
Digital Equipment Corporation
Maynard, Massachusetts

DIGITAL Alpha VME 5/352 and
5/480 Single-Board Computers

Technical Reference

Order Number: EK–VME54–TM. A01

This manual discusses DIGITAL Alpha VME 5/352 and 5/480 single-board com-
puter (SBC) address mapping, VME interface, system interrupts, and system reg-
isters.

Revision/Update Information: This is a new manual.

First Printing, February 1998

The information in this document is subject to change without notice and should not be construed as a commitment by
Digital Equipment Corporation.

Digital Equipment Corporation assumes not responsibility for any errors that might appear in this document.

The software described in this document is furnished under license and may be used or copied only in accordance with the
terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227–7013.

FCC Notice:
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the
FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be
required to correct the interference at his own expense.

Warning!
This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may
be required to take adequate measures.

Achtung!
Dieses ist ein Gerät der Funkstörgrenzwertklasse A. In Wohnbereichen können bei Betrieb dieses Gerätes
Rundfunkstörungenauftreten, in welchen Fällen der Benutzer für entsprechende Gegenmaßnahmen verantwortlich ist.

Attention!
Ceci est un produit de Classe A. Dans un environment domestique, ce produit risque de créer des interférences
radioélectriques, il appartiendra alors à l'utilisateur de prendre les mesures spécifiques appropriées.

Canadian EMC Notice:
“This Class [A] digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.”

“Cet appareil numerique de la class [A] respecte toutes les exigences du Reglement sur le materiel broilleur du Canada.”

© Digital Equipment Corporation 1998. All rights reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation: DECchip, DECnet, DECpc, DIGITAL, OpenVMS,
ThinWire, VAX, and the DIGITAL logo.

The following are third-party trademarks:

DALLAS is a registered trademark of Dallas Systems Corporation.
DIGITAL UNIX and UNIX are registered trademarks licensed exclusively by X/Open Company Ltd.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a trademark of Intel Corporation.
VIC64 is a trademark of Cypress Semiconductor Corporation.
VxWorks is a registered trademark of Wind River Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

 Contents

 iii

1 Introduction

1.1 Functional Component Overview. 1-1
1.2 21164 Alpha Microprocessor . 1-3
1.3 21172 Core Logic Chipset . 1-4

1.3.1 Chipset Components . 1-4
1.3.2 Chipset Features . 1-5

1.4 Bcache Subsystem . 1-5
1.5 Memory Subsystem . 1-6
1.6 SROM . 1-7
1.7 Clock Interface . 1-7
1.8 PCI Interface. 1-7

1.8.1 Ethernet Controller . 1-7
1.8.2 SCSI Controller . 1-8
1.8.3 PMC I/O Companion Card . 1-8

1.9 Nbus Interface. 1-9
1.9.1 Interrupt Controllers . 1-9
1.9.2 Flash ROM . 1-10
1.9.3 TOY Clock . 1-10
1.9.4 Watchdog Timer . 1-11
1.9.5 NVRAM . 1-11
1.9.6 Interval Timer . 1-11
1.9.7 Keyboard and Mouse Controller . 1-12
1.9.8 Super I/O Chip. 1-12

1.10 VME Interface . 1-12
1.10.1 VIP Chip . 1-13
1.10.2 VIC64 and CY7C964 Chips . 1-13
1.10.3 Address Mapping and the Scatter-Gather Map . 1-14

2 System Address Mapping

2.1 Address Space Overview . 2-1
2.1.1 Cached and Noncacheable Regions. 2-1
2.1.2 Supported Address Spaces. 2-2
2.1.3 21164 Address Space. 2-5

2.2 PCI Dense Memory Space . 2-5
2.2.1 Characteristics . 2-6
2.2.2 Advantages Over Sparse Space . 2-6
2.2.3 Address Generation . 2-7
2.2.4 Flash ROM Address Mapping. 2-7
2.2.5 VME Address Mapping. 2-8
2.2.6 Gaining Access to PCI Dense Memory Space . 2-8

2.3 PCI Sparse Memory Space . 2-8

iv

2.3.1 Low-Order Address Bits . 2-9
2.3.2 High-Order Address Bits . 2-9
2.3.3 VME Address Mapping . 2-9
2.3.4 Gaining Access to PCI Sparse Memory Space. 2-9

2.4 PCI Sparse I/O Space. 2-10
2.4.1 High-Order Address Bits . 2-10
2.4.2 Address Decoding. 2-10
2.4.3 Address Generation . 2-10
2.4.4 Gaining Access to PCI Sparse I/O Space . 2-10

2.5 PCI Configuration Space . 2-11
2.5.1 Device Type Selection . 2-11
2.5.2 Address Generation . 2-12
2.5.3 CIA Chip Hardware Registers . 2-12
2.5.4 Gaining Access to PCI Configuration Space . 2-12

2.6 Byte/Word PCI Space . 2-13

3 VME Interface

3.1 Services Supported by the VME Interface. 3-1
3.2 VMEbus Address Mapping . 3-2

3.2.1 Address Mapping Overview . 3-2
3.2.2 Outbound Scatter-Gather Mapping. 3-4
3.2.3 Inbound Scatter-Gather Mapping . 3-7

3.3 VME Interface Initialization . 3-10
3.3.1 Configuring the PCI Interface to the VMEbus . 3-10
3.3.2 Programming Scatter-Gather RAM . 3-11
3.3.3 Configuring the VIC64 Chip . 3-12

3.4 Requesting Ownership of the VMEbus . 3-16
3.5 VME Data Transfers . 3-16

3.5.1 Single Mode Transfers . 3-16
3.5.2 Block Mode Transfers . 3-16
3.5.3 Setting Up for Block Mode Transfers. 3-16
3.5.4 Setting Up for Block Mode DMA Transfers . 3-16
3.5.5 VME Interprocessor Communication . 3-18

3.6 System Controller Operation . 3-19
3.6.1 Controlling VMEbus Arbitration . 3-19
3.6.2 Controlling the System Clock. 3-20
3.6.3 Controlling Timeout Timers . 3-20
3.6.4 Handling VMEbus Interrupts . 3-21

3.7 Byte Swapping . 3-22
3.7.1 DC7407 Byte Swapping . 3-22
3.7.2 VIC64 Byte Swapping . 3-23

4 System Interrupts

4.1 Overview of System Interrupts . 4-1
4.2 Interrupts Handled by the Xilinx Controller . 4-3
4.3 Interrupts Handled by the VIC64 Chip . 4-4

4.3.1 Local Device Interrupts . 4-5
4.3.2 VMEbus Interrupts . 4-5
4.3.3 Status/Error Interrupts . 4-5

4.4 Interrupts Handled by the SIO Chip . 4-6
4.4.1 Nonmaskable System Events . 4-6
4.4.2 CIA Interrupt . 4-7

 v

4.5 Module Resets . 4-7

5 System Registers

5.1 Gaining Access to System Registers . 5-1
5.2 Ethernet Controller Registers . 5-2

5.2.1 Ethernet Controller PCI Configuration Registers . 5-2
5.2.2 Ethernet Controller Control/Status Registers . 5-3
5.2.3 Ethernet ROM Control/Status Register . 5-3

5.3 SCSI Controller Registers. 5-4
5.3.1 SCSI Controller PCI Configuration Registers. 5-4
5.3.2 SCSI Controller Control/Status Registers . 5-5

5.4 SIO Chip and Nbus Registers . 5-8
5.4.1 SIO Chip PCI Configuration Space. 5-8
5.4.2 SIO CHIP Nonmaskable Interrupt Control/Status Register 5-13
5.4.3 Module Registers . 5-15
5.4.4 Super I/O Chip Registers . 5-25
5.4.5 TOY Clock, Watchdog Timer, and NVRAM Registers . 5-26
5.4.6 Interval Timer Registers . 5-31
5.4.7 Keyboard and Mouse Controller Registers . 5-34

5.5 Summary of VME Interface Registers . 5-35

Figures
1–1 Alpha VME 5/352 and 5/480 Functional Components 1-2
1–2 21164 Alpha Microprocessor Functional Block Diagram. 1-4
1–3 Level 3 Bcache Array . 1-6
1–4 PCI-to-VME Interface Components . 1-13
2–1 21164 Microprocessor Address Space . 2-1
2–2 21164 Address Space Configuration . 2-3
2–3 Flash ROM Layout/Addressing. 2-7
2–4 PCI Configuration Space Definition . 2-12
3–1 Mapping of VME_WINDOW_1 and VME_WINDOW_2. 3-3
3–2 Mapping Pages From PCI Address Space to VME Address Space 3-3
3–3 PCI-to-VMEbus Outbound Address Translation . 3-4
3–4 Mapping Pages from VME Address Space to PCI Address Space 3-7
3–5 VME Address Decoding . 3-8
3–6 VMEbus-to-PCI Inbound Address Translation for A32 3-8
3–7 Swap Modes . 3-23
3–8 Big Endian VME Byte Lane Formats . 3-24
4–1 Block Diagram of the Interrupt Logic . 4-2
5–1 Ethernet Controller PCI Configuration Registers . 5-2
5–2 Ethernet ROM Control/Status Register (CSR9) . 5-4
5–3 SCSI Controller PCI Configuration Registers . 5-5
5–4 SIO Configuration Block. 5-9
5–5 Nonmaskable Interrupt Control/Status Register . 5-13
5–6 Module Display Control Register . 5-16
5–7 Display Character Set . 5-16
5–8 Module Configuration Register . 5-17
5–9 Interrupt/Mask Register 1 . 5-18
5–10 Interrupt/Mask Register 2 . 5-18
5–11 Interrupt/Mask Register 3 . 5-18
5–12 Interrupt/Mask Register 4 . 5-18
5–13 Memory Configuration Registers 0-3 . 5-19
5–14 Memory Identification Register. 5-20

vi

5–15 Module Control Register 1 . 5-21
5–16 Bcache Configuration Register . 5-23
5–17 Reset Reason Registers . 5-24
5–18 TOY Clock Command Register . 5-27
5–19 Watchdog Timer Field in the Module Control Register 5-29
5–20 Watchdog Timer Fields in the TOY Clock Command Register. 5-29
5–21 Watchdog Timer Registers . 5-29
5–22 NVRAM Access . 5-30
5–23 82C54 Control/Status Register . 5-33
5–24 82C54 Timer Data Access . 5-34
5–25 Timer Interrupt Status Register. 5-34

Tables
2–1 21164 Physical Address Space Mappings . 2-4
3–1 Services Offered by the VME Interface . 3-1
3–2 VME Address Windows . 3-2
3–3 PCI Address in an Outbound Scatter-Gather Map Entry 3-4
3–4 VME Address in an Outbound Scatter-Gather Map Entry 3-5
3–5 Formation of Address Modifier Codes from Scatter-Gather Entry 3-6
3–6 VME Address in an Inbound Scatter-Gather Map Entry 3-9
3–7 PCI Address in an Inbound Scatter-Gather Map Entry 3-9
3–8 VME PCI Base Registers . 3-11
3–9 Swap Modes . 3-22
3–10 PCI BE# to Local A1,0 and SIZ1,0 Translation for Swap Modes 3-24
3–11 Local Bus A1,0 and SIZ1,0 to PCI BE# Translation 3-25
4–1 CPU Interrupt Assignments . 4-1
4–2 Mapping of Interrupt/Mask Registers to Interrupt Request Lines 4-3
4–3 VIC64 Chip Interrupt Ranking . 4-4
5–1 Ethernet Controller Control/Status Registers . 5-3
5–2 SCSI Controller Control/Status Registers . 5-5
5–3 SIO PCI-to-Nbus Bridge Operating Address Space 5-9
5–4 PCI Control Register. 5-12
5–5 Nonmaskable Interrupt Control/Status Register Bits 5-14
5–6 Module Registers . 5-15
5–7 Module Configuration Register . 5-17
5–8 Presence Detect Bits . 5-19
5–9 Presence Detect Bits 4-1 . 5-19
5–10 Presence Detect Bit 5 . 5-20
5–11 Presence Detect 7-6 . 5-20
5–12 Memory ID Bits . 5-21
5–13 Module Control Register 1 . 5-22
5–14 Bcache Size and Speed Decode . 5-23
5–15 Reset Reason Registers . 5-24
5–16 Super I/O Register Address Space Map . 5-25
5–17 TOY Clock, Watchdog Timer, and NVRAM Address Space 5-26
5–18 TOY Clock Timekeeping Registers . 5-26
5–19 TOY Clock Command Register . 5-27
5–20 Timers . 5-31
5–21 Timer Modes. 5-32
5–22 Timer Interface Registers . 5-32
5–23 Interval Timing Control/Status Register. 5-33
5–24 Keyboard and Mouse Controller Addresses . 5-35
5–25 VME_IF_BASE + . 5-35

 vii

Preface

Purpose of this Manual

This manual introduces the DIGITAL Alpha VME 5/352 and 5/480 single-board
computer (SBC) functional components and discusses technical details, including
address mapping, the VME interface, system interrupts, and system registers.

 Intended Audience

This manual is for OEM system integrators who are designing and building a
DIGITAL Alpha VME 5/352 or 5/480 SBC into specific application systems.
These systems may range in scope from a single Alpha VME 5/352 or 5/480 SBC
to highly complex multiprocessor systems that include a variety of hardware.

This manual assumes that readers have prerequisite knowledge and experience
with the following:

• System design

• VMEbus design and specifications

• System-level programming

Structure of this Manual

This manual consists of five chapters and an index organized as follows:

• Chapter 1, Introduction, describes the functional components associated with
the DIGITAL Alpha VME 5/352 and 5/480 SBCs.

• Chapter 2, Address Mapping, provides an address space overview and
describes the implementation PCI memory space.

• Chapter 3, VME Interface, discusses the VME interface, including VME
address mapping, initialization, and usage.

• Chapter 4, System Interrupts, provides an overview of system interrupts, iden-
tifies interrupts handled by the various controllers and chips, and module
resets.

• Chapter 5, System Registers, describes system registers associated with the
Ethernet controller, interval timer, module, SCSI controller, SIO chip, time-
of-year (TOY) clock, VME interface, and watchdog timer.

viii

Conventions

This section defines terminology, abbreviations, and other conventions used in
this manual.

Abbreviations

• Register access

The following list describes the register bit and field abbreviations:

• Binary multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values:

For example:

Addresses

Unless otherwise noted, addresses and offsets are hexadecimal values.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in
angle brackets (< >). Multiple contiguous bits are indicated by a pair of numbers
separated by a colon (:). For example, <9:7,5,2:0> specifies bits 9, 8, 7, 5, 2, 1,
and 0. Similarly, single bits are frequently indicated with angle brackets. For
example, <27> specifies bit 27.

Bit/Field Abbreviation Description

MBZ (must be zero) Bits and fields specified as MBZ must be zero.

RO (read only) Bits and fields specified as RO can be read but not writ-
ten.

RW (read/write) Bits and fields specified as RW can be read and written.

SBZ (should be zero) Bits and fields specified as SBZ should be zero.

WO (write only) Bits and fields specified as WO can be written but not
read

Abbreviation Binary Multiple

K 210 (1024)

M 220 (1,048,576)

G 230 (1,073,741,824)

2 KB = 2 kilobytes = 2 x 210 bytes

4 MB = 4 megabytes = 4 x 220 bytes

8 GB = 8 gigabytes = 8 x 230 bytes

 ix

Caution

Cautions indicate potential damage to equipment or loss of data.

Data Field Size

The term INTnn, where nn is one of 2, 4, 8, 16, 32, or 64, refers to a data field
of nn contiguous NATURALLY ALIGNED bytes. For example, INT4 refers to a
NATURALLY ALIGNED longword.

Data Units

The following data unit terminology is used throughout this manual.

Keyboard Keys

The following keyboard key conventions are used throughout this manual.

Examples

Prompts, input, and output in examples are shown in a monospaced font. Interac-
tive input is differentiated from prompts and system output with bold type. For
example:

>>> echo This is a test.[Return]
This is a test.

Ellipsis points indicate that a portion of an example is omitted.

Term Words Bytes Bits Other

Byte 1/2 1 8 −

Word 1 2 16 −

Longword 2 4 32 Longword

Quadword 4 8 64 2 Longwords

Octaword 8 16 128 2 Quadwords

Hexword 16 32 256 2 Octawords

Convention Example

Control key sequences are represented as Ctrl/x.
Press Ctrl while you simultaneously press the x key

Ctrl/C

In plain text, key names match the name on the actual
key.

Return key

In tables, key names match the name of the actual key and appear in
square brackets ([]).

[Return]

x

Names and Symbols

The following table lists typographical conventions used for names of various
items throughout this manual.

Note

Notes emphasize particularly important information.

Numbering

Numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x
indicates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A
are hexadecimal (see also Addresses). Otherwise, the base is indicated by a sub-
script; for example, 1002 is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and are
inclusive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3,
and 4.

Extents are specified by a pair of numbers in angle brackets (< >) separated by a
colon (:) and are inclusive.

Bit fields are often specified as extents. For example, bits <7:3> specifies bits 7,
6, 5, 4, and 3.

Register and Memory Figures

Register figures have bit and field position numbering starting at the right (low-
order) and increasing to the left (high-order).

Memory figures have addresses starting at the top and increasing toward the bot-
tom.

Items Example

Bits sysBus<32:2>

Commands boot command

Command arguments address argument

Command options -sb option

Environment variables AUTO_ACTION

Environment variable values HALT

Files and pathnames /usr/foo/bar

Pins LIRQ pin

Register symbols VIP_ICR register

Signals iogrant signal

Variables n, x, mydev

 xi

Syntax

The following syntax elements are used throughout this manual. Do not type the
syntax elements when entering information.

UNPREDICTABLE and UNDEFINED

This manual uses the terms UNPREDICTABLE and UNDEFINED. Their mean-
ings are different and must be carefully distinguished.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of
the processor. The processor continues to execute instructions in its normal man-
ner. In contrast, UNDEFINED operations can halt the processor or cause it to lose
information.

For More Information

For more information, refer to the following:

• Your supplier

• The DIGITAL OEM web site at http://www.digital.com/oem.

• The following DIGITAL Alpha VME 5/352 and 5/480 SBC documentation,
which is available on the DIGITAL OEM web site:

Element Example Description

[] [-file filename] The enclosed items are optional.

| - | + | = Choose one of two or more items. Select
one of the items unless the items are
optional.

{ } {- | + | =} You must specify one (and only one) of the
enclosed items.

() (a,b,c) You must specify the enclosed items
together.

... arg... You can repeat the preceding item one or
more times.

Document Order Number Description

DIGITAL Alpha VME 5/352
and 5/480 Board Computer
Family Data Sheet

Describes the DIGITAL Alpha 5/352 and 5/480
SBCs, highlighting product features and specifica-
tions.

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
Cover Letter

EK–VME54–CL Highlights important product information and
explains how to acquire the DIGITAL Alpha VME 5/
352 and 5/480 Single Board Computers User Man-
ual and DIGITAL Alpha VME 5/352 and 5/480 Sin-
gle Board Computers Technical Reference.

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
Warranty and Parts Information

EK–VME54–WI Explains the warranty of your DIGITAL Alpha
VME 5/352 or 5/480 SBC and provides parts infor-
mation for ordering.

xii

• The following DIGITAL documentation:

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
Installation Guide

EK–VME54–IG Explains how to install your DIGITAL Alpha VME
5/352 or 5/480 SBC. Use this guide if you need to
adjust jumper settings or remove and reinstall field
replaceable units (FRUs).

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
User Manual

EK–VME54–UM Introduces the product by discussing product speci-
fications and requirements and describing the mod-
ule and functional components. This manual also
explains how to use the console firmware and dis-
cusses diagnostics and troubleshooting.

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
Technical Reference (this manual)

EK–VME54–TM This manual discusses system address mapping, the
VME interface, system registers, and system inter-
rupts.

Document Order Number

Alpha Architecture Handbook EC–QD2KB–TE

Alpha Microprocessors SROM Mini-Debugger User’s
Guide

EC–QHUXB–TE

Answers to Common Questions about PALcode for
Alpha AXP Systems

EC–N0647–72

Digital Semiconductor Alpha 21164 Microprocessor
Product Brief

EC–QP97C–TE

Digital Semiconductor 21052 PCI–PCI Bridge Data
Sheet

EC–QHURB–TE

Digital Semiconductor 21164 Alpha Microprocessor
Data Sheet

EC–QP98B–TE

Digital Semiconductor 21172 Core Logic Chipset Prod-
uct Brief

EC–QUQHA–TE

Digital Semiconductor 21164 Alpha Microprocessor
Hardware Reference Manual

EC–QP99B–TE

Digital Semiconductor 21172 Core Logic Chipset Tech-
nical Reference Manual

EC–QUQJA–TE

DIGITAL UNIX Guide to Real-time Programming AA–PS33D–TE

DIGITAL UNIX: Writing PCI Bus Device Drivers AA–Q7RQC–TE

DIGITAL UNIX: Writing VMEbus Device Drivers AA–Q0R7G–TE

PALcode for Alpha Microprocessors System Design
Guide

EC–QFGLC–TE

Document Order Number Description

 xiii

• The following specifications are available through the indicated vendor or
organization:

Document Vendor or Organization

CY7C9640 Specification Cypress Semiconductor Corp.

Intel 82378ZB PCI-ISA Bridge Chip
Specification

Intel Corp.

PCI Local Bus Specification Rev 2.1 PCI Special Interest Group

Super I/O FDC37C6656T Specification Standard Microsystems Corp.

Symbios 53C810 SCSI Controller Spec-
ification

Symbios

TOY clock DS1386 Specification Dallas Semiconductor

VIC64 Specification Cypress Semiconductor Corp.

 Introduction 1–1

 1
Introduction

This chapter introduces the functional components associated with the DIGITAL
Alpha VME 5/352 and 5/480 SBCs. The chapter begins with an overview (Sec-
tion 1.1) and then briefly describes the following:

• 21164 Alpha microprocessor chip, Section 1.2

• 21172 core logic chipset, Section 1.3

• Bcache subsystem, Section 1.4

• Memory subsystem, Section 1.5

• SROM, Section 1.6

• Clock interface, Section 1.7

• PCI interface, Section 1.8

• Nbus interface, Section 1.9

• VME interface, Section 1.10

1.1 Functional Component Overview

Figure 1–1 identifies the functional components of the Alpha VME 5/352 and
5/480 SBCs. The Alpha VME 5/352 and 5/480 CPU modules are based on the
21164 Alpha microprocessor, and run at 352 MHz and 480 MHz, respectively.
The 21172 core logic chipset consists of the 21172–CA control, I/O interface, and
address (CIA) chip and four 21172–BA data switch (DSW) chips. Nine SRAMs
provide 2 MB of Bcache and two or four main memory DIMMs provide from 16
to 512 MB of EDO memory. The system clock uses a phase lock loop
(PLL)/buffer circuit to provide SYSCLK signals to 10 system components at 32
MHz.

The CPU module interfaces with the I/O module through a 32-bit PCI bus. As
Figure 1–1 shows, the I/O module provides a:

• PCI-to-VME bridge (DC7407 VIP and VIC64), which provides an interface
to the VMEbus

• PCI-to-SCSI controller (53C810), which provides an interface to SCSI
devices

• PCI-to-Ethernet controller (21040), which provides a network interface

• PCI-to-Nbus bridge (82378ZB), which provides access to the system’s 8-bit
Nbus and includes interrupt controller and interval timer support

• PCI–32 interface to an optional PMC I/O companion card

1–2 Introduction

The I/O module’s Nbus is a resource bus that is based on the ISA bus. The Nbus
handles the read and write cycles for the following:

• 4M of flash ROM

• Super I/O chip (FDC37C6656T) resources, which include console and paral-
lel ports and a diskette drive controller

• TOY clock, watchdog timer, and NVRAM chip (DS1386) resources

• Keyboard and mouse controller (82C42PE)

The I/O module interfaces to an optional PMC I/O companion card through the
32-bit PCI bus. The PMC I/O companion card uses a DEC 21052 PCI-to-PCI
bridge to provide access to two PMC option slots. This optional card also provides
keyboard, mouse, and diskette drive connectors.

Figure 1–1 Alpha VME 5/352 and 5/480 Functional Components

4 MB Flash

Nbus, 8 Bits

PCI Bus, 32 Bits

PMC
Option
Slot 0

ML014166

CPU Module

I/O Module

PMC I/O
Companion

Card

Memory Control

Memory Data, ECC,
256 or 128 Bits

21172-BA
Data Path
(4 chips)

21172-CA
Memory

Controller
and I/O

Interface

System Bus Address, Tag_Dirty, Tag_Ctl

2 MB
Bcache

Control

System Bus Data, ECC, Tag, 128 Bits

Control

PCI Bus, 64 Bits
SROM

Main
Memory
(2 or 4)

8 to 128 MB
DIMMs

352 or
480 MHz

CPU
Clock

21164
Micro-

processor

Phase
Lock Loop SYSCLK <9:0>

32 MHz
SYSCLK 10

DEC21052
PCI-to-PCI

Bridge

PMC
Option
Slot 2

32
Bits

32
Bits

VIP/VIC64
PCI-to-VME

Bridge

53C510
SCSI

Controller

DEC21040
Ethernet
Controller

VMEbus SCSI Ethernet

= Uses system clock (32 MHz)

DS1386

TOY Clock

Watchdog Timer

32 KB NVRAM

S10 Chip 82378ZB

Interrupt Controller

PCI-to-Nbus Bridge

Interval Timer

Super I/O
FDC37C6656T
Console and
Parallel Ports

82C42PE
Keyboard

and Mouse
Controller

Diskette
Console
Console

Parallel Port

Keyboard

Mouse

 Introduction 1–3

1.2 21164 Alpha Microprocessor

The Alpha VME 5/352 and 5/480 SBCs are based on the 21164 Alpha micropro-
cessor, which is a superscalar pipelined processor manufactured using 0.35 m
CMOS technology. It is packaged in a 499-pin IPGA carrier.

The 21164 microprocessor can issue four Alpha instructions in a single cycle,
thereby minimizing the average cycles per instruction (CPI). A number of low-
latency and/or high-throughput features in the instruction issue unit and the
onchip components of the memory subsystem further reduce the average CPI.

The 21164 microprocessor and associated PALcode implements IEEE single-pre-
cision and double-precision, VAX F_floating and G_floating data types, and sup-
ports longword (32-bit) and quadword (64-bit) integers. Byte (8-bit) and word
(16-bit) support is provided by byte-manipulation instructions. Limited hardware
support is provided for the VAX D_floating data type. Partial hardware implemen-
tation is provided for the architecturally optional FETCH and FETCH_M instruc-
tions.

Other features of the microprocessor include:

• An onchip, demand-paged memory-management unit with a translation buffer

• Two onchip, high-throughput pipelined floating-point units, capable of exe-
cuting both DIGITAL and IEEE floating-point data types

• An onchip, 8 KB virtual instruction cache (Icache) with 7-bit ASNs
(MAX_ASN=127

• An onchip, dual-read-ported, 8 KB data cache (Dcache)

• An onchip, write buffer with six 32-byte entries

• An onchip, 96 KB, 3-way, set-associative, write-back, second level (level 2)
mixed instruction and data cache

• A 128-bit data bus with onchip parity and error correction code (ECC) sup-
port

• Support for an external third level (level 3) synchronous 2 MB backup cache
(Bcache)

• An internal clock generator providing a high-speed clock used by the 21164
microprocessor, and a pair of programmable system clocks for use by the
CPU module

• Onchip performance counters to measure and analyze CPU and system per-
formance

• An Icache test interface to support chip and module level testing

• A 3.3 V external interface and 2.5 V core power for reduced power consump-
tion

Figure 1–2 shows the microprocessor’s functional units and caches in a functional
block diagram.

µ

1–4 Introduction

Figure 1–2 21164 Alpha Microprocessor Functional Block Diagram

For more detailed information on the microprocessor, see the Digital Semiconduc-
tor 21164 Alpha Microprocessor Hardware Reference Manual.

1.3 21172 Core Logic Chipset

The DIGITAL 21172 core logic chipset supports the 21164 Alpha microprocessor
in high-performance uniprocessor systems. The chipset includes an interface to
the 64-bit peripheral component interconnect (PCI) bus, and associated control
and data paths for the 21164 microprocessor chip, memory, and level 3 Bcache.

Sections 1.3.1 and 1.3.2 discuss the chipset components and features. For more
detailed information on the 21172 core logic chipset, see the Digital Semiconduc-
tor 21172 Core Logic Chipset Technical Reference Manual.

1.3.1 Chipset Components

The chipset consists of:

• A control, I/O interface, and address (CIA) chip − 21172-CA chip

The CIA chip is a 388-pin plastic ball grid array (PBGA) package that
provides control functions for main memory, a bridge to the 64-bit PCI
bus, and control functions for the DSW chips and part of the I/O data
path.

• Four data switch (DSW) chips − 21172-BA chips

The DSW chips are 208-pin plastic quad flat pack (PQFP) packages that
provide bidirectional data paths between the 21164 microprocessor, main
memory, Bcache, the CIA chip, and part of the I/O data path. The major-
ity of the DSW logic consists of data buffers and multiplexers. Using two
encoded control fields, the CIA chip directs data flow to and from the
DSW chips.

ML014168

Instruction
Cache
8 KB

Instruction
Fetch/

Decode
and

Branch
Unit

Integer

Integer

FPX

FPX

Merge
Logic

Data Cache
8 KB

Write-Through

Second-
Level
Cache
96 KB
Write-
Back

Bus
Interface

Unit

21164
Microprocessor

2 MB
Backup
Cache

128-Bit Data

40-Bit Address

 Introduction 1–5

1.3.2 Chipset Features

The chipset includes the majority of functions required to develop high perfor-
mance systems that require minimum discrete logic on the module. Features
include:

• Support for the 21164 Alpha microprocessor chip

• A 64-bit, ECC-protected data path (IOD bus) between the CIA and DSW
chips

• A 128-bit ECC-protected data path (system bus) between the 21164 and DSW
chips

• A 256-bit ECC-protected memory data path (memory bus) between the DSW
chips and memory

• A 32 MHz system bus interface

• Support for 2 MB of write-back, ECC-protected, level 3 Bcache using the
flush cache coherency protocol

• Support for 16 to 512 MB of EDO memory

• PCI bus support that includes 64-bit multiplexed address and data paths, 64-
bit PCI address handling, and scatter-gather mapping

• 32 MHz PCI clock frequency

• DSW chips that provide a victim buffer for read miss/victim transitions

1.4 Bcache Subsystem

The DIGITAL Alpha VME 5/352 and 5/480 SBCs provides 2 MB of direct
mapped Bcache. The Bcache is populated with nine 9 nanosecond, 64K-bit X 36-
bit synchronous static random access memories (SRAMs). Bcache features
include:

• A block size of 64 bytes

• System bus Bcache private read/write transfer rate of 700 MB/s

• ECC protection

• Use of the flush cache coherency protocol as described in the Digital Semi-
conductor 21164 Alpha Microprocessor Hardware Reference Manual

The 21164 Alpha microprocessor controls the level 3 Bcache array as shown in
Figure 1–3.

1–6 Introduction

Figure 1–3 Level 3 Bcache Array

1.5 Memory Subsystem

The Alpha VME 5/352 and 5/480 SBCs support two or four dynamic random
access memory (DRAM) DIMMs for up to a total of 512 MB of 60 nanosecond,
EDO main memory. The memory resides in a single bank. For a listing of valid
DIMM combinations, see the DIGITAL Alpha VME 5/353 and 5/480 Single-
Board Computers User Manual.

Quadword error checking and correction (ECC) is supported on the memory and
system buses. The 21172 core logic chipset controls and routes all CPU-to-mem-
ory caching and PCI direct memory access (DMA) operations. The DSW and CIA
components of the chipset provide a high-speed memory data path that has a
width of either 128 or 256 bits, depending on the mode in which the SBC is oper-
ating. When you use two DIMMs, the SBC operates in 128-bit mode; when you
use four DIMMs the SBC operates in 256-bit mode. The memory bus bandwidth
in 128-bit mode is 210 MB/s, while the bandwidth in 256-bit mode is 355 MB/s.

The memory subsystem optimizes its cache read miss with victim write cycle to
improve memory and system bus bandwidth. The optimizations are achieved by
partitioning the memory row and column addressing such that the read miss row
and victim row addresses match.

The cache read miss cycle begins when the 21164 Alpha microprocessor recog-
nizes a cache read miss with victim. When a read miss with victim is identified,
the microprocessor instructs the CIA chip to take the victim and then get the read
miss data. The CIA chip places the victim data in a DSW buffer while initiating a
memory read cycle (RAS–CAS–RAS). The CIA and DSW chips then supply the
read data to the microprocessor and cache then write the victim data to memory
(CAS–CAS). The resulting memory cycle — CAS – RAS (read 32 bytes) – RAS
(read 32 bytes) – RAS (write 32 bytes) – RAS (write 32 bytes) — completes in
360 ns or 355 MB/s.

ML013816

21164
Microprocessor

index_h<20:4>

un_data_ram_oe_h

un_data_ram_we_h

un_tag_ram_oe_h

un_tag_ram_we_h

index_h<20:6>

tag_data_h<38:30>

tag_data_h<29:20>

tag_data_par_h

tag_ctl_par_h

tag_valid_h

tag_dirty_h

data_h<127:0>

data_check_h<15:0>

Bcache
SRAM

Buffer
st_clk1_h st_clk1_<9:1>_h

idle_bc
(From CIA Chip)

Tag
Array

Data
Array

 Introduction 1–7

1.6 SROM

The SROM for the Alpha VME 5/352 and 5/480 SBCs contains 8 KB of code that
is loaded into the Alpha 21164 microprocessor’s Icache serially when the system
powers up or during a reset. Execution is passed to this code in PAL mode. SROM
initialization is explained in detail in the DIGITAL Alpha VME 5/352 and 5/480
Single-Board Computers User Manual.

The SROM is socketed to allow future firmware upgrades.

1.7 Clock Interface

The CPU clock circuit used by the Alpha VME 5/352 and 5/480 SBCs multiplies
a 16 MHz clock frequency by 22 or 30 and buffers the results, supplying the
Alpha 21164 microprocessor with a 352 MHz or 480 MHz clock speed. The
microprocessor divides the input value 352 or 480 by 11 or 15, respectively, to
generate the system clock.

The 21164 system clock signal (SYSCLK) drives a phase lock loop (PLL)/buffer
circuit. That circuit, in turn, generates 10 copies of the 32 MHz SYSCLK signal
for the 21172 core logic chipset components and all PCI devices.

The 21172 core logic chipset generates its own 1x and 2x clock signals on each
DSW and CIA chip.

1.8 PCI Interface

The PCI interface consists of a PCI bus that serves as the base of the I/O sub-
system, connecting all of the system’s PCI devices. The I/O subsystem consists of
the 21172 core logic CIA and DSW chips and the following PCI devices:

• Ethernet controller

• SCSI controller

• PMC I/O companion card

• Nbus interface

• VME interface

Sections 1.8.1 to 1.8.3 briefly discuss Ethernet, SCSI, and PCI Expansion Card
support. For introductions to the Nbus and VME interfaces, see Sections 1.9 and
1.10.

1.8.1 Ethernet Controller

The Ethernet controller for the Alpha VME 5/352 and 5/480 SBCs is based on the
DECchip 21040-AA. This chip keeps processor intervention in local area network
(LAN) control to a minimum. The chip behaves:

• As a bus slave when communicating with the PCI bus to gain access to con-
figuration and control/status registers

• As a bus master when communicating with memory

The Ethernet controller handles the following types of cycle termination:

1–8 Introduction

• Target-initiated retry

• Abort

• DEVSEL abort

Target-aborted terminations cause an interrupt.

The physical connection to the network is through the Ethernet 10BASE–T
twisted-pair connector located on the front panel of the CPU and I/O subassembly.

The Ethernet ID address for the Alpha VME 5/352 or 5/480 SBC assembly is
stored in a 20-pin socketed PLCC.

For more information on programming and using the DECchip 21040-AA, see the
DECchip 21040-AA Specification.

1.8.2 SCSI Controller

The SCSI controller for the Alpha VME 5/352 and 5/480 SBCs is based on the
Symbios 53C810 chip. This controller allows you to attach up to seven SCSI
devices to your SBC.

The primary breakout module (5424663) provides an interface to a standard SCSI
cable. This module brings the SCSI bus to a standard 50-pin SCSI IDC connector
pinning for direct connection to an unshielded SCSI cable. A 6-pin jumper block
on the module controls SCSI termination as follows:

• Enables SCSI termination when the jumper is set across pins 1 and 3

• Disables SCSI termination when the jumper is set across pins 3 and 5

The controller can affect high-level SCSI operations with very little intervention
from the processor. The controller accomplishes this through its low-level register
interface or by applying Symbios SCSI scripts.

Once the controller is configured in PCI address space, programming of the Sym-
bios 53C810 chip is compatible with the Symbios 53C720 chip.

For more information on programming the Symbios 53C720 chip, see the chip’s
programming guide.

1.8.3 PMC I/O Companion Card

The optional PMC I/O companion card provides a 21052 PCI-to-PCI bridge chip
and two sets of PMC connectors for adding one double-width or two single-width
PMC option modules. One of the PMC connector sets includes a third connector
that allows I/O access through the P2 connector.

PCI bus arbitration supports two PMC devices with up to four interrupt request
lines. The PCI clock is driven from the CPU and I/O subassembly at a frequency
of 32 MHz. The card connectors provide 3V and 5V supply voltages. Although
you can have mixed supply voltages between cards, the PCI bus signaling voltage
must be configured to 5V when the card is installed.

 Introduction 1–9

1.9 Nbus Interface

The Nbus interface is a simple nonmultiplexed resource bus that is based on the
ISA bus and supports 8-bit data transfers and 16-bit addressing. This bus provides
an interface to the PCI bus through an Intel System I/O chip (82378ZB). The
interface translates PCI I/O references to the Nbus into simple read and write
cycles for resources attached to the Nbus lines. Such resources include the sys-
tem’s:

• Interrupt controllers

• Flash ROM

• TOY clock

• Watchdog timer

• NVRAM

• Interval timer

• Keyboard and mouse controller

• Super I/O chip

1.9.1 Interrupt Controllers

Most interrupts on Alpha VME 5/352 and 5/480 SBCs are routed through the fol-
lowing interrupt controllers:

• Xilinx interrupt controller

• VIC64 chip system interrupt controller

• SIO chip (82378ZB) programmable interrupt controller

The Xilinx interrupt controller handles CPU interrupts. This controller consists of
four interrupt mask registers that generate CPU interrupt request signals.

The VIC64 chip interrupt controller handles VMEbus interrupts. It controls two
external/system interrupt sources: DC7407 status and DC7407 errors. Each of
these sources has an associated interrupt control register (ICR) that allows the
interrupt to be programmed with an interrupt priority level (IPL) or disabled.

Use of the VIC64 chip in Alpha VME 5/352 and 5/480 SBCs as an interrupt con-
troller is modified slightly by the operation of the DC7407, the SIO chip, and the
interrupt/mask registers.

The SIO chip interrupt controller delivers interrupts from the mouse, keyboard,
and Super I/O chip (FDC37C6656T) to the interrupt/mask register.

For more information about the interrupt controllers and the handling of system
interrupts, see Chapter 4.

1–10 Introduction

1.9.2 Flash ROM

The Alpha VME 5/352 and 5/480 SBCs have a total of 4 MB of electrically eras-
able and writable flash ROM. The flash ROM is segmented into 1 MB windows,
using bits <1:0> of a module control register. The system console firmware is pre-
written into the first 512 KB, providing you with 3.5 MB of additional space to
use for your application.

To protect the contents of the flash ROM from unauthorized or accidental updates,
you must close DIP Switch 2 on the I/O module before enabling write operations.
That switch must always be open unless you are updating the flash ROM. (The
state of the switch is stored in Flash Switch bit <3> of the module control regis-
ter.) Independent of the state of the switch, you can overwrite the setting in the
software to enable automatic updates.

1.9.3 TOY Clock

The Dallas Semiconductor DS1386 chip provides the SBC’s time-of-year (TOY)
clock functionality. This chip also supports the watchdog and SRAM functionality
as nonvolatile random access memory (NVRAM).

Note

The Alpha VME 5/352 and 5/480 SBCs do not support the DS1386 chip’s
alarm features.

The TOY clock maintains the system’s time: year, month, date, day, hour, minute,
second, 110th of a second, and 1/100th of a second. The clock corrects the date for
months with fewer than 31 days and for leap years. In addition, the clock can
maintain the time in 24-hour or 12-hour AM/PM format.

The square wave output of the chip generates a fixed 1024 Hz interval and time-
keeping accuracy is better than +/- minute/month at 25 C.

The clock maintains time in the absence of Vcc by using an internal lithium (less
than 0.5 grams) energy cell that has an active life of at least 10 years. In addition,
internally the clock protects against spurious accesses during power transitions.
Some applications may require the TOY clock and NVRAM to operate from an
external uninterruptable power supply (UPS). The Alpha VME 5/352 and 5/480
SBCs have an onboard switch (J3 switch 1) to allow a connection to the 5 V
standby connection (5VSTDBY) on the VMEbus. When Switch 1 is closed, the
VME 5VSTDBY is connected to the TOY supply through isolation diodes.

The chip is socketed to allow:

• Replacement when the internal power source is no longer functional

• Physical removal of the NVRAM

The TOY clock registers are updated every 0.01 seconds. You gain access to the
clock to examine or set the current time by using the console date command (see
the DIGITAL Alpha VME 5/352 and 5/480 Single-Board Computers User Man-
ual).

°

 Introduction 1–11

1.9.4 Watchdog Timer

The watchdog timer resides on the Dallas Semiconductor DS1386 chip. The
watchdog timer allows hardware to bring the system back to a known state when a
software failure occurs.

An application can initialize the watchdog timer with a value in the range 0.01 to
99.9 seconds. If left unaccessed, the timer decrements towards 0. If the timer
reaches 0, the watchdog timer halts the system (jump to Halt entry in firmware)
and then forces the module hardware to be reset (some 300 ms later). The applica-
tion can maintain the module by periodically accessing the watchdog timer regis-
ters. When you access these registers, the watchdog timer resets back to the
initialization value. Therefore, as long as the worst-case time between watchdog
timer access is less than the programmed timeout value, the module functions nor-
mally.

The Alpha VME 5/352 and 5/480 SBCs indicate the status of the on-board watch-
dog timer with the signal WD_STATUS_OC on pin C6 of the VME P2 connector.
This signal is driven low when an on-board watchdog timer expires. The device
that drives the signal is a 74LS05 open-collector inverter. This device is capable
of sinking the signal a maximum of 8 mA (IOL). You can pull up the
WD_STATUS_OC signal to the 5 V rail by using a 2 K resistor and setting the
primary breakout module jumper across pins 4 and 6 (default). To disconnect the
resistor from the 5 V rail, set the jumper across pins 2 and 4.

In addition to the hardware support for watchdog timer operation, you can config-
ure the firmware to dispatch to user code or continue with its default reset action
on watchdog timeout. The firmware can detect the expiration of the watchdog
timer during a reset operation by examining the hardware reset reason register.
The jump to the Halt code just before the reset enables the firmware to record a
snapshot of the processor’s state before the hardware reset is complete.

1.9.5 NVRAM

Within the TOY clock, the Alpha VME 5/352 and 5/480 SBCs offer just under 32
KB of on-board SRAM that is backed up by battery. The RAM is provided by the
Dallas Semiconductor DS1386 chip and is held nonvolatile by a built-in lithium
battery source.

The nonvolatile RAM (NVRAM) is accessible for read and write operations in
Nbus space. The DS1386 chip contains 32 KB read/write byte elements. The low-
est 14 of these bytes have special register functions for operation of the TOY
clock and watchdog timer. You can use the remaining bytes, 32754 bytes, as gen-
eral-purpose bytewide read/write RAM.

1.9.6 Interval Timer

The interval timer for the Alpha VME 5/352 and 5/480 SBCs is based on the
82C54 chip. On power up, the 82C54 chip is in an undefined state and must be ini-
tialized before being used. For information on timers, timer modes, or how to use
the chip, see Section 5.4.6.

Ω

1–12 Introduction

1.9.7 Keyboard and Mouse Controller

The keyboard and mouse controller is provided by an Intel 82C42PE single-chip
microcomputer. The controller is programmed to be IBM PC/AT compatible and
can drive the keyboard and PS/2 type mouse supported by DECpc systems. The
keyboard and mouse ports are female 6-pin mini-DIN, PS/2 type connectors. The
controller is programmed to allow either device to operate in either port.

1.9.8 Super I/O Chip

The FDC37C665GT Super I/O chip (not to be confused with the standard I/O, or
SIO, chip) supports serial-line port channels A and B (16550 UARTS) and a par-
allel port. It provides first-in-first-out (FIFO) data access for the serial ports and
EPP/ECP modes for the parallel port.

The Alpha VME 5/352 and 5/480 SBCs use channel A for the console. The firm-
ware configures this channel as an asynchronous line, using baud rate, parity, data
bit, and stop bit configuration data that you define and is stored in NVRAM. If
NVRAM does not contain valid data on power-up, the SBC configures channel A
with defaults of 9600 baud, no parity, eight bits, and one stop bit.

The system firmware does not commit or initialize channel B.

1.10 VME Interface

The PCI-to-VME interface for the Alpha VME 5/352 and 5/480 SBCs conforms
to the IEC 821, IEEE1014–1987, and D64 sections of IEEE1014 Rev.D (draft)
standards. The interface is implemented using the following components:

• VIP ASIC (DC7047B) chip

• The Cypress Semiconductor VIC64 VMEbus interface chipset

• Three CY7C964 bus interface chips

• Static scatter-gather RAM for address mapping

• Support logic implemented with programmable logic devices (PLDs)

The VIP/VIC64 chip combination accepts and generates VMEbus D08, D16,
D32, and D64 data transfers and protocols. The chip combination supports
addressing modes A16, A24, and A32 as a master or slave on the VMEbus.

The VIP chip uses information stored in the scatter-gather RAM to perform big-
to-little endian data translation (byte swapping) and address mapping when data
moves to and from the VMEbus.

Figure 1–4 shows the interface components and the address and data paths
between them.

 Introduction 1–13

Figure 1–4 PCI-to-VME Interface Components

1.10.1 VIP Chip

The VIP chip controls the 32-bit wide PCI bus. Its PCI configuration registers
allow it to function as the PCI bus target and initiator. The VIP chip:

• Functions as a PCI slave to all processor I/O read and write operations that
target the VIP registers, the CY7C964 chip registers, the scatter/gather RAM,
or VME memory space

• Responds to PCI interrupt acknowledge cycles when set up as the PCI inter-
rupt responder

• Functions as a PCI master in response to the VIC64 chip requesting data from
or sending data to PCI memory

• Performs address translation between the PCI bus and the VMEbus for trans-
fers to and from the VMEbus

1.10.2 VIC64 and CY7C964 Chips

The VIC64 and CY7C964 chips control the VMEbus. The VIC64 chip functions
as a VMEbus slave in response to VME addresses that match those set up by the
address base and address base mask registers. This chip functions as VMEbus
master:

• In response to the processor reading from and writing to VME memory (pro-
grammed I/O)

• To execute DMA transactions (master block transfers) set up by the processor
in the VIP/VIC64 interface

ML014167

VME_A[31:1]

CY7C964
A,D<31:24>
VME_A,D
<31:24>

VME_D[31:0]

CY7C964
A,D<23:16>
VME_A,D
<23:16>

CY7C964
A,D<15:8>
VME_A,D

<15:8>

VIC64

VME_A,D<7:0>

<D<31:0>

<A<31:0>

VIC CSRs

A<7:0>

D<7:0>

A<31:0> D<31:0> A<27:13> D<31:5>

Scatter/Gather
RAM

VIP
VIP Registers

PCI Bus

1–14 Introduction

For more information on the VIC64 and CY7C964 chips, see the Cypress Semi-
conductor VIC068 User’s Guide, VIC64 design notes, and CY7C964 User’s
Guide.

1.10.3 Address Mapping and the Scatter-Gather Map

The VIP chip translates addresses by using a mapping table in scatter-gather RAM
called the scatter-gather map. The scatter-gather map translates addresses for out-
bound and inbound VMEbus transactions.

For outbound transactions, the VIP chip maps a 512 MB region of PCI memory
space to the VMEbus. The outbound scatter-gather map translates a maximum of
2K naturally aligned 256 KB pages within that 512 MB region to 256 KB of natu-
rally aligned pages on the VMEbus (A32, A24, or A16). A PCI address is used as
an index into the scatter-gather map to give the corresponding VME address.

For inbound transactions, the VIP chip maps naturally aligned 8 KB regions of
VMEbus A32 and A24 address spaces to naturally aligned 8 KB regions of PCI
address space (memory or I/O). The inbound scatter-gather map consists of two
parts. One part translates up to 2K pages (8 KB) of VMEbus A24 address space to
8 KB pages of PCI address space. The other part maps up to 16K pages (8 KB) of
VMEbus A32 address space to 8 KB pages of PCI address space. An incoming
VME address is used as the index to select the PCI address.

The scatter-gather map may be accessed from the PCI bus (written to or read
from) under VIP control. Scatter-gather entries also contain information to control
inbound accesses and byte swapping.

The VIP chip contains a single entry scatter-gather cache and a set of registers.
The cache stores the last accessed outbound scatter-gather entry and its corre-
sponding scatter-gather address index. The registers provide mapping for inbound
and outbound transactions (one mapping in each direction).

For more information about VME interface address mapping, see Chapter 2.

 System Address Mapping 2–1

 2
System Address Mapping

The CIA chip of the 21172 core logic chip set manages system address mapping
for Alpha VME 5/352 and 5/480 SBCs. The chip maps 40-bit physical addresses
of the 21164 microprocessor to memory and I/O space addresses.

This chapter discusses DIGITAL Alpha VME 5/352 and 5/480 SBC support for
the 21172 core logic chipset. The chapter provides an address space overview
(Section 2.1) and describes:

• PCI dense memory space, Section 2.2

• PCI sparse memory space, Section 2.3

• PCI sparse I/O space, Section 2.4

• PCI configuration space, Section 2.5

• Byte/word PCI space, Section 2.6

 For details about 21172 core logic chipset address mapping, see the Digital Semi-
conductor 21172 Core Logic Chipset Technical Reference Manual.

2.1 Address Space Overview

Sections 2.1.1 through 2.1.3 provide an overview of Alpha VME 5/352 and 5/480
SBC address space by discussing:

• Cached and noncacheable regions, Section 2.1.1

• Supported address spaces, Section 2.1.2

• 21164 address space mappings, Section 2.1.3

2.1.1 Cached and Noncacheable Regions

The address space of the 21164 microprocessor is divided into two regions:
cached memory and noncacheable address space. Figure 2–1 shows these regions
as they are mapped with the 21172 core logic chipset support.

Figure 2–1 21164 Microprocessor Address Space

LJ04259A.AI

Cached Memory

Reserved

00.0000.0000

01.FFFF.FFFF
02.0000.0000

7F.FFFF.FFFF
80.0000.0000

8B.FFFF.FFFF
Noncacheable Address Space

2–2 System Address Mapping

The region of the address space that is accessible to the microprocessor at any
given time is determined by physical address bit addr<39>. When this bit is clear,
the microprocessor has access to cacheable memory (partly reserved). When the
bit is set, the microprocessor has access to noncacheable address space. The sys-
tem uses noncacheable address space for:

• PCI address space mapped to memory

• PCI I/O space

• PCI configuration information

• Special/interrupt acknowledge cycles

• CIA control/status registers (CSRs)

• Flash ROM and support logic registers

2.1.2 Supported Address Spaces

The CIA chip supports the following address spaces:

• The first 8 GB of cached memory space

• Noncacheable memory space mapped for I/O devices

The remainder of the cached memory space is reserved. The block size for the
cached memory space is 64-bytes. The CIA chip sends READ and FLUSH com-
mands to the microprocessor’s caches for direct-memory access (DMA) traffic to
the 8 GB of cached memory address space.

Within the noncacheable memory space, the Alpha VME 5/352 and 5/480 SBC
firmware implements the following address spaces:

Figure 2–2 shows the 21164 address space configuration as supported by the
Alpha VME 5/352 and 5/480 SBCs.

Address Space
Firmware
Implementation

PCI dense memory space 2 GB

PCI sparse memory space 128 MB

PCI sparse I/O space 16 MB

PCI configuration space 4 GB

 System Address Mapping 2–3

Figure 2–2 21164 Address Space Configuration

Cached Memory

Reserved

PCI Sparse Memory Space

PCI Sparse I/O Space

PCI Dense Memory Space

PCI Configuration Space

PCI Byte/Word Space

21164 Address Space

00.0000.0000

01.FFFF.FFFF

02.0000.0000

7F.FFFF.FFFF

80.0000.0000

85.7FFF.FFFF
85.8000.0000

85.FFFF.FFFF

86.0000.0000

86.FFFF.FFFF

87.0000.0000

87.FFFF.FFFF
88.0000.0000

8B.FFFF.FFFF

80.0010.0000

VIP Control/Status Registers

SCSI Controller -

Programmed by Firmware

Programmed by Firmware

Ethernet Controller -

VIP/VME Window -

PMC Option Slots -

85.8000.0000

85.8000.8000

85.8008.0000

Reserved for SIO

Interval Timer

Ethernet -

SCSI -

PMC Option -

86.0000.0000

86.0010.0000

86.7FFF.FFFF

Flash ROM

PCI Dense Memory Space -

DC7047 VIP Chip

DEChip 21040 Ethernet

Symbios 53810 SCSI

Intel 82378 SIO Chip

Reserved for CIA Chip

87.0000.0000

87.0000.00FF
87.0001.0000

87.0001.00FF
87.0002.0000

87.0002.00FF
87.0003.0000

87.2000.0000

87.7FFF.FFFF

Not used by Firmware

80.0000.0000

80.000F.FFF

Reserved

80.0020.0000

VIP/VME Scatter-Gather -
Programmed by Firmware

80.0022.0000

80.0022.0100

80.1800.0000

Programmed by Firmware

86.8000.0000

86.A000.0000

86.FFFF.FFFF

VIP/VME Window

DS1386
(TOY Clock, NVRAM)

Programmed by Firmware

Programmed by Firmware

Programmed By Firmware

86.000F.FFFF

87.0003.00FF

Programmed by Firmware

Programmed by Firmware

86.9FFF.FFFF

87.0004.0000

87.0004.00FF

PMC Module

85.8001.FFFF

2–4 System Address Mapping

Table 2–1 shows how the Alpha VME 5/352 and 5/480 SBC firmware implements
the 21164 physical address space mappings.

Table 2–1 21164 Physical Address Space Mappings

Physical Address Range Description
Firmware
Implementation

00.0000.0000 – 01.FFFF.FFFF Cached memory 8 GB

02.0000.0000 – 7F.FFFF.FFFF Reserved

80.0000.0000 – 85.7FFF.FFFF PCI sparse memory space 128 MB

80.0000.0000 – 80.000F.FFFF PCI sparse memory space – Reserved

80.0010.0000 PCI sparse memory space – VIP control/status regis-
ters

512 Bytes

80.0020.0000 PCI sparce memory space – VIP/VME Scatter-
Gather –
programmed by firmware

128 KB

80.0022.0000 PCI sparse memory space – SCSI controller –
programmed by firmware

80.0022.0100 PCI sparse memory space – Ethernet controller –
programmed by firmware

80.1800.0000 PCI sparse memory space – VIP/VME Window –
programmed by firmware

64 MB

PCI sparse memory space – PMC Option Slots –
programmed by firmware

85.8000.0000 – 85.FFFF.FFFF PCI sparse I/O space 16 MB

85.8000.0000 – 85.8001.FFFF PCI sparse I/O space – Reserved for SIO

85.8000.8000 PCI sparse I/O space – DS1386 (TOY Clock,
NVRAM)

85.8008.0000 PCI sparse I/O space – Interval timer

85.8001.0000 – 85.8100.0000 PCI sparse I/O space –
programmed by firmware

16 MB - 64 KB

86.0000.0000 – 86.FFFF.FFFF PCI dense memory space 2 GB

86.0000.0000 – 86.000F.FFFF PCI dense memory space – Flash ROM 1 MB

86.0010.0000 – 86.7FFF.FFFF PCI dense memory space – Not used by firmware

86.8000.0000 – 86.9FFF.FFFF PCI dense memory space – VIP/VME Window 512 MB

86.A000.0000 – 86.FFFF.FFFF PCI dense memory space – programmed by firm-
ware

1.5 GB

87.0000.0000 – 87.FFFF.FFFF PCI configuration space 4 GB

87.0000.0000 – 87.0000.00FF PCI configuration space – DC7407 VIP chip

87.0001.0000 – 87.0001.00FF PCI configuration space – DECchip 21040 Ethernet

87.0002.0000 – 87.0002.00FF PCI configuration space – Symbios 53810 SCSI

87.0003.0000 – 87.0003.00FF PCI configuration space – Intel 82378 SIO chip

 System Address Mapping 2–5

1Not used by the firmware, but available for use by operating systems.

Note

The results of gaining access to address space outside the physical address
ranges shown in Table 2–1 are undefined.

2.1.3 21164 Address Space

The 21164 microprocessor address space consists of 17 address regions that range
in size from 0.25 GB to 16 GB. Sections 2.2 through 2.6 describe the following
address regions:

• PCI dense memory space, Section 2.2

• PCI sparse memory space, Section 2.3

• PCI sparse I/O space, Section 2.4

• PCI configuration space, Section 2.5

• PCI byte/word space, Section 2.6

2.2 PCI Dense Memory Space

PCI dense memory space is typically used for PCI data buffers, such as video
frame buffers or nonvolatile RAM (NVRAM). The Alpha VME 5/352 and 5/480
SBC firmware implements PCI dense memory space in the address range
86.0000.0000 to 86.7FFF.FFFF.

Sections 2.2.1 to 2.2.6 discuss the following:

• Dense memory space characteristics, Section 2.2.1

• Advantages of dense memory space over sparse memory space, Section 2.2.2

• Dense memory space address generation, Section 2.2.3

• Flash ROM address mapping, Section 2.2.4

• VME address mapping in dense memory space, Section 2.2.5

• How to gain access to dense memory space, Section 2.2.6

87.2000.0000 – 87.7FFF.FFFF PCI configuration space – Reserved for CIA chip

88.0000.0000 – 8B.FFFF.FFFF Byte/word PCI space1

88.0000.0000 – 88.FFFF.FFFF Byte/word PCI memory space1

89.0000.0000 – 89.FFFF.FFFF Byte/word PCI I/O space1

8A.0000.0000 – 8A.FFFF.FFFF Byte/word PCI configuration space – type 01

8B.0000.0000 – 8B.FFFF.FFFF Byte/word PCI configuration space – type 11

Table 2–1 21164 Physical Address Space Mappings (Continued)

Physical Address Range Description
Firmware
Implementation

2–6 System Address Mapping

2.2.1 Characteristics

Dense memory space is provided for the 21164 microprocessor to gain access to
PCI memory space, but not PCI I/O space. Dense memory space has the following
characteristics:

• A one-to-one mapping exists between 21164 microprocessor addresses and
PCI addresses. A 21164 microprocessor longword address maps to a long-
word on the PCI with no shifting of the address field.

• The concept of dense memory space (and sparse space) is applicable only to
addresses generated by the 21164 microprocessor. The PCI bus does not gen-
erate dense memory space (or sparse space).

• Access to a byte or word is not possible in dense memory space. The mini-
mum access granularity is a longword on write transactions and a quadword
on read transactions. The maximum transfer length is 32 bytes (performed as
a burst of 8 longwords on the PCI bus). Any combination of longwords may
be valid on write transactions. Valid longwords surrounding invalid long-
words (called a “hole”) must be handled correctly by all PCI devices. The
CIA chip allows such “holes” to be issued.

• Read transactions consist of a burst of two or more longwords on the PCI bus
because the minimum granularity is a quadword. The microprocessor can
request a longword but the CIA chip always fetches a quadword, thus
prefetching a second longword. Therefore, you cannot use dense memory
space for devices that generate side effects when performing a read transac-
tion. Although a longword may be prefetched, the prefetch buffer is not
treated as a cache and thus coherency is not an issue. A quadword read trans-
action is not atomic on the PCI bus. That is, the target device is at liberty to
force a retry after the first longword of data is sent, and then allow another
device to take control of the PCI bus. The CIA chip does not drive the PCI
lock signal and thus the PCI bus cannot ensure atomicity. This is true of all
current Alpha systems using the PCI bus.

• The 21164 microprocessor merges noncached read transactions up to a 32-
byte maximum. The largest dense memory space read transaction from the
PCI bus is 32 bytes.

• Write transactions to dense memory space are buffered in the 21164 micro-
processor. The CIA chip supports a burst length of 8 on the PCI bus, corre-
sponding to 32 bytes of data. In addition, the CIA chip provides four 32-byte
write buffers to maximize I/O write performance. These four buffers are
strictly ordered.

2.2.2 Advantages Over Sparse Space

Dense memory space does not allow byte or word access but has the following
advantages over sparse space:

• Contiguous memory locations

Some software requires PCI transactions to be at adjacent 21164
addresses, instead of being widely separated as in sparse space.

 System Address Mapping 2–7

• Higher bus bandwidth

PCI bus burst transfers are not usable in sparse space except for a 2-long-
word burst for quadword write transactions. Dense memory space is
defined to allow both burst read and write transactions.

• Efficient read/write buffering

In sparse space, separate transactions use separate read or write buffer
entries. Dense memory space allows separate transactions to be collapsed
in read and write buffers.

• Few memory barriers

In general, transactions that gain access to sparse space are separated by
memory barriers to avoid read/write buffer collapsing. Transactions that
gain access to dense memory space only require barriers when the soft-
ware requires explicit ordering.

2.2.3 Address Generation

 For information on address generation in dense memory space, see the Digital
Semiconductor 21172 Core Logic Chipset Technical Reference Manual.

2.2.4 Flash ROM Address Mapping

The flash ROM maps to dense memory space. Figure 2–3 shows the system has a
total of 4 MB of flash ROM, which is divided into four 1 MB segments. The
21164 and PCI dense memory addresses for this memory space are as follows:

Figure 2–3 Flash ROM Layout/Addressing

Only byte accesses to the ROM are supported. As Figure 2–3 shows, the first 512
KB of flash ROM are reserved for console firmware use. The remaining space in
the flash ROM is reserved for onboard user code.

Address Type Physical Address Range

21164 86.0000.0000 – 86.0007.FFFF

PCI dense memory ROM_BASE_ADDR = 0000.0000

ML013291

ROM_BASE_ADDR : 512 KB

512 KB

1 MB

1 MB

1 MB

<00>

<01>

<10>

<11>

Start of Console Firmware

Start of User Flash

2–8 System Address Mapping

You can control and gain access to the flash ROM by using the module control
register 1 (MOD_CNTRL_REG_1). For a description of this register, see Section
5.4.3.7.

2.2.5 VME Address Mapping

Alpha VME 5/352 and 5/480 SBCs support VME address spaces A16, A24, and
A32, using two address windows to map from PCI memory space to VME address
space. One of the address windows, VME_WINDOW_1, maps from PCI dense
memory space. This 512 MB address window is divided into 2048 X 256 KB
pages. Each page is mapped to VME address space by its own scatter-gather entry.
The entries of the first 256 pages are also used to map pages of the second address
window, VME_WINDOW_2, which allows access to PCI sparse memory space.

For information on how VME_WINDOW_2 maps to PCI sparse memory space,
see Section 2.3.3. For more detail on VME address mapping, see Section 3.2.

2.2.6 Gaining Access to PCI Dense Memory Space

To gain access to PCI dense memory space, specify a dense space address with the
examine console command as follows:

>>>examine pmem:address

For example:

>>>examine pmem:8600000000

2.3 PCI Sparse Memory Space

PCI sparse memory space maps a large piece of 21164 memory address space to a
small PCI address space. For example, a 32-byte memory address might map to a
1-byte PCI address. The Alpha VME 5/352 and 5/480 SBC firmware implements
PCI sparse memory space in the address range 80.0000.0000 to 80.07DF.FFFF.

A problem arises because the Alpha instruction set can express only ALIGNED
longword and quadword data references. The PCI bus requires the ability to
express byte, word, tribyte, longword, and quadword references. The CIA must
also be able to emulate PCI transactions for PCI devices designed for systems that
are capable of generating the UNALIGNED references.

The CIA chip accomplishes UNALIGNED PCI references by encoding the size of
the data transfer (byte, word, and so on) and the byte-enable information in
address bits addr<6:3> of the 21164 address. The PCI longword address bits
ad<26:3> are generated by using the remaining address bits addr<31:7>.

For information on quadword address encoding, see the Digital Semiconductor
21172 Core Logic Chipset Technical Reference Manual.

Sections 2.3.1 to 2.3.4 discuss the following:

• Low-order address bits in sparse memory space, Section 2.3.1

• High-order address bits in sparse memory space, Section 2.3.2

• VME address mapping in sparse memory space, Section 2.3.3

 System Address Mapping 2–9

• How to gain access to sparse memory space, Section 2.3.4

2.3.1 Low-Order Address Bits

Low-order PCI sparse memory space address bits addr<7:3> generate the length
of the PCI bus transaction in bytes and are used for byte enables and ad<2:0>.
Address bits addr<30:8> correspond to the quadword PCI address and are sent on
the PCI bus as ad<25:3>.

For more information on the low-order address bits for PCI sparse memory space,
see the Digital Semiconductor 21172 Core Logic Chipset Technical Reference
Manual.

2.3.2 High-Order Address Bits

High-order PCI sparse memory space address bits ad<31:26> are obtained from
the hardware address extension register (HAE_MEM) or the 21164 address,
depending on sparse space regions.

For more information on the high-order address bits for PCI sparse memory
space, see the Digital Semiconductor 21172 Core Logic Chipset Technical Refer-
ence Manual.

2.3.3 VME Address Mapping

Alpha VME 5/352 and 5/480 SBCs support VME address spaces A16, A24, and
A32, using two address windows to map from PCI memory space to VME address
space. One of the windows, VME_WINDOW_2, allows mapping to PCI sparse
memory space. This 64 MB address window is divided into 256 X 256 KB pages.
The pages are mapped by the same scatter-gather entries that map the first 256
pages in VME_WINDOW_1 (see Section 2.2.5).

For more detail about VME address mapping, see Section 3.2.

2.3.4 Gaining Access to PCI Sparse Memory Space

To gain access to PCI sparse memory space, specify a sparse space address with
the examine console command as follows:

>>>examine pmem:address

For example:

>>>examine pmem:8000000000

For rules on gaining access to PCI sparse memory space, see the Digital Semicon-
ductor 21172 Core Logic Chipset Technical Reference Manual.

2–10 System Address Mapping

2.4 PCI Sparse I/O Space

PCI sparse I/O space has characteristics similar to the PCI sparse memory space.
A read or write transaction to this space causes a PCI I/O read or write transaction.
The Alpha VME 5/352 and 5/480 SBC firmware implements PCI sparse I/O space
in the address range 85.8000.0000 to 85.80FF.FFFF.

Note

All devices on the Nbus reside in PCI sparse I/O space.

Sections 2.4.1 to 2.4.4 discuss the following:

• High-order address bits in sparse I/O space, Section 2.4.1

• Sparse I/O space address decoding, Section 2.4.2

• Generation of sparse I/O space addresses, Section 2.4.3

• How to gain access to sparse I/O space, Section 2.4.4

2.4.1 High-Order Address Bits

High-order PCI sparse I/O space address bits addr<34:30> are equal to 101102.
These bits address the lower 32 MB of PCI sparse I/O space. Bits ad<31:25> are
set to zero by the hardware.

For more information on the high-order address bits for PCI sparse I/O space, see
the Digital Semiconductor 21172 Core Logic Chipset Technical Reference Man-
ual.

2.4.2 Address Decoding

PCI sparse I/O space regions are negatively decoded and are not affected by
another PCI device that is programmed to positively decode PCI addresses.

2.4.3 Address Generation

For information on PCI sparse I/O space address generation, see the Digital Semi-
conductor 21172 Core Logic Chipset Technical Reference Manual.

2.4.4 Gaining Access to PCI Sparse I/O Space

To gain access to PCI sparse I/O space, specify a PCI I/O space address with the
examine console command as follows:

>>>examine pciio:address

For example:

>>>examine pciio:8580000000

 System Address Mapping 2–11

2.5 PCI Configuration Space

The PCI configuration register set occupies PCI configuration space. The Alpha
VME 5/352 and 5/480 SBC firmware implements PCI configuration space in the
physical address range 87.0000.0000 to 87.1FFF.FFFF.

The base address of each PCI device, except the Nbus interface (SIO), is config-
ured by the system firmware. The firmware initializes each base address by writ-
ing the configuration registers that are in the PCI configuration space.

Note

Software designers should clear CIA_CTRL[FILL_ERR_EN] when
probing for PCI devices using configuration space read transactions. This
prevents the CIA chip from generating an ECC error if no device
responds to the configuration cycle and UNPREDICTABLE data is read
from the PCI bus.

Sections 2.5.1 to 2.5.3 discuss the following:

• Device type selection, Section 2.5.1

• Configuration space address generation, Section 2.5.2

• CIA chip registers, Section 2.5.3

• How to gain access to configuration space, Section 2.5.4

2.5.1 Device Type Selection

A CPU read or write transaction to PCI configuration address space causes a con-
figuration read or write cycle on the PCI bus. Each transaction is associated with
one of two types of target devices defined as follows:

As shown in Figure 2–4, the value of the configuration register determines the tar-
get device type. To select Type 0 target devices, set bits CFG<1:0> equal to 002.
To select Type 1 target devices, set the bits to 012.

Note

Bits CFG<1:0> set to 102 and 112 are reserved by the PCI specification.

Type Target Devices

0 Devices on the primary 64-bit 21164 system PCI bus.

1 Devices on the secondary 32-bit 21164 system PCI bus (that is, behind a PCI-
to-PCI bridge).

2–12 System Address Mapping

Figure 2–4 PCI Configuration Space Definition

Notes

You must program the configuration register before running a configura-
tion cycle. Sparse address decoding is used.

The CIA chip uses bits CFG<1:0> instead of unused address bits
addr<38:35> to be compatible with the Digital Semiconductor 21071
core logic chipset, used with Alpha 21064 series microprocessors.

2.5.2 Address Generation

For information on PCI configuration space address generation, see the Digital
Semiconductor 21172 Core Logic Chipset Technical Reference Manual.

2.5.3 CIA Chip Hardware Registers

For information on the CIA hardware registers, see the Digital Semiconductor
21172 Core Logic Chipset Technical Reference Manual.

Note

CIA hardware registers are programmed by the firmware and operating
system. If you modify these registers, the results may be undefined.

2.5.4 Gaining Access to PCI Configuration Space

To gain access to PCI configuration space, enter the examine console command as
follows:

>>>e pcicfg:hhbbssffoo

000111MBZ1

313234353839 29 28 21 20 16 15 13 12 07 06 05 04 03 02

Length

CFG<1:0>

Type 0 PCI
Configuration

Address

CPU Address

Type 1 PCI
Configuration

Address

00

LJ04270A.AI4

0 0 0 0 0 0 Bus Device Function Register 0 100

31 27 26 24 23 16 15 11 10 0708 02 01 00

Byte Offset

31 11 10 0708 02 01 00

IDSEL Function Register 0 0

 System Address Mapping 2–13

For hhbbssffoo specify:

To get the vendor ID of the Symbois 53C810, enter the following command:

>>>sho config

 Digital Equipment Corporation
 AlphaVME 5/352

 SRM Console V1.1-0 VMS PALcode V1.20-9, OSF PALcode V1.22-8

 MEMORY: 64 Meg of system memory
 System Controller: VIC64 Enabled

Hose 0, PCI
 slot 0 DECchip 7407
 slot 1 DECchip 21040-AA ewa0.0.0.1.0 00-00-F8-23-6C-53
 slot 2 NCR 53C810 pka0.7.0.2.0 SCSI Bus ID 7
 slot 3 Intel 82378

>>>e pcicfg:0000020000 -w
pcicfg: 20000 1000
>>>

2.6 Byte/Word PCI Space

PCI byte/word space supports byte/word instructions that allow software to gain
access to I/O space with byte granularity without using sparse space. The Alpha
VME 5/352 and 5/480 SBC firmware does not use byte/word PCI space. How-
ever, byte/word PCI space is available for use by operating systems. For more
information on this address space, see the Digital Semiconductor 21172 Core
Logic Chipset Technical Reference Manual.

Parmeter Description

hh The PCI hose (you can omit this because it will always be 00 for
Alpha VME 5/352 and 5/480 SBCs)

bb The PCI bus number with the primary bus being 00

ss The slot location of the device

ff The function for multifunction devices

oo The offset into PCI configuration space as defined in the PCI specifi-
cation

 VME Interface 3–1

 3
VME Interface

The VME interface handles the VMEbus and its interactions with the PCI bus.
This chapter describes the functions of the VME interface controlled by the oper-
ating system. The chapter provides a brief overview of the primary services the
VME interface provides (Section 3.1) and explains:

• VME address mapping, Section 3.2

• VME interface initialization, Section 3.3

• How a device requests ownership of the VMEbus, Section 3.4

• How a VME master transfers data, Section 3.5

• How VME slaves handle interprocessor communication, Section 3.5.5

• How an Alpha VME 5/352 or 5/480 SBC can function as VMEbus system
controller, Section 3.6

• Support for byte swapping, Section 3.7

See your operating system documentation for specific instructions on configuring
the VME interface.

3.1 Services Supported by the VME Interface

You can program or configure the VME interface for a given Alpha VME 5/352 or
5/480 SBC such that the SBC serves as the VMEbus master, a VMEbus slave, or
the VMEbus system controller. Table 3–1 lists the possible roles of the VME
interface and the services the interface offers for each role:

Table 3–1 Services Offered by the VME Interface

As The VME Interface

VMEbus master Controls PCI-to-VME (outbound) transactions.

VMEbus slave Handles VME-to-PCI (inbound) transactions and
interprocessor communication.

VMEbus system controller Handles arbitration of bus ownership, drives the
sysclk signal to the VMEbus, serves as arbitration
watchdog, acts as VMEbus interrupter and VMEbus
interrupt servicing agent

3–2 VME Interface

3.2 VMEbus Address Mapping

Section 3.2.1 provides an address mapping overview. Sections 3.2.2 and 3.2.3 dis-
cuss outbound scatter-gather mapping and inbound scatter-gather mapping,
respectively.

3.2.1 Address Mapping Overview

Alpha VME 5/352 and 5/480 SBCs support VME address spaces A16, A24, and
A32, using two address windows. The address windows map PCI memory
address space to VME address space as explained in Table 3–2.

Each of the first 256 scatter-gather map entries maps two pages to the same VME
address: a unique page within VME_WINDOW_1 and an overlapped page within
VME_WINDOW_2. For example, entry 5 of the outbound scatter-gather RAM
maps page 5 of VME_WINDOW_1 and page 5 of VME_WINDOW_2 to exactly
the same VME address.

Figure 3–1 shows a mapping of VME_WINDOW_1 and VME_WINDOW_2.

Table 3–2 VME Address Windows

VME Address Window Address Mapping

VME_WINDOW_1 A 512 MB address window positioned in PCI dense
memory address space. This window is divided into
2048 x 256 KB pages. Each page is mapped to VME
address space by a scatter-gather map entry. The scatter-
gather map entries of the first 256 pages are also used to
map the VME_WINDOW_2 pages.

VME_WINDOW_2 A 64 MB address window positioned in PCI memory
space. This window is divided into 256 x 256 KB pages.
These pages are mapped by the same scatter-gather map
entries that map the first 256 pages in
VME_WINDOW_1. The VME_WINDOW_2 address
space can map to PCI sparse memory space.

 VME Interface 3–3

Figure 3–1 Mapping of VME_WINDOW_1 and VME_WINDOW_2

Each page of PCI memory space can be mapped to any one of the three VMEbus
address spaces: A32, A24, or A16. As shown in Figure 3–2, numerous pages can
be mapped to the same VMEbus address to allow access to the same location with
different modes. The address modifier code (see Section 3.2.2.2) is fully pro-
grammable for each page.

Figure 3–2 Mapping Pages From PCI Address Space to VME Address Space

512 MB

WINDOW_1

64 MB

WINDOW_2

Scatter-Gather 255

Scatter-Gather 0
ML013378

Scatter-Gather 256

Scatter-Gather 2047

ML013377

4 GB Mem Space

2048 x 256K
Pages

512 MB

PCI

A32

VME

A24

A16

Scatter-Gather
Mapping

3–4 VME Interface

3.2.2 Outbound Scatter-Gather Mapping

Outbound scatter-gather map entries control and map VMEbus master transac-
tions. The source of the transactions is the VME SBC serving as master and the
destination is the VMEbus. Figure 3–3 shows how a scatter-gather map entry is
used for PCI-to-VMEbus outbound address translation. Tables 3–3 and 3–4
describe the address fields of an outbound scatter-gather map entry.

Figure 3–3 PCI-to-VMEbus Outbound Address Translation

Table 3–3 PCI Address in an Outbound Scatter-Gather Map Entry

Field Name Description

<4:0> MBZ

<5> Valid

<8:6> Swap

<9> RMW When set, enables atomic VMEbus read-modify-
write (RMW) cycles. For more information, see
Section 3.2.2.1.

<11:10> Address Size Identifies whether the address size (ASIZ) is A32,
A24, A16, or is user defined. For more information,
see Section 3.2.2.2

<13:12> Function Code Indicates whether the address points to user data, a
user program, supervisory data, a supervisory pro-
gram, a user page, or a supervisory page. For more
information, see Section 3.2.2.2.

<17:14> Not Used

<31:18> VME Page Page frame number.

31 08 06 05 04 00

ML013328

Function Code <2:1>

Address Size <1:0>

RMW

Swap <2:0> Mode

Valid

Scatter-Gather
Entry

0910111213141718

MBZX

31

Memory PagePCI Memory Address
1718

31 00

VME 256 KB Page AddressVMEbus Address
1718

Bits of PCI Memory Address

0029 2830

Scatter-Gather
Entry Number

VME 256 KB Page Address

 VME Interface 3–5

The processing of an outbound scatter-gather map entry is as follows:

1. The correct scatter-gather map entry is identified.

The PCI address is compared to the contents of the base registers for
VME_WINDOW_1 and VME_WINDOW_2. PCI address bits <31:29>
are compared to the contents of register VME_WINDOW_1_BASE and
PCI address bits <31:26> are compared to the contents of register
VME_WINDOW_2_BASE.

If the comparison results in a match, a scatter-gather lookup occurs. The
scatter-gather entry is identified using either PCI address bits <28:18> or
PCI address bits <25:18>. If the PCI memory cycle addresses
VME_WINDOW_1, the scatter-gather entry is identified by PCI address
bits <28:18>. If the PCI memory cycle addresses VME_WINDOW_2, the
scatter-gather entry is identified by PCI address bits <25:18>.

Bits <31:18> of the scatter-gather entry provide the page address (VME
address bits <31:18>) of the corresponding aligned 256 KB VMEbus
page address. PCI address bits <17:2>, together with the PCI byte
enables, specify the byte address within that page.

2. The scatter-gather map entry’s valid bit, bit <5>, is checked.

If the valid bit is set, the VME interface forms the VMEbus address from
the scatter-gather map entry. If the bit is not set, the scatter-gather map
entry is invalid and no VMEbus transaction can occur. Instead, the out-
bound Error bit in the VME interface processor bus error/status register
(VIP_BESR) is set. If the corresponding bit is also set in the VME inter-
face processor interrupt control register (VIP_ICR), this event causes a
DC7407 interrupt assertion.

Sections 3.2.2.2 and 3.2.2.1 describe RMW and address modifier fields of the
scatter-gather map entries.

3.2.2.1 Read-Modify-Write Bit

When a scatter-gather entry’s read-modify-write (RMW) bit is set, any master
access to that page causes the VME interface to perform the next two accesses as
a single sequence of VMEbus cycles. The two accesses are:

• The one whose scatter-gather entry has the RMW bit set

• The next PCI cycle that addresses the VMEbus

The two accesses are handled as an indivisible sequence on the VMEbus by
acquiring VMEbus ownership for the current access and holding it until another
master operation is done by the processor. This is designed for doing atomic
VMEbus RMW cycles.

Table 3–4 VME Address in an Outbound Scatter-Gather Map Entry

Field Description

<31:18> VME page, that is, bits <28:18> of the PCI address.

3–6 VME Interface

The VIC interface configuration register must be programmed with
VIC_ICR<7:5> = 001. A value of VIC_ICR<7:5> = 000 disables the RMW
mode regardless of the setting in the scatter-gather map, while any other
VIC_ICR<7:5> value gives UNPREDICTABLE results.

To use the RMW mechanism, software must be able to guarantee sequential exe-
cution of the two PCI cycles to the VMEbus on the PCI bus.

An alternate way of defining a divisible sequence is to use the VIC64 chip’s “bus
capture and hold” mechanism, described in Section 3.6.1.

3.2.2.2 Address Modifiers

A scatter-gather map entry has two fields that provide an address modifier that is
used in the master VMEbus transfer. The address modifier consists of the address
size (ASIZ) and a function code (FC) that map directly to the VIC chip’s inputs
for ASIZ and FC. Table 3–5 shows the use of the ASIZ and FC fields.

Table 3–5 Formation of Address Modifier Codes from Scatter-Gather Entry

ASIZ1/0 FC2/1 Block Mode Operation AM<5:0>

01 (A32) 00 No User Data 0x09

01 No User Program 0x0A

10 No Supervisory Data 0x0D

11 No Supervisory Program 0x0E

0x Yes User Page 0x0B (D32)
0x08 (D64)

1x Yes Supervisory Page 0x0F (D32)
0x0C (D64)

11 (A24) 00 No User Data 0x39

01 No User Program 0x3A

10 No Supervisory Data 0x3D

11 No Supervisory Program 0x3E

0x Yes User Page 0x3B (D32)
0x38 (D64)

1x Yes Supervisory Page 0x3F (D32)
0x3C (D64)

10 (A16) 0x No User Access 0x29

1x No Supervisory Access 0x2D

00 User Defined AM Codes VIC_AMSR

 VME Interface 3–7

3.2.3 Inbound Scatter-Gather Mapping

The VME interface responds to A32, A24, and A16 access cycles as shown in
Figure 3–4. A32 and A24 cycles are used to access the memory of an Alpha VME
5/352 or 5/480 SBC. Incoming A32 and A24 transactions are mapped to 8 KB
pages by the VME interface’s inbound scatter-gather maps. A16 cycles provide
access to a small number of byte-wide interprocessor communication registers.

Figure 3–4 Mapping Pages from VME Address Space to PCI Address Space

Incoming slave accesses are mapped and controlled by two incoming scatter-
gather maps:

3.2.3.1 Decoding Addresses

The VME-to-PCI address decoding is implemented using CY7C964 bus inter-
faces within the VME interface. As Figure 3–5 shows, three CY7C964 bus inter-
faces are accessed together in the VMEbus i/f address base and mask registers
(VIF_ABR and VIF_MASK). The registers must be accessed as longwords even
though the individual bytes represent address match data for separate VME
address spaces.

For Access Type An Alpha VME 5/352 or 5/480 SBC Occupies

A32 Up to 128 MB of memory mapped by 16384 scatter-gather
entries. Each entry maps an 8 KB page.

A24 Up to 16 MB of memory mapped by 2048 scatter-gather
entries. Each entry maps an 8 KB page.

07 02 01 00

ML013321

Reserved

805 :

PMC1 IRQD

PMC0 IRQD

3–8 VME Interface

Figure 3–5 VME Address Decoding

VIF_ABR defines the base address of the system in each VMEbus address space.

See the CY7C964 specification for more detail on the byte comparisons. For a
description of the VIF_ABR register, see the CY7C9640 Specification.

3.2.3.2 Scatter-Gather Map Entry Format

Figure 3–6 shows a scatter-gather map entry being used for VMEbus-to-PCI
inbound address translation. The address modifier bits determine the scatter-
gather map that is to be searched. Tables 3–6 and 3–7 describe the VMEbus and
PCI address fields of a scatter-gather map entry.

Figure 3–6 VMEbus-to-PCI Inbound Address Translation for A32

31 08 00

ML013341

VME A32 Addr

152324 0716

VME A24 Addr

VME A16 Addr

= Region of address that can be compared to form base address

31 08 06 05 04 00

ML013342

Inbound Scatter-Gather Page Monitor

Supervisor Access Only

Write Lock

Swap

Valid

Scatter-Gather
Entry

091011121314

MBZ

31

VME 8 KB Address PageVME Address
1213

31 00

VMEbus Address
1213

00

Scatter-Gather Entry Number
and A24 or A32 Address Modifier

8 KB Memory Page (PFN<1)

00

0102

00

0102

I/O Select

8 KB Memory Address with Aligned Offset

Byte Offset within Memory Page

 VME Interface 3–9

The PCI bus uses C/BE signals to specify which bytes are being accessed.

Table 3–6 VME Address in an Inbound Scatter-Gather Map Entry

Field Name Description

<4:0> MBZ

<5> Valid

<8:6> Swap

<9> Write Lock Limits slave accesses to read-only, that is, a
page can be write-locked.

<10> Supervisor Access
Only

Restricts access to supervisory cycles only.

<11> PCI I/O Mem Select When clear (the default), the VMEbus master
uses a PCI memory cycle to transfer VME data
to the mapped main memory address. When set,
it forces a PCI I/O cycle to allow a VME device
access to one of the Alpha VME 5/352 or 5/480
SBC I/O resources.

<13:12> Page Monitor Specifies how a Alpha VME 5/352 or 5/480
SBC checks the scatter-gather map entry for
access, according to the following values:

0 — No monitoring of the page.
1 — Each time the page is accessed, Monitor 1

is incremented.
2 — Each time the page is accessed, Monitor 2

is incremented.
3 — Each time the page is accessed, Monitor 3

is incremented.

The counters are readable in the VME interface
processor page monitor CSR (VIP_PMCSR).

<31:14> Memory Page Page frame number shifted left by 1.

Table 3–7 PCI Address in an Inbound Scatter-Gather Map Entry

Field Description

<1:0> Set to 00 to pad.

<12:2> VME Address

<30:13> Memory Page, that is, bits <31:14> of the VME address.

<31> Set to 0 to force access to the lower 2 GB of PCI memory space. Configu-
ration cycles are never initiated by the VME interface.

3–10 VME Interface

3.3 VME Interface Initialization

Before you can operate the VME interface, you must initialize it. The initializa-
tion procedure consists of the following steps, which are discussed in more detail
in Sections 3.3.1 to 3.3.3:

1. Configure the PCI interface to the VMEbus, Section 3.3.1

2. Program scatter-gather RAM, Section 3.3.2

3. Configure the VIC64 chip, Section 3.3.3

3.3.1 Configuring the PCI Interface to the VMEbus

The first step to initializing the VME interface is to configure the PCI interface to
the VMEbus. To configure the PCI interface, you must write to three PCI base
address registers within the DC7407: VME_IF_BASE,
VME_WINDOW_1_BASE, and VME_SG_BASE. You have the option of using
a fourth register, VME_WINDOW_2_BASE, to read the hardware setting for
VME_WINDOW_2 if necessary. These registers are accessible only through PCI
configuration address space. Once these registers are initialized, you can use PCI
memory space to set up the remainder of the VME subsystem for access to VME
devices.

The 21164 address ranges for the PCI interface are as follows:

21164 addresses 87.0000.0000 – 87.0000.1FE0

PCI configuration addresses 0000.0800 – 0000.08FF

 VME Interface 3–11

Table 3–8 lists the PCI base address registers with brief descriptions.

3.3.2 Programming Scatter-Gather RAM

The scatter-gather RAM is a page in memory space that is 32K x longword in
size. The top 27 bits are read/write; the remaining 5 bits are MBZ. Scatter-gather
RAM is not initialized by the hardware and starts in a random state. The operating
system must initialize this area to a default state before the VME subsystem can
be used.

The scatter-gather RAM is fully programmable over the PCI bus. The mapping of
the scatter-gather RAM takes up 128 KB of PCI memory space and has its own
base address.

Table 3–8 VME PCI Base Registers

Register
PCI
Configuration
Address Space

Description

VME_IF_BASE 00000810 Gives access to the DC7407, VIC64,
and CY7C964 registers when the
base address of a window in PCI
memory space is written into the reg-
ister. The window is a 512-byte
address region in PCI memory space,
aligned on a 512-byte boundary.

Bits <31:9> are writable.

The locations of the VME interface
registers are identified as
VME_IF_BASE + xxxx, represent-
ing their address in PCI memory
space.

VME_WINDOW_1_BASE 00000814 Gives access to VME address space
when the base address of a window
in PCI memory space is written into
the register. Only bits <31:29> are
writable because the 512 MB win-
dow must be aligned on a natural
boundary.

VME_SG_BASE 00000818 Gives access to scatter-gather RAM
when the base address of a 128 KB
window in PCI memory space is
written into the register.

VME_WINDOW_2_BASE 0000081C Gives access to VME address space
when the base address of a second
window in PCI memory space is
written into the register. Only bits
<31:26> are writable because the 64
MB window must be aligned on a
natural boundary.

3–12 VME Interface

To configure the VME interface for both master and slave operation, the scatter-
gather entries for both inbound and outbound accesses must be programmed to
provide address translation between the VMEbus and the PCI bus. The scatter-
gather RAM can be programmed independently of master or slave VMEbus activ-
ity.

The 8K scatter-gather longword entries are in three regions:

3.3.3 Configuring the VIC64 Chip

The address map for the VIC64 chip places the VIC registers in byte 3 of a partic-
ular longword address. As used by an Alpha VME 5/352 or 5/480 SBC, the VIC
registers are seen at byte 0 in each longword when accessed over the PCI bus.

The rest of this section provides some guidance for configuring the VIC64 chip by
describing the bit fields of the VIC registers. Some timing control register values
are defined.

For descriptions of the VIC64 chip registers, see the VIC64 Specification.

Entry Address Region Each Entry Maps Index Formed By

2048 A24
inbound

VME_SG_BASE + 0x10000 8K page of A24 VME
address space into PCI
address space

VME A24 <23:13>

16384 A32
inbound

VME_SG_BASE 8K page of A32 VME
address space into PCI
address space

VME A32 <26:13>

2048 outbound VME_SG_BASE + 0x1E000 256K page of PCI mem-
ory into VMEbus

Depends on region used for mas-
ter access:
VME_WINDOW : PCI <28:18>
VME_SUB_WINDOW (64 MB):
PCI <25:18>

VICR

 Bits 2-0 Local interrupt priority level (IPL) setting for VMEbus interrupter
acknowledge received interrupt.

 Bits 6-3 Reserved, must read as 1s.

 Bit 7 Interrupt mask bit.

VICR1-7

 Bits 2-0 Local IPL setting for VMEbus interrupt.

 Bits 6-3 Reserved, must read as 1s.

 Bit 7 Interrupt mask bit.

DMASICR

 Bits 2-0 Local IPL setting for end of DMA interrupt.

 Bits 6-3 Reserved, must read as 1s.

 Bit 7 End of DMA interrupt mask bit.

LICR1-7

 Bits 2-0 Local IPL setting for LIRQ interrupt line.

 Bit 3 Indicates voltage level at LIRQ pin.

 Bit 4 Autovector enable. Must be set in the Alpha VME 5/352 or 5/480 SBC.

 VME Interface 3–13

 Bit 5 Edge/level enable for LICR2 and LICR7. Must be clear in the Alpha
VME 5/352 or 5/480 SBC.

 Bit 6 Polarity set for LICR2 and LICR7. Must be clear in the Alpha VME
5/352 or 5/480 SBC.

 Bit 7 Local interrupt mask bit.

ICGSICR

 Bits 2-0 Local IPL for global switch interrupts.

 Bit 3 Reserved, must read as 1.

 Bits 7-4 Interrupt mask bit for ICGS <3:0>.

ICMSICR

 Bits 2-0 Local IPL for module switch interrupts.

 Bit 3 Reserved, must read as 1.

 Bits 7-4 Interrupt mask bit for ICMS <3:0>

EGICR

 Bits 2-0 Local IPL for error group interrupts.

 Bit 3 SYSFAIL asserted (read only).

 Bit 4 SYSFAIL interrupt mask.

 Bit 5 Arbitration timeout interrupt mask.

 Bit 6 VIC/CY write post fail interrupt mask.

 Bit 7 AC fail interrupt mask.

ICGSIVBR

 Bits 1-0 Read only.

 Bits 7-2 User defined. Combines with ICGS switch number to provide vector.

ICMSIVBR

 Bits 1-0 Read only.

 Bits 7-2 User defined. Combines with ICMS switch number to provide vector.

LIVBR

 Bits 1-0 Read only.

 Bits 7-2 User defined. Combines with LIRQ number to provide vector.

EGIVBR

 Bits 1-0 Read only.

 Bits 7-2 User defined. Combines with fixed codes to provide vector.

ICFSR

 Bits 3-0 Module switches.

 Bits 7-4 Global switches

ICR0-4 General-purpose registers. Accessible over the VMEbus or local bus.

ICR5 Read-only register containing the VIC64 revision.
Accessible over VMEbus or local bus.

ICR6

 Bits 1-0 Read only from the VMEbus. Must be cleared by the processor after
reset.

 Bits 5-2 Reserved, must read as 1s.

 Bit 6 Must be cleared by the processor after reset. If enabled by LICR7, this
bit being set asserts SYSFAIL* on the VMEbus.

 Bit 7 Read only.

ICR7

3–14 VME Interface

 Bits 4-0 Read and write from the VMEbus or local bus. These
bits are set if the corresponding ICR is written.

 Bit 5 Read only.

 Bit 6 HALT and RESET control.

 Bit 7 VME SYSFAIL* mask, must be set after reset if resets are not to be
translated into SYSFAIL* assertion.

VIRSR

 Bit 0 Enable VMEbus interrupter.

 Bits 7-1 If bit 0 is set during the write that sets a bit, the corresponding VMEbus
interrupt is asserted. These bits are cleared if bit 0 is cleared during the
write that sets a bit.

VIVBR1-7 Each register sets the vector returned on VMEbus interrupt acknowl-
edge cycles at that interrupt level.

TTR

 Bit 0 Set to include VMEbus acquisition time in local bus timeout.

 Bit 1 When VME interface is used as system controller, this bit is set to indi-
cate arbitration timeout.

 Bits 4-2 Recommended timeout period for local bus is 64 (011).

 Bits 7- 5 Recommended timeout period for VMEbus is 128 (100).

The use of timeout periods depends on the VME environment. When
the Alpha VME 5/352 or 5/480 SBC is a system controller and a cycle
times out on the local bus after timing out on the VMEbus, the cycle
hangs. To avoid this condition, set the timeout period for the local bus
first or not at all.

LBTR

 Bits 3-0 Minimum PAS assertion time. Keep the default of zero.

 Bit 4 Minimum DS deasserted time. Must be set in the Alpha VME 5/352 or
5/480 SBC.

 Bits 7-5 Minimum PAS deasserted time. Must be binary 110.

BTDR

 Bit 0 Dual Path enable. Must be set.

 Bit 1 AMSR register. Sets up user-defined address modifier codes for block
mode transfers.

 Bit 2 Local bus 256 bus byte boundary. Recommend this be set.

 Bit 3 VME 256 bus crossing enabled. Recommend this be set.

 Bit 4 Enables D64 master operation.

 Bit 5 Enable enhanced turbo mode. Must be clear.

 Bit 6 Enables D64 slave operation. Recommend this be set.

 Bit 7 Enable 2 KB boundary crossing for D64. If set, software must check
that the D64 block mode transfer start address is 2 KB aligned and that
the transfer does not cross a 64 KB boundary.

ICR

 Bit 0 Read-only system controller pin.

 Bit 1 Turbo enable. Must be clear.

 Bit 2 Metastability delay. Recommend this be clear.

 Bits 4,3 Deadlock signaling. Must be clear.

 Bits 5-7 RMC control bits 1 to 3.

ARCR

µs

µs

 VME Interface 3–15

 Bits 3-0 VMEbus fairness timer enable.

 Bit 4 DRAM refresh enable. Must be clear.

 Bits 6,5 VMEbus request level.

 Bit 7 Arbitration mode.

AMSR Defines response top and generation of user-defined address modifier
codes.

BESR All 8 bits are flags set by the VIC after status conditions that must be
cleared by the processor.

DMASR

 Bit 0 Block transfer in progress. Once set, must be cleared by processor.

 Bit 1 LBERR during DMA transfer.

 Bit 2 BERR during DMA transfer.

 Bit 3 Local bus error.

 Bit 4 VMEbus BERR.

 Bit 5,6 Reserved, read as 1s.

 Bit 7 Master write post information stored in CYs.

SS0CR0

 Bits 1-0 Accelerated transfer mode. Must be set to binary 10.

 Bits 3,2 Must be binary 01 for A24 slave selection.

 Bit 4 D32 enable. Must be set in the Alpha VME 5/352 or 5/480 SBC.

 Bit 5 Supervisor access.

 Bits 7,6 Periodic timer enable. Must be binary 00.

SS0CR1 Local bus timing values. Must be 0x00.

SS1CR0

 Bits 1-0 Must be set to binary 10, accelerated transfer mode.

 Bits 3,2 Must be binary 00 for A32 slave selection.

 Bit 4 D32 enable. Must be set.

 Bit 5 Supervisor access.

 Bit 6 VIC/CY master write posting enable. Recommend this be clear.

 Bit 7 Slave write post enable. Must be clear.

SS1CR1 Local bus timing values. Must be 0x00.

RCR

 Bits 5-0 Block transfer burst length.

 Bits 7,6 VMEbus release mode.

BTCR

 Bits 3-0 Interleave period. Recommend a value of 0xF.

 Bit 4 Data direction bit: 0=write, 1=read

 Bit 5 MOVEM enable. Recommend this be clear.

 Bit 6 BLT with local DMA enable.

 Bit 7 Module based DMA transfer enable.

BTLR1-0 Registers for block transfer length for local DMA block mode transfers.

SRR System reset register.

3–16 VME Interface

3.4 Requesting Ownership of the VMEbus

Before an Alpha VME 5/352 or 5/480 SBC can act as the VMEbus master, the
VME interface for that system must request ownership of the bus. Controlling the
manner and level of the bus request is achieved using the VIC arbiter/requester
configuration register (VIC_ARCR). See the VIC64 Specification for a descrip-
tion of this register. For more information about VMEbus arbitration, see Section
3.6.1.

3.5 VME Data Transfers

As a VME master, Alpha VME 5/352 and 5/480 SBCs support data transfers in
two ways:

• Single transfers: D08, D16, D32 data size

• Block transfers: D16, D32, D64 data size

3.5.1 Single Mode Transfers

Single D08, D16, and D32 data transfers are executed by individual accesses to
either of the two VME address windows in PCI memory space. The data size for
the VME transfers are derived from the byte-enabling of the corresponding PCI
cycle.

3.5.2 Block Mode Transfers

A block mode DMA engine in the VME interface can be programmed to transfer
up to 64 KB without processor intervention in D16, D32, or D64 format. The
interface handles the segmentation of the transfer so as not to violate the VMEbus
specification for crossing VME address boundaries.

3.5.3 Setting Up for Block Mode Transfers

To set up for block mode transfers, you must define the following:

• Transfer length

• Data size

• Transfer direction

• Source address

• Destination address

3.5.4 Setting Up for Block Mode DMA Transfers

To set up for block mode DMA transfers:

1. Define the transfer length and data size.

Write the DMA transfer length to the VME byte length registers,
VIC_BTLR0 and VIC_BTLR1. You can enable PCI deferred write opera-
tions to decouple the CPU from the delays on the local bus. To distinguish

 VME Interface 3–17

D64 block mode operations write to bit 4 of the VIC64’s block transfer
definition register (VIC_BTDR). The transfer length must be even as D08
block mode is not supported.

2. Define the transfer direction.

Set (read) or clear (write) the DMA direction bit and set the DMA enable
bit of the VIC block transfer control register (VIC_BTCR).

3. Define the source and destination addresses.

Write the required PCI start address (as the write data) to the desired PCI
memory address.

4. Enable DMA transfers.

Clear the DMA enable bit in the VIC_BTCR register.

5. Wait for completion notification.

Wait for notification that the transfer completed. The completion interrupt
is enabled in the VIC status register (VIC_DMAICR) and its vector is
generated by the VIC error group interrupt vector address register
(VIC_EGIVBR).

The mapping of PCI memory to VMEbus addresses is handled as usual through
the scatter-gather mapping mechanism, however, the address modifiers in the
mapping entry are automatically transformed to generate the block-mode version
of the specified address modifier code (except for user-defined address modifier
codes).

For descriptions of the VIC64 chip registers, see the VIC64 Specification.

Restrictions

The following restrictions apply to VME master block-mode transfers:

• Master block mode D64 transfers that do not start on naturally-aligned 2K
boundaries on the VMEbus require some special care. If a 2 KB boundary
crossing is enabled (VIC_BTDR<7> = 1), the VME starting address must be
aligned to a 2 KB boundary.

• The PCI address must not cross a 64 KB aligned boundary. Usually, the oper-
ating system’s DMA interface handles this restriction.

Programming Arbitration Delays for Slave Access

Because the VMEbus specification prohibits crossing any 256/2 KB boundaries,
any DMA transfer must be split into multiple bus transfers. At the interval
between these transfers, the VME interface can be programmed to wait a period of
time before arbitrating again for the VMEbus and proceeding. This delay gives
VME slaves the opportunity to complete accesses during a block-mode transfer.
This interleave period is programmable in the VIC block transfer control register
(VIC_BTCR). For a description of this register, see the VIC64 Specification.

3–18 VME Interface

Programming the Burst Length of DMA Transfers

The maximum burst length of a DMA block mode transfer is 256/2K. By using
the VIC release control register (VIC_RCR) you can program the VMEbus to use
a shorter burst length. For a description of the VIC_RCR, see the VIC64 Specifi-
cation.

3.5.5 VME Interprocessor Communication

The VIC64 chip has two sets of registers that allow communication between pro-
cessors: communication registers and software switches. The software switches
include global switches and module switches. Use of the interprocessor communi-
cation register (ICR) sets is restricted to only one set at a time.

The registers are accessible in the VME interface register space mapped in PCI
memory space. When accessed over the VMEbus, they are located in A16 space
by byte 1 of the VMEbus i/f address base register (VIF_ABR). They are also
accessible from PCI memory space starting at address VME_IF_BASE + 0x60.

3.5.5.1 Interprocessor Communication Registers

Five of the general-purpose ICRs are 8-bit read/write registers accessible over the
VMEbus and in local PCI memory space. Two others allow VIC64 status and
hardware revision information to be read over the VMEbus.

Bits <4:0> in the final register are set when there is a write access to the corre-
sponding ICR. For mapping of the registers, see the VIC64 Specification.

3.5.5.2 Interprocessor Communication Global Switches

The interprocessor communication global switches (ICGSs) are software switches
that you can set over the VMEbus (not locally accessible over the PCI bus) to
interrupt a group of VMEbus modules that share an A16 base address.

Because the global switches are meant to be issued to several modules, the slave
targets of a global switch access do not acknowledge the cycle. Instead, the master
driving the write data transfer acknowledgements (DTACKs) acknowledges the
cycle itself (the VIF_ABR register should be set to generate a self-access by the
global-switch write).

A write to an even address clears the selected switch and a write to an odd address
sets the switch.

If global-switch interrupts are enabled in the VIC64 interprocessor communica-
tion global switch interface configuration register (ICGSICR), an interrupt is gen-
erated to the local processor by way of the system interrupt controller. The vector
for the interrupt is generated from the VIC64 interprocessor communication glo-
bal switch interface vector base register (ICGSIVBR).

Bits <4:0> in the final register are set when there is a write access to the corre-
sponding interprocessor communication group processor register (ICGPR).

For a mapping of the ICGS switches, see the VIC64 Specification.

 VME Interface 3–19

3.5.5.3 Interprocessor Communication Module Switches

The interprocessor communication module switches (ICMSs) are software-writ-
able switches that can be set over the VMEbus to interrupt a processor. The mod-
ule switches, however, are meant to be issued to a specific module.

Because the module switches are meant for a specific module, the cycle is just like
a normal write on the bus (unlike for the global switch interface).

If interprocessor communication module-switch interrupts are enabled in the
VIC64 interprocessor communication module switch interface configuration reg-
ister (ICMSICR), an interrupt is generated. The vector for the interrupt is gener-
ated from the VIC64 interprocessor communication module switch interface
vector base register (ICMSIVBR).

For a mapping of the ICMS switches, see the VIC64 Specification.

3.6 System Controller Operation

An Alpha VME 5/352 or 5/480 SBC can operate as a full VMEbus system con-
troller (in slot 1). The SBC is selected as a system controller at power-up by the
state of the module diagnostic-in-progress switch (position 4 closed).

As a system controller, the SBC can:

• Reset the VME interface logic

• Control VMEbus arbitration (drive BGIOUT*)

• Drive the system clock (SYSCLK)

• Control timeout timers for data transfers and arbitration

• Handle VMEbus interrupt control (by driving IACK*)

The system controller functions are controlled through byte registers that are
mapped into the lowest byte of an aligned longword in PCI memory space.

3.6.1 Controlling VMEbus Arbitration

As system controller the Alpha VME 5/352 or 5/480 SBC can control VMEbus
arbitration. The arbitration scheme that is to be used is determined by bit settings
in the arbiter/requester configuration register (VIC_ABR, offset B0) and the
VMEbus request lines. Possible arbitration schemes include:

• Priority (PRI)

• Round-robin (RRS)

• Single-level (SGL)

For a description of the VIC_ABR register and more detail on bit settings for the
various arbitration schemes, see the VIC64 Specification.

3.6.1.1 Requesting the VMEbus

The granting of ownership of the VMEbus to a master is passed down the VME-
bus along a daisy-chain. Because of this arrangement, the masters further down
the daisy-chain can be blocked by masters higher up the chain. This problem (bus

3–20 VME Interface

starvation) can be minimized if the masters all implement a Fair Request scheme.
If any master does not obey the fairness scheme, it can starve the masters further
along the daisy-chain.

Under the Fair Request scheme, the Alpha VME 5/352 and 5/480 SBCs do not
request the VMEbus for the duration of a fairness timeout period, if any other
master is requesting the VMEbus. When the timeout period expires, the SBC
asserts its request regardless of other requests. The fairness timeout period gives
any other masters along the daisy-chain the opportunity to win the VMEbus.

3.6.1.2 Releasing the VMEbus

Once an Alpha VME 5/352 or 5/480 SBC has acquired ownership of the VME-
bus, it is important to control the manner in which the bus is relinquished. Four
release modes are supported:

• Release-on-request (ROR)

• Release-when-done (RWD)

• Release-on-clear (ROC)

• Bus capture and hold (BCAP)

You configure the release mode in the VIC release control register (VIC_RCR,
offset D0).

In addition to these four bus release modes, you can use the scatter-gather RMW
bit (RMC) to force the Alpha VME 5/352 or 5/480 SBC to hold ownership of the
VMEbus for two accesses before releasing in the programmed ROR, RWD, or
ROC fashion.

For a description of the VIC_RCR register, see the VIC64 Specification.

3.6.2 Controlling the System Clock

As the system controller, an Alpha VME 5/352 or 5/480 SBC drives the system
clock (SYSCLK) for the VMEbus. The clock is a fixed 16 MHz clock with a nom-
inal 50% (+/- 10%) duty cycle. This 16 MHz timing has no fixed phase relation-
ship with other bus timings.

3.6.3 Controlling Timeout Timers

As system controller, an Alpha VME 5/352 or 5/480 SBC can control the follow-
ing timers:

• Arbitration timers

• VMEbus transfer timers

• Local bus transfer timers

3.6.3.1 Arbitration Timers

By default, an Alpha VME 5/352 or 5/480 SBC operates as an arbitration watch-
dog when configured as VMEbus system controller. After issuing a VMEbus
grant to the winning requester, the VME interface monitors the bus and, if it does
not detect activity (BBSY* asserting) within 8 microseconds, it asserts the
BBSY* signal to terminate the bus ownership and to allow rearbitration. You can-

 VME Interface 3–21

not disable this arbitration timeout. However, you can use the condition to gener-
ate a local interrupt to the processor. You can control this interrupt by using the
VIC64 error group interrupt control register (VIC_EGICR). For more informa-
tion, see the VIC64 Specification.

3.6.3.2 VMEbus Transfer Timers

When enabled, the VME interface starts the transfer timer whenever the data
phase of a cycle is signaled (DSx* asserting). If the timer expires before the data
cycle is acknowledged or completes in error, the VME interface, as system con-
troller, flags a VMEbus error (asserting BERR*). This condition sets a status bit in
the VIC64 error status register (VIC_BESR).

The transfer timeout is configured in the VIC64 transfer timeout register
(VIC_TTR, offset 0xA0). For a description of this register, see the VIC64 Specifi-
cation.

3.6.3.3 Local Bus Transfer Timer

When enabled, the local bus transfer timer starts whenever a data phase is initiated
on the local bus (the bus between the VIC64 and DC7407 chips). If the timer
expires before the data cycle is acknowledged or terminated by an error, the VME
interface signals a local bus timeout. This condition sets a status bit in the VIC64
error status register (VIC_BESR).

3.6.4 Handling VMEbus Interrupts

An Alpha VME 5/352 or 5/480 SBC can act as a VMEbus interrupter as well as a
VMEbus interrupt servicing agent. As system controller, the SBC drives the
IACK daisy-chain if the VIC64 chip has no VME interrupt pending.

The VIC interrupt request/status register (VME_IF_BASE + 0x80) provides the
current state of the SBC’s interrupt request lines (IRQ1*-7*), which are driven
onto the VMEbus. For a description of this register, see the VIC64 Specification.

An Alpha VME 5/352 or 5/480 SBC uses the Release-On-Acknowledge method
for removal of its interrupt requests. As an alternative, the interrupt requests can
be deasserted by writing to the same VMEbus interrupt request/status register that
is used to assert the interrupt request lines. When the SBC detects an IACK cycle
on the VMEbus for one of its interrupt requests, it responds with a vector that is
programmable in the VMEbus interrupt vector base registers, starting at PCI
memory address VIF_ABR+0x84.

A local interrupt can be generated to the CPU by the VME interface when it
detects a VMEbus IACK cycle for a VME interrupt that is pending. This interrupt
can be used to inform system software that the VMEbus interrupt request has been
serviced. The VIC interrupter interrupt control register (VME_IF_BASE + 0x00)
provides enabling of priority encoding for this interrupt.

3–22 VME Interface

3.7 Byte Swapping

DIGITAL Alpha VME 5/352 and 5/480 SBCs support four modes of byte-swap-
ping for transfers to and from the VMEbus. The swap mode is defined for each
inbound or outbound page by the related scatter-gather map entry.

3.7.1 DC7407 Byte Swapping

The swap mode for each scatter-gather map entry is defined by 3 bits, SWP<2:0>.
Bits <1:0> define mode 0 through 3 and SWP<2> enables D64 swapping, which
is only used in D64 block mode data transfers.

Table 3–9 describes the swap modes and Figure 3–7 shows them graphically with
the D64 swap cases illustrated with mode 3.

Table 3–9 Swap Modes

Mode Type of Swap Description

0 No Swap No bytes are swapped, and in transferring bytes from the
little endian PCI to the big endian VMEbus, the address
of any byte as seen on the two buses remains the same.

1 Byte Swap The bytes within words are swapped.

2 Word Swap The words within longwords are swapped.

3 Longword Swap Combination of modes 1 and 2. Byte 11 in a longword
becomes byte 00, 10 becomes 01, 01 becomes 10, and 00
becomes 11.

D64 Swap Used only in D64 block mode transfers. Swaps the order
that the longwords are taken from or put into memory
over the PCI bus. For example, when enabled with a
mode 3 swap, byte 000 in a quadword becomes byte 111,
that is, the binary byte address is inverted.

 VME Interface 3–23

Figure 3–7 Swap Modes

3.7.2 VIC64 Byte Swapping

When transfers of less than complete longwords are done to or from the VMEbus,
the VIC64 chip, as a VMEbus master, drives the data to and from the VMEbus.
The data must be driven to certain VMEbus lanes depending on the data width.
This is shown in Figure 3–8.

Mode 0: No swap

D0

D32
11

10

01

00

00

01

10

11

Little
Endian

Byte Add.

Mode 1: Byte swap

D0

D32
11

10

01

00

00

01

10

11

Mode 3: Longword swap

D0

D32
11

10

01

00

00

01

10

11

Mode 2: Word swap

D0

D32
11

10

01

00

00

01

10

11

D0

D32
A0

A32

000

011

100

111

000

111a
b
c
d

e
f
g
h

a
b
c
d

e
f
g
hSwapper

Mode 3,
D64 swap
disabled

time

D64 swap illustrated in combination with mode 3 longword swap.

Big
Endian

Byte Add.

Little
Endian

Byte Add.

Big
Endian

Byte Add.

Little
Endian

Byte Add.

Big
Endian

Byte Add.

Little
Endian

Byte Add.

Big
Endian

Byte Add.

PCI longword transfers
Little Endian

D64 BLT transfer
Big Endian

D0

D32
A0

A32

000

011

100

111

000

111a
b
c
d

e
f
g
h

e
f
g
h

a
b
c
dSwapper

Mode 3,
D64 swap
enabled

time

PCI longword transfers
Little Endian

D64 BLT transfer
Big Endian

ML013307

3–24 VME Interface

Figure 3–8 Big Endian VME Byte Lane Formats

The longword transfers, tribyte transfers, and unaligned word transfers use the
byte lanes in the same way. However, when the low word in a longword is trans-
ferred, the data is switched to or from its usual lanes D<31:16> to or from
D<15:0>. Byte transfers in the low word of a longword are swapped in a similar
way.

The single data transfers, D64, are a special case. The VIC64 chip packs the data
to form quadwords in the CY7C964 chips and on the VMEbus. Only full quad-
word block mode transfers are allowed in D64 mode.

Table 3–10 shows the local bus address and size signals used for the DC7407
chip’s swap modes when that chip is master of the local bus. When consulting the
table, keep the following in mind:

• Cycles in which data moves to or from the D0-16 lane are marked with “L”.

• Cycles that would cause a noncontiguous arrangement of bytes on the VME-
bus are not allowed and are aborted on the PCI bus.

• No cycles are generated for PCI transfers with noncontiguous PCI byte
enables, but these cycles are included in the table for completeness.

Table 3–10 PCI BE# to Local A1,0 and SIZ1,0 Translation for Swap Modes

PCI BE#
<3:0>

Mode 0 No
Swap
A1,0SIZ1,0

Mode 1 Byte
Swap
 A1,0 SIZ1,0

Mode 2 Word
Swap
A1,0 SIZ1,0

Mode 3 Longword
Swap A1,0 SIZ1,0

1111 No cycle No cycle No cycle No cycle

1110 00 01 L 01 01 L 10 01 11 01

1101 01 01 L 00 01 L 11 01 10 01

1011 10 01 11 01 00 01 L 01 01 L

0111 11 01 10 01 01 01 L 00 01 L

1100 00 10 L 00 10 L 10 10 10 10

ML013371

byte 3

byte 2

byte 1

byte 0

byte 3byte 2

byte 1byte 0

byte 2byte 1

byte 0 byte 2byte 1

byte 1 byte 3byte 2

byte 1 byte 3byte 2byte 0

byte 5 byte 7byte 6byte 4byte 1 byte 3byte 2byte 0

D0D31A0A31

 VME Interface 3–25

As a VMEbus slave or during DMA-driven block mode transfers, the VIC64 chip
drives the local bus address lines and the DC7407 chip generates the byte-enable
combinations to drive onto the PCI bus. In some cases, the translations may result
in noncontiguous byte-enable arrangements on the PCI bus. These are passed to
the PCI bus with the corresponding byte enables asserted. As Table 3–11 shows,
the data for byte and aligned words is always received on the data lines D[15:0].

1001 01 10 Noncontig Noncontig 01 10

0011 10 10 10 10 00 10 L 00 10 L

1000 00 11 Noncontig Noncontig 01 11

0001 01 11 Noncontig Noncontig 00 11

0000 00 00 00 00 00 00 00 00

0101 Noncontig Noncontig Noncontig Noncontig

1010 Noncontig Noncontig Noncontig Noncontig

0110 Noncontig 01 10 01 10 Noncontig

0010 Noncontig 01 11 00 11 Noncontig

0100 Noncontig 00 01 11 Noncontig

Table 3–11 Local Bus A1,0 and SIZ1,0 to PCI BE# Translation

Local Bus
A1,0 SIZ1,0

Data
Mode 0
BE#

Mode 1
BE#

Mode 2
BE#

Mode 3
BE#

00 00 D[31:0} 0000 0000 0000 0000

00 11 D[31:8] 1000 0100 0010 0001

01 11 D[23:0] 0001 0010 0100 1000

00 10 D[15:0] L 1100 1100 0011 0011

01 10 D[23:8] 1001 0110 0110 1001

10 10 D[15:0] 0011 0011 1100 1100

00 01 D[15:8] L 1110 1101 1011 0111

01 01 D[7:0] L 1101 1110 0111 1011

10 01 D[15:8] 1011 0111 1110 1101

11 01 D[7:0] 0111 1011 1101 1110

Table 3–10 PCI BE# to Local A1,0 and SIZ1,0 Translation for Swap Modes (Continued)

PCI BE#
<3:0>

Mode 0 No
Swap
A1,0SIZ1,0

Mode 1 Byte
Swap
 A1,0 SIZ1,0

Mode 2 Word
Swap
A1,0 SIZ1,0

Mode 3 Longword
Swap A1,0 SIZ1,0

 System Interrupts 4–1

 4
System Interrupts

This chapter discusses the following:

• An overview of system interrupts, Section 4.1

• Interrupts handled by the Xilinx controller, Section 4.2

• Interrupts handled by the VIC64 chip, Section 4.3

• Interrupts handled by the SIO chip, Section 4.4

• Module resets, Section 4.5

4.1 Overview of System Interrupts

The 21164 microprocessor uses seven interrupt request lines. The seven interrupt
request lines are identical, asynchronous, level-sensitive, and can be masked indi-
vidually by PALcode. Table 4–1 lists each interrupt request line with its assigned
interrupt source and the types of interrupts it handles.

Figure 4–1 shows a schematic overview of how the Alpha VME 5/352 and 5/480
SBCs handle interrupts. As the figure shows, interrupts are routed to the CPU
through the following interrupt controllers:

• Xilinx interrupt controller

• VIC64 chip system interrupt controller

Table 4–1 CPU Interrupt Assignments

CPU Interrupt
Request Line

Interrupt Source Types of Interrupts Handled

CPU_IRQ0 Interrupt registers 3
and 4

PCI device interrupts from SCSI
devices, Ethernet controllers, multi-
function PMC options, the SIO chip,
and VME interrupts [3:1]

CPU_IRQ1 Interrupt register 2 PCI device INTA interrupts from PMC
options and VME interrupts [6:4]

CPU_IRQ2 Interrupt register 1 VIP location monitor status and the 1
ms heartbeat timer

CPU_IRQ3 Interrupt register 1 Interval timer, VMEbus reset, VME-
bus interrupt 7, VIP/VIC error and sta-
tus, and periodic real-time timer

MCHK_HALT_IRQ4 82378 SIO chip nonmaskable interrupt

SYS_MCHK_IRQ 21172-CA CIA Chip

CIA_INT

4–2 System Interrupts

• SIO chip programmable interrupt controller

Figure 4–1 Block Diagram of the Interrupt Logic

VIC_IPL2

VIC_IPL1

VIC_IPL0

VME Reset

Interval Timer IRQ

Periodic RT Timer

Timer #1 IRQ

1 ms Heartbeat Timer

PMC0 IRQA

PMC1 IRQA

PMC0 IRQB

PMC1 IRQB

PMC0 IRQC

PMC1 IRQC

PMC0 IRQD

PMC1 IRQD

SCSI IRQ

Ethernet IRQ

SIO IRQ

(Super I/O) IRQ <7:3>

(Mouse) IRQ12

(Keyboard) KB_IRQ

PCISERR

HALT

SIO

NMI

VME Connectors

VME_IRQ1
through

VME_IRQ7

Interrupt Priority
Lines VIC64

DC7407 (VIP)

XILINX
Interrupt

Controller
CPU_IRQ3

CPU_IRQ2

CPU_IRQ1

CPU_IRQ0

CPU
21164

VIPSTATUS IRQ

VIPERROR IRQ

ML013320

CIA

SYS_MCHK_IRQ

MCHK_HALT_IRQ

POWER_FAIL_IRQ

CIA_ERROR

CIA_INT

 System Interrupts 4–3

4.2 Interrupts Handled by the Xilinx Controller

Four interrupt/mask registers in the Xilinx field-programmable gate array (FPGA)
generate the interrupt requests that the CPU receives on interrupt request lines 0
through 3.

You can mask each interrupt individually by setting the appropriate bit in the
interrupt/mask register. Interrupts that the VME subsystem generates also need to
be masked in the VIC64 chip. Disable an interrupt by writing a 1 to the appropri-
ate bit position in the interrupt/mask register. Enable an interrupt by writing 0 to
the appropriate bit position.

To check the state of the interrupts associated with a specific interrupt/mask regis-
ter, read the register. A read operation returns the state of the interrupts regardless
of which mask bits are set. A 1 indicates that the interrupt source has asserted an
interrupt.

For more detail on the interrupt/mask registers, see Section 5.4.3.3.

Table 4–2 Mapping of Interrupt/Mask Registers to Interrupt Request Lines

Register Bits
Interrupt Request
Line

Interrupt/mask 1 <0> - VME reset
<1> - VME interrupt priority level 6
<2> - Interval timer
<3> - Periodic heartbeat timer

CPU_IRQ3

<4> - VME interrupt priority level 5
<5> - 1 ms heartbeat timer

CPU_IRQ2

Interrupt/mask 2 <0> - VME interrupt priority level 4
<1> - PMC 0 interrupt request A
<2> - PMC 1 interrupt request A

CPU_IRQ1

Interrupt/mask 3 <0> - VME interrupt priority level 5
<1> - SIO interrupt request
<2> - Ethernet controller interrupt request
<3> - SCSI controller interrupt request
<4> - PMC 0 interrupt request B
<5> - PMC 1 interrupt request B
<6> - PMC 0 interrupt request C
<7> - PMC 1 interrupt request C

CPU_IRQ0

Interrupt/mask 4 <0> - PMC 0 interrupt request D
<1> - PMC 1 interrupt request D

CPU_IRQ0

4–4 System Interrupts

4.3 Interrupts Handled by the VIC64 Chip

The VIC64 chip system interrupt controller handles 19 interrupt sources. You can
program each source individually to any of seven interrupt priority levels (IPLs).
The chip stores an IPL in an interrupt control register (ICR). Table 4–3 shows the
fixed relative ranking for interrupt requests that the chip uses to decide which
interrupt is to be reported if multiple interrupts are pending.

The VIC64 chip passes VME interrupts to the CPU by way of the interrupt/mask
registers. When the CPU identifies a VME interrupt, the CPU initiates a read of
the VIP_IRR register to retrieve the interrupt vector from the VIC/DC7407. This
read operation generates a local bus interrupt acknowledge (IACK) cycle at the
pins of the VIC64 chip. When the chip detects the IACK cycle, the chip responds
by returning the vector and IPL of the highest ranking active interrupt request to
the CPU. (The vector is pre-pended, using bits <10:8>, with the IPL of the inter-
rupt.)

Table 4–3 VIC64 Chip Interrupt Ranking

Rank Interrupt CSRs

19 DC7407 error VIC_LICR7, VIC_LIVBR

18 VME interface status or error VIC_EGICR, VIC_EGIVBR

17 Not used

16 Not used

15 Not used

14 Not used

13 DC7407 status VIC_LICR2, VIC_LIVBR

12 Not used

11 Interprocessor communications
global switch

VIC_ICGSICR, VIC_ICGSIVBR

10 Interprocessor communications
module switch

VIC_ICMSICR, VIC_ICMSIVBR

9 VMEbus IRQ7* VIC_IRQ7ICR

8 VMEbus IRQ6* VIC_IRQ6ICR

7 VMEbus IRQ5 VIC_IRQ6ICR

6 VMEbus IRQ4* VIC_IRQ6ICR

5 VMEbus IRQ3* VIC_IRQ6ICR

4 VMEbus IRQ2* VIC_IRQ6ICR

3 VMEbus IRQ1 VIC_IRQ6ICR

2 DMS status VIC_DSICR, VIC_EGIVBR

1 VME IACK VIC_IICR, VIC_EGIVBR

 System Interrupts 4–5

4.3.1 Local Device Interrupts

The VIC64 chip can support up to seven interrupt sources. In Alpha VME 5/352
and 5/480 SBCs, however, the chip supports only the following two sources:

• DC7407 VIP status

• DC7407 VIP errors

Each of the interrupt sources has an associated interrupt control register (ICR) and
vector register. You can use the ICRs to disable interrupts of a particular source or
assign IPLs. Bit <7> disables the interrupt source. Bits <3:0> specify the IPL.

The vectors associated with the interrupt sources consist of eight bits and have a
single common root that is modified so each device has a unique vector. Bits
<7:3> of a given vector are programmable, while bits <2:0> uniquely identify an
interrupt.

4.3.2 VMEbus Interrupts

When configured as the system controller, the VIC64 chip handles the standard 7-
level prioritized interrupt scheme of the VMEbus.

Within the system, VMEbus interrupts compete (based on IPL and ranking) with
other system interrupts. If, during a local bus interrupt acknowledge (IACK)
cycle, a VMEbus interrupt source is selected for processing, the VIC64 chip ini-
tiates a VMEbus IACK cycle to retrieve the vector of the source that interrupted
the bus from the VIP_IRR register. The vector is then passed to the 21164 micro-
processor.

It is assumed that a VMEbus interrupt source releases the interrupt request line
when it receives the VMEbus IACK or as a result of the action (write to register,
and so forth) of the interrupt service routine (ISR).

4.3.3 Status/Error Interrupts

Internal to the VIC64 chip are conditions and errors that can be reported as an
interrupt request. In the case of the following conditions, you have the option of
enabling them to generate system interrupts:

• VMEbus SYSFAIL* assertion

• VMEbus ACFAIL* assertion

• VMEbus arbitration timeout

• VIC64 write post failure

• DMA completion

• VMEbus IACK cycle in response to a VMEbus interrupt generated by the
CPU

The first four conditions in the preceding list use the VIC64 error group ICR
(VIC_EGICR), which is different than ICRs already discussed. In the case of this
ICR, a single IPL is assigned for all events, while the higher order bits (<7:4>)
allow you to disable individual conditions selectively.

4–6 System Interrupts

The DMA status ICR (VIC_DMASICR) allows the signalling of DMA comple-
tion. If the interrupt is enabled, an interrupt is generated at a programmed IPL
when DMA transactions complete.

For local (on-board) interrupts generated by the VIC64 chip (the VME interface
detects a VMEbus IACK cycle to itself), the chip notifies the CPU by using the
VMEbus interrupter ICR (VIC_IICR). Like with most other ICRs, you can dis-
able the generation of local interrupts and set the IPL programmatically.

Yet another register, the VIC error group interrupt vector base register, allows you
to control the reporting of DMA errors and “interrupter-sees-IACK” interrupts.
The vector root of this register, bits <7:3>, are programmable while the least sig-
nificant three bits vary for each of the following conditions:

This arrangement of bit fields provides a unique interrupt vector for each error and
status.

4.4 Interrupts Handled by the SIO Chip

The 82378 SIO chip delivers interrupts from the mouse, keyboard, and Super I/O
(37C665) to the CPU’s interrupt/mask register.

For programming details of the 8259, see the SIO chip (82378ZB) and 8259 data
sheets.

4.4.1 Nonmaskable System Events

In addition to Nbus device interrupts, the SIO chip also sends a nonmaskable
interrupt (NMI) to CPU MCHK_HALT_IRQ.

The front panel HALT button, the watchdog HALT, and a PCI SERR are the only
such nonmaskable events. These events are handled through the SIO chip, which
contains a NMI control/status register that are polled to determine the NMI rea-
son.

All NMI events should cause a jump to the console entry point without destroying
the software context, and SERR should report an error. If the interrupt reason is a
HALT, the firmware reads the reset reason register to see if the watchdog bit is set.
If set, the HALT is treated as a “save-software-context” watchdog HALT.

The nonmaskable description refers to the CPU’s operation. PAL code never
masks the NMI input pin and the events are considered highest priority. However,
the SIO chip, by default, disables the generation of the interrupt to the CPU so

Bit Settings Condition

000 AC fail

001 Write post fail

010 Arbitration timeout

011 System failure

100 VMEbus IACK received

110 DMA completion

 System Interrupts 4–7

they must be enabled by initialization code. Also, firmware can operate in “HALT-
protected” space. For this to occur, you must disable the NMI delivery either at
the HIER or SIO chip level.

For more detail about the NMI control/status register, see Section 5.4.

4.4.2 CIA Interrupt

The CIA chip asserts the signal CIA_INT to notify the 21164 microprocessor that
the CIA chip has corrected an ECC error. The CIA chip asserts the signal
CIA_ERROR to notify the microprocessor of uncorrectable errors detected by the
CIA chip. Refer to the description of the CIA ERR_MASK register in the Digital
Semiconductor 21172 Core Logic Technical Reference Manual for details.

4.5 Module Resets

The Alpha VME 5/352 and 5/480 SBCs can be reset by four distinct events:

• Power-up

• Front panel switch

• Watchdog timeout

• Assertion of the VMEbus SYSRESET* signal (if enabled)

All on-board logic, except the module-level reset reason register, are reset at the
hardware level by all of these reset events.

The assertion of the VMEbus SYSRESET* signal generates a module reset only
if Switch 3 is closed. This prevents a module configured as a VME system con-
troller from locking into a reset state when it asserts a VME SYSRESET* signal
under software control.

If Switch 3 is open, the VIC64 chip still resets (all internal registers return to their
default state, current transactions are aborted) but the module reset is not gener-
ated. To allow detection of this condition (VIC64 chip only reset), the VME SYS-
RESET* signal is tied to interrupt and interrupt mask register 3<0>.

 System Registers 5–1

 5
System Registers

This chapter provides an example of how to gain access to system registers (Sec-
tion 5.1) and describes system registers associated with the following:

• Ethernet controller, Section 5.2

• SCSI controller, Section 5.3

• SIO chip (82378ZB) and Nbus, Section 5.4

• VME interface, Section 5.5

Note

This chapter does not attempt to provide descriptions of all registers asso-
ciated with these components. The chapter describes only those registers
that are accessible and of use to product users.

5.1 Gaining Access to System Registers

The example in this section shows how to gain access to system registers. The
example shows you how to gain access to the configuration space for the system’s
Ethernet chip. The example shows how to determine the offsets assigned for each
PCI device. Using the offsets, examine each base address register, and for each
base address assigned, look at the relevant specification to find out for what the
specific area is used. See the PCI specification to determine what type of space it
is (for example, I/O, sparse, or dense space).

Access the DECchip 21040 configuration base address registers as follows:

>>>examine pcicfg:00010010 -l

pcicfg: 10010 00010101

>>>examine pcicfg:00010014 -l

pcicfg: 10014 00220100

>>>examine pcicfg:00010018 -l

pcicfg: 10018 00000000

>>>examine pcicfg:0001001c -l

pcicfg: 1001C 00000000

>>>examine pcicfg:00010020 -l

pcicfg: 10020 00000000

>>>examine pcicfg:00010024 -l

pcicfg: 10024 00000000

5–2 System Registers

5.2 Ethernet Controller Registers

Sections 5.2.1 to 5.2.3 describe the following Ethernet controller registers:

• Ethernet controller PCI configuration register, Section 5.2.1

• Ethernet controller control/status registers, Section 5.2.2

• Ethernet ROM control/status register, Section 5.2.3

5.2.1 Ethernet Controller PCI Configuration Registers

The Ethernet controller uses PCI configuration registers to respond to read and
write requests. The 21164 and PCI addresses for these registers follow:

Figure 5–1 shows the PCI configuration space addresses of each register. For
complete register bit definitions, see the DECchip 21040-AA specification.

Figure 5–1 Ethernet Controller PCI Configuration Registers

21164 addresses 87.0001.0000 – 87.0001.00FF

PCI addresses 0000.1000 – 0000.10FF

I/O Base Address (CBIO)

Memory Base Address (CBMA)

Reserved

Reserved

Reserved

N/S (=Not Supported)

Reserved

Reserved

Driver Area (CFDA)

Reserved

Reserved

Device ID = 0002h

Status

Vendor ID = 1011h

Command

Class Code Rev ID

N/SN/S Don't Care Latency Timer

Int LineX X Int Pin

: 00001000

: 00001004

: 00001008

: 0000100C

: 00001010

: 00001014

: 00001018

: 00001028

: 0000102C

: 00001030

: 00001034

: 00001038

: 0000103C

: 00001040

: 00001044 to 000010FC

ML013282

 System Registers 5–3

5.2.2 Ethernet Controller Control/Status Registers

The Ethernet controller has 16 control/status registers (CSRs) that can be accessed
by the PCI host bridge. The CSRs are located in PCI I/O or memory space, are
quadword-aligned, and can only be accessed using longword instructions. Table
5–1 lists the registers, their meaning, and an address that reflects the offset from
the control/status register base address (CBIO, CBMA). See the DECchip 21040-
AA specification for more details.

5.2.3 Ethernet ROM Control/Status Register

The DECchip 21040 Ethernet controller has an Ethernet ROM control/status reg-
ister (CSR9). This register can read the Ethernet ID address for an Alpha VME
5/352 or 5/480 SBC assembly from the SROM. Each read request results in 8-bit
serial read cycles from the register. Write requests reset the register’s pointer to its
first location.

Figure 5–2 shows the Ethernet ROM control/status register.

Table 5–1 Ethernet Controller Control/Status Registers

Register Meaning Address16

CSR0 Bus mode register xxxx xx00

CSR1 Transmit poll demand register xxxx xx08

CSR2 Receive poll demand register xxxx xx10

CSR3 Rx list base address register xxxx xx18

CSR4 Tx list base address register xxxx xx20

CSR5 Status register xxxx xx28

CSR6 Serial command register xxxx xx30

CSR7 Interrupt mask register xxxx xx38

CSR8 Missed frame register xxxx xx40

CSR9 ENET ROM register xxxx xx48

CSR10 Reserved xxxx xx50

CSR11 Full-duplex register xxxx xx58

CSR12 SIA status register xxxx xx60

CSR13 SIA connectivity register xxxx xx68

CSR14 SIA Tx Rx register xxxx xx70

CSR15 SIA general register xxxx xx78

5–4 System Registers

Figure 5–2 Ethernet ROM Control/Status Register (CSR9)

5.3 SCSI Controller Registers

Sections 5.3.1 and 5.3.2 describe the following SCSI controller registers:

• SCSI controller PCI configuration registers, Section 5.3.1

• SCSI controller control/status registers, Section 5.3.2

5.3.1 SCSI Controller PCI Configuration Registers

The SCSI controller has two base address registers: one for I/O and one for mem-
ory space. This allows the 128 bytes of registers to be accessible in both the PCI
memory and PCI I/O address spaces. The 21164 and PCI addresses for these reg-
isters follow:

Figure 5–3 shows the PCI configuration space addresses of each register. For
complete register bit definitions, see the SCSI controller specification.

21164 addresses 87.0002.0000 – 87.0002.00FF

PCI addresses 0000.2000 – 0000.20FF

31 30 08 07 06 05 04 03 02 01 00

ML013283

DN - Data Not Valid

Ignored

DT - Data

DECchip 21040 CSR9 (0x48)

 System Registers 5–5

Figure 5–3 SCSI Controller PCI Configuration Registers

5.3.2 SCSI Controller Control/Status Registers

The SCSI controller has 128 accessible bytewide control/status registers (CSRs),
as shown in Table 5–2. These registers are accessible starting at the following
addresses:

• SCSI_IO_BASE in PCI sparse I/O space

• SCSI_MEM_BASE in PCI sparse memory space

For information about how to program these registers, see the PCI local bus spec-
ification.

Table 5–2 SCSI Controller Control/Status Registers

Label R/W Description Offset

SCNTL0 R/W SCSI Control 0 00

SCNTL1 R/W SCSI Control 1 01

SCNTL2 R/W SCSI Control 2 02

SCNTL3 R/W SCSI Control 3 03

SCID R/W SCSI Chip ID 04

SXFER R/W SCSI Transfer 05

SDID R/W SCSI Destination ID 06

GPREG R/W General Purpose 07

I/O Base Address (SCSI_IO_BASE)

Memory Base Address (SCSI_MEM_BASE)

Reserved

Reserved

N/S (=Not Supported)

Reserved

Reserved

Operating registers mapped to bytes 0x80 to 0xFF.

Device ID = 0x0001

Status

Vendor ID = 0x0001

Command

Class Code Rev ID

N/SN/S Don't Care Latency Timer

X X

: 00002000

: 00002004

: 00002008

: 0000200C

: 00002010

: 00002014

: 00002028

: 0000202C

: 00002030

: 00002034

: 00002038

: 0000203C

: 00002040 to 000020FC

ML013811

X X

5–6 System Registers

SFBR R/W 1st Byte Rx’ed 08

SOCL R/W Output Cntrl Latch 09

SSID R Selector ID 0A

SBCL R/W Bus Control Line 0B

DSTST R DMA Status 0C

SSTAT0 R SCSI Status 0 0D

SSTAT1 R SCSI Status 1 0E

SSTAT2 R SCSI Status 2 0F

DSA R/W Data Structure Addr 10-13

ISTAT R/W Interrupt Status 14

RESERVED 15-17

CTEST0 R/W Chip Test 0 18

CTEST1 R Chip Test 1 19

CTEST2 R Chip Test 2 1A

CTEST3 R Chip Test 3 1B

TEMP R/W Temporary Stack 1C-1F

20

CTEST4 R/W Chip Test 4 21

22

CTEST6 R/W Chip Test 5 23

DBC R/W DMA Byte Counter 24-26

DCD R/W DMA Command 27

DNAD R/W DMA Next Add for Data 28-2B

DSP R/W DMA SCRIPTS Pointer 2C-2F

30-33

ScratchA R/W General Purpose Scratch
Pad

34-37

DMODE R/W DMA Mode 38

DIEN R/W DMA Interrupt Enable 39

DWT R/W DMA Watchdog Timer 3A

DCNTL R/W DMA Control 3B

ADDER R Sum o/p of internal adder 3C-3F

SIEN0 R/W SCSI Interrupt Enable 0 40

SIEN1 R/W SCSI Interrupt Enable 1 41

Table 5–2 SCSI Controller Control/Status Registers (Continued)

Label R/W Description Offset

 System Registers 5–7

SIST0 R SCSI Interrupt Status 0 42

SIST1 R SCSI Interrupt Status 1 43

SLPAR R/W SCSI Longitudinal Parity 44

SWIDE R SCSI Wide Residue Data 45

46-47

STIME0 R/W SCSI Timer 0 48

STIME1 R/W SCSI Timer 1 49

STEST0 R SCSI Test 0 4C

STEST1 R SCSI Test 1 4D

STEST2 R/W SCSI Test 2 4E

STEST3 R/W SCSI Test 3 4F

SIDL R SCSI Input Data Latch 50-51

SODL R/W SCSI Output Data Latch 54-55

SBDL R SCSI Bus Data Lines 58-59

ScratchB R/W General Purpose Scratch
Pad

5C-5F

Table 5–2 SCSI Controller Control/Status Registers (Continued)

Label R/W Description Offset

5–8 System Registers

5.4 SIO Chip and Nbus Registers

The bottom 64K of PCI sparse I/O address space is mapped onto the Nbus for use
by the following:

• SIO PCI/ISA Bridge (82378ZB) registers

• SIO Chip nonmaskable interrupt control/status registers

• Module registers

• Super I/O (FDC 37C665 GT) registers

• TOY clock, watchdog timer, and NVRAM registers

• Interval timing registers

The 21164 addresses for these registers are as follows:

The 21164 microprocessor can access the Nbus devices in I/O space on a byte-by-
byte basis. Alpha VME 5/352 and 5/480 SBCs only support single-byte accesses
to all Nbus locations.

Most resources of the Nbus are accessed as the least-significant byte of aligned
longwords. The exceptions are the time-of-year (TOY) clock and the ROM. Both
of these regions are contiguous bytes. When accessing the Nbus, only one PCI
byte enable is asserted.

5.4.1 SIO Chip PCI Configuration Space

The SIO chip does not have any base address registers. Instead, the SIO chip neg-
atively decodes fixed regions in both PCI I/O and PCI memory space. However,
the following registers are used for PCI bus and Nbus control:

• PCI control register

• ISA controller recovery timer register

• ISA clock divisor register

The 21164 PCI configuration addresses for these register areas are as follows:

Figure 5–4 shows the layout of the SIO chip configuration space with these regis-
ters.

21164 addresses 85.8000.0000 – 85.801F.FFE0

21164 addresses 87.0003.0000 – 87.0003.1FE0

PCI addresses 0000.4000 – 0000.40FF

 System Registers 5–9

Figure 5–4 SIO Configuration Block

Table 5–3 shows the mapping of the SIO PCI-to-Nbus bridge (82378ZB) operat-
ing address space.

Table 5–3 SIO PCI-to-Nbus Bridge Operating Address Space

 Offset Physical Address Register

000 85.C000.0000 DMA1 CH0 base and current address

001 85.C000.0020 DMA1 CH0 base and current count

002 85.C000.0040 DMA1 CH1 base and current address

003 85.C000.0060 DMA1 CH1 base and current count

004 85.C000.0080 DMA1 CH2 base and current address

005 85.C000.00A0 DMA1 CH2 base and current count

006 85.C000.00C0 DMA1 CH3 base and current address

007 85.C000.00E0 DMA1 CH3 base and current count

008 85.C000.0100 DMA1 status and command

009 85.C000.0120 DMA1 write request

00A 85.C000.0140 DMA1 write single mask bit

00B 85.C000.0160 DMA1 write mode

00C 85.C000.0180 DMA1 clear byte pointer

00D 85.C000.01A0 DMA1 master clear

00E 85.C000.01C0 DMA1 clear mask

00F 85.C000.01E0 DMA1 read/write all mask register bits

020 85.C000.0400 INT 1 control

Reserved

PCI Control

MEMCS# Control (not used)

ISA Addr Decode (not used)

Reserved

MEMCS# Attributes (not used)

Reserved

Device ID = 0484h

Status

Vendor ID = 8086h

Command

Class Code Rev ID

: 00004000

: 00004004

: 00004008

: 0000400C to 0000403F

: 00004040

: 00004044

: 00004048

: 0000404C

: 00004050

: 00004054

: 00004058 to 000040FF

ML013285

ISA Bus Control

5–10 System Registers

021 85.C000.0420 INT 1 mask

040 85.C000.0800 Timer counter 1 - counter 0 count

041 85.C000.0820 Timer counter 1 - counter 1 count

042 85.C000.0840 Timer counter 1 - counter 2 count

043 85.C000.0860 Timer counter 1 - command mode

060 85.C000.0C00 Reset Ubus IRQ12

061 85.C000.0C20 NMI status and control

070 85.C000.0E00 CMOS RAM address and NMI mask

078–07B 85.C000.0F18 BIOS timer

080 85.C000.1000 DMA page register reserved

081 85.C000.1020 DMA channel 2 page

082 85.C000.1040 DMA channel 3 page

083 85.C000.1060 DMA channel 1 page

084 85.C000.1080 DMA page register reserved

085 85.C000.10A0 DMA page register reserved

086 85.C000.10C0 DMA page register reserved

087 85.C000.10E0 DMA channel 0 page

088 85.C000.1100 DMA page register reserved

089 85.C000.1120 DMA channel 6 page

08A 85.C000.1140 DMA channel 7 page

08B 85.C000.1160 DMA channel 5 page

08C 85.C000.1180 DMA page register reserved

08D 85.C000.11A0 DMA page register reserved

08E 85.C000.11C0 DMA page register reserved

08F 85.C000.11E0 DMA low page register refresh

090 85.C000.1200 DMA page register reserved

092 85.C000.1240 Port 92

094 85.C000.1280 DMA page register reserved

095 85.C000.12A0 DMA page register reserved

096 85.C000.12C0 DMA page register reserved

098 85.C000.1300 DMA page register reserved

09C 85.C000.1380 DMA page register reserved

09D 85.C000.13A0 DMA page register reserved

09E 85.C000.13C0 DMA page register reserved

Table 5–3 SIO PCI-to-Nbus Bridge Operating Address Space (Continued)

 Offset Physical Address Register

 System Registers 5–11

09F 85.C000.13E0 DMA low page register refresh

0A0 85.C000.1400 INT2 control

0A1 85.C000.1420 INT2 mask

0C0 85.C000.1800 DMA2 CH0 base and current address

0C2 85.C000.1840 DMA2 CH0 base and current count

0C4 85.C000.1880 DMA2 CH1 base and current address

0C6 85.C000.18C0 DMA2 CH1 base and current count

0C8 85.C000.1900 DMA2 CH2 base and current address

0CA 85.C000.1940 DMA2 CH2 base and current count

0CC 85.C000.1980 DMA2 CH3 base and current address

0CE 85.C000.19C0 DMA2 CH3 base and current count

0D0 85.C000.1A00 DMA2 status(r) and command(w)

0D2 85.C000.1A40 DMA2 write request

0D4 85.C000.1A80 DMA2 write single mask bit

0D6 85.C000.1AC0 DMA2 write mode

0D8 85.C000.1B00 DMA2 clear byte pointer

0DA 85.C000.1B40 DMA2 master clear

0DC 85.C000.1B80 DMA2 clear mask

0DE 85.C000.1BC0 DMA2 read/write all mask register bits

0F0 85.C000.1E00 Coprocessor error

372 85.C000.6E40 Secondary floppy disk digital output

3F2 85.C000.7E40 Primary floppy disk digital output

40A 85.C000.8140 Scatter/gather interrupt status

40B 85.C000.8160 DMA1 extended mode

410 85.C000.8200 CH0 scatter/gather command

411 85.C000.8220 CH1 scatter/gather command

412 85.C000.8240 CH2 scatter/gather command

413 85.C000.8260 CH3 scatter/gather command

415 85.C000.82A0 CH5 scatter/gather command

416 85.C000.82C0 CH6 scatter/gather command

417 85.C000.82E0 CH7 scatter/gather command

418 85.C000.8300 CH0 scatter/gather status

419 85.C000.8320 CH1 scatter/gather status

41A 85.C000.8340 CH2 scatter/gather status

Table 5–3 SIO PCI-to-Nbus Bridge Operating Address Space (Continued)

 Offset Physical Address Register

5–12 System Registers

5.4.1.1 PCI Control Register

The PCI control register enables the SIO chip to respond to PCI IACK cycles and
to set the expected assertion speed of the DEVSEL# signal so that the subtractive
decode sample point can be set. The PCI posted write buffer is also enabled. Table
5–4 lists the fields of the PCI control register.

41B 85.C000.8360 CH3 scatter/gather status

41D 85.C000.83A0 CH5 scatter/gather status

41E 85.C000.83C0 CH6 scatter/gather status

41F 85.C000.83E0 CH7 scatter/gather status

420–423 85.C000.8418 CH0 scatter/gather descriptor table pointer

424–427 85.C000.8498 CH1 scatter/gather descriptor table pointer

428–42B 85.C000.8518 CH2 scatter/gather descriptor table pointer

42C–42F 85.C000.8598 CH3 scatter/gather descriptor table pointer

434–437 85.C000.8698 CH5 scatter/gather descriptor table pointer

438–43B 85.C000.8718 CH6 scatter/gather descriptor table pointer

43C–43F 85.C000.8798 CH7 scatter/gather descriptor table pointer

481 85.C000.9020 DMA CH2 high page

482 85.C000.9040 DMA CH3 high page

483 85.C000.9060 DMA CH1 high page

487 85.C000.90E0 DMA CH0 high page

489 85.C000.9120 DMA CH6 high page

48A 85.C000.9140 DMA CH7 high page

48B 85.C000.9160 DMA CH5 high page

4D6 85.C000.9AC0 DMA2 extended mode

Table 5–4 PCI Control Register

Field Name Description

<5> Must be set to a 1 (default).

<4:3> Must be set to <00> to allow slow
sample point timing for negative
decode.

<2> PCI Posted Write Buffer
Enable

Must be set to 1.

All other bits must
be 0.

Table 5–3 SIO PCI-to-Nbus Bridge Operating Address Space (Continued)

 Offset Physical Address Register

 System Registers 5–13

5.4.1.2 ISA Controller Recovery TImer Register

The ISA controller recovery timer register (offset + 0x4C) is one of two bytewide
registers used as the Nbus control word.

The I/O recovery mechanism in the SIO chip is used to add recovery delay
between the I/O cycles originating in the PCI bus and directed to the Nbus. Since
only 8-bit cycles are supported, only bits <6:3> of the register are significant. Bits
<6:3> define the number of system-clock ticks inserted between back-to-back
cycles. The required value for DIGITAL Alpha VME 4 is 1001, representing one
additional system-clock tick.

5.4.1.3 ISA Clock Divisor Register

The ISA clock divisor register (offset + 0x4D) is one of two bytewide registers
used as the Nbus control word. This register enables positive decode for BIOS
ROM and the PCI-to-ISA clock divisor. For DIGITAL Alpha VME 4, the BIOS
ROM region must not be positively decoded.

Bit <6> must be cleared and bits <2:0> must be 000 for a 32 MHz PCI system. All
other bits must be 0.

5.4.2 SIO CHIP Nonmaskable Interrupt Control/Status Register

The 82378 SIO chip handles nonmaskable interrupts (NMIs), such as those gener-
ated by the front panel HALT button. The chip contains an NMI control/status
register that stores NMI vectors. You can poll this register to determine the NMI
reason. Figure 5–5 shows the NMI control/status register and Table 5–5
describes the register fields and settings.

Figure 5–5 Nonmaskable Interrupt Control/Status Register
31 08 07 06 05 04 03 02 01 00

ML013458

HALT Status

Ignore on read

Don't Care

HALT Enable

SERR Enable

Ignore on read

SERR # Status

5–14 System Registers

Note

The SIO chip specification specifies that HALT events are reported by the
SIO chip’s IOCHK# pin.

All on-board logic, except the module-level reset reason register, are hardware
reset by all of these reset events.

The VMEbus SYSRESET* assertion generates a module reset only if Switch 3 is
closed. This prevents a module configured as a VME system controller from lock-
ing into a reset state when it issues a VME SYSRESET* under software control.

If Switch 3 is open, the VIC64 chip still resets (all internal registers return to their
default state, current transactions are aborted) but the module reset is not gener-
ated. To allow detection of this condition (VIC64 chip only reset), the VME SYS-
RESET* signal is tied to interrupt and interrupt mask register 3<0>.

Table 5–5 Nonmaskable Interrupt Control/Status Register Bits

Field Name Type Description

<7> SERR# Status RO Bit <7> is set if a system SERR has occurred.
The interrupt in response to this event is
enabled by clearing bit <2> of this register to a
0. Bit <7> can be cleared only by setting the
SERR enable bit (bit <2>) to a 1 and then back
to a 0. Always write this bit as a 0.

<6> HALT Status RO Bit <6> is set when either the watchdog timer
expires (and is enabled) or the HALT switch is
toggled. This interrupt is enabled by clearing bit
<3> of this register to 0. Bit <6> should always
be written as a 0. To clear this status bit, set bit
<3>, and then clear it again to reenable this
NMI event reporting.

<5:4> — R/W Ignore on read. Writes must be 0.

<3> HALT Enable R/W When set to a one, HALTs are disabled and the
halt status bit in this register is cleared. When
cleared (reset default), HALTs are enabled as
NMI events.

<2> SERR Enable R/W When set to a 1, SERR reporting is disabled and
the SERR status bit in this register is cleared.
When cleared (reset default), SERRs are
enabled as NMI events.

<1:0> — R/W Ignore on read. Writes must be 0.

 System Registers 5–15

5.4.3 Module Registers

Seventeen miscellaneous registers are implemented in the module logic for a vari-
ety of read/write functions. These registers are located in PCI sparse I/O space
within the SIO chip address block and are listed in Table 5–6. Table 5–6 also lists
the section that describes each register.

5.4.3.1 Module Display Control Register

The module display control register (MOD_DISP_REG) is read from and written
to by a 5x7 dot-matrix intelligent display device. The display device supports 96
characters. The 21164 address and Nbus offset for the module display register are
as follows:

Figure 5–6 shows the layout of the register.

Table 5–6 Module Registers

Register 21164 Address Nbus Offset Section

Module display control 85.8001.0000 800 5.4.3.1

Module configuration 85.8001.0020 801 5.4.3.2

Interrupt 1 85.8001.0040 802 5.4.3.3

Interrupt 2 85.8001.0060 803 5.4.3.3

Interrupt 3 85.8001.0080 804 5.4.3.3

Interrupt 4 85.8001.00A0 805 5.4.3.3

Memory configuration 0 85.8001.00C0 806 5.4.3.4

Memory configuration 1 85.8001.00E0 807 5.4.3.4

Memory configuration 2 85.8001.0100 808 5.4.3.4

Memory configuration 3 85.8001.0120 809 5.4.3.4

Reset reason 1 85.8001.0140 80A 5.4.3.9

Memory identification 85.8001.0160 80B 5.4.3.5

Heartbeat (clear-interrupt) 85.8001.0180 80C 5.4.3.6

Module control 85.8001.01A0 80D 5.4.3.7

Reset reason 2 85.8001.01C0 80E 5.4.3.9

Bcache configuration 85.8001.01E0 80F 5.4.3.8

Reset reason 3 85.8001.05C0 82E 5.4.3.9

21164 address 85.8001.0000

Nbus offset 800

5–16 System Registers

Figure 5–6 Module Display Control Register

The display character is stored in bits <6:0>. The most significant bit (bit <7>) can
be set to increase the brightness of the display.

Figure 5–7 shows the display’s character set. The numbers along the left-hand
edge are the most-significant hexadecimal digit of the character number, while the
least-significant digit is along the top. For example, the character “W” is dis-
played by writing a value of 0x57 to the display register. A value of 0xD7 displays
“W” with full brightness.

After a system reset, the display defaults to character 0x7F (“:::”) at full bright-
ness. During a system reset, all dots in the matrix are lit.

Figure 5–7 Display Character Set

5.4.3.2 Module Configuration Register

The module configuration register (MOD_CONFIG_REG) is a read-only register
that contains information relating to module revision, CPU speed, and SCSI
options. The information read from this register is hardwired on the module and is
unaffected by resets. A write of 1 to bit 0 of this register clears the Periodic Real-
Time timer.

The 21164 address and Nbus offset for the register are as follows:

Figure 5–8 shows the module configuration register and Table 5–7 describes the
register fields.

21164 address 85.8001.0020

Nbus offset 801

31 08 07 06 05 04 03 02 01 00

ML013287

Brightness Control

Display Character

Don't CareMOD_DISP_REG :

p q r s t u v w x y z { } ~ :::

a b c d e f g h i j k m n ol

P Q R S T U V W X Y Z [] ^ _\

@ A B C D E F G H I J K M N OL

0 1 2 3 4 5 6 7 8 9 : ; = > ?<

! " # $ % &
,

() * + - . /,

,

B L A N K

0 1 2 3 4 5 6 7 8 9 A B D E FC

7

6

5

4

3

2

0,1

ML013814

 System Registers 5–17

Figure 5–8 Module Configuration Register

5.4.3.3 Interrupt/Mask Registers

The cpu_irq[3:0] are generated by four interrupt/mask registers contained in a Xil-
inx FPGA, as shown in Figures 5–9 through 5–12.

• cpu_irq3 is controlled by bits [3:0] in interrupt/mask register 1

• cpu_irq2 is controlled by bits [5:4] in interrupt/mask register 1

• cpu_irq1 is controlled by bits [2:0] in interrupt/mask register 2

• cpu_irq0 is controlled by bits [7:0] in interrupt/mask register 3 and bits [1:0]
in the interrupt/mask register 4

Table 5–7 Module Configuration Register

Field Name Type Description

<1:0> Reserved

<2> Debug RO If 0, the SROM starts the mini-debugger. If 1, the
SROM starts the console.

<4:3> Module ID RO Identifies the I/O module that is installed according
to the following module definitions:

00 – Type I
01 – Type II
10 – Reserved
11 – Reserved

<6:5> CPU ID RO Determines the speed of the CPU according to the
following definitions:

00 – 352 MHz
01 – 480 MHz
10 – Reserved
11 – Reserved

31 08 07 06 05 04 03 02 01 00

ML013288

Reserved

CPU ID

Don't CareMOD_CONFIG_REG :

Module ID

Debug Mode

Reserved

5–18 System Registers

Figure 5–9 Interrupt/Mask Register 1

Figure 5–10 Interrupt/Mask Register 2

Figure 5–11 Interrupt/Mask Register 3

Figure 5–12 Interrupt/Mask Register 4

07 06 05 04 03 02 01 00

ML013317

Reserved

802 :

IMS Heartbeat Timer

VME IPL5

Periodic Heartbeat Timer

Interval Timer

VME IPL6

VME Reset

07 03 02 01 00

ML013318

Reserved

803 :

PMC1 IRQA

PMC0 IRQA

VME IPL4

07 06 05 04 03 02 01 00

ML013319

PMC1 IRQ C

PMC0 IRQ C

804 :

PMC1 IRQ B

PMC0 IRQ B

SCSI IRQ

ETHER IRQ

SIO IRQ

VME IPL3

07 02 01 00

ML013321

Reserved

805 :

PMC1 IRQD

PMC0 IRQD

 System Registers 5–19

5.4.3.4 Memory Configuration Registers 0, 1, 2, and 3

The memory configuration registers are read-only registers that store the presence
detect (PD) bits of the main memory DIMMs. The 21164 addresses and Nbus off-
sets for registers 0 through 3 are as follows:

Figure 5–13 shows a map of the memory configuration registers and Tables 5–8
through 5–11 show the decode of the presence detect bits stored in the registers.
The information in the tables is an excerpt from the JEDEC Standard Specifica-
tion.

Figure 5–13 Memory Configuration Registers 0-3

Memory Configuration Register 21164 Address Nbus Offset

0 85.8001.00C0 806

1 85.8001.00E0 807

2 85.8001.0100 808

3 85.8001.0120 809

Table 5–8 Presence Detect Bits

Bit PD Bit Description

<3:0> PD 4-1 See Table 5–9.

<4> PD 5 Controls data mode access according to the values listed in
Table 5–10.

<6:5> PD 7-6 Controls speed according to the values listed in Table 5–11.

<7> PD 8 Used to define memory DIMM configuration.

Table 5–9 Presence Detect Bits 4-1

PD Bits
4 3 2 1

Configuration
(Parity/ECC)

DRAM
Organization

RE
Address

CE
Address

Normal
Refresh
(ms)

Slow
Refresh
(ms)

0 1 0 0 1M x 72/80 1M x 4/16 10 10 16 128

0 1 0 1 2M x 72/80 1M x 4/16 10 10 16 128

1 0 1 1 4M x 72 4M x 4 12 11 64 256

1 0 1 1 4M x 80 4M x 4 12 10 64 256

31 08 07 06 05 04 03 02 01 00

ML013315

Presence Detect Bits 1-8

Don't CareMEM_CONFIG_0 :
MEM_CONFIG_1 :
MEM_CONFIG_2 :
MEM_CONFIG_3 :

5–20 System Registers

5.4.3.5 Memory Identification Register

The memory identification register is a read-only register that stores the ID bits of
the main memory DIMMs. The 21164 address and Nbus offset for the register are
as follows:

Table 5–12 describes the register fields.

Figure 5–14 Memory Identification Register

Table 5–10 Presence Detect Bit 5

PD 5 Definition

0 Fast page

1 Fast page with EDO

Table 5–11 Presence Detect 7-6

Bit ID Bit Description

0 1 80 ns

1 0 70 ns

1 1 60 ns

0 0 50 ns

0 1 40 ns

21164 address 85.8001.0160

Nbus offset 80B

31 08 07 06 05 04 03 02 01 00

ML013815

J5
DIMM3 ID0

Don't CareMEM_ID_REG :

J6
DIMM2 ID0

J7
DIMM1 ID0

J8
DIMM0 ID0

DIMM3 ID1

DIMM2 ID1

DIMM1 ID1

DIMM0 ID1

 System Registers 5–21

.

5.4.3.6 Heartbeat Register

The heartbeat register contains a status bit that drives the heartbeat interrupt line
into interrupt register 1<5>. When the heartbeat clock is enabled in the TOY clock
chip, each active (low to high, at a frequency of 1024 Hz) transition sets that status
bit. Writing (data independent) to the heartbeat (clear-interrupt) register clears the
heartbeat status bit and dismisses the interrupt request.

The 21164 address and Nbus offset for the heartbeat register is as follows:

5.4.3.7 Module Control Register 1

Module control register 1 is a read/write register for controlling miscellaneous
module functions. This register is reset to 0 on any system reset. The 21164
address and Nbus offset for module control register 1 is as follows:

Figure 5–15 shows module control register 1 and Table 5–13 describes the register
fields.

Figure 5–15 Module Control Register 1

Table 5–12 Memory ID Bits

Bit ID Bit Description

<6,4,2,0> ID 0 Used to define memory DIMM configuration (see the DIGI-
TAL Alpha VME 5/352 and 5/480 Single-Board Computer
User Manual.

<7,5,3,17> ID 1 Sets the refresh mode according to the following values:
0 - Normal
1 - Self refresh

21164 address 85.8001.0180

Nbus offset 80C

21164 address 85.8001.01A0

Nbus offset 80D

31 08 07 06 05 04 03 02 01 00

ML013289

Timer 0 Mode Enable

Undefined

Don't CareMOD_CNTRL_REG_1 :

Watchdog Reset Enable

Undefined

Flash Switch

Flash Write Enable

Flash Select

Flash Address 20

5–22 System Registers

5.4.3.8 Bcache Configuration Register

The Bcache configuration register is a read-only register that shows the size and
speed of the backup cache. The CPU address and Nbus offset of this register are as
follows:

Figure 5–16 shows the Bcache configuration register and Table 5–14 describes the
register fields.

Table 5–13 Module Control Register 1

Field Name Type Description

<1:0> Flash Address 20
Flash Select

Divide flash ROM into four 1 MB win-
dows. Flash Select divides the ROM into
two 2 MB segments and Flash Address 20
divides the segments in half.

These two bits default to <00> at power-up,
selecting the device containing the console
image in the bottom 512 KB. The remain-
ing 3.5 MB is available for user flash.

<2> Flash Write Enable Default at power-up is 0. When set to 1,
this bit asserts write enable to the four flash
ROMs to allow updates. To avoid corrupt-
ing the flash ROMs, keep this bit cleared
(0) when not updating.

<3> Flash Switch Read only Indicates the state of the flash ROM update
DIP switch. When set, flash ROM updates
are enabled. When clear, the flash Write
Enable bit is not allowed to enable writes to
flash.

<4> Undefined

<5> Watchdog Timer
Reset Enable

When 0, watchdog timer expiration has no
effect. If set, and the DIP bit of the reset
reason register is cleared, a watchdog timer
expiration generates a hardware reset of the
module. Reset default is disabled.

<6> Undefined/reserved

<7> Timer 0 Mode 1
Enable

Default at power-up is 0. When 0, Timer 0
in the 82C54 can only operate in modes 0
and 3. When set, the polarity of the
TIMER0 gate input of the 8254 timer chip
is inverted, allowing proper operation in
modes 1 and 5.

21164 address 85.8001.01E0

Nbus offset 80F

 System Registers 5–23

Figure 5–16 Bcache Configuration Register

5.4.3.9 Reset Reason Registers

The reset reason registers record the cause of a module reset. The cause can be
one of the following:

• Power-up

• VME reset

• Front panel switch

• Watchdog reset

The 21164 addresses and Nbus offsets for the reset reason registers are as follows:

These registers are read/pseudowritable registers located at a fixed address on the
Nbus in PCI I/O address space. Register 1 is located at Nbus offset 0x80A but is
also aliased in two longwords at 0x80E and 0x82E. The register contains four
reset status bits and one diagnostics in progress (DIP) bit. In reset reason register
3, at 0x82E, any write operation sets bits <4:0>. This is for testing only.

Figure 5–17 shows the reset reason registers and Table 5–15 describes the register
fields.

Table 5–14 Bcache Size and Speed Decode

<2> <1> <0> Bcache Size Bcache Speed

0 0 0 Disables Bcache

0 1 0 2 MB 12 ns

0 1 1 Reserved for future use

1 0 0 Reserved for future use

1 0 1 Reserved for future use

1 1 0 Reserved for future use

1 1 1 Reserved for future use

Reset Reason Register 21164 Address Nbus Offset

1 85.8001.0140 80A

2 85.8001.01C0 80E

3 85.8001.05C0 82E

31 08 07 03 02 00

ML013313

Reserved

BC Configuration

Don't CareBCACHE_CONFIG_REG :

5–24 System Registers

Figure 5–17 Reset Reason Registers

Table 5–15 Reset Reason Registers

Field Name Type Description

<0> Watchdog timer 0x80A : R/W to clear
0x80E : Read only
ox83E: R/W to set

Set immediately when a
watchdog timer timeout
occurs. Available to indicate
the HALT reason before the
system actually resets. In this
case, the register forms part
of the halt reason informa-
tion in the system.

<1> Front panel switch 0x80A : R/W to clear
0x80E : Read only
ox83E: R/W to set

If set, this bit indicates that
the front panel switch caused
a reset.

<2> VME reset 0x80A : R/W to clear
0x80E : Read only
ox83E: R/W to set

If set, this bit indicates that
the module received a VME
reset.

<3> Power-up 0x80A : R/W to clear
0x80E : Read only
ox83E: R/W to set

If set, other bits are ignored.

<4> DIP bit 0x80A : Read only
0x80E : Read only
ox83E: R/W to set

If set, the Alpha VME 5/352
or 5/480 SBC cannot be reset.

ML013290

DIP Bit

Power-Up

Don't Care82E :

VME Reset

Front Panel Switch

Watchdog

Don't Care80E :

31 05 04 03 02 01 00

Don't Care80A : R/WC

RO

R/WS

RO = Read Only
R/W = Read/Writable
R/WC = Readable/Write to Clear
R/WS = Readable/Write to Set

 System Registers 5–25

5.4.4 Super I/O Chip Registers

The 21164 address range and Nbus offsets for the Super I/O chip
(FDC37C6656T) registers are as follows:

Table 5–16 lists the address offsets and range of physical addresses for the Super
I/O chip’s general, serial port, parallel port, and diskette controller registers. For
more detail, see the Super I/O FDC37C6656T Specification.

The general registers are located at addresses 398 (index address) and 399 (data
address). For example, writing an index value of 1 to address 398 selects the func-
tion address register. If a read transaction from address 399 follows, the data asso-
ciated with the function address register is returned. If a write transaction to
address 399 follows, the function address register is updated

21164 addresses 85.8000.3E00 – 85.8000.7FE0

Nbus offsets 01F0 – 03FF

Table 5–16 Super I/O Register Address Space Map

Offsets Physical Addresses Registers

398 85.8000.7300 General registers – index
address

399 85.8000.7320 General registers – data
address

Index Register

0 Function enable

1 Function address

2 Power and test

2F8 – 2FF 85.8000.5F00 – 85.8000.5FE0 COM2 serial port registers

3F8 – 3FF 85.8000.7F00 – 85.8000.7FE0 COM1 serial port registers

3BC – 3BF 85.8000.7780 – 85.8000.77E0 Parallel port registers

1F0 – 3FF 85.8000.3E00 – 85.8000.7EE0 Diskette controller registers

5–26 System Registers

5.4.5 TOY Clock, Watchdog Timer, and NVRAM Registers

The 21164 CPU addresses and Nbus offsets for the TOY clock, watchdog timer,
and NVRAM (DS1386) are as follows:

 Table 5–17 lists the address ranges for each component.

5.4.5.1 TOY Clock Timekeeping Registers

The TOY clock timekeeping registers keep time for the system. Time information
is contained in eight 8-bit read/write registers as defined in Table 5–18.

21164 addresses 85.8010.0000 – 85.801F.FFE0

Nbus offsets 8000 – FFFF

Table 5–17 TOY Clock, Watchdog Timer, and NVRAM Address Space

Component Physical Address Nbus Offset

TOY clock 85.8010.0000 – 85.8010.0160 8000 – 800B

Watchdog timer 85.8010.0180 – 85.8010.01A0 800C – 800D

NVRAM 85.8010.01C0 – 85.8010.01E0 800E – 800F

Table 5–18 TOY Clock Timekeeping Registers

Field Register Physical Address Nbus Offset

<0:3> 0.00 sec 85.8010.0000 8000

<4:7> 0.0 sec

<0:6> Second 85.8010.0020 8001

<0:6> Minute 85.8010.0040 8002

<0:5> Hour 85.8010.0080 8004

<0:3> Day 85.8010.00C0 8006

<0:5> Date 85.8010.0100 8008

<0:4> Month 85.8010.0120 8009

<0:7> Year 85.8010.0140 800A

 System Registers 5–27

The following registers are also used to keep time:

5.4.5.2 TOY Clock Command Register

The TOY clock command register, located at 21164 physical address
0x85.8010.0160/Nbus offset 0x800B, controls the operation of the TOY clock.
Figure 5–18 shows this register.

Figure 5–18 TOY Clock Command Register

Field Physical Address Nbus Offset Description

<6> 85.8010.0080 8004 Specifies the format of the Hour unit.
When clear, hours are stored as BCD
from 0x00 to 0x23. When set, the format
is 12-hour, that is, the hours are 01 to 12.

<5> 85.8010.0080 8004 Used with <BITMAP>(6)=1. When clear,
hours are AM. When set, hours are PM.

<6> 85.8010.0120 8009 Enable Square Wave. Enables/disables
the fixed-frequency square wave output.
When clear, the wave output is enabled
and can be used as the heartbeat interval
time interrupt delivered through 2<5>.

<7> 85.8010.0120 8009 Enable Oscillator bit. Enables/disables
the TOY clock chip’s internal oscillator.
Use it to conserve the lithium source dur-
ing transport, storage, or during any long
period of non-use. When clear, the TOY
clock operates. When set, the internal
oscillator is disabled (factory default).

Table 5–19 TOY Clock Command Register

Field Name Type Description

<0> Not used

<1> Watchdog Timer Flag R/W

<2> Not used

<3> Watchdog Timer Enable R/W

<4> Pulse/Level O/P R/W

31 08 07 06 05 04 03 02 01 00

ML013293

Transfer Enable

Watchdog Select

Don't Care85.8010.0160+800B :

Watchdog Assertion

Pulse/Level O/P

Watchdog Enable

Watchdog Flag

5–28 System Registers

The 1024 Hz square wave clock output of the TOY clock is fed to interrupt regis-
ter 2<5>. Every time the clock makes a low-to-high transition, the interrupt regis-
ter 2<5> is asserted and held asserted. The interrupt request input is only
deasserted by writing to the heartbeat (clear-interrupt) register at address 0x80C
on the Nbus.

5.4.5.3 Watchdog Timer Registers

Watchdog timer operation is controlled by four registers - three in the DS1386
chip and a single enable bit in the module control register. Operation of the watch-
dog timer must be configured in the TOY clock command register and enabled in
the module control register (MOD_CNTRL_REG).

Sections 5.4.5.4 to 5.4.5.6 describe the following watchdog timer registers and
register fields:

• Watchdog timer field in the module control register, Section 5.4.5.4

• Watchdog timer fields in the TOY clock command register, Section 5.4.5.5

• Watchdog timer registers, Section 5.4.5.6

5.4.5.4 Watchdog Timer Field in the Module Control Register

The possibility exists for setting up the watchdog timer in such a way that it would
constantly drive the module into reset. For example, this can be done by setting
the watchdog timer output to level rather than pulse. To address this, the Alpha
VME 5/352 and 5/480 SBCs define an external watchdog enable bit in the module
control register, which defaults to disabled when a system is powered on. When
the watchdog timer has been fully and correctly initialized, this bit should be set to
allow normal watchdog timer operation.

Figure 5–19 identifies the watchdog enable bit in the module control register. For
a more complete description of the module control register, see Section 5.4.3.7.

<5> Watchdog Timer Asser-
tion

R/W

<6> Watchdog Timer Select R/W

<7> Transfer Enable R/W Enables/disables changes to the values in
the timekeeping registers. When clear, the
current value in the readable registers is
frozen even though the internal timing con-
tinues. This prevents the update of the reg-
isters from changing the values during a
read operation or from updating the new
value during a write operation.

Table 5–19 TOY Clock Command Register

Field Name Type Description

 System Registers 5–29

Figure 5–19 Watchdog Timer Field in the Module Control Register

The reset generated by the watchdog timer is “one-shot,” because the module
control register is cleared, disabling the watchdog timer reset when the hardware
reset is asserted.

5.4.5.5 Watchdog Timer Fields in the TOY Clock Command Register

Within the TOY clock chip, the interrupt line and the pulse/level assertion of that
interrupt line for the watchdog timer are selectable in the TOY clock command
register. In addition, the watchdog function can be enabled or disabled by the
TOY clock command byte, bit <4>. Figure 5–20 shows the required setup of the
watchdog timer in the TOY clock command register, which is located at 21164
physical address 0x85.8010.0160/Nbus offset 0x800B.

Figure 5–20 Watchdog Timer Fields in the TOY Clock Command Register

5.4.5.6 Watchdog Timer Registers

The watchdog timer timeout value is set in BCD in two bytewide watchdog timer
registers in the TOY clock’s address space, as Figure 5–21 shows. The registers
are located at 21164 physical address 0x85.8010.0180/Nbus offset 0x800C and
21164 physical address 0x85.8010.01A0/Nbus offset 0x800D.

Figure 5–21 Watchdog Timer Registers

5.4.5.7 Nonvolatile RAM

Alpha VME 5/352 and 5/480 SBCs offer just under 32 KB of battery backed-up
on-board SRAM. The RAM is provided by the DS1386 chip and is held nonvola-
tile by the built-in lithium battery source.

31 08 07 06 05 04 00

ML013301
Watchdog Enable

Don't CareMOD_CNTRL_REG :

31 08 07 06 05 04 03 02 01 00

ML013300

Transfer Enable

Watchdog INT Select

Don't Care85.8010.0160+800B :

Pulse(1)/Level O/P

Watchdog Disable

Watchdog Flag (RO)

07 06 05 04 03 02 01 00

1/10 Sec 1/100 Sec

Second

85.8010.0180+800C :

85.8010.01A0+800D :

ML013299

5–30 System Registers

The memory is read/write accessible in Nbus space. In effect, the DS1386 chip
(TOY clock, watchdog timer, and NVRAM) contains 32 KB read/write byte ele-
ments. The lowest 14 of these bytes have special register functions for operation
of the TOY clock and watchdog timer. The remaining bytes, 32 KB-14, are usable
as general-purpose bytewide read/write RAM.

This RAM is organized as contiguous bytes ranging from 21164 physical address
85.8010.01C0/Nbus offset 0x800E through 21164 physical address
85.8020.01A0/Nbus offset 0x1000D, as shown in Figure 5–22.

Figure 5–22 NVRAM Access

As for the TOY clock operation, module switch 1 allows the VMEbus 5VSTDBY
to be connected to the DS1386 giving RAM backup that is independent of both
the normal 5 V supply and the internal lithium battery.

The firmware uses NVRAM for module parameters and settings, and error and
failure information.

The lowest 16 KB of the battery backed-up RAM is reserved for firmware usage.
Thus, user and O/S code should not access NVRAM below Nbus offset C000
physical address 85.8018.0000.

07 06 05 04 03 02 01 00

Read/Write85.8010.01C0+800E :

85.8010.01E0+800F :

ML013302

Read/Write

Read/Write

.

.

.

85.8020.01A0+1.000D :

 System Registers 5–31

5.4.6 Interval Timer Registers

The 21164 addresses and Nbus offsets for the interval timer (82378ZB) are as fol-
lows:

The interval timer address space spans from 0x8580080000 to 0x85800BFFE0,
taking up the least significant byte of six adjacent longwords in Nbus space. The
first four are the standard four bytewide registers of the 82C54 chip, and the other
two bytes are an interrupt status register.

Sections 5.4.6.1 to 5.4.6.5 describe the following:

• Timer registers, Section 5.4.6.1

• Timer modes, Section 5.4.6.2

• Timer interface registers, Section 5.4.6.3

• Interval timing control/status register, Section 5.4.6.4

• Timer interrupt status register, Section 5.4.6.5

5.4.6.1 Timer Registers

The 82C54 chip is made up of three independent 16-bit counter/timers that are
functionally identical. Table 5–20 describes each timer.

The timers are implemented by register/interrupt logic. The programming inter-
face is byte wide in the Nbus region of PCI I/O space.

21164 addresses 87.8008.0000 – 85.800B.FFE0

Nbus offsets 4000 – 7FFF

Table 5–20 Timers

Timer Description

Timer 0 Must be clocked externally by P2 pin C13. Optionally, this timer’s gate
input can be driven by P2 pin C14. When this timer makes a low-to-
high transition, its output causes the assertion of an input request
(IRQ). To dismiss the IRQ, you need to access the timer interrupt sta-
tus register.

Timer 1 Operates as a rate generator with its output being driven off-module by
P2 pin C12. This timer is clocked by a fixed 10 MHz. The output is
also routed directly to the VIC local IRQ input <3>.

Timer 2 Operates as a rate generator with its output connected to P2 pin C11.
This timer is clocked with the same fixed 10 MHz. You can also use
the output on the module to generate an IRQ. If enabled, Timer #0’s
output during a transition from low-to-high causes the assertion of an
IRQ. To dismiss the IRQ, you need to access the timer interrupt status
register.

5–32 System Registers

5.4.6.2 Timer Modes

In addition to supporting the three timers discussed in Section 5.4.6.1, the Alpha
VME 5/352 and 5/480 SBCs implement two timer modes (modes 1 and 3) pro-
vided by the 82C54 chip for timers 1 and 2. The hardware connections for the
timer output are available on the P2 VMEbus connector. The timers are driven
from an internally generated 10 MHz asynchronous clock.

You can use these timers for a variety of off-module functions.

5.4.6.3 Timer Interface Registers

The timer interface registers take up the least significant byte of six adjacent long-
words in Nbus space (see Table 5–22). The first four are the standard four byte-
wide registers of the 82C54 chip, and the other two bytes are an interrupt status
register.

To program the timer device for initialization or during normal operation, write to
the Control/Status Register. To access (read or write) the individual timer count
values, use the separate timer data registers.

5.4.6.4 Interval Timing Control/Status Register

The interval timing (82C54) control/status register contains the control byte that
defines the mode of operation (continuous or single-shot) for and provides access
control to each individual timer. Figure 5–23 shows the interval timing con-
trol/status register, which is located at 21164 physical address
0x85.8088.0180/Nbus offset 0x400C. Table 5–23 describes the fields of the inter-
val timing control/status register.

Table 5–21 Timer Modes

Mode Description

1 Allows the application to write a value n to the timer. An external
hardware trigger causes the timer to count down from n to zero. If a
new value n is written to an associated mode 1 register before the
countdown reaches zero, the timer begins counting from the new value
at clock n+1.

3 Allows the application to write a value n to the timer. The timer uses
the value to generate a square wave with a period equal to n times the
10 MHz clock period.

Table 5–22 Timer Interface Registers

Field Register Physical Address Nbus Offset

<7:0> Timer 0 Data Register 85.8088.0000 4000

Timer 1 Data Register 85.8088.0080 4004

Timer 2 Data Register 85.8088.0100 4008

Control/Status Register 85.8088.0180 400C

Interrupt Status Register 85.8088.0200 4010

Interrupt Status Register 85.8088.0280 4014

 System Registers 5–33

Because only a single byte in the 82C54 address space is used to access the full
16-bit counter value, two accesses are required to operate on the full 16 bits. The
access can use least-significant bit, most-significant bit, or both.

Figure 5–23 82C54 Control/Status Register

Figure 5–24 shows a conceptual view of the operation of the timer bytewide data
interface. The “signal done” action is important where the completion of a data
access becomes an implicit start/go command to the timer.

Table 5–23 Interval Timing Control/Status Register

Field Description

<7:6> Specifies which timer is to be configured by this control byte. When set to
“11”, the control byte is a status read command, not a Timer Control opera-
tion.

As a status read command, the control byte can be used to freeze the state
of the timers for read-back. Information pertaining to the assertion state of
the output pin, the mode of operation, the read-write access mode, and so
forth, is then available by reading the timer data register.

<5:4> Sets the data interface to accept one or both of the bytes of the timer’s 16-
bit counter whenever a read or a write operation to that timer occurs. When
set, all operations to the timer register are in the format set until a new
mode is set by another control byte to the timer, according to the following
values:

00 – Latch count for read-back
01 – Least significant bit (LSB) access mode
10 – Most significant bit (MSB) access mode
11 – LSB, MSB access mode

<3:1> Defines the operational mode of the timer, according to the following val-
ues:

011 – Continuous
000 – Single shot

<0> Sets the timer’s 16-bit counter to either binary or binary coded decimal
(BCD). When clear, the format is binary. When set, the format is BCD.

31 08 07 06 05 04 03 02 01 00

ML013295

Timer #

Latch Count

Don't Care85.8088.0180+400C :

011 Continuous
000 Single Shot

Binary 0/BCD 1

5–34 System Registers

Figure 5–24 82C54 Timer Data Access

5.4.6.5 Timer Interrupt Status Register

The timer interrupt status register is aliased as the bottom byte in two contiguous
longwords (as shown in Table 5–22). The action of the register is slightly differ-
ent, depending on the address at which it is accessed and whether the access is a
read or a write. Figure 5–25 shows the timer interrupt status register, which is
located at 21164 physical address 0x85.8088.0200/Nbus offset 0x4010 and 21164
physical address 0x85.8088.0280/Nbus offset 0x4014.

Figure 5–25 Timer Interrupt Status Register

5.4.7 Keyboard and Mouse Controller Registers

The 21164 CPU addresses and Nbus offsets for the keyboard and mouse controller
(82C42PE) are as follows:

21164 addresses 85.8000.0C00 – 85.8000.0C80

Nbus offsets 0060 – 0064

ML013296

Data Rd/Wr (byte)

Mode 01 or 11?

Mode 11?

MSB

No

"Signal Done"

Yes

LSB

Data Rd/Wr (byte)

Yes

No

31 08 07 06 05 04 03 02 01 00

ML013298

Timer #2 IRQ Enable

Timer #0 IRQ Enable

Don't Care85.8088.0200+4010 :
85.8088.0280+4014 :

Timer #2 Status

Timer #0 Status

 System Registers 5–35

Table 5–24 lists the offsets and physical addresses for the keyboard and mouse
controller registers.

5.5 Summary of VME Interface Registers

A summary of VME interface registers is shown in Table 5–25.

Table 5–24 Keyboard and Mouse Controller Addresses

 Offsets Physical Address Register

60-R 85.8000.0C00 Auxiliary/keyboard

60-W 85.8000.0C00 Command data

64-R 85.8000.0C80 Read status

64-W 85.8000.0C80 Command

Table 5–25 VME_IF_BASE +

Offset Register Description

00 VIC_IICR VMEbus interrupter interrupt control register

04-1C VIC_ICPR1-7 VMEbus interrupt control registers 1-7

20 VIC_DMASICR DMA status register

24-3C VIC_LICR1-7 Local interrupt status register

40 VIC_ICGISR ICGS interrupt control register

44 VIC_ICMSICR ICMS interrupt control register

48 VIC_EGICR Error group interrupt control register

4C VIC_ICGSIVBR ICGS vector base register

50 VIC_ICMSVBR ICMS vector base register

54 VIC_LIVBR Local interrupt vector base register

58 VIC_EGIVBR Error group interrupt vector base register

5C VIC_ICSR Interprocessor communications switch register

60-70 VIC_ICR0-4 Interprocessor communications registers 0-4

74 VIC_ICR5 Interprocessor communications register 5

78 VIC_ICR6 Interprocessor communications register 6

7C VIC_ICR7 Interprocessor communications register 7

80 VIC_VIRSR VMEbus interrupt request/status register

84-9C VIC_VIVBR1-7 VMEbus interrupt vector base registers 1-7

A0 VIC_TTR Transfer timeout register

A4 VIC_LBTR Local bus timing register

A8 VIC_BTDR Block transfer definition register

AC VIC_ICR Interface configuration register

B0 VIC_ARCR Arbiter/requester configuration register

5–36 System Registers

B4 VIC_AMSR Address modifier source register

B8 VIC_BESR Bus error status register

BC VIC_DMASR DMA status register

C0 VIC_SS0CR0 Slave select 0/control register 0. The D32 enable
must be set in VIC_SS0CR0.

C4 VIC_SS0CR1 Slave select 0/control register 1

C8 VIC_SS1CR0 Slave select 1/control register 0

CC VIC_SS1CR1 Slave select 1/control register 1

D0 VIC_RCR Release control register

D4 VIC_BTCR Release control register

D8 VIC_BTLR1 Block transfer length register 1

DC VIC_BTLR0 Block transfer length register 0

E0 VIC_SRR System reset register

E4 BTLR2 Block transfer length register 0

E8-FC Reserved locations

100 VIP_CR VME interface processor control register

104 VIP_BESR VME interface processor bus error/status register

108 VIP_ICR VME interface processor interrupt control register

10C VIP_IRR VME interface processor interrupt control register

110 VIP_HWIPL VME interface processor hardware IPL mask reg-
ister

114 VIP_DIAG CSR VME interface processor diagnostic register

118 VIP_PMCSR VME interface processor page monitor CSR

11C VIP_OBISGABR VME interface processor outbound internal scat-
ter-gather entry ABR

120 VIP_OBISGMSK VME interface processor outbound internal scat-
ter-gather entry mask

124 VIP_OBISGWORD VME interface processor outbound internal scat-
ter-gather entry control word

128 VIP_IBISGMSK VME interface processor inbound internal
scatter-gather entry mask

12C VIP_IBISGWORD VME interface processor inbound internal scatter-
gather entry control word

130 VIP_SGCCHIX VME interface processor scatter-gather cached
index

134 VIP_SGCWRD VME interface processor scatter-gather cached
control word

Table 5–25 VME_IF_BASE + (Continued)

Offset Register Description

 System Registers 5–37

138 VIP_PCIERTADR VME interface processor PCI error target address
register

13C VIP_PCIERTCBE VME interface processor PCI error target com-
mand/byte enables register

140 VIP_PCIERIADR VME interface processor PCI error initiator
address register

144 VIP_LERADR VME interface processor VME/local bus error
address register

148-17C Reserved locations

180 VIFMASK VMEbus i/f address base mask register

184 VIFABR VMEbus i/f address base register

188-3FC Reserved

Table 5–25 VME_IF_BASE + (Continued)

Offset Register Description

 Index–1

Index

Numerics
10BASE-T twisted-pair Ethernet connector, 1-8
21040 Ethernet controller, 1-1, 1-7

control/status registers for, 5-3
interrupts generated by, 4-1
PCI configuration registers for, 5-2
registers for, 5-2
ROM control/status register for, 5-3

21164 Alpha microprocessor, 1-1
address space of, 2-5
description of, 1-3
determining speed of, 5-17
functional block diagram of, 1-4
resets for, 4-7
resetting of, 5-23

21172 core logic chipset, 1-1
components of, 1-4
description of, 1-4
features of, 1-5

21172-BA chips, 1-4
21172-CA chip

See CIA chip
5 V standby connection, 1-10
82378ZB chip, 1-9
82C54 chip

address space of, 5-31
control byte for, 5-33

A
ABR (VME arbiter/requester register), 3-19
Accelerated transfer mode, 3-15
ACFAIL* VMEbus assertion, 4-5

Acknowledge cycles, interrupt, 2-2
Address bits

high-order for PCI sparse memory space, 2-9
low-order in PCI sparse memory space, 2-9

Address decoding, 2-10
VME interface, 3-7

Address mapping
for VIC64 chip, 3-12
multiple page, 3-2
PCI memory space to VME address space, 2-

8
system, 2-1
VMEbus, 1-14, 2-8, 3-2

multiple page, 3-3
Address modifier, 3-3, 3-6, 3-14

status register (AMSR), 3-15
user defined codes, 3-15

Address space
for SIO PCI-to-Nbus bridge, 5-9
for VMEbus, 3-2
of Nbus, 5-8
PCI, 2-6

configuration, 2-11
I/O, 2-2
map to VME address space, 3-2, 3-3
memory, 2-2
sparse I/O space, generation of, 2-10, 2-

12
supported by CIA chip, 2-2
system

noncacheable, 2-2
overview of, 2-1

Index–2

regions of, 2-1
VMEbus, 3-2

Address translation
PCI-to-VMEbus outbound, 3-4
VMEbus-to-PCI inbound, 3-8

Addresses
generation of in dense space, 2-7
PCI I/O, decoding, 2-10

Addressing modes, VMEbus, 1-12
AMSR (VME address modifier status register), 3-

14, 3-15
Arbiter/requester configuration register (ARCR),

3-14
Arbiter/requester register (ABR), 3-19
Arbitration

modes of, 3-15
programming delays of, 3-17
timeout for, 3-14, 4-5
timeout interrupt mask for, 3-13
timeout timers for, 3-19
timers for, 3-20
VMEbus

controlling, 3-19
watchdog for, 3-20

ARCR (VME arbiter/requester configuration reg-
ister), 3-14

Assertion time, PAS, 3-14
Atomicity, 2-6

B
Backup cache (Bcache)

See Bcache
Bandwidth, bus, 2-7
Battery, 1-10
Bcache

array, 1-6
configuration register, 5-15, 5-22
disabling, 5-23
size and speed of, 5-22
subsystem, 1-5

BCAP (bus capture and hold) mode, 3-20
BESR (VME bus error/status register), 3-5, 3-15,

3-21
Block mode data transfers, 3-14, 3-16

burst length of, 3-15
direct memory access (DMA), 3-15
length of, 3-15
programming burst length of, 3-18
restrictions on, 3-17

setting up for, 3-16
Block transfer

control register (BTCR), 3-15, 3-17
definition register (BTDR), 3-14, 3-17
length register 0 (BTLR0), 3-16
length register 1 (BTLR1), 3-16
length registers 1-0 (BTLR1-0), 3-15

Boundary crossing, 3-14
BTCR (VME block transfer control register), 3-

15, 3-17
BTDR (VME block transfer definition register),

3-14, 3-17
BTLR0 (VME block transfer length register 0), 3-

16
BTLR1 (VME block transfer length register 1), 3-

16
BTLR1-0 (VME block transfer length registers 1-

0), 3-15
Buffers

PCI data, 2-5
prefetch, 2-6
read/write, 2-7

collapsing of, 2-7
write, 2-6

Burst length
of block transfer, 3-15
programming, 3-18

Burst transfers, 2-7
Bus bandwidth, 2-7
Bus capture and hold (BCAP) mode, 3-20
Bus error/status register (BESR), 3-5, 3-15, 3-21
Bus mode register, 5-3
Bus timing, 3-15
Bus transfer timers, 3-21
Byte enables, PCI, 3-5
Byte lane formats, 3-24
Byte swap modes, 3-22

for DC7407 VIP chip, 3-22
for VIC64 chip, 3-23

C
Cache

Bcache
See Bcache

data, 1-3
instruction, 1-3
second level

See Bcache
third level, 1-3

 Index–3

Cached memory, 2-1
block size of, 2-2
DMA transfers to, 2-2

Channels, 1-12
Character set, display, 5-16
CIA chip

address spaces supported by, 2-2
control/status registers for, 2-2
system address mapping of, 2-1

Clock interface, 1-7
Clock, system, 1-1

controlling for the VMEbus, 3-20
Components, functional, 1-1

figure of, 1-2
Configuration

Bcache, 5-22
memory, 5-19
PCI, 2-2

Configuration registers, 5-15
Bcache, 5-15, 5-22
SCSI controller, 5-4

Configuration space, 2-11
device type selection for, 2-11

Configuration, PCI, 2-2
Connector, Ethernet, 1-8
Control register, 5-32
Control, I/O interface, and address (CIA) chip

See CIA chip
Control/status registers

21040 Ethernet controller, 5-3
CIA chip, 2-2

Controller, VMEbus system, 3-1
Controllers

Ethernet controller, 1-1
interrupt, 1-9
SCSI controller, 1-1
Xilinx interrupt controller, 5-17

CPU addresses
for interval timer, 5-31
for keyboard and mouse controller, 5-34
for Super I/O chip, 5-25
for TOY clock, watchdog timer, and

NVRAM, 5-26
CSRs

See Control/status registers
CY7C964 chip registers, 3-11
CY7C964 chips, 1-12, 1-13

D
D32 enable, 3-15
D64

master operation, 3-14
slave operation, 3-14
swap mode, 3-22

Data buffers, PCI, 2-5
Data cache (Dcache), 1-3
Data switch (DSW) chips, 1-4
Data transfers

block mode, 3-16
DMA, 3-16
restrictions on, 3-17
setting up for, 3-16

definining source and destination addresses
for, 3-17

direct memory access (DMA), 3-17, 3-18
local bus timers for, 3-20, 3-21
single mode, 3-16
timeout timers for, 3-19
VME interface, 3-16
VMEbus, 1-12
VMEbus timers for, 3-20, 3-21

Data types, supported, 1-3
Date, setting, 5-26
DC7407 VIP chip

byte swap modes for, 3-22
interrupt assertion of, 3-5
interrupt sources, 4-5
registers for, 3-11

Dcache, 1-3
Deadlock signaling, 3-14
Deasserted time, DS, 3-14
Dense memory space, 2-2, 2-5

address generation for, 2-7
advantages of, 2-6
mapping to VME address space, 2-8
purpose of, 2-6
VME address window for, 2-8

Destination address, defining, 3-17
Device interrupts, local, 4-5
Devices, PCI

base address of, 2-11
probing for, 2-11

Diagnostics in progress (DIP) bit
as a reset reason, 5-24

DIMMs
See also Memory

DIP Switch 2, I/O module, 1-10

Index–4

Direct memory access (DMA)
block mode data transfers, 3-15
completion, 4-5

signalling, 4-6
data transfers

enabling, 3-17
programming burst length for, 3-18
to cached memory, 2-2

operations, 1-6
Display character set, 5-16
Display control register, 5-15
DMA

See Direct memory access (DMA)
DMA interrupt control register (DMAICR), 3-17
DMA status interrupt control register (DMASI-

CR), 3-12, 4-6
DMA status register (DMASR), 3-15
DMAICR (VME DMA interrupt control regis-

ter), 3-17
DMASICR (VME DMA status interrupt control

register), 3-12
DMASR (VME DMA status register), 3-15
DRAM refresh enable, 3-15
DS deasserted time, 3-14
DSW chips, 1-4

E
ECC (error checking and correction), 1-6
EGICR (VME error group interrupt control regis-

ter), 3-13, 3-21
EGIVBR (VME error group interrupt vector base

register), 3-13, 3-17, 4-6
Energy cell, 1-10
ENET ROM register, 5-3
EPIC interrupt, 4-7
Error checking and correction (ECC), 1-6
Error group

interrupt control register (EGICR), 3-13, 3-21
interrupt vector base register (EGIVBR), 3-

13, 3-17, 4-6
Error group interrupt register (EGICR), 4-5
Ethernet controller

See 21040 Ethernet controller
Ethernet ID address, 1-8, 5-3

F
Fair Request scheme, 3-20
Fairness timer enable, 3-14, 3-15
Firmware

configuration of PCI devices by, 2-11
implementation of 21164 address space con-

figuration, 2-4
implementation of noncacheable memory

space, 2-2
Flash ROM, 1-2, 1-10, 2-2

dividing, 5-22
registers for, 2-2
switch for, 5-22
updating, 5-22
writing to, 5-22

Flash write enable, 5-22
Front panel switch, as a reset reason, 5-24
Full-duplex register, 5-3
Functional components, 1-1

figure of, 1-2

G
General-purpose VIC64 chip registers, 3-13
Global switch interrupts, 3-13
Global switches, 3-13, 3-18

H
Halt control, 3-14
Hardware reset reason register, 1-11
Heartbeat

clock, 5-21
register, 5-15, 5-21

High-order address bits
PCI sparse memory space, 2-9

I
I/O

access through P2 VMEbus connector, 1-8
PCI address space for, 2-2, 2-10

decoding of, 2-10
generation of, 2-10, 2-12

I/O module
DIP Switch 2, 1-10
identifying, 5-17

I/O subsystem, 1-7
IACK cycle, VMEbus, 4-5
Icache, 1-3
ICFSR (VME interprocessor communication

function status register), 3-12, 3-13
ICGPR (VME interprocessor communication

group processor register), 3-18
ICGSICR (VME interprocessor communication

global switch interface configuration reg-

 Index–5

ister), 3-13, 3-18
ICGSIVBR (VME interprocessor communica-

tion global switch interface vector base
register), 3-12, 3-13, 3-18

ICGSs (interprocessor communication global
switches), 3-18

ICMSICR (VME interprocessor communication
module switch interface configuration
register), 3-13, 3-19

ICMSIVBR (VME interprocessor communica-
tion module switch interface vector base
register), 3-13, 3-19

ICR (VME interrupt control register), 3-5, 3-14, 4-
4

ICR0-4 (VME interrupt control registers 0-4), 3-
13

ICR5 (VME interrupt control register 5), 3-13
ICR6 (VME interrupt control register 6), 3-13
ICR7 (VME interrupt control register 7), 3-12, 3-

13
Inbound scatter-gather entries, 3-8
Instruction cache (Icache), 1-3
INTA interrupts, 4-1
Interprocessor communication

function status register (ICFSR), 3-13
global switch interface configuration register

(ICGSICR), 3-13, 3-18
global switch interface vector base register

(ICGSIVBR), 3-13, 3-18
global switches for, 3-18
group processor register (ICGPR), 3-18
module switch interface configuration regis-

ter (ICMSICR), 3-13, 3-19
module switch interface vector base register

(ICMSIVBR), 3-13, 3-19
module switches (ICMSs), 3-19
registers for, 3-18

Interrupt acknowledge cycles, 2-2
Interrupt control

register (ICR), 3-5, 3-14, 4-4
register 5 (ICR5), 3-13
register 6 (ICR6), 3-13
register 7 (ICR7), 3-13
registers 0-4 (ICR0-4), 3-13

Interrupt controllers, 1-9, 4-1
Interrupt handling, for VMEbus, 3-21
Interrupt line, 3-12
Interrupt logic, 4-2
Interrupt priority levels (IPLs), 3-12, 4-4

of DMA interrupts, 3-12

Interrupt registers, 5-15
Interrupt request lines, 4-1
Interrupt requests

dismissing, 5-21
removal of, 3-21

Interrupt sources, 4-1
Interrupt status register, 5-31, 5-32
Interrupt/mask registers, 5-3, 5-17, 5-18

mapping to interrupt request lines, 4-3
Interrupts, 4-1

checking the state of, 4-3
disabling and enabling, 4-3
disabling the source of, 4-5
enabling, 3-19
EPIC interrupt, 4-7
generating, 3-18, 3-19
global switch, 3-13, 3-18
keyboard, 4-6
local device, 4-5
mouse, 4-6
nonmaskable, 5-13
PCI device, 4-1
processor, 3-19
ranking of by VIC64 chip, 4-4
specifying the IPL for, 4-5
status and error, 4-5
super I/O, 4-6
types handled, 4-1
VMEbus, 4-5

Interval timer, 1-11
count values for, 5-32
defining the operational mode of, 5-33
freezing the state of, 5-33
interrupts generated by, 4-1
programming, 5-32
registers for, 5-31
setting acceptance of the bit counter for, 5-33
setting the counter of, 5-33

Interval timing control/status register, 5-32
ISA

bus controller recovery timer register, 5-13
clock divisor register, 5-13

K
Keyboard and mouse controller, 1-2, 1-12

interrupts delivered for, 4-6
registers, 5-35

Index–6

L
LBTR (VME local bus timeout register), 3-14
LICR1-7 (VME local interrupt control registers

1-7), 3-12
LIRQ interrupt line, 3-12
Lithium source, conserving, 5-27
LIVBR (VME local interrupt vector base regis-

ter), 3-13
Local bus

definition of, 3-21
timeout register (LBTR), 3-14
timing, 3-15
transfer timers, 3-20

Local device interrupts, 4-5
Local interrupt

control registers 1-7 (LICR1-7), 3-12
vector base register (LIVBR), 3-13

Lock signal, 2-6
Logic registers, 2-2
Longword swap mode, 3-22
Low-order address bits, PCI sparse memory

space, 2-9

M
Master, VMEbus, 3-1

transactions, 3-4
Memory, 1-1

barriers, 2-7
cached, 2-1

block size of, 2-2
DMA transfers to, 2-2

configuration registers for, 5-19
contiguous, 2-6
data bus bandwidths, 1-6
identification register, 5-15, 5-20
mapping pages from VMEbus to PCI bus, 3-7
noncacheable, 2-1

address spaces within, 2-2
PCI dense memory space in, 2-2
PCI sparse memory space in, 2-2
subsystem, 1-6

Metastability delay, 3-14
Mini-debugger, SROM enabling, 5-17
Missed frame register, 5-3
MOD_CONFIG_REG register, 5-16
MOD_DISP_REG register, 5-15
Modifier, address, 3-3
Module configuration registers, 5-15, 5-16
Module control register, 5-15, 5-21

watchdog timer fields in, 5-28
Module diagnostic-in-progress switch, 3-19
Module display control register, 5-15
Module interrupt registers (MIRs), 5-15
Module registers, 5-15
Module reset reason registers, 5-15
Module switches, 3-13, 3-19
Mouse

controller, 1-2, 1-12
interrupt delivery for, 4-6

Mouse controller
See Keyboard and mouse controller

N
Nbus, 1-2, 1-9

address space of, 5-8
Nbus offset

for interval timer, 5-31
for Super I/O chip registers, 5-25
for TOY clock, watchdog timer, and

NVRAM, 5-26
keyboard and mouse controller, 5-34

Noncacheable memory, 2-1
address spaces within, 2-2

Nonmaskable interrupt control/status register, 4-
6, 5-13

Nonmaskable interrupts (NMIs), 4-1, 4-6, 5-13
disabling the delivery of, 4-7
reason, 4-6

Nonvolatile random access memory (RAM)
See NVRAM

NVRAM, 1-2, 1-11, 5-29
as a PCI data buffer, 2-5

O
Oscillator, TOY clock, 5-27

disabling, 5-27
Outbound address translation

PCI-to-VMEbus, 3-4
Outbound scatter-gather mapping, 3-4

P
PALcode, 1-3
Parallel port, 1-12
PAS assertion time, 3-14
PCI address space

I/O, 2-2
map to VME address space, 3-3
memory, 2-2

 Index–7

PCI addresses,decoding of, 2-10
PCI base address registers, 3-10
PCI bus, 1-7

clock, 1-8
control register, 5-12
mapping memory pages from VMEbus, 3-7
transactions, the length of, 2-9

PCI byte enables, 3-5
PCI configuration, 2-2

address space, 3-10
information, 2-2
registers for 21040 Ethernet controller, 5-2

PCI configuration space, 2-11
device type selection for, 2-11

PCI data buffers, 2-5
PCI dense memory space, 2-2
PCI device interrupts, 4-1
PCI devices

base address of, 2-11
probing for, 2-11
transaction emulation for, 2-8

PCI interface, 1-1
configuring, 3-10

PCI lock signal, 2-6
PCI memory address space

map to VME address space, 3-2
PCI memory space, 2-6
PCI references unaligned, 2-8
PCI sparse I/O space, 2-2, 2-6, 2-10, 2-12

address decoding of, 2-10
PCI sparse memory space, 2-2

high-order address bits of, 2-9
read/write encodings, 2-9

PCI transaction emulation, 2-8
PCI-to-Nbus bridge, 1-1

address space of, 5-9
PCI-to-PCI bridge, 1-2, 1-8
PCI-to-VME bus cycles, 3-6
PCI-to-VME interface components, 1-13
PCI-to-VME64 bridge, 1-1
Periodic real-time timer, 3-15

clearing, 5-16
interrupts generated by, 4-1

Phase lock loop (PLL)/buffer circuit, 1-1, 1-7
PMC I/O companion card, 1-2, 1-8

voltage supply, 1-8
PMC options, 1-8

interrupts generated by, 4-1
Ports

parallel, 1-12

serial, 1-12
Power-up as a reset reason, 5-24
Prefetch buffer, 2-6
Presence detect bits, memory, 5-19
Primary breakout module

as a SCSI interface, 1-8
jumpers, 1-8

Priority arbitration, 3-19
Processors

interrupting, 3-19
Protocols, VMEbus, 1-12

R
RAM, scatter-gather

getting access to, 3-11
programming, 3-11

RCR (VME release control register), 3-15, 3-18,
3-20

Read buffers, 2-7
Read transactions, 2-6
Read/write encodings, 2-9
Read-modify-write bit, 3-5
Receive poll demand register, 5-3
Registers, 5-1, 5-3

21040 Ethernet controller, 5-2
control/status registers, 5-3
PCI configuration registers for, 5-2
ROM control/status register, 5-3

Bcache configuration register, 5-15, 5-22
block transfer control register (BTCR), 3-17
block transfer length register 1

(VIC_BTLR1), 3-16
bus mode register, 5-3
control register, 5-32
CY7C964 chip registers, 3-11
DC7407 VIP chip registers, 3-11
ENET ROM register, 5-3
flash ROM register, 2-2
full-duplex register, 5-3
general-purpose VIC64 chip registers, 3-13
heartbeat register, 5-15, 5-21
interprocessor communication module

switch interface configuration regis-
ter (ICMSICR), 3-19

interrupt control
register (ICR), 4-4
register 7 (ICR7), 3-13

interrupt status register, 5-31, 5-32
interrupt/mask registers, 5-3, 5-17, 5-18

Index–8

mapping to interrupt request lines, 4-3
interval timing

control/status register, 5-32
registers, 5-31

ISA
bus controller recovery timer register, 5-

13
clock divisor register, 5-13

keyboard and mouse controller registers, 5-35
memory configuration, 5-19
memory identification register, 5-15, 5-20
missed frame register, 5-3
module configuration registers, 5-15, 5-16
module control register, 5-15, 5-21

watchdog timer fields in, 5-28
module display control register, 5-15
module interrupt registers (MIRs), 5-15
module registers, 5-15
module reset reason registers, 5-15
nonmaskable interrupt control/status register,

4-6, 5-13
PCI base address registers, 3-10
PCI bus

control register, 5-12
receive poll demand register, 5-3
reset reason registers, 5-23
Rx list base address register, 5-3
SCSI controller control/status registers, 5-5
SCSI controller PCI configuration registers,

5-4
serial command register, 5-3
SIA connectivity register, 5-3
SIA general register, 5-3
SIA Tx Rx register, 5-3
SIO PCI-to-Nbus bridge registers, 5-9
status register, 5-3
support logic, 2-2
support logic registers, 2-2
timer

0 register, 5-32
1 register, 5-32
2 register, 5-32
interface registers, 5-32
interrupt status register, 5-34

TOY clock
command register, 5-27, 5-29
timekeeping registers, 5-26
timekeeping registers,freezing, 5-28

transmit poll demand register, 5-3
Tx list base address register, 5-3

VIC chip, 3-12
VME address modifier status register (AM-

SR), 3-15
VME arbiter/requester configuration register

(ARCR), 3-14
VME arbiter/requester register (ABR), 3-19
VME block transfer control register (BTCR),

3-15, 3-17
VME block transfer definition register (BT-

DR), 3-14, 3-17
VME block transfer length register 0

(VIC_BTLR0), 3-16
VME block transfer length registers 1-0

(BTLR1-0), 3-15
VME bus error/status register (BESR), 3-5, 3-

15, 3-21
VME control/status register base

(VME_CSR_BASE), 3-10
VME DMA interrupt control register

(DMAICR), 3-17
VME DMA status interrupt control register

(DMASICR), 3-12, 4-6
VME DMA status register (DMASR), 3-15
VME error group interrupt control register

(EGICR), 3-13, 3-21, 4-5
VME error group interrupt vector base regis-

ter (EGIVBR), 3-13, 3-17, 4-6
VME interface

interprocessor communication registers,
3-18

VME interface configuration register (ICR),
3-6

VME interprocessor communication
module switch interface configuration

register (ICMSICR), 3-13
module switch interface vector base reg-

ister (ICMSIVBR), 3-19
VME interprocessor communication function

status register (ICFSR), 3-13
VME interprocessor communication global

switch interface configuration regis-
ter (ICGSICR), 3-13

VME interprocessor communication global
switch interface vector base register
(ICGSIVBR), 3-13, 3-18

VME interprocessor communication group
processor register (ICGPR), 3-18

VME interprocessor communication module
switch interface vector base register
(ICMSIVBR), 3-13

 Index–9

VME interrupt control register (ICR), 3-5, 3-
14

VME interrupt control register (VICR), 3-12
VME interrupt control register 5 (ICR5), 3-13
VME interrupt control register 6 (ICR6), 3-13
VME interrupt control registers 0-4 (ICR0-

4), 3-13
VME interrupt control registers 1-7 (VICR1-

7), 3-12
VME interrupt request/status register, 3-14
VME interrupt vector base registers 1-7

(VIVBR1-7), 3-14
VME interrupter interrupt control register (II-

CR), 4-6
VME local bus timeout register (LBTR), 3-14
VME local interrupt control registers 1-7

(LICR1-7), 3-12
VME local interrupt vector base register

(LIVBR), 3-13
VME release control register (RCR), 3-15, 3-

18, 3-20
VME scatter-gather base (VME_SG_BASE)

register, 3-10
VME slave selection 0 control

register 0 (SS0CR0), 3-15
register 1 (SS0CR1), 3-15

VME slave selection 1 control
register 0 (SS1CR0), 3-15
register 1 (SS1CR1), 3-15

VME system reset register (SRR), 3-15
VME transfer timeout register (TTR), 3-14, 3-

21
VME window 1 base

(VME_WINDOW_1_BASE) regis-
ter, 3-10

VME window 2 base
(VME_WINDOW_2_BASE) regis-
ter, 3-10

watchdog timer, 5-29
TOY clock command register, 5-29

watchdog timer registers, 5-28, 5-29
Release control register (RCR), 3-15, 3-18, 3-20
Release mode, 3-15
Release-on-acknowledge (ROA) mode, 3-21
Release-on-clear (ROC) mode, 3-20
Release-on-request (ROR) mode, 3-20
Release-when-done (RWD) mode, 3-20
Reset

causes of, 5-23
control, 3-14

reason registers, 1-11, 5-15, 5-23
Resets, 4-7
RMC control bits, 3-14
ROC (release-on-clear) mode, 3-20
ROM control/status register, 5-3
ROM, flash, 2-2
ROR (release-on-request) mode, 3-20
Round-robin arbitration, 3-19
RWD (release-when-done) mode, 3-20
Rx list base address register, 5-3

S
Scatter-gather entries

address modifier of, 3-6
inbound, 3-8
mapping to VME address space with, 2-8
read-modify-write bit of, 3-5
swap mode for, 3-22
valid bit of, 3-5

Scatter-gather map, VMEbus, 1-14
Scatter-gather mapping, VMEbus outbound, 3-4
Scatter-gather RAM, 1-12

gaining access to, 3-11
programming, 3-11

SCSI
cable, 1-8
controller, 1-1, 1-8
controller configuration registers, 5-4
controller control/status registers, 5-5
devices, interrupts generated by, 4-1
termination, 1-8

Second level cache
See Bcache

Serial command register, 5-3
Serial ports, 1-12
SERR enable bit, 5-14
SIA connectivity register, 5-3
SIA general register, 5-3
SIA status register, 5-3
SIA Tx Rx register, 5-3
Signals, SYSFAIL, 3-13
Single mode data transfers, 3-16
Single-level arbitration, 3-19
SIO chip, 1-9

interrupts generated by, 4-1
interrupts handled by, 4-6
programmable interrupt controller for, 4-2

SIO PCI-to-Nbus bridge
address space of, 5-9

Index–10

Slave access
programming arbitration delays for, 3-17

Slave selection 0 control
register 0 (SS0CR0), 3-15
register 1 (SS0CR1), 3-15

Slave selection 1 control
register 0 (SS1CR0), 3-15
register 1 (SS1CR1), 3-15

Slave, VMEbus, 3-1
Software switches, 3-18
Source address

defining, 3-17
Square wave output

enabling, 5-27
SRAMs, 1-1
SROM, 1-7
SROM mini-debugger, enabling, 5-17
SRR (VME system reset register), 3-15
SRR register, 3-15
SS0CR0 (VME slave selection 0 control register

0), 3-15
SS0CR1 (VME slave selection 0 control register

1), 3-15
SS1CR0 (VME slave selection 1 contro register

0), 3-15
SS1CR1 (VMe slave selection 1 control register

1), 3-15
Standby connection, 5 V, 1-10
Status register, 5-3
Super I/O chip, 1-2, 1-12

address space for, 5-25
interrupts delivered for, 4-6

Supervisor access, 3-15
Support logic registers, 2-2
Swap modes

See also Byte swapping, 3-22
Switch 3, 5-14
Switch interrupts, global, 3-13
Switches

flash ROM, state of, 5-22
front panel, reset reason, 5-24
global, 3-13
module, 3-13
module diagnostic-in-progress switch, 3-19

SYSCLK
controlling for the VMEbus, 3-20

SYSFAIL*
assertion, 4-5
signal, 3-13

System address mapping, 2-1

System address space
21164 Alpha microprocessor, 2-5
noncacheable, 2-2
overview of, 2-1
regions of, 2-1
supported by CIA chip, 2-2

System clock, 1-1, 3-19
controlling for the VMEbus, 3-20

System clock signal (SYSCLK), 1-1, 1-7
System controller, 3-1, 3-14, 3-19
System I/O (SIO) chip, 1-9
System interrupts, 4-1
System reset register (SRR), 3-15

T
Time, setting, 5-26
Timekeeping registers, 5-26

freezing, 5-28
Timeout

Fairness Request scheme, 3-20
for local bus, 3-14
for VMEbus, 3-14
interrupt mask for arbitation, 3-13
VMEbus arbitration, 3-14
watchdog timer, setting, 5-29

Timeout timers, 3-19
controlling, 3-20

Timer
count values, 5-32
interface registers, 5-32
interrupt status register, 5-34
modes, 5-32

enabling, 5-22
programming, 5-32

Timer 0 register, 5-32
Timer 1 register, 5-32
Timer 2 register, 5-32
Timer modes

enabling, 5-22
Timers, 5-31

controlling, 3-20
data access of, 5-34
interval

defining the operational mode of, 5-33
freezing the state of, 5-33
setting acceptance of the bit counter for,

5-33
setting the counter of, 5-33

local bus transfer, 3-21

 Index–11

timeout, 3-19
VMEbus arbitration, 3-20
VMEbus transfer, 3-21

Timing, local bus, 3-15
TOY clock, 1-2, 1-10, 5-21

command register, 5-27
watchdog timer fields in, 5-29

oscillator
disabling, 5-27

oscillator disabling, 5-27
timekeeping registers, 5-26, 5-28

Transfer mode, accelerated, 3-15
Transfer timeout register (TTR), 3-14, 3-21
Transfer timers

local bus, 3-20
VMEbus, 3-20

Transmit poll demand register, 5-3
TTR (VME transfer timeout register), 3-14, 3-21
Turbo mode, 3-14
Tx list base address register, 5-3

V
Valid bit of scatter-gather entries, 3-5
VIC chip

registers for, 3-12
VIC_EGICR (VME error group interrupt regis-

ter), 4-5
VIC64 chip

interrupt ranking, 4-4
system interrupt controller, 1-9

VIC64 chip registers, 3-11
VICR (VME interrupt control register), 3-12
VICR1-7 (VME interrupt control registers 1-7),

3-12
VIP chip, 1-12, 1-13

interrupt sources, 4-5
VIP location monitor status, 4-1
VIRSR (VME interrupt request/status register),

3-14
VIVBR1-7 (VME interrupt vector base registers

1-7), 3-14
VME address mapping, 2-8
VME address modifier status register (AMSR), 3-

14, 3-15
VME address space, 3-2

getting access to, 3-11
VME address spaces, 2-8
VME address windows, 2-8, 3-2
VME addresss space

map from PCI address space, 3-3
VME arbiter/requester register (ABR), 3-19
VME block transfer control register (BTCR), 3-

15, 3-17
VME block transfer definition register (BTDR),

3-14, 3-17
VME block transfer length register 0 (BTLR0), 3-

16
VME block transfer length register 1 (BTLR1), 3-

16
VME block transfer length registers 1-0 (BTLR1-

0), 3-15
VME bus error/status register (BESR), 3-5, 3-15,

3-21
VME chip, 1-12, 1-13

address map for, 3-12
byte swap modes for, 3-23
configuring, 3-12
resetting of, 5-14
revision of, 3-13
system interrupt controller, 4-4

interrupt sources of, 4-5
system interrupt controller for, 4-1
write post failure, 4-5

VME control/status register base
(VME_CSR_BASE), 3-10

VME DMA interrupt control register (DMAI-
CR), 3-17

VME DMA status interrupt control register
(DMASICR), 3-12, 4-6

VME DMA status register (DMASR), 3-15
VME error group interrupt control register (EGI-

CR), 3-13, 3-21, 4-5
VME error group interrupt vector base register

(EGIVBR), 3-13, 3-17, 4-6
VME interface, 1-12, 3-1

addresses, decoding, 3-7
initialization, 3-10

configuring PCI interface for, 3-10
configuring VIC64 chip for, 3-12
programming scatter-gather RAM for, 3-

11
interprocessor communication

global switches, 3-18
module switches for, 3-19
registers for, 3-18

interrupts generated by, 4-1
resetting, 3-19
scatter-gather mapping, outbound, 3-4
services supported by, 3-1

Index–12

VME interface configuration register (ICR), 3-6
VME interprocessor communication

function status register (ICFSR), 3-13
global switch interface

configuration register (ICGSICR), 3-13
vector base register (ICGSIVBR), 3-13,

3-18
group processor register (ICGPR), 3-18
module switch interface

configuration register (ICMSICR), 3-13,
3-19

vector base register (ICMSIVBR), 3-13
module switch interface vector base register

(ICMSIVBR), 3-19
VME interrupt control register (ICR), 3-5, 3-14
VME interrupt control register (VICR), 3-12
VME interrupt control register 5 (ICR5), 3-13
VME interrupt control register 6 (ICR6), 3-13
VME interrupt control register 7 (ICR7), 3-13
VME interrupt control registers 0-4 (ICR0-4), 3-

13
VME interrupt control registers 1-7 (VICR1-7),

3-12
VME interrupt request/status register (VIRSR),

3-14
VME interrupt vector base registers 1-7

(VIVBR1-7), 3-14
VME interrupter, 3-14
VME interrupter interrupt control register (IICR),

4-6
VME local bus timeout register (LBTR), 3-14
VME local interrupt control registers 1-7

(LICR1-7), 3-12
VME local interrupt vector base register

(LIVBR), 3-13
VME release control register (RCR), 3-15, 3-18,

3-20
VME reset, 5-24
VME scatter-gather base (VME_SG_BASE) reg-

ister, 3-10
VME slave selection 0 control

register 0 (SS0CR0), 3-15
register 1 (SS0CR1), 3-15

VME slave selection 1 control
register 0 (SS1CR0), 3-15
register 1 (SS1CR1), 3-15

VME system reset register (SRR), 3-15
VME transfer timeout register (TTR), 3-14, 3-21
VME window 1 base

(VME_WINDOW_1_BASE) register, 3-

10
VME window 2 base

(VME_WINDOW_2_BASE) register, 3-
10

VME_CSR_BASE (VME control/status register
base), 3-10

VME_SG_BASE register, 3-10
VME_WINDOW_1, 3-2
VME_WINDOW_1 address window, 2-8
VME_WINDOW_1_BASE register, 3-10
VME_WINDOW_2, 3-2
VME_WINDOW_2 address window, 2-8
VME_WINDOW_2_BASE register, 3-10
VMEbus, 3-20

acquisition time, 3-14
address mapping, 1-14, 3-2
addressing modes, 1-12
arbitration

controlling, 3-19
programming delays of, 3-17
timeout timers for, 3-19

arbitration mode, 3-15
arbitration timeout, 4-5
arbitration timers, 3-20
as interrupt servicing agent, 3-21
as interrupter, 3-21
as system controller, 3-14, 3-19
block mode data transfers on, 3-16

setting up for, 3-16
byte lane formats for, 3-24
data transfer timers for, 3-20
data transfers, 1-12
DMA block mode data transfers on, 3-16
fairness timer enable, 3-14, 3-15
granting ownership of, 3-19
IACK cycle, 4-5
interrupt control, 3-19
interrupt handling for, 3-21
interrupts, 4-5
mapping memory pages to PCI bus, 3-7
master, 3-1

Fair Request scheme for, 3-20
transactions, 3-4

modules
interrupting, 3-18

protocols, 1-12
read-modify-write cycles, atomic, 3-5
release mode, 3-15
release modes for, 3-20
releasing, 3-20

 Index–13

request level, 3-15
requesting, 3-19
reset

interruts generated by, 4-1
scatter-gather map, 1-14
single mode data transfers on, 3-16
slave, 3-1
slave access, programming, 3-17
system controller, 3-1
transfer timers for, 3-21

Voltage supply
PMC I/O companion card, 1-8

W
Watchdog timer, 1-2, 1-11

as a reset reason, 5-24
assertion, 5-28
enabling, 5-27, 5-28
fields in TOY clock, 5-29
flag for, 5-27
registers, 5-28, 5-29
reset enable, 5-22
setting timeout for, 5-29
TOY clock command register, 5-29

Watchdog, arbitration, 3-20
Windows, VME address, 2-8, 3-2
Word swap mode, 3-22
Write buffers, 2-6, 2-7
Write operations, deferring, 3-16
Write post failure, 4-5
Write transactions, 2-6

X
Xilinx interrupt controller, 1-9, 4-1, 4-3, 5-17

