DIGITAL Alpha VME 5/352 and
5/480 Single-Board Computers

User Manual

Order Number: EK-VME54-UM. A01

This manual provides an introduction to the Alpha VME 5/352 and 5/480 single-
board computers (SBCs), explains how to use the console firmware, and dis-
cusses diagnostics and troubleshooting.

Revision/Update | nfor mation: Thisisanew manual.

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, October 1997

FCC Notice:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the
FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in acommercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in aresidential areaislikely to cause harmful interference, in which case the user will be
required to correct the interference at his own expense.

Warning!
ThisisaClass A product. In adomestic environment this product may cause radio interference in which case the user
may be required to take adequate measures.

Achtung!
Dieses ist ein Gerat der Funkstdérgrenzwertklasse A. In Wohnbereichen kdnnen bei Betrieb dieses Gerates
Rundfunkstdrungenauftreten, in welchen Féllen der Benutzer fir entsprechende Gegenmaflinahmen verantwortlich ist.

Attention!
Ceci est un produit de Classe A. Dans un environment domestique, ce produit risque de créer des interférences
radioélectriques, il appartiendra alors a 'utilisateur de prendre les mesures spécifiques appropriées.

Canadian EMC Notice:
“This Class [A] Digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.”

”

“Cet appareil numerique de la class [A] respecte toutes les exigences du Reglement sur le materiel broilleur du Canada.

© Digital Equipment Corporation 1997. All rights reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation: DECchip, DECnet, DECpc, DIGITAL, OpenVMS,
ThinWire, VAX, and the DIGITAL logo.

The following are third-party trademarks:

DALLAS is a registered trademark of Dallas Systems Corporation.

DIGITAL UNIX and UNIX are registered trademarks licensed exclusively by X/Open Company Ltd.
IBM is a registered trademark of International Business Machines Corporation.

Intel is a trademark of Intel Corporation.

NCR is a registered trademark of NCR Corporation.

VIC64 is a trademark of Cypress Semiconductor Corporation.

VxWorks is a registered trademark of Wind River Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

cContents

Preface
Part | Introduction

1 Specifications and Requirements

Product Specifications. e 1-1
Physical ReQUITEMENLS oo e e e e 1-3
POwWer ReQUITEMENES oottt e e e 1-4
Environmental Specificationsand Requirements. i, 1-5

Environmental Specifications. 1-5

Cooling REQUITEMENLSottt 1-6
Regulatory ComplianCe.o 1-6

2 Module Components

Module Component OVEIVIEWottt et et e e e 2-1
CPU MOUIE . . . e 2-2
IO MOAUIE. . . 2-3
CPU and I/0 Assembly Controlsand Indicators oot 2-4
Memory MOGUIES 2-5
Primary Breakout Module. 2-7
Secondary Breakout Module. e 2-8
PMC /O Companion Cardttt et 29

3 Functional Components

Functional Component OVENVIEWttt 3-2
21164 AlphaMiCrOPrOCESSOL . . o . ottt ettt et e e e et ettt 3-3
21172 Core Logic Chipset. . .. oo o 35
Chipset COMPONENES.ottt e e 3-5
Chipset FEatUIES o e e e 35
Beache SUbSystem.o 3-6
MEMOrY SUDSYSIEM.ot 3-6
SROM L 3-7
CloCK INtErfacet 3-7
O I 1= =t 3-7
Ethernet Controller. e 3-8
SCSI CONtroller . 3-8
PMC I/O Companion Card. ii ittt e e 39

NDUS INtEIfaceo e e e e e 3-9

Interrupt Controllers. o 39
Flash ROM 3-10
TOY ClOCK. . oo 3-10
Watchdog Timer 3-11
NV RAM 311
Interval Timer .. o e 312
Keyboard and Mouse Controller.t 3-13
SUPEr 1/O CiP. . e 3-13

VME INterface 3-13
VIP CRID o 3-14
VICB4and CY7CO64 Chips . ..o v vttt e e e et e e e e 3-15
Address Mapping and the Scatter-Gather Map 3-15

Part Il The Console

Console Basics

Setting Upthe Consolefor Use e 4-1
CoNSOlE FEAIUNES oottt e e e e e e 4-2
Entering ConsoleModeo 4-2
Exiting Console Modeo 4-3
ONliNeHEI D .o 4-3

Displaying Online Help.o e 4-3

Displaying Online Help for MultipleCommands.t 4-3

Controlling the Display of OnlineHelp. it 4-4
Console Command OVEIVIEW.ottt e e e e e e 4-4
SPECiAl KBS, . .ot 4-5
Command Line CharaCteristiCso e 4-5
Console Command OPEratorsS.o vttt et ettt 4-6
Controlling the Radix of Command Input it 4-7
Using Flow Control 4-7
FItering OULPUL e e 4-8
Redirecting 1/0. . .. oo 4-9
Running Commandsin Background Mode 4-9
CrEatiNg OIS .« . o vt ettt e e e e 4-10
Copying Scripts Over the Network e 4-11

Using the Console

Summary of Console Operations.ot 5-1
Managing Environment Variables 5-4
Environment Variable Summary e 5-5
Setting Environment Variables o 5-9
Displaying the Values of Environment Variables. 59
Removing Environment Variables from System NameSpace 5-10
Booting the System. 5-10
Specifying BOOt DEVICES.ottt e e 5-10
Specifying aBoot IMage.ot 5-11
Passing Additional Boot Information to the Operating System 5-11
Booting Over the Network. 5-11
Invoking the Console as Soon as the Boot ImageisLoaded. 5-16
Using TFTPto Read FilesAcrossthe Network oot 5-16

Managingthe TOY CloCK. oot e 5-16
Displaying the TOY Clock's Timeand Date. i,
Setting the TOY Clock’'s Timeand Date
Disabling the TOY Clock’s Internal Oscillator

Getting System Information 8.

Updating Firmwareo 5-18

Examining and Depositing Datat
The Default Device. e -19.
Console DeVICE DIiVEISot e
Device Byte OffSetso -20.
Specifying aData Size 21.
Depositing and Examining Datain Memory
Depositing and Examining Data in Registers.

Managing the Console, Devices, and CPU i
Initializing SBC COMPONENTS. . . . oottt e e e e e
Stopping and Starting the CPU or Devicest
EXErciSiNg DeVICES o ottt -24.

Managing MemOrYo 5-26.
Displaying the State of Dynamic Memory. e
Displaying the System’s Virtual Memory Map
Allocating and Freeing Blocks of Memory
Changing the Ownership of a Block of Memory
Testing MemMOIY oo e -217.
Graycode Memory TStt

Performing Network Operations.ot e

Setting Reboot to the SROM Mini-Console

Controlling the LED e 5:32

Running the Power-On Diagnostics SCript. e

Managing the Console Error LOgt e e e
Displaying the Contents of the Console ErrorLog oo oot
Initializing the Console Error LOgt

Evaluating EXpPressioNns 5:33.

Managing CoNnSO0le ProCESSESttt e e e e
Creating and Exiting Console Processes i
MONItONNG PrOCESSESttt e e e 4,
Setting the Priority of Processes.
Specifying the CPUs on Whicha ProcessCanRun.

SUSPENAING PrOCESSES. . . ot ittt e e 6..

StOPPING PrOCESSES . . . ot -36. .

Breaking from Control LOOPSt e

Returning a Failure Status i
Displaying Semaphores. =36 .
Managing Files and File Content

6 Console Command Reference

alloc —allocate ablock of memory

boot —boot the system 6-4 .
break — break from a program l00p
cat—copy files e 6-7

chmod —change file attributes
chown — change ownership of memory block

clear — delete environment variable
clear_log —clear error log in NVRAM

date — display or change the date andtime 6-13

deposit —write data to MemOory 6-14
dynamic — ShOW MEMOIYottt e e e e 6-19
echo —display text output 6-21.
eval — evaluate expresSion. 22. 6
examine —display memory data 6-24
EXEr — eXErCISE HBVICES . . . it 6-29.
exit —exit current shell proCess. 34. 6-
false —returnafailure status. 6-35.
free —deallocate memory 36. 6-
grep — search for regular @Xpressions 6-37
hd —dump file contents. 6-40.
help — display helponcommands. 6-41
init_ev — initialize environmentvariables 6-42
init — initialize a device or the processorand console. 6-43
Kill —delete process.o 6-44
line—read aline i e e . 6-45
IS —liStfiles e 6-46
man —help on CommaNds 6-47
MeMEXEr — MEMOIY EXEICISEY . . . o o ottt e ettt e e e e e e 6-48
memtest —memory test 49. 6-
net — perform MOP 0Operationst e 6-53
PS — SNOW PrOCESS . . . o vt ettt e e e 6-56
pwrup — run power-on diagnoStiCso 6-57
rm—remove file 6:58
sa—setprocess affinity e 6-59
semaphore — show system semaphores. 6-60
set —set environment variable. 1. 6-6
setled—displaycharon LED e 6-64
set reboot srom — set reboot mode to Serial ROM Mini-Console. 6-65
set toy sleep — disable TOY clock's internal oscillator 6-66
sh —create new shell process.o e 67.. 6-
show — display system information. 6-69
show_log — display NVRAM error log

INformation e 6-72
sleep —suspend eXeCUtioN i 74 . 6-
sort—sortafile e 6-75
SP — SEL PO . ..ot 6-76
Start — Start Program. e e 6-77
stop—stop CRU Ordevice. i 78. 6-
update —update flash ROMS. e 6-79

Part Il Diagnostics

Vi

Diagnostics and System Initialization

POST DIiagnostiCsottt e 7-1
System Initialization Sequence and Countdown 7-2
POST NVRAM and Memory Diagnostics Descriptions 7-3
POST Nonvolatile RAM DiagnostiC. oot 7-4
POST Memory DIiagnoStiCo oot e e e 7-5

Console Mode Diagnostics

Console Mode DiagnostiCS SUMMAIY oo ettt e e e e 8-1

Heartbeat Timer Test. oo e e e 8-3
Interval Timer TestS. . . oot e 8-4
DECchip 21040 Ethernet Controller TestS oo it 8-9
DALLASDS1386 NVRAM Watchdog Timekeeper Tests.t 8-11
Local AreaNetwork AddressROM TestS. . ..o oottt e 8-14
NCR 53C810 PCI-SCSI I/O Processor TESESot 8-16
Watchdog Timer Interrupt Testo oot e 8-19
VME INterface TeStS . .. oot 8-20

Part IV Appendixes

A Console Command Summary

B Troubleshooting

SROM DiagnOStiCS . . - o v ottt e e B-1
Flash ROM DiagnostiCs oo ottt e e e e e e B-1
Troubleshooting Systems that Includea PMC 1/O CompanionCard. B-2
Operating System and Application Use of the Dot Matrix Display B-2
Troubleshooting Your SBC. o B-2

C Module Connector Pin Assignments

CPU Module Connector Pin ASSIgNmMents oottt e C-1
I/O Module Connector Pin ASSIQNMEeNtSottt e e e C-1
P1 VMEbus Connector Pin ASSignments.ottt C-1
P2 VMEbus Connector Pin ASSignments.ottt C-2
Console and Auxiliary Connector Pin Assignmentscooiiiiaen.... C-4
Ethernet Connector Pin ASSIgNMENES. oottt e e C-4
Primary Breakout Module Connector Pin AsSignments.ooeininnennn.. C-5
Secondary Breakout Module Connector Pin Assignments.coovveinennan.. C-6
Keyboard and Mouse Connector Pin ASSIgNMentsSt aann. Cc-7
Parallel Port Connector Pin ASSIQNMENES.ottt C-8
PMC 1/O Companion Card Connector Pin AsSignmentsoovvunnenn... C-9
PMC Option 1 Connector Pin ASSIgNMENES.o ottt e e C-9
PMC Option 2 Connector Pin ASSIgNMENES.o ottt e e C-13
PMC 1/O Companion Card Diskette Drive Connector Pin Assignments. C-15
PMC I/O Companion Card Keyboard and Mouse Connector Pin Assignments.. Cc-17
Figures
11 Required Air Flow Relative to Ambient Temperature 1-6
2-1 AlphaVME 5/352 and 5/480 Module Components 2-2
2-2 CPU ModuleLayout e 2-3
2-3 [/OModuleLayout e 2-4
2-4 Controlsand INdicators 2-5
2-5 Memory Module e 2-6
2-6 Primary Breakout Module. i 2-7
2-7 Secondary Breakout Module. i 2-8
2-8 PMC /O Companion Card Layouto 2-9
3-1 AlphaVME 5/352 and 5/480 Functional Components. 3-3

3-2 21164 AlphaMicroprocessor Functional Block Diagram. 3-4

W

0 W
LN QP

(0]

11
A WN P

|
P O 00N O O

(I')OOOOOOOOO
o

Tables

viii

11
1-2
1-3
2-1
2-2
3-1
3-2
4-1
4-2

TPEYY
RN

| N
A WNPP

[

N

w

i

OOOOOOO(I')OOOOOOO

|
ERERRBRoOo®NOoO

(&)

Level 3BCaChe Array ...t e e 3-6

PCI-to-VME Interface Components.ttt 3-14
Loopback Descriptions for Interval Timer Test3and4................. 8-8
LAN AddressROM FOrmatooven e e 8-15
Console and Auxiliary Connector Pin Assignments. C-4
Ethernet Connector Pin Assignments., C-4
Primary Breakout Module Connector Pin Assignments. C-6
Secondary Breakout Module Connector Pin Assignments. C-7
Keyboard and Mouse Pin Assignments, C-8
Parallel Port Connector Pin Assignments., C-9
PMC Option 1 CONNECLONS ot vt ettt et C-9
PMC Option 2 CONNECLONS ot vttt et C-13
PMC I/O Companion Card Diskette Connector Pin Assignments. C-17

PMC I/O Companion Card Mouse and K eyboard Connector Pin Assignments C-18

AlphaVMES5/352 and 5/480 SBC Specifications. 11
Input Power Requirements.ttt 1-4
Environmental Specifications. i 1-5
Controlsand INdicators. 2-5
Vaid DIMM CombinationScooi e 2-6
T S, e 3-12
TIMEr MOOES. . . .ot 3-13
Commonly Used ConsoleCommandscoviiiiiinennnnnn.. 4-4
Special Keysfor Console Operation., 4-5
Console Command Operators.vu it 4-6
Summary of Console Operationsovi it 5-1
Environment Variables. 5-5
Symbols Used by Examine and Deposit Commands 5-20
Action String Characters. 6-30
SROM Initializationand Console TestS.o 7-2
Console Mode DiagnostiC TEStS. oo v 8-1
Console Command SUMMAIYoou it A-1
Troubleshooting Your SBC o B-2
P1 VMEbus Connector Pin Assignments., Cc-1
P2 VMEbus Connector Pin Assignments., C-2
Console and Auxiliary Connector Pin Assignments. C-4
Ethernet Connector Pin Assignments., C-4
Primary Breakout Module Connector Pin Assignments. C-5
Keyboard and Mouse Connector Pin Assignments C-7
Parallel Port Connector Pin Assignments.t C-8
PMC Option 1 J11 Pin ASSIgNMENtSot it e e s Cc-10
PMC Option 1 J12 Pin ASSIgNMENtSot e e s Cc-11
PMC Option 1 VM Ebus P2 Signal Connector (J14) Pin Assignments C-12
PMC Option 2J21 Pin ASSIgNMENtS oot i i i e C-13
PMC Option 2J22 Pin ASSIgNMENtS oo i i C-14
PMC I/O Companion Card Diskette Drive Connector Pin Assignments. ... C-15
PMC I/O Companion Card Mouse Connector Pin Assignments. C-17
PMC I/O Companion Card Keyboard Connector Pin Assignments. C-17

Preface

Purpose of this Manual

This manual introduces you to the DIGITAL Alpha VME 5/352 and 5/480 single-
board computers (SBCs) by discussing physical, power, and environmental
requirements and describing the module and functional components. This manual
also explains how to use the console firmware and discusses diagnostics and trou-
bleshooting.

Intended Audience

This manual isfor OEM system integrators who are designing and building a
DIGITAL AlphaVME 5/352 or 5/480 SBC into specific application systems.
These systems may range in scope from asingle AlphaVME 5/352 or 5/480 SBC
to highly complex multiprocessor systems that include a variety of hardware.
Hardware and mechanical engineers refer to the physical and environmental spec-
ifications. Field and manufacturing technicians and support specialists use infor-
mation in this manual to configure systems and diagnose problems.

This manual assumes that readers have prerequisite knowledge and experience
with the following:

System design
VMEbus design and specifications

Structure of this Manual

This manual consists of four parts and an index organized as follows:

Part I, Introduction

Chapter 1, Specifications and Requirements, provides product specifications,
physical, power, and environmenta requirements; and FCC regulations.

Chapter 2, Module Components, introduces the physical components of the
SBC product.

Chapter 3, Functional Components, describes the SBC’s functional compo-
nents.

Part |1, The Console
e Chapter 4, Console Basics, gets you started with using the console.

e Chapter 5, Using the Console to Operate the SBC, explains how to perform
various tasks, using the console.

e Chapter 6, Console Command Reference, describes available console com-
mands.

Part |11, Diagnostics

e Chapter 7, Diagnostics and System Initialization, introduces types of diagnos-
tics tests, discusses system initialization, and describes the power-on self-test
(POST) diagnostics for nonvolatile RAM and memory.

e Chapter 8, Console Mode Diagnostics, describes diagnostics that you can ini-
tiate from the console.

Part IV, Appendixes

e Appendix A, Console Command Summary, serves as a quick referenceto
available console commands.

e Appendix B, Troubleshooting, provides some guidance with troubleshooting
aAlphaVME 5/352 or 5/480 SBC system.

e Appendix C, Module Connector Pin Assignments, describes the pin assign-
ments for the various module connectors.

Conventions

This section defines terminology, abbreviations, and other conventions used in
this manual.

Abbreviations
* Register access

The following list describes the register bit and field abbreviations:

Bit/Field Abbreviation Description

MBZ (must be zero) Bits and fields specified as MBZ must be zero.

RO (read only) Bits and fields specified as RO can be read but not writ-
ten.

RW (read/write) Bits and fields specified as RW can be read and written.

SBZ (should be zero) Bits and fields specified as SBZ should be zero.

WO (write only) Bei;;I and fields specified as WO can be written but not
r

e Binary multiples

The abbreviationsK, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values:

Abbreviation Binary Multiple

K 210(1024)

M 220 (1,048,576)

G 2%0(1,073,741,824)
For example:

2KB = 2 kilobytes =2 x 20pytes

4MB = 4 megabytes =4 x 2290 bytes

8GB = 8 gigabytes =8 x 2% bytes

Addresses

Unless otherwise noted, addresses and offsets are hexadecimal values.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in
angle brackets (< >). Multiple contiguous bits are indicated by a pair of numbers
separated by acolon (:). For example, <9:7,5,2:0> specifiesbits 9, 8, 7, 5, 2, 1,
and 0. Similarly, single bits are frequently indicated with angle brackets. For
example, <27> specifies bit 27.

Caution
Cautions indicate potential damage to equipment or loss of data.
Data Field Size

Theterm INTnn, where nn isoneof 2, 4, 8, 16, 32, or 64, refers to adatafield
of nn contiguous NATURALLY ALIGNED bytes. For example, INT4 refersto a
NATURALLY ALIGNED longword.

Data Units

Thefollowing data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte 1/2 1 8 -

Word 1 2 16 -

Longword 2 4 32 Longword
Quadword 4 8 64 2 Longwords
Octaword 8 16 128 2 Quadwords
Hexword 16 32 256 2 Octawords

Xi

Keyboard Keys

Thefollowing keyboard key conventions are used throughout this manual.

Convention Example
Control key sequences are represented as Ctrl/ x. Ctrl/C
Press Ctrl while you simultaneously pressthe x key

In plain text, key names match the name on the actual Return key
key.

In tables, key names match the name of the actual key and appear in ~ [Return]

sguare brackets ([).

Examples

Prompts, input, and output in examples are shown in a monospaced font. Interac-
tive input is differentiated from prompts and system output with bold type. For
example:

>>> echo This is a test.[Return]
This is a test.

Ellipsis pointsindicate that a portion of an example is omitted.
Names and Symbols

Thefollowing table lists typographical conventions used for names of various
items throughout this manual.

Note

Items Example

Bits sysBus<32:2>
Commands boot command
Command arguments address argument
Command options -sb option

Environment variables
Environment variable values
Files and pathnames

Pins

Register symbols

Signals

Variables

AUTO_ACTION
HALT

[usr/ f ool bar
LIRQ pin
VIP_ICR register
iogrant signa

n, X, mydev

Notes emphasize particularly important information.

Numbering

Numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x
indicates a hexadecimal number. For example, 19 isdecimal, but 0x19 and Ox19A
are hexadecimal (see also Addresses). Otherwise, the base is indicated by a sub-
script; for example, 1002 is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and are
inclusive. For example, arange of integers 0..4 includes the integers 0, 1, 2, 3,
and 4.

Extents are specified by a pair of numbersin angle brackets (< >) separated by a
colon (:) and areinclusive.

Bit fields are often specified as extents. For example, bits <7:3> specifies bits 7,
6, 5, 4, and 3.

Register and Memory Figures

Syntax

Register figures have bit and field position numbering starting at the right (low-
order) and increasing to the left (high-order).

Memory figures have addresses starting at the top and increasing toward the bot-
tom.

Thefollowing syntax elements are used throughout this manual. Do not type the
syntax elements when entering information.

Element Example Description

[1 [-file filename] The enclosed items are optional .

| -+ = Choose one of two or more items. Select
one of the items unless the items are
optional.

{1} {-1+1=} You must specify one (and only one) of the
enclosed items.

0) (ab,c) You must specify the enclosed items
together.

arg... You can repeat the preceding item one or
more times.

UNPREDICTABLE and UNDEFINED

This manual uses theterms UNPREDICTABLE and UNDEFINED. Their mean-
ings are different and must be carefully distinguished.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of
the processor. The processor continues to execute instructions in its normal man-
ner. In contrast, UNDEFINED operations can halt the processor or causeit to lose
information.

Xiii

For More Information

For more information, refer to the following:

e Your supplier
e A DIGITAL Field Applications Engineer
e The DIGITAL OEM web siteat ht t p: // www. di gi tal . com oem

e Thefollowing DIGITAL AlphaVME 5/352 and 5/480 SBC documentation,
which is available on the DIGITAL OEM web site:

Document

Order Number

Description

DIGITAL Alpha VME 5/352
and 5/480 Board Computer
Family Data Sheet

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
Cover Letter

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
Warranty and Parts Information

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
Installation Guide

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
User Manual

DIGITAL Alpha VME 5/352 and
5/480 Single Board Computers
Techincal Reference

EK-VMES54-CL

EK-VMES54-WI

EK-VMES54-UM

EK-VMES54-UM

EK-VMES54-TM

Describes the DIGITAL Alpha5/352 and 5/480
SBCs, highlighting product features and specifica
tions.

Highlights important product information and
explains how to acquire tH2l GITAL Alpha VME 5/
352 and 5/480 Single Board Computers User Man-
ual andDIGITAL Alpha VME 5/352 and 5/480 Sin-
gle Board Computers Technical Reference.

Explains the warranty of your DIGITAL Alpha
VME 5/352 or 5/480 SBC and provides parts infor-
mation for ordering.

Explains how to install your DIGITAL Alpha VME
5/352 or 5/480 SBC. Use this guide if you need to
adjust jumper settings or remove and reinstall field
replaceable units (FRUS).

Introduces the product by discussing product speci-
fications and requirements and describing the mod-
ule and functional components. This manual also
explains how to use the console firmware and dis-
cusses diagnostics and troubleshooting.

This manual discusses system address mapping, the
VME interface, system registers, and system inter-
rupts.

e Thefollowing DIGITAL documentation:

Document

Order Number

Alpha AXP Architecture Reference Manual
Alpha Architecture Handbook

EY-T132E-DP
EC-QD2KB-TE

Alpha Microprocessors SROM Mini-Debugger User's£C-QHUXB-TE

Guide

Answers to Common Questions about PALcode for

Alpha AXP Systems

Digital Semiconductor Alpha 21164 Microprocessor

Product Brief

Xiv

EC-N0647-72

EC-QP97C-TE

Document Order Number

Digital Semiconductor 21052 PCI-PCI Bridge Data EC-QHURB-TE
Sheet

Digital Semiconductor 21164 Alpha Microprocessor EC-QP98B-TE
Data Sheet

Digital Semiconductor 21172 Core Logic Chipset Prod- EC-QUQHA-TE
uct Brief

Digital Semiconductor 21164 Alpha Microprocessor EC-QP99B-TE
Hardware Reference Manual

Digital Semiconductor 21172 Core Logic Chipset Tech- EC-QUQJA-TE
nical Reference Manual

DIGITAL UNIX Guide to Real-time Programming AA-PS33D-TE
DIGITAL UNIX: Writing PCI Bus Device Drivers AA-Q7RQC-TE
DIGITAL UNIX: Writing VMEbus Device Drivers AA-QO57G-TE

Manpages on the VxWorks Real-Time Toolsfor Alpha Not applicable
CD-ROM

PAL code for Alpha Microprocessors System Design EC-QFGLC-TE
Guide

e Thefollowing specifications, which are available through the indicated ven-

dor or organization:

Document Vendor or Organization
CY7C9640 Specification Cypress Semiconductor Corp.
Intel 82378ZB PCI-1SA Bridge Chip Intel Corp.

Soecification

PCI Local Bus Specification Rev2.1 ~ PCI Special Interest Group
Super |/0O FDC37C6656T Specification Standard Microsystems Corp.
Symbios 53C810 SCS Controller Spec- Symbios

ification
TOY clock DS1386 Specification Dallas Semiconductor
VIC64 Specification Cypress Semiconductor Corp.

XV

Part |

Introduction

Part | introducesthe DIGITAL AlphaVME 5/352 and 5/480 single-board comput-
ers (SBCs). This part consists of the following chapters:

e Chapter 1, Specifications and Requirements
e Chapter 2, Module Components
e Chapter 3, Functional Components

1

Specifications and Requirements

This chapter discusses specifications and requirements for the DIGITAL Alpha
VME 5/352 and 5/480 single-board computers (SBCs). Specificaly, Sections 1.1
through 1.4 discuss:

e Product specifications, Section 1.1

e Physical requirements, Section 1.2

e Power requirements, Section 1.3

e Environmental specifications and requirements, Section 1.4

Section 1.5 discusses the product’s regulatory compliance.

1.1 Product Specifications

Based on the 21164 Alpha microprocessor, the DIGITAL Alpha VME 5/352 and
5/480 SBCs run at 352 MHz and 480 MHz, respectively. Unofficially, the 5/480
model achieves SPECIint95 at 13.8 and SPECfp95 at 15.5 (peak geometric
means), while model 5/352 achieves SPECIint95 at 10.7 and SPECfp95 at 13.7
(peak geometric means).

Other distinguishing features include improved cache and memory configurations.
The 2 MB of on-board ECC protected Level 3 backup cache (Bcache) operates at
700 MB/s. You can populate four memory connectors with 16 to 512 MB of ECC
protected dynamic random access memory (DRAM). The memory is autoconfig-
ured for a 128- or 256-bit data bus. A 256-bit wide bus operates at 355 MB/s and a
128-bit wide bus operates at 210 MB/s.

Table 1-1 lists the Alpha VME 5/352 and 5/480 SBC specifications:

Table 1-1 Alpha VMES5/352 and 5/480 SBC Specifications

Alpha processor

Alphamicroprocessor 21164A
CPU speed 5/352 — 352 MHz
5/480 — 480 MHz
Chip cache Level 1 8/8 KB, Level 2 96 KB unified, I/D
Performance (unofficial) 5/352 — SPECIint95: 10.7, SPECfp95: 13.7
5/480 — SPECIint95: 13.8, SPECfp95: 15.5
Memory
Cache 2 MB of on-board Level 3 cache

Specifications and Requirements 1-1

Table 1-1 Alpha VMES5/352 and 5/480 SBC Specifications (Continued)

DRAM

Flash EPROM
Nonvolatile RAM (NVRAM)

16to 512 MB

ECC protected

Autoconfiguration on 128- or 256-bit data bus
Single bit error correction

Double bit error detection

Must be configured in pairs of EDO DIMM memory
modules

4 MB (3.5 MB available to the user application)
32KB

Networking
Features Alpha 21040 PCI Ethernet controller
DMA (bus master)
256-byte send and receive FIFO queues
Double bandwidth with full duplex Ethernet
I nterconnect 10BASE-T Ethernet (twisted pair)
Interfaces

SCSIl interface

Serial interface

PCI I/O companion card

Symbios 53C810 single-ended, 8-bit SCSI-2 with DMA
Up to 10 MB/s transfer rate
SCSI connection through VMEbus P2 connector

82C42PE and FDC37C665GT Super I/O chip
Two asynchronous DEC423 ports
75 to 19200 baud through two MMJ front panel connec-
tors
Keyboard, mouse, and parallel ports

Accepts two PCI mezzanine cards
IEEE P1386.1 compliant

Clocks and timers

Real-time clock

Timers

Watchdog timer

DS1386 RTC with Lithium (<0.5 grams) battery backup

Three 16-bit timers

Two timers are driven at 10 MHz

One timer is clocked by external input (through the P2
connector) for event counting or synchronization

Programmable timeout
Output reset is available on the P2 connector

VM E specifications

VMEDbus interface

VMEDbus transactions

VMEDbus arbitration

1-2 Specifications and Requirements

VIC64 interface chip
Conforms to ANSI/IEEE standard 1014-1987
Supports extensions for 64-bit data transfers
IEC 821 and 297

Master: A32/24/18, D64/32/16/8
Slave: A32/24/16, D64/32/16/8
UAT, BLT, MBLT

System controller with configurable arbitration
PRI, RRS, SGL, FAIR

Table 1-1 Alpha VMES5/352 and 5/480 SBC Specifications (Continued)

VMEbus interrupts

VM Ebus connector

Other VMEDbus features

Handles all seven levels

8-bit software programmabl e status
Requester for all seven levels
Software-programmabl e vector

DIN 41612 styleC
96 contacts
P1/P2 connector

SYSCLK and SY SRESET

Physical characteristics

Single-board computer

Weight
Number of dots
PCI mezzanine card

Breakout module

Dual-height Eurocard format (6U8HP)
233 x 160 x 40.3mm (9.17 x 6.3 x 1.59in.)

1.014 kg (2.21 1bs.), including four DIMMs
2 (3 with the optional PMC 1/O companion card)
150x 75mm (5.9x 2.95in.)

Dual-slot version

Power specifications

Configuration

5Vdc

12 Vdc
-12 vdc
Dissipation (typical)

CPU with 512 MB and no PMC option

352 MHz -9 Aidle, 13 A peak
480 MHz — 11 A idle, 15 A peak

0.2A
<01. A

5/352 - 50 W
5/480 — 60 W

Environmental specifica-

tions

Operating temperature
Storage temperature
Temperature change

Relative humidity

°0 Cto50 C with forced air cooling
40 Cto%66 C
20 C/hour

10% to 95% (noncondensing)

Operating systems

DIGITAL UNIX
VxWorks for Alpha

Version 4.0A or higher

Version 5.2C or higher

1.2 Physical Requirements

DIGITAL AlphaVME 5/352 and 5/480 SBCs have the industry-standard 6U

VME form factor and requires two adjacent backplane slotsin your VME chassis.
A third slot is required if you use the optional PMC I/O companion card.

Specifications and Requirements

1-3

Once you identify the slots, you must make sure sufficient space exists on the
back of the selected slotsto install a primary breakout module. This module

requires aminimum of 38 mm (1.5 in). For a description of the primary breakout
module, see Section 2.6.

If you choose to use the secondary breakout module, you need an incremental
clearance of at least 56 mm (2.25 inches) to install the module. For a description
of the secondary breakout module, see Section 2.7.

1.3 Power Requirements

The Alpha VME 5/352 and 5/480 SBCs require power voltages of +5V and

+12V. The VME backplane provides the power to the logic of the SBCs through

the P1 and P2 VMEbus connectors.The primary power for the SBCsis5 V, which

is provided by the P1 and P2 VM Ebus connectors on the CPU module and the P2

VM Ebus connector on the I/O module. A required primary breakout modul e aug-
ments the current capacity of the backplane’s etch and connectors by shunting
power from the 1/O module connectors to the CPU module connectors.

The two DC-to-DC converters — 5V to 2.5V and 5V to 3.3 V — provide power
for CPU module and I/O module operation. The 5V to 2.5 V converter provides
power for the Alpha 21164 core logic. The 5 V to 3.3 V converter provides power
for the 21172 core logic chipset, SRAM, DRAMs, SCSI chip, and Ethernet con-
troller. Both converters operate in an 85% to 95% conversion efficiency range,
requiring no heat sink.

The required primary breakout module, which is installed on the rear of the VME
backplane directly behind the slots occupied by the CPU and I/O module assem-
bly, provides additional current to the CPU module from the 1/O module.

An optional +5 V STANDBY is available to provide power for the time-of-year
(TOY) clock and NVRAM chip.

Table 1-2 provides the power ratings for the various voltage supplies supported
by the Alpha VME 5/352 and 5/480 SBCs.

Table 1-2 Input Power Requirements

Voltage

M aximum 5/352 | dle 5/352 Peak 5/480 | dle 5/480 Peak

Supply Tolerance Ripple Current Current Current Current

+5V +0.25V 50 mV 9A 13 A 11 A 15A
-0.125V

+12 V +0.60 V 50 mV 150 mA 250 mA 150 mA 250 mA
-0.36 V

+5V STDBY +0.25V 50 mV 25 mA 50 mA 25 mA 50 mA
—-0.125V

-12V +0.36V 50 mV 150 mA 250 mA 150 mA 250 mA
—-0.60V

The peak current shown in Table 1-2 assumes an Alpha VME 5/480 SBC is popu-
lated with 512 MB of DRAM.

1-4 Specifications and Requirements

Warning

The +5 V tolerance and ripple specifications shown in Table 1-2 must be
met when supplying the peak current specified. If they are not met, unde-
fined operation will result.

1.4 Environmental Specifications and Requirements

DIGITAL Alpha VME 5/352 and 5/480 SBCs require a VME chassis
with sufficient cooling. Section 1.4.1 lists the environmental specifica-
tions for the SBCs. Section 1.4.2 explains cooling requirements.

1.4.1 Environmental Specifications

Table 1-3 shows the environmental specifications for the Alpha VME 5/352 and
5/480 SBCs.

Table 1-3 Environmental Specifications

Condition Range or Value
Operating

Temperature range 0°C(32°F)to50°C (122° F)
Relative humidity 5% to 90% (nhoncondensing)
Altitude 6,000 feet (maximum)
Maximum wet bulb 28°C(82°F)

Minimum dew point 2°C(36°F)

Vibration 5t0 500 Hz, 0.1 g, 3 axis
Shock 11 ms, 10 g, 3 axis

M eantime between failures! — 5/480 250,000 hours at25 C
Meantime between failurés- 5/352 300,000 hours at25 C

Nonoperating

Temperature range -40 C (-40 F)to°65 C (149 F)
Storage (shipping) 40,000 feet

Relative humidity 5% to 95% (noncondensing)
Packaging weight 0.89 kg (1.96 Ib)

Maximum wet bulb 32 C(90 F)

Vibration 1.5 g, 3 axis

IMTBF (MIL-HDBK-217F)

Specifications and Requirements 1-5

Notes

Real failuresfor MBTF figures are defined as random component failures
that are not caused by customer errors, workmanship related failures,
third-party component issues, or design related problemswhere corrective
action has been implemented.

The operating temperature rangeis 0° C to 5¢° C. Thisis dependent on pro-
cessor speed and enclosure air flow (see Figure 1-1).

1.4.2 Cooling Requirements

The Alpha VME 5/352 and 5/480 SBCs provide a heat sink for CPU thermal con-
trol. The amount of cooling required is defined by the operating environment to
which the SBC assembly is subjected. The curve shown in Figure 1-1 defines the
amount of ambient air the SBC assembly requires in linear feet per minute at vari-
ous ambient temperatures. Actual cooling depends on the turbulence in the air
stream as it enters the assembly volume.

Figure 1-1 Required Air Flow Relative to Ambient Temperature

60 MmO = ———~—

55 ~

50

N

40

Ambient Temperature C

200 400 600 800 1000 ~— T T 352 MHz Unit
480 MHz Unit

Linear Feet Per Minute

Note

The maximum temperature, when measured between the heat sink studs
on the base of the heat sink, must be less than 68° C.

1.5 Regulatory Compliance

The DIGITAL Alpha VME 5/352 and 5/480 SBCs have been tested and shown to
operate within a suitable enclosure with the following regulatory compliances:

1-6 Specifications and Requirements

e EMC, CE, and VCCI limitsfor aClass A device
e UL, CSA, and TUV safety limits

These limits are designed to provide reasonabl e protection against harmful inter-
ference when the equipment is operated in a commercia environment. This equip-
ment generates, uses, and can radiate radio frequency energy and, if not installed
and used as instructed in the DIGITAL Alpha VME 5/352 and 5/480 Single-Board
Computers Installation Guide, may cause harmful interference to radio communi-
cations. Operation of an AlphaVME 5/352 or 5/480 SBC in aresidentia areais
likely to cause harmful interference, in which case the interferenceis required to
be corrected at the useosin risk.

When used in an appropriate enclosure, an Alpha VME 5/352 or 5/480 SBC can
operate at the level of a Class B device. If used as a Class B dexicepplica-
tion may require shielded cables for all I/O interfaces.

Note

It is incumbent upon Original Equipment Manufaets (OEMS) to
obtain regulatory FCC approval for a consolidated system.

Specifications and Requirements 1-7

2

Module Components

The DIGITAL AlphaVME 5/352 and 5/480 SBCs consist of a single CPU mod-
ule and support modules that provide 1/0, memory, and power. This chapter
describes the module components. The chapter begins with an overview (Section
2.1) and then describes the following:

CPU module, Section 2.2
¢ |/O module, Section 2.3
e CPU and I/0O assembly controls and indicators, Section 2.4

e Memory modules, Section 2.5

e Primary breakout module, Section

e Secondary breakout module, Section 2.7
e PMC I/O companion card, Section 2.8

2.1 Module Component Overview

Alpha VME 5/352 and 5/480 SBCs can consist of two or three 6U modules

depending on whether you use an optional PMC 1/0O companion card. The base

SBC assembly includes a CPU module and an I/O module. The CPU module fea-

tures either a 352 MHz or 480 MHz 21164 Alpha microprocessor and a support-

ing 21172 corelogic chip set. Four DIMM sockets for DRAM and 2 MB of Level

3 SRAM Bcache also reside on the CPU module. Two DC-to-DC power convert-
ers—5Vto 2.5V and5Vt03.3 V— provide power for the CPU module’s oper-
ation. The CPU module is shipped preassembled with a required I/O module. The
I/0 module connects to the CPU module through a PCl-8&faue.

The 1/O module provides support for your application’s I/O devices. Key compo-
nents of this module include:

* PCI-to-VME64 bridge (DC7407 VIP and VIC64)

e PCI-to-SCSI-2 controller (53C810)

e PCI-to-Ethernet controller (21040)

e PCI-to Nbus bridge (82378ZB)

e PCI-32 interface to an optional PMC I/O companion card

The Nbus supports a diskette drive, two serial-line ports, a parallel port, a key-
board and mouse, the Flash ROM, the TOY clock, and NVRAM.

The optional PMC I/O companion card provides a PCI-to-PCI bridge, two PMC
option slots, and keyboard, mouse, and diskette drive connectors.

Module Components 2-1

Figure 2—1 identifies the module components of an Alpha VME 5/352 or 5/480
SBC and optional PMC 1/O companion card.

Figure 2-1 Alpha VME 5/352 and 5/480 Module Components

ML013780

The numeric callouts in the figure identify the following key components:

1

o o~ WN

PMC I/O companion card option
1/0 module
CPU module
Memory modules
Secondary breakout module
Primary breakout module

Note

The /O module (2) and CPU module (3) are attached and share a com-

mon front panel. These modules should be detached only to replace the
SROM. They appear separately in Figure 2—1 only to provide a view of
primary SBC module components.

2.2 CPU Module

The CPU module is the compute engine of Alpha VME 5/352 and 5/480 SBCs.
Figure 2—-2 shows the layout and primary components.

2-2 Module Components

Figure 2—2 CPU Module Layout

= = L sl
|:| =
ol 2 1O o 000
.
]]
99—l I 4
N = o/ s
7 0L g ="
O = D::IO

ML013781

The numeric callouts in the figure identify the following key components:

1 P1VMEbus connector

2 P2 VMEbus connector
3 64-bit PCI connector (not used)
4 J11 bus grant pass-through jumper
5 Connectors for memory DIMMs 2 and 3
6 Connectors for memory DIMMs 0 and 1
7 Power and VME slave activity/watchdog timeout LED
8 Status display
9 1/0O module connector
10 SROM
2.3 10 Module

The /O module is arequired second tier module that handles all 1/0 activity for
the AlphaVME 5/352 and 5/480 SBCs. This module plugs into the I/O module
connector on the CPU module.

Note

The /O module is attached to the CPU module when you receive it. Dis-
assemble the CPU and 1/0 assembly only if you need to replace the
SROM.

Figure 2—-3 shows the layout and primary components.

Module Components 2-3

Figure 2-3 1/0 Module Layout

1 2 3 4 5

66 ElO Ol:l IJBI
o 3

l:| O
oL,
|
Hinnn
iy !

1ay

12 1110 9

ML013782
The numeric callouts in the figure identify the following key components:
1 P1 VMEbus connector
Connector to CPU module (on the back of the I/O module)
Debug jumper (for use with Serial ROM Mini-Console only)
P2 VMEbus connector
Configuration switchpack
Caterpillar insulation strip
PMC I/O companion card connector
Nonvolatile RAM/time-of-year (TOY) clock

Auxiliary serial port

© 00 N OO 00 b~ WDN

[N
o

Console serial port
Reset/Halt switch
12 Twisted-pair Ethernet connector

[N
(=Y

2.4 CPU and I/O Assembly Controls and Indicators

The CPU and 1/0 modules are delivered as a single assembly. The modules are
attached and share a single front panel. Figure 2—4 shows the controls and indica-
tors on that front panel and Table 2—1 describes their functions.

2-4 Module Components

Figure 2—4 Controls and Indicators

1

|
=llEN

;
I

2 3 4

ML013262

Table 2—1 Controls and Indicators

Callout

Control or I ndicator

Description

1 Reset/Halt switch

2 Status display

3 VME Slave Activ-
ity/Watchdog Time-
out LED

4 Power LED

A switch that resets the SBC when pressed in the
Reset (up) direction and halts the operating system
when pressed in the Halt (down) direction. A reset
operation starts SROM execution the same way as
when you power on the system. When you use the
Halt switch, the SBC enters console mode.

Caution: Keep in mind that reset and halt opera-
tions can cause loss of data.

A display that shows which test is running during
power-on self-test (POST) diagnostics. When the
POST diagnostics are complete, the display is under
control of the operating system or an application
program.

An amber LED with two functions. The LED flashes
when the SBC is accessed as a slave by another
device on the VMEbus. The LED lights continu-
ously when the watchdog timer has timed out.

Note: The LED can appear to light continuously
when the module is receiving slave accesses. Since
the LED glows for 1/3 of asecond each time it
flashes, three slave accesses per second could make
the LED light continuously.

A green LED that is lit when the power is on.

Isee your operating system documentation for information on how to recover from reset and halt

operations.

2.5 Memory Modules

The Alpha VME 5/352 and 5/480 SBCs support memory configurations that
range from 16 to 512 MB of dynamic random access memory (DRAM). This
memory is accessible from the CPU, PCI bus, and VMEbus.

You can plug either two or four dual integrated memory modules (DIMMs), rang-
ing from 8 MB to 128 M B, into the memory connectors on the CPU module. Fig-
ure 2-5 shows a typical memory module.

Module Components 2-5

2-6

Figure 2-5 Memory Module

MLO013783

The number of DIMMs you use determines the memory bus bandwidth, and con-
sequently the overall speed of datawrite and read operationsto and from memory.
DIGITAL recommends that you use four DIMMs to achieve maximum perfor-
mance. No jumper changes are required. The system automatically configures
memory based on the DIMMsyou install. The following table shows the width of
the memory bus and its performance when you use two and four DIMMs:

Number of DIMMs Bus Width Memory Bandwidth
2 128 hits 210 MB/s
4 256 bits 355 MB/s

Error correction code (ECC) is provided for single-bit errors and error detectionis
provided for double-bit errors. For details on how the operating system reports
and handles ECC errors, see your operating system documentation.

In addition to the requirement of using either two or four DIMMs, all DIMMsyou
use must beidentical in size (humber of MB), speed, and architecture (EDO).

Note

DIGITAL memory DIMMs are supplied in pairs. DIGITAL may source
the pairs of DIMMs from different memory vendors. To ensure proper
operation of your SBC, you must ingtall the DIMMs as supplied pairsin
memory connectors 0 and 1 or 2 and 3. If you choose to use only two
DIMMSs, you must populate memory connectors 0 and 1.

Table 2—2 shows valid DIMM combinations.

Table 2—-2 Valid DIMM Combinations

Memory Size DIMM O DIMM 1 DIMM 2 DIMM 3
(MB) (MB) (MB) (MB) (MB)

16 8 8

32 8 8 8 8

32 16 16

64 16 16 16 16

64 32 32

128 32 32 32 32

Module Components

Table 2-2 Valid DIMM Combinations (Continued)

Memory Size DIMM 0 DIMM 1 DIMM 2 DIMM 3
(MB) (MB) (MB) (MB) (MB)
128 64 64

256 64 64 64 64

256 128 128

512 128 128 128 128

For information on memory installation, see the DIGITAL Alpha VME 5/352 and
VME 5/480 Single-Board Computers Installation Guide.

2.6 Primary Breakout Module

The primary breakout module is arequired module that plugsinto your VMEbus
backplane behind the slots occupied by your AlphaVME 5/352 or 5/480 SBC
CPU and I/0 modules. This breakout module supplies additional power to the
CPU module by way of the VM Ebus P2 connector and provides:

e A connector for attaching a SCSI bus

e Additional P2 options, such asthe secondary breakout module

e SCSl termination control

e A connection for and control of awatchdog timeout signal

e A connector to Alpha VME external timing signals

Figure 2—6 shows the primary breakout module.

Figure 2—6 Primary Breakout Module

MLO013784

The numeric callouts in the figure identify the following key components:

1 SCSl termination and watchdog reset signal jumpers

2 Connector for the secondary breakout module or an external monitoring

device

3 SCSI cable connector

Module Components 2-7

A reset input signal on pin C10 of the primary breakout module’s VMEbus P2
connector is available for resetting the SBC. This signal is low during normal
operation and high during a watchdog timer reset in parallel with the Reset switch
on the SBC's front panel. Because pin C10 is a nié@t@d nput pin, you should

use shielded wiring to apply the reset input signal.

Caution

You must use the primary breakout module included in your Alpha VME
5/352 or 5/480 SBC hardware kit. Applying power to a DIGITAL Alpha
VME 5/352 or 5/480 SBAVITHOUT that primary breakout module in
place, otWITH the breakout module included with the AXPvme 160,

166, or 230 (part number 54-22605-01) in place, may damage your back-
plane, the Alpha VME 5/352 or 5/480 SBC, or both.

For information on primary breakout module jumper settings, se{BETAL
Alpha VME 5/352 and 5/480 Single-Board Computers Installation Guide.

2.7 Secondary Breakout Module

The secondary breakout module is an optional module that connects to the pri-
mary breakout module. Connectors on the secondagkbut module include a

PS/2 keyboard and mouse Y-cable connector and a parallel port connector. The
primary use of this module is to add a serial-line (keyboard and mouse) connector
and parallel port to the rear of the VME chassis.

Figure 2—7 shows the secondary breakout module.

Figure 2—7 Secondary Breakout Module

ML013785

The numeric callouts in the figure identify the following key components:

1 PS/2 keyboard and mouse connector

Module Components

2 PS/2 keyboard and mouse Y-cable (supplied in PM C 1/O companion card Kits,
EBV1P)

3 Keyboard and mouse jumper
4 Parallel port
Note

The Alpha VME 5/352 and 5/480 SBCs support a PS/2-type 101-compat-
ible keyboard and mouse.

2.8 PMC I/O Companion Card

The PMC 1/O companion card is an optional third tier module that plugsinto a
connector on the 1/0 module. Using the PMC 1/O companion card, you can

expand your SBC’s I/O capabilities by adding ifaees, such as a sew Ether-

net interface or a graphicard. Primary commonents on the companion card

include connectors for two PMC options, a PCI-to-PCI bridge chip, keyboard and
mouse connectors, two VMEbus connectors, and a VMEbus P2 signal connector.
The VMEDbus P2 signal connector provides a way of sending 1/O signals from a
PMC option to a device attached to the VMEbus P2 connector instead of to the
front panel of the PMC option card.

To use the PMC I/O companion card, you must have three adjacent slots available
in your VME chassis.

Figure 2—-8 shows the layout of the card.

Figure 2—-8 PMC I/O Companion Card Layout

7 6 5 4

ML013786

The numeric callouts in the figure identify the following key components:

Module Components 2-9

2-10

P1 VMEbus connector

P2 VMEbus connector

VMEbus P2 signal connector for PMC option 1

1/0 module connector (on the back of the PMC I/O companion card)
Power LED

Keyboard connector

M ouse connector

Diskette drive connector

Signaling level jumper (jumper MUST be set to 5.0 V)

PM C option 2 connector

© 0O N OO 0o~ W N P

T
P o

PMC option 1 connector
Note

The Alpha VME 5/352 and 5/480 SBCs support a PS/2-type 101-compat-
ible keyboard and mouse.

The 34-pin diskette drive connector (see item 8 in Figure 2—8) provides a way of
attaching a diskette drive (for example, an RX23 or RX26). To use this connector,
you must make or buy a cable that is best suited for your application. DIGITAL
supplies only the pin assignments for the connector.

For a description of the connector pin assignments, see Appendix C.

Module Components

3

Functional Components

This chapter describes the functional components associated with the DIGITAL
Alpha VME 5/352 and 5/480 SBCs. The chapter begins with an overview (Sec-
tion 3.1) and then describes the following:

21164 Alpha microprocessor chip, Section 3.2
21172 core logic chipset, Section 3.3

Bcache subsystem, Section 3.4

Memory subsystem, Section 3.5

SROM, Section 3.6

Clock interface, Section 3.7

PCI interface, Section 3.8

Nbus interface, Section 3.9

VME interface, Section 3.10

For information on the address mapping, registers, and system interrupts associ-
ated with these components, see the DIGITAL Alpha VME 5/352 and 5/480 Sin-
gle-Board Computers Technical Reference.

Functional Components 3-1

3.1 Functional Component Overview

3-2

Figure 3-1 identifies the functional components of the Alpha VME 5/352 and
5/480 SBCs. The Alpha VME 5/352 and 5/480 CPU modules are based on the
21164 Alpha microprocessor, and run at 352 MHz and 480 MHz, respectively.
The 21172 core logic chip set consists of the 21172—CA control, I/O interface, and
address (CIA) chip and four 21172-BA data switch (DSW) chips. Nine SRAMs
provide 2 MB of Bcache and two or four main memory DIMMs provide from 16
to 512 MB of EDO memory. The system clock uses a phase lock loop
(PLL)/buffer cirauit to provide SYSCLK signals to 10 system components at 32
MHz.

The CPU module intémceswith the I/O module through a 32-bit PCI bus. As
Figure 3—-1 shows, the I/O module provides a:

e PCl-to-VME64 bridge (DC7407 VIP and VIC64), which provides an inter-
faceto the VMEbus

e PCI-to-SCSI controller (53C810), which provides an interface to SCSI
devices

e PCI-to-Ethernet controller (21040), which provides a network interface

e PCI-to-Nbus bridge (82378ZB), which provides access to the system’s 8-hit
Nbus and includes interrupt controller and interval timer support

e PCI-32 interface to an optional PMC I/O companion card

The 1/0 module’s Nbus is a resource bus that is based on the ISA bus. The Nbus
handles the read and write cycles for the following:

* 4M of flash ROM

e Super I/O chip (FDC37C6656T) resources, which include console and paral-
lel ports and a diskette drive

e TOY clock, watchdog timer, and NVRAM chip (DS1386) resources
e Keyboard and mouse controller (82C42PE)

The /O module interfaces to an optional PMC 1/0 companion card through the
32-bit PCI bus. The PMC I/O companion card uses a DEC 21052 PCI-to-PCI
bridgeto provide accessto two PM C option slots. This optional card also provides
keyboard, mouse, and diskette drive connectors.

Functional Components

' CPU Module]]
! Memory Data, ECC, ,
! 256 or 128 Bits .
: 21172-BA .
‘ System Bus Data, ECC, Tag, 128 Bits Data Path ! '
‘ (chips) [— 1
| 2 MB Main ‘
‘ Memory ‘
. Control Bcache (2 & 4) :
! 810 128 MB ‘
‘ | 21172-CA DIMMs ‘
i 3520r | | 21164 System Bus Address, Tag_Dirty, Tag_Ctl Memory '
| 480 MHz Micro- Controller Memory Control ‘
‘ crPU || | Memory Lontrol |)
‘ Clock processor Control and 1/0 ‘
‘ Interface |
! Phase !
‘ [] SYSCLK Lock Loop 10 sys?,ch'\};'jzg:w |
! SROM |
' PCI Bus, 64 Bits
. 1/O Module ; I
. Super I/O 2:::;2 -
! 4 MB Flash FDC37C6656T Console -
‘ S10 Chip 82378ZB Console and
! Parallel Ports | Parallel Port
: Interrupt Controller ‘ ‘ ‘ ‘ !
! : PCI-to-Nbus Bridge Nbus, 8 Bits ‘ :
: Interval Timer ‘ ‘ ‘ ‘ :
‘ DS1386 82C42PE !
: TOY Clock Keyboard —>Keyboard !
| Watchdog Timer and Mouse | Mouse
L N sl tetiui it Controller !
| 32 KB NVRAM .
j PCI Bus, 32 Bits :
; | || | [ER EEEET ‘
: VIP/VIC64 53C510 DEC21040 | .- !
| . | DEC21052 .
‘ PCl-to-VME scs Ethernet | | | periopal CPMC Vo
‘ Bridge Controller Controller | | Bridge ompanion
; L Card ‘
\ . ‘ 32 ‘ 32 !
w iVMEbus iscsa iEthernet L Bite__¥Bits \
‘ [pmc || Pmc ‘
—————————————————————————————— - - - - " |Option || Option .
. | sloto || siot2 ‘
D = Uses system clock 32MH2z) EFm———t— _ _ _ _ _ __
MLO014166

3.2 21164 Alpha Microprocessor

The Alpha VME 5/352 and 5/480 SBCs are based on the 21164 Alpha micropro-
cessor, which is a superscalar pipelined processor manufactured using 0.35 um
CMOS technology. It is packaged in a 499-pin IPGA carrier.

The 21164 microprocessor can issue four Alphainstructionsin asingle cycle,
thereby minimizing the average cycles per instruction (CPIl). A number of low-
latency and/or high-throughput features in the instruction issue unit and the
onchip components of the memory subsystem further reduce the average CPI.

The 21164 microprocessor and associated PAL code implements | EEE single-pre-
cision and double-precision, VAX F_floating and G_floating data types, and sup-
ports longword (32-bit) and quadword (64-bit) integers. Byte (8-bit) and word

(16-hit) support is provided by byte-manipulation instructions. Limited hardware

Functional Components 3-3

support is provided for the VAX D_floating datatype. Partial hardware implemen-
tation is provided for the architecturally optional FETCH and FETCH_M instruc-
tions.

Other features of the microprocessor include:
e Anonchip, demand-paged memory-management unit with atranslation buffer

e Two onchip, high-throughput pipelined floating-point units, capable of exe-
cuting both DIGITAL and | EEE floating-point data types

e Anonchip, 8 KB virtual instruction cache (Icache) with 7-bit ASNs
(MAX_ASN=127

e Anonchip, dual-read-ported, 8 KB data cache (Dcache)
e Anonchip, write buffer with six 32-byte entries

e Anonchip, 96 KB, 3-way, set-associative, write-back, second level (level 2)
mixed instruction and data cache

e A 128-hit data bus with onchip parity and error correction code (ECC) sup-
port

e Anexternal third level (level 3) synchronous 2 MB backup cache (Bcache)

e Aninternal clock generator providing a high-speed clock used by the 21164
microprocessor, and apair of programmable system clocks for use by the
CPU module

e Onchip performance counters to measure and analyze CPU and system per-
formance

e Chip and module level test support, including an | cache test interface to sup-
port chip and module level testing

e A 3.3V external interface and 2.5V core power for reduced power consump-
tion

Figure 3—-2 shows the microprocessor’s functional units and caches in a functional
block diagram.

Figure 3—2 21164 Alpha Microprocessor Functional Block Diagram

21164

- |l : 40-Bit Addresi

| Microprocessor —» Integer > | y >
; Merge
I Instruction < Lo ?c » Second- I Y
I . Fetch/ [Integer 9 Level |
| Instruction Decode > Bus 2 MB
| Cache | d Cache | I |nterface |e- Backup
8 KB an < 96 KB Unit | ! h

| Branch [FPX Write- | Cache
| A Unit Data Cache Back | y
| || 8 KB
| 1 FPX > Write-Through ! \ >
| A A A : 128-Bit Data
| Y \ |
L - - - - ___a4

ML014168

For more detail ed information on the microprocessor, see the Digital Semiconduc-
tor 21164 Alpha Microprocessor Hardware Reference Manual.

34 Functional Components

3.3 21172 Core Logic Chipset

The DIGITAL 21172 core logic chipset supports the 21164 Alpha microprocessor
in high-performance uniprocessor systems. The chipset includes an interface to
the 64-hit peripheral component interconnect (PCI) bus, and associated control
and data paths for the 21164 microprocessor chip, memory, and level 3 Bcache.

Sections 3.3.1 and 3.3.2 discuss the chipset components and features. For more
detailed information on the 21172 core logic chipset, see the Digital Semiconduc-
tor 21172 Core Logic Chipset Technical Reference Manual.

3.3.1 Chipset Components

The chipset consists of:

A control, 1/O interface, and address (CIA) chip — 21172-CA chip

The CIA chipisa388-pin plastic ball grid array (PBGA) package that
provides control functions for main memory, a bridge to the 64-bit PCI
bus, and control functions for the DSW chips and part of the I/O data
path.

Four data switch (DSW) chips — 21172-BA chips

The DSW chips are 208-pin plastic quad flat pack (PQFP) packages that
provide bidirectional data paths between the 21164 microprocessor, main
memory, Bcache, the CIA chip, and part of the 1/O data path. The major-
ity of the DSW logic consists of data buffers and multiplexers. Using two
encoded control fields, the CIA chip directs data flow to and from the
DSW chips.

3.3.2 Chipset Features

The chipset includes the magjority of functions required to develop high perfor-
mance systems that require minimum discrete logic on the module. Features
include:

Support for the 21164 Alpha microprocessor chip

A 64-bit, ECC-protected data path (10D bus) between the CIA and DSW
chips

A 128-bit ECC-protected data path (system bus) between the 21164 and DSW
chips

A 256-hit ECC-protected memory data path (memory bus) between the DSW
chips and memory

A 32 MHz system bus interface

Support for 2 MB of write-back, ECC-protected, level 3 Bcache using the
flush cache coherency protocol

Support for 16 to 512 MB of EDO memory

PCI bus support that includes 64-bit multiplexed address and data paths, 64-
bit PCI address handling, and scatter-gather mapping

Functional Components 3-5

e 32 MHz PCI clock frequency
e DSW chipsthat provide a victim buffer for read miss/victim transitions

3.4 Bcache Subsystem

The DIGITAL AlphaVME 5/352 and 5/480 SBCs provides 2 MB of direct
mapped Bcache. The Bcache is populated with nine 9 nanosecond, 64K -bit X 36-
bit synchronous static random access memories (SRAMs). Bcache features
include:

* A block size of 64 bytes
e System bus Bcache private read/write transfer rate of 700 MB/s
e ECC protection

e Useof the flush cache coherency protocol as described in the Digital Semi-
conductor 21164 Alpha Microprocessor Hardware Reference Manual

The 21164 Alpha microprocessor controlsthe level 3 Bcache array as shown in
Figure 3-3.

Figure 3-3 Level 3 Bcache Array

21164 . Bcache
. index_h<20:4>
Microprocessor SRAM
un_data_ram_oe_h
un_data_ram_we_h
un_tag_ram_oe_h
>
un_tag_ram_we_h
index_h<20:6>
>
tag_data_h<38:30>
= Tag Data
tag_data_h<29:20>
Array Array

:tag_data_par_h

-
tag_ctl_par_h

4talg_valid_h
tag_dirty_h

‘data h<127:0>

| g !
data_check_h<15:0>

YYYVYYVYYVY

st_clkl_h st_clkl_<9:1>_h
>

»| Buffer

idle_b
=" (From CIA Chip)

ML013816

3.5 Memory Subsystem

The Alpha VME 5/352 and 5/480 SBCs support two or four dynamic random
access memory (DRAM) DIMMsfor up to atotal of 512 MB of 60 nanosecond,
EDO main memory. The memory residesin a single bank. Table 2-2 lists valid
DIMM combinations.

Quadword error checking and cection (ECC) is supported on the memory and
system buses. The 21172 core logic chipset controls and routes all CPU-to-mem-
ory caching and PCI dict memory access (DMA) operations. The DSW and CIA
components of the chipset provide a high-speed memory data path that has a
width of either 128 or 256 bits, depending on the mode in which the SBC is oper-

3-6 Functional Components

3.6 SROM

ating. When you use two DIMMSs, the SBC operates in 128-bit mode; when you
use four DIMMs the SBC operates in 256-bit mode. The memory bus bandwidth
in 128-bit mode is 210 MB/s, while the bandwidth in 256-bit mode is 355 MB/s.

The memory subsystem optimizes its cache read miss with victim write cycle to
improve memory and system bus bandwidth. The optimizations are achieved by
partitioning the the memory row and column addressing such that the read miss
row and victim row addresses match.

The cache read miss cycle begins when the 21164 Alpha microprocessor recog-

nizes a cache read miss with victim. When aread miss with victim isidentified,

the microprocessor instructs the CIA chip to take the victim and then get the read

miss data. The CIA chip places the victim datain a DSW buffer while initiating a
memory read cycle (RAS—-CAS-RAS). The CIA and DSW chips then supply the
read data to the microprocessor and cache then write the victim data to memory
(CAS—CAS). The resulting memory cycle — CAS — RAS (read 32 bytes) — RAS
(read 32 bytes) — RAS (write 32 bytes) — RAS (write 32 bytes) — completes in
360 ns or 355 MB/s.

The SROM for the Alpha VME 5/352 and 5/480 SBCs contains 8 KB of code that
is loaded into the Alpha 21164 microprocessor’s Icache serially when the system
powers up or during a reset. Execution is passed to this code in PAL mode. SROM
initialization is explained in detail in Chapter 7.

The SROM is socketed to allow future firmware upgrades.

3.7 Clock Interface

The CPU clock circuit used by the Alpha VME 5/352 and 5/480 SBCs multiplies
a 16 MHz clock frequency by 22 or 30 and buffers the results, supplying the
Alpha 21164 microprocessor with a 352 MHz or 480 MHz clock speed. The
microprocessor divides the input value 352 or 480 by 11 or 15, respectively, to
generate the system clock.

The 21164 system clock signal (SYSCLK) drives a phase lock loop (Plterbu
circuit. That circuit, in turn, gearates 10 apies of the 32 MHz SYSCLK signal
for the 21172 core logic chip set components and all PCI devices.

The 21172 core logic chipset generates its own 1x and 2x clock signals on each
DSW and CIA chip.

3.8 PClI Interface

The PCl interface consists of a PCI bus that serves as the base of the 1/0 sub-
system, connecting all of the system’s PCI devices. The I/O subsystem consists of
the 21172 core logic CIA and DSW chips and the following PCI devices:

e Ethernet controller
e SCSl controller

e PMC I/O companion card

Functional Components 3-7

* Nbusinterface
e VME interface

Sections 3.8.1 to 3.8.3 briefly discuss Ethernet, SCSI, and PCI Expansion Card
support. For introductions to the Nbus and VM E interfaces, see Sections 3.9 and
3.10.

3.8.1 Ethernet Controller

The Ethernet controller for the AlphaVME 5/352 and 5/480 SBCsis based on the
DECchip 21040-AA. This chip keeps processor intervention in local area network
(LAN) control to a minimum. The chip behaves:

e Asabusslave when communicating with the PCI bus to gain accessto con-
figuration and control/status registers

e Asabus master when communicating with memory

The Ethernet controller handles the following types of cycle termination:
e Target-initiated retry

e Abort

e DEVSEL abort

Target-aborted terminations cause an interrupt.

The physical connection to the network is through the Ethernet 10BASE-T
twisted-pair connector located on the front panel of the CPU and I/O subassembly.

The Ethernet ID address for the Alpha VME 5/352 or 5/480 SBC assembly is
stored in a 20-pin socketed PLCC.

For more information on programming and using the DECchip 21040-AA, see the
DECchip 21040-AA Specification.

3.8.2 SCSI Controller

The SCSI controller for the Alpha VME 5/352 and 5/480 SBCs is based on the
Symbios 53C810 chip. This controller allows you to attach up to seven SCSI
devices to your SBC.

The primary breakout module provides an interface to a standard SCSI cable. This
module brings the SCSI bus to a standard 50-pin SCSI connector pinning for
direct connection to an unshielded SCSI A-cable. A 6-pin jumper block on the
module controls SCSI termination as follows:

e Enables SCSI termination when the jumper is set acrosspins 1 and 3
e Disables SCSI termination when the jumper is set across pins 3 and 5

The controller can affect high-level SCSI operations with very little intervention
from the processor. The controller accomplishes thisthrough itslow-level register
interface or by applying Symbios SCSI scripts.

Once the controller is configured in PCI address space, programming of the Sym-
bios 53C810 chip is compatible with the Symbios 53C720 chip.

3-8 Functional Components

For more information on programming the Symbios 53C720 chip, see the chip’s
programming guide.

3.8.3 PMC I/0O Companion Card

The optional PMC I/O companion card provides a 21052 PCI-to-PCI bridge chip
and two sets of PMC connectors for adding one double-width or two single-width
PMC option modules. One of the PMC connector sets includes a third connector
that allows I/O access through the P2 connector.

PCI bus arbitration supports two PMC devices with up to four interrupt request
lines. The PCI clock is driven from the CPU and I/O subassembly at a frequency
of 32 MHz. The card connectors provide 3V and 5V supply voltages. Although
you can have mixed supply voltages betweamls, the PCI bus signaling voltage
must be configured to 5 V when thard is nstalled.

3.9 Nbus Interface

The Nbus interface is a simple nonmultiplexed resource bus that is based on the
ISA bus and supports 8-bit data transfers and 16-bit addressing. This bus provides
an interface to the PCI bus through an Intel System I/O chip (82378ZB). The
interface translates PCI 1/O references to the Nbus into simple read and write
cycles for resources attached to Migus lines. Such resources include the sys-
tem’s:

e |nterrupt controllers

* FlashROM

e TOY clock

e Watchdog timer
* NVRAM

e Interval timer
e Keyboard and mouse controller
e Super I/O chip

3.9.1 Interrupt Controllers

Most interrupts on AlphaVME 5/352 and 5/480 SBCs are routed through the fol -
lowing interrupt controllers:

e Xilinx interrupt controller
e VIC64 chip system interrupt controller
e SIO chip (82378ZB) programmable interrupt controller

The Xilinx interrupt controller handles CPU interrupts. This controller consists of
four interrupt mask registers that generate CPU interrupt request signals.

Functional Components 3-9

The VI1C64 chip interrupt controller handles VMEbus interrupts. It controlstwo
external/system interrupt sources. DC7407 status and DC7407 errors. Each of
these sources has an associated interrupt control register (ICR) that allowsthe
interrupt to be programmed with an interrupt priority level (IPL) or disabled.

Use of the VIC64 chip in Alpha VME 5/352 and 5/480 SBCs as an interrupt con-
troller ismodified slightly by the operation of the DC7407, the SIO chip, and the
interrupt/mask registers.

The SIO chip interrupt controller delivers interrupts from the mouse, keyboard,
and Super 1/0O chip (37C665) to the interrupt/mask register.

For more information about the interrupt controllers and the handling of system
interrupts, see the DIGITAL Alpha VME 5/352 and 5/480 Single-Board Comput-
ers Technical Reference.

3.9.2 Flash ROM

The Alpha VME 5/352 and 5/480 SBCs have atotal of 4 MB of electricaly eras-
able and writable flash ROM. The flash ROM is segmented into 1 MB windows,
using bits <1:0> of a module control register. The system console firmware is pre-
written into the first 512 KB, providing you with 3.5 MB of additional space to
use for your application.

To protect the contents of the flash ROM from unauthorized or accidental updates,
you must close DIP Switch 2 on the 1/0 module before enabling write operations.
That switch must always be open unless you are updating the flash ROM. (The
state of the switch is stored in Flash Switch bit <3> of the module control regis-
ter.) Independent of the state of the switch, you can overwrite the setting in the
software to enable automatic updates.

3.9.3 TOY Clock

3-10

The Dallas Semiconductor DS1386 chip provides the SBC's time-of-year (TOY)
clock functionality. This chip also supports the watchdog and SRAM functionality
as nonvolatile random access memory (NVRAM).

Note

The Alpha VME 5/352 and 5/480 SBCs do not support the DS1386 chip’s
alarm features.

The TOY clock maintains the system'’s time: year, month, date, day, hour, minute,
second, 110th of a second, and 1/100th of a second. The clock corrects the date for
months with fewer than 31 days and for leap years. In addition, the clock can
maintain the time in 24-hour or 12-hour AM/PM format.

The square wave output of the chip generates a fixed 1024 Hz interval and time-
keeping accuracy is better than +/- minute/month at 25 C.

The clock maintains time in the absence of Vcc by using an internal lithium (less
than 0.5 grams) energy cell that has an active life of at least 10 years. In addition,
internally the clock protects against spurious accesses during power transitions.

Functional Components

Some applications may require the TOY clock and NVRAM to operate from an
external uninterruptable power supply (UPS). The AlphaVME 5/352 and 5/480
SBCs have an onboard switch (J3 switch 1) to allow a connection to the 5V
standby connection (5VSTDBY) on the VMEbus. When Switch 1 is closed, the
VME 5VSTDBY is connected to the TOY supply through isolation diodes.

The chip is socketed to allow:
* Replacement when the internal power source is no longer functional
e Physical removal of the NVRAM

The TOY clock registers are updated every 0.01 seconds. You gain access to the
clock to examine or set the current time by using the console date command (see
Section 5.5).

3.9.4 Watchdog Timer

The watchdog timer resides on the Dallas Semiconductor DS1386 chip. The
watchdog timer allows hardware to bring the system back to a known state when a
software failure occurs.

An application can initialize the watchdog timer with a value in the range 0.01 to
99.9 seconds. If left unaccessed, the timer decrements towards O. If the timer
reaches 0, the watchdog timer halts the system (jump to Halt entry in firmware)
and then forces the module hardware to be reset (some 300 ms later). The applica-
tion can maintain the module by periodically accessing the watchdog timer regis-
ters. When you access these registers, the watchdog timer resets back to the
initialization value. Therefore, as long as the worst-case time between watchdog
timer access is less than the programmed timeout value, the module functions nor-
mally.

The AlphaVME 5/352 and 5/480 SBCs indicate the status of the on-board watch-
dog timer with the signal WD_STATUS OC on pin C6. This signal isdriven low
when an on-board watchdog timer expires. The device that drivesthe signal isa
74L.S05 open-collector inverter. This device is capable of sinking the signal a
maximum of 8 mA (IOL). You can pull up the WD_STATUS OC signal to the 5
V rail by using a2 KQ resistor and setting the primary breakout module jumper
across pins 4 and 6 (default). To disconnect the resistor from the 5V rail, set the
jumper across pins 2 and 4.

In addition to the hardware support for watchdog timer operation, you can config-
ure the firmware to dispatch to user code or continue with its default reset action
on watchdog timeout. The firmware can detect the expiration of the watchdog
timer during areset operation by examining the hardware reset reason register.
The jump to the Halt code just before the reset enables the firmware to record a
snapshot of the processor’s state before the hardware reset is complete.

3.9.5 NVRAM

Within the TOY clock, the Alpha VME 5/352 and 5/480 SB@emjust under 32

KB of on-board SRAM that is backed up by battery. The RAM is provided by the
Dallas Semiconductor DS1386 chip and is held nonvolatile by a built-in lithium
battery source.

Functional Components 3-11

The nonvolatile RAM (NVRAM) is accessible for read and write operationsin
Nbus space. The DS1386 chip contains 32 KB read/write byte elements. The low-
est 14 of these bytes have special register functionsfor operation of the TOY clock
and watchdog timer. You can use the remaining bytes, 32754 bytes, as general-
purpose bytewide read/write RAM.

3.9.6 Interval Timer

3.9.6.1 Timers

Theinterval timer for the Alpha VME 5/352 and 5/480 SBCsis based on the
82C54 chip. On power up, the 82C54 chip isin an undefined state and must be ini-
tialized before being used. For information on how to initialize the chip, see the
DIGITAL AlphaVME 5/352 and 5/480 Single-Board Computers Technical Ref-
erence.

This chip is made up of three independent 16-bit counter/timers that are function-
aly identical:

Table 3—-1 Timers

Timer Description

Timer O Must be clocked externally by P2 pin C13. Optionally, this timer’s
gate input can be driven by P2 pin C14. When this timer makes a low-
to-high transition, its output causes the assertion of an input request
(IRQ). To dismiss the IRQ, you need to access the timer interrupt sta-
tus register.

Timer 1 Operates as a rate generator with its output being driven off-module by
P2 pin C12. This timer is clocked by a fixed 10 MHz. The output is
also routed directly to the VIC local IRQ input <3>.

Timer 2 Operates as a rate generator with its output connected to P2 pin C11.
This timer is clocked with the same fixed 10 MHz. You can also use
the output on the module to generate an IRQ. If enabled, Timer #0's
output during a transition from low-to-high causes the assertion of an
IRQ. To dismiss the IRQ, you need to access the timer interrupt status
register.

Thetimers are implemented by register/interrupt logic. The programming inter-
face is byte wide in the Nbus region of PCI 1/O space.

3-12 Functional Components

3.9.6.2 Timer Modes

In addition to supporting the three timers discussed in Section 3.9.6.1, the Alpha
VME 5/352 and 5/480 SBCs implement two timer modes (modes 1 and 3) pro-
vided by the 82C54 chip for timers 1 and 2. The hardware connections for the
timer output are available on the P2 VMEbus connector. Thetimers are driven
from an internally generated 10 MHz asynchronous clock.

Table 3-2 Timer Modes

Mode Description

1 Allows the application to write avalue n to the timer. An external
hardware trigger causes the timer to count down from n to zero. If a
new value n is written to an associated mode 1 register before the
countdown reaches zero, the timer begins counting from the new value
at clock n+1.

3 Allows the application to write avalue n to the timer. The timer uses
the value to generate a square wave with a period equal to n times the
10 MHz clock period.

Applications can usesthese timersfor avariety of off-module functions. For more
information about how to use the timers and timer modes, see the DIGITAL Alpha
VME 5/352 and 5/480 Single-Board Computers Technical Reference.

3.9.7 Keyboard and Mouse Controller

The keyboard and mouse controller is provided by an Intel 82C42PE single-chip
microcomputer. The controller is programmed to be IBM PC/AT compatible and
can drive the keyboard and PS/2 type mouse supported by DECpc systems. The
keyboard and mouse ports are female 6-pin mini-DIN, PS/2 type connectors. The
controller is programmed to allow either device to operate in either port.

3.9.8 Super I/O Chip

The FDC37C665GT Super 1/0O chip (not to be confused with the standard I/O, or
SIO, chip) supports serial-line port channels A and B (16550 UARTS) and a paral-
lel port. It provides first-in-first-out (FIFO) data access for the serial ports and
EPP/ECP modes for the parallel port.

The Alpha VME 5/352 and 5/480 SBCs use channel A for the console. The firm-
ware configures this channel as an asynchronous line, using baud rate, parity, data
bit, and stop bit configuration data that you define and is stored in NVRAM. If
NVRAM does not contain valid data on power-up, the SBC configures channel A
with defaults of 9600 baud, no parity, eight bits, and one stop hit.

The system firmware does not commit or initialize channel B.

3.10 VME Interface

The PCI-to-VME interface for the Alpha VME 5/352 and 5/480 SBCs conforms
to the IEC 821, IEEE1014-1987, and D64 sections of IEEE1014 Rev.D (draft)
standards. The interface is implemented using the following components:

« VIPASIC (DC7047B) chip

Functional Components ~ 3-13

* The Cypress Semiconductor VIC64 VM Ebus interface chip set

e Three CY 7C964 bus interface chips

e Static scatter-gather RAM for address mapping

e Support logic implemented with programmable logic devices (PLDs)

The VIP/VIC64 chip combination accepts and generates VMEbus D08, D16,
D32, and D64 data transfers and protocols. The chip combination supports
addressing modes A16, A24, and A32 as a master or dave on the VMEDbus.

The VIP chip uses information stored in the scatter-gather RAM to perform big-
to-little endian data translation (byte swapping) and address mapping when data
moves to and from the VMEbus.

Figure 3—4 shows the interface components and the address and data paths
between them.

Figure 3—-4 PCI-to-VME Interface Components

VIP Scatter/Gather

VIP Registers RAM
PciBus) e——r
A<31:0> D<31:0>||A<27:13> D<31:5>

L‘\Jj' VIC64
A<T7:0>
<A<31:0> [t—>
D<7:0>
<D<31:0> <«
I | |
VIC CSRs
[1 [[T |
CY7C964 CY7C964 CY7C964
A,D<31:24> A,D<23:16> A,D<15:8>
VME_A,D VME_A,D VME_A,D
<31:24> <23:16> <15:8> VME_A,D<7:0>

< VME_D[31:0]
< VME_A[31:1]
ML014167

3.10.1 VIP Chip

The VIP chip controls the 32-hit wide PCI bus. Its PCI configuration registers
alow it to function as the PCI bus target and initiator. The VIP chip:

e Functionsasa PCl slaveto all processor I/O read and write operations that
target the VIP registers, the CY 7C964 chip registers, the scatter/gather RAM,
or VME memory space

e Respondsto PCI interrupt acknowledge cycles when set up as the PCI inter-
rupt responder

e Functions as a PCl master in response to the V1C64 chip requesting datafrom
or sending data to PCI memory

3-14 Functional Components

¢ Performs address translation between the PCI bus and the V MEbus for trans-
fersto and from the VMEbus

3.10.2 VIC64 and CY7C964 Chips

The VIC64 and CY 7C964 chips control the VMEbus. The VIC64 chip functions
asaVMEbus slave in response to VME addresses that match those set up by the
address base and address base mask registers. This chip functions as VMEbus
master:

* |nresponse to the processor reading from and writing to VME memory (pro-
grammed |/O)

e To execute DMA transactions (master block transfers) set up by the processor
in the VIP/VIC64 interface

For more information on the VIC64 and CY 7C964 chips, see the Cypress Semi-
conductor VIC068 User’s GuidegV1C64 design notes, and CY7C964 User’s
Guide

3.10.3 Address Mapping and the Scatter-Gather Map

The VIP chip trand ates addresses by using amapping table in scatter-gather RAM
called the scatter-gather map. The scatter-gather map transl ates addresses for out-
bound and inbound VM Ebus transactions.

For outbound transactions, the VIP chip maps a512 MB region of PCI memory
space to the VM Ebus. The outbound scatter-gather map trand ates a maximum of
2K naturally aligned 256 KB pages within that 512 MB region to 256 KB of natu-
raly aligned pages on the VMEbus (A32, A24, or A16). A PCI addressis used as
an index into the scatter-gather map to give the corresponding VME address.

For inbound transactions, the VIP chip maps naturally aligned 8 KB regions of
VMEbus A32 and A24 address spaces to naturally aligned 8 KB regions of PCI
address space (memory or 1/0). The inbound scatter-gather map consists of two
parts. One part trand ates up to 2K pages (8 KB) of VMEbus A24 address space to
8 KB pages of PCI address space. The other part maps up to 16K pages (8 KB) of
VMEbus A32 address space to 8 KB pages of PCI address space. An incoming
VME address is used as the index to select the PCI address.

The scatter-gather map may be accessed from the PCI bus (written to or read
from) under VIP control. Scatter-gather entries also contain information to control
inbound accesses and byte swapping.

The VIP chip contains a single entry scatter-gather cache and a set of registers.
The cache stores the last accessed outbound scatter-gather entry and its corre-
sponding scatter-gather address index. Theregisters provide mapping for inbound
and outbound transactions (one mapping in each direction).

For more information about VME interface address mapping, see the DIGITAL
Alpha VME 5/352 and VME 5/480 Single-Board Computers Technical Reference

Functional Components 3-15

Part Il

The Console

Part 11 discusses the console interface for the DIGITAL AlphaVME 5/352 and
5/480 single-board computers (SBCs). This part consists of the following chap-
ters:

e Chapter 4, Console Basics
e Chapter 5, Using the Console

e Chapter 6, Console Command Reference

A

Console Basics

The Alpha VME 5/352 and 5/480 SBC console provides an interface to the SBC
firmware. From avideo terminal or video terminal emulator, you can use console
firmware commands to perform operations such as configuring your system,
debugging your application, embedding script code in the NVRAM, or updating
the firmware.

This chapter introduces you to console basics by:

e Explaining required serial-line settings, Section 4.1

e |dentifying console features, Section 4.2

e Explaining how to enter console mode, Section 4.3

e Explaining how to exit console mode, Section 4.4

e Discussing online help, Section 4.5

* Providing an overview of console commands, Chapter 4.6

e Describing special keys, Section 4.7

e Discussing command line characteristics, Section 4.8

e Describing console command operators, Section 4.9

e Explaining how to control the radix of command input, Section 4.10
e Explaining how to use flow control, Section 4.11

e Explaining how to filter output, Section 4.12

e Explaining how to redirect I/O, Section 4.13

e Explaining how to run commands in background mode, Section 4.14
e Discussing the use of scripts, Section 4.15

e Explaining how to copy scripts over the network, Section 4.16

4.1 Setting Up the Console for Use

To use the console firmware, you need to connect your SBC to a console device.
The console device can be avideo terminal connected with a serial line or aPC or
workstation connected to the system through the network running aterminal emu-
lator.

For information on installing seria-line or network cables, see the DIGITAL
Alpha VME 5/352 and 5/480 Single-Board Computers Installation Guide.

Onceyou have connected the SBC to aconsole device, set up the deviceto usethe
following parameters:

Console Basics 4-1

¢ Send/receive 9600 baud
e DECVTI100 (ANSI)
e Eight (8) bit data word

* No parity
e One(1) stop bit
e Xon/Xoff

4.2 Console Features

The Alpha VME 5/352 and 5/480 SBC console environment is extremely power-
ful and features:

e An operator interface

e An operating system bootstrap mechanism

e Operating system restarts

e Self-test and extended functional diagnostics

You can use UNIX command methods, such as piping, 1/O redirection, and com-
mand-level scripting. Because the console is built around a multitasking kernel, it
can support more complex functions, such as system exercisers, the Maintenance
Operations Protocol (MOP) listener, and remote console operations.

4.3 Entering Console Mode

4-2

Console mode provides the user ifdee to the SBC’s firmware. You entéis
mode automatically when the power-on self-test (POST) completes. Upon enter-
ing console mode, the system displays the following prompt:

>>>

The system also enters console mode when:
* You press the Halt/Reset switch on the front panel.

* The SBC receives a VMEDbus reset signal and configuration switch 3 on the
I/0O moduleis enabled.

* You use the operating system command for entering console mode.
* Theoperating system executesa HALT instruction.

e Thewatchdog timer is enabled, and the system software allows the timer to
time out.

* Youinitiate an external hardware reset by using pin C10 on the P2 VMEbus
connector.

Console Basics

Note

Depending on the operating system and applications running at the time,
pressing the Halt/Reset switch or receiving a VM Ebus reset signal with
configuration switch 3 enabled could damage application files.

4.4 Exiting Console Mode

To exit console mode, use the console command boot.

4.5 Online Help

The AlphaVME 5/352 and 5/480 SBC console provides online help for each con-
sole command. Sections 4.5.1 through 4.5.3 discuss:

e How to display online help
e How to display help for multiple commands

e How to control the display of online help
4.5.1 Displaying Online Help

To display online help, specify the help or the man command with the name of
the command for which you are seeking help. If you do not specify a command
name, the console displays a complete listing of console commands.

For help on the help or man command, including help on the symbols used to rep-
resent syntax, specify help or man with the help command as shown in the fol-
lowing example:

>>> hel p hel p
4.5.2 Displaying Online Help for Multiple Commands

You can request help on multiple commands in a single command line by separat-
ing the command names with a space or by using wildcards. The following exam-
ple shows how to display help on the examine and deposit commands:

>>> hel p exam ne deposit

NAME
exan ne
FUNCTI ON
D splay data at a specified address.
SYNCPSI S
examne [-{b,w,q,0,h,d}] [-{physical,virtual,gpr,fpr,ipr}]
[-n <count>] [-s <step>]
[<) devi ce>:] <addr ess>
NAME
deposi t
FUNCTI ON
Wite data to a specified address.
SYNCPSI S

deposit [-{b,w,q,0,h}] [-{physical,virtual,gpr,fpr,ipr}]
[-n <count>] [-s <step>]
[<devi ce>:] <address> <dat a>

Console Basics 4-3

To display help on all commands that begin with “st”, sucétax$ andstop,
specify an asterisk (*) as follows:

>>> help st*

4.5.3 Controlling the Display of Online Help

If full help is available, the commandtsip * andman * display all information

on all commands. To control the amount of help text that the console displays at a
time, combine théelp orman command with thenore command. The following
example combines theslp andmore commands:

>>> help * | nore

This command combination displaysaeen of text at a time. Press the spacebar
to continue the display or press Ctrl/C to terminate the display.

4.6 Console Command Overview

The Alpha VME 5/352 and 5/480 SBC console interface consists of a set of com-
mands for operating a system, running diagnostics, and verifying application
design. Some of the commands are similar in function to UNIX commands.

Chapter 6 describes the console commands in detail. Table 4—1 shows a sampling
of the most commonly used commands.

Table 4-1 Commonly Used Console Commands

Command Description

boot Bootstraps the system

cat Copies the contents of files to standard output

deposit Writes data to a specified address

echo Sends specified text to the current output device

eval Eval uates a specified expression

examine Displays the contents of a specified address

exer Exercises system devices with read, write, and comparison operations

grep Searches for expressions and writes the search results to standard out-
put

hd Dumps the contents of afile

help Displays the definition and syntax for specified commands

Is Displaysalisting of filesin the system

man Displays the definition and syntax for specified commands

memexer Executes memory test processesin the background

memtest Executes memory tests

ps Displays the status and statistics associated with system processes

sa Specifies the processors on which a specified process can run

4-4 Console Basics

Table 4-1 Commonly Used Console Commands (Continued)

Command Description

set Sets the value of an environment variable
show Displaysinformation about the system
sleep Suspends execution of a console process

Most console commands require that you specify arguments. |n most cases, you

can also specify options that give you a finer level of control over the command’s
execution. Options have a hyphen (-) prefix, as in -b. When specifying options,
you must separate the option from the command and arguments with spaces. For
example, you must speciéy - b 0. If you entere- b 0, the console issues an

error message.

4.7 Special Keys

Table 4-2 lists special key and key combinations that perform specific console
operations.

Table 4-2 Special Keys for Console Operation

Keys Operation

Ctrl/U Ignores the current command line.
Backspace/Delete Deletes a character within the command line.
Ctrl/S Suspends command output to the console terminal.
Ctrl/Q Resumes command output to the console.

Ctrl/C Aborts the current command, if possible.

The console program has no control of an abort once it passes
control to another program, such as an operating system or

|oadabl e diagnostic.
Ctrl/R Retypes the current command line.
Ctrl/O Causes the consol e to throw away output characters rather

than send them to the terminal.

Entering another Ctrl/O resumes sending output charactersto
the terminal.

Up and down arrows Recall command lines.

4.8 Command Line Characteristics

The character sequence used for thesotprompt (>>>) is:
ODh 0Ah ODh 3Eh 3Eh 3Eh 20h

This translates to:

<CR> <LF> <CR> > > > <SP>

Host system software executing a binary load operation on the console terminal
port can look for this character string to determine when to respond.

Console Basics 4-5

Commands are limited to 80 characters. Characters that you enter beyond the 80-
character limit replace the last character in the buffer. Depending on your termi-
nal, the lost characters may be displayed, but they are not included in the actual
command line.

The command interpreter is not case-sensitive. Lowercase ASCI| charactersa
through z are treated as uppercase characters.

The parser rejects characters with codes greater than 0x7F. However, such charac-
ters are acceptable in comments.

The console does not provide type-ahead buffer support. The consol e checks char-
acters received before the console prompt appears for special characters (Ctrl/S,
Ctrl/Q, Ctrl/C), but otherwise discards the characters.

4.9 Console Command Operators
Table 4-3 lists operators that extend the console commanthager

Table 4-3 Console Command Operators

Operator Name Description
> Output creation Writes output to a specified destination, such asa
file.

Form: > destination

>> Output append Adds output to a specified destination, such as afile.

Form: >> destination

< Input redirection Reads input from a specified source.

Form: < source

<< Here document Readsinput from standard input until a specified
string is found at the beginning of aline.

Form: << string

Pipe Usesthe output of the first command as the input for
the second command.

Form: cmdl | cmd2

; Sequence Runs the first command to completion before run-
ning the second command.

Form: cmdl; cmd2

\ Line continuation Continues the command on the next line. The
prompt changes to _> until the command is com-
pleted.

Form: cmd1\
_>cmd2

4-6 Console Basics

Table 4-3 Console Command Operators (Continued)

Operator Name Description

Line comment Ignores the text that follows the operator. Used for
embedding commentsin command scripts or logs.

Form: #text

& Background Runs the command in a background process. The
command line remains available for a new com-
mand.

Form: cmdl &

&a Affinity Runs the process on the CPU that is allowed by the
processor affinity mask, m. You can specify multiple
processors by using alist or range.

Form: &am

(), {},'" Grouping Shows which commands are grouped together in
complex command lines. These operators override
the precedence of pipe, sequence, and background
operators.

Form: {cmdl; cmd2} | cmd3

* ?,[..] Pattern specifiers Specifies a character or group of characters to match
in character strings.

* matches any characters or none
? matches any single character
[...] matches any of the enclosed characters

Form: str*, arg?, [1 2 3]

4.10 Controlling the Radix of Command Input

By default, the console interprets numbers that you enter in a console command
line as hexadecimal. To change the radix of command input to decimal, precede
the input value with %d. To explicitly specify a hexadecimal radix, precede the
input value with %x.

4.11 Using Flow Control

The console provides reserved words that you can use in flow control struc-
tures. The reserved words include:

case elif fi in while
do else for then
done esac if until

The syntax for valid control structures follows:

e whilecommand_sequence done

Console Basics 4-7

e whilecommand_sequence do command_sequence done
e until command_sequence done

e until command_sequence do command_sequence done
e for name do command_sequence done

e for namein list do command_sequence done

e casewordin case part_list
pattern) command_sequence ;;
[pattern) command_sequence ;; |
esac

e if command_sequence
then command_sequence
[elif command_sequence then command_sequence) |
[else command_sequence]
fi

The console determines conditional branching in if, while, and until loops by
checking the exit status of the command sequence that follows the control struc-
ture. In general, an exit status of zero indicates success and resultsin the execution
of the true path.

The following example uses the eval command to extract an exit status from vari-
ablej unk. The console command set initializes the variable.

>>> set junk O
>>> show j unk

j unk 0

>>> eval junk

0

>>> if (eval junk) then (echo true) else (echo false) fi
0

true

>>> set junk 1

>>> jf (eval junk) then (echo true) else (echo false) fi
1

fal se

>>> set junk 2

>>> |f (eval junk)

_> then (echo true)

_> else (echo false) fi
2

fal se

>>>

4.12 Filtering Output

You can search for specific valuesin a device by using a pipe with the grep com-
mand. A pi pe (|) enables the output of one command to be the input for the next
command without creating an intermediate file. The grep command filtersits
input according to the command argument. Because the grep command requires
input, a pipe is used to channel the output of the examine command into the grep
command.

4-8 Console Basics

Thefollowing example uses grep to search for a pattern in memory. In this case,
grep parses all the output lines from the examine command, but only permits
lines that contain ABCDEF12 to reach the display. You can also usethe grep com-
mand to search for patterns that do not match the model provided; that is, it
searches for every line that does not contain the input pattern. The following
example sets up memory and then uses grep to filter the output.

>>> d pmem:3fff000 0 —n 8 # O ear sone menory.
>>> d 3fff020 ABCDEF12 # Drop in a target.
>>> e 3fff000 —n 8 # D splay menory.
prrem 3FFFO00 0000000000000000

prrem 3FFFO08 0000000000000000

prrem 3FFFO10 0000000000000000

prrem 3FFF018 0000000000000000

prrem 3FFF020 00000000ABCDEF12

prrem 3FFF028 0000000000000000

prrem 3FFFO30 0000000000000000

prrem 3FFF038 0000000000000000

prrem 3FFFO40 0000000000000000

>>> e 3fff000 -n 8 | grep ABCDEF12 # Dsplay only lines with ABCDEF12.
prrem 3FFF020 00000000ABCDEF12

4.13 Redirecting I/O

By default, console commands display on the console terminal. You can redirect
output to other devices or files by using the redirection operator (>). In the follow-
ing example, the output of the examine command isredirected to filef oo, which
is created dynamically from the console’s memory heap. The console command
cat, displays the contents of the new file. The rm command deletes the f oo file.

>>> |s foo # Check to see if foo exists.

foo no such file

>>> e 3fff000 -n 1 > foo # Redirect examne output to file foo.
>>> |s foo # Check to see if foo exists.

foo

>>> cat foo # D splay foo.

pnmem 3FFFO00 0000000000000000

pmem 3FFFO08 0000000000000000

>>>rm foo # Delete (remove) file foo.

>>> |s foo # Check to see if foo exists.

foo no such file

4.14 Running Commands in Background Mode

You have the option of executing console commands in background mode. When
acommand executes in background mode, the console creates a process for exe-
cuting the command and leaves the main process available for you to enter a new
command. You can execute any console command in the background by placing
the background operator & at the end of the command.

Console Basics 4-9

The following example starts three processes in the background. Theexer com-
mand invokes the first process, which reads data from block 0 of adisk. Then, the
memtest command creates two processes that perform console memory tests. In
all three cases, the console immediately returns with the console prompt and waits
for you to enter another command.

>>> show devi ce # See what devices are avail abl e.
dka0.2.0.1.0 dka0 dka0

€za0.0.0.0.0 EZAO 08- 00- 2B- 1D 02-91
€zbh0.0.0.1.0 EZBO 08- 00- 2B- 1D 02- 92
pka0.7.0.2.0 PKAO SCSl Bus ID 7

>>> exer dkaO -sb O -p 0 & # Read block 0 forever.

>>> nentest -p 0 & # Start up the nenory test forever.
>>> nentest -p 0 & # Start up another nenory test task.
>>>

4.15 Creating Scripts

A script isafilethat contains a sequence of console commands. The console firm-
ware contains many scripts, such as the power-up script, that you can run by typ-
ing the name of the script file.

If you have acomplex command or a series of commands that you have to use fre-
quently, you can write a script for your convenience. Use the echo command and
the output creation operator (>) to write charactersto afile. Thefile isthe script.
The following example creates the script f 00, which invokes the examine com-
mand.

>>> echo e pmem 3f ff 000 > foo# Wite "e 0" to file foo.
>>> cat foo # List foo.

e prem 3f f f 000

>>> f oo # Execute script foo.

pmem 3FFFO00 0000000000000000

To add another command to the script, use the append operator (>>). If the com-
mand you are appending contains characters that could be interpreted by the echo
command, specify the characterswith a grouping operator. The following example
uses the single quote @youping character to prevent the command-separator
operator) in the appended command from terminatingetie command.

>>>echo 'd 3fff000 5 ; e 3fff000" >> foo # Append "d 05 ; e 0" to
f oo.

>>>cat foo # List foo.

e prem 3f f f 000
d 3fff000 5 ; e 3fff000

>>> f 00 # Execut e foo.
prmrem 3FFFO00 0000000000000000
prmrem 3FFFO00 0000000000000005

4-10 Console Basics

You can also use a grouping operator to create a script that contains many com-
mands. You have to rearrange the echo command so that the appended characters
are at the end. Then, use the open grouping operator to open the character string
and take as many lines as needed to create the script before specifying the close
grouping operator. The following example shows how to create along script using
grouping operators:

>>> echo > foo 'ex 3fff000

d 3fff0o00 7
e 3fff000
d 3fff000 5
e 3fff000’

(|
V V.V YV

>>> cat foo

ex 3fff000
d 3fff000 7
e 3fff000
d 3fff000 5
e 3fff000

>>> f oo

prrem 3FFFO00 0000000000000000
prrem 3FFFO00 0000000000000007
prrem 3FFFO00 0000000000000005

4.16 Copying Scripts Over the Network

The console provides a mechanism for transferring command scripts over the net-
work. You can create scripts on an OpenV M S system and then fetch them from
the console of an AlphaVME 5/352 or 5/480 SBC by using the following proce-
dure:

1. Createafile of console commandsin the OpenVMS environment, using your
favorite editor. Thefollowing example showsthe OpenVMS cr eate command
being used to create a script file called sanpl e.

$ create sanple.
show version

Is -l sample
(Control-Z exit)
$

2. Makethe script file compatible with the MOP load protocol. To accomplish
this, run the add_header.exe program to append a one-block header to the
file, making it compatible with the MOP |oad server. This executable program
is on the Firmware Update CD at [ALPHAVME]JADD_ HEADER.EXE. If
you prefer, copy the fileto the SY SSLOGIN area and define it as aforeign
command, for example, addhead. To run the program, invoke addhead and
supply the file name as input and a hame for the resulting output file.

Note

The current MOP load protocol only supports 15-character file names. To
make use of al 15 charactersin the name, do not specify afile extension.
The MOP server defaults to afile extension of.sys.

Console Basics 4-11

4-12

3. Placethe output file in the MOP server’'sload file directory, MOP$SLOAD.
Whenever MOP gets arequest for the script, it searchesin its service area.

At this point, the script file is avail able on the Ethernet segment of the MOP
server. If the AlphaVME 5/352 or 5/480 SBC is on the same Ethernet segment as
the MOP server, the following example copies the script file over the network.
The string, mopdl|:sample.sys/eza0, specifies that the file, sample.sys, can be
accessed over the Ethernet device, eza0, using the MOP download protocol
driver, mopdl:.

>>> cat nopdl : sanpl e. sys/ ezaO# Be patient! The MOP protocol is slow

show versi on

Is 4 sample
>>>

You can then use the redirection operator (>) to redirect the output of the cat com-
mand to alocal file. The following cat command redirects output to sample.

>>> cat nopdl: sanpl e/ eza0 > sanpl e# Remember be patient!

When the console prompt returns, the copy operation is complete. You can then
display and execute the resident script file, sample, by using the following
sequence of console commands:

>>> cat sanple

show version
Is H sample

>>> sanpl e
version V1.1-0 Jul 1 1996 10:16:59
rwx- rd 512/2048 0 sample

Console Basics

5

Using the Console

This chapter explains how to use the console command interface to:
e Manage environment variables, Section 5.2

e Boot the system, Section 5.3

e UseTFTPto read files across the network, Section 5.4

e Managethe TOY clock, Section 5.5

e Get system information, Section 5.6

e Update firmware, Section 5.7

e Examine and deposit data, Section 5.8

e Manage the console, devices, and processor, Section 5.9
e Manage memory, Section 5.10

e Perform network operations, Section 5.11

e Set reboot to the SROM Mini-Console, Section 5.12

e Control the LED, Section 5.13

* Run the power-up diagnostics script, Section 5.14

e Managethe error log in NVRAM, Section 5.15

e Evaluate expressions, Section 5.16

e Manage console processes, Section 5.17

e Manage files and file content, Section 5.19

5.1 Summary of Console Operations

The DIGITAL AlphaVME 5/352 and 5/480 SBC console interface consists of
commands for managing the operation of your SBC, running diagnostics, and ver-
ifying the integrity of your system design. Table 5-1 lists the types of operations
you can perform by using the console commands.

Table 5-1 Summary of Console Operations

Operation Command

M anaging Environment Variables

Set the value of an environment variable set
Set all environment variables to their default values init_ev

Delete an environment variable from the system’s name spacelear

Using the Console 5-1

5-2

Table 5-1 Summary of Console Operations (Continued)

Operation Command

Booting the System

Boot the system boot
Managing the TOY Clock

Set or display the date and time stored in the TOY clock date
Disable the TOY clock’s internal oscillator set toy sleep

Getting System Information

Display the value of a specified environment variable show
Display the system configuration show config
Display the devices and controllers in the system show device
Display the address of the Alpha hardware restart parameter ook hwr pb
(HWRPB)

Display the character illuminated on the LED show led
Display a map of the system’s virtual memory show map

Updating Firmware

Update firmware in the system’s flash ROMs update

Examining and Depositing Data

Write data to a specified memory location, register, device, ordiposit

Display the contents of a memory location, register, device, oefbmine

M anaging the Console, Devices, and the CPU

Initialize the a device or the CPU init
Stop the CPU or system devices stop
Start system devices start

Exercise system devices with read, write, and comparison opexrar
tions

Managing Memory

Allocate a block of memory from the system’s heap alloc
Free a block of memory that has been allocated from the systéraes
heap

Change the ownership of a block of memory chown
Display the state of dynamic memory dynamic
Display the system'’s virtual memory map show map
Test memory memtest

Start a specified number of memory test processes that are tawwemexer
in the background

Performing Network Operations

Using the Console

Table 5-1 Summary of Console Operations (Continued)

Operation Command

Perform maintenance operations protocol (MOP) operations, such net
as loopbacks, 1D requests, and remote file loads

Setting Reboot to the SROM Mini-Console

Enter Serid ROM Mini-Console after the next reboot set reboot srom

Controllingthe LED

Specify a character to be displayed on the front panel LED set led
Show the character currently being displayed on the front panel show led

LED

Running the Power-Up Diagnostics Script

Run the power-up script pwrup
ManagingtheError Log in NVRAM

Clear and initialize the area of NVRAM used for console error clear_log
logging

Display error log information stored in NVRAM show_log
Evaluating Expressions

Evaluate expressions eval

M anaging Console Processes

Create a new shell process sh

Exit the current shell process exit

Start the execution of a program or driver at a start
specified address

Display console process status and statistics ps

Delete specified console processes kill

Break from afor, while, or until control loop break
Return afailure status false
Specify the processors on which a console process sa

can run

Display the semaphores known to the system semaphore
Set the priority of a console process P
Suspend the execution of aconsole process seep

M anaging Files and File Content

Copy specified files to standard output cat
Change the attributes of a specified file chmod
Dump the contents of afile hd

List the files and inodes that are in the system Is
Remove specified files from the system rm

Using the Console

5-3

Table 5-1 Summary of Console Operations (Continued)

Operation Command
Sort the content of afile sort
Writes specified text to standard output echo
Search for expressions in specified files grep

Copy aline from the input channel of afileto line

the standard output channdl for that file

5.2 Managing Environment Variables

Environment variables define the following types of configuration information for
a system’s firmvare and operating system:

* Boot parameters

e Consoleterminal characteristics

e Options associated with diagnostic tests

¢ Network protocols and associated characteristics and data
e Valuesfor storage bus adapters

e Versions of PALcode and console firmware

e PCI bus settings

e Useof TGA video cards

* VMEbus settings

e VxWorksboot file

The data defined by the environment variablesis stored in memory. Some of the
datais stored in volatile memory and some is stored in nonvolatile memory.

You can use console commands to set and display the values of environment vari-
ables and delete environment variables from the system’s name space.

5-4 Using the Console

5.2.1 Environment Variable Summary

Table 5-2 lists the environment variables with possible values and brief descrip-

tions.

Table 5—-2 Environment Variables

Variable

Parameter Values

Description

AUTO_ACTION

BOOT_DEV

BOOT_FILE

BOOT_OSFLAGS

BOOTDEF_DEV

BOOTED_DEV

BOOTED_FILE

BOOTED_OSFLAGS

CHAR_SET

CONSOLE

BOOT, HALT, or RESET

file-name

For use with UNIX:
a (automatic boot)
s (stop in single-user
mode)
i (interactive boot)
D (full dump and s)

device-list

A device in the
BOOT_DEV list

Derived from

BOOT_FILE or the cur-

rentboot command

Derived from
BOOT_OSFLAGS or
the currenboot com-
mand

0 (ISO-LATIN_1)

Defines the action of the console following an error,
halt, or power-up. Default is HALT.

Specifies the device list to be used by the last, or cur-
rently in progress, bootstrap attempt. The console
modifies BOOT_DEV at console initialization and
when a bootstrap is initiated byo@ot command.

The value of BOOT_DEV is set from the device list
specified by thddoot command or, if no deivce list

is specified, BOOTDEF_DEV. The console uses
BOOT_DEV without change on all bootstrap
attempts that are not initiated bypaot command.

Specifies the file name to be used when a bootstrap
requires a file name, when the bootstrap is not the
result of aboot command, or when no file name is
specified with thdboot command. The console
passes the value between the console presentation
layer and system software without interpretation.

Specifies arguments to be passed to system software
when the bootstrap is not the result df@ot com-

mand or when no arguments are specified with the
boot command. The console passes the value
between the console presentation layer and system
software without interpretation. The default is

NULL.

Specifies the device list from which bootstrapping is
to be attempted when no path is specified with the
boot command.

Specifies devices to be used by the last or currently
in progress bootstrap attempt.

Specifies the file name to be used by the last or cur-
rently in progress bootstrap attempt. The console
passes the value between the console presentation
layer and system software without interpretation.

Specifies arguments to be passed to system software
during the last or currently in progress bootstrap
attempt. The console passes the value between the
console presentation layer and system software
without interpretation.

Specifies current console terminal character-set
encoding.

Specifies whether console input and output are to
use the console serial line or agraphics console, if
present.

Using the Console 5-5

Table 5-2 Environment Variables (Continued)

Variable Parameter Values Description
D BELL ON or OFF Specifies whether the bell isto sound on error. The
default is OFF.
D_CLEANUP ON or OFF Specifies whether cleanup code is to be executed at
the end of diagnostics. The default is ON.
D_COMPLETE ON or OFF Specifies whether a diagnostic completion message
isto be displayed. The default is OFF.
D_EOP ON or OFF Specifies whether end-of-pass messages are to be
displayed. The default is OFF.
D_GROUP FIELD, MFG, or other Specifiesthe diagnostic group to be executed. The
(up to 32 characters) default isFIELD.
D_HARDERR CONTINUE, HALT, or Definesthe action that is to be taken following a
LOOP hard error detection. The default is HALT.
D_OPER ON or OFF Specifieswhether an operator is present. The default
isOFF.
D_PASSES 0 (run indefinitely), 1 Specifies the diagnostic pass count. The default is 1.
(pass), or a user-defined
value
D_REPORT SUMMARY, FULL, or Specifiesthe level of information to be provided by
OFF diagnostic error reports. The default value is FULL.
D_SOFTERR CONTINUE, HALT, or Definesthe action that is to be taken following soft
LOOP error detection. The default is CONTINUE.
D_STARTUP ON or OFF Specifies whether a diagnostic startup message is to
be displayed. The default is OFF.
D_TRACE ON or OFF Specifies whether trace messages are to be dis-
played. The default is OFF.
DUMP_DEV device Specifiesthat adevice isto write operating system
crash dumps.
ENABLE_AUDIT ON or OFF Specifies whether audit trail messages are to be gen-
erated during bootstrap. The default is ON.
EWAO_ARP_TRIES n Specifies the number of transmissions to be
attempted before the Internet Address Resol ution
Protocol (ARP) fails. Values less than 1 cause the
protocol to fail immediately. The default is 3, which
trandates to an average of 12 seconds before failing.
Interfaces on busy networks may need higher values.
EWAO_BOOTP_FILE file-name Specifies a generic file name to be included in an
Internet Boot Protocol (BOOTP) request. The
BOOTP server returnsafully qualified file name for
booting. Thereis no default.
EWAO BOOTP_SERVER server-name Specifies a server nameto be included in aBOOTP

5-6 Using the Console

request. This can be set to the name of the server
from which the machine is to be booted, or left
empty.

Table 5-2 Environment Variables (Continued)

Variable

Parameter Values

Description

EWAO_BOOTP_TRIES

EWAO_DEF_GINETADDR

EWAO_DEF_INETADDR

EWAO_DEF_INETFILE

EWAO_DEF_SINETADDR

EWAO_INET_INIT

EWAO_LOOP_COUNT

EWAO_LOOP_INC

EWAO_LOOP_PATT

EWAO_LOOP_SIZE

EWAO_LP_MSG_NODE

EWAO_MODE

n

NVRAM and default
BOOTP

Oxffffffff = all patterns
0 = all zeros
1= all ones
2 = all fives
3=allas
4 = incrementing
5 = decrementing

X

TWISTED-PAIR or
FULL (full-duplex
twisted-pair)

Specifies the number of transmissions that are to be
attempted before BOOTP fails. Values lessthan 1
cause the protocol to fail immediately. The default is
3, which translates to an average of 12 seconds
before failing. Interfaces on busy networks may
need higher values.

Specifies the initial value for EWAO_GINETADDR
when the interface's internal Internet database is ini-
tialized from BOOTP (EWAO_INET_INIT is set to
BOOTP).

Specifies the initial value for EWAO_INETADDR
when the interface's internal Internet database is ini-
tialized from BOOTP (EWAO_INET_INIT is set to
BOOTP).

Specifies the initial value for EWAO_INETFILE
when the interface's internal Internet database is ini-
tialized from BOOTP (EWAO_INET_INIT is set to
BOOTP).

Specifies the initial value for EWAO_SINETADDR
when the interface's internal Internet database is ini-
tialized from BOOTP (EWAO_INET_INIT is set to
BOOTP).

Specifies whether the interface's internal Internet
database is to be initialized from non-volatile RAM
(NVRAM) or from a network server (by way of
BOOTP).

Specifies the number of times each message is
looped. The default is 0x3e8.

Specifies the amount the message size is to be
increased from message to message. The default is
Oxa.

Specifies the type of data pattern that is to be used
for loopback.

Specifies the size of the loop data to be used. The
default is Ox2e.

Specifies the number of messages to be sent to each
node originally. The default is 7.

Specifies the operating mode of the embedded
Ethernet controller.

Using the Console 5-7

Table 5-2 Environment Variables (Continued)

Variable Parameter Values Description
EWAO_PROTOCOLS BOOTP, MOP, or Specifies the network protocol to be enabled for
BOOTPMOP booting and other functions. The default is MOP. A

EWAO_TFTP_TRIES

LANGUAGE

LANGUAGE_NAME

LICENSE

MODE

PAL

TGA_SYNC_GREEN

TTY_DEV

VERSION
VME_A32_BASE
VME_A32_SIZE

5-8 Using the Console

null value is equivalent to BOOTPRMOP.

n Specifies the number of transmissions that are to be
attempted before the Trivial File Transfer Protocol
(TFTP) fails. Valueslessthan 1 cause the protocol to
fail immediately. The default value is 3, which trans-
lates to an average of 12 seconds before failing.
Interfaces on busy networks may need higher values.

00 none (cryptic) Specifies the current console terminal language
30 Dansk (integer 1D).

32 Deutsch

34 Deutsch (Schweiz)

36 English (American)

38 English (British/Irish)

3A Espanol

3C Francais

3E Francais (Canadian)

40 Francais (Suisse
Romande)

42 Itdiano

44 Nederlands

46 Norsk

48 Portugues

4A Suomi

4C Svenska

4E Vlaams

Other reserved

language-name Specifies the ASCII string of the current consol e ter-
minal language code as defined by LANGUAGE.

MU — multi-user system Specifies whether a software license is in effect.
SU - single-user system

FASTBOOT or Specifies whether diagnostics are to be run when the

NOFASTBOOT firmware is initialized.

n Specifies versions of VMS and OSF PALcode in the
firmware.

X Specifies a hexadecimal byte indicating whether

video synchronization should be driven on the green
channel for up to eight TGA video cards. Video card
0 corresponds to bit 0, card 1 to bit 1, and so on. Use
with the CONSOLE environment variable.

n Specifies the current console terminal unit. Indicates
which entry of the CTP Table corresponds to the
actual console terminal. The default is 0 (30 hex).

version Specifies the version of the console code firmware.
address Specifies the base address of VMEbus A32 space.
n Specifies the size of VMEbus A32 space.

Table 5-2 Environment Variables (Continued)

Variable

Parameter Values Description

VME_A24 BASE
VME_A24 SIZE
VME_A16 BASE
VME_CONFIG

VX_BOOTLINE

address Specifies the base address of VM Ebus A24 space.

n Specifies the size of VMEbus A24 space.
Specifies the base address of VM Ebus A16 space.

Specifiesthe VME setup mode. Thisvariableisused
by the operating systems for storing VME configu-
ration information for the initialization of the VME
corner. See your operating system documentation
for more information.

address

mode

file-name Specifies the name of the file to be used for the

VxWorks bootstrap.

5.2.2 Setting Environment Variables

To set the values of environment variables, use the set command. This command
requires that you specify the name of an environment variable and either a
numeric or ASCII string value. Section 5.2.1 provides a complete listing of avail-
able environment variables.

If at any time you need to restore a variable to its default value, you can do so by
using the set command’'s-default option. Or, if you want to set all environment
variables to their default values at the same time, usaithev command.

For any environment variable changes that you make witketha init_ev com-
mand to take effect, you must reset the system or issuritttommand.

Note

Before you change the value of an environment variable, you should
understand the implications of the change.

5.2.3 Displaying the Values of Environment Variables

You can display the values of environment variables by usinghtive command.
As indicated in the following table, the extent of this command’s output depends
on the argument that you specify.

Specify...
The name of that variable

Todisplay...

The value of a specific variable

A name that includes awildcard (*);
for example, BOOT*

The values of a group of related variables

The values of all variables No argument

To see the changes to variables that you reset, you must reset the system or issue

theinit command before usirghow.

Using the Console 5-9

5.2.4 Removing Environment Variables from System Name Space

If asubset of the environment variables do not apply to your system configura-
tion, you may want to consider removing them from the system name space. To
remove avariable from the name space, specify the variable as an argument to the
clear command. If you specify a variable name that includes a wildcard, such as
EWAOQ_*, the command removes a group of related variables from the name
space. In the case of the EWAQ_* example, the command removes all environ-
ment variables that begin with EWAO .

Note

Some environment variables are permanent and are not affected by this
clear command.

5.3 Booting the System

You boot your SBC to initialize the processor, load a program image, and transfer
control to that image. To initiate aboot operation, use theboot command. In the
command line, you have the option of specifying:

e Oneor more devices from which the system is to be booted

e A program image to be booted

e Boot flags for passing additional information along to the operating system
e The protocol to be used for booting over the network

e That the console gain control immediately after the boot image is loaded

5.3.1 Specifying Boot Devices

5-10

You can specify the boot device for an SBC by setting the value of the environ-
ment variable BOOTDEF_DEV or by specifying one or more devices with the
boot command. BOOTDEF _DEV defines a default boot devicellist.

To override the default boot device list, specify one or more devices with the boot
command. If you specify multiple devices, separate device names with acomma
(without spaces). The console firmware attempts to boot the system from each
device in order. When a device boots successfully, the firmware passes control to
the boot image on that device.

Note

If you include network devices in the boot devicelist, place them at the
end of thelist. Thisisnecessary because network bootsterminate only if a
fatal error occurs or an image loads successfully.

Using the Console

5.3.2 Specifying a Boot Image

When an AlphaVME 5/352 or 5/480 SBC boots successfully, the console firm-
ware passes control to aboot image. You can specify the boot image that isto be
used by setting the value of the environment variable BOOT_FILE or by specify-
ing the file name of aboot image with the boot command. BOOT_FILE defines
the default boot image. To override the default, specify a boot image file name
with the -file option in the boot command line.

5.3.3 Passing Additional Boot Information to the Operating System

You have the option of passing boot information, in addition to the boot image, to
the operating system. You can specify the additional information aslongword data
in the definition for the BOOT_OSFLAGS (or BOOTED_OSFLAGS) environ-
ment variable or with the boot command. The information can consist of one or
more longword values. If you specify multiple values, separate the values with a
comma (without spaces). The environment variabl es define the default boot infor-
mation. To override the default, specify boot information with the boot com-
mand’s-flags option.

5.3.4 Booting Over the Network

If you choose to boot an Alpha VME 5/352 or 5/480 SBC over the network, you
need to define the Ethernet protocol that is to be used. Depending on your system
configuration, you can use the DECnet maintenance operation protocol (MOP),
the Internet boot protocol (BOOTP), or both.

You can specify the protocols to be used by setting the value of the environment
variable EWA_PROTOCOLS f identifies the network intéace) or theboot
command’s-protocols option to MOP or BOOTP. If you specify both protocols,

the console firmware tries to use each protocol in the order listed to solicit a boot
server. If you do not define EWA PROTOCOLS, hoth protocols are enabled.

The following example causes the console firmware to try to use BOOTP and then
MOP to complete a network boot using interface ewao0:

>>> set EWAO_PROTCCCLS BOOTP, MCP

5.3.4.1 Internet Protocols

For the Internet environment, the console uses the protocols BOOTP and TFTP to
support network booting and file transfers. An Internet network boot occurs as
follows:

1. BOOTP broadcasts a boot request.

BOOTP copies the values of the environment variables
EWAn_BOOTP_SERVER and EWA BOOTP_FILE to the fields

snane andfi | e inthe request packet. Tlsmane field specifies the

host from which the SBC wants to boot. If it does not matter which server
responds to the request, you can leave BMBOOTP_SERVER unde-
fined.

Using the Console 5-11

Thefil e fieldidentifies the boot file the server isto includein its
response. For example, if the file is specified generically as “unix” or
“lat”, the boot server would respond with a fully qualified file path to be
used with TFTP. If a machine will always be booting the same file, you
can leave EWA_BOOTP_FILE undefined.

BOOTP establishes a connection with a boot server, which in turn pro-
vides the SBC with the information it needs to obtain the boot image from
the server. The BOOTP server delivers the information in a message
packet. Using the same format, the SBC stores the information in a 300-
byte Internet database. When the SBC receives the BOOTP packet, the
database is marked as initialized.

2. The SBC uses TFTP to acquire the boot image.

TFTP uses the remote host address and the file name of the boot image to
get the boot image file from the boot server (host system). TFTP gets this
information from the BOOTP packet, theot command'si | e- nane
argument, or the BOOT_FILE environment variable.

If the value of BOOT_FILE is not specified in the correct format, TFTP
fails. A common pactice used to avoid this failure is to leave
BOOT_FILE undefined. This causes TFTP to default to using the values
of EWAn_DEF_SINETADDR and EWA_DEF_INETFILE.

Both BOOTP and TFTP use the Internet user datagram protocol (UDP) as their
primary transport mechanism. UDP is an unreliable, connectionless datagram
delivery service.

For complete descriptions of the Internet protocols, see Douglas Cdnter:s
networking with TCP/IP, Vol |, Principles, Protocols and Architecture, Second
edition, Prentice Hall.

5.3.4.2 Defining Fields of the Internet Database

5-12

BOOTP and TFTP rely on Internet configuration information that you define for
the system by setting network environment variables. You must define a set of
variables for each network interface in the system. The system stores the configu-
ration information for each interface in a separate 300-byte Internet database.
These databases have the same format as BOOTP packets; the BOOTP driver
reads from and writes to the databases in binary form directly.

Using the Console

The following table lists the environment variables that define the most important
work data. Unlike other environment variables, these variables are nonvol atile.

Environment Variable Description

EWAN_DEF INETADDR The Internet address of a network interface on the
SBC. The Internet protocols TFTP and address reso-
lution protocol (ARP) require the correct Internet
address to operate properly. Enter the address in dot-
ted decimal notation (n.n.n.n).

EWANn_DEF SINETADDR The Internet address of the remote host system to be
contacted by TFTP. The remote host system might
not be on the local area network (LAN). Enter the
address in dotted decimal notation (n.n.n.n).

EWANn_DEF GINETADDR TheInternet address of aremote Internet gateway on
the LAN. TFTP cannot communicate beyond the
LAN if thisaddressisincorrect. Enter the addressin
dotted decimal notation (n.n.n.n).

EWANn_DEF SUBNETMASK The Internet subnet mask to be used. Enter the mask
in dotted decimal notation (n.n.n.n).

EWAnNn_DEF_INETFILE Thefile to be booted. The value that you specify
must be avalid file name or path name for the TFTP
server on the remote host system.

Each network interface must have its own set of variable definitions. The variable
n in the names of the preceding environment variables, identifies a specific inter-
face. For example, all variables associated with network interface O have the pre-
fix EWADO.

Note

If you misconfigure the Internet network parameters, the Internet proto-
cols are robust enough to work intermittently, making it difficult to debug
failures.

5.3.4.3 Internet Database Initialization

The Internet database on an AlphaVME 5/352 or 5/480 SBC is initialized each
time the system is booted as aresult of aTFTP or BOOTP invocation.

TFTP Initialization

A TFTPinvocation is the more common form of Internet database initialization. |
TFTPisinvoked and the Internet database has not yet been marked as initialized,
initialization occurs automatically, based on the definition of the environment
variable EWAn_INET _INIT. If thisvariable is set to BOOTP (the default), the
BOOTP protocol driver broadcasts aBOOTP request and stores the responsein
the database, initializing it.

If EWZn_INET_INIT isset to NVRAM, the values of the following nonvolatile
Internet environment variables are copied to corresponding fieldsin the Internet
database:

Using the Console 5-13

EWAn_DEF_INETADDR
EWAn_DEF_SINETADDR
EWAn_DEF_GINETADDR
EWAn_DEF_SUBNETMASK
EWAn_DEF_INETFILE

TFTP assumes that you have set the values of these variables in advance of its
invocation. For example:

>>> SET EWAO_DEF | NETADDR 16. 123. 16. 53

>>> SET EWAO0_DEF S| NETADDR 16. 123. 16. 242

>>> SET EWA0_DEF QG NETADDR 16. 123. 16. 242

>>> SET EWA0_DEF SUBNETMASK 255. 255. 255. 0

>>> SET BEWAO_DEF | NETFI LE boot fi | es/ al phavne5
>>> SET EWAO_I NET_I N T NVRAM

BOOTP Initialization

Alternatively, the Internet database might be initialized by BOOTP. This may
result from an explicit invocation of BOOTP or as a consequence of invoking
TFTPR. Generally, BOOTP copies the reply packet it receivesinto the Internet data-
base, initidizing it. However, if BOOTP isinvoked with the NOBROADCAST
parameter, as shown below, no request is broadcast, no reply isreceived, and no
datais placed in the database:

boot p: nobr oadcast / ewa0

5.3.4.4 Using Retransmission to Improve Robustness

5-14

The Internet protocols ARP, BOOTPR, and TFTP retransmit failed message packets
to improve robustness. If theinitial transmission of a packet is not answered
appropriately, the protocol software retransmits the packet. By default, the proto-
cols attempt three transmissions.

If your AlphaVME 5/352 or 5/480 SBC is on abusy network or is associated with
serversthat handle heavy network loads, you may need to increase the retransmis-
sion count. You can adjust the number of retransmissions associated with agiven

protocol by setting the following environment variables:

EWAn_ARP_TRIES

EWAn_BOOTP_TRIES

EWAn_TFTP_TRIES
If you set one of these variablesto avalue that is less than one, the protocol fails
immediately.

Threeretries translates to an average of 12 seconds before failing. The retransmis-
sion algorithms use a randomized exponential backoff delay. If thefirst try fails, a
second try occurs about 4 seconds later. A third try occurs after another 8 seconds,
afourth after 16 seconds, and so on, up to 64 seconds. These times are averages
since random jitter of about +/- 50% is added to each delay. For example, if
EWAO ARP_TRIESis 3, ARPfailsif it does not get aresponse within 12 sec-
onds on the average; the actual timeout is between 6 and 18 seconds.

EWAn_TFTP_TRIES, EWANn_BOOTP_TRIES, or EWAn_ARP_TRIES.

Using the Console

5.3.4.5 Different Ways of Booting Over the Internet

Thefollowing list showsthe priority of the different ways of booting an initialized
system over the Internet:

1

Specify the file name of the image to be booted and a network boot devicein
the boot command line. For example:

>>> hoot -file filenanme ewa0
If the pathname for the file includes slashes (/), specify each slash as a
double slash (//). For example:

>>> poot -file //var//adm /ris//risO0.alphal//al phavnme5 ewa0

Assign the file name of the image to be booted to the environment variable
BOOT _FILE and then specify the network device in the boot command line.
If the pathname for thefileincludes slashes (/), specify each slash asadouble
slash (//). For example:

>>> set BOOT_FILE //var//adm /ris//risO0.al pha//al phavne5
>>> boot ewal

Assign the file name of the image to be booted to the environment variable
EWAO_INETFILE and then specify the network device in the boot command
line. For example:

>>> set EWAO_I NETFI LE/ var/adm ris/risO0. al pha/ al phavme5. exe

>>> boot ewal

This method uses only the TFTP protocol. All other fieldsin the BOOTP
packet must already beinitialized with valid information from a previous
Internet boot.

Assign the file name of the image to be booted to the environment variable
EWAO _BOOTP_FILE and then specify the network device in the boot com-
mand line. For example:

>>> set EWAO_BOOTP_FI LE /var/adnm ri s/ risO0. al pha/ al phavme5. exe
>>> boot ewal

Thefile name defined by EWAO_BOOTP_FILE becomesthefile namein
the outgoing BOOTP request packet.

Do not define or specify an image to be booted. Just execute the boot com-
mand as follows:

>>> boot ewal

With this method, because none of the environment variables are defined,
the boot process runs through both the BOOTP and TFTP stages of an
Internet network boot (see Section 5.3.4.1). Any server that receives the
boot request replies.

Note

In the client-server paradigm, the way the firmware acts is affected by the
software running on the server. Thus, the format of the file specification
used with TFTP depends on the server. For example, if you are booting
from a UNIX server, you must specify a complete pathname. See your
operating system documentation for details about your server software.

Using the Console 5-15

5.3.5 Invoking the Console as Soon as the Boot Image is Loaded

Normally, when you boot an image, that image takes control of the system as soon
astheimageisloaded and the associated page tables and other data structures are

set up. If you have aneed to interact with the system after booting (for example, to
debug the system or change environment variabl e settings), use the boot com-
mand’s-halt option. This option forces the boot code to invoke the console pro-
gram once the boot image is loaded and all associated page tables and data
structures are set up.

Note

The-halt option does not shut down console device drivers.

5.4 Using TFTP to Read Files Across the Network

In addition to serving as a boot protocol, the TFTP driver provides a mechanism
for reading filesacross the network. For example, you can use a TFTP specifica-
tion when issuing theat command to copy the contents of a remote file to stan-
dard output.

The syntax for a TFTP specification follows:
tftp:n. n. n. n:pat hnanel net wor k- i nt er f ace

Then. n. n. nrepresents an Internet address in dotted decimal notation. This
must be the Internet address of the remote system from which you want to read the
file. The colon (:) separates the Internet address from the pathname for the file to
be read. If the pathname includes slash (/) characters, you must replace them with
double slashes (//) in the specification. Spendy wor k- i nt er f ace as ewa,

wheren identifies the interface. The following example displays the file
lusr/foo/bar, which is on a remote system with address 16.123.16.242, using net-
work interface ewa0:

>>> cat tftp:16.123.16.242://usr//foo// bar/ewal

For convenience, you can save the Internet address in an environment variable.
For example:

>>> set ktrose 16.123.16. 242
>>> cat tftp:$ktrose://usr//fool/bar/ewal

If you omit the address and file specification, TFTP uses the server address and
file names defined by EWA DEF_SINETADDR and EWA_DEF _INETFILE.

5.5 Managing the TOY Clock

5-16

The time-of-year (TOY) clock maintains the SBC's time, including the year,
month, date, day, hour, minute, second, 1/10th of a second, and 1/100th of a sec-
ond. Using console commands, you can:

e Display the clock’s time and date

¢ Set the clock’s time and date

Using the Console

¢ Disable the clock’s internal oscillator

5.5.1 Displaying the TOY Clock’s Time and Date

To display the TOY clock’s time and date, usedate command without any
arguments. For example:

>>> dat e
10: 29: 04 August 3, 1997

5.5.2 Setting the TOY Clock’s Time and Date

If theinternal oscillator for the TOY clock becomes disabled due to use of the set
toy sleep command or another cause, you may need to reset the clock’s time and
date the next time you power up the system.

To set the time and date, issue dlate command with a time specification of the
form yyynmmddhhmm ss., which specifies:

Time Component... As... With a Value in the Range...
Year yyyy 0000 to 9999

Month mm 01to 12

Day dd 0lto 31

Hour hh 00to 23

Minute mm 00to 59

Second ss 00to 59

When you reset the time and date, you must specify at least four digits, which are
interpreted as hours and minutes. If you specify six digits, the digits specify the
day, hours, and minutes.

5.5.3 Disabling the TOY Clock’s Internal Oscillator

If you are testing an Alpha VME 5/352 or 5/480 SBC TOY clock or if you are

planning to put one of these SBCsin storage, you may want to use the set toy

sleep command to disable the TOY clock’s internal oscillator. Disabling the oscil-
lator before storing the SBC can extend the shelf life of the oscillator’s lithium
battery. The oscillator is reenabled and the clock starts counting time again the
next time you power up the SBC. Once the system is powered up again, you must
reset the SBC's time and date.

Note

Alpha VME 5/352 and 5/480 SBCs are shipped with sleep mode enabled
to conserve battery life.

Using the Console 5-17

5.6 Getting System Information

You can acquire information about your system by using the show command. You
specify this command with an environment variable or a predefined keyword
argument. When you specify an environment variable, the command displays the
value of that variable. For example, the following command displays the default
system power-up action as defined by the environment variable AUTO_ACTION:

>>> show aut o_action

boot
>>>

For a complete listing of environment variables, see Section 5.2.1.

By specifying the show command with a keyword argument, you can display the
following information on your console terminal:

Information Keyword
The system configuration config
Devices and controllers on the system device
The AlphaHWRPB hwr pb

The character illuminated on the system's LED LED

A map of the system’s virtual memory map

The following example displays information about the devices that are known to
the system:

>>> show devi ce

dkb0.0.0.1.0 DKBO Rz57

nke0.0.0.4.0 MKEO TZ85

eza0.0.0.6.0 EZAO 08- 00- 2B- 19- 60- 31
ezb0.0.0.7.0 EZBO 08- 00- 2B- 1A- 2C- 06
p_a0.7.0.0.0 Bus ID 7
p_c0.7.0.2.0 Bus ID 7
pkb0.7.0.1.0 PKBO SCSI Bus ID 7
pke0.7.0.4.0 PKEO SCSI Bus ID 7

5.7 Updating Firmware

5-18

During the life of your SBC, you may receive one or more update kits for loading
new firmware into the flash ROMs (FEPROMSs). The documentation provided in
the firmware update kit will guide you through the update procedure. A summary
of the procedure follows:

1. Close DIP switch #2 on the 1/0 module to allow the update image to write to
the FEPROM.

Issue the boot command.
I ssue the update command.

The update command |oads the FEPROM update image from a specified
device into system memory. Once the image is loaded, the console
prompts for confirmation for the update to continue.

Using the Console

4. Respond to the confirmation prompt.

If you respond with No, the update process terminates. If you respond
with Yes, the update image erases, programs, and verifies the target
FEPROMSs.

Note

Once you commit to the update at this point, you must not interrupt pro-
gram execution. Doing so may result in the SBC being placed in an inop-
erable state.

The update image verifies each byte of the FEPROM. Each step provides
for a certain number of retries to perform the operation successfully on a
particular byte of the EPROM. If afailure occurs during any of the steps,
the console displays an error message.

5. Reset or power the system off and on to run the new image in the FEPROMSs.

Open DIP switch #2 on the I/0 modul e to disable write operations to the
FEPROM.

Using update command options, you can specify the name of the FEPROM
update image, whether MOP or TFTP isto be used as the source transport proto-
col, the device from which the image is to be loaded (ewa0), and whether the con-
sole or user flash is to be upgraded.

For more information about firmware updates, see the documentation provided in
your firmware update kit.

5.8 Examining and Depositing Data

If you need to manipulate datawithin an Alpha VME 5/352 or 5/480 SBC, you
can do so by using the examine and deposit commands. These commands manip-
ulate byte streams (extents of memory, sets of registers, physical devices, or files)
and address spaces, which this discussion collectively refersto as devices.

5.8.1 The Default Device

Unless otherwise specified, the default device is physica memory. If you specify
another device, that device becomes the default. A default deviceis st i cky,in
that al subsequent commands affect that device until you explicitly specify
another device.

Using the Console 5-19

5.8.2 Console Device Drivers

The console uses drivers as the mechanism for referring to various devices and
provides drivers for the following Alpha devices:

DeviceName Description

pmem Physical memory

vmem Virtual memory

gpr General-purpose registers

fpr Floating-point registers

ipr Internal processor registers

pt PAL temporary register set

pcicfg PCI configuration space

pcidmem PCI dense memory space

pcismem PCI sparse memory space

pciio PCI 1/O space

eerom Environment variable and error log NVRAM
ferom Intel 28F020 firmware FEPROM

toy DS1386 registers, clock chip, and NVRAM

You can direct the examine or deposit command towards a specific device by
specifying the corresponding device name in the command line.

5.8.3 Device Byte Offsets

5-20

One of the arguments that you must specify with the deposit and examine com-
mands is the address of the datato be examined or the address at which dataisto
be deposited. Because the AlphaVME 5/352 and 5/480 SBCs treat an address
space as adevice, the addr ess argument that you specify becomes a byte offset.

For example, pmem:0 refers to the location in physical memory at offset zero,
that is, physical address 0. If you do not supply a device name, the offset applies
to the last device referenced (physical memory by default). However, in the
remaining discussions, theterms addr ess and of f set are used synonymously.

The examine and deposit commands act on a physical address. You can specify
the actual address or use a symbol in Table 5-3 to point to the address.

Table 5-3 Symbols Used by Examine and Deposit Commands

Symbol Description

+ Next address
* Current address

- Previous address

Using the Console

These symbols work because the console keeps track of the last referenced
address. If you issue an examine or adeposit command without an address, the
console firmware uses the next address. The console computes the next address as
the last referenced address plus the current data size.

5.8.4 Specifying a Data Size

You have the option of explicitly specifying the size of the datato be examined or
deposited by including one of the following options in the command line;

Option Data Size

-b Byte
-w Word
-l Longword
-q Quadword
-0 Octaword
-h Hexaword

5.8.5 Depositing and Examining Data in Memory
The steps for gaining access to and manipulating datain memory are as follows:
1. Find an unused block of memory.

To find ablock of memory, use the alloc command (see Section 5.10.3 for
more information).

Note

Because the console itself and other critical data structures reside in mem-
ory, be careful not to alter them.

The alloc command in the following example finds an unused 1000-byte
block of memory:

>>> al | oc 1000
03FFF000

The address of the alocated block is, in this case, 0xO3FFF0OO.
2. Addavaueto physica memory.

Usethe deposit command to add a value to physical memory. The follow-
ing command adds avalue of 1:

>>>deposit pmem 3fff000 1
3. Check the contents of the address.

Use the examine command to check the contents of the address. For

example:
>>> exani ne pmem 3fff 000
prrem 3FFF000 00000001

Using the Console 5-21

You can abbreviate commands and you do not need to specify the device if you
are referring to the default device. The following example shows the deposit and
examine commands in an abbreviated form. The current device is still physical
memory.

>>> d 3fff000 abcdef 12 # Deposit new data there.
>>> e 3f ff 000 # Check it out.
prem 3FFFO00 ABCDEF12

You can also specify command options. The following example shows how to use
the —n option to specify arepeat count. The command is executed over n+1 suc-
cessive addresses.

>>> d 3fff000 aaaa5555 —n 3 # Wite to 4 | ocations, yes 4!
>>> e 3fff000 —n 3 # Notice that —n 3 yields n+1 or 4!

pmem: 3FFF000 AAAAS555

pmem: 3FFF004 AAAAS555

pmem: 3FFF008 AAAAS555

pmem: 3FFFO0C AAAAS555

An aternate method for examining memory (or other devices or files) isto usethe
hex dump command, hd. The —I option for that command specifies the number of
bytes to display.

>>> hd pmem:3fff000 —| 10 # Dunp the allocated nenory.

00000000 55 55 aa aa 55 55 aa aa 55 55 aa aa 55 55 aa aa
uuay Uy URyU

>>> hd -l 20 show_status # Dunp part of SHOW STATUS script.
00000000 65 63 68 6f 20 27 64 2f 53 27 20 3e 24 24 73 73 echo 'd/ S
>$$ss

00000010 Oa 65 63 68 6f 20 27 2d 2d 2d 27 20 3e 3e 24 24 .echo '---
>>$$

Note

Both —| and —n give the same result, but —| works only with hd and —n
works only with examine

5.8.6 Depositing and Examining Data in Registers

5-22

You can use the depositand examinecommands to manipulate datain registers.
To operate on aregister, include the address of the register in the command linein
one of the following ways.

e Symbolically, for example, r0 or ksp
e Explicitly, as offsets within device address space, for example, gpr:0 or ipr:0

You can also use the symbolic addresses +, *, —, and the implied address incre-
ment (no address specified). The following examples show the different waysto
include an address:

>>>e r0 # Examine RO synbolically,...

Using the Console

gpr:
>>> e gpr: 0
gpr:

>>>e 0

gpr:

>>> e 8

gpr:
>>> e
gpr:
>>>e ipr:0
i pr:
>>> e

i pr:
>>> e +
i pr:
>>> e *
i pr:

>>> e —
i pr:

>>> e ksp
i pr:
>>>e

i pr:

0 (R0) 0000000000000002
#. ..explicitly as device offset,...

0 (R0) 0000000000000002

...or inplicitly as device of fset.
0 (RO) 0000000000000002

Exanmine RiL...
8 (R1) 000000000000C408

...and the next R2.

10 (Rz2) 0000000000000000
Exanine an IPR ..
0 (ASN) 0000000000000000
...and the next...
1 (ASTEN) 0000000000000000
...and the next...
2 (ASTSR) 0000000000000000
...and the current. ..
2 (ASTSR) 0000000000000000
...and the previous one.
1 (ASTEN) 0000000000000000
Examne an | PR by nane. ..
12 (KSP) 0000000000000F30
...and the next one.

13 (ESP) 0000000000000000

The examine and deposit commands support symbolic representation of the fol-
lowing processor registers:

Register M eaning

pc Program counter

p Stack pointer

ps Processor status longword

- Previous address

>>> e pc # Program Count er

PC psr: 0 (PC) 0000000000000D30
>>> e ps # Process Status

i pr: 17 (PS) 0000000000001F00
>>> e sp # Stack Pointer

gpr: FO (R30) 0000000000000F30

Using the Console

5-23

5.9 Managing the Console, Devices, and CPU

Console commands are available for managing the console, devices, and CPU of
an Alpha VME 5/352 or 5/480 SBC. Using console commands you can:

¢ [nitialize the console, a device, or the CPU

e Stop the CPU or aspecified device

e Exercise devices with read, write, and comparison operations

5.9.1 Initializing SBC Components

Usetheinit command to initialize your SBC’s devices or CPU. To initialize a
specific device, specify the command with tHeoption and the name of the
device to be initialized. For example to initialize the network interface ewao0,
enter:

>>> jnit -d ewal

If you need to initialize the processor, specifyithi¢ command without any
options as follows:

>>> jnit
5.9.2 Stopping and Starting the CPU or Devices

If you need to stop and start an Alpha VME 5/352 or 5/480 SBC CPU or the sys-
tem devices, you can use ttep andstart commands. To stop the CPU, enter

just the command nanseop on the command line. You can then restart the CPU
by specifying thetart command with the address at which execution is to begin.

To stop and start one or more devices, specifgtibgandstart commands with
the-drivers option and one of the following:

Option Parameter Stopsor Starts

Specific device name The specified device

Device prefix (for example, ewa) All devices of the specified class
None All system devices

5.9.3 Exercising Devices

You can exercise your SBC’s devices with various read, write, and comparison
operations by using thexer command. This command also can report perfor-
mance statistics.

5.9.3.1 Exercise Buffers

Theexer command uses two buffers in the “memzone” heap of main memory to
perform the exercise operations. The comtha

¢ Readsfrom adeviceto abuffer
e Writesfrom a buffer to adevice

e Compares the contents of the two buffers

5-24 Using the Console

Prior to initiating any 1/0O operations, the command initializes the buffers with
datapatterns. By default, the data pattern for each buffer consists of Ox5A in every
byte. Alternatively, you can specify your own data patterns with the -d1 and -d2
options. These options take a postfix string argument. For each byte in agiven
buffer, starting with the first byte:

1. exer passesthe postfix string to the eval command

2. eval evaluates the string and returns a value
3. exer writesthe valueto the buffer
Note

The exer command never reinitializes the buffers, even after completing
One Or More exercise passes.

5.9.3.2 Exercise Operations
Thetypes of 1/0 operations that the exerciser performs include the following:
e Read to a specific buffer
e Write from a specific buffer
* Write from a specific buffer without alock
e Compare the contents of the two buffers
e Seek tothefile offset prior to the last read or write

e Seek to varying device locations, using the console firmware’s random num-
ber generator, before performing read and write operations

e Sleep for a specified number of milliseconds
5.9.3.3 Tailoring the Exercises

You can tailor the behavior of the exer command by using options to specify the
following:

e Theaddress range to exercise
* The packet size (number of bytes) to be used in each 1/O operation
* The number of passesto run
e Thenumber of seconds to run
* The sequence of 1/0O operationsto be performed
5.9.3.4 Seeking to Random Device Locations

You can instruct the exerciser to seek to random device locations prior to perform-

ing /O operations. You specify thisaction by including the action string ? with the

exer command’s-a option. The exerciser achieves randomization by using the
console firmware’s random number generator, which uses a linear congruential
generator to generate the random numbers. The LCG algorithm is not truly ran-
dom, but it comes closest to meeting the needs abtétrecommand. Each time

Using the Console 5-25

the exerciser calls the random number generator, it returns a number from a speci-

fied range. If the range of numbersisa power of two, then each subsequent call to

the random number generator is guaranteed to return a different number from the

range until all possible numberswithin the range have been chosen. If the range of
numbers is not a power of two, the exerciser uses the console firmware’s random
number generator with an upper bound that is greater than the actual range size
but is a power of two. Then the exerciser uses the range size to perform a modulus
operation on the number that the random numbeergeor returns, thereby ensur-

ing that a random number is generated within the random range size.

5.9.3.5 Returning Error Codes On I/O Failures

If you want theexer command to return an error code immediately after a read,
write, or comparison error, set the environment variable D_ HARDERR to HALT.

If an error occurs and D_HARDERR is set to CONTINUE or LOOP, subsequent
operations specified by the action string option can occur except for comparisons.
For example, if a read error occurs, a subsequent comparison is skipped since a
read failure preceding a comparison guarantees that the comparison fails. If subse-
qguent block I/O operations succeed, comparisons of those blocks occur.

5.10 Managing Memory

The console intéace indudes commands you can use to:
e Display the state of dynamic memory

e Display a map of the system’s virtual memory

e Allocate and free blocks of memory

e Change the ownership of a block of memory

¢ Test memory

5.10.1 Displaying the State of Dynamic Memory

5-26

Display the state of your SBC’s dynamic memory by usingltiramic com-

mand. By default, the command displays state information for two heaps: a pri-
vate console heap and remaining memory heap. The state information listed for
each heap (or zone) includes:

e Starting address

e Size

e Used blocks
e Used bytes
* Freeblocks
* Freebytes

e Utilization

e High water mark

To display information about a specific heap of memory, specify the address of
that heap with the -z option.

Using the Console

A number of other options are available for controlling the information that the
command displays and the operationsit performs. Depending on the options you
specify, the command may:

e Perform consistency checking on the heap

e Repair corrupted heap by flooding free blocks

* Include block headersin the display output

e Display state information on a per process basis
e Perform avalidation test on the heap

e Set the size of the total memory for the system

e Extend the size of the default memory zone by a specified number of bytes

5.10.2 Displaying the System’s Virtual Memory Map

To display your SBC's virtual memory map, use shew map command. The
virtual memory map is empty after console initialization. If the command gener-
ates an empty map, you can fill the page tables by issuing the conmztnd

halt.

5.10.3 Allocating and Freeing Blocks of Memory

To allocate and free blocks of memory, usedtec andfree commands. The
arguments that you specify with these commands must be hexadecimal values.
When you allocate a block of memory, you must specify at least the number of
bytes to allocate. Other arguments allow you to specify the modulus and remain-
der to be used for computing the beginning address of the requested block of
memory.

A -flood option lets you flood the block of allocated memory with zeros. If you
want to allocate memory starting at a specific heap address (for example, an
address displayed by tldgnamic command), you can specify that address with
the-z option.

Thefree command returns the memory identified by specified addresses to the
appropriate heap.

5.10.4 Changing the Ownership of a Block of Memory

Your SBC identifies the owner of a block of memory by associating that block
with a process identifier (PID). To change the ownership of blocks of memory,
specify thechown command with the PID of the new owner process and the start-
ing addresses of blocks of memory that process is to own.

To display a listing of PIDs, issue the command.
5.10.5 Testing Memory

The following tests are available for exercising memory:
e Graycode memory test

e March memory test

Using the Console 5-27

e Random memory test
e Victim block test

To run the tests, issue the memtest command. By default, this command runs all
four tests, starting at the address of the first free space in the memory zone. You
can run a subset of the available tests by specifying the tests of interest with the -t
option.

Note

If you use memtest to test large sections of memory, it might take awhile
for testing to complete.

5.10.5.1 Specifying the Range of Addresses to be Tested

Using various options, you can specify the range of memory addresses that are to
betested. You identify an address range by specifying a starting address with the
-sa option and either an ending address, length, or block size (for the random
memory test only) with the -ea, -, or -bs option. Block size equals the specified
length for all tests except the random memory test. The default block size is 1892
bytes.

Specify the length or block size in bytes. If you specify the length of the address
range, the ending address equal s the starting address plus the length.

When you specify a starting address, memtest callsthe mal | oc function to allo-
cate the specified amount of memory plus 32 bytes, beginning at that starting
address. The extra 32 bytes are reserved for mal | oc header information. There-
fore, if you specify starting address 0xa00000 and a length of 0x100000, memtest
allocates from address 0x9fffe0 through 0xb00000. Generally, thisis transparent.
However, it could be confusing if you begin two memtest processes simulta-
neously with one beginning at address 0xa00000 for length 0x100000 and the
other at 0xb00000 for length 0x100000. Thiswill result in the second memtest
process displaying the following message:

“Unable to allocate memory of length 100000 at starting address b00000.”
The second process should use the starting address 0xb00020.

5.10.6 Graycode Memory Test

5-28

The graycode memory test uses the following algorithm to test a specified section
of memory:

data = (x>>1)"x

The variable x is an incremented value.

Using the Console

The test makes three passes over the memory being tested:

For Pass

The Test

1

Writes a data pattern that alternates graycode and inversed graycode to
each longword. This causes all but one data bit to toggle between each
longword write. For example, graycode(0)=0x00000000 while theinverse
of graycode(1)=0xFFFFFFFE.

Reads the data at each location, verifies the data, and writes the inverse of
the data. The test performs these operations one longword at atimeto
ensure that:

* All data bits are written as aone and zero.
* All but one data bit toggle between longword writes.
* Address shorts are identified.

Reads and verifies each location.

You can instruct the graycode memory test to:

e Perform pass 1 only by specifying the fast mode option -f. When you use this
option, the test detects ECC/EDC errors only.

* Increment through the memory being tested by a specified number of quad-
words. For example, an increment of 1 tests every other quadword. Specify
the increment with the -i option. This option is useful for testing the same
physical address range on multiple CPUs.

e Serialize accessto memory by setting up a memory barrier after each memory
access. The memory barrier option, -mb, isavailable only if you are running
the test in fast mode.

5.10.6.1 March Memory Test

The march memory test uses amarching 1s and Os algorithm to test a specified
section of memory. The default data patterns that the test uses are 0x55555555
and itsinverse OXAAAAAAAA. You can specify an alternative data pattern with
the memtest command’sd option.

The march memory test makes three passes over the memory being tested:

For Pass

The Test

1

Writes the default or a specified data pattern to the specified memory loca
tion, starting at the specified starting address and repeating through the
specified length.

Reads the data pattern that has been written to memory, starting at the spec-
ified starting address, and writes back the inverse. The test operates on the
data pattern alongword at atime until it reaches the specified length.

Reads back the inverse of the data pattern, starting at the end of the mem-
ory region being tested, and writes back Os. The test operates on the data
pattern alongword at atime until it reaches the specified starting address.

Using the Console 5-29

5.10.6.2 Random Memory Test

The random memory test writes random data to random addresses using random
datasizes, lengths, and alignments. The test gains access to every memory loca-
tion in the specified range of addresses to be tested so long as the length does not
exceed 8 MB. When the length exceeds 8 M B, the test applies a modulo function
to the seed, which can result in some addresses being tested multiple times and
others not being tested at all.

The random memory test proceeds as follows:

1

© N o O

Gets an address index into the random number generator’s LCG structure
based on the length of the address range being tested.

Gets a data index based on a random data seed that you specify with the
memtest command’srs option and the size of the address range.

Calls the random number generator with the acquired address index and an
initial address seed of 0 to get a random address.

Calls the random number generator with the acquired data index and the spec-
ified data seed to get the longword of data to be used during testing. The lower
bit of the random data determines whether the test performs longword or
quadword transactions. (Use of the lower bit speeds up the test by eliminating
the need for another call to the random number generator.)

Stores the random data at the random address.
Flushes the data out to the Bcache.
Reads the data back into memory.

Compares the data that was written and read. In the case of quadword write
and read operations, the test forms the quadword by shifting the longword of
random data to the left by 32 and ORing it with the original data’s comple-
ment.

Note

The run time of the random memory test can be noticeably longer than
that of the other memory tests because the test requires two calls to the
console firmware’s random number generator every time the test writes
data.

5.10.6.3 Victim Eject Memory Test

5-30

The victim eject memory test exercises memory using a specified block of data.
By default, the test uses a block containing four longwords of 0xFs, four long-

words of 0s, four longwords of OxFs, and 4 longwords of 0s, in that order. You

have the option of instructing the test to use a block of data that you set up prior to
running the test. You specify the address of the block of data withdheest
command’'sba option.

1.

The victim eject memory test proceeds as follows:

Writes the specified block of data to the specified starting address.

Using the Console

Adds 4 MB to the starting address.

Writes arbitrary data to the new resulting address. This causes the original
datato be victimized to memory.

4. Readsdata starting at the original starting address.
5. Verifiesthat the datais correct.
6

w

Increments the starting address by a block.

7. Repeats steps 1 through 6 for the remainder of the specified address range.
5.10.6.4 Specifying Other Test Options

Other memory test options are available for:

* Requesting that all specified memory be allocated and tested randomly

e Timing the memory tests

* Requesting that the tests use the specified memory without an allocation

e Allocating memory to be tested from the firmware heap

e Using amemory barrier after each memory access to serialize access to the
memory

e Specifying agroup name
e Specifying asoft error threshold
5.10.6.5 Running Multiple Memory Tests

You can start multiple memory tests running in the background by using the
memexer command. Issue this command with an integer value indicating the
number of test processes you want to start.

5.11 Performing Network Operations

The console intéace’snet command provides a way of initiating basic mainte-
nance operations protocol (MOP) operations for a specified network port. The
default port is ewa0. By using various command options, you can:

e Display the status of the network port, including the values of MOP counters
e Display the network port's Ethernet station address

¢ Reinitialize port drivers

e Initialize MOP counters

e Send aMOP request ID to a specified node

e Send an Ethernet loopback to a specified node

* Request aMOP loopback and specify the number of seconds to wait for the
loopback messages

e Send areboot request to aremate boot node
e Display the values of Ethernet port CSRs
e Enable and disable the extended design verification test (DVT) loop service

Using the Console 5-31

e Change the mode of the port device

e Specify aremote node address to be used for Ethernet loopbacks, MOP
requests, and remote boot requests

e Broadcast aMOP load request for a specified file
e Settheversion of MOP to be used

5.12 Setting Reboot to the SROM Mini-Console

Generally, when you power on or reboot your Alpha VME 5/352 or 5/480 SBC,
the SBC enters console mode after the POST diagnostics complete. Under certain
conditions it may be necessary for you to enter SROM Mini-Console mode
instead. For example, you may want to do thisto debug the PCI bus. Whilein
SROM Mini-Console modethereisless activity on the bus and you do not haveto
be concerned with interrupts generated by other system devices.

To enter this mode, use the set reboot srom command. After issuing the com-
mand, the SBC enters SROM Mini-Console mode the next time you power on or
reboot the system.

Note

If the 1/O module’s debug jumper is installed, the system displays the
SROM Mini-Debugger prompt every time you power on the system.
While in the SROM Mini-Debugger, you can start the SROM console by
entering thest command and then entering address 0x8000 at the address
prompt as follows:

SROW> st
a> 8000

5.13 Controlling the LED

The console commandst led andshow led are available for you to display char-
acters on the system’s front panel LED and to check tirerdwalue being illu-
minated on the LED. When usirsgt led, you specify the character you want
displayed. You can also indicate that tharatter balisplayed in bright mode by
specifying the-b option. By default, characters are displayed in dim mode.

5.14 Running the Power-On Diagnostics Script

You can start the system’s power-on self-test (POST) diagnostics from the console
by entering thepwrup command. This command initializes the network environ-
ment variables, runs memory tests, and executes the contents of the NVRAM
script.

For more information about the POST diagnostics, see Chapter 8.

5-32 Using the Console

5.15 Managing the Console Error Log

The console firmware logs console errors in an area of NVRAM. Using console
commands, you can display the contents of and initialize thelog.

5.15.1 Displaying the Contents of the Console Error Log

To display the contents of the console error log, use the show_|log command.
Options alow you to control whether the command displays information about a
specified number of most recent errors (-n), al errors (-all), or new (-new) errors.

The command displays the following types of information associated with each
error:

e Date and time of the error

e Thediagnostic that was running at the time of the error
e The pass count

e Thetest number

e Thefailing point

¢ Error message text

5.15.2 Initializing the Console Error Log

At any time, you can clear and initialize the console error log by issuing the
clear _log command. This command sets the entire log area to zero and resets all
error logging pointers, counters, and initialization flags accordingly.

Prior to initializing the error log area, the command displays the following confir-
mation message:

Error Log data in NVRAM wi |l | be destroyed!!
Conti nue (y/n)?

If you prefernot to be prompted for confirmation, specify the commasrts
option.

5.16 Evaluating Expressions

The console firmware evaluates postfix expressions that you specify wirahe
command. The expression must consist of two numeric operands and an operator,
in that order. Valid operators include:

Operator M eaning

+ Add the operands.

- Subtract the second operand from the first.
* Multiply the operands.

/ Divide the first operand by the second.

Using the Console 5-33

Thedefault radix for operands and command output isdecimal. Command options
-ib, -io, -id, and -ix allow you to specify the radix as binary, octal, decimal, or
hexadecimal, respectively. Similarly, the options -b, -0, -d, and -x specify the
radix of the command’s output.

5.17 Managing Console Processes

At any given time, you can have multiple console processes running on your
Alpha VME 5/352 or 5/480 SBC. Each console process is a shell process that
implements most of the functionality that is offered by the UNIX Bourne shell.

The console interface provides commands that help you manage your console pro-
cesses. Commands are available for:

e Creating and exiting console processes

e Monitoring the status of system processes

e Setting the priority of aconsole process

e Specifying the CPU on which a console process can run
e Suspending the execution of a console process

e Stopping and deleting processes from the system

e Breaking from control loops

e Returning afailure status

e Displaying the semaphores known to the system

5.17.1 Creating and Exiting Console Processes

Create (spawn) new console processes by using the sh command. You can pass
arguments to the new process and use options to control whether:

e Linesareto bedisplayed asthey are read
e A command should be displayed just before being executed

e Thecontents of standard input (st di n) should be deleted when the process
exits

e Lexical elements (tokens) should be displayed as they are recognized
¢ Rulesshould be displayed as they are executed
* The names of routines should be displayed as they are called

When you are ready to exit a console process, you can do so by using the exit
command. You can specify a status value to be returned on exit. If you choose not
to specify an exit status, the command returns the status of the last command exe-
cuted.

5.17.2 Monitoring Processes

The console monitors all processes while they are executing. To see the status of
al the processes, use the ps command. This command displays the following
information for each console process in the system:

5-34 Using the Console

e Processidentifier (PID)

e Address of the process control block (PCB)
* Process priority

e CPUtime

* Processor affinity

* CPU

e Program running

* Process state

To see the status of a specific process, use the grep command with a pipeto filter
the output, as shown at the end of the following example:

>>> ps # D splay conpl ete process status

ID PCB Pri CPUTime Affinity CPU Program State
0000006¢c 001423a0 2 00000001 O ps running
0000005c 00144b40 2 19253 00000001 O ment est ready
0000005b 00147a60 9 00000001 O sh_bg wai ting on 00144B40
00000059 0014c060 2 21750 00000001 O nment est ready
00000001 O sh_bg waiting on 00140060
0
0
0
0

GONNNNNNNDNW

00000058 0014edcO 5

00000056 00152860 3 00000001 exer_kid waiting on nscp_rsp
00000055 00153ae0 2 00000001 exer waiting on exer_tqe
00000054 00181580 6 00000001 sh_bg wai ting on 00153AE0
0000004f 00154d60 38 ffffffff pkeO_pol | waiting on tqge

>>> ps | grep exer # Check exer.

00000056 00152860 2 6 00000001 O exer_kid waiting on
nscp_rsp
00000055 00153ae0 2 2 00000001 O exer waiting on
exer_tqge

5.17.3 Setting the Priority of Processes

If the system is running multiple processes, you may find it necessary to set pro-

cess priorities to ensure proper system operation. Set a process’ priority by speci-
fying the PID and a priority value with tlsp command. Priority values range

from 0 to 7 with 7 being the highest. To determine the PID of a process uyse the
command.

5.17.4 Specifying the CPUs on Which a Process Can Run

If your application environment consists of multiple CPUs, you can specify an
affinity mask that indicates on which CPUs a process can run. Bits 0 and 1 of the
mask correspond to CPUs 0 and 1, respectively.

Suppose a process is in the ready state on CPU 0 and CPU 1 is idle. You might
consider changing the CPU affinity so that the process can run on CPU 1. To do
this, use thsa command. Specify the command with the PID of the process and a
mask value. For example, to set the mask such that a process can execute on CPU
1, specify a mask value of 2.

Using the Console 5-35

5.17.5 Suspending Processes

You can suspend the execution of the current console process for a specified
amount of time by using the sleep command. By default, the command suspends
the process for one second. When the console process is suspended, another con-
sole process that is in the ready state can start executing.

If the default deep time isinsufficient, you can specify adifferent value and you
can use the -v option to specify milliseconds.

5.17.6 Stopping Processes

To stop a process and delete it from the system, use the kill command. You must
specify the process identifier (PID) for each process that is to be stopped. If you
do not know the PID for a given process, acquire it by using the ps command.

The following example uses the ps command to acquire the PIDs for processes
running memtest, stops and del etes the process that has PID 59, and then reissues
the ps command to check whether the process associated with that PID was
deleted.

>>> ps | grep mentest# Find a process to kill.

0000005¢c 00144b40 2 135733 00000001 O ment est ready
00000059 0014c060 2 138258 00000001 O ment est ready
>>> kill 59 # Kill one of the nmentests.

>>> ps | grep nentest# Display our background tasks.

0000005¢c 00144b40 2 135733 00000001 O nment est ready

5.17.7 Breaking from Control Loops

To break from afor, while, or until program loop, use the break command. This
command exits the current consol e process and returns a status code. You can
specify the status code that is to be returned. If you omit the status code, break
returns the status of the last console command executed.

5.17.8 Returning a Failure Status

You can return afailure status from the console by using the false command.

5.18 Displaying Semaphores

5-36

To display information about all the semaphores known to the system, use the
semaphore command. The command traverses the semaphore queue and for each
known semaphore, displays the following:

* Name
e Vaue
e Address

e Address of the first waiting process

Using the Console

5.19 Managing Files and File Content

Several console commands are available for managing files and file content. You
can:

e Display the contents of afile (standard output)
e Change the attributes of afile

e Dump the contents of afile

e List thefilesand inodes in the system

e Dédetefilesfrom the system

e Sort the contents of afile

* Writetext to afile (standard output)

e Search for expressions within files

e Copy afile from the standard input channel of the current processto the stan-
dard output channel of that process

For more information on performing these operations, see descriptions of the cat,
chmod, echo, grep, hd, ling, Is, rm, and sort commands in Chapter 6.

Using the Console 5-37

6

Console Command Reference

This chapter describes the DIGITAL AlphaVME 5/352 and 5/480 SBC console
commands. The descriptions are ordered alphabetically by command name for
quick reference. The command descriptions include the following information:

e Explanation of usage
e Syntax

¢ Arguments

e Options

e Examples

¢ Related commands

Console Command Reference 6-1

alloc — allocate a block of memory

Allocates ablock of memory from heap. Once allocated, test routines can write to
and read from the allocated memory. Only one routine can write to the memory at
atime, but multiple routines can read from the memory simultaneously.

Syntax
alloc size [nodul us] [remai nder] [-flood]
[-z heap_address]
Arguments
size
Specifies the number of bytes of memory to be allocated. Specify thesize asa
hexadecimal value.
modulus
Specifies the modulus for the beginning address of the block of memory being
allocated. Specify the modulus as a hexadecimal value.
remainder
Specifies the remainder to be used with the modulus for computing the beginning
address of the block of memory being allocated. Specify the modul us as a hexa-
decimal vaue.
Options
—flood
Flood the all ocated block of memory with zeros.
-z heap_address
Allocate memory from the memory zone that starts at the specified heap address.
To view the starting addresses of the system’s memory zones, uaémeic
command.
Example
>>> al | oc 200
OOFFFEOO
>>> free fffel0
>>> set base ‘alloc 400
>>> show base
base 00FFFQ00
>>> memtest $hase
>>> free $hase
>>> clear base
See Also

6-2 Console Command Reference

dynamic, free

Console Command Reference 6-3

boot — boot the system

Syntax

Argument

Initializes the processor, loads a program image from a boot device, and transfers
control to that image.

boot [-file boot file] [-flags [ongword ,...]
[-protocols enet _protocol] [-halt] [boot devi cel

boot_device

Options

The path for adeviceor list of devices from which the console firmwareisto boot
the system. If you specify alist of devices, separate the device nameswith com-
mas (,) and no spaces. For example:

>>> poot ewaO, dkaO

Thefirmware tries to boot the system from each device in the list in order. When
one of the devices boots successfully, control passes to the booted image.

Note

Place network devices at the end of aboot device list. Thisis necessary
because network bootstraps only terminate if a fatal error occurs or an
image is successfully |oaded.

If you omit boot _devi ce, thefirmware uses aboot specification previously
defined with an environment variable. For example, if you used the set command
to associate the environment variable BOOTDEF_DEV with a boot device, the
firmware will use that boot device as the default.

Note

When you specify a boot device with the boot command, that device
specification overrides the current default boot device for the current boot
request, but does not change the setting of the corresponding environment
variable.

—file boot__ file

L oad the specified boot file image into the system. If you do not specify this
option, the console firmware |oads a boot file previoudy associated with the envi-
ronment variable BOOT_FILE.

—flags longword, ...

6-4 Console Command Reference

Use the specified longwords as additional boot information for the operating sys-
tem. If you do not specify this option, the firmware |oads flags previoudy associ-
ated with the environment variable BOOT_FLAGS or BOOTED _FLAGS.

Note

If you specify flagsin the boot command line, the flags override the cur-
rent default values for the current boot reguest, but do not change the set-
ting of the corresponding environment variable.

—protocols enet_protocol

—halt

Examples

See Also

Use the specified Ethernet protocols for a network boot. Specify MOP for a DEC-
net MOP boot, BOOTP for a TCP/IP boot, or both. If you specify both, the firm-
ware attempts to use each protocol to solicit a boot server. If you do not specify a
protocol, the firmware uses the protocol previously associated with the environ-
ment variable, EWAO_PROTOCOLS.

Forces the boot operation to halt and invoke the console program once the boot
image is loaded and page tables and other data structures are set up. Console
device drivers are not shut down when you specify this option.

1. >>> boot

The system tries to boot from a default boot device. If you have not set up
adefault boot device, the console program returns an error message.

2. >>> boot ewa0
The system boots from the Ethernet port EWADO.

3. >>> boot -file avne.sys ewa0
The system boots the fileavne. sys from Ethernet port EWADO.

4. >>> boot -fi //usr//local//bootfilel//alphavre_vi_1-0
-protocol bootp ewa0
The system uses TCP/IP BOOTP to perform a network boot from Ether-
net port EWADO.

5. >>> boot -flags 0,1
The system boots from apreviously defined default boot device with boot
flag settings 0 and 1.

6. >>> boot -halt dkaO
The system boots from the SCSI disk, dka0, but remainsin console
mode.

set, show

Console Command Reference 6-5

break — break from a program loop

Breaks from afor, while, or until loop. The console firmware exits the current
shell with a status or returns the status of the last command.

Syntax
break [break | evel]

Argument
break level
Specifies the status code to be returned by the shell.

Example

>>> for i in12 345 ; do echo $i ; break ; done

1
>>>

6-6 Console Command Reference

cat — copy files

Syntax

Arguments
file ...

Options
-l length

Examples

See Also

Copies specified files to standard output. You also can use this command to copy
or append one file to another by specifying I/O redirection.

t [-| length] [file ...]

Specifies the names of one or more input files to be copied. If you do not specify
afile on the command line, the command copies standard input to standard output.

Copy the specified number of bytes of each input file. Specify the length as a dec-
imal value.

>>> echo > foo "this is a test.’
>>> cat foo

this is a test.

>>>

Createsthefilef oo with the echo command, and then uses the cat com-
mand to send the contents of the file to the standard outpuit.
>>> cat -1 6 foo

this i
>>>

Sends the first six bytes of the filef 0o to the standard output.

echo, Is,rm

Console Command Reference 6-7

chmod — change file attributes

Syntax

Arguments

file ...

Options

Examples

Changes the attributes of files or inodes. This command provides a subset of the
capabilities of the equivalent UNIX command.

chmod [[{-+=}{rwxb2Z]...] file...

Specifiesthe files or inodes for which the attributes are to be modified.

Clear the specified attributes.

Set the specified attributes.

Set the specified attributes and clear al other attributes not included in the com-
mand line.

Set or clear the read attribute.

Set or clear the write attribute.

Set or clear the execute attribute.

Set or clear the binary attribute.

Set or clear the expand attribute.

1. >>> chnod +x script
Sets the executable attribute for thefilescri pt .

2. >>> chnod =r errlog
Setsthefileerr | og to read only and clears all other attributes.

3. >>> chnod -w dk*

Makes all SCSI disks nonwriteable.

6-8 Console Command Reference

See Also

chown, Is —|

Console Command Reference 6-9

chown — change ownership of memory block

Changes the ownership of a memory block to a specified process.

Syntax
chown pi d address ...
Arguments
pid
Specifies the hexadecimal processidentifier (PID) of the new owner process. To
display the PIDs of the system'’s current processes, ugs ttemmand.
address ...
Specifies the hexadecimal addresses of the memory blocks for which ownership is
to be changed.
Example
>>> chown ‘ps | grep idle | find 0‘ ‘alloc 200
Uses the ps command to display the system’s current processes, pipes the output
to thegrep command to find an idle process, and then usesattee command
to return the starting address of the first fobmck of 200 bytes.
See Also

alloc, dynamic, ps

6-10 Console Command Reference

clear — delete environment variable

Deletes an environment variable from the system’s name space.
Note

Some environment variables, such as BOOTDEF_DEYV, are permanent
and cannot be deleted.

Syntax
clear envar
Argument
envar
Specifies the name of the environment variable to be deleted.
Example
>>> cl ear foo
>>>
Deletes the environment variabileo.
See Also

set, show

Console Command Reference 6-11

clear_log — clear error log in NVRAM

Syntax

Options

—nc

Example

See Also

Clears and initializes the area of NVRAM used for console error logging. The
console firmware clears the entire area of NVRAM where fault information is
stored and resets miscellaneous pointers, counters, and initialization flags used in
the error logging process.

Notes

When you use clear _log, the current contents of the NVRAM error log
areais destroyed and lost forever.

Console error logging is compl etely independent of the operating system'’s
error logging.

clear | og

Do not prompt for confirmation before starting the clear operation. By defaullt,
the firmware prompts for confirmation before starting the clear operation. Specify
the —ncoptionif you do not want the firmware to prompt you.

>>> cl ear _| og

Error Log data in NVRAM wi |l | be destroyed!!

Conti nue (y/n)?

y

Initializing NVRAM Error Log. ..

Prompts for confirmation to continue with the clear operation. When the user rep-
sponds with y, the firmware clears and initializes the NVRAM error log.

show_log

6-12 Console Command Reference

date — display or change the date and time

Syntax

Arguments

Displays or changes the date and time stored in the system’s time-of-year (TOY)
clock.

Note

The date and time are not preserved if the TOY clock battery has been
disabled with theset toy sleep command. The next time the system is
powered on the firmware reenables the battery,ybutmay need to rein-
itialize the date and time.

The format of the date and time registers for the console is as described in the
DS1386 specification, except that the year register contains the number of years
1858. This is done to retain compatibility with the openVMS and UNIX operating
systems.

date [[[[yyyy] nm} dd] hhmmj . ss]]

yyyymmddhhmm.ss

Example

Specifies the new date and time as follows:

Field M eaning Valid Range of Values
yyyy Year 0000 to 9999

mm Month 01to 12

dd Day 01to 31

hh Hour 00to 23

mm Minutes 00to 59

Ss Seconds 00to 59

If you omit this argument, the command displays the current date and time.

To modify the date or time, you must specify at least the hour and minute fields
(four digits). If you include six digits, the command interprets the input as the day,
hour, and minute fields. The command inherits values for fields that you omit
from the specification.

>>> date 199708031029. 00
>>> date

10: 29: 04 August 3, 1997
>>>

Console Command Reference 6-13

deposit — write data to memory

Syntax

Writes data to a memory location, register, device, or file.

After initialization, if you have not specified a data address or size, the default
address space is physica memory, the default data size is a quadword, and the
default addressiis zero.

You specify an address or device by concatenating the device name with the
address, for example, prem 0, and by specifying the size of the space to which to
write.

If you do not specify an address, the data is written to the current addressin the
current data size (the last previously specified address and data size).

If you specify a conflicting device, address, or data size, the consol e ignores the
command and issues an error.

deposit [-b-w-Il -g-0-h] [-physical -virtual -gpr -fpr
-ipr] [-n count] [-s step] [device] address data

6-14 Console Command Reference

Arguments

device

Specifies the device name or address space to which the datais to be written.
Specify one of the following:

Value

Description

pmem:

vmem:

gpr:

fpr:

ipr:

pt:

pcicfg:

pcidmem:

pcismem:

pciio:
eerom:
ferom:

toy:

Physical memory.

Virtual memory. The console firmware checks on accessibility and protec-
tion. If the access would not be alowed to a program running with the cur-
rent program stack, the firmware issues an error message. If memory
mapping is not enabled, virtual addresses are equal to physical addresses.

General purpose register. The data size defaults to quadword. When you
specify this value, you can specify the following symbols for address: rO0,
r1throughr31, ai, ra, pv, fp, sp, orrz.

Floating-point register set. The data size defaults to quadword. When you
specify this value, you can specify the following symbols for address: fO
through f31.

Internal processor register set. The data size defaults to quadword. When
you specify thisvalue, you can specify the following symbols for address:
ps, asn, asten, astsr, at, fen, apir, ipl, mces, pcbb, prbr, ptbr, scbb, sirr,
sisr, thbehk, thia, thiap, this, esp, ssp, usp, or whami.

PAL Temporary register set. The data size defaults to quadword. When you
specify thisvalue, you can specify the following symbolsfor address: PT:0
through PT:31 or PTO: through PT31:.

PCI configuration space.

PCI dense memory space.

PCI sparse memory space.

PCI 1/O space.

Environment variable and error log NVRAM.
Intel 28F020 firmware FEPROM.

DS1386 registers, clock chip, and NVRAM.

Console Command Reference 6-15

address
Specifies the address to which the data is to be written. The address can be:
e Any vaid hexadecimal offset in the address space of the specified device
e A symbolic address (if you omit the devi ce argument)

For hexadecimal addresses that start with “f”, you must add a lezagliod0) to
prevent recognition as a floating-point register. For example, 0f0 is a valid mem-
ory address while f0 is not.

If you do not specify thelevi ce argument, you can specify one of the follow-
ing symbolic addresses:

Value Description

gpr General purpose register 0.
fpr Floating-point register 1.
ipr Internal processor register.

pt or pt0-pt31 PAL Temporary registers 0 through 31. The data size defaults to quad-
word; the address space defaults to pt.

PC Program counter (execution address register). The last address, size,
and type are unchanged.
+ Thelocation immediately following the last |ocation referred to by the

examine or deposit command. For references to physical or virtual
memory, thelocation isthe last address plus the size of the last refer-
ence. For other address spaces, the address is the last address referred
to plus one.

- Thelocation immediately preceding the last |ocation referred to by the
examineor depositcommand. For references to physical or virtual
memory, the location is the last address minus the size of the last refer-
ence. For other address spaces, the address is the last address referred
to minus one.

* Thelocation last referred to by the examineor depositcommand.

@ Uses the data at the last address referred to by the examineor deposit
command.

data

The data to be written. If the specified data is larger than the specified size, the
console firmware ignores the command and issues an error. If the data is smaller
than the specified size, the firmware pads the data with leading zeros before writ-
ing it.
Options
-b

Use a data size of byte.

6-16 Console Command Reference

—physical

—virtual

—gpr

—fpr

—ipr

—n count

-s step

Examples

Use a data size of word.

Use a data size of longword.

Use a data size of quadword.

Use a data size of octaword.

Use a data size of hexaword.

Write the data to physical memory. Using this option is the same as specifying
pmem: for devi ce.

Write the data to virtual memory. Using this option is the same as specifying
vmem: for devi ce.

Write the data to the general purpose registers. Using this option isthe same as
specifying gpr: for devi ce.

Write the data to the floating-point registers. Using this option is the same as spec-
ifying fpr: for devi ce.

Write the data to the internal processor registers. Using this option is the same as
specifying ipr: for devi ce.

Write to the specified number of consecutive locations. The console firmware
depositsto thefirst address, then to the specified number of succeeding addresses.
Specify count asahexadecimal value.

Increment the address location by the specified size. By default, the address
increment sizeisthe datasize. Use this option to override the default. This option
is not inherited. Specify st ep asahexadecimal value.

1. >>>d -b -n 1FF pnem 0 O
Clears the first 512 bytes of physical memory.

2. >>>d -l -n 3 vnem 1234 5
Deposits 5 into four longwords starting at virtual memory address 1234.

3. >>>d -n 8 RO FFFFFFFF

Console Command Reference 6-17

Loads general purpose registers RO through R8 with —1.

4. >>>d -1 -n 10 -s 200 pnem O 8
Deposits 8 into the first longword of each of the first 17 pages in physical
memory.
See Also
examine

6-18 Console Command Reference

dynamic — show memory

Syntax

Options

—C

Shows the state of dynamic memory. Dynamic memory is split into two main
heaps:. the consol€'s private heap and the remaining memory heap.

dynamc [-c [-r]] [-h] [-p] [-Vv] [-extend byte count]
[-z heap_address]

Perform a consistency check on the default heap or the heap specified with option
-7

Repair a broken heap by flooding free blocks with DYN$K_FLOOD_FREE if
and only if the free blocks have been corrupted. Repairing broken heapsis danger-
ous at best, as it masks underlying errors. This flag takes effect only if aconsis-
tency check is being done.

Display the headers of the blocks in the default heap or the heap specified with
option -z

Display dynamic memory statistics on a per process basis.

Perform a validation test on the default heap or the heap specified with option —z

—extend byte count

Extend the default memory zone by the specified byte count at the expense of the
main memory zone. The command assumes that the two memory zones are physi-
cally adjacent.

—z heap_address

Examples

Operate on the heap at the specified address.

1. >>> dynanmic

zone zone used used free free utili- high
address size bl ocks bytes bl ocks bytes zation water
00097740 1048576 389 358944 17 689664 34 % 371872
001D2B80 14805504 1 32 1 14805504 0% O

2. >>> dynamc -cv -z 97740

zone zone used used free free utili- high

Console Command Reference 6-19

address size bl ocks bytes bl ocks bytes zation water

00097740 1048576 398 359520 17 689088 34 %
371872)

3. >>> dynamic -h

zone zone used used free free utili- high
address size bl ocks bytes bl ocks bytes zation water
00097740 1048576 392 359136 17 689472 34 % 389280

a 00097740 000E1600_001E0600 OOOE1608_001BF628 00000000 00097740 32
f OOOEL600 0017E600_00097740 00189E68_00097748 FFFFFFFF O0O0E1600 643072)
a 0017E600 001823C0_000E1600 001BF448_001BOD6C 00000023 0017E600 15808)

>>>

See Also

alloc, free

6-20 Console Command Reference

echo — display text output

Sends aline of text that you enter on the command line to the standard output. By
default, standard output is your console screen. The echo command separates
arguments (words) in the line with blanks and adds a new line character to theend
of theline.

Syntax

Arguments

args ...

Options

—n

Examples

See Also

echo [-n] args ...

Specifies the character stringsto be displayed.

The character strings can include pipes and 1/0 redirection. However, if you use
them, enclose the characters strings within single quotes.

Suppress new lines characters from the output.

cat

>>> echo this is a test.

this is a test.
>>>

Sends a character string to your console screen.

>>> echo -n this is a test.
this is a test.>>>

Sends a character string to your console screen, but with no new line sep-
arating the string from the next console prompt >>> .

>>> echo '"this is a test’ > foo
>>> cat foo

this is a test

>>>

Pipes a string to the file f 00. Typing the contents of the filef oo then
shows the string.

>>> echo > foo "this is the sinplest way

_>to create a long file. Al characters will be echoed
>to file foo until the closing single quote.’

>>> cat foo

this is the sinplest way

to create along file. Al characters will be echoed

to file foo until the closing single quote.

>>>

Shows how you can use echo to create afile that is several lines long.

Console Command Reference 6-21

eval — evaluate expression

Evaluates a postfix expression.

Syntax
eval [-ib -io -id -ix] [-b -0 -d -Xx] operandl operand2
oper at or
Arguments
operandl1
Specifiesthe first numeric value to be evaluated.
operand?2
Specifies the second numeric value to be evaluated.
operator
Specifies one of the following:
Operator Description
+ Adds the operands.
- Subtracts operand2 from operand1.
* Multiplies the operands.
/ Divides operandl by operand?2.
Options
—ib
Use the operands as binary values.
—io
Use the operands as octal values.
—id
Use the operands as decimal values.
—ix
Use the operands as hexadecimal values.
-b
Display the output as a binary value.
-0
Display the output as an octal value.
—d
Display the output as a decimal value.
—X

6-22 Console Command Reference

Display the output as a hexadecimal value.

Examples
1. >>> eval 5 10 +
15
Adds 5 and 10 and displays 15 as the result.

2. >>> eval -ix -d 5 10 +
21

Adds the hexadecimal values 0x5 and 0x10 and displays the result as
decimal value 21.

Console Command Reference 6-23

examine — display memory data

Syntax

Displays the content of amemory location, register, device, or file.

After initialization, if you have not specified a data address or size, the default
address space is physica memory, the default data size is a quadword, and the
default addressiis zero.

You specify an address or device by concatenating the device name with the
address, for example, pmem 0, and by specifying the size of the data to be dis-
played.

If you do not specify an address, the data at the current addressis displayed in the
current data size (the last previously specified address and data size).

If you specify a conflicting device, address, or data size, the console ignores the
command and issues an error.

The information that the command displays consists of the device name, the
address (or offset within the device) in hexadecimal, and the examined datain
hexadecimal.

The examine command uses the same options as the deposit command. Addition-
ally, the examine command supports instruction decoding (see option —d), which
disassembles instructions beginning at the current address.

examne [-b -w-l -g -0 -h -d] [physical -virtual -gpr -fpr
-ipr] [-n count] [-s step] [device] address

6-24 Console Command Reference

Arguments

device

address

Specifies the device name or address space to access. The following devices are

supported:

Value Description

pmem: Physical memory.

vmem: Virtual memory. The console firmware checks on accessibility and protec-
tion. If the access would not be alowed to a program running with the cur-
rent program stack, the firmware issues an error message. If memory
mapping is not enabled, virtual addresses are equal to physical addresses.

gpr: General purpose register. The data size defaults to quadword. When you
specify this value, you can specify the following symbolsfor address: r0
through r 31. The default data size is quadword.

fpr: Floating-point register set. The data size defaults to quadword. When you
specify this value, you can specify the following symbols for address: fO
through f31. The default data size is quadword.

ipr: Internal processor register set.

pt: PAL Temporary register set. The data size defaults to quadword.

pcicfg: PCI configuration space.

pcidmem: PCl dense memory space.

pcismem: PCI sparse memory space.

pciio: PCI 1/O space.

eerom: Environment variable and error log NVRAM.

ferom: Intel 28F020 firmware FEPROM.

toy: DS1386 registers, clock chip, and NVRAM.

Specifies the address of the data that is to be examined. The address can be:

e Any vaid hexadecimal offset in the address space of the specified device

e A symbolic address (if you omit the devi ce argument)

For hexadecimal addresses that start with “f,” you must add a lezagliod0) to
prevent recognition as a floating-point register. For example, 0f0 is a valid mem-
ory address while f0 is not.

Console Command Reference 6-25

Options
-b

6-26 Console Command Reference

If you do not specify thedevi ce argument, you can specify one of thefollowing
symbolic addresses:

Value

Description

gpr- name

fpr- name

ipr- name

pt- name

PC

Names a general purpose register. The data size defaults to quadword
and the address space defaults to gpr. Symbols you can specify as
valid names include r0 through r 31, ai, ra, pv, fp, sp, and rz.

Names a floating-point register. The data size defaults to quadword
and the address space defaults to fpr. Symbols you can specify as
valid names include fO through f31.

Names an internal processor register. The data size defaults to quad-

word and the address space defaults to ipr. Symbols you can specify
asvalid namesinclude ps, asn, asten, astsr, at, fen, ipir, ipl, mces,

pcbb, prbr, ptbr, scbb, sirr, sisr, tbchk, thia, thiap, this, esp, ssp,

usp, and whami.

Names a PAL Temporary register. The data size defaultsto quadword
and the address space defaults to pt. Symbols you can specify asvalid
names include pt0 through pt31.

Names the program counter (execution address register). The last
address, size, and type are unchanged.

Names the | ocation immediately following the last location referred to
by the examine or deposit command. For references to physical or
virtual memory, the location is the last address plus the size of the last
reference. For other address spaces, the address is the |l ast address
referred to plus one.

Namesthe location immediately preceding the last location referred to
by the examineor depositcommand. For references to physical or
virtual memory, the location isthe last address minus the size of the
last reference. For other address spaces, the address is the last address
referred to minus one.

Names the location last referred to by the examineor depositcom-
mand.

Uses the data at the last address referred to by the examineor deposit
command as the address.

Use adata size of byte.

Use a data size of word.

Use a data size of longword.

Use a data size of quadword.

—physical

—virtual

—gpr

—fpr

—ipr

—n count

-s step

Use a data size of octaword.

Use a data size of hexaword.

Display the decoded macro instruction. This option does not recognize machine-
specific PAL instructions.

Display datathat is at an address in physical memory. Using this option is the
same as specifying pmem: for devi ce.

Display datathat is at an address in virtual memory. Using this option isthe same
as specifying vmem: for devi ce.

Display datathat isin the general purpose registers. Using this option is the same
as specifying gpr: for devi ce.

Display datathat is in the floating-point registers. Using this option is the same as
specifying fpr: for devi ce.

Display datathat isin the internal processor registers. Using this option isthe
same as specifying ipr: for devi ce.

Display the data at the specified number of consecutive locations.

Increment the address location by the specified size. By default, the address
increment size isthe datasize. Use this option to override the default. This option
is not inherited. Specify st ep asahexadecimal value.
1. >>>er0

gpr: 0 (R0) 0000000000000002

Examine general purpose register RO by symbolic address.
2. >>>e -go0

gpr: 0 (R0) 0000000000000002

Examine general purpose register RO by address space (—gpr option).
3. >>> e gpr:0

gpr: 0 (R0) 0000000000000002

Examine RO by device name.

4. >>> exani ne pc
gpr: 0000000F (PO FFFFFFFC

Examine the program counter.

5. >>> exanmi ne sp
gpr: 0000000E (SP) 00000200

Console Command Reference 6-27

Examine the GPR stack pointer register.

6. >>> examne -n 5 R7
gpr: 00000007 (R7) 00000000
gpr: 00000008 (R8) 00000000
gpr: 00000009 (R9) 8019000
gpr: 0000000A (R10) 00000000
gpr: 0000000B (R11) 00000000
gpr: 0000000C (AP) 00000000

Examine register R7 plusthe 5 following general purpose registers.

7. >>> examine ipr:11
i pr: 00000011 (SCBB) 2004A000

Examine the SCBB, internal processor register 17 (decimal).

8. >>> exam ne scbb
i pr: 00000011 (SCBB) 2004A000

Examine the SCBB using the symbolic name.

9. >>> exam ne pnem O
pmem 00000000 00000000

Examine physical address 0.

10. >>> exani ne -d 40000
pmrem 00040000 11 BRB 20040019

Examine address 40000 with macro instruction decode.

11. >>> exam ne
prem 20040048 DB MFPR S #2B, Br48(RL)

Look at the next instruction.

See Also

6-28

deposit

Console Command Reference

exer — exercise devices

Syntax

Arguments

device...

Options

—sh start_

Exercises one or more devices by performing read, write, and comparison opera-
tions. Optionally, this command reports performance statistics.

A read operation reads data from a device and places the data in a buffer. A write
operation writes data that resides in a buffer to a device. A comparison operation
compares the contents of two buffers.

Theexer command uses two buffers in “memzone” heap of main memory,
buf fer 1 andbuf f er 2. A read or write operatn can use either fffier. A com-
pare operation uses bothffars.

The total number of bytes read or written on each pass of the exerciser is specified
by the length (in blocks) or starting and ending block address options.

exer [-sb start_block] [-eb end bl ock] [-p pass_count]
[-I bl ocks] [-bs bl ock_size] [-bc bl ock _per i o]
[-d1l bufl string] [-d2 buf2 string] [-a
action_string]
[-sec seconds] [-m] [-v] [-delay ni |l i seconds]
[device...]

Specifies the names of one or more devices or file streams to be exercised.

block

Use the specified hexadecimal value as the starting block number within the file
stream. The default is 0.

—eb end _block

Use the specified hexadecimal value as the ending block number within the file
stream. The default is 0.

—p pass_count

—| blocks

Run the exerciser for the specified number of passes. If you specify 0, the exer-
ciser runs forever or until you enter Ctrl/C. The default is 1.

Exercise the specified number of blocks. Specify the block value as hexadecimal.
This option has precedence over the —eboption. If the exerciser isreading only,
and you do not specify —I or —eb, the exerciser reads until it reaches the end-of -file
(EOF). If the exerciser is writing, and you do not specify —I or —eb, the exerciser
writes for the size of the device. The defaultis 1.

—bs block_size

Console Command Reference 6-29

6-30

Use the specified block size. Specify the block size in bytes as a hexadecimal
value. The default is 0x200 except for tape drives, which default to 0x800. The
maximum block size allowed with variable length block reads is 0x800 bytes.

—bc block_per_io

Use the specified number of blocks per I/O operation. Specify the number of
blocks as a hexadecimal value. The defaultis 1.

—d1 bufl_string

Evaluate the specified character string and initialize buf f er 1 with the results.
By default, the console firmware loads the buffer with alternating 5s and As
(hexadecimal).

—d2 buf2_string

Evaluate the specified character string and initialize buf f er 2 with the results.
By default, the console firmware loads the buffer with alternating 5s and As
(hexadecimal).

—a action_string

Use the specified “action string,” which determines the sequence of read, write,
and comparison operations tfzae to be performed on vaus buffers. The con-

sole firmware processes each command code character in the action string from
left to right. Each time thexer command completes all of the operations speci-
fied by the action string, the command reduces the remaining amount of device
data to be processed by the size of the last packet processed by the action string.
Theexer command processes the action string repeatedly until the specified
amount of device data has been processed.

Lowercase action string characters specify operations thdtufseer 1. Upper-
case action string chacters specify opetians that uséuf f er 2. The action
string character c requires the uséoth buffers. The action stringatacters “?”
and “-" do not use a buffer.

Table 6-1 lists the action string chaters and corsponding actions. The default
action string is “?r.";

Table 6-1 Action String Characters

Char acter Action

r Read data from a device and place the datain buffer 1.

w Write data that is in buffer1 to a device.

R Read data from a device and place the data in buffer2.

w Write data that is in buffer2 to a device.

n Write data that is in buffer 1 without using locking to maintain mutual
exclusion.

N Write data that is in buffer2 without using locking to maintain mutual
exclusion.

c Compare the contents of buffer1 and buffer2.

Console Command Reference

Table 6-1 Action String Characters (Continued)

Char acter Action

- Seek to afile offset prior to performing the last read or write operation.

? Seek to arandom block offset within a specified range of blocks, call
ther andomfunction to create each of a set of numbers once, and
then choose a set that is a power of two and is greater than or equal to
the block range.

Each call tor andom resultsin a number that is then mapped to the
set of numbersin the block range. The exer command seeks to that
location in the file stream.

Since the exer command starts with the same random number seed,
the set of random numbers generated is always over the same set of
block range numbers.

s Sleep for the number of milliseconds specified by the delay option. If
you do not specify the delay option, the console slegps for 1 millisec-
ond.

Note: Times reported in verbose mode are not necessarily accurate
when this action character is used.

The action string can specify any combination or sequence of read, write, and
comparison operations on bufferl and buffer2. Depending on the option argu-
ments that you use, you can omit one or two of the three operations without affect-
ing the execution of the other operations.

If the exer command writes to afile, the number of bytes processed per pass
equalsthe allocation size of the file. The allocation sizeis usually larger than the
length of the file for RAM disk files, but equal to the length for disk devices.

Note

Disk device I/O failsif the block size is not equal to 1 or a multiple of
512. Partial block read or write operations are not supported; therefore, a
length that is not amultiple of the block size resultsin no errors, but the
last partial block 1/0 operation on the data does not occur.

—sec seconds

Terminate the exercise after the specified number of seconds have elapsed. By
default, the exerciser continues until the specified number of blocks or pass-
count are processed.

Use metrics mode and report throughput at the end of the exercise.

Use verbose mode for read operations and write the data that is read to standard
output (STDOUT). This option does not apply to write and comparison opera-
tions.

Console Command Reference 6-31

Examples

Delay processing by the specified number of milliseconds if “s” appears in the
action string.

>>> exer dk*.* -p 0 -secs 36000

Read all SCSI type disks for the entire length of each disk. Repeat this for
36000 seconds (10 hours). All disks are read concurrently. Each block
read occurs at a random block number on each disk.

>>> exer -l 2 dkaO

Read block numbers 0 and 1 from dewitea0.

>>> exer -sb 1 -eb 3 -bc 4 -a'w -dl1 '0Ox5a’ dkaO

Write Ox5as to every byte of blocks 1, 2, and 3. The packet size is
bc * bs, 4 * 512, 2048 for all writes.

>>> | s -| du*.* dk*.*
d**.* no such file
r--- dk 0/0 0 dka0.0.0.0.0

))

>>> exer dk*.* -bc 10 -sec 20 -m-a
dka0. 0. 0. 0.0 exer conpleted

r

packet 1G5 el apsed idle
si ze IGs bytes read bytes witten /sec bytes/sec seconds secs
8192 3325 27238400 0 166 1360288 20 19

>>> exer -eb 64 -bc 4 -a ’'?wRc’ dkaO

Perform a destructive write test on blocks 0 through 100 onddiak.
The packet size is 2048 bytes. The action string specifies the following
sequence of operations:

a. Setthe current block address to a random block number on the disk
between 0 and 97. A 4-block packet, starting at block number 98, 99, or
100, will access blocks beyond the end of the length to be processed.
Thus, 97 is the largest possible starting block address of a packet.

b. Write frombuf f er 1, which contains the previously read data, to the
current block address.

c. Setthe current block address to what it was just prior to the previous write
operation.

d. From the current block address, read a packetinfd er 2.
e. Compareuf f er 1 with buf f er 2 and report any discrepancies.

f. Repeat steps a through e until enough packets have been written to satisfy
the length requirement of 101 blocks.

>>> exer -a '?r-w-Rc’ dkaO

Perform a nondestructive write test with packet sizes of 512 bytes. The
action string specifies the following sequence of operations:

a. Set the current block address to a random block number on the disk.
b. From the current block address on the diskd a packento buf f er 1.

c. Setthe current block address to the device addressettwagust
before the previous read optoa occured.

6-32 Console Command Reference

d. Write apacket of Ox5as from buf f er 1 to the current block address.

e. Setthecurrent block addressto what it wasjust prior to the previous write
operation.

f. From the current block address on the disk, read a packet into buf f er 2.
g. Compare buf f er 1 with buf f er 2 and report any discrepancies.

h. Repeat the preceding steps until each block on the disk has been written
once and read twice.
7. >>> set nmyd 0
>>> exer -bs 1 -bc a -1 a-a’'w -dl "nyd nyd ~ = foo
>>> cl ear nyd

>>> hd foo -1 a
00000000 ff 00 ff 00 ff OO0 ff 00 ff 00

Use an environment variable nyd as a counter. Write 10 bytes of the pat-
tern ff 00 ff 00... to RAM disk filef 00, using a packet size of 10 bytes.
Because the length specified is also 10 bytes, only one write occurs.
Delete the environment variable ny d.

The hd, hexadecimal dump, of f oo showsthe contents of f 0o after the
exer command runs.

8. >>> set nmyd 0
>>> exer -bs 1 -bc a -l a-a’'w -dl1 'nmyd nyd 1 + = foo
>>> hd foo -1 a
00000000 01 02 03 04 05 06 07 08 09 0a

Write apattern of 01 02 03 ... Oato filef oo.
9. >>> set nmyd 0

>>> exer -bs 1 -bc 4 -1 a-a’'w -dl 'nyd nyd 1 + = foo -m
foo exer conpl eted

packet 1G5 el apsed idl e
si ze IGs bytes read bytes witten /sec bytes/sec seconds secs
4 3 0 10 3001 10001 0 0

>>> hd f oo
00000000 01 02 03 04 01 02 03 04 01 02
>>> show myd

nyd 4

10. >>> echo ' 0123456789abcdef ghi j kl mopgrst AB' -n > foo03
>>> exer -bs 1 -v -mfoo3
b2l kf np8j at snAlgri 54B6903qdc7eh0f oo3 exer conpl et ed

packet 1G5 el apsed idl e
si ze IGs bytes read bytes witten /sec bytes/sec seconds secs
1 32 32 0 5333 5333 0 0
See Also
memexer

Console Command Reference 6-33

exit — exit current shell process

Exitsthe current shell process with the specified status or returns the status of the
last command executed.

Syntax
exit exit_val ue
Argument
exit_value
Specifies the status code to be returned by the shell process.
Examples

1. >>> exit
Exits and returns the status of the previously executed command.

2. >>> exit O
Exits with a success status.

3. >>> test || exit
Runst est and exitsif thereis an error.

6-34 Console Command Reference

false — return a failure status

Returns afailure status.

Syntax

fal se

Example

>>> while false ; do echo foo; done
>>>

Console Command Reference 6-35

free — deallocate memory

Frees a block of memory that has been allocated from heap. The block is returned

to the appropriate heap.
Syntax
free address. ..
Argument
address ...
Specifiesthe addresses of blocks of memory that are to be returned to the heap. |If
you specify more than one address, separate the addresses with a space.
Example
>>> al | oc 200
OOFFFEOO
>>> free fffel0
>>> free ‘alloc 10‘ ‘alloc 20 ‘alloc 30°
>>>
See Also

alloc, dynamic

6-36 Console Command Reference

grep — search for regular expressions

Globally searches for regular expressions and displays any lines containing occur-
rences of those expressions. A regular expression isa shorthand way of specifying
awildcard type of string comparison. Since the grep command is line-oriented, it
works only on ASCI|I files.

Syntax
grep [-¢] [-i] [-n] [-Vv] {expression -f file} [file ...]

Arguments

expression

Console Command Reference 6-37

Specifies the regular expression for which to search. If the expression includes
any of the metacharacters listed in the following table, enclose the expression
within quotes to avoid interpretation by the shell.

M etachar acter

Description

N

\X

Matches the beginning of aline.
Matches the end of aline.
Matches any single character.

Matches a specified set of characters, for example, [ABC]
matches A or B or C. The following rules also apply for these
sets.

i A dash other than thefirst or last character denotes arange
of characters: [A- Z] matches any uppercase | etter.

. If the first character of the set is”, then the sense of match
isreversed: [*0- 9] matches any non-digit.

i You must precede the backslash (\) , right square bracket
(1), dash (-), and circumflex (*) characters with a back-
slash (\) if they occur in a set.

Matches repeatedly. When you place an asterisk (*) after a pat-
tern, the asterisk indicates that the pattern should match any num-
ber of times. For example, [a- z] [0- 9] * matches alowercase
letter followed by zero or more digits.

Matches repeatedly. When you place aplussign (+) after a pat-
tern, the plus sign indicates that the pattern should match one or
more times. For example, [0- 9] + matches any sequence of one
or more digits.

Matches optionally. When you place a question mark (?) after a
pattern, the question mark indicates that the pattern can match
zero or one times. For example, [a- z] [0- 9] ? matches alower-
case letter alone or followed by asingle digit.

Prevents the character (denoted by x) following the backslash
from having special meaning.

file ...

Specifiesthe files to be searched. If you do not specify afile, the command
searches standard input (STDIN).

Options

6-38

—C

Print only the number of lines that matched.

Ignore case during the search. By default, the grep command is case-sensitive.

Console Command Reference

Print the line numbers of the matching lines.

-V
Print all linesthat do not contain the specified expression.
—f file
Use the regular expression in the specified file instead of the expression specified
on the command line.
Examples

1. >>> ps | grep ewa0
0000001f 0019e220 3 2 ffffffff 0O nopcn_ewal waiting on
nmop_ewa0_cnw

00000019 0018e220 2 1 ffffffff O nopid_ewa0d waiting on tqge
00000018 0018f900 3 3 ffffffff O nopdl _ewa0 waiting on
nop_ewa0_dl w

00000015 0019¢c320 5 o ffffffff O tx_ewa0 waiting on
ewa0 isr_tx

00000013 001a2ce0 5 2 ffffffff O rx_ewa0 waiting on

ewa0 isr_rx
Search the output of the ps command (standard input) for lines contain-
ing EWADO.

2. >>> alloc 20
OOFFFFEOQ
>>> deposit -qg pmemfffffo O
>> e -n 3 ffffel

prmem FFFFEO EFEFEFEFEFEFEFEF
prem FFFFES EFEFEFEFEFEFEFEF
prrem FFFFFO 0000000000000000
prmem FFFFFS8 EFEFEFEFEFEFEFEF
>>> e -n 3 ffffed | grep -v 0000000000000000
prmem FFFFEO EFEFEFEFEFEFEFEF)
prem FFFFES EFEFEFEFEFEFEFEF)
prmem FFFFF8 EFEFEFEFEFEFEFEF)

>>> free ffffe0
>>>

Using grep, search for al quadwords in arange of memory that are non-
zero.

Console Command Reference 6-39

hd — dump file contents

Dumps the contents of afile in hexadecimal and ASCII format.

Syntax

Arguments
file ...

Options
—byte

—word

—long

—quad

Examples

hd [-byte -word -long -quad] file ...

Specifiesthe files to be displayed.

Prin

Prin

Prin

Prin

1

t the datain bytes.

t the datain words.

t the datain longwords.

t the datain quadwords.

>>> echo -n 'the quick brown fox junped over the |azy dog’ >foo

>>> hd foo

00000000 74 68 65 20 71 75 69 63 6B 20 62 72 6P 77 6E 20
br own
00000010 66 6F 78 20 6A 75 6D 70 65 64 20 6F 76 65 72 20

over

00000020 74 68 65 20 6C 61 7A 79 20 64 6F 67

2.

>>> -pyte foo

00000000 74 68 65 20 71 75 69 63 6B 20 62 72 6P 77 6E 20
br own
00000010 66 6F 78 20 6A 75 6D 70 65 64 20 6F 76 65 72 20

over

00000020 74 68 65 20 6C 61 7A 79 20 64 6F 67

3.

>>> -word foo

00000000 6874 2065 7571 6369 206B 7262 776F 206E
00000010 6F66 2078 756A 706D 6465 6F20 6576 2072

00000020 6874 2065 616C 797A 6420 676F

>>> -|ong foo

00000000 20656874 63697571 7262206B 206E776F
00000010 20786F66 706D756A 6F206465 20726576

00000020 20656874 797A616C 676F6420

>>> -quad foo

00000000 6369757120656874
00000010 706D756A20786F66
00000020 797A616C20656874
>>>

6-40 Console Command Reference

206E776F7262206B
207265766F206465
00000000676F6420

t he
f ox
t he

t he
f ox
t he

t he
f ox
t he

the quick
fox junped

the | azy dog

the quick
fox junped

the | azy dog

qui ck brown
j unped over
| azy dog

qui ck brown
j unped over
| azy dog

qui ck brown
j unped over
| azy dog

help — display help on commands

Syntax

Arguments

Displays the syntax for AlphaVME 5/352 and 5/480 SBC console firmware com-
mands. If you do not specify acommand, the help command displaysinformation
about itself and lists the commands for which additional information is available.

Thefollowing conventions are used for the command syntax that the help com-
mand displays.

Convention Description

<item> Angle brackets denote an item for which you must specify a
value,

[<item>] Square brackets enclose optional arguments, options, or values.

{a, b, c} Braces enclosing items separated by commas indicate mutually

exclusive items. Choose only one of a, b, or c.

{alb]c} Braces enclosing items separated by vertical bars indicate combi-
natorial items. Choose any combination of g, b, and c.

You can use the help and man commands interchangeably.

hel p [conmand- spec ...]

command-spec ...

Examples

Specifies the commands or topics for which you request help.

For each command specification that you specify, the help command triesto find
al topics that match. For example, if you specify aex as the command specifica-
tion, help displaysinformation about the exit and examine commands.

The help command supports wildcards. Use an asterisk (*) as the wildcard char-
acter. For example, enter help * to display help on all console commands.

The help command treats command specifications as regular expressions. For
more information on regular expressions, see the grep command. Help command
specifications are case-sensitive.

1. >>> help
Display alist of console commands for which help is available.
2. >>> help *

Display help on all console commands.

3. >>> help ex

Display help on all commands that begin wigx®

4. >>> hel p boot
Display help on theboot command.

Console Command Reference 6-41

Init_ev — initialize environment variables

Sets all environment variables to default values. For the new variable settings to
take effect, you must reset the system or issue the initialize command.
Syntax
init_ev
Example
>>> jnit_ev
Note: A System Reset or init command nust be issued imrediately
after this coomand to set all environment variables to their
defaul t val ues!!

>>>

Reset the system or issue theinit command to ensure that the new default environ-
ment variabl e settings take effect.

6-42 Console Command Reference

Init — initialize a device or the processor and console

Initializes adevice or the processor and console.

Syntax
init [-d device]
Option
—d device
Initialize the specified device.
Example

1. >>> init

Initialize the processor and console.

2. >>>jnit -d ewal
Initialize device ewa0.

Console Command Reference

6-43

kill — delete process

Syntax

Arguments

pid ...

Example

See Also

Deletes the specified processes.

Kill pid ...

Specifies the process IDs (PIDs) of the processes to be deleted. To acquire a list-
ing of PIDs associated with your system, use the ps command.

>>> nentest -p 0 &

>>> ps | grep nentest

000000f 1 00217920 2 9357 ffffffff O nent est ready

>>> kill f1

>>> ps | grep nentest

Run memtest and display the test's PID (f1) with the psand grep commands.
Using the displayed data, del ete the process with the kill command. Try to display
the test process again. The command output shows that the process is gone.

PsS

6-44 Console Command Reference

line —read a line

Copies aline (up to the new line character) from the standard input channel of the
current process to the standard output channel of that process. This command
always writes at |east the new line character as output.

Use this command in scripts to read from the user’'s terminal, or to read lines from
apipelinewhilein afor/while/until loop.

Syntax

l'ine

Examples

1. >>> line
type a line of input followed by carriage return
type a line of input followed by carriage return

Copy the line of typed input to the terminal screen.
2. >>> line >foo
type a line of input followed by carriage return

>>> cat foo
type a line of input followed by carriage return

Use the line command interactively.
3. >>> echo -n "continue [Y, (N)]?
>>> | ine <tt >tee:fool/nl

>>> | f grep <foo '[yY]' >nl; then echo yes; else echo no; fi
>>>

Use the line command within a script.

Console Command Reference 6-45

Is — list files

Syntax

Argument

file ...

Option

Examples

Liststhe files or inodes in the system. Inodes are RAM disk files, open channels,
and some drivers. RAM disk filesinclude script files, diagnostics, and executable
shell commands.

Is [-1] [file ...]

Specifiesthefilesand inodesto belisted. You can use an asterisk (*) asawildcard
character. If you use awildcard, the command lists all files and inodes that match
the specification. If you omit the argument, the command lists all files and inodes
on the system.

Liststhe files and inodes in long format. When using long format, the command
lists each file and inode on aline with additional information. By default, the com-
mand lists just names.

1. >>> |s exam ne
exam ne

Liststhe file named exam ne.

2. >>> |s d*

d date debugl debug?2 decode
deposi t

dg_pidlist dka0.0.0.0.0 dke100.1.0.4.0
dub0.0.0.1.0 dynam c

Listsfiles and inodes that start with d.

6-46 Console Command Reference

man — help on commands

Syntax

Arguments

Displays the syntax for AlphaVME 5/352 and 5/480 SBC console firmware com-
mands. If you do not specify acommand, the man command displaysinformation
about itself and lists the commands for which additional information is available.

The following conventions are used for the command syntax that the man com-
mand displays.

Convention Description

<item> Angle brackets denote an item for which you must specify a
value,

[<item>] Square brackets enclose optional arguments, options, or values.

{a, b, c} Braces enclosing items separated by commas indicate mutually

exclusive items. Choose only one of a, b, or c.

{alb]c} Braces enclosing items separated by vertical bars indicate combi-
natorial items. Choose any combination of g, b, and c.

You can use the help and man commands interchangeably.

man [conmand- spec ...]

command-spec ...

Examples

Specifies the commands or topics for which you request help.

For each command specification that you specify, the man command triesto find
all topics that match. For example, if you specify aex as the command specifica-
tion, man displays information about the exit and examine commands.

The man command supports wildcards. Use an asterisk (*) as the wildcard char-
acter. For example, enter man * to display help on all console commands.

The man command treats command specifications as regular expressions. For
more information on regular expressions, see the grep command. Help command
specifications are case sensitive.

1. >>> nman
Display alist of console commands for which help is available.
2. >>> man *

Display help on all console commands.

3. >>> man ex

Display help on all commands that begin wigx®

4. >>> man boot
Display help on theboot command.

Console Command Reference 6-47

memexer — memory exerciser

Starts a specified number of graycode memory test processes running in the back-
ground. Each test randomly allocates and tests blocks of memory twice the size of
the Bcache, using all available memory.

The command does not display any output unless an error occurs.

Syntax

nmenexer [nunber_of tests]

Argument
number_of _tests

Specifies the number of memory test processes to start. The default is1. Torun
tests indefinitely, specify 0.

Example
>>> nmenmexer 2 &
>>>
Run two memory tests in the background. The tests run in blocks of two timesthe
backup cache size across all available memory.
See Also

memtest

6-48 Console Command Reference

memtest — memory test

Tests memory with any or all of four tests:

Test Description

Graycode memory test ~ Writes, reads, and verifies a graycode pattern and an inverse
graycode pattern for the specified address range.

March memory test Writes, reads, and verifies a marching pattern and an inverse
marching pattern for the specified address range.

Random memory test Exercises random addresses within the specified range with
random data of random length.

Victim block test Writes blocks of data to the specified address, victimizes the

data, and then reads back and verifies the block.

Notes

If you use memtest to test large sections of memory, it might take awhile
for testing to complete.

If you issue a Ctrl/C or the kill command with a PID in the middle of test-
ing, the memtest process might not abort right away. To increase speed
of execution, check for a Ctrl/C or kill command done outside of any test
loops. If thisis not satisfactory, you can run concurrent memtest pro-
cesses in the background with shorter lengths within the target range.

Syntax
mentest [-sa start_address] [-ea end address] [-]|
| engt h]
[-ba bl ock _address] [-bs bl ock size]
[-i address _inc] [-p pass_count]
[-d data pattern] [-rs random seed] [-rb] [-f] [-
n
[-z] [-h] [-nb] [-t] [-90] [-se]
Options

—sa start_address

Use the specified address as the starting address for the test. The default isthefirst
free space in the memory zone.

—ea end_address

Use the specified address as the ending address for the test. The default is
start_address plus! engt h.

-l length

Test the specified length (in bytes) of memory. The default length isequal to
bl ock_si ze, except with the —rb option, which uses the zone size. The —I
option has precedence over the —eaoption.

—ba block_address

Console Command Reference 6-49

6-50

Test the block of memory at the specified address using the victim gject memory
test. This option applies victim gect memory test only.

—bs block_size

Test the specified amount of memory (in bytes). Specify the size as a hexadecimal
value. The default is 8192 bytes. Thisoption appliesto the random block test only.
For al other tests, the block size equals | engt h.

—i address_inc

Test memory at increments specified by the increment. The default is 0, which
implies no incrementation. This option applies to the graycode test only. The
increment value is in quadwords (that is, an increment of one tests every other
quadword). This option isuseful if multiple CPUs test the same physical memory.

To test an unaligned starting address, you must also specify the —z option.
—d data_pattern

Use the specified test pattern. The default patternis5s.
—p pass_count

Execute the test the number of times specified by the pass count. If you specify 0,
the command runs forever or until you enter Ctrl/C. The default is 1.

—rs random_seed

Use the specified random seed. Use this option only with the —rb option. The

defaultisO.
—rb
Randomly allocate and test all of the specified memory address range. Allocations
aredone of size bl ock_si ze.
—f
Usefast mode. If you specify this option, the data comparison is omitted. The
console firmware detects only ECC/EDC errors.
—m
Time the memory test and at the end of the test, display the elapsed time. By
default, the timer is off.
—Z
Use the specified memory address without an allocation. This bypasses all check-
ing, but allows testing in addresses outside of the main memory heap. It also
allows unaligned testing.
Caution
This flag allows you to test and corrupt any memory.
—-h

Console Command Reference

Examples

Allocate the memory to be tested from the firmware heap.

Use memory barriers after each memory access. Use this option only for fast
mode (-f) graycode tests. When you specify this flag, the console firmware exe-
cutes an Alpha M B ingtruction after every memory access. This guarantees serial
access to memory.

Run the specified tests. By default, the command runs all testsin the group speci-
fied by the -g option. The individual tests are as follows:

Test Test Number
Graycode test 1
March test 2
Random test 3
Victim g ect test 4

Use the specified group. Currently, the only group supported is MFG.

Use a soft error threshold.

1. >>> nentest -sa 200000 -1 1000
Test memory starting at address 0x200000 (—sa) for 0x1000 bytes ().

2. >>> nentest -sa 200000 -1 1000 -f
Test memory starting at address 0x200000 for 0x1000 bytes, using fast
mode. Fast mode eliminates data verification.

3. >>> nmentest -sa 300000 -p 10
Write a default block size of 8192 bytes starting at address 0x300000 for
10 passes (—p).

4, >>> nentest -f -nb
Test memory in arbitrary 8192 byte blocks, without data verification.
After each read and write operation, execute a memory barrier (MB)
instruction.

5. >>> nmentest -sa 200000 -ea 400000 -rb
Test memory starting at address 0x200000 and ending at address Ox3fffff.
Randomly allocate every block within this range.

Console Command Reference 6-51

Note

The memtest command does not generate an error with the —rb option if
ablock within the range cannot be allocated.

6. >>> nentest -h -rb -bs 100

Test the console heap by randomly allocating memory in blocks of size
0x100 bytes.

7. >>> nmentest -rb -p 0

Test memory across all of the memory zone (all memory excluding the
HWRPB, the PAL area, the console, and the console heap). The test runs
in the foreground until you enter Ctrl/C.

See Also

memexer

6-52 Console Command Reference

net — perform MOP operations

Syntax

Arguments
port

Options

—S

—CSr

Using a specified Ethernet port, performs basic maintenance operations protocol
(MOP) operations, such as loopbacks, 1D requests, and remote file loads. This
command also alows you to observe the status of a network port. Specifically,
when you use net with the —soption, the command displays the current status of a
port, including the contents of MOP counters. This command is useful for moni-
toring port activity and trying to isolate network failures.

net [-s] [-sa] [-ri] [-ic] [-id] [-10] [-11] [-rb] [-csr]
[-els] [-kls] [-cm npde] [-da node_address]
[-] file nane] [-lwwait_in _secs] [-sv npbp_version]
port

Specifies the name of the Ethernet port on which to operate. If you do not specify
aport, the command uses the default port, EWAO.

Display port status information, including M OP counters.

Display the port’s Ethernet station address.

Reinitialize the port's drivers.

Initialize the MOP counters.

Send aMOP request ID to the destination node specified with the —da option.

Send an Ethernet loopback to the destination node specified with the —da option.
This option, -0, is “I” for loopback and zero.

Request a M OP |oopback.

Request a system reboot by sending aMOP V4 request boot message to the
remote boot node specified with the —da option.

Console Command Reference 6-53

Display the values of the Ethernet port control/status registers (CSRs).

—els

Enable the extended design verification test (DVT) loop service.

—kls

Disable the extended DV T loop service—cmmode

Change the mode of the port device. Valid modes and their corresponding values

include the following:

Mode Symbol
Normal nm
Internal loopback in
External loopback ex
Normal filter nf
Promiscuous pr
Multicast mc
Internal loopback and promiscuous ip
Force collisions fc
No force collisions nofc
Default df

—da node_address

Use the specified destination node address with the -0, —id, or —rb option.

-l file_name

Broadcast a MOP load request for the specified load file.

—lw wait_in_secs

Wait the specified number of seconds for loop messages from the —I1 option to
return. If the messages do not return in the specified time period, the console firm-

ware generates an error message.

—SV mop_version

Set the preferred version of MOP to be used. Valid version numbersare 3 and 4.

Examples

1. >>> net -sa
-ewal: 08-00-2b-1d-02-91

Display the local Ethernet port station address.

Console Command Reference

>>> net -s

DEVI CE SPEQ H C

Tl: 2083 Ri: 42237 R 4 M2 0O TW O RW 0 BO O

H: OU OTN OLE O TQ O RM: 39967 RH: 39969 TC 54
PORT | NFO

tx full: O tx index in: 10 tx index out: 10

rx index in: 11

MOP BLOCK:
Network |ist size: O

MOP COUNTERS:
Ti me since zeroed (Secs): 2815

™

Bytes: 116588 Franes: 204

Deferred: 2 Che collision: 52 Milti collisions: 14

TX Fail ures:

Excessive collisions: O Carrier check: 0 Short circuit: O
Qpen circuit: O Long frame: O Renote defer: O

ol lision detect: O

RX:

Bytes: 116564 Frames: 194

Mul ticast bytes: 13850637 Mil ticast frames: 42343

RX Fai | ures:

Bl ock check: O Framng error: O Long frane: O

Unknown destination: 42343 Data overrun: O No systembuffer: 22
No user buffers: 0

>>>

Display the EWADO port status, including the MOP counters.

Console Command Reference 6-55

pPS — show process

Displays the system state in the form of process status and statistics.

Syntax
PsS

Example
>>> ps

cPU

ID PCB Pri Time Affinity CPU Program State
0000008f 0010e8a0 3 0 00000001 O ps runni ng
00000020 00110160 1 o ffffffff O puc_pol |l waiting on tqge
0000001f 0013ch60 6 0 ffffffff O puc_receive waiting on
puu_r ecei ve
0000001c 0013ed00 1 o ffffffff O pub_pol | waiting on tqge
0000001b 0014fc00 6 0 ffffffff O pub_receive waiting on
puu_r ecei ve
0000001a 00111a20 3 0 00000001 O sh ready
00000015 001176a0 2 0 ffffffff O nopcn_ewal waiting on
nmop_ewa0_cnw
00000014 00119140 2 0 ffffffff O nopid_ewald waiting on tge
00000013 0011ac20 2 0 ffffffff O nopdl _ewal waiting on
nop_ewa0_dl w
00000012 0011f6a0 6 o ffffffff O tx_ewa0 waiting on
ewa0 isr_tx
00000011 00121140 6 o ffffffff O rx_ewa0 waiting on
ewa0 isr_rx
00000010 00122ac0O 1 o ffffffff O pua_pol | waiting on tqge
0000000f 001244e0 6 0 ffffffff O pua_receive waiting on
pua_r ecei ve
00000009 00147460 5 o ffffffff O lad_poll waiting on tqge
00000008 00148f 00 5 o ffffffff O dup_poll waiting on tge
00000007 0014a9a0 5 o ffffffff O nscp_poll waiting on tge
00000006 0014elal 5 0 00000001 O entry 00 waiting on entry_00
00000004 001516e0 2 0 ffffffff O dead_eater waiting on dead_pcb
00000003 00153140 7 11759330 ffffffff O timer waiting on tiner
00000002 00158740 6 0 ffffffff O tt_control waiting on
tt_control
00000001 0005cfd8 O 0 00000001 O idle ready
>>>

See Also
sa, sp

6-56 Console Command Reference

pwrup — run power-on diagnostics

Runs the power-on diagnostics script. The pwrup command initializes network
environment variables and runs diagnostic tests.

Syntax

pwrup

Example
>>> p\M’ Up

Runs the power-on script.

Console Command Reference 6-57

rm — remove file

Removes specified files from the file system. Allocated memory associated with
the removed filesis returned to memory heap.

Syntax

rmfile...

Arguments
file ...

Specifiesthe files to be removed.

Example

>>> | s foo

foo

>>> rm f oo

>>> | s foo

foo no such file
>>>

List filef oo to show that it exists, remove the file, and then try to list the file
again to show that it is gone.

See Also

cat, Is

6-58 Console Command Reference

sa — set process affinity

Change the affinity mask of a process. The affinity mask specifies the processors

Syntax

Arguments

on which the process can run.

sa process _id affinity mask

process_id

Specifiesthe process ID (PID) of the process for which the affinity mask isto be

modified.

affinity_mask

Example

See Also

Specifies the new affinity mask, which indicates on which processors the process
can run. Bits 0 and 1 of the mask correspond to processors 0 and 1, respectively.

>>> nentest -p 0 &
>>> ps | grep nmentest
00000025 001a9700 2

>>> sa 25 2

>>> ps | grep nmentest
00000025 001a9700 2

>>>

23691 00000001 O

125955 00000002 1

ps, sp

nent est ready

nment est runni ng

Console Command Reference

6-59

semaphore — show system semaphores

Shows all the semaphores known to the system by traversing the semaphore
queue.

Syntax

semnmaphor e

Example
>>> semaphor e

Nane Value Address First Witer

dyn_sync 00000001 00050378

dyn_r el ease 00000001 000503A0

shel | _i ol ock 00000001 00150684

exi t_i ol ock 00000001 0015D770

grep_i ol ock 00000001 0015DB20

eval _i ol ock 00000001 0015DC0C

chrod_i ol ock 00000001 0015DCF8
~C
>>>

6-60 Console Command Reference

set — set environment variable

Sets the value of an environment variable. Use environment variables to pass con-
figuration information between the console firmware and the operating system.

Some environment variables are stored in nonvolatile memory.

For a listing of predefined environment variables, see Table 5-2.

Syntax
set envar value [-default] [-integer] [-string]
Arguments
envar
Specifies the name of the environment variable to be assigned a new value. For a
listing of predefined environment variables, see Table 5-2.
value
Specifies the value to be assigned to the environment variable. Depending on the
environment variable, the value must be a numeric value or an ASCII string.
Options
—default
Restore the environment variable to its default value.
—integer
Create an environment variable that is set to an integer value.
—string
Create an environment variable that is set to an ASCII string value.
Examples

1. >>> set MODE FASTBOOT

Set the mode for controlling the level of testing done at power-on or after
consoleinitialization to FASTBOOT. The FASTBOOT value indicates
that you want the system to execute minimal console diagnostics.

2. >>> set VME_Al6_BASE 0
>>> set VME_A24_BASE a00000
>>> set VME_A24_S| ZE 400
>>> set VME_A32_BASE 80000000
>>> set VME_A32_S| ZE 4000

Set the following:

* The base address of the VMEbus A16 address space to be %x0

* The base address of the VMEbus A 24 address space to be %x0xa00000
e Thesize of the VMEbus A24 address spaceto be 1 MB

* The base address of the VMEbus A32 address space to be %x80000000

Console Command Reference 6-61

e Thesize of the VMEbus A32 address space to be 16 MB

3. >>> set EWAO_PROTOCOLS BOOTP

Set the network protocol for booting and other network functions to be
BOOTPR.

4, >>> set BOOTDEF _DEV ewaO
Set the default device from which the system attempts to boot to EWADO.

6-62 Console Command Reference

See Also

5. >>> set AUTO ACTI ON BOOT
Set the system'’s default console action to boot after an error, halt, or
power-on.

6. >>> set BOOT_FI LE avne. sys

Set the file name to be used when the system’s boot requires afile name.

7. >>> set BOOT_OSFLAGS 0, 1
Set the system'’s default boot flags to 0,1.

8. >>> set foo 5
Create environment variable f oo and set itsvalueto 5.

clear, show

Console Command Reference

6-63

set led — display char on LED

Syntax

Argument

char

Options
-b

Example

See Also

Displays a character on the front panel light emitting diode (LED).

set led char [-D]

Specifies the character to be displayed on the front panel LED. Specify the char-
acter in quotation marks (""). You must specify a metacharacter with a backslash
(\) prefix.

Display the character in bright mode. The default is dim mode.

>>> set LED W-b
Display an uppercase W on the LED panel at full brightness.

show led

6-64 Console Command Reference

set reboot srom — set reboot mode to Serial ROM
Mini-Console
Enters the Serial ROM (SROM) Mini-Console.

When you issue this command, the modul e enters the SROM Mini-Console the
next time you reset or power on the system. Once issued, the command prevents
you from rebooting from the console until you alter NVRAM bytes using the
SROM Mini-Console.

Note

If the 1/O modul€e's debug jumper isinstalled, the system displays the
SROM Mini-Debugger prompt every time you power on the system.
While in the SROM Mini-Debugger, you can start the SRM console by
entering the st command and then entering address 0x8000 at the address
prompt as follows:

SROW> st
a> 8000

Syntax

set reboot srom

Example
>>> set reboot srom

Set the reboot flag to enter Serial ROM Mini-Console the next time you reset or
power on the system.

Console Command Reference 6-65

set toy sleep — disable TOY clock's internal oscillator

Syntax

Example

Disablesthe DS1386 TOY clock’sinternal oscillator. When you execute this com-
mand, bit 8 of the MONTH register of the deviceis set to 1, disabling the TOY
clock’s oscillator. This prevents the TOY clock’s time registers from advancing
and lengthens the life of the device'sinternal lithium battery. The next time you
power on the system, the console firmware automatically reenabl es the oscillator,
enabling the clock to count time again.

This command isuseful for final testing during manufacturing or for preparing the
system for storage.

Note

Reset the time and date once the module is powered on after disabling the
battery.

set toy sleep

>>> set toy sleep

Set the TOY clock into storage mode. The clock is automatically reenabled on
subsequent initialization.

6-66 Console Command Reference

sh — create new shell process

Creates anew shell process. Each shell process implements most of the function-
aity of the Bourne shell.

Syntax
sh [-v] [-x] [-d] [-1] [-r] [-p] [arg ...]
Arguments
arg ...
Specifies one or more arguments that are to be passed to the new shell process.
Specify the arguments as text strings terminated with white space.
Options
-V
Print lines as they are read.
—X
Show commands just before executing them.
—d
Delete standard input (STDIN) when the shell is done.
-
Trace the lexical analyzer (show tokens as they are recognized).
=
Trace the parser (show rules as they execute).
—P

Trace the execution engine (show routines called).

Console Command Reference 6-67

Example

>>> sh # start a new shell\bol d))
>>> # the new shell’s pronpt\bold))

>>> sh -v <foo # execute command file "foo" and show lines as read in

>>> sh -x <foo # print out commands as they are executed and after
>>> # all substitutions have been perforned.

6-68 Console Command Reference

show — display system information

Displaysthe current value of an environment variable or other system parameter.

Syntax

show [system param [envar]

Arguments
system_param

Specifies the type of information that is to be displayed. Specify one of the fol-
lowing parameters:

Parameter Description

config Displaysthe system configuration.

device [device-name] tDi splays information about devices and controllersin the sys-
em.

hwr pb Displaysthe Alpha hardware restart parameter block
(HWRPB).

led [-hex] Displays a character on the LED panel. The -hex option dis-

plays the contents of the LED register instead of the character
that is set to be displayed.

map Displays system virtual memory map.

mode Displays the current mode, FASTBOOT or NOFASTBOOT.
pal Displaysthe version of PALcode for VM S and OSF (UNIX).
version Displays the version of the console firmware.

You can specify a device name with the device parameter. The name that you
specify can include abbreviations or an asterisk (*) as awildcard character. The
naming convention for system devices is as follows:

- Device Wnit # : Device's unique systemunit nunber.

---- Controller ID: One letter controller designator.
T Driver ID: Two letter port or class driver designator.
PK - SCSI port, DK - SCSI class

EW- Et hernet Port

dka0.0.0.0.0

I O

| 1l | | | +- Hose # : Always zero for A pha VME 5/352 and 5/ 480 SBCs
| 1] | | +---- Sot #: Onh PO System=

[1] <PCl bus * 1000>+<PCl function *100>+<PC sl ot >
| |] | +-- Channel # : Al ways zero.

| || +--- Bus Node # : Device’'s bus ID (i.e. SCSI node |D plug #).

| I+

| +

envar

Displays the value of the specified environment variable. For alisting of pre-
defined environment variables, see Table 5-2.

Examples

Console Command Reference 6-69

1. >>> show version
ver si on V1.1-0 Jul 1 1996 10:16:59
>>>

Display the version of the firmware running on the system.

2. >>> show auto_action
boot
>>>

Display the default system power-on action.

3. >>> show boot def dev
ewa0
>>>
Display the system’s default boot device. Inthis example, the default boot
deviceis EWAO.

4. >>> show config
D gital Equi prent Corporation
Al phaVWE 5/ 480
SRM Consol e T1.0-0 WMS PALcode V1.19-8, OSF PALcode V1.21-8

MEMORY: 128 Meg of system nmenory
System Controller: W 064 Enabl ed

Hose 0, PA
slot 0 DECchip 7407
slot 1 DECchip 21040-AA ewa0.0.0.1.0 00-00-F8-23-B7-8E
slot 2 NCR 53C810 pka0.7.0.2.0 SCSl Bus ID 7
slot 3 Intel 82378

>>>

5. >>> show devi ce

dva0.0.0.0.1 DVAO
ewa0.0.0.1.0 EWAO 08-00- 2B- 1D- 27- AA
pka0.7.0.2.0 PKAO SCSl Bus ID 7

>>>
Display al devices and controllersin the system. The display output
includes the device name, device ID, device type, and device internal
firmware revision information (if available).

6. >>> show device e
ewa0. 0.0.6.0 EWAO 08- 00- 2B- 1D- 27- AA
Display devices that start with “e.”

7. >>> show devi ce dk # Show SCSI di sks.
dkc0.0.0.2.0 DKCo RzZ57
Display all devices starting with “dk” (all SCSI disks).

8. >>> show devi ce nk # Show SCSI tape drives.
nke0.0.0.4.0 MKEO TLZ04

>>>

Display all devices starting with “mk” (all SCSI tapes).

9. >>> show hwr pb
HARPB i s at 2000

di spl ay bf the contents of HARPB registers

6-70 Console Command Reference

>>>

Display the system’s HWRPB address and register data.

10. >>> show | ed
Display the current character being displayed on the LED panel.
11. >>> show | ed - hex

Display the contents of the LED register.

12. >>> boot -halt
>>> show map

pt e 00001020 v FFFFFQ)902408000 p 00000000 V KR SR FR
E:Aé 00001028 v FFFFFQD90240A000 p 00000000 V KR SR
m 00001020 v FFFFFQ)902Q08000 p 00000000 V KR SR FR
E:Aé 00001028 v FFFFFQD902Q0A000 p 00000000 V KR SR
E:Aé 00001020 v FFFFFQDB02408000 p 00000000 V KR SR FR
E:Aé 00001028 v FFFFFQDB0240A000 p 00000000 V KR SR
E:Aé 00001020 v FFFFFQDB02Q08000 p 00000000 V KR SR FR
E/\/Aé 00001028 v FFFFFQDBO2QDAD00 p 00000000 V KR SR

>>>

Note

The map is empty after all console initialization. To fill in the page table
entries, enter theoot command with the-halt option.

See Also

set, set led

Console Command Reference 6-71

show_log — display NVRAM error log
information

Displays consol e-detected fault information that was previously stored in the error
log area of NVRAM. If you do not specify command-line options, the command
displays the most recent fault.

Before using the show_log command, you must initialize the error log by issuing
the clear _log command.

Note

Console error logging is compl etely independent of the operating system'’s
error logging.

Syntax

show log [{-n [count]} -all -new

Options
—n [count]

Display the specified number of most-recent faults that are logged into the
NVRAM error log area. The default value for count is 1.

—all
Display all faultslogged into the NVRAM error log area. All faults are marked as
seen so you can display new faults easily by using the —new option. This option
aways causes the command to display all logged faults.

—hew

Display new faults logged into the NVRAM error log area; displays faults that
have not been previously displayed with the —all option.

6-72 Console Command Reference

Examples

See Also

1. >>> show_| og

FAULT#1

Time of Error:
D agnosti c
Pass Count
Error Message:
>>>

13:08:39 9- AUG 1997

Interval Timer

1 Test Nunber: 4 Failing Point: 18
Interrupt not invoked and shoul d have been

Display the most recent fault.

2. >>> show.log -n 3

FAULT#1

Tine of Error:
Machi ne Check:
SCB Vect or

IQC Status O :
IQC Status 1 :
R: .

13:10: 06 9- AUG 1997
| OC Controller

67

0400031604000316
0400000004000000
0000000000064c40

FAULT #2

Time of Error:
D agnosti c
Pass Count
Error Message:

13:08:39 9- AUG 1997

Interval Timer

1 Test Nunber: 4 Failing Point: 18
Interrupt not invoked and shoul d have been

No nore faults found

>>>

Display the two most-recent faults since they are the only ones logged

into NVRAM.

clear_log

Console Command Reference

6-73

sleep — suspend execution

Syntax

Argument

time

Option

Examples

Suspends execution of a console process for a specified number of seconds. The
console process temporarily wakes up every second to check for and kill pending
bits.

sleep [-v] time

Specifies the number of seconds to sleep. The default is one second.

Use atime value of milliseconds. The default is 1000 milliseconds (one second).

1. >>> ((sleep 10; echo hi there)&)
>>>

(10 seconds el apse...)
hi there

Sleep for 10 seconds, then execute the echo command.

2. >>> sleep -v 20
Sleep for 20 milliseconds.
This command does not function if set toy sleep has been issued.

6-74 Console Command Reference

sort — sort a file

Syntax

Argument
file

Example

Arrangesthelines of afilein lexicographic order and writesthe results to standard
output (STDOUT). The size of thefilethat sort can handleislimited by the size of

memory.

sort file

Specifiesthefile to be sorted.

>>> echo > foo ’'banana
_>pear

_>appl e

_>or ange

Createfilef oo with 4 lines.

>>> sort foo
appl e

banana

or ange

pear

Sort filef 0o and display the output.

Console Command Reference

6-75

Sp — set priority

Modifies the priority of a process.
Note

Changing the priority of the process impacts the behavior of the process

and the rest of the system.

Specifiesthe process ID (PID) of the process for which the priority is being set.

Specifies the new priority for the specified process. Priority values range from O

Syntax
Sp process id priority
Arguments
process_id
priority
to 7, with 7 being the highest priority.
Example
>>> nentest -p 0 &
>>> ps | grep nmentest
00000025 001a9700 2 23691 00000001 O
>>> sp 25 3
>>> ps | grep nmentest
00000025 001a9700 3 125955 00000001 0
>>>
Raise the priority of process 25 from 2 to 3.
See Also

ps, sa

6-76 Console Command Reference

nment est r eady

nment est ready

start — start program

Starts program execution at the specified address or starts drivers.

Syntax
start [-drivers [device prefix]] [address]
Argument
address
Specifies the PC address at which to start execution.
Options
—drivers [device_prefix]
Specifies the name of the device or class of devicesto stop. If you do not specify a
device prefix, the command starts all drivers.
Examples
1. >>> start -driver ewa 400
Start program execution at address 400.
2. >>> start -drivers
Start all the driversin the system.
See Also

continue, init, stop

Console Command Reference 6-77

stop — stop CPU or device
Stops the CPU or a specified device.
Syntax

stop [-drivers [device prefix]] [processor_num

Argument
processor_num

Specifies the processor to stop. If you use this argument, specify 0.

Option
—drivers [device_prefix]

Stop the specified device or al devices of the specified device class. If you do not
specify a device prefix, the command stops all drivers.

Example
>>> st op
Stop the processor.

See Also

continue, init, start

6-78 Console Command Reference

update — update flash ROMs

Loads updated firmware into the system’s flash ROMs (FEPROMSs). Prior to
using this command, you must close DIP switch #2 on your Alpha VME 5/352 or
5/480 SBC’s I/O module and you must issuelibet command.

During the update process, each byte of the FEPROM is verified. Each step pro-
vides for a certain number of retries to perform the operation successfully on a
particular byte of the FEPROM. If a failure occurs in any of the steps, an error
message is displayed on the console.

If the update is successful, a success message is displayed on the console.

Notes

You must reset or power on the system to run the new image in the
FEPROMSs; otherwise, the previous console image executes out of mem-
ory.

Be sure to disable FEPROM writing after completing the update process
by setting switch #2 back to the open position.

For more information about updating firmave, see Sé¢ion 5.7.

Syntax

update [-file fil enane] [-protocol transport]
[-device source device] [-target target device]

Options
—file filename
Update the FEPROM with the specified image.
—protocol transport

Use the specified source transport protocol. Valid protocols are MOP and TFTP.
See Section 5.4 for more information on using the TFTP protocol to read files
across the network.

Console Command Reference 6-79

—device source_device

L oad the new FEPROM update image from the specified device. Currently, the
only valid deviceis EWADO.

—target target _device

Use the specified target device for the upgrade operation. Valid target devicesare
CONSOLE and USERFLASH.

Example

>>> poot -fi al phavne5_v1_0 -prot nop ewaO
(boot ewa0.0.0.1.0 -file al phavme5 v1_0 -flags 0)

Tryi ng MCP boot .

Net work | oad conpl et e.
Host nane: oenert
Host addr ess: aa- 00- 04- 00- 56- 4b

bootstrap code read in

base = 1c2000, inage_start = 0, image_bytes = db000
initializing HARPB at 2000
initializing page table at 1b4000
initializing machine state

setting affinity to the primary CPU
junping to bootstrap code

starting console on CPU 0
initialized idl e PCB

initializing semaphores
initializing heap

initial heap 200cO

nermory low |imt= 1b2000

heap = 200c0, 17fcO

initializing driver structures
initializing idle process PID
XDELTA not enabl ed.

initializing file system
initializing timer data structures

| owering I PL

CPU 0 speed is 2.08 ns (481Mz)
create dead_eater

create poll

create tiner

creat e power up

128 Meg of system menory

2MB Bcache

probi ng hose 0, PA

bus 0, slot 1 -- ewa -- DECdhi p 21040- AA
bus 0, slot 2 -- pka -- NCR 53C810
entering id e | oop

SKi ppi hg powerup tests...

A phaVWE 5/ 480 Comrmon Console V1.0-0, built on Sep 24 1997 at
09: 20: 32

>>> updat e
(update -path nonane -target consol e)

new 1.0-0

Note: Mddule DIP Switch #2 nmust be CLCSED to enabl e Updat es!

6-80 Console Command Reference

FEPROM UPDATE UTI LI TY
- - - >CAUTI O\K- - -
EXECUTI NG TH 'S PROGRAM W LL CHANGE YOUR CURRENT ROM

Do you really want to continue[Y/N ?:y

DO NOT ATTEMPT TO | NTERRUPT PROGRAM EXECUTI ON
DA NG SO MAY RESULT IN LOSS COF CPERARBLE STATE

The programwi || take at most several m nutes.

Erasing the target flash device...
Erasure conpl et ed.

Programm ng. ..

i:’.r ogr amn ng conpl et ed

Verifying...

Updat e successfu

Note: Mbdul e DIP Switch #2 should be OPENED to disabl e Updat es!

>>>

Console Command Reference

6-81

Part Il

Diagnostics

Part 111 discusses the diagnostics for DIGITAL AlphaVME 5/352 and 5/480 sin-
gle-board computers (SBCs). This part consists of the following chapters:

e Chapter 7, Diagnostics and System Initialization
e Chapter 8, Console Mode Diagnostics

v

Diagnostics and System Initialization

Diagnostics for the AlphaVME 5/352 and 5/480 SBCs provide afast, high cover-
age suite of power-on self-test (POST) diagnostics to be invoked automatically at
power-on and system reset. In addition to the POST diagnostics, there are ROM-
based console mode diagnostics that provide additional testing and fault isolation.
You invoke the console mode diagnostics by entering commands at your terminal .
You also have the option of using diagnostic environment variables to gain more
control over your test environment.

This chapter introduces you to DIGITAL Alpha VME 5/352 and 5/480 SBC diag-
nostics by discussing the:

e POST diagnostics, Section 7.1
e System initialization sequence and countdown, Section 7.2

e POST NVRAM and memory diagnostics descriptions, Section 7.3

7.1 POST Diagnostics

Your SBC invokes POST diagnostics when you apply power to or reset the sys-
tem. In this mode, a sequence of diagnostics is executed without operator inter-
vention.

Once the SROM code has been loaded into the 8 KB internal instruction cache, a
very basic system initialization is performed in preparation for starting the console
firmware. After enough of the system has been initialized, the flash ROM -based
console isloaded into system memory and execution is transferred to it. During
this phase of console startup, the system automatically invokes several more diag-
nostics and executes them without operator intervention.

The system LED display indicates progress of the SROM initialization by show-
ing acountdown from 8 to 1.

If afailureis detected by the SROM-based tests, the test sequence halts and the
LED displays the number of the failing test. If the Intel SIO is successfully config-
ured and the console UART test passes, the SROM does al 1/0 through the con-
sole UART.

Failures detected beyond the SROM do not halt the POST sequence. Instead, the
display freezes at the first failing test, and the sequence attempts to continue to
console mode. An attempt is also made to write the diagnostic log to the console
terminal.

You can affect the POST sequence by using certain user-sel ectable, control
parameters (implemented as environment variables) that allow theinitialization to
continue, despite the existence of some errors that you may not wish to treat as
fatal.

Diagnostics and System Initialization 7-1

7.2 System Initialization Sequence and Countdown

During SROM initialization and console tests, the LED display shows a count-
down indicating progress. The console serial output also reports the countdown if
the environment variable CONSOLE is set to SERIAL. The SROM initialization
and console tests execute and display output as shown in Table 7-1.

Table 7-1 SROM Initialization and Console Tests

Initialization Procedures L!ED Console Display
Display
Read the SROM and initialize the CPU, the CIA
chip, the PCI bus, COMM1 port, and the SIO chip.
8 8
Detect the CPU speed, initialize the CPU and CIA
Bcache registers, and turn off the Bcache.
7 7
Initialize CIA memory control registers, wake up the
DRAMSs, and determine the amount of memory that
isinstalled.
6 6
Enable the Dcache and Bcache. Disable ECC report-
ing, read from memory, and then write back to mem-
ory with agood ECC. Clear the CPU and CIA error
registers.
4 4
Write to memory (data=address), read from mem-
ory, and compare. Check the ECC error status. Load
the SRM console and perform a checksum.
2 2
Enable all Scache. Set and flush the Icache.
1 1.
Jump to the console. 0 starting console on
CPUO
Initialize console, test memory and NVRAM, and See sample output
probe the PCI bus below
Perform console SCS test. A SCSI Tests...
Perform consol e heartbeat test. B Heartbeat Test...
Perform console interval timer tests. C Interval Timer
Tests...
Perform console TOY clock tests. D Time-of-Year Test...
Perform console serial com port tests. E

7-2 Diagnostics and System Initialization

Table 7-1 SROM Initialization and Console Tests (Continued)

Initialization Procedures L!ED Console Display
Display
Perform console Ethernet ROM tests. F Ethernet ROM
Tests...
Perform console internal loopback tests. G NI Loopback Test...
Perform console watchdog test. H Watchdog Test...
Perform console VIP/VICB5 tests. I VIP Tests...
>>>

A sample of actual console output follows. Note that the SROM version, CPU
speed, memory size, cache size, and SRM version appear in boldface type. You
should record and store this information for safekeeping. You will be asked for
thisin the event that you call for support.

A pha WME 5xxx V1.0
8..7..6..5..4..2..1. .starting console on CPU O
initialized idl e PCB

initializing semaphores
initializing heap

initial heap 200cO

nermory low linmt = 12c000

heap = 200c0, 17fcO

initializing driver structures
initializing idle process PID
XDELTA not enabl ed.

initializing file system
initializing time data structures

| owering I PL

CPU 0 speed is 2.08 ns (481Mt)

64 Meg of system nenory

2MB Bcache

probi ng hose 0, PA

bus 0, slot 1 -- ewa -- DECchi p 21040- AA
bus 0, slot 2 -- pka -- NCR 53C810
entering id e | oop

SCSI Tests. ..

Heartbeat Tests...

Interval Timer Tests...

Ti me- of - Year Test. ..

Et hernet ROM Tests. ..

N Loopback Test. ..

Wt chdog Test. ..

M P Tests. ..

A pha VME 5/480 Common Consol e V0.0-1, built on Feb 14 1997 at 12:55: 07

7.3 POST NVRAM and Memory Diagnostics Descriptions

This section provides details on the POST NVRAM and memory diagnostics.
These diagnostics run during system initialization testing.

Diagnostics and System Initialization 7-3

POST Nonvolatile RAM Diagnostic

The POST NVRAM Diagnostic verifies the SBC’s NVRAM. knforms a data
integrity test, through power cycles, and performs write, read, and comparison
operations on specific NVRAM locations used for diagnostics. This diagnostic
also checks for uninitialized NVRAM by comparing the stored checksum with the
calculated checksum.

Description

This test executes at the beginning of console boot before the console drivers and
devices have been initialized.

Test Name: None; executes when the power is turned on

7-4 Diagnostics and System Initialization

POST Memory Diagnostic

Description

The POST Memory Diagnostic verifies system memory. It runswith ECC
enabled. If the test detects a memory error that cannot be corrected with ECC, it
logsthe error in the error logging area of NVRAM.

The POST Memory Diagnostic executes at the beginning of console boot before
the console drivers and devices have been initialized. The test provides the fol -
lowing coverage:

Memory bits Stuck bits, bit transition fault, or bit coupling fault.

Decoder logic An address selects no memory, two or more addresses
select the same memory cell, or one address selects
more than one cell.

Sense amplifier logic Stuck fault or coupling fault.

Component and path coverage The CPU memory control logic, etch from the CPU to
the daughter card connectors, etch from the CPU
backup cache control to the backup cache and from
backup cache to the memory bus. The daughter card is
assumed good sinceit is tested separately in manufac-
turing.

See also the description of the memtest console command in Chapter 6.
Note

Thistest is dependent upon the setting of the environment variable
MODE. Setting MODE to FASTBOOT resultsin a quick memory verifi-
cation test. NOFASTBOOT resultsin afull memory test.

Test Name: None; executes when the power isturned on

Diagnostics and System Initialization 7-5

38

Console Mode Diagnostics

This chapter describes the following console mode diagnostic tests, which might
be run during system initialization testing or from the console:

e Heartbeat Timer Test

e Interva timer tests

e DECchip 21040 Ethernet controller tests

e DALLASDS1386 RAMified watchdog timekeeper tests
e LAN Address ROM Test

¢ NCR 53C810 PCI-SCSI /0 processor tests

e Watchdog Timer Interrupt Test

* VME interfacetests

Section 8.1 provides a summary of the dianostics.

8.1 Console Mode Diagnostics Summary

You can invoke some diagnostics directly from the console terminal, and you can
control them by using command options and diagnostic environment variables.
These tests may require operator intervention.

Table 8—1 shows the console mode diagnostic tests and the command you can use
to invoke them. You can invoke the majority of these tests at the console prompt.

Table 8-1 Console Mode Diagnostic Tests

HW Under Test Command Description

Device Exerciser exer device Exercises one or more devices

Memory and Cache

— Memory exerciser test memtest or
mem_ex

Network I nterface

— DECchip 21040 internal loopback test niil_diag-t 1
— DECchip 21040 external loopback test niil_diag -t 2

—DECchip 21040 nicsr_diag-t 1 Reads the configuration register
—DECchip 21040 CSR tests nicsr_diag -t 2 Command/status register read test
nicsr_diag -t 3 Register write/read test

Console Mode Diagnostics 8-1

Table 8-1 Console Mode Diagnostic Tests (Continued)

HW Under Test Command

Description

NVRAM + TOY Clock

— NVRAM tests ds1386_diag -t 1
ds1386_diag -t 2
ds1386_diag -t 3

— Time-of-year (TOY) clock register testsds1386_diag -t 4
ds1386_diag -t 5

LS

— SCSI device tests ncr810-t 1
ncr810-t 2
ncr810-t 3
ncr810-t 4
ncr810-t 5
ncr810-t 6
ncr810-t7

Timers

— Heartbeat timer test hbeat_diag -t 1

— Interval timer tests 18254 diag -t 1
18254 diag -t 2
i8254 diag-t 3"
i8254 diag-t 4"
18254 diag-t5
18254 diag -t 6

— Watchdog timer test wdog_diag -t 1

*Requires external loopback connector
configured as shown in Figure 8-1.

VME InterfaceTests

— VIP PCI configuration register test vip_diag -t 1

— VIP register write/read test vip_diag -t 2

— VIC64 register write/read test vip_diag -t 3

— Scatter-gather RAM test vip_diag -t 4

MISC

— Ethernet hardware address test enet_diag-t1
enet_diag-t 2

NVRAM write/read test
NVRAM unique address test
NVRAM march test

Bit pattern test on TOY clock register
Time keeper test

MBLT write/read test

Prints command/status registers
Register read/write test

Chip reset test

Internal loopback test

External loopback test

SCSI interrupt test (drives must be
removed)

Verifies heartbeat frequency=1024 Hz

Timer 2 interrupt test

Data line test with Timer 2

P2 connector test using Timers 0, 1, and 2
Master/slave timer test

Timer 2 noninterrupt test

Periodic real-time test using VIC64 chip

Timer interrupt test

Displays LAN address ROM
LAN address ROM test

8-2 Console Mode Diagnostics

Heartbeat Timer Test

The Heartbeat Timer Diagnostic Test verifies that a heartbeat interrupt is gener-
ated at the correct interval (1024 Hz) and is properly dismissed by way of the
module clear heartbeat register.

This test checks for the following logic:
e Heartbeat timer and interrupt delivery mechanism

e Module clear heartbeat register

Heartbeat Timer Test
ConsoleCommand: hbeat diag -t 1

Command Option:

—dd: Print detailed test information on each pass.
Miscellaneous Notes
e ThisisaPOST diagnostic.

* Thetest expects timer interrupts to be enabled. If they are not enabled, an
interrupt count of zero results.

* You cannot run thistest concurrently with other tests.

Console Mode Diagnostics 8-3

Interval Timer Tests

The Interval Timer Tests test the functionality of the 8254 interval timer chip and
surrounding external circuitry, including latches, programmable-array logic (PAL)
devices and printed circuit board module etch. The intent of thetestsis to verify
that timers 0, 1, and 2 can generate a CPU interrupt, if properly enabled, at the
programmed frequency. Since all three interval timers of the 8254 chip have dif-
ferent external configurations, several tests are required for complete test cover-

age.

These tests require that you properly program both timer 0 and 1 and connect
them externally for successful operation.

Timer 2 Terminal Count Test

The Timer 2 Terminal Count Test exercises Timer 2 with timer interrupts enabled.
The gate input for Timer 2 isalways enabled and the clock input is connected to a
10 MHz (100 ns period) clock source.

Timer 2 is programmed to mode 0, interrupt on terminal count. After the timer is
initially programmed to mode 0 and loaded with a count value, the OUT output is
low and remains low until the internal count value reaches zero. When the count
value reaches zero, OUT output is asserted high and remains high until Timer 2is
reprogrammed. The event of OUT transitioning from low to high should generate
aCPU interrupt.

Theinterrupt service routine (ISR) invoked due to the timer generated interrupt
sets aglobal flag indicating the interrupt took place and that software was dis-
patched to the correct point.

ConsoleComman: i 8254 diag -t 1
Miscellaneous Notes

e Theinterrupt enable bitsfor Timers 0 and 2 (bits4 and 5 of theinterrupt status
register at address 0x4010) are not writable directly. You toggle bits 4 and 5
by writing to addresses 0x4010 and 0x4014, respectively. In both cases, the
datawritten is Don't Care.

e A read of theinterrupt status register at address 0x4014 causes both interrupt
status bits (bits 0 and 1) to be cleared.

e Dueto hardware limitations on interrupt detection, the val ue programmed for
Timer 2 must be greater than 2.

¢ SeetheIntel 8254 interval timer sheet for more details.

Timer 2 Square Wave Test

The Time 2 Square Wave Test exercises Timer 2. The gateinput for Timer 2 is
aways enabled and the clock input is connected to a 10 MHz (100 ns period)
clock source.

84 Console Mode Diagnostics

Timer 2 is programmed to mode 3, square wave mode. After the timer isinitially
programmed for mode 3 and then loaded with a count value, the OUT output pro-
duces a continuous, square wave output whose period is equal to the count value
multiplied by the period of the clock input. The count values are chosen such that
they check stuck NDATA lines.

Theevent of OUT transitioning from low to high should generate a CPU interrupt,
provided the timer 2 interrupt enable hit is set.

The ISR invoked due to the timer generated interrupt increments an interrupt
counter and sets aglobal flag indicating the interrupt took place and that software
was dispatched to the correct point. The test verifies that the interrupt count is
within a certain range, based on the count value the timer was programmed with
and the duration of time that interrupts were enabled.

ConsoleCommand: i 8254 diag -t 2
Miscellaneous Notes

e Theinterrupt enable bitsfor Timers 0 and 2 (bits 4 and 5 of theinterrupt status
register at address 0x4010) are not directly writable. You toggle bits 4 and 5
by writing to addresses 0x4010 and 0x4014, respectively. In both cases, the
datawritten is Don't Care.

e A read of theinterrupt status register at address 0x4014 causes both interrupt
status bits (bits 0 and 1) to be cleared.

e Dueto hardware limitations on interrupt detection, the value programmed into
Timer 2 must be greater than 2.

¢ SeetheIntel 8254 interval timer sheet for more details.

Console Mode Diagnostics 8-5

3 Timers Loopback Test

The 3 Timers Loopback Test exercises Timer 2, Timer 1, and Timer 0. The gate
input for Timer 2 and Timer 1 is always enabled and the clock input is connected
to a10 MHz (100 ns period) clock source. Timer 0 accepts its input through a P2
loopback connector to which the output of Timer 1 and Timer 2 istied. Timer 2is
the gate input and Timer 1 provides the clock.

Thistest essentially emulates the real-time time provider and slave scheme found
in the Real-Time Clock and Interval Device Driver functional specification.

Note

A VMEbus P2 loopback connector is required. See Figure 8-1 for a
description of the loopback connections.

The—Ip option enables the timers indefinitely, making the SBC the master time
provider for Test #4.

Timer 2 and Timer 1 are programmed to mode 3, square wave mode. Timer 0 is
programmed to mode 1. After you program the timers with the appropriate mode
and load them with a count value, the OUT output produces a continuous, square
wave output that has a period equal to the count value multiplied by the period of
the clock input. In thistest Timer 2 provides a major clock, which basically pro-
vides the start time of Timer 0, and Timer 1 produces a much faster clock called
the minor clock, which controls the rate that Timer O counts down.

Timer 0 isthe only interrupt that is enabled during this test. The event of OUT
transitioning from low to high should generate a CPU interrupt.

The ISR invoked due to the timer generated interrupt increments an interrupt
counter and sets aglobal flag indicating the interrupt took place and that software
was dispatched to the correct point. The test verifies that the interrupt occurs, and
that no more than one interrupt occurs per major clock cycle.

Console Command:i 8254 diag -t 3
Command Options:
e —np: Do not print a P2 connector message.

e —Ip: Prevent timers from being stopped at the end of the test. Thisoption is
required before you invoke Test #4.

Timer O Loopback Test

86

The Timer 0 Loopback Test exercises only Timer 0. Timer 0 acceptsits clock and
gate input from the P2 loopback connector. In thistest, you can cause Timer 0
inputs on the P2 connector to be driven by a master AlphaVME SBC running Test
3 by specifying the —Ip option on the command line.

This test essentially emulates the slave system found in the Real-Time Clock and
Interval Device Driver functional specification.

Console Mode Diagnostics

Thistest enables only Timer 0 asisdonein Test 3, but does not use Timer 1 or
Timer 2. The clock and gate come from the timers on the master AlphaVME

SBC. Timer 0 interrupts when the gate isreceived and its count is decremented to
0.

Note

A VMEbus P2 loopback connector is required. See Figure 8-1 for a
description of the loopback connections.

ConsoleCommand: i 8254 diag -t 4
Command Option:

e —np: Do not print a P2 connector message.
Miscellaneous Notes

Test #3 must be invoked with the —Ip option on the master AlphaVME SBC prior
to invoking this test.

Timer 2 Interrupt Test

The Timer 2 Interrupt Test exercises Timer 2 with the timer interrupt disabled.
The gate input for Timer 2 isalways enabled and the clock input is connected to a
10 MHz (100 ns period) clock source.

Timer 2 is programmed to mode O, interrupt on terminal count. After the timer is

initially programmed to mode 0 and | oaded with a count value, OUT output is low
and remains low until the internal count value reaches zero. When the count value
reaches zero, OUT output is asserted high and remains high until Timer 2 isrepro-
grammed. The event of OUT transitioning from low to high should set the Timer 2
status bit and not generate a CPU interrupt.

The ISR global flag is checked verifying that the | SR was not invoked. The Timer
2 status hit is checked to indicate the interrupt took place.

Console Command:i 8254 diag -t 5
Miscellaneous Notes

e Theinterrupt enable bitsfor Timers 0 and 2 (bits 4 and 5 of theinterrupt status
register at address 0x4010) are not directly writable. Bits 4 and 5 are toggled
by writing to addresses 0x4010 and 0x4014, respectively. In both cases, the
datawritten is Don't Care.

e A read of theinterrupt status register at address 0x4014 causes both interrupt
status bits (bits 0 and 1) to be cleared.

e Dueto hardware limitations on interrupt detection, the value programmed into
Timer 2 must be greater than 2.

¢ SeetheIntel 8254 interval timer sheet for more details.

Console Mode Diagnostics 8-7

Timer 1 Interrupt Test

8-8

The Timer 1 Interrupt Test verifies the interrupt path of Timer 1 (periodic real-
time timer). Timer 1is programmed to mode 3, square wave mode. After the
timer isinitially programmed to mode 3 and loaded with a count value, OUT out-
put is low and remains low until the internal count value reaches zero. When the
count value reaches zero, OUT output is asserted high and remains high until
timer 1 isreprogrammed.

A global interrupt count flag is checked verifying whether the | SR was invoked.
ConsoleCommand: i 8254 diag -t 6

Figure 8-1 Loopback Descriptions for Interval Timer Test 3 and 4

Configuration for Interval Timer test 3

To make a loopback for test 3 connect pin C11 to C14. With a second jumper,
connect C12 to C13.

(VMEbus P2 Connector)

| |

row C 14 13 12 11
B
A

Configuration for Interval Timer test 4 (MASTER/SLAVE Alpha VME)

For test 4, the MASTER signals must be the input for the second Alpha VME
module. Connect pins C11 and C14 of the MASTER to C14 of the SLAVE.
With a second jumper, connect C12 and C13 of the MASTER to C13 of the

SLAVE.
(VMEbus P2 Connector, SLAVE) (VMEbus P2 Connector, MASTER)
| | !
row C 14 13 C 14 13 12 11
B B
A A

ML013463

Console Mode Diagnostics

DECchip 21040 Ethernet Controller Tests

The DECchip 21040 Ethernet Controller diagnostics verify that the internal and
external loopback mechanisms of the DECchip 21040 Ethernet controller chip
are operating properly and are performing write and read operations on behalf of
al configuration registers.

Ethernet Internal Loopback Test

The Ethernet Internal Loopback Test transmits Ethernet packetsfrom the transmit
ring in main memory, loops them back at the MAC layer, and returns them to the
receive ring in main memory. No traffic is put on the network cable.

This test transmits Ethernet packets from the transmit ring in main memory and
places them on the network medium (twisted-pair cable). It concurrently listens
tothelinethat carriesits own transmissions and returns them to thereceivering in
main memory. Received packets not identified astest packets are discarded for the
duration of the test.

Note

To run the external loopback test, you must use a 10baseT loopback con-
nector (H4082-AA). The external |loopback test does not run if the device
is connected to an open network.

This test checks the following logic respectively:

e Thedevicesinterna logic up to but not including the Ethernet transmission
logic

e Theon-chip transmit/receive circuitry and the passive external components
that connect to the twisted-pair interface

Console Command
e Forinternal loopback: niil _diag -t 1
e For externa loopback: ni il _diag -t 2
Command Option:

—dd: Print detailed test information on each pass.

DECchip 21040 PCI Configuration Register Dump

The DECchip 21040 PCI Configuration Register Dump Test reads the PCI con-
figuration registers of the DECchip 21040 and prints them to the standard output.

Console Command: nicsr_diag -t 1

DECchip 21040 Control/Status Register Dump

The DECchip 21040 Control/Status Register (CSR) Dump Test reads the CSRs of
the DECchip 21040 and prints them to standard output.

Console Command: nicsr_diag -t 2

Console Mode Diagnostics 8-9

DECchip 21040 Configuration Register Test

The DECchip 21040 Configuration Register Test performs write and read opera-
tions on the chip’s configuration registers with data patterns of all 1s, all Os, and

aternating 1s and Os. Upon exiting, the test returns the configuration registers to
their initial values.

ConsoleCommand: nicsr_diag -t 3

Command Option:

—dd: Print detailed test information on each pass.
Miscellaneous Notes

This test runs only when you power on the system.

8-10 Console Mode Diagnostics

DALLAS DS1386 NVRAM Watchdog Timekeeper

Tests

The DALLAS DS1386 NVRAM Watchdog Timekeeper tests verify the 32 KB of
NVRAM and thereal-time clock of the DALLAS DS1386. Tests 1 through 3
exercisethe NVRAM and Tests 4 and 5 exercise thereal-time clock. Thetests test
the DS1386, and decoders.

Thefunctionality of the watchdog feature is tested by a separate diagnostic test.
No alarm features are tested, since the alarms are not used.

The NVRAM istested on a page basis; there are 128 pages each containing 256
bytes. However, the first page has reserved addresses for the real-time clock reg-
isters.

NVRAM March | Test

The NVRAM March | Test writes, reads, and compares all 32 KB of NVRAM
with data patterns of all 1s, all Os, alternating 1s and Os, and shifting 1sand Os. If
the quick verify option is set (default), only the first location of each pageis
tested. The no quick verify option tests every location (32 KB) of the NVRAM.

Note

The contents of the NVRAM are overwritten by this diagnostic and
restored on test completion. If the module is reset during this test, the
NVRAM contents are undefined.

ConsoleCommand: ds1386 diag -t 1
Command Options:
e —dd: Print detailed test information on each pass.

e —nqv: Test every location in NVRAM. The default isto test one location per
page.

Miscellaneous Notes

This diagnostic is an extended test.

NVRAM Address-On-Address Test

The NVRAM Address-On-Address Test writes, reads, and compares all 32 KB of
NVRAM using this unique page offset for test data. Locations in the DS1386 are
byte wide. Therefore, you do not have enough room to write the unique address
into each corresponding location. However, thistest writes the unique page offset
to its corresponding location in NVRAM.

If you set the quick verify option (default), only the first location of each pageis
tested. The no quick verify option tests every location (32 KB) of the NVRAM.

Console Mode Diagnostics 8-11

Note

The contents of the NVRAM are overwritten by this diagnostic and
restored on test completion. If the module isreset during this test the
NVRAM contents are undefined.

ConsoleCommand: ds1386 diag -t 2
Command Options:
e —dd: Print detailed test information on each pass.

e —nqv: Test every location in NVRAM. The default isto test one location per
page.

Miscellaneous Notes

This diagnostic is an extended test.

NVRAM March Il Test

The NVRAM March |l Test verifies NVRAM addressing by marching (writing,
reading, and comparing) a 0x00 byte value through afield of OxFF. Each iteration
reads the entire 32 KB for background pattern of OxFF. If you set the quick verify
option (default), only the first location of each pageistested. The no quick verify-
option, -nqv, tests every location (32 KB) of the NVRAM.

Note

The contents of the NVRAM are overwritten by this diagnostic test and
restored on test completion. If the SBC isreset during this test, the
NVRAM contents are undefined.

Console Command: ds1386 diag -t 3
Command Options:
e —dd: Print detailed test information on each pass.

e —nqv: Test every location in NVRAM. The default isto test one location per
page.

Miscellaneous Notes

This diagnostic is an extended test.

TOY Clock Bitwalk Test

8-12

The TOY Clock Bitwalk Test does awalking 1, walking 0, and A5 on the TOY
clock registers. It also tests the rollover cases associated with keeping time.

The watchdog reset enable bit in the module control register is set to zero to
ensure that a watchdog expiration does not cause a hardware reset to occur. Sec-
ondly, the contents of the command register is saved and the transfer enable bit is
set to O to disable updates to the registers while the diagnostic isin progress.

Console Mode Diagnostics

The diagnostic bit patterns are then walked through all 14 registers. Next, the sec-
onds, minutes, hours, day, month, and year registers are programmed such that the
next clock tick rolls over for each of these parameters. The updates to the registers
are started and updated for a three second time period. After the three second
update period, the registers are then examined to verify that each parameter did
indeed roll over to the appropriate value.

The diagnostic test cleans up by reenabling the watchdog reset bit in the module
control register and restoring the original contents of the TOY clock command
register.

Note

The current date and time hasto be reset after invoking this diagnostic test
since approximately 3 seconds of timeislost for each pass.

ConsoleCommand: ds1386 diag -t 4
Command Option:

—dd: Print detailed test information on each pass.
Miscellaneous Notes

This diagnostic is an extended test.

TOY Clock Time Advancement Test

The TOY Clock Time Advancement Test is a power-on diagnostic. It verifies that
the TOY clock registers are advancing with clock ticks.

Thetest reads the current value of the seconds register. Then thetest sleepsfor 1.2
seconds and reads the seconds register again expecting it to have incremented
with the exception of the rollover case. The rollover case is where the seconds
register advances from 59 to 0. If the rollover case is encountered, the test sleeps
for another second and reads the register again. Thisis repeated four times.

Console Command: ds1386 diag -t 5
Command Option:

—dd: Print detailed test information on each pass.
Miscellaneous Notes

This diagnostic isa POST diagnostic.

Console Mode Diagnostics 8-13

Local Area Network Address ROM Tests

The Local Area Network (LAN) Address ROM tests test theintegrity of the LAN
address ROM, decoders, and printed circuit board module etch. The LAN address
ROM contains the Ethernet station address of the module.

LAN Address ROM Dump Test

The LAN Address ROM Dump Test dumps the contents of the 32 octets within
the LAN address ROM to the screen. No verification of the datais performed.

ConsoleCommand: enet _diag -t 1
Command Options:

—dd: Print the LAN address ROM to screen.

—np: Do not print the LAN address ROM to screen.
Miscellaneous Notes

e TheLAN address ROM octets must be read by using longword aligned byte
accesses.

e Thisdiagnostic is an extended test.

LAN Address ROM Verification Test

The LAN Address ROM Verification Test verifies the format of the datain the
LAN address ROM. It verifies that the octets are ordered appropriately and that
the checksums are correctly calculated based on the LAN address.

ConsoleCommand: enet _diag -t 2
Command Option:

—dd: Print the LAN ROM address to screen.
Miscellaneous Notes

e TheLAN address ROM octets must be read by using longword aligned byte
accesses.

* Thistest is considered a POST diagnostic.

8-14 Console Mode Diagnostics

Figure 8-2 LAN Address ROM Format

Address Octet 0

Address Octet 1

Address Octet 2

Address Octet 3

Address Octet 4

Address Octet 5

Checksum Octet 1

Checksum Octet 2

Checksum Octet 2

Checksum Octet 1

Address Octet 5

Address Octet 4

Address Octet 3

Address Octet 2

Address Octet 1

Address Octet 0

Address Octet 0

Address Octet 1

Address Octet 2

Address Octet 3

Address Octet 4

Address Octet 5

Checksum Octet 1

Checksum Octet 2

Test Pattern = FF

Test Pattern = 00

Test Pattern = 55

Test Pattern = AA

Test Pattern = FF

Test Pattern = 00

Test Pattern = 55

Test Pattern = AA

Console Mode Diagnostics

8-15

NCR 53C810 PCI-SCSI I/O Processor Tests

The NCR 53C810 PCI-SCSI |/0 processor tests check the NCR810 SCSI control-
ler chip. The tests do not require a drive to be attached to the SCSI port and are
meant to be a power-on check of the NCR810 chip’s low-level modes through pro-
grammed 1/Oissued from the CPU. No NCR810 scripts execute during these
tests.

All tests set up the diagnostic support environment, allocate memory, set up the
PCI configuration registers, and check for the default values in the command/sta-
tus registers as defined by the NCR810 53C810 chip specification.

Note

If any of these testsfails, the console SCSI driver does not restart after the
test. This causes SCSI devices connected to the system to be removed
from the devicelist, and any attempts to run the disk exerciser or boot
from adisk fails. (The console command show device lists the currently
installed devices.)

NCR810 PCI Configuration Register Test

The NCR810 PCI Configuration Register Test prints the current setting of the
NCR810 PCI configuration registers to the console screen using formatted output.

ConsoleCommand: ncr810 diag -t 1
Command Option:

—np: Do not print the contents of the configuration register.

NCR810 Command/Status Register Dump

8-16

The NCR810 Command/Status Register Dump Test displays the contents of all of
the control/status registers (CSRs) on your screen. No test of the contentsis per-
formed.

Console Command: ncr810 diag -t 2

Command Option:

—np: Do not print the contents of the configuration register.

Console Mode Diagnostics

NCR810 Command/Status Register Test

The NCR810 Command/Status Register Test writes, reads, and compares the con-
tents of all NCR810 CSRs that can be tested. When the test finishes, it returns the
registersto their initialized values.

ConsoleCommand: ncr810 diag -t 3
Command Option:

—Ip: Loop on write and read operations.

NCR810 Command/Status Register Reset Value Test

The NCR810 Command/Status Register Test checks that areset of the NCR810
setsthe CSRs to their default values as defined by the NCR810 53C810 chip
specification.

Console Command: ncr810 diag -t 4

NCR810 Internal Loopback Test

The NCR810 Internal Loopback Test performs a SCSI loopback internal to the
NCR810 chip. The following data patterns are used: all 1s, all Os, aternating 1s
and Os. Thetest also verifies parity checking and that the SCSI reset control lines
can betoggled internaly.

Console Command: ncr810 diag -t 5

NCR810 Internal Live Bus Loopback Test

The NCR810 Internal Live Bus Loopback Test performs an internal SCSI loop-
back that also drives the signal lines on the SCSI bus.

You must remove al devices from the SCSI bus before running this test. Devices
on the bus interfere with the test and cause fal se error reports. Also, the test data
may produce invalid device instructions and cause the devices to hang.

First, the test places the SCSI busin a high impedance state by |oading a data pat-
tern that causes the output driversto draw no current. Then the test checks the out-
put latches for the correct data. The test also verifies parity checking and that the

SCSl reset control lines can be toggled internally. The following data patterns are
used: all 1s, all Os, alternating 1s and Os.

Console Command: ncr810 diag -t 6

NCR810 Interrupt Test

The NCR810 Interrupt Test verifies theinterrupt connection between the NCR810
and the SIO controller to the CPU. Thetest enables a general -purpose timer,
which generates an interrupt that is dispatched to the CPU through the SIO con-
troller. The console PAL code dispatches to the NCR810 _diag ISR, which clears
the interrupt.

Console Command: ncr810 diag -t 7

Miscellaneous Notes

e Thesetestsdo not runin parallel with the SCSI exerciser tests.

Console Mode Diagnostics 8-17

* No external loopback connectors are needed for the loopback tests.

¢ References - NCR 53C810 PCI-SCSI 1/0 Processor specification Revision
2.1

8-18 Console Mode Diagnostics

Watchdog Timer Interrupt Test

The Watchdog Timer Interrupt Test verifies the functionality of the watchdog
timer by checking its ability to handle a user programmed watchdog timer reset.
Thetest checks logic associated with the:

e Watchdog timer
e Somereset logic
e DS1386 TOY clock

Watchdog Timer Interrupt Test

The Watchdog Timer Interrupt Test sets the diagnostic-in-progress bit and invokes
awatchdog timeout by loading a short time value into the watchdog timeout reg-
ister. The test queriesyou to be sure the watchdog LED is off. Upon expiration of
the timeout value, aHALT interrupt is expected. After the expected time, the test
evaluates the reset reason register. If the HALT interrupt did not occur, or the
watchdog reason was not set, the test calls out an error. Also, the test asksyou to
verify that thewatchdog LED isnow on. At the end of thetest, the watchdog timer
and diagnostic-in-progress bit are disabled.

ConsoleCommand: wdog diag -t 1

Command Options:

e —dd: Print detailed test information on each pass.

e —nc: Do not prompt user to verify the state of the LED.

e —np: Overidethe -nc option by prompting user to verify the state of the LED.
Miscellaneous Notes

The purpose of setting the diagnostic-in-progress bit is to avoid an actual system
reset when the watchdog timer expires. The watchdog expiration first causes a
HALT interrupt. Approximately 300 mslater an actual system reset occurs, unless
the diagnostic-in-progress bit is set. The reset reason register shows a watchdog
reset reason whether or not the diagnostic-in-progress bit is set. The HALT inter-
rupt and the reset reason are used for this diagnostic. User interaction can be sup-
pressed with the —nc option.

Console Mode Diagnostics 8-19

VME Interface Tests

The VME Interface Tests verify the VME interface logic on the AlphaVME
5/352 and 5/480 SBCs, including the VME interface processor (VIP), the Cypress
V1CO064 chip, the scatter/gather RAMSs, and some of the interrupt paths from the
VME corner to the Alpha processor. These tests perform no VM Ebus transactions
and, therefore, require no additional VMEbus modules.

VIP PCI Configuration Register Test

The VIP PCI Configuration Register Test reads the first 8 longwords of the VIP
PCI configuration space. Only the device and vendor ID, and base addresses 0, 1,
2, and 3 are compared to an expected value. The remaining longwords are always
read and displayed only if you specify the —dd option.

Console Command:vip diag -t 1
Command Option:

—dd: Print detailed test information.

VIP Register Write/Read Test

The VIP Register Write/Read Test ensures that the bits of a VIP register can be
written and read correctly; verifying the data path and internal access.

Console Command:vip diag -t 2
Command Option:

—dd: Print detailed test information.

VIC Register Write/Read Test

The VIC Register Write/Read Test ensures that the bits of aVIC register can be
written and read correctly; verifying the data path and internal access.

Console Command:vip _diag -t 3
Command Option:

—dd: Print detailed test information.

VME Scatter/Gather RAM Test

8-20

The VME Scatter/Gather RAM Test verifies the integrity of the scatter/gather
RAM by performing write, read, and verify operations of various patterns to the
entire scatter/gather RAM.

Console Command:vip _diag -t 4
Command Option:

—dd: Print detailed test information on each pass.

Console Mode Diagnostics

Part IV

Appendixes

Part IV consists of the following appendixes:
e Appendix A, Console Command Summary
e Appendix B, Troubleshooting

e Appendix C, Module Connector Pin Assignments

A

Console Command Summary

Table A—1 summarizes the DIGITAL Alpha VME 5/352 and 5/480 SBC console

commands.

Table A-1 Console Command Summary

Command Options Arguments
alloc [-flood] [~z heap_address] size [modulus] [remainder]
boot [-file boot_file] [-flagslongword,...] [boot_device]
[-protocols enet_protocol] [—halt]
break [break level]
cat [-1 length] [file...]
chmod [+ =}{r w x b Z]..] file...
chown pid address....
clear envar
clear_log
date ([T yyyylmmjdd] hhmm[.ss]]
deposit [-b-w -l -q -0 -h] [device] address data
[-physical -virtual -gpr -fpr -ipr] [—n count]
[-sstep]
dynamic [=c [-r]] [-h] [-p] [-V] [-extend byte count]
[~z heap_address]
echo [-n] args...
eval [-ib -io -id -ix] [-b -0 -d -X] operandl operand2 operator
examine [-b-w-l-g-0-h -d] [device] address
[-physical-virtual -gpr -fpr -ipr] [-n count]
[-sstep]
exer [-sbstart_block] [-ebend_block] [-p pass_count] [device...]
[blocks] [-bsblock_size] [-bc block_per_io]
[-d1bufl_string] [-d2 buf2_string]
[-aaction_string] [-secseconds] [-m] [—V]
[-delay milliseconds]
exit exit_value
false
free address...
grep [-c] [-i] [-n] [-Vv] [-F filg] expression [file...]
hd [-byte -word -long -quad] file...

Console Command Summary A-1

Table A-1 Console Command Summary (Continued)

Command Options
help

init_ev

init [—d device]
kill

line

Is [0

man

memexer

memtest [-sastart_address] [-eaend address] [-I length]
[-ba block_address] [-bs block size]
[-i address inc] [-p pass_count] [-d data_pattern]
[-rs random _seed] -rb] [-f] [-m] [-Z] [-h] [-mb]
[-t] [-d] [-s4

net [-s] [-sd] [-ri] [-ic] [-id] [-10] [-I1] [-rb] [-csH]
[-eld [-kIs] [-cm mode] [-s€ [-da node_address]
[-I file_name] [-lw wait_in_seconds]
[-svmop_version]

ps
pwrup

rm

sa

semaphore

set [-default] [-integer] [-string]
set led [-b]

set reboot srom

set toy sleep

sh (-vI [-x] [-d] [-1] [-r] [-p]

show

show log [{-n [count]} -all -new]

sleep [-V]

sort

sp

start [-drivers [device prefix]]

stop [-drivers [device prefix]]

update! [-file filename] [-protocol transport]

[-devicesource device] [-target target_device]

Arguments

[command-spec...]

pid...

[file...]
[command-spec...]

[number_of _tests]

[port]

file..

process _id affinity_mask

envar value

char

[arg ..]
system_param envar

time

file

process id priority
address

processor_num

L You must issue the b0Ot command before using update.

A-2 Console Command Summary

B

Troubleshooting

The DIGITAL AlphaVME 5/352 and 5/480 SBCs include extensive diagnostic
capabilities that execute when you power on the system. These include both
SROM and flash ROM code. This appendix:

e Briefly discusses SROM and flash ROM diagnostics, Sections B.1 and B.2

e Provides guidance on troubleshooting systems that include a PMC 1/O com-
panion card, B.3

e Briefly discusses use of the dot matrix display by operating systems and
applications, B.4

e Provides troubleshooting tips, B.5
For details about system diagnostics, see Chapter 7.

B.1 SROM Diagnostics

SROM diagnostics execute when you power on the system and display decreasing
numeric codes (8, 7, ...1) on the dot matrix display to indicate status. All SROM
tests must pass successfully before the flash ROM and console diagnostics run. If
one or more SROM diagnostics fail, the flash ROM and console diagnostics are
not loaded and a single right angle bracket prompt (SROM >) appears on the con-
sole terminal. The code of thefailing diagnostic appears on the dot matrix display.
In some cases, additional information appears on the console terminal.

B.2 Flash ROM Diagnostics

When the SROM diagnostics complete successfully, the flash ROM diagnostics
are loaded, decompressed, and executed. Flash ROM diagnostics use an ascend-
ing (A, B,..., I) character-based code to indicate progress. If one or more flash
ROM -based diagnostics fail, the code representing the first error remains on the
dot matrix display and alternates between dim and bright intensity.

If all SROM and flash ROM diagnostics pass, and you have not set any
AUTO_ACTION environment variables, the console prompt (>>>) appears on
the console terminal, and a “rotating bar” appears on the dot matrix display.

Troubleshooting B-1

B.3 Troubleshooting Systems that Include a PMC I/O Companion

Card

A problem in the PMC 1/O companion card that hangs the PCI bus signal lines
could cause diagnostics to report problems throughout the 1/0 subsystem and in
the PCI controller of the processor chip. If you have aPMC I/O companion card
installed and you are experiencing diagnostic failures, remove it and rerun the
POST diagnostics.

B.4 Operating System and Application Use of the Dot Matrix

Display

Operating system and application software can use the dot matrix display. Once
the system boots, the dot matrix display is no longer under control of the console
code and can change. The console automatically clears the display before booting
an image.

B.5 Troubleshooting Your SBC

B-2

Table B-1 lists symptoms andreective adbns you can use to troubleshoot
Alpha VME 5/352 and 5/480 SBCs. See bBi&ITAL Alpha VME 5/352 and 5/

480 Single-Board Computers User Manual for more information on system diag-
nostics.

Table B-1 Troubleshooting Your SBC

Symptom Corrective Action

No LEDs arelit and a prompt does not Check the power source. If 5V power is

appear on the console. out of specification, the SBC isheld in
reset. Check that all modules are seated
properly.

The green LED islit and the number 4 Check the seating of the memory modules.

appears on the dot matrix display when you
power on the system.

The green LED islit and the number O Ensure that the console terminal is not in
appears on the dot matrix display whenyou “hold screen” mode.
power on the system.

The green LED is lit and a flashing A Check the SCSI termination, the seating of

appears on the dot matrix display when yaéle Alpha VME 5/352 and 5/480 SBC CPU

power on the system. and I/O module assembly, the seating of the
breakout modules, the seating of the SCSI
cable, and the seating of all SCSI devices.

The green LED is lit and a flashing D ~ Check that the TOY Clock/NVRAM
appears on the dot matrix display when yalevice is seated properly.
power on the system.

The green LED is lit and a flashing F Check the seating of the network address
appears on the dot matrix display when y&lOM.
power on the system.

Troubleshooting

Table B-1 Troubleshooting Your SBC (Continued)

Symptom Corrective Action

Thegreen LED islit and aflashing G Check the seating of the twisted-pair cable
appears on the dot matrix display whenyou and the nearest network transceiver.
power on the system.

Thegreen LED islit and aflashing | Check the seating of the AlphaVME 5/352
appears on the dot matrix display whenyou and 5/480 SBC CPU and I/O module
power on the system. assembly, the seating of the breakout mod-

ules, and the seating of al VME devices.

Diagnostics pass but the SCS| teststake Check the SCSI termination, the seating of

more than 10 seconds to compl ete. the AlphaVME 5/352 and 5/480 SBC CPU
and 1/0 module assembly, the seating of the
breakout modules, the seating of the SCSI
cable, and the seating of all SCSI devices.

Diagnostics pass but there are no (or Check the console terminal connections
unreadable) characters displayed on the and settings (9600 baud, 8-bits, no parity).
console. Theterminal should be plugged into the

console (CON) port.

Troubleshooting B-3

C

Module Connector Pin Assignments

Sections C.1 through C.5 provide pin assignment information for the Alpha VME
5/352 and 5/480 SBC:

e CPU module connector, C.1

e |/O Type 1 module connector, C.2

e Primary breakout module connector, C.3

e Secondary breakout module connector, C.4

e PMC I/O companion card connector, C.5

C.1 CPU Module Connector Pin Assignments

The CPU module (54-2482%x) P2 connector has the following power/ground
pin assignments:

Row A Row B Row C

Ground 1,2,4,5,7,8, 10, 11, 13,15, 2,12,22,31 3,4, 7-11, 14-17, 20-22,
16, 18-23, 28-30 24-27, 30

VCC 3,6,9 12,14, 17, 24-27,31, 1, 13,32 1,25, 6,12, 13, 18, 19,
32 23,28, 29, 31, 32

C.2 I/0 Module Connector Pin Assignments

Sections C.2.1 through C.2.4 show the pin assignments for the VMEbus connec-
tor, console and serial connectors, and the Ethernet connector on the I/O module
(54-24319-01).

C.2.1 P1 VMEbus Connector Pin Assighments
Table C-1 lists the pin assignments for the P1 VMEbus connector.P2 Connector

Table C-1 P1 VMEbus Connector Pin Assignments

Pin Row A Row B Row C

1 VME_DO VME_BBSY L VME_DO08
2 VME_D1 VME_BCLR L VME_D09
3 VME_D2 VME_ACFAIL_L VME_D10
4 VME_D3 VME_BGINO_L VME_D11
5 VME_D4 VME_BGOUTO | VME_D12
6 VME_D5 VME_BGINL L VME_D13

Module Connector Pin Assignments Cc-1

Table C-1 P1 VMEbus Connector Pin Assignments (Continued)

Pin Row A Row B Row C

7 VME_D6 VME_BGOUTL L VME_D14

8 VME_D7 VME_BGIN2_L VME_D15

9 Ground VME_BGOUT2 L Ground

10 VME_SYSCLK VME_BGIN3 L VME_SYSFAIL L
11 Ground VME_BGOUTS3 | VME_BERR_L
12 VME_DS1 L VME_BRO_L VME_SYSRESET L
13 VME_DSO L VME_BRL1 L VME_LWORD _|
14 VME_WRITE_L VME_BR2_L VME_AM5

15 Ground VME_BR3 L VME_A23

16 VME_DTACK_L VME_AMO VME_A22

17 Ground VME_AM1 VME_A21

18 VME_AS L VME_AM2 VME_A20

19 Ground VME_AM3 VME_A19

20 VME_IACK_L Ground VME_A18

21 VME_IACKIN_L N/C VME_A17

22 VME_IACKOUT L N/C VME_A16

23 VME_AM4 Ground VME_A15

24 VME_A7 VME_IRQ7_L VME_A14

25 VME_A6 VME_IRQ6_L VME_A13

26 VME_A5 VME_IRQ5_L VME_A12

27 VME_A4 VME_IRQ4_L VME_A11

28 VME_A3 VME_IRQ3_L VME_A10

29 VME_A2 VME_IRQ2_L VME_AQ9

30 VME_A1 VME_IRQL_L VME_AO08

31 PWRN12 VME_5VSTBY PWRP12

32 VCC VCC VCC

C.2.2 P2 VMEbus Connector Pin Assighments
Table C-2 lists the pin assignments for the P2 VMEbus connector.

Table C-2 P2 VMEbus Connector Pin Assignments

Pin Row A Row B Row C

1 SCSI_DATAO_L VCC MSDATA
2 SCSI_DATA1 L Ground MSCLK
3 SCSI_DATA2 L N/C Ground

Cc-2 Module Connector Pin Assignments

Table C-2 P2 VMEbus Connector Pin Assignments (Continued)

Pin Row A Row B Row C

4 SCSI_DATA3 L VME_A24 KBDATA

5 SCSI_DATA4 L VME_A25 KBCLK

6 SCSI_DATAS5 L VME_A26 WD_STATUS OC
7 SCSI_DATAG6 L VME_A27 BREAKOUTO

8 SCSI_DATA7 L VME_A28 BREAKOUT1

9 SCSI DP_L VME_A29 Ground

10 SCSI_ATN_L VME_A30 EXT_RESET L
11 SCSI_BSY_L VME_A31 TMR2_EXT_OP L
12 SCSI_ACK_L Ground TMRL_EXT _OP L
13 SCSI_RST L VCC TMR_MINOR_IP L
14 SCSI_MSG_L VME_D16 TRM_MAJOR IP L
15 SCSl_SEL L VME_D17 Ground

16 SCSI_CD_L VME_D18 PP STB_L

17 SCSI_REQ L VME_D19 PP ERR L

18 SCSl 10 L VME_D20 PP_DATAO

19 Ground VME_D21 PP_DATA1l

20 Ground VME_D22 PP_DATAZ2

21 Ground VME_D23 PP_DATA3

22 Ground Ground PP_DATA4

23 VME_MASTER_SW_L VME_D24 PP_DATAS

24 VCC VME_D25 PP_DATA6

25 VCC VME_D26 PP_DATA7

26 VCC VME_D27 PP_SLCT

27 VCC VME_D28 PP_PE

28 Ground VME_D29 PP_BUSY

29 Ground VME_D30 PP_ACK_L

30 Ground VME_D31 PP_AFD_L

31 VCC Ground PP_INIT_L

32 VCC VCC PP_SLIN_L

Module Connector Pin Assignments

C.2.3 Console and Auxiliary Connector Pin Assignments

Table C-3 lists the pin assigments for the console and auxiliary connectors. Figure
C-1 shows a pin assignment diagram.

Table C-3 Console and Auxiliary Connector Pin Assignments

Pin Signal

Ready out (always asserted, tied high with a150Q resistor)
Transmit +

Transmit — (send common, tied to ground)

Receive +

Receive —

o o A WN P

Ready in (tied to ground with 3.0IK resistor)

Figure C-1 Console and Auxiliary Connector Pin Assignments

Pinl Pin6
/

quuu
Front view mating side

MLO-013549

C.2.4 Ethernet Connector Pin Assignments

Table C—4 lists the pin assignments for the Ethernet connector. Figure C-2 shows
a pin assignment diagram.

Table C-4 Ethernet Connector Pin Assignments

Pin Signal

Transmit +
Transmit —
Receive +
No connection
No connection
Receive —

No connection

o N o o b~ W N P

No connection

Figure C-2 Ethernet Connector Pin Assignments

Pin 1%%% 8

Front view mating side

MLO-013550

Cc-4 Module Connector Pin Assignments

C.3 Primary Breakout Module Connector Pin Assighments

Table C-5 lists the pin assignments for the primary breakout module (54-24663-
01). Figure C-3 shows a pin assignment diagram.

Table C-5 Primary Breakout Module Connector Pin Assignments

Pin Row A Row B Row C

1 SCSI_DATAO L VCC MSDATA

2 SCSI_DATAL L Ground MSCLK

3 SCSI_DATA2 L N/C Ground

4 SCSI_DATA3 L N/C KBDATA

5 SCSI_DATA4 L N/C KBCLK

6 SCSI_DATAS5 L N/C WD_STATUS OC
7 SCSI_DATAG6 L N/C BREAKOUTO

8 SCSI_DATA7 L N/C BREAKOUT1

9 SCSI DP L N/C Ground

10 SCSI_ATN_L N/C EXT_RESET L
11 SCSI_BSY L N/C TMR2_EXT_OP L
12 SCSI_ACK_L Ground TMRL EXT _OP L
13 SCSI_RST L VCC TMR_MINOR_IP L
14 SCSI_MSG_L N/C TRM_MAJOR_IP L
15 SCSI_SEL L N/C Ground

16 SCSI_CD_L N/C PP STB_L

17 SCSI_REQ L N/C PP ERR L

18 SCSI_10 L N/C PP_DATAO

19 Ground N/C PP_DATA1

20 Ground N/C PP_DATA2

21 Ground N/C PP_DATA3

22 Ground Ground PP_DATA4

23 VME_MASTER_SW_L N/C PP_DATAS

24 VCC N/C PP_DATAG6

25 VCC N/C PP_DATAY

26 VCC N/C PP_SLCT

27 VCC N/C PP_PE

28 Ground N/C PP_BUSY

29 Ground N/C PP_ACK_L

Module Connector Pin Assignments C-5

Table C-5 Primary Breakout Module Connector Pin Assignments

(Continued)

Pin Row A Row B Row C

30 Ground N/C PP_AFD L
31 VCC Ground PP_INIT L
32 VCC VCC PP SLIN_L

Figure C-3 Primary Breakout Module Connector Pin Assignments

Side 1

XP2 [t

C32|ccLceLceLccLccLcrLcLLeLLcLcceceLrLceereeLceceeereceeceececceccec|Cc1
B32 | ¢ ¢ C C C C c|B1
A32|lccCccCccCccCccCLccLcLcLLcLLLCLLLrLLeLLLLLLLLeLeLcCeCcCcoecc|lAL

49
cccecceccececcecceccececececececceccecececececececcecec
50 L&L&&LLLL&L&&LLLQ&L&LLLLL2 l:l

J2 (SCSl)

Side 2

cir|rrrerrerrrrrerrrrerroerrerrererrrrrirr|csz2
B1L (rrrrrerrrrrerrrrrrrrorrreorreorrrrrirr|B32
Al (rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr|A32
J3
cir|\rrrerrerrrrrerrrrrreerrrerrererrrrrirr|csz2
Br (rrrrerrerrrerreerrrrerrerrerrrrrirr|B32
Al (rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr|A32

J4

MLO-013551

C.4 Secondary Breakout Module Connector Pin Assignments

Figure C—4 shows the layout of the pin assignments for the secondary breakout
module. Note the positions of the J1 (keyboard and mouse) and J6 (parallel port)
connectors.

C-6 Module Connector Pin Assignments

Figure C-4 Secondary Breakout Module Connector Pin Assignments

YA R ST G G G G G G G Gy G G G GH G GHN GH G G G Gh GH G G G S S S N N R A Ve 4

ClfccccecceceLceLeLcecceceLcecececeececceecececceecececececceccececce|Cl32

J2
HERRERERRRERRRRR RN
80:9 14 26
oo ccecceccecceccecce e e ececece
J6 [G G G G G G G G G G G G
J1 24 24 L 12
alcc][cc]us
1313
EEEEEEEEEE RN RN
P2

cif|(rrerreorrrrorrrorrrorrrorroorrrrrrr|c3z
B1L|rrrrrrrrrrrrrrrrrrrrrrrrrrrririr|iB32
Al |\rrrrrrrerrrrrrrrerrrrrrrrerrrrrrr|A32

MLO-0135¢

Sections C.4.1 and C.4.2 provide more detail on the J1 and J6 connectors, respec-
tively.

C.4.1 Keyboard and Mouse Connector Pin Assignments

Table C-6 lists the pin assignments for the keyboard and mouse (J1) connector.
Figure C-5 shows a pin assignment diagram.

Table C-6 Keyboard and Mouse Connector Pin Assignments

Pin Signal

MOUSE_DATA
KBRD_DATA
Ground

VCC
MOUSE_CLOCK
KBRD_CLOCK

o o~ W N P

Module Connector Pin Assignments c-7

Figure C-5 Keyboard and Mouse Pin Assignments

¢

6 5
VN
P09

\\—'@Q Front view mating side

2 ~— 1

4

MLO-013553

C.4.2 Parallel Port Connector Pin Assignments

Table C—7 lists the pin assignments for the parallel port (J6) connector. Figure C—
6 shows a pin assignment diagram.

Table C-7 Parallel Port Connector Pin Assignments

Pin Signal

1 PP STB_L
2 PP_DATAO
3 PP_DATA1
4 PP_DATAZ2
5 PP_DATA3
6 PP_DATA4
7 PP_DATAS
8 PP_DATA6
9 PP_DATA7
10 PP ACK_L
11 PP_BUSY
12 PP_PE

13 PP SLCT
14 PP_AFD L
15 PP ERR L
16 PP INIT_L
17 PP SLIN_L
18-25 Ground
26 N/C

Cc-8 Module Connector Pin Assignments

Figure C-6 Parallel Port Connector Pin Assignments

J2

14 26

(SR R GH GH GH G G G U S G S
J6 cecececceccecceccecececcececc

1 13
Front view mating side
HEEEEEE RN

MLO-013554

C.5 PMC I/O Companion Card Connector Pin Assignments

Sections C.5.3 through C.5.3 identify the pin assignments for the following PMC
1/0O companion card (54-24665-01) connectors:;

e PMC option 1 connectors
e PMC option 2 connectors
* Diskette drive connector

e Mouse and keyboard connector

C.5.1 PMC Option 1 Connector Pin Assignments

Figure C-7 shows the locations of the PMC option 1 connectors J11, J12, and
J14(the P2 VMEDbus signal connector). Tables C-8 through C-10 list the pin
assignments for the connectors.

Figure C—7 PMC Option 1 Connectors

P1 P2
2 J12 642 J14 64
1 [I]
1 631 63
2 J11 64
1 1
1 63

Module Connector Pin Assignments C-9

Table C-8 PMC Option 1 J11 Pin Assignments

Signal Pin Pin Signal

Ground 1 2 PWRN12
Ground 3 4 BPCIOPTO_IRQA_L
BPCIOPTO_IRQB_L 5 6 BPCIOPTO_IRQC_L
N/C 7 8 VCC
BPCIOPTO_IRQD_L 9 10 N/C

Ground 11 12 N/C
PCICLK_OPTO_L 13 14 Ground
Ground 15 16 SGNTO_L
SSREQO_L 17 18 VCC

SVIO 19 20 BPCI_AD31
BPCI_AD28 21 22 BPCI_AD27
PBCI_AD25 23 24 Ground
Ground 25 26 BPCI_CBE3 L
BPCI_AD22 27 28 BPCI_AD21
BPCI_AD19 29 30 VCC

SVIO 31 32 BPCI_AD17
BPCI_FRAME_ L 33 34 Ground
Ground 35 36 BPCI_IRDY _L
BPCI_DEVSEL_L 37 38 VCC

Ground 39 40 BPCI_LOCK_L
SVIO 41 42 SVIO
BPCI_PAR 43 44 Ground

SVIO 45 46 BPCI_AD15
BPCI_AD12 47 48 BPCI_AD11
BPCI_AD9 49 50 VCC

Ground 51 52 BPCI_CBEO L
BPCI_AD6 53 54 BPCI_AD5
BPCI_AD4 55 56 Ground

SVIO 57 58 BPCI_AD3
BPCI_AD?2 59 60 BPCI_AD1
BPCI_ADO 61 62 VCC

Ground 63 64 SVIO

C-10 Module Connector Pin Assignments

Table C-9 PMC Option 1 J12 Pin Assignments

Signal Pin Pin Signal
PWRP12 1 Ground
SVIO 3 4 N/C

SVIO 5 Ground
Ground 7 8 N/C

N/C 9 10 N/C

VCC 11 12 +3V

S RST L 13 14 Ground

+3V 15 16 Ground

N/C 17 18 Ground
BPCI_AD30 19 20 BPCI_AD29
Ground 21 22 BPCI_AD26
BPCI_AD24 23 24 +3V
BPCI_AD17 25 26 BPCI_AD23
+3V 27 28 BPCI_AD20
BPCI_AD18 29 30 Ground
BPCI_AD16 31 32 BPCI_CBE2 L
Ground 33 34 N/C
BPCI_TRDY L 35 36 +3V

Ground 37 38 BPCI_STOP_L
BPCI_PERR_L 39 40 Ground

+3V 41 42 BPCI_SERR_L
BPCI_CBE1 L 43 44 Ground
BPCI_AD14 45 46 BPCI_AD13
Ground 47 48 BPCI_AD10
BPCI_ADS 49 50 +3V
BPCI_AD7 51 52 N/C

+3V 53 54 N/C

N/C 55 56 Ground

N/C 57 58 N/C

Ground 59 60 N/C

SvVIO 61 62 +3V

Ground 63 64 N/C

Module Connector Pin Assignments

c-11

Table C-10 PMC Option 1 VMEbus P2 Signal Connector (J14) Pin Assign-

ments
Signal Pin Pin Signal
P2_1C 1 2 P2_1A
P2_2C 3 4 P2_2A
P2_3C 5 6 P2_3A
P2_4C 7 8 P2_4A
P2 5C 9 10 P2_5A
P2_6C 11 12 P2_6A
P2 7C 13 14 P2 7A
P2_8C 15 16 P2_8A
P2 9C 17 18 P2_9A
P2_10C 19 20 P2_10A
P2_11C 21 22 P2_11A
P2_12C 23 24 P2_12A
P2_13C 25 26 P2_13A
P2_14C 27 28 P2_14A
P2_15C 29 30 P2_15A
P2_16C 31 32 P2_16A
P2_17C 33 34 P2_17A
P2_18C 35 36 P2_18A
P2_19C 37 38 P2_19A
P2_20C 39 40 P2_20A
P2_21C 41 42 P2_21A
P2_22C 43 44 P2_22A
P2_23C 45 46 P2_23A
P2_24C 47 48 P2_24A
P2_25C 49 50 P2_25A
P2_26C 51 52 P2_26A
P2_27C 53 54 P2_27A
P2_28C 55 56 P2_28A
P2_29C 57 58 P2_29A
P2_30C 59 60 P2_30A
P2_31C 61 62 P2_31A
P2_32C 63 64 P2_32A

C-12 Module Connector Pin Assignments

C.5.2 PMC Option 2 Connector Pin Assignments

Figure C-8 shows the locations of the PMC option 2 connectors J21 and J22.
Tables C-11 and C-12 list the pin assignments for the connectors.

Figure C—8 PMC Option 2 Connectors
P1 P2

- e -

2 J22 64
1

1 63
2 J21 64
1

L

Table C-11 PMC Option 2 J21 Pin Assignments

Signal Pin Pin Signal

Ground 1 2 PWRN12

Ground 3 4 BPCIOPT1 IRQA L
BPCIOPT1_IRQB_L 5 6 BPCIOPT1_IRQC_L
N/C 7 8 VCC

BPCIOPT1 IRQD_L 9 10 N/C

Ground 11 12 N/C
PCICLK_OPT1 L 13 14 Ground

Ground 15 16 SGNT1 L

SSREQL L 17 18 (Yoo

SVIO 19 20 BPCI_AD31
BPCI_AD28 21 22 BPCI_AD27
PBCI_AD25 23 24 Ground

Ground 25 26 BPCI_CBE3 L
BPCI_AD22 27 28 BPCI_AD21
BPCI_AD19 29 30 VCC

SVIO 31 32 BPCI_AD17
BPCI_FRAME_ L 33 34 Ground

Ground 35 36 BPCI_IRDY _L
BPCI_DEVSEL_L 37 38 VCC

Module Connector Pin Assignments C-13

Table C-11 PMC Option 2 J21 Pin Assignments (Continued)

Signal Pin Pin Signal

Ground 39 40 BPCI_LOCK L
SVIO 41 42 SVIO
BPCI_PAR 43 44 Ground

SVIO 45 46 BPCI_AD15
BPCI_AD12 47 48 BPCI_AD11
BPCI_AD9 49 50 VCC

Ground 51 52 BPCI_CBEO L
BPCI_AD6 53 54 BPCI_AD5
BPCI_AD4 55 56 Ground

SVIO 57 58 BPCI_AD3
BPCI_AD2 59 60 BPCI_AD1
BPCI_ADO 61 62 VCC

Ground 63 64 SVIO

Table C-12 PMC Option 2 J22 Pin Assignments

Signal Pin Pin Signal
PWRP12 1 Ground
SVIO 3 4 N/C

SVIO 5 Ground
Ground 7 8 N/C

N/C 9 10 N/C

VCC 1 12 +3V

S RST L 13 14 Ground

+3V 15 16 Ground

N/C 17 18 Ground
BPCI_AD30 19 20 BPCI_AD29
Ground 21 22 BPCI_AD26
BPCI_AD24 23 24 +3V
BPCI_AD17 25 26 BPCI_AD23
+3V 27 28 BPCI_AD20
BPCI_AD18 29 30 Ground
BPCI_AD16 31 32 BPCI_CBE2 L
Ground 33 34 N/C

C-14 Module Connector Pin Assignments

Table C-12 PMC Option 2 J22 Pin Assignments (Continued)

Signal Pin Pin Signal
BPCI_TRDY L 35 36 +3V

Ground 37 38 BPCI_STOP_L
BPClI_PERR L 39 40 Ground

+3V 41 42 BPCI_SERR_L
BPCI_CBE1 L 43 44 Ground
BPCI_AD14 45 46 BPCI_AD13
Ground 47 48 BPCI_AD10
BPCI_ADS8 49 50 +3V
BPCI_AD7 51 52 N/C

+3V 53 54 N/C

N/C 55 56 Ground

N/C 57 58 N/C

Ground 59 60 N/C

SVIO 61 62 +3V

Ground 63 64 N/C

C.5.3 PMC I/O Companion Card Diskette Drive Connector Pin Assignments

Table C-13 lists the pin assignments for the PMC I/O companion card diskette
drive connector. Figure C-9 shows a pin assignment diagram for the connector.

Table C-13 PMC I/O Companion Card Diskette Drive Connector Pin Assign-

ments
Pin Signal
1 Ground
2 DENSEL
3 Ground
4 No connection
5 Ground
6 DRATEO_L
7 Ground
8 INDEX_L
9 Ground
10 MTRO_L
11 Ground
12 DS1 L

Module Connector Pin Assignments C-15

Table C-13 PMC I/O Companion Card Diskette Drive Connector Pin Assign-
ments (Continued)

Pin Signal

13 Ground
14 DO L

15 Ground
16 MTRL L
17 Ground
18 DIR L

19 Ground
20 STEP L
21 Ground
22 WRDATA_L
23 Ground
24 WGATE_L
25 Ground
26 TRO_L

27 Ground
28 WRTPRT_L
29 Ground
30 RDATA

31 Ground
32 HDSEL_L
33 Ground

34 RDSKCHG

C-16 Module Connector Pin Assignments

Figure C-9 PMC I/0O Companion Card Diskette Connector Pin Assignments

O O O 16

Pin 34 Pin 33

J7

0161616161616161616101616161616)0)
00000000000 OOOOO0O

Pin 2 Pin 1

C.5.4 PMC I/O Companion Card Keyboard and Mouse Connector Pin
Assignments

Tables C-14 and C-15 list the pin assignments for the PMC I/O companion card
mouse and keyboard connectors, respectively. Figure C—10 shows a pin assign-
ment diagram for the connectors.

Table C-14 PMC I/O Companion Card Mouse Connector Pin Assignments

Pin Signal
MOUSE_DATA
KBRD_DATA

Ground

VCC
MOUSE_CLOCK
KBRD_CLOCK

o o~ W N P

Table C-15 PMC I/O Companion Card Keyboard Connector Pin Assignments

Pin Signal

KBRD_DATA
MOUSE_DATA
Ground

VCC
KBRD_CLOCK
N/C

o o~ W N P

Module Connector Pin Assignments C-17

Figure C-10 PMC I/O Companion Card Mouse and Keyboard Connector Pin
Assignments

6 5
\g/_\,g/
0g)

_|
\\@__@/\/1 Front view mating side

MLO-013553

©

4

2

C-18 Module Connector Pin Assignments

Index

Symbols

operator, 4-7
& operator, 4-7
&aoperator, 4-7
() operator, 4-7
* operator, 4-7

; operator, 4-6

< operator, 4-6
<< operator, 4-6
<kcommand>update command, 6-79
> operator, 4-6
>> operator, 4-6
? operator, 4-7

[] operator, 4-7
\ operator, 4-6
{} operator, 4-7
| operator, 4-6

'’ operator, 4-7

Numerics

10BASE-T twisted-pair Ethernet connectar4, 3-8
checking the seating pB-3
pinout assignments fpC-4

See also 21040 Ethernet controller; Networking

1-2
21040 Configuration Register Te$t:10
21040 Control/Status Dum@8-9
21040 Ethernet controllep-1, 3-2, 3-8

PCI configuration registers, reading and printing

8-9
21040 Ethernet Controller Tes®-1, 8-9
21040 PCI Configuration Register Dupt9
21164 Alpha microprocessot-1, 2-1, 3-2

chip cache forl-1
description of 3-3
functional block diagram3-4
initializing, 5-2, 6-43
managing 5-24
performance gfl1-1

speed of 1-1

stopping 5-2, 6-78

stopping and startindg-24

21172 core logic chip se8-2
21172 core logic chipsgp-1
components gf3-5

description of 3-5
features of 3-5
21172-BA chips 3-5
21172-CA chip 3-5
3 Timers Loopback Tes8-6
32, 3-6
5V standby connectiqr8-11
53C810 SCSI chipl-2
82378ZB chip 3-9
82C42PE chip1-2

Address mapping, VMEbuy$8-15

Address Resolution Protocol (ARPY-6

Addresses, symbolj&-22

Addressing modes, VMEbu8-14

Affinity mask, processqr4-7, 6-59

alloc command 5-2, 5-27, 6-2

Alpha hardware restart parameter block
displaying the address,d-2

Alpha microprocessor

Index—1

See 21164 Alpha microprocessor
Altitude specification, 1-5
Ambient air required, 1-6
Arguments, boot, 5-5

passing, 5-11
ARP (Address Resolution Protocal), 5-6
Arrow keys, 4-5
Audit trail messages, 5-6
AUTO_ACTION environment variable, 5-5
Auxiliary serial port, 2-4

connector pin assignments for, C-4

B

Background mode, console, 4-7, 4-9
Backplane dlots, 1-3
Backspace key, 4-5
Backup cache (Bcache)

See Bcache
Battery, 3-10
Bcache, 1-1, 3-4

array, 3-6

operating speed of, 1-1

See also Memory

subsystem, 3-6
Bell, sounding on error, 5-6
Boot

network, 5-15
Boot arguments, 5-5, 6-4

passing, 5-11
boot command, 4-3, 5-2, 5-10, 6-4

for firmware update, 5-18

with -halt option, 5-16
Boot device, 6-4
Boot devices, 5-10
Boot file, 5-13, 6-4
Boot image, 5-11
Boot protocols

Boot Protocol (BOOTP), 5-6, 5-11

initialization, 5-14
Protocols
boot, 6-5

Boot, network, 5-11
BOOT_DEV environment variable, 5-5
BOOT _FILE environment variable, 5-5
BOOT_OSFLAGS environment variable, 5-5
BOOTDEF_DEV environment variable, 5-5
BOOTED_DEV environment variable, 5-5
BOOTED_FILE environment variable, 5-5
BOOTED_OSFLAGS environment variable, 5-5
BOOTP (Boot Protocol), 5-6, 5-11

Index—2

initialization, 5-14
break command, 5-3, 5-36, 6-6
Breakout modules
See Primary breakout module; Secondary break-
out module
Buffers, exercise, 5-24
Bus grant pass-through jumper, 2-3

C
Cache
Bcache, 1-1, 3-4
array, 3-6
operating speed of, 1-1
See also Memory
subsystem, 3-6
data, 3-4
instruction, 3-4
second level, 3-4
third level, 3-4
case reserved word, 4-7
cat command, 5-3, 6-7
Caterpillar insulation strip, 2-4
Channels, 3-13
CHAR_SET environment variable, 5-5
Characters, deleting, 4-5
chmod command, 5-3, 6-8
chown, 5-2
chown command, 5-27, 6-10
CIA chip, 3-5
Circuit board module etch, testing, 8-4
Cleanup code, 5-6
clear command, 5-1, 5-10, 6-11
clear log command, 5-3
clear _log command, 5-33, 6-12
Clock interface, 3-7
Clocks, 1-2
real-time clock, 1-2
system clock, 3-2
Command
operators, 4-6
Command input, redirecting, 4-9
Command line
aborting, 4-5
characteristics of, 4-5
continuing, 4-6
deleting characters from, 4-5
ignoring, 4-5
recalling, 4-5
retyping, 4-5
Command output

disgarding, 4-5
filtering, 4-8
redirecting, 4-9
resuming, 4-5

Commands

alloc, 5-2, 5-27, 6-2
boot, 4-3, 5-2, 5-10, 6-4
for firmware update, 5-18
with -halt option, 5-16
break, 5-3, 5-36, 6-6
cat, 5-3, 6-7
chmod, 5-3, 6-8
chown, 5-27, 6-10
chown command, 5-2
clear, 5-1, 5-10, 6-11
clear log, 5-3
clear_log, 5-33, 6-12
commenting, 4-7
commonly used, 4-4
date, 5-2, 5-17, 6-13
deposit, 5-2, 6-14
descriptions of, 6-1
ds1368 diag, 8-11, 8-12, 8-13
ds1386 _diag, 8-2
dynamic, 5-2, 5-26, 6-19
echo, 5-4, 6-21
enet_diag, 8-2, 8-14
eval, 5-3, 5-33, 6-22
examine, 5-2, 5-19, 6-24
executing in sequence, 4-6
exer, 5-2, 5-24, 6-29, 8-1
exit, 5-3, 6-34
false, 5-3, 5-36, 6-35
free, 5-2, 5-27, 6-36
grep, 4-8, 5-4, 6-37
grouping, 4-7
hbeat_diag, 8-2, 8-3
hd, 5-3, 5-22, 6-40
help, 4-3, 6-41
18254 diag, 8-2, 8-4, 8-5
i8524 diag, 8-6, 8-7, 8-8
including in files, 4-10
init, 5-2, 5-24
init_ev, 5-1, 5-9, 6-42
initialize, 6-43
kill, 5-3, 5-36, 6-44

ling, 5-4, 6-45

Is, 5-3, 6-46

man, 4-3, 6-47

mem_ex, 8-1

memexer, 5-2, 6-48
memtest, 5-2, 5-28, 6-49, 8-1
more, 4-4

ncr810, 8-2

ncr810 diag, 8-16, 8-17
ncr810 diag, 8-16

net, 5-3, 5-31, 6-53
nicsr_diag, 8-1, 8-9, 8-10
niil_diag, 8-1, 8-9

overview of, 4-4

piping, 4-6

ps, 5-3, 5-34, 6-56

pwrup, 5-3, 5-32, 6-57
redirecting 1/0O with, 4-9

rm, 5-3, 6-58

running in background mode, 4-7, 4-9
sa, 5-3, 6-59

scripts of, 4-10

semaphore, 5-3, 5-36, 6-60
set, 5-1, 5-9, 6-61

set led, 5-3, 5-32, 6-64

set reboot srom, 5-3, 5-32, 6-65
set toy sleep, 5-2, 5-17, 6-66
sh, 5-3, 5-34, 6-67

show, 5-2, 5-9, 5-18, 6-69
show LED, 5-3

show led, 5-32

show log, 5-3

show map, 5-27

show_log, 5-33, 6-72

sleep, 5-3, 5-36, 6-74

sort, 5-4, 6-75

sp, 5-3, 5-35, 6-76

specifying arguments with, 4-5
specifying options with, 4-5
specifying patterns with, 4-7
specifying radix in, 4-7

start, 5-2, 5-24, 6-77

stop, 5-2, 5-24, 6-78
summary of, A-1

summary of console, A-1
update, 5-2, 5-18, 6-79

Index-3

using reserved words with, 4-7 pin assignments for, C-1

using with flow control, 4-7 PMC /0O companion card connector on 1/O mod-
vip_diag, 8-2, 8-20 ule, 2-4
wdog_diag, 8-2, 8-19 PMC 1/0 companion card connectors, C-9
Component and path coverage, testing, 7-5 PMC option connectors, 2-9, 2-10
Components primary breakout module connector, C-5
functional, 3-1 SCSI bus connector, 2-7
figure of, 3-3

secondary breakout module connector, 2-7

module, 2-1 pin assignments for, C-6
Wsmim_ o serial port connectors
~ initidlizing, 5-24 pin assignments for, C-4
Configuration switchpack, 2-4 VMEbus connector, 1-3
Connectors VMEbus connectors
10BASE-T twisted-pair Ethernet connector, 1-2,) -
38 pin assignmentsfor, C-1

Y -cable connector, 2-8
Console

basics, 4-1

case sensitivity, 4-6

command arguments, 4-5

command operators, 4-6

command options, 4-5

command summary, A-1

64-bit PCI connector, 2-3
at rear of VME chassis, 2-8
checking the seating of , B-3
CPU module connector, C-1
CPU module connector on I/O module, 2-4
DIMM connectors, 2-3
diskette drive connector, 2-10
pin assignements for, C-15

Eth 04 commands
t err.let co.nnector, f— o See Commands
pin assg.nm.ents or., i defining action following an error, halt or power-
external monitoring device connector, 2-7
up, 5-5
1/0O module connector, C-1 .
c odule. 2.3 device, 4-1
on CPU module, 2- , device drivers, 5-20
on PMC I/O companion card, 2-10
keyboard and mouse connector erfor log
& i . for. Cu7. C.17 displaying contents of, 5-33
pin assignments for, C-7, C- initializing, 5-33
keyboard connector, 2-8, 2-10 .
Al 3 managing, 5-33
memory module connectors, 2- features, 4-2

mouse connector, 2-8, 2-10
P1 VMEDbus connector
on CPU module, 2-3
on |/O module, 2-4
on PMC I/O companion card, 2-10
pin assignmentsfor, C-1
P2 VM Ebus connector

filtering output for, 4-8

flow control, 4-7

graphics, 5-5

heap, 5-26

initializing, 5-2, 6-43

invoking immediately after boot, 5-16

managing, 5-24
on CPU module, 2-3
mode
on |/O module, 2-4 .
. entering, 4-2
on PMC I/O companion card, 2-10 .

. . tsfor. C-2 exiting, 4-3
pin assghmentstor, - operations, 5-1
signal, PMC option 2, 2-10

parser, 4-6
parallel port connector, 2-8
processes

pin assignmentsfor, C-8

Index—4

creating, 5-34
deleting, 5-3, 6-44
displaying the state of, 6-56
displaying the status of, 5-3
exiting, 5-34, 6-34
managing, 5-3, 5-34
monitoring, 5-34
setting priority of, 5-35, 6-76
setting processor affinity, 6-59
setting the priority of, 5-3
specifying CPU for, 5-35
stopping, 5-36
suspending, 5-3, 5-36, 6-74
prompt, 4-2
character sequence for, 4-5
redirecting /O for, 4-9
reserved words, 4-7
scripts, 4-10
serid-line, 5-5
setting up for use, 4-1
special keysfor, 4-5
specifying the language of, 5-8
type-ahead buffer support, 4-6
UART, 7-1
using, 5-1
CONSOLE environment variable, 5-5, 7-2
Console firmware
See Console
Console mode diagnostics, 8-1
21040 Configuration Register Test, 8-10
21040 Control/Status Register Dump, 8-9
21040 Ethernet Controller Tests, 8-9
21040 PCI Configuration Register Dump, 8-9
3 Timers L oopback Test, 8-6
DALLASDS1386 NVRAM Watchdog Time-
keeper Tests, 8-11
Ethernet Internal Loopback Test, 8-9
Heartbeat Timer Test, 8-1
Interval Timer Tests, 8-4
LAN Address ROM Dump Test, 8-14
LAN Address ROM Tests, 8-14
LAN Address ROM Verification Test, 8-14
NCR 53C810 PCI-SCSI 1/0 Processor Tests, 8-
16
NCR810 Command/Status Register Dump, 8-16
NCR810 Command/Status Register Reset Value

Test, 8-17
NCR810 Command/Status Register Test, 8-17
NCR810 Internal Live Bus L oopback Test, 8-17
NCR810 Internal L oopback Test, 8-17
NCR810 Interrupt Test, 8-17
NCR810 PCI Configuration Register Test, 8-16
NVRAM Address-On-Address Test, 8-11
NVRAM March | Test, 8-11
Timer O Loopback Test, 8-6
Timer 1 Interrupt Test, 8-8
Timer 2 Interrupt Test, 8-7
Timer 2 Square Wave Test, 8-4
Timer 2 Terminal Count Test, 8-4
TOY Clock Bitwalk Test, 8-12
TOY Clock Time Advancement Test, 8-13
VIC Register Write/Read Test, 8-20
VIP PCI Configuration Register Test, 8-20
VIP Register Write/Read Test, 8-20
VME Interface Tests, 8-20
VME Scatter-Gather RAM Test, 8-20
Watchdog Timer Interrupt Test, 8-19
Console seria port, 2-4
connector pin assignments for, C-4
Contral, 1/0 interface, and address (CIA) chip, 3-5
Controllers
diskette drive controller, 2-1
Ethernet controller, 2-1, 3-2
interrupt, 3-9
SCSl controller, 2-1, 3-2
Contrals, front panel, 2-4
figure showing, 2-5
Cooling requirements, 1-6
CPU
See 21164 Alpha microprocessor
CPU module, 2-1, 2-2
checking the seating of, B-2
connector, C-1
1/0O module connector on, 2-3
layout of, 2-3
VMEbus connectors, 2-3
Crash dumps, 5-6
Ctrl/C, 4-5
Citrl/O, 4-5
Ctrl/Q, 4-5
Ctrl/R, 4-5
Ctrl/S, 4-5

Ctrl/U, 4-5
CY 7C964 bus interface chips, 3-14, 3-15

Index-5

D

D_BELL environment variable, 5-6
D_CLEANUP environment variable, 5-6
D_COMPLETE environment variable, 5-6
D_EOP environment variable, 5-6
D_GROUP environment variable, 5-6
D_HARDERR environment variable, 5-6, 5-26
D_OPER environment variable, 5-6
D_PASSES environment variable, 5-6
D_REPORT environment variable, 5-6
D_SOFTERR environment variable, 5-6
D_STARTUP environment variable, 5-6
D_TRACE environment variable, 5-6

DALLASDS1386 NVRAM Watchdog Timekeeper

Tests, 8-11
Data
depositing and examining in memory, 5-21
depositing in memory, 5-2
depositing in registers, 5-22
examining and depositing, 5-19
examining in memory, 5-2, 6-24
examining in registers, 5-22
Data cache (Dcache), 3-4
Data size, specifying, 5-21
Data switch (DSW) chips, 3-5
Datatransfers, VMEbus, 3-14
Data types, supported, 3-3
Date
changing, 6-13
displaying, 5-2, 5-17
setting, 5-2, 5-17
date command, 5-2, 5-17, 6-13
Dcache, 3-4
DC-to-DC converters, 1-4, 2-1
Debug jumper, 2-4
Decoder logic, testing, 7-5
Delete key, 4-5
deposit command, 5-2, 5-19, 6-14
Design verification test (DVT) loop service, 5-31
Device
default, 5-19
sticky, 5-19
Device classification, 1-7
Device drivers, 5-20
Device exerciser, 8-1
Device locations, seeking random, 5-25
Devices, 5-20
boot, 5-5, 5-10, 6-4
byte offsetsfor, 5-20
displaying information about, 5-2, 5-18
exercising, 5-2, 5-24, 6-29

Index—6

initializing, 5-2, 6-43

managing, 5-24

starting, 5-2, 6-77

stopping, 5-2, 6-78

stopping and starting, 5-24
Dew point specification, 1-5
Diagnostic completion message, 5-6
Diagnostic pass count, 5-6
Diagnostic startup message, 5-6
Diagnostics

Flash ROM, B-1

groups, 5-6

modes for, 5-8

overview, 7-1

running cleanup code after, 5-6

See also Console mode diagnostics; POST diag-

nostics
SROM, B-1
DIGITAL UNIX, 1-3
DIMMs, 2-5, 3-6
connectors for, 2-3
See also Memory
valid combinations of, 2-6
DIP Switch 2, I/O module, 3-10
Direct memory access (DMA) operations, 3-6
Diskette drive connector, 2-10
pin assignmentsfor, C-15
Diskette drive controller, 2-1
Display
dot matrix, B-2
POST diagnostics, 2-5
status, 2-3, 2-5
Dissipation specification, 1-3
DMA operations, 3-6
do reserved word, 4-7
donereserved word, 4-7
Dot matrix display, B-2
Double-bit errors, 2-6
Down arrow key, 4-5
DRAMSs (dynamic random access memory)
See Memory
DS1386 redl-time clock, 1-2
ds1386_diag command, 8-2, 8-11, 8-12, 8-13
DSW chips, 3-5
DUMP_DEV environment variable, 5-6
Dumps, crash, 5-6
DVT (design verification test) loop service, 5-31
dynamic command, 5-2, 5-26, 6-19
Dynamic random access memory (DRAM)
See Memory

E

ECC (error checking and correction), 2-6, 3-6
echo command, 5-4, 6-21
elif reserved word, 4-7
elsereserved word, 4-7
ENABLE_AUDIT environment variable, 5-6
Energy cell, 3-10
enet_diag command, 8-2, 8-14
Environment variables, 5-20
deleting, 5-10, 6-11
deleting from name space, 5-1
descriptions of, 5-5
displaying the values of, 5-2, 5-9
initializing, 6-42
managing, 5-1, 5-4
nonvolatile, 5-13
setting, 5-1, 5-9, 6-61
using to affect POST diagnostics sequence, 7-1
using wildcards with, 5-10
Environmental requirements, 1-5
Environmental specifications, 1-3, 1-5
Error checking and correction (ECC), 2-6, 3-6
Error codes, returning on 1/O failures, 5-26
Error detection, 2-6
Error log, 5-20
clearing, 6-12
displaying, 6-72
displaying contents of, 5-33
initializing, 5-33
managing, 5-3, 5-33
Errors
hard, detection of, 5-6
single- and double-bit, 2-6
soft, detection of, 5-6
esac reserved word, 4-7
Ethernet connector
See 10BASE-T twisted-pair Ethernet connector
Ethernet controller
See 21040 Ethernet controller
Ethernet Hardware Address Test, 8-2
Ethernet ID address, 3-8
Ethernet Internal Loopback Test, 8-9
Ethernet loopback, 5-31
Ethernet station address, 5-31
Eurocard format, 1-3
eval command, 5-3, 5-33, 6-22
EWAO_ARP_TRIES environment variable, 5-6
EWAQO BOOTP_FILE environment variable, 5-6
EWAOQO BOOTP_SERVER environment variable, 5-6
EWAO BOOTP_TRIES environment variable, 5-7

EWAQO _DEF _GINETADDR environment variable, 5-
7

EWAOQ _DEF INETADDR environment variable, 5-7

EWAOQ_DEF _INETFILE environment variable, 5-7

EWAOQO DEF SINETADDR environment variable, 5-
7

EWAO_INET_INIT environment variable, 5-7

EWAO_LOOP_COUNT environment variable, 5-7

EWAOQ_LOOP_INC environment variable, 5-7

EWAQ_LOOP_PATT environment variable, 5-7

EWAO_LOOP_SIZE environment variable, 5-7

EWAO _LP_MSG_NODE environment variable, 5-7

EWAOQO_MODE environment variable, 5-7

EWAOQO_PROTOCOLS environment variable, 5-8

EWAOQ_TFTP_TRIES environment variable, 5-8

EWANn _DEF _GINETADDR environment variable, 5-
13

EWAnN _DEF INETADDR environment variable, 5-
13

EWAnN _DEF_INETFILE environment variable, 5-13

EWAN _DEF _SINETADDR environment variable, 5-
13

EWANn DEF SUBNETMASK environment variable,
5-13

examine command, 5-2, 5-19, 6-24

exer command, 5-2, 5-24, 6-29, 8-1

Exercise buffers, 5-24

Exercise operations, 5-25

Exercises, 5-25

exit command, 5-3, 6-34

Expressions

evaluating, 5-3, 5-33, 6-22
searching for, 5-4, 6-37
External monitoring device, 2-7
External timing signals, 2-7

F

Failure status
returning, 6-35
Failure status, returning, 5-3, 5-36
false command, 5-3, 5-36, 6-35
FDC37C665GT Super 1/0 chip
See Super 1/0 chip
fi reserved word, 4-7
Files
boot, 5-5, 5-11, 5-13, 6-4
changing attributes of, 5-3, 6-8
copying to standard output, 5-3, 6-7
deleting, 5-3, 6-58
dumping contents of,, 5-3, 6-40
listing, 5-3, 6-46

Index—7

loading remotely, 6-53
managing, 5-3, 5-37
searching for expressionsin, 5-4
sorting contents of, 5-4, 6-75
Firmware
updating, 5-2, 5-18, 6-79
version of, 5-8
Flash ROM, 1-2, 2-1, 3-2, 3-10, 5-20
diagnostics, B-1
See also Memory
Floating-point registers, 5-20
Flow control, 4-7
loops, breaking, 5-36, 6-6
for reserved word, 4-7
free command, 5-2, 5-27, 6-36
Front panel, 2-4
figure showing, 2-5
LED

checking while troubleshooting, B-2

controlling, 5-3, 5-32
display, 7-1
displaying a character on, 6-64
Functional components, 3-1
figure of, 3-3

G

General-purpose registers, 5-20
Graycode memory test, 5-28
grep command, 4-8, 5-4, 6-37

H
Halt switch, 2-4, 2-5, 4-2
Hard errors, detection of, 5-6
Hardware reset reason register, 3-11
Hardware restart parameter block
displaying the address of, 5-2
hbeat_diag, 8-2
hbeat_diag command, 8-3
hd command, 5-3, 5-22, 6-40
Heap, 5-26
Heartbeat Timer Test, 8-1, 8-2
Help
See help command; Online help
help command, 4-3, 6-41
Humidity, relative
nonoperating, 1-5
operating, 1-3, 1-5
HWRPB, 5-18

Index—8

I
110

access through P2 VM Ebus connector, 3-9
adding, 2-9
failures, 5-26
redirecting, 4-9
1/0 module, 2-1, 2-2, 2-3
checking the seating of, B-2
configuration switch 3, 4-2
connector

on CPU module, 2-3
on PMC I/O companion card, 2-10
pin assignmentsfor, C-1

CPU connector on, 2-4

DIP Switch 2, 3-10

layout, 2-4

PMC I/0O companion card connector on, 2-4

VMEbus connectors, 2-4
1/0O subsystem, 3-7
18254 diag command, 8-2, 8-4, 8-5
i8524 diag command, 8-6, 8-7, 8-8
Icache, 3-4
ID reguests, 6-53
if reserved word, 4-7
in reserved word, 4-7
Indicators, front panel, 2-4
figure showing, 2-5
init command, 5-2, 5-24
init_ev command, 5-9, 6-42
init_ev command, 5-1
Initialization
system, 7-2
initialize command, 6-43
Inodes, listing, 5-3
Input, command
controlling radix of, 4-7
reading, 4-6
redirecting, 4-6
Instruction cache (Icache), 3-4
Insulation strip, caterpillar, 2-4
Internal processor registers, 5-20

Internet

Address Resolution Protocol (ARP), 5-6
addresses, 5-13

saving in an environment variable, 5-16

Boot Protocol (BOOTP), 5-6
database, 5-7

defining fields of,, 5-12
initialization, 5-13

protocols, 5-11
subnet mask, 5-13
Internet Trivial File Transfer Protocol (TFTP), 5-8
Interrupt controllers, 3-9
Interrupt delivery mechanism, testing, 8-3
Interval timer, 3-12
Interval timer chip, testing, 8-4
Interval Timer Tests, 8-2, 8-4

J
J11 bus grant pass-through jumper, 2-3
Jumpers
debug jumper, 2-4
J11 bus grant pass-through jumper, 2-3
keyboard and mouse jumper, 2-9
primary breakout module jumper, 2-7
SCSI termination and watchdog reset signal
jumpers, 2-7
signaling level jumper, 2-10
SROM Mini-Console, debug jumper for, 2-4

K
Keyboard, 2-1
connector, 2-8, 2-10
pin assignmentsfor, C-7, C-17
controller, 3-2, 3-13
jumper, 2-9
Keys, specia console, 4-5
kill command, 5-3, 5-36, 6-44

L

LAN Address ROM Dump Test, 8-14
LAN Address ROM Tests, 8-14
LAN Address ROM Verification Test, 8-14
LANGUAGE environment variable, 5-8
LANGUAGE_NAME environment variable, 5-8
LEDs
checking while troubleshooting, B-2
front panel LED
controlling, 5-3, 5-32
display, 7-1
displaying a character on, 6-64
power LED, 2-3, 2-5, 2-10
VME dave activity/watchdog timeout LED, 2-3,
2-5
Level 3 cache
See Bcache
LICENSE environment variable, 5-8
line command, 5-4, 6-45

Log files, commenting in, 4-7
Log, error
clearing, 6-12
displaying, 6-72
Loop count, 5-7
Loop data, 5-7
Loopback
Ethernet, 5-31
Loopbacks, 6-53
maintenance operations protocol (MOP), 5-31
|s command, 5-3, 6-46

M

M ai ntenance operations protocol (MOP)
counters, 5-31
for copying scripts over the network, 4-11
loopback, 5-31
operations
performing, 6-53
operations, performing, 5-3
man command, 4-3, 6-47
March memory test, 5-29
M eantime between failures (MBTF), 1-5
mem_ex command, 8-1
memexer command, 5-2, 6-48
Memory, 1-1, 1-2, 2-1, 3-2
alocating, 5-2, 5-27, 6-2
autoconfiguration of, 1-1
bits, testing, 7-5
changing ownership of, 5-2, 5-27, 6-10
configurations, 2-6
data bus, 2-6
bandwidths, 1-1, 3-7
depositing datainto, 5-21
displaying the state of, 5-2, 6-19
examining datain, 5-21, 6-24
exercising, 6-48
freeing, 5-2, 5-27, 6-36
Graycode test, 5-28
managing, 5-2, 5-26
march test, 5-29
modules, 2-2, 2-5
checking the seating of , B-2
connectors for, 2-3
physical, 5-20
as default device, 5-19
random test, 5-30
subsystem, 3-6

Index—9

test options, 5-31
testing, 5-2, 5-27, 6-49
tests, running multiple, 5-31
verification of, 7-5
victim gject test, 5-30
virtual, 5-20
displaying a map of, 5-2
mapping of, 5-18
writing data to, 6-14
Memory Exerciser Test, 8-1
memtest command, 5-2, 5-28, 6-49, 8-1
Memzone, 5-24
M essage packets, retransmission of, 5-14
Microprocessor
See 21164 Alpha microprocessor
Mini-Console
See SROM Mini-Console
MODE environment variable, 5-8
dependence of diagnostic test on, 7-5
Modules, 2-1
as system components, 2-1
checking the seating of , B-2
clear heartbeat register, testing, 8-3
CPU module, 2-2
figure of, 2-2
1/0 module, 2-3
memory modules, 2-5
PMC I/O companion card, 2-9
primary breakout module, 1-4, 2-7
secondary breakout module, 2-8

M OPSee Maintenance operations protocol (MOP)

mor e command, 4-4
Mouse, 2-1
connector, 2-8, 2-10
pin assignmentsfor, C-7, C-17
controller, 3-2, 3-13
jumper, 2-9

N
Nbus, 2-1, 3-2, 3-9

NCR 53C810 PCI-SCSI 1/0 Processor Tests, 8-16

ncr 810 command, 8-2
NCR810 Command/Status Register Dump, 8-16

NCR810 Command/Status Register Reset Value Test,

8-17
NCR810 Command/Status Register Test, 8-17
NCR810 Interna Live Bus L oopback Test, 8-17
NCR810 Internal L oopback Test, 8-17
NCR810 Interrupt Test, 8-17

Index—10

NCR810 PCI Configuration Register Test, 8-16
ncr810_diag command, 8-16, 8-17
net command, 5-3, 5-31, 6-53
Network address ROM
checking the seating of , B-2
Network booting, 5-11, 5-15
Network interface, Internet address of, 5-13
Network port, 5-31
Network protocol, 5-8
Networking, 5-2, 5-31, 6-53
features, 1-2
interconnect for, 1-2
nicsr_diag command, 8-1, 8-9, 8-10
niil_diag command, 8-1, 8-9
Nonvolatile RAM
See NVRAM
NVRAM, 1-2, 1-4, 2-1, 3-2, 3-11, 5-20
checking the seating of, B-2
location of, 2-4
See also Memory
verification of, 7-4
NVRAM Address-On-Address Test, 8-11
NVRAM March | Test, 8-11
NVRAM Test, 8-2

O
Online help, 4-3
controlling the display of, 4-4
displaying, 4-3, 6-41, 6-47
for multiple commands, 4-3
Operating systems, 1-3
use of dot matrix display with, B-2
operator, 4-7
Operator, presence, 5-6
Operators
console command, 4-6
eval command, 5-33
Options, command, 4-5
Output, command
appending, 4-6
disregarding, 4-5
filtering, 4-8
resuming, 4-5
writing, 4-6
Output, standard
copying filesto, 6-7
writing to, 5-4

P

P1 VM Ebus connector

CPU module, 2-3

1/0 module, 2-4

pin assignmentsfor, C-1

PMC I/0O companion card, 2-10
P2 VM Ebus connector

CPU module, 2-3

1/0 module, 2-4

pin assignmentsfor, C-2

PMC I/O companion card, 2-10
Packaging weight, 1-5
PAL

environment variable, 5-8

temporary register set, 5-20
PAL devices, testing, 8-4
PALcode, 3-3, 5-8
Paralel port, 2-1, 2-9, 3-13

connector, 2-8

pin assignmentsfor, C-8

Parameters, console device, 4-1
Patterns

specifying, 4-7
Patterns, specifying text, 4-7
PCI bus, 3-7

clock, 3-9
PCI configuration space, 5-20
PCI connector, 64-bit, 2-3
PCI dense memory space, 5-20
PCI 1/0 space, 5-20
PCI sparse memory space, 5-20
PCI-32 interface, 2-1, 3-2

See also PMC 1/0O companion card
PCl-to-Ethernet controller

See 21040 Ethernet controller
PCI-to-Nbus bridge, 2-1, 3-2
PCI-to-PClI bridge, 2-9, 3-2, 3-9
PCl-to-SCSI controller

See SCSI controller
PCI-to-VME interface components, 3-14
PCI-to-VME®64 bridge, 2-1, 3-2

See also VIC64 chip; VIP chip
PCP (process control block), 5-35
Performance

CPU, 1-1

memory data bus, 2-6
Phase lock loop (PLL)/buffer circuit, 3-2, 3-7
Physical characteristics, 1-3
Physical memory, 5-20

as default device, 5-19

Physical requirements, 1-3
PID (processidentifier), 5-35
Pin assignments, C-1
for CPU module connector, C-1
for diskett drive connector, C-15
for Ethernet connector, C-4
for keyboard and mouse connector, C-7, C-17
for P1 VMEbus connector, C-1
for P2 VMEbus connector, C-2
for parallel port connector, C-8
for PMC I/O companion card connectors, C-9
for PMC option 1 connectors, C-9
for PMC option 2 connectors, C-13
for primary breakout module connector, C-5
for secondary breakout module connector, C-6
for seria port connectors, C-4
for VM Ebus connectors, C-1
1/0O module connectors, C-1
PMC I/O companion card, 1-2, 2-1, 2-2, 2-9, 3-2, 3-9
connector on 1/O module, 2-4
connector pin assigments, C-9
layout, 2-9
See also PMC options
troubleshooting systems that include, B-2
voltage supply, 3-9
PMC option connectors, 2-10
PMC options, 3-9
connectors for, 2-9, C-9
Ports
driversfor, 5-31
paralel, 2-9, 3-13
seria, 1-2, 3-13
setting parametersfor, 4-1
POST diagnostics, 7-1
affecting the sequence of, 7-1
display for, 2-5
memory diagnostic, 7-5
NVRAM diagnostic, 7-4
running, 5-3, 5-32, 6-57
Power
LED, 2-3, 2-5, 2-10
requirements, 1-4
input, 1-4
source, checking, B-2
specifications, 1-3
supplied by primary breakout module, 2-7
Power-on diagnostics

Index-11

See POST diagnostics

Power-on self test (POST) diagnostics
See POST diagnostics

Primary breakout module, 1-4, 2-2, 2-7
as a SCSl interface, 3-8
checking the seating of , B-2
connector pin assignments, C-5
figure of, 2-7
jumpers, 3-8

Process control block (PCB), 5-35

Processidentifier (PID), 5-35

Process priority, 5-35

Process state, 5-35

Processes

console
setting priority of, 6-76
setting processor affinity for, 6-59
creating, 5-34
deleting, 5-3, 6-44
displaying the state of, 6-56
displaying the status of, 5-3
exiting, 5-34, 6-34
managing, 5-3, 5-34
monitoring, 5-34
setting priority of, 5-35
setting processor affinity for for, 6-59
setting the priority of, 5-3
shell, creating, 6-67
specifying CPU for, 5-35
stopping, 5-36
suspending, 5-3, 5-36, 6-74
Processor
affinity, 5-35, 6-59
registers, 5-20
Processor affinity mask, 4-7
Product specifications
See Specifications
Program counter, 5-23
Program loop, breaking, 6-6
Programs, starting, 5-3, 6-77
Prompt
character sequence for, 4-5

Prompt, character sequence for console, 4-5
Protocols
VMEbus, 3-14
ps command, 5-3, 5-34, 6-56
pwr up command, 5-3, 5-32, 6-57

Index—12

R
Radix, specifying, 4-7
Random memory test, 5-30
Real-time clock, 1-2
Registers, 5-20
21040 Ethernet controller
PCI configuration, reading and printing, 8-9
depositing datain, 5-22
examining datain, 5-22
module, clear heartbeat register, 8-3
Regulatory compliance, 1-6
Remote host system Internet address of, 5-13
Remote Internet LAN gateway Internet address of, 5-
13
Requirements, 1-1
cooling, 1-6
environmental, 1-5
physical, 1-3
power, 1-4
input, 1-4
Reserved words, 4-7
Reset reason register, 3-11
Reset signal, VMEDbus, 4-2
Reset switch, 2-4, 2-5, 4-2
Ripple, voltage, 1-4
rm command, 5-3, 6-58

S
sa command, 5-3, 6-59
Scatter-gather map, VMEbus, 3-15
Scatter-Gather RAM Test, 8-2
Scatter-gather RAM, VMEbus, 3-14
Scripts
commenting in, 4-7
console command, 4-10
power-on diagnostics, running, 5-3
SCSI bus connector, 2-7
SCSl cable, 3-8
checking the connection of, B-2
connector, 2-7
SCSl controller, 1-2, 2-1, 3-2, 3-8
SCSI Device Tests, 8-2
SCSl devices, checking the seating of, B-2
SCSI termination, 3-8
checking, B-2
control, 2-7
signal, 2-7
Second level cache, 3-4
Secondary breakout module, 2-2, 2-8
checking the seating of,, B-2

connector on primary breakout module, 2-7
connector pin assignments for, C-6
semaphor e command, 5-3, 5-36, 6-60
Semaphores, displaying, 5-3, 5-36, 6-60
Sense amplifier logic, testing, 7-5
Seria ports, 3-13
Serial ports, 1-2, 2-1, 2-4
setting parametersfor, 4-1
Serid-lineinterface, 1-2
set command, 5-1, 5-9, 6-61
set led command, 5-3, 5-32, 6-64
set reboot srom command, 5-3, 5-32, 6-65
set toy sleep command, 5-2, 5-17, 6-66
sh command, 5-3, 5-34, 6-67
Shell process
creating, 5-3, 6-67
exiting, 5-3, 6-34
Shock specification, 1-5
show command, 5-2, 5-9, 5-18, 6-69
show L ED command, 5-3
show led command, 5-32
show log command, 5-3
show map command, 5-27
show_log command, 5-33, 6-72
Signaling level jumper, 2-10
Signals
externa timing signals, 2-7
SCSl termination signal, 2-7
watchdog reset signal, 2-7
watchdog timeout signal, 2-7
Single-bit errors, 2-6
SIO chip, 3-9
sleep command, 5-3, 5-36, 6-74
Slots, backplane, 1-3, 2-9
Soft errors
detection of, 5-6
sort command, 5-4, 6-75
Sp command, 5-3, 5-35, 6-76
Specifications, 1-1
environmental, 1-3, 1-5
power, 1-3
VME, 1-2
SPECmarks, 1-1
SRAMS, 3-2
SROM, 3-7
diagnostics, B-1
location of, 2-3
SROM initialization, 7-1
SROM Mini-Console
debug jumper for, 2-4
setting reboot to, 5-3, 5-32, 6-65

Stack pointer, 5-23
Standard output, copying filesto, 6-7
Standby connection, 5V, 3-11
start command, 5-2, 5-24, 6-77
Status display, 2-3, 2-5
Sticky device, 5-19
stop command, 5-2, 5-24, 6-78
Storage specification, 1-5
Super /O chip, 1-2, 3-2, 3-13
Switches
Halt and Reset, 2-4
Halt and Reset switch, 2-5, 4-2
I/0 module configuration switch 3, 4-2
Switchpack, configuration, 2-4
Symbolic addresses, 5-22
SYSRESET signal, 1-3
System
booting, 5-2, 5-10, 6-4
configuration, displaying, 5-2
System clock, 3-2
System clock signal (SYSCLK), 1-3, 3-2, 3-7
System components, initializing, 5-24
System configuration, 5-18
System 1/O (SIO) chip, 3-9
System information
displaying, 6-69
getting, 5-2, 5-18
System initialization sequence, 7-2
System parameters
setting, 6-61

T
Technical specifications
See Specifications
Temperature
ambient, 1-6
change, 1-3
controlling, 1-6
nonoperating range, 1-5
operating, 1-3
operating range, 1-5
storage, 1-3
Tests, 8-1
21040 Configuration Register Test, 8-10
21040 Control/Status Register Dump, 8-9
21040 Ethernet Controller Tests, 8-1, 8-9

21040 PCI Configuration Register Dump, 8-9

3 Timers L oopback Test, 8-6

DALLASDS1386 NVRAM Watchdog Timer-

Index—13

keeper Tests, 8-11
Ethernet Hardware Address Test, 8-2
Ethernet Internal Loopback Test, 8-9
Graycode memory test, 5-28
Heartbeat Timer Test, 8-1, 8-2
Interval Timer Tests, 8-2, 8-4
LAN Address ROM Dump Test, 8-14
LAN Address ROM Tests, 8-14
LAN Address ROM Verification Test, 8-14
march memory test, 5-29
memory
options for, 5-31
running multiple, 5-31
NCR 53C810 PCI-SCSI 1/0 Processor Tests, 8-
16
NCR810 Command/Status Register Dump, 8-16
NCR810 Command/Status Register Reset Value
Test, 8-17
NCR810 Command/Status Register Test, 8-17
NCR810 Interna Live Bus L oopback Test, 8-17
NCR810 Internal L oopback Test, 8-17
NCR810 Interrupt Test, 8-17
NCR810 PCI Configuration Register Test, 8-16
NVRAM Address-On-Address Test, 8-11
NVRAM March | Test, 8-11
NVRAM Test, 8-2
random memory test, 5-30
running cleanup code after, 5-6
Scatter-Gather RAM Test, 8-2
SCSI Device Tests, 8-2
Timer O Loopback Test, 8-6
Timer 1 Interrupt Test, 8-8
Timer 2 Interrupt Test, 8-7
Timer 2 Square Wave Test, 8-4
Timer 2 Terminal Count Test, 8-4
TOY Clock Bitwalk Test, 8-12
TOY Clock Register Tests, 8-2
TOY Clock Time Advancement Test, 8-13
VIC Register Write/Read Test, 8-20
V1C64 Register Write/Read Test, 8-2
victim gject memory test, 5-30
VIP PCI Configuration Register Test, 8-2, 8-20
VIP Register Write/Read Test, 8-2, 8-20
VME Interface Tests, 8-2, 8-20
VME Scatter-Gather RAM Test, 8-20
Watchdog Timer Interrupt Test, 8-19

Index—14

Watchdog Timer Test, 8-2
Text
displaying on console, 6-21
reading aline of, 6-45
writing to standard output, 5-4
TFTP (Trivial File Transfer Protocol), 5-8, 5-12, 5-13
using to read files across the network, 5-16
TGA_SYNC_GREEN environment variable, 5-8
then reserved word, 4-7
Thermal control, 1-6
Third-level cache
See Bcache
Time
changing, 6-13
displaying, 5-2, 5-17
setting, 5-2, 5-17
specification, 5-17
Time-of-year clock
See TOY clock
Timer O Loopback Test, 8-6
Timer 1 Interrupt Test, 8-8
Timer 2
exercising, 8-4
Timer 2 Interrupt Test, 8-7
Timer 2 Square Wave Test, 8-4
Timer 2 Terminal Count Test, 8-4
Timer modes, 3-13
Timers, 1-2, 3-12
TOY clock, 1-4, 2-1, 3-2, 3-10
checking the seating of, B-2
disabling oscillator of, 5-2, 5-17, 6-66
displaying time and date of, 5-17
location of, 2-4
managing, 5-2, 5-16
NVRAM registers, 5-20
setting time and data of, 5-17
TOY Clock Bitwalk Test, 8-12
TOY Clock Register Tests, 8-2
TOY Clock Time Advancement Test, 8-13
Trace messages, 5-6
Trivial File Transfer Protocol (TFTP), 5-8, 5-12
initialization, 5-13
using to read files across the network, 5-16
Troubleshooting, B-1
symptoms and corrective actions for, B-2
systems that include a PMC |1/O companion card,
B-2
TTY_DEV environment variable, 5-8

U
UART, 7-1
UNIX
See DIGITAL UNIX
until reserved word, 4-7
Up arrow key, 4-5
update command, 5-2, 5-18

\Y
Variables

See Environment variables
VERSION environment variable, 5-8
Vibration specification, 1-5
VIC Register Write/Read Test, 8-20
VIC64 chip, 1-2, 3-14, 3-15
V1C64 chip system interrupt controller, 3-9
V1C64 Register Write/Read Test, 8-2
Victim gect memory test, 5-30
Video synchronization, 5-8
VIP chip, 3-13, 3-14
VIP PCI Configuration Register Test, 8-2, 8-20
VIP Register Write/Read Test, 8-2, 8-20
vip_diag command, 8-2, 8-20
Virtual memory, 5-20

displaying a map of, 5-2

map of, 5-18
VME configuration, 5-9
VME externd timing signals, 2-7
VME interface, 3-13
VME Interface Tests, 8-2, 8-20
VME setup mode, 5-9
VME dave activity LED, 2-3, 2-5
VME specifications, 1-2
VME_A16 BASE environment variable, 5-9
VME_A24 BASE environment variable, 5-9
VME_A24 SIZE environment variable, 5-9
VME_A32_BASE environment variable, 5-8
VME_A32_SIZE environment variable, 5-8
VME_CONFIG environment variable, 5-9
VMEbus, 1-3

A16 address space, 5-9

A24 address space, 5-9

A32 address space, 5-8

address mapping, 3-15

addressing modes, 3-14

arbitration, 1-2

connectors, 1-3

connectors pin assignments, C-1

data transfers, 3-14

interface, 1-2

interrupts, 1-3

P2 options, 2-7

P2 signal connector, 2-10

protocols, 3-14

reset signal, 4-2

scatter-gather map, 3-15

transactions, 1-2
VMEbus Scatter-Gather RAM Test, 8-20
Voltage supply, 1-4

PMC I/O companion card, 3-9
VX_BOOTLINE environment variable, 5-9
VxWorks for Alpha, 1-3

boot file, 5-9

w

Watchdog reset signal, 2-7

Watchdog timeout LED, 2-3, 2-5

Watchdog timeout signal, 2-7

Watchdog timer, 1-2, 3-2, 3-11, 4-2
timeout LED, 2-5

Watchdog Timer lInterrupt Test, 8-19

Watchdog Timer Interrupt Test, 8-19

Watchdog Timer Test, 8-2

wdog_diag command, 8-2

wdog_diag command, 8-19

Wet bulb specification, 1-5

whilereserved word, 4-7

Wildcards, in environment variable names, 5-10

X

Xilinx interrupt controller, 3-9

Y

Y -cable connector, 2-8

Index—15

	title1 - DIGITAL Alpha VME 5/352 and
	title2 - 5/480 Single-Board Computers
	titleSub - User Manual
	copyrightDate1 - First Printing, October 1997
	prefaceTitle - Preface
	prefaceHead - Purpose of this Manual
	prefaceHead - Intended Audience
	prefaceHead - Structure of this Manual
	prefaceHead - Conventions
	headSub1 - Abbreviations
	headSub1 - Addresses
	headSub1 - Bit Notation
	headSub1 - Caution
	headSub1 - Data Field Size
	headSub1 - Data Units
	headSub1 - Keyboard Keys
	headSub1 - Examples
	headSub1 - Names and Symbols
	headSub1 - Note
	headSub1 - Numbering
	headSub1 - Ranges and Extents
	headSub1 - Register and Memory Figures
	headSub1 - Syntax
	headSub1 - UNPREDICTABLE and UNDEFINED

	prefaceHead - For More Information

	partNumber - Part I
	partTitle - Introduction

	chapterNumber - 1
	chapterTitle - Specifications and Requirements
	head1 - 1.1� Product Specifications
	tableNcaption - Table 1–1� Alpha VME5/352 and 5/480 SBC Specificat...

	head1 - 1.2� Physical Requirements
	head1 - 1.3� Power Requirements
	tableWcaption - Table 1–2� Input Power Requirements

	noteCaption - Warning
	noteEnd -
	head1 - 1.4� Environmental Specifications and Requirements...
	head2 - 1.4.1� Environmental Specifications
	tableNcaption - Table 1–3� Environmental Specifications

	noteCaption - Notes
	noteEnd -
	head2 - 1.4.2� Cooling Requirements
	figureNcaption - Figure 1–1� Required Air Flow Relative to Ambient ...

	noteCaption - Note
	noteEnd -
	head1 - 1.5� Regulatory Compliance

	noteCaption - Note
	noteEnd -

	chapterNumber - 2
	chapterTitle - Module Components
	head1 - 2.1� Module Component Overview
	figureNcaption - Figure 2–1� Alpha VME 5/352 and 5/480 Module Compo...
	listCallout1 - 1 PMC I/O companion card option
	listCalloutN - 2 I/O module
	listCalloutN - 3 CPU module
	listCalloutN - 4 Memory modules
	listCalloutN - 5 Secondary breakout module
	listCalloutN - 6 Primary breakout module

	noteCaption - Note
	noteEnd -
	head1 - 2.2� CPU Module
	figureNcaption - Figure 2–2� CPU Module Layout
	listCallout1 - 1 P1 VMEbus connector
	listCalloutN - 2 P2 VMEbus connector
	listCalloutN - 3 64-bit PCI connector (not used)
	listCalloutN - 4 J11 bus grant pass-through jumper
	listCalloutN - 5 Connectors for memory DIMMs 2 and 3
	listCalloutN - 6 Connectors for memory DIMMs 0 and 1
	listCalloutN - 7 Power and VME slave activity/watchdog timeout LE...
	listCalloutN - 8 Status display
	listCalloutN - 9 I/O module connector
	listCalloutN - 10 SROM

	head1 - 2.3� IO Module

	noteCaption - Note
	noteEnd -
	figureNcaption - Figure 2–3� I/O Module Layout
	listCallout1 - 1 P1 VMEbus connector
	listCalloutN - 2 Connector to CPU module (on the back of the I/O ...
	listCalloutN - 3 Debug jumper (for use with Serial ROM Mini-Conso...
	listCalloutN - 4 P2 VMEbus connector
	listCalloutN - 5 Configuration switchpack
	listCalloutN - 6 Caterpillar insulation strip
	listCalloutN - 7 PMC I/O companion card connector
	listCalloutN - 8 Nonvolatile RAM/time-of-year (TOY) clock
	listCalloutN - 9 Auxiliary serial port
	listCalloutN - 10 Console serial port
	listCalloutN - 11 Reset/Halt switch
	listCalloutN - 12 Twisted-pair Ethernet connector
	head1 - 2.4� CPU and I/O Assembly Controls and Indicators
	figureNcaption - Figure 2–4� Controls and Indicators
	tableNcaption - Table 2–1� Controls and Indicators

	head1 - 2.5� Memory Modules
	figureNcaption - Figure 2–5� Memory Module

	noteCaption - Note
	noteEnd -
	tableNcaption - Table 2–2� Valid DIMM Combinations (Continued)
	head1 - 2.6� Primary Breakout Module
	figureNcaption - Figure 2–6� Primary Breakout Module
	listCallout1 - 1 SCSI termination and watchdog reset signal jumpe...
	listCalloutN - 2 Connector for the secondary breakout module or a...
	listCalloutN - 3 SCSI cable connector

	noteCaption - Caution
	noteEnd -
	head1 - 2.7� Secondary Breakout Module
	figureNcaption - Figure 2–7� Secondary Breakout Module
	listCallout1 - 1 PS/2 keyboard and mouse connector
	listCalloutN - 2 PS/2 keyboard and mouse Y-cable (supplied in PMC...
	listCalloutN - 3 Keyboard and mouse jumper
	listCalloutN - 4 Parallel port

	noteCaption - Note
	noteEnd -
	head1 - 2.8� PMC I/O Companion Card
	figureNcaption - Figure 2–8� PMC I/O Companion Card Layout
	listCallout1 - 1 P1 VMEbus connector
	listCalloutN - 2 P2 VMEbus connector
	listCalloutN - 3 VMEbus P2 signal connector for PMC option 1
	listCalloutN - 4 I/O module connector (on the back of the PMC I/O...
	listCalloutN - 5 Power LED
	listCalloutN - 6 Keyboard connector
	listCalloutN - 7 Mouse connector
	listCalloutN - 8 Diskette drive connector
	listCalloutN - 9 Signaling level jumper (jumper MUST be set to 5....
	listCalloutN - 10 PMC option 2 connector
	listCalloutN - 11 PMC option 1 connector

	noteCaption - Note
	noteEnd -

	chapterNumber - 3
	chapterTitle - Functional Components
	head1 - 3.1� Functional Component Overview
	figureWcaption - Figure 3–1� Alpha VME 5/352 and 5/480 Functional C...

	head1 - 3.2� 21164 Alpha Microprocessor
	figureWcaption - Figure 3–2� 21164 Alpha Microprocessor Functional ...

	head1 - 3.3� 21172 Core Logic Chipset
	head2 - 3.3.1� Chipset Components
	head2 - 3.3.2� Chipset Features

	head1 - 3.4� Bcache Subsystem
	figureNcaption - Figure 3–3� Level 3 Bcache Array

	head1 - 3.5� Memory Subsystem
	head1 - 3.6� SROM
	head1 - 3.7� Clock Interface
	head1 - 3.8� PCI Interface
	head2 - 3.8.1� Ethernet Controller
	head2 - 3.8.2� SCSI Controller
	head2 - 3.8.3� PMC I/O Companion Card

	head1 - 3.9� Nbus Interface
	head2 - 3.9.1� Interrupt Controllers
	head2 - 3.9.2� Flash ROM
	head2 - 3.9.3� TOY Clock

	noteCaption - Note
	noteEnd -
	head2 - 3.9.4� Watchdog Timer
	head2 - 3.9.5� NVRAM
	head2 - 3.9.6� Interval Timer
	head3 - 3.9.6.1� Timers
	tableNcaption - Table 3–1� Timers

	head3 - 3.9.6.2� Timer Modes
	tableNcaption - Table 3–2� Timer Modes

	head2 - 3.9.7� Keyboard and Mouse Controller
	head2 - 3.9.8� Super I/O Chip
	head1 - 3.10� VME Interface
	figureNcaption - Figure 3–4� PCI-to-VME Interface Components
	head2 - 3.10.1� VIP Chip
	head2 - 3.10.2� VIC64 and CY7C964 Chips
	head2 - 3.10.3� Address Mapping and the Scatter-Gather Map...

	partNumber - Part II
	partTitle - The Console

	chapterNumber - 4
	chapterTitle - Console Basics
	head1 - 4.1� Setting Up the Console for Use
	head1 - 4.2� Console Features
	head1 - 4.3� Entering Console Mode
	noteCaption - Note
	noteEnd -
	head1 - 4.4� Exiting Console Mode
	head1 - 4.5� Online Help
	head2 - 4.5.1� Displaying Online Help
	head2 - 4.5.2� Displaying Online Help for Multiple Command...
	head2 - 4.5.3� Controlling the Display of Online Help

	head1 - 4.6� Console Command Overview
	tableNcaption - Table 4–1� Commonly Used Console Commands (Continu...

	head1 - 4.7� Special Keys
	tableNcaption - Table 4–2� Special Keys for Console Operation �

	head1 - 4.8� Command Line Characteristics
	head1 - 4.9� Console Command Operators
	tableNcaption - Table 4–3� Console Command Operators (Continued)

	head1 - 4.10� Controlling the Radix of Command Input
	head1 - 4.11� Using Flow Control
	head1 - 4.12� Filtering Output
	head1 - 4.13� Redirecting I/O
	head1 - 4.14� Running Commands in Background Mode
	head1 - 4.15� Creating Scripts
	head1 - 4.16� Copying Scripts Over the Network
	listNumber1 - 1. Create a file of console commands in the OpenVM...
	listNumberN - 2. Make the script file compatible with the MOP lo...

	noteCaption - Note
	noteEnd -
	listNumberN - 3. Place the output file in the MOP server's load ...

	chapterNumber - 5
	chapterTitle - Using the Console
	head1 - 5.1� Summary of Console Operations
	tableNcaption - Table 5–1� Summary of Console Operations (Continue...

	head1 - 5.2� Managing Environment Variables
	head2 - 5.2.1� Environment Variable Summary
	tableWcaption - Table 5–2� Environment Variables (Continued)

	head2 - 5.2.2� Setting Environment Variables

	noteCaption - Note
	noteEnd -
	head2 - 5.2.3� Displaying the Values of Environment Variab...
	head2 - 5.2.4� Removing Environment Variables from System ...

	noteCaption - Note
	noteEnd -
	head1 - 5.3� Booting the System
	head2 - 5.3.1� Specifying Boot Devices

	noteCaption - Note
	noteEnd -
	head2 - 5.3.2� Specifying a Boot Image
	head2 - 5.3.3� Passing Additional Boot Information to the ...
	head2 - 5.3.4� Booting Over the Network
	head3 - 5.3.4.1� Internet Protocols
	listNumber1 - 1. BOOTP broadcasts a boot request.
	listNumberN - 2. The SBC uses TFTP to acquire the boot image.

	head3 - 5.3.4.2� Defining Fields of the Internet Database

	noteCaption - Note
	noteEnd -
	head3 - 5.3.4.3� Internet Database Initialization
	headSub1 - TFTP Initialization
	headSub1 - BOOTP Initialization

	head3 - 5.3.4.4� Using Retransmission to Improve Robustnes...
	head3 - 5.3.4.5� Different Ways of Booting Over the Intern...
	listNumber1 - 1. Specify the file name of the image to be booted...
	listNumberN - 2. Assign the file name of the image to be booted ...
	listNumberN - 3. Assign the file name of the image to be booted ...
	listNumberN - 4. Assign the file name of the image to be booted ...
	listNumberN - 5. Do not define or specify an image to be booted....

	noteCaption - Note
	noteEnd -
	head2 - 5.3.5� Invoking the Console as Soon as the Boot Im...

	noteCaption - Note
	noteEnd -
	head1 - 5.4� Using TFTP to Read Files Across the Network
	head1 - 5.5� Managing the TOY Clock
	head2 - 5.5.1� Displaying the TOY Clock’s Time and Date
	head2 - 5.5.2� Setting the TOY Clock’s Time and Date
	head2 - 5.5.3� Disabling the TOY Clock’s Internal Oscillat...

	noteCaption - Note
	noteEnd -
	head1 - 5.6� Getting System Information
	head1 - 5.7� Updating Firmware
	listNumber1 - 1. Close DIP switch #2 on the I/O module to allow ...
	listNumberN - 2. Issue the boot command.
	listNumberN - 3. Issue the update command.
	listNumberN - 4. Respond to the confirmation prompt.

	noteCaption - Note
	noteEnd -
	listNumberN - 5. Reset or power the system off and on to run the...
	listNumberN - 6. Open DIP switch #2 on the I/O module to disable...
	head1 - 5.8� Examining and Depositing Data
	head2 - 5.8.1� The Default Device
	head2 - 5.8.2� Console Device Drivers
	head2 - 5.8.3� Device Byte Offsets
	tableNcaption - Table 5–3� Symbols Used by Examine and Deposit Com...

	head2 - 5.8.4� Specifying a Data Size
	head2 - 5.8.5� Depositing and Examining Data in Memory
	listNumber1 - 1. Find an unused block of memory.

	noteCaption - Note
	noteEnd -
	listNumberN - 2. Add a value to physical memory.
	listNumberN - 3. Check the contents of the address.

	noteCaption - Note
	noteEnd -
	head2 - 5.8.6� Depositing and Examining Data in Registers
	head1 - 5.9� Managing the Console, Devices, and CPU
	head2 - 5.9.1� Initializing SBC Components
	head2 - 5.9.2� Stopping and Starting the CPU or Devices
	head2 - 5.9.3� Exercising Devices
	head3 - 5.9.3.1� Exercise Buffers
	listNumber1 - 1. exer passes the postfix string to the eval comm...
	listNumberN - 2. eval evaluates the string and returns a value
	listNumberN - 3. exer writes the value to the buffer

	noteCaption - Note
	noteEnd -
	head3 - 5.9.3.2� Exercise Operations
	head3 - 5.9.3.3� Tailoring the Exercises
	head3 - 5.9.3.4� Seeking to Random Device Locations
	head3 - 5.9.3.5� Returning Error Codes On I/O Failures
	head1 - 5.10� Managing Memory
	head2 - 5.10.1� Displaying the State of Dynamic Memory
	head2 - 5.10.2� Displaying the System’s Virtual Memory Map...
	head2 - 5.10.3� Allocating and Freeing Blocks of Memory
	head2 - 5.10.4� Changing the Ownership of a Block of Memor...
	head2 - 5.10.5� Testing Memory

	noteCaption - Note
	noteEnd -
	head3 - 5.10.5.1� Specifying the Range of Addresses to be ...
	head2 - 5.10.6� Graycode Memory Test
	head3 - 5.10.6.1� March Memory Test
	head3 - 5.10.6.2� Random Memory Test
	listNumber1 - 1. Gets an address index into the random number ge...
	listNumberN - 2. Gets a data index based on a random data seed t...
	listNumberN - 3. Calls the random number generator with the acqu...
	listNumberN - 4. Calls the random number generator with the acqu...
	listNumberN - 5. Stores the random data at the random address.
	listNumberN - 6. Flushes the data out to the Bcache.
	listNumberN - 7. Reads the data back into memory.
	listNumberN - 8. Compares the data that was written and read. In...

	noteCaption - Note
	noteEnd -
	head3 - 5.10.6.3� Victim Eject Memory Test
	listNumber1 - 1. Writes the specified block of data to the speci...
	listNumberN - 2. Adds 4 MB to the starting address.
	listNumberN - 3. Writes arbitrary data to the new resulting addr...
	listNumberN - 4. Reads data starting at the original starting ad...
	listNumberN - 5. Verifies that the data is correct.
	listNumberN - 6. Increments the starting address by a block.
	listNumberN - 7. Repeats steps 1 through 6 for the remainder of ...

	head3 - 5.10.6.4� Specifying Other Test Options
	head3 - 5.10.6.5� Running Multiple Memory Tests
	head1 - 5.11� Performing Network Operations
	head1 - 5.12� Setting Reboot to the SROM Mini-Console

	noteCaption - Note
	noteEnd -
	head1 - 5.13� Controlling the LED
	head1 - 5.14� Running the Power-On Diagnostics Script
	head1 - 5.15� Managing the Console Error Log
	head2 - 5.15.1� Displaying the Contents of the Console Err...
	head2 - 5.15.2� Initializing the Console Error Log

	head1 - 5.16� Evaluating Expressions
	head1 - 5.17� Managing Console Processes
	head2 - 5.17.1� Creating and Exiting Console Processes
	head2 - 5.17.2� Monitoring Processes
	head2 - 5.17.3� Setting the Priority of Processes
	head2 - 5.17.4� Specifying the CPUs on Which a Process Can...
	head2 - 5.17.5� Suspending Processes
	head2 - 5.17.6� Stopping Processes
	head2 - 5.17.7� Breaking from Control Loops
	head2 - 5.17.8� Returning a Failure Status

	head1 - 5.18� Displaying Semaphores
	head1 - 5.19� Managing Files and File Content

	chapterNumber - 6
	chapterTitle - Console Command Reference
	rtnName - alloc – allocate a block of memory
	rtnName - boot – boot the system
	noteCaption - Note
	noteEnd -

	noteCaption - Note
	noteEnd -

	noteCaption - Note
	noteEnd -
	codeInList1 - 1. >>> boot
	codeInListN - 2. >>> boot ewa0
	codeInListN - 3. >>> boot -file avme.sys ewa0
	codeInListN - 4. >>> boot -fi //usr//local//bootfile//alphavme_v...
	codeInListN - 5. >>> boot -flags 0,1
	codeInListN - 6. >>> boot -halt dka0

	rtnName - break – break from a program loop
	rtnName - cat – copy files
	codeInList1 - 1. >>> echo > foo 'this is a test.' >>> cat foo th...
	codeInListN - 2. >>> cat -l 6 foo this i >>>

	rtnName - chmod – change file attributes
	codeInList1 - 1. >>> chmod +x script
	codeInListN - 2. >>> chmod =r errlog
	codeInListN - 3. >>> chmod -w dk*

	rtnName - chown – change ownership of memory block
	rtnName - clear – delete environment variable
	noteCaption - Note
	noteEnd -

	rtnName - clear_log – clear error log in NVRAM
	noteCaption - Notes
	noteEnd -

	rtnName - date – display or change the date and time
	noteCaption - Note
	noteEnd -

	rtnName - deposit – write data to memory
	codeInList1 - 1. >>> d -b -n 1FF pmem:0 0
	codeInListN - 2. >>> d -l -n 3 vmem:1234 5
	codeInListN - 3. >>> d -n 8 R0 FFFFFFFF
	codeInListN - 4. >>> d -l -n 10 -s 200 pmem:0 8

	rtnName - dynamic – show memory
	codeInList1 - 1. >>> dynamic
	codeInListN - 2. >>> dynamic -cv -z 97740
	codeInListN - 3. >>> dynamic -h

	rtnName - echo – display text output
	codeInList1 - 1. >>> echo this is a test.
	codeInListN - 2. >>> echo -n this is a test.
	codeInListN - 3. >>> echo 'this is a test' > foo
	codeInListN - 4. >>> echo > foo 'this is the simplest way

	rtnName - eval – evaluate expression
	codeInList1 - 1. >>> eval 5 10 +
	codeInListN - 2. >>> eval -ix -d 5 10 +

	rtnName - examine – display memory data
	codeInList1 - 1. >>> e r0
	codeInListN - 2. >>> e -g 0
	codeInListN - 3. >>> e gpr:0
	codeInListN - 4. >>> examine pc
	codeInListN - 5. >>> examine sp
	codeInListN - 6. >>> examine -n 5 R7
	codeInListN - 7. >>> examine ipr:11
	codeInListN - 8. >>> examine scbb
	codeInListN - 9. >>> examine pmem:0
	codeInListN - 10. >>> examine -d 40000
	codeInListN - 11. >>> examine

	rtnName - exer – exercise devices
	tableNcaption - Table 6–1� Action String Characters (Continued)
	noteCaption - Note
	noteEnd -
	codeInList1 - 1. >>> exer dk*.* -p 0 -secs 36000
	codeInListN - 2. >>> exer -l 2 dka0
	codeInListN - 3. >>> exer -sb 1 -eb 3 -bc 4 -a 'w' -d1 '0x5a' dk...
	codeInListN - 4. >>> ls -l du*.* dk*.*
	codeInListN - 5. >>> exer -eb 64 -bc 4 -a '?w-Rc' dka0
	listNumber_a - a. Set the current block address to a random block...
	listNumber_z - b. Write from buffer1, which contains the previous...
	listNumber_z - c. Set the current block address to what it was ju...
	listNumber_z - d. From the current block address, read a packet i...
	listNumber_z - e. Compare buffer1 with buffer2 and report any dis...
	listNumber_z - f. Repeat steps a through e until enough packets h...
	codeInListN - 6. >>> exer -a '?r-w-Rc' dka0

	listNumber_z - a. Set the current block address to a random block...
	listNumber_z - b. From the current block address on the disk, rea...
	listNumber_z - c. Set the current block address to the device add...
	listNumber_z - d. Write a packet of 0x5as from buffer1 to the cur...
	listNumber_z - e. Set the current block address to what it was ju...
	listNumber_z - f. From the current block address on the disk, rea...
	listNumber_z - g. Compare buffer1 with buffer2 and report any dis...
	listNumber_z - h. Repeat the preceding steps until each block on ...
	codeInListN - 7. >>> set myd 0
	codeInListN - 8. >>> set myd 0
	codeInListN - 9. >>> set myd 0
	codeInListN - 10. >>> echo '0123456789abcdefghijklmnopqrstAB' -n...

	rtnName - exit – exit current shell process
	codeInList1 - 1. >>> exit
	codeInListN - 2. >>> exit 0
	codeInListN - 3. >>> test || exit

	rtnName - false – return a failure status
	rtnName - free – deallocate memory
	rtnName - grep – search for regular expressions
	codeInList1 - 1. >>> ps | grep ewa0
	codeInListN - 2. >>> alloc 20

	rtnName - hd – dump file contents
	codeInList1 - 1. >>> echo -n 'the quick brown fox jumped over th...
	codeInListN - 2. >>> -byte foo
	codeInListN - 3. >>> -word foo
	codeInListN - 4. >>> -long foo
	codeInListN - 5. >>> -quad foo

	rtnName - help – display help on commands
	codeInList1 - 1. >>> help
	codeInListN - 2. >>> help *
	codeInListN - 3. >>> help ex
	codeInListN - 4. >>> help boot

	rtnName - init_ev – initialize environment variables
	rtnName - init – initialize a device or the processor and co...
	codeInList1 - 1. >>> init
	codeInListN - 2. >>> init -d ewa0

	rtnName - kill – delete process
	rtnName - line – read a line
	codeInList1 - 1. >>> line
	codeInListN - 2. >>> line >foo
	codeInListN - 3. >>> echo -n 'continue [Y, (N)]? '

	rtnName - ls – list files
	codeInList1 - 1. >>> ls examine
	codeInListN - 2. >>> ls d*

	rtnName - man – help on commands
	codeInList1 - 1. >>> man
	codeInListN - 2. >>> man *
	codeInListN - 3. >>> man ex
	codeInListN - 4. >>> man boot

	rtnName - memexer – memory exerciser
	rtnName - memtest – memory test
	noteCaption - Notes
	noteEnd -

	noteCaption - Caution
	noteEnd -
	codeInList1 - 1. >>> memtest -sa 200000 -l 1000
	codeInListN - 2. >>> memtest -sa 200000 -l 1000 -f
	codeInListN - 3. >>> memtest -sa 300000 -p 10
	codeInListN - 4. >>> memtest -f -mb
	codeInListN - 5. >>> memtest -sa 200000 -ea 400000 -rb

	noteCaption - Note
	noteEnd -
	codeInListN - 6. >>> memtest -h -rb -bs 100
	codeInListN - 7. >>> memtest -rb -p 0

	rtnName - net – perform MOP operations
	codeInList1 - 1. >>> net -sa
	codeInListN - 2. >>> net -s

	rtnName - ps – show process
	rtnName - pwrup – run power-on diagnostics
	rtnName - rm – remove file
	rtnName - sa – set process affinity
	rtnName - semaphore – show system semaphores
	rtnName - set – set environment variable
	codeInList1 - 1. >>> set MODE FASTBOOT
	codeInListN - 2. >>> set VME_A16_BASE 0
	codeInListN - 3. >>> set EWA0_PROTOCOLS BOOTP
	codeInListN - 4. >>> set BOOTDEF_DEV ewa0
	codeInListN - 5. >>> set AUTO_ACTION BOOT
	codeInListN - 6. >>> set BOOT_FILE avme.sys
	codeInListN - 7. >>> set BOOT_OSFLAGS 0,1
	codeInListN - 8. >>> set foo 5

	rtnName - set led – display char on LED
	rtnName - set reboot srom – set reboot mode to Serial ROM Mi...
	noteCaption - Note
	noteEnd -

	rtnName - set toy sleep – disable TOY clock's internal oscil...
	noteCaption - Note
	noteEnd -

	rtnName - sh – create new shell process
	rtnName - show – display system information
	codeInList1 - 1. >>> show version
	codeInListN - 2. >>> show auto_action
	codeInListN - 3. >>> show bootdef_dev
	codeInListN - 4. >>> show config
	codeInListN - 5. >>> show device
	codeInListN - 6. >>> show device e
	codeInListN - 7. >>> show device dk # Show SCSI disks.
	codeInListN - 8. >>> show device mk # Show SCSI tape drives.
	codeInListN - 9. >>> show hwrpb
	codeInListN - 10. >>> show led
	codeInListN - 11. >>> show led -hex
	codeInListN - 12. >>> boot -halt
	noteCaption - Note
	noteEnd -

	rtnName - show_log – display NVRAM error log information
	noteCaption - Note
	noteEnd -
	codeInList1 - 1. >>> show_log
	codeInListN - 2. >>> show_log -n 3

	rtnName - sleep – suspend execution
	codeInList1 - 1. >>> ((sleep 10; echo hi there)&)
	codeInListN - 2. >>> sleep -v 20

	rtnName - sort – sort a file
	rtnName - sp – set priority
	noteCaption - Note
	noteEnd -

	rtnName - start – start program
	codeInList1 - 1. >>> start -driver ewa 400
	codeInListN - 2. >>> start -drivers

	rtnName - stop – stop CPU or device
	rtnName - update – update flash ROMs
	noteCaption - Notes
	noteEnd -

	partNumber - Part III
	partTitle - Diagnostics

	chapterNumber - 7
	chapterTitle - Diagnostics and System Initialization
	head1 - 7.1� POST Diagnostics
	head1 - 7.2� System Initialization Sequence and Countdown
	tableNcaption - Table 7–1� SROM Initialization and Console Tests (...

	head1 - 7.3� POST NVRAM and Memory Diagnostics Description...
	rtnName - POST Nonvolatile RAM Diagnostic
	rtnName - POST Memory Diagnostic
	noteCaption - Note
	noteEnd -

	chapterNumber - 8
	chapterTitle - Console Mode Diagnostics
	head1 - 8.1� Console Mode Diagnostics Summary
	tableWcaption - Table 8–1� Console Mode Diagnostic Tests (Continue...

	rtnName - Heartbeat Timer Test
	rtnGenericHdr - Heartbeat Timer Test
	headSub1 - Miscellaneous Notes

	rtnName - Interval Timer Tests
	rtnGenericHdr - Timer 2 Terminal Count Test
	headSub1 - Miscellaneous Notes
	rtnGenericHdr - Timer 2 Square Wave Test
	rtnGenericHdr - 3 Timers Loopback Test

	noteCaption - Note
	noteEnd -
	rtnGenericHdr - Timer 0 Loopback Test

	noteCaption - Note
	noteEnd -
	rtnGenericHdr - Timer 2 Interrupt Test
	rtnGenericHdr - Timer 1 Interrupt Test
	figureNcaption - Figure 8–1� Loopback Descriptions for Interval Tim...

	rtnName - DECchip 21040 Ethernet Controller Tests
	rtnGenericHdr - Ethernet Internal Loopback Test
	noteCaption - Note
	noteEnd -
	rtnGenericHdr - DECchip 21040 PCI Configuration Register Dump
	rtnGenericHdr - DECchip 21040 Control/Status Register Dump
	rtnGenericHdr - DECchip 21040 Configuration Register Test

	rtnName - DALLAS DS1386 NVRAM Watchdog Timekeeper Tests
	rtnGenericHdr - NVRAM March I Test
	noteCaption - Note
	noteEnd -
	rtnGenericHdr - NVRAM Address-On-Address Test

	noteCaption - Note
	noteEnd -
	rtnGenericHdr - NVRAM March II Test

	noteCaption - Note
	noteEnd -
	rtnGenericHdr - TOY Clock Bitwalk Test

	noteCaption - Note
	noteEnd -
	rtnGenericHdr - TOY Clock Time Advancement Test

	rtnName - Local Area Network Address ROM Tests
	rtnGenericHdr - LAN Address ROM Dump Test
	rtnGenericHdr - LAN Address ROM Verification Test
	headSub1 - Miscellaneous Notes
	figureNcaption - Figure 8–2� LAN Address ROM Format

	rtnName - NCR 53C810 PCI-SCSI I/O Processor Tests
	noteCaption - Note
	noteEnd -
	rtnGenericHdr - NCR810 PCI Configuration Register Test
	rtnGenericHdr - NCR810 Command/Status Register Dump
	rtnGenericHdr - NCR810 Command/Status Register Test
	rtnGenericHdr - NCR810 Command/Status Register Reset Value Test
	rtnGenericHdr - NCR810 Internal Loopback Test
	rtnGenericHdr - NCR810 Internal Live Bus Loopback Test
	rtnGenericHdr - NCR810 Interrupt Test

	rtnName - Watchdog Timer Interrupt Test
	rtnGenericHdr - Watchdog Timer Interrupt Test

	rtnName - VME Interface Tests
	rtnGenericHdr - VIP PCI Configuration Register Test
	rtnGenericHdr - VIP Register Write/Read Test
	rtnGenericHdr - VIC Register Write/Read Test
	rtnGenericHdr - VME Scatter/Gather RAM Test

	partNumber - Part IV
	partTitle - Appendixes

	appendixNumber - A
	chapterTitle - Console Command Summary
	tableWcaption - Table A–1� Console Command Summary (Continued)

	appendixNumber - B
	chapterTitle - Troubleshooting
	head1 - B.1� SROM Diagnostics
	head1 - B.2� Flash ROM Diagnostics
	head1 - B.3� Troubleshooting Systems that Include a PMC I/...
	head1 - B.4� Operating System and Application Use of the D...
	head1 - B.5� Troubleshooting Your SBC
	tableNcaption - Table B–1� Troubleshooting Your SBC (Continued)

	appendixNumber - C
	chapterTitle - Module Connector Pin Assignments
	head1 - C.1� CPU Module Connector Pin Assignments
	head1 - C.2� I/O Module Connector Pin Assignments
	head2 - C.2.1� P1 VMEbus Connector Pin Assignments
	tableNcaption - Table C–1� P1 VMEbus Connector Pin Assignments (Co...

	head2 - C.2.2� P2 VMEbus Connector Pin Assignments
	tableNcaption - Table C–2� P2 VMEbus Connector Pin Assignments (Co...

	head2 - C.2.3� Console and Auxiliary Connector Pin Assignm...
	tableNcaption - Table C–3� Console and Auxiliary Connector Pin Ass...
	figureNcaption - Figure C–1� Console and Auxiliary Connector Pin As...

	head2 - C.2.4� Ethernet Connector Pin Assignments
	tableNcaption - Table C–4� Ethernet Connector Pin Assignments
	figureNcaption - Figure C–2� Ethernet Connector Pin Assignments

	head1 - C.3� Primary Breakout Module Connector Pin Assignm...
	tableNcaption - Table C–5� Primary Breakout Module Connector Pin A...
	figureNcaption - Figure C–3� Primary Breakout Module Connector Pin ...

	head1 - C.4� Secondary Breakout Module Connector Pin Assig...
	figureNcaption - Figure C–4� Secondary Breakout Module Connector Pi...
	head2 - C.4.1� Keyboard and Mouse Connector Pin Assignment...
	tableNcaption - Table C–6� Keyboard and Mouse Connector Pin Assign...
	figureNcaption - Figure C–5� Keyboard and Mouse Pin Assignments

	head2 - C.4.2� Parallel Port Connector Pin Assignments
	tableNcaption - Table C–7� Parallel Port Connector Pin Assignments...
	figureNcaption - Figure C–6� Parallel Port Connector Pin Assignment...

	head1 - C.5� PMC I/O Companion Card Connector Pin Assignme...
	head2 - C.5.1� PMC Option 1 Connector Pin Assignments
	figureNcaption - Figure C–7� PMC Option 1 Connectors
	tableNcaption - Table C–8� PMC Option 1 J11 Pin Assignments �
	tableNcaption - Table C–9� PMC Option 1 J12 Pin Assignments �
	tableNcaption - Table C–10� PMC Option 1 VMEbus P2 Signal Connecto...

	head2 - C.5.2� PMC Option 2 Connector Pin Assignments
	figureNcaption - Figure C–8� PMC Option 2 Connectors
	tableNcaption - Table C–11� PMC Option 2 J21 Pin Assignments (Cont...
	tableNcaption - Table C–12� PMC Option 2 J22 Pin Assignments (Cont...

	head2 - C.5.3� PMC I/O Companion Card Diskette Drive Conne...
	tableNcaption - Table C–13� PMC I/O Companion Card Diskette Drive ...
	figureNcaption - Figure C–9� PMC I/O Companion Card Diskette Connec...

	head2 - C.5.4� PMC I/O Companion Card Keyboard and Mouse C...
	tableNcaption - Table C–14� PMC I/O Companion Card Mouse Connector...
	tableNcaption - Table C–15� PMC I/O Companion Card Keyboard Connec...
	figureNcaption - Figure C–10� PMC I/O Companion Card Mouse and Keyb...

	GroupTitlesIX - Symbols
	GroupTitlesIX - Numerics
	GroupTitlesIX - A
	GroupTitlesIX - B
	GroupTitlesIX - C
	GroupTitlesIX - D
	GroupTitlesIX - E
	GroupTitlesIX - F
	GroupTitlesIX - G
	GroupTitlesIX - H
	GroupTitlesIX - I
	GroupTitlesIX - J
	GroupTitlesIX - K
	GroupTitlesIX - L
	GroupTitlesIX - M
	GroupTitlesIX - N
	GroupTitlesIX - O
	GroupTitlesIX - P
	GroupTitlesIX - R
	GroupTitlesIX - S
	GroupTitlesIX - T
	GroupTitlesIX - U
	GroupTitlesIX - V
	GroupTitlesIX - W
	GroupTitlesIX - X
	GroupTitlesIX - Y

