HP 3000 Computer System

~Computer
Museum

BASIC Interpreter

Reference Manual

hp: PACKARD

HEWLETT

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95050

Printed in U.S.A. 6/76

Update #2 Incorporated 11/78

" Part No. 30000-90026
Product No. 321018¢ =

«

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors

contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

ii e LAY

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made on the
bottom of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is
reprinted, these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears

as a prior update,

First Edition
Changed Pages Effective Date
Titleo o i e Apr 1978
N Apr 1978
fitoiv. Aug 1978
Vill L L e Aug 1978
S Aug 1978
17 e Aug 1978
222 e e Apr 1978
231t02-32. Aug 1978
2:37t02-38. e Aug 1978
2-38a ... e e Apr 1978
243to243a e Aug 1978
251 L Apr 1978
250 .. e e Aug 1978
25T e e Apr 1978
259t0260........... Apr 1978
3 e e e Apr 1978
8 Aug 1978
e O Apr 1978
513 . e Apr 1978
519t05-20., Aug 1978
2 Apr 1978
81to8-2 e Aug 1978
810to811........... Aug 1978
813t 814. Aug 1978

AN

. AUG1978

- g‘ .
Bl

iil

........................... dJune 1976

Changed Pages Effective Date
816 e e Apr 1978
818 . . e Aug 1978
820 . .. e e Apr 1978
8-22 . e Aug 1978
823ato823b, Aug 1978
824 . e Apr 1978
826 e Apr 1978
831to831la.............. Apr 1978
832t08-35. Aug 1978
8-3T . e e e Aug 1978
9-1t09-3b. e Aug 1978
95t096. e Aug 1978
1110 o e Apr 1978
B Apr 1978
O Apr 1978
C 8. e e Aug 1978
D3toD4......... Aug 1978
DT e Apr 1978
e Aug 1978
e Apr 1978
5 Aug 1978
Index-1tolIndex4..................... Aug 1978
Index-5....... ... i, Apr 1978

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition are
incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does not
change.

The software product part number printed alongside the date indicates the version and update level of the software
product at the time the manual edition or update was issued. Many product updates and fixes do not require manual
changes, and conversely, manual corrections may be done without accompanying product changes. Therefore, do not
expect a one to one correspondence between product updates and manual updates.

First Edition................ Junl976, 32101B.00
Update Package No.1 Apr1978 32101B.00
Update Package No. 2 Augl978............... 32101B.00
Update No. 2 Incorporated Novl1978................ 32101B.00

o

i

Contents

SECTION 1 Introduction to BASIC 1-1
SPECIAL KEYS 1-2
PROMPT CHARACTERS 1-3
LOGGING ON AND OFF 14

Logging On 1-4
Entering BASIC 1-4
Leaving BASIC ‘ 1-5
Logging Off 1-5
Suspending BASIC 1-5
CORRECTING ERRORS 1-6
BASIC COMMANDS AND STATEMENTS 1-7
BASIC PROGRAMS 1-10
USER’S WORK AREA 1-11
LISTING A PROGRAM 1-12
RUNNING A PROGRAM _ 1-13
DELETING A PROGRAM T 114
DOCUMENTING A PROGRAM 1-15

SECTION II Essentials of BASIC 2-1

EXPRESSIONS 2-2
Constants 2-2
Variables 2-4
Functions 2-5
Operators 2-6
Evaluating Expressions 2-8

STATEMENTS 2-10

ASSIGNMENT STATEMENT 2-11

SECTIONII (Continued)

REM STATEMENT
GOTO STATEMENT
GOSUB/RETURN STATEMENTS
END/STOP STATEMENTS
LOOPING STATEMENTS
CONDITIONAL STATEMENTS
PRINT STATEMENT

Print Functions
READ/DATA/RESTORE STATEMENTS
INPUT STATEMENT
ENTER STATEMENT

>BASIC
COMMANDS

RUN
EDITING COMMANDS

LIST

SCRATCH

DELETE

RENUMBER

LENGTH
LIBRARY COMMANDS

NAME

SAVE

GET

PURGE

APPEND

CATALOG

SECTION III Arrays

DIM STATEMENT

REDIM STATEMENT

STORING DATA IN ARRAYS
MAT READ/INPUT Statements

PRINTING DATA FROM ARRAYS
MAT PRINT Statement

INITIALIZING ARRAYS

2-13
2-14
2-16
2-19
2-22
2-25
2-31
2-36
2-39
2-42
2-47
2-49
2-50
2-51
2-54
2-54
2-55
2-55
2-56
2-56
2-59
2-59
2-59
2-61
2-61
2-62
2-62

3-1

3-4
3-6
3-6
3-8
3-8
3-10

SECTION III (Continued)
ARRAY OPERATIONS
Array Copying
Array Addition/Subtraction
Array Multiplication
Array Inversion
Array Transposition
Array Scalar Multiplication
ARRAY FUNCTIONS

SECTION IV Variable Types
TYPE STATEMENTS

Numeric Constant Forms
Printing Long and Complex Data
Numeric Expressions
Conditional Statement
Numeric Assignment
Entering Numeric Data
Other Uses of Data Types
Numeric Arrays

Function Class

SECTION V Strings
LITERAL STRINGS
DIM STATEMENT WITH STRINGS
REDIM STATEMENT WITH STRINGS
STRING VARIABLE
STRING EXPRESSIONS
STRING ASSIGNMENT
STRING-RELATED FUNCTIONS
COMPARING STRINGS
STRING INPUT AND OUTPUT
Reading Strings
Inputting Strings
Entering Strings
Printing Strings
LINPUT STATEMENT

3-12
3-12
3-13
3-14
3-16
3-18
3-19
3-20

4-1
4-2
4-2
4-6
4-7
4-8
4-8
4-9
4-9
4-10
4-11

5-1
5-1
5-3

5-6

5-9
5-10
5-12
5-16
5-17
5-17
5-18
5-18
5-20
5-21

SECTION XII (Continued)

Reading Paper Tape 12-7
COMMAND INPUT FROM FILES 12-9
APPENDIX SECTION
APPENDIX A ASCII Character Set Al
APPENDIX B Error Messages B-1
APPENDIX C BNF Syntax for BASIC/3000 Cc-1
APPENDIX D Summary of BASIC/3000 Statements & Commands D-1
STATEMENT SUMMARY D-1
COMMAND SUMMARY D-6
APPENDIX E Built-in Functions E-1
APPENDIX F Parameter Format F-1
APPENDIX G = Compatibility Between BASIC/2000 & BASIC/3000 G-1

APPENDIX H File Structure H-1

SECTION |
Introduction to BASIC

HP BASIC/3000 is a programming language designed for use at a keyboard terminal. It may also be
used for batch jobs on paper tape and cards. To use BASIC at a terminal, the terminal must gain
access to the BASIC/3000 Interpreter through the HP Multiprogramming Executive Operating
System (MPE/3000). The BASIC/3000 Interpreter is the control program for BASIC/3000.

BASIC/3000 consists of statements for writing programs and commands for controlling program
operation. This section describes how to log on and log off, how to enter commands and statements
and make corrections. A few simple programs are used for illustration, but the actual programming
language is not described until Section II.

This manual assumes that the user knows how to connect his terminal, and is familiar with his
terminal keyboard. Special keys with particular functions in BASIC/3000 are described in this

section.

In this section only, characters typed by the computer are underlined to distinguish them from user
input. Subsequent sections assume that this distinction is clear to the user.

1-1

return

linefeed
CTRL

CTRL H (H°)

CTRL X (X°)

CTRLY (Y°)

BREAK

Special Keys

Must be pressed after every command and statement. It terminates the
line and causes the teleprinter to return to the first print position. BASIC
returns a linefeed.

Advances the teleprinter one line.

When pressed simultaneously with another key, converts the key to a
control character that is usually non-printing.

Deletes the previous character in a line. It prints the character \ for each
character deleted.

Cancels the line currently being typed. It types three exclamation points
on the line and then gives a return and linefeed to the beginning of the

next line.

Suspends a particular BASIC/3000 program or command and returns to the
BASIC/3000 Interpreter. To return control to a program, type GO.

Stops all BASIC/3000 activity and returns the user to the operating system
(MPE/3000). BASIC/3000 can be re-entered by typing RESUME.

1-2

Prompt Characters

BASIC/3000 uses a set of prompting characters to signal to the user that certain input is expected
or that certain actions are completed.

>

??

>>

77?

The prompt character for the BASIC/3000 Interpreter; a BASIC command or statement
is expected.

The prompt character for the MPE Operating System; MPE commands such as HELLO or
BASIC are expected.

User input is expected during execution of an INPUT statement.

Further input is expected during execution of an INPUT statement.

BASIC expects a continuation line when the previous line was terminated by a &.
A full line has been deleted with CTRL X.

A single character was deleted with CTRL H.

A BASIC command was mistyped; re-enter it correctly.

1-3

Logging On and Off

LOGGING ON

Once the terminal is connected and ready, the user presses the carriage return. MPE responds with
a colon (:) at the beginning of the line. The user may now log on. He should know his user and
account identification codes, and also the user and account passwords.

To log on, type: SHELLO JOANG.STUDENT

JOANG and STUDENT are sample USER PASSWORD?

u‘ser and account ‘identiﬁca- XXXXXXXXX

tion codes. A period must E—

be typed between them, ACCOUNT PASSWORD?

The computer types a mask

over which the passwords XXXXXXXXX

are typed. This preserves SESSION NUMBER = #S5

password privacy. WED, MAY 16, 1973, 2:26 PM

HP32000B .Q1 .25

The last line identifies the Multi-programming Executive Operating System (MPE/3000).

ENTERING BASIC

Following log on, the MPE/3000 Operating System signals it is ready for the next command by
printing a colon. The user may now request the BASIC/3000 Interpreter by typing BASIC,

To enter BASIC, type: _g_BA SicC
BASIC signals that it has control with a

greater-than sign at the start of the EAS IC 01.0
line, -

BASIC commands and statements can now be entered. Each command or statement is prompted
by the greater-than sign at the start of a new line,

14

g et

ra

LEAVING BASIC

When the user is through, he returns control to MPE/3000 with the EXIT command.

To leave BASIC, type: >EXIT

The computer prints: END OF PROGRAM
and MPE/3000 signals that it has resumed

control with a colon. kA

LOGGING OFF

When a session at the terminal is finished, the user logs off with the MPE/3000 command BYE,
He must have already exited from the BASIC Interpreter by typing EXIT. When MPE /3000 prints
a colon, the user can type BYE,

To log off, type: $BYE
MPE/3000 records the date and the time. CPU (SEC) = 3
It also records the number of minutes CONNECT (MIN) = 2

WED, MAY 16, 1573, 2:28 PN
END_OF SESSION

the terminal was connected and the
seconds of central processor time used,

SUSPENDING BASIC

The user may want to return to the MPE/3000 Operating System temporarily. He can leave BASIC,
return to MPE/3000 control, enter MPE/3000 commands and then return to the same point in his
BASIC program. To do this, he uses the SYSTEM command or the BREAK key. For operation of
the BREAK key, see Special Keys, this section,

To suspend BASIC operation: >SYSTEM

The computer types a colon: H

The user may then enter MPE/3000 commands. When he wishes to return to BASIC, he types the
MPE/3000 command RESUME. The system responds with a > .

1-5

Correcting Errors

Several types of errors may be made while logging on. We will consider spelling mistakes, format
errors and incorrect passwords or codes. The methods for correcting these errors are general and can
be used in BASIC as well as under control of MPE/3000.

Corrections can be made while the line is being entered if the error is noticed before return is
pressed. The control character CTRL H (H®) can be used to correct a few characters just typed,
or the control character CTRL X (X€) can be used to cancel the line and start fresh.

Suppose the user misspells the command

HELLO. HC will delete the last character ¢sHELO\LO JOANG.STUDENT
and print a back slash. The user retypes USER —PASSUORD ?

the character correctly and finishes the
line. When he presses return, the line is
entered correctly.

If several characters have been typed after the error, H must be typed for each character to be
deleted.

In this case, four characters including 3HELO JOMNML 0 JOANG .STUDENT
the blank are deleted. USER PASSWORD?

Another method is to use X¢ to cancel the line. X¢ must be typed before return is pressed.

To cancel the line, type X¢ sHELO!!!

Three exclamation points are typed HELLO JOANG.STUDENT
and the computer responds with a

carriage return and linefeed. The
user retypes the line:

. (}.\:

BASIC Commands and Statements

Commands

BASIC/3000 commands instruct the BASIC/3000 Interpreter to perform certain control functions.
Commands differ from the statements used to write a program in the BASIC/3000 language. A
command instructs the interpreter to perform some action immediately, while a statement is an
instruction to perform an action only when the program is run. A statement is always preceded by
a statement number; a command never is.

Any BASIC/3000 command can be entered following the BASIC prompt character > . Each
command is a single word that must be typed in its entirety with no embedded blanks. If mis-
spelled, the computer will return an error message. Some commands have parameters to further
define command operation.

For instance, EXIT is a command that signals completion of a BASIC program and return to the
operating system. It has no parameters. Another command, LIST, prints the program currently
being entered. It may have parameters to specify that only part of the program is to be listed, or to
indicate a particular list destination.

Statements

Statements are used to write a BASIC/ 3000 program that will subsequently be executed. Each
statement performs a particular function. Every statement entered becomes part of the current
program and is kept until explicitly deleted or the user exits from BASIC with EXIT.

A statement is always preceded by a statement number. This number is an integer between 1 and
15999. The statement number indicates the order in which the statements will be executed. State-
ments are ordered by BASIC from the lowest to the highest statement number. Since this order

is maintained by the interpreter, it is not necessary for the user to enter statements in execution
order so long as the numbers are in that order.

Following each statement, return must be pressed to inform the interpreter that the statement is
complete, The interpreter generates a linefeed and prints the prompt character > on the next line
to signal that the statement is accepted. If an error is made entering the statement, the computer
prints an error message.

BASIC/3000 statements have a free format. This means that blanks are ignored.

>38 PRINT S
For instance, all these statements >30 PRINT S
are equivalent. >3@PRINTS

> 3 8PRINTS

- AUG 1978 1-7

Any statement except REM (to introduce remarks) can continue on more than one line. Each line
to be continued must end with the character &; only the first line has a statement number. When
the computer expects a continuation line, it prompts with two greater-than characters.

The statement 100 PRINT 35+5 >100 PRINT&
is entered on two lines: >>35+5

Error Messages

If an error is made in a line and the line is entered with return, the interpreter types a message. The
message consists of the word ERROR followed by @ and a number indicating about how many
non-blank characters were read before an error was detected.

If this line is entered; >3@ PRING S
the computer prints a ‘ERROR@2
message.

The user then presses return and enters the correct line after the BASIC prompt character > .

If the mistake is not obvious, type any character after the message instead of pressing return. The
computer will print a diagnostic message.

>38 PRING S
For instance: ERROR@Z2
UNRECOGNIZABLE STATEMENT TYPE

Typing a semi-colon causes the diagnostic message to be printed. Any other character, except a
colon, could have been typed with the same result. A colon will cause an abort.

Changing or Deleting a Statement
If an error is made before return is pressed, the error can be corrected with CTRL H (HC) or the line
may be cancelled with CTRL X (X€). (See Correcting Errors, above). After return is pressed, the

error can be corrected by deleting or changing the statement.

To change a statement, simply type the statement number followed by the correct statement.

To change this statement: >38 PRINT X
retype it as: >3@ PRINT S

A change such as this can be made any time before the program is run.

To delete a statement, type the statement number followed by return.

Statement 30 is deleted: >30

The DELETE command, described in section II, is useful to delete a group of statements.

1-9

BASIC Programs

Any statement or group of statements that can be executed constitutes a program.

A program can have as few as one statement.

This is an example of a
program with only one 2183 PRINT 35+5
statement.

100 is the statement number. PRINT is the key word or instruction that tells the interpreter the
kind of action to perform. In this case, it prints the result of the expression that follows. 35+5 is
an arithmetic expression. It is evaluated by the interpreter, and when the program is run, the result
is printed.

The statement 100 PRINT 35+5 is a complete program since it can run with no other statements
and produce a result, Usually a program contains more than one statement.

218 INPUT A,B,C,D,E
These three statements are a program: 228 LET S = (A+B+C+D+E) /5
>38 PRINT S

This program, which calculates the average of five numbers, is shown in the order of its execution.
It could be entered in any order if the statement numbers assigned to each statement were not
changed.

, , 220 LET S=(A+B+C+D+E)/5
This program runs exactly like the >12 INPUT A,B,C,D,E

program above. 238 PRINT S

It is generally a good idea to number statements in increments of 10. This allows room to inter-
sperse additional statements as needed.

1-10

CR i Y

User’'s Work Area

When statements are typed at the terminal, these statements become part of the user’s work area.
All statements in the user’s work area constitute the current program,

Any statement in the user’s work area can be edited or corrected; the resulting statement will then
replace the previous version in the user’s work area,

When the user exits from BASIC with the EXIT command, the work area is cleared. If, however,

he only suspends BASIC operation with the SYSTEM command, the BREAK key, or the CTRL Y
keys, the user’s work area is not changed.

1-11

Listing a Program

At any time while a program is being entered, the LIST command can be used to produce a listing
of the statements that have been accepted by the computer. LIST causes the computer to print a
listing of the current program at the terminal.

After deleting or changing a line, LIST can be used to check that the deletion or correction has
been made.

. . 218 UNINPUT A,B,C,D,E

A correction is made while >2@ PRA\LET S = (A+B+C+D+E)/5
entering a program: >33 PRINT S

2LIST

18 INPUT A,B,C,D,E

To check the correction, 28 LET Sz (A+B+C+D+E) /5
list the program: 38 PRINI S

>

Note that the greater-than prompt character is not printed in the listing, but is printed when the
list is complete to signal that BASIC is ready for the next command or statement.

Should the statements have been entered out of order, the LIST command will cause them to be
printed in ascending order by statement number.

220 LET S = (A+B+C+D+E) /5

For instance, the program >38 PRINT S
is entered in this order: >18 INPUT A +B4C,D,E
>LIST

~ 18 INPUT A,B,C,D,E
; o 2@ LET S=(A+B+C+D+E) /5
or execution: I@ PRINT S

The list is in correct order

1-12

Running a Program

After the program is entered and, if desired, checked with LIST, it can be executed with the RUN
command. RUN will be illustrated with two sample programs.

The first program has one line: >1088 PRINT 35+5
When run, the result of the expression _:R UN
35+5 is printed: A2

Because the program contains a PRINT statement, the result is printed when the program is run.

The second sample program averages a >18 INPUT A,B,C,D,E
group of five numbers. The numbers >28 LET S=(A+B+C+D+E) /5
must be input by the user: >30 PRINT S

Each of the letters following the word INPUT and separated by commas names a variable that will
contain a value input by the user from the terminal. When the program is run, the interpreter
signals that input is expected by printing a question mark. The user enters the values following
the question mark. They are entered with a comma between each successive value,

The statement LET S = (A+B+C+D+E)/5 assigns the value of the expression to the right of the
equal sign to the variable S on the left of the equal sign. The expression first adds the variable
values within parentheses and then divides them by 5. The result is the value of S.

When the program is run, the user 2>RUN
enters input values and the com- _27 9296,8,9
puter prints the result: 1

1-13

Deleting a Program

If a program that has been entered and run is no longer needed, it can be deleted with the SCRATCH
command. Typing SCR or SCRATCH deletes whatever program has been entered by the user during
the current session.

The first program entered was 100 PRINT 35+5. After it has run, it should be scratched before
entering the next program. Otherwise both programs will run when RUN is typed. They will run in
the order of their statement numbers. For instance, if both programs are currently in the user’s
work area, the program with numbers 10 through 30 executes before line 100.

>188 PRINT 35+5
>1® INPUT A,B,C,D,E
>28 LET S=(A+B+C+D+E) /5

Both programs will run >30 PRINT S
when RUN is typed: >RUN
l7 ’ 5 1] 6 1] 8 ’ 9
iy
A2

To avoid confusing results, a program that has been entered and run can be deleted with SCRATCH:

>128 PRINT 35+5

After entering and running: SRUN
ﬂ
the program is scratched: >SCRATCH

The users work area is now cleared and another program can be entered.

>18 INPUT A,B,C,D,E
528 LET S=(A+B+C+D+E) /5

The second program is >38 PRINT S
entered: >RUN
215,25,32,11,29
22,4

Unless this program is to be run again, it can now be scratched and a third program entered.

1-14

Documenting a Program

Remarks that explain or comment can be inserted in a program with the REM statement. Any
remarks typed after REM will be printed in the program listing but will not affect program
execution. The remarks cannot be continued on the next line, but as many REM statements
can be entered as are needed.

»5 REM THIS PROGRAM AVERAGES
The sample program to average 5 numbers ___>:7 REM S5 NUMBERS
can be documented with several remarks: =15 REM 5 VALUES MUST BE INPUT
>25 REM S CONTAINS THE AVERAGE

The statement numbers determine the position of the remarks within the existing program. A list
will show them in order:

2LIST
> REM THIS PROGRAM AVERAGES
7 REM 5 NUMBERS
18 INPUT A,B,C,D,E

s o samp ¢ Program 15 REM 5 VALUES MUST BE INPUT
ncluding remarxs: 20 LET S=(A+B+C+D+E) /5
25 REM S CONTAINS THE AVERAGE
30 PRINT S

When run, the program will execute exactly as it did before the remarks were entered.

1-15

SECTION 1]
Essentials of BASIC

The first section introduced the user to BASIC programming. This section describes the statements
needed to write a simple BASIC program, It also describes the commands used to run a program, to
edit a program, and to save and manipulate library programs.

The section begins with a description of expressions used in BASIC, and the constants, variables,
functions and operators used in the formation of expressions.

Subsequent sections discuss particular features of more advanced BASIC.

The simple PRINT statement and RUN command used in Section I are used again in this section
prior to the explanation of the full capabilities of PRINT and RUN.

2-1

Expressions

An expression combines constants, variables, or functions with operators in an ordered sequence,
When evaluated, an expression must result in a value. An expression that, when evaluated, is con-
verted to an integer, is called an integer expression. Constants, variables, and functions represent
values; operators tell the computer the type of operation to perform on these values,

Some examples of expressions are:

(P +5)/27 P is a variable that must have been previously
assigned a value. 5 and 27 are constants. The
slash is the divide operator, Parentheses group
those portions of the expression evaluated first.

If P = 49, it is an integer expression with the
value 2.

(N-(R+5))-T N, R, and T must all have been assigned
values. + and - are the add and subtract

operators. The innermost parentheses
enclose the part evaluated first.

If N=20, R=10, and T=5, the value of the
integer expression is zero.

CONSTANTS

A constant is either numeric or it is a literal string.

Numeric Constants. A numeric constant is a positive or negative decimal number including zero.
It may be written in any of the following three forms:

® As an integer — a series of digits with no decimal point.

® Asafixed point number — a series of digits with one decimal point preceding, following, or
embedded within the series.

® As a floating point number — an integer or fixed point number followed by the letter E and
an optionally signed integer.

Examples of Integers:

1234
=70
0

Examples of Fixed Point Numbers:

1234,
1234.56
-.0123

Floating Point Numbers. In the floating point notation, the number preceding E is a magnitude that
is multiplied by some power of 10. The integer after E is the exponent, that is, it is the power of 10
by which the magnitude is multiplied.

The exponent of a floating point number is used to position the decimal point, Without this
notation, describing a very large or very small number would be cumbersome:

1E+35
1E-35

100000000000000000000000000000000000
.00000000000000000000000000000000001

Examples of Floating-Point Numbers:

1E+23 =1x 1023 = 100000000000000000000000
1.0E23 (same as above)
.001E26 (same as above)

1.02E+4 =1.02x 10* = 10200.

1.02E-4 =.,000102

Within the computer, all these constants are represented as floating-point real numbers whose
precision is 6 or 7 digits and whose size is between 10~77 and 1077,

2-3

Literal Strings. A literal string consists of a sequence of characters in the ASCII character set
enclosed within quotes. The quote itself is the only character excluded from the character string.
By using an integer equivalent of the graphic character, even the quote may be included in a
character string (see Strings, Section V).

Examples of Literal Strings:

“ABC"” il (a null, empty, or zero length string)
"1 IWHAT A DAY!I” * * (astring with two blanks)
"Xy z "

Blank spaces are significant within a string.

VARIABLES

A variable is a name to which a value is assigned. This value may be changed during program
execution, A reference to the variable acts as a reference to its current value. Variables are either
numeric or string.

Numeric variables are a single letter (from A to Z) or a letter immediately followed by a digit
(from O to 9):

A A0
P P5
X X9

A variable of this type always contains a numeric value that is represented in the computer by a
real floating-point number, Other numeric representations can be specifically requested with the
type statement (see Variable Types, Section IV). These types are integer, long floating-point,
and complex.

A variable may also contain a string of characters, This type of variable is identified by a variable
name consisting of a letter and $, or a letter, digit, and $:

A% A0$

P$ P5$
The value of a string variable is always a string of characters, possibly null or zero length. String

variables can be used without being declared with a DIM statement (see section V) only if the
variable contains a single character,

If a variable names an array (see Arrays, Section III), it may be subscripted. When a variable is sub-
scripted, the variable name is followed by one or two subscript values enclosed in parentheses. If
there are two subscripts, they are separated by a comma. A subscript may be an integer constant
or variable, or any expression that is evaluated to an integer value:

AQ1) AO(N M)
P(1,1) P5(Q5,N/2)
X(N+1) X9(10,10)

A simple numeric variable and a subscripted numeric variable may have the same name with no
implied relation between the two. The variable A is totally distinct from variable A(1,1).

Simple numeric variables can be used without being declared. Subscripted variables must be
declared with a DIM statement (see Section III) if the array dimensions are greater than 10 rows,
or 10 rows and 10 columns. The first subscript is always the row number, the second the column
number. The subscript expressions must result in a value between 1 and the maximum number of
rows and columns,

String arrays differ from numeric arrays in that they have only one dimension, and hence only one
subscript. Also, the name of a string array and a simple string variable may not be the same (see
String Arrays in Section V). Examples of subscripted string array names are:

A$(1) AOS$(N)

FUNCTIONS

A function names an operation that is performed using one or more parameter values to produce a
single value result. A numeric function is identified by a three-letter name followed by one or more
formal parameters enclosed in parentheses. If there is more than one, the parameters are separated
by commas. The number and type of the parameters depends on the particular function. The
formal parameters in the function definition are replaced by actual parameters when the function
is used.

Since a function results in a single value, it can be used anywhere in an expression where a constant
or variable can be used. To use a function, the function name followed by actual parameters in
parentheses (known as a function call) is placed in an expression. The resulting value is used in the
evaluation of the expression.

Examples of common functions:

SQR(x) where x is a numeric expression that results in a value 2> 0. When called, it
returns the square root of x. For instance, if N = 2, SQR(N+2) = 2,

ABS(x) where x is any numeric expression. When called, it returns the absolute
value of x. For instance, ABS(-33) = 33.

BASIC/3000 provides many built-in functions that perform common operations such as finding the
sine, taking the square root, or finding the absolute value of a number. The available functions are
listed in Appendix E. In addition, the user may define and name his own functions should he need
to repeat a particular operation. How to write functions is described in Section VI, User-Defined
Functions.

The functions described so far are numeric functions that result in a numeric value. Functions
resulting in string values are also available. These are identified by a three-letter name followed by
a §. String functions are described with user-defined functions in Section VI; available built-in
string functions are listed in Appendix E.

OPERATORS

An operator performs a mathematical or logical operation on one or two values resulting in a
single value. Generally, an operator is between two values, but there are unary operators that pre-
cede a single value. For instance, the minus sign in A - B is a binary operator that results in sub-
traction of the values; the minus sign in - A is a unary operator indicating that A is to be negated.

The combination of one or two operands with an operator forms an expression. The operands that
appear in an expression can be constants, variables, functions, or other expressions.

Operators may be divided into types depending on the kind of operation performed. The main
types are arithmetic, relational, and logical (or Boolean) operators.

The arithmetic operators are:

+ Add (or if unary, no operation) A+B or+A

- Subtract (or if unary, negative) A-B or-A

* Multiply AXB
/ Divide A+B
*% or Exponentiate (if ™ is used, it is
changed internally to **) AB
MOD Modulo; remainder from division A - B X INT(A ~ B)

where INT(x) returns the largest
integer < x. If A and B are positive,
A MOD B is the remainder from
A~ B.

2-6

In an expression, the arithmetic operators cause an arithmetic operation resulting in a single numeric
value.

The relational operators are:

= Equal A=B
< Less than A Greater than A>B
<= Less than or equal to A = Greater than or equal to AZB
<>or# Notequal (if # is used, it is

changed internally to <>) AF+B

When relational operators are evaluated in an expression they return the value 1 if the relation is
found to be true, or the value 0 if the relation is false. For instance, A = B is evaluated as 1 if A
and B are equal in value, as 0 if they are unequal.

Maximum and minimum opetrators are:

MIN Select the lesser of two values AMINB
MAX Select the greater of two values AMAXB

These operators are evaluated as follows:

A MIN B = A if A is less than or equal to B; = Bif B is less than A
A MAX B = A if A is greater than or equal to B; = B if B is greater than A

Logical or Boolean operators are:

AND Logical “and” A ANDB
OR Logical “or” AORB
NOT Logical complement NOT A

Like the relational operators, the evaluation of an expression using logical operators results in the
value 1 if the expression is true, the value 0 if the expression is false,

Logical operators are evaluated as follows:

A ANDB = 1 (true)if A and B are both # 0; =0 (false) if A=0orB=0
AORB = 1 (true) if A 0 or B# 0;= 0 (false) if both Aand B=0
NOT A = 1 (true) if A=0;=0 (false) if A5 0

2-7

A string operator is available for combining two string expressions into one:
+ Concatenation A$ + B$

The values of A$ and B$ are joined to form a single string; the characters in B$ immediately follow
the last character in A$. If A$ contains “ABC’’ and B$ contains “DEF”’, then A$ + B$ = “ABCDEF”
(see Strings, Section V).

EVALUATING EXPRESSIONS

An expression is evaluated by replacing each variable with its value, evaluating any function calls,
and performing the operations indicated by the operators. The order in which operations is per-
formed is determined by the hierarchy of operators:

*x (highest)

NOT

* [MOD

+ -

+ (string concatenate)

MIN MAX

Relational (=, <,>,<=,>=<2>)
AND

OR (lowest)

The operator at the highest level is performed first followed by any other operators in the hierarchy
shown above. If operators are at the same level, the order is from left to right. Parentheses can be
used to override this order. Operations enclosed in parentheses are performed before any operations
outside the parentheses. When parentheses are nested, operations within the innermost pair are
performed first,

For instance: 5 + 6*7 is evaluated as 5 + (6 X7) = 47

7/14%2/5 is evaluated as ((7/14)X2)/5 = .2
If A=1, B=2, C=3, D=3.14, E=0

then: A+B*C is evaluated as A +(BXC) =7
A*B+C is evaluated as (AXB)+C =5
A+B~-C isevaluated as (A+B)-C =0
(A+B)*C is evaluated as (A+B)XC = 9
A MIN B MAX C MIN D is evaluated as ((A MIN BMAXCMIND=C =3

When a unary operator immediately follows another operator of higher precedence, the unary
operator assumes the same precedence as the preceding operator. For instance,

B#*-B**C is evaluated as (B-B)C = 1/64 or .015625

In a relation, the relational operator determines whether the relation is equal to 1 (true) or
0 (false):

(A*B) < (A-C/3) is evaluated as 0 (false) since A*B=2 which is not less than A-C/3=0.

In a logical expression, other operators are evaluated first for values of zero (false) or non-zero
(true). The logical operators determine whether the entire expression is equal to 0 (false) or 1 (true):

E AND A-C/3 is evaluated as 0 (false) since both terms in the expression
are equal to zero (false).

A+B AND A*B is evaluated as 1 (true) since both terms in the expression
are different from zero (true).

A=B OR C=SIN(D) is evaluated as O (false) since both expressions are false (0).

AORE is evaluated as 1 (true) since one term of the expression (A)
is not equal to zero.

NOT E is evaluated as 1 (true) since E=0.

If any ambiguity exists between the relational operator “="" and the assignment operator, the equal
sign is treated as an assignment operator:

A=B=1 assigns 1 to both A and B.
A=1=B assigns 1 to A if B equals 1, or 0 to A if B does not equal 1.

For rules governing the evaluation of relational expressions using strings, see Comparing Strings
in Section V.

2-9

Statements

Statements essential to writing a program in BASIC are described here. Statements in general are
described in Section I. It should be recalled that all statements must be preceded by a statement
number and are terminated by pressing the return key. Statements are not executed until the

program is executed with the RUN command.

2-10

Assignment Statement

This statement assigns a value to one or more variables. The value may be in the form of an expres-
sion, a constant, a string, or another variable of the same type.

Form

When the value of the expression is assigned to a single variable, the forms are:

variable = expression

LET variable = expression
When the same value is to be assigned to more than one variable, the forms are:

variable = variable = . . . = variable = expression

LET variable = variable = . . . = variable = expression
Several assignments can be made in one statement if they are separated by commas:

variable = expression, . . ., varigble = expression

LET variable = expression, . . ., variable = expression

Note that the word LET is an optional part of the assignment statement.

Explanation

In this statement, the equal sign is an assignment operator. It does not indicate equality, but is a
signal that the value on the right of assignment operator be assigned to the variable on the left.
If any ambiguity exists between the relational operator ‘=" and the assignment operator, the
equal sign is treated as an assignment operator.

When a variable to be assigned a value contains subscripts, these are evaluated first from left to
right, then the expression is evaluated and the resulting value moved to the variable.

If a value is assigned to more than one variable, the assignment is made from right to left. For

instance, in the statement A=B=C=2, first C is assigned the value 2, then B is assigned the current
value of C, and finally A is assigned the value of B.

2-11

Examples

10 LET A=5.02
20 A=5.02

The variable A is assigned the value 5.02. Statements 10 and 20 have the same result.
30 X=Y7=2=Z1=0

Each variable X, Y7, Z, and Z1 is set to zero. This is a simple method for initializing variables at the
start of a program.

55 LET N=2
40 LET AIN)=N=9

First N is assigned the value 2 in line 35. In line 40 N is assigned the value 9, then the array
element A(2) is assigned the value 9.

5@ N:=0
68 LET N=N+|
78 LET A[N]I=N

Statements 50 through 70 set the array element A(1) to 1. By repeating statements 60 and 70
each array element can be set to the value of its subscript.

2

80 A=10.5,B=7.5
98 B$="ABC",C$=B$

Variable A is set to 10.5, then B is set to 7.5. The string variable B$ is assigned the value ABC,
then C$ is assigned the value of B$ (or ABC).

188 C3$=B$="ABC"

This statement has the same result as statement 90.

110 LET A=10,5,B=7.5,B$=C$="ABC"

Statement 110 has the same effect as the two statements 80 and 90.

212

REM Statement

This statement allows the insertion of a line of remarks in the listing of the program. The remarks
do not affect program execution,

Form
REM any characters

Like other statements, REM must be preceded by a statement number. Unlike other statements, it
cannot be continued on the next line.

Explanation

The remarks introduced by REM are saved as part of the BASIC program, and printed when the
program is listed or punched. They are, however, ignored when the program is executed.

Remarks are easier to read if REM is followed by spaces, or a punctuation mark as in the examples,

Examples

10 REM: THIS IS AN EXAMPLE

20 REM OF REM STATEMENTS.

30 REM -- ANY CHARACTERS MAY FOLLOW REM: " //*%x!1&&&,ETC,
40 REM...REM STATEMENTS ARE NOT EXECUTED

2-13

GOTO Statement

GOTO overrides the normal sequential order of statement execution by transferring control to a
specified statement. The statement to which control transfers must be an existing statement in the
current program.

Form

GOTO statement label

GOTO integer expression OF statement label, statement label, . . .

GOTO may have a single statement label, or may be multi-branched with more than one state-
ment label.

If the multi-branch GOTO is used, the value of the integer expression determines the label in the
list to which control transfers.

Explanation

If the GOTO transfers to a statement that cannot be executed (such as REM or DIM), control
passes to the next sequential statement after that statement. GOTO cannot transfer into or out
of a function definition (see Section VI). If it should transfer to the DEF statement, control
passes to the line following the function definition.

The labels in a multi-branch GOTO are selected by numbering them sequentially starting with 1,
such that the first label is selected if the value of the expression is 1, the second label if the expres-
sion equals 2, and so forth. If the value of the expression is less than 1 or greater than the number
of labels in the list, then the GOTO is ignored and control transfers to the statement immediately
following GOTO.

2-14

Examples

The example below shows a simple GOTO in line 200 and a multi-branch GOTO in line 600.

100 LET 1:=0

200 GOTO 680

300 PRINT I

400 REM THE VALUE OF I IS ZERO
500 LET I:=I+1!

620 GOTO I+1 OF 300,500,880

700 REM THE FINAL VALUE OF I IS 2
808 PRINT 1

>RUN
2
2

When run, the program prints the initial value of I and the final value of 1.

2-15

GOSUB/RETURN Statements

GOSUB transfers control to the beginning of a simple subroutine. A subroutine consists of a
collection of statements that may be performed from more than one location in the program. In a
simple subroutine, there is no explicit indication in the program as to which statements constitute
the subroutine. A RETURN statement in the subroutine returns control to the statement following
the GOSUB statement.

Form

GOSUB statement label
GOSUB integer expression OF statement label, statement label, . . .
RETURN

GOSUB may have a single statement label, or may be multi-branched with more than one state-
ment label. In a multi-branch GOSUB, the particular label to which control transfers is determined
by the value of the integer expression. The RETURN statement consists simply of the word
RETURN.

Explanation

A single-branch GOSUB transfers control to the statement indicated by the label. A multi-branch
GOSUB transfers to the statement label determined by the value of the integer expression. Asin a
multi-branch GOTO, if the value of the expression is less than 1 or greater than the length of the
list, no transfer takes place. A GOSUB must not transfer into or out of a function definition

(see Section VI).

When the sequence of control within the subroutine reaches a RETURN statement, control returns
to the statement following the GOSUB statement.

Within a subroutine, another subroutine can be called. This is known as nesting. When a RETURN
is executed, control transfers back to the statement following the last GOSUB executed. Up to ten
GOSUB statements can occur without an intervening RETURN; more than this causes a terminating
error.

2-16

Examples

In the first example, line 20 contains a simple GOSUB statement; the subroutine is in lines 50
through 70, with RETURN in line 70.

10
20
30
40
50
60
18
80
>RUN
SINE

LET B=90

GOSUB 5@

PRINT "SINE OF B IS "3A

GOTO 8@

REM: THIS IS THE START OF THE SUBROUTINE

LET A=SIN(B)
RETURN
REM: PROGRAM CONTINUES WITH NEXT STATEMENT

OF B IS .89399%92

The GOSUB statement can follow the subroutine to which it transfers as in the example below.

18

LET B=90

GOTO 100

REM: THIS 1S START OF SUBROUTINE
LET A=SIN(B)

RETURN

REM: OTHER STATEMENTS CAN APPEAR HERE
REM: THEY WILL NOT BE EXECUTED
A=24,B=50

PRINT A3B

GOSUB 3@

PRINT A

REM: A SHOULD EQUAL .893992
PRINT B

REM: B SHOULD EQUAL 950

.893992

S8

2-17

This example shows a multi-branch GOSUB in line 20. The third subroutine executed has a nested

subroutine.
Conditional

10
20
30
40
50
60
100
110
120
130
150
160
170
180
200
210
220
225
230
240
250
260
270
280
290
295
300
>RUN
X =
Y
Y +
SINE

An IF, . .THEN statement is used in the example; should its function not be clear, see
Statements below in this section.

A=D

GOSUB A+ OF 100,150,200
LET AzA+|

IF A<3 THEN GOTO 22

GOTO 300

REM: STATEMENT 50 BRANCHES AROUND ALL THE SUBROUTINES
REM: FIRST SUBROUTINE IN MULTIBRANCH GOSUB

LET X=SQR(A+25)

PRINT "X = "3X

RETURN

REM: SECOND SUBROUTINE IN MULTIBRANCH GOSUB

LET Y=C0S(X)

PRINT "Y = COSINE X = "3Y

RETURN

REM: THIRD SUBROUTINE IN MULTIBRANCH GOSUB

REM: IT CONTAINS A NESTED SUBROUTINE

LET Y=Y+X

PRINT "Y + X = "3Y

GOSUB 260

RETURN

REM: STATEMENT 248 RETURNS CONTROL TO STATEMENT 30
REMe FIRST STATEMENT IN NESTED SUBROUTINE

B=SINCY)

PRINT "SINE Y = "3B

RETURN

REM: STATEMENT 290 RETURNS CONTROL TO STATEMENT 2490
REM: PROGRAM CONTINUES WITH NEXT STATEMENT

5
COSINE X = .283663
X = 5.28366

Y = -.841213

2-18

END/STOP Statements

The END and STOP statements are used to terminate execution of a program. Either may be used,
neither is required. An END is assumed following the last line entered in the current program.

Form
END

STOP

The END statement consists of the word END; the STOP statement of the word STOP,

Explanation

Both END and STOP terminate the program run. END has a different function from STOP only
when programs are segmented (see Section X, Segmentation). When END is executed in a program
segment that has been called by another program with INVOKE, control returns to the statement
after INVOKE.

Whenever STOP is used, the program terminates. STOP in a program called with INVOKE
terminates all program execution, including any suspended programs.

2-19

Examples

These three programs are effectively the same:

16 LET A=2,B=3
20 C=A*xx=-A*x%xB
38 PRINT C
>RUN
«B15625

10 LET A=2,B=3
20 C:=A*x*x=-A%x%xB
30 PRINT C
40 END

>RUN
+B15625

18 LET A=2,B=3
20 C=A*xx=-A%x*B
38 PRINT C
40 STOP

>RUN
LB15625

When sequence is direct and the last statement in the current program is the last statement to be
executed, END or STOP are optional. They have a use, however, when sequence is not direct and
the last statement in the program is not the last statement to be executed:

100 LET A=2

1286 GOSUB 140
138 END

140 LET B:=A+1
150 XzA%x%x(B*x*A)
1680 PRINT X
176 RETURN

>RUN

512

The subroutine at line 140 follows the END statement.

2-20

18 LET A=2
20 X=A*x%x2+A
30 PRINT X
40 IF X<108@8 THEN GOTO 8@
58 PRINT "X= "3X
60 PRINT "A= "3A
78 STOP
80 A=A+l
99 GOTO 20

>RUN

6

12

20

30

42

56

72

9@

110

= 118

: 12

The STOP statement at line 70 is skipped until the value of X is equal to or exceeds 100.

2-21

Looping Statements

The looping statements FOR and NEXT allow repetition of a group of statements. The FOR state-
ment precedes the statements to be repeated, and the NEXT statement directly follows them. The
number of times the statements are repeated is determined by the value of a simple numeric
variable specified in the FOR statement. ’

Form

FOR variable = expression TO expression

FOR variable = expression TO expression STEP expression

The variable is initially set to the value resulting from the expression after the equal sign. When the
value of the variable passes the value of the expression following TO, the looping stops. If STEP is
specified, the variable is incremented by the value resulting from the STEP expression each time the
group of statements is repeated. This value can be positive or negative, but should not be zero. If a
STEP expression is not specified, the variable is incremented by 1.

The NEXT statement terminates the loop:
NEXT variable

The variable following NEXT must be the same as the variable after the corresponding FOR.

Explanation

When FOR is executed, the variable is assigned an initial value resulting from the expression after
the equal sign, and the final value and any step value are evaluated. Then the following steps occur:

1. The value of the FOR variable is compared to the final value; if it exceeds the final value
(or is less when the STEP value is negative), control skips to the statement following NEXT.

2. All statements between the FOR statement and the NEXT statement are executed.

3. The FOR variable is incremented by 1, or if specified, by the STEP value.

4. Return to step 1.

NOTE: Unless specified with a variable type statement, the values of the variables used to index a

FOR loop are assigned as real by default. Round-off errors can increase or decrease the
number of steps when non-integer step sizes are used.

2-22 APR 1978

The user should not execute the statements in a FOR loop except through a FOR statement.
Transferring control into the middle of a loop can produce undesirable results.

FOR loops can be nested if one FOR loop is completely contained within another, They must not

overlap,

Examples

Each time the FOR statement executes, the user inputs a value for R and the area of a circle with
that radius is computed and printed:

18 FOR A=l TO 5

20

30

40
>RUN
71
AREA
72
AREA
74
AREA
78
AREA
716
AREA

INPUT R

PRINT "AREA OF CIRCLE WITH RADIUS "$Rs"™ IS "33.14%R%%2

NEXT A

OF CIRCLE
OF CIRCLE
OF CIRCLE
OF CIRCLE
OF CIRCLE

WITH
WITH
WITH
WITH
WITH

RADIUS
RADIUS
RADIUS
RADIUS
RADIUS

16

1S
IS
1S
1s
1S

3.14
12.56
56.24
208,96

803 .84

The FOR loop executes six times, decreasing the value of X by 1 each time:

18 FOR X=8 TO -5 STEP -1

20
30
>RUN
-5
-6
-7
-8
-5
-8

PRINT X-5

NEXT X

2-23

The first X elements of the array P(N) are assigned values. When N = X, the loop terminates. In
this case, the value of X is input as 3:

18 INPUT X
28 FOR Nz=1 TO X
39 LET PIN]I=N+1
40 PRINT P(N]
50 NEXT N

>RUN

)

The examples below show legal and illegal nesting. A diagnostic is printed when an attempt is made
to run the second example:

10 REM..THIS EXAMPLE IS LEGAL
20 FOR A=zl TO 12
308 FOR B=} T0 5

40 LET X[A,Bl=0
58 NEXT B
60 NEXT A

10 REM., THIS EXAMPLE IS ILLEGAL
20 FOR A=l TO 10
30 FOR B=1 TO 5

40 LET X(A,B1=0
50 NEXT A
64 NEXT B

>RUN

‘FOR® - °'NEXT' VARIABLES DON'T MATCH IN LINE 582

2-24

Conditional Statements

Conditional statements are used to test for specific conditions and specify program action depending
on the test result. The condition tested is a numeric expression that is considered true if the value is
not zero, false if the value is zero. Conditional statements are always introduced by an IF statement;
an ELSE statement may follow the IF statement. Both IF and ELSE statements may be followed by
a series of statements enclosed by DO and DOEND.

Form

IF expression THEN statement label
IF expression THEN statement

IF expression THEN DO

statement

DOEND

An IF. . THEN statement can be followed by an ELSE statement to specify action in case the
value of the expression is false. Like IF, ELSE can be followed by a statement, a statement label,
or a series of statements enclosed by DO. . DOEND.

ELSE statement label
ELSE statement

ELSE DO

statement

DOEND

ELSE statements never appear in a program unless preceded by an IF. . THEN statement. An
ELSE statement must immediately follow an IF. . .THEN statement or the DOEND statement
corresponding to an IF. . .THEN DO statement; no intervening statements (including REM) are
permitted. DO.. .DOEND statements may follow only an IF. . THEN or an ELSE statement.

2-25

The four diagrams below show all possible combinations of conditional statements. Items enclosed
by [] are optional; one of the items enclosed by { } must be chosen. Statements immediately
following THEN and ELSE are not labeled; all other statements must be labeled.

L label IF expression THEN {

label
label ELSE
statement

° label IF expression THEN DO

label }

statement

label statement

label DOEND

label
label ELSE
statement

label
° label IF expression THEN

statement

label ELSE DO

label statement

label DOEND

® label IF expression THEN DO

label statement

label DOEND

label ELSE DO

label statement

label DOEND

2-26

Explanation

The expression following IF is evaluated, and if true the program transfers control to the label
following THEN or executes the statement following THEN, If DO follows THEN, the program
executes the series of labeled statements terminated by DOEND. The program then continues. If the
expression is false, control transfers immediately to the next statement or to the statement following
DOEND if THEN DO was specified.

When an ELSE statement follows the IF. . THEN statement, it determines the specific action should
the IF expression be false, When the expression is true, the ELSE statement or the group of ELSE
statements enclosed by DO. . .DOEND is skipped, and the program continues with the next state-
ment after ELSE or DOEND.

A FOR statement can be specified in a DO. . .DOEND group; if so, the corresponding NEXT must
be within the same DO. . .DOEND group. (See FOR. . NEXT statement description in this
section.)

IF statements are nested when an IF statement occurs within the DQO. . .DOEND group of another
IF statement. In such a case, each ELSE is matched with the closest preceding IF that is not itself
part of another DO. . . DOEND group.

Examples

The various types of IF statement are illustrated with the following examples:

10 IF A=B THEN 30
28 LET A:=B
38 PRINT A,B

If A equals B, the program skips to line 30, otherwise, it sets A equal B in line 20 and continues.
In either case, line 30 is executed.

186 IF A=B THEN PRINT B
20 ELSE PRINT A,B

If A equals B, the value of B is printed, otherwise, both values are printed. The program then
continues.

2-27

18 IF A=B THEN 129
20 ELSE 200

Program control transfers to line 100 if A equals B, to line 200 if not.

18 1IF A=B THEN GOTO 1@@
20 ELSE GOTO 290

These two statements are identical in effect to the preceding two statements.

10 IF A<180 THEN AzA+5
20 ELSE DO

30 LET X=A

40 GOTO 1g@

52 DOEND

68 GOTO 18

188 PRINT X

If A is less than 100, it is increased by 5 and control skips to line 60 where control is returned to
line 10. When A is equal to or greater than 100, X is set equal to A and control skips to line 100.

5 INPUT A

10 IF A<108 THEN DO
20 AzA+]

30 GOTO 2¢8

49 DOEND

58 ELSE DO

60 X =A

70 A=0

80 GOSUB 850
5@ DOEND
100 PRINT "A>=100"
120 END
208 PRINT "A="gA
216 END
858 PRINT "X="gX
851 PRINT "A="3A
852 RETURN

If A is less than 100, it is increased by 1 and control goes to line 200. If A is equal to or greater
than 100, X is set equal to A, A is set to zero and the subroutine at line 850 is executed. The

subroutine returns control to line 100,

2-28

If a value less than 100 is input for A, line 200 is executed and the program ends:

>RUN
275
A= 76

If a value greater than 100 is input for A, the subroutine is executed, then line 100 is executed and
the program terminates:

>RUN
7150
Xz 150
Az @
A>= 100

The examples below illustrate nested IF. . THEN statements.

16 INPUT A,B,C
28 IF (A+10)=(B+5) THEN DO
30 A=B
40 IF A>C THEN A=C
50 ELSE C=B
68 DOEND
76 PRINT A,B,C
>RUN
5,108,115
19 12 10

2-29

With the particular values input, the first IF is true and the second IF is false. As a result both A
and C are set equal to B.

18 INPUT A,B,C
20 1F A>B THEN DO
30 IF B>C THEN DO

4 IF C=18 THEN DO
50 C=C+1

60 GOTO 208

10 DOEND

80 ELSE GOTO 220
90 DOEND

100 ELSE DO

118 IF C=18 THEN B=C+A
120 ELSE C=B-A

130 GOTO 180

140 DOEND

158 DOEND

1 6@ PRINT "A<=3,A='";A
178 GOTO 239

18@ PRINT "A>B,B<=C,B=";B
156 GOTO 238

200 PRINT "A>B>C,C=10"

219 GOTO 230

220 PRINT "A>B>C,C<>18,C="3C
230 END

>RUN

218,15,28
A<B,A= 1@

>RUN
715,5,18
A>B,B<C,B= 25

>RUN

7208,15,5
A>B>C,C<>18,C= 5

So that nested IF statements may be easier to follow, the LIST command indents them as shown
in these examples.

2-30

PRINT Statement

PRINT causes data to be output at the terminal. The data to be output is specified in a print list
following PRINT.

Form

PRINT
PRINT print list

The print list consists of items separated by commas or semicolons. The list may be followed by a
comma or a semicolon, If the list is omitted, PRINT causes a skip to the next line. Items in the
list may be numeric or string expressions, special print functions for tabbing or spacing, or FOR
loops to provide repeated output. The form of the FOR loop is:

(FOR statement, print list)

where the print list contains any items allowed in the PRINT statement list including other FOR
loops. The FOR statement is described earlier in this section under the heading Looping Statements.

Explanation

The contents of the print list is printed. If there is more than one item in the print list, commas
or semicolons must separate the items. The choice of a comma or semicolon affects the output
format.

The output line is divided into consecutive fields, each of 15 characters except possibly the last.
For example, on a terminal with default print length of 72 characters, there will be four fields of
15 characters and one of 12 characters. When a comma separates items, each item is printed
starting at the beginning of a field. When a semicolon separates items, each item is printed immedi-
ately following the preceding item. In either case, if there is not enough room left in the line to
print the entire item, printing of the item begins on the next line. The length of the print line

can be changed by using the MARGIN statement (Section VIII).

The separator between items can be omitted if one or both of the items is a quoted string. In this
case, a semicolon is inserted automatically.

A carriage return and linefeed are output after PRINT has executed, unless the output list is
terminated by a comma or semicolon. In this case, the next PRINT statement begins on the
same line.

If an expression appears in the print list, it is evaluated and the result is printed. Any variable must

have been assigned a value before it is printed. Each character between quotes in a string constant
is printed, excluding quotes.

AUG 1978 2-31

If a FOR loop is included in the print list, each item in the print list associated with the FOR
statement is printed once for each time the FOR loop is executed.

Numeric values are left justified in a field whose width is determined by the magnitude of the
number. The smallest field is six characters. Numeric output format is discussed in detail below.

For the printing of data according to a customized format, see the PRINT USING and PRINT #
USING statements described in Section IX.

Examples

When items are separated by commas, they are printed in consecutive fields per line; separated by
semicolons, they directly follow one another. In the example below, the items are numeric, so
each item is assigned a minimum of six characters.

10 LET A=B=C=D:=E=15
206 LET Al=Bl=C1=DIl=E)=20
30 PRINT A,B,C!,C
40 PRINT A3B3Cl3C3DsEsAl3DISE]
56 PRINT A,B3C,D
>RUN

15 15 20 15
15 15 20 15 15 15 20 20 20
15 15 15 15

In the example below, a DIM statement is used to specify the number of characters in each string;
if omitted, the strings are assumed to have only one character.

19 DIM B$(31,C813)
20 C$=B$="ABC"
38 PRINT BS,CS
>RUN
ABC ABC

9.3 AUG 1978

In the example below, the first PRINT statement evaluates and then prints three expressions. The
second PRINT skips a line. The third and fourth PRINT statements combine a string constant with
a numeric expression. No fields are used in the print line for string constants unless a comma
appears as separator. The fourth PRINT statement prints output on the same line as the third
because the third statement is terminated by a comma.

19 LET A=B=C=D=E=15

28 LET A1=B1=CI=DI=El=20

38 PRINT AxB,B/C/D1+38,A+B

40 PRINT

58 PRINT "AxB ="3;Ax%xB,

60 PRINT " THE SUM OF A AND B IS";A+4B

>RUN
225 30.85 30
AxB = 225 THE SUM OF A AND B IS 3@

A FOR statement can be specified in a print list with its own print list, all included within
parentheses:

10 FOR 1=} TO 3

20 INPUT R
30 Al11=3.14%R%%2
40 NEXT 1
58 PRINT (FOR I=1 TO 3,AlI))
>RUN
72
23
74
12.56 28,26 50.24

Note that NEXT is not needed when the FOR statement is included in a print list.

NUMERIC OUTPUT FORMATS

Numeric quantities are left justified in a field whose width is determined by the magnitude of the
item. The width includes a position at the left of the number for a possible sign and at least one
position to the right containing blanks. The width is always a multiple of three; the minimum
width is six characters,

2-33

Integers

An integer with a magnitude less than 1000 requires a field width of six characters:

sign number trailing blanks
3 digits
—l i AL

An integer with a magnitude between 1000 and 999999 inclusive requires a field width of nine
characters:

sign number trailing blanks
6 digits

Examples of integers:

The integers below are less than 1000 and greater than -1000:

10 PRINT 13959934303-3003+295
>RUN
1 399 39 -300 295

These integers are between 1000 and 999999 or between -1000 and -999999:

10 PRINT 10003+327513-999999345678
>RUN
1000 32751 -999999 45678

These integers are mixed in magnitude, but none are greater than 999999 or less than -999999:

12 PRINT 13100039993+3275132035-9999993-300345678;+25635800
>RUN

1 1000 999 32751 20 -99599SS -388 45678 2956
5000

If an integer has a negative sign it is printed; a positive sign is not printed.

2-34

Fixed-Point Numbers

A fixed point number requires a field width of 12 positions. If the magnitude of the number is
greater than or equal to .09999995 and less than 999999.5, or is less than .1 but can be printed
with six significant digits, the number is printed as a fixed-point number with a sign. Trailing zeros
are not printed, but a trailing decimal point is printed to show the number is not exact. The
number is left-justified in the field with trailing blanks. The sign is printed only if it is negative.

sign number trailing blanks

\ \ /

6 digits & decimal pt.

1. 1 1. 1 L 5 ! 1 1

Examples of fixed-point numbers:

10 PRINT 999999.45.099999965 .080844
>RUN
99999595. ol 200044

Floating-Point Numbers

Any number, integer or fixed-point, with a magnitude greater than the magnitude of the numbers
presented above, is printed as a floating-point number using a total field width of 15 positions:

sign number Etexponent trailing blanks
6 digits & decimal pt. E
1 | 1] 1 1 1 1 1 i

Examples of floating-point numbers:

13 PRINT 23456783 .0000044
>RUN
2.34568E4+06 4,40000E~26

1@ PRINT 234567893 .,080008044
>RUN
2.,34568E+07 4,40000E-07

10 PRINT .002083943;.0088257855
>RUN

3 .94300E-05 2.57895E-25

2-35

PRINT FUNCTIONS

These print functions may be included in a PRINT statement print list. A comma after any print
function is treated as a semicolon.

TAB Function

The form of the tabulation function is:
TAB(integer expression)

The print position is moved to the column specified by the integer expression. Print positions are
numbered from 0 to 71. If the print position must be moved to the left because the integer expres-
sion is less than the current position, nothing is done. If the expression is greater than 71, the print
position is moved to the beginning of the next line.

SPA Function

The form of the spacing function is:

SPA (integer expression)

Blanks are printed for the number of spaces indicated by the integer expression. Nothing occurs
when the expression is zero or negative, If the number of spaces will not fit on the current line, or
the expression exceeds 71, a carriage return and line feed is generated.

The limit of 71 on TAB and SPA expressions does not apply to PRINT USING (see Section IX).

LIN Function

The form of the line skip function is:
LIN(integer expression)

The terminal performs a carriage return and as many line feeds as are specified in the expression.
If the value is negative, the absolute value of the expression is used for the number of line feeds;
no carriage return is generated. Normally, a carriage return and one line feed is performed at the
end of a PRINT statement unless there is a trailing comma or semicolon.

2-36

CTL Function

The form of the carriage control function is:

CTL(integer expression)

All items preceding the CTL function in a PRINT statement are printed immediately, using the
integer expression as the carriage control code. This function is effective only for the particular print
statement in which it occurs and has no effect on any other statement. This function is useful when
the output device is a line printer. The carriage control codes are listed below.

Carriage Control Codes

Decimal Carri R
Code rriage Action

32 Single-space

43 Carriage return, no line feed

48 Double-space

49 Page eject (form feed)

64 Post-spacing

65 Pre-spacing

66 Single-space, with auto page eject (60
lines/pg)

67 Single-space, without auto page eject (66
lines/pg)

128+nn Space nn lines {no automatic page eject).
nn=1 thru 63 (i.e., codes 129 thru 191).

192 Page eject {*ftc #1)

193 Skip to bottom of form (*ftc #2)

194 Single-spacing, with auto page eject (*ftc
#3)

195 Single-space on next odd-numbered line,
with auto page eject (*ftc #4)

196 Triple-space, with auto page eject (*ftc
#5)

197 Space 1/2 page, with auto page eject {*ftc
#6)

198 Space 1/4 page, with auto page eject {*ftc
#7)

199 Space 1/6 page, with auto page eject {*ftc
#8)

256 Post-spacing

257 Pre-spacing

258 Single-space, with auto page eject (60
lines/pg}

259 Single-space, without auto page eject (66
lines/pg)

*Format Tape Channel number

Examples of Print Functions

The TAB, SPA, LIN and CTL functions are illustrated below:

AUG 1978 2-37

19 PRINT TAB(8)3" TITLE:PRINT HEADING™3SPAC1@);"SUMMARY REPORT"™;
20 PRINT LIN(3)3"™ DETAIL LINES”"
>RUN
TITLE:PRINT HEADING SUMMARY REPORT

DETAIL LINES

The LIN function can generally be used to provide double or triple spacing, to suppress spacing,
or to provide a line feed. For instance,

Double Space LIN(2)

Suppress Spacing LIN(0)

Line Feed only LIN(-integer expression)

10 PRINT “ABC"§LINC-1)$"DEF"s LINC2)3"GHI"
>RUN
ABC

DEF

GHI

Some frequently used carriage control characters are:

Double Space CTL(48)
Page Eject CTL(49)
Suppress Spacing CTL(43)

The decimal numbers associated with the carriage control characters are used as the integer expres-
sion in the CTL function. To illustrate:

19 LET P=1,X=500
20 PRINT CTL(49),"PAGE NO"sP
38 PRINT CTL(48),"DETAIL LINE"
40 PRINT TAB(15),X,CTL(43);
50 PRINT TABC18),"X="

>RUN

After ejecting to the top of a new page, the print items are output as:
PAGE NO 1

DETAIL LINE
Xz Seo0

2-38

In the following example, the CTL function causes a double space between “LINE 1’ and “LINE 27,
but has no effect on statement 20:

tBASIC
>HP32101B,00,08(4wD) BASIC (CIHEWLETT-PACKARD CO 1976

>10 PRINT "LINE 1",CTL(48),"LINE 2"
>20 PRINT "LINE 3"

>RUN

LIVE 1

LINE 2,
LINE 3
SEXIT

EWD QF SUBSYSTEM

The effect of the CTL function in the next example is immediate at it’s location within the PRINT
statement 200. It has no effect at the end of that statement where a normal linefeed and carriage
control occurs.

$BASIC

>Hp3219218 00 _,08(44%D) BASIC (CIHEWLETT«-PACKARD CO 1976
>100 ¥Ok I=1 TO 2

>200 PRINT "ABCD",CTL(130),"EFGH"

>300 MEXT 1

>RUN

ARCD

EFGH
ABCD

EFGH
>EXIT

END OF SUBSYSTEM

APR 1978 2-38a

READ/DATA/RESTORE Statements

Together, the READ, DATA, and RESTORE statements provide a means to input data to a
BASIC/3000 program. The READ statement reads data specified in DAT A statements into
variables specified in the READ statement. RESTORE allows the same data to be read again.

Form

READ item list

The items in the item list are either variables or FOR loops. Items are separated by commas.
A FOR loop has the form:

(FOR statement, item list)

where the item list contains variables or FOR loops separated by commas.
DATA constant, constant,. . .

The constants are either numeric or string. Constants in the DATA statement are assigned to
variables in the READ statement according to their order: the first constant to the first variable,
the second to the second and so forth.

RESTORE
RESTORE label

The label identifies a DATA statement.

Explanation

When a READ statement is executed, each variable is assigned a new value from the constant list
in a DATA statement. RESTORE allows the first constant to be assigned again when READ is
next executed or, if a label is specified, the first constant in the specified DATA statement.

More than one DATA statement can be specified. All the constants in the combined DATA state-
ments comprise a data list. The list starts with the DATA statement having the lowest statement
label and continues to the statement with the highest label. DATA statements can be anywhere
in the program; they need not precede the READ statement, nor need they be consecutive.

2-39

If a variable is numeric, the next item in the data list must be numeric; if a variable is a string, the
next item in the data list must be a string constant. It is possible to determine the type of the next
item with the TYP function (see Section VIII).

If the READ statement contains a FOR statement, the items following the FOR statement within
parentheses are assigned values once for each time the FOR statement is executed. The FOR
variable can be used in the item list, as can further FOR statements.

A pointer is kept in the data list showing which constant is the next to be assigned to a variable.
This pointer starts at the first DATA statement and is advanced consecutively through the data
list as constants are assigned. The RESTORE statement can be used to access data constants in a
non-serial manner by specifying a particular DAT A statement to which the pointer is to be moved.

When the RESTORE statement specifies a label, the pointer is moved to the first constant in the
specified statement. If the statement is not a DATA statement, the pointer is moved to the first

following DATA statement. When no label is specified, the pointer is restored to the first constant
of the first DATA statement in the program.

Examples

The data in statement 10 is read in statement 20 and printed in statement 30:

10 DATA 3,5,7
28 READ A,B,C
38 PRINT A,B,C
>RUN
3 5 7

Note the use of RESTORE in this example. It permits the second READ to read the same data
into a second set of variables:

5 DIM A$13)1,B%13)
18 DATA 3,5,7
28 READ A,B,C
30 READ AS$,BS
40 DATA "ABC","DEF"
58 RESTORE
68 READ D,E,F
70 PRINT A$+B$,A3B3C3 D3sESF
>RUN
ABCDEF 3 5 7 3 5 7

2-40

In the following examples, the data from three DATA statements is read into an 8-element array
variable and a simple variable, The same data is then restored and read into three simple variables.

10
20
KY
40
50
>RUN
3
13

10
20
30
40
50
Y]
70
80
90
102
118
120
>RUN
3
13
3

DATA 3,5,7
DATA 9,11,13
DATA 15,17,19

READ (FOR I=1 TO 8,CI1)),D

PRINT (FOR I1=] TO 8,ClI)),D
5 7
15 17

DATA 3,5,7

DATA 9,11,13

DATA 15,17,19

READ (FOR I=1 TO 8,C[11),D

PRINT (FOR I1=] TO 8,C(11)),D

RESTORE

READ A

RESTORE 29

READ B

RESTORE 38

READ C

PRINT A,B,C
5 7
15 17
9 15

2-11

S 11
19
S 11
19

INPUT Statement

The INPUT statement allows the user to input data to his program from the terminal, INPUT has
options that allow the user to save excess input and to print prompting strings before input. FOR
loops may be included in the item list associated with INPUT.

Form

INPUT
INPUT item list

The items in the item list may be variables, string constants, or FOR loops. Items are separated by
commas. FOR loops have the form:

(FOR statement, item list)

where the item list contains variables or FOR loops separated by commas.

A colon (:) may precede or follow the INPUT item list. When a colon follows the list, excess input
is saved in a buffer; when a colon precedes the list, input is assigned from the buffer before it is
requested from the user at the terminal.

An INPUT statement with no item list clears the input buffer; INPUT followed only by a colon
fills the buffer.

Explanation

When an INPUT statement is executed, a question mark (?) is printed at the terminal and the
program waits for the user to type his input. The input is in the form of constants separated by
commas,. If an insufficient number of constants is typed, the program responds with two question
marks (??). This requests the user to input more constants. The type of data item, numeric or
string, must match the type of variable it is destined for.

Like the READ and PRINT statements, the INPUT statement can include any number of FOR

loops. Each time a FOR statement is executed, the user inputs a constant to match the variables
in the item list associated with the FOR statement.

Numeric Constants. Numeric constants always begin with the first non-blank character preceding
the comma or the end of the line,

2-42

String Constants. A string may be unquoted, in which case it begins with the first non-blank
character and ends with the last non-blank character in the line, It may not contain quotation
marks. A string may also be quoted, in which case it is delimited on each side by quotes and is
followed either by a comma or the end of the line.

The INPUT statement can be requested to print a string constant instead of a question mark by
placing the string constant immediately before a variable. When the value for the variable is needed,
the string is printed instead of the usual question mark. Any number of these request strings can be
included in the variable list.

Examples

12 DIM C%i(25)

20 INPUT A,B,CS

30 X=A%*B*xx%2

40 PRINT C$3X
>RUN
72,5,"X=A TIMES B SQUARED, Xx:="
X=A TIMES B SQUARED, Xz 50

16 INPUT "INPUT VALUE OF RADIUS ~,R
20 X=3.]4%R%xx2
38 PRINT "AREA OF X =",X

>RUN
INPUT VALUE OF RADIUS 25
AREA OF X = 1962.5

Note that a series of strings on one line separated by commas will be recognized as a single string
constant unless each (except the last) is enclosed in quotes. See the following example:

10 DIM Ag(10]},Bs(10),Csl10]
20 TNPUT "THRFEF NAMFS?",As,Rg,Cse
30 PRINT AS,RS,CS
>RUN
THREE NAMES?PAUT.,PETE,DTX
22?2"MARY ", "JOHN"

PAUL,PETE, MARY JOHNM
>RUN

THREE NAMES?PAUL

??PETE

?7DIX

PAUL PETE DIX
>KIUN

THREE NAMFS?"PAULY,"PETE",DIX

PAUL PETE DTX

AUG 1978 9.43

This example illustrates the various prompts for input:

18 INPUT A,"NUMBER?",B,C
28 PRINT A,B,C
>RUN
215
NUMBER?63 .5
2?7
15 63.5 7

Computer

Museum

2-43a

If all input values are entered at one time, only the first prompt is used:

19 INPUT A," NUMBER?",B,C
29 PRINT A,B,C
>RUN
715,63.5,7
15 63.5 7

The examples below illustrate FOR loops in the INPUT item list:

18 INPUT (FOR I=1 TO 5 STEP 2,AlID)
28 PRINT (FOR I=1 TO 5 STEP 2,Al1))

>RUN

?21,3,5

l 3 5

18 INPUT N,(FOR K=1 TO N,"WHAT'S NEXT?",BIK1])
2@ PRINT (FOR K=1 TO N,B(K1)

>RUN

23

WHAT'S NEXT?I

WHAT'S NEXT?2

WHAT'S NEXT?3
1 2 3

12 INPUT N,(FOR S1=1 TO N,(FOR I=1 TO N,CIS]1,11))
2@ PRINT (FOR Sl1=1 TO N,(FOR I=1 TO N,CIS1,11))
>RUN
72
221,2,3,4
l 2 3 4

2-44

The example below illustrates the use of the colon (:) to save input in the buffer, and to assign
input from the buffer. A colon following the input list saves the buffer; a colon preceding the
input list assigns values from the buffer,

In this example, four input values are placed in the buffer. However, following line 20 the buffer
is cleared because there is no colon after E. Another value must be input for F.

19 INPUT
28 INPUT
38 INPUT
423 PRINT
>RUN
71,2,3,4
779
l

I>ee ee D
e I ()
(o]
-
m
-
-}

By putting a colon after E as well as before it, the entire buffer is saved:

19 INPUT
20 INPUT
30 INPUT
40 PRINT

I se o0 D
- Fle
m”oo (v 0]

*9

>RUN
71,2’3,4
1

BUF FUNCTION

The BUF function is used in conjunction with INPUT to determine the type of the next data item
in the buffer, The form is:

BUF(X)

The parameter X has no meaning; any expression can replace X as the actual parameter. The results
of executing BUF(X) are:

Value of BUF(X) Next Item in Buffer

1 real

2 string

4 no data in buffer
5 integer

6 long

1 complex

BUF(X) will not return the value 3.

2-45

Example

18 INPUT

20 1IF BUF(@)=4 THEN GOTO 1958
38 IF BUF(@)=5 THEN DO

40 INPUT c:A:

590 PRINT "INTEGER Az"3A
60 GOTO 28

78 DOEND

80 IF BUF(@)=1 THEN DO

90 INPUT ¢B:

180 PRINT "REAL NO ="3B
119 GOTO 20

120 DOEND

130 IF BUF(@)=2 THEN DO
140 INPUT :C$:

158 PRINT “STRING C="3C$
160 GOTO 20

178 DOEND

189 GOTO 29

193 PRINT "END OF BUFFER"

When run, the user can input any number of constants and they will be kept in the input buffer.
This example assumes that no long or complex numbers will be input.

>RUN

23y X" 3576,35.2,6646,75,"A","C"
REAL NO = 1,3
STRING C=X
INTEGER A= 576
REAL NO = 35.2
REAL NO = 66,6
INTEGER A= 75
STRING C=A
STRING C=C

END OF BUFFER

2-46

ENTER Statement

The ENTER statement provides the program with more control over the input operation. The
statement can limit the amount of time allowed to input data from the input device (e.g., terminal),
provide the program with the actual input time, indicate whether the data is of the correct type,
and return logical device number of the user’s terminal.

Form
There are three forms of the ENTER statement:

ENTER # terminal variable
ENTER time limit expression, actual time variable, input variable

ENTER # terminal variable, time limit expression, actual time variable, input variable

The terminal variable after # is used to return the logical device number of the terminal;
the time limit expression specifies the time allowed for input; the actual time variable
is assigned the actual time used; and the input variable is assigned the value typed in.

Explanation
The first form sets the terminal variable equal to the user’s terminal logical device number.

The time limit expression specifies the length of time, in seconds, that the user is allowed to enter
his input. The value must be in the range 1 to 255. If it is greater, 255 is used; if it is less, 1 is used.

The actual time variable is set to the approximate time, in seconds, that the user takes to respond.
If an improper input is typed, this value is negated. If the user fails to respond within the allotted
time, this variable is set to -256.

Only one value can be typed in for each ENTER statement and it is assigned to the input variable.
A string should not be entered enclosed in quotes, but it may contain quotes. A string that is too
long is truncated on the right.

The ENTER statement differs from the INPUT statement in that a “?”* is not printed on the user
terminal and the system returns to the program if the user does not respond within a specified
time limit (there is no time limit on INPUT). Also, the program does not generate a linefeed after
the user types in a carriage return.

2-47

Examples

12 DIM C${25)

20 ENTER #A

30 PRIN% " TERMINAL WNO.="3é&

43 PRINYT "YOU HAVE | MINUTE TO TYPE 25 CHARACTERS FOR C3%"

59 ENTER 69,B,C%

60 PRINT LINC1)3"ACTUAL TIME=z"3B

70 PRINT C$

88 PRINT LINC1);" IYPE VALUE FOR CT™

93 ENTER #A,60,B,C

198 PRINT LINC1)3"ACTUAL TIME=";B

1183 PRINT C
>RUN
TERMINAL NO.z 17
YOU HAVE | MINUTE TO TYPE 25 CHARACTERS FOR C$
EMBEDDED "QUOTES™ 0.K.
ACTUAL TIME= 13.41
EMBEDDED "QUOTES” 0.K.

TYPE VALUE FOR C
25.7E-8

ACTUAL TIME= 6.62
2.57008E-27

The system enters the logical terminal number in the variable A as a result of line 20; A can then be
referenced as in line 30. Since ENTER does not provide a prompt character, it is useful to print
some form of prompt particularly because there is a time limit on the input.

Note that the system does not provide a linefeed after input. It is therefore essential, if any output
is to be printed after the input line, to provide a linefeed (use LIN function) within the PRINT
statement. Without this linefeed, a subsequent output line overprints the input line.

A common use of ENTER is to test students:

1% PRINT " WHAT IS .25 TIMES 757"
2@ ENTER 32,T,X
30 IF Xz.25%75 THEN GOTO 702
40 PRINT LINC1),"SORRY,THE CORRECT ANSWER IS";.25%75
50 PRINT " TRY THE NEXT PROBLEM"
68 GOTO 88
72 PRINT LINC1)3"CORRECT,YOU ANSWERED IN"3T;"SECONDS"
89 REM..THE NEXT PROBLEM COULD START HERE
>RUN
WHAT IS .25 TIMES 757
18.75
CORRECT,YOU ANSWERED IN 3.35 SECONDS

2-48

> BASIC

When a BASIC/3000 program is waiting for input at the terminal as a result of an INPUT or
ENTER statement, the user can interrupt input and request a new level of the BASIC/3000
Interpreter by typing > BASIC.

The computer returns a greater than sign (>) to prompt for other BASIC statements or commands.

The previous program is suspended until the user types EXIT. EXIT in this case returns control to
the INPUT or ENTER statement in the previous program. The computer types two question marks
(??) to signal that it is waiting for further input.

Example

18 PRINT "WHAT IS THE SQUARE ROOT OF 947"
28 INPUT 1

>RUN

WHAT IS THE SQUARE ROOT OF 947

7>BASIC

BASIC @1 .0

>1@ PRINT SQR(S54)

>RUN

9.69536

>EXIT

229.69536

>

The user responds to the INPUT prompt signal with > BASIC. He can then enter and run another
program. EXIT returns control to the original program. He now enters the value he got as a result
of the program run in > BASIC.,

When BASIC/3000 is entered with > BASIC, it cannot be entered again in the same way. That is,
there is no nesting of this feature.

2-49

Commands

So far we have used a set of commands (LIST, RUN, SCRATCH) for simple program manipulation.
Both LIST and RUN have parameters and functions other than were illustrated. The full capability
of commands used to run a program, to edit a program, and to save a program in the library are
described here. The commands are:

RUN

The Editing Commands:
LIST
SCRATCH
DELETE
RENUMBER
LENGTH

Library Commands:
NAME
SAVE
GET
APPEND
PURGE
CATALOG

Commands in general are described in Section I. It should be recalled here that commands do not
have labels; they are entered directly after the > prompt character and are executed immediately.
Unlike statements, commands may not contain embedded blanks except between parameters.
Some commands may be abbreviated.

Certain conventions are used in the command description:

UPPER-CASE Key words that must be spelled correctly
lower-case Words defined by the user

[1] Enclose optional items

{ } Enclose required items

| Separates alternatives, one of which must be chosen

Indicate the preceding item may be repeated

2-50

In the command descriptions, certain keywords are used:

programname a BASIC/3000 program file
filename a non-BASIC/3000 file
asciifile an MPE/3000 ASCII file

Key word parameters may be in any order.

RUN

The RUN command executes a BASIC/3000 program; the form is

RUN [programname] [,label] [,O0UT=asciifile] [NOWARN] [LFREQ] [[NOECHO] [,MR]

If programname is specified, the named program is retrieved from the user’s library and made the
current program. Any program previously in the user’s work area is scratched. The current program
then is executed. Any traces and breakpoints are deleted. (Traces and breakpoints are described in
Section VII, Debugging.)

If label is specified, execution starts at the first executable statement at or after the label number.
The starting statement must not be within a function definition. If the label specifies a DEF state-
ment, execution begins at the first executable statement following the function definition.
OUT=asciifile diverts all printed output and trace information to the specified ASCII file,
NOWARN suppresses warning messages.

FREQ causes a table to be printed following program execution that summarizes the usage of all
statements in all programs that are part of the run. There may be more than one program in a run

when segmentation is used (see Section X, Segmentation).

NOECHO suppresses printing of program input when the input and list files are not on the same
device,

MR allows the execution of a program that locks multiple files, provided that the user has MR capa-
bility (see Section VIII, Dynamic Locking).

APR 1978 2-51

Examples of RUN

The program below is the current program:

10
20
30
4D
50
60
19
80
S0
100
110
120

DATA 3,5,17
DATA 9,11,13
DATA 15,17,1
READ (FOR I=
PRINT (FOR 1
RESTORE

READ A
RESTORE 28
READ B
RESTORE 3@
READ C

PRINT A,B,C

S
l

T0 8,Cl1)),D
1 TO 8,ClI1)),D

First the entire program is run, then it is run starting at line 60:

>RUN

) 5

13 15
) 9

>RUN, 60

) 9

2-52

7 S
17 19
15
15

11

Next the same program is run with a frequency table:

>RUN,FREQ

3
13
3

FREQUENCY TABLE

TOTAL STATEMENTS
TOTAL TIME

FREQUENCY

LABEL COUNT PCT

10
20
308
49
50
60
70
80
S0
120
118
120

SYSTEM OVERHEA

1

l

8

8
8
8
8
8
8
8
8
8
8
8
D

12

«297 SECONDS

EXECUTION TIME

AVE

<001
000
<001
022
160
<001
002
«000
«002
« 081
« 002
. 000

TOTAL
001
.00
<221
022
160
081
802
000
002
081
002
000
« 105

2-53

PCT

Ve~ ——adb-uaaem

11

Editing Commands

The editing commands always affect the current program, that is, the program that is currently
being entered at the terminal.

LIST
The LIST command lists all or part of the current program; the form is

LIST [first [- last]] [, OUT=asciifile] [, RECSIZE=number] [[NONAME]

where first and last specify the range of statements to be listed, and asciifile specifies the ASCII file
to which the list is diverted. If RECSIZE is specified, number specifies the number of characters
per record for the list file. If NONAME is specified, the program name is not listed; this is useful
when listing programs to be read back with the XEQ command. The default parameters are the
normal list file and a record size of 72 characters per record. If neither first nor last is specified, the
entire program is listed. If only first is specified, just that statement is listed.

Examples

>LIST

The entire current program is listed at the terminal.

>LIST 1-100,0UT=FASTFILE,RECSIZE=130

Statements 1 through 100 of the current program are listed on the file FASTFILE with a record
size of 130.

Note that a listing can be stopped by pressing the CTRL Y key. The user is returned to BASIC
control.

2-54

SCRATCH

The SCRATCH command deletes the entire current program and its name; the form is
SCRATCH | SCR

SCRATCH also clears traces and breakpoints. (Traces and breakpoints are described in Section VII,
Debugging).

Example

>SCR

The current program is deleted, and a new current program can be entered in the user’s work area.

DELETE

The DELETE command deletes one or more specified statements; the form is
{DELETE | DEL} first [- last] [, first [- last 1] . . .

where first and last are statement labels; the statements referenced by the parameters are deleted
from the program, Each first-last pair specifies a range of statements which are to be deleted. If a
first is given without a last, only the one statement is deleted.

Example

>DEL 45,75,400-708

Statements 45, 75, and all statements from 400 through 700 inclusive are deleted from the user’s
current program.

2-55

RENUMBER

The RENUMBER command allows the user to renumber any of the statements in the current
program; the form is

{ RENUM | RENUMBERY) [newfirst [, delta [, oldfirst [- oldlast 1]]]

oldfirst and oldlast specify the range of original statements to be renumbered (defaults are
1—15999). If only oldfirst is specified, the default for oldlast is 15999. The first of these statements
is assigned the number newfirst (default is 10) and each of the remainder is assigned a statement
number delta greater than its predecessor (default for delta is 10). Any statement in the program
which references a renumbered statement is changed as required for consistency.

Examples

>RENUMBER

The statements in the current program are renumbered in increments of 10 starting with statement
number 10.

>RENUM 5,5,1-850

The old statement numbers 1 through 890 are renumbered starting with 5 and increasing by 5.

LENGTH

The LENGTH command reports the size of the current program; the form is
LENGTH | LEN

The length of the current program (in 16-bit words) is printed

Example

>LENGTH

The length of the current program is printed.
2.58 AUG 1978

Examples Using Editing Commands

After the user enters text at a terminal, mistakes can be corrected by pressing the CNTL H (or HS)
key or the backspace key.

>1@ INPUG\T A,B,C,D,E

>20 REM..,IJNPUT 5 VALUES

>33 LET Sz(A@\+B+C+D+E) 7\/5

>40 REM..S=AVERAGE OF 5 INPUT VALUES
>5@ PRINT S

LIST correctly lists the program:

>LIST
1@ INPUT A,B,C,D,E
28 REM..INPUT 5 VALUES
30 LET S=(A+B+C+D+E) /5
42 REM..S=AVERAGE OF 5 INPUT VALUES
50 PRINT S

LENGTH gives the length in computer words:

ENGTH
53 WORDS.

The remark lines are deleted and the program is listed:

>DELETE 28,40

>LIST
18 INPUT A,B,C,D,E
38 LET S=(A+B+C+D+E) /5
50 PRINT S

APR 1978 2-57

Next, the program is renumbered and listed again:

>RENUMBER

>LIST
18 INPUT A,B,C,D,E
28 LET S=(A+B+C+D+E) /5
38 PRINT S

The program is scratched. When LIST is now specified, there is no current program; the computer
returns a ‘>’ to prompt for further entries:

>SCRATCH
>LIST

>

2-58

Library Commands

When a current program is complete, and if it is to be used again, it should be saved in the user’s
library. A copy of the current program identified by a name is kept in the library when the program
is saved. The current program is not affected; it remains the current program until log off, or until
it is scratched with the SCRATCH command.

When a program is saved, it must be given a name either with the NAME or SAVE command. The
program name is used to get, to append, or to purge a program in the user’s group library. The
name must be unique among names in a particular user’s group library, but it may be duplicated

in other groups. A catalog of the programs and files contained in the user’s library may be requested
with the CATALOG command.

NAME

The NAME command assigns a name to the current program; the form is
NAME programname

The programname specified is assigned to the current program. The programname can be any com-
bination of eight alphabetic and numeric characters, beginning with an alphabetic character.

Example

>NAME PROGX

The current program is assigned the name PROGX.

SAVE

The SAVE command stores a copy of the current program in the user’s library; the form is
SAVE |programname] [!] [, FAST] [RUNONLY] [,MR]

If programname is specified, that name is given to the saved copy, but not to the current program.
If programname is omitted, the name of the current program is assumed; in this case, the program
must have been named before it can be saved. If there is no file with the same name in the user’s
library, a new file is created and a copy of the current program is stored in it. If a file with the same
name already exists in the library, the SAVE command is rejected unless the exclamation mark is
specified, in which case the original file is purged and a new file created.

APR 1978 2-59

FAST causes the program to be saved in pseudo-compiled form so that it can be RUN more quickly.
It also ensures that the program is valid (matching FOR-NEXT pairs, etc.).

A program saved for RUNONLY is assumed to be free of errors and ready for execution. When a
RUNONLY program is brought into the user’s work area with GET, certain commands are illegal
until a SCRATCH or another GET. For instance, a RUNONLY program cannot be listed or modified.
The only commands legal when a RUNONLY program is current are:

ABORT
CATALOG
CREATE
DUMP
EXIT

GET

KEY
PURGE
RESUME or GO
RUN
SCRATCH
SPOOL
SYSTEM
TAPE
XEQ

MR saves a program with MR status, if the user has MR capability (see Section VIII, Dynamic
Locking). Otherwise, the following message appears on the terminal:

COMMAND EXCEEDS USER CAPABILITY

Examples

>SAVE PROGX

The name PROGX is assigned to the copy of the current program that is saved in the user’s library.
>NAME PROGX
>SAVE

The current program is given the name PROGX, and then a copy is saved in the user’s library.

2-60 APR 1978

>SAVE PROGX!,FAST,RUNONLY

A copy of the current program is assigned the name PROGX and stored in the user’s library; any
other program with the name PROGX is purged from the library. The program is saved in pseudo-
compiled form and, if retrieved as the current program, only commands legal with RUNONLY can
be used.

GET

The GET command loads a specified BASIC/3000 program into the user’s working space; the
form is

GET programname
where programname is the name of a program to replace the current program. GET deletes all

traces and breakpoints.

Example

>GET SEARCH

SEARCH is a program saved in the user’s library. It is now also available in the user’s work area
replacing any previous program in that area.

PURGE

The PURGE command removes a file or program from the user’s library; the form is
PURGE {basicfile | programname | filename}

The file or program specified is deleted from the user’s library; it is not recoverable once it has
been purged.

Example

>PURGE PROGX

PROGX is a file or program in the user’s library. It is no longer available to the user and its name
may be assigned to another file or program.

2-61

APPEND

The APPEND command appends a specified program to the user’s current program; the form is
APPEND programname

The program specified is appended to the end of the current program. The last sequence number
of the current program must be smaller than the first sequence number of the appended program.
Programs which have been saved in pseudo-compiled form (see SAVE command) and RUNONLY
programs cannot be appended.

Example

>APPEND PROGX

PROGX is a program saved in the user’s library. It is appended to the program currently in the
user’s work area.

CATALOG

The CATALOG command provides a list of programs or files specified by the user. The list includes
the program or file name, the type, the number of logical records, and if desired, the record width.

The form is:

{CAT | CATALOG) [fileset] [,ALL] [,RECSIZE] [,0UT=asciifile] [,START=filename]

where:

fileset one or more files or programs referenced by file name,
group name, and/or account name. When fileset is omitted,
all the files in the user’s log-on group are listed. (See the
next page for a full description of fileset.)

ALL all ASCII and Binary files are included in the list; if ALL is
omitted, only BASIC files and programs are listed.

RECSIZE requests the record width for each file. If RECSIZE is

omitted, record width is not listed.

2-62

OUT=aqsciifile the file listing is diverted to the specified ASCII file; if OUT
is omitted, the list is on the list device (e.g., the terminal),

START=filename the listing starts with the specified file name.

For each file listed, the file name, the type (BF for BASIC file, SP for saved program, FP for fast
saved program, A for ASCII, B for Binary) and the number of records in the file are listed. The
record width is listed if RECSIZE is specified; the width is in bytes for ASCII files, in words
otherwise. The listing is printed in as many columns as will fit across the width of the list device.

Output can be stopped with CTRL Y, as with the LIST command.

The fileset parameter has three fields that allow the user to request descriptions of one file alone,
or various sets of files. The filename field indicates a specific file or all files within the units
designated by the other fields. The group field denotes the group to which the files belong. The
account field denotes the account to which the group belongs, or it may specify all accounts in
the system, To specify all files, groups, or accounts, the user enters the character @ in the appro-
priate field. The three fields are separated by periods.

The table below shows the possible combination of entries in fileset:

File Field Group Field Account Field Entry Example Meaning

filename groupname accountname FILE.GROUP.ACCT The file named, in the
group and account
designated.

filename groupname FILE.GROUP The file named, in the

group designated under
the log-on account.

filename FILE The file name, under
the log-on group.

@ groupname accountname @.GROUP.ACCT All files in the group
named, under the
designated account.

@ groupname @.GROUP All files in the group
named, under the
log-on account.

@ @ All files in the log-on
group. This is the
default case.

@ @ accountname @.@.ACCT All files in all groups
under the account named.
@ @ Q.@ All files in all groups under
the log-on account.
@ @ @ @.0.Q All files in the system.
@ means all

2-63

Examples Using Library Commands

A program is input,named, and saved in the user’s library. It is then scratched as the current program:

>100 INPUT A,B,C,D,E
>128 LET S=(A+B+C+D+E) /5
>130 PRINT S

>NAME AVERAGE

>SAVE

>SCRATCH

A second program is entered, named, and saved. The first program is then appended to this program
to make a third program. It too is named and saved:

>1@ INPUT R

>20 P=3.14

>33 AzP%R*x%x2
>40 PRINT A
>NAME AREA
»SAVE

>APPEND AVERAGE
>SAVE CALC

Any of these programs may now be brought back as the current program with GET. To illustrate,
each is retrieved and then listed:

>GET AVERAGE
>LIST
AVERAGE
188 INPUT A,B,C,D,E
120 LET S=(A+B+C+D+E) /5
138 PRINT S
>GET AREA
>LIST
AREA
18 INPUT R
20 P=3.14
30 A=P%R*x%x2
408 PRINT A
>GET CALC
>LIST
CALC
19 INPUT R
28 P=3.,14
30 AzPxRxx%x2
48 PRINT A
188 INPUT A,B,C,D,E
120 LET S=(A+B+C+D+E) /5
138 PRINT S

2-64

To determine whether a particular program is in the user’s library, he can type CATALOG followed
by the program name. If there are not too many files in the current log-on group, he can simply
type CATALOG to get a list of all the files currently saved.

In this example, the user requests a catalog of the program CALC. He then types RUN CALC and
the program will be retrieved from the library and run:

>CATALOG CALC

ACCOUNT=LANG GROUP=BASIC

NAME RECORDS NAME RECORDS NAME RECORDS
CALC SP 2

>

>RUN CALC
CALC
760
11504
254,56,43,61,54,73
49.6

If there is no further need for the saved programs, each may be purged as follows:

>PURGE CALC
>PURGE AREA
>PURGE AVERAGE

The program CALC remains the current program as a result of the RUN CALC command until it is

scratched or is replaced by another program in the user’s library, or until the user exits from
BASIC.

Saved programs remain in the library after log-off and can only be removed with the PURGE
command,

2-65

SECTION 1]
Arrays

An array (or matrix) is a set of variables which is known by one name. The individual elements of
an array are specified by the addition of a subscript to the array name: for example, M(7) is the
seventh element of array M.

Arrays have either one or two dimensions. A one-dimensional array consists of a single column of
many rows. The elements are specified by a single subscript, indicating the row desired. Rows and
columns are numbered starting with 1. A two-dimensional array consists of a specified number of
rows and a specified number of columns organized into a table. For example, an array M of five
rows and three columns can be represented as follows:

Columns
1 2 3
1 M(1,1) M(1,2) M(1,3)

2 M(2,1) M{2,2) M(2,3)

M({3,1) M(3,2) M(3,3)

Rows
w

4 M{4,1) M(4,2) M({4,3)

5 M(5,1) M(5,2) M(5,3)

Each element of the array is specified by a pair of subscripts separated by commas; the first indicates
the row and the second the column.

Every array in a BASIC/3000 program is defined in one of three ways:

. Through a DIM statement that specifies the array name, and the number of rows and columns.

. Through a type declaration that specifies the same information as DIM and also declares the
array to contain a particular data type.

. Through usage—numeric arrays that are used but are not explicitly defined in a DIM or type
statement have 10 rows if one-dimensional or 10 rows and 10 columns if two-dimensional.

3-1

The physical size of an array is the total number of elements originally allocated to it; the logical
size is the current number of rows times the current number of columns. The physical size of an
array cannot be changed during execution, but the logical size (that is, the number of rows and
columns) can be changed with a REDIM statement so long as the physical size is not exceeded.

BASIC/3000 permits arrays of all numeric data types as well as one-dimensional string arrays. Re-

marks in this section refer to numeric arrays, unless otherwise noted. String arrays are described in
section V.

This section describes DIM and REDIM as used for numeric arrays. In addition it describes special

statements used for computation and manipulation of one- and two-dimensional arrays. All of these
statements begin with the word MAT.

Whenever an array is referenced within a function or a call to an external procedure, it must be sub-
scripted by * if one-dimensional, or *,* if two~-dimensional. For example,

DIM A(10), B(4,10)

CALL SETVALUE (X,A(*),B(*,*))

3.9 APR 1978

DIM Statement

The DIM statement is used to reserve storage for arrays and to set upper bounds on the number of
elements in arrays. DIM statements may also be used with strings (see Section V).

Form
DIM variable(integer),variable(integer), . . .

where the variable is the array name, and the integer specifies the number of rows in a one-
dimensional array.

DIM variable(integer,integer),variable(integer,integer), . . .

where the variable names a two-dimensional array, and the first integer specifies the number of rows
in the array, the second integer the number of columns.

Rows and columns are numbered starting with 1. The overall array size is the number of elements.
In a one-dimensional array it is identical to the number of rows; in a two-dimensional array it is the
product of the rows and columns.

More than one array can be named in a DIM statement; they are separated by commas.

Explanation

The elements of an array are specified by subscripted variables. The values of the elements are un-
defined when the program begins. The number of elements in the array is defined by a DIM state-
ment, a type statement, or by usage. The DIM statement can appear anywhere in a program and is
not executed. If control transfers to a DIM statement, execution falls through to the next sequential
statement.

Examples

18 DIM Af15)1,B(15,51,B1(2,10]
20 REM A HAS 15 ROWS, ONE COLUMN

38 REM B AND Bl ARE TWO-DIMENSIONAL ARRAYS

40 REM B HAS 15 ROWS, 5 COLUMNS3Bl HAS 2 ROWS,18 COLUMNS
50 DIM Ci51,ClI5,11,C2(1,5)

60 REM C AND Cl HAVE THE SAME DIMENSIONS: 5 ROWS, | COLUMN
70 REM C2 HAS | ROW, 5 COLUMNS

Note that the DIM statement for C1 in line 50 would be the same if it were C1(5).

3-3

REDIM Statement

The REDIM statement is used to vary the number of rows and columns in arrays. REDIM is also
used with strings (see Section V).

Form

REDIM variable(integer expression),variable(integer expression), . . .

REDIM variable(integer expression,integer expression),
variable(integer expression,integer expression), . . .

REDIM is like DIM except that the rows and columns can be specified with integer expressions.
The value of the expression must be positive.

When more than one array is specified in a REDIM expression, they are separated by commas.

Explanation

The variables in a REDIM statement must have been previously dimensioned either explicitly with
a DIM or type statement, or implicitly through use. When using REDIM to redimension an array,
the number of rows and columns can be changed as desired provided these two conditions are met:

. The number of dimensions must not be changed.

° The total number of elements (rows times columns) must not be increased beyond the
physical size (original dimensions) of the array.

Any data elements whose subscripts are included in both the old and new dimensions retain their
old values in the newly dimensioned array. New elements have undefined values.

Arrays may be implicitly redimensioned in MAT READ, MAT INPUT, and the MAT Initialization
and MAT Operation statements.

Examples

180 DIM A[281,B[5,5]

128 FOR X=1 TO 28

150 AlX]1=0

14@ NEXT X

158 Bll1,4)=100

168 PRINT (FOR A=l TO 26,A(A])),Bl1,4]
170 REDIM A[101,B[2,6] ,
188 PRINT (FOR A=l TO 18,A[A)),Bl[1,4]

3-4

Each element in A is set to zero, then one element in B is set to 100, and the results are printed.
After redimensioning, the results are again printed. Note that B(4,1) is not affected by REDIM
since it is still within the bounds of the redimensioned array.

2 2]] @
) 2 2 2 2
2 2 2 2]
) ") 2]]
100 y

; ; o GG © 2
) 2]]]
1902

In the example below, array C is dimensioned by use to have 10 rows and 10 columns, and array C5
to have 10 rows. An element in each array is assigned a value which, when the arrays are redimen-
sioned, are out of the bounds of the array. Other elements within the new bounds are then given
values and printed.

18 Cl4,1]
20 C511921
3@ REM BOTH C AND C5 ARE DIMENSIONED BY USE
49 REM C WITH 1@ ROWS AND 12 COLUMNS
50 REM C5 WITH 13 ROWS
68 PRINT Ci4,1]
78 PRINT C51101
80 REDIM C{2,121,C5(5]
99 REM C(4,1) AND C5(1@) ARE NO LONGER DEFINED
130 Ci2,11=70
113 C5151=100
128 PRINT LINC1),CI2,11,C5(5]
>RUN
99
2

=99
=8

18 129

3-5

Storing Data in Arrays

There are several methods of assigning values to arrays. Individual elements can be assigned using
the assignment statement:

10 LET Al5)=26
20 Bl1,91=Nx4,5

In addition, individual elements can appear in INPUT and READ statements:

18 INPUT ALl 1,Al21,A13]
20 READ Bli2]

If embedded FOR loops are used, entire arrays can be filled element by element:

18 INPUT (FOR N=1 TO 5,A[ND
20 READ (FOR N=zI TO 5,(FOR M=1 TO 5,BIN,M]))

To simplify the use of arrays, the MAT INPUT and MAT READ statements are provided to fill
entire arrays.

MAT READ/INPUT STATEMENTS

The MAT READ statement assigns values from DATA statements to entire arrays, row by row. If
dimensions are specified, the array is given new logical dimensions. The MAT INPUT statement is
identical to MAT READ except that the values are taken from the input device (e.g., terminal) as
in an INPUT statement.

Form
MAT READ array, array, . ..

MAT INPUT array, array, . . .

each array is either an array name (A,B7, etc.) or an array name followed by new dimensions
(A(5), B(5,d)). The dimensions can be expressions. The rules for assigning new dimensions are given
in the description of REDIM.

3-6

Explanation

If an array is dimensioned in MAT INPUT or MAT READ, the new logical size (i.e., the total
number of elements) must not be more than were originally allocated to the array, nor may the
number of dimensions be altered.

If the array is a string array, only the number of elements can be changed by MAT INPUT or MAT
READ. The size of the elements in the string cannot be changed. (See Section V for a description
of strings and string arrays.)

None of the special extensions available with a simple INPUT, such as saving excess input, are
allowed with MAT INPUT,

Examples

18 DIM AlS1,C(10,4)
2@ MAT READ A
25 RESTORE
38 MAT READ C[8,4)
40 PRINT AL11,A(51,A(9)
58 PRINT CI[1,11,C(5,2),C(8,4])
1800 DATA 1,2,3,4,5,6,7,8,9,10
1212 DATA 18,5,8,7,6,5,4,3,2,!
1838 DATA 30,31,32,33,34,35,36,37,38,39
1248 DATA 40,41,42,43,44,45,46,47,48,49

>RUN
I 5 S
1 3 4]

Three elements from each array are printed. Array C is redimensioned by MAT READ in line 30.
Note that the RESTORE and DATA statements have the same functions with MAT READ as they
do with READ.

In the next example, the MAT INPUT statement expects input from the user. Both arrays A and C
are printed in their entirety using FOR loops as print items.

16 DIM A[91,Cl2,3)

280 MAT INPUT A,C

38 PRINT (FOR Nzl TO S,ALN))

40 PRINT (FOR Nzl TO 2,(FOR M=l TO 3,CIN,M]))

>RUN
2998,74645,4,3,2,1
27722,35,44,55,66,177

S 8 7 6 5
4 3 2 i

22 33 44 55 66
77

3-7

Printing Data from Arrays

The mechanisms for printing data from arrays are parallel to those used for filling arrays. Individual
elements can be printed using PRINT:

188 PRINT ALl 1,AL21,A[3]
If embedded FOR loops are used, entire arrays can be printed element by element:

180 PRINT (FOR N=1 TO 15,A[ND)
200 PRINT (FOR N=1 TO 15,(FOR M=1 TO 5,BIN,M)))

To simplify the use of arrays, the MAT PRINT statement is provided to print entire arrays. MAT
PRINT is also available for printing string arrays (see Section V) and for printing arrays to files (see
Section VIII). In addition, the length of the print line can be changed by using the MARGIN state-
ment (Section VIII) together with the MAT PRINT or MAT PRINT # statements. To print arrays
according to a customized format, see the MAT PRINT USING and MAT PRINT # USING state-
ments described in Section I1X.

MAT PRINT STATEMENT

The MAT PRINT statement allows the printing of one or more complete arrays in a single statement.
The elements are printed row by row and can be spaced out in fields or packed together, as in the
PRINT statement (Section II).

Form
The form of a MAT PRINT statement is:
MAT PRINT mat print item,mat print item, . . .

A mat print item is either an array name or special function (TAB,LIN,CTL, and SPA); items are
separated by a comma or semicolon and the list is optionally terminated by a comma or semicolon.
FOR loops are not allowed in MAT PRINT.

Explanation

Each row of each array is printed separately, with double spacing between rows. If a comma follows
the array, each element starts in one of the consecutive divisions of the line (see “PRINT Statement,”
Section II). If a semicolon follows the array, the elements are printed packed together, as if each
element were followed by a semicolon. If nothing follows the last array, a comma is assumed. All
formatting is done according to the specifications under PRINT statement.

An undefined array element causes the program to terminate. A one-dimensional array is printed as
a single row.

3.8 AUG 1978

Examples

19 DIM A[121,B15,51,Cl2,2)

20 MAT READ A,BI3,51],C

30 MAT PRINT A

40 PRINT

5@ MAT PRINT B,LINC1),C,LINCI)

6@ MAT PRINT A3 LIN(2),B;
1800 DATA 2.5,46.7,75,8,50.1,08,0,0,19.8,8
1812 DATA 1,2,3,4,5,6,7,8,9,10
1028 DATA 11,12,13,14,15,16,17,18,19,22

*>RUN

2.5 46,7 15] 58,1
(% /]) 19.8 |
1 2 3 4 5
s 7 8 9 10
11 12 13 14 15
16 17

18 19

2.5 46,7 15 /] 50.1] 2]
19.8 /)]

| 2 3 4 5

s 7 8 9 10

11 12 13 14 15

Note the effect of the semicolons following A and B in the MAT PRINT statement, line 60, on the

printed output. MAT READ in line 20 redimensions array B; redimensioning of arrays is not per-
mitted in a MAT PRINT statement.

3-9

Initializing Arrays

Three special functions (ZER, CON, IDN) provide the means to initialize numeric arrays with
certain values, and optionally to redimension the arrays.

Form
The forms of MAT initialize statements are:

MAT numeric array=function

MAT numeric array=function(dimension)
The allowable functions are ZER, CON, and IDN.

The (dimension) part is optional and consists of one or two integer expressions separated by a
comma. It changes the logical size of the array.

Explanation
ZER sets all elements of the array to zero.
CON sets all elements of the array to one.

IDN assigns an identity array to the array specified. The identity array is all zeroes, except the
major diagonal which is all ones. The major diagonal starts in the upper left corner. If the array is
not square, ones are extended along the diagonal as far as possible.

If an array is redimensioned by ZER, CON or IDN, the new size cannot have more elements than
the original size, nor can the number of dimensions be altered.

Examples

19 DIM A[5,5)
20 MAT A:=ZER
38 MAT PRINT A

>RUN

"/) 2 2
7/ 0 "/)]
2 2 2 0
"/ 0) g
2 ’/ 2]

3-10

Function ZER sets each element in array A to zero.

18 DIM AL 4,4)

20 MAT A=CON(3,4)

3@ MAT PRINT A
SRUN

l l I 1
1 1 1 1
1 1 1 1

MAT A=CON(3,4) redimensions array A to have 3 rows and 4 columns, and sets each element in
the newly dimensioned array to 1.

10 DIM AL5,5)
20 MAT A=IDN(4,4)
58 MAT PRINT A

>RUN

1 2 2
2 1 2]
2 2 1 2
] 0 2 l

IDN(4,4) changes the dimensions of A to 4 rows by 4 columns and sets the major diagonal to 1, the
remaining elements to zero. If the array is not square, the extra elements are set to zero:

18 DIM A[5,5]
20 MAT AzIDN(5,3)
36 MAT PRINT A

>RUN

1 2 2
2 l 7]
]] |
@ @ 7]
] 2 /]

3-11

Array Operations

This group of six statements provides functions which operate on one or more entire arrays:

MAT Copy statement

MAT Add/Subtract statement
MAT Multiply statement

MAT Inverse statement

MAT Transpose statement
MAT Scalar Multiply statement

The arrays named in each statement all must be the same numeric type (see Section 1V, Variable
Types).

ARRAY COPYING
The MAT Copy statement copies one array into another. The form is
MAT numeric array=numeric array

The array on the right is copied into the array on the left. The destination array must have at least
as many elements as the source and the same number of dimensions. It is redimensioned to have
the same number of rows and columns as the source.

Examples

19 DIM Al[2,31,B2(3,2]
20 MAT READ B2
38 MAT Al=B2
40 MAT PRINT Al
1008 DATA 2.5,46.7,75,0,50.1,08,0,8,15.8,9

>RUN

2.5 46.17
75]
58.1 2

3-12

ARRAY ADDITION/SUBTRACTION

The MAT Add/Subtract statement performs array addition or subtraction (element by element)
upon arrays of identical logical size and assigns the result to another array. The form is

MAT numeric array=numeric arraytnumeric array

MAT numeric array=numeric array — numeric array

The resulting array is assigned to the array on the left, which is redimensioned as in MAT copy. Any
or all of these arrays may be the same array.

Examples

16 DIm B(2,21,A1(2,2],A2(2,2]

20 MAT READ Al,A2

30 MAT B=Al+A2

48 MAT PRINT Al,LINC2),A2,LINC2),B
1210 DATA 1,2,3,4,5,6,7,8,95,10

>RUN

1 2
3 4
5 6
7 8
6 8
10 12

The values in arrays Al and A2 are added to produce the values printed for array B. Using the same
data, Al is subtracted from A2 to produce the following results in B:

12 DImM Bl2,21,A1(2,21,A2(2,2)
20 MAT READ Al,A2
30 MAT B:=Al-A2
40 MAT PRINT B
1318 DATA 1,2,3,4,5,6,7,8,9,10

SRUN
-4 -4
-4 -4

3-13

ARRAY MULTIPLICATION

The MAT Multiply statement performs an array multiplication on an array of dimension m by n
and an array of dimension n by p; that is, the number of columns in the first array must equal the
number of rows in the second. The result, a new array of dimension m by p, is assigned to a third
array. The form is

MAT numeric array = numeric array * numeric array

Each row of the array to the left of * is multiplied by each column of the array on the right to pro-
duce the new element. The resulting array is assigned to the array to the left of the assignment
operator. This array is redimensioned to dimension m by p as in the MAT Copy statement. Any or
all of these arrays may be the same array.

Examples

1@ DIM Al[2,31,A203,2),B[2,2]

20 MAT READ Al,A2

30 MAT B=A1*A2

48 MAT PRINT Al3LINCI),A25LINC]),Bs
100 DATA 1,2,3,4,5,6
200 DATA 4,5,6,7,8,9

>RUN
i 2 3
array Al
4 5 6
4 5
6 7 array A2
8 S
42 46 }
array B=A1%*A2
94 129

The method for performing a matrix multiplication is to multiply each element of the first row of
array Al by the corresponding element of the first column of A2 and to add the products. The
result is the element B(1,1). Then each element in the first row of Al is multiplied by the corres-
ponding element in the second column of A2 and these are added to produce B(1,2). B(2,1) is the
sum of the products resulting from the multiplication of row 2 of Al and column 1 of A2;

B(2,2) is the sum of the products of row 2 of Al and column 2 of A2. To illustrate:

1X4 (4) + 2X6 (12) + 3X8 (24) = 40 1X5 (5) + 2X7 (14) + 3X9 (27) = 46
4X4 (16) + 5X6 (30) + 6X8 (48) = 94 4X5 (20) + 5X7 (35) + 6X9 (54) = 109

3-14

A second example multiplies the square array C by itself. In this case, the number of columns
always equals the number of rows.

12 DIM Cl3,3]

20 MAT INPUT C

38 MAT PRINT CsLINCL)
40 MAT C=C*C

50 MAT PRINT Cj

>RUN
22,4,6,8,1,3,5,7,9
2 4 §

8 1 3

5 7 9

66 54 18
39 54 18

111 93 132

To achieve the result MAT C=C*C;

C(1,1) = 2X2 (4) + 4X8 (32) + 6X5 (30) = 66
C(1,2) = 2X4 (8) + 4X1 (4) + 6X7 (42) = 54
C(1,3) = 2X6 (12) + 4X3 (12) + 6X9 (54) = 78
C(2,1) = 8X2 (16) + 1X8 (8) + 3X5 (15) = 39
C(2,2) = 8X4 (32) + 1X1 (1) + 3X7 (21) = 54
C(2,3) = 8X6 (48) + 1X3 (3) + 3X9 (27) = 78
C(3,1) = 5X2 (10) + TX8 (56) + 9X5 (45) = 111
C(3,2) 5X4 (20) + 7X1 (7) + 9X7 (63) = 90
C(3,3) 5X6 (30) + TX3 (21) + 9X9 (81) = 132

3-15

This next example multiplies a two-dimensional array with three rows and two columns by a one
dimensional array with two rows. The result is a one-dimensional array with three rows.

10 DIM Al3,21,Bl21,Cl3]
20 MAT READ A
30 MAT READ B
42 MAT C:=AxXB

50 DATA 1,2,3,4,5,6,1,2
6@ MAT PRINT A3 LINCI),BsLINCI),Cs
>RUN
| 2
3 4
5 8
| 2
5 11 17

To achieve the result MAT C=A*B:
C1)=1X1(1)+2X24)=5
C(2)= 3X1 (3) +4X2 (8) =11
C(3)= 5X1 (5) + 6X2(12) =17

ARRAY INVERSION

The MAT Inverse statement assigns the inverse of a square array (i.e., number of rows equals
number of columns) to another array. The inverse of an array is the array which, when multiplied
by the original array, results in the identity array. The form is

MAT numeric array = INV (numeric array)

The arrays must not have been declared type integer (see Section IV). The array to the left of the
assignment operator is redimensioned as in MAT Copy. The two arrays may be the same.

3-16

Example

12 DIM A(10,31,B(5,5)
20 MAT INPUT B

30 MAT AzINV(B)

43 MAT PRINT B,LINC(2),A

;?l,jg,ﬂ,ﬁ,ﬂ,z,l,0,0,0,3,2,1,0,0,4,3,2,1,0,5,4,3,2,1
1 2 7] 8
2 1] @
3 2 l 2
4 3 2 1
p) 4 3 2
1 2 2 9

-2 l 8 2
1 -2 l]
e l -2 1
2 2 l -2

25 values are input to the square array B, then using INV, array A is set to the inverse of B.
Array A is redimensioned to the same dimensions as B.

3-17

ARRAY TRANSPOSITION

The MAT Transpose statement assigns the transposition of an n by m array to an m by n array.
Transposition switches rows and columns. The form is

MAT numeric array = TRN (numeric array)

The array to the left is redimensioned as in the MAT Copy statement. The two arrays may be the
same.

Example

10 DIM A(5,31,B(3,5]

20 MAT INPUT B

38 MAT A=TRN(B)

40 MAT PRINT B,LIN(2),A
>RUN
71 92939495,6,7,8,9,10,11,12,13,14,15
l 2 3

4 >
6 7 8 S 19
11 12 13 14 15

l 6 11
2 1 12
3 8 13
4) 14
5 10 15

Array A is the result of transposing array B with the TRN function. The columns in B are the
rows in A; the rows in B are the columns in A.

3-18

ARRAY SCALAR MULTIPLICATION

The MAT Scalar Multiply statement multiplies all of the elements of an array by a specified value
and assigns the result to another array. The form is

MAT numeric array = (numeric expression) * numeric array

The array to the left is redimensioned as in the MAT Copy statement. The two arrays may be the
same.

Example

13 N=5

20 MAT INPUT B

30 PRINT

48 MAT Al=(N*2)*B

5@ MAT PRINT Alg

60 DIM AlLl3,4)

70 DIM B[(2,6]
>RUN
21,2,3,4,5,6,7,8,9,108,11,12

19 20 30 40 52 60
70 808 5@ 100 118 120

Scalar multiplication simply multiplies each element of the array by the specified numeric expres-
sion, in this case N*2 or 10 since N=5. Each element of the resulting array Al is 10 times the
corresponding element in B. The dimensions of Al are copied from B. The two arrays must be the
same numeric type; the numeric expression may be a different type.

The numeric expression, if a different type, is converted to the type of the arrays before multipli-
cation is performed. The conversion may affect the result if, for instance, the scalar expression is

type real and the arrays are type integer. Consider the following:

MAT A = (2.5)*B, where A and B are integers, is equivalent to MAT A = (3)*B.

3-19

Array Functions

Two functions which can be used in expressions return information about arrays: ROW and COL.

ROW Function
The ROW function has the form
ROW (array)

and returns the number of rows in the array (a one-dimensional array consists of one column,
many rows).

COL Function
The COL function has the form
COL (array)

and returns the number of columns in the array (returns 1 if the array is one-dimensional).

Examples

10 READ M, N

28 MAT READ A[M,N]

38 PRINT (FOR Izl TO ROWC(CA), (FOR J=1 TO COLCA),AlI,J]))
40 DATA 345,1,2,3,4,5,6,748,9,18,11,12,13,14,15

sRUN

i 2 3 4 5
s 7 8 9 19
11 12 13 14 15

The dimensions of array A are read into the variables M and N. The functions ROW(A) and COL(A)
are used in the FOR loop to determine the print bounds for printing the array.

3-20

SECTION IV
Variable Types

In addition to the floating-point real numbers used so far in this manual, BASIC/3000 allows three
additional representations of data: integer, long real, and complex. Including real, these four num-
ber types apply to variables, arrays, constants, expressions, assignments, functions, input and output.

4-1

Type Statements

The type statements allocate space for variables and arrays and assign them a specific data type. Any
particular variable or array can appear only in one type statement or DIM statement.

Form
The form of the type statement is
type typespec list

where type is either INTEGER, REAL, LONG, or COMPLEX. The typespec list includes variables
and arrays to be assigned the data type of type. Arrays are defined in the same form as in the DIM
statement (Section III),

Explanation

A simple variable or array which does not appear in a type statement is automatically type REAL.
The explicit typing of variables in a REAL statement is, therefore, redundant, except within a func-
tion body, where all local variables must be declared in order to distinguish them from variables of
the same name outside the function. Real numbers are represented as 32-bit quantities consisting
of a sign, exponent, and fraction. The range of real numbers is + (10-77 1077) with approximately
6 to 7 digits of precision.

Variables which appear in an INTEGER statement hold integers. The range of integers is -32767 to
32767.

Variables which appear in a LONG statement hold long numbers. Long representation is a 64-bit
quantity with sign, exponent, and fraction. The range is identical to real, but long has a precision
of 16 to 17 digits.

Variables which appear in a COMPLEX statement hold numbers in complex form. Complex repre-
sentation is a 64-bit quantity consisting of two real numbers, one for the real part of the complex
number and one for the imaginary part.

NUMERIC CONSTANT FORMS

When constants are used in an expression, DATA statement, or during execution of an INPUT or
ENTER statement, they are represented in one of five forms: integer, fixed-point, floating-point,
complex, or long. Fixed and floating-point numbers are type REAL.

Integer Form

An integer is a series of digits without a decimal point. A number in integer form is represented
externally (e.g., on the list device) as type INTEGER, but internally as type REAL. Examples of
integer form:

1@ INTEGER A,B,C,D
20 A-19,B=1508,C=5503,D=5
30 PRINT A,B,C,D
>RUN
18 150 5903 5

When arithmetic operations are performed on expressions containing an integer constant, the results
are real numbers. However, when both operands are type INTEGER, the result is truncated to the
nearest integer. For instance,

12 INTEGER I,d

20 LET 1=3,J35

38 PRINT 3/5,3/d,1/5,1/7d
>RUN

o6) o6)

Fixed-Point Form

A fixed-point number is a series of digits with a decimal point. A number in fixed-point form is
represented internally as type REAL. For example:

12 REAL A,B,C,D
20 A=73,B=5.5,C=,200567,D=153,97
32 PRINT A,B,C,D
>RUN
73 5.5 000567 153.57

Floating-Point Form

A floating-point number is a fixed or integer form number followed by the letter E and an optionally
signed exponent. The exponent represents the power of 10 by which the number is multiplied. For

example 3E-11 equals 3 X 10-11, Numbers in floating-point form are represented internally as type
REAL. Examples of floating-point numbers:

12 REAL A,B,C,D
20 A=3E-!1,B=.,4723E~-4,C=1.1E4,D=].IE]lD
38 PRINT A,B,C,D

>RUN

3 .B0000E-11 4,72300E-05 11030 1.10000E+10

A fixed or floating point real number that has an integer value between -999999 and 999999 is
printed as an integer.

APR 1978 4-3

Complex Form

A complex number consists of two numbers in integer, fixed-point, or floating-point form, separated
by a comma and enclosed in parentheses. The first number is the real part, the second represents
the imaginary part. Complex numbers are represented internally as type COMPLEX. Examples of
complex numbers:

18 COMPLEX A,B,C,D

20 A=(3,5),B=(3.26-5,9),C=(2,-47),D=(3,2)

3@ PRINT A,B,C,D

>RUN

(3.00000E+00, 5.00000E+20) (3.20000E-29, 0.70000E+22)
(0.,00000E+03,-4.708000E+01) (0.,00000E+00, Q.0C200E+22)

Long Form

Numbers in long form are identical to numbers in real form, except that the letter E is replaced by
the letter L.. Long numbers have almost double the precision of real numbers. Long numbers are
represented internally as type LONG. Examples of long numbers:

13 LONG A>B,C,D
20 A=3L-11,B=4.751259L-6,C0=-1+1L5,D=1.1L-15
3@ PRINT A,B,C,D

>RUN
3.0000200002000800L-11 4.751259000000200L-06
-1. 1002000000333 0L+35 1.1002000002230801L.~-15

Examples of Type Statements

This example assigns values to and prints two integer variables and an integer array:

18 INTEGER A,Bl,N(5,5]

28 LET A=5,B1=19

30 MAT N=ZER

40 PRINT A,Bl

5¢ MAT PRINT Ns
>RUN
5 19
)))))
)))))
)))))
)))))
)) /)))

Note that the type statement is used instead of a DIM statement to define the dimensions of array N.

4-4

This example assigns values to and prints two real variables; one is printed as floating-point and the
other as fixed-point:

10 REAL 1,J

28 LET 1:=2795348.6,J:=2.79E-3
32 PRINT 1,d

>RUN

2.79535E+86 08279

I is printed as a floating-point number because its magnitude is greater than 999999.5; J is printed
as fixed-point because its magnitude is less than 999999.5 (see Numeric Output Formats in the
PRINT statement description, Section II). Note that the printed value of I is rounded.

The following example inputs values to the type LONG variable P, then doubles each value and
prints it:

13 LONG P

20 INPUT P

30 LET P=P+P

40 PRINT P
>RUN
.7L+107
S.40000022320200003L+10

>RUN
?72.5L+12
S.0000000030003230L+12

>RUN
22.0L+11
4.000000000000303003L+11

The example below reads data into two complex variables and one complex array, and then prints
the variable and array values:

18 COMPLEX C9,R8,M[15])

20 READ C9,Q8

3¢ MAT READ M[5)

48 PRINT C9,LINCI),Q8,LINCL)
5@ MAT PRINT M3

90 DATA (4.5E-6,1.2E-9),4.23E6

>RISS DATA (3’9)’ (405,'5@)’ (4 osE"S, | QZE-S)’ (25 3 ’5002)’ (ﬂ, d)

(4.50000E-96, | .20000E-29)
(4.23000E+06, 0.000C00E+28)

(3.00000E+00, S.00008E+20) (4.,50200E+20,-3.30023E+21)

(4.50000E-36, |.20000E-29) (2.53000E+01, 3.02002E+01)
(0.A0000E+00, 0.00000E+020)

4-5

PRINTING LONG AND COMPLEX DATA

Numbers of all data types can be output with the PRINT statement. All numeric quantities, regard-
less of type, are printed left-justified in a field whose width is always a multiple of 3. At least one
blank is always printed on the right side of the field, unless it is the last item on the line.

The output form for values of type INTEGER and REAL is described under Numeric Output For-
mats in the PRINT statement description, Section II.

The output form for long quantities is an 16 digit fixed-point number followed by an exponent and
two trailing blanks. The total required is 24 print positions.

sign fixed-point number Ltexponent trailing blanks
16 digits & decimal pt. L
I S B | I { 1 A - L i L i L i i I 1 - i i

For example:

12 LONG A,BsCsDsE

20 A=7.32151L9,B=4.32L-8

33 C=4.3214978L-8,D=2.173L2

40 E=2.173L6

S@ PRINT ASBSCSLINC1),DFE
>RUN
7.321500200000009L+39 4.32000000000080001.-08 4.3214978000302000L-08
2.1730000000030000L+02 2.173000000000000L+06

The output form for complex numbers is two real numbers separated by a comma and enclosed in
parentheses (i.e., this is the same form as a complex constant). Each part of the number is printed
as a separate 6-digit fixed-point number, followed by an exponent. The total required is 30 print
positions including 3 trailing blanks:

real number real number trailing blanks
(,)
(6 digits & decimal pt. Etexp , 6 digits & decimal pt. E +exp)
f b L RN 1 i 1 L1 k U WY N U T 1 1 i L1 Pl
sign sign

For example:

12 COMPLEX A,B
22 LET A=(1.2E8,1.39E=-6)
30 LET B=(12.5,1.56E8)
49 PRINT A3B
>RUN
(1.20000E+08, |.35028E-06) (1.25000E+81, }.56030E+36)

4-6

NUMERIC EXPRESSIONS

Variables of all data types and numbers of all data forms can be used in numeric expressions.
BASIC/3000 provides the arithmetic operations for all four data types as well as automatic conver-
sion when two operands are not of the same type. The following table summarizes the results of
combining arithmetic elements with any operator (except AND, OR, NOT, and relationals):

Second Element Data Type

INTEGER REAL LONG COMPLEX
8
& INTEGER INTEGER REAL LONG COMPLEX
2]
-
8 REAL REAL REAL LONG COMPLEX
£
-]
E LONG LONG LONG LONG COMPLEX
w
£ COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX
w

When the operators AND, OR, NOT, =, <,>, <=,>=, and <> are used, the result is always type
REAL (O for false, 1 for true). When relations are performed on complex numbers, the real parts
are compared first; the imaginary parts are compared only if the real parts are equal.

Examples

An integer combined with a real type in an expression results in a real number; two integers result
in an integer:

10 INTEGER I,I1
20 REAL R
50 LET I1=25,11=50,R=2.75
40 PRINT I+I1l
58 PRINT I+R
>RUN
75
27,75

A real type combined with a long results in a long type number; a long type combined with a com-
plex results in a complex type number:

18 REAL R
20 LONG L
3¢ LET L=-5.25L2,R=2.75
48 PRINT L+R
5@ COMPLEX C
60 C=(2.75,-1.25)
73 PRINT L+C
>RUN
~5.222500000000000L+032
(-5.22250E+22,-1.25900E+20)

4-7

CONDITIONAL STATEMENT

The numeric expression used to make a branching decision in a conditional statement (Section II)
can contain, or result in, any numeric data type. The expression is considered false if equal to O,

true otherwise.

NUMERIC ASSIGNMENT

When the result of a numeric expression is assigned to a variable, it is converted to the type of that
variable. In a LET statement, the same result can be assigned to several variables in turn, from right
to left (A=B=C=5+D7). These variables need not be of the same type. If they are not, a conversion
is performed at each step in the assignment.

The method of conversion used in assigning values to variables of differing data types is summarized

in this table:

Variable Type Value Type Conversion Method

INTEGER REAL Round.

INTEGER LONG Round.

INTEGER COMPLEX Round real part; drop imaginary part.

REAL INTEGER Float.

REAL LONG Truncate to real precision.

REAL COMPLEX Drop imaginary part.

LONG INTEGER Float to long precision,.

LONG REAL Extend mantissa with zeroes.

LONG COMPLEX Ektend mantissa of real part with zeroes; drop
imaginary part.

COMPLEX INTEGER Float for real part; imaginary part equals zero.

COMPLEX REAL Imaginary part equals zero.

COMPLEX LONG Truncate to real precision for real part; imaginary part
equals zero.

Note that this table applies wherever values are assigned to variables (INPUT, READ, etc.).

4-8

An example of multiple assignment with type conversion is:

19 INTEGER I

20 REAL R

33 COMPLEX C

49 LONG L

S@ LET R=C=1I=L=1.5L0
6@ PRINT R,C,ILL

>RUN
2 (2.00000E+00, Q0.00000E+0@) 2

1.500000000030000L+00

Note that the long number is rounded up to 2 when it is converted to the integer variable I. R and
C also equal 2 since they are assigned after I. If line 50 is changed so that C is assigned before I, the

rounding does not affect C:

13 INTEGER I

29 REAL R

38 COMPLEX C

49 LONG L

53 LET R=1I=C=L=1.5L0
€7 PRINT R,C,I,L

>RUN
2 (1.50000E+00, 0.00000E+32) 2

1.500000000C0000733L+00

If the constant 1.4 is assigned instead of 1.5, the number is rounded to 1 when it is converted to an
integer and assigned to I. As a result of this integer conversion, R is also set equal to 1:

13 INTEGER I

20 REAL R

30 COMPLEX C

4¢ LONG L

50 LET R=1=C=L=1.4L0
62 PRINT R,C,I,L

>RUN
1 (1.40200E+00, 2.00000E+30) 1

1.400023000002003030L+30

ENTERING NUMERIC DATA

Constants of all data forms can be entered using READ, INPUT, and ENTER statements. Once
entered they are converted to the type of the receiving variable according to the table under

“Numeric Assignment.”

OTHER USES OF DATA TYPES

Numbers of all data types can be output with controlled format with the PRINT USING statement
(see Section 1X). Numbers of all data types can also be written onto and read from mass storage data
files. This process is described fully in Section VIII.

49

NUMERIC ARRAYS

Arrays can be of all data types. Each element of the array is a variable of the specified type. The
type statement effectively provides the dimensions of an array. All of the MAT statements dealing
with arrays (see Section III) apply equally to integer, real, long, and complex arrays, except that
integer arrays cannot be inverted with the MAT Inverse statement. Arrays of different types cannot

be mixed in a MAT statement.

Examples

18 INTEGER IC3,5]

2@ LONG LC2,2]

30 REAL R[2,2]

4@ COMPLEX CrC2,21

50 MAT 1=ZER

63 MAT R=CON

7% MAT C=IDN

8@ MAT L=IDN

9@ MAT L=(25%%2)*L

189 MAT PRINT ISLINCI)>>RSLINC1Y>CSLINC1),LS

>RUN
] 2 g] a2
14} 1% 2 a /]
) ? 0 ? |

(1.00000E+30, 2.30000E+00) (0.00QG0E+00, 0.000F0E+@2)

(B.20000E+00, 0.00000E+803) (1.00000E+00, @.00000E+33)

6.25030000303003000L+062 2.000000000000000L+00

P.000000000000000L+30 6.2500000000000300L+022

4-10

FUNCTION CLASS
Numeric built-in functions are divided into four classes according to the nature of their result.

The following table defines the four classes of function. The type of result they return is shown for
the different argument types:

Type of Argument

INTEGER/REAL LONG COMPLEX
1 REAL LONG REAL
w 2 REAL LONG COMPLEX
s
© 3 COMPLEX COMPLEX COMPLEX
4 REAL REAL REAL

The numeric functions are listed below according to their class. A complete list of these functions
with their meaning is contained in Appendix E.

Class 1 Functions

ABS(x) Absolute value of x.

ATN(x) Arctangent x.

INT(x) Largest integer less than or equal to x.
CEI(x) Smallest integer greater than or equal to x.

Class 2 Functions

EXP(x) eX

LOG(x) logx

SQR(x) Square root of x.
SIN(x) Sine x.

COS(x) Cosine x.

4-11

TAN(x)
SNH(x)
CSH(x)
TNH(x)

PIX(x)

Class 3 Functions
CNJ(x)

CPX(x,y)

Class 4 Functions
RND(x)
REA(x)

IMG(x)

Tangent x.
Hyperbolic sine x.
Hyperbolic cosine x.
Hyperbolic tangent x.

m*X

Complex conjugate of x.

Complex number x+yi

Random number.
Real part of x.

Imaginary part of x.

4-12

SECTION V
Strings

BASIC/3000 allows the programmer to manipulate character strings through the use of string literals,
variables, arrays, functions, operators, assignment statements, and input/output statements. Many of
the uses of strings are enhancements to statements that have already been described, such as READ
and PRINT.

LITERAL STRINGS

A literal string is a sequence of up to 255 characters. Each character is represented internally by a
number between zero and 255 as defined in the standard ASCII character set (see Appendix A).
Some of these characters have graphic representations (they can be printed—A, B, d, %), while others

do not (they are nonprinting—return, linefeed). Both types of characters can be included in a literal
string, but each is handled differently.

Form

A literal string consists of a series of graphic characters surrounded by quote marks:
“character string”

The quote mark cannot be included as a character in the character string.

The quote mark and nonprinting characters can, however, be included in a literal string by using
the integer numeric equivalent of the character preceded by an apostrophe:

‘integer
The integer may be in the range 0-255, but it is good practice to restrict this form to nonprinting

characters and the quote mark (34). Nonprinting characters can be combined with quoted strings
in a literal string.

5-1

Explanation

Literal strings can include both upper case and lower case letters. When a literal string is printed,
each character value is printed literally on the output device. However, when a program is listed,
literal strings are listed with all graphic characters except the quote mark in quotes and non-graphic
characters represented in the apostrophe form.

Examples
e A null string (a string of zero length)
“"BASIC”
"B "
‘13'19 Carriage return, line feed
*13 10" TRIPLE STRING™ *7 The literal ends with a bell
"A" '124"B" The literal is A vertical line B
‘34 The quote mark

The apostrophe literal form can be juxtaposed with another apostrophe literal; quoted strings can-
not be juxtaposed with one another.

DIM Statement with Strings

Literal strings can be contained in string variables, simple or subscripted. Simple string variables
greater than one character in length and every array string variable must be dimensioned in a DIM
statement. The purpose of the DIM statement is to reserve storage for strings and arrays and to
establish their names and maximum size.

Form

The DIM statement consists of the word DIM followed by a list of variable and array definitions
separated by commas.

DIM variable(string size),variable(string size), . . .

where variable is the name of a simple string variable specified as a letter followed by a $ or a letter
and a digit followed by a $, The string size is an integer constant that specifies the maximum
number of characters the string can contain.

DIM variable(array size,string size),variable(string size), . . .

The array size specifies the total number of elements in the array; the string size specifies the maxi-
mum number of characters in each element. Only one-dimensional string arrays are allowed. Both
array size and string size are integers.

If more than one variable is included in a single DIM statement, they must be separated by commas.
Simple string and string array variables may be dimensioned in the same DIM statement.

Explanation

If a string variable does not'appear in a DIM statement then it is implicitly defined as a one-character
simple variable. String arrays must be declared in DIM; there is no implicit size for string arrays as
there is for numeric arrays. String variables and elements of string arrays are initialized to the null
string,

The DIM statement can also be used to declare numeric arrays in the same or a different statement
(see Section III).

Example

10 DIM ASC193,B8(5,121,C5%8(19, 121
20 A$="TITLE OF SECTION IS"
38 MAT READ BS:

43 MAT READ C5%
50 DATA "ARRAYS” ,"STRINGS™,"MESSAGES"™," FILES","INPUT/OUTPUT"

60 DATA "Al"’"AZ"’"AS"’”A4"’"A5""'Bl""iBzi""Bs""'84""'85"
76 PRINT A$,C5815),B3$I[5]

>RUN

TITLE OF SECTION IS A5 INPUT/0UTPUT

The entire simple string variable A$ is printed, followed by the 5th element of the string array C5$
and the 5th element of the string array BS$.

5-4

REDIM Statement with Strings

The purpose of the REDIM statement is to dynamically vary the number of elements in a string
array, but not the string size itself.

Form

The form of the REDIM statement is the word REDIM followed by a list of previously dimensioned
string array variables, each one followed by a new size specification in parentheses.

REDIM variable(new array size)

The new array size must be an integer or an integer expression that results in a value between 1 and
the previously defined maximum size of the array. Only the array size may be redimensioned; the
string size may not be changed. Simple string variables may not be redimensioned. The variable
must be a string array that has been dimensioned, either implicitly or in a DIM statement.

Explanation

REDIM changes the size of a one-dimensional string array, but cannot increase the original size.
The array must have been previously dimensioned with DIM. Unlike DIM, REDIM is an executable
statement and its position in a program has meaning. The REDIM statement can also be used to
change the dimensions of numeric arrays in the same or a different statement (see Section III).

Example

The number of elements in the string arrays C5$ and B$ is reduced in a REDIM statement in

line 50. Then the values read into the 3rd element of C5$ and the 2nd element of B$ are printed
following the value of the simple string A$. The maximum length of the individual elements in C5$
and BS$ is not affected by REDIM; these lengths remain as specified in the original DIM statement.

1 DIM A%$({22),B%[5,121,C5%8(10,2]
20 A$="TITLE OF SECTION IS"
30 DATA: "ARRAYS” ,"STRINGS"," MESSAGES","FILES™," INPUT/OUTPUT"
40 DATA "ALI","A2" ,"A3","A4","A5","BI","B2","B3","B4","B5"
50 REDIM B$(31,C5%151
68 MAT READ BS$
78 RESTORE 40
88 MAT READ C5%
9@ PRINT A$,C5%131,B%(2])
>RUN
TITLE OF SECTION IS Al STRINGS

5-5

String Variable

A string variable (simple or subscripted) is used to hold a string literal. The declared size of a string
variable is called its physical length. The maximum length of any string variable is 255 characters.
A string variable not mentioned in a DIM statement is a simple variable one character in length.

During execution, each string variable contains strings whose length cannot exceed the variable’s
physical size. This dynamic length is called the logical length of the variable and is initialized to
zero (i.e., the null string) at the beginning of program execution,

Form

A simple string variable is referenced by its name and an optional substring designator in parentheses.

string name
string name(first character)
string name(first character,last character)

string name(first character;number of characters)

The string name is a letter followed by a $ or a letter and a digit followed by a $. The string name
may be followed by a substring designator in parentheses.

The substring designator consists of one or two numeric expressions, separated by a comma or semi-
colon. The first expression always specifies the first character position of the substring. The ending
character is determined by the second expression.

If the two expressions are separated by a comma, the second expression specifies the last character
position; if they are separated by a semicolon it specifies the number of characters. If there is only
one expression, the ending character position is the last character of the string.

A string array variable is referenced by the string name followed, in parentheses, by a subscript and
an optional substring designator separated by a comma.

string name(subscript)
string name(subscript,first character)
string name(subscript,first character,last character)

string name(subscript,first character;number of characters)

The subscript is an integer expression that specifies the element of the array to be selected. Since a
string array may have only one dimension, there may be only one subscript value.

The substring designator and the string name are specified in the same way for string array variables
as for simple string variables.

Unlike numeric array variables, a string array variable must not have the same name as a simple
string variable.

5-6

Explanation

Any string variable, simple or subscripted, can be qualified by a substring designator, which is used
to select a part of the string to be extracted.

If the substring is specified by a single expression, the substring equals the rest of the string taken
from the position indicated by the expression.

If two expressions are separated by a comma, the substring consists of the characters from the
position specified by the first expression to the position specified by the second expression.
(Note: the second expression can be one less than the first; this specifies the null string).

If two expressions are separated by a semicolon, the substring consists of the characters in the string
variable starting at the position indicated by the first expression and taking the number of con-
secutive characters specified by the second expression. In this case, the expression may evaluate to
zero, giving a null string.

If A$ is a simple variable:
A%$(3,5) is the 3rd through the 5th character of the string.
A$(3;3) is also the 3rd through the bth character of the string since, in this case,

the second expression follows a semicolon indicating the number of
characters rather than the last character.

A$(3;0) is the null string.
A8(3,2) is also the null string.
A$ every character in the string is selected.

If B$ is an array variable:

B$(3) is the entire 3rd string in the string array.

B$(2,3,5) is the 3rd through 5th characters in the second string of the string
array.

B$(2,3;3) is also the 3rd through 5th characters in the second string; the substring

starts at the 3rd character and contains 3 characters.

A string array variable must always be subscripted except in MAT statements (see String MAT
Operations, this section).

5-7

The subscript and substring designator expressions may be any integer expressions. Suppose the
variables I and J are used, with I equal to 5 and J equal to 10:

C$(I)

C3$(1,9)

is the 5th character to the end of the string if C$ is a simple string
variable; it is the entire 5th string or element if C$ is a string array
variable.

is the 6th through 10th character if C$ is a simple string variable; it is
the 10th character to the end of the string of the 5th string if C$ is a
string array variable.

If a substring extends beyond the logical length of a string variable, it is filled out to the specified
size with blanks.

Examples

12
20
30
40
50
60
72
>RUN

DIM ASI101]

A$="ABCDEFGHIJ"

PRINT "STRING A$="3AS$

PRINT "SUBSTRING A$(5)="3A$[5]
PRINT "SUBSTRING A$(235)="3A$[235]
PRINT "SUBSTRING A$(2,5)="3A$[2,5)
PRINT A$(2,113"=NULL STRING"

STRING A$=ABCDEFGHIJ
SUBSTRING A$(5)=EFGHIJ
SUBSTRING A$(235)=BCDEF
SUBSTRING A$(2,5)=BCDE
=NULL STRING

In the example above, note the difference between A$(2;5) and A$(2,5). In the example below,
each array element is a two character string.

10
20
30
40
50
60
72
>RUN

DIM B$I110,2]

REM B$ IS A STRING ARRAY

MAT READ BS$

DATA "Al","B2","C3","D4","ES5","F6","G7","H8","I9","JB"
PRINT "ARRAY ELEMENT B$(2)="3;B%[2]

PRINT "ARRAY ELEMENT B$(2,2)z"3B%(2,2)

PRINT "ARRAY ELEMENT B$(2,131)="3B%(2,1351)

ARRAY ELEMENT B$(2)=B2
ARRAY ELEMENT B$(2,2):=2
ARRAY ELEMENT B$(2,131):=B

5-8

String Expressions

String expressions consist of one or more source strings (literal strings, string variables, string
valued functions) combined from left to right with the concatenate operator (+) to form a single
new string value. String expressions can be assigned to string variables or compared with other
string expressions to form a numeric expression.

Form
The form is a list of source strings separated by “+”

string

string + string. . .

Each source string can be either a literal string, a string variable, or a string function.

Explanation

A source string is any entity from which a string value is extracted. The value of the source string

is as defined under ‘“String Literals,” “String Variables,’’ and “String Functions.” An example of

a literal string is “BASIC” or ‘10; of a string variable is A$, C5%$(2), B$(2,3), B$(2;2), or A1$(5,3,10);
of a string function is CHR$(208).

The ““+” character, when used between two source strings, is the concatenate operator. The con-
catenation of two strings produces a temporary string whose characters are those of the first string
immediately followed by those of the second. This temporary string can be used in further con-
catenation operations, in string comparisons, or it can be assigned to a string variable.

The maximum length of any temporary string is 255 characters. The original operands are un-
affected by concatenation.

Legal string expressions:

A$ + B$(2) + ‘93 + ‘10°23“ABCD” + C5$(4,3;5)
“BASIC” + C5$(2)

“BASIC”

C5$(2)

Example

12 DIM AS$(5)1,B$(10,19)
20 LET AS="CON",BSI2])="CATENATION"
30 PRINT A$+B3(2,137)+"E"

>RUN

CONCATENATE

String Assignment

The assignment operator (=) can be used to assign a string value (defined by a string expression) to
one or more string variables (or substrings of string variables). Several different assignments can
appear in one LET statement.

Form
Some forms of LET are

LET variable=expression
LET variable=variable=. . .=variable=expression

LET variable=expression,variable=variable=expression,. . .

The word LET is entirely optional and can be left off. The variable is an entire string variable
(simple or subscripted) or part of a string variable (indicated by a substring designator) into which a
string value is to be copied. If several variables are separated by equals (=) each is assigned a copy of
the value. Numeric assignments as described in Section II can be mixed with string assignments in
the same LET statement.

Explanation

The execution of a LET statement proceeds as follows. The subscripts of variables to be assigned

values are evaluated from left to right. The expression is then evaluated and assigned to the variables.
The same expression is assigned to each variable from left to right. The manner in which each assign-
ment occurs depends upon the number of substring subscripts specified for the destination variable.

If there is no substring designator, the entire variable is replaced by the string value. If the new value
will fit entirely into the variable, the logical length of the variable is set to the length of the new
value. If the variable is too small, the value is truncated on the right and the logical length of the
string is made equal to the physical length.

If there is one substring subscript, this specifies the starting position for the assignment. The entire
string value is copied into the variable starting with the indicated position and continuing to the
physical end of the variable or the end of the string value, whichever comes first. The part of the
variable preceding the subscript is unchanged. The starting subscript must be no more than one
greater than the current logical lemgth of the variable (i.e., there can be no undefined character
positions in the middle of a string variable). If the variable is too small, the value is truncated on the
right.

If two substring subscripts are specified, they define a field within the variable into which the string
value is stored. If necessary, the value will be truncated on the right or padded out with blanks to
fit exactly in the substring specified. The substring for the destination must not extend beyond the
physical length of the string variable and all previously mentioned rules must be followed also. The

5-10

new logical length of the variable is the larger of the old logical length or the last position of the
substring. Any characters from the old value to the left or right of the substring are unchanged.

Example

12 DIM AS[10)]
20 LET A$:="1234567850"
38 PRINT A$
49 LET A$(5)1="ABCDEF”
5@ PRINT AS
60 LET AS[7331="1234"
78 PRINT AS
80 A%(6,8)1="X"
9@ PRINT A%
100 AS=AS(1,4]+"567890"
118 PRINT AS
>RUN
1234567399
1254ABCDEF
1234AB123F
1234AX 3F
1234567890

Note that the literal “1234” in line 60 is truncated to fit in substring A$(7;3).

In line 80, substring A$(6,8) is blank filled since “X’’ is only one character. The final value of A$
is the same as its original value assigned in line 20.

The example below illustrates variations on assignments to substrings of array elements:

12 DIM AS(3,5])

20 AS(1)=AS(2]1=A%$(3)="ABCDE"

30 LET A$I(1,31)=A812)

40 PRINT AS(11,A$[21,A8(3]

58 LET A%(2,4,5]1=A%(3]

680 PRINT AS[1],A8121,A%(3)

70 LET A$(3,232)=A8(2)=A801,1,1)
80 PRINT AS[11,A$(2)1,A813)

>RUN

ABABC ABCDE ABCDE
ABABC ABCAB ABCDE
ABABC A AA DE

5-11

String-Related Functions

There are a number of predefined functions in BASIC/3000 that accept string values as parameters
and/or return a string value as their result. (User-defined string functions are described in Section
VL)

CHRS$ Function
CHR $(integer expression)
where integer expression given a value in the range 0 to 255 inclusive. The value of CHRS$ is

the string character that corresponds to the value of the expression in the standard character
set (see Appendix A). For example,

19 PRINT CHR3(65)
>RUN
A

NUM Function
NUM(string expression)

NUM returns the numeric value of the first character of the string expression according to the
standard character code in Appendix A. For example,

19 PRINT NUM(C"A™)
>RUN
65

LEN Function

LEN returns the logical length of the string expression. For example,

192 DIM A$(20)
20 A$="ABCD"
33 PRINT LENCA®)
>RUN
4

5-12

POS Function
POS(stringA,stringB)

where stringA and stringB are any string expressions; POS returns the smallest integer that repre-
sents the starting position of a substring in stringA that exactly equals stringB. If stringB is not a
substring of stringA, then POS equals zero. For example.

18 PRINT POS("12ABC34","ABC"™)
>RUN
3

WRD Function
WRD(stringA,stringB)

where stringA and stringB are any string expressions. WRD returns the smallest integer that repre-
sents the starting position of a substring in stringA that exactly equals the value of stringB and is

neither immediately preceded nor immediately followed by a letter. If there is no such substring,
WRD equals zero. For example,

NOTE: This function is not valid for non-Roman alphabetical character strings. In particular,
WRD Function cannot be used for alphabetical characters (such as katakana characters)
whose decimal equivalents are greater than 127 in the ASCII collating sequence.

10 PRINT WRD("STRING A$ EGQUALS X$","EQUALS"™)
29 PRINT WRD("12ABC34","ABC")

38 PRINT WRD("12ABC34","BC")

>RUN

11

3

2

UPS$ Function
UPS $(string expression)

UPSS$ returns a string value equivalent to string with all lower case Roman letters upshifted.
UPS$(“‘abcd%12”) is “ABCD%12”".

DEB$ Function
DEBS$(string expression)

DEBS$ returns a string equal to the specified string expression, but with all leading and trailing blanks
removed. Embedded blanks remain. For example,

12 PRINT DEB$(” A B ")
>RUN
A B

APR 1978 5-13

ROW Function
ROW(string array)

where string array is any string array name without subscripts. ROW returns the number of elements
in the array since a string array is always one-dimensional. For example,

{3 DIM BS$I[15,5)
20 PRINT ROW(BS$)
3% REDIM BS$I[12)
40 PRINT ROW(BS)

>RUN

15

10

COL Function
COL(string array)

where string array is any string array name. COL returns the number of columns in the array. Since
string arrays are always one-dimensional, COL always returns a value of 1 for string arrays. For
example,

12 DIM BS$I15,6)
20 PRINT COL(B®)
>RUN
|

DAT Function
DAT$(x,y)

where x and y are integer expressions which specify the first and last character positions, respectively,
of a substring within a full string which defines the current date and time. The full date/time string

is structured as follows:

Char 1-3: Day of the week (SUN, MON, TUE, WED, THU, FRI, SAT)
4-5: Comma and blank
6-8: Month of the year (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,
DEC)
9: Blank
10-11: Day of the month (1 to 31)
12-13: Comma and blank
0 14-17: Year
18-19: Comma and blank

5-14

20-21: Hour (1 to 12)

22: Colon
23-24: Minute (0 to 59)
25: Blank

26-27: AM or PM

For example, to print the entire date/time string:

19 PRINT DAT$(1,27)
>RUN
WED, MAY 38, 1973, 2:45 PN

To print only the date:

18 PRINT DAT$(6,17)
>RUN
MAY 32, 1973

To print only the time:

12 PRINT DAT$(28,27)
>RUN
2:46 PM

5-15

Comparing Strings

String expressions can be compared with relational operators to produce a result of true (numeric 1)
if the relation holds or false (numeric 0) if the relation does not hold. The relational operators are:

Equal
> Not equal
Less Than
Greater Than
Less Than or Equal
Greater Than or Equal

Il

VAVAAL

i

Two strings are equal only if they have the same logical length and each character matches. A string
is less than another if its first character that does not match the other is numerically less (according
to the standard character code in Appendix A) or it is an initial proper subset of the other (e.g.,
“AB” < “ABC” but “BA” > “ABC”).

A string comparison can appear within a numeric expression, since the result is a number. The string
relational operators have the same position in the hierarchy of operators as do the numeric relations.
For example, these are string comparisons:

A$=B$
A$=B$§ OR C$>=D$
(A$<>“BOB”) +5

See Section II for the meaning and hierarchy of relational operators.

A common use of string comparisons is in IF statements.

Examples

12 DIM A$(101,B%(12]
20 READ A%,BS
30 IF A$<B$ THEN PRINT A$;"<"3B$%
42 ELSE DO
50 IF A$=B$ THEN PRINT A$;"="3B%
60 ELSE PRINT A$;">"3B%
79 DOEND
80 GOTO 20
99 DATA "ABC","ABCD","ABC","B"
128 DATA.-"ABC","ABC","C",""
>RUN
ABC<ABCD
ABC <B
ABC=ABC
C>
OUT OF DATA IN LINE 20

5-16

String Input and Output

Values may be read from DATA statements with the READ statement, or they may be input by
the user with INPUT, ENTER, or LINPUT statements. They are output with PRINT statements.

READING STRINGS

The READ, DATA, and RESTORE statements can be used with string variables that are simple or
subscripted, with or without substrings. The string variable is listed in the READ statement and a
corresponding string constant must appear in the DATA statement. A RESTORE statement can be
used if the DATA statement is to be read again by a subsequent READ statement. For a full
description of READ/DATA/RESTORE statements, see Section II.

String variables can be mixed with numeric variables in READ, but the corresponding constant for
each variable must match—string constant for string variable and number for numeric variable. The
string constant is assigned to the variable according to the rules defined in String Assignment, this
section.

Strings can also be read from files as described in Section VIII, and string arrays can be read with
MAT READ as described in Section III.

Examples

12 DIM AS(201,B$(20]
20 DATA "BOB", '12"JONES"
58 READ AS$(1,3]
40 READ AS$[436])
45 REM..A$="BOB" "12"JONES"
50 LET B$="HI"
60 PRINT B$,A%
>RUN
HI BOB
JONES

When the PRINT statement is executed, the character for linefeed (‘10) is not printed but causes a
linefeed.

5-117

INPUTTING STRINGS

The INPUT statement can be used to assign string constants to string variables from the terminal.

The rules for entering strings from the terminal are

1. The apostrophe form of a string literal (e.g., ‘40) is not allowed.

2. All strings must have quote marks around them except the last one entered on each line.

3. If the last string on a line does not begin with a quote, it starts with the first non-blank
character (i.e., it can have no leading blanks) and ends with the last non-blank character

before the carriage return (i.e., it can have no trailing blanks).

The rules used to assign the value to the variable are those described under “String Assignment.”

Examples

10 DIM A$(16),B812,51,C8!42)

20 INPUT A%,B$11),BS(21,C$

3@ PRINT A$3BSI113B8(213CH
>RUN
?“THE VALUE OF B%$=","1234 "," 2X5 ", X5=ABC
THE VALUE OF B%$=1234 2X5 X5=ABC

Note that the last value input is not quoted. Usually only one string per line is input, in which case
quotes are not required.

ENTERING STRINGS

The ENTER statement allows one string variable to be assigned a value from the terminal with
control over the input operation. See Section II for how this control is exercised.

All characters typed in (including quotes) are assigned to the variable using the rules defined under

String Assignment. ENTER does not prompt for input, and does not provide a linefeed after the
user’s carriage return.

5-18

Examples

12 DIM A$[3021,B%[13)
2@ PRINT "YOU HAVE 33 SECONDS TO ENTER 3@ CHARACTERS”
39 ENTER 38,T,A%
43 PRINT "13,T,A%
52 PRINT "YOU HAVE 15 SECONDS TO ENTER 18 CHARACTERS"™
63 ENTER 15,X,B%
70 PRINT '190,X,B%
>RUN
YOU HAVE 32 SECONDS TO ENTER 32 CHARACTZRS
LET A$ = "VALUE OF A%$" , 012345

18459 LET A% = "VALUE OF AS$" , 21234
YOU HAVE 15 SECONDS TO ENTER 12 CHARACTERS
AS=LEN(BS$)

6.44 AS=LEN(B®)

A common use of ENTER is for testing:

1¢ DIM A$(301,B%(18)

20 PRINT "WHO WAS THE FIRST PRESIDENT OF THE U.S.?"
39 ENTER 32,T,A$

43 IF A$:="GEORGE WASHINGTON™ THEN GOTO 82

5@ PRINT '1@"SORRY,TRY AGAIN"

60 ENTER 28,T,A$

70 IF A$<>"GEORGE WASHINGTON" THEN GOTC 14%

g3 PRINT '1@"CORRECT,YOU TOOK"; T;"SECONDS TO ANSWER"
90 PRINT "WHAT WAS HIS WIFE'S NAME?"

180 ENTER 15,X,B$

119 IF B$<>"MARTHA"™ THEN GOTO 163

128 PRINT '18"CORRECT,YOU TOOK"3;X;"SECONDS TO ANSWER"

132 END

140 PRINT '1Q"SORRY,THE CORRECT ANSWER IS GEORGE WASHINGTON"
15¢ END

163 PRINT '12"SORRY, THE CORRECT ANSWER IS MARTHA"

>RUN

WHO WAS THE FIRST PRESIDENT OF THE U.S.?
FRANKLIN D, ROOSEVELT

SORRY .TRY AGAIN

GEORGE WASHINGTOCN

CORRECT,YOU TOOK 7.97 SECONDS TO ANSWER
WHAT WAS HIS WIFE'S NAME?

MARTHA

CORRECT,YOU TOOK 4.13 SECONDS TO ANSWER

AUG 1978 5-19

PRINTING STRINGS

Any string expression can be output to the list device (e.g. the terminal) using the PRINT statement.
The size of the output field is the number of printing characters in the string value. If the string
expression is preceded by a comma, it is printed starting in the next division. Each print line is
divided into consecutive divisions. For example, a terminal with default print length of 72 charac-
ters will have 4 divisions of 15 characters each and one of 12 (see Print Statement, Section II). If
the string expression is preceded by a semicolon, it is printed immediately following the preceding
output. The semicolon between items in the print list need not appear if the first item ends with

a quoted string, and/or the second item begins with one; in this case a semicolon is inserted
automatically,

Strings can be output to the terminal with special formats through the PRINT USING statement
(see Section IX, Formatted Output). Strings can be output to files as described in Section VIII,
and through the PRINT # USING statement (see Section IX). In addition, the MARGIN state-
ment can be used to change the length of the print line for an ASCII file (see Section VIII).

Examples

10 DIM C8(101,N581(3,5]
20 LET C$="XKS-1753-220",A=2.5,B=1E-15,N5%[1 1="ABCDE"
38 PRINT A,B,CS
A% PRINT "BOB"+C$,N3%11]
50 PRINT C$+"BOB";N5%I[1]
68 PRINT '10°34" LINE" "34°718713;3"~1"
>RUN
25 | .02000E-19 XK9~-1753-20
BOBXK9-753-280 ABCDE
XKS-1753-20BOBABCDE

WLINEN
-1

In the first expression in line 60, the ‘10 (linefeed) causes a linefeed, the ‘13 (carriage return)
causes a carriage return when the line is printed. The ‘34 (quote) causes a quote to be printed.
The actual quote (”’) before and after the string LINE in the PRINT statement is not printed.

5-20 AUG 1978

LINPUT Statement

The LINPUT statement accepts all the characters that a user types in at the terminal and assigns
them as a string to a specified string variable.

Form
LINPUT string variable

where the string variable is the destination of the input. The variable may be simple or subscripted,
or it may be a substring.

Explanation

All characters are accepted including quotes and blanks. Input is terminated by a carriage return.
No prompt character is printed.

Examples

18 DIM A$(20]
20 PRINT " TYPE 28 CHARACTERS:"
3@ LINPUT A
48 PRINT A$
5@ PRINT "TYPE 5 CHARACTERS:"
68 LINPUT AS$I[18;35)
70 PRINT A$[1035)
>RUN
TYPE 208 CHARACTERS:
"ANY CHARACTERS" 0.K.
"ANY CHARACTERS"™ 0.K
TYPE 5 CHARACTERS:
&" + ”
&" + "

Because more than 20 characters (the size of A$) were input by the user, the final period in the
first input line is truncated. In the second input, quotes are entered as part of the string.

5-21

String Array Operations

The String MAT Initialize statement sets every element of a string array to the null string. In addition,
a new dimension can be specified for the array, as in REDIM. The form for string array initialization
is

MAT string array = NUL$

MAT string array = NUL$ (integer expression)
Each element of the string array is set to the null string. If the optional integer expression is speci-
fied, the number of elements in the array is changed to the number of elements specified by the

expression. The element size is not changed.

The String MAT Copy statement copies all of the elements of one string array into another. String
elements are truncated if necessary. The form for string array copying is

MAT string arrayA = string arrayB

This causes string arrayB to be copied into string arrayA. String arrayA is redimensioned to the
size of string arrayB.

String arrays can be read, input, and printed with the MAT READ, MAT INPUT, and MAT PRINT
statements as described for numeric arrays in Section IIL.

String arrays can also be printed according to a specified format with the MAT PRINT USING
statement (see Section IX),

Examples

190 DIM A%I[10,5),B%120,5)
20 MAT A$:=NULS
30 MAT B$=AS

Each element in string array AS$ is set to the null value, then the first ten elements of string array B$
are set to null values. B$ is redimensioned to the size of AS.

In the example below, B$ is redimensioned and each element is set to the null string:

10 DIM B$(28,5])
20 MAT Bo=NULS(1@)

5-22

Convert Statement

The CONVERT statement is used to convert a numeric value to a string of characters that represent
the number, or vice versa. In the first case, the conversion is identical to that used when listing. The
destination string variable should be long enough to contain the result, as in ‘“‘String Assignment”’;

if not, the result is truncated. In the second case, the string expression must represent a valid numeric
constant. An error in this case terminates the program, unless a label is specified in the CONVERT,
in which case, control transfers to that label.

Form

CONVERT numeric expression TO string variable
CONVERT string expression TO numeric variable [,label]

Explanation

The string variable must be long enough to contain the converted numeric expression; if not, the
converted expression is truncated. No blanks appear in the string. If the string expression in the
second form does not represent a valid numeric constant, control transfers to the optional state-

ment label. If the label is omitted and the string expression is not convertible, the program terminates.

Examples

19 A=10,B=z15
20 DIM Al$(5])
30 CONVERT A+B TO AlS$
490 PRINT AlS%
50 CONVERT AlS$ TO X,100
60 PRINT X
78 END
122 PRINT "ERROR IN CONVERSION FROM STRING"
>RUN
25
25

Since A1$ contains the converted numeric constant, 25, there is no error in line 50. If A1$
contained a value that could not be converted, the message in line 100 would be printed. For
instance, if line 50 is changed as follows:

>50 CONVERT "Al"™ TO X,130

>RUN

25

cRROR IN CONVERSION FROM STRING

5-23

SECTION VI
User-Defined Functions

A user-defined function is one that is defined within the user program and is called within that
program in the same way that a built-in function is called. The name of a function that returns

a numeric value consists of three letters, the first two of which are “FN”’ (e.g., FNA, FNB, etc.).
String-valued functions have the same set of names available with the addition of a dollar sign ($)
at the end (e.g., FNA$, FNBS,...). Thus, up to 26 numeric-valued functions and 26 string-valued
functions are allowed in any one program.

A function is called within an expression by referring to its name and a list of parameter values en-
closed in parentheses. The value returned by the function takes its place in the expression.

There are two levels of complexity in the definition of a BASIC/3000 function. At the simple
level, a one-line function simply relates a function name and list of parameters to any expression
which may use the parameters to calculate the result value. The multiline function is a more
complex entity; it can consist of many statements and local variable declarations. It returns its
result value with a RETURN statement.

For a discussion of BASIC/3000 built-in functions, see Functions in Section II. A complete list
of the built-in functions available to the BASIC/3000 user is contained in Appendix E.

6-1

One-line Function

A one-line function is defined completely in one line, using the function DEF statement; its result is
calculated by an expression.

Form
The forms of one-line function definitions are:

DEF function-name(formal parameter list)=numeric expression
DEF type function-name(formal parameter list)=numeric expression
DEF string-function-name(formal parameter list)=string expression

where function-name has the form FNletter, and string-function-name has the form FNletter$. The
function is referenced by this name.

If included, type specifies the data type of the result: INTEGER, REAL, LONG, or COMPLEX. If
omitted, the data type is assumed to be real. The type specification is not allowed in the third form
that returns a string result.

The formal parameter list includes

o Real parameters (i.e., untyped variables)

L Typed parameters (i.e., a type indicator followed by a variable name)

° String parameters (i.e., string variables)

Array parameters are indicated by a (*) or (*,*) following the variable name to indicate the num-
ber of dimensions. String parameters are indicated by an optional (*) following the name of a
simple string variable, or by a required (*,*) following an array string variable name. Parameters

in the parameter list are separated by commas.

The expression can be any legal numeric or string expression, and can make use of both parameters
and other program variables.

Explanation

The parameters in a function definition are formal parameters; when the function is called, they
are replaced by the actual parameters which are passed to the function. All variables used as
formal parameters are local to the function; that is, they are unrelated to any program variables
having the same name. The formal and actual parameters are matched according to their position
in the list.

6-2

The DEF statement is not executable; the function it defines can be entered only by referring to
the function name within an expression.

All parameters are assumed to be real unless the name contains a $ or is preceded by a type indi-

cator or by another parameter that is typed. Untyped parameters that follow a string parameter
are treated as real.

Examples

18 DEF FNACA,B)=(AxB)+ (A/B)

The function FNA is type real. The formal parameters A and B are also type real. When called,
the actual parameters will give values to A and B, the expression ((A*B)+(A/B)) will be evaluated,
and the result will replace the function name where it appears in an expression.

20 DEF FiA$(A$,BE)=AS+ES+"STOP”

The function FNAS$ is a string function. The formal parameters A$ and B$ are string variables
that will be assigned values according to the matching actual parameters in the function call. When
called, the literal string resulting from the concatenation of the values of A$,B$, and “STOP”’ will
replace the function name in the expression where it appears.

32 DEF FNRCINTEGER A,X2)=AxX2+(A/X2)

The function FNB is a numeric function that results in a real value when called. The computations
will be performed in integer arithmetic because both A and X2 are integers.

6-3

Multiline Function

A multiline function is written as several contiguous statements beginning with a DEF statement
and ending with an FNEND statement. Execution of the function ends when a function RETURN
statement is encountered; this sends the result value back to the place of call.

Form

A multiline function definition has three parts; the function head, the function body, and the
function end.

The function head appears as

DEF function-name(formal parameter list)
DEF type function-name(formal parameter list)

DEF string-function-name(formal parameter list)
The first two forms return numeric values, the third returns a string value.
All parts of these function definitions are the same as described for one-line functions.

The function body consists of a sequence of statements, including at least one function RETURN
statement:

RETURN numeric expression

RETURN string expression

The expression is numeric or string depending on whether the function is numeric or string. For
numeric functions, the RETURN expression is converted to the type of the function.

The function end consists of a one-word statement:
FNEND

This statement must always be the last statement in the function definition.

Explanation

The body of a function can contain any BASIC/3000 statements with the following restrictions:

Local variables except formal parameters must be declared (even if they are type real) using
the type or DIM statements; they can duplicate the name of other variables because they are
known only within this function and are created dynamically each time the function is called.

A function definition cannot appear within a function body, but function calls are allowed,

including calls to the same function.

The function body must be self-contained; FOR loops and DO-blocks must be completed

within the body and branches must not occur into or out of the body.

The formal parameters in a multiline function head are specified in the same way as those in the
one-line function definition.

Examples

In the following multiline function, there are no local variables. It returns a long value.

100
129
132
149
159
160

DEF LONG FNX(A,B,INTEGER X,Y,LONG M, N,P)
MzAx%k=Y
NzBxxY
P=Mx N
RETURN P
FHEND

The following multiline function definition returns an integer value:

219
215
229
230
240
250
260
279
280

DEF INTEGER FNMC(A[*x]},INTEGER N)
REM=-A (%) IS REAL ARRAY-FNM RETURNS INDEX OF LARGEST
REAL 1,d
J=1
FOR Iz2 TO N
IF ATI11>A(J] THEN J=1
NEXT I
RETURN J
FNEND

ELEMENT

The use of the variables I and J are local to the function. It is good practice to define local variables
within the function definition.

6-5

The following multiline function returns a string value; its formal parameter is a string variable:

12 DEF FNR$(AD)
20 REM..FNR$ RETURNS THE REVERSE OF A%

30 IF LEN(A$)<=1 THEN RETURN A%
40 RETURN FNR$SCASI2DD+adll,1)
50 FNEND

The functions defined in these three examples and the one-line function definitions in the previous
set of examples will be called in the examples under Calling A User-Defined Function.

6-6

Calling a User-Defined Function

A user-defined function is called by referring within an expression to the function name followed
by a list of actual parameters in parentheses. The function call is replaced by the value returned by
the function.

Form
A function call has the form:

function-name(actual parameter list)

string-function-name(actual parameter list)
The first form is a numeric function; a real type result is returned unless the name in the function
definition is preceded by a type specification: INTEGER, LONG, or COMPLEX. The second form

is a string function and a string result is returned.

The actual parameter list contains one or more actual parameters separated by commas. An actual
parameter may be:

L] numeric expression

. numeric array name followed by (*) or (*,*)

] string expression

® string variable name optionally followed by (*)

® string array name followed by (*,*)

Explanation

Actual parameters may be used to pass single values or entire arrays to a function, usually to be
used within the function although this is not required. Even if parameter values are not needed in
the execution of the function, at least one ‘“dummy” parameter must be included in the formal
parameter list of the function definition and in the actual parameter list of the function call.

The number of actual parameters in the function call must be the same as the number of formal
parameters in the function definition. The names of corresponding parameters need not be the
same. Actual and formal parameters correspond according to their positions in the two lists. For
instance, the third actual parameter in a function call corresponds to the third formal parameter in
the DEF statement. '

6-7

If the formal parameter is a simple numeric variable (V) then the actual parameter can be a numeric
expression resulting in a single value, or a simple or subscripted numeric variable (2*V,V,5*%7, V(5)).
If the variables are different types or the actual parameter is an expression, any necessary conversion
is performed as described in Section IV, Numeric Assignment.

If the formal parameter is a simple string variable (V$ or V$(*)) the corresponding actual parameter
must be either a string expression or a simple string variable (“ABC”, “X”, V$, V§(*), “A”+“B”).

If the formal parameter is a numeric array (A(*) or A(*,*)) then the actual parameter must also be a
numeric array of the same type and number of dimensions. No conversion is performed in this
case.

If the formal parameter is a string array (A$(*,*)) then the corresponding actual parameter also
must be a string array.

Examples

To call the one-line function:

10 DEF FNACA,B)=(A*B)+(A/B)

the actual parameters are numeric variables of the same type:

500 LET X=2.57,Y=7.98
518 PRINT FNAC(X,Y)
>RUN

28.8301

The actual parameters might also be numeric expressions:

528 PRINT FNAC2.57,7.98)
>RUN
208.8387

To call the string function:

20 DEF FNAS(A$,B3)=AS+BI+"STOP"

The actual parameters can be string variables:

53@ x$:non,Y$:n«

540 PRINT FNAS(XS,YD)
>RUN

0STQP

or string expressions:

558 PRINT FNAS("A™,"1")
>RUN
AISTOP

To call the function FNB returning a real value:

30 DEF FNBC(INTEGER A,X2)=A*xX2+ (A/X2)

the actual parameters can be variables:

580 LET X=150,Y:=2%35
518 PRINT FNB(X,Y)
>RUN

18502

or integer expressions:

528 PRINT FNB(508,2.7)
>RUN
1666

Each of the above examples is a one-line function for which a single value is returned. The formal
parameters are not asfected by execution of the function. In a multiline function, the formal
parameters may be altered in the body of the function. Depending on the type of actual parameter

passed to the function, the value of the actual parameter may also be affected by the change to the
formal parameter.

In the multiline function below, the values of the formal parameters are not changed by execution
of the function:

210 DEF INTEGER FNMCA[x1,INTEGER N)
215 REM-A(x) IS REAL ARRAY-FNM RETURNS INDEX OF LARGEST ELEMENT
220 REAL I,d

230 J=l
240 FOR I=2 TO N
250 IF ATI1>ATJ]) THEN J=1

260 NEXT 1
2170 RETURN J
280 FNEND

To call this function, the actual parameters may be an entire numeric array and a numeric variable:

388 DIM XI5
385 LET Q=5
318 READ (FOR N=1 TO 5,XIND)

322 DATA 2732.1,765.32,7985.1,6543,.35,195.72
338 PRINT FNM(X[*]1,3)

RUN

M)

6-9

or an entire numeric array and a numeric expression:

300 DIM X[5]

310 READ (FOR N=1 TO 5,X(N)D)

320 DATA 2732.1,765.32,7905.1,6543.85,195,72
330 PRINT FNM(X[*],5)

>RUN

3

The multiline function below returns a string value that is the reverse of the string value input as
the actual parameter:

10 DEF FWNRS$AS)

20 REM..FNR$ RETURNS THE REVERSE OF A$
30 IF LENCA$)<=] THEN RETURN AS$

42 RETURN FNR$(ASIZ21)+AS[1,1)

58 FNEND

To call this function, the actual parameter may be a string literal:

76 PRINT FNR$("ABCDE")
>RUN
EDCBA

The actual parameter may also be a string variable:

60 DIM X$(5]

70 X$="12345"

88 PRINT "FNR$ RETURNS:"3FNR$(X$)
>RUN
FNR$ RETURNS: 54321

PASSING PARAMETERS BY REFERENCE OR BY VALUE

When the value of a formal parameter may change during execution of the function, the value of the
actual parameter is affected only if it is passed by reference. If the actual parameter is passed by
value, then it will not be affected even if the value of the formal parameter is changed.

Parameters are passed by reference when the actual parameter is:

° an entire array, string or numeric

. a simple or subscripted numeric variable matching the formal parameter in type

. a simple or subscripted string variable without substring designators

In each of the above cases, a change to the formal parameter value during execution of the function
also affects the value of the actual parameter.

6-10

Parameters are passed by value when the actual parameter is:

® any expression except: a simple or subscripted numeric variable of matching type or a simple
or subscripted string variable with no substring designators

® asimple or subscripted numeric variable that differs in type from the corresponding formal
parameter

® asimple or subscripted string variable with substring designators

Regardless of whether the formal parameter value is changed, these actual parameters will not be
affected.

Examples

In the function definition FNX, three formal parameters are affected by execution of the function;
they are the long variables M, N, and P:

160 DEF LONG FNX(A,B,INTEGER X,Y,LONG M, N,P)
120 M=AXxk=Y

132 NzBxxY

142 Pz N

150 RETURN P

1 68 FNEND

In the function call, line 520 below, the actual parameters corresponding to M, N, and P are all
passed by value because they are variables of a different type. These actual parameters are not
affected when the formal parameters are modified. The actual parameters corresponding to X and
Y are also passed by value because they are expressions. The actual variables A1 and B1 are passed
by reference being variables matching the formal parameters in type. These variables are not
changed because their corresponding formal parameters are not altered during execution.

5@ LET MI=N1=P1=6§
512 LET Al=8,B1=3
S24 PRINT FN¥(Al,Bl1,3,2,MI,N1,P1)
537 PRINT M1,N1,P]

>RITH
1. 406250200 22C020L-¢1
7z a]

In the following call, the variables M1, N1, and P1, used as actual parameters, are the same type as
the values of the formal parameters M, N, and P. These actual parameters are, for this reason,
passed by reference and their values will be set to the values of M, N, and P respectively following
execution of the function call:

6-11

5A7 LCNG MI1,NI1,P1

514 LET Al=g,B1=3

520 ¥1=3,Y1=2

53¢ PPINT “UALUE OF FN¥=";FNX(AI,B1,X1,YI,MI,NI,P1)
S4@ PRINT "M1="3;M1," "N1=";NI

554 PRINT "Dl=";Pl

>RIIN
VALUE OF FN¥X= 1.4062503002073233L-01
Ml= 1.56250R3%322A72A0ARQL-022 Nl= 9.000023C0C230230A3¢0L+00

Pl= 1.40625800002000770L-21

Note that M1, N1, and P1 do not have values prior to their use as actual parameters in the function
call.

The table below summarizes the relations between actual and formal parameters:

Actual Parameter Formal Parameter Attribute
V, Ale), Ale,e) Vs reference
V, A(e), Ale,e) Vd value
e! \ value
Al¥) A(*) reference
A(*%) A(*%) reference
V$ or V$(*), ASle) V$ or V$(*) reference
V$(e), VS(ee), V§(e;e) V$ or V$(*) value
AS(ee), ASlee.e), AS(e,e;e) VS or V$(*) value
es! V$ or V$(™) value
AS(*.%) AS(*,*) reference

V= simple numeric variable name

V =simple numeric variable name, same type

V 4=simple numeric variable name, different type
A= numeric array name

e= numeric expression

V$=simple string variable name

A$=string array variable name

e$=string expression

1not including an expression consisting of V, A(e), A(e,e), V$, V$(*), or A$(e) alone.

6-12 i

SECTION VI
Debugging

BASIC/3000 provides commands that allow a program to be debugged while it is running. The
path of execution through a program and the change in value of variables can be traced. The dy-
namic nesting structure of a program can be displayed; variable values can be displayed and modi-
fied; tracing can be changed; and the execution sequence can be altered.

Note that once a program has been saved for RUNONLY (see Section II), it cannot be debugged.

TRACE/UNTRACE Commands

The TRACE command is used to turn on the tracing of selected variables, both simple variables
and arrays, function references (with or without tracing their local variables), programs called
with INVOKE or CHAIN, and statements of the current program. UNTRACE turns off tracing.

Form
The commands have these forms:

TRACE [trace element list]
UNTRACE [trace element list]

The trace elements are optional and include variables (including those local to functions), functions,
labels, a range of labels (label-label), and the keyword PROG.

Variables include simple variables, string variables, string arrays, and numeric arrays. Numeric ar-
rays are distinguished from simple variables by a (*) or (¥,*) following the array name. Examples of
variables:

A, B(2) numeric variable

B$, C$(*) string variable

C8$(*,*) string array

A(*) one-dimensional numeric array

A(*,*) two-dimensional numeric array

Functions can be specified by the function name only or the name followed by a list of local vari-
ables in parentheses. For example:

FNA numeric function name

FNB(A$,B(*)) local string variable and local numeric array; FNB is not traced, only the
local variables.

Labels are statement labels consisting of integers in the range 1 through 9999.

Label-label stands for all statements between, and including the statements identified by the two
labels. For example:

80 the statement at label 80
100-150 all statements between 100 and 150 inclusive

PROG is a keyword to specify that trace information be printed when a CHAIN or INVOKE is
performed.

7-2

Explanation

The BASIC/3000 Interpreter keeps track of all items specified in TRACE commands. A range of
labels traces all statements within the range. Any change to a variable’s value, any reference to a
function, or any execution of a statement causes tracing information to be printed. Any change in
the value of an array element, except in MAT operations, causes that element to be printed. To
trace a function, only the function name is specified. If a list of local variables is included with the
function name, changes in their values are traced but not execution of the function. If PROG is
specified in a TRACE command, information is printed whenever a program is accessed through an
INVOKE or CHAIN statement and also when returning to an invoking program (see Section X,
Segmentation).

TRACE with no parameters lists the items currently being traced.

UNTRACE turns off tracing of the items specified. When tracing is turned off for a function it is
not turned off for any local variables. When tracing is turned off for variables individually, it does
not turn off tracing for the function. For instance, UNTRACE FNA turns off tracing of the func-
tion but not of its local variables if they were specified in a TRACE command; UNTRACE FNA
(A$) turns off tracing of the local variable A$ but not of the function FNA.

UNTRACE with no parameters stops all tracing specified by previous TRACE commands.

The specified tracing occurs only when the program is executed. When trace output occurs, the
following information is printed:

@ label variable = value
or
@ programname label variable = value
These outputs are printed as a result of a trace of a function or variable.
The programname is printed if the current program has been named.
*TRACE label
or

*TRACE programname label

These outputs are printed as a result of a trace of a label or labels.

7-3

Examples

The program below includes a one-dimensional array, a simple variable, and a function call. This
program will be used for succeeding TRACE and UNTRACE examples.

10 DIM X(5]

20 LET Q=5

33 READ (FOR N=1 TO 5,XIN])

40 DATA 245475.6436.2,15.7,129
5@ PRINT FND(XI*1,Q)
210 DEF FNDCA[*],INTEGER W)
220 REAL 1,J

232 J=1
249 FOR I=2 TO N
258 IF A[I1>AlJ) THEN J=1

260 NEXT I
278 RETURN J
283 FNEND
>TRACE Q,X (%)
>RUN

@28 Qa=5
@30 X[11=2.5
@32 X[(21=75.6
@30 X[31:=36.2
@30 X[41=15.7
@39 X[(51=120
5

The command TRACE @,X(*) traces the variable @ and prints its value at line 20. This is the only
value printed for Q since its value is not subsequently changed. Then the five values of the numeric
array X(*) are printed with the line at which they assume these values.

The program output in this case is 5, the result returned by the function FND.
This trace is turned off by:

>UNTRACE
UNTRACE without a trace element list turns off all current traces.

In the trace below of the function FND and its local variables A(*) and N, the only trace output is
for the function FND; its local variables are not traced since their values are unchanged by program
execution.

>TRACE FND,FND(A (x),N)
>RUN

@FND

@279 FND(FND)=5

5

7-4

A trace of statement execution is printed when a label or range of labels are used as parameters:

>TRACE 50,200-230

>RUN
*x TRACE
@FND
*x TRACE 2272
*TRACE 230
*TRACE 2497
*TRACE 250
*x TRACE 260
*TRACE 250
* TRACE 268
*TRACE 250
*TRACE 260
*TRACE 250
*TRACE 260
*TRACE 279
@278 FND(FND)=5
5
*TRACE 210

Because of the FOR statement in line 240, lines 250 and 260 are repeated 4 times. Following exe-

cution of line 270, control passes to line 50 where the value returned by the function is printed.
The program then reaches line 210 and halts.

The command TRACE with no list prints the current trace element list.

>TRACE
FNDCAl*1,N),50,200-280,

Following the UNTRACE command, the TRACE command has nothing to list.
>UNTRACE
>TRACE
>
The use of TRACE PROG is illustrated by the following segmented programs. ALPHA1 calls pro-

gram BETA1 which in turn calls GAMMAL. Because the INVOKE statement is used, control re-
turns to ALPHA1 (see Section X, Segmentation).

7-5

GAMMA L

18 REM PROGRAM GAMMAI ’

20 PRINT "IN GAMMAl ~-- RETURN TO BETAIL"
BETAI

19 REM PROGRAM BETAI

28 INVOXE "GAMMAL"

25 PRINT "BACK IN BETAl -- RETURN TO ALPHAL"
ALPHAL

19 REM PROGRAM ALPHAI

20 INVOKE "BETAL"

25 PRINT "BACK IN ALPHAl -- TERMINATE"

>TRACE PROG

>RUN

ALPHA |

*TRACE, INVOKE: BETAI

*TRACE, INVOKE: GAMMAI

IN GAMMAI -- RETURN TO BETAI
*TRACE, REVERT: BETAI

BACK IN BETAl =-- RETURN TO ALPHAI
* TRACE, REVERT: ALPHAI

BACK IN ALPHAl -- TERMINATE

7-6

BREAK/UNBREAK Commands

The BREAK command allows the user to specify points where the execution of a program should
be interrupted (or “broken”). A break point is a label, a range of labels, or any point at which a
transfer is made from one program to another (through CHAIN, INVOKE, or END). UNBREAK
turns off break points.

Comt:uter

Forms Musetiin

The forms of the commands are:

BREAK

BREAK breakpoint list
UNBREAK

UNBREAK breakpoint list

The items in the optional breakpoint list include: label, label-label, and PROG. They are specified
in the same way as for TRACE.

Explanation

BREAK or UNBREAK can be specified before the program is run or when it is broken. When the
program is run, execution suspends just before execution of a statement whose label is in the break-
point list. If PROG is specified, execution suspends after a program is brought into the user’s work
area by CHAIN, INVOKE, or END but before the program is run (see Section X, Segmentation).

When execution suspends as a result of a breakpoint, the statement label about to be executed is
printed in the form:

*BREAK label

*BREAK programname label
The programname is listed only if the program has been named.

After this output, a > is printed to indicate that a command can be entered. The legal commands
during a break period are listed below.

Execution is resumed with the RESUME or GO command.
BREAK with no parameters causes all the current breakpoints to be listed.

UNBREAK with no parameters deletes all current breakpoints. With parameters, UNBREAK de-
letes those breakpoints specified by the labels in the breakpoint list.

1-7

LEGAL COMMANDS DURING BREAK
Certain commands may be used only during a break period:

ABORT
CALLS
FILES
GO
RESUME
SET
SHOW

These commands are described in this section.
Of the remaining commands, only these are legal during a break period:

BREAK/UNBREAK
CATALOG
CREATE

DUMP

EXIT

KEY

LENGTH

LIST

SPOOL

SYSTEM
TRACE/UNTRACE
XEQ

If the user enters any other command, BASIC/3000 responds:
ILLEGAL WHILE RUN SUSPENDED. DO YOU WANT TO ABORT?

The user enters anything starting with “Y”’ to abort the current program and carry out the com-
mand, or enters anything else not to abort the program and to ignore the command.

During a break period, the user can type ABORT to terminate his current run and return to BASIC
command mode where all commands are legal.

7-8

The commands SCRATCH and GET (illegal during a break period) will clear all traces and break-
points. RUN programname will also clear traces and breakpoints, but a RUN without the program-
name parameter will not.

The CHAIN and INVOKE commands clear traces and breakpoints except when PROG is used.
INVOKE saves traces and breakpoints and restores them upon return to the invoking program.

Examples

18 DIM A[5,12]
2¢ MAT READ A
39 DATA 10,20,30,48,50,120,200,300,402,582
40 DATA 1192,120,130,140,150,2183,222,232,243,250
50 DATA 310,320,330,340,350,418,4208,430,440,458
62 DATA 510,5208,538,540,558, 612,620,638, 648, 658
10 DATA 718,728,138,748,752,818,928,333,843,852
88 RESTORE 58
98 READ (FOR X=1 TO 3,(FOR Yzl TO 173,A[X,Y1))
188 END

>BREAK 30,100

>RUN

*BREAK 39

>SHOW AC1,1),A(5,18)

AL1,11=10

Al5,181=850

>G0

*BREAK 100

>SHOW AC1,1),A(5,1)

AL1,11:=318

AL5,181=850

>UNBREAK

>ABORT

During the breakpoints, the command SHOW (described later in this section) causes the values of
the specified elements to be printed. After the program has run with two breakpoints at line 30
and 100, the breakpoints are deleted with UNBREAK. ABORT is used to return the user to the
BASIC command mode. He may then run the program without breakpoints.

In the example below, the same program is named BRK1 and then run with the same breakpoints.
The breakpoints are listed with BREAK during the second breakpoint and then deleted individual-
ly. GO finishes execution of the program after which the user is returned to BASIC command
mode and runs the program without breakpoints:

18 DIM A[5,10)

20 MAT READ A

30 DATA 18,20,30,40¢,58,100,200,300,408,530

40 DATA 118,120,130,143,158,210,229,238,240,259
50 DATA 310,320,330,340,358,410,420,430,448,450
62 DATA 510,5208,530,548,550, 610, 620, 632, 642,650
7¢ DATA 71@, 728,730, 740,750,8108,828,830,848,850
88 RESTORE 50

90 READ (FOR X=1 TO 3,(FOR Y=1 TO 18,A[X,Y1))
108 END

>NAME BRKI1
>BREAK 38,1020
>RUN

BRK1

xBREAK BRKI 30
>SHOW A(l,1)
All,1)=18

>GO

*BREAK BRK! 1322
>SHOW AC(l, 1)
All,11:=312
>UNBREAK 1028
>BREAK

30,

>UNBREAK

>G0

>RUN
BRK |

7-10

The ABORT command is legal only during a break period; it terminates the suspended program

ABORT Command

and returns the user to a normal state where all commands are legal.

Form

ABORT

Explanation

When ABORT is specified, the break period is ended and the run terminated. The user can now
enter any command legal during normal BASIC execution, but cannot enter the commands legal

only during a break period.

Examples

10
29
39
40
592
§0
10
89
S8
120

DIM AL5,121

MAT READ A

DATA 10,20,30,43,50,1008,280,322,443,534

DATa 112,120,132,148,150,2108,228,233,242,252
DATA 310,328,333,3493,350,413,420,430,448,450
DATA 518,520,538,543,553,618, 628,638, 648,657
DATA 718,720,732, 743,752,812,820,833,343,852
RESTORE 58

READ (FOR X=1 TO 3,(FOR Y=1 TO 12,40X,Y1))
END

>BREAK 30,148

>RUN

*BREAK 382
>SHOW A(5,12)
Al5,121=852
>ABORT

7-11

RESUME or 6O Command

The RESUME command ends the interactive debugging mode and resumes the suspended program.
This command is legal only during a break period. GO may be used instead of RESUME; there is
no difference between them.

Form

RESUME
RESUME label
GO

GO label

Explanation

A RESUME by itself restarts the program at the location printed when the program break occurred.
A RESUME with a label restarts execution at that location, unless that location transfers into or out
of a function from the current location.

The label parameter for RESUME or GO is not allowed when the break occurs as a result of press-
ing CTRL Y. RESUME or GO without a label may be used to resume suspended operation as a
result of a CTRL Y break.

Examples

Using the same program, a breakpoint is specified for line 30 where the array A is displayed. During
this break another breakpoint is specified for line 100 and then the suspended program is resumed
at line 80 (RESUME 80). At the next breakpoint, array A is again displayed. GO is typed after
the final breakpoint to complete execution of the program:

7-12

1@ DIM A(5,10)

20 MAT READ A

30 DATA 10,20,30,40,50,100,200,300,400,5080

42 DATA 110,120,130,1402,150,210,228,230,240,252
50 DATA 310,320,332,340,350,412,423,438,4403,458
60 DATA 510,520,530,5408,559,610, 620,638, 640, 652
70 DATA 718,720,738, 740,750,813,828,838,843,858
82 RESTORE 50

9@ READ (FOR X=1 TO 3,(FOR Y=1 TO 18,A[X,Y1))
120 END

>BREAK 30
>RUN
*BREAK 30

>SHOW AC1,1),A(3,18),A(5,18)
ALl,1)=10

AL3,101=450

Al5,101=850

>BREAK 100

>RESUME 89

*BREAK 100

>SHOW AC1,1),A¢3,18),A(5,18)
All,11=318

AL3,101-850

AL5,101=850

>G0

>

Note that GO 80 could have been used instead of RESUME 80, and RESUME instead of the final
GO with no effective change to this example.

7-13

SHOW Command

The SHOW command prints the values of the items specified; this command is legal only during
a break period.

Form
The form of SHOW is
SHOW item list
The list can include:
° variables (numeric or string)
] array elements
L entire arrays (name (*) for one-dimensional array or name (*,*) for two-dimensional array)

® local variables (function name (variable list))

Explanation

An array is printed as in the MAT PRINT statement (see Section III), except that undefined values
are noted with the word UNDEFINED. The variable list in parentheses that follows a function
name can include only local variables of that function. The function must be active; that is, the
function must have been called and not be completed.

Examples

The example below specifies breakpoints for line 20 and lines 70 through 90. Since line 80 is not
executed, breaks actually occur in lines 70 and 90. SHOW commands are used to print the con-
tents of the variable X$ at the break in line 70 and the contents of the local variable A$ in function
FNRS$ at the break in line 20. At the break in line 90, an attempt is made to show the contents of
the non-existent array and of an existing array that has not been given any values. A new break-
point at line 100 is specified where the SHOW command is used to print the previously undefined
array B. GO continues execution of the program until it ends.

7-14

10 DEF FNR$(A®)

20 IF LENCA$)<=] THEN RETURN AS$
33 RETURN FNRSC(ASI21)+a8(1,1]

40 FNEND
58 DIM X$(51,B(2,5]
60 X$="12345"

73 IF FNR$(X$)="54321" THEN PRINT "YES"

88 ELSE PRINT X$
98 MAT READ B

190 DATA 19,20,30,40,50,60, 19,808,508, 132

110 END

>BREAK 20,70-950
>RUN
*BREAK 70
>SHOW X $
X$="12345"

>GO
*BREAK 20
>SHOW FNR$(AS)
FNRS:A$="12345"
>UNBREAK 20

>G0
YES
*BREAK 90
>SHOW A (%)

A DOES NOT EXIST
>SHOW B (*,%*)

Blx*]

UNDEFINED UNDEFINED

UNDEFINED UNDEFINED

>BREAK 100
>GO0
*BREAK 100
>SHOW B (%, %)
Bl*]
12 20 30 40

60 10 80 90
>GO

UNDEFINED
UNDEFINED

50

102

7-15

UNDEFINED
UNDEFINED

UNDEFINED
UNDEFINED

SET Command

The SET command allows the user to set any variable to a constant value; this command is legal
only during a break period.

Form
The form of the SET command is
SET item = constant

The items to be set can include variables and array elements and local variables, specified as in the
SHOW command, except that the form using asterisks may not be used.

Examples

190 DIM XI[51]

20 MAT READ X

30 DATA 273.41,765:3,795.1,654.9,195,7
48 PRINT FND(X[*1,5)

58 END
210 DEF FNDCA[*],INTEGER N)
2290 REAL I,d

230 J=1

240 FOR I=2 TO N
250 IF A[I)>AlJ) THEN J=1
260 NEXT I

2178 RETURN J

288 FNEND

>BREAK 30

>RUN

*BREAK 30

>SHOW X (1)
Xx111=273,1

>SET X(1)=950.2
>SHOW X (1)
X{11=958,2

>G0

The result of the program is changed by setting the first element in the array X to a higher value
than the other elements.

7-16

When the break points are removed, the program runs with the data read from the DATA state-
ment in line 30:

>UNBREAK
>RUN
3

7-17

FILES Command

The FILES command is legal only during a break period. It prints a list of all the files that are cur-
rently open in the executing program. The list is by name and internal file number (see Section
VIII, Files).

Form

FILES

Explanation

When FILES is typed during a break, a list of the file numbers specified by the FILES statement
in the executing program is printed. The numbers are in ascending order and each is followed by a
file name if the file is open, by an asterisk if the file number is reserved but not yet open, or by

#n where n is the file number of a file opened in another program that called the current program
with INVOKE. The file name of an open file is qualified by the group name and account name.

Examples

In the first example, FILES specified in the break at line 30 shows four open files. The break at
line 40, after the ASSIGN statement closed file number 5, shows only three files currently open:

12 REM PROGRAM ONE
29 FILES A,B,*,C,D
3@ ASSIGN *,5
40 END
>BREAK 30
>RUN
*BREAK 32
>FILES
A BASIC.LANG
B.BASIC.LANG
*
C.BASIC.LANG
D.BASIC.LANG
>BREAK 40
>G0
*BREAK 42
>FILES
ABASIC.LANG
B BASIC.LANG
*
C .BASIC.LANG
*

U NN -

U D —

7-18

In this example, program FIRST calls program SECOND with INVOKE. BREAK PROG is used
to specify a breakpoint when control goes to SECOND and again when control reverts to FIRST.
In SECOND, three local files are open, one of which is internal file #2 or the file B. It also shows
the internal files A and B that were opened in FIRST and remain open following the INVOKE.
The FILES command at the break upon return to FIRST shows that only the two files local to
FIRST are open and that file #3 has been reserved:

SECOND
10 REM PROGRAM SECOND
20 FILES C,#2,D
30 END
FIRST
12 REM PROGRAM FIRST

20 FILES A,B,x*
3@ INVOKE "SECOND"
>BREAK PROG
>RUN
FIRST
*BREAK, INVOKE: SECOND
>FILES
A .BASIC.LANG
B .BASIC.LANG
*
C.BASIC.LANG
#2
D BASIC.LANG
LOCAL FILES START AT 4
>G0
*BREAK, REVERT: FIRST
>FILES
I AMBASIC.LANG
2 B.BASIC,LANG
3 *
>G0

AV NN -

>

7-19

CALLS Command

The CALLS command is legal only during a break period. It prints a list of all functions that have
not been completed, and of all programs that have been called with INVOKE but have not been
completed by END. This list is in reverse chronological order starting with the most recent.

Forms

CALLS

Examples

At the breakpoint for statement 40, the CALLS command shows that function FNN called FNM.
Note that functions are listed in reverse chronological order:

PROGI1
19 DEF FNMCA,B)=SGNCA)*FNN(ABS(A),ABS(B))
28 DEF FNNCA,B)
30 X=A-INTC(A/B)*B
40 RETURN X
50 FNEND
6@ PRINT FNM(-4,3)
>BREAK 40
>RUN
PROG1
*BREAK PROGI1 42
>CALLS
FNN
FNM

7-20

In the following example, ALPHA2 uses INVOKE to call BETA2; BETA2 uses CHAIN to call
GAMMA2. Because GAMMAZ returns to ALPHAZ2, not BETAZ2, a CALLS command entered
during the break in GAMMAZ2 shows that ALPHAZ2 invoked GAMMAZ2:

GAMMAZ2
19 REM PROGRAM GAMMAZ2
20 PRINT "IN GAMMAZ -- RETURN TO ALPHA2"

BETAZ2
190 REM PROGRAM BETA2
20 CHAIN " GAMMa2”

ALPHAZ
19 REM PROGRAM ALPHA2
20 INVOKE "BETA2"
25 PRINT "BACK IN ALPHAZ2 -- TERMINATE"
>BREAX PROG
>RUN
ALPHAZ2
*BREAK, INVOKE: BETAZ2
>G0
*BREAK, CHAIN: GAMMAZ2
>CALLS
INVOKED BY ALPHAZ2

7-21

Each of the following three programs contains at least one function definition and function call.
Function FNA in program ALEF1 calls FNB wherein ALEF1 calls BET1 with an INVOKE state-
ment. At the breakpoint in line 40 of GIMEL, function FNE calls FNF. The CALLS command
entered during the breakpoint in GIMEL shows a complete history of all nested function calls and
INVOKE statements in reverse chronological order:

GIMEL
12 REM PROGRAM GIMEL
20 DEF FNE(X)=FNF(X)
38 DEF FNF(X)
A0 PRINT "IN GIMEL"
50 RETURN ©
68 FNEND
780 X=FNE(4)

BET!
18 REM PROGRAM BETI
20 DEF FNC(X)
30 INVOKE "GIMEL"
40 RETURN 9@
60 FNEND
78 X=FNC(3)

ALEF1
10 REM PROGRAM ALEFI
20 DEF FNA(X):=FNB(X)
38 DEF FNB(X)
AD INVOKE "BET!"™
50 RETURN @

68 FNEND
78 X=FNA(2)
sBREAK PROG
>RUN
ALEF]
*BREAK, INVOKE: BET!I
>G0
*BREAK, INVOKE: GIMEL
>BREAK 40
>G0
*BREAK GIMEL 42
>CALLS
FNF
FNE
INVOKED BY BETI
FNC
INVOKED BY ALEF1
FNB
FNA

7-22

WAIT Command

The WAIT command suspends the BASIC Interpreter with the PAUSE intrinsic for a specified period
of time. The command has the following form:

WAIT timel [,time2]
where ‘“timel’’ and ‘‘time2” have the following form:
[{hours:] minutes:] seconds

“seconds” may be a floating-point value; it must be less than 60 if ‘“‘minutes” is present. “Minutes”
and “hours” must be integral values. ‘“Minutes” must be less than 60 if ‘“‘hours’ is specified.

If only ““‘timel” is specified, the Interpreter suspends for the indicated period of time. If ‘“time2” is
also specified, the Interpreter suspends for a random time period between “timel” and “time2”.

This command is useful for scheduling events during a benchmark.

WARNING: This command cannot be terminated with control-Y.

APR 1978 093

SECTION Vil
Files

For problems that require permanent data storage external to a particular program, BASIC/3000
provides a data file capability. This capability allows flexible, direct manipulation of large volumes
of data stored on files,

There are three types of files used in BASIC/3000: formatted files, binary files, and ASCII files.
Formatted files are created and accessed through the BASIC/3000 Interpreter. Binary and ASCII
files are created in MPE/3000 but can be accessed with BASIC/3000.

A catalog of ASCII and binary files, as well as of formatted files in the user’s group library, can be
requested with the BASIC/3000 CATALOG command (see Commands, Section II).

BASIC FORMATTED FILES

A formatted BASIC/3000 file is created under control of the BASIC/3000 Interpreter. It contains
format words to indicate the type of the data items in the file. These format words are placed in
each record automatically by the Interpreter (see Appendix H for formatted file structure).
Formatted files allow run-time checking of the type of each data item.

BASIC formatted files are created with the CREATE command or statement. They may be accessed
by any file statements or commands including UPDATE and ADVANCE, but not File LINPUT
which is reserved for ASCII files. The user’s ability to access a BASIC file depends on the MPE file
security restrictions.

ASCII FILES

ASCII files are created through the MPE/3000 Operating system and treated by BASIC/3000 as
terminal-like devices. They can be actual terminals. When the PRINT # statements described in
this section are used, output is formatted according to the rules for the PRINT statement (see
Section II}), although the length of the print line for an ASCII file may be changed by using the
MARGIN statement described in this section. Printing to ASCII files according to a specified
format requires the use of the PRINT # USING statement (see Section IX). Input from ASCII
files is analyzed according to the rules of the INPUT statement, except that reading starts with
the next item, not the next record.

All file statements except ADVANCE, UPDATE, and CREATE may be used with ASCII files,
See ASCII File Access in this section for restrictions on accessing ASCII files,

AUG 1978 81

BINARY FILES

Binary files are unformatted files created through the MPE/3000 Operating System. Data items are
stored in binary files as binary words without type information. When data is read from a binary
file, it is assumed to be the type of the variable into which it is being read. Items in binary files can
cross record boundaries and new records are used only upon overflow.

All file statements except ADVANCE, UPDATE, File LINPUT, and CREATE can be used with
binary files. Access to binary files is discussed under Binary File Access in this section.

FILE NAME
When any file is created, whether it is ASCII, binary, or BASIC formatted, it is assigned a file name

by the user who creates the file, The file name may contain up to eight alphanumeric characters,
the first of which must be a letter. The file name may be fully qualified as follows:

file name [/lockword] [.group name [.account name]]

If a lockword was specified for the file at its creation, this same lockword must follow the file name
when the file is accessed.

The group name and account name specify a group and account other than those under which the
user logged on. If the file is part of the user’s group and account, then these qualifiers may be

omitted.

The unqualified file name specifies a file in the user’s log-on group and account that is not restricted
by a lockword.

Refer to the HP 3000 Multiprogramming Executive Operating System Reference Manual (03000-
90005A) for details of the file name specification.

8-2 AUG 1978

Creating a Formatted File

A formatted file can be created by the CREATE command or through the CREATE statement.
CREATE allocates a file of a specified size, assigns a name, and initializes each record with an
end-of-file mark. Both the record size and the number of records can be specified. Neither of these
sizes can be changed later.

Form
CREATE command:
CREATE file name, file length
CREATE file name, file length, record size

file name is a simple string without quotes. The file length is an integer constant. The optional
record size is an integer constant.

CREATE statement:
CREATE numeric variable, file name, file length

CREATE numeric variable, file name, file length, record size

The numeric variable is used to return a result about the status of the file. File name is a string
expression, file length is an integer expression, and the optional record size is also an integer
expression.

Explanation

The file name may be fully qualified by a lockword, group hame, and/or account name,

The file length specifies the number of records to be allocated to the file.

The record size specifies the number of data words per record. Record size may be between 4 and
319 words; the default size is 106. The most efficient record sizes are 106, 212, and 319. Record
size is the number of words needed by the user to contain his data; the BASIC/3000 Interpreter

adds format words to each record (see Appendix H).

The numeric variable contains one of the following results when the CREATE statement is executed:

0 successful file creation
1 a file already exists with the same name
2 the file was not created for some reason other than a duplicate name

8-3

An error message will be printed if the CREATE command cannot create the specified file name
because of a duplicate name or some other reason.

CREATE does not open the file for access. Files are opened with a FILES or an ASSIGN statement
(see Opening Files, this section).

EXAMPLES:

>»CREATE AFILE,30

10
20
3@
40
50
60
10
80
90
1002
119
>RUN
N2 =
N6&=

DIM BS$[4)
LET B$="BB"

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

N2,"BFILE",15,212

N3, "XFILE" ,20

N4, "AA", 15
NS, " DFILE"™ ,20
NT,"FF2",20
N8, "XX", 18

PRINT "N2="3N2," N3="3N3,"NA="3 N4," N5="3N5
PRINT " N6="3N&,"N7="3NT7,"N8="3N8

N3= @ N4z | NS= @
N7= @ N8= @

Eight files are created, the file AFILE with a CREATE command, the remainder with CREATE
statements. All but BFILE have the default record size 106; records in BFILE have 212 data words.

In this run, the value of N4 is 1 indicating that a file name AA already exists.

Note that the file name in the CREATE command is an unquoted string; in the CREATE state-
ments, the file name may be a string expression such as a quoted string or a string variable.

8-4

Purging a File

An ASCII, binary, or BASIC formatted file can be deleted from the system with a PURGE command
or PURGE statement,

Form
PURGE command:
PURGE file name

where file name is a simple string without quotes.

PURGE statement:
PURGE numeric variable, file name

The numeric variable will contain a result following execution of the PURGE statement. The file
name is a string expression.

Explanation
The file specified in the statement or command is purged and is not recoverable.

The numeric variable in the statement returns a result on the status of the purge operation:

0 successful purge
1 file is being accessed and cannot be purged
2 user is not permitted to purge this file
3 there is no such file
EXAMPLES:

>PURGE AFILE
18 PURGE N,"BFILE"
2@ PRINT N

>RUN

]

A PURGE command is used to purge AFILE, a PURGE statement to purge BFILE. The result of
purging BFILE is printed. Since it was a successful purge, the result is zero. If the PURGE command
had been unsuccessful, a message would have been printed.

8-5

Opening Files

In order for a program to access a file, the file must be open. For every file that is to be opened, an
association is established between the file number used in access statements and the file name. The
file number is an integer between 1 and 16. The file name of a BASIC/3000 formatted file is the
name assigned with a CREATE command or statement. The file name of an ASCII or binary file is
the name assigned when the file was created under MPE/3000 control (see MPE/3000 Operating
System Manual for instructions).

The linkage between file name and file number is accomplished by one of two statements: the
FILES statement or the ASSIGN statement. FILES causes file numbers to be assigned to the files
and, if a file name is specified, the file is opened. ASSIGN associates a file name with a file number
reserved by FILES but not named. It opens a file not previously opened by FILES.

FILES is a declarative statement, not a dynamic statement. This means that it is not executed but
is processed before the run begins. It may appear anywhere in the program.

ASSIGN, on the other hand, is a dynamic statement. It is executed during the program run and its
position affects program execution. If ASSIGN is used to open a file, it must be executed before
any statements used to access that file,

Note: Readers with experience using HP 2000 Time Shared Basic may be
confused by the use of the term open as used for the BASIC/3000
Interpreter. OPEN for 2000 Time Shared Basic is equivalent to
CREATE for BASIC/3000.

CLOSING FILES

All files are closed automatically upon program termination. A file may be dynamically closed
during program execution with the ASSIGN statement. This should be done wherever practical to
release buffer space for other files.

FILES Statement

Every file that is to be accessed must have a file number designated in a FILES statement. Each
file designator reserves a file number starting with number 1. Up to 16 file numbers may be
reserved for any run. If the file designator names a file, the file will be opened.

Form

FILES file designator list

One or more file designators may be specified, separated by commas if more than one. A file
designator may be one of the following:)

file name

s
#integer

The file name identifies an existing file created with the CREATE command or statement, or an
ASCII or binary file created in MPE/3000. It may be fully qualified.

The * reserves a file number for a file that will be named and opened with an ASSIGN statement.

#integer specifies the internal file number equivalent to an existing file number,

Explanation

File designators are associated with file numbers in the order in which they appear in the FILES
statement. The first is assigned file number 1, the second file number 2, and so forth. If there is
more than one FILES statement, file numbers are reserved starting with the first FILES statement.

When a file name is specified, the file is opened and the program is given both read and write access
to the file unless the file is already open in some other program. In this case, only read access is
allowed and a warning message will be printed at execution time. If the file cannot be opened, the
program terminates.

When the program that opened a file terminates, the file is closed. If the program had read and
write access to the file, the write restriction is removed. This enables the next program opening
the file to have both read and write access.

When an asterisk (*) is used instead of a file name, the file number is reserved but the file to be
associated with that number is not specified. The ASSIGN statement must be used to associate a
file name with the file number. ASSIGN must be specified before any reference is made to the
file number.

If #integer is used instead of a file name, it specifies an internal file number. This number identifies
a file declared with a FILES statement in another program when programs are segmented. (See
Section X, Segmentation.)

The FILES statement is declarative, not dynamic; it may appear anywhere in a program and is
not executed.

EXAMPLES:

10 FILES AFILE,BFILE,=*
20 FILES AA BBy*,x,*
38 FILES #6

Five files are specified in the three FILES statement. The formatted files AFILE and BFILE have
file numbers 1 and 2 respectively. Files AA and BB have file numbers 4 and 5 respectively.

The files reserved for numbers 3, 6, 7, and 8 must be assigned names in an ASSIGN statement
before they can be accessed.

The file associated with local file number 9 in statement 30 has been previously associated with

internal file number 6. For the relation between internal and local file numbers, see Files and
Segmentation in Section X, ‘“‘Segmentation”.

8-8

ASSIGN Statement

The ASSIGN statement is used to assign a file name to a file number reserved by FILES and open
the file, If another file was associated with the file number, that file is closed. The result of the
open operation is returned following execution of ASSIGN, Unlike FILES, the ASSIGN statement
is executed.

Form

The forms of ASSIGN are

ASSIGN file name, file number, numeric variable

ASSIGN file name, file number, numeric variable, mask

ASSIGN file name, file number, numeric variable, restriction
ASSIGN file name, file number, numeric variable, mask, restriction

ASSIGN *, file number

The file name is a string expression; the file number is an integer expression with a value between 1
and 16. The numeric variable returns the result of the ASSIGN execution. The optional mask is a
string expression used to encode or decode file data. The optional restriction is a two-letter code
to specify any access restrictions on the file,

Explanation

In the first four forms, the file name is associated with the file number and the file is opened.

If an * is used instead of the file name, any file previously associated with the file number is closed.
If the file is already closed, the statement is ignored. Since closing a file releases the buffer space

that was allocated to it, it is good practice to close unneeded files,

An error results if the specified file number exceeds the number of positions in the program’s
FILES statements.

8-9

After ASSIGN is executed, a value is returned to the numeric variable:

file is available for read and write

file is available for read only

(unused)

the file does not exist or is not accessible

(unused)

no buffer space is available for the file

file is not available for read or write because of another user’s current access

specified restrictions not possible

00 3 & U ke w N R O

file is available for write only (applies to “write-only” files, such as those directed
to a line printer).

If the value returned is 3, 5, 6, or 7 the file is not opened and any access to the file number causes
a fatal error. If the returned value is 1 any attempt to print onto the file causes a terminal error.
If the returned value is 8, any attempt to read the file causes a terminal error. Other references

to the file assigned that file number are legal.

A mask, if specified, protects the data in a file. Whenever the file is assigned the same mask should
be used, or the data will not be intelligible when read. The actual data is scrambled or unscrambled
using the mask; the data types and the end-of-file or end-of-record marks are not affected.

The restriction may be one of the following:

Code Meaning

RR Read and Write Restriction — no other user can access the file

WR Write Restriction — other users may read, but not write on, the file

WL Write Restriction with Dynamic Locking — current user has option to lock
file; other users may read only

NR No Restriction — current user does not have the option to lock file; other users
can read from and print on the file

NL No Restriction with Dynamic Locking — no restriction but user has option to
lock the file

RD Read Access Only - current user may read from, but not write on, the file;

current user does not have option to lock file; other users can read from and
print on the file

RL Read Access Only with Dynamic Locking — current user may read from, but not
write on, the file; no restriction but user has option to lock the file

If the restriction is omitted, the file is opened with WR restriction. If this fails, the NR restriction
is used.

Ths specified restriction is placed on the file and remains in effect as long as the file is open. If
another restriction is in effect due to a concurrent access, the ASSIGN statement will return the
result 6, and the file is not opened.

8-10 AUG 1978

Examples

12 FILES AFILE,BFILE,x
28 FILES AA BB % % %
30 ASSIGN "XFILE" ,3,X1,WR
40 ASSIGN “DFILE™,6,D1,RR
5@ ASSIGN "FF2", T,N,NL
66 LET X$="X"
70 ASSIGN X$,8,Xx,"ABZ1"
80 PRINT X1,Dl,N,X
90 ASSIGN *,8

180 ASSIGN "CC",1,Cl

112 PRINT C!

>RUN

Files are assigned for each file number associated with an * in the FILES statements. A write
restriction on XFILE prevents other users from writing on that file. A read and write restriction
on DFILE prevents other users from having any access to that file. File FF2 can be locked and
unlocked with the dynamic locking statements LOCK and UNLOCK; there are no access
restrictions on FF2,

The Mask “ABZ1” is used to encode the data in file X. File X is closed in line 90.
In line 100, AFILE is closed and file CC is assigned file number 1 and opened.

The zeros in the numeric variables indicate that each file was available for reading and writing in
the current run when it was opened.

The following example shows the values returned from an ASSIGN on the same file during the
same program versus an ASSIGN on the same file from two different programs.

Same Program Different Programs

2nd 2nd

ASSIGN ASSIGN
1st 1st
ASSIGN RR|WR|WL|{NR|NL|RD|RL ASSIGN RR|WR|WL|NR|NL|RD] RL
RR 6]6)6 166616 RR 6] 6)]616]|6]|6]6
WR T17 17101131113 WR 7171711131113
WL 717 17/1310]311 WL - 7171713111311
NR T17 17101131113 NR 71717101311]3
NL 71717131013]1 NL 71717131013 {1
RD 710131013 1]1]3 RD 710}13(01]3]1]3
RL 7131013 (0]38]1 RL 713]01310{(3]1

AUG 1978 8-11

File Access

There are two types of access to a file: serial and direct. For serial access, the items read or written
immediately follow the previous access without concern for the underlying record structure. A
pointer associated with each open file always points to the next item in the file to be accessed.

For direct access, a particular record is specified at which the access begins. In this case, the pointer
is moved to the beginning of this record.

In BASIC/3000 formatted files, direct and serial access can be combined in the same file, It is
possible, for instance, to position the pointer to the beginning of a record with a direct file state-

ment, and then to access the file serially from that point.

Binary files may be accessed directly only if they are disc files with fixed length records. Otherwise,
serial access must be used for binary files (Binary File Access, this section).

ASCII files may be accessed by serial or direct access. For a complete description of the restrictions
on ASCII file access, see ASCII File Access in this section.

8-12

Serial File PRINT

The Serial File PRINT statement writes data items on a file, starting at the current position of the
pointer. The items may be numeric or string expressions,

Form

The forms of a Serial File PRINT statement are:

PRINT #f{ile number; print list
PRINT #file number, print list, END
PRINT #file number

PRINT #file number; END

The print list is a series of numeric and/or string expressions. The rules for specifying the list are the
same as those described for the PRINT statement in Section II.

If the print list is omitted, the statement is ignored unless the file is an ASCII file in which case, a
line is skipped as in a PRINT statement.

Optionally, END can be the last (or only) item in the print list; it writes an end-of-file mark.

Explanation

Each item in the print list is written on the file in the order it appears in the Serial File PRINT
statement. The items are written starting at the position where the pointer currently appears over-
laying whatever data may be in that position in the file. Record boundaries are ignored; a serial
PRINT can start in the middle of one record and end in the middle of another. Each data item
must, however, fit into a single record.

An embedded linefeed or a carriage return character splits a record in an ASCII file and causes them
to be written out as separate records. However, these characters are not included in the printed
records.

The File READ statement cannot distinguish between the different items on an ASCII file in the
absence of commas, especially if the values are numeric. Therefore, when using a Serial File PRINT
statement to write to an ASCII file, the data items should be separated by printing *“,” (or, alterna-
tively, using the File LINPUT statement, followed by the CONVERT statement) because the Serial
File PRINT statement does not write commas.

If END is the last item in the print list, an end-of-file mark is written after the last data item. When
an attempt is made to read the end-of-file, an end-of-file condition occurs. If data is written
immediately following the END, it overlays the end-of-file mark. If END is not specified, an
end-of-record mark is written after the last data item. This is also overlaid by a subsequent PRINT.

AUG 1978 8-13

If printing is attempted beyond the physical end of the file, an end-of-file condition occurs. The
ON END statement, described in this section, specifies action to be taken when an end-of-file
condition occurs. If it is not specified, the program terminates.

The file MARGIN statement (described in this section) can be used together with the PRINT #
statement in order to change the length of the print line for an ASCII file.

Examples

1@ FILES AFILE,BFILE,x*
20 FILES AA,BB %%, %
25 DIM AS$(5]
3@ DIM B[2,5]
40 MAT READ B
5¢ DATA 100,200,330,432,508,528, 100,822,532, 1822
60 LET A$="ABCDE"
70 PRINT #13"4RRAY B",(FGR I=1 TO 2,(FOR J=! TU 5,B(1,J))),END
80 PRINT #236%,B12,11,B01,5)
S@ PRINT #23END
180 PRINT #13"END OF ARRAY”
sRUN

>DUMP AFILE
ARRAY B

100

2082

3020

420

500

600

700

800

9520

1000
END OF ARRAY
>DUMP BFILE
ABCDE

600

500

The string expression “ARRAY B” followed by the entire contents of array B are written onto file
number 1 (AFILE). An end-of-file mark is written following the last data item.

In line 80, the contents of the string variable A$ followed by the contents of two elements of array
B are written on file number 2 (BFILE). Line 90 writes an end-of-file mark on BFILE.

Line 100 overlays the end-of-file mark previously written on AFILE with the string expression
“END OF ARRAY”. Since the END is omitted, an end-of-record mark is automatically written
after the string expression.

Although record boundaries are ignored in a serial print, no item can be longer than a single record.
The record size of AFILE was created as 106 words and BFILE as 212. Each number requires one
to four words depending on type, and a string requires a word for approximately every two charac-
ters (see Appendix H, “File Structure” for exact requirements).

8-14 AUG 1978

Serial File READ

The Serial File READ statement reads items from a file specified by file number into numeric or
string variables. The first item read is the item following the current position of the pointer, that
is, immediately following the last item accessed. As with serial print, record boundaries are ignored
and the list of read items can start in the middle of one record and end in the middle of another.

Form
The form of a Serial File READ is:
READ # file number; read item list

The read item list is a series of variables and/or FOR loops separated by commas. The rules
governing this list are the same as those described for the READ statement in Section II.

Explanation

For a formatted file each item in the specified file is read into a variable in the read item list, the
first item into the first variable, the second into the second, and so forth.

The destination for a string value must be a string variable; the destination for a numeric value must
be a numeric variable. Otherwise, a terminal error occurs. If the numeric value is not the same data
type as the variable, conversion is performed as described in Section IV.

It is possible to check the type of the next data item with the TYP function, described later in this
section.

When an attempt is made to read beyond a logical or physical end-of-file, an end-of-file condition

occurs. Unless an ON END statement transfers control to another statement in the program, the
program terminates.

8-15

Examples

10
20
30
40
50
60
70
80
90
100
118
120
130
1406
150
160
170
180
158
195
280
210
>RUN

FILES AFILE,BFILE,*
DIM AS[5),X$[10]1,Y$[18]1,C8[15]

DIMm BIl2,5)
MAT READ B
DATA 100,200,300,400,500, 600, 792,800,900, 1003

LET A$="ABCDE"

PRINT #13"ARRAY B",(FOR I=1 TO 2,(FOR J=1 TO 5,B[1,J1)),END
PRINT #23A$,B(2,11,Bl1,5)

PRINT #23END

PRINT #137END OF ARRAY"

RESTORE #

RESTORE #1

READ #13X$,A1,B1,Cl,DI,El

PRINT X$,LINCI1),Al,B1,Cl,D1,El

READ #13A2,B2,C2,D2,E2

PRINT A2,B2,C2,D2,E2

READ #23Y$,A,B

PRINT Y$,A,B

READ #13C$

PRINT C$

READ #13X

REM..ATTEMPT TO READ END-OF-FILE CAUSES TERMINATION

ARRAY B

100
600

ABCDE

200 300 420 500
7100 800 900 1002
600 500

END OF ARRAY
END OF FILE IN LINE 200

After data is written on files 1 and 2 with the print statements in lines 70-100, and the pointer is
restored to the start of each file in lines 110 and 120, the data that was written can be read.

The first six items in file 1 are read in line 130. The next five items are read in line 150. The three
items written on file 2 are read in line 170. PRINT statements are inserted to test the accuracy
of the reads and the previous writes.

A string item remains in file number 1; this is read in line 190. Line 200 attempts to read an end-
of-file causing the message: END OF FILE IN LINE 200 to be printed.

When a string is read from a binary file, the number of characters read depends on the form of the
variable. For instance, if A$ is a simple string variable:

READ #1;A$ reads the physical length of A$

READ #1,;A8$(1) reads the physical length of the substring starting at I
READ #1;A$(1,J) reads J-I+1 characters into the substring starting at I
READ #1;A$(1;J) reads J characters into the substring starting at I

8-16 APR 1978

File RESTORE Statement

The File RESTORE statement repositions the file pointer to the start of the file. The statement
can be used for any file, but is particularly useful for serial files such as magnetic tape.

Form
RESTORE # file number

The file number identifies a file that is currently open.

Explanation

When File RESTORE is executed, the file pointer is set to point to the beginning of the first
record in the file. A serial read or print will begin at that position.

Example

18 FILES AFILE,BFILE
20 PRINT #1,15123.4
3@ PRINT #2,13567.8
40 RESTORE #2
50 RESTORE #1
§3 READ #13C
78 READ #23D
82 PRINT C,D

>RUN

125 .4 567.8

When the File RESTORE statements are executed, the pointer in file number 2 is moved back to
the start of that file. Then the pointer in file number 1 is moved to the start of that file. If the
files are magnetic tape, they are rewound.

8-17

Direct File PRINT

The Direct File PRINT statement writes a list of data items onto the specified file as a single
record. Printing begins at a particular record specified in the PRINT statement. After printing,
an end-of-record mark is written and any data previously contained in the record is lost. Data in
records preceding and following the specified record is not changed.

Form
The forms of a Direct File PRINT are:

PRINT # file number, record number; print list
PRINT # file number, record number; print list, END
PRINT # file number, record number

PRINT # file number, record number; END

Both the file number and record number are integer expressions. The print list is optional and has

the same format as a Serial File PRINT. If it is missing, the statement erases the contents of the
specified record.

Explanation

The Direct File PRINT positions the pointer at the beginning of the specified record and then
writes the contents of the print list. An end-of-record mark is written following the items in the
print list. Any previous end-of-record marks are ignored.

When a string item is printed to a binary file, the item starts at a word boundary and is as long as

the current length of the string. If the string is of odd length, an additional character of undefined
value is written to complete the last word. Each word contains two characters.

The first record of the file is record number 1.

END writes an end-of-file mark. If no print list is specified, any data in the specified record is
replaced by the end-of-file mark.

Serial and Direct PRINT statements can be used to write on the same file. A serial print following
a direct print will write its data items immediately following the previous items.

The file MARGIN statement (described in this section) can be used together with the PRINT #
statement in order to change the length of the print line for an ASCII file,

8-18 AUG 1978

Examples

10
20
30
40
508
60
19
80
S0
100
118
120
130
149
150
162
178
>RUN

FILES AFILE,BFILE,x

FILES AA,BB,%,%,*

ASSIGN "XFILE®,3,X1,NL
ASSIGN "DFILE®,6,01,RR

LET Al1=1,B1=2,C1=3,D1=4,E1:=5

LET A$="A"
FOR N=1 TO 19
LET BINI=N+]
NEXT N
DIm B(10]
PRINT #3,13"START OF XFILE"

PRINT #3,2318,41,(FOR N=1 TO 13,BIN))

REM.,TWO RECORDS HAVE BEEN WRITTEN ON XFILE
PRINT #6,23B1,Cl,DI1,El

PRINT #6,13A%

PRINT #6,33END

REM.,THE THIRD RECORD OF DFILE IS AN END-OF-FILE

The first record of file number 3 contains a string value. The second record has two numeric items
and the contents of a 10-element numeric array. No end of file is written on #3.

File number 6 also has a string item in its first record; it has four numeric items in the second
record. The third record is an end-of-file.

Note that the records do not have to be written in the order they appear in the file.

8-19

Direct File READ

The Direct File READ statement reads data values starting at a specified record of a specified file
and assigns them to variables. Numeric values can be assigned only to numeric variables, and string
values to string variables, as in Serial File READ.

Form
The forms of the Direct File READ statement are:

READ # file number, record number; read item list
READ # file number, record number

The file number and record number are integer expressions. The optional read item list is of the
same form as in a READ statement.

Explanation

Data values are read from the record and assigned to the variables in the item list. If a record number
is specified outside the range of the file, an end-of-file condition occurs.

If the read item list is omitted, the statement moves the file pointer to the beginning of the specified
record, but does not read any data.

A READ statement for an ASCII file is terminated by a NULL character; that is, NUM (character)=0.
Therefore, binary data should not be written to an ASCII file.

Example

10 DIM Cl2,5]

20 DIM AS$(201,X$(20])

350 READ #3,13A%

49 READ #3,23X,Y,(FOR N=] TO 2,(FOR P=1 TO 5,CIN,P1))
50 READ #6,13X9%

60 PRINT AS$,X,Y

70 MAT PRINT C

82 PRINT X%
90 FILES *,%,XFILE,*,*,DFILE
>RUN
START OF XFILE 19 1
2 M) 4 >)
7 8 9 12 1l

A

8-20 APR 1978

In this example, the data previously written on records 1 and 2 of XFILE and on record 1 of DFILE
are read. (See examples with Direct File PRINT.)

In the example below, ten records are written on file AA and then these records are copied to file
BB and AA is closed.

18
20
30
40
50
60
72
80
S99
100
119
120
138
149
150
169
179
>RUN
FILE

DIM X[1@1
MAT READ X
ASSIGN "AA“,1,A |
FOR R=1 TO i@ o
PRINT #1,R;X(R} ,
NEXT R
PRINT #13END
ASSIGN "BB",2,B
FOR R=1 TO 1@
READ #1,R3X
PRINT #2,R3X
NEXT R
PRINT #23END
PRINT "FILE AA COPIED TO FILE BB"
ASSIGN x,1
DATA 102,20,30,408,50,60,70,808,53, 102
FILES *,x

AA COPIED TO FILE BB

8-21

ASCIl File Access

ASCII files may be accessed with any statements except the ADVANCE, UPDATE or CREATE
statements. The File LINPUT statement can be used to read the contents of an ASCII record
and the File MARGIN statement can be used to change the length of the print line for an

ASCII file. In addition, the PRINT # USING and MAT PRINT # USING statements (see Section
IX) allow the user to print to an ASCII file according to a specified format.

8-22 AUG 1978

File LINPUT Statement

The File LINPUT statement reads the entire contents of a record in an ASCII file into a string
variable. File LINPUT is used to read ASCII files only.

Form

LINPUT # file number; string variable
LINPUT # file number, record number; string variable

Explanation

File LINPUT reads the contents of the record at which the pointer is currently positioned or at the
specified record. This is like LINPUT (see Section 1I) except that input is from a file, not a
terminal, and a record, not a line, is read.

If the string variable is not large enough to contain the entire record, the extra characters are
discarded.

Example

18 DIM A$(721,B$(20)
20 READ Al,Bl1,Cl,D1,E!l
32 RESTORE #19
4@ PRINT #103A1,B1,Cl,D1,E!l
5@ PRINT #183"1, JANUARY,1973"
6@ RESTORE #10
780 LINPUT #1034%
83 LINPUT #103B%
98 PRINT A$,BS
190 DATA 10,20,32,42,50
,éég FILES AFILE,BFILE,*,AA,BB,DFILE,FF2,X,%,ASCI
N
10 20 30 42 59
1, JANUARY,1973

The first two records of the ASCII file ASCI are input into the string variables A$ and B$, the
first record in A$ and the second in BS$.

8-23

File MARGIN Statement

The File MARGIN statement is used to set the length of the print line (number of characters) for
the PRINT and PRINT # statements, File MARGIN is used for ASCII files only.

Form

MARGIN marginsize
MARGIN #file number, marginsize

Explanation

The optional file number identifies an ASCII file. If the file number is zero or is not specified, the
length of the print line for the PRINT and MAT PRINT statements is set. Otherwise, the length of
the print line is set for the specified ASCII file; any PRINT # or MAT PRINT # statement to the
same file which follows the MARGIN statement will be affected. The length of the print line remains
set until the next MARGIN statement is encountered or until the program terminates.

The marginsize gives the desired length of the print line. The value specified is rounded to the
nearest integer, which may not be less than 15 or greater than the record size. If a marginsize
outside these bounds is specified, a warning message is given and the marginsize will be set as
follows: if the rounded off value is less than 15, the marginsize is set to 15, while if it is greater
than the record size, it is set to the record size.

Both the file number and marginsize may be numeric constants, variables, or expressions,
The MARGIN statement has no effect on the PRINT USING, PRINT # USING, MAT PRINT
USING, and MAT PRINT # USING statement described in Section IX,

Example

BFILE is an ASCII file of record length 40. If a marginsize greater than 40 or less than 15 is
specified, a warning is given and the marginsize is set to 15 or to 40 as appropriate.

AUG 1978 8-23a

BFILE now contains the following:

o1 W

O = O BN =

10 FILES BFILE

20 FOR I=1 TD 4

30 PRINT "MARGIN SIZE":
40 INPUT J

50 MARGIN #1,J

70 PRINT #1

B0 NEXT I

>RUN

MARGIN SIZFE?45

WARNING:

WARNING:

2
5

3]

3

ILLEGAL MARGIN IN LINE
MARGIN SIZE?740
MARGIN SIZF?20
MARGIN STIZE?10

ILLEGAL MARGIN IN LINE S0

8-23b

AUG 1978

Binary File Access

Access to binary files may be serial or direct as with BASIC formatted files. Direct access is allowed
only for files on disc with fixed length records. Serial access is allowed for all files.

Data items are stored in binary files as binary words without type flags. When data is read from a

binary file, it is assumed to be the same type as the variable into which it is being read. Items in
binary files can cross record boundaries and new records are used only upon overflow.

8-24 APR 1978

Dynamic Locking

If a file is opened with an ASSIGN statement and either WL or NL is specified as a restriction,
access to the file can be dynamically controlled with the LOCK and UNLOCK statements.

Form

LOCK # file number
UNLOCK # file number

The file identified by file number must have been opened with an ASSIGN statement specifying
one of the restrictions WL or NL.

Explanation

LOCK gives a program exclusive control of a file until it is unlocked by the UNLOCK statement.
During control by LOCK, no other program can lock the file until UNLOCK is executed. An
attempt to lock a file that has been locked by another program will cause the program to be sus-
pended until the file has been unlocked in the other program. Only one file at a time can be
locked, although WL or NL may be specified for more than one file. Any write operations on a
locked file are guaranteed to be physically completed before the UNLOCK is executed. Each
access to a file during dynamic locking should be made between a LOCK and UNLOCK statement.

Note that the LOCK statement does not actually restrict other programs from accessing the file.
Therefore, all programs must cooperate by first locking, then accessing, and then unlocking the
file. Dynamic locking is not necessary if it is unlikely that more than one user will access the
same file, or if none of the users are writing on the file.

Examples

12 FILES AFILE,BFILE,*
20 FILES AA,BB,*,%,x
30 ASSIGN "X",8,T,iL
40 PRINT T
50 LET A=2.57325E13
60 LOCK #8
78 PRINT #83A
80 UNLOCK #8

>RUN

LOCK

2

8-25

The file is locked in line 60. This assures that no other program can lock the same file, and that the
write operation in line 70 will be completed and the pointer moved to the beginning of the next
record. Line 70 contains a Serial File PRINT statement that writes the contents of the variable A
onto file number 8. Line 40 prints the contents of the numeric variable T containing the result of
the ASSIGN. This shows that the file is open and can be written on before LOCK is specified.
Following execution of the UNLOCK statement, in line 80, any other user may lock the file.

If a program performs multiple file locking, it must be run with MR status. There are two ways to
achieve MR status:

e The first method uses the MR parameter of the RUN command. The user must have MR capa-
bility to execute the program with its MR status.

® The second method uses the SAVE command with the MR parameter. To perform the SAVE,
the user must have MR capability as in the previous case. (The SAVE command gives MR status
only to the saved program, not the current program.)

If the user does not possess MR capability, a saved program with MR status can still be retrieved and
run with its MR status by either the RUN or the GET command. However, if the program is modi-
fied, it will lose its MR status. In this case, MR status can be regained by one of the two methods
described above.

8-26 APR 1978

ON END Statement

The ON END statement sets a flag for a specified file so that if and when an end-of-file condition
occurs in reading and writing that file, control is transferred to a specified statement. If the flag
is not set, an end-of-file condition causes program termination.

Form
The forms of ON END are

ON END # file number THEN label
IF END # file number THEN label

ON END and IF END are accepted interchangeably but the statement is always stored internally
and listed as ON END.

Explanation

When an end-of-file condition occurs during execution of a Direct or Serial File READ statement
or a File LINPUT statement, the ON END statement transfers control to the statement identified
by label. When writing on a file with a Direct or Serial File PRINT statement, ON END transfers
control to label when an attempt is made to write past the physical end-of-file.

ON END is an executable statement and the transfer label can be altered by a subsequent ON END
statement. The label must not lie within the range of a function unless the ON END is also within

that function. An ON END within a function must refer to a label within that function; ON END
has no effect outside the function.

ON END is not executed if an end-of-file is encountered during execution of the ADVANCE state-
ment (see ADVANCE description, this section).

Examples

In the example below, the Direct File READ in line 70 attempts to read an end-of-file written in
line 50. The ON END statement transfers control to line 100.

8-27

1@ FILES AFILE,BFILE
20 READ Al,Bl1,Cl,Dl,El
30 DATA 190,2008,320,420,500
35 ON END #2 THEN 122
49 PRINT #2,1341,B1,Cl
58 PRINT #2,23D1,E1,END
60 READ #2,134,B,C
70 READ #2,23D,E,F
80 END
128 PRINT "END OF FILE 2"
120 PRINT A,B,C,D,E
>RUN
END OF FILE 2
100 280 300 400 500

In the next example, file RR is created with 5 records. The File PRINT statement in line 100
attempts to write past the end-of-file and the ON END statement causes a transfer to line 130.

>CREATE RR,5
1@ FILES RR
20 DIM X(6)
30 MAT READ X
40 ON END #1 THEN 130
50 PRINT #1,13X(1]
6@ PRINT #1,23X(2]
78 PRINT #1,33X13)
80 PRINT #1,43X[4]
98 PRINT #1,53X[5]
108 PRINT #1,6;X(6)
110 DATA 10,20,30,42,50, 60
120 END
138 PRINT "END OF FILE"
>RUN
END OF FILE

>DUMP RR
18

20

30

40

50

8-28

ADVANCE Statement

The ADVANCE statement allows for skipping past items in a BASIC/3000 formatted file without
reading them.

Form
The form of ADVANCE is
ADVANCE # file number; integer expression, numeric variable

The integer expression specifies the number of data items to be skipped and the numeric variable
is used to return a result value.

Explanation
If the integer expression is negative, items are skipped in a reverse direction.

After execution of ADVANCE, the numeric variable equals zero if the ADVANCE was successful.
If the ADVANCE statement encountered either an end-of-file or a start-of-file, the numeric
variable equals the difference between the number of items requested and the number actually
skipped. This value is negative if ADVANCE was in the reverse direction.

Example

18 FILES *,%,AA,BB
20 LET A=1,B-2,C=3,D=z4,E=5,X$="X"
30 PRINT #33A,B,C,D,E,X$,END
42 RESTORE #3
50 ADVANCE #333,X1
60 IF Xl<>@ THEN GOTO 120
78 READ #33L,M
808 READ #33A%
9@ PRINT L,M,A$
1286 PRINT X1
>RUN

The first three items in file AA are skipped, then the next three are read and printed.

8-29

UPDATE Statement

The UPDATE statement allows an item in a BASIC/3000 formatted file to be modified without
affecting any of the items that precede or follow. UPDATE overwrites the next item in the file and
positions the pointer to the item that follows.

Form
The form of UPDATE is

UPDATE # file number; expression

Explanation

If the existing data item is numeric, the expression to be written must be numeric also. If their
types do not match, the value of the expression is converted to the type of the existing data item.

If the existing item is a string, the expression must be a string. The string expression is truncated
or blank-filled on the right to fit the size of the existing item exactly.

Examples

12 FILES *,%,AA
20 LET A=},B=2,C=3,D=24,£:5
32 LET A%$="A",B$="B"
40 PRINT #3,13A,B,C,D,E,A$,B%
5% RESTORE #3
60 ADVANCE #333,X1
70 UPDATE #334.57
80 ADVANCE #332,X2
92 UPDATE #3;3"XYZ"™
>RUN

>DUMP AA

The fourth and seventh items in file AA are given new values with the UPDATE statement. The file
is then dumped to illustrate the successful update.

8-30

Listing File Contents

DUMP COMMAND

The DUMP command displays the contents of a BASIC/3000 formatted file on another file: either
the normal output file or a specified ASCII file. DUMP provides a simple way to print file contents
at the terminal. Normally the contents of a file to be dumped are string data.

Form

DUMP file name
DUMP file name, OUT=asciifile

file name is a simple string without quotes. It must name a BASIC/3000 formatted file. asciifile is
the name of an existing ASCII file.

Explanation

The contents of the named file are dumped on the normal output file (the terminal) unless
OUT=asciifile is specified, in which case, the file is dumped on the specified ASCII file.

DUMP prints each item on a separate line; record boundaries are not indicated. DUMP terminates
at the first end-of-file.

If the length of a string is greater than that of the output file records, the string is truncated. In
this case, MPE file commands are used to change the record length during a BREAK.

sFILE outtlle=¢STDLIST;REC==256
$:BASIC
HP32101k 00,08 (4WD) BASIC (CIHEWLETT-PACKAPD CO 1976
>CREATFR NFILE,SQ

>100 FILES NFILE

2200 PRINT #1,1:40,400

2300 PRINT #1,2:50,500,5000
>400 PRINT #1,3;"HANDYMAN®

>RIIN

>DUMP NFILE,O0UT=outfilnr

40

400

50

500

5000
HANDYMAN

>EXIT

END OF SUBSYSTEM

APR 1978 8-31

Example

16 FILES AFILE
20 LET X=10.5,Y=75,2=152
30 PRINT #1,1310,20,39
40 PRINT #1,23"HELLO"
508 PRINT #1,33X,Y,2Z

>RUN

>DUMP AFILE
10

20

32
HELLO

18.5

75

150

APR 1978

8-31a

File Functions

Three functions are available in BASIC/3000 that assist in file access. They are TYP, REC, and ITM.

TYP FUNCTION

The TYP function returns the type of the next data item for a particular file. This function is used
in conjunction with File READ statements since the variables into which the data is read must be
string if the item is string, numeric if the item is numeric,

Form
TYP (file number)

The file number may be a numeric constant, variable, or expression, and must identify an existing
file.

Explanation
The value returned by TYP depends on the type of the next data item in the file,
TYP(x) Meaning

real

string
end-of-file
end-of-record
integer

long

complex

~1 0 Ot W

If the file number is greater than zero, the file is treated as a serial file. This means that the value 4
is never returned as end-of-record marks are skipped in a serial file,

If the file number is less than zero, the file is treated as a direct file and any of the values of TYP
may be returned. Since the file number is based on the absolute value of the expression, an
expression equal to =1 means that file number 1 is examined and treated as a direct file.

If the file number equals zero, TYP returns a result based on the current position of the

pointer to the DATA statements (see READ/DATA/RESTORE description, Section II.) The

value 4 is never returned, and 3 means end-of-data.

If the file is binary, TYP returns only the vaues 1, 3, or 4.

8-32 AUG 1978

If the file is ASCII, TYP returns the same results with the same meaning as the BUF function, except
that TYP returns a value of 3 for end-of-file and a value of 4 for end-of-record. (See BUF Function
description under INPUT Statement, Section II.)

Examples

File AFILE is written with integer, real, long, and complex numbers. A later program reads only
the long and complex items using the TYP function to distinguish them:

16 FILES AFILE

20 INTEGER A,B

38 LONG L1

49 COMPLEX Cl

5@ LET A=25,B=100,X=2.357E12,Y=7«649E~5

60 LET L1=9.99999L-5

78 LET C1=(.002359,.002175)

80 PRINT #13A,X,L1,B,Y,Cl,"STRING RECORD",END
>RUN

>SCRATCH

12 FILES AFILE
20 LONG L3
33 COMPLEX F1
40 GOTO TYP(1> OF 50.,50,130,50,50,70,100
5@ ADVANCE #131,Al
68 GOTO 40
70 READ #15L3
8@ PRINT L3
99 GOTO 4@
127 READ #15F1
116 PRINT Fl13
1290 GOTO 40
133 PRINT LINC1)>3"END OF FILE"
>RUN
9.999990303030000BFL-35 (2.35900E-03, 2.17560E-63)
END OF FILE

AUG 1978 8-33

REC FUNCTION

The REC function returns the record number at which the file pointer is currently positioned for a
specified file.

Form

REC(file number)

The file number identifies an existing file, REC returns the record number of the record in
that file currently being accessed.

Example

10 FILES AFILE,BFILE,XFILE,AA,BB
28 LET A=1,B=2,C=3,D=4,E=5
38 PRINT #53A,B,C,D,E
42 LET R=REC(%)
58 READ #5,R3V,W,X,Y,Z
68 PRINT V,W,X,Y,Z
>RUN
1 2 3 4 5

The variable R is set to the value of REC(5); this vaue, the current record in file BB, is then used
in the Direct File READ in line 50.

ITM FUNCTION

The ITM function returns the number of data items between the beginning of the currently accessed
record and the position of the file pointer for a specified file.

Form
ITM(file number)

The file number identifies a currently open BASIC formatted file. ITM returns a real value showing
the number of data items from the beginning of the current record through the position of the

file pointer for that file.

8-34 AUG 1978

Example

10 FILES TEXT

20 PRINT #1:;12345,23456,34567

30 RESTORE #1

40 READ #1:A,B

SO0 PRINT A,B

60 PRINT "TITEM";ITM(1);"HAS JUST BEEN READ "
65 PRINT "FROM RECODRDY;RFEC(1)

70 PRINT #1,2;"ABCDEF"

80 DIM Asl(6]

90 READ #1,2:AS

100 PRINT As

110 PRINT "TTEM";ITM(1):"HAS JUST BEEN READ "
115 PRINT "FROM RECORD":REC(1)

>RUN
12345 23456
ITEM 2 HAS JUST BEEN RFEAD FROM RECORD 1
ABCDEF
ITEM 1 HAS JUST BEEN READ FROM RECORD 2

AUG 1978 8-34a

File Array Operations

There are four statements for accessing files with arrays:

Serial File MAT PRINT
Serial File MAT READ

Direct File MAT PRINT
Direct File MAT READ

Computer
Musewm

For formatted output of arrays, see the descriptions of MAT PRINT USING and MAT PRINT #
USING in Section IX.
SERIAL FILE MAT PRINT STATEMENT

This statement prints entire arrays on a file starting at the current position.

Form

MAT PRINT #file number; array list
MAT PRINT #file number; array list, END
MAT PRINT #file number; END

The array list contains a list of array names separated by commas. END writes an end-of-file mark.

Explanation

The arrays specified in the array list are written on the specified file row by row. END, whether
alone or after the array list, writes an end-of-file,

The length of the print line can be changed by using the MARGIN statement described in this
section.

SERIAL FILE MAT READ STATEMENT
This statement reads data items, starting with the current position of a specified file, to fill entire

arrays row by row.

Form

MAT READ #file number; array list

AUG 1978 8-35

Explanation

The array names in the array list will contain data read from the specified file.

Example

The example below writes the values of two arrays onto the file BB; it then reads the array value
into two different arrays with different dimensions:

19 FILES *,%,*,B8B

20 DIm Al2,5),B(3,2]

30 MAT READ A

48 MAT READ B

58 DATA 10,20,30,40,50,63,18,80,90,128,1,2,3,4,5,6
68 MAT PRINT #434,B

70 RESTORE #4

82 DIM CI5,21,D(2,3]

92 MAT READ #43C,D
182 MAT PRINT C,D

>RUN

10 20

30 40

50 60

70 80

50 100

1 2 3
4 5 6

DIRECT FILE MAT PRINT STATEMENT

This statement prints arrays starting at the beginning of a specified record within a specified file.

Form

MAT PRINT # file number, record number; array list
MAT PRINT # file number, record number; array list, END
MAT PRINT # file number, record number;, END

8-36

Explanation

The array names in the list are written on the file starting at the beginning of the record identified
by record number. An END in the array list causes an end-of-file mark to be written. The contents
of the array list may cross record boundaries.

The length of the print line can be changed by using the MARGIN statement described in this
section.

DIRECT FILE MAT READ STATEMENT

This statement reads entire arrays starting from a specified record in a specified file. The read may
cross record boundaries.

Form
MAT READ # file number, record number; array list
The array list contains the names of entire arrays.
Explanation
The contents of the specified record number are read into the array variables specified in the array list.
Examples

Two arrays A and B are written on MAT1 starting at record number 5. The arrays are read from
record number 5 into arrays C and D respectively.

1@ FILES *, % %, x
2@ DImM A(101,B13,21,C15,2),D(2,3]
3@ MAT READ A,B

42 DATA 1,2,3,4,5,6,7,%,9,8
58 DATA 6.5,7.4, 8.5,9 2,.1 5,5
60 ASSIGN "MATI",4,MI
78 MAT PRINT #4,534,B
80 MAT READ #4, 5;c,
9@ MAT PRINT C,D
>sRUN
1 2
3 4
5 6
7 8
9 2
6.5 7.4 8.3
9.2 ol 5.5

AUG 1978 8-37

SECTION IX
Formatted Output

The PRINT USING and IMAGE statements of BASIC/3000 give the user explicit and exact control
over the format of his program output. The PRINT # USING statement allows the output to be
directed to a specified ASCII file. All types of numbers can be printed: integer, fixed-point, floating-
point, and complex. The exact position of plus and minus signs can be specified. String values

can be printed in specified fields; literal strings and blanks can be inserted wherever needed. Carriage
return and line feed are under explicit control and lines longer than 72 characters can be printed.

Format strings are used to specify the output format. These strings are explicitly included in the

PRINT USING statement, or they may be specified in IMAGE statements whose labels are refer-
enced in the PRINT USING statements.

AUG 1978 9-1

PRINT USING Statement

The PRINT USING statement allows the user to output a list of items according to a customized
format.

Form

The forms of PRINT USING are:

PRINT USING label;print using list

PRINT USING label

PRINT USING string expression,print using list
PRINT USING string expression

The print using list is an optional list of expressions and functions from which items are printed.
It is like a print list (see PRINT Statement, Section II) except that semicolons and trailing punctua-
tion are not allowed.

Either a label or string expression must be specified following USING. If a label is used, it identi-
fies an IMAGE statement containing the format string. If a string expression is used instead, the
expression itself is the format string. In the case when the format string is of the form ‘‘literal
specifications”, outer quote marks must be represented by the ASCII character code for the quote
symbol (‘34).

The print using list can be omitted when the format consists entirely of literal specifications.

Explanation

A format string describes the form in which items in the print using list are to be printed. The full
description of format strings is contained under Format Strings, this section.

Any commas in the print using list are separators only; they have no formatting function as they do
in PRINT.

When PRINT USING is executed, each specification in the associated format string is extracted and
examined. If the specification calls for a string or numeric value, the print using list is examined for
a corresponding expression. Each expression is output according to its corresponding specification
in the format string. Any print functions in the list are executed as they are encountered.

If the expression and the specification do not match because one is a string and the other is numeric,
the program terminates with an error message. If the value of a numeric expression is greater than
can be printed with the format, the number is printed without format control, and preceded by two
asterisks, on a separate line. The program continues. An integer specification prints a real number
with any fraction rounded to the nearest integer.

If the format specification is a literal specification, it is printed without examining the print using

list. When the format string contains only literal specifications, the print using list, if present, is
ignored.

9-2 AUG 1978

If the end of the format string is reached before the end of the print using list, processing returns
to the beginning of the string. The next expression in the list is matched to the first specification
in the format string. When all expressions in the list have been printed, a carriage return and line-
feed are generated unless a carriage control character specified in the format string suppresses the
final carriage return and/or linefeed.

Examples

In the following example, three ways of specifying the format with PRINT USING statements are
shown. In line 30, numeric variables A and B are printed according to a format specified in a
string expression. In line 40, the PRINT USING statement references the IMAGE statement of
line 50, so that A and B are printed according to the format string given there. In line 60, the
print using list is omitted and outer quote marks are given by the ASCII character code ‘34:

10 DIM As({10]

20 LET A=100000,B=999999

30 PRINT USING "10D";A,B

40 PRINT USING S0:;A,TAB(23),B

50 IMAGE sDXDDDXDD

60 PRINT USING “34"ABCDEF""34
>RUN

100000 999999

$1 000 00 $9 999 99
ABCDEF

The exact meaning of the format strings used in these examples is described below under Format
Strings. Note here that:

integers are replicators causing repetition of the specification that follows
X causes a blank to be printed

D prints a decimal digit from the print using list

$ causes a dollar sign to be printed

AUG 1978 9.3

PRINT # USING Statement

The PRINT # USING statement allows the user to output a list of items to an ASCII file according
to a customized format.

Form
The forms of PRINT # USING are:

PRINT #filenumber[;] USING label;print list

PRINT #filenumber[;] USING string expression;print list

PRINT #filenumber{;] USING label

PRINT #filenumber[;] USING string expression

PRINT #filenumber,recordnumber};] USING label;print list

PRINT #filenumber,recordnumber{ ;] USING string expression; print list
PRINT #filenumber,recordnumber| ;] USING label

PRINT #filenumber,recordnumber(;] USING string expression

The filenumber identifies an ASCII file, which has been specified in a FILES or ASSIGN statement
(see Section VIII). If the filenumber is zero, the standard listing device (your terminal in an inter-
active session, the line printer in a batch job) is referenced.

The optional recordnumber specifies the record into which the items in the print list are to be
printed. A recordnumber may only be specified for an ASCII file with direct access capability,
such as a disc file. It is not allowed for a file which has only serial access capability (such as the
line printer) and will generate the error DIRECT ACCESS ILLEGAL IN LINE line number if
attempted in such a case. For this reason, a recordnumber is not allowed if the filenumber is
Zero.

The optional print list is one of the following: print using list (as described for PRINT USING),
END, or print using list, END. It may be omitted when the format consists entirely of literal
specifications.

The format string is in an IMAGE statement identified by the label or it is contained in the string
expression. The form for the label or string expression is the same as described for PRINT

USING.

The semicolon before USING is optional. BASIC will accept it, but it will not appear when the
line is listed.

Explanation
PRINT # USING to ASCII files basically acts in the same manner as PRINT USING except that

output is directed to the ASCII file specified by the filenumber. If the filenumber is zero, this
statement is exactly equivalent to the PRINT USING statement.

AUG 1978 9-3a

The format specifications for printing to an ASCII file describe the form in which items in the
print list are to be printed. They are provided and evaluated in the same manner as for PRINT

USING.

When a print list is specified, END may be used after or instead of the print using list to cause
an end-of-file to be written to the specified file. END is not allowed if the filenumber is zero.

Both the filenumber and recordnumber may be numeric constants, variables, or expressions.

Note that the ASCII code equivalents for carriage return and line feed are not written to ASCII
files, but cause adjustment of the record pointer. This also applies to the action of the LIN and
CTL functions. See the example below.

Example

10
20
30
40
50
60
70
80

FILES AFILE

LET A=123,B=45678

PRINT #1 USING *7D";A,B

PRINT #1 USING “34"SOMF MORE EXAMPLES"’34
PRINT #1,4 USING 60;A,R

IMAGE $DXDDXDD3X

PRINT #1,6 USING “34"ABC"“1Q"DEF"”’34
PRINT #1 USING "S5D";A,LIN(=3),B

AFILE now contains the following:

123 45678

SOME MORE FXAMPLES

$

1 23 $4 56 78

ABC

DEF

123

45678

The recordnumbers given in lines 50 and 70 caused output to be directed to those specific records
of the ASCII file AFILE. The ASCII equivalent of line feed (’10) in line 70 and the LIN function
in the print list of line 80 caused adjustment of the record pointer.

9-3b

AUG 1978

MAT PRINT USING Statement

The MAT PRINT USING statement allows the printing of one or more complete arrays according
to a specified format.

Form
The form of MAT PRINT USING is:

MAT PRINT USING label

MAT PRINT USING label; mat print using list

MAT PRINT USING string expression

MAT PRINT USING string expression; mat print using list

The mat print using list is a list of arrays and print functions.

The format string is in an IMAGE statement identified by label, or it is contained in the string ex-
pression.

Explanation

The format specifications for printing the arrays in the list are provided and evaluated in the same
manner as for PRINT USING. The arrays are printed row by row as in the MAT PRINT statement,
but all spacing is provided by the format string associated with the mat print using list.

Examples

10 DIM AL3,7),B13,5]
20 MAT READ A,B
32 MAT PRINT USING 1003B
40 MAT PRINT USING "7(3D2X) /"3A
5@ DATA 100,110,120,130,148,152,162,178,188,15¢,202
60 DATA 210,2208,230,240,252,260,273,280,2508,303
70 DATA 400,410,428,430,448,453,460,470,480,452
80 DATA 5008,518,528,5308,540

100 IMAGE 5(DXDDXX)/

>RUN

400 418 428 4 30 4 408

450 4 60 4 T3 4 89 4 52

5 P0 5 1@ 5 20 5 32 5 42

160 118 120 130 142 150 160
176 180 150 208 218 228 230
240 2580 260 270 280 250 320

9-4

Array A is printed according to the string expression in line 40; array B is printed according to the
format in the IMAGE statement in line 100, which inserts a blank after the first digit of each
number.

9-5

MAT PRINT # USING

The MAT PRINT # USING statement allows the printing of one or more complete arrays to an
ASCII file according to a customized format.

Form
The forms of MAT PRINT # USING are:

MAT PRINT #filenumber[;] USING label;mat print list

MAT PRINT #filenumber[;] USING string expression;mat print list

MAT PRINT #filenumber[;] USING label

MAT PRINT #filenumber[;] USING string expression

MAT PRINT #filenumber,recordnumber[;] USING label;mat print list

MAT PRINT #filenumber,recordnumber[;] USING string expression;mat print list
MAT PRINT #filenumber,recordnumber[;] USING label

MAT PRINT #filenumber,recordnumber[;] USING string expression

The filenumber identifies an ASCII file. If the filenumber is zero, the standard listing device (your
terminal or the line printer) is referenced.

The optional recordnumber specifies the record into which the items in the mat print list are to
be printed. As for the PRINT # USING statement, a recordnumber may only be specified for an
ASCII file having direct access capability.

The optional mat print list is one of the following: mat print using list (as described for MAT
PRINT USING), END, or mat print using list, END. It may be omitted when the format consists
entirely of literal specifications.

The format string is in an IMAGE statement identified by label, or it is contained in the string
expression,

As for PRINT # USING, the semicolon before USING is optional.

Explanation

MAT PRINT # USING to ASCII files acts in the same manner as MAT PRINT USING except that
output is directed to the ASCII file specified by the filenumber When the filenumber is zero, this
statement is equivalent to the MAT PRINT USING statement.

The format specifications for printing the mat print list are provided and evaluated in the same
manner as for MAT PRINT USING. END may be used after or instead of a mat print using list

to cause an end-of-file to be written to the specified ASCII file and is not allowed if the filenumber
is zero.

AUG 1978 9-ba

As in PRINT # USING, note that the ASCII code equivalents for carriage return and line feed cause
adjustment of the record pointer and that this affects the action of the LIN and CTL functions.

Examples

10 FILES AFILE
20 DIM A[10),B[3,5]
30 MAT READ A,B
40 MAT PRINT #1 USING "10(DDX)":A
50 MAT PRINT #1 ySING 100;LINC(C1),R
60 MAT PRINT #1,8 USING "S5(DDDXXX)/":B,END
70 DATA 10,11,12,13,14,15,16,17,1%8,19
80 DATA 111,222,333,444,555,666,777,888,999
90 DATA 101,202,303,404,505,606
100 IMAGE 2(sDXDDX),3(3D)/
>RUN

AFILE now contains the following:

10 11 12 13 14 15 16 17 18 19

$1 11 82 22 333444555
$6 66 $7 77 888999101
$2 02 $3 03 404505606

111 222 333 444 555
666 777 88R 999 101
202 303 404 505 606

9-5b AUG'1978

IMAGE Statement

The IMAGE statement specifies a format string to be used in a PRINT USING statement. Itis a
declarative statement and is not executed.

Form
The form of the IMAGE statement is
IMAGE format string

The format string is not quoted. It may be used by PRINT USING, MAT PRINT USING, PRINT #
USING or MAT PRINT # USING statements

Format string specification is described in this section under Format Strings.

Explanation

The format string specified in an IMAGE statement is associated through the label of the IMAGE
statement with one or more formatted print statements. By specifying a format in an IMAGE
statement, many PRINT USING and MAT PRINT USING statements can use the same format.

The legitimacy of the forfnat string in the IMAGE statement is not checked until execution of the
PRINT USING statement referencing it.

Examples

19 DIM AS(28)

20 AB="1,2,3,4,5,6,T48,9,8,"

30 A=123456,B=-789120, C=12

48 X=1234,56

50 IMAGE 6D2X,” LITERAL", S2DXX,$4D .2D
66 IMAGE S4DXX.DD/2@AX,STD

70 PRINT USING 583A,C,X

88 PRINT USING 603;X,AS$,B

>RUN
123456 LITERAL+12 $1£234,56
+1234 L,56

1,2,3,4,5,6,7,8,9,0., ‘7891@9

The decimal point in the format string indicates that a decimal point should be printed and, by its
position, specifies the number of digits to the left and right of the decimal. The slash causes a
carriage return and linefeed.

9-6 AUG 1978

Format Strings

The format string consists of an optional carriage control character and comma followed by one or
more format specifications separated by one or more commas and/or slashes. Each format specifi-
cation consists of orderly combinations of format symbols.

Format Symbols

Format specifications are composed of permutations of the following symbols (the replicator n is
an integer between 1 and 255 inclusive):

A Causes the printing of a single character. nA causes n characters to be printed. A is
legal only for string data items.

D Causes a decimal digit to be printed. nD causes n decimal digits to be printed.
X Causes a blank to be printed. nX causes n blanks to be printed.

Indicates placement of decimal point.

S Indicates placement of ““+’’ and ‘-’ signs.

M Indicates placement of ‘-’ only.

E Causes numbers to be printed in E-type float form.

C Indicates a complex format follows.

K Indicates compressed numeric formatting.

I Causes the character “I” to be printed; nl causes n I’s to be printed.

$ Causes the character “$” to be printed; n$ causes n dollar signs to be printed.

+ or - Separate the real from the imaginary part in a complex number and indicate place-
ment of the sign for the imaginary part.

/ Separates specifications and generates a carriage return and linefeed.
() Enclose a group field specification so that a replicator can be used to signify the
multiple occurrence of this group of specifications. Also enclose complex specifica-

tion preceded by C.

, Separates specifications
[1A

Enclose literal specifications.

Apostrophe is used for special string characters (e.g., ‘40)

9-7

The format symbols are combined according to certain rules to form the following types of
specifications:

literal specification
string specification

numeric specification

The symbols X, I, $, and literal strings are considered editing symbols and may be interspersed
freely in any specification.

Literal Specification

This specification contains only the editing symbols X, I, $, and literal strings. When a literal string
is encountered in a format string, the characters between quotes are printed. For instance,

“THIS IS A LITERAL STRING”

When the characters I and $ are encountered in a format string, the literal characters “I”’ and “$”
respectively are printed.

Each X in a format string causes a single blank character to be printed.
Replicators may precede an X, I, or $ in a format string:

21 equivalent to II
3X equivalent to XXX
2$5X equivalent to $$XXXXX

String Specification

In a string specification, any combination of editing symbols and A’s (with or without replicators)
is permitted. At least one A must be present to signify a string specification. The matching item
in the print using list must be a string value; it is printed left-justified with blank fill on the right.
If necessary, the string value is truncated on the right to fit in the field. For example,

3A (prints 3 characters adjacent)
AXAXA (prints 3 characters separated by blanks)

9-8

Examples

10 DIM AS(121,BS$(3)
20 LET A$="ABCDEFGHIJ",B$="ABC"
30 PRINT USING "3X3A3X,AXAXAX"3BS,"UVWX"
40 PRINT USING 503A$
50 IMAGE "ALPHA STRING",3X10A
>RUN
ABC uvw
ALPHA STRING ABCDEFGHIJ

Numeric Specification

The specification for a numeric field other than complex consists of the symbols S, M, D, *“.”’, and
E. S and M may be used to position the sign, D’s are used to indicate the positions of the digits,
the ““.” is used to position the decimal point, and E may be used to specify that an exponent field
is to be printed. The editing symbols may be freely inserted into a numeric field. The specifica-
tion for a complex field usually consists of two numeric specifications combined in a special way
that is described in detail later.

Generally, numbers are rounded when being converted for formatted output.

In all numeric specifications (except the imaginary part of a complex specification) printing of
signs is handled by the characters S and M, according to the following rules:

1. If an S appears before all D’s and any decimal point, the sign (whether + or -) is printed im-

mediately preceding either the most significant digit or the decimal point, whichever is
further to the left.

2. If an S appears after any D’s or to the right of the decimal point, the sign is always printed in
that particular position (i.e., a fixed sign).

3. If an M appears anywhere in a specification, either a blank is printed in that position (if the
number is positive or zero) or a “-”’ is printed in that position (if the number is negative).

4. If no S or M appears anywhere in the specification, the number is printed as specified (if the
number is zero or positive). If the number is negative, the specification is treated exactly as
if the first D were replaced by an S, provided at least one D nrecedes the decimal point.

5. Only one S or M is allowed per specification.

If the field specified by any numeric specification is not large enough to hold the most significant

digits of a number to be printed, the number is printed alone on the next line preceded by two
asterisks. It is printed in a standard format according to type as if generated by a PRINT statement.

9-9

INTEGER SPECIFICATION. Any combination of editing symbols and D’s (with or without rep-
licators) is allowed in an integer specification, but at least one D must be present. One S or M can
appear. The number is printed right-justified, one digit per D with leading zeros suppressed and
the fractional part (if any) rounded to the nearest integer.

Examples

12 PRINT USING 283-1,1,5400,-19,321,-74,183.65
29 IMAGE XDXDXD,DM2DX,54D,3X5D,DDDDM,X $4D

>RUN
-1 1 +5420 -19 74- $ 124

Note that the fractional part of decimal numbers are dropped after rounding.

FIXED SPECIFICATION. Any combination of editing symbols and D’S (with or without repli-
cators) is allowed in a fixed specification, but at least one D and only one period must be present.
One S or M can appear. The number is printed anchored around the position of the decimal point
(which is printed) with leading zeros suppressed. If necessary, the fractional part of the number is
rounded or filled with zeros before being printed to the right of the decimal point. One digit or
blank is printed per D. Trailing zeros are printed.

Examples

12 PRINT USING 243 7232,-4.29374,21,=4281,470.32,1.5
20 IMAGE 3XDS3D.5D,MDD.D,3D.X123D,DDD DD, XMDDD.4C,DD

>RUN
T+032.002080~ 4.3 21 2323232323¢ -.238 472.3242 2

FLOATING SPECIFICATION. A floating specification is an integer or fixed specification followed
by E. Editing symbols may be interspersed freely. The most significant digits are printed from left
to right, and an exponent is printed as Exdd. If a negative number is to be printed in floating point
format, there must be an S or M in the specification.

9-10

Examples

13 PRINT USING 223574.92,-42200283, (32.1,4),1ElZ,1.5L21
20 IMAGE DDEX ,M.DDEXX,40EX,2(5D.EX)

>RUN

TDE+22 - 40E+36 3212E-22 10008 .E+08 15084.E+17

Note that the imaginary part of the complex number is not printed.

COMPLEX SPECIFICATION. The real part of a complex number can be printed using an integer,
fixed, or floating specification. The imaginary specification is preceded by a + or - and consists of
an integer, fixed, or floating specification in which there is no S or M. The only difference is in the
treatment of the sign. The + is treated exactly like an S; the - is treated as an X if the number is
not negative and as an S if the number is negative.

To print both the real and imaginary parts of a complex number, the real specification precedes the
imaginary specification in the same format with no intervening comma.

An I is not printed automatically to indicate imaginary, but if desired, can be included in the format
string as a literal or by using the I symbol.

Examples

19 PRINT USING 303(3,2),(8,1),(.203,-4),(.003,4),21
38 IMAGE 3D+DDX,43D«D-4DE,2(Xs3D-D.D,1),XXXDD

>RUN
3 +2 @ JIE+O] J003-4.01 233 4.01 21
19 PRINT USING "XXXDD,+DD"j(21,2),(3,-18)
>RUN
21-10

The I in the format specification is printed as *‘I’’; it may be used to indicate that the imaginary
part of the number is being printed. The second example prints the real part of the first number,
and the imaginary part of the second.

The C specification is a second method of formatting complex numbers for output; this results in
formatted output in a form similar to the standard PRINT format (i.e., parentheses enclosing two
numbers separated by a comma). The C specification is the letter C followed by two noncomplex
numeric fields (integer, fixed, or floating) which are separated by a comma and enclosed in paren-
theses. The first field defines the format of the real part of the number and the second defines the
format of the imaginary part. Both fields must be present. If a noncomplex number is printed
using this field, the imaginary part is assumed to be zero.

9-11

Examples

1@ PRINT USING 2083(3,2),(B,1),(,803,-4),(3,-4),21

20 IMAGE C(3D,SDD),C(3D.DyM.DE), C(DD,MD«D),C(Dor,MDI),C(DD,SXXDD)
>RUN
(3’ +2)(00’ 1 EFAL)C 0,'4.0)(3.5"33,"41)(21, +@)

In these examples, the same expressions printed in the first example are printed with the C specifi-
cation. With this specification, the imaginary part may have an M or an S.

COMPRESSED FORMAT SPECIFICATION. The compressed specification consists of one K and
any editing symbols. It prints a number using only as many characters as are required. The result-
ing format is identical to that used in the simple PRINT statement (Section II), except that no
blanks appear and trailing zeroes and decimal points are deleted. This specification is useful when
numeric data is to appear within text.

Examples

10 PRINT USING 28325

20 IMAGE "I HAVE" ,XKX,"BANANAS”
>RUN
I HAVE 25 BANANAS

Separators

BASIC/3000 format strings have two separators: the comma (,) and the slash (/). A separator is
required between two adjoining specifications. The slash, in addition to separating specifications,
also generates a carriage return and linefeed. Two separators can be adjacent. The meaning of
adjacent commas is equivalent to a single comma.

9-12

Examples

12 PRINT USING 208325,13,-5,(1,258),2575.5,2.5
20 IMAGE DDX.E/4D,/,SDDX,D+3D.E//"HIWAY" /4DX,,SD.E
3@ PRINT USING "5A"3"ABCDE"
>RUN
25 JE+020
13
-5 142508,.E+202

HIWAY
2575 +3,.E+90
ABCDE

Each slash in the format string causes a carriage return and linefeed.

Grouping

BASIC/3000 format strings allow one or more field specifications to be enclosed by parentheses and
preceded by a replicator to indicate the repetition of the entire enclosed set of specifications. This
newly grouped field must be separated from other specifications of the format string by a separator.
Grouped specifications can be nested indefinitely.

Examples

5 LET A$="A",B$="B", C$="C"
18 PRINT USING 2033000,300,A%,4008,8%5,520,C3,1.5,2.4,3.3,6.6
22 IMAGE 4D4X ,3(3D.D/5X,3A) /2(2(D.DX) /)

>RUN

5000 300.9
A 400.0
B 580.0
c

15 2.4

3.3 6.6

9-13

The IMAGE statement in the example above is exactly equivalent to the following IMAGE state-
ment:

5 LET A%="A",B$="B",C$="C"

13 PRINT USING 20330208,300,A%,402,B%,520,C8%,145,2.4,3.3,6.6

28 IMAGE 4D4X,3D.D/5X,3A,3D.D/5X,3A,3D,D/5X,3A/D.DX,D.DX/D.DX,D.DX/
>RUN
3000 303.0

A 400.0
B 500.0
C

1.5 2.4

5.5 6.6

Carriage Control Characters
The carriage control characters are

+ suppress linefeed
- suppress carriage return

suppress linefeed and carriage return

These characters specify action to be taken following execution of the PRINT USING statement.
They specify whether a carriage return and linefeed are generated after the last item is printed. If
no carriage control characters are present, a carriage return and linefeed will be provided auto-
matically following each line. This is the only automatic line control in PRINT USING; within a
format specification, the user is responsible for supplying carriage returns and linefeeds with
slashes.

Carriage control characters are executed after all other formatted output, but they must be speci-
fied first in the format string.

Example

12 PRINT USING "#,S3D.2D,3XS6D"§125,625

20 PRINT USING "X3D.DEX,13A"3125,"E STRING"
>RUN
+125,00 +625 125,08E+38 E STRING

The carriage control character “#” in line 10 suppresses the automatic carriage return and linefeed
following that PRINT USING statement, and causes the next PRINT USING statement to print on
the same line.

9-14

SECTION X
Segmentation

Because the maximum size of a BASIC/3000 program is necessarily limited by memory resources,
BASIC/3000 provides language facilities for segmenting programs into units that can call each
other. Each unit or subprogram must be saved in the user’s library; from there it may be called by
the currently executing program into the user’s work area.

Two statements are used for interprogram transfer: INVOKE and CHAIN; and one statement,
COM, allows variables to be used in common by several programs.

10-1

CHAIN Statement

The CHAIN statement terminates the current program and begins execution of another program,
optionally starting at a specified statement number.

Form
The forms of CHAIN are:

CHAIN string expression

CHAIN string expression,integer expression

The string expression, when evaluated, is the name of a BASIC/3000 program that is in the user’s
library. This may be a fully qualified file name (see Section VIII, Files). When evaluated, the
optional integer expression is a label in the called program. If present, execution begins at the first
executable statement at or after the label; the exact label need not be present in the called pro-
gram. If omitted, execution begins at the first executable statement in the called program.

Explanation

CHAIN calls the program identified by the string expression, and it replaces the current program.
When the program called by CHAIN finishes execution, it terminates and does not automatically
return to the calling program. The called program may call another program, including the orig-

inal calling program, with another CHAIN statement or an INVOKE statement.

Only variables declared in a COM statement are saved during a CHAIN operation. All variables and

arrays of the current program that were not declared in COM are lost when the new program begins
execution, and all files opened in the current program are closed.

10-2

Examples

MALN
10 REM..PROGRAM MAIN
20 LET Xz200,A=X%*3
33 PRINT "A="34
49 PRINT "LEAVE MAIN AND ENTER SUBA AT LINE 32"
5S¢ CHAIN “SUBA™,32
60 REM..THIS STATEZMENT 1S NEVER EXECUTED

SUBA
1@ REM..PROGRAM SUBA
2@ PRINT " THIS STATEMENT IS NCT EXECUTED"
30 PRINT "ENTER SUBA - LINE 33"
49 LET B:=125,C=B**2
52 PRINT "C=z="3C
6@ PRINT " iZIND OF SUBA - TERMINATE HERE"
73 END
>RUN MAIN
MAIN
Az 8.00000E+36
LEAVE MAIN AND ENTER SUBa AT LINE 32
- ENTER SUBA - LINE 39
Cz 15625
END OF SUBA - TERMINATE HERE

The main program, MAIN, calls program SUBA with a CHAIN command in line 50. Execution of
SUBA begins in line 30, and execution terminates with the last line of SUBA. None of the variable
values from MAIN are saved following execution of CHAIN.,

10-3

INVOKE Statement

The INVOKE statement is similar to the CHAIN statement, except that the calling program is sus-
pended rather than terminated and resumes execution when the program called by INVOKE ter-
minates. The called program can be explicitly terminated with an END statement, otherwise it is
implicitly terminated by the end of the program. In both cases, control returns to the suspended
program that performed the INVOKE. If the called program is terminated by a STOP statement
or a terminal error, the entire run is terminated including any suspended programs.

Form
The forms of INVOKE are:

INVOKE string expression

INVOKE string expression,integer expression

The string expression evaluates to the name of a BASIC/3000 program in the user’s library. It may
be a fully qualified file name. The integer expression evaluates to the label of a starting statement.

Explanation

The statements and variables of the current program are saved in a temporary file created by
BASIC/3000 so that execution of the program can be continued at a later time. Variables declared
in COM statements are passed to the program called by INVOKE. Files opened in the current pro-
gram are not closed by INVOKE.

Execution of the new program begins at the first executable statement in the program or, if speci-
fied, at or after the label. The exact label need not be present in the called program.

When an implicit or explicit END statement in the called program is executed, control returns to
the suspended program at the point immediately following the INVOKE statement. A STOP state-
ment in the called program will, however, terminate the entire run including any suspended pro-
grams.

INVOKE operations can be nested; that is, a program that has been called by INVOKE can itself
invoke another program including a recursive INVOKE of itself.

10-4

Examples

MAINX
13 REM..PROGRAM MAINX
20 LET A=25
32 INVOKE "suBy"
49 PRINT "CONTROL RETURNS TO MaINX"
58 PRINT "C=zAx[@="3A%1d
SuBY
i@ REM..PROGRAM SUBY
2% PRINT " EXECUTION OF SUBY BEGINS"
3@ PRINT "B="38%%-3
473 PRINT " HEND OF SUBY = RETURN TO MalNX"
5@ END
>RUN MAINX
MATINX
EXECUTION OF SUBY BEGINS
Bz 1,95313%-023
END OF SUBY - RETURN TO MAINX
CONTROL RETURNS TO MAIWNX
C=A%12= 250

MAINX uses an INVOKE command in line 30 to call for execution of SUBY. Execution begins with
the first executable statement in SUBY. When SUBY terminates, control returns to line 40 of
MAINX. The value of the variable A has been saved during execution of SUBY.

EXAMPLE USING CHAIN AND INVOKE

The example below has four programs: A, B, C, and D. All four programs have been saved in the
user’s library. The command RUN A brings A into the user’s work area as the current program.
With each successive CHAIN or INVOKE, a new program replaces the previous program in the work
area; in this case A is the final as well as the first program in the work area.

When D terminates it returns to C, and when C terminates it returns to A because C was chained to
by B which was invoked by A.

10-5

19 REM..PROGRAM A

29 PRINT "ENTER PROGRAM A"

33 INVOKE "B"

40 PRINT "BACK IN PROGRAM A - TERMINATE"

12 REM..PROGRAM B

20 PRINT "ENTER PROGRAM B*

38 CHAIN "C",30

40 REM..,CONTROL SHOULD NEVER RETURN TO THIS POINT
4] REM..DUE TO CHAIN IN LINE 38

50 PRINT "NOT TO BE EXECUTED - B"

13 REM..PROGRAM C - EXECUTION STARTS IN LINE 32
2@ PRINT “NOT TO BE EXECUTED - C"
30 PRINT " ENTER PROGRAM C - LINE 32"
42 INVOKE "D*,25
5@ PRINT “BACK IN C - RETURN TO A"
60 REM..END IN LINE 70 WILL CAUSE RETURN TO PROGRAM A
61 REM..BECAUSE PROGRAM B WAS INVOXED BY PROGRAM A
$2 %Eg..NOTE THAT THE "END" IS UNNECESSARY
)

D
5 REM,.,.PROGRAM D - EXECUTION STARTS IN LINE 25
15 PRINT "NOT TO BE EXECUTED - D~
25 PRINT " ENTER PROGRAM D - LINE 25"
35 PRINT "RETURN TO PROGRAM C"
45 REM,.. . IMPLICIT END WILL CAUSE RETURN TO PROGRAM C
47 REM NOTE THAT EXPLICIT "END™ WOULD DO THE SAME
>RUN A
A
ENTER PROGRAM A
ENTER PROGRAM B
ENTER PROGRAM C - LINE 32
ENTER PROGRAM D - LINE 25
RETURN TO PROGRAM C
BACK IN C - RETURN TO A
BACK IN PROGRAM A - TERMINATE

10-6

Files and Segmentation

Within a program, a file is referenced by its file number as determined by its position in the FILES
statement (see Section VIII). When programs call one another with CHAIN or INVOKE, it is pos-
sible to reference files that were declared with FILES statements in other programs.

BASIC/3000 maintains an internal file numbering scheme that assigns an internal file number to
every file declared in a FILES statement. For main programs, these numbers are the same as the
file numbers to which the user refers. Files declared in a program called by INVOKE are assigned
internal file numbers beginning with a value one greater than the last internal file number. Files
declared in a program called by CHAIN are assigned internal file numbers beginning with the same
number as the files in the calling program. Whether the program is a main program, is called by
INVOKE, or is called by CHAIN, the local file numbers used to refer to files within each program
will begin with 1.

When a program calls another program with INVOKE, all the files in the calling program remain
open; when a program calls with CHAIN, the files in the calling program are closed.

To illustrate:

Ml
12 REM MAIN PROGRAM Ml
20 FILES A,B,C
30 INVOKE "m2"

M2
13 REM SUBPROGRAN 12
29 FILES D,E,F
39 CHAIN "M3"

M3
18 REM SUBPROGRANM M3
28 FILES G,H

The internal and local file numbers for this group of programs is:

Internal File Numbers Local File Numbers
A=1 M1
B=2 A=1
CcC=3 B=2

CcC=3

D=4 M2
E=5 D=1
F=6 E=2
F=3

G=4 M3
H=5 G=1
(6 is unassigned) H=2

By using the #integer file designator in a FILES statement, a program may reference files declared
in another program that invoked it. The value of the integer is the internal file number of a pre-
viously declared file; the position of the designator in the FILES statement is used to assign the
local file number.

Examples

Ml
18 FILES A,B,C
28 PRINT #1,13"FILE A"
30 PRINT #2,13"FILE B"
40 PRINT #3,13"FILE C"
5@ INVOKE "Mm2"

me
10 FILES D,E,F,#3
20 DIM AS%(6)
38 PRINT #1,13"FILE D"
40 PRINT #2,13"FILE E"
50 PRINT #3,13"FILE F"
60 READ #4,13A%
70 PRINT AS
80 CHAIN "M3"

M3
10 FILES G,H,#1,#2
20 DIM AS(6),BSI[6)
38 PRINT #1,13"FILE G"
40 PRINT #2,13"FILE H"
58 READ #3,13A%
68 READ #4,13B%
78 PRINT AS$,B%

>RUN M1

Ml

FILE C

FILE A FILE B

Within M2, reference to local file #4 is the same as a reference to internal file number 3 (file C).
However, the statement FILES D,E,F,#3 is not the same as the statement FILES D,E,F,C. This
latter statement, if specified, would have treated file C as a logically different file from file C in

M1; the file would have been reopened with new buffers and access restrictions. By using #3, there
is only one logical file C and any accessing affects that file, and the file is not reopened. In the

same way, the statement FILES G,H,#1,#2 in M3 differs from a possible statement FILES G,H,A,B.

10-8

COM Statement

The COM statement is used to pass data values between segmented programs. Variables specified
in a COM statement are placed in a common area so that values assigned to these variables in one
program will be retained when transferring to another program with CHAIN or INVOKE. This
area is known as a COM block. There may be more than one COM block, and it may or may not
have an identifying label.

COM statements must precede all DIM, Type, or DEF statements in a program. All typing and
dimensioning of variables is done within the COM statement, and any variables that appear in a
COM statement must not also appear in a type or DIM statement in the same program.

BASIC/3000 permits ten COM blocks for each run, one unlabeled and nine labeled uniquely with
the digits 1 through 9.

Form
The forms of the COM statement are:

COM com item list

COM(nonzero digit)com item list

The com item list consists of a list of variable declarations. Simple variables are indicated by the
variable name; arrays are indicated by the array name and a bounds indicator. The bounds indi-
cator is equivalent to the dimension specification used in a DIM statement if the block is being
created; it indicates only the number of dimensions if the block has been created and is currently
active. The number of dimensions are specified with (*) or (*,*).

The type of items in the com item list is assumed to be real unless the variable name contains a $ to
indicate a string variable, or the variable is preceded by a type specifier (INTEGER, LONG, COM-
PLEX, or REAL). The type specifier assigns that type to all succeeding variables until the end of
the list or the next type specifier or string variable.

The optional block indicator is specified as a nonzero digit between 1 and 9. This assigns a label to
a block being created, or specifies an existing labeled block.

Explanation

Programs execute in BASIC/3000 on a dynamic level basis. The original program run with the RUN
command starts at level 1. When a CHAIN is executed, the new program executes also at level 1
since the old program terminates. However, when an INVOKE is executed, the new program exe-
cutes at level n+1 where n is the level of the invoking program. When control returns to the invok-
ing program, the level is reduced to n.

10-9

COM blocks become active whenever a program declares a COM block that is not currently existing

or active. COM blocks created at level n are active until the dynamic level drops to n-1 or the run
terminates.

If a COM statement references an inactive COM block, then numeric bounds for the arrays and
strings are specified as in a DIM statement. If, however, a COM statement references an active
block, then it need only indicate the number of dimensions. For a one-dimensional array or a
string variable, the variable name is followed by (*); for a two-dimensional array or a string array,
the variable name is followed by (*,*). The (*) can be omitted for simple string variables and will
be assumed. Numeric bounds may be specified for an active COM block, but in this case they must
be identical to the original COM statement bounds.

CORRESPONDENCE RULES. All variables in COM statements that reference an active COM block
must match exactly in type, number of dimensions, and order within the COM statement. Also, if
dimension size is specified instead of the *, these must match exactly. The names of corresponding
variables need not be the same since equivalence is based on the order of appearance of the vari-
ables in the COM statements. A COM statement defining an active block must contain the same
number of elements as the COM statement that created the block. More than one COM statement
in a program can define the same block if the statements are contiguous.

The order of elements in a COM statement, or in more than one contiguous COM statement, im-
plies the order of the variables in the COM block.

The rules governing correspondence between COM statements are checked when a CHAIN or IN-
VOKE statement is executed. If any of these conditions is not met, a terminal error occurs.

Examples

Program A1 chains to program B1 which in turn chains to program C1:

Al
16 cCom B,B$(5),C,INTEGER D,E(5]),LONG F(5,2)
20 COM(5) Q,COMPLEX A,AS$12,21,P
30 LET B=10,B$="ABCDE",C=208.5,D=1
4@ MAT READ E,F
50 DATA 1,2,3,4,5,1.81L11,5.2L18,1457L11,1476L11,1476L=-9,1.53L11
60 DATA 1.575L-4,1.57L6,1.57L=5,1,752L10
70 LET Q=1954.75,A=(12.3,4),P=3.14
82 MAT READ AS$
98 DATA "“AB","CD"
180 CHAIN "B1™

10-10

Bi
10 cCoM T,C$H(*1,Q,INTEGER F,DI*]),LONG Fil*,%]
20 PRINT “START BI1"
3@ PRINT T,C$,Q,F
48 MAT PRINT D3 FI
58 CHAIN "C1"

Cl
19 COM(5) A,COMPLEX B,C%[*,%],D
2@ PRINT "START CiI”
38 PRINT A,B,D
48 MAT PRINT C$

>RUN Al
Al
START Bl
10 ABCDE 205 1
1 2 3 4 5
1.210000000000333L+11 5.200000000000000L+10
1.57000000000002AL+11 1.760000000020300L+11
1.7600000030002307AL-0G9 1.530000000000030L+11
1.57500000730200008L-04 1.5700000000300020L+06
1.570000000200038L-85 1.752000200032030L+10
START C1
1654.75 (1.23000E+31, A4.00000E+020) 3.14
AB
CD

In this example, program Al creates the unlabeled COM block and also COM block 5. Program Bl
references the unlabeled COM block and prints the data assigned to that block in A1l. Program C1
references COM block 5 and prints the data assigned to that block in A1l. In both Bl and C1, the
number of dimensions of subscripted COM variables is indicated by (*) or (*,*).

10-11

Assume that program D1 chains to program E1:

Dl
10 COM(S) Al3,5]),INTEGER DI[6,6]
20 MAT A=ZER
32 MAT D=IDN
40 CHAIN "£1°

£l
18 COM(9) BI3,5]1,INTEGER P[6,6])
20 MAT PRINT BgLINC1),P;

>RUN DI

Dl
2 8) 2 2
") 2 0 ") 2
2 ") 2 ") @
1 2 ") 2 ") 7
") 1 2 0 0 @
") 2 1 2 ") 2
) 2 ") 1 2 ")
2 2 2 ") 1 2
") ") 2 0] 1

In this example, program D1 creates COM block 9, and program E1 references the data in block 9.
Actual numeric bounds are specified in the COM statement in E1. This is legal only if the bounds
are identical to the original bounds specification.

In the following example, execution of the four programs starts in W:

10-12

19 REM PROGRAM W

20 COM(3) BI5]

3@ FOR I=1 TO 5

40 B(Il=I

50 NEXT I

68 INVOKE "X"

70 PRINT LIN(5)3"BACK IN W - B:="
80 MAT PRINT B

9@ CHAIN “Z"

12 REM.. PROGRAM X

28 COM(3) A(x)

30 COM(4) LONG C(3,21]

40 PRINT LIN(S)3™IN X == A="gLINCLD)
58 MAT PRINT A

68 FOR I=1 TO 5

79 ALl)=10%]

80 NEXT I

98 FOR Izl TO 3

100 FOR J=1 TO 2

110 ClI,JI=10%I+J
120 NEXT J
130 NEXT I

148 INVOKE “Y"

158 PRINT LIN(5)$"BACK IN X == C="3LINCI)
168 MAT PRINT C

170 PRINT LINC1)$"RETURN TO W"

18 REM.. PROGRAM Y

20 COM(C4) LONG Fl*k,*x)

38 PRINT LIN(S)3™IN Y == Fz"3LINCD)
40 MAT PRINT F

5@ FOR I=1 TO 3

60 FOR J=1 To 2

70 FII,J1=z100%1+102%J
80 NEXT J
9@ NEXT I

18@ PRINT LINC1);"RETURN TO X"

12 REM.., PROGRAM Z

20 COM(4) INTEGER I,J,K

38 PRINT LINC5)3"IN Z-- COM(C4)="3LINCI)
40 IF UNDCI) THEN PRINT " 1 UNDEFINED"
58 ELSE PRINT " 1="3]

60 IF UND(J) THEN PRINT " J UNDEFINED"
780 ELSE PRINT " J:z";J

80 IF UND(K) THEN PRINT " K UNDEFINED"
9@ ELSE PRINT " K="3K

180 PRINT " TERMINATE IN Z"

10-13

>RUN W
W

IN ¥ -- A=

1 2 3 4 5
INY -- F=

1.12020700000223230L+71 1.20020000000030000L+31
2.1000030006000208L+@1 2.200000000000327AL+31
3.1300000000000203L.+01 3.200000000000000L+01

RETURN TO ¥

BACK IN X -- C=

1.1000380300380002L.+82 1.2000000000302000L+02
2.1032720000000002L+A2 2.2000000000300023L.+22
3.100000000002000L+32 3.200000000200000L.+02

RETURN TO W

BACK IN W - B=
19 27 37 40 58

IN z-- COM(C4a)>=

I UNDEFINED
J UNDEFINED
K UNDEFINED
TERMINATE IN 7

Note that Z can create a new COM block 4 since execution has dropped below the dynamic level 2
at which X created the first COM block 4.

10-14

The following three examples illustrate illegal COM usage:
Assume that program F1 invokes program G1:

Fl
16 COMC1) AC10,131,LONG B(12,18])
20 MAT A=CON
30 MAT B=ZER
49 INVOKE "GI1"

Gl
16 COM(1) LONG DI(*,%),REAL E[*,x*]
208 MAT PRINT D,E

>RUN FI

Fl

COM NOT SAME AS FIRST OCCURENCE IN Gl

This is illegal because the corresponding variables in the two COM statements do not agree in type
and order. If the type references were interchanged in program G1, this would be a legal example.

Assume that program HH chains to program Jd:

HH
16 COM(7) A$(3,51,B(2,5]
20 MAT B=IDN
32 MAT READ AS
42 DATA "ABCDE"," FGHIJ"," LMNOP®
50 CHAIN “JJ”

JJ
19 COMCT) QS[*)1,D0%,%*]
20 PRINT Q%
38 MAT PRINT D
>RUN HH
HH
COM NOT SAME AS FIRST OCCURENCE IN JJ

This is illegal because Q$ is a simple string variable, whereas A$ is a string array.

10-15

Assume that program K1 invokes program P1:

Kl
12 COM(8) Xi%x,%]
28 INVOKE "PL"
380 MAT PRINT X

Pl
10 COM(8) Y(10,3]
20 MAT Y=ZER

>RUN K1
MISSING SUBSCRIPT SPECIFICATION IN FIRST OCCURENCE OF COM IN KI

This is illegal because the creator of a COM block must specify the actual physical size of arrays
and strings. If, however, P1 invoked K1 this would be a legal example.

10-16

SECTION X/
Communication with Non-BASIC Programs

A BASIC/3000 user can access an SPL/3000 procedure or a FORTRAN/3000 subprogram from a
BASIC program with the CALL statement. As mentioned in Section I, he can enter MPE/3000 with
the SYSTEM command or by pressing the break key. Another method for using the facilities of the
MPE/3000 Operating System is with the SYSTEM statement. The SYSTEM statement enters an
MPE system command dynamically into a BASIC/3000 program.

11-1

CALL Statement

The CALL statement calls for execution of an SPL/3000 procedure or a FORTRAN/3000 subpro-
gram that exists in an MPE/3000 segmented procedure library (SL). Parameters may be passed to
the called procedure or subprogram. The search for an external parameter begins in the group
library. (See MPE/3000 Operating System, Reference Manual.

Care should be taken when using SPL. or FORTRAN since these procedures are not controlled by
the BASIC/3000 Interpreter and errors in them can propagate into the Interpreter causing indeter-
minate results.

Form
The forms of CALL are

CALL procedure name
CALL procedure name(actual parameter list)
* procedure name

* procedure name(actual parameter list)

The procedure name identifies the procedure or subprogram being called. The optional actual
parameter list may contain numeric or string expressions, variables and array names followed by
bound indicators (*) or (*,*). Anything that can be passed to a function (see Section VI) can be
passed in a CALL statement.

The asterisk may be used interchangeably with CALL.

Explanation

CALL transfers control to the beginning of the specified procedure. If parameters are specified,
they are passed by reference as address pointers rather than by value. If the parameter is an expression,
a temporary variable is created by the Interpreter to contain the value of the expression.

In addition to the parameter addresses, BASIC/3000 passes the number of parameters and also code
words describing the parameters (one code word for every three parameters). The code words may
be used by the procedure to insure that the calling sequence is correct.

The parameter information used by the program or procedure being called is set up by the BASIC/3000
Interpreter when the CALL statement is executed. Depending on the called program, values
may be returned to the BASIC program through the specified parameters. The formats of the
parameter address table and of the parameter values is contained in Appendix F, Parameter Format.
This information is useful primarily if the BASIC user is writing or modifying the called program.
Otherwise, he only needs to know the type and the order of the parameters used in the called
program in order to specify them in the CALL statement.

11-2

Examples

The first example calls the FORTRAN segment BOOLEAN containing three subroutines that per-
form Boolean operations. The first subroutine LAND performs a logical AND, the second LOR
performs a logical OR, and the third LNOT performs a logical NOT. Each subroutine is called
with a different CALL statement and the result is printed upon return to BASIC.

The second example calls the SPL procedure WHOM from a BASIC program. WHOM returns the
user’s name, group, accout, and home group from the identification codes entered by the user wher
he logs on. This information is derived by WHOM using the MPE/3000 system intrinsic WHO.
WHO is an option variable procedure and, as such, cannot be called directly from BASIC/3000.
This example illustrates, among other things, the interface with an intrinsic that cannot be
referenced directly.

Each subroutine and procedure is listed following the BASIC program that calls it, and this list is
followed by an SL (segmented procedure library) list requested after the segment is added to the
SL.

1. Calling FORTRAN Subroutines

18 INTEGER X,Y,Z
20 LET X=1,Y:=0
3@ *LOR(X,Y,Z)
49 PRINT Z

>RUN

1

19 INTEGER X,Y,Z
20 LET X=1,Y=0
38 CALL LAND(X,Y,Z)
40 PRINT Z
>RUN

18 INTEGER X,Y,Z
20 LET X=1,Y=0
3@ CALL LNOT(Y,Z)
43 PRINT Z

>RUN

11-3

The FORTRAN segment containing subroutines LAND, LOR, and LNOT is listed below. The
comment lines describe the parameter restrictions. Note that all three parameters should be
integers.

The user should refer to the FORTRAN/3000 Reference Manual for instructions on writing a
FORTRAN subprogram.

$CONTROL USLINIT, NOLIST, SEGMENT=BOOLEAN
SUBROUTINE LAND(A,B,RESULT)
PERFORMS BOOLEAN-AND ON "A"™ AND "B", RETURNING RESULT IN
"RESULT". "A™ AND "B" MUST BE TYPE INTEGER SIMP. VAR. OR
EXPRESSIONg "RESULT™ MUST BE INTEGER SIMP. VAR.(SUBSCRIPTED
OR NOT) .
LOGICAL A,B,RESULT
RESULT = A .AND. B
RETURN
END
$CONTROL SEGMENT=BOOLEAN
SUBROUTINE LORCA,B,RESULT)
C PERFORMS BOOLEAN-OK ON "A"™ AND "B", WITH RESULT RETURNED IN
C "RESULT". PARAMETERS ARE SaAME AS FOR "LAND",.
LOGICAL A ,B,RESULT
RESULT = A .OR. B
RETURN
END
$CONTROL SEGMENT=BOOLEAN
SUBROUTINE LNOT(A,RESULT)
C PERFORMS BOOLEAN-NOT ON "A", RETURNING RESULT IN "RESULT".
C "A"™ AND "RESULT" ARE SAME AS FOR " LAND",
LOGICAL A,RESULT
RESULT = .NOT. A
RETURN
END

e¥oXeoXe!

11-4

After the FORTRAN segment BOOLEAN is compiled, it is added to the SL (Segmented Library)
using the Segmenter. An SL list is then requested that shows the segment BOOLEAN as the only
segment in the SL of the user’s group/account STUDENTS.CLASS:

sFORTRAN BOOLEAN

PAGE 0081 HEWLETT-PACKARD 32102A.90.2 FORTRAN/30020 TUE, MAR 27,
1973, 5:55 AM

P2200088 $CONTROL USLINIT, NOLIST, SEGMENT=BOOLEAN

END OF PROGRAM

+SEGMENTER

SEGMENTER SUBSYSTEM (1.2)
-USL $OLDPASS

-SL SL

-ADDSL BOOLEAN

-LISTSL

SL FILE SL .STUDENTS.CLASS

SEGMENT @ BOOLEAN LENGTH Xy
ENTRY POINTS CHECK CAL STT ADR
LOR 1414082 C 2)
LNOT 141920 C 1 2
LAND 1414020 C 3 15
EXTERNALS CHECK STT SEG
1
USED 2200 AVAILABLE 375608
~EXIT

END OF PROGRANM
Notice, the -SL SL command works only if the SL exists. To build an SL enter the command:

BUILDSIL SL[.group], records, extents

then enter the -SL SL command.

Library usage is described in the MPE/3000 Operating System, Reference Manual.

11-5

2. Calling an SPL Procedure

The SPL procedure WHOM is called by the BASIC program ZELDA. WHOM returns the user name,
group, and account with which the user logged on, as well as the user’s home group. The BASIC
program uses this information plus the current time and date from the DAT$ function to print
output as if from Zelda, the fortune teller.

The username, account, group, and home group are stored in string variables used as actual parameters
in the call to WHOM.

The BASIC program:

ZELDA
12 D$=DATS(1,2T)
20 MAT READ M$
38 CALL WHOM(U$,G$,A%,H%)
49 REM
50 REM
6@ PRINT LIN(2)3"1'M ZELDA THE FORTUNE TELLER,"”
70 PRINT "I CAN TELL YOU A LOT."
80 FOR I=1 TO 11
92 IF POS(M$II1,D%06331) THEN 119
128 NEXT 1
112 PRINT LINCL1)3"ON THIS "sM$[11s"™ "3 DEBS(DS[12321)3FNCE(DSI13321)3","
128 PRINT "IT'S "3DEB$(D$[23351)3" O'CLOCK.”
13@ PRINT LINClI)3"YOUR ACCOUNT NaME IS " °'34;DEB3CA$); '34","
148 PRINT "AND YOU'RE IN GROUP " '343DEB$(GS); "34"."
152 PRINT LINCI)3"YOUR SIGN-ON WAS " '343DEBSCUS)s '34","
160 1IF LENCDEB$(H$)) THEN DO
172 IF G3<>H$ THEN PRINT "AND " "343;DEBS(H$); "34™ IS YOUR HOME.”
180 ELSE PRINT "aND YOU'RE IN YOUR HOME GROUP,"
198 DOEWND
200 ELSE PRINT "&nND YOU HAVE NO HOME GROUP.”
210 PRINT LINCI)3"BUT ENOUGH SAID FOR NOW."3LINC(2)
220 REM
230 REM 3k ok oK K 3K ok >k ok e ok ok ok ok >k ok 3k 3k ok Xk ok
240 REM
258 DEF FNC$(CH)
255 IF C$="11" OR C$="12" OR C%$="13" THEN RETURN "TH"
260 IF C%[21="1" THEN RETURN "ST"
270 IF C$[21="2" THEN RETURN " ND"
280 IF C$i21="3" THEN RETURN "RD"
2950 RETURN " TH"
300 FNEND
319 DIm D$I27),U%(81,A%[81,G5[81,HSI[81,MB[12,9]
320 INTEGER 1
338 DATA "JANUARY" ," FEBRUARY"," MARCH" ,"&PRIL"," MAY" ,"JUNE" ,"JULY"
340 DATA "AUGUST","SEPTEMBER","OCTOBER"," NOVEMBER","DECEMBER"

11-6

In these examples the user’s name is JOHNDOE, his home group is STUDENTS, and his account
is CLASS. When run under the group STUDENTS, the result is:

I'M ZELDA THE FORTUNE TELLER,
I CanNn TELL YOU A LOT.

ON THIS MARCH 3@TH,
IT'S 4:35 0'CLOCK.

YOUR ACCOUNT NAME IS "CLASS",
AND YOU '‘RE IN GROUP "STUDENTIS™.

YOUR SIGN-ON WAS “JOHNDOE",
AND YOU'RE IN YOUR HOME GROUP.

BUT ENOUGH SAID FOR NOW.

When ZELDA is run under the group PUB, the result is:

I*M ZELDA THE FORTUNE TELLER,
I CAN TELL YOU A LOT.

ON THIS MARCH 33TH,
IT'S 4:32 0°'CLOCK.

YOUR ACCOUNT WNANME IS "CLASS",
AND YOU'RE IN GROUP "PUB".

YOUR SIGN-ON WAS "JOHNDOEZ",
AND "STUDENTS™ IS YOUR HOME.

BUT ENOUGH SAID FOR NOW.

11-7

The SPL procedure WHOM, compiled into segment WHOMSEG, is listed below:

$CONTROL SEGMENT=WHOMSEG
$CONTROL USLINIT, NOLIST, SUBPROGRAM
BEGIN
PROCEDURE WHOM(USERNAME,LOGONGROUP,LOGONACCT,HOMEGROUP)
BYTE ARRAY USERNAME,LOGONGROUP,LOGONACCT ,HOMEGROUP}
BEGIN
EQUATE CODES3=(&/1,5/1,5/11, <<CODEWORD FOR THREE STRINGS>>
CODElI=16/1,12/81; <<CODEWORD FOR ONE STRING>>
INTEGER DELTAQ=Q-03 <<DELTA-4 IN STHCK MARKER>>
INTEGER POINTER NUMBER; <<WILL POINT TO # OF PARAMS PASSED.
"NUMBERC1)"™ AND "NUMBER(2)"™ ARE
CODEWORDS PASSED BY INTERPRETER >>
INTRINSIC WHO;

<<>>

@NUMBER: =@DELTAQ-DELTAQ+ 13
IF NUMBER=4 AND NUMBER(1)=CODES3 AND NUMBER(2)>=CODEl THEN
IF USERNAME(-2)>=8 AND LOGONGROUP(-2)>=8 AND LOGONACCT (-2)>=8
AND HOMEGROUP(-2)>=8 <<” 4 44(=2)" 15 PHYSICAL LENGTH=>>
THEN BEGIN
WHO(, , yUSERNAME,LOGONGROUP ,LOGONACCT ,HONMEGROUP)
USERNAME(-1)s=LOGONGROUP(-1)s=LOGONACCT (~-1):=HOMEGROUP(-1):=83
<<SET LOGICAL LENGTH OF STRINGS>>
END3
RETURN @3 <<IN CASE OF ERROR IN CALLING SEQUENCE, LET
INTERPRETER CLEAN UP STACK >>
END;y <<PROCEDURE WHOM>>
END.

The WHO instrinsic called by WHOM is an option variable procedure provided by MPE/3000. It
cannot be called directly from BASIC/3000, but can be accessed indirectly, as in this example,
through an SPL procedure.

The SPL procedure verifies the calling sequence by first checking the number of parameters, then
by looking at the type codes in the code words. This routine verifies that the physical length of the
strings is at least large enough to contain the strings returned by WHO.

When called by WHOM, WHO returns the log-on user name, the account and group names, and the
user’s home group. WHOM passes this information to the BASIC calling program ZELDA after
setting the logical length of the strings returned by WHO to 8.

The RETURN O (rather than RETURN) leaves the parameters in the stack in case there was some
error in the calling sequence. Whenever there is a possibility of an error in the calling sequence,

RETURN 0 should be used to exit from an SPL procedure.

The user should consult the SPL/3000 Reference Manual for instructions on writing an SPL
procedure.

11-8

The file WHOMPROG contains the source of WHOM. WHOM is compiled into the segment
WHOMSEG. After WHOM is compiled it is added to the SL (Segmented Library) using the
Segmenter. It is then listed, showing entry points, external procedures, its length, and so forth.

The command :SPL WHOMPROG requests compilation of WHOMPROG:

:SPL WHONPROG

PAGE ¢9¢21 HP32122A .02 .9

vo2gdlee 22230 B $ CONTROL SEGMENT=WHONMSEG

30282238 228080 & $CCNTROL UsLIdlT, NOLIST, SUEPROGRAM
FRINARY DB STORAGE=ZJ2d; SECONDARY D3 STOKAGE=Z2E222
NO. XZRRORS:=232; W0, WARNINGS=48Y

PROCESSOR TIliE=2:22:¢2; cLnPSEZD TIME=2:322:33

END OF PROGRAMN

The command :SEGMENTER and subsequent commands add the segment WHOMSEG to the
account SL called SL.PUB, and then lists the SL:

tSEGMENTER

STCMENTER SUESYSTENM (2.2)
-SL SL.rPUb

-USL SOLDPASS

-ADDSL WHCHSEG

-LISTSL

SL FILt SL.PUB.CL&SS

SEGNENRT ¢ WHCHSEG LENGTH 122
ENTRY POINTS CHECK CAL STT w2k
WwHOMN - ¢ C 1)
EXTEZR wels CHECK STT SEC
wHO 2 V4 ?
1
Used 1 83¢ AaVailnBLle 21242
=IXIT

£ND OF PROGRAU

For SL library usage, see the MPE/3000 Operating System, Reference Manual.

11-9

SYSTEM/RESUME Commands

The SYSTEM command is used to enter control of the MPE/3000 Operating System. The user’s
activity in BASIC/3000 is suspended and may be resumed with the RESUME command.

Form

The form of SYSTEM is:
SYSTEM

The form of RESUME is:
RESUME

Like all BASIC/3000 commands, the prompt for SYSTEM is >. The prompt for RESUME is :
since RESUME is entered from MPE.

Explanation

When SYSTEM is typed, BASIC is suspended and the user enters MPE/3000. A colon (:) is output
as a prompt signal and he may then type any MPE commands. The BREAK key may also be used
to suspend BASIC. Usually there is no difference between the BREAK key and the SYSTEM com-
mand. However, when using BASIC at a terminal that does not have a BREAK key, the SYSTEM
command is the only way to enter MPE without terminating BASIC.

When through with MPE, the user returns to the suspended BASIC operation by typing RESUME.

NOTE: The SYSTEM COMMAND has no effect when running a program in batch mode.

11-10 APR 1978

Example

>1@ DIM A$CT2)
>28 READ A1,A2,RA3,A4,A5
>SYSTEM

sBUILD AA3REC=-72,,,ASC1IsDISC=138
sRESUME

>33 PRINT #1,1341,A2,83,84,A5

>43 RESTORE #1

>50 LINPUT #1343

>63 PRINT AS

>70 DATA 10,20,30,40,50

>80 FILES AA

>RUN

10 22 30 43 50

In this example, the user leaves the BASIC/3000 Interpreter to create an ASCII file. This can only

be done with the MPE BUILD command. After creating the ASCII file, he returns to BASIC with
RESUME and uses the ASCII file.

11-11

SYSTEM Statement

The SYSTEM statement provides a means to dynamically enter an MPE/3000 system command
from a BASIC/3000 program. The command will be executed at the position in the program
occupied by the SYSTEM statement.

Form
SYSTEM numeric variable,system command

The system command is specified as a string expression. The initial colon is not included in the
command specification.

The numeric variable returns O if the command succeeds, or the MPE command error number if the
command fails.

Explanation

When a system command is required within a BASIC program, the SYSTEM statement can be used
to execute such a command during execution of the BASIC program.

Example

18 REM..USE SYSTEM STATEMENT TO ENTER MPE COMMAND
20 SYSTEM X,"FILE ABC§ DEV=TAPE"
38 IF X<>@ THEN 128
42 FILES A
58 DIM X[13]
68 MAT READ X
7% DATA 10,20,30,40,50,608, 76,898,590, 100
83 MAT PRINT #1;3X
85 ASSIGN *,!
9@ SYSTEM Y,"STORE Aj;*ABC"
188 1 F Y<>@ THEN 120
118 END
128 PRINT "SYSTEM STATEMENT FAILED"
>RUN
FILES STORED = |

FILES NOT STORED = @

The SYSTEM statement in line 20 causes execution of the MPE/3000 FILE command that assigns
a file ABC to tape. In line 90 the SYSTEM statement causes execution of the MPE/3000 STORE
command that stores the BASIC file A on the tape file ABC.

11-12

SECTION XII
Non-Interactive Programming

BASIC/3000 has the capability to enter programs in a non-interactive manner. This section describes
how the user may input from a card reader or paper tape, and how he may print output on a line
printer or punch it on paper tape. It also describes how to input commands or programs stored on
an ASCII file.

12-1

Card Reader/Line Printer

If the user has access to a card reader and a line printer, he may punch his BASIC program on cards
and input it through the card reader and receive output on the line printer. In addition to the BASIC
program cards, he will need a :BASIC command card preceding his program deck. The deck may in-
clude any BASIC commands as well as statements.

:BASIC Command

This command causes the MPE/3000 Operating System to invoke the BASIC Interpreter. The
:BASIC command has the form:

:BASIC commandfile,inputfile,listfile

Any or all of the parameters may be omitted. Position of parameters is significant so commas must
be included when leading parameters are omitted. Each parameter must be an existing ASCII file
with the following meaning:

commandfile BASIC subsystem input; original source of all commands and statements
of BASIC program. Default is $STDINX.

inputfile BASIC program input; contains data input to BASIC through INPUT,
ENTER, and LINPUT statements. Default is $STDINX.

listfile BASIC program output; receives data output from BASIC program.
Default is $STDLIST.

$STDINX is the job/session input device. For example, when input is from the card reader,
$STDINX is the card reader; when input is from the terminal, $STDINX is the terminal.

$STDLIST is the job/session output device. When the card reader is used for input, the job/session

output device is normally the line printer although this may vary between HP 3000 installations.
When the terminal is used, the output device is also the terminal.

Examples:

1. Suppose the user inputs his program from the card reader with output to the line printer, but
all the data used by the program is stored on an ASCII disc file called IN. He uses the :BASIC
command:

¢BASIC ,IN

The comma signals that the commandfile is the default file $STDINX. The default $STDLIST
is used for output but since this is at the end, no comma is needed.

12-2

Note that this card, if entered as a command from a terminal, would perform the same function
if program input and output were both at the terminal with data input from IN.

2. Suppose the user has a disc file named COMMAND which contains a set of BASIC commands,
and he wants output on the line printer:

¢FILE PRINTER$DEV=LP
¢BASIC COMMAND, ,*PRINTER

The file named PRINTER is associated with the line printer by the :FILE command. It is
named in the :BASIC command to replace the $STDLIST which, in this case, would have
been the terminal. COMMAND is a disc file; the commands and statements of the BASIC
program are read from this file.

> EOD Command

If a BASIC card deck contains a RUN command, a >EOD command must follow RUN. When the
BASIC program contains an INPUT, ENTER, or LINPUT statement input, the input data is punched
on cards placed between the RUN card and the >EOD card.

The >EOD command does not produce the same effect as an End-of-File (EOF) command. For
instance, when an INPUT, ENTER, or LINPUT statement encounters an >EQOD in columns 1
through 4, a run-time error will occur. Furthermore, READ# or LINPUT# statements are not
affected by >>EOD. If the user wants to use >EOD command as an EOF command with the READ#
and LINPUT# statements, the >EOD must be tested programmatically as follows:

READ #1; A$
IF A$(1,4) = “>EOD” THEN. ..

Deck Structure
In addition to the :BASIC command and the program deck, the standard MPE/3000 command
cards for running a job must be used. These are the :JOB card preceding all other cards in the job,

and the :EOJ card that terminates the job. Also, an EXIT card must terminate the BASIC program
deck followed by an :EOD card.

Besides these cards, any other MPE/3000 cards needed for the job may be included.

APR 1978 . 12-3

A deck structure for a BASIC program that requests input with INPUT, ENTER, or LINPUT:

:EOJ |

Vs

=1l
(any MPE /3000 commands
ﬂEOD >
r%xw

ﬁASIC Commands —

r>EOD

(Input Data

(RUN
Al

BASIC Program and Commands
(:BASIC Command I ﬂl l

— |
any MPE/3000 commands
:JOB Command Dl l”

If no input data is required, the input data cards are omitted, but >EOD is left. The >EOD card
must follow the input data of each run.

124

Paper Tape

At a terminal with a paper tape punch and reader, the user may write his programs on paper tape
and read them from paper tape. Commands are provided by BASIC/3000 that enable the terminal
user to prepare and use paper tapes.

PREPARING A PAPER TAPE

A paper tape may be punched on-line using the PUNCH command, or it may be punched off-line.

PUNCH Command

The PUNCH command allows the user to punch a program on paper tape while operating in inter-
active (on-line) mode at the terminal. Following each line, PUNCH automatically inserts an X-OFF
character preceding the carriage return and linefeed. A paper tape prepared by PUNCH should be
read with the TAPE command.

Form

PUNCH [first [-last]] [, OUT = asciifile] [[RECSIZE = number] [[NONAME]

where first and last specify the range of statements to punch, and asciifile specifies an output file.
Normally, the output file is the standard list file. If neither first nor last is specified, the entire
program is punched. If only first is specified, just that statement is punched. Control characters
are inserted, as required, to allow reading the punched program back through a tape reader.

Explanation

The PUNCH command is identical to LIST except that the output is preceded and followed by
headers and trailers of null characters. If the OUT parameter is omitted, the punched program is
listed at the terminal. Otherwise it is output to the specified ASCII file.

If only a portion of the program is to be punched, the first and, optionally, the last lines to be
punched are specified. If a maximum record size other than 72 is desired, it can be specified with
the RECSIZE parameter. If NONAME is specified, the program name is not punched; this is useful
when punching programs to be read back with the XEQ command.

Each punched record contains a program statement. PUNCH automatically terminates each record
with an X-OFF character. The X-OFF precedes the carriage return on the tape, and linefeed follows
the carriage return. The form is:

output record X-OFF carriage return linefeed

12-5

Examples:
PUNCH 106-200

Lines 10 through 200 of the current BASIC/3000 program are punched on paper tape.
PUNCH,0UT =AA

The entire current program is punched on the ASCII file AA.
PUNCH 500,RECSIZE=132

Line 500 of the program is punched. A record size of 132 characters is used.

PUNCHING PAPER TAPE OFF-LINE

To prepare a BASIC program on paper tape, the user must:

1. Turn teleprinter control knob to “LOCAL”.

2. Turn on the tape punch by pressing the “ON”’ button on the punch.

3. Type a series of null characters using the “HERE IS” key or control shift P (@¢). This punches
leading holes on the tape.

4. Type the program as usual following each line with a carriage return.

5. Type a series of null characters using the “HERE IS” key or control shift P (@°). This punches
trailing holes on the tape.

6. Turn off the tape punch by pressing the “OFF”’ button on the punch.

When programs are punched off-line, the H® and X¢ keys may be used for corrections. If X¢ is used
to delete a line, it must be followed by X-OFF and a carriage return and linefeed.

If the punched tape is to be read by the TAPE command, the user must press the X-OFF character

following each line before he presses the carriage return. X-OFF (S€) is a key on the teleprinter
keyboard.

12-6

READING A PAPER TAPE

Two commands are provided to read paper tapes at a terminal equipped with a paper tape reader;
they are TAPE and SPOOL.

TAPE Command
The TAPE command allows the user to read commands, programs, and data through a paper tape
reader connected to the terminal. Only tapes that contain an X-OFF character after each record

can be read with TAPE. Also, in order to read with TAPE, the terminal must be equipped with a
reader that recognizes X-OFF.

Form

TAPE

Explanation
After typing TAPE, turn on the tape reader. The tape will be read until the end of the program or
programs on the tape. If the tape contains data to be input, as much data is read as was requested

by INPUT, ENTER, or LINPUT, or until the end of the tape.

When through reading from tape, the user returns to terminal mode with the KEY command.

KEY Command

The KEY command returns the terminal user to terminal mode following completion of a tape read
using TAPE.

Form

KEY

Explanation

When KEY is typed, the input mode entered with TAPE is terminated and the user is returned to
the terminal for further interactive execution or to log off.

12-7

SPOOL Command

The SPOOL command is used to read paper tapes that have not been punched with X-OFF's
preceding the carriage return and linefeed.

Form

SPOOL

Explanation

After typing SPOOL, turn on the tape reader. When the tape is through, the user types the control
key Y® to terminate the tape. At this point, any error messages are printed at the terminal.

12-8

Command Input from Files

If commands or programs are stored on an ASCII file, the XEQ command may be used to cause the
BASIC/3000 Interpreter to read this file.

Form

XEQ asciifile ECHO

The asciifile has been created and contains commands or programs the user needs. If ECHO is
specified, the records from the ASCII file are listed on the terminal as they are input.

Explanation

When the XEQ command is entered, the specified file is read and executed until it reaches an end-
of-file. Any program input is still read from the inputfile. When the end-of-file of the asciifile is
reached, control returns to the original command file. For instance, if the job was entered on cards
with the :BASIC command, control returns to the commandyfile specified in that command; if the
user entered XEQ from the terminal, control resumes at the terminal.

An XEQ command within the XEQ file will close the first file and open a new one.

Examples:

An ASCII file BATCHJOB contains the commands to GET and RUN three programs (AA, BB, and
CCC) stored in the user’s library. In order to run all three programs at a terminal or in a BASIC
card deck, only the command XEQ BATCHJOB is required.

This is illustrated in the examples below, one with the ECHO paramefer, one without:

>XEQ BATCHJOB,ECHO
GET AA

RUN

Ah

END OF AA

GET BB
RUN

BB

END OF BB

GET CcCC
RUN

ccc

END OF CcC

12-9

ECHO causes a list of the commands in BATCHJOB. When each program is run, it outputs a
message that it is through. This is part of the individual programs, not BATCHJOB.

The example below without ECHO runs each program consecutively in the same way as the previous
example, but it does not list the commands contained in the file BATCHJOB:

>XEQ BATCHJOB
AA
END OF AA

BB
END OF BB

cCcC
END OF CcCC

12-10

Graphic

13

Decimal
Value

00~ U= o+ O

A-1

APPENDIX A

ASCII Character Set

Comments

Null

Start of heading
Start of text

End of text

End of transmission
Enquiry
Acknowledge

Bell

Backspace
Horizontal tabulation
Line feed

Vertical tabulation
Form feed

Carriage return
Shift out

Shift in

Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle

End of transmission block
Cancel

End of medium
Substitute

Escape

File separator
Group separator
Record separator
Unit separator
Space ~—
Exclamation point
Quotation mark

4+ %

-

J

O oo ~1 Utk - O™ "

PU‘O"UOZZL“‘WL"_‘ZDC)"UMUOU?:D@""V A

Decimal
Value

35
36
37
38
39
40
41
42
43
44
45
46
417
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

A-2

Comments

Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk

Plus

Comma
Hyphen (Minus)
Period (Decimal)
Slant

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Colon
Semicolon
Less than
Equals
Greater than
Question mark
Commercial at
Uppercase A
Uppercase B
Uppercase C
Uppercase D
Uppercase E
Uppercase F
Uppercase G
Uppercase H
Uppercase 1
Uppercase J
Uppercase K
Uppercase L
Uppercase M
Uppercase N
Uppercase O
Uppercase P
Uppercase Q
Uppercase R

Decimal

Graphic Value Comments
S 83 Uppercase S
T 84 Uppercase T
U - 85 Uppercase U
\Y% 86 Uppercase V
w 87 Uppercase W
X 88 Uppercase X
Y 89 Uppercase Y
Z 90 Uppercase Z
[91 Opening bracket
\ 92 Reverse slant
1 93 Closing bracket
A 94 Circumflex
— 95 Underscore
\ 96 Grave accent
a 97 Lowercase a
b 98 Lowercase b
c 99 Lowercase ¢
d 100 Lowercase d
e 101 Lowercase e
f 102 Lowercase {
g 103 Lowercase g
h 104 Lowercase h
i 105 Lowercase i
j 106 Lowercase j
k 107 Lowercase k
1 108 Lowercase 1
m 109 Lowercase m
n 110 Lowercase n
o 111 Lowercase o
p 112 Lowercase p
q 113 Lowercase q
r 114 Lowercase r
) 115 Lowercase s
t 116 Lowercase t
u 117 Lowercase u
v 118 Lowercase v
w 119 Lowercase w
X 120 Lowercase x
y 121 Lowercase y
/ 122 Lowercase z
{ 123 Opening (left) brace
| 124 Vertical line
} 125 Closing (right) brace
~ 126 Tilde
127 Delete

A-3

APPENDIX B
Error Messages

Four types of errors may cause error messages: command errors, statement syntax errors, compile
errors, and run errors resulting from program execution.

Command Errors

Command error messages are printed following the command that caused the error. If the message
is preceded by the word “WARNING:”, the command is accepted. Otherwise, the command will be
dropped and must be entered again.

Syntax Errors

When a syntax error in a statement is detected, the following message is printed:
ERROR®@integer

where integer is the number of non-blank characters successfully processed before the error was de-
tected. The user may type a carriage return and enter the statement correctly, or he may type any
other character to request printing of the syntax error message. If the message is preceded by the
word “WARNING:”, the line is accepted and need not be re-entered.

Compile Errors

These errors are detected following a RUN command but before execution of the program. If the
error message is preceded by the word “WARNING:”, compilation continues. If compilation results
in no message or only WARNING messages, the program will be executed. Otherwise, compilation
terminates with no attempt to run the program.

Whenever possible, the line number in which the error occurred will be appended to the message in
the form: IN LINE n DETECTED IN LINE n or DETECTED AT END, whichever is pertinent.

Compile messages will be printed during a run if a compile error is detected in a subprogram called
by CHAIN or INVOKE. The message is printed before execution of the program.

B-1

Run Errors

These errors are detected during program execution and printed as they occur. If the error message
is preceded by the word “WARNING:”’, the run continues. Otherwise, the run terminates. WARN-
ING messages may be suppressed during a run by including the NOWARN parameter in the RUN
command (see Section II).

The line number where the error occurred will be appended to most run error messages in the form:
IN LINE n, where n is the line number. If the program is named, this message is followed by IN
programnhame,

The WARNING messages for run errors generally are in response to arithmetic errors such as under-
flow, overflow, division by zero, and so forth. In each of these cases, BASIC/3000 will automatic-
ally assign a result. This result is printed as part of the message. For instance, for integer overflow
the result is £32767, for all other overflow the result is +1E77, for division by zero the result is
+1E717, and for underflow the result is zero.

B-2

APPENDIX C
BNF Syntax for BASIC/3000

The Backus-Naur Form (BNF) syntax is used to describe the BASIC/3000 language. BNF notation
consists of a number of “productions”, each of which has the form:

<entity> : : = <expression>
where the syntactic entity on the left side is defined by or may be replaced by the syntactic expression
on the right side. The expression may be a sequence of syntactic terms or several of these sequences
separated by the character “|”. When more than one sequence appears, it means that the entity may
be replaced by one, and only one, of the sequences of syntactic terms.

The following additions have been made to the standard BNF for simplicity and conciseness:

. Brackets (“[”” and “]”) surrounding an expression indicate that the expression
is optional.

. Braces (“ { ” and “ }) surrounding an expression are used to indicate that the expression
is to be considered as a single term. Brackets are also used in this way.

. An ellipsis (“...”) following a term indicates that the term may be repeated indefinitely.

] A symbol whose name has the form <something list> has an implied definition of
<something>[,<something>]... unless stated otherwise.

<constant> 1= [<sign>] %<integer>| <fixed> | <float> | <long>}
<gign> ci= 4] -

<unsigned constant> : : = <integer> | <fixed> | <float>| <complex> | <long>
<integer> o= <digit> ...

<digit> -2 =0/1]2/3]4/5/6|7(9

<fixed> : . = <integer>. | .<integer> | <integer>.<integer>

C-1

<float> : : = <numpart> E [<sign>] <integer9

<numpart> : . = <integer> | <fixed>

<complex> : 1 = (<number part>, <number part>)

<number part> . : = [<sign>] {<integer>l <fixed> | <ﬂoat>}

<long> : . = <numpart> L [<sign>] <integer>

<variable> : : = <numeric variable> | <string variable>

<numeric variable> : : = <simple variable>| <subscripted variable>

<simple variable> ;1 = <letter> [<digit>]

<letter> ::= A|B|C|D|E|F|G|H|I| J|K|LIM|N[O|P|Q|R[S| T|U| V|W|X| Y| Z
<subscripted variable> : : = <numeric array id> (<sublist>)

<numeric array id> : 1 = <letter> [<digit>]

<sublist> : : = <gubscript> [,<subscript>]

<gubscript> : : = <integer expression>

<integer expression> : 1 = <numeric expression having an integer value, possibly by

conversion from a real, long, or complex value>

<expression> : 1 = <numeric expression> | <string expression>
<numeric expression> : : = <conjunction> [OR<conjunction>]...
<conjunction> : : = <relation> [ANDx<relation>]...

<relation> : : = <minmax> [<relational operator><minmax>]... |

<string expression><relational operator><string expression>

<minmax> ;= <sum> | { MIN | MAX { <sum>]...

<sum> ;1 = <unary sign> <term> | { + I“—} <unary sign> <term>]...
<term> : : = [NOT <unop>] <factor>[{ *| /| MOD { <unop> <factor>]...
<factor> ;1 = <primary> | { o I’\} <unop> <primary>]...

<unop> i:=[+]| -| NOT]...

<unary sign> =]+ -]

<primary> : : = <numeric variable> | <unsigned constant> |

<numeric function reference> | (<numeric expression>)

C-2

<relational operator> i< <= =] <> > >=] 4

<numeric function reference> : : = <numeric built-in function name> (<argument list>) |
<numeric user-defined function name> (<actual parameter list>)

<numeric built-in function name> : : = <name of any BASIC/3000 built-in function that
returns a numeric value>

<argument> :: = <numeric expression> | <string expression> |
<numeric array id> | <string array id>|

<actual parameter> : : = <expression> | <string simpvar id> (*) |
<numeric array id> ; (*)] (*,*) } | <string array id> (*,*)

<string expression> : : = <gource string> [+<source string>]...

1

<gsource string> <string variable> | <literal string>| <string function reference>

<string variable> : 1 = <string simple variable> | <string array variable>

<string simple variable> <string simpvar id> [(<substring designator>)]

<string array variable> : : = <string array id> (<subscript> [,<substring designator>])

<string simpvar id> <letter> [<digit>]$
<string array id> : 1 = <Jetter> [<digit>]$

<gubstring designator> . : = <first character position> [,<last character position>] |
<first character position>;<number of characters>

<first character position> : . = <integer expression>
<last character position> : 1 = <integer expression>
<number of characters> : : = <integer expression>
<literal string> : : = <quoted string>|’ <integer> [<quoted string>]|

<literal string> ' <integer> {<quoted string>]

<quoted string> "[<character>]..."”

<character> : : = <any ASCII graphic character other than ">

<string built-in function name> (<argument list>) |
<string user-defined function name (<actual parameter list>)

<string function reference>

<string built-in function name> <name of any BASIC/3000 built-in function that returns

a string value>

<LET statement> [LET] <let part> [,<let part>]...

C-3

<let part> :: = <num let> | <string let>

<num let> : . = <num left part> <numeric expression>

<num left part> : 1 = { <numeric variable> = | ...

<string let> ;1 = <gtring left part> <string expression>

<string left part> D1 = %<destination string> = }

<destination string> : : = <string variable>

<REM statement> : : = REM <character string>

<character string> :: = <any ASCII graphic character>

<GO TO Statement> : : = <gingle-branch GO TO> | <multibranch GO TO>
<single-branch GO TO> ::= GO TO <label>

<multibranch GO TO> 1= GO TO <integer expression> OF <label list>
<label> ;. = <integer>

<GOSUB statement> : : = <single-branch GOSUB> | <multi-branch GOSUB>
<single-branch GOSUB> : : = GOSUB <label>

<multi-branch GOSUB> : 1 = GOSUB <integer expression> OF <label list>
<RETURN statement> : 1 = <gosub return> | <function return>

<gosub return> ::= RETURN

<function return> :: = RETURN <expression>

<END Statement> ::=END

<STOP Statement> ::=STOP

<FOR statement> ::=FOR <for variable>=<initial value>TO <final value>[STEP <step size>|
<NEXT statement> : : = NEXT <for variable>

<for variable> : : = <simple variable>

<initial value> : 1 = <numeric expression>

<final value> : ;= <numeric expression>

<step size> : 1 = <npumeric expression>

C-4

<IF body>

<IF part>

<ELSE part>

<IF statement>

<IF DO statement>
<ELSE statement>
<ELSE DO statement>
<DO part>

<DOEND statement>

<clause>

<PRINT Statement>
<print list>

<print element>
<print function>
<print function name>
<READ statement>
<read item list>
<DATA statement>
<data constant>
<RESTORE statement>
<INPUT statement>
<input item>

<ENTER statement>

<allotment>

<terminal>

APR 1978

: : = <IF part> [<ELSEK part>]

: : = <IF statement>| <IF DO statement> <DO part>

:: = <ELSE statement>| <ELSE DO statement> <DO part>
: : = IF <numeric expression> THEN { <label> | <c1ause>}

: : = IF <numeric expression> THEN DO

::= ELSE { <label> | <clause> }

::= ELSE DO

: : = [<statement>]... <DOEND statement>

::= DOEND

: : = <any executable statement other than IF, FOR, NEXT,
ELSE, or DOEND>

:: = PRINT [<print list> [, | ;]]

: : = <print element> [{ s } <print element>]...

::=<expression>| <print function>| (<FOR statement>, <print list>[,| ;])
: . = <print function name> (<integer expression>)

:: = TAB|LIN|SPA|CTL

::= READ <read item list>

:: = <variable> | (<FOR statement>, <read item list>)

:: = DATA <data constant list>

: 1 = <constant> | <literal string>

:: = RESTORE [<label>]

:: = INPUT [[:] <input item list>] [:]

::=<variabke>| <literal string>| (<FOR statement>, <inputitem list>)

:: = ENTER # <terminal> |
ENTER # <terminal>, <allotment>, <time>, <variable>

: : = <integer expression>

: 1 = <nnmeric variable>

C-5

<time>

<DIM statement>
<dimspec>

<numeric dimspec>
<string dimspec>
<bound>

<size>

<REDIM statement>
<redimspec>

<numeric redimspec>
<string redimspec>

<Type statement>

<type>

<typespec>

<MAT READ statement>
<MAT INPUT statement>
<mat read item>

<MAT PRINT statement>
<mat print list>

<mat print item>

<MAT initialization statement>

<initialization function>

: : = <numeric variable>

:: = DIM <dimspec list>

: : = <numeric dimspec> | <string dimspec>

: : = <numeric array id> (<bound> [, <bound>])

::=<string array id> (<bound>, <size>)| <string simpvar id > (<size>)

: 1 = <integer>

: 1 = <integer>

: : = REDIM <redimspec> [,<redimspec>]

: : = <numeric redimspec> | <string redimspec>

::=<numeric array id>(<integer expression>[,<integer expression>}])

:: = <string array id> (<integer expression>)

<type> <typespec list>

INTEGER | COMPLEX | LONG| REAL

: : = <simple variable> | <numeric dimspec>

:: = MAT READ <mat read item list>
:: = MAT INPUT <mat read item list>

: : = <numeric array id> | <string array id> | <redimspec>

MAT PRINT <mat print list> [, | ;]

<mat print item> | ; N } <mat print item { s }]...
: : = <numeric array id> | <string array id>| <print function>

:: = MAT <numeric array id>
=<initialization function>[(<integer expression>{,<integer expression>])]

::=ZER| CON| IDN

<string MAT initialization statement>: : = MAT <string array> = NUL$(<integer expression>)

C-6

<MAT assignment statement>

<CONVERT statement>

<LLINPUT statement>

<multiline function>

<multiline DEF statement>

<multiline function body>
<FNEND statement>
<formal parameter>
<string parameter>
<variable parameter>
<numeric function name>
<string function name>

<one-line DEF statement>

<CREATE statement>

<filesize>
<record size>
<PURGE statement>

<FILES statement>

:: = MAT <numeric array id> = <numeric array id>]
MAT <numeric array id> = <numeric array id>+<numeric array id>|
MAT <numeric array id>=<numeric array id>-<numeric array id>|
MAT <numeric array id>=<numeric array id>*<numeric array id>|
MAT <numeric array id>=INV(<numeric array id>)|
MAT <numeric array id>=TRN(<numeric array id>)|
MAT <numeric array id>=(<numeric expression>)*<numeric array id>
MAT <string array id>=<string array id>

: : = CONVERT <numeric expression> TO <destination string>|
CONVERT <string expression>TO <numeric variable>[,<label>]

:: = LINPUT <destination string>

: : = <multiline DEF statement> <multiline function body>

::=DEF[<type>]<numeric function name>(<formal parameter list>)|
DEF <string function name> (<formal parameter list>)

: : = <gstatement> ... <FNEND statement>

;.= FNEND

: : = [<type>] <variable parameter> | <string parameter>

: 1 = <string simpvar id> [(*)]]| string array id> (*,*)

: : = <simple variable> | <numeric array id> {)| (%) %

1= PN <letter>

1= FN <letter>$

::= DEF|[<type>]<numeric function name>(<formal parameter list>)
= <numeric expression> |
= DEF = string function name>)<formal parameter list>
= <string expression>

:: = CREATE <numeric variable>,<string expression>,

<file size> [, <record size>]
: : = <integer expression>
: : = <integer expression>

:: = PURGE <numeric variable>,<string expression>

: 1 = FILES <file designator list>

C-7

<file designator>
<qualified file name>
<local file reference>

< ASSIGN statement>

<string file name>
<file number>
<protect mask>
<restriction>

<file PRINT statement>

:: = <qualified file name> | *| #<integer>
1 = <local file reference> [.<group name> [.<account name>1]]
:: = <file name> [/<lockword>]

:: = ASSIGN <string file name>, <file number>,
<numeric variable> [,<protect mask>][,<restriction>] |
:: = ASSIGN *,<file number>

:: = <string expression>

1 = <integer expression<

:: = <string expression>
::=RR|WR|NR|WL|NL

:: = PRINT #<file number> [, <record number>] [;<print list>[,{1]|
PRINT #<file number>[, <record number>];
[<print list>{ ,|; } 1END

<file PRINT USING statement> :: = PRINT#<file number> [, record number>]

<file READ statement>
<record number>

<ON END statement>
<ADVANCE statement>

<UPDATE statement>
<LOCK statement>
<UNLOCK statement>
<file LINPUT statement>

<file RESTORE statement>
<file MARGIN statement>
<file MAT READ statement>

<file MAT PRINT statement>

<file MAT PRINT USING
statement>

<PRINT USING statement>
<print using>

<print using element>

[;] USING { <label> | <string expression> }
[;<print list>|END| { print list, END}]

:: = READ # <file number> [,<record number>] [;<read item list>]
1 = <integer expression>
::= { ON|IF } END # <file number> THEN <label>

:: = ADVANCE #<file number> ;<integer expression>,
<numeric variable>

.+ = UPDATE #<file number>; <expression>
:: = LOCK #<file number>
:: = UNLOCK #<file number>

:: = LINPUT #<file number> [,<record number>];
<designation string>

:: = RESTORE #< file number>
:: = MARGIN [#<file number>,] <marginsize>

:: = MAT READ#<file number> [,<record number>]
[;<mat read item list>]

:: = MAT PRINT#<file number> [,<record number>]
[,<mat print list>[,];]1]1

:: = MAT PRINT# <file number> [,<record number>]
{;]1USING {<label> | <string expression> }
[;<mat print list> [END| { mat print list, END }]

11 = <print using> [;<print using element list>]
:: = PRINT USING { <string expression> | <label> }

:: = <expression> | <print function> |
(<FOR statement>, <print using element list>)
C-8 AUG 1978

<MAT PRINT USING statement> : : = MAT <print using> [;<mat print item list>]

<IMAGE statement> :: = IMAGE <format string>

<format string> : : = [<carriage control>,] <format list>

<carriage control> i=+] - B

<format list> ::=[/],] <format element> [{ /1, } <format element>]... [/],]
<format element> : : = <format spec>| <replicator> (<format list>)

<replicator> ;1 = <integer>

<format spec> : : = <string spec>|<fixed spec>|<float spec>|

<integer spec> <complex spec>|<K spec>|<literal spec>

<literal spec> o= <lit>

<lit> = [<literal string> | [< replicator>] {XI I/% }]
<string spec> :=<lit> { [<replicator>] A <lit>(>

<K spec> c = <lit> K <lit>

<integer spec> : : = <unsigned integer spec> | <signed integer spec>
<unsigned integer spec> i = <]it>{ [<replicator> D <1it>§

<signed integer spec> co=<lit> { S|M } <unsigned integer spec> |

<unsigned integer spec> { SlM*
[<unsigned integer spec>| <lit>]

<fixed spec> :: = <signed fixed spec> | <unsigned fixed spec>

<signed fixed spec> : : = <signed integer spec>. {<unsigned integer spec>| <lit> % |
<lit> { S|IM } <lit>.<unsigned integer spec>|
<unsigned integer spec>|<lit> } . <signed integer spec> |
<unsigned integer spec> . <lit> { S|M } <lit>

<unsigned fixed spec> : : = <unsigned integer spec> .
<unsigned integer spec> | <lit> } |
<lit> . <unsigned integer spec>

<float spec> :: = <unsigned float spec> | <signed float spec>
<unsigned float spec> 1= {<unsigned integer spec> | <unsigned fixed spec> % E<lit>
<signed float spec> 1= { <signed integer spec> | <signed fixed spec> % E<lit> |

<unsigned float spec>{ S|M } <lit>

C-9

<simple spec> . : = <fixed spec> | <float spec> | <integer spec>

<complex spec> : ¢ = <lit> C (<simple spec>, <simple spec>) <lit>|
§<1it>l <simple spec>} { +] —} {<unsigned integer spec> |
>unsigned fixed spec>| <unsigned float spec>}

<CHAIN statement> : : = CHAIN <string expression> [,<integer expression>]
<INVOKE statement> :: = INVOKE <string expression> [,<integer expression>]

<COM statement> :: = COM [(<nonzero digit>)] <com item list>

<nonzero digit> ::=112(314(5|6171819

<com item> : : = {<type>] <numeric com item>| <string com item>

<string com item> : : = <string parameter> | <string dimspec>

<numeric com item> : 1 = <variable parameter> | <typespec>

<CALL statement> :::{CALLI *}<external procedure name>| (<actual parameter list>)]
<external procedure name> :: = <the name of a procedure in the group SL, account SL,

or system SL>

<SYSTEM statement> :: = SYSTEM <numeric variable>, <string expression>

C-10

APPENDIX D

Summary of BASIC/3000 Statements

and Commands

STATEMENT SUMMARY

This summary of BASIC/3000 statements provides the statement names in alphabetic order with a
brief description and a reference to the section or sections containing a complete statement de-

scription.

Statement

ADVANCE #

ASSIGN

CALLor*

CHAIN

com

COMPLEX

CONVERT

CREATE

DATA

DEF

Description

Skips the specified number of items in a forward or backward
direction on a file.

Dynamically assigns a file name to a file number and opens the file;
may also be used to close files during execution.

Calls for execution of a procedure stored in a segmented procedure
library (SL}, optionally passing parameters to the procedure.

Terminates the current program and calls for execution of the
BASIC/3000 program named in the CHAIN statement. Variables
are shared between programs if named in COM statements.
Declares a common block to contain specified variables used in
common by more than one program. Effective when one program
calls another with CHAIN or INVOKE.

Declares the following variable or variables to be type complex.

Converts a numeric expression to a string representation, or con-
verts a string expression to a numeric representation,

Creates a formatted file with a specified length and, optionally, a
record size.

Provides data to be read by READ statements.

Introduces a function definition.

D-1

Reference

Section VIII

Section VIt

Section X|

Section X

Section X

Section IV

Section V

Section VI

Section {1

Section VI

Statement

DIM

DO...DOEND

ELSE

END

ENTER

FILES

FNEND

FOR...NEXT

GOTO

GOTO...0F

GOosuB

GOSUB...OF

IF END #

Description

Reserves storage for arrays and sets the upper bounds on the number
of elements.

DIM atso reserves storage for strings and sets their maximum character
length.

Used only after IF...THEN or ELSE, they enclose statements to be
executed when an |F or ELSE condition is satisfied. (See
IF... THEN)

Used only in conjunction with IF_..THEN, it introduces a statement
to be executed when the IF condition is false. (See 1F...THEN)

Terminates execution of the current program; may be omitted
since last line of program provides an implicit END.

Provides for user input with a timed response. Returns the actual
response time and, optionally, the logical terminal number. One
numeric or string constant can be input.

Allocates file numbers to file names or reserves file numbers for
later assignment with ASSIGN. FILES is declarative and, unlike
ASSIGN, is not executed.

Terminates a multi-line function definition.

Allows repetition of a group of statements between FOR and
NEXT. The number of repetitions is determined by the initial
and final values of a FOR variable, and by an optional step
specification.

Transfers control to a specified statement label.,

Multibranch GOTO transfers control to one of a list of state-
ment [abels depending on the value of an integer expression.

Causes execution of a subroutine beginning at a specified state-
ment label. Followinga RETURN statement in the subroutine,
control returns to the statement following GOSUB.

Multibranch GOSUB executes one of a list of subroutines de-
pending on the value of an integer expression.

Specifies action to be taken when an end-of-file condition
occurs; IF END # is used interchangeably with ON END #.

Reference

Section ||

Section V

Section)

Section |l

Section i1

Section Il

Section VIl

Section VI

Section It

Section |1

Section |}

Section ||

Section 11

Section Vil

Statement

IF ... THEN

IMAGE

INPUT

INTEGER

INVOKE

LET

LINPUT

LINPUT #

LOCK #

LONG

MARGIN

MARGIN #

MAT Add

MAT Copy

MAT Initialize

MAT INPUT

AUG 1978

Description

Evaluates a conditional expression and specifies action to be taken
if condition is true. The condition is a numeric expression con-
sidered true if its value is nonzero, false if its value is zero. The
action may be transfer to a statement label, a single executable
statement, or a DO ... DOEND group.

Provides format specifications for PRINT USING or MAT PRINT
USING statements.

Requests user input to one or more variables by printing a ?
and accepts string or numeric data from the terminal.

Declares the following variables or arrays to be type integer.

Suspends the current program and calls for execution of a
BASIC/3000 program, and returns to statement following
INVOKE after execution of the invoked program. Variables are
saved and files remain open; data may be passed with COM
statement.

Introduces assignment statement that assigns one or maore values
to a variable or array element. The word LET may be omitted.

Requests a line of input from the terminal, all of which is as-
signed to a single string variable.

Accepts contents of a record on a data file as input to a string
variable. Used only with ASCII files.

Dynamicalty locks file during execution; all write operations
will be completed and no other user can lock that file until an
UNLOQOCK # statement is executed.

Declares the following variables or arrays to be type long.

Sets the length of the printline for the PRINT and MAT
PRINT statements.

Sets the length of the print line for PRINT #and MAT
PRINT # statements to the specified ASCII file.

Performs array addition element by element upon arrays of
identical logical size, and assigns result to another array.

Copies one array into another array with at least as many ele-
ments and the same number of dimensions. Any redimensioning

is automatic.

Initializes a numeric array with values specified by the functions
ZER (zero), CON {ones), or IDN ({identity array).

Inputs values to arrays from the terminal; optionally an array
can be redimensioned.

D-3

Reference

Section |l

Section IX

Section (I

Section 1V

Section X

Section (|

Section V

Section VIII

Section VI

Section IV

Section VHI

Section VI

Section 1l

Section I

Section I

Section I

Statement

MAT Inverse

MAT Multipty

MAT PRINT

MAT PRINT #

MAT PRINT USING

MAT PRINT #
USING

MAT READ

MAT READ #

MAT Scalar Multiply

MAT Subtract

MAT Transpose

NEXT

ON END #

PRINT

PRINT #

PRINT USING

PRINT # USING

PURGE

READ

Description

Assigns the inverse of a square array to another array using the
function INV. Any redimensioning is automatic.

Performs array multiplication on an array with dimensions m by
n and an array of dimensions n by p resulting in a new array with
dimensions m by p.

Prints arrays by rows according to array dimensions; a semicolon
after the array name will pack the rows in a line.

Prints contents of arrays by rows in a specified file.

Prints arrays according to format specifications in MAT PRINT
USING statement or in an IMAGE statement.

Prints arrays to a specified ASCI! file according to format
specifications given in the MAT PRINT # USING statement
or in an IMAGE statement.

Reads data from DATA statements into one or more arrays.
Reads data from a file into one or more arrays.

Multiplies each element in an array by a specified numeric expres-
sion. Any redimensioning is automatic.

Performs array subtraction element by element upon arrays of
identical logical size, and assigns result to another array.

Transposes an n by m array to an m by n array using the function
TRN. Any redimensioning is performed automatically.

Terminates a loop introduced by a FOR statement. Specifies a
variable that must match the FOR variable.

Specifies action to be taken when an end-of-file condition
occurs.

Prints the contents of a list of numeric or string expressions on
the list device.

Outputs the contents of a list of numeric or string variables to the
specified file.

Prints the contents of a list of numeric or string variables with format
controlied by format specifications included in the PRINT USING
statement or in an IMAGE statement.

Prints the contents of a list of items to a specified ASCII file
according to format specifications given in the PRINT #
USING statement or in an IMAGE statement.

Purges a specified file from the system.

Assigns constants and string literals from one or more DATA state-
ments to the variables specified in READ. Treats contents of all
DATA statements as a single data list.

D-4

Reference

Section 111

Section |1}

Section |11

Section Vil

Section IX

Section IX

Section 11|

Section VHI

Section Il

Section 1

Section ||

Section 11

Section VIII

Section !

Section VI

Section tX

Section IX

Section VI

Section |1

AUG 1978

Statement

READ #

REAL

REDIM

REM

RESTORE

RESTORE #

RETURN

STOP

SYSTEM

UNLOCK #

UPDATE #

Description
Reads one or more items from a file into specified variables.
Declares the following variables and arrays to be type real. This
type declaration is not generally required because the real repre-
sentation is the default case.

Redimensions the rows and columns of an array.

Redimensions the size of a string array without changing the ele-
ment size.

Introduces remarks and comments in the program listing.

Resets the data pointer to the beginning of the program or to the
first DATA statement following a specified label.

Repositions the file pointer to the start of the file; can only be
used on files that can be rewound.

Returns control from a GOSUB subroutine to the statement
following the last GOSUB.

Terminates execution of a multiline user-defined function and
returns the value of the function.

Terminates execution of the run,

Dynamically executes an MPE/3000 command from a BASIC/
3000 program.

Unlocks a file that was locked with LOCK # enabling other
programs to lock and/or write on that file.

Modifies one item in a file without affecting other items.

D-5

Reference

Section VIII

Section IV

Section {11

Section V

Section |l

Section |l

Section VI

Section |

Section VI

Section ||

Section XI

Section VIII

Section VIII

COMMAND SUMMARY

Each command is listed by name in alphabetical order followed by a brief description and a refer-

ence to the section or sections containing a complete description of the command.

Command

ABORT

APPEND

> BASIC

BREAK

CALLS

CATALOG or CAT

CREATE

DELETE or DEL

DUMP

> EQOD

EXIT

FILES

GET

GO

KEY

LENGTH OR LEN

Description
Legal only in break period; terminates the suspended program
and returns to BASIC/3000 control where all commands are
legal.

Appends a specified program to the end of the current program.

Interrupts input requested by INPUT or ENTER and enters a new
level of BASIC/3000.

Specifies breakpoints where execution of program will be inter-
rupted to enter debugging commands.

Legal only in break period; lists functions and programs called
by INVOKE that have not been completed.

Lists name, type, file size, and record size of programs and files
in the specified fileset.

Creates a BASIC/3000 formatted file with a specified length, and
optionally, record size.

Deletes one or a range of more than one statement from current
program.

Displays the contents of a BASIC/3000 formatted file at the
terminal or on a specified ASCI| file.

Terminates batch input.
Terminates the current BASIC/3000 program.

Legal only in break period; lists all files for the executing
program.

Gets the specified BASIC/3000 program from the user’s library,
replacing the current program.

Legal only in break period; terminates the debugging mode and
resumes the suspended program. RESUME may be used wherever
GO is used.

Returns from TAPE mode to terminal mode.

Prints the number of words in the current program.

D-6

Reference

Section VII

Section |1

Section I

Section VII

Section VII

Section |l

Section VIII

Section |1

Section VI

Section Xt

Section |

Section VII

Section |1

Section VI

Section Xil

Section 1l

Command

LIST

NAME
PUNCH

PURGE

RENUMBER or

RENUM

RESUME

RUN

SAVE

SCRATCH or
SCR

SET

SHOW

SPOOL
SYSTEM

TAPE
TRACE

UNBREAK
UNTRACE
WAIT

XEQ

APR 1978

Description
Lists the contents of the current program at the terminal or on a
specified ASCII file.
Assigns a name to the current program.

Punches a program on paper tape and inserts control characters
as needed to read the tape.

Deletes the specified data or program file from the system.

Renumbers any group of statements in the current program,
optionally from a new first line number with a specified incre-
ment. By default, renumbering starts at 10 with increments of
10.

Resumes normal BASIC/3000 operation following a SYSTEM com-
mand break, pressing Y€, or a debugging break.

Executes the current program or gets and executes a specified
program file in a library.

Saves the current program as a program file in a library.

Deletes entire current program and its name. Clears all break
points and traces.

Legal only in break period; sets any program variable to a
constant value.

Legal only in break period; lists the values of the specified
items,

Reads paper tapes that have not been punched with X-OFFs.

Suspends BASIC/3000 and transfers control to MPE/3000; the
RESUME command returns control to BASIC/3000.

Reads paper tapes that have been punched with X-OFFs.

Traces variable and array values, and the execution of statements
and segmented programs,

Deletes any or all breakpoints specified with the BREAK command.

Deletes tracing specified by TRACE command.
Suspends the BASIC Interpreter.

Inputs commands and program statements from a specified file;
the end-of-file terminates XEQ.

Reference

Section |1

Section 1l

Section Xl

Section [l
Section VI

Section |l

Section |
Section Vi
Section XI

Section Il

Section [l

Section ||

Section VII

Section VI

Section XII

Section |
Section XI

Section X{|

Section VI

Section VII
Section VI
Section Vi

Section XII

APPENDIX E
Built-In Functions

A set of built-in (or predefined) functions is available for reference by the BASIC/3000 user. These
functions with their class and meaning are listed below in alphabetic order. If usage is described in
this manual, a section number follows the description. Built-in functions are separated into eight
classes. The function result (numeric type or string) is based on the class of the function and the
argument type. The table below shows the type of the result based on the function class and ar-
gument type:

Type of Argument

INTEGER/
REAL LONG COMPLEX STRING
1 REAL LONG REAL —
2 REAL LONG COMPLEX —
§ 3 COMPLEX COMPLEX COMPLEX —
S 4 REAL REAL REAL -
§ 5 STRING STRING STRING -
i 6 - - — REAL
7 — - — STRING
8 argument is an array or string array, result is real

Note that an argument for a trigonometric function must be expressed in radians with 1 radian

equal to 180 r57.1958 degrees.
m

A variable argument is shown by a capital letter, an expression by a lower-case letter.

E-1

Name and Parameters

ABS(x)

ATN(x)

BRK(x)

BUF(x)

CEIl(x}

CHR$(x)

CNJ(x)

COL(A)

COS(x)

CPX({x,y)

CPU({x)
CSH(x)

DATS$(x,y)

DEB$(s)

EXP(x}

IMG(x)

Class

Meaning

Absolute value of x: when x is complex:
ABS(x) = SQR(REA (x)**2+IMG (x)**2)

Arctangent x; when x is complex, the result is the angular argument of x, or
tan_1 {(IMG{x)/REA(x)) adjusted to the appropriate quadrant. x is expressed
in radians.

Allows programmatic control of breaks; use with caution. If x <0, returns
current setting only. If x = 0, > BASIC, the break key, and Y€ break are
disabled. If x >0, these functions are enabled. BRK returns 0 if traps

were previously disabled or 1 if they were enabled.

Test input buffer for : option of INPUT. For this function, x is a dummy
parameter. (Section Il)

Ceiling of x; smallest integer > = x. When x is complex, only the real part
is used.

Generates a one-character ASCII string; x is in the range 0-255. (Section V).

Complex conjugate of x; that is, it reverses the sign of the imaginary part of
x. (Section V).

Number of columns in array A. If A is one-dimensional, COL(A)=1.
(Section I11).

Cosine of x; x must be expressed in radians.

Complex number = x + yi. If x or y is complex only the real part is used.
(Section V),

Number of seconds of CPU time (* .001 sec.) that the program has run.
Hyperbolic cosine of x; CSH(x) is (eX + e~ X)/2.
Generates date string. x,y selects substring:

String Position 1-3 6-11 14-17 20-27
Contents Day Date Year Time

Time is expressed as hours 0-12, minutes 0-59. (Section V).
Returns s with leading and trailing blanks removed. (Section V).

eX

Imaginary part of x. (Section IV),

Name and Parameters
INT(x)

ITM(x)

LEN(s)

LOG(x)

NUM(s)
PIX(x)

POS(s1,s9)

REA(x)
REC(x)

ROW(A)

RND(x)

SGN(x)
SIN(x)

SNH({x)
SQR(x)
TAN(x)
TNH(x)

TIM(x)

AUG 1978

Class

AT

Meaning
Largest integer <= x. If x is complex, only the real part is used.

Number of data items between the beginning of the current record of
file x and the position of the file pointers. (Section VIII),

Logical length of string expressions. (Section V).

Natural logarithm {loggx). If x is complex, it must not be zero. If x is not
complex, it must be greater than zero.

ASCII code for first character of string expression s. (Section V).
Pl function=7 * x

Smallest integer representing starting position in sq of substring identical

"to sg. If no such substring, then equals zero. (Section V).

Real part of x. (Section V).
Current record number of file x. (Section VIII).

Number of rows in array A. If A is one-dimensional, it returns the
dimension. (Section 1),

Pseudo-random number between 0 and 1 but notequal 1. If x > =0,

the number is determined from the previous random number, except on
the first call when an unpredictable (totally random) number is generated.
If x <0, the random number is determined by x. To generate a repeatable
sequence of random numbers make the first call with x < 0, and subse-
quent calls with x > = 0. To repeat the sequence, use the value of x from
the first call. To generate a non-repeatable sequence, use x > = 0 for all
calls, including the first.

Sign function; equals 1 for x > 0, O for x = 0, and -1 for x < 0.
Sine x; x must be expressed in radians.

Hyperbolic sine x; SNH(x) is (eX - e7%)/2.

Square root of x; x must be >=0.

Tangent x; x must be expressed in radians.

Hyperbolic tangent x; TNH{x) is SNH(x}/CSH(x).

Time, where the value is determined by x:

if x < 0, number of seconds since program began
x = 0, current minute (0-59)

x =1, current hour (0-23)
X = 2, current day (1-366)
x > = 3, current year (0-99)

E-3

Name and Parameter

TYP(x)

UND(X)

UPS$(s)

WRD(S1 ,52)

Class

Meaning

Returns type of next data item in file | x |, orin DATA list if x = 0.
(Section VIII).

X must be a numeric variable, UND(X) returns 1 if X has undefined
value, 0 otherwise.

Upshift alphabetic lower case to upper case in string expression s.
(Section V).

Smallest integer representing starting position in 51 of a substring that is

surrounded by non-alphabetic characters and is identical to $o. If there
is no such substring, 0 is returned. (Section V}.

E-4

APPENDIX F
Parameter Format

When parameters are specified in the CALL statement, the BASIC/3000 Interpreter sets up a table
of the parameter addresses with a pointer to the first address. The parameter addresses are pre-
ceded by a code word for each parameter to specify the data type and whether the parameter is
simple numeric, string, or an array. This enables the procedure to check if the calling sequence is
correct.

The addresses point to the parameter values. These values are stored differently depending on the
type of the parameter.

The user who writes the SPL or FORTRAN procedures that he calls from BASIC needs to know the
format of the parameter table and also how the values are stored.

PARAMETER ADDRESS TABLE

This sample table is in the HP 3000 data stack. It contains the number of parameters, a code word
for each parameter, and the parameter addresses:

Old Stack Marker

number of parameters OLDQ+1

parameter 1 parameter 2 parameter 3

Code Words

parameter 4

parameter 1

parameter 2 Parameter
parameter 3 Addresses
parameter 4
Q-4
stack
marker
Q

F-1

The user should refer to the HP 3000 Computer System Reference Manual for details on stack
operation.

Each code word has three fields of five bits each:

0o 1 56 10 11 15

Each field has two subfields of three and two bits each:

3 bits 2 bits

The three-bit field gives the data type of the parameter:

0 - string

1 - integer
2 ~ real

3 ~ long

4 -~ complex

The two-bit field specifies:

0 -~ simple numeric
1 -~ simple string or one-dimensional numeric array

2 - two-dimensional numeric array or one-dimensional string array

The code words in the stack following the procedure call are in the same order as the parameter ad-
dresses that follow.

PARAMETER STORAGE

What the parameter address points to depends on the type of the parameter; whether it is simple
numeric, numeric array, simple string, or string array:

1. For a simple numeric expression, including simple variables and subscripted variables, the
address points to the first word of the value. The number of words needed for a value
depends on the data type:

integer - 1 word

real - 2 words
long - 4 words
complex - 4 words

F-2

2. For numeric arrays, the address points to the first value of the array (array(1) or array(1,1)).
There are three words prior to this value that describe the array. Arrays are stored by rows

as follows:
maximum number of elements
number of rows {1st dimension)
number of coturnns {2nd dimension}
{equai to 1 for one-dimensional arrays)
pointer ——» array (1) or {1,1)

array {2) or (1,2)

array(n) or (n,n)

3. For simple string variables, string array elements, and string expressions, the address is a byte
pointer that points to the first byte of the string. The two preceding bytes define the physical
and logical lengths of the string:

physical length logical length
byte pointer ——» 1st byte 2nd byte
3rd byte

4. For string arrays, the address points to the first element of the array. Each element has the
form of a string value with two bytes specifying physical and logical length respectively, fol-
lowed by the bytes containing the actual value. This string value is preceded by two words
that define the array:

maximum number of elements
logical dimension
physicat length logical length
byte pointer ——» 1st byte 2nd byte
first
3rd byte string
element
physical length logical length
1st byte 2nd byte
second
3rd byte - string
element

APR 1978 F-3

APPENDIX G

Compatibility Between BASIC/2000
and BASIC/3000

With four exceptions, BASIC/2000 is a compatible subset of BASIC/3000. This means that a
BASIC/2000 program can be run under control of the BASIC/3000 Interpreter and will compile
and execute correctly. But, due to the many new features available in BASIC/3000, a BASIC/3000
program will not necessarily run on a BASIC/2000 system.

The four exceptions to compatibility are described here. None of these exceptions will affect com-
pilation, but they might affect the result when a BASIC/2000 program is run on BASIC/3000.

The exceptions are:

BASIC/3000 BASIC/2000
1. A COM statement is valid during one A COM statement remains valid between runs.
run only. It does not remain valid be- COM blocks need not have compatible structure.

tween runs. COM blocks must have
compatible structure.

2. Files are closed when a program calls Files remain open when a program calls a pro-
a program with the CHAIN statement. gram with the CHAIN statement.

3. MAT PRINT prints a one-dimensional MAT PRINT prints a one-dimensional array as
array as a row of elements, thereby a column of elements.
saving space and printing time.

4. S or Misrequired in a floating point S or M is not required.
specification of a format string if the
number is negative.

G-1

APPENDIX H
File Structure

BASIC/3000 FORMATTED FILES

A formatted BASIC/3000 file contains format words provided by the Interpreter to indicate the
type of the data items in the file. Space for these format words is allocated automatically in addi-
tion to the record size specified by the user. The format words are placed in each record following
the logical end-of-record, but before the physical end-of-record.

Formatted files can have a record size between 4 and 319 words. The recommended {and default)

record size is 106 words per record since this yields 128 words when the format words are added.
The standard system size for records is 128 words. Records are numbered starting with 1, not 0.

Each record consists of an area for data items and an area for format words:

= Form |
1st 5 Data Items 1st Format Word
logical EOR Physical EOR

Format Word

Each format word consists of five 3-bit flags. The first bit is not used.

0 1 34 6 7 9 10 12 13 15

The first format word corresponds to the first five data items, with the first flag in the format word
corresponding to the first data item, the second flag to the second item, and so forth.

H-1

The item types are specified in the format word flags as:

0 — end-of-file

1 - end-of-record

2 - string
3 - integer
4 —real

5 - long

6 — complex
The logical end-of-record delimits the record size specified by the user to include all the data items.
The physical end-of-record delimits the BASIC-created record size that is sufficient to contain the
format words as well as the data items.

Record Size

The space requirements for a data item differs depending on the data type. The number of 16-bit
words required for each data type is :

Data Type Number of Words
Integer 1

Real 2

Long 3 (MPE C)
Long 4 (MPE III)
Complex 4

String (length +1)/2 + 1

In each case an additional 1/5 of a format word is added for each data item to provide room for the
format words.

The user can determine the physical record size created for the file by BASIC from the logical record
size he has used to contain his data items. The formulais :

P=R +INT(R/5) +1

where P is the physical record size created by BASIC
R is the logical record size assigned by the user

This formula never returns a physical record size which is evenly divisible by six. If a BASIC for-
matted file is created through the MPE/3000 Operating system with a physical record size (in
words) which is evenly divisible by six, it will not be usable by BASIC. (Note that the record size
supplied with the CREATE command or statement within BASIC is the logical record size and so
may be a value which is divisible by six.)

If the physical record size is known, the user can determine the logical record size of a record with
another formula :

R = CEI(5* (P-1)/6)

H-2 AUG 1978

File Attributes

The user may need to know the MPE /3000 file codes for BASIC files. These codes differ depend-
ing on how the file was saved and whether it is a program file or a BASIC file. The file code for
any file can be requested with the MPE command FGETINFO.

Program File (SAVE) 1026
Program File (FAST SAVE) 1027
BASIC Formatted File 1025

Other file attributes may be obtained with the MPE command :LISTF filename,2

The number 2 is a code that provides detailed file information for each file listed. The filename
may be fully qualified with the user’s lockword, group, and account names.

ASCII FILES

ASCII files contain data in ASCII character code. Each 16-bit word contains two characters.

BINARY FILES

Binary files have no format words or string headers. The number of words needed for each data
item depends on the type of the item, as follows:

Data Type Number of Words

Integer
Real
Long

O

Complex
String (length + 1)/2

H-3

INDEX

A
A, in formatted output: 9-7, 9-8 BASIC/2000 compatibility: G-1
ABORT command: 7-11 batch processing: 12-2
ADVANCE syntax: C-8 ‘ binary file access: 8-24
ADVANCE #, formatted files: 8-29 binary file structure: H-3
ALL, CATALOG: 2-62 binary files: 8-2
AND: 2.7 binary operator: 2-6
APPEND command: 2-62 BNF syntax: C-1
arithmetic operator: 2-6 Boolean operator: 2-7
array addition: 3-13 BRFAK: 1-2
array copying: 3-10 BREAK command: 7-7
array function: 3-20 breakpoint commands: 7-8
array initialization: 3-10 BUF function: 2-45
array inversion: 3-16 buffering input: 2-42
array multiplication: 3-14 built-in functions: E-1
array redimensioning: 3-4 :BYE: 1-5

array scalar multiplication: 3-19
array size: 3-2
array substraction: 3-13

array transposition: 3-18 C

arrays: 3-1

arrays, direct file print: 8-36 C, formatted output: 9-7, 9-11
arrays, direct file read: 8-37 CALL statement: 11-2

arrays, formatted print: 9-4 calling FORTRAN subprogram: 11-3
arrays, numeric: 4-10 calling SPL procedure: 11-6

arrays, serial file print: 8-35 CALLS command, during break: 7-20
arrays, serial file read: 8-35 card reader control: 12-2

ASCII characters: A-1 carriage control characters: 9-14
ASCII file access: 8-22 carriage control function: 2-37
ASCII file input: 8-23, 12-9, 9-3a, 9-5a carriage return: 1-2

ASCII file read: 8-23 CATALOG command: 2-62

ASCII file structure: H-3 CHAIN statement: 10-2

ASCII files: 8-1 CHAIN syntax: C-10

ASSIGN statement: 8-9 changing statements: 1-9

ASSIGN syntax: C-8 character set: A-1

assignment statement: 2-11 CHRS function: 5-12

class of functions: 4-11, E-1
closing files: 8-6

B COL function: 3-20
COL function, string arrays: 5-14
>BASIC: 2-49 columns: 3-1
:BASIC command: 1-4,12-2 COM statement: 10-9
BASIC formatted files: 8-1 COM syntax: C-10
BASIC program: 1-10 command errors: B-1

AUG 1978 Index-1

command summary: D-6
commands: 1-7

commands illegal during break: 7-8
commands legal during break: 7-8
common blocks: 10-9
comparing strings: 5-16

compile errors: B-1

complex form: 4-4

complex formatted output: 9-11
COMPLEX statement: 4-2
compressed formats: 9-12

CON function: 3-10
concatenation: 2-8, 5-9
conditional statements: 2-25
constant,: 2-2

constant, numeric: 2-2

constant, string: 2-4
continuation lines: 1-8
conversion of data: 4-8
CONVERT statement: 5-23
CONVERT syntax: C-7
correcting errors: 1-6

CREATE command: 8-3
CREATE statement: 8-3
CREATE syntax: C-7

CTL function: 2-37

CTRL: 1-2

CTRL H: 1-2

CTRL X: 1-2

CTRLY: 1.2

D

D, formatted output: 9-7, 9-9
data representation: 4-1
DATA statement: 2-39, 5-17
DATA syntax: C-5

DATS$ function: 5-14
debugging commands: 7-1
DEBS$ function: 5-13
decimal, formatted output: 9-7, 9-9
deck structure: 12-3

DEF statement: 6-2, 6-4
DEF syntax: C-7

DELETE command: 2-55
deleting files: 8-5

deleting programs: 1-14
deleting statements: 1-9
diagnostics: B-1

DIM statement: 3-3

DIM, strings: 5-3

DIM syntax: C-6

direct file access: 8-12

direct file, MAT READ statement: 8-37
direct file MAT PRINT statement: 8-36

direct file PRINT statement: 8-18
direct file READ statement: 8-20
displaying formatted files: 8-31
DO ... DOEND group: 2-25
DUMP command: 8-31

E
E, formatted output: 9-7,9-9
editing commands: 2-54
editing statements: 1-9
editing symbols: 9-8
ELSE statement: 2-25
ELSE syntax: C-5
END, segmented programs: 10-4
END statement: 2-19
end-of-file condition: 8-27
end-of-file, direct files: 8-18
end-of-file, serial file: 8-13
end-of-record, direct files: 8-18
end-of-record, serial file: 8-13
ENTER statement: 2-47
ENTER statement, strings: 5-18
ENTER syntax: C-5
entering BASIC: 1-4
>EOD command: 12-3
error messages: 1-8, B-1
execution errors: B-2
SEXIT: 1-5
expressions: 2-2
expressions, evaluation of; 2-8

false value: 2-7

FAST, SAVE: 2-60

fastsaved program: 2-60

file access: 8-12

file access, ASCII: 8-22

file access, binary: 8-24

file ADVANCE statement: 8-29
file codes: H-3

file dump: 8-31

file functions: 8-32

file length: 8-3

file LINPUT statement: 8-23
file LINPUT syntax: C-8

file MARGIN statement: 8-23a
file MARGIN syntax: C-8

file MAT PRINT syntax: C-8
file MAT PRINT USING syntax: C-9
file MAT READ syntax: C-8
file name: 8-2

file numbers: 8-6

file numbers, segmented programs: 10-7

file print, direct files: 8-18

file print, serial files: 8-13

file PRINT syntax: C-8

file PRINT USING syntax: C-8
file read, direct files: 8-20

file read, serial files: 8-15

file READ syntax: C-8

file RESTORE statement: 8-17
file RESTORE syntax: C-8

fite UPDATE statement: 8-30
file UPDATE syntax: C-8

files: 8-1

FILES command, during break: 7-18
files, dynamic locking: 8-25
FILES statement: 8-7

Index-2

AUG 1978

FILES syntax: C-7

fileset: 2-62

fixed-point form: 4-3

fixed-point formatted output: 9-10
fixed-point number: 2-2
floating-point form: 4-3

floating-point formatted output: 9-10

floating-point number: 2-3
FNEND statement: 6-4

FOR loop, input item: 2-42
FOR loop, print item: 2-31

FOR statement: 2-22

FOR syntax: C-4

format strings: 9-7

format symbols: 9-7

formatted file creation: 8-3
formatted file structure: H-1
formatted files: 8-1

formatted printing: 9-1
FORTRAN subprograms: 11-2
FREQ, RUN: 2-51

function: 2-5

function call: 6-7

function class: 4-11 E-1
function definition, multiline: 6-4
function definition, one-line: 6-2
functions, built-in: E-1

G

GET command: 2-61

GO command: 7-12

GOSUB statement: 2-16

GOSUB syntax: C-4

GOTO statement: 2-14

GOTO syntax: C-4

grouping, formatted output: 9-13

H
:HELLO; 1-4
I

I, formatted output: 9-7, 9-8, 9-11
IDN function: 3-10

IF END #, files: 8-27

IF syntax: C-4

IF ... THEN statement: 2-25
IMAGE statement: 9-6
IMAGE syntax: C-9

input data: 2-39

input interrupt: 2-49

INPUT statement: 2-42
INPUT statement, strings: 5-18
INPUT syntax: C-5

integer: 2-2

integer expression: 2-2

integer form: 4-3

integer formatted output: 9-10

AUG 1978

INTEGER statement: 4-2
internal file numbers: 10-7
interprogram transfer: 10-1
INVOKE statement: 10-4
INVOKE syntax: C-10
ITM function: 8-34

K

K,formatted output: 9-7,9-12
KEY command: 12-7
keys, special: 1-2

L

leaving BASIC: 1.5

LEN funetion: 5-12
LENGTH command: 2-56
LET statement: 2-11

LET statement, strings: 5-10
LET syntax: C-3

library commands: 2-59
LIN function: 2-36
linefeed: 1-2

line-printer control: 12-2
LINPUT statement: 5-21
LINPUT syntax: C-7
LINPUT #, ASCII files: 8-23
LIST command: 2-54

listing a program: 1-12
literal formatted output: 9-8
literal string: 2-4

literal string, formatted output: 9-8
local file numbers: 10-7
LOCK syntax: C-8

LOCK #, files: 8-25

locking files: 8-25

logging off: 1-5

logging on: 1-4

logical operator: 2-7

long form: 4-4

LONG statement: 4-2
loops: 2-22

M

M, formatted output: 9-7, 9-9
magnitude: 2-3

MARGIN statement: 8-23a
MARGIN syntax: C-8
MARGIN #, ASCII files: 8-23a
MAT Add statement: 3-13
MAT Assignment syntax: C-7
MAT Copy statement: 3-12
MAT Initialization syntax: C-6
MAT INPUT statement: 3-6
MAT INPUT syntax: C-6
MAT Inverse statement: 3-16

Index-3

MAT Multiply statement: 3-14

MAT PRINT statement: 3-8

MAT PRINT syntax: C-6

MAT PRINT USING statement: 9-4
MAT PRINT # USING statement: 9-5a
MAT PRINT USING syntax: C-9
MAT PRINT # USING syntax: C-9
MAT PRINT #, direct files: 8-36
MAT PRINT #, serial files: 8-35
MAT READ statement: 3-6

MAT READ syntax: C-6

MAT READ #, direct files: 8-37
MAT READ #, serial files: 8-35
MAT Scalar Multiply statement: 3-19
MAT Subtract statement: 3-13

MAT Transpose statement: 3-18
matrix (see arrays, MAT statements): 3-1
MAX: 2-7

MIN: 2-7

mixed-mode arithmetic: 4-7

MOD: 2-6

modifying formatted files: 8-30
MPE/3000 interface: 11-10

multiline function: 6-4

Multiple File Locking: 8-26

N

NAME command: 2-59

NEXT statement: 2-22

NEXT syntax: C-4

NOECHO, RUN: 2-51
non-BASIC programs: 11-1
non-interactive programming: 12-1
nonprinting characters: 5-1, A-1
NOT: 2-7

NOWARN, RUN: 2.51

NULS function: 5-22

NUM function: 5-12

numeric assignment: 4-9

numeric constants: 4-2

numeric expressions: 4-7

numeric formatted output: 9-9
numeric to string conversion: 5-23

0

ON END syntax: C-8

ON END #, files: 8-27
one-dimensional array: 3-1
one-line function definition: 6-2
opening files: 8-6
operator hierarchy: 2-8
operators: 2-6

OR: 2.7

order of execution: 1-7
OUT=, CATALOG: 2-63
OUT-, DUMP: 8-31
OUT=,LIST: 2-54
OUT=,RUN: 2-51

output formats: 2-33
output, formatted: 9-1

P

paper tape control: 12-5

paper tape read: 12-7

parameter format: F-1
parameters, actual: 6-7
parameters, formal: 6-2
parameters, passing: 6-11

passing data, segmented programs: 10-9
passing parameters: 6-10
password: 1-4

POS function: 5-13

print formats: 2-33

print functions: 2-36

print line length control: 8-23a
print list: 2-31

PRINT statement: 2-31

PRINT statement, strings: 5-20
PRINT syntax: C-5

PRINT USING statement: 9-2
PRINT # USING statement: 9-3a
PRINT USING syntax: C-8
PRINT # USING syntax: C-8
PRINT #, direct files: 8-18
PRINT #,serial file: 8-13
printing complex numbers: 4-6
printing long numbers: 4-6
PROG, BREAK: 7-7

PROG, TRACE: 7-2

program: 1-10

program execution: 1-13
program termination: 2-19
pseudocompile: 2-60

PUNCH command: 12-5
punching paper tape, off-line: 12-6
punching paper tape, PUNCH: 12-5
PURGE command: 8-5, 2-61
PURGE statement: 8-5

PURGE syntax: C-T

Q
quoted strings: 5-1

R

READ statement: 2-39
READ statement, strings: 5-17
READ syntax: C-5

READ #, direct files: 8-20
READ #, serial file: 8-15
reading paper tape: 12-7
REAL statement: 4-2

REC function: 8-34

record size: 8-3, H-2
RECSIZE, CATALOG: 2-62
RECSIZE, LIST: 2-54
REDIM statement, arrays: 3-4
REDIM, strings: 5-5

REDIM syntax: C-6
relational operator: 2-7

Index-4 AUG 1978

relational value: 2-7

REM statement: 2-13

REM syntax: C-4

remarks: 2-13

RENUMBER command: 2-56
replicator, formatted output: 9-8
RESTORE data statement: 2-39
RESTORE statement,strings: 5-17
RESTORE syntax: C-5
RESTORE # statement: 8-17
RESUME command: 7-12;11-10
return: 1-2

RETURN, function: 6-4
RETURN, subroutine: 2-16
rewind files: 8-17

ROW function: 3-20

ROW function, string arrays: 5-14
rows: 3-1

RUN command: 2-51

run errors: B-2

running a program: 1-13
RUNONLY, SAVE: 2-60

S

S, formatted output: 9-7, 9-9
SAVE command: 2-59

SCRATCH command: 2-55
scratching a program: 1-14
segmented libraries: 11-2
segmenting programs: 10-1
separators, formatted output: 9-12
serial file access: 8-12

serial file MAT PRINT statement: 8-35
serial file MAT READ statement: 8-35
serial file PRINT statement: 8-13
serial file READ statement: 8-15
SET command: 7-16

sharing files: 8-25

SHOW command: 7-14

skipping items in file: 8-29

SL: 11-2

SPA function: 2-36

SPL procedures: 11-2

SPOOL command: 12-8

START=, CATALOG: 2-63
statement label (see statement number)
statement number: 1-7

statement summary: D-1
statements: 1-7

STOP, segmented programs: 10-4
STOP statement: 2-19

stopping listing: 2-63

stopping output: 2-63

string array: 5-6

string array initialization: 5-22
string array operations: 5-22

string assignment: 5-10

string comparison: 5-16

APR 1978

string constants: 5-1

string expressions: 5-9

string formatted output: 9-8
string functions: 5-12

string literals: 5-1

string MAT Initialize statement: 5-22
string to numeric conversion: 5-23
string size: 5-6

subscripts: 3-1

substring designator: 5-6
substrings: 5-7

suspending BASIC: 1-5

syntax: C-1

syntax errors: B-1

SYSTEM command: 11-10
SYSTEM statement: 11-12
SYSTEM syntax: C-10

:SYSTEM command: 1-5

T

TAB function: 2-36

TAPE command: 12-7
terminating a program: 2-19
TIM function: E-3

timed input: 2-47

TRACE command: 7-2
true value: 2-7
two-dimensional array: 3-1
TYP function: 8-32

type conversion: 4-8

Type statements: 4-2
Type syntax: C-6

U

unary operator: 2-6
UNBREAK command: 7-7
UNLOCK syntax: C-8
UNLOCK#, files: 8-25
UNTRACE command: 7-2
UPDATE syntax: C-8
UPDATE #, formatted files: 8-30
UPS$ function: 5-13
user-defined functions: 6-1
user’s library: 2-59

user’s work area: 1-11

\Y%

variable: 2-4
variable types: 4-1

w

WAIT command: 7-23
work area: 1-11

WRD function: 5-13
write direct file: 8-18
write serial file: 8-13

Index-6

Compute;

Museum

X

X, formatted output: 9-7, 9-8
XEQ command: 12-9

Z

ZER function: 3-10
Special Characters

&: 1.8
$, formatted output: 9-7, 9-8

Index-6

