex routing services IWM4SRSC improvements
	10.5.3 IWMWSYSQ service
	10.5.4 Migration and coexistence considerations

	10.6 Group capacity limit
	10.6.1 Defined capacity review
	10.6.2 Group capacity definition rules
	10.6.3 Group capacity example
	10.6.4 Hardware and software for group capacity
	10.6.5 Group capacity limit example
	10.6.6 RMF and SMF updates to support group capacity limit
	10.6.7 Examples related to usage of group capacity limit

	Chapter 11. C/C ++ enhancements
	11.1 SUSv3 implementation in z/OS V1R9
	11.1.1 z/OS V1R9 and SUSv3
	11.1.2 Compiling an SUSv3 application
	11.1.3 Invoking Threads support
	11.1.4 Setting environment variables affects run-time behavior
	11.1.5 New APIs
	11.1.6 New Threading interfaces
	11.1.7 Modified APIs
	11.1.8 Migration and coexistence considerations

	Chapter 12. ISPF enhancements
	12.1 Edit and browse z/OS UNIX files
	12.1.1 ISPF enhancement in z/OS V1R9

	12.2 ISPF personal data set lists
	12.3 EDIT primary commands support
	12.4 EDIT macro command support
	12.5 ISPF services support
	12.6 PDF installation-wide data set allocation exit
	12.7 Support for editing ASCII data
	12.8 Mixed case in ISPF command tables

	Chapter 13. Security enhancements
	13.1 RACF enhancements
	13.1.1 Password phrase minimum length change
	13.1.2 Writable key ring functions
	13.1.3 UTF8 characters support in digital certificates
	13.1.4 REFRESH warning message after RACDCERT commands

	13.2 Java security API
	13.3 System SSL enhancements
	13.3.1 Introduction to the SSL protocol
	13.3.2 Certificate revocation lists (CRLs) granularity
	13.3.3 Rehandshake notification
	13.3.4 Host name validation
	13.3.5 Hardware-to-software switch notification

	13.4 PKI Services enhancements
	13.4.1 Automatic certificate renewal processing
	13.4.2 RACF-style distinguished name
	13.4.3 E-mail notification for administrators
	13.4.4 Longer validity period for certificates
	13.4.5 Query on expiring certificates

	Chapter 14. z/OS Communication Server
	14.1 zIIP-assisted IPSec
	14.1.1 Implementation of zIIP-assisted IPSEC
	14.1.2 Example of zIIP-assisted IPSec implementation

	14.2 Policy-based routing
	14.2.1 Policy-based routing implementation
	14.2.2 Policy-based routing implementation example

	Chapter 15. System REXX for z/OS
	15.1 Introduction to System REXX (SYSREXX)
	15.2 SYSREXX address space (AXR)
	15.2.1 SYSREXX from consoles
	15.2.2 AXREXX macro service

	15.3 Customizing System REXX
	15.4 Using System REXX
	15.5 Usage and migration considerations
	15.5.1 Writing REXX execs
	15.5.2 Using input and output files
	15.5.3 Other AXREXX parameters
	15.5.4 Arguments and variables within a REXX exec

	Chapter 16. z/OS XL C/C++ Metal option
	16.1 Metal option introduction
	16.1.1 XL C Metal compiler option

	16.2 XL C Metal option
	16.2.1 Metal option overview
	16.2.2 Using the Metal option
	16.2.3 Linkage conventions
	16.2.4 AR-mode and the Metal option
	16.2.5 Metal C runtime library

	16.3 Decimal floating point
	16.3.1 The need for decimal arithmetic
	16.3.2 Extended precision floating-point numbers
	16.3.3 New floating-point data types
	16.3.4 Decimal arithmetic context
	16.3.5 XL C/C++ support for decimal floating point data types
	16.3.6 XL C/C++ run-time library
	16.3.7 UNIX System Services dbx debugger

	16.4 dbx support of WebSphere remote debuggers
	16.5 Specialized hardware instructions support
	16.5.1 Available new built-in functions

	16.6 Migration considerations
	16.7 PreInit tracing
	16.7.1 Migration considerations
	16.7.2 PreInit tracing characteristics

	16.8 DLL diagnostics
	16.8.1 Language Environment IPCS support

	Chapter 17. z/OS UNIX System Services
	17.1 Automove consistency
	17.1.1 Problems with sysplex-aware file systems without the new support
	17.1.2 New automove enhancements
	17.1.3 Migration and coexistence considerations

	17.2 zFS small enhancements
	17.2.1 IOEAGFMT and IOEAGSLV authorization
	17.2.2 Concurrent log recovery
	17.2.3 Improved dynamic grow
	17.2.4 Improved hang detection
	17.2.5 Hang detection messages
	17.2.6 Analyzing hang conditions
	17.2.7 z/OS V1R9 enhancements

	Chapter 18. SDSF enhancements
	18.1 SDSF and the REXX programming language
	18.1.1 SDSF REXX and System REXX
	18.1.2 Authorization for SDSF and REXX

	18.2 Setting up the SDSF host command environment
	18.2.1 Issuing SDSF commands in a REXX program
	18.2.2 Special REXX variables

	18.3 Examples of using ISFEXEC
	18.3.1 The WHO and QUERY commands
	18.3.2 Issuing operator commands
	18.3.3 Issuing action characters
	18.3.4 Browsing job output
	18.3.5 Printing job output

	18.4 Executing REXX execs
	18.4.1 Diagnosing errors in an SDSF REXX exec

	18.5 SDSF migration considerations

	Chapter 19. New faces of z/OS
	19.1 Introduction to the new face of z/OS
	19.1.1 z/OS ease of use enhancements

	19.2 z/OS V1R9 and new faces of z/OS
	19.2.1 System REXX
	19.2.2 SDSF REXX
	19.2.3 Using REXX to write health check routines
	19.2.4 XL C Metal compiler option
	19.2.5 Common event adapter

	19.3 Common Information Model
	19.3.1 z/OS V1R9 enhancements for CIM
	19.3.2 CIM cross-platform management
	19.3.3 CIM components and dependencies

	19.4 CIM server overview
	19.4.1 CIM server support in z/OS V1R9

	19.5 CIM client-to-CIM server access
	19.6 CIM server runtime update and enhancements
	19.6.1 Automatic Restart Manager support
	19.6.2 SSL certificate-based authentication
	19.6.3 Logging facility changed to syslog daemon
	19.6.4 New command-line utility: cimsub

	19.7 CIM client API for Java
	19.8 Instrumentation in z/OS V1R9
	19.8.1 Required parmlib updates
	19.8.2 Instrumentation for logical disk volumes
	19.8.3 Instrumentation of batch jobs
	19.8.4 Instrumentation for a sysplex
	19.8.5 DFSMSrmm CIM provider
	19.8.6 RMF CIM monitoring

	19.9 Migration and coexistence considerations
	19.9.1 General migration considerations
	19.9.2 Cloning considerations

	Chapter 20. Program management enhancements
	20.1 New Binder options
	20.1.1 The MODMAP Binder option
	20.1.2 The INFO Binder option

	20.2 Enhanced Binder control statements
	20.3 SYSLMOD record format verification
	20.4 Binder C/C++ API
	20.5 Support for side deck definition files in archive files
	20.6 Binder fast data access enhancements

	Chapter 21. JES2 and JES3 enhancements
	21.1 JES2 enhancements
	21.2 SSI requests authorization enhancements
	21.2.1 SSI 11 - User destination validation/conversion service
	21.2.2 SSI 70 - Scheduler facilities function
	21.2.3 SSI 71 - JES job information services
	21.2.4 SSI 75 - Notify user message service call
	21.2.5 SSI 79 - SYSOUT application programming interface (SAPI)
	21.2.6 SSI 80 - Extended status function call
	21.2.7 SVC 99 - spool browse

	21.3 $C Job command enhancements
	21.4 $TRACE facility enhancements
	21.4.1 TRACE initialization statement and $T TRACE command
	21.4.2 INTRDR tracing

	21.5 Changes to JES2 exits
	21.5.1 $JCT eye catcher
	21.5.2 Exit 8 - User environment $CBIO
	21.5.3 Exit 31 - Allocation SSI
	21.5.4 Exit 42 and exit 45

	21.6 JES3 enhancements
	21.6.1 Relief of the OSE buffer number limit
	21.6.2 Coexistence considerations
	21.6.3 More efficient use of spool space

	Chapter 22. IBM Health Checker for z/OS
	22.1 System REXX check support
	22.2 Defining a REXX check
	22.2.1 REXX check structure
	22.2.2 DEBUG mode
	22.2.3 Scheduling a REXX check
	22.2.4 DELETE FORCE=YES
	22.2.5 Procedure to implement a REXX check

	22.3 Extended SDSF CK support
	22.4 New checks available with z/OS V1R9

	Chapter 23. DFSMS enhancements
	23.1 Basic Access Methods (BAM) performance
	23.1.1 Long-term page fixing for BSAM data buffers
	23.1.2 BSAM and QSAM support for MULTACC
	23.1.3 QSAM support for MULTSDN

	23.2 VSAM system managed buffering (SMB) enhancements
	23.2.1 SMB overview
	23.2.2 Installation considerations

	23.3 Multi-volume data set in the same storage facility image
	23.3.1 Storage facility image (SFI) overview
	23.3.2 DFSMS volume selection enhancement
	23.3.3 Storage Facility Image (SFI) attributes
	23.3.4 DFSMS volume selection with SFI attribute
	23.3.5 Migration considerations

	23.4 Object access method (OAM) enhancements
	23.4.1 Using OAM enhancements
	23.4.2 Miscellaneous enhancements
	23.4.3 Migration considerations

	23.5 DFSMShsm enhancements
	23.5.1 Abend 878 reduction
	23.5.2 Functional statistics record (FSR) improvements
	23.5.3 Return priority (RP) exit ARCRPEXT changes

	23.6 DFSMSrmm enhancements
	23.6.1 Task management support
	23.6.2 Multitasking of utilities
	23.6.3 Control data set (CDS) serialization
	23.6.4 Migration and coexistence considerations
	23.6.5 Common Information Model (CIM) provider
	23.6.6 JCL data set names
	23.6.7 Data set names in RMM subcommands
	23.6.8 Shared parmlib support
	23.6.9 TSO subcommands
	23.6.10 3592 Model E05 software support
	23.6.11 Migration and coexistence considerations

	23.7 Network File Systems (NFS) enhancements
	23.7.1 24-bit addressing relief
	23.7.2 Multi TCP/IP stack support
	23.7.3 Usage and invocation
	23.7.4 AddDS operator command
	23.7.5 RACF data labeling
	23.7.6 NFS v4 client support
	23.7.7 Client Attribute syntax
	23.7.8 Server Ctrace upgrade
	23.7.9 Terminal ID based restricted MVSLOGIN

	Chapter 24. Large format data sets
	24.1 Large format data set overview
	24.2 TSO/E and large format data sets
	24.3 TSO PRINTDS command
	24.4 REXX and CLIST LISTDSI function
	24.5 Enhanced I/O capability in TSO/E for CLIST and REXX
	24.6 Messages related to new support
	24.7 Migration and coexistence considerations

	Chapter 25. RMF enhancements
	25.1 RMF enhancements for FICON
	25.1.1 SMF record changes

	25.2 RMF Monitor III Data Portal
	25.2.1 Sort capability for full Monitor III reports

	25.3 SpreadSheet Reporter enhancements
	25.3.1 New RMF Spreadsheet options
	25.3.2 zAAP and zIIP support
	25.3.3 Report Class periods
	25.3.4 RMF XCF Activity Report
	25.3.5 Process user-defined overview records

	Chapter 26. XML enhancements
	26.1 XML System Services
	26.2 Performance improvements
	26.3 C/C++ APIs
	26.3.1 Sample project
	26.3.2 How to compile
	26.3.3 zAAP considerations

	Chapter 27. RRS enhancements
	27.1 ATRQSRV batch support
	27.1.1 ATRQSRV utility

	27.2 Resource manager unregister

	Chapter 28. Language Environment
	28.1 iconv() enhancements
	28.1.1 Migration actions

	28.2 CEEDUMP enhancement
	28.2.1 Enhanced traceback section

	28.3 edcmtext utility
	28.4 HEAPPOOLS performance improvement
	28.5 z/OS UNIX support for ceebldtx utility
	28.6 CLER run-time option change support
	28.7 New and modified callable services
	28.8 CEE3DLY and CEEDLYM callable services
	28.9 AMODE 64 CELQPIPI service vector
	28.10 AMODE 64 CEETBCK and CEEHGOTO
	28.10.1 __far_jump() function
	28.10.2 __le_traceback() function

	28.11 XPLINK enhancements

	Appendix A. Metal option of XL C compiler
	A.1 JCL procedure METACALG

	Appendix B. System REXX for z/OS
	B.1 REXX exec WHOIAM

	Appendix C. z/OS Communications Server
	C.1 IPSEC policy configuration for SC70
	C.2 IPSEC policy configuration for SC65
	C.3 SC65 pbr configuration files
	C.4 SC70 pbr configuration files
	C.5 SC65 netstat -A command
	C.6 SC70 netstat -A command
	C.7 pasearch -R command

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

