
microsystems

Open Boot PROM
 Toolkit User’s Guide

Part No: 800-4251-10

Revision A (FCS) of 5 December 1989

Copyright ©1989 Sun Microsystems, Inc.—Printed in U.S.A.

The Sun logo, Sun Microsystems, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SunInstall, SunOS, SunView, NFS, SunLink, NeWS, SPARC, and
SPARCstation 1 are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc., for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox for the Xerox Graphical User
Interface, which license also covers Sun’s licensees.

All other products or services mentioned in this document are identified by the trademarks or service marks of their
respective companies or organizations, and Sun Microsystems, Inc., disclaims any responsibility for specifying
which marks are owned by which companies or organizations.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means—graphic, electronic, or mechanical—including photocopying, recording, taping, or storage in an
information retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and in similar clauses in the FAR and NASA FAR Supplement.

This product is protected by one or more of the following U.S. patents: 4,777,485; 4,688,190; 4,527,232;
4,745,407; 4,679,014; 4,435,792; 4,719,569; 4,550,368 in addition to foreign patents and applications pending.

This book describes how to use the open boot PROM available

in many SPARC products. This PROM is significantly different

from PROMs in other Sun systems. It can perform many new

functions and has a new user interface.

This guide is for Sun system administrators and field service

technicians who need to use the boot PROM to do the following:

Boot the operating system

Run the Diagnostic Executive

Modify system start-up configuration parameters

Perform field service troubleshooting.

Software and hardware developers may also find the

information in this book useful.

About This Book

Who Should Read
This Book

❏

❏

❏

❏

iii

How to Use This Book About This Book
This book consists of seven chapters and four appendices.

Chapter 1 is an overview of the boot PROM and the user

interfaces.

Chapter 2 describes what happens during the system start-

up self-test and auto-booting sequence.

Chapter 3 describes the Sun-Compatible Monitor interface.

Refer to this chapter when you need to boot from the >
prompt.

Chapter 4 describes the basics of how the Forth Toolkit

interface works. Anyone who intends to use the Forth

Toolkit should read this chapter.

Chapter 5 describes the Toolkit functions. You will use this

chapter when you are performing typical field service tasks.

Chapter 6 describes working with NVRAM configuration

parameters. You will use this chapter if you are performing

typical system administration tasks.

Chapter 7 describes advanced Toolkit functions. You will

use this chapter when you are performing field service

troubleshooting.

Appendix A is a command reference for Toolkit commands.

Appendix B is a list of the NVRAM Configuration

Parameters.

Appendix C compares other Sun System PROM commands

with commands used with the open boot PROM.

Appendix D is a list of the Power-On Self-Tests (POST) with

brief descriptions.

How to Use This
Book

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

iv

About This Book Related Books
This book is part of the SBus Developer’s Kit, a set of

publications available from Sun Microsystems, Inc.:

SBus Specification

SBus Hardware Application Notes

Writing SBus Device Drivers

L64853 SBus DMA Controller Technical Manual

Open Boot PROM Toolkit User’s Guide (this manual)

In addition, the following books may be useful to you:

Your system’s system administration & network guide

Your system’s installation guide

If you need to set up a system from scratch, you should read

your system’s installation guide.

The boot PROM has a new Forth-based command interpreter.

In order to effectively use this new interface, it is helpful to be

familiar with the Forth programming language, except for

simple operations such as booting the system. See “For Further

Reference ” in Chapter 4 for a list of recently published Forth

Language reference materials.

This book follows a number of typographical conventions:

This font is used for emphasis, for a command argument,

and for the title of a book. For example:

You must type the filename argument as described in the

SunOS Reference Manual.

This font indicates a program listing, a command name,

a program name, or text the machine displays on the screen,

as in a tutorial session. For example:

You have new mail.

Related Books

❏

❏

❏

❏

❏

❏

❏

Before Reading
This Book

Typographical
Conventions

❏

❏

v

Typographical Conventions About This Book
This font indicates what you type. Pressing the

key after typing the command line is an assumed action.

For example:

tutorial% date

A rectangular box around text indicates a key name. For

example:

Press the key.

When you see two key names within one rectangular box,

press and hold the first key down and then press the second

key. For example:

To press , press and hold , then press .

In a command line, square brackets indicate an optional

entry and italics indicate an argument that you must replace

with the appropriate text. For example:

cd [directory]

Toolkit commands may be typed in either upper or lower

case characters. Many Toolkit commands are single

character symbols. When these occur in text they are set off

with quotation marks. For example:

The “+” command adds two numbers.

❏ Return

❏

Return

Control-d Control d

❏

❏

vi

Contents

About This Bookix

How to Use This Bookx

Related Booksxi

Before Reading This Bookxi

Chapter 1. Overview1

Programmable Read Only Memory1

Non-Volatile Random Access Memory2

PROM User Interfaces2

Sun-Compatible Monitor2

Forth Toolkit3

Where to Find What You Need4

Chapter 2. System Start-Up and Auto-Booting7

Power-On Self-Test (POST)7

Auto-Boot Procedure8

Chapter 3. Using the Sun-Compatible Monitor9

Starting the Monitor9

Performing a Power Cycle11

Interrupting Power-Up Sequence12

Halting the Operating System13

Aborting a Hung System14

Contents
Compatible Monitor Functions15

Booting From the > Prompt16

Boot Command Syntax17

Continuing a Halted Program19

Entering the Forth Toolkit19

Returning to the > Prompt19

Chapter 4. Forth Toolkit Fundamentals21

Forth Commands (Words)22

Getting Help23

Numbers24

The Stack25

Showing the Stack With showstack25

Stack Diagram26

Colon Definitions27

Keyboard Editor29

Using Control Key Combinations29

Using Escape Key Combinations29

For Further Reference30

Chapter 5. Using the Forth Toolkit33

Resetting the System34

Diagnostic Routines35

Displaying System Information38

Booting the System From the Toolkit Prompt38

Input, Output, and Display Modes38

Emergency Procedure40

Setting Up a tip Connection41

Sending a “Break”43

Ending the tip Session43

Common Problems With tip44

Downloading Files45

Downloading a File Over a Serial Line45

Downloading a File Over Ethernet46

Ejecting the Floppy Diskette48

Preserving Data After a System Crash48
iv

Contents
Chapter 6. Using Configuration Parameters51

Displaying Parameters52

Changing a Parameter’s Value53

Resetting Default Values53

Security55

No Security55

Command Security56

Full Security57

Changing the Power-On Banner59

Input and Output Control62

Setting Serial Port Characteristics62

Selecting Boot Options64

Controlling Power-On Self-Test65

Miscellaneous Parameters Descriptions66

Chapter 7. More Forth Tools69

Showing the Stack70

Using 32-Bit Numbers70

Manipulating the Stack71

Numeric Input and Output in Different Bases72

Using Arithmetic74

Accessing Memory75

Examples78

Using Defining Words80

Searching the Dictionary82

Controlling Text Input and Output83

Interpreting Source Code85

Using Conditional Testing87

Controlling Conditional Execution89

Using Conditional Loops90

Using Counted Loops92

Using Case Statements94

Additional Control Commands95

Using the Disassembler96

Displaying Registers97

Using Breakpoints99
v

Contents
Appendix A. Toolkit Command Reference101

Basic System Commands103

System Resetting Commands103

Diagnostic Tests103

System Information104

Disk Drive Control104

Help and Mode Commands104

Booting the System105

Basic Forth Commands107

Manipulating the Stack107

Accessing Memory108

Using Arithmetic109

Changing the Numeric Base110

Displaying Output110

Output Display Primitives111

Line Editor Commands112

Advanced Forth Programming Commands113

Defining Words113

Performing Comparisons114

Inputting Text115

Displaying Text Output115

Conditional Loops116

Counted Loops116

Controlling Program Execution117

Conditional Case Statements117

Manipulating Text Strings118

Compiling the Dictionary119

Searching the Dictionary120

Advanced System Commands120

Input Output Display Modes120

File Downloading121

Using the Disassembler121

Using Breakpoints122

Reading and Writing SPARC Registers123

Symbolic Names124

Traps124
vi

Contents
Mapping Memory125

Mapping Memory Primitives126

Accessing Alternate Address Space127

Manipulating the Cache128

SunOS Operating System Calls128

Reading and Writing Machine Registers129

Appendix B. NVRAM Configuration Parameters Summary131

Appendix C. Sun Monitor Command Equivalents135

Appendix D. Power-On Self Test139
vii

Contents
viii

1

This chapter is a brief overview of the following:

Open boot PROM (Programmable Read Only Memory)

NVRAM (Non-Volatile Random Access Memory)

PROM user interfaces

The open boot PROM is very different from boot PROMs in

other Sun systems. One significant change is in the user

interface. The user interface and other changes are described

later in this chapter. You may also see Appendix C for a list of

commands that perform equivalent functions to the Sun

Monitor command set provided with other boot PROMs.

The primary function of any boot PROM is to interact with the

system hardware and to provide the software foundation

necessary to run programs. The SunOS Operating System, the

Diagnostic Executive, and standalone programs all depend on

the boot PROM for their initial program loading.

Another function of the boot PROM is to provide a versatile set

of tools for testing the system hardware.

Overview

❏

❏

❏

Programmable
Read Only Memory
1

Non-Volatile Random Access Memory Chapter 1: Overview
The NVRAM contains information that is used during system

boot to set up the basic machine configuration. Unlike the

information contained in the open boot PROM, you may change

NVRAM parameters. These changes remain in effect even

when the system is turned off.

The boot PROM interface works in two modes: the Sun-

Compatible Monitor and the Forth Toolkit (new command

mode).

The Sun-Compatible Monitor mode is provided to present a

compatible interface to the most common PROM use, booting

the system.

When you start the Sun-Compatible Monitor, the “>” boot

prompt appears on the display screen. From the boot prompt

you may execute an abbreviated set of commands. These

commands allow you to boot the system, continue the execution

of a halted program, or enter the Forth Toolkit.

The Toolkit is an interactive command interpreter based on the

Forth programming language. While in the Toolkit, you will

see the ok prompt. The Toolkit gives you access to an extensive

set of functions for performing hardware development,

problem determination (fault isolation), software

development, and debugging. All functions available through

Non-Volatile
Random Access
Memory

PROM User
Interfaces

Sun-Compatible
Monitor

Forth Toolkit
2

Chapter 1: Overview Forth:Toolkit
the Sun-Compatible Monitor mode are also available through

the Forth Toolkit.

Type b (boot), c (continue) or n (new command mode)
>

Type help for more information
ok

Boot Message and Prompt

Toolkit Message and Prompt
3

Where to Find What You Need Chapter 1: Overview
The following shows where you will find the important

information in this manual.

Where to Find What
You Need

Chapter 3 Using the

Procedures for:

1. Starting the Monitor

2. Booting the system

3. Entering and leaving the Toolkit

4. Performing a power cycle

Sun-Compatible Monitor

Chapter 2

Chapter 4

What You Will Find

Overview of power-up and

auto-booting sequences

Forth Interface basics as they apply to the

PROM Toolkit implementation of the Forth

programming Language.

Where

Chapter 4 is
for anyone who
wishes to use
the Forth Toolkit
Interface.

For basic Toolkit functions, go to Chapter 5.

For NVRAM Configuration Parameters, go to Chapter 6.

For advanced Toolkit functions, go to Chapter 7.

For basic booting and using the Monitor, go to Chapter 3.

For an introduction to the Forth Toolkit, go to Chapter 4.

Forth Toolkit Fundamentals

System Start-Up and Auto-Booting
4

Chapter 1: Overview Where to Find What You Need
5

Where to Find What You Need Chapter 1: Overview
Chapter 7 More Forth Tools

What You Will Find

 1. Manipulating the stack

 2. Using arithmetic

 3. Accessing memory

 4. Searching the Forth Dictionary

 5. Controlling input and output

 6. Conditional testing and execution

 7. Using case statements

 8. Using the disassembler

 9. Using loops

10. Displaying registers

11. Using breakpoints

Chapter 6

Procedures for:

1. Displaying and changing parameters

2. Setting security

3. Changing the power-on banner

4. Input/output control

5. Boot options

6. Controlling POST

Chapter

Chapter 6 describes
working with the NVRAM
configuration parameters.
You will have to use the
Toolkit to do this.

Chapter 7 describes more
complex Forth operations.
The functions provide

programming

Chapter 5
Procedures for:

1. Resetting the system

2. Running Diagnostics

3. Displaying system information

4. Booting from the ok prompt

5. Input/output and display modes

6. Setting up a TIP window

7. Downloading files

8. Controlling disk drives

Chapter 5 describes
the basic control
functions.

advanced
capabilities.

Using Configuration Parameters

Using the Forth Toolkit
6

Chapter 1: Overview Where to Find What You Need
7

Where to Find What You Need Chapter 1: Overview
8

2

This chapter describes the default start-up and auto-booting

sequence.

The power-up sequence assumes that the system Integer Unit

(IU) is functional and able to fetch instructions from the open

boot PROM. Turning on the power switch to the system unit,

powering-up, resets the IU. Execution of the Power-On Self-

Test (POST) sequence begins immediately.

The open boot PROM contains the programs for the power-on

self-tests and system initialization sequence. The overall

objectives of POST are to quickly verify that the system

functions, to initialize the system hardware, and to boot the

SunOS Operating System.

The POST and component initialization occur somewhat

simultaneously with each component being initialized as

testing completes. See Appendix D for a list of POST with brief

descriptions.

Note: The POST performs minimum-confidence tests (not

comprehensive hardware examination) prior to attempting to

boot the specified software program.

System Start-Up and
 Auto-Booting

Power-On
Self-Test (POST)

Power-On Self-
Tests and Sys-

tem
Initialization

NVRAM
Specified
Auto-boot

SunOS
9

Auto-Boot Procedure Chapter 2: System Start-Up and Auto-Booting
When the system test and initialization are completed, the auto-

boot procedure begins. By default, the PROM attempts to auto-

boot vmunix from the system’s internal hard disk drive.

Auto-boot defaults are contained in the NVRAM configuration

parameters. These parameters may be modified using the

PROM Toolkit. You may change the default parameter settings

to specify another program to be booted or another boot-from
device. See Chapter 6 for procedures for modifying NVRAM

configuration parameters.

As the power-up sequence executes, you will see status

messages on the display. At the completion of an uninterrupted

power-up sequence, the system’s login prompt is displayed.

When the system is unable to successfully complete one or more

of the POSTs or auto-boot, the boot PROM outputs an error

message or messages to ttya and/or the console display and

attempts to start the Sun-Compatible Monitor program. If a

fatal error is encountered, the program will attempt to display

a message on ttya and/or the console display and will then loop

on the error location. If enough of the system is functional so

that the Sun-Compatible Monitor can execute, the PROM

displays a brief message and the boot prompt.

Chapter 3 describes the functions available from the > prompt.

Chapter 4 is an introduction to the Forth Toolkit interface.

Chapters 5, 6, and 7 describe using the Forth Toolkit.

Auto-Boot
Procedure

You can use the key
combination to access the
Monitor from the login prompt.

L1-A

login:

Type b (boot), c (continue), or n (new command mode)
>

10

3

This chapter describes accessing the boot PROM interface and

using the Sun-Compatible interface commonly called the

Monitor. The Monitor supports three commands that allow

you to boot the system, continue a halted program, and enter

the Forth Toolkit.

The boot PROM interface operates independently from the

SunOS Operating System. The three ways to start the interface

are summarized in Figure 3-1.

Because boot PROM commands can modify any location in

memory, it is possible to enter commands incorrectly so that the

PROM is unable to execute what you’ve entered and becomes

hung. That is, it stops responding to input from the keyboard.

In that case, your only alternative is to perform a power cycle to

bring the system back to normal operation. Once you perform

the power cycle, you can interrupt the power-up sequence to

return to the command interpreter.

When performed as described on the following pages, a power

cycle will not produce any adverse effects on your system.

Using the Sun-Compatible
Monitor

Starting the
Monitor
11

Starting the Monitor Chapter 3: Using the Sun-Compatible Monitor
Figure 3-1. Starting the Boot PROM Interface

Method Procedure

Performing a Power-Cycle and 1. If necessary, turn the power to the system unit off

Interrupting Power-Up Sequence and wait 10 seconds

2. Turn on the power to the display (if necessary)

3. Turn on the power to the system unit, and wait several

seconds

4. When the word Testing appears on the screen,

press (or the key for an ASCII terminal)

Aborting SunOS Operating System 1. Press (or the key for an ASCII terminal)

2. At > prompt, type n
3. At ok prompt type sync
4. Press again when you see the word rebooting

(or the key for an ASCII terminal)

4. At the ok prompt type old-mode to return to the >
prompt

Halting SunOS Operating System 1. Save and quit all open files

2. Quit all applications

3. In a shell window, become the system

 superuser and type: /etc/halt

L1-A Break

L1-A Break

L1-A

Break
12

Chapter 3: Using the Sun-Compatible Monitor Performing a Power Cycle
When your system becomes hung a power cycle is necessary to

return the system to normal operation.

To perform a power cycle:

1. Turn off the power to the system unit (use the main power

switch on the back of the system unit).

The following drawing shows the location of the power

switch on the SPARCstation 1. The location of the power

switch for other systems may be different.

2. Wait a minimum of 10 seconds.

3. Turn the power back on.

Caution: Always allow 10 seconds between turning off the

power and turning it back on again. This pause prevents

possible damage to power supply components in your system

unit.

Performing a Power
Cycle

O I

!

13

Performing a Power Cycle Chapter 3: Using the Sun-Compatible Monitor
The most common way to start the PROM interface is to

interrupt the power-up sequence. You can interrupt the power-

up sequence anytime you turn the system unit on, or when you

reset the system from the keyboard.

To interrupt the power-up sequence (assuming the system is
powered off) :

1. Turn on the power to the display.

2. Turn on the power to the system unit.

Locate the power toggle switch on the back of the system

unit. Press the side of the switch labeled 1.

3. After the word “Testing” appears on the display, press the

 keys simultaneously. Or, if your console device is a

terminal, press the key.

The power-up sequence halts and the system displays a

brief message and the > (boot) prompt.

Interrupting Power-Up
Sequence

L1-A

Break

Type b (boot), c (continue), or n (new command mode)
>

14

Chapter 3: Using the Sun-Compatible Monitor Halting the Operating System
To start the boot PROM interface when the SunOS Operating

System is running, you must first halt the execution of SunOS.

Halting SunOS should be done carefully. When you halt the

SunOS Operating System, the Monitor program starts

automatically.

When the system is running the SunOS Operating System you

should see a machine prompt in an open shell window that

looks something like this:

To halt the operating system and start the user interface:

1. Save and quit all open files. See the Sun System User’s Guide
for more information about ending a work session.

2. Quit all open applications.

3. Become superuser as described in the Sun System Network
Manager’s Guide, Chapter 2. Type /bin/su and press

.

4. Type /etc/halt and press .

The system displays system halt messages followed by the boot

prompt.

When the operating system appears to be running but the

system does not respond to the mouse and/or keyboard, the

system is hung. When you abort a hung system, the PROM

user interface automatically starts. If the following sequence

does not work (that is, if the system does not respond to the

abort attempt) perform a power cycle to return the system to

Halting the Operating
System

hostname%

Return

Return

hostname% /bin/su
Password:
hostname# /etc/halt
Syncing file systems . . . done
Halted

Type b (boot), c (continue), or n (new command mode)
>

Aborting a Hung
System
15

Aborting a Hung System Chapter 3: Using the Sun-Compatible Monitor
normal operation. If a power cycle does not restore normal

system function, call your field service representative for

further assistance.

To abort a hung system and start the PROM user interface:

1. Press .

2. Type n and press .

The system displays a help message and an ok prompt.

3. Type sync and press .

4. Press again when you see the word rebooting .

5. Type old-mode and press , to return to the >

prompt (if desired).

The sync command helps prevents the system from losing data

that was not preserved when the system hung.

Caution: When the operating system or any other standalone

program has already booted, it is preferable not to use to

halt the machine. Aborting program execution with may

cause damage to currently open data files.

On some keyboards,
appears on the front face of the

 key. On a system that
has a terminal as a console,
rather than a Sun keyboard and
bitmapped monitor, you must
press instead of to
obtain a boot prompt.

L1

Stop

Break L1-A

L1-A

Return

Return

L1-A

Return

Press
Type b (boot), c (continue) or n (new command mode)
> n
Type help for more information
ok sync
When you see the word rebooting, press again

ok old-mode
Type b (boot), c (continue) or n (new command mode)
>

L1-A

L1-A

! L1-A

L1-A
16

Chapter 3: Using the Sun-Compatible Monitor Compatible Monitor Functions
The boot PROM Sun-Compatible Monitor mode presents a

compatible interface to the most common PROM use, booting

the system. All functions available through this mode are also

available through the Forth Toolkit.

You may choose to disable Sun-Compatible Monitor mode

using NVRAM parameters. See Chapter 6 for information

about modifying NVRAM configuration parameters.

Three commands are supported by the Sun-Compatible

Monitor mode. These commands are b for booting the system,

c for continuing the execution of a halted program, and n for

entering the new command mode called the Forth Toolkit.

The c and n are single character commands only. However b
supports the standard booting command syntax.

Compatible
Monitor Functions
17

Compatible Monitor Functions Chapter 3: Using the Sun-Compatible Monitor
The boot command loads the SunOS Operating System or

another executable program into memory and executes that

program when the program load completes.

All booting operations function identically whether you are in

Sun-Compatible Monitor mode or in the Forth Toolkit. The

only difference is that you must type out the entire word “boot”

(with a following space if options are used) when you are in the

Toolkit.

To boot your system, enter a boot command. See the next

section "Boot Command Syntax" for the boot command format

and the options summary in Figure 3-2 for further details.

Syntax for both the > prompt and the Toolkit ok prompt is

shown in the examples below.

The following boot commands include boot commands

invoked from the Sun-Compatible Monitor prompt, >, and the

Forth Toolkit prompt, ok .

Examples of boot commands follow.

Booting From the >
Prompt

Sun Compatible Monitor, > PROM Toolkit, ok Description

b boot Boot system using defaults

b -as boot -as Boot sd0 with flags a (interactive

flag) and s (single-user operation)

b le() boot le() Boot vmunix from the network

b net boot net Boot vmunix from the network

b sd(0,0,2)mydiag boot sd(0,0,2)mydiag Boot mydiag from SCSI drive

partition 2
18

Chapter 3: Using the Sun-Compatible Monitor Compatible Monitor Functions
Note: Boot defaults may be changed using NVRAM

configuration parameters. The NVRAM defaults are only used

if the boot command has no arguments. See Chapter 6 for more

information about changing defaults.

The syntax of the boot command follows. Spaces and tabs

typed in the command line are ignored. All arguments shown

in italics are optional. When using command options, the

command word boot must be followed by a space.

> b [device (c,u,p) filename options]

ok boot [device (c,u,p) filename options]

Figure 3-2 shows a list of the boot commands and their syntax.

> b Boot system using defaults
ok boot

> b -as Boot sd0 with flags a (interactive
flag) and s

ok boot -as (single-user operation)

> b le() Boot vmunix from the network
> b net
ok boot net
ok boot le()

> b sd(0,0,2) mydiag Boot mydiag from SCSI drive
partition 2

ok boot sd(0,0,2)mydiag

Boot Command Syntax
19

Compatible Monitor Functions Chapter 3: Using the Sun-Compatible Monitor
Figure 3-2. Boot Command Options Summary

Option Description

device is one of: le X (c,u,p) LANCE Ethernet

sd X (c,u,p) SCSI Hard Disk

stX (c,u.p) SCSI Tape

fd X (c,u,p) 3 1/2" Floppy Disk Drive

X is the device number, such as le0 , sd0 , or fd0

c Controller Number, default value = 0

u Unit Number, default value = 0; when booting from a

SCSI disk the range may be from 0-3.

p Partition Number, default value = 0; when booting from

a SCSI disk the range may be from 0-7.

When using le , sd and fd as device identifiers, the

parentheses are required in the command line. Example:

ble() or ble(0,0,0) . The contents of the parentheses

depends on the specified device.

filename Default = vmunix

The name of the program to be booted, such as stand/diag or

vmunix . filename is relative to the root of the selected device and

partition (if specified). filename never begins with ’/’. If filename
is not given, the boot program uses the default file name vmunix .

options -a Prompts interactively for the device and name of the file

to boot.

-b Pass the -b flag through the kernel to init (8) to skip

execution of the /etc/rc.local script.

-h Halt after loading the program.

-s Pass the -s flag through the kernel to init (8) for single-

user operation.

-i initname
Pass the -i initname to the kernel to tell it to run initname
as the first program rather than the default /single/
init .
20

Chapter 3: Using the Sun-Compatible Monitor Compatible Monitor Functions
The c command is useful when you’ve halted the SunOS

Operating System or some other program. To resume execution

of a halted program enter:

Program execution resumes. Once execution has resumed, you

may wish to choose Redisplay All from the SunView menu

to refresh the display and remove any screen artifacts.

Note: From the ok prompt, the command go performs the

same function as typing c at the > prompt.

To enter boot PROM Forth Toolkit mode from the > prompt,

type:

The monitor enters the Forth Toolkit and displays the ok
prompt and help message.

Once you have entered the Toolkit all the functions available

from the boot prompt are also available from the ok prompt.

However, should you wish to exit the Toolkit and return to the

> prompt, enter:

Continuing a Halted
Program

Type b (boot), c (continue), or n (new command mode)
> c

Entering the Forth
Toolkit

Type b (boot), c (continue), or n (new command mode)
> n
Type help for more information
ok

Returning to the >
Prompt

ok
ok old-mode
Type b (boot), c (continue), or n (new command mode)
>

21

Compatible Monitor Functions Chapter 3: Using the Sun-Compatible Monitor
The Sun-Compatible Monitor supports a very abbreviated set of

functions. From the > prompt you can boot the system, enter

the Forth Toolkit or continue the execution of a halted program.

Once you have entered the Forth Toolkit, you can work closely

with your system’s hardware.

The remaining chapters describe using the Forth Toolkit. Even

if you are already familiar with the operation of the Forth

programming language, it is recommended that you read

Chapter 4 which describes how Forth is implemented in the

boot PROM.
22

4

This chapter introduces Forth as it is implemented in the open

boot PROM. Even if you are already familiar with the Forth

programming language, it is recommended that you read this

chapter because it contains useful information that relates

specifically to your system.

While it is impossible to provide a complete tutorial on the

Forth language here, this chapter covers enough of the basics to

enable you to use the Toolkit. To use this chapter to its fullest

advantage, work through the examples shown in the gray

screens. These examples will help you understand how the

interface operates.

For additional information, see “For Further Reference” at the

end of this chapter. In addition, Chapter 7 “More Forth Tools”

describes using many of the Toolkit’s advanced functions.

Note: As mentioned previously, it is possible to enter

commands at the ok prompt that cause the system to become

hung. If this happens, you may need to perform a power cycle

to return the system to normal operation.

This chapter assumes that you have read Chapter 3 and are

familiar with how to enter and leave the Forth Toolkit from the

Sun-Compatible Monitor.

Forth Toolkit Fundamentals
23

Forth Commands (Words) Chapter 4: Forth Toolkit Fundamentals
Forth has a very simple command structure. Forth commands,

also called Forth words, consist of any combination of printable

characters — for example, letters, digits, or punctuation marks.

All of the following are examples of legitimate words:

@ dump . 0< + test-memory

Words must always be separated by one or more spaces

(blanks) in order to be recognized. Press at the end of

any command line to execute the typed command(s). In all

examples shown, a at the end of the line is assumed.

Multiple words on a line are simply executed one at a time,

from left to right, in the order in which they were entered (from

left to right). For example:

is exactly equivalent to:

In this implementation of Forth, upper-case and lower-case

letters are equivalent. Therefore, testa , TESTA, and TesTa all

invoke the same command.

Commands that may generate large amounts of output, such as

dump or words , may be interrupted by pressing any key. At

that point, output is suspended and the following message

appears:

More [<space>,<cr>,q] ?

Press the space bar to continue, press to output one more

line and pause again, or type q to abort the command. When

you are generating more than one page of output, the system

will automatically enter this prompt after every page.

Forth Commands
(Words)

In this chapter, the terms word
and command are used
interchangeably. Return

Return

ok
ok testa testb testc
ok

ok
ok testa
ok testb
ok testc
ok

Return
24

Chapter 4: Forth Toolkit Fundamentals Getting Help
Whenever you see the ok prompt on the display, you can ask

the system for help by typing one of the help commands. For

example:

The help command displays instructions on how to use the

help system and lists the available help categories.

ok help category

This command shows the help messages for all commands

available in the selected category, or possibly a list of sub-

categories.

ok help name

This command shows the help for the named command.

Note: Because there are a very large number of command

words, help is available for the most frequently used

commands only.

Getting Help

ok help dump
 Category: Memory access
dump (addr length --) display memory at addr for length bytes
ok
ok
25

Numbers Chapter 4: Forth Toolkit Fundamentals
Numbers are entered simply by typing in the value, for

example, 55 or -123. Forth accepts only integer (whole)

numbers; fractional values such as 2/3 or 5.77 are not allowed.

Be sure to use one or more spaces to separate numbers from

words or from each other.

The Forth toolkit performs 32-bit integer arithmetic and all

numbers are 32-bit values unless otherwise specified. Because

hexadecimal (base 16) numbers are so commonly used, the

Forth Toolkit automatically interprets all numbers in

hexadecimal, not decimal. Therefore, adding 8 and 7 returns

the value f , not 15 . However, you can change the operating

number base.

To operate in decimal (base 10), type the following command:

To change back to hexadecimal (base 16) type:

To find out what number base is currently active, type:

See section “Selecting the Numeric Base” in Chapter 7 for more

information and additional commands regarding hexadecimal

versus decimal numeric conversion.

Numbers

ok decimal
ok

ok hex
ok

ok 10 .d
16
ok
26

Chapter 4: Forth Toolkit Fundamentals The Stack
The Forth stack is a last-in, first-out buffer used for temporarily

holding numeric information. Think of it as a stack of books;

the last one you put on the top is the first one you take off.

Understanding the stack is essential to using the Forth Toolkit.

To place a number on the stack, simply type its value.

The contents of the stack are normally invisible until needed.

However, properly visualizing the current stack contents is

important for achieving the desired result.

To show the stack contents with every ok prompt, type:

Remember, the topmost stack item is always shown on the right

side of the list.

Once invoked, showstack will remain in effect until a machine

reset takes place.

Nearly all words that require numeric parameters will fetch

those parameters from the top of the stack. Any values

returned are generally left on top of the stack, where they may

be viewed or consumed by another command.

For example, the Forth word “+” removes two numbers from

the stack, adds them together, and leaves the result on the stack.

The Stack

ok 44 The value 44 is now on top of the stack
ok 7 The value 7 is now on top, with 44 just underneath
ok

Showing the Stack
With showstack

ok showstack
44 7 ok 8
47 7 8 ok

Top of the Stack
27

Stack Diagram Chapter 4: Forth Toolkit Fundamentals
To add two numbers from the top of the stack, type the addition

operator “+” as shown below:

Once the two values are added together, the result is put onto

the top of the stack. The Forth word “. ” removes the top stack

item and displays that value on the screen. For example:

Because knowing the stack usage is vital to the proper operation

of all Forth words, there is an associated stack diagram in the

form (--) for every defined word. The stack diagram specifies

what happens to the stack with the execution of the command

word.

For example, the stack effect diagram for the “+ ” word is (

n1 n2 -- n3). The stack effect diagram for “. ” is (n --).

Any entries before the “ -- ” show stack items that are consumed,

that is removed from the stack and used by the operation of that

word. Any entries after the “ -- ” show stack items that are left

on top of the stack after the word is finished executing.

Therefore, “+ ” removes two numbers and then leaves the sum

on the stack. “. ” simply removes one number and displays it.

Any word that has no effect on the contents of the stack, such as

showstack or decimal , will have a (--) stack effect diagram.

These words may be executed at any time, with no effect on the

contents of the stack.

44 7 8 ok +
44 f ok +
53 ok Remember, all arithmetic is in hex

53 ok 12
53 12 ok .
12
53 ok .
53
ok The stack is now empty
ok 3 5 + .
8
ok The stack is now empty

Stack Diagram
28

Chapter 4: Forth Toolkit Fundamentals Colon Definitions
Occasionally, a word will require another word or other text

immediately following, such as the see word, used in the form

see anyword. see has no stack effect. The stack diagram would

be:

see anyword (--)

Forth provides an easy means to create custom definitions for

new command words. These are called colon definitions, named

after the “: ” word used to create them. For example, suppose

you wish to create a new word add4 , that will add any four

numbers together and display the result. The definition could

be created as follows:

The “; ” (semi-colon) marks the end of the definition that

defines add4 to have the behavior (+ + + .). The three pluses

reduce the four stack items to a single sum on the stack, and

then the “. ” removes and displays that result.

Definitions are stored in local memory, which means they are

forgotten if a machine reset takes place. To keep useful

definitions, either jot them down (for short ones), or create a

text file (using your favorite text editor under SunOS)

containing the definitions. This text file may then be

downloaded whenever it is needed. See “Downloading Files”

in Chapter 5 for more information.

When you type a definition in the Toolkit, the ok prompt

becomes a “] ” (right square bracket) prompt after you type the

Colon Definitions

ok
ok : add4 + + + . ;
ok

ok
ok 1 2 3 3 + + + .
9
ok 1 2 3 3 add4
9
ok
29

Colon Definitions Chapter 4: Forth Toolkit Fundamentals
“: ” (colon) and before you type the “;” (semi-colon). For

example, you could type the definition for add4 as shown here:

Every definition you create (in a text file) should have a stack

effect diagram shown with that definition, even if the stack

effect is nil (--). This is vital because the stack diagram tells

you how that word is properly used. It is also recommended

that you use generous stack comments within the middle of

complex definitions, to help trace the flow of execution.

For example, when creating add4 in a text file, it might be

defined as:

 or

Note: The “(” open parenthesis is a Forth word meaning to

ignore the following text, up to the closing parenthesis “)”.

And, like any other Forth word, the open parenthesis must have

one or more following spaces.

ok
ok : add4
] + + +
] .
] ;
ok

: add4 (n1 n2 n3 n4 --) + + + . ;

: add4 (n1 n2 n3 n4 --)
 + + + (sum)
 .
;

30

Chapter 4: Forth Toolkit Fundamentals Keyboard Editor
An EMACS-style (one of the text editors available on Sun

systems) keyboard line editor and history mechanism is also

provided with the Forth Toolkit. This powerful tool enables

you to re-execute previous commands without retyping them,

and allows editing of the current command line to fix typing

errors or to edit previous commands.

The line editing commands listed in Figure 4-1 are available for

your use when you are typing commands to the Forth Toolkit

ok prompt.

These commands are control and escape key combinations.

To execute a control key combination:

1. Press and hold down the key.

2. Type the desired character key.

To execute an escape key combination:

1. Press and release the key.

2. Type the desired character key.

As you review the list of commands, notice that there are

commands for the following:

Moving forward and backward on the command line

Erasing characters, words, all or a portion of the command

line

Recalling the most recently typed command lines;

repeatedly pressing will recall previous

commands (at least 8 are remembered).

To insert text at the cursor, simply type normally. Pressing

sends the line (as it currently appears) out for execution.

While a small effort is required to learn this function, it will

save you time and effort every time you use the Forth Toolkit.

Keyboard Editor

Using Control Key
Combinations

Control

Using Escape Key
Combinations

Esc

❏

❏

❏

Control-p

Return
31

For Further Reference Chapter 4: Forth Toolkit Fundamentals
Figure 4-1. Line Editor Commands

For further reading, refer to one or more of the following

reference materials:

Mastering Forth
Anita Anderson and Martin Tracy

Brady Communication Company, Inc.

1230 Avenue of the Americas

New York, New York

Mastering Forth is particularly useful because the Forth dialect it

describes quite closely resembles the implementation of Forth

in the boot PROM.

Starting Forth
Leo Brodie/Forth, Inc.

Prentice-Hall Software Series

Englewood Cliffs, New Jersey 07632

Command Description

Backward one character

Backward one word

Forward one character

Forward one word

Beginning of line

End of line

Erase previous character (also or)

Erase previous portion of word (also)

Erase this character

Erase this portion of word, from here to end of word

Erase forward, from here to end of line

Erase entire line

Retype line

Quote next character (to type a control-character)

Recall previous command line

Recall subsequent command line

Control-b

Esc b

Control-f

Esc f

Control-a

Control-e

Control-h Del Back Space

Esc h Control-w

Control-d

Esc d

Control-k

Control-u

Control-l

Control-q

Control-p

Control-n

For Further
Reference
32

Chapter 4: Forth Toolkit Fundamentals For Further Reference
Starting Forth is a popular and well-written book. The second

edition describes the current Forth standard dialect, Forth 83.

Note: There are several differences between the versions of

Forth as described in the reference materials and the version

described in this guide. Specifically, the boot PROM Forth

Toolkit uses 32-bit numbers (not 16-bit), and the editors,

described in these books, do not apply.

This chapter presented a brief overview of how to use the Forth

Toolkit interface. The next three chapters describe many useful

Forth commands. Chapter 5 contains information about how to

perform specific tasks using the Toolkit. Chapter 6 describes

working with the NVRAM configuration parameters. Chapter

7 describes how you can use advanced Forth functions for

writing programs that interact with your system’s hardware.
33

For Further Reference Chapter 4: Forth Toolkit Fundamentals
34

5

This chapter describes how to use the open boot PROM’s Forth

Toolkit. The functions described in this chapter include how to

perform the following tasks:

Resetting the system

Running the diagnostics

Displaying system information

Booting from the ok prompt

Redirecting input and output

Setting up a tip window

Downloading files

Ejecting a floppy diskette

Preserving data after a system crash

The procedures in this chapter assume that you have started the

Sun-Compatible Monitor and have entered the Forth Toolkit.

This chapter also assumes that you have read Chapter 4 and are

generally familiar with how the Forth Toolkit interface

operates.

Using the Forth Toolkit

❏

❏

❏

❏

❏

❏

❏

❏

❏

35

Resetting the System Chapter 5: Using the Forth Toolkit
Occasionally you will find it necessary to reset the system. The

reset command, listed in Figure 5-1, resets the system without

actually having to turn the power off and on.

To reset the system, type:

The power-on self-test and initialization procedure begins

immediately. This system reset is very similar to a power cycle.

All Forth definitions you entered are forgotten.

Figure 5-1. System Resetting Command Summary

Resetting the
System

ok reset

Command Stack Diagram Description

reset (--) Resets the entire system (very similar to

power-cycle)
36

Chapter 5: Using the Forth Toolkit Diagnostic Routines
Several diagnostic routines are available through the Toolkit.

These on-board tests allow you to test the control registers, the

network controller, the floppy disk system, memory, the cache,

and the system clock. See the command summary in Figure 5-

2 for a list of the available diagnostic tests.

Figure 5-2. Diagnostic Routines Command Summary

Control registers reside in hardware on the main-logic board on

the SPARCstation 1. The registers that are tested include: the

context register, the synchronous error register, the

synchronous error virtual address register, the asynchronous

error register, the asynchronous error virtual address register

and the enable register. Other machines may have a different

set of control registers.

To test control registers, type:

If the system fails this test, a message appears on the screen. If

the system passes this test the system displays the ok prompt.

Diagnostic
Routines

Command Stack Diagram Description

probe-scsi (--) Determine the attached SCSI devices

test-control-regs (--) Test registers (context, sync, sync vert, async,

async virt, enable)

test-net (--) Test Lance Ethernet controller with internal &

external loopback

test-cache (--) Test cache data and tag fields

test-memory (--) Test main memory (number of megabytes

indicated in NVRAM configuration parameter

selftest-#megs)

test-floppy (--) Test the floppy drive

watch-clock (--) Test the clock function

watch-net (--) Watch the Ethernet for valid packets

Testing Control Registers

ok test-control-regs
ok
37

Diagnostic Routines Chapter 5: Using the Forth Toolkit
To test the on-board Ethernet controller, type:

The system responds with a testing message that indicates the

result of the test.

The diskette drive test determines whether the diskette drive is

functioning properly. A formatted disk must be inserted into

the diskette drive for this test to complete successfully.

To test the diskette drive system, type:

If the test fails, you will see an error message.

When you use the memory testing routine, the system will test

the number of megabytes specified in NVRAM parameter

selftest-#megs . One megabyte of memory is tested as the

default. When the diagnostic switch NVRAM parameter,

diag-switch? is enabled, all memory is tested.

To test memory, type:

If the system fails this test you will see an error message,

otherwise the ok prompt returns to the display.

Testing the Ethernet
Controller

ok test-net
Internal Loopback test - (result)
External Loopback test - (result)
ok

Testing the Diskette
Drive System

ok test-floppy
Testing the floppy disk system. A formatted
disk should be in the drive.
It appears to be okay.
ok

Testing Memory

ok test-memory There will be a delay while the PROM tests the
system before the prompt returns to the display

ok
38

Chapter 5: Using the Forth Toolkit Diagnostic Routines
The cache test routine exercises the cache buffers.

To test the cache, type:

If the system fails this test you will see an error message,

otherwise the ok prompt returns to the display.

To test the clock function, type:

The system responds by incrementing a number once a second.

Press any key to return to the ok prompt.

Testing Cache

ok test-cache There will be a delay while the PROM tests the
system before the prompt returns to the display

ok

Testing the Clock

ok watch-clock
Watching the ’seconds’ register of the real time
clock chip.
It should be ticking once a second.
Type any key to stop.
1 Press any key to stop test
ok
39

Displaying System Information Chapter 5: Using the Forth Toolkit
The Toolkit provides several commands you can use to display

pertinent system information. These commands, listed in

Figure 5-3, allow you to display the system banner, the Ethernet

address for the Ethernet controller, the contents of the

IDPROM, and the version number of the PROM. The IDPROM

contains information specific to each individual machine,

including the serial number, date, and Ethernet address

assigned to the machine.

Figure 5-3. System Information Command Summary

The boot command loads the SunOS Operating System kernel

or another executable program into memory and executes that

program when the program load completes.

All booting operations function identically whether you are in

the Sun-Compatible Monitor or in the Forth Toolkit. The only

difference is that you must type out the entire word boot
(followed by a space when using any command options) when

you are in the Toolkit.

To boot your system from the ok prompt, type the boot
command using the standard boot syntax. See Chapter 3 for

more information about booting.

Normally, your system uses a standard Sun keyboard for all

user input, and a frame buffer with a connected display screen

for most display output. It is possible to redirect the input or

output or both to either one of the system’s serial ports. This

might be useful, for example, when debugging a frame buffer.

See your system’s Installation Guide for information about

connecting a terminal to the system unit.

Displaying System
Information

Command Stack Diagram Description

banner (--) Displays power-on banner

.enet-addr (--) Displays the current Ethernet address

.idprom (--) Displays IDPROM contents, formatted

.version (--) Display the version and date of boot PROM

Booting the System
From the Toolkit
Prompt

Input, Output, and
Display Modes
40

Chapter 5: Using the Forth Toolkit Input, Output, and Display Modes
The commands input and output change the current sources

of input and output. The change takes place immediately

(without a system reset). The input command must be

preceded by one of the following: keyboard , ttya , or ttyb .

For example, if input is currently accepted from the keyboard,

and you wish to make a change so that input is accepted from a

terminal connected to the serial port ttya, type:

At this point, the Sun keyboard will be non-functional (except

for), but any text entered from the terminal connected to

ttya will be processed as input. All commands will be executed

as usual. To resume using the keyboard as the input device,

type (from the terminal keyboard):

Similarly, the output command must be preceded by one of

the following: screen , ttya , or ttyb .

If you wish to send output to ttya instead of the normal display

screen, type:

Redirecting Input and
Output

ok ttya input
ok

L1-A

ok keyboard input
ok

ok ttya output
41

Input, Output, and Display Modes Chapter 5: Using the Forth Toolkit
The screen will not show the answering ok prompt, but the

terminal connected to ttya will show the ok prompt, and all

further output as well.

The command io is used in the same way, except that it

changes both the input and output to the specified place.

The commands input , output , and io have a temporary

effect only. A system reset or power cycle causes the input and

output sources to revert back to the default settings specified in

the configuration parameters. The NVRAM parameters

input-device and output-device control the default

input and output sources, and may be changed if desired. See

“Changing a Parameter’s Value” in Chapter 6 for more

information about changing defaults.

The standard baud rate and digital signal transmission settings

for both ttya and ttyb are as follows: 9600 baud, 8 data bits, 1

stop bit, no parity, and no handshaking. These settings may be

changed if desired, using the ttya-mode and ttyb-mode
NVRAM parameters.

There is also an emergency procedure, in case a specified input

source is unavailable. For example, suppose you typed ttya
io and then discovered that your terminal connected to ttya has

the wrong baud rate and can not be easily changed. Or worse,

suppose you set the NVRAM parameters incorrectly, so that

even a power cycle leaves you without a usable source of input.

Even when the Sun keyboard is inactive (because the serial port

is being used for input), the key combination from the Sun

keyboard will still be detected. When is pressed, the

system resets the input source back from the current setting and

accepts input to the keyboard.

Note: does not change the output source. If output is

incorrect, then you may also need to restore the output to the

screen connection as well by typing screen output and press

. Of course, you won’t be able to see any characters being

echoed as you type. And if you make a mistake, you won’t be

able to see the error message. If this doesn’t work correctly,

maybe you need to type n and press to enter the Toolkit,

and then type screen output and press .

Note that either screen io or
keyboard io is equivalent to
keyboard input plus screen
output .

Emergency Procedure

L1-A

L1-A

L1-A

Return

Return

Return
42

Chapter 5: Using the Forth Toolkit Setting Up a tip Connection
Similarly, a break sent over a serial line will grab the input

source to that serial line.

Figure 5-4 shows a summary of the commands you can use to

redirect input and output.

Figure 5-4. Input, Output, and Display Commands

You can use the ttya or ttyb ports on your SPARC system to

connect to another Sun Workstation (either the same type of

SPARC system or a different type of Sun Workstation). This

connection allows you to use a shell window on the Sun

Workstation as a terminal to your SPARC system being tested.

See the on-line tip man-page documentation for detailed

information about terminal connection to a remote host.

The tip method is highly recommended because it allows you

to use the SunOS Operating System windowing and operating

system features to assist you in your interactions with the boot

PROM. The SunOS Operating System must be loaded. A

communications program or another non-Sun computer can be

used in the same way, if the program can keep up with the

output baud rate used by the PROM tty port.

A simple setup procedure follows.

Command Stack Diagram Description

input (source --) Select source for subsequent input (ttya, ttyb, or

keyboard)

output (source --) Select source for subsequent output (ttya, ttyb,

or screen)

io (source --) Select source for subsequent input and output

 (from keyboard) (--) Redirect input to come from keyboard

(from serial port) (--) Redirect input to come from serial port

L1-A

Break

Setting Up a tip

Connection
43

Setting Up a tip Connection Chapter 5: Using the Forth Toolkit
To set up a tip connection:

1. Connect the Sun Workstation (ttyb serial port) to your

SPARC system ttya serial port using a serial connection

cable. This connection should be made with a 3-wire Null

Modem Cable. Refer to your Installation Guide for

specifications on null modem cables.

2. At the Sun Workstation, add the following lines to the file /
etc/remote :

3. In a shell window on the Sun Workstation, type tip
hardwire and press .

The system will reply, connected .

The shell window is now a tip window directed to the Sun

Workstation ttyb.

4. At your SPARC system, start the Sun-Compatible Monitor

and enter the Toolkit. You should see the ok prompt.

Note: When you do not have a video monitor attached to

your SPARC system unit, connect the SPARC system unit

to the Sun Workstation and turn the power on to your

SPARC system. Wait 10 or 15 seconds and press to

interrupt the power-up sequence and start the Monitor.

Type n and press . Unless the system is totally

inoperable, the Toolkit is open and you may continue with

the next step in this procedure.

hardwire:\
:dv=/dev/ttyb:br#9600:el=^C^S^Q^U^D:ie=%$:oe=^D:

Return

hostname% tip hardwire
connected

L1-A

Return
44

Chapter 5: Using the Forth Toolkit Sending a “Break”
5. To redirect the standard input and output to ttya, if needed,

type ttya io and press .

6. Press on the Sun workstation keyboard. The ok
prompt should appear in the tip window.

Special commands are sent from the tip window to your

system using the tilde “~” character. When you wish to send

a break to your system from the tip window, use the ~#
command. This commands acts similarly to an from your

system’s keyboard. Using ~# will interrupt any activity in

progress, and cause the subsequent input to come from the tip
window.

Note: When entering commands in the tip window, the tilde

character must be the first character entered on the line. When

in doubt, press first then ~#.

Caution: Do not type an from a Sun Workstation being

used as a tip window to your SPARC system. Doing so will

abort the SunOS Operating System on the Sun Workstation. If

you forget and accidentally do so, you can recover by

immediately typing the letter c then pressing .

When you’re finished using the tip window, you need to end

the tip session and exit the tip window.

Return

ok ttya io
No echoed response

Return

Sending a “Break”

L1-A

Return

!
L1-A

Return

Ending the tip Session
45

Downloading Files Chapter 5: Using the Forth Toolkit
To end the tip session:

1. Redirect the input and output to the screen and keyboard, if

needed.

2. In the tip window, type the ~. command .

3. The tip window session is closed and you should see the

host prompt.

Following are common problems with tip :

1. The lock directory is missing or incorrect. There must be a

directory /usr/spool/uucp . The owner must be uucp
and the group must be staff . The mode is

drwxr-sr-x .

2. ttyb must be enabled for logins. The status field for ttyb
(or the serial port you are using) must be set to off in /
etc/ttytab . Be sure to execute kill -HUP 1 (see init(8))
as root if you have to change this entry.

3. /dev/ttyb is inaccessible. Sometimes, a program will

have changed the protection of /dev/ttyb (or the serial

port you are using) so that it is no longer accessible. Make

sure that /dev/ttyb has the mode set to crw-rw-rw-.

4. The serial line is in tandem mode. If the tip connection is in

tandem mode, the operating system will sometimes send

XON (∧S) characters, particularly when programs in other

windows are generating lots of output. The XON characters

will be detected by the Forth key? word, and can cause

confusion. The solution is to turn off tandem mode with the

tip command ~s !tandem .

File downloading commands let you download and interpret a

Forth text file over a serial connection made between your

ok
ok ~.

hostname%

Common Problems
With tip

Downloading Files
46

Chapter 5: Using the Forth Toolkit Downloading Files
SPARC system and a Sun Workstation (or another SPARC

system the same type as your SPARC system). You may also

download Forth or binary files over the Ethernet connection, or

from a locally-attached diskette or the SCSI disk drive.

To download a Forth text file over a serial connection, you

must have a Sun Workstation connected to a serial port on your

SPARC system. The Sun Workstation must have a tip window

connection set up. The following procedure assumes that you

have made the serial connection described in “Setting up a tip
Connection” earlier in this chapter and that you have a tip
window open on the Sun Workstation. Input and output must

be directed to that connection.

To download a Forth file from a Sun Workstation to your
SPARC system:

1. In the Sun Workstation tip window, type dl and press

.

2. Type ~C and cat myfile.fth.

Note: The C must be capitalized.

3. Wait several seconds for download to complete.

4. Type .

Downloading a File
Over a Serial Line

Return

Control-d

ok dl
~CLocal command? cat myfile.fth

away for 2 seconds
!
^D
ok
47

Downloading Files Chapter 5: Using the Forth Toolkit
5. If the requested file is not found, the following message is

displayed.

6. Type to return to the ok prompt.

After the downloading is complete, the contents of the Forth

text file are automatically interpreted. Files downloaded in this

manner should be no larger than 32K. If you need to interpret

a larger file, break it into pieces and download each piece with

a separate dl command.

You may download any file over Ethernet with the dload
command. dload requires that you specify the address into

which you want to download the file. It is generally best to

direct the file into location 4000, a “known and well behaved

address.” In the following procedure example, the address

4000 is used.

For binary files, dload is superior to other downloading

methods because the symbol table (useful in debugging) is also

downloaded automatically.

dload uses the tftp protocol to transfer a file over the

network. You must have permission for tftp to access files on

your server. Ask your system administrator to remove the #
(pound sign) at the beginning of the line “tftp... ” in the

server’s file /etc/inetd.conf , and to put in a pound sign

before the -s flag (if present). This allows tftp access to any

file.

ok dl
~CLocal command? cat myfile.fth
myfile.fth: No such file or directory
away for 2 seconds
!
^D
ok

Control-d

Downloading a File
Over Ethernet
48

Chapter 5: Using the Forth Toolkit Downloading Files
To download and execute a file at address 4000:

1. At the ok prompt type 4000 dload filename.ext and press

.

2. If the downloaded file is a binary file, then go will execute

that program.

3. If the downloaded file contains Forth text beginning with a

backslash and a space (\) then the word ?go will

interpret the file correctly.

An alternative to ?go would be to use eval as in:

4000 file-size @ eval . See the section "Interpreting

Source Code" in Chapter 7 for more information.

Note: To download a Forth or binary file from a floppy disk or

from the hard disk, use the boot command with the -h flag .

This leave the file at location 4000, just like the dload example

shown above. You may then use the go command (for a binary

file), or the ?go command (for a Forth file) as desired. In order

for this method to work, the file must begin with an a.out
header.

Figure 5-5 is a summary of file downloading commands.

Return

Space

ok 4000 dload filename.ext
ok ?go
ok
49

Ejecting the Floppy Diskette Chapter 5: Using the Forth Toolkit
Figure 5-5. File Downloading Command Summary

Your SPARC system may have two types of locally-attached

disk drives: a diskette drive and one or more hard disks. Two

basic commands provide disk drive control.

The eject-floppy command causes the floppy diskette to be

ejected from the diskette drive. If this command fails, you may

insert a paper clip into the little hole on the drive and physically

eject the diskette.

The sync command forces any information on its way to the

hard disk to be written out immediately. This is useful if the

SunOS Operating System has crashed, or has been interrupted

without preserving all data first.

The sync command actually returns control to the SunOS

Operating System, which then performs the data saving

operations. After the disk data has been sync ed, the SunOS

Operating System begins to save a core image of the operating

system. This core dumping procedure is preceeded by the

following message:

Command Stack Diagram Description

boot [specifiers] -h (--) Download file from specified source

dl (--) Download a Forth file over serial line with "tip"

and interpret with:

 ~C cat { filename.fth}

^D

dload filename (addr --) Load the specified file over Ethernet, at the

given address

go (--) Begin execution of a previously loaded program

or continue execution of an interrupted

program

?go (--) Interpret downloaded Forth source file. (The file

must begin with: \)Space

Ejecting the Floppy
Diskette

Preserving Data
After a System
Crash
50

Chapter 5: Using the Forth Toolkit Preserving Data After a System Crash
If you have no need for this core dump, you can interrupt the

operation with or .

 Figure 5-6 is a summary of the disk control commands.

Figure 5-6. Disk Control Command Summary

This chapter described some of the fundamental tasks you may

need to perform using the boot PROM Toolkit. Chapter 6

describes the special commands you can use to view and

change system configuration parameters. And, if you wish to

use the Forth Toolkit to its fullest capacity, turn to Chapter 7 for

a more in-depth description of the PROM’s Forth capabilities.

dumping to vp xxxxxxxx offset xxxxxx

L1-A Break

Command Stack Diagram Description

eject-floppy (--) Ejects the diskette from the floppy drive.

sync (--) Call SunOS Operating System to write any

pending information to the hard disk. Also

boots after syncing file systems.
51

Preserving Data After a System Crash Chapter 5: Using the Forth Toolkit
52

6

The system configuration parameters are stored in the system

NVRAM. These parameters determine the basic start-up

machine configuration and related communication

characteristics. This chapter describes how to access and

change these parameters.

The procedures contained in this chapter assume that you have

started the Monitor, entered the Forth Toolkit mode and the ok
prompt is displayed on the screen. See Chapter 3 for

information about entering the Forth Toolkit.

NVRAM configuration parameters may be viewed and

changed using the Toolkit commands listed in Figure 6-1.

Figure 6-1. Configuration Parameter Commands

 Using Configuration
Parameters

Command Description

printenv Displays all current parameters and current default values (numbers

are shown as decimal values)

setenv parameter value Sets the parameter to the given decimal value (Changes are

permanent but usually only take effect after a reset.)

set-default parameter Resets the value of the named parameter to the factory default

set-defaults Resets all parameter values to the factory defaults

show parameter Displays the current value of the named parameter
53

Displaying Parameters Chapter 6: Using Configuration Parameters
 To display a list of the current parameter settings, type:

The system responds by displaying a formatted list of the

current parameter settings similar to the list shown in Figure 6-

2. For a reference list of parameters with descriptions, see

Appendix B.

Figure 6-2. Typical Configuration Display

Displaying
Parameters

ok printenv

Parameter Name Value Default Value

sunmon-compat? true true
oem-logo
oem-logo? false false
oem-banner
oem-banner? false false
ttyb-mode 9600,8,n,1,- 9600,8,n,1,-
ttya-mode 9600,8,n,1,- 9600,8,n,1,-
ttyb-ignore-cd true true
ttyb-rts-dtr-off false false
ttya-ignore-cd true true
ttya-rts-dtr-off false false
sbus-probe-list 0123 0123
fcode-debug? false false
screen-#columns 80 (decimal value) 80
screen-#rows 34 (decimal value) 34
boot-from-diag le()vmunix le()vmunix
boot-from vmunix vmunix
auto-boot? true true
input-device keyboard keyboard
output-device screen screen
sd-targets 31204567 31204567
st-targets 45670123 45670123
keyboard-click? false false
scsi-initiator-id 7 7
hardware-revision VersionNumber1
last-hardware-update 30MAR89
watchdog-reboot? false false
selftest-#megs 1 1
testarea 0 0
mfg-switch? false false
diag-switch? true true* (see following

note)
54

Chapter 6: Using Configuration Parameters Changing a Parameter’s Value
Note: The default value of diag-switch? is false in one early

version of the boot PROM. To determine the version of the boot

PROM, enter:

Use the setenv command to change a parameter setting. The

setenv command has the following format:

setenv parametername value

where

parametername is one of the listed parameters.

value is a numeric value or text string appropriate to the

named parameter.

To change the setting of the auto-boot? parameter from
true to false, enter:

This command sets the auto-boot? parameter flag to false.

This means that the next time the system is powered on or reset

the auto-boot feature is turned off. The system will not attempt

to boot the SunOS Operating System after self-tests and

initialization completes.

You can reset one or all of the parameters back to the original

defaults using the set-default and set-
defaults commands. These commands have the following

format:

ok .version
ok

Changing a
Parameter’s Value

ok setenv auto-boot? false
ok

Resetting Default
Values
55

Resetting Default Values Chapter 6: Using Configuration Parameters
set-default parametername

set-defaults

where

parametername is one of the listed parameters.

To reset the auto-boot? parameter to its original default
setting (true), type:

To reset all the parameters to the default settings, type:

Once the default for a parameter is changed or reset, a system

reset is usually required for the parameter setting to actually

take effect. A system reset (which is very similar to a power

cycle) does not necessarily include booting depending how the

configuration parameters are specified. The parameters that

relate to system booting require a system boot for the parameter

to take effect. You can use the reset command to reset the

system when you’ve changed a parameter.

ok set-default auto-boot?
ok

ok set-defaults
ok
56

Chapter 6: Using Configuration Parameters Security
The security feature of the boot PROM is available on version

1.1 as well as later boot PROM versions. Setting the

security-mode parameter to full or command security

restricts the set of actions that you are allowed to perform thus

making it more difficult for individuals to break into your

computer network.

There are three security modes:

1. No security

2. Command security

3. Full security

With no security, any command may be executed at the boot

prompt, >, with no password required. Command security is

the next level of security and full security is the most secure.

With both commandand full security, passwords are required

to execute certain commands at the boot prompt, >.

A password is never required from the ok prompt (regardless

of security mode). However, a password is required to get to

the ok prompt in either command or full security mode.

With no security (default), no password is required for any

command at the boot prompt, >. Anyone can execute the three

commands at the boot prompt, > , without a password:

b (boot)

n (new)

c (continue)

If you previously set the security to commandor full security

and want to set the system with no security, enter the following:

The next time the system checks the boot PROM’s security, it

will determine that no security (security-mode none) has

been set for the superuser. It is also possible to change the

Security

No Security

❏

❏

❏

ok setenv security-mode none
57

Security Chapter 6: Using Configuration Parameters
PROM security mode using the /etc/eeprom SunOS

Operating System command.

With the security set to command mode, a password is not

required if you type the b command at the boot prompt, >.

However, if you follow the b command with a parameter, a

password is required.

To execute the n command from the boot prompt, >, a password

is required. The c command never asks for a password.

Examples follow:

To set the security password and command security, enter the

following at the ok prompt:

The security password you assign follows the same rules as the

root password (a combination of 6 to 8 letters and numbers).

The security password can be the same as the root password

or you can assign a security password which is different from

the root password.

Caution: The security password is important to remember. If

you forget your security password, your system will be

unbootable and you will need to call Sun’s customer support

service to make your machine bootable again.

Command Security

> b (no password required)

> c (no password required)

> b filename (password required)

PROM Password: (password is not echoed as it is typed

> n (password required)

PROM Password: (password is not echoed as it is typed

ok setenv security-password passwd
ok setenv security-mode command
ok old-mode

!

58

Chapter 6: Using Configuration Parameters Security
It is not necessary to reset the system; the security feature takes

effect as soon as the Sun-Compatible mode (> prompt) is

entered.

Note: After setting the security password in this manner, it is a

good idea to do something to remove the password from the

screen, lest someone see it. Press the key several times

to remove the password from the screen.

If you enter an incorrect security password, there will be

approximately a 10 second delay before the next boot prompt,

>, appears. The number of times that an incorrect security

password is typed is stored in the

security-#badlogins parameter. This parameter is a 32-bit

signed number (680 years worth of attempts at 10 seconds per

attempt). This parameter can be set to 0 with the setenv
command. Its value can be displayed with the printenv
command. An example of setting the number of badlogins to 0

follows:

Note: If you enter the boot command in command security

mode, the PROM will revert to the > prompt the next time that

the PROM command interpreter is entered.

The full security mode is the most restrictive. With the

security set to full mode, a password is required any time you

type the b command at the boot prompt, > (either b alone or b
followed by a parameter).

Return

ok setenv security-#badlogins 0

Full Security
59

Security Chapter 6: Using Configuration Parameters
To execute the n command from the boot prompt, >, a password

is required. The c command never asks for a password.

Examples follow:

To set the security password and full security, enter the

following at the ok prompt:

The security password you assign follows the same rules as the

root password (a combination of 6 to 8 letters and numbers).

The security password can be the same as the root password

or you can assign a security password which is different from

the root password.

Caution: The security password is important to remember. If

you forget your security password, your system will be

unbootable and you will need to call Sun’s customer support

service to make your machine bootable again.

It is not necessary to reset the system; the security feature takes

effect as soon as the Sun-Compatible mode (> prompt) is

entered.

> c (no password required)

> b (password required)

PROM Password: (password is not echoed as it is typed

> b filename (password required)

PROM Password: (password is not echoed as it is typed

> n (password required)

PROM Password: (password is not echoed as it is typed

ok setenv security-password passwd
ok setenv security-mode full
ok old-mode

!

60

Chapter 6: Using Configuration Parameters Changing the Power-on Banner
Note: After setting the security password in this manner, it is a

good idea to do something to remove the password from the

screen, lest someone see it. Press the key several times

to remove the password from the screen.

If you enter an incorrect security password, there will be

approximately a 10 second delay before the next boot prompt,

>, appears. The number of times that an incorrect security

password is typed is stored in the

security-#badlogins parameter. This parameter is a 32-bit

signed number (680 years worth of attempts at 10 seconds per

attempt). This parameter can be set to 0 with the setenv
command. Its value can be displayed with the printenv
command. An example of setting the number of badlogins to 0

follows:

Note: If you enter the boot command in full security mode, the

PROM will revert to the > prompt the next time that the PROM

command interpreter is entered.

You can use the banner command to view the power-on

banner. The configuration parameters that control the power-

on system banner are listed in Figure 6-3.

 Figure 6-3. Banner Control Parameters

Return

ok setenv security-#badlogins 0

Changing the
Power-On Banner

oem-banner? False When true, the default Sun banner message displayed during

system power up is replaced with whatever text string is present in

the oem-banner parameter text field

oem-logo? False When true, the data array specified in the oem-logo field is

substituted for the Sun logo in the power-on banner

oem-banner Empty Custom banner (enabled by oem-banner? true)

oem-logo Empty Byte array custom logo (enabled by oem-logo? true)
61

Changing the Power-on Banner Chapter 6: Using Configuration Parameters
To display the system power-on banner, enter:

The PROM displays the system banner. The following banner

is the SPARCstation 1 banner. The banner for your SPARC

system may be different.

The banner consists of two parts, the text field and the logo.

(Over serial ports, only the banner is displayed.) You can

replace the existing text field with a custom text message using

the oem-banner and oem-banner? configuration

parameters.

To insert a custom text field in the power-on banner, enter:

The system displays the banner with your new message.

The graphic logo must be handled a somewhat differently,

however. The oem-logo field is a 512-byte array, containing a

total of 4096 bits arranged in a 64 x 64 array. Each bit controls

one pixel. The most significant bit (MSB) of the first byte

ok banner

SPARCstation 1: Type 4 Keyboard
ROM Rev. 1.0, 8MB memory installed, Serial # 312
Ethernet Address 8:0:20:6:5:16 , Host
ID:51000174

ok setenv oem-banner Hello Mom and Dad
ok setenv oem-banner? true
ok banner

Hello Mom and Dad
62

Chapter 6: Using Configuration Parameters Input and Output Control
controls the upper-left corner pixel. The next bit controls the

next pixel to the right and so on.

To create a new logo, you must first create a Forth array

containing the correct data and then copy this array into the

oem-logo field. For the following example, the array is created

using Forth Toolkit commands. This command could also be

done under SunOS Operating System using the /etc/eeprom
command. This array is then copied using the to command

which is an NVRAM primitive. The following example fills the

top half of the oem-logo field with an ascending pattern, and

leaves the bottom half unchanged.

The system displays the power-on banner with the new logo

array.

To restore the original Sun power-on banner, set the oem-
logo? and oem-banner? parameters to false .

The configuration parameters related to the control of system

input and output are listed in Figure 6-4. You can use these

parameters to assign the power-on defaults for input and

ok : fillit (--) d# 256 0 do i c, loop ;
ok create logoarray d# 512 allot
ok fillit
ok logoarray d# 256 to oem-logo
ok setenv oem-logo? true
ok banner

Hello Mom and Dad

New Logo Ar-

ray display

ok
ok setenv oem-logo? false
ok setenv oem-banner? false
ok

Input and Output
Control
63

Input and Output Control Chapter 6: Using Configuration Parameters
output and to adjust the communication characteristics of the

ttya and ttyb serial ports. These values do not take effect until

the next system reset.

Figure 6-4. Input and Output Control Parameters

The communications characteristics for the two serial ports, ttya

and ttyb, are set using the following values for the parameters

ttya-mode and ttyb-mode .

baud, #bits, parity, #stop, handshake

where:

baud 110, 300, 1200, 2400, 4800, 9600, 19200, 38400

(bits/second)

#bits 5, 6, 7, 8 (data bits)

parity n=none, e=even, o=odd, m=mark, s=space

(parity bit)

#stop 1=1, . =1.5, 2=2 (stop bits)

handshake -=none, h=hardware (rts/cts), s=software (xon/

xoff)

Parameter Default Description

input-device keyboard Power-on input device (keyboard, ttya, or ttyb)

output-device screen Power-on output device (keyboard, ttya, or

ttyb)

ttya-mode 9600, 8, n, 1, -* ttya (baud, #bits, parity, #stop, handshake)

ttyb-mode 9600, 8, n, 1, -* ttyb (baud, #bits, parity, #stop, handshake)

screen-#columns 80 * Number of on-screen columns (characters/

line)

screen-#rows 34 * Number of on-screen rows (lines)

* Values in decimal

Setting Serial Port
Characteristics

The default settings for both
ttya and ttyb are:

9600 baud
8 data bits
no parity
1 stop bit
no handshake
64

Chapter 6: Using Configuration Parameters Input and Output Control
To set ttya to 1200 baud, seven data bits, one stop bit, even
parity and no handshake, type:

Note: rts/cts and xon/xoff handshaking are not implemented

on all systems. In this case, the handshake parameter is silently

ignored.

The input-device and output-device parameters control

the system’s selection of input and output devices after a

power-on reset. The default input-device value is

keyboard and the default output-device value is screen .

Input and output may be set to the following values:

When the system is reset, the named device becomes the default

input or output device.

If you wish to temporarily change the input or output device,

use the input or output commands described in Chapter 5.

To set ttya as the power-on default input device, type this
command:

Note: If keyboard is selected for input-device but is not

plugged in, or if screen is selected for output-device but

ok setenv ttya-mode 1200,7,e,1,-
ok

Selecting Input and
Output Device Options

input-device output-device

keyboard* screen**

ttya ttya

ttyb ttyb

* keyboard implies standard Sun keyboard

** screen implies frame buffer video display

ok setenv input-device ttya
ok
65

Selecting Boot Options Chapter 6: Using Configuration Parameters
no on-board frame buffer is available, then both input and

output will be sent via ttya after the next power cycle or system

reset.

You can use the configuration parameters to determine whether

or not the system will automatically boot after the system start-

up tests and initialization. In addition, the parameters may be

used to select the boot device and the program to be booted.

Figure 6-5 shows the parameters that control boot options.

Figure 6-5. Boot Options Parameters

The boot-from parameter defaults to the filename vmunix .

The boot-from parameter is used either during auto-boot or if

you boot the system manually without specifying a filename. If

no device is specified, the default device is assumed to be the

system’s internal hard disk. However you can use the boot-
from parameter to specify a different device and file. For

example, to specify the file myunix to be auto-booted single-

user from the Ethernet server, type:

Selecting Boot
Options

Parameter Default Description

auto-boot? True Determines whether or not the system will

automatically boot after the power-on self-test

and system initialization. When true, the Open

PROM attempts to boot whatever file is

specified by the boot-from parameter.

boot-from vmunix Boot source filename (default device is sd0)

ok
ok setenv boot-from le()myunix -s
ok boot Specified booting begins immediately
66

Chapter 6: Using Configuration Parameters Controlling Power-On Self Test
The default value of diag-switch? is true but the actual value

is set to false at the factory. If the default values are restored

with set-defaults , the diag-switch? value becomes true.

Enabling the diagnostic switch parameter, diag-switch? ,

causes the system to perform a more thorough self-test during

power-on. When diag-switch? is enabled, additional status

messages are sent out (some to ttya and some to the specified

output device) and all of memory is tested. The power-on

testing parameters are listed in Figure 6-6.

Figure 6-6. Power-On Testing Parameters

Controlling Power-
On Self-Test

Parameter Default Description

diag-switch? True Note: The default value of diag-switch? is

false in some early versions of the boot PROM.

When diag-switch? is true, the system calls

out diagnostic tests as they are executed (at

power-on time) and performs complete

memory tests (all of memory is tested). Each

Power-On Self-Test prints its name (either to

ttya or to the default output device) as it begins

to execute, and the boot PROM attempts to

boot the program specified by the boot-
from-diag parameter.

When diag-switch? is false, the system will

not call out the diagnostic tests as they are run,

unless a test fails, and will not run any

additional tests.

mfg-switch? False When true, the system repeats the power-on

self-test and initialization sequence until

interrupted with the key sequence.

selftest-#megs 1* Number of megabytes of RAM to test on

power-up or on test-memory . This value is

ignored if diag-switch? is true.

boot-from-diag le()vmunix Diagnostic boot source filename

* Value in decimal

L1-A
67

Miscellaneous Parameters Chapter 6: Using Configuration Parameters
The selftest-#megs parameter determines how much of the

RAM will be tested during the power-on self tests. The default

for this parameter is one megabyte.

When the mfg-switch? parameter is set to true, the system

repeats power-on self-test and initialization until interrupted

with an key sequence.

For example, the diag-switch? is set to false and you want
to power-up in diagnostic mode:

1. Set the diag-switch? parameter to true.

2. Reset the system.

See your system’s Field Service Manual for more information

about using diagnostics.

Figure 6-7 shows the remaining configuration parameters that

don’t readily fall into the categories discussed previously in this

chapter. These parameters control various aspects of system

function and should generally be used with caution.

L1-A

ok
ok setenv diag-switch? true
ok reset

Miscellaneous
Parameters
68

Chapter 6: Using Configuration Parameters Miscellaneous Parameters
Figure 6-7. Miscellaneous Configuration Parameters

Parameter Default Description

fcode-debug? False If true, includes name fields for SBus cards

keyboard-click? False If true, enables the keyboard click sound

ttya-ignore-cd True If true, carrier-detect signal is ignored by

SunOS on ttya

ttyb-ignore-cd True If true, carrier-detect signal is ignored by

SunOS on ttyb

ttya-rts-dtr-off False If true, SunOS does not assert DTR and RTS on

ttya

ttyb-rts-dtr-off False If true, SunOS does not assert DTR and RTS on

ttyb

watchdog-reboot? False Determines whether or not the system will

attempt to reboot in the event of a system

watchdog timeout

scsi-initiator-id 7 SCSI bus address of host adapter, range 0-7

hardware-revision no default System version information

last-hardware-updat e no default System update information

testarea 0 One-byte scratch field, available for read/write

test

sbus-probe-list 0123 SBus slot probe order

sunmon-compat? True Indicates whether or not the Sun -Compatible

Monitor mode interface is presented. When set

to false, the Monitor starts in Toolkit mode with

the ok prompt unless security is set. With

security set, you will not see the Toolkit prompt

even if sunmon-compat? is set to false.

sd-target s 31204567 Map SCSI disk units, e.g. unit #0 = target #3

st-targets 45670123 Map SCSI tape units, e.g. unit #0 = target #4
69

Miscellaneous Parameters Chapter 6: Using Configuration Parameters
This chapter described the configuration parameters contained

in NVRAM. Changes made to these parameters are permanent.

The Configuration Parameter commands listed in Figure 6-1

have been created to simplify using these parameters.

However, configuration parameters should always be adjusted

cautiously. When used properly, these configuration

parameters allow you flexibility when working with the system

hardware.

Appendix B contains a quick reference to the parameters and

the Configuration Parameter commands.
70

7

This chapter provides a brief overview of how to use the many

functions provided by the open boot PROM’s Forth Toolkit.

These descriptions are intended to help you get started using

this Forth implementation to its fullest capacity. However, you

may find that you need more in-depth information concerning

the Forth programming language. For further information,

consult any Forth tutorial or reference book, or see “For Further

Reference” at the end of Chapter 4 for a short list of Forth

Language publications.

In this chapter you will find information about:

Manipulating the stack

Using numeric input and output in different bases

Using arithmetic

Accessing memory

Searching the Forth dictionary

Controlling text input and output

Using conditional testing

Controlling conditional execution

More Forth Tools

❏

❏

❏

❏

❏

❏

❏

❏

71

Showing the Stack Chapter 7: More Forth Tools
Using conditional and counted loops

Using case statements

Using defining words

Compiling the dictionary

Using the disassembler

Displaying registers

Using breakpoints

This chapter assumes that you are generally familiar with the

boot PROM’s Forth Toolkit interface. With the exception of the

NVRAM parameter commands, which should only be used

with caution, all the commands that are described in this guide

may be freely executed at any time. Remember, you can either

enter commands at the ok prompt or type them into ASCII text

files for downloading and execution.

All the available commands are not listed in the reference tables

in this chapter. Appendix A is a more thorough command

summary.

For all examples shown in this chapter, showstack is enabled.

Every ok prompt is immediately preceded by a display of the

current contents of the stack. Every example will work just the

same if showstack were not enabled, except that the values

immediately before each ok will not be shown. See “The Stack”

in Chapter 4 for information about the showstack command.

The Forth interpreter implemented in the boot PROM adheres

closely to the Forth 83-Standard in most respects. One major

exception is that the boot PROM Forth implementation uses 32-

bit numbers instead of 16-bit numbers. In most cases, this

difference will be transparent to the user. For example, @and

! (described later in this chapter) work with variables as

expected. If you explicitly want a 16-bit fetch or a 32-bit fetch,

use w@ or l@ instead of @. Other memory access commands

also follow this convention.

❏

❏

❏

❏

❏

❏

❏

Showing the Stack

Using 32-Bit
Numbers
72

Chapter 7: More Forth Tools Manipulating the Stack
Stack manipulation commands allow you to add, delete and

reorder items on the stack. In most cases, the stack effect

diagram fully defines the behavior of the word. A typical use

of stack manipulation might be to display the top stack item

while preserving all stack items as shown in the example below:

Commonly used stack manipulation commands are listed in

Figure 7-1.

Figure 7-1. Common Stack Manipulation Commands

Manipulating the
Stack

5 77 ok dup Duplicates the top item on the stack
5 77 77 ok . Removes and displays the top stack item
77
5 77 ok The stack is now the same as before

Command Stack Diagram Description

clear (??? --) Empties the data stack

depth (-- +n) Returns the number of items that are on the

stack

drop (n --) Removes the top item from the stack

dup (n -- n n) Duplicates the top item on the stack

over (n1 n2 -- n1 n2 n1) Copies second stack item to top of stack

pick (+n -- n2) Copies +n -th stack item (1 pick = over)

roll (+n --) Rotates +n stack items (2 roll = rot)

rot (n1 n2 n3 -- n2 n3 n1)Rotates 3 stack items

-rot (n1 n2 n3 -- n3 n1 n2) Inversely rotates 3 stack items

swap (n1 n2 -- n2 n1) Exchanges the top 2 stack items
73

Numeric Input and Output in Different Bases Chapter 7: More Forth Tools
The commands hex and decimal cause all subsequent

numeric input and output to be performed in base 16 or base 10,

respectively. d# and h# are useful for inputting a number in the

other base, without having to explicitly change the base. For

example:

.d and .h act like “.” , but display the value in decimal or hex

respectively, regardless of the current base setting. For

example:

.s displays the entire stack contents, without disturbing them.

It may be safely used at any time for debugging purposes. This

is the function that showstack performs automatically.

The commands listed in Figure 7-2 control numeric input and

output.

Numeric Input and
Output in Different
Bases

ok decimal Change base to decimal
ok 4 h# ff 17 2
4 255 17 2 ok

ok hex
ok ff . ff .d
ff 255
ok
74

Chapter 7: More Forth Tools Numeric Input and Output in Different Bases
Figure 7-2. Commands for Changing the Numeric I/O

Command Stack Diagram Description

d# item (-- n) Interpret the next number in decimal; base is

unchanged

decimal (--) Set number base to 10

h# item (-- n) Interpret the next number in hex; base is

unchanged

hex (--) Set the number base to 16

. (n --) Display n in the current base

.d (n --) Display n in decimal without changing base

.h (n --) Display n in hex without changing base

.r (n size --) Display a number in a fixed width field

.s (--) Display contents of the stack

u. (u --) Display an unsigned number

u.r (u size --) Display an unsigned number in a fixed width

field
75

Using Arithmetic Chapter 7: More Forth Tools
Forth provides a variety of basic arithmetic functions. The

commands listed in Figure 7-3 perform basic arithmetic

operations on items in the data stack.

Figure 7-3. Using Arithmetic

Using Arithmetic

Command Stack Diagram Description

* (n1 n2 -- n3) Multiply n1 * n2

+ (n1 n2 -- n3) Add n1 + n2

- (n1 n2 -- n3) Subtract n1 - n2

/ (n1 n2 -- quot) Divide n1 / n2, quotient is truncated

<< (n1 +n -- n2) Left shift n1 by +n places

>> (n1 +n -- n2) Right shift n1 by +n places

>>a (n1 +n -- n2) Arithmetic right shift n1 by +n places

abs (n -- u) Absolute value

and (n1 n2 -- n3) Bitwise logical AND

max (n1 n2 -- n3) n3 is maximum of n1 and n2

min (n1 n2 -- n3) n3 is minimum of n1 and n2

mod (n1 n2 -- rem) Remainder of n1 /n2

/mod (n1 n2 -- rem quot) Remainder, quotient of n1 / n2

not (n1 -- n2) Bitwise ones complement

or (n1 n2 -- n3) Bitwise logical OR

xor (n1 n2 -- n3) Bitwise exclusive OR
76

Chapter 7: More Forth Tools Accessing Memory
The PROM Toolkit provides interactive commands for

examining and setting memory. See Figures 7-4 and 7-5 for

command summaries. You can use the Toolkit to do the

following:

Reads and writes to any virtual address

Maps virtual addresses to physical addresses

Memory operators allow you to read from and write to any

desired memory location. All memory addresses shown in the

examples that follow are virtual addresses.

A variety of 8-bit, 16-bit and 32-bit operations are provided.

Generally, a c (character) prefix indicates an 8-bit (one byte)

operation. A w (word) prefix indicates a 16-bit (two byte)

operation and an L (longword) prefix indicates a 32-bit (four

byte) operation.

Accessing Memory

❏

❏

“L ” is sometimes printed here
in uppercase to avoid confusion
with the number one.
77

Accessing Memory Chapter 7: More Forth Tools
The commands shown in the following two figures can be used

to access, modify, map, and test memory locations.

Figure 7-4. Memory Mapping Commands

Command Stack Diagram Description

obio (-- space) Specify the "devices" address space for

mapping

obmem (-- space) Specify the "onboard memory" address

space for mapping

sbus (-- space) Specify the "sbus" address space for

mapping

allocate-dma (size -- virt) Allocate and map size bytes of memory

in DMA space

alloc-mem (size -- virt) Allocate and map size bytes of

available memory, return the virtual

address

map-sbus (phys size -- virt) Map a region of SBus space

map-page (phys space virt --) Map one page (4K) of memory starting

at address “phys" onto virtual address

“virt” in the given address space

“space”. All addresses are truncated to

lie on a page boundary.

map-pages (phys space virt size --) Performs consecutive map-page ’s to

map a region of memory of the given

size.

map? (virt --) Display memory map information for

the virtual address

cprobe (adr -- flag) Test for data exception using c@

wprobe (adr -- flag) Test for data exception using w@

Lprobe (adr -- flag) Test for data exception using L@
78

Chapter 7: More Forth Tools Accessing Memory
Figure 7-5. Memory Accessing Commands

Command Stack Diagram Description

@ (adr -- n) Fetch a 32-bit number from adr, must be 16-bit

aligned

c@ (adr -- byte) Fetch a byte from adr

w@ (adr -- word) Fetch a 16-bit number from adr, must be 16-bit

aligned

L@ (adr - -n) Fetch a 32-bit number from adr, must be 32-bit

aligned

! (n adr --) Store a 32-bit number at adr, must be 16-bit

aligned

c! (n adr --) Store low byte of n at adr

w! (word adr --) Store a 16-bit number at adr, must be 16-bit

aligned

L! (n adr --) Store a 32-bit number at adr, must be 32-bit

aligned

dump (adr len --) Display len bytes of memory starting at adr

fill (adr size byte --) Set size bytes of memory to byte

wfill (adr size word --) Set size bytes of memory to 16-bit word, addr

must be 16-bit aligned

Lfill (adr size long --) Set size bytes of memory to 32-bit long, addr

must be 32-bit aligned

move (adr1 adr2 u --) Copy u bytes from adr1 to adr2, handles

overlap properly

? (adr --) Display the 32-bit number at adr, must be

16-bit aligned

c? (adr --) Display the byte at adr

w? (adr --) Display the 16-bit number at adr, must be

16-bit aligned

L? (adr --) Display the 32-bit longword at adr, must be

32-bit aligned
79

Accessing Memory Chapter 7: More Forth Tools
The following examples show how you might use the Toolkit

for memory mapping and testing operations.

The dumpcommand is particularly useful. It displays a region

of memory as both bytes and ASCII values.

The following example displays the contents of 20 bytes of

memory starting at virtual address 10000. This example also

demonstrates reading from and writing to a memory location.

If you try to access (with @ for example) an invalid memory

location, the operation will immediately abort and the PROM

will display an error message, such as Data Access
Exception or Bus Error .

In order to test if a location is valid or to write a loop to

repeatedly access a location known to generate an exception,

you will need the cprobe command.

Examples

ok 10000 20 dump Display 20 bytes of memory starting at virtual address 10000
\/ 1 2 3 4 5 6 7 8 9 a b c d e f v123456789abcdef

 10000 05 75 6e 74 69 6c 00 40 4e d4 00 00 da 18 00 00 .until.@NT..Z...
 10010 ce da 00 00 f4 f4 00 00 fe dc 00 00 d3 0c 00 00 NZ..tt..~\..S...
ok 22 10004 c! Change 8-bit byte at location 10004 to 22
ok 123 10006 w ! Change 16-bit word at location 10006 to 0123
ok 10004 L@ . Retrieve and display 32-bit longword at location 10004
226c0123
ok

ok f0000000 c@
Data Access Exception
ok f0000000 cprobe .
0 False (0) indicates error
ok
80

Chapter 7: More Forth Tools Accessing Memory
The Toolkit ignores decimal points in numbers. In this

following example, decimal points are inserted in numbers to

help count zeros.

*The SBus slot offsets are shown below:

SBus slot #0 - 0

SBus slot #1 - 200.0000

SBus slot #2 - 400.0000

SBus slot #3 - 600.0000

ok
ok 1000 alloc-mem Map in 1000 bytes o f physical memory
ok
ok 4000 alloc-mem . Allocate 4000 bytes of memory and display the starting
 ffec21e0 address of the area reserved
ok
ok ffec21e0 4000 free-mem Return the 4000 bytes of memory at ffec21e0
ok
ok 200.0000 4000 map-sbus Map in addresses on an SBus device in slot #1* and create
ok constant slot1 a name for the virtual address that is generated
ok
ok slot1 100 dump
ok (memory dump - not shown)
ok 5000 1000 55 fill Fill in a region of memory 5000-6000 with a fixed pattern
ok

❏

❏

❏

❏

81

Using Defining Words Chapter 7: More Forth Tools
The following examples describe how to use the map-page and

map-pages commands.

The defining word variable assigns a name to a 32-bit region

of memory which can then be used to hold values as needed.

Later execution of that name leaves the address of the memory

on the stack. Typically, @and ! are used to read or write at that

address. For example:

ok
ok 80.0000 obmem 700.0000 map-page Map one page of on- board memory

starting at physical address 80.0000 to
virtual address 700.0000

ok 80.0000 obio 700.0000 map-page Map one page of on- board I/O space at
address 80.0000 to virtual address
700.0000

ok 80.0000 obmem 700.0000 4.0000 map-pages Map multiple pages of on-board
memory starting at physical address
80.0000 to virtual address 700.0000
until 4.0000 bytes of memory are
mapped

Using Defining
Words

ok variable bar
ok 33 bar !
ok bar @ 2 + .
35
ok
82

Chapter 7: More Forth Tools Using Defining Words
The defining word value allows you to assign a name to any

number. Later execution of that name leaves the assigned value

on the stack. The following example shows assigning a value of

22 to a word named foo and then calling foo to use its assigned

value in an arithmetic operation.

A simple colon definition, : foo 22 ;
also accomplishes a similar result.

The value may be changed with the word is . For example:

Commands created with value are convenient because you

don’t have to bother with the @ every time you want the

number. This is more consistent with most other commands,

whose execution leaves the desired result directly on the stack.

ok
ok 22 value foo
ok foo 3 + .
25
ok

ok 43 value thisval
ok thisval .
43
ok 10 is thisval
ok thisval .
10
ok
83

Searching the Dictionary Chapter 7: More Forth Tools
The defining word defer allows you to change the execution

of previously defined commands, by creating a slot which can

be loaded with different behaviors at different times. For

example:

Figure 7-6 shows the defining words that you can use for

creating dictionary entries.

Figure 7-6 Common Defining Words

The dictionary is the list of all available Forth commands. This

section describes some useful dictionary-searching tools.

The command words displays all word (command) names in

the dictionary, starting with the most recent definitions.

ok hex
ok defer printit
ok ’ .d is printit
ok ff printit
255
ok : myprint (n --) ." It is " .h
] ." in hex " ;
ok ’ myprint is printit
ok ff printit
It is ff in hex
ok

Command Stack Diagram Description

: name (--) Start the creation of a new colon definition

; (--) Finish the creation of a colon definition.

value name (n --) Define a value

defer name (--) Defining word for forward references or

execution vectors

variable name (--) Define a variable

is name (acf --) Install a new action in a value word or a

defer word

Searching the
Dictionary
84

Chapter 7: More Forth Tools Controlling Text Input and Output
The command see , used in the form see thisword, will

decompile the specified command (thisword). This means that

it shows the definition used to create that command word.

Figure 7-7 lists the commands you can use to search the

contents of the dictionary.

Figure 7-7. Selected Dictionary Searching Commands

This section describes the text input and output commands. The

commands listed in Figure 7-8 may be used for general purpose

text display. These commands control strings or arrays of

characters and provide a means to enter comments and control

keyboard scanning.

Comments are used with Forth source code (generally in a text

file) to describe what the code is attempting to do. The “(”

open parenthesis is a command that begins a comment.

Anything up until the closing parenthesis “) ” is ignored

by the Forth interpreter. Remember to follow the “(” with a

space so it will be recognized. Stack effect diagrams are one

example of comments using “(”. The “ \ ” backslash also

indicates a comment, terminated by the end of the line of text.

Command Stack Diagram Description

’ name (-- acf) Finds a word in the dictionary. Returns the

"code field address".

find (pstr -- acf n) Searches for a word in the dictionary. The

word to be found is indicated by pstr. n is 0 if

not found.

words (--) Displays all visible words in the dictionary.

see name (--) Decompiles the named word.*

(see) (acf --) Decompiles the word indicated by the "code

field address".

* The decompiled definition may sometimes be confusing because some internal names may have

been omitted from the PROMs symbol table, in order to save space.

Controlling Text
Input and Output
85

Controlling Text Input and Output Chapter 7: More Forth Tools
The ke y? command looks at the keyboard to see whether the

user has recently typed any key. It returns a flag on the stack,

true if a key has been pressed and false otherwise. See the

next section, “Using Conditional Testing,” for a discussion of

the use of flags.

key waits for a key to be pressed, then returns the ASCII value

of that key on the stack.

The command ascii , used in the form ascii x, returns on the

stack the numerical ASCII code of the letter following.

The emit command displays the letter whose ASCII value is on

the stack. For example:

The cr command sends a carriage-return to the output. For

example:

The “ ." ” command used in the form “." string" ” outputs

text when needed. This command only works inside of a

definition. A “" ” (double quotation mark) is used to mark the

end of the text string.

For example:

ok
ok ascii a
61 ok 42
61 42 ok emit emit
Ba
ok

ok
ok 3 . 44 . cr 5 .
3 44
5
ok

ok : testing 34 . ." This is a test" 55 . ;
ok
ok testing
34 This is a test55
ok

ok
86

Chapter 7: More Forth Tools Interpretting Source Code
Finally, some string commands specify an address (the location

in memory where the characters reside) and a length (how many

characters). Other commands use a packed string, or pstr ,

which is a location in memory containing a byte for the length

and immediately followed by the characters. The stack effect

comment for the command will indicate which form is used.

The count command converts a packed string to an address-

length string.

The command eval takes a string off of the stack (specified as

an address and a length). That string is then interpreted, just as

if those characters were entered in from the keyboard. If a

Forth text file has been loaded into memory (for example, with

dload), see “Downloading Files” in Chapter 5, then eval can

be used to compile whatever definitions were contained in the

file.

Interpreting Source
Code
87

Interpretting Source Code Chapter 7: More Forth Tools
Figure 7-8. General Purpose Text Manipulation Commands

Command Stack Diagram Description

ascii ccc (-- char) Numerical value of first ASCII character of

next word

bl (-- n) The ASCII code for the space character;

decimal 32

count (pstr -- adr len) Convert a packed string to unpacked form

cr (--) Terminate a line on the display and goes to

the next line

emit (char --) Display the character

eval (adr len --) Interpret Forth source from an array

exit? (-- flag) True if the user wants the output to be

terminated. Enables the scrolling prompt:

More [<space>,<cr>q] ?

key (-- char) Read a character from the keyboard

key? (-- flag) True if a key has been typed on the keyboard

p" ccc" (-- pstr) Collect a string from the input stream, store as

a packed string

type (adr +n --) Display +n characters

" ccc" (-- adr len) Collect an input stream string; either

interpreted or compiled

(ccc) (--) Begin and end a comment

\ rest-of-line (--) Skip the rest of the line

." ccc" (--) Display a string when definition is executed
88

Chapter 7: More Forth Tools Using Conditional Testing
Forth conditionals use flags to indicate true/false values. A flag

can be generated in any number of ways based on some criteria

for testing. The flag may then simply be displayed off of the

stack (with “.”), or may be used as an input to a conditional

control command. Control commands can cause one behavior

if a flag is true, and another behavior if the flag is false. Thus,

execution can be altered based on the result of a test.

A 0 value indicates the flag value false . A -1 (or any other

nonzero number) indicates the flag value true . In

hexadecimal, the value -1 is displayed as ffffffff .

For example, the “> ” command takes two numbers off of the

stack, and returns true (-1) on the stack if the first number was

greater than the second number, or returns false (0) otherwise.

For example:

The 0= command takes one number off of the stack, and

returns true if that number was 0, or returns false otherwise.

This word inverts any flag to its opposite value.

The commands shown in Figure 7-9 perform relational tests and

leave a true or false flag result on the stack.

Using Conditional
Testing

ok 3 6 > .
0 3 is not greater than 6
ok
89

Using Conditional Testing Chapter 7: More Forth Tools
Figure 7-9. Comparison Commands

Command Stack Diagram Description

0< (n -- flag) True if n < 0

0<= (n -- flag) True if n < = 0

0<> (n -- flag) True if n <> 0

0= (n -- flag) True if n = 0

0> (n -- flag) True if n > 0

0>= (n -- flag) True if n > = 0

< (n1 n2 -- flag) True if n1 < n2

<= (n1 n2 -- flag) True if n1 <= n2

<> (n1 n2 -- flag) True if n1 <> n2

= (n1 n2 -- flag) True if n1 = n2

> (n1 n2 -- flag) True if n1 > n2

>= (n1 n2 -- flag) True if n1 >= n2

between (n min max -- flag) True if min <= n <= max

false (-- 0) The value FALSE, which is 0

true (-- -1) The value TRUE, which is -1

u< (u1 u2 -- flag) True if u1 < u2 , unsigned

u<= (u1 u2 -- flag) True if u1 <= u2, unsigned

u> (u1 u2 -- flag) True if u1 > u2, unsigned

u>= (u1 u2 -- flag) True if u1 > = u2, unsigned

within (n min max -- flag) True if min < = n < max
90

Chapter 7: More Forth Tools Controlling Conditional Execution
The commands if , else , and then provide a simple if-then-
else capability.

The format for using these commands is:

flag if do this if true

else do this if false

then continue normally

or

flag if do this if true

then continue normally

The if consumes a flag off of the stack. If the flag is true (non-

zero), the commands just after the if are performed, otherwise

the commands (if any) just after the else are performed.

Note: The] prompt reminds you that you are part way

through creating a new colon definition. It reverts back to ok
after you finish the definition with a semicolon.

The commands listed in Figure 7-10 control the flow of

conditional execution.

Controlling
Conditional
Execution

ok : testit (n --)
] 5 > if ." good enough "
] else ." too small "
] then
] ." Done. " ;
ok
ok 8 testit
good enough Done.
ok 2 testit
too small Done.
ok
91

Using Conditional Loops Chapter 7: More Forth Tools
Figure 7-10. Conditional Program Execution Commands

Conditional loops execute the same commands over and over

until a certain condition is satisfied. There are two general

forms:

begin any commands... flag until

and

begin any commands... flag while

more commands repeat

In both of these cases, the commands within the loop will be

executed repeatedly until the proper flag value causes the loop

to be terminated. Once terminated, execution continues

normally with the next command after the closing command

word (until or repeat).

In the begin...until case, the until command removes a

flag from the top of the stack and inspects it. If the flag is false,

execution continues just after the begin and the loop repeats.

If the flag is true, the loop is exited.

In the begin...while...repeat case, the while command

removes a flag from the top of the stack and inspects it. If the

flag is true, the loop continues by executing the commands just

after the while . The repeat automatically sends control back

to the begin to continue the loop. If the flag is false when

while is encountered, then the loop is exited immediately.

Control goes to the first command after the closing repeat .

Command Stack Diagram Description

else (--) Execute the following code if if failed

if (flag --) Execute following code if flag is true

then (--) Terminate if...else...then

Using Conditional
Loops
92

Chapter 7: More Forth Tools Using Conditional Loops
The following is a simple example:

The loop starts by fetching a byte from location 4000 and

displaying the value. Then, the key? command is called,

which leaves a true on the stack if the user has pressed any key,

false otherwise. This flag is consumed by the until , and if the

value is false, then the loop continues. Once a key is pressed,

the next call to key? returns true and the loop terminates.

Figure 7-11 shows the commands you can use to perform

conditional loops.

Figure 7-11. Conditional Loop Commands

ok begin 4000 c@ . key? until repeat until any key is pressed
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
ok

Command Stack Diagram Description

begin (--) Begin a begin...while...repeat loop

or begin...until loop

repeat (--) End a begin...while...repeat loop

until (flag --) Continue executing a begin...until loop

until flag is true

while (flag --) Continue executing a

begin...while...repeat loop while flag

is true
93

Using Counted Loops Chapter 7: More Forth Tools
Counted loops, called do loops, are used when the number of

iterations of the loop can be calculated in advance.

Figure 7-12 shows the various commands you can use to

perform counted loop operations.

Note: A do loop normally exits just before the specified ending

value is reached.

Figure 7-12. Counted Loops Commands

Using Counted Loops

Command Stack Diagram Description

do (end+1 start --) Begin a do...loop

?do (end+1 start --) Begin ?do...loop to be executed 0 or more

times

i (-- n) Loop index

j (-- n) Loop index for next enclosing loop

leave (--) Exit from do...loop

loop (--) End of do...loop. Adds 1 to the
loop index

+loop (n --) End a do...+loop construct; adds n to loop

index
94

Chapter 7: More Forth Tools Using Counted Loops
Several loop examples follow:

ok 10 5 do i . loop
5 6 7 8 9 a b c d e f
ok
ok 2000 1000 do i . i c@ . cr i c@ ff = if leave then 4 +loop
1000 23
1004 0
1008 fe
100c 0
1010 78
1014 ff
ok : scan (byte --)
] 6000 5000 Scan memory (5000-6000) for
] do dup i c@ <> (byte error?) bytes not equal to the pattern (55)
] if i . then (byte)
] loop
] drop (the original byte was still on the stack, discard it)
] ;
ok 55 scan
ok 5005 5224 5f99
ok 6000 5000 do i i c! loop Fill a region of memory
ok with a stepped pattern
ok (0-1-2-3-...)
ok 500 value testloc
ok : test16 (--) 1.0000 0 (do 0-ffff) Write different 16-bit values to
] do i testloc w! testloc w@ i <> (error?) a location and check.
] if ." Error - wrote " i . ." read " testloc w@ . cr
] leave (exit after first error found) This line is optional
] then
] loop
] ;
ok test16
ok 6000 is testloc
ok test16
95

Using Case Statements Chapter 7: More Forth Tools
A high-level case command is provided for selecting

alternatives with multiple possibilities. It is easier to read than

deeply nested if-then statements. A simple example follows:

Note that the (optional) default clause may use the test value

which is still on the stack, but should not remove it (using the

"dup . " phrase instead of "."). A successful of clause

automatically removes the test value from the stack.

Figure 7-13 lists the conditional case statement commands.

Figure 7-13. Case Statement Commands

Using Case
Statements

ok : testit (testvalue --)
] case 0 of ." It was zero " endof
] 1 of ." It was one " endof
] ff of ." Correct " endof
] -2 of ." It was minus-two " endof
] (default) ." It was this value: " dup .
] endcase ." All done." ;
ok
ok 1 testit
It was one All done.
ok ff testit
Correct All done.
ok 4 testit
It was this value: 4 All done.
ok

Command Stack Diagram Description

case (selector -- selector) Begins a case...endcase conditional

endcase (selector --) Terminates a case...endcase conditional

endof (--) Terminates an of...endof clause withing

a case...endcase

of (selector test-value -- selector { empty})

Begins an of...endof clause within a

case conditional
96

Chapter 7: More Forth Tools Additional Control Commands
The abort command causes immediate termination and

returns control to the keyboard. abort" is similar to abort
but is different in two respects. abort" removes a flag from

the stack and only aborts if the flag is true. Also, abort"
prints out any desired message when the abort takes place.

Figure 7-14 contains descriptions of the various program

execution control commands.

Figure 7-14. Program Execution Control Commands

Additional Control
Commands

Command Stack Diagram Description

abort (--) Abort current execution and interpret

keyboard commands

abort" ccc" (flag --) If flag is true, abort and display message

execute (acf --) Execute the word whose code field address is

on the stack. See find .

exit (--) Return from the current word

quit (--) Abort, but leave stack intact.
97

Additional Control Commands Chapter 7: More Forth Tools
The PROM’s built-in disassembler translates the contents of

memory into equivalent SPARC assembly language. The dis
command will begin to disassemble the data content of any

desired location. A pause occurs if any key is pressed while

disassembly is taking place or after every page of output. At

that point, disassembly may be continued or stopped.

Disassembly stops automatically when a call or jmp opcode is

encountered.

The +dis command may be used to continue disassembling at

the location where the last disassembly stopped.

Memory addresses are normally shown in hex. However, if a

symbol table is present, memory addresses will be displayed

symbolically whenever possible.

The commands listed in the figure below disassemble memory

into equivalent opcodes.

Figure 7-15. Disassembler Command Summary

Using the
Disassembler

Command Stack Diagram Description

dis (addr --) Begin disassembling at the given address

+dis (--) Continue disassembling where the last

disassembly left off
98

Chapter 7: More Forth Tools Displaying Registers
There are several ways to enter the Toolkit from the middle of

an executing program. These include a program crash, a user

abort with , or an encountered breakpoint. (Breakpoints

are discussed in the next section.) In all of these cases, the

Toolkit automatically saves all of the CPU data register values

into a buffer area. These values may then be inspected for

debugging purposes.

After inspection, program execution may be continued by

entering the go command. The saved register values are copied

back into the CPU, and then execution resumes (at the location

specified by the saved %PC).

These saved register values may be altered if desired, by using

the to command. When execution is resumed, the altered

values will be copied back into the CPU and used.

The SPARC register reading and writing commands are listed

in Figure 7-16.

If you change %pc with the to command, you should also

change %npc as well. It is easier to simply use set-pc , which

changes both registers automatically.

For the w and .window commands, a window value of 0

usually specifies the current window, that is, the active

window for the subroutine where the program was interrupted.

A value of 1 specifies the window for the caller of this

subroutine, 2 specifies the caller’s caller, and so on, up to the

number of active stack frames. The default starting value is

always 0.

Note: In some earlier versions of the boot PROM, floating-point

registers may only be read, but not written. In these versions,

the command save-fregs must be executed before reading is

possible.

Displaying
Registers

L1-A
99

Displaying Registers Chapter 7: More Forth Tools
Figure 7-16. SPARC Registers Command Summary

Command Stack Diagram Description

%g0 through %g7 (-- value) Return the value in the given register

%o0 through %o7 (-- value) Return the value in the given register

%L0 through %L7 (-- value) Return the value in the given register

%i0 through %i7 (-- value) Return the value in the given register

%pc %npc %psr (-- value) Return the value in the given register

%y %yim %tbr (-- value) Return the value in the given register

%f0 through %f31 (-- value) Return the value in the given floating point

register

%fsr (-- value) Return the value in the given floating point

register

to regname (value --) Change the value stored in any of the above

registers

Use in the form: value to regname

set-pc (value --) Set %pc to the given value, and set %npc to

(value+4)

w (window# --) Set the current window, for displaying %ix
%lx or %ox

ctrace (--) Display the return stack showing C

subroutines

.locals (--) Display the values in the i , L and o
registers

.psr (--) Formatted display of the %psr data

.registers (--) Display values in %g0 through %g7 , plus

%pc, %npc, %psr, %y, %wim, %tbr
100

Chapter 7: More Forth Tools Using Breakpoints
The Toolkit provides a robust breakpoint capability, to assist in

the development and debugging of standalone programs.

The breakpoint feature lets you pause execution of the test

program at any desired point(s). After execution has stopped,

registers or memory may be inspected and/or altered, and new

breakpoints may be set or cleared. Then, execution may be

resumed with the go command.

To debug a program using breakpoints:

1. Load the test program into memory at location 4000 (hex).

See “Downloading Files” in Chapter 5 for more

information. Using dload is generally best (as the symbol

table for the program is preserved), but boot -h will

also work if the program is not available over the Ethernet.

The values for %pc and all other registers will be initialized

automatically.

2. Disassemble the downloaded program, if desired, to verify

a properly downloaded file.

3. At this point you can begin single-stepping the test program

using the step command. Or set a breakpoint(s) and then

execute (for example, using the commands 4020 +bp and

go), or perform other variations.

The breakpoint commands that control and monitor program

execution are listed in the following figure.

Using Breakpoints

Standalone programs do not
run under the SunOS
Operating System. Typical
programs running under the
SunOS Operating System
will not normally use this
feature, but would instead
use other debuggers
designed to run under
theSunOS Operating
System.
101

Using Breakpoints Chapter 7: More Forth Tools
Figure 7-18. Breakpoint Command Summary

The examples shown in this chapter illustrate some of the tools

available to you through the boot PROM’s Toolkit interface.

Appendix A contains additional reference information about

Forth commands. If you require still more information about

Forth, consult some of the previously cited reference books.

Command Stack Diagram Description

go (--) Continue the execution of a halted program.

.bp (--) Display all curently set breakpoints

+bp (addr --) Add a breakpoint at the given address

-bp (addr --) Remove the breakpoint at the given address

--bp (--) Remove the most recently set breakpoint

bpoff (--) Remove all breakpoints

step (--) Single-step one instruction

steps (n --) Execute n step s

hop (--) Like the step command, but treats a

subroutine call as a single instruction

hops (n --) Execute n hop s

skip (--) Skip (do not execute) the current instruction

till (addr --) Executes until the given address is

encountered; equivalent to +bp go

return (--) Execute until the end of this subroutine

returnL (--) Execute until the end of this leaf subroutine

finish-loop (--) Execute until the end of this loop

.instruction (--) Display the address, opcode for the last

encountered breakpoint

.breakpoint (--) Defer word, for display behavior after every

breakpoint. Default is .instruction .

Change with:

’ .registers is .breakpoint
102

A

This appendix lists commands supported by the open boot

PROM’s Forth Toolkit. These commands are grouped into the

following four major categories.

Basic System Commands

System Resetting Page 103

Diagnostic Tests Page 103

System Information Page 104

Disk Drive Control Page 104

Help and Mode Commands Page 104

Booting the System Page 105

Basic Forth Commands

Manipulating the Stack Page 107

Accessing Memory Page 108

Using Arithmetic Page 109

Changing the Numeric Base Page 110

Displaying Output Page 110

Output Display Primitives Page 111

Line Editor Commands Page 112

Toolkit Command Reference

❏

❏

103

Chapter A: Toolkit Command Reference
Advanced Forth Programming Commands

Defining Words Page 113

Performing Comparisons Page 114

Inputting Text Page 115

Displaying Text Output Page 115

Conditional Loops Page 116

Counted Loops Page 116

Controlling Program Execution Page 117

Conditional Case Statements Page 117

Manipulating Text Strings Page 118

Compiling the Dictionary Page 119

Searching the Dictionary Page 120

Advanced Programming Commands

Input/Output Display Modes Page 120

File Downloading Page 121

Using the Disassembler Page 121

Using Breakpoints Page 122

Reading and Writing SPARC Registers Page 123

Symbolic Names Page 124

Traps Page 124

Mapping Memory Page 125

Mapping Memory Primitives Page 126

Accessing Alternate Address Space Page 127

Manipulating the Cache Page 128

SunOS Operating System Calls Page 128

Reading and Writing Machine Registers Page 129

❏

❏

104

Chapter A: Toolkit Command Reference Basic System Commands
Basic system control commands are listed in the following

tables.

The command in the following table performs system resetting.

The commands listed in the following table invoke the specified

diagnostic test routine.

Basic System
Commands

System Resetting
Commands

Command Stack Diagram Description

reset (--) Reset the entire system (very similar to power-

cycle)

Diagnostic Tests

Command Stack Diagram Description

probe-scsi (--) Determine the attached SCSI devices

test-control-regs (--) Test registers (context, sync, sync virt, async,

async virt, enable)

test-net (--) Test Lance Ethernet controller with internal &

external loopback

test-cache (--) Test cache data and tag fields

test-memory (--) Test main memory (number of megabytes

indicated in NVRAM configuration parameter

selftest-#megs). If the

diag-switch? NVRAM configuration

parameter is set to true, all of memory is tested.

test-floppy (--) Test the floppy drive

watch-clock (--) Test the clock function
105

Basic System Commands Chapter A: Toolkit Command Reference
The following commands provide system information

formatted displays.

The following commands provide floppy and SCSI disk drive

control.

The following commands describe the help and mode change

functions.

System Information

Command Stack Diagram Description

banner (--) Displays power-on banner

.enet-addr (--) Displays the current Ethernet address

.idprom (--) Displays IDPROM contents, formatted

.version (--) Displays version and date of boot PROM

Disk Drive Control

Command Stack Diagram Description

eject-floppy (--) Ejects the diskette from the drive

sync (--) Calls the SunOS to write any pending

information to the hard disk

Help and Mode
Commands

Command Stack Diagram Description

help (--) List main help categories

help category (--) Show help for all commands in the category.

Use only the first word of the category

description.

help name (--) Show help for individual command (where

available)

old-mode (--) Return to the boot (>) prompt
106

Chapter A: Toolkit Command Reference Basic System Commands
Boot command syntax are shown in the following figure.

Spaces and tabs typed in the command line are ignored. All

arguments shown in italics are optional. The command word

boot must be followed by a space.

> b [device (c,u,p) filename options]

ok boot [device (c,u,p) filename options]

Booting the System
107

Basic System Commands Chapter A: Toolkit Command Reference
Option Description

device is one of: net or le (c,u,p) LANCE Ethernet

disk or sd (c,u,p) SCSI hard disk

st (c,u,p) SCSI tape

tape or fd (c,u,p) 3 1/2" diskette drive

c Controller Number, default value = 0

u Unit Number, default value = 0; when booting from a

hard disk the range may be from 0-3.

p Partition Number, default value = 0; when booting from

a hard disk the range may be from 0-7.

When using le , sd and fd as device identifiers, the

parentheses are required in the command line. Example:

ble() or ble(0,0,0) . The contents of the parentheses

depends on the specified device.

filename Default = vmunix

The name of the program to be booted, such as stand/diag or

vmunix . filename is relative to the root of the selected device and

partition (if specified). filename never begins with ’/’. If filename
is not given, the boot program uses the default file name vmunix .

options -a Prompts interactively for the device and name of the file

to boot.

-b Pass the -b flag through the kernel to init (8) to skip

execution of the /etc/rc.local script.

-h Halt after loading the program.

-s Pass the -s flag through the kernel to init (8) for single-

user operation.

-i initname
Pass the -i initname to the kernel to tell it to run initname
as the first program rather than the default /single/
init .
108

Chapter A: Toolkit Command Reference Basic Forth Commands
The commands listed in the figures in this section are common

Forth command words.

These commands delete, add, and reorder items on the stack.

Basic Forth
Commands

Manipulating the Stack

Command Stack Diagram Description

clear (??? --) Empties the stack

depth (-- +n) Returns the number of items on the stack

drop (n --) Removes n from the stack

2drop (n1 n2 --) Removes 2 items from the stack

dup (n -- n n) Duplicates n

2dup (n1 n2 -- n1 n2 n1 n2) Duplicates 2 stack items

3dup (n1 n2 n3 -- n1 n2 n3 n1 n2 n3) Duplicates 3 stack items

?dup (n -- n n | 0) Duplicates n if it is non-zero

nip (n1 n2 -- n2) Discards the second stack item

over (n1 n2 -- n1 n2 n1) Copies second stack item to top of stack

2over (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) Copies second 2 stack items

pick (+n -- n2) Copies +n-th stack item

>r (n --) Moves a stack item to the return stack

r> (-- n) Moves an item from the return stack to the

stack

r@ (--n) Copies the top of the return stack to the

stack

roll (+n --) Rotates +n stack items

rot (n1 n2 n3 -- n2 n3 n1) Rotates 3 stack items

-rot (n1 n2 n3 -- n3 n1 n2) Inversely rotate 3 stack items

2rot (n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2) Rotates 3 pairs of stack items

swap (n1 n2 -- n2 n1) Exchanges the top 2 stack items

2swap (n1 n2 n3 n4 -- n3 n4 n1 n2) Exchanges 2 pairs of stack items

tuck (n1 n2 -- n2 n1 n2) Copies the top stack item underneath the

second item
109

Basic Forth Commands Chapter A: Toolkit Command Reference
These commands access, modify and test memory locations.Accessing Memory

Command Stack Diagram Description

@ (adr -- n) Fetches a 32-bit number from adr, must be 16-bit aligned

c@ (adr -- byte) Fetches a byte from adr

w@ (adr -- word) Fetches a 16-bit number from adr, must be 16-bit aligned

L@ (adr -- long) Fetches a 32-bit number from adr, must be 32-bit aligned

! (n adr --) Stores a 32-bit number at adr, must be 16-bit aligned

c! (n adr --) Stores low byte of n at adr

w! (word adr --) Stores a 16-bit number at adr, must be 16-bit aligned

L! (n adr --) Stores a 32-bit number at adr, must be 32-bit aligned

blank (adr u --) Sets u bytes of memory to space (decimal 32)

cmove (adr1 adr2 u --) Copies u bytes from adr1 to adr2, starting at lo byte

cmove> (adr1 adr2 u --) Copies u bytes from adr1 to adr2, starting at high byte

dump (adr len --) Displays len bytes of memory starting at adr

erase (adr u --) Sets u bytes of memory to 0

fill (adr size byte --)Sets cnt bytes of memory to byte

cfill (adr size byte --) Sets size bytes of memory to byte (same as fill)

wfill (adr size word --)Sets size bytes of memory to 16-bit word, addr 16-bit aligned

Lfill (adr size long --) Set size bytes of memory to 32-bit long, addr 32-bit aligned

move (adr1 adr2 u --) Copies u bytes from adr1 to adr2, handles overlap properly

? (adr --) Displays the 32-bit number at adr, must be 16-bit aligned

c? (adr --) Displays the byte at adr

w? (adr --) Displays the 16-bit number at adr, must be 16-bit aligned

+! (n adr --) Adds n to the 32-bit number stored at adr

2! (n1 n2 adr --) Stores 2 numbers at adr; n2 at lower address

2@ (adr -- n1 n2) Fetches 2 numbers from adr; n2 from lower address

unaligned-w@ (adr--word) Fetches a 16-bit number, any alignment

unaligned-L@ (adr--long) Fetches a 32-bit number, any alignment

unaligned-W! (word adr --) Stores a 16-bit number, any alignment

unaligned-L! (long adr --) Stores a 32-bit number, any alignment
110

Chapter A: Toolkit Command Reference Basic Forth Commands
These commands perform basic arithmetic operations on items

in the data stack.
Using Arithmetic

Command Stack Diagram Description

* (n1 n2 -- n3) Multiplies n1 * n2

+ (n1 n2 -- n3) Adds n1 + n2

- (n1 n2 -- n3) Subtracts n1 - n2

/ (n1 n2 -- quot) Divides n1 / n2

<< (n1 +n -- n2) Left shift n1 by +n places

>> (n1 +n -- n2) Right shift n1 by +n places

>>a (n1 +n -- n2) Arithmetic right shift n1 by +n places

*/ (n1 n2 n3 -- n4) n1*n2/3

1+ (n1 -- n2) Adds 1

1- (n1 -- n2) Subtracts 1

2* (n1 -- n2) Multiplies by 2

2+ (n1 -- n2) Adds 2

2- (n1 -- n2) Subtracts 2

2/ (n1 -- n2) Divides by 2

abs (n -- u) Absolute value

and (n1 n2 -- n3) Bitwise logical AND

max (n1 n2 -- n3) n3 is maximum of n1 and n2

min (n1 n2 -- n3) n3 is minimum of n1 and n2

mod (n1 n2 -- rem) Remainder of n1 /n2

/mod (n1 n2 -- rem quot) Remainder, quotient of n1 / n2

*/mod (n1 n2 n3 -- rem quot) Remainder, quotient of n1 * n2 /n3

negate (n1 -- n2) Changes the sign of n1

not (n1 -- n2) Bitwise ones complement

or (n1 n2 -- n3) Bitwise logical OR

xor (n1 n2 -- n3) Bitwise exclusive OR
111

Basic Forth Commands Chapter A: Toolkit Command Reference
These commands control the interpretation of numeric input.

These commands convert numbers into text for display.

Changing the Numeric
Base

Command Stack Diagram Description

base (-- adr) Variable containing number base

d# item (-- ?) Interpret the next number in decimal; base is

unchanged.

decimal (--) Set number base to 10

h# item (-- ?) Interpret the next number in hex; base is

unchanged.

hex (--) Set the number base to 16

Displaying Output

Command Stack Diagram Description

. (n --) Display a number in the current base

.d (n --) Display n in decimal without changing base

.h (n --) Display n in hex without changing base

.r (n size --) Display a number in a fixed width field

.s (--) Display contents of data stack

showstack (--) Automatically shows stack items before ok

prompt

u. (u --) Display an unsigned number

u.r (u size --) Display an unsigned number in a fixed width

field
112

Chapter A: Toolkit Command Reference Basic Forth Commands
The following primitives are used to create numeric display

words, such as . u. , or .r .
Output Display
Primitives

Command Stack Diagram Description

<# (--) Initializes pictured numeric output

(tn1 -- tn2) Converts next digit

#s (t n1 -- 0) Converts remaining digits

HOLD (char --) Inserts character into pictured output

SIGN (n --) Inserts sign into pictured output

#> (n -- adr len) Ends pictured output, leaving string ready to

type .

(.) (n -- adr len) Converts a number into a string, ready to type .

(u.) (u -- adr len) Converts an unsigned number into a string,

ready to type .
113

Basic Forth Commands Chapter A: Toolkit Command Reference
You can use these line editor commands whenever you are

typing commands to the ok prompt. When you see two keys in

one box, press and hold the first key while pressing the second

key, for example to type , press and hold the

key while pressing the key.

Line Editor Commands

Control-b Control

b

Command Description

Backward one character

Backward one word

Forward one character

Forward one word

Beginning of line

End of line

Erase previous character (also or)

Erase previous portion of word (also)

Erase this character

Erase this portion of word, from here to end of word

Erase forward, from here to end of line

Erase entire line

Retype line

Quote next character (to type a control-character)

Recall previous command line

Recall subsequent command line

Control-b

Esc b

Control-f

Esc f

Control-a

Control-e

Control-h Del Back Space

Esc h Control-w

Control-d

Esc d

Control-k

Control-u

Control-l

Control-q

Control-p

Control-n
114

Chapter A: Toolkit Command Reference Advanced Forth Programming Commands
The advanced programming commands can be used to write

Forth programs. You may need to refer to a Forth reference

book for more information about how to use some of these

commands.

These commands are defining words for creating dictionary

entries.

Advanced Forth
Programming
Commands

Defining Words

Command Stack Diagram Description

: name (--) Start the creation of a new colon definition

; (--) Finish the creation of a new colon definition

buffer: name (size --) Create a named array in temporary storage

value name (n --) Define a constant (example: 5 value foo)

2constant name (n1 n1 --) Define a 2-number constant

create name (--) Generic defining word

defer name (--) Defining word for forward references or

execution vectors

does> (--adr) Start the run-time clause for defining words

variable name (--) Define a variable
115

Advanced Forth Programming Commands Chapter A: Toolkit Command Reference
These commands perform relational tests and leave a true or

false flag result.
Performing
Comparisons

Command Stack Diagram Description

0< (n -- flag) True if n < 0

0<= (n -- flag) True if n < = 0

0<> (n -- flag) True if n <> 0

0= (n -- flag) True if n = 0

0> (n -- flag) True if n > 0

0>= (n -- flag) True if n > = 0

< (n1 n2 -- flag) True if n1 < n2

<= (n1 n2 -- flag) True if n1 <= n2

<> (n1 n2 -- flag) True if n1 <> n2

= (n1 n2 -- flag) True if n1 = n2

> (n1 n2 -- flag) True if n1 > n2

>= (n1 n2 -- flag) True if n1 >= n2

between (n min max -- flag) True if min <= n <= max

false (-- 0) The value FALSE, which is 0

true (-- -1) The value TRUE, which is -1

u< (u1 u2 -- flag) True if u1 < u2 , unsigned

u<= (u1 u2 -- flag) True if u1 <= u2, unsigned

u> (u1 u2 -- flag) True if u1 > u2, unsigned

u>= (u1 u2 -- flag) True if u1 > = u2, unsigned

within (n min max -- flag) True if min < = n < max
116

Chapter A: Toolkit Command Reference Advanced Forth Programming Commands
These commands control text input and keyboard scanning.

These commands control text output display.

Inputting Text

Command Stack Diagram Description

(ccc) (--) Begin a comment

\ rest-of-line (--) Skip the rest of the line

key (-- char) Read a character from the keyboard

key? (-- flag) True if a key has been typed on the keyboard

ascii ccc (-- char) Numerical value of first ascii character of next

word

bl (-- n) The ASCII code for the space character; decimal

32

Displaying Text
Output

Command Stack Diagram Description

cr (--) Terminates a line on the display and go to the

next line

emit (char --) Displays the character

exit? (-- flag) True if the user wants the output to be

terminated. This command enables the

scrolling control prompt:

More [<space>,<cr>,q] ?

space (--) Displays a space character

spaces (+n --) Displays spaces
117

Advanced Forth Programming Commands Chapter A: Toolkit Command Reference
These commands control the execution of conditional loops.

These commands control the execution of counted loops.

Conditional Loops

Command Stack Diagram Description

again (--) Ends a begin...again infinite loop

begin (--) Begin a begin...while...repeat loop or

begin...until loop

repeat (--) Ends a begin...while...repeat loop

until (flag --) Continues executing a begin...until loop

until flag is true

while (flag --) Continues executing a

begin...while...repeat loop while flag is

true

Counted Loops

Command Stack Diagram Description

do (end+1 start --) Begin a do...loop

Example: 10 0 do i . loop

?do (end+1 start --) Begin ?do...loop to be executed 0 or more

times

i (-- n) Loop index

j (-- n) Loop index for next enclosing loop

leave (--) Exit from do...loop

?leave (flag --) Exit from a do...loop if flag is non-zero

loop (--) End of do...loop

+loop (n --) End a do...+loop construct; adds n to loop

index
118

Chapter A: Toolkit Command Reference Advanced Forth Programming Commands
These commands control the flow of program execution.

These commands perform conditional statements.

Controlling Program
Execution

Command Stack Diagram Description

abort (--) Abort current execution and interpret keyboard

commands

abort" ccc" (flag --) Conditional abort with message

else (--) Execute the following code if if failed

execute (acf --) Execute the word whose code field address is on

the stack

exit (--) Return from the current word

if (flag --) Execute following code if flag is true

then (--) Terminate an if...else...then

quit (--) Abort, but leave stack intact

Conditional Case
Statements

Command Stack Diagram Description

case (selector -- selector) Begins a case...endcase conditional

endcase (selector --) Terminates a case...endcase
conditional

endof (--) Terminates an of...endof clause within

a case...endcase

of (selector test-value -- selector { empty})

 Begins an of...end within case
119

Advanced Forth Programming Commands Chapter A: Toolkit Command Reference
These commands manipulate strings or arrays of characters.Manipulating Text
Strings

Command Stack Diagram Description

" ccc" (-- adr len) Collect an input stream string; either

interpreted or compiled

." ccc" (--) Compile a string for later display

.(ccc) (--) Display a string immediately

eval (adr len --) Interpret Forth source from an array

p" ccc" (-- pstr) Collect a string from the input stream, store

as a packed string

type (adr +n --) Displays characters

count (pstr -- adr +n) Unpack a packed string

-trailing (adr +n1 -- adr +n2) Remove trailing spaces
120

Chapter A: Toolkit Command Reference Advanced Forth Programming Commands
These commands compile data into the dictionary.Compiling the
Dictionary

Command Stack Diagram Description

, (comma) (n --) Place a number in the dictionary

[(--) Begin interpreting

[’] name (-- acf) Compile the code field address of a word

] (--) Begin compilation

allot (n --) Allocate n bytes in the dictionary

c, (n --) Place a byte in the dictionary

compile (--) Compile next word at run time

[compile] name (--) Compile the next (immediate) word

forget name (--) Remove word from dictionary and all

subsequent words

here (-- adr) Address of top of dictionary

immediate (--) Mark the last word as immediate

is name (acf --) Install a new action in a defer word or constant

w, (w --) Place a word in the dictionary

literal (n--) Compile a number

state (-- adr) Variable that is nonzero in compile state

npatch word-to-patch (new-n old-n --) Replace first old-n with new-n in the word word-
to-patch. Note that the values 0, 1, 2, 3 are

actually defined as words, not numbers. Use

patch .

patch new-word old-word word-to-patch See next line for Stack Diagram and Description

(--) Replace first old-word with new-word in word-to-
patch.

(patch (new-n old-n acf --) (Replace first old-n with new-n in word

indicated by acf.
121

Advanced System Commands Chapter A: Toolkit Command Reference
These commands search the dictionary for information.

The advanced system commands provide the ability to interact

closely with your system’s hardware.

The following commands control temporary assignment of

input and output display modes.

Searching the
Dictionary

Command Stack Diagram Description

’ name (-- acf) Find a word in the dictionary (while executing)

find (pstr -- acf n) Search for a word in the dictionary

words (--) Display all words

see name (--) Decompile or disassemble the named word

(see) (acf --) Decompile or disassemble the word indicated

by acf

Advanced System
Commands

Input Output Display
Modes

Command Stack Diagram Description

input (source --) Select input source (ttya, ttyb, or keyboard)

output (source --) Select output source (ttya, ttyb, or screen)

io (source --) Select input and output source
122

Chapter A: Toolkit Command Reference Advanced System Commands
The commands listed below provide various file downloading

capabilities.

These commands disassemble memory into equivalent

opcodes.

File Downloading

Command Stack Diagram Description

dl (--) Download a Forth file over serial line with tip
and interpret with:

~C cat filename.fth

^D

dload filename (addr --) Load the specified file over Ethernet, at the

given address

If a binary file, execute with go .

If a Forth source file, interpret with: ?go
(For ?go to work, Forth source file must begin

with \<space>.)

go (--) Begin execution of previously loaded program

or continue execution of an interrupted

program

?go (--) Process recently downloaded file (interpret

Forth source, execute binary, or interpret SBus

Using the
Disassembler

Command Stack Diagram Description

dis (addr --) Begin disassembling at the given address

+dis (--) Continue disassembling where the last

disassembly left off
123

Advanced System Commands Chapter A: Toolkit Command Reference
Breakpoints may be set to control and monitor program

execution.
Using Breakpoints

Command Stack Diagram Description

go (--) Continue the execution of a halted program

.bp (--) Display all currently set breakpoints

+bp (addr --) Add a breakpoint at the given address

-bp (addr --) Remove the breakpoint at the given address

--bp (--) Remove the most recently set breakpoint

bpoff (--) Remove all breakpoints

step (--) Single-step one instruction

steps (n --) Execute n step s

hop (--) Like step, but treats a subroutine call as a single

instruction

hops (n --) Execute n hop s

skip (--) Skip (do not execute) the current instruction

till (addr --) Execute until the given address is encountered

return (--) Execute until the end of this subroutine

returnL (--) Execute until the end of this leaf subroutine

finish-loop (--) Execute until the end of this loop

.instruction (--) Display the address, opcode for the last

encountered breakpoint

.breakpoint (--) Defer word, for display behavior after every

breakpoint. Default is .instruction .

Change with:

’ .registers is .breakpoint
124

Chapter A: Toolkit Command Reference Advanced System Commands
These command provide SPARC register reading and writing

capability.
Reading and Writing
SPARC Registers

Command Stack Diagram Description

%g0 through %g7 (-- value) Return the value in the given register

%o0 though %o7 (-- value) Return the value in the given register

%L0 through%L7 (-- value) Return the value in the given register

%i0 through %i7 (-- value) Return the value in the given register

%pc %npc %psr (-- value) Return the value in the given register

%y %yim %tbr (-- value) Return the value in the given register

%f0 through %f31 (-- value) Return the value in the given floating point

register

%fsr (-- value) Return the value in the given floating point

register

to regname (value --) To change the value stored in any of the above

registers

Use in the form: value to regname

set-pc (value --) Set %pc to the given value, and set %npc to

(value+4)

w (window# --) Set the current window, for displaying %ix
%Lx or %ox. 0 is current window, 1 is caller’s

window, etc.

ctrace (--) Display the return stack showing C subroutines

.locals (--) Display the values in the i,L and o registers

.psr (--) Formatted display of the %psr data

.registers (--) Display values in %g0through %g7, plus %pc,
%npc, %psr , %y , %wim, %tbr
125

Advanced System Commands Chapter A: Toolkit Command Reference
These commands can be used for symbolic debugging. For

correct execution, the symbol table needs to be loaded before

these commands are invoked.

The command listed below can be used to examine SPARC

traps.

Symbolic Names

Command Stack Diagram Description

.adr (adr --) Display the symbolic name (plus offset) for the

given address

symname (-- adr) Type any valid symbolic name to get the

equivalent address

Traps

Command Stack Diagram Description

.traps (--) Display a list of SPARC trap types
126

Chapter A: Toolkit Command Reference Advanced System Commands
The memory mapping commands inspect and alter mapping

between virtual and physical memory addresses.
Mapping Memory

Command Stack Diagram Description

allocate-dma (size -- virt) Allocate ’size’ bytes of memory in DMA space

allocate-virtual (phys size -- virt) Assign a virtual address to be used for later

mapping

alloc-mem (size -- virt) Allocate and map size bytes of memory, return

the virtual address

map-sbus (phys size -- virt) Map a region of SBUS space (free with free-
virtual)

free-dma (virt size --) Free memory allocated by allocate-dma

free-virtual (virt size --) Free virtual address allocated by allocate-
virtual

free-mem (virt size --) Free memory allocated by alloc-mem or

allocate-virtual

map? (virt --) Display memory map information for the

virtual address

cprobe (adr -- flag) Test for data exception using c@

wprobe (adr -- flag) Test for data exception using w@

Lprobe (adr -- flag) Test for data exception using L@
127

Advanced System Commands Chapter A: Toolkit Command Reference
 Memory mapping primitives are low-level words for

controlling page and segment maps.
Mapping Memory
Primitives

Command Stack Diagram Description

obio (-- space) Specify the "devices" address space for

mapping

obmem (-- space) Specify the "onboard memory" address

space for mapping

sbus (-- space) Specify the "sbus" address space for

mapping

allocate-physical (size -- phys) Return physical address of some

available memory

free-physical (phys size --) Free memory allocated by allocate-
physical

map-page (phys space virt --) Map one page (4K) of memory starting at

address phys onto virtual address virt
in the given address space space . All

addresses are truncated to lie on a page

boundary

map-pages (phys space virt size --) Perform consecutive map-page s to map

a region of memory to the given size

pgmap! (pmentry virt --) Store a new page map entry for the

virtual address

pgmap@ (virt -- pmentry) Return the page map entry for the virtual

address

pagesize (-- size) Return the size of a page, 4K (hex 1000)

segmentsize (-- size) Return the size of a segment, 256K (hex

40000)

smap! (smentry virt --) Store a new segment map entry for the

virtual address

smap@ (virt -- smentry) Return the segment map entry for the

virtual address

smap? (virt --) Formatted display of the segment map

entry for the virtual address

map-segments (smentry virt len --) Consecutive smap! s to map a region of

memory
128

Chapter A: Toolkit Command Reference Advanced System Commands
These commands access alternate address space.Accessing Alternate
Address Space

Command Stack Diagram Description

spacec! (byte adr asi --) Store the byte into the given asi and address

spacew! (byte adr asi --) Store the 16-bit word into the given asi and

address

spaceL! (byte adr asi --) Store the 32-bit word into the given asi and

address

spacec@ (adr asi -- byte) Fetch the byte from the given asi and

address

spacew@ (adr asi -- word) Fetch the 16-bit word from the given asi and

address

spaceL@ (adr asi -- longword) Fetch the 32-bit word from the given asi and

address

spacec? (adr asi --) Display the byte at the given asi and

address

spacew? (adr asi --) Display the 16-bit word at the given asi and

address

spaceL? (adr asi --) Display the 32-bit word at the given asi and

address
129

Advanced System Commands Chapter A: Toolkit Command Reference
These commands provide cache manipulation capabilities.

This command allows you to call SunOS Operating System

functions.

Manipulating the
Cache

Command Stack Diagram Description

flush-cache (--) Invalidate all cache entries

cache-off (--) Disable the cache

cache-on (--) Enable the cache

cdata! (data offset --) Store the 32-bit data at the cache offset

cdata@ (offset -- data) Fetch (return) data from the cache offset

ctag! (value offset --) Store the tag value at the cache offset

ctag@ (offset -- value) Return the tag value at the cache offset

SunOS Operating
System Calls

Command Stack Diagram Description

wector string (value --) Call SunOS with the given value and string
130

Chapter A: Toolkit Command Reference Advanced System Commands
These commands allow you to read and write the machine

registers.
Reading and Writing
Machine Registers

Command Stack Diagram Description

aerr! (data --) Write asynchronous error register

aerr@ (-- data) Read asynchronous error register

averr! (data --) Write asynchronous virtual address register

averr@ (-- data) Read asynchronous error virtual address

register

aux! (data --) Write auxiliary register

aux@ (-- data) Read auxiliary register

context! (data --) Write context register

context@ (-- data) Read context register (MMU context)

dcontext@ (-- data) Read context register (cache context)

dmaaddr! (data --) Write DMA address register

dmaaddr@ (-- data) Read DMA address register

enable! (data --) Write system enable register

enable@ (-- data) Read system enable register

interrupt-enable! (data --) Write interrupt enable register

interrupt-enable@ (-- data) Read interrupt enable register

serr! (data --) Write synchronous error register

serr@ (-- data) Read synchronous error register

sverr! (data --) Write synchronous error virtual address

register

sverr@ (-- data) Read synchronous error virtual address register
131

Advanced System Commands Chapter A: Toolkit Command Reference
132

B

The figures in this appendix provide a quick reference to the

NVRAM configuration parameters and commands. Figure B-1

shows the configuration parameter viewing and setting

commands.

Figure B-1. Configuration Parameter Command Summary

NVRAM Configuration
Parameters Summary

Command Description

printenv Displays all current parameters and current default values

(numbers are shown as decimal values)

setenv parameter value Sets the parameter to the given decimal value
(Changes are permanent but usually take effect after a reset)

set-default parameter Resets the named parameter value to the factory default

set-defaults Resets all parameter values to the factory defaults
133

Appendix B: NVRAM Configuration Parameters
Figure B-2 shows the command primitives.

Figure B-2. Configuration Parameter Command Primitives

Command Stack Diagram Description

parameter (-- value) Return the (current) field value

show parameter (--) Display the (current) field value,

symbolically

show-default parameter (--) Display the default field value,

symbolically

to parameter (value --) Change a (current) field value

Examples: false to auto-boot?

 " Text string" to oem-banner
134

Appendix B: NVRAM Configuration Parameters Summary
Figure B-3 is a list of the NVRAM configuration parameters.

Figure B-3. NVRAM Configuration Parameters

Parameter Description Default

auto-boot? If true, boot automatically after power up True

diag-switch? If true, run in diagnostic mode True*

fcode-debug? If true, include name fields for plug-in device Fcodes False

keyboard-click ? If true, enable keyboard click False

mfg-switch? If true, perform repeated system self-tests False

oem-banner? If true, use custom oem banner False

oem-logo? If true, use custom oem logo (else use SUN Logo) False

sunmon-compat? If true, come up with old-style monitor prompt ’>’ True

ttya-ignore-cd If true, SunOS ignores carrier-detect on ttya True

ttyb-ignore-cd If true, SunOS ignores carrier-detect on ttyb True

ttya-rts-dtr-off If true, SunOS does not assert DTR and RTS on ttya False

ttyb-rts-dtr-off If true, SunOS does not assert DTR and RTS on ttyb False

watchdog-reboo t? If true, reboot after watchdog reset False

screen-#columns Number of on-screen columns (characters/line) 80*

screen-#rows Number of on-screen rows (lines) used 34*

scsi-initiator-id SCSI bus address of host adapter, range 0-7 7*

selftest-#megs Megabytes of RAM to test on power-up or on test-memory1*

input-device Power-on input device (keyboard, ttya or ttyb) keyboard

output-device Power-on output device (screen, ttya or ttyb) screen

boot-from Boot source (default device is sd) vmunix

boot-from-diag Diagnostic boot source le()vmunix

hardware-revision System version information no default

last-hardware- System update information no default

update

oem-banner Custom oem banner (enabled by oem-banner? true) empty

sbus-probe-list Which SBus slots are probed and in what order 0123

ttya-mode ttya (baud, #bits, parity, #stop, handshake) 9600, 8, n, 1, -*

ttyb-mode ttyb (baud, #bits, parity, #stop, handshake) 9600, 8, n, 1, -*

oem-logo Byte array custom oem logo (enabled by oem-logo? true) empty

sd-targets Map SCSI disk units, e.g. unit #0 = target #3, etc. 31204567

st-targets Map SCSI tape units, e.g. unit #0 = target #4, etc. 45670123

testarea One-byte scratch field, available for read/write test 0

security-mode System security level (none, command, full) None

security-passwd System security password (never displayed) Empty

*The default is true in the boot PROM version 1.1 but

 false in the boot PROM version 1.0

** Values in decimal
135

Appendix B: NVRAM Configuration Parameters
136

C

This appendix lists of the most commonly used Sun Monitor

commands and the Forth Toolkit commands which perform

equivalent functions.

Sun Monitor Command
Equivalents
137

Appendix c: Sun Monitor Command Equivalents
Sun Monitor Command Forth Toolkit Command

^C source-addr dest-addr len source-addr dest-addr len move

^I .version

^T address address map?

b [boot spec] boot [boot spec]

addr dload pathname

c address go or address set-pc go

d window# .registers

.locals

window# .window

e address action address w?

value address w!

f addr 1 addr 2 pattern size addr #bytes byte cfill

addr #bytes shortword wfill
138

Appendix c: Sun Monitor Command Equivalents
Sun Monitor Command Forth Toolkit Command

g vector argument go

sync

value wector argument

h help
help name
help category

i cache-data-offset action address cdata@.
value address cdata!

j cache-tag-offset action address ctag@ .
value address ctag!

k1 or k2 k1 = reset k2 = soft-reset

kb banner

l address action address l?
value address l!

maddress action address smap?
value address smap!

o address action address c?
value address c!

p address action address pgmap@
address pgmap?
pte address pgmap!
physical space# virtual map-page
physical space# virtual size map-pages
space#: obmem, obio, sbus

q offset action printenv
setenv parametername value
set-default parametername
set-defaults

s step-count step
step-count steps

r register-number action registername .

value to register-name
139

Appendix c: Sun Monitor Command Equivalents
Sun Monitor Command Forth Toolkit Command

s space# address space# spacec?
address space# spacew?
address space# spacel?
value address space# spacec!
value address space# spacew!
value address space# spacel!

t program n steps

u various options device input
device output
device io
devices: ttya, ttyb, screen, keyboard

v addr1 addr2 address size dump

w address argument value wector argument

x test-control-regs
test-net
test-cache
test-memory
test-floppy
watch-clock

z number address type len address +bp
address -bp

return
returnL
.bp
till
finish
140

D

The following figure lists of the Power-on Self-Test (POST)for the

SPARCstation 1 with brief descriptions.

Power-On Self Test

Test Name Description

PROM Checksum Calculates the checksum of the PROMs and compares

the calculated value with the expected value.

Segment Map Address Writes the number of each segment map location to that

location, then reads back the value and compares it with

the expected value. The entire range of segment map

addresses is written prior to the read and compare

operation. When an error is detected, the test loops on the

error location.

Page Map Address Writes the number of each page map location to that

location, then reads back the value and compares the

observed value with the expected value. The entire range

of Page Map addresses is written prior to the read and

compare operations. When an error is detected, the test

loops on the error location.

Context Register Performs write-read-compare cycles on the context register

using patterns 0x08, 0x07, through 0x00.
141

Appendix D: Power-On Self Test
Test Name Description

Synchronous Error Register Performs write-read-compare cycles on the synchronous

error register, using patterns 0xff, 0xfe, through 0x00, and

also patterns 0x80ff, 0x80fe, through 0x800.

Synchronous Error Virtual Performs write-read-compare cycles on the synchronous

Address Register error virtual address register using patterns 0xffffffff, 0x0,

0x00000001, 0x00000002, 0x00000004, 0x00000008, through

0x80000000.

Asynchronous Error Register Performs write-read-compare cycles on the asynchronous

error register, using patterns 0xb0, 0xa0, 0x90, 0x80, 0x30,

0x20, 0x10, and 0x00.

Asynchronous Error Virtual Performs write-read-compare cycles on the asynchronous

Address Register error virtual address register using patterns 0xffffffff, 0x0,

0x00000001, 0x00000002, 0x00000004, 0x00000008, through

0x20000000.

System Enable Register Examines the system enable register for correct bits set.

System Memory Tests main memory. The number of megabytes tested is

indicated by the NVRAM parameter selftest-#megs
142

Index
Symbols

! 77

111

#> 111

#s 111

%f0 through %f31 123

%fsr 98

%g0 through %g7 123

%i0 through %i7 123

%L0 through%L7 123

%NPC 97

%npc 98

%o0 though %o7 123

%PC 97, 99

%pc 98

%pc %npc %psr 123

%psr 98

%tbr 98

%y 98

%y %yim %tbr 123

%yim 98

(28, 83

(ccc) 86, 115

(.) 111

(patch 119

(see) 83

(see) 120

(u.) 111

) 28, 83

* 74, 109

*/ 109

*/mod 109

+ 25, 26, 74, 109

+! 108

+bp 99, 100, 122, 138

+di 121

+dis 96

+loop 92, 116

, 119

- 74, 109

-- 26

--bp 100, 122

-bp 100, 122, 138

-rot 107

-trailing 118

. 73, 110, 137

. " ccc" 86

.(118

." 118

.bp 100, 122, 138

.breakpoint 100

.breakpoint 122

.d 24, 72, 73, 110

Index
.enet-addr 38, 104

.h 72, 73, 110

.idprom 38, 104

.instruction 100, 122

.locals 98, 123, 136

.psr 98, 123

.r 73, 110

.registers 98, 123, 136

.s 72, 73, 110

.version 38, 53, 104, 136

.window 97, 136

/ 74, 109

/etc/remote 42

/mod 74, 109

;comments in Forth code 83

< 88, 114

<# 111

<< 74, 109

<= 88, 114

<> 88, 114

= 88, 114

> 87, 88, 114

> = 88, 114

> prompt x, 8, 12, 14, 16, 19, 20

booting from 16

returning to 19, 104

>> 74, 109

>>a 74, 109

>r 107

? 77, 108

?do 116

?do 92

?dup 107

?go 48, 121

?leave 116

@ 77, 108

\ 86, 115

] 89

] prompt 89

~ 43

~. 44

~C 45

 119

’ 83, 120

" ccc" 86

Numerics

0< 88, 114

0<= 88, 114

0<> 88, 114

0= 87, 88, 114

0> 88, 114

0>= 88, 114

1+ 109

1- 109

2! 108

2* 109

2+ 109

2- 109

2/ 109

2@ 108

2drop 107

2dup 107

2over 107

2rot 107

2swap 107

32-bit integer 24

32-bit numbers 31, 70

3dup 107

A

abort 95, 117

aborting a hung system 10, 14

abs 74, 109

absolute value 74, 109

acf 82, 83, 95, 117, 119, 120

addition 74, 109

address

code field 83, 95, 119

adds 1 109

adds 2 109

aerr! 129

aerr@ 129

again 116

alloc-mem 76, 125

allocate-dma 76, 125

allocate-physical 126

allocate-virtual 76, 125

and 74, 109
142

Index
arithmetic

right shift n1 by +n places 109

using 74, 109

ASCII 86

ascii command 84, 86, 115

asi 127

asynchronous error register 140

asynchronous error virtual address register 140

auto-boot 8

auto-boot? 52, 64, 133

aux! 129

aux@ 129

averr! 129

averr@ 129

B

b command 15

back space

erase previous character 112

backwards

one character 112

one word 112

banner 59, 104, 137

displaying 38, 60

base 110

displaying the number in the current base

110

setting the number base to 10 110

variable containing number base 110

base 10 24, 110

base 16 110

base 16 numbers 24

baud rate 40

begin 90, 91, 116

beginning of line 112

between 88, 114

bl 86, 115

blank 108

boot

command 16, 38, 47, 99

syntax 105

prom

displaying the version and date 38, 104

version 53

boot prompt 2

boot source filename 64

boot-from 52, 64, 133

boot-from-diag 52, 65, 133

booting 38

after power-on self-test 64

after start-up tests and initalization 64

from the > prompt 16

from the ok prompt 16

bpoff 100, 122

break 43

break key 10, 12, 14, 41

breakpoint commands 99, 122

byte

copying u bytes from adr 1 to adr 2 77, 108

copying u bytes from adr 1 to adr 2 starting at

high byte 108

copying u bytes from adr 1 to adr 2 starting at

lo byte 108

displaying len bytes of memory starting at

adr 108

displaying the byte at adr 77, 108

fetching a byte from adr 77, 108

low

storing low byte of n at adr 77

storing low byte of n at adr 108

C

c command 15, 19

c! 77, 108, 137

c, 119

c? 77, 108, 137

c@ 77, 108

cable

null modem 42

cache 37, 128

data and tag fields

testing 35, 103

testing 37

cache-off 128

cache-on 128

carriage-return 84

case 94, 95, 117

cat 45
143

Index
cdata! 128, 137

cdata@ 128

cdata@. 137

cfill 108

clear 71, 107

clock

function

testing 35, 37, 103

system 37

cmove 108

cmove> 108

code field address 83, 95, 119

address

code field 117

colon definition 27

finishing the creation of a colon definition 82

starting the creation of a new colon definition

82

command line

erasing characters or words 29

moving forward and backwards 29

command security 56

command syntax 22

comments in Forth code 83

compile 119

compiling data into the dictionary 119

configuration parameters 67

NVRAM 131

context register 139

context! 129

context@ 129

control key 29

control registers 35

testing 35

Control-D 45

contstants

defining word 81

count 85, 86, 118

cprobe 76, 78, 125

CPU data register 97

cr 84, 86, 115

ctag! 128, 137

ctag@ 128, 137

ctrace 98, 123

CTRL A

beginning of line 30, 112

CTRL B

backwards one character 30, 112

CTRL D

erase this character 30, 112

CTRL E

end of line 30, 112

CTRL F

forward one character 30, 112

CTRL H

erase previous character 30, 112

CTRL K

erase forward 30, 112

CTRL L

retype line 30, 112

CTRL N

recall subsequent command line 30, 112

CTRL P

recall previous command line 30, 112

CTRL Q

quote next character 30, 112

CTRL U

erase entire line 30, 112

CTRL W

erase previous portion of word 30, 112

D

d# 72, 73, 110

data stack

displaying the contents 110

emptying 71

dcontext@ 129

decimal 24, 72, 73, 110

decimal number 72

default values 51

defer 82

defining word constants 81, 113

defining word for forward references or

execution vectors 82

Del

erase previous character 30, 112

depth 71, 107

diag-switch? 52, 65, 133

diagnostic
144

Index
boot from source filename 65, 133

routines 35, 133

switch

setting 65

dictionary

compiling data into 119

displaying all the visible words in the

dictionary 83

finding a word 83

placing a number in the dictionary 119

searching for a word in the dictionary 83,

120

dis 96, 121

disassembler 96

diskette

drive

system 36

test 35, 103

ejecting 48, 104

dividing by 2 109

division 74, 109

dl 45, 48, 121

dlbin 48

dload 46, 47, 48, 85, 99, 121, 136

DMA

allocate and map size of memory in DMA

space 76

dmaaddr 129

dmaaddr! 129

dmaaddr@ 129

do 92, 116

do loops 92

downloading 45

downloading files 28, 45, 85, 99, 121

drop 71, 107

dump 22, 77, 78, 108, 138

dup 71, 107

duplicate

the top item on the stack 71

duplicating n 107

E

editor 29

editor commands 112

eject-floppy 48, 104

else 89, 90, 117

EMACS 29

emit 84, 86, 115

enable! 129

enable@ 129

end of line 112

endcase 95, 117

endof 95, 117

entering the Forth Toolkit 19

erase 108

entire line 30, 112

forward 30, 112

previous character 30, 112

this character 30, 112

this portion of word 30

ESC B

backwards one word 30, 112

ESC D

erase this portion of word 30, 112

ESC F

forward one word 30, 112

ESC H

erase previous portion of word 30, 112

escape key 29

Ethernet 18, 106

address

displaying 38, 104

controller

testing 35, 36, 103

loading the specified file over 121

eval 85, 118

exchanging the top 2 stack items 107

exclusive or 74, 109

execute 95, 117

exit 95, 117

exit? 86, 115
145

Index
F

false 87, 88, 114

Fcode 121

fcode-debug? 52, 67, 133

files

downloading 28

fill 77, 108

find 83, 120

finish 138

finish-loop 100, 122

flag 87

floppy

ejecting 48, 104

floppy disk drive

system 36

test 35, 103

flush-cache 128

forget 119

Forth

file 121

reference materials 30, 31

source 118, 121

text 45, 46, 47

Toolkit

entering 19

mode 2

Forth 83-Standard 70

Forth text 45

Forth Toolkit 3

forward

one character 112

one work 112

frame buffer 38

free-dma 125

free-mem 125

free-physical 126

free-virtual 125

full security 57

G

go 48, 97, 99, 100, 121, 122, 137

H

h# 72, 73, 110

halt 10

halting the SunOS Operating System 10, 13

hardware-revision 52, 67, 133

help 23, 104, 137

here 119

hex 24, 72, 73, 110

setting the number base to base 16 110

hex number 24, 72, 110

interpreting the next number in hex 110

history mechanism 29

HOLD 111

hop 100, 122

hops 100, 122

hung system 9, 11, 14, 21

aborting 10, 14

I

i 92, 116

ID PROM

displaying contents 38, 104

if 89, 90, 117

immediate 119

input 38, 39, 41, 62, 138

select source for input 120

text 115

input device

keyboard 63

ttya 63

ttyb 63

input-device 40, 52, 62, 63, 133

input/output 40, 41

select source for input and output 120

inserting text 29

integer 24

32-bit 24

integer unit 7

 119

interrupt-enable! 129

interrupt-enable@ 129

interrupting the power-up sequence 10, 12

io 138
146

Index
is 82, 119

IU 7

J

j 92, 116

K

key 86, 115

key? 84, 86, 91, 115

keyboard 38, 39, 115, 120, 138

input device 63

keyboard click 67

keyboard-click? 52, 67, 133

L

L! 77, 108

l! 137

l? 137

L@ 77, 108

L1-A 8, 10, 12, 14, 39, 40, 42, 43, 66, 97

last-hardware-update 52, 67, 133

leave 92, 116

left shift n1 by +n places 74, 109

Lfill 77, 108

line editor 29

line editor commands

backward one character 30, 112

backward one word 30, 112

beginning of line 112

end of line 30, 112

erase entire line 30, 112

erase forward 30, 112

erase previous character 30, 112

erase previous portion of word 30, 112

erase this character 30, 112

erase this portion of word 30, 112

forward one character 30, 112

forward one word 30, 112

quote next character 30, 112

recall previous command line 30, 112

recall subsequent command line 30, 112

retype line 30, 112

literal 119

loading the file over Ethernet 121

logical and 74, 109

logical or 74, 109

loop 92, 93, 116

loops 90, 92

conditional 116

Lprobe 76, 125

M

main memory

testing 35, 65

manufacturing switch

setting 65

map-page 76, 126, 137

map-pages 76, 126, 137

map-sbus 76, 125

map-segments 126

map? 76, 125, 136

max 74, 109

maximum 74, 109

memory 96, 99, 121

accessing 75

allocate and map size bytes of available

memory 76

allocate and map size bytes of memory 76

displaying len bytes of memory starting at

adr 77

main

testing 103

map

displaying memory map information 76

mapping 78

setting cnt bytes of memory to byte 108

setting size bytes of memory to 16-bit word

108

setting size bytes of memory to 32-bit long

108

setting size bytes of memory to a 16-bit word

77

setting size bytes of memory to a 32-bit long

address 77

setting size bytes of memory to byte 77, 108

setting u bytes of memory to 0 108
147

Index
setting up u bytes of memory to space 108

testing 35, 36, 65

mfg-switch? 52, 65, 133

min 74, 109

minimum 74, 109

mod 74, 109

monitor 3, 8, 15, 21, 33, 38, 67

mode 2

starting 9

monitor mode 2

move 77, 108, 136

multiplication 74, 109

multiplies by 2 109

N

n command 14, 15, 43

n1*n1/3 109

nip 107

no security 55

Non-Volatile Random Access Memory 2, 8, 15,

17, 31, 35, 40, 51

Non-Volatile Read Only Memory 1

not 74

npatch 119

null modem cable 42

number 24, 73

16-bit

displaying the 16-bit number at adr 77,

108

fetching a 16-bit number from adr 77,

108

storing a 16-bit number at adr 77, 108

32-bit 24, 31, 70

adding n to the 32-bit number stored at

adr 108

displaying the 32-bit number at adr 77,

108

fetching a 32-bit number from adr 77,

108

storing a 32-bit number at address 108

storing a 32-bit number at adr 77

decimal 72

displaying n in decimal without

changing the base 73, 110

interpreting the next number in decimal

73, 110

setting number base to 10 73

displaying

a number from the current stack 73

a number in a fixed width field 73, 110

an unsigned number 110

the number in the current base 110

fetching two numbers from adr 108

hex 72

displaying a number in hex without

changing the base 73

setting the number base to 16 73

hexidecimal

displaying n in hex without changing the

base 110

interpreting the next number in hex with the

base unchanged 73

storing two numbers at adr 108

unsigned

displaying an unsigned number 73, 110

NVRAM 1, 2, 8, 15, 17, 31, 35, 40, 51

NVRAM configuration parameters 131

O

obio 76, 126, 137

obmem 76, 126, 137

oem-banner 52, 59, 133

oem-banner? 52, 60, 61, 133

oem-logo 52, 59, 133

oem-logo? 52, 59, 61, 133

of 95, 117

ok prompt 3, 16, 19, 21, 29, 40, 112

booting from 16

old-mode 14, 104

ones compliment 74

operating system 1, 7, 9, 10, 13, 38, 48

halting 10

or 74, 109

output 38, 39, 41, 62, 138

select source for output 120

text 115

output-device 40, 52, 62, 63, 133

screen 63
148

Index
over 71, 107

P

p" 86, 118

packed string 85, 86

page

map one page of memory 76

performs consecutive map-pages 76

page map 139

pagesize 126

parameter

configuration 67

displaying 51, 52

displaying all current parameters 131

power-on testing 65

resetting all parameters to the default 51, 54,

131

resetting the named parameter to the default

51, 54, 131

setting 51, 53

setting the parameters to the given decimal

value 131

system configuration 51

parentheses

left 83

right 83

password

security 56

patch 119

pgmap! 126, 137

pgmap? 137

pgmap@ 126, 137

physical address 75

physical memory 125

pick 71, 107

ports 38

POST 7, 139

power cycle 9, 11, 21, 40

Power-On Self-Test 7, 139

power-on testing parameters 65

power-up sequence, interrupting 10, 12

printenv 51, 52, 131, 137

probe-scsi 35, 103

PROM

Programmable Read Only Memory 1

prompt

> 8, 14, 16, 19, 20

boot 2

ok 3, 16, 19, 21, 29, 40

pstr 83, 85, 86, 118, 120

Q

quit 95

R

r> 107

RAM

testing 65

recall

previous command lineion 112

subsequent command ion 112

redirecting input and output 39

registers 99

test control 35, 103

remainder

of n1/n2 74, 109

quotient of n1*n2/n3 109

quotient of n1/n2 74, 109

repeat 90, 91, 116

reset 34, 103, 137

resetting

parameter defaults 53

the system 34

return 100, 122, 138

returning to the > prompt 19

returnL 122, 138

returnl 100

retype line 112

right shift n1 by +n places 74, 109

roll 71, 107

rot 71, 107
149

Index
S

save-fregs 97

SBus 67, 121

sbus 76, 126, 137

SBus

card 67

map a region of SBus space 76

slot offsets 79

sbus-probe-list 52, 67, 133

screen 39, 41, 120, 138

output device 63

screen-#columns 52, 62, 133

screen-#rows 52, 62, 133

SCSI 18, 67, 106

SCSI devices

determining 35, 103

scsi-initiator-id 52, 67, 133

sd-targets 52, 67, 133

searching the dictionary 120

security 55

command 56

full 57

none 55

password 56

security-mode 55, 133

security-passwd 56, 133

see 27, 83, 120

segment map 139

segmentsize 126

selftest-#megs 52, 65, 133

serial 38

cable 42

line 41

port a 8, 39, 41, 120

port b 39, 41, 120

ports 62

serr! 129

serr@ 129

set-default 51, 54, 131, 137

set-defaults 51, 54, 131, 137

set-pc 97, 98, 123

setenv 51, 53, 131, 137

ttya-mode 63

show 51, 132

show-default 132

showing the stack 70

showstack 25, 70, 110

SIGN 111

skip 100, 122

slot 79

slot offsets 79

smap! 126, 137

smap? 126, 137

smap@ 126

soft-reset 137

space 115

spacec! 127, 138

spacec? 127, 138

spacec@ 127

spacel! 127, 138

spaceL? 127

spacel? 138

spaceL@ 127

spaces 115

spacew! 127, 138

spacew? 127, 138

spacew@ 127

st-targets 52, 67, 133

stack 25, 107

copying +nth stack items 71, 107

copying the second 2 stack items 107

copying the second item to the top of the

stack 107

copying the second stack item to the top of

the stack 71

copying the top stack item underneath the

second item 107

data

displaying the contents 73, 110

emptying 71

diagram 26

discarding the second stack item 107

displaying the contents 73

duplicating 2 stack items 107

duplicating 3 stack items 107

duplicating n if it is non-zero 107

duplicating the top item on the stack 71

exchanging the top 2 stack items 71, 107

inversely rotating 3 stack items 71, 107
150

Index
moving a stack item to the return stack 107

moving an item from the return stack to the

data stack 107

removing 2 items from the stack 107

removing n from the stack 107

removing the top item from the stack 71

returning the number of items on the stack

71, 107

rotating +n stack items 71, 107

rotating 3 pairs of stack items 107

rotating 3 stack items 71, 107

showing 70

showing stack items before the ok prompt

110

standalone 99

starting the monitor 9

state 119

step 99, 100, 122, 137

steps 100, 122, 137, 138

string

packed 85

subtraction 74, 109

subtracts 2 109

Sun-Compatible Monitor 3, 8, 15, 21, 33, 38, 67

mode 2

Sun-Compatible Monitor mode 2

sunmon-compat? 52, 67, 133

SunOS Operating System 1, 7, 9, 10, 13, 38, 48, 99,

128

halting 10, 13

sverr! 129

sverr@ 129

swap 71, 107

switch

setting 133

symbol table 46, 96, 124

symbolic debugging 124

sync 14, 48, 104, 137

synchronous error register 140

synchronous error virtual address register 140

system clock 37

system configuration parameters 51

system enable register 140

T

terminal 38

test control registers 103

test-cache 35, 37, 103, 138

test-control-regs 35, 103, 138

test-floppy 35, 36, 103, 138

test-memory 35, 37, 103, 138

test-net 35, 36, 103, 138

testarea 52, 67, 133

text

input 115

inserting 29

output 115

tftp protocol 46

then 89, 90, 117

till 100, 122, 138

tip command 41

tip window 42, 45

to 61, 98, 132, 137

to regname 123

true 87, 88, 114

ttya 8, 39, 41, 120, 138

input device 63

ttya-ignore-cd 52, 67, 133

ttya-mode 40, 52, 62, 133

ttya-rts-dtr-of 67

ttya-rts-dtr-off 52, 133

ttyb 39, 41, 120, 138

input device 63

ttyb-ignore-cd 52, 67, 133

ttyb-mode 40, 52, 62, 133

ttyb-rts-dtr-off 52, 67, 133

tuck 107

type 86, 118

U

u. 73, 110

u.r 73, 110

u< 88, 114

u<= 88, 114

u> 88, 114

u>= 88, 114

until 90, 91, 116
151

Index
V

value 81

defining 82

variable 80

defining 82

version

boot PROM 53

virtual 125

address 75

W

w 97, 98, 123

w ! 108

w! 77, 136

w. 119

w? 77, 108, 136

w@ 77, 108

watch-clock 35, 37, 103, 138

watch-net 35

watchdog-reboot? 52, 67, 133

wector 128, 137, 138

wfill 77, 108, 136

while 90, 91, 116

within 88, 114

words 22, 83, 120

wprobe 76, 125

X

xor 74, 109
152

	oprom.cover
	Open Boot PROM
	Toolkit User’s Guide

	oprom.preface
	How to Use This Book
	Related Books
	Before Reading This Book
	This book follows a number of typographical conventions:
	This font is used for emphasis, for a command argument, and for the title of a book. For example:
	This font indicates a program listing, a command name, a program name, or text the machine displa...
	This font indicates what you type. Pressing the key after typing the command line is an assumed a...
	A rectangular box around text indicates a key name. For example:
	In a command line, square brackets indicate an optional entry and italics indicate an argument th...
	Toolkit commands may be typed in either upper or lower case characters. Many Toolkit commands are...

	opromTOC
	Contents
	Chapter 1. Overview 1
	Chapter 2. System Start-Up and Auto-Booting 7
	Chapter 3. Using the Sun-Compatible Monitor 9
	Chapter 4. Forth Toolkit Fundamentals 21
	Chapter 5. Using the Forth Toolkit 33
	Chapter 6. Using Configuration Parameters 51
	Chapter 7. More Forth Tools 69

	oprom.chapter1
	Overview
	Programmable Read Only Memory

	The NVRAM contains information that is used during system boot to set up the basic machine config...
	Non-Volatile Random Access Memory
	PROM User Interfaces
	The Toolkit is an interactive command interpreter based on the Forth programming language. While ...

	The following shows where you will find the important information in this manual.
	Where to Find What You Need
	1

	oprom.chapter2
	System Start-Up and
	Auto-Booting
	Power-On Self-Test (POST)

	When the system test and initialization are completed, the auto- boot procedure begins. By defaul...
	Auto-Boot Procedure
	2

	oprom.chapter3
	Using the Sun-Compatible Monitor
	Starting the Monitor

	When your system becomes hung a power cycle is necessary to return the system to normal operation.
	Performing a Power Cycle
	To perform a power cycle:
	1. Turn off the power to the system unit (use the main power switch on the back of the system unit).
	2. Wait a minimum of 10 seconds.
	3. Turn the power back on.

	The most common way to start the PROM interface is to interrupt the power-up sequence. You can in...
	To interrupt the power-up sequence (assuming the system is powered off) :
	1. Turn on the power to the display.
	2. Turn on the power to the system unit.
	3. After the word “Testing” appears on the display, press the keys simultaneously. Or, if your co...

	To start the boot PROM interface when the SunOS Operating System is running, you must first halt ...
	To halt the operating system and start the user interface:
	1. Save and quit all open files. See the Sun System User’s Guide for more information about endin...
	2. Quit all open applications.
	3. Become superuser as described in the Sun System Network Manager’s Guide, Chapter 2. Type /bin/...
	4. Type /etc/halt and press .
	When the operating system appears to be running but the system does not respond to the mouse and/...
	To abort a hung system and start the PROM user interface:

	1. Press .
	2. Type n and press .
	The system displays a help message and an ok prompt.

	3. Type sync and press .
	4. Press again when you see the word rebooting.
	5. Type old-mode and press , to return to the > prompt (if desired).

	The sync command helps prevents the system from losing data that was not preserved when the syste...
	Compatible Monitor Functions

	The boot command loads the SunOS Operating System or another executable program into memory and e...
	The syntax of the boot command follows. Spaces and tabs typed in the command line are ignored. Al...
	The Sun-Compatible Monitor supports a very abbreviated set of functions. From the > prompt you ca...
	3

	oprom.chapter4
	Forth Toolkit Fundamentals
	Forth Commands (Words)

	Commands that may generate large amounts of output, such as dump or words, may be interrupted by ...
	More [<space>,<cr>,q] ?
	Numbers are entered simply by typing in the value, for example, 55 or -123. Forth accepts only in...
	Numbers

	The Forth stack is a last-in, first-out buffer used for temporarily holding numeric information. ...
	The Stack
	Colon Definitions

	An EMACS-style (one of the text editors available on Sun systems) keyboard line editor and histor...
	Keyboard Editor
	To execute a control key combination:
	1. Press and hold down the key.
	2. Type the desired character key.
	To execute an escape key combination:

	1. Press and release the key.
	2. Type the desired character key.
	For Further Reference
	4

	oprom.chapter5
	Using the Forth Toolkit
	Occasionally you will find it necessary to reset the system. The reset command, listed in Figure ...
	Resetting the System
	To reset the system, type:

	Several diagnostic routines are available through the Toolkit. These on-board tests allow you to ...
	Diagnostic Routines
	To test the cache, type:

	The Toolkit provides several commands you can use to display pertinent system information. These ...
	Displaying System Information

	The boot command loads the SunOS Operating System kernel or another executable program into memor...
	Booting the System From the Toolkit Prompt
	Input, Output, and Display Modes
	You can use the ttya or ttyb ports on your SPARC system to connect to another Sun Workstation (ei...
	Setting Up a tip Connection

	To set up a tip connection:
	1. Connect the Sun Workstation (ttyb serial port) to your SPARC system ttya serial port using a s...
	2. At the Sun Workstation, add the following lines to the file / etc/remote:
	3. In a shell window on the Sun Workstation, type tip hardwire and press .
	4. At your SPARC system, start the Sun-Compatible Monitor and enter the Toolkit. You should see t...
	5. To redirect the standard input and output to ttya, if needed, type ttya io and press .
	6. Press on the Sun workstation keyboard. The ok prompt should appear in the tip window.
	To end the tip session:

	1. Redirect the input and output to the screen and keyboard, if needed.
	2. In the tip window, type the ~. command .
	3. The tip window session is closed and you should see the host prompt.

	1. The lock directory is missing or incorrect. There must be a directory /usr/spool/uucp. The own...
	2. ttyb must be enabled for logins. The status field for ttyb (or the serial port you are using) ...
	3. /dev/ttyb is inaccessible. Sometimes, a program will have changed the protection of /dev/ttyb ...
	4. The serial line is in tandem mode. If the tip connection is in tandem mode, the operating syst...

	File downloading commands let you download and interpret a Forth text file over a serial connecti...
	Downloading Files
	To download a Forth file from a Sun Workstation to your SPARC system:
	1. In the Sun Workstation tip window, type dl and press .
	2. Type ~C and cat myfile.fth.
	3. Wait several seconds for download to complete.
	4. Type .
	5. If the requested file is not found, the following message is displayed.
	6. Type to return to the ok prompt.
	To download and execute a file at address 4000:

	1. At the ok prompt type 4000 dload filename.ext and press .
	2. If the downloaded file is a binary file, then go will execute that program.
	3. If the downloaded file contains Forth text beginning with a backslash and a space (\) then th...

	Your SPARC system may have two types of locally-attached disk drives: a diskette drive and one or...
	Ejecting the Floppy Diskette
	Preserving Data After a System Crash
	5

	oprom.chapter6
	Using Configuration Parameters
	To display a list of the current parameter settings, type:
	Displaying Parameters
	Note: The default value of diag-switch? is false in one early version of the boot PROM. To determ...
	Changing a Parameter’s Value

	To change the setting of the auto-boot? parameter from true to false, enter:
	Resetting Default Values

	To reset the auto-boot? parameter to its original default setting (true), type:
	To reset all the parameters to the default settings, type:

	The security feature of the boot PROM is available on version 1.1 as well as later boot PROM vers...
	Security
	1. No security
	2. Command security
	3. Full security

	You can use the banner command to view the power-on banner. The configuration parameters that con...
	Changing the Power-On Banner
	To display the system power-on banner, enter:
	To insert a custom text field in the power-on banner, enter:
	Input and Output Control
	The input-device and output-device parameters control the system’s selection of input and output ...
	Selecting Boot Options
	Controlling Power- On Self-Test

	For example, the diag-switch? is set to false and you want to power-up in diagnostic mode:
	1. Set the diag-switch? parameter to true.
	2. Reset the system.
	Miscellaneous Parameters Descriptions
	This chapter described the configuration parameters contained in NVRAM. Changes made to these par...
	6

	oprom.chapter7
	More Forth Tools
	Showing the Stack
	Using 32-Bit Numbers
	Manipulating the Stack

	The commands hex and decimal cause all subsequent numeric input and output to be performed in bas...
	Numeric Input and Output in Different Bases

	Forth provides a variety of basic arithmetic functions. The commands listed in Figure 7-3 perform...
	Using Arithmetic

	The PROM Toolkit provides interactive commands for examining and setting memory. See Figures 7-4 ...
	Accessing Memory

	The commands shown in the following two figures can be used to access, modify, map, and test memo...
	Using Defining Words

	The dictionary is the list of all available Forth commands. This section describes some useful di...
	Searching the Dictionary
	Controlling Text Input and Output
	Interpreting Source Code

	Forth conditionals use flags to indicate true/false values. A flag can be generated in any number...
	Using Conditional Testing

	The commands if, else, and then provide a simple if-then- else capability.
	Controlling Conditional Execution

	The format for using these commands is:
	Conditional loops execute the same commands over and over until a certain condition is satisfied....
	Counted loops, called do loops, are used when the number of iterations of the loop can be calcula...
	Several loop examples follow:
	A high-level case command is provided for selecting alternatives with multiple possibilities. It ...
	Using Case Statements

	The PROM’s built-in disassembler translates the contents of memory into equivalent SPARC assembly...
	Using the Disassembler

	There are several ways to enter the Toolkit from the middle of an executing program. These includ...
	Displaying Registers

	The Toolkit provides a robust breakpoint capability, to assist in the development and debugging o...
	Using Breakpoints
	To debug a program using breakpoints:
	1. Load the test program into memory at location 4000 (hex).
	2. Disassemble the downloaded program, if desired, to verify a properly downloaded file.
	3. At this point you can begin single-stepping the test program using the step command. Or set a ...
	7

	oprom.appendixa
	Basic system control commands are listed in the following tables.
	Basic System Commands
	The commands listed in the following table invoke the specified diagnostic test routine.
	The following commands provide system information formatted displays.
	The following commands provide floppy and SCSI disk drive control.
	The following commands describe the help and mode change functions.

	Boot command syntax are shown in the following figure. Spaces and tabs typed in the command line ...
	The commands listed in the figures in this section are common Forth command words.
	Basic Forth Commands

	These commands access, modify and test memory locations.
	These commands perform basic arithmetic operations on items in the data stack.
	You can use these line editor commands whenever you are typing commands to the ok prompt. When yo...
	The advanced programming commands can be used to write Forth programs. You may need to refer to a...
	Advanced Forth Programming Commands

	These commands are defining words for creating dictionary entries.
	These commands control text input and keyboard scanning.
	These commands control text output display.
	These commands control the execution of conditional loops.
	These commands control the flow of program execution.
	These commands manipulate strings or arrays of characters.
	These commands compile data into the dictionary.
	The advanced system commands provide the ability to interact closely with your system’s hardware.
	Advanced System Commands
	The following commands control temporary assignment of input and output display modes.
	The commands listed below provide various file downloading capabilities.

	These commands disassemble memory into equivalent opcodes.
	Breakpoints may be set to control and monitor program execution.
	These command provide SPARC register reading and writing capability.
	These commands can be used for symbolic debugging. For correct execution, the symbol table needs ...
	The memory mapping commands inspect and alter mapping between virtual and physical memory addresses.
	Memory mapping primitives are low-level words for controlling page and segment maps.
	These commands access alternate address space.
	These commands provide cache manipulation capabilities.
	These commands allow you to read and write the machine registers.
	A

	oprom.appendixb
	B

	oprom.appendixc
	C

	oprom.appendixd
	D

	opromINDEX
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

