g

- A/UX Programming
Languages and Tools

Volume 2

Release 3.0

LIMITED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on which a
software product is distributed, Apple will replace the media or manuals at no charge to you, provided you
return the item to be replaced with proof of purchase to Apple or an authorized Apple dealer during the 90-
day period after you purchased the software. In addition, Apple will replace damaged software media and
manuals for as long as the software product is included in Apple’s Media Exchange Program. While not an
upgrade or update method, this program offers additional protection for up to two years or more from the
date of your original purchase. See your authorized Apple dealer for program coverage and details. In some
countries the replacement period may be different; check with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUALS, INCLUDING IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO
NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS, OR IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD “AS IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you
specific legal rights, and you may also have other rights which vary from state to state.

Apple Computer, Inc.
© 1992, Apple Computer, Inc. and UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws, this
manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The same
proprietary and copyright notices must be affixed to any permitted copies as were affixed to the original.
Under the law, copying includes translating into another language or format.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the “keyboard” logo (Option-
Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark
infringement and unfair competition in violation of federal and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, APDA, AppleShare, AppleTalk, A/UX, EtherTalk, ImageWriter, LaserWriter,
LocalTalk, Macintosh, MacTCP, MPW, MultiFinder, SANE, and TokenTalk are trademarks of Apple
Computer, Inc,, registered in the United States and other countries.

Apple Desktop Bus, Finder, MacX, QuickDraw, ResEdit, and SuperDrive are trademarks of Apple
Computer, Inc.

Adobe, Adobe Illustrator, and PostScript are registered trademarks of Adobe Systems Incorporated.
cdb is a trademark of Third Eye Software, Inc.

DEC, Internet, PDP-11, VAX, and VTI00 are trademarks of Digital Equipment Corporation.
Electrocomp 2000 is a trademark of Image Graphics, Inc.

IBM is a registered trademark, and System 370 is a trademark, of International Business Machines Corporation.
ITC Garamond and ITC Zapf Dingbats are registered trademarks of International Typeface Corporation.
Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Motorola is a registered trademark of Motorola Corporation.

NFS, SPARC, and SUN are trademarks of Sun Microsystems, Inc.

NuBus is a trademark of Texas Instruments.

QuarkXPress is a registered trademark of Quark, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X Window System is a trademark of Massachusetts Institute of Technology.

Zilog is a registered trademark of Zilog, Inc.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor
a recommendation. Apple assumes no responsibility with regard to the performance or use of these products.

Contents

Figures, Tables, and Listings / xvii

About This Guide / xxi

Who should use this guide / xxi
What you need to know / xxi
What's covered in this guide / xxii
Where to go for more information / xxii
How to use this guide / xxiii
Conventions used in this guide / xxiii
Keys and key combinations / xxiii
Terminology / xxiv
The courier font / xxiv
Font styles / xxv
A/UX command syntax / xxv
Manual page reference notation / xxvi
For more information / xxvii

Overview of Programming Tools / 1-1

Program development tools / 1-2
Program structure: cb / 1-2
Execution: cflow and prof / 1-2
Processing: m4, lex,and yacc / 1-3
Debugging: nm and od / 1-3

vi

Part 1

Contents

File manipulation tools / 1-4
File characteristics: size, diff,and comm / 1-4
Maintenance: make, SCCS, and ar / 1-5
A file-processing language: awk / 1-0

Math functions: dc and be / 1-6

Screen-oriented tools: curses and Commando / 1-6

Program Development Tools

Programming Tools / 2-1

Improving C program structure: cb / 2-2
Generating a C flowgraph: cflow / 2-2
Displaying profile data: prof / 2-2

A C language preprocessor: cpp / 2-3

Finding a function definition quickly: ctags / 2-4
Sharing strings from C programs: xstr / 2-4
Printing the symbol table fora COFF file: nm / 2-5
Obtaining an octal dump of a file: od / 2-5

vacc: A Compiler-Writing System / 3-1

Usage / 3-3

Basic specifications / 3-6
Actions / 3-8

Lexical analysis / 3-12

Parser operation / 3-14
Ambiguity and conflicts / 3-19
Precedence / 3-23

Error handling / 3-27

The yacc environment / 3-29
Inputstyle / 3-31

Left recursion / 3-31

Lexical considerations / 3-32
Reserved words / 3-34

Simulating error and accept in actions / 3-34
Accessing values in enclosing rules / 3-34
Arbitrary value types / 3-30

Example: A desk calculator / 3-38

Example: yacc input syntax / 3-43
Example: An advanced grammar / 3-46
Backward compatibility / 3-56

m4: A Macro Processor / 4-1

Invoking ma / 4-3
Defining macros / 4-3
define / 4-3
Quoting / 4-5
changequote / 4-6
undefine / 4-6
ifdef / 4-6
Arguments / 4-7
ifelse / 4-8
Arithmetic built-ins / 4-9
I/0 manipulation / 4-10
include and sinclude / 4-10
divert, undivert, and divnum / 4-11
dnl / 4-14
String manipulation / 4-14
len / 4-14
substr / 4-15
index and translit / 4-15
Printing / 4-16
errprint / 4-16
dumpdef / 4-16
Executing system commands / 4-16
syscmdand maketemp / 4-16
Interactive use of m4 / 4-17
Recursive definitions / 4-17

Built-in macro summary / 4-19

Contents

vii

5 lex: A Lexical Analyzer / 5-1

Overview of lex usage / 5-3
lex and yacc / 54
Program syntax / 5-6
Characterset / 5-7
Character classes / 5-7
Arbitrary characters / 5-9
Operators / 59
Definitions / 5-10
Repetitions and definitions / 5-12
Rules / 5-12
Regular expressions / 5-12
Optional expressions / 5-13
Repeated expressions / 5-13
Alternation and grouping / 5-14

Context sensitivity / 5-14
Left context sensitivity / 5-15
Flags / 5-16
Start conditions / 5-17
Ambiguous rules / 5-18
Actions / 5-19
The null statement / 5-20
The repetition character / 5-20
printf and ECHO / 5-20
yyleng / 5-21
yymore and yyless / 5-22
lex input and output routines / 5-23
yywrap / 5-24
REJECT / 5-25
Compilation / 5-27
Examples / 5-27
Summary / 5-29

viii Contents

Part 2 File Manipulation Tools

6 File Attribute Tools / 6-1

Comparing source files / 6-2

Finding files: £ind / 6-2

Printing the section sizes of COFF files: size / 6-2
Finding the version number of a file: version / 6-3
Maintaining portable archives and libraries: ar / 6-3

7 make: A File Production Tool / 7-1

Using make / 7-3
Writing a makefile / 7-3
make command syntax / 7-5
Options / 7-6
Using make on individual files / 7-8
The description file / 7-8
Makefile entries / 7-9
Targets versus rules / 7-9
Built-in targets / 7-10
Dependency statements / 7-11
Commands / 7-12
Comments / 7-13
include lines / 7-13
Macro definitions / 7-13
Internal macros / 7-15
Dynamic dependency parameters / 7-16
Options / 7-18
Suppressing printing of commands / 7-18
Ignoring errors / 7-18
Combining commands / 7-19
Default commands / 7-19
Saving files / 7-20
Use of selected options / 7-20
Suffixes and rules / 7-20
Suffixes / 7-20
Transformation rules / 7-21
The default macro settings / 7-26
Changing default suffixes and rules / 7-27
The default suffix list / 7-27
The default rules / 7-28

Contents

Operation / 7-28
Environment variables / 7-28
Macros / 7-29
Precedence / 7-35
Macro Testing / 7-37
Attributes / 7-38
Archive libraries / 7-40
SCCS files / 7-42
SCCS filename prefixes / 7-42
SCCS filename suffixes / 7-43
SCCS transformation rules / 7-43
SCCS makefiles / 7-43
Advanced topics / 7-44
Walking the directorytree / 7-44
The make predecessor tree / 7-45

The makefile as shell script / 7-46
Unintended targets / 7-46
Mnemonic targets / 7-47
Macro translation / 7-47

Dynamic Include File Dependency Generation / 7-50
A warning for system administrators / 7-52

8 SCCS Reference / 8-1

SCCS for beginners / 8-3
Creating an SCCS file / 8-3
Retrieving a file and storing a new version / 8-4
Retrieving versions / 8-5
On-line information / 8-6

SCCS files / 8-7
Standard A/UX protection / 8-7
SCCS protection mechanisms / 8-8
Administering SCCS / 8-9
Group project administration / 8-9
SCCS file formats / 8-12
SCCS file auditing / 8-12
Delta numbering / 8-13
Branch deltas / 8-14
SCCS command conventions / 8-16
SCCS command arguments / 8-16
Flags / 8-17
Diagnostics / 8-17

Contents

Temporary files / 8-17
SCCS 1D keywords / 8-20

SCCS command summary / 8-22

Create SCCS files: admin / 8-22
SCCS flags / 8-23
Comments and MR numbers / 8-24
Descriptive text / 8-25

Change comments in an SCCS file: cdc / 8-26
Combine deltas to save space: comb / 8-26

Store a new SCCS file version: delta / 8-27
Required temporary files / 8-27
Comments and MR numbers / 8-28
Keywords / 8-29
Removal of temporary files / 8-30

Retrieve an SCCS file version: get / 8-30
Retrieving different versions / 8-31
Retrieving a file to create a new delta / 8-32
Concurrent edits of different versions / 8-34
Concurrent edits of the same SID / 8-36

Keyletters that affect output / 8-37
Restore a version unchanged: unget / 8-38
On-line explanations: help / 8-39
Print parts of an SCCS file: prs / 8-39
Remove a specific delta: rmdel -r / 841
Account for open SCCS files: sact / 8-42
Compare two SCCS files: sccsdiff / 843
Check SCCS file characteristics: val / 8-43
Find identifying information: what / 8-44

awk Programming Language / 9-1

awk operation / 9-3
Comments / 9-5
Command-line options / 9-6
Invocation modes / 9-7
Interactions with the shell / 9-9
Textinput processing / 9-11

Patterns / 9-14
Using expressions for patterns / 9-15
Regular expression syntax / 9-17
BEGIN and END / 9-19

Contents

xii

Contents

Actions / 9-20

Components of awk programs / 9-21

Flow of control / 9-23

Report generation / 9-27

Reading input: getline / 9-29

Printing output: print and printf / 9-30
print / 9-31
printf / 9-33

The system command / 9-34

Directing output to other programs / 9-34

Data structures / 9-35
Variables / 9-35
Initialization of variables / 9-37
Assignment operators / 9-37
Arrays / 9-38
Built-in variables and arrays / 9-40

Expressions / 9-41
Combining true-or-false expressions / 9-45
Implied concatenation operations / 9-45
Determination of data type / 9-46
Built-in string functions / 9-47
Built-in numeric functions / 9-49

Lexical conventions / 9-50
Numeric constants / 9-50
String constants / 9-51
Predefined variables, reserved keywords, and reserved function names / 9-51
Identifiers / 9-52
Record and field tokens / 9-52

Separators / 9-53
Record separators / 9-53
Field separator / 9-53

Multiline records / 9-54
Output record and field separators / 9-54
Separators and braces / 9-54
Primary expressions / 9-55
Numeric constants / 9-55
String constants / 9-56
Variables / 9-56
Functions / 9-57

Terms / 9-58
Binary terms / 9-58
Unary terms / 9-59
Incremented variables / 9-59
Terms with parentheses / 9-60

Expressions / 9-60
Concatenation of terms / 9-60
Assignment expressions / 9-01

Part 3 Math Tools

10 dc: A Desk Calculator / 10-1

Using dc / 10-2

Command syntax / 10-2
Operators / 10-3
Relational operators / 10-3

dc command set / 10-4
Input/output format and base / 10-4
Input conversion and base / 10-4
Output commands / 10-5
Scale / 10-5
Stack commands / 10-6
Subroutine definitions and calls / 10-6
Internal registers / 10-6
Pushdown registers and arrays / 10-7
Miscellaneous commands / 10-7

dc command quick reference / 10-8
Programming dc / 109

11 bc: A Basic Calculator / 11-1

Using bc / 11-3
bc command syntax / 11-3
Entering a program at the terminal / 11-4
Program files / 11-4
Exiting from bc / 11-4

Program syntax / 11-5
Comments / 11-5
Constants / 11-6
Keywords / 11-6
Identifiers / 11-6

Defining functions / 11-7
Function calls and function arguments / 11-7
The return statement / 11-8

Automatic variables / 11-8

Global variables / 11-9

Arrays or subscripted variables / 11-9
Statements / 11-10

Assignment statements / 11-12

Control statements / 11-13
Relational operators / 11-13
The if statement / 11-14
The while statement / 11-14
The for statement / 11-15

Expressions / 11-15

Input and output bases: ibase and obase / 11-17
ibase / 11-17

obase / 11-18

scale / 11-19

Part 4 Screen-Oriented Tools

12 curses: Terminal-Independent Screen I/O / 12-1

Overview of curses usage / 12-3
Output / 12-4
Input / 12-5
Highlighting / 12-8
Multiple windows / 12-10
Multiple terminals / 12-11
Low-level terminfo usage / 12-13
Alargerexample / 12-16

Listof curses routines / 12-18
Structure / 12-18
Initialization / 12-19
Optionsetting / 12-20

Xiv Contents

Terminal mode setting / 12-23
Window manipulation / 12-24
Causing output to the terminal / 12-25
Writing on window structures / 12-27
Moving the cursor / 12-27
Writing one character / 12-27
Writing a string / 12-28
Clearing areas of the screen / 12-28
Inserting and deleting text / 12-29
Formatted output / 12-30
Miscellaneous / 12-30

Input from a window / 12-30
Input from the terminal / 12-31
Video attributes / 12-32

Bells and flashing lights / 12-33
Portability functions / 12-33

Delays / 12-34

Lower-level functions / 12-35
Cursor motion / 12-35
terminfo level / 12-35

Operation details / 12-39

Insert and delete line and character / 12-39

Additional terminals / 12-40

Multiple terminals / 12-40

Video attributes / 12-41

Special keys / 12-42

Scrolling region / 12-43

mini-curses / 12-43

TTY-mode functions / 12-45

Typeahead check / 12-45

getstr / 12-46

longname / 12-46
nodelay mode / 12-46
Pertability / 12-46

Example program:
Example program:
Example program:
Example program:
Example program:
Example program:
Example program:

scatter / 12-47
show / 12-49
highlight / 12-51
window / 12-53
two / 12-55
termhl / 12-59
editor / 12-62

Contents

13 Commando / 13-1

Introduction / 13-2
Macintosh dialog boxes / 13-3
Commando dialog boxes / 13-4

The Commando script language / 13-5
Dialogbox layout / 13-5

Layout examples / 13-8
Single-row example / 13-8
Multiple-row example / 13-10
Column example / 13-12
Nested dialog hox example / 13-14

Control examples / 13-16
Checkbox / 13-16

Radio buttons / 13-17
Texthoxes / 13-19
Text / 13-21
Buttons / 13-21

Dependencies / 13-25
Boxes / 13-28
Leniencies / 13-28
Keywords / 13-28
Creating Commando dialogs / 13-30
Invoking Commando dialogs / 13-30
Writing Commando dialogs / 13-31
Testing Commando dialogs / 13-31
Compiling Commando dialogs / 13-32
Dialog design guidelines / 13-32
Dialog layout guidelines / 13-32
Dialog aesthetics / 13-33
Descriptive information / 13-34

Index / In-1

Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Figures, Tables, and Listings

vacc: A Compiler-Writing System

Table 3-1 C language escapes recognized by yacc / 3-7
Table 3-2 Arithmetic operators / 3-39

md: A Macro Processor

Table 4-1 Arithmetic operators / 4-9

lex: A Lexical Analyzer

Figure 5-1 Overview of lex / 5-3

Figure 5-2 lex with vacc / 55

Table 5-1 Regular expression operators / 5-31
make: A File Production Tool

Listing 7-1 Sample listing of default rules file / 7-23
Listing 7-2 Replacing a default rule / 7-28
Table 7-1 Default suffix list / 7-21

Table 7-2 Macro names and default compilers / 7-27

Chapter 8

Chapter 9

Chapter 10

Chapter 11

SCCS Reference

Listing 8-1 Sample interface program for group projects / 8-10
Figure 8-1 A linear progression of versions / 8-14

Figure 8-2 A branching SCCS tree / 8-15

Figure 8-3 A complicated branch structure / 8-15

Figure 8-4 Relationships among temporary files / 8-18

Figure 8-5 Removing a delta / 8-41

Table 8-1 SCCS ID keywords / 8-20

Table 8-2 Determination of a new SID / 8-35

awk Programming Language

Table 9-1 Arithmetic operators / 9-42

Table 9-2 Assignment operators / 9-42

Table 9-3 Relational operators / 9-43

Table 9-4 Logical operators / 9-44

Table 9-5 Regular expression pattern-matching operators / 9-44
Table 9-6 Reserved strings / 9-52

Table 9-7 Values for sample numeric constants / 9-55

Table 9-8 Values for sample string constants / 9-56

dc: A Desk Calculator
Table 10-1 dc operators / 10-3

be: A Basic Calculator

Table 11-1 Assignment statements / 11-12
Table 11-2 Relational operators / 11-14
Table 11-3 Operators and their precedence / 11-16

xviii Figures, Tables, and Listings

Chapter 12

Chapter 13

curses: Terminal-Independent Screen I/0

Listing 12-1
Listing 12-2
Listing 12-3

Commando

Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-12
Figure 13-13
Figure 13-14
Figure 13-15
Figure 13-16
Figure 13-17

Listing 13-1
Listing 13-2
Listing 13-3
Listing 13-4
Listing 13-5
Listing 13-6
Listing 13-7
Listing 13-8

Framework of a curses program / 12-3
Sending a message to several terminals / 12-13
terminfo-level framework / 12-14

Schematic dialog box / 13-3

Commando dialog box for the UNIX command 1pr / 13-4
Commando dialog box for the UNIX command tar / 13-5
Dialog box layout example / 13-6

Single-row dialog box / 13-8

Multiple-row dialog box / 13-10

Multiple-column dialog box / 13-12

Further dialog example / 13-14

Checkbox dialog example / 13-16

Radio button dialog example / 13-17

Text box dialog example / 13-19

Button example: Initial dialog box / 13-22

Button example: Save a File dialog box / 13-22

Button example: Save a File control was selected / 13-22
Button example: Redirection subdialog box / 13-23
Dependencies example: First control selected / 13-25
Dependencies example: Second control selected / 13-26

Dialog box layout example script / 13-7
Single-row dialog script / 13-8
Multiple-row dialog script / 13-11
Multiple-column dialog script / 13-12
Further dialog script / 13-15

Checkbox example script / 13-16
Radio button example script / 13-18
Text box example script / 13-20

Figures, Tables, and Listings

Xix

Listing 13-9 Button example script / 13-24
Listing 13-10 Dependencies example script / 13-27

Table 13-1 File dialog keywords / 13-23
Table 13-2 Commando keyword reference / 13-29

XX Figures, Tables, and Listings

About This Guide

This guide describes many A/UX tools to assist in program management and other
tasks. This guide details program development tools to improve program structure,
monitor program executions, and debug programs. Tools to assist in file management
tasks, such as finding files, determining file characteristics, and maintaining groups of
files, are also detailed in this guide. And finally, tools for processing and parsing text
and code are described.

Who should use this guide

This guide is intended for programmers and developers. This guide does not serve as a
tutorial to help you learn programming skills; rather, it serves as a reference to determine
what tools are available in A/UX and how to use them effectively.

What you need to know

To get the most out of this guide, you need to have a good working knowledge of
programming practices. This guide assumes that you are conversant with a programming
language and with the general process of coding, compiling, testing, debugging, and so
forth. A general knowledge of UNIX® is also assumed. You need to know the basic skills
of using a Macintosh, such as double-clicking to open a file and dragging the mouse to
choose a menu command.

What's covered in this guide

This guide describes the following topics:

= A/UX program development tools

= 2 compiler-writing system, yacc

® 3 MACro processor, md -
» alexical analyzer, lex

= file manipulation tools

= program maintenance tool, make

= version management tools for source code, SCCS

= 2 file-processing language, awk

m desk calculators, dc and bc

= terminal-independent input and output, curses

= screen-oriented input and output through Macintosh dialog boxes, Commando

If you need information about the tools directly involved in the compilation process,
such as compilers (cc and £77), assemblers (as), link-editors (1d), and debuggers
(sdb and dbx) see A/UX Programming Languages and Tools, Volume 1. Volume 1
also covers various libraries, the 1int tool, ef1, and the POSIX environment.

e

Where to go for more information

If you need information about the tools directly involved in the compilation process, see
A/UX Programming Languages and Tools, Volume 1. If you need more information
about the Macintosh interface, see A/UX Toolbox: Macintosh ROM Interface. If you would
like information about porting applications to A/UX, see the A/UX Porting Guide.

xxii About This Guide

How to use this guide

This guide serves as a reference to help you when programming and using these tools.
As a reference book; it is not designed to be read from cover to cover. Each chapteris a
discrete description of a particular tool or class of tools; therefore, you should skip
directly to these compact references.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyhoard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed hy smaLL capiTAL letters.

The key names are

Caps Lock DowN Arrow ({) OPTION SPACE BAR
COMMAND (3%) ENTER RETURN TaB

CONTROL Escape RIGHT ARROW (—) Up Arrow (T)
DELETE LEFT ARROW (&) SHIFT

Sometimes you will see two or more names joined by hyphens. The hyphens indicate
that you use two or more keys together to perform a specific function. For example,

Press COMMAND-K

means “Hold down the Commanp key and press the K key.”

Conventions used in this guide — xxiii

xxiv

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enterindicates that you type a series of characters on the command line and press
the ReTURN key. The instruction

Enter 1s

means “Type 1s and press the RETURN key.”

Here is a list of common terms and the corresponding actions you take:

Term Action
Click Press and then immediately release the mouse button.
Drag Position the mouse pointer, press and hold down the mouse button

while moving the mouse, and then release the mouse button.

Choose Activate a command in a menu. To choose a command from a pull-
down menu, click once on the menu title and, while holding down the
mouse button, drag down until the command is highlighted. Then
release the mouse button,

Select Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type Type an entry without pressing the RETURN key.

Enter Type the series of characters indicated and press the RETURN key.

The courier font

Throughout A/UX guides, words that you see on the screen or that you must type exactly
as shown are in the courier font. For example, suppose you see this instruction:
Type date on the command line and press RETURN.

The word date isinthe Courier font to indicate that you must type it. Suppose
you then read this explanation:

Once you press RETURN, you'll see something like this:
Tues Oct 17 17:04:00 PDT 1989

In this case, Courier isused to represent exactly what appears on the screen.

About This Guide

All A/UX manual page names also are shown in the Courier font. For example,
the entry 1s(1)indicates that 1s is the name of a manual page in an A/UX reference
manual. See “Manual Page Reference Notation” helow for more information on A/UX
command reference manuals.

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat filename

tells you that filename s a placeholder for the name of a file you wish to view. If you
want to view the contents of a file named Elvis,type the word Elvis in place of
filename. In other words, enter

cat Elvis

New terms appear in boldface where they are defined.

A/UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the
syntax forthe wc command:

we [-1]1 [-w] [directory]...

In this example, wc isthe command, -1 and -w are options, directoryisan
argument, and the ellipses (...) indicate that more than one argument can be used. Note
that each command element is separated hy a space.

The following list gives more information about the elements of an A/UX command:

Element Description
command The command name.
option A character or group of characters that modifies the command. Most

options have the form - option, where option is a letter representing an
option. Most commands have one or more options.

argument A modification or specification of a command, usually a filename or
symbols representing one or more filenames.

Conventions used in this guide ~ Xxv

xXxvi

Brackets used to enclose an optional item—that is, an item that is not
essential for execution of the command.

Ellipses used to indicate that more than one argument can be entered.

For example, the wc command is used to count lines, words, and characters in a

file. Thus, you can enter

wCc -w Priscilla

In this command line, -w is the option that instructs the command to count all of the
words in the file, and the argument Priscilla is the file to be searched.

Manual page reference notation

A/UX Command Reference, A/UX Programmer’s Reference, A/UX System Administrator’s
Reference, X11 Command Reference for A/UX, and X11 Programmer’s Reference for
A/UX contain descriptions of commands, subroutines, and other related information.
Such descriptions are known as manual pages (often shortened to man pages). Manual
pages are organized within these references by section numbers. The standard A/UX
cross-reference notation is

command (section)

where command is the name of the command, file, or other facility; section is the
number of the section in which the item resides.

Items followed by section numbers (IM) and (8) are described in A/UX System
Administrator’s Reference.

Items followed by section numbers (1) and (6) are described in A/UX Command
Reference.

Items followed by section numbers (2), (3), (4), and (5) are described in A/UX
Programmer’s Reference.

Items followed by section number (1X) are described in X711 Command Reference for
A/UX.

Items followed by section numbers (3X) and (3Xt) are described in X717
Programmer’s Reference for A/UX.

For example,

cat (1)

About This Guide

refers to the command cat, which is described in Section 1 of A/UX Command
Reference.

You can display manual pages on the screen by using the man command. For
example, enter the command
man cat
todisplay the manual page forthe cat command, including its description, syntax,
options, and other pertinent information. To exit, press the SPACE BAr until you see a
command prompt, ortype g atany time to return immediately to your command prompt.

For more information

To find out where you need to go for more information about how to use A/UX, see
Road Map to A/UX. This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

Formore information ~ xxvii

1 Overview of Programming Tools

Program development tools / 1-2
File manipulation tools / 1-4
Math functions: dc and bc / 1-6

Screen-oriented tools: curses and Commando / 1-6

The A/UX environment provides many varied and useful tools to assist in program
development and other related tasks. Tools are provided to find file characteristics, parse
and process files, perform math, and control functions on the screen. This chapter
provides a brief description of many of the tools and what primary tasks each one

performs. The remaining chapters provide a more detailed discussion of these tools.

For information about tools directly related to the compilation process—the compilers,
the assembler, the link editors, libraries, and debuggers—see A/UX Programming

Languages and Tools, Volume 1.

Program development tools

1-2

In addition to the tools used for program compilation discussed in 4/UX Programming
Languages and Tools, Volume 1, A/UX offers several tools related to program
development. These tools perform a variety of functions ranging from improving the
format of your code to tracing your program execution and providing additional
information for debugging. This section outlines these tools.

Program structure: cb

You canuse the cb utility to improve the legibility and structure of C code. The cb
utility reads C programs and writes them to the standard output with spacing and
indentation that display the structure of the code.

Execution: cflow and prof

A/UX provides several tools for tracking the execution of a program. You can create a C
flowgraph for a program using cf1ow. A C flowgraph shows how the program is put
together, the flow control of the program, and how the subroutines are called. This
flowgraph shows the order in which routines are called graphically, by level of indentation.
The graph is built of external references, which include globals and function calls.

Another utility to show program execution is prof, which displays profile data on
the running of a program to aid in optimization of the program. For each function, it
gives the percentage of time spent executing it, the number of times it was called, and the
time (in milliseconds) per call. You must compile your program with a special option to
enable this capability.

Chapter 1 Overview of Programming Tools

Processing: m4, lex, and yacc

The A/UX environment includes several tools for processing text and code. This section
provides a brief description of some of the more useful tools.

If you need a macro facility, you can use m4 instead of cpp. m4 is a general-
purpose macro processor. The primary function of m4 is to allow the replacement of
certain text by other text. The m4 utility reads every alphanumeric token (string of
letters and digits) in the input and determines whether the token is the name of a macro.
It then replaces the names of a macros by their defining text and pushes the resulting
strings back into the input to be rescanned.

In addition to the straightforward replacement of one string of text by another, the
m4 macro processor also provides arguments to macros, arithmetic capabilities, file
manipulation, conditional macro expansion, string and substring functions, and
recursive definitions.

Another type of processoris 1ex. It is designed for lexical processing of character
input streams. lex accepts high-level, problem-oriented specifications for character
string matching. The 1ex utility can be useful when writing programs involving regular
expressions as input and formatting input for parsing.

The yacc programisa parser generator used to impose structure on program
input. After you create a specification of the input process, yacc generates a parser
function, which calls the user-supplied low-level input routine (the lexical analyzer) to
pick up the basic items, called “tokens,” from the input stream. Tokens are organized
according to the input structure rules, called “grammar rules.” When one of these rules
has been recognized, the user code (the “action”) supplied for this rule is invoked.
Actions have the ability to return values and make use of the values of other actions.

Debugging: nm and oa

This book outlines a few tools useful in the debugging stage of program development.
(The primary A/UX debuggers are detailed in A/UX Programming Languages and Tools,
Volume 1.) The nm utility writes the symbol table for a Common Object File Format
(COFF) file to standard output. nm lists each symbol and its value along with the
location at which it is stored in memory.

Program development tools 1-3

The od command (octal dump) provides a means for examining binary files
(usually unreadable on A/UX systems). If you need to know the function and procedure
of some file available only in hinary, you can use the od command with various
options to discover what the file contains. The options correspond to available formats
for interpreting bytes, characters, or words. If no options are specified, you can obtain a
true octal dump, as words are interpreted in octal.

File manipulation tools

1-4

The A/UX tools detailed in this section help you perform file-related tasks such as finding
afile size or location, determining the differences between two files, and obtaining the
version of a program. Additionally, A/UX provides tools to control the file versions to
ensure that they are the most recent and provides a way of updating and maintaining
groups of files. The final tools in this section help you maintain current library archives
and provide you with a file-processing language for parsing files.

File characteristics: size, diff,and comm

Often, you need to know characteristics of files. Some of the tools needed to obtain these
attributes are briefly discussed here.

The size command produces size information for each section in the common
object format files. The name of the section is shown followed by its size in bytes,
physical address, and virtual address.

A/UX includes a number of programs that compare files to find differences, including
diff, bdiff, diff3, diffmk, diffdir, sdiff, cmp,and comm. These
programs all compare files or directories for differences.

The find command helps you locate files based on certain characteristics such as
name, group, owner name, time of last modification or access, and so on. This powerful
utility performs a recursive search for files of the given characteristics.

Chapter 1 Overview of Programming Tools

Maintenance: make, SCCS, and ar

The A/UX environment includes tools to update and maintain groups of files and to
control the accessible versions of files to ensure that they are the most recent. Commands
also exist to obtain the version number of programs you are running and to maintain up-
to-date library archives.

The make programis a program-maintenance tool that keeps track of (and
updates) groups of related files. All information about special libraries, special treatments,
or options necessary for compiling multiple files is contained in a make description file.
Using it ensures that your compilations reflect your latest changes.

The source code control system (SCCS) and revision control system (RCS) are version-
management tools for source code or text files. In group projects, SCCS and RCS prevent
multiple inconsistent versions of files from accumulating in several places. A single user
can store multiple versions of a file without using a lot of disk space, easily reconstruct
previous versions of a file, and keep track of versions with a simple, consistent
numbering scheme.

The version command is useful for determining which version of a program you
are running. version takes a list of files and reports the version number for each. The
version command also reports the object file format of each file; that is, either cof £
object file format,or 0ld a.out object file format.

You can use the archive command ar to combine several files into one archive.
Archives consist of a collection of files, plus a table of contents. They are used mainly as
libraries to be searched by the link editor 14. A library (or library archive) is an archive
that contains object files (plus a table of contents). Putting together your own library
allows you to use locally produced functions (instead of limiting you to the functions
supplied in standard libraries). ar also provides the facility to append and delete
archive files. Putting together your own library allows you to use locally produced
functions (instead of limiting you to the functions supplied in standard libraries). With the
ar command you can also move files around within the archive, as well as extract them,
print them, and produce a table of contents.

File manipulation tools 1-5

A file-processing language: awk

The awk programming language is a file-processing language designed to make
common information retrieval and manipulation tasks easy. The awk language can be
used to generate reports, match patterns, validate data, or filter data for transmission.

Math functions: dc and bc

A/UX provides two specialized tools for handling arbitrary precision arithmetic, dc and
be. The dc program is an interactive desk calculator program. It has provisions for
manipulating scaled fixed-point numbers and for input and output in bases other than
decimal. bc is a specialized language and compiler for handling arbitrary precision
arithmetic using the dc program.

Screen-oriented tools: curses
and Commando

1

6

A/UX also provides the curses package to write screen-oriented programs. curses
provides a terminal-independent method of screen-oriented input and output. It includes
facilities for taking input from the terminal, sending output to a terminal, creating and
manipulating windows on the screen, and performing screen updates in an optimal
fashion. A program using the curses routines and functions generally needs to know
nothing about the capabilities of any particular terminal; these characteristics are
determined at execution time and guide the program in taking input and producing
output. Thus, programs using this package can interact with a large variety of terminals
and terminal types.

The Commando tool is useful for screen-oriented input and output on Macintosh
computers. Commando lets you create CommandShell command lines by selecting
controls within Macintosh dialog boxes. Controls direct the placement of options on the
command line. When the user selects a particular control, Commando places a specific
option on the command line. Once they are constructed, the command lines are either
placed in a CommandShell window for execution or executed in a subshell.

Chapter 1 Overview of Programming Tools

Part 1 Program Development Tools

=

This section describes several tools you might find useful during program development

and execution. The chapter “Programming Tools” describes utilities for

= structuring programs: cb

= observing program execution: cflow and prof
® processing: cpp

= finding functions in programs: ctags

» sharing strings in C programs: xstr

= debugging: nm and od

The following chapters in this section describe tools for
® 3 MAacro processor: ma
= alexical analyzer: lex

= 2 compiler-writing system: yacc

Programming Tools

Improving C program structure: cb / 2-2
Generating a C flowgraph: cflow / 2-2
Displaying profile data: prof / 2-2

A C language preprocessor: cpp / 2-3

Finding a function definition quickly: ctags / 2-4
Sharing strings from C programs: xstr / 2-4
Printing the symbol table for a COFF file: nm / 2-5

Obtaining an octal dump of a file: od / 2-5

A/UX offers several tools related to program development. These tools perform a variety
of functions, ranging from improving the format of your code to tracing your program
execution and providing additional information for debugging. This chapter outlines
many of these tools. The primary tools used for program compilation (the compilers,
assembler, link editor, debuggers, and libraries) are discussed in A/UX Programming

Languages and Tools, Volume 1.

Improving C program structure: cb

cb is used to improve the legibility and structure of C code. It reads C programs either
from its arguments or from the standard input and writes them on the standard output
with spacing and indentation that display the structure of the code. See cb(1) in A/UX
Command Reference for more information.

Generating a C flowgraph: cflow

cflow generates a C flowgraph. A C flowgraph gives an idea of the following
program features:

= how the program is put together

= the program flow of control

= how subroutines are called (that is, by which other routines and in which order)

This flowgraph shows the order in which routines are called graphically, by level of
indentation. The graph is built of external references, which include globals and function
calls. See c£1ow(1) in A/UX Command Referencefor more information.

Displaying profile data: prof

2-2

prof displays profile data on the running of a program to aid in its optimization. For each
function or global, it gives the percentage of time spent executing it, the number of times it
was called, and the time (in milliseconds) per call. You must compile your program with a
special option to enable profiling (see cc(1) in 4/UX Command Referencefor more
details). See prof(1) in A/UX Command Reference for more information.

Chapter 2 Programming Tools

A C language preprocessor: cpp

You canuse cpp, the C preprocessor, as a simple programming language that takes less
time to compile than more complex languages. It strips comments, expands macros into
their definitions, allows files to be read in (through #include statements), and
provides a facility for conditional command execution. This means that you can
intersperse text with comments. Comments are stripped, commands are executed.

Normally, cpp is invoked automatically as (the first) part of the cc command.

If you need a macro facility, you canuse m4 instead of cpp. m4 is generally
much more powerful than cpp as a macro processor. (For instance, m4 allows
recursive macro substitutions, while cpp does not.)

cpp is useful for

® stripping comments
= standardizing included definitions among many files for one project
= debugging (certain commands executed if in this mode, others if not)

= minimizing file space, combining many files into one

One of the most useful applications of cpp is as a debugging and program-control
tool. Any statement included after an #ifdef definitionis executed only if the
definition was actually defined previously by means of a #define statement (or a
-Ddefinition in the command line). If not, and if there isan #else present, the
statements between it and the #endif are executed. Otherwise, control is resumed at
the level of the statement immediately following #endif. See cpp(1)in A/UX
Command Reference for more information.

A C language preprocessor: cpp 23

Finding a function definition quickly:

ctags

Programs can rapidly accumulate a large number of functions, either in one source file
or scattered across many files. ctags goes through the files given as its arguments
and creates a new file, called tags. Each line in the file tags contains the
following components:

= the name of one function
= where that function is located
= ascanning pattern that can be used to find the function
Unless ctags isused with either the -a (append) orthe -u (update) option, a
new tags file is created each time it is invoked.

Oncethe tags fileis created, it can be accessed (thanks to the scanning pattern in
the last field of each line) from vi (also from ex) by typing

:ta function-name

This causes the named function to appear on the editor’s screen.
ctags can be used on Fortran and Pascal sources as well as C programs. See
ctags(1) in A/UX Command Reference.

Sharing strings from C programs: xstr

The object of using xstr is to share one copy of a string among several files. If you
need to modify the string throughout your program, you can modify it once instead of
doing global searches through all your modules. If you have, in two different files,

char *ptrl = "blah";
char *ptr2 = "blah";
xstr combines this into one string, inits strings file, and replaces occurrences of

the string in the original files with a pointer to this string. This allows for shared constant
strings among several files, or possibly among several users.

2-4 Chapter 2 Programming Tools

In practice, use of xstr can save memory space. After making the xstr array
read only, you can arrange to have multiple users share these strings, thereby saving even
more memory space. See xst x(1) in A/UX Command Reference for more information.

Printing the symbol table for a COFF file: nm

nm writes the symbol table for a COFF file to standard output. This is useful for
debugging. nm lists each symbol and its value, along with the location at which it is
stored in memory. See nm(1) in A/UX Command Reference for more information.

Obtaining an octal dump of a file: oa

od provides a means for examining binary files (usually unreadable on A/UX systems).
If you need to know the function and procedure of some file available only in binary,
you can try the od command with various options to discover what the file contains.
The options correspond to available formats for interpreting bytes, characters, or words.
If no options are specified, a true octal dump is obtained, as words are interpreted in
octal. See od(1) in A/UX Command Referencefor more information.

You can also use the strings program to write the printable ASCII strings in a
binary file onto standard output. This is useful for identifying unknown binary files. See
strings(1) in A/UX Command Referencefor more information.

Obtaining an octal dump of a file: od 25

3 yacc: A Compiler-Writing
System

Usage / 3-3

Basic specifications / 3-6

Actions / 3-8

Lexical analysis / 3-12

Parser operation / 3-14

Ambiguity and conflicts / 3-19
Precedence / 3-23

Error handling / 3-27

The yacc environment / 3-29

Input style / 3-31

Left recursion / 3-31

Lexical considerations / 3-32

Reserved words / 3-34

Simulating error and accept in actions / 3-34
Accessing values in enclosing rules / 3-34

Arbitrary value types / 3-36

Example: A desk calculator / 3-38
Example: yacc inputsyntax / 3-43
Example: An advanced grammar / 3-46

Backward compatibility / 3-56

The yacc program is a general tool for imposing structure on the input to a computer
program. yacc converts context-free grammar into a set of tables for a simple
automaton that executes an 1r(1) parsing algorithm. The grammar can be ambiguous;

specified precedence rules are used to break ambiguities.

3-2 Chapter 3 yacc: A Compiler-Writing System

Usage

The first step in using yacc s to create a specification of the input process, which
includes rules describing the input structure, code to he invoked when these rules are
recognized, and a low-level routine to do the hasic input. yacc then generates a
function to control the input process. This function, called a “parser,” calls the user-
supplied low-level input routine (the lexical analyzer) to pick up the hasic items (called
“tokens”) from the input stream.

Tokens are organized according to the input structure rules called “grammar rules.”
When one of these rules is recognized, the user code supplied for this rule (that is, an
action) is invoked. Actions have the ability to return values and make use of the values of
other actions.

yacc iswritten in a portable dialect of the C language, and the actions and output
subroutine are written in the C language as well. Moreover, many of the syntactic
conventions of yacc follow those of the C language.

The heart of the input specification is a collection of grammar rules. Each rule
describes an allowable structure and gives it a name. For example, one grammar rule
might be

date : month_name day ‘,’ year;

where date, month_name, day,and year represent structures of interest in the
input process; presumably, month_name, day,and year are defined elsewhere.
The comma (,) is enclosed in single quotes. This implies that the comma is to appear
literally in the input. The colon and semicolon serve merely as punctuation in the rule
and have no significance in controlling the input. With proper definitions, the following
input might be matched hy the rule given above:

July 4, 1776

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizes the lower-level structures, and communicates
these tokens to the parser. For historical reasons, a structure recognized hy the lexical
analyzer is called a terminal symbol, while the structure recognized by the parser is
called a nonterminal symbol. To avoid confusion, terminal symbols are usually referred
to as tokens.

Usage 3-3

3-4

There is considerable leeway in deciding whether to recognize structures using the
lexical analyzer or grammar rules. For example, the following rules might be used in the
preceding example:

month_name : 'J’ ‘'a’ 'n’ ;
month_name : 'F’ ‘e’ ‘b’ ;
month_name : ‘D’ el 'c! g

The lexical analyzer needs to recognize only individual letters, and month_name is
a nonterminal symbol. Such low-level rules tend to waste time and space and might
complicate the specification beyond the ability of yacc to deal with it. Usually, the
lexical analyzer recognizes the month names and returns an indication that a
month_name is seen. In this case, month_name is a token. Literal characters (such
as the comma above) must also be passed through the lexical analyzer and are also
considered tokens.

Specification files are very flexible. If the rule

date : month '/’ day '/’ vyear;

were added to the above example, entering 7/4/1776 would be equivalentto July
4, 1776 oninput. In most cases, this new rule could be “slipped in” to a working
system with minimal effort and little danger of disrupting existing input.

The input being read might not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan. Thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad
data can usually be quickly found. Error handling, provided as part of the input
specifications, permits the reentry of bad data or the continuation of the input process
after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications might be self-contradictory, or they might require a more
powerful recognition mechanism than that available to yacc. The former cases
represent design errors; the latter cases can often be corrected by making the lexical
analyzer more powerful or by rewriting some of the grammar rules.

Chapter 3 yacc: A Compiler-Writing System

While yacc cannot handle all possible specifications, its power compares favorably

with similar systems. Moreover, the constructions that are difficult for yacc to handle
are also frequently difficult for human beings to handle. Some users have reported that
the discipline of formulating valid yacc specifications for their input revealed errors of
conception or design early in the program development.

yvacc has been used extensively in numerous practical applications on the A/UX

system, including the syntax checker 1int, the Portable C Compiler, and a system for
typesetting mathematics.

The remainder of this chapter describes

basic process of preparing a yacc specification

parser operation

handling ambiguities

handling operator precedence in arithmetic expressions

error detection and recovery

the operating environment and special features of the parsers yacc produces
suggestions to improve the style and efficiency of the specifications

advanced topics

In addition, there are four sections that illustrate the earlier material:

“A Desk Calculator” contains a brief example of using yacc to design a simple
program.
“vacc Input Syntax” contains a summary of the yacc input syntax.

“An Advanced Grammar” contains an example using some of the more advanced
features of yacc.

“Backward Compatibility” contains a description of the mechanisms and syntax that,
though no longer actively supported, are provided for historical continuity with older
versions of yacc.

Usage 35

Basic specifications

3-6

Names refer to either tokens or nonterminal symbols. yacc requires token names to be
declared as such. In addition, it is often desirable to include the lexical analyzer as part of
the specification file. It might be useful to include other programs as well.

Every specification file consists of three sections:

= declarations
= grammar rules
= programs
These sections are separated by double percent symbols ($%). The percent symbol is

generally used in yacc specifications as an escape character.
The following is a syntactic description of a yacc specification file:

declarations

programs

The declarations section might be empty and, if the programs section is omitted, the
second %% mark might also be excluded. The smallest legal yacc specification is
therefore

oo
oo

rules

Blanks, tabs, and newlines are ignored, but they cannot appear in names or
multicharacter reserved symbols. Comments can appear wherever a name is legal. They
are enclosedin /* and */, asin the C language.

The rules section is made up of one or more grammar rules. A grammar rule has the
following form:

a : body;
In this example, a represents a nonterminal name, and body represents a sequence of
zero or more names and literals. The colon and the semicolonare yacc punctuation.

Chapter 3 yacc: A Compiler-Writing System

Names can be of arbitrary length and can he made up of letters, dots, underscores,
and noninitial digits. Uppercase and lowercase letters are distinct. The names used in the
hody of a grammar rule can represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes (*).

As in the C language, the backslash (\) is an escape character within literals, and all
the C language escapes are recognized. Table 3-1 lists the escapes recognized by yacc.

Table 3-1 Clanguage escapes recognized by vacc

Escape Meaning

\n Newline

\r Return

\’ Single quote ()
\\ Backslash (\)
\t Tab

\b Backspace

\f Form feed

\xxx xxx in octal

For a number of technical reasons, the null character (\0 or 0) should never be used
in grammar rules.

If there are several grammar rules with the same left side, the vertical bar (|) can be
used to avoid rewriting the left side. The semicolon at the end of a rule can he dropped
before a vertical bar. Thus, the grammar rules

A : B C D;
A : EF;
A : G;

canbe given to yacc using the vertical bar:
A : BCD

| EF

I G;

Itis not necessary that all grammar rules with the same left side appear together in the
grammar rules section, although it makes the input much easier to read and change.

Basic specifications 3-7

Actions

If a nonterminal symbol matches the empty string, this can be indicated by
empty : ;

Names representing tokens must be declared in the declarations section. For example,
%token namel name2

Every name not defined in the declarations section is assumed to represent a
nonterminal symbol. Nonterminal symbols must appear on the left side of at least one rule.

The parser is designed to recognize the nonterminal start symbol. Thus, this symbol
represents the largest, most general structure described by the grammar rules. By default,
the start symbol is taken to be the left side of the first grammar rule in the rules section.

Itis possible and desirable to declare the start symbol explicitly in the declarations
section using the $start keyword. For example,

gstart symbol

The end of the input to the parser is signaled by a special token, called the end-
marker. If the tokens up to but not including the end-marker form a structure that
matches the start symbol, the parser function returns to its caller after the end-marker is
seen and accepts the input. If the end-marker is seen in any other context, it is an error.
It is the job of the user-supplied lexical analyzer to return the end-marker when
appropriate. Usually the end-marker represents some reasonably obvious I/0 status,
such as end-of-file or end-of-record. w

With each grammar rule, the user can associate actions to be performed each time the
rule is recognized in the input process. These actions can return values and can obtain
the values returned by previous actions. Moreover, the lexical analyzer can return values
for tokens, if desired.

An action is an arbitrary C language statement and as such can do input and output,
call subprograms, and alter external vectors and variables. An action is specified by one
or more statements enclosed in braces ({ and }).

3-8 Chapter 3 yacc: A Compiler-Writing System

For example,

A: ("B ")’

{

hello(1, "abc");
}

and the following is an example of grammar rules with actions:
XXX : YYY 2ZZ
{
printf ("a message\n") ;
flag &= 25k
}
To facilitate easy communication between the actions and the parser, the action

statements are altered slightly. The dollar sign symbol ($) is used as a signal to yacc in
this context. To return a value, the action normally sets the pseudovariable ¢¢ tosome

value. The following action does nothing except return the value of one:
{ s =1;}

To obtain the values returned by previous actions and the lexical analyzer, the action
can use the pseudovariables $1, $2,and so on, which refer to the values returned by

the components of the right side of a rule, reading from left to right. For example, if the
rule is

A : B C D;
then $2 has the value returned by c,and $3 the value returned by D.
With the following rule, the value returned is usually the value of the exprin
parentheses:
expr : (' expr ')’
{
$$ = 82 ;
}

By default, the value of a rule is the value of the first elementin it ($1).
Grammar rules of the following form frequently need not have an explicit action:

A : B;

Actions 39

3-10

In the preceding examples, all the actions came at the end of rules. Sometimes,
though, it is desirable to obtain control before a rule is fully parsed. The yacc program
permits an action to be written in the middle of a rule as well as at the end.

This kind of rule is assumed to return a value accessible through the usual $
mechanism by the actions to the right of it. In turn, it can access the values returned by
the symbols to the left of the action. For example, in the following rule x is set to 1 (the
value returned by the action to its left) and v is set to the value returned by c:

A : B
{
S5 = 1i
}
C
{
%X = $2;
y = $3;
}

This is because every component of the right side of the rule, including an action, is
associated with a positional pseudovariable, so the $1 refersto B, $2 tothe value
returned by the action associated with B, $3 to ¢, and so on.

Actions that do not terminate a rule are actually handled by yacc by manufacturing
a new nonterminal symbol name and a new rule matching this name to the empty string.
The interior action is the action triggered by recognizing this added rule.

yacc actually treats the preceding example as if it were written like the following
example ($ACT isan empty action):

SACT : /* empty */
{
$$ = 1;
}
A
B SACT C

Chapter 3 yacc: A Compiler-Writing System

$2;
SB;

}

In many applications, output is not produced directly by the actions. A data structure,
such as a parse tree, is constructed in memory and transformations are applied to it
before output is generated. Parse trees are particularly easy to construct, given routines to
build and maintain the tree structure desired.

In the following example, the C function node creates a node with label /and
descendants n1and n2 and returns the index of the newly created node:
node (I, nl, n2)

Then a parse tree is built by supplying the actions following in the yacc
specification file as follows:
expr : expr '+’ expr

{
$$ = node(’+', $1, $3);
}

The user can define other variables to be used by the actions.

Declarations and definitions can appear in the declarations section enclosed in the
marks %{ and %}.These declarations and definitions have glohal scope, so they are
known to the action statements and the lexical analyzer. For example,

%{ int variable = 0; %}
could be placed in the declarations section, making variable accessible to all of
the actions.

The yacc parser uses only names beginning with yy. The user should avoid such

names. In these examples, all the valuesare integers. A discussion of values of other
types is found in the section “Arbitrary Value Types.”

Actions 3-11

Lexical analysis

The user must supply a lexical analyzer to read the input stream and communicate
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-valued
function called yy1lex. The function returns an integer, the token number, representing
the kind of token read. If there is a value associated with that token, it should be assigned
to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers for
communication between them to take place. The numbers can be chosen by yacc or
by the user. In either case, the #define mechanism of the C language is used to allow
the lexical analyzer to return these numbers symbolically. For example, suppose that the
token name DIGIT is defined in the declarations section of the yacc specification
file. The relevant portion of the lexical analyzer might look like the following example:

yylex()
{
extern int yylval;

nE e;
c = getchar();

switch(c)

{

case ‘0’
case ‘1’
case '9’

yylval = c¢c - ‘0’ ;
return(DIGIT);

Chapter 3 yacc: A Compiler-Writing System

The intent is to return a token number of DIGIT and a value equal to the numeric
value of the digit. Provided that the lexical analyzer code is placed in the programs
section of the specification file, the identifier DIGIT is defined as the token number
associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The only pitfall to
avoid is using any token names in the grammar that are reserved or significant in the C
language or the parser. For example, the use of token names if or while almost
certainly causes severe difficulties when the lexical analyzer is compiled.

Thetokenname error isreserved for error handling and should not be used naively.

As mentioned earlier, the token numbers can be chosen by yacc or by the user. In
the default situation, the numbers are chosen by yacc. The default token number for a
literal character is the numeric value of the character in the local character set. Other
names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the
token name or literal in the declaratiens section can be immediately followed by a non-
negative integer. This integer is taken to be the token number of the name or literal.
Names and literals not defined by this mechanism retain their default definitions. It is
important that all token numbers be distinct.

For historical reasons, the end-marker must have token number 0 or be negative. This
token number cannot be redefined by the user. Thus, all lexical analyzers should be
prepared to return 0 or a negative number as a token upon reaching the end of their input.

The lex program isa very useful tool for constructing lexical analyzers. These
lexical analyzers are designed to work in close harmony with yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of grammar rules.

lex can easily be used to produce quite complicated lexical analyzers, but there
remain some languages (such as Fortran) that do not fit any theoretical framework and
whose lexical analyzers must be crafted by hand. See Chapter 5 in this manual, “1ex: A
Lexical Analyzer,” for more information on 1ex.

Lexical analysis ~ 3-13

Parser operation

3-14

The yacc program turns the specification file into a C language program, which parses
the input according to the specification given. The algorithm used to go from the
specification to the parser is complex and is not discussed here. The parser itself,
however, is relatively simple, and understanding how it works makes treatment of error
recovery and ambiguities much more comprehensible.

The parser produced by yacc consists of a finite-state machine with a stack. The
parser also is capable of reading and remembering the next input token (called the “look-
ahead token”). The current state is always the one on the top of the stack. The states of
the finite-state machine are given small integer labels.

Initially, the machine is in state 0 (the stack contains only state 0) and no look-ahead
token has been read. The machine has only four actions available:

shift Push current state onto stack; go into specified new state.

reduce Pop some number of states from stack; push new state; execute user
code.

accept End of input has been (successfully) reached.

error An unparsable situation has been detected.

A step of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a look-ahead token to
choose the action to be taken. If it needs one and does not have one, it calls yylex
to obtain the next token.

2. Using the current state and the look-ahead token if needed, the parser decides on its
next action and carries it out. This can cause states to be pushed onto the stack or
popped off the stack and the look-ahead token to be processed or left alone.

The shift action isthe most common action the parser takes. Whenever a
shift action is taken, there is always a look-ahead token. In the following example, in
state 50, if the look-ahead token is 1F, the current state (50) is pushed down on the
stack, and state 34 becomes the current state (on the top of the stack):

IF shift 34

The look-ahead token is cleared.

Chapter 3 yacc: A Compiler-Writing System

The reduce action keeps the stack from growing without hounds. reduce
actions are appropriate when the parser has seen the right side of a grammar rule and is
prepared to announce that it has seen an instance of the rule replacing the right side by
the left side.

[t might be necessary to consult the look-ahead token to decide whether to reduce
(usually it is not necessary). In fact, the default action (represented by a dot) is often a
reduce action.

reduce actions are associated with individual grammar rules. Grammar rules are
also given small integer numbers, and this leads to some confusion. For example, in the
following display, the action refers to grammar rule 18:

reduce 18
While in this example, the action refers to state 34:
IF shift 34

Suppose the following rule is being reduced:
A 8 X Y 2 G

The reduce action depends on the left symbol (a in this case) and the number of
symbols on the right side (three in this case). To reduce, first pop off the top three states
from the stack. (In general, the number of states popped equals the number of symbols
on the right side of the rule.) In effect, these states were the ones put on the stack while
recognizing x, v, and z, and no longerserve any useful purpose.

After popping these states, a state is uncovered that was the state the parser was in
before beginning to process the rule. Using this uncovered state and the symbol on the
left side of the rule, perform what is, in effect, a shift of A. A new state is obtained and
pushed onto the stack, and parsing continues.

There are significant differences between the processing of the left symbol and an
ordinary shift of a token, however, so this action is called a goto action. In particular,
the look-ahead token is cleared by a shift but is not affected by a goto. In any case, the
uncovered state contains an entry such as the following one, which causes state 20 to be
pushed onto the stack and become the current state:

A goto 20

In effect, the reduce action “turns hack the clock” in the parse, popping the states
off the stack to go hack to the state where the right side of the rule was first seen. The
parser then hehaves as if it had seen the left side at that time. If the right side of the rule is
empty, no states are popped off the stacks. The uncovered state is, in fact, the current state.

Parser operation 3-15

3-16

The reduce action also is important in the'treatment of user-supplied actions and
values. When a rule is reduced, the code supplied with the rule is executed before the
stack is adjusted. In addition to the stack holding the states, another stack running in
parallel with it holds the values returned from the lexical analyzer and the actions.

When a shift takes place, the external variable yy1val is copied onto the value
stack. After the return from the user code, the reduction is carried out. When the goto
action is done, the external variable yywval is copied onto the value stack. The
pseudovariables $1, $2,and so on refer to the value stack. The other two parser actions
are conceptually much simpler. The accept action indicates that the entire input has
been seen and that it matches the specification. This action appears only when the look-
ahead token is the end-marker and indicates that the parser successfully did its job.

The error action,on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen
(together with the look-ahead token) cannot be followed by anything that would result in
a legal input. The parser reports an error and attempts to recover the situation and resume
parsing. The error recovery (as opposed to the detection of error) is discussed later.

Consider the following example asa yacc specification:

%token DING DONG DELL

%%

rhyme : sound place
sound : DING DONG
place : DELL

When yacc isinvoked withthe -v option, a file called y.output is produced
with a human-readable description of the parser.

The following example is the v .output file corresponding to the above grammar
(with some statistics stripped off the end), where the actions for each state are specified
and there is a description of the parsing rules being processed in each state.

Chapter 3 yacc: A Compiler-Writing System

state

state

state

state

state

state

state

0
Saccept : _rhyme $end

DING shift 3

error

rhyme goto 1

sound goto 2

1
Saccept : rhyme_S$end

$Send accept

error
2
rhyme : sound_place
DELL shift 5
error
place goto 4
3

sound : DING_DONG

DONG shift 6

error

4

rhyme : sound place_ (i)

reduce 1

5

place : DELL_ (3)
reduce 3

6

sound : DING DONG_ (2)
reduce 2

Parser operation

3-17

3-18

The underscore character _ is used to indicate what was seen and what is yet to
come in each rule.
The following input can be used to track the operations of the parser:

DING DONG DELL

Initially, the current state is state 0. The parser needs to refer to the input to decide
hetween the actions available in state 0, so the first token (DING) is read and becomes
the look-ahead token.

The action in state 0 on DING is shift 3. State 3 is pushed onto the stack, and
the look-ahead token is cleared. State 3 hecomes the current state. The next token
(DONG) is read and becomes the look-ahead token. The action in state 3 on the token
DONG is shift 6. State 0 is pushed onto the stack, and the look-ahead is cleared.

The stack now contains 0, 3, and 6. In state 6, without even consulting the look-
ahead, the parser reduces hy the following, which is rule 2:

sound : DING DONG

Two states, 6 and 3, are popped off the stack, uncovering state 0. Consulting the
description of state 0 (looking fora goto on sound), the following is obtained:

sound goto 2

State 2 is pushed onto the stack and hecomes the current state. In state 2, the next
token (DELL) must be read. The actionis shift 5, sostate 5 is pushed onto the stack,
which now has 0, 2, and 5 on it, and the look-ahead token is cleared.

Instate 5, the only action is to reduce by rule 3. This has one symbol on the right
side, so one state (5) is popped off and state 2 is uncovered. The goto in state 2 on
place (the left side of rule 3) is state 4. Now, the stack contains 0, 2, and 4.

In state 4, the only action is to reduce by rule 1. There are two symbols on the right,
so the top two states are popped off, uncovering state 0 again. In state 0, thereisa goto
on rhyme causing the parser to enter state 1. In state 1, the input is read and the end-
marker is obtained indicated by $end inthe y.output file. The action in state 1
(when the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when confronted with such
incorrect strings a5 DING DONG DONG, DING DONG, DING DONG DELL DELL,
and so on. A few minutes spent studying this and other simple examples can be repaid
when problems arise in more complicated contexts.

Chapter 3 yacc: A Compiler-Writing System

Ambiguity and conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the following grammar rule is a natural way of
expressing the fact that one way of forming an arithmetic expression is to put two other
expressions together with a minus sign between them:

expr . expr ‘- expr
Unfortunately, this grammar rule does not completely specify the way that all
complex inputs should be structured. For example, if the input is

expr - expr - expr
the rule allows this input to be structured as either
(expr - expr) - expr
or
expr - (expr - expr)
(The first is called left association, the second right association.) The yacc

program detects such ambiguities when it is attempting to build the parser.
Consider the problem that confronts the parser when provided with the following input:

expr - expr - expr
When the parser has read the second expr; the input seen matches the right side of the
previous grammar rule:

expr - expr
The parser can reduce the input by applying this rule. After applying the rule, the input is

reduced to expr (the left side of the rule). The parser then reads the final part of the input
(displayed in the following example) and again reduces:

- expr
The effect of this is to take the left associative interpretation. Alternatively, if the parser
sees the following input:

expr - expr

it can defer the immediate application of the rule and continue reading the input until it
sees the following input,

expr - expr - expr

Ambiguity and conflicts ~ 3-19

3-20

It can then apply the rule to the right-most three symbols, reducing them to expr, which
results in the following input being left:

expr - expr

Now the rule can be reduced once more. The effect is to take the right associative
interpretation. The parser can do one of two legal things, a shift or a reduction. It has no
way of deciding between them. This is called a shift/reduce conflict.

It might also happen that the parser has a choice of two legal reductions. This is
called a reduce/reduce conflict. (Note that there are never any shift/shift conflicts.) When
there are shift/reduce or reduce/reduce conflicts, yacc still produces a parser. It does
this by selecting one of the valid steps wherever it has a choice.

A rule describing the choice to make in a given situation is called a disambiguating
rule. The yacc program invokes two disambiguating rules by default:

® Ina shift/reduce conflict, the default is to do the shift.

= Ina reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in
the input sequence).

The first rule implies that reductions are deferred in favor of shifts when there is a
choice. The second rule gives the user rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided when possible.

Conflicts can arise because of mistakes in input or logic or because the grammar rules
(while consistent) require a more complex parser than yacc can construct. The use of
actions within rules can also cause conflicts if the action must be done before the parser
can be sure which rule is being recognized. In these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect parser. For this reason,
yacc always reports the number of shift/reduce and reduce/reduce conflicts resolved
by rule 1 and rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Experience has suggested that this rewriting is somewhat
unnatural and produces slower parsers. Thus, yacc produces parsers even in the
presence of conflicts.

Chapter 3 yacc: A Compiler-Writing System

As an example of the power of disambiguating rules, consider

stat : IF '(’ cond ')’ stat
| IF ‘(' cond ')’ stat ELSE stat

which is a fragment from a programming language involving an if-then-else statement.

In these rules, 1F and ELSE aretokens, cond isa nonterminal symbol
describing conditional (logical) expressions, and stat is a nonterminal symbol
describing statements. The first rule is called the simple-if rule and the second the if-else
rule. These two rules form an ambiguous construction because input of the following
form can be structured according to these rules in two ways:
IF (Cl) IF (C2) Sl ELSE S2

The input can be structured as in the following example orasin the subsequent
example, which is the one given in most programming languages having this construct:
IF (Cl)
{

IF (€2)
Sl
}
ELSE
S2
or:
IF (Cl1)
{
IF (C2)
Sel:
ELSE
S2

}
Each ELSE isassociated with the preceding 1F thatiswithoutan ELSE.

Ambiguity and conflicts ~ 3-21

3-22

In the following example, consider the situation where the parser has seen the IF-
ELSE construct and islooking at the ELSE.
IF (Cl1) IF (C2) Sl
It can immediately reduce by the simple-if rule to get
IF (Cl1) stat
and then read the remaining input
ELSE S2
and reduce by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE can be shifted, s2 read, and then the right portion
reduced by the if-else rule to get the following line, which can be reduced by the simple-
if rule:
IF (Cl) stat

This leads to the second of the above groupings of the input, which is usually
desired. Once again, the parser can do two valid things—there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case, which leads
to the desired grouping. This shift/reduce conflict arises only when there is a particular
current input symbol, ELSE, and particular inputs, such as have already been seen:
IF (Cl) IF (C2) S1

In general, there might be many conflicts, and each one is associated with an input
symbol and a set of previously read inputs. The previously read inputs are characterized
by the “state” of the parser. The conflict messages of yacc are best understood by
examining the verbose (-v) option output file. For example, the output corresponding to
the above conflict state might be

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23
stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat
ELSE shift 45

reduce 18

where the first line describes the conflict, giving the “state” and the input symbol.
The ordinary state description gives the grammar rules active in the state and the
parser actions.

Chapter 3 yacc: A Compiler-Writing System

Recall that the underline marks the portion of the grammar rules that has heen seen.
Thus, in the example, in state 23 the parser has seen input corresponding to IF ¢
cond) stat,and the two grammar rules shown are active at this time.

The parser can do two things:

= [fthe input symbol is ELSE, it is possible to shift into state 45. State 45 has, as part of
its description, the following line:
stat : IF (cond) stat ELSE_stat
hecause the ELSE will have heen shifted in this state. In state 23, the alternative
action (describing a dot (.)) is to be done if the input symhol is not mentioned
explicitly in the actions.

= Ifthe input symhol is not ELSE, the parser reduces to
stat : IF ' ('’ cond ')’ stat

by grammar rule 18.

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule numbers.
Inthe y.output file, the rule numbers are printed after those rules that can he
reduced. In most states, only one reduce action is possible, and it is the default
command.

The user who encounters unexpected shift/reduce conflicts probably wants to look at
the verbose output to decide whether the default actions are appropriate.

Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient. This is in the parsing of arithmetic expressions. Most of the commonly used
constructions for arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left or right associativity.

Precedence 3-23

3-24

[t turns out that ambiguous grammars with appropriate disambiguating rules can be
used to create parsers that are faster and easier to write than parsers constructed from
unambiguous grammars. The basic notion is to write grammar rules of the following two
forms for all binary and unary operators desired:

expr : expr OP expr
and
expr : UNARY expr

This creates a very ambiguous grammar with many parsing conflicts. As
disambiguating rules, the user specifies the precedence or binding strength of all the
operators and the associativity of the binary operators. This information is sufficient to
allow yacc to resolve the parsing conflicts in accordance with these rules and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with one of the following yacc
keywords: $left, %right,or %nonassoc, followed bya list of tokens. All of the
tokens on the same line are assumed to have the same precedence level and associativity;
the lines are listed in order of increasing precedence or binding strength. For example,

gleft r+' /-7
gleft '*' /¢

describes the precedence and associativity of the four arithmetic operators. Plus and
minus are left associative and have lower precedence than star and slash, which are also
left associative.

The keyword $right is used to describe right associative operators, and the
keyword #nonassoc is used to describe operators like the operator .LT in Fortran
that cannot associate with themselves. For example, the following line is illegal in Fortran
and such an operator would be described with the keyword %nonassoc inyacc:

A .LT. B .LT. C

As an example of the behavior of these declarations, the following description might
be used to structure the subsequent input:

$right ‘=
¥left '+ -
gleft Sl v

%%

Chapter 3 yacc: A Compiler-Writing System

expr : expr '=' expr

| expr ! expr
| expr -' expr
| expr *r expr
| expr /0 expr
| NAME

The following line is the input to be structured by the above description to perform

the correct precedence of operators:

a ==a*d-e=2f xg

The result of the structuring is as follows:
a=(b=1(((c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the same symbolic
representation but different precedences. An example is unary and binary minus (-).
Unary minus can be given the same strength as multiplication, or even higher, while
binary minus has a lower strength than multiplication.

Thekeyword %prec changes the precedence level associated with a particular
grammar rule. $prec appears immediately after the body of the grammar rule, before
the action or closing semicolon, and is followed by a token name or literal. The keyword
causes the precedence of the grammar rule to become that of the following token name
or literal. For example, the following rules might be used to give unary minus the same
precedence as multiplication:

$left ‘+' -

$left '*r /v
%%
expr expr '+’ expr
| expr '-' expr
| expr '*x' expr
| expr /' expr
| -r expr $prec ' *’
l NAME

Precedence 3-25

3-26

A token declared by %1eft, $right,and %nonassoc need not be, but can be
declared by %token aswell.

The precedences and associativities are used by yacc to resolve parsing conflicts.
They give rise to disambiguating rules. Formally, the rules work as follows:

= The precedences and associativities are recorded for those tokens and literals that
have them.

= A precedence and associativity is associated with each grammar rule. It is the
precedence and associativity of the last token or literal in the body of the rule. If the
gprec construction is used, it overrides this default. Some grammar rules can have
no precedence and associativity associated with them.

= When there is a reduce/reduce conflict or there is a shift/reduce conflict and either
the input symbol or the grammar rule has no precedence and associativity, then the
two disambiguating rules given at the beginning of the section are used, and the
conflicts are reported.

= [f there is a shift/reduce conflict and both the grammar rule and the input character
have precedence and associativity associated with them, then the conflict is resolved
in favor of the action (shift or reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by yacc. This means that mistakes in the specification
of precedences can disguise errors in the input grammar. It is a good idea to be sparing
with precedences and use them in an essentially “cookbook” fashion until some
experience has been gained. The y.output file is very useful in deciding whether the
parser is actually doing what was intended.

Chapter 3 yacc: A Compiler-Writing System

Error handling

Errorhandling is an extremely difficult area, and many of the problems are semantic
ones. When an error is found, for example, it might be necessary to reclaim parse tree
storage, delete or alter symbol table entries, and typically, set switches to avoid
generating any further output. It is seldom acceptable to stop all processing when an
error is found. It is more useful to continue scanning the input to find further syntax
errors. This leads to the problem of getting the parser “restarted” after an error.

A general class of algorithms to do this involves discarding a number of tokens from
the input string and attempting to adjust the parser so that input can continue. To allow
the user some control over this process, yacc provides a simple but reasonably
general feature. The token name error isreserved for error handling. This name can
be used in grammar rules. In effect, it suggests places where errors are expected and
recovery might take place.

The parser pops its stack until it enters a state where the token error islegal It
then behaves as if the token error were the current look-ahead token and performs
the action encountered. The look-ahead token is then reset to the token that caused the
error. If no special error rules are specified, the processing halts when an error is detected.

To prevent a cascade of error messages, the parser, after detecting an error, remains
in error state until three tokens are successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given and the input token is
quietly deleted.

As an example, a rule of the following form means that on a syntax error the parser
attempts to skip over the statement in which the error is seen:

stat 3 error

More precisely, the parser scans ahead, looking for three tokens that might legally
follow a statement, and starts processing at the first of these. If the beginnings of
statements are not sufficiently distinctive, it might make a false start in the middle of a
statement and end up reporting a second error where there is, in fact, no error.

Actions can be used with these special error rules. These actions might attempt to
reinitialize tables, reclaim symbol table space, and so on. Error rules such as the ones
mentioned are very general but difficult to control. Rules such as the following ones are
somewhat easier. Here, when there is an error, the parser attempts to skip over the
statement but does so by skipping to the next semicolon:

stat 3 error !

Error handling ~ 3-27

All tokens after the error and before the next semicolon cannot be shifted and are
discarded. When the semicolon is seen, this rule is reduced and any “cleanup” action
associated with it performed.

Another form of error rule arises in interactive applications where it might be
desirable to permit a line to be reentered after an error. The following example is one
way to do this:

input : error ‘\n’
{

printf ("Reenter last line: ");
input

$$ = $4;
}

There is one potential difficulty with this approach. The parser must correctly process
three input tokens before it admits that it correctly resynchronized after the error. If the
reentered line contains an error in the first two tokens, the parser deletes the offending
tokens and gives no message. This is clearly unacceptable. For this reason, there is a
mechanism that can force the parser to believe that error recovery is accomplished. The
following statement in an action resets the parser to its normal mode:

yyerrok ;
The last example can be rewritten somewhat more usefully, as the following
example shows:
input : error ‘a\11’
{
yyerrok;
printf ("Reenter last line: ");

}

input

$$ = $4;

Chapter 3 yacc: A Compiler-Writing System

As previously mentioned, the token seen immediately after the error symbol is
the input token at which the error was discovered. Sometimes this is inappropriate. For
example, an error recovery action might take upon itself the job of finding the correct
place to resume input. In this case, the previous look-ahead token must be cleared. The
following statement in an action has this effect:

yyclearin ;

For example, suppose the action after error were to call some sophisticated
resynchronization routine (supplied by the user) that attempted to advance the input to
the beginning of the next valid statement. After this routine is called, the next token
returned by yylex is presumably the first token in a legal statement. The old illegal
token must be discarded and the errorstate reset. A rule similar to the following one
could perform this:

stat - error

resynch () ;
yyerrok ;
yyclearin;
}
These mechanisms are admittedly crude but do allow for a simple, fairly effective

recovery of the parser from many errors. Also, the user can get control to deal with the
error actions required by other portions of the program.

The vacc environment

When the user enters a specification to yacc, the outputis a file of C language
programs called y . tab. c. The function produced by yacc isan integer-valued
function called yyparse. When itjs called, it in turn repeatedly calls yy1ex, the
lexical analyzer supplied by the user (see “Lexical Analysis”), to obtain input tokens.

Eventually, if an error is detected, yyparse returns the value 1, and no error
recovery is possible, or the lexical analyzer returns the end-marker token and the parser
accepts. In this case, yyparse returns the value 0.

The yacc environment 3-29

3-30

The user must provide a certain amount of environment for this parser to obtain a
working program. For example, as with every C language program, a program called
main must be defined that eventually calls yyparse. Also needed is a routine called
yyerror that prints a message when a syntax error is detected. These two routines
(main and yyerror) must be supplied in one form or another by the user.

To ease the initial effort of using yacc, a library is provided with default versions of
main and yyerror. Usethe -1y optionof 1d toincorporate these routines into
your program. The following source code examples show the simplicity of these routines:

main ()
{
return (yyparse());
}
and

#include <stdio.h>

yyerror(s)
char *s;
{

fprintf(stderr, "%s\n", s);

The argument to yyerror is a string containing an error message, usually the
string syntax error. The average application wants to do better than this.
Ordinarily, the program should keep track of the input line number and print it along
with the message when a syntax error is detected.

The external integer variable yychar contains the look-ahead token number at the
time the error was detected. This might be of some interest in giving better diagnostics.

Because the main program is probably supplied by the user (to read arguments,
and so on), the yacc library is useful only in small projects or in the earliest stages of
larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero
value, the parser sends as output a verbose description of its actions, including a discussion
of the input symbols read and what the parser actions are. Depending on the operating
environment, it might he possible to set yydebug by usinga debugging system.

Chapter 3 yacc: A Compiler-Writing System

Input style

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following suggestions are a few style hints:

= Use all uppercase letters for token names and all lowercase letters for nonterminal
names.

= Put grammar rules and actions on separate lines. This allows either to be changed
without an automatic need to change the other.

= Put all rules with the same left side together. Put the left side in only once and let all
following rules begin with a vertical bar.

= Put a semicolon only after the last rule with a given left side and put the semicolon on
a separate line. This allows new rules to be easily added.

= Indent rule bodies by two tab stops and action bodies by three tab stops.
The example in “Example: A Desk Calculator” is written following this style (where

space permits). You must make up your own mind about these stylistic questions. The
central problem, however, is to make the rules visible through the morass of action code.

Left recursion

The algorithm used by the yacc parser encourages so-called left recursive grammar
rules. Rules of the following form match this algorithm:

name : name rest-of-rule ;

Rules such as the following two frequently arise when writing specifications of
sequences and lists. In each of these cases, the first rule is reduced for the first item only;
the second rule is reduced for the second and all succeeding items:
list = item

| list +, item
seq : item
| seq item

Leftrecursion 3-31

With right recursive rules, such as the following examples, the parser is a bit bigger
and the items are seen and reduced from right to left:
seq : item

| item seq

More seriously, an internal stack in the parser is in danger of overflowing if a very
long sequence is read. The user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning; if
so, consider writing the sequence specification as in the following, using an empty rule:
seq : /* empty */

| seq item

Once again, the first rule is always reduced exactly once before the first item is read,
the second rule is reduced once for each item read. Permitting empty sequences often
leads to increased generality. However, conflicts might arise if yacc is asked to decide
which empty sequence it has seen when it hasn't seen enough to know.

Lexical considerations

3-32

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally but not within quoted strings, or names might be entered into a
symbol table in declarations but not in expressions.

One way of handling this situation is to create a global flag that is examined by the
lexical analyzer and set by actions. The following example specifies a program that
consists of zero or more declarations followed by zero or more statements. The flag
dflag is 0 when reading statements and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell
that the declaration section ended and the statements began. In many cases, this single
token exception does not affect the lexical scan.

Chapter 3 yacc: A Compiler-Writing System

%{

int dflag;
%}
... Other declarations ...

%%

prog : decls stats

decls : /* empty */
{

dflag = 1;

}
| decls declaration

stats : /* empty */

dflag = 0;
¥
| stats statement
... other rules ...
This kind of “back door” approach can be elaborated to an unpleasant degree.

Nevertheless, it represents a way of doing some things that are difficult, if not impossible,
to do otherwise.

Lexical considerations ~ 3-33

Reserved words

Some programming languages permit you to use words (like i f) that are normally
reserved as label or variable names, provided that such use does not conflict with the
legal use of these names in the programming language. This is extremely hard to do in
the framework of yacc. Itis difficult to pass information to the lexical analyzer telling it
“thisinstance of if isa keyword and thatinstance is a variable.” The user can try it
using the mechanism described in the last section, but it is difficult. A number of ways of
making this easier are being studied. For the time being, it is better that the keywords be
reserved—that is, forbidden for use as variable names.

Simulating error and accept in actions

The parsing actions of error and accept can be simulated in an action by use of the macros
vYACCEPT and YYERROR. The YYACCEPT macro causes yyparse toreturn the
value 0. YYERROR causes the parser to behave as if the current input symbol had been a
syntax error. The function yyerror is called, and error recovery takes place.

These mechanisms can be used to simulate parsers with multiple end-markers or
context-sensitive syntax checking,

Accessing values in enclosing rules

3-34

An action can refer to values returned by actions to the left of the current rule. The
mechanism is the same as with ordinary actions, a dollar sign followed by a digit.

sent - adj noun verb adj noun

look at the sentence ...

Chapter 3 yacc: A Compiler-Writing System

adj : THE

$$ = THE;
}
| YOUNG
{
$$ = YOUNG;
}
noun : DOG
{
$$ = DOG;
}
| CRONE
{
if($0 == YOUNG)
t
printf("what?\n");
}
$$ = CRONE;

In this case, the digit can be 0 or negative.

In the action following the word CRONE, a check is made that the preceding token
shifted was not YOuNG. Obviously, this is only possible when a great deal is known
about what might precede the symbol noun in the input.

There also is a distinctly unstructured flavor about this. Nevertheless, at times, this
mechanism prevents a great deal of trouble, especially when a few combinations are to
be excluded from an otherwise regular structure.

Accessing values in enclosing rules 3-35

Arbitrary value types

3-36

By default, the values returned by actions and the lexical analyzer are integers. The
yacc program also can support values of other types, including structures. The yacc
program keeps track of the types and inserts appropriate union member names so that
the resulting parser is strictly type checked.

The yacc value stack is declared to be a union of the various types of values
desired. The user declares the union and associates union member names to each token
and nonterminal symbol having a value. When the value is referenced througha $$ or
$n construction, yacc automatically inserts the appropriate union name so that no
unwanted conversions take place. This makes type-checking commands suchas 1lint
much quieter.

Three mechanisms are used to provide for this typing;

= First, there is a way of defining the union. This must be done by the user because other
programs, notably the lexical analyzer, must know about the union member names.

= Second, there is a way of associating a union member name with tokens and
nonterminal symbols.

= Third, there is a mechanism for describing the type of those few values where yacc
cannot easily determine the type.

To declare the union, the user includes the following statement in the declaration
section:

gunion
{

body of union
}
This declares the yacc value stack and the external variables yy1val and yyval
to have type equal to this union. If yacc was invoked with the -d option, the union
declaration is copied onto the y.tab.h file. Alternatively, the union can be declared
ina header file, and a typedef used to define the variable YyYSTYPE to represent
this union. Thus, the header file might have said the following, instead:

Chapter 3 yacc: A Compiler-Writing System

typedef union
{

body of union
}
YYSTYPE;

The header file must be included in the declarations section by use of %{ and %}.
Once YYSTYPE is defined, the union member names must he associated with the
various terminal and nonterminal names. The following construction is used to indicate a
union member name:

<name>

If this follows one of the keywords %token, %left, $right, or $nonassoc,the
union member name is associated with the tokens listed. For example, the following
causes any reference to values returned by these two tokens to be tagged with the union
member name optype:

%left <optype> +' ‘-7

Another keyword, %type, is used to associate union member names with
nonterminals. For example, the following line can be used to associate the union
member nodetype with the nonterminal symbols exprand stat.

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly,
reference to left context values (such as $0) leaves yacc with no easy way of
knowing the type. In this case, a type can be imposed on the reference hy inserting a

union member name between “<” and “>” immediately after the first $, as in the
following example.

Arbitrary value types ~ 3-37

rule 2 aaa
S$<intval>$ = 3:
bbb

fun($<intval>2, S$S<other>0);

}

This syntax has little to recommend it, but the situation arises rarely. A sample
specification is given in “Example: An Advanced Grammar.” The facilities in this
subsection are not triggered until they are used. In particular, the use of %type turns
on these mechanisms. When they are used, there is a fairly strict level of checking. For
example, use of $n or $$ to refer to something with no defined type is diagnosed. If
these facilities are not triggered, the yacc value stack is used to hold int values, as
was true historically.

Example: A desk calculator

3-38

This section contains an example that gives the complete yacc applications for a small
desk calculator. The calculator has 26 registers laheled a through z and accepts
arithmetic expressions made up of the operators shown in Table 3-2.

If an expression at the top level is an assignment, the value is printed. Otherwise, the
expression is printed. As in the C language, an integer that begins with 0 (zero) is
assumed to be octal. Otherwise, it is assumed to be decimal.

Asanexample ofa yacc specification, the desk calculator does a reasonable job of
showing how precedence and ambiguities are used and demonstrates simple recovery.
The major oversimplifications are that the lexical analyzer is much simpler than what is
necessary for most applications, and the output is produced immediately line by line.

Chapter 3 yacc: A Compiler-Writing System

Table 3-2 Arithmetic operators

Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (Remainder)
& Binary AND

| Binary OR

Assignment

Note the way that decimal and octal integers are read in by grammar rules. This job is

probably better done by the lexical analyzer.
%{
#include <stdio.h>

#include <ctype.h>

int regs([26];

int base;

%}

%start list

%token DIGIT LETTER

gleft ‘1|’

¢left &’

%left '+ -

¥left r*r /0 %!

%left UMINUS /* precedence for unary minus */
%% /* beginning of rule section */

(continued

Example: A desk calculator 3-39

list : /* empty */
| list stat ’ \n’

| list error ' \n’

YYerror;

stat : expr

printf("%d\n", S$1);
| LETTER '=' expr

regs[$1] = $3

expr g "(' expr ')’
$$ = $2;

| expr '+ expr

$$ = 51 = 43

| expr - expr

$$ = 81 - 8§83

| expr '+ expr

$$ = 81 * $3;

| expr '/ expr

3-40 Chapter 3 yacc: A Compiler-Writing System

S§$ = $1/530;

I exp ‘%’ expr

oe

$$ = 51 $3
| expr ‘&' expr
$$ = $1 & $3;
| expr | expr
$$ = $1 1 83
| '-' expr S%prec UMINUS
$$ = - $2;
| LETTER
$$ = reglsi];
| number
number : DIGIT
$$ = $1; base = ($1==0) 2 8 : 10;
| number DIGIT

$$ = base * $1 + $2

i (continued

Example: A desk calculator ~ 3-41

3-42

%%

~
*

*

*

*

/* start of program */

lexical analysis routine
return LETTER for lowercase letter
(i.e., yylval = 0 through 25)
returns DIGIT for digit
(i.e., yylval = 0 through 9)

all other characters are returned immediately

/

yylex()

{

int e
while (c=getchar()) == ' ') /* skip blanks */
if(islower(c))
{
yylval = ¢ - 'a’ ;
return(LETTER);
}
if(isdigit(c))
{
yylval = ¢ - 0" ;
return(DIGIT);
}

return(c);

Chapter 3 yacc: A Compiler-Writing System

Example:

yacc Inputsyntax

This section contains a description of the yacc input syntaxasa yacc specification.
Context dependencies, and so forth, are not considered. Ironically, the yacc input
specification language is most naturally specified as an LR(2) grammar. The sticky part
comes when an identifier is seen in a rule immediately following an action. If this
identifier is followed by a colon, it is the start of the next rule; otherwise, it is a
continuation of the current rule, which just happens to have an action embedded in it.

As implemented, the lexical analyzerlooks ahead after seeing an identifier and
decides whether the next token (skipping blanks, newlines, comments, and so on) is a
colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIER but neveras part of
C_IDENTIFIER.

/* grammar for the input to yacc */
/* basic entries */

/* includes identifiers and literals */

%token IDENTIFIER

/* identifier (but not literal) followed by a colon */
$token C_IDENTIFIER
%token NUMBER /* [0-9]+ */

/* reserved words: */

/* %$type -> TYPE, %left -> LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
%token MARK /* the %% mark */

%token LCURL /* the %{ mark */

%token RCURL /* the %} mark */

/* ASCII character literals stand for themselves */

%token spec

%%

(continued)=

Example: yacc inputsyntax ~ 3-43

3-44

spec

tail

defs

defs

rword

tag

defs MARK rules tail

MARK

...In this action, read the rest of the file. ..

/* empty: the second MARK is optional */

/* empty */
defs def

START IDENTIFIER
UNION

...Copy union definition to output. ..
LCURL

...Copy C code to output file. ..
RCURL

ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
‘<’ IDENTIFIER ">’

Chapter 3 yacc: A Compiler-Writing System

nlist : nmno
| nlist nmno

| nlist ’,’ nmno

=

/* Note: literal illegal with %type */
nmno : IDENTIFIER

| IDENTIFIER NUMBER

H
/* rule section */

rule 3 C_IDENTIFIER rbody proc

| rule rule

rule ; C_IDENTIFIER rbody prec
| "1" rbody prec
rbody : /* empty */
| rbody IDENTIFIER
| rbody act
;
act : r{

...Copy action, translate $$’ s etc....
’ } ’
prec g /* empty */
| PREC IDENTIFIER

| PREC IDENTIFIER act

| prec’; "’

Example: yacc input syntax ~ 3-45

Example: An advanced grammar

3-46

This section gives an example of a grammar using some of the advanced features. It
modifies the example from “Example: A Desk Calculator” to provide a desk calculator
that does floating-point interval arithmetic.

The calculator understands floating-point constants, as well as the arithmetic
operations +, -, *, /,unary -,andtheletters a through z.The calculator also
understands intervals written as is the following example, where x is less than or equal
o v

(X,Y)

There are 26 interval valued variables A through z that can also be used. The
usage is similar to that in “Example: A Desk Calculator.” That is, assignments return no
value and print nothing, while expressions print the floating or interval value.

Intervals are represented by a structure consisting of the left and right endpoint
values stored as doubles. This structure is given a type name, INTERVAL, by using
typedef. The yacc value stack can also contain floating-point scalars and integers
that are used to index into the arrays holding the variable values. The entire strategy
depends strongly on being able to assign structures and unions in the C language. In fact,
many of the actions call functions that return structures as well.

Note the use of vYERROR to handle error conditions: division by an interval
containing 0 and an interval presented in the wrong order. The error-recovery
mechanism of yacc is used to throw away the rest of the offending line. In addition to
the mixing of types on the value stack, this grammar also demonstrates an interesting use
of syntax to keep track of the type (for example, scalar or interval) of intermediate
expressions. Scalars can be automatically promoted to an interval if the context demands
an interval value. This causes a large number of conflicts when the grammar is run
through yacc—18 shift/reduce and 26 reduce/reduce. The problem can be seen by
looking at the following input lines:

2.5+(3.5-4.)
and
255 + (3.5.:4)

Notice that the 2.5 isto be used in an interval-value expression in the second
example, but this fact is not known until the comma is read. By this time 2.5 is
finished, and the parser cannot go back and change its mind.

Chapter 3 yacc: A Compiler-Writing System

More generally, it might be necessary to look ahead an arhitrary number of tokens to
decide whether to convert a scalar to an interval. This problem is evaded by having two
rules for each binary interval valued operator, one when the left operand is a scalar and
one when the left operand is an interval. In the second case, the right operand must be
an interval, so the conversion is applied automatically.

Despite this evasion, there are still many cases where the conversion might he
applied or not, leading to the above conflicts. They are resolved hy listing the rules that
yield scalars first in the specification file. In this way, the conflict is resolved in the
direction of keeping scalar-valued expressions scalar valued until they are forced to
become intervals. This way of handling multiple types is very instructive, but not very
general. If there were many kinds of expression types instead of just two, the number of
rules needed would increase dramatically and the conflicts even more dramatically. Thus,
while this example is instructive, it is better practice in a more normal programming
language environment to keep the type information as part of the value and not as part of
the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating-point constants. The C language library routine atof is used to do the actual
conversion from a character string to a double-precision value. If the lexical analyzer
detects an error, it responds by returning a token that is illegal in the grammar, provoking
a syntax error in the parser and thence error recovery.

%{

#include<stdio.h>

#include<ctype.h>

typedef struct interval

{
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof () ;
double dreg[26];
INTERVAL vreg[26];
%}

(continued

Example: An advanced grammar ~ 3-47

gstart line

gunion

{
int ival;
double dval;
INTERVAL vval;

}

%token <ival> DREG VREG /*indices into dreg, vreg */
%token <dval> CONST /* floating point constant */
%type <dval> dexp /* expression */

gtype <vval> vexp /* interval expression */

/* precedence information about the operators */

%left R et
gleft rEe oy

%left UMINUS /* precedence for unary minus */

%%
lines : /* empty */
| lines line
line : dexp '\n’
{
printf("%15.8f\n".$1);
}
| vexp ‘\n’
{
printf (" (%15.8f,%15.8f)\n",$1.10,3$1.hi);
}
| DREG '=' ‘\n’
{
dreg($l] = $3;
}
| VREG '=' vexp ‘\n’

3-48 Chapter 3 yacc: A Compiler-Writing System

dexp

vreg[$1l] = $3;

error '\n’

yyerrork;

CONST
DREG

$$ = dreg($1]

dexp ‘+‘ dexp

$$ = $1 + $3
dexp ‘-’ dexp
S$ = 81 - S$3

dexp ’'*’ dexp

$$ = $1 * $3

dexp ’/' dexp

SS$ = S1 / $3
- dexp %prec UMINUS
§S == 52

(continued

Example: An advanced grammar ~ 3-49

| (' dexp ')’

{
gl = $2
}
vexpp : dexp
{
S.hi = $$.1e = $1;
}
| '(' dexp ’,’ dexp ')’
{
$i§l. 1o = $2i;
s.hi = $4;
if($$.1o > S.hi)
{
printf("interval out of order n");
YYERROR;
}
}
| VREG
{
$$ = vreg([$1]
}
| vexp '+’ vexp
{
S$.hi = S1_hal & .$8k.hi;
$$.1o = $1.1o + $3.10
}
| dexp '+’ vexp
{
$§$.hi = $1 + $3.hi;
$$.1lo =181l « B3.1o0

3-50 Chapter 3 yacc: A Compiler-Writing System

vexp =’ vexp

$$.hi
$$.1o

$1.hi = $3.1lp;
$1.1o - $3.hi

1]

dvep -’ wvdep

$$.hi
$$.1o

$11 - S$B.do);
$1 - $3.hi

vexp ' *’ vexp

$$ = vmul($1.10,$.hi, $3

dexp '*’ vexp

$$ = vmul ($1, $1, $3)

vexp '/’ vexp

)

if(dcheck($3)) YYERROR;

$$ = vdiv($1.lo, S$1.hi,

dexp "/’ vexp

$3)

if (dcheck($3)) YYERROR;

$$ = vdiv($1.lo, $1l.hi, $3)
=" vexp %prec UMINUS
$$.hi = -$2.10;8$.10 =-$2.hi

r(r vexp vy

(continued m

Example: An advanced grammar

3-51

o°
o°

/* buffer size for floating point number */

define BSZ 50

/*
*lexical analysis
Liff
yylex()
{
register c;
while ((c=getchar()) == ' ') /* skip blanks */ ;
if (isupper(c))
{
yylvalval = ¢ - A’
return (VREG) ;
}
if (islower(c))
{
yylvalval = c - 'a’ ,
return (DREG) ;
}
/*
* gobble up digits, points, exponents
i/
if(isdigit(c) |l ¢ == " .)
{

char buf[BSz+1], *cp = buf;
int dot = 0, exp = 0;

3-52 Chapter 3 yacc: A Compiler-Writing System

for(; (cp - buf) < BSZ ; ++cp,c=getchar())

{
*Cp = C;
if (isdigit(c))
continue;
if(c == %%]
{
if (dot++ || exp)
/* causes syntax error */
return(‘.’);
continue;
}
if(c == ‘e’)
{
if(exp++)
/* causes syntax error */
return(‘e’);
continue;
}
break; /* end of number */
}
*cp 2 '\0' 2

if((cp - buff) >= BSZ)

printf("constant too long truncated\n");

else
/* push back last char read */
ungetc(c, stdin);
yylval.dval = atof (buf);
return (CONST) ;
}

return(c) ;

(continued

Example: An advanced grammar ~ 3-53

/*
* returns the smallest interval
* between a, b, c and d
*
INTERVAL hilo(a, b, c, d)
double a4, b, c, d;

{
INTERVAL v;
if(a>b)
{
v.hi = a;
v.lo = b;
}
else
{
v.hi = b;
v.lo = a;
}
if(c>d)
{
if(c>v.hi)
wvi.hi = .¢;
if(d<v.lo)
v.lo = d;
}
else
{
if(d>v.hi)
¥.hil = d;
if(c<v.lo)
velo = ¢c;
}

3-54 Chapter 3 yacc: A Compiler-Writing System

return(v);
}
INTERVAL vmul(a, b, v)
double a, b;
INTERVAL v;

{
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}
dcheck(v)
INTERVAL v;
{
if(v.hi >=0.&& v.lo <=0.)
{
printf("divisor internal contains 0.\n");
return(1);
}
return(0);
}

INTERVAL vdiv(a, b, v)
double a, b;
INTERVAL v;
{
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));

Example: An advanced grammar ~ 3-55

Backward compatibility

3-56

This section mentions synonyms and features that are supported for historical continuity

but, for various reasons, are not encouraged.

Literals can also be delimited by double quotes.

Literals can be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined just as if the literal did not
have the quotes around it. Otherwise, it is difficult to find the value for such a literal.

The use of multicharacter literals is likely to mislead those unfamiliar with yacc,
because it suggests that yacc is doing ajob that actually must be done by the
lexical analyzer.

Most places where (%) is legal, the backslash (\) can be used. In particular, \\ is
the same as %%, \left thesameas %left,and soon.

There are a number of other synonyms:
isthe sameas gleft
isthe sameas %right
binary isthesameas $nonassoc

o o°
vV A

oo

%2 isthesame as %nonassoc
%0 isthesame as $token
Sterm isthesameas $token

a isthe same as $prec

o°

Actions can also have the form
=i
andthe braces canbe dropped if the action is a single C language statement.

C language code between %{ and %} used to be permitted at the head of the rules
section as well as in the declaration section.

Chapter 3 yacc: A Compiler-Writing System

4 wm4: A Macro Processor

Invoking m4 / 43

Defining macros / 4-3

Arithmetic built-ins / 4-9

I/0 manipulation / 4-10

String manipulation / 4-14

Printing / 4-16

Executing system commands / 4-16
Interactive use of m4 / 4-17
Recursive definitions / 4-17

Built-in macro summary / 4-19

The m4 macro processor is a general-purpose macro-processing utility. It can also be
considered to be an interpreter forthe m4 language. The #define statement in the C
language is an example of the basic facility provided by any macro processor: the
replacement of some text by some (other) text. For several reasons, m4 isa more

powerful macro processor than the standard C preprocessor, cpp.

The basic operation of m4 is to read every alphanumeric token (string of letters and
digits) in the input and to determine whether the token is the name of a macro. The
name of a macro is replaced by its defining text and the resulting string is pushed back

onto the input to be rescanned.

In addition to the straightforward replacement of one string of text by another, the ma

macro processor also provides the following features:

= arguments to Macros

= arithmetic capabilities

= file manipulation

= conditional macro expansion
= string and substring functions

= recursive definitions

When a macro is called with arguments, the arguments are collected and substituted into

the right places in the defining text before the defining text is rescanned.

The m4 macro processor accepts user-defined macros as well as its “built-in” macros.
Both types of macros work exactly the same way, except that some of the built-in macros

have side effects on the state of the process.

4-2 Chapter 4 ma: A Macro Processor

Invoking ma4

Torun m4, give the command

md files

Each argument file is processed in order. If there are no arguments, or if an argument is
-, the standard input is read at that point.

The processed text is written on the standard output. The output can be redirected for
subsequent processing, as follows:

md files > outputfile

Defining macros

The m4 macroallows you to define macros, remove their definition, have conditional
definitions, specify arguments in a definition, and many other tasks. This section outlines
important aspects of macro definition.

define

The primary built-in function of m4 is define. This function is used to define new
macros. The general form is

define (name, replacement)

All subsequent occurrences of name are replaced by replacement. The name must be
alphanumeric and must begin with a letter (the underscore (_) counts as a letter). The
replacement is any text that contains balanced parentheses. An escaped RETURN or an
embedded newline character allows a multiline replacement to be specified.

Definingmacros ~ 4-3

4-4

The following is a typical example of the use of define, in which N is defined to
be the string 100 and is then used ina later if statement:
define (N, 100)
if (i > N) echo "number too large"

The left parenthesis must immediately follow the word define to signal that define
has arguments. If a user-defined macro or built-in name is not followed immediately by
this character, the macro call is assumed to have no arguments.

Macro calls have the following general form:
name(argl, arg2, ., argn)

A macro name is recognized as such only if it appears surrounded by nonalphanumerics.
In the following example, the variable nNNN is absolutely unrelated to the defined macro
N, even though the variable contains a lot of N’s:

define (N, 100)

if (NNN > 100) echo "number too large"

Macros can be defined in terms of other macros. For example, the following defines
both M and N tobe 100.1f N is redefined and subsequently changes, M retains the
value of 100, not N.
define(N, 100)
define (M, N)

The m4 macro processor expands macro names into their defining text as soon as
possible. The string N is immediately replaced by 100. The string M is then defined
to be 100. The overall result is the same as using the following input in the first place:
define (M, 100)

The order of the definitions can be interchanged as follows:
define (M, N)
define (N, 100)

Now M is defined to be the string N, so when the value of M is requested later, the

result is the value of N at that time (because the m is replaced by N, which is replaced
by 100).

Chapter 4 ma: A Macro Processor

Quoting
The more general solution to the problem of making sure the correct strings get
substituted is to delay the expansion of the arguments of define by quoting them.
The quoting characters initially recognized by m4 are the left and right single quotes, (*
and). Any text surrounded by left and right single quotes is not expanded
immediately but has the quotes stripped off. The value of a quoted string is the string
stripped of the quotes. If the input is
define (N, 100)
define (M, ‘N’)
the quotes around the N are stripped off as the argument is being collected. The result
of using quotes is to define M as the string N, notas 100.

The general rule is that m4 always strips off one level of single quotes whenever it
evaluates something. This is true even outside macros.

If the word define itselfis to appear in the output, the word must be quoted in
the input as follows:
‘define’ = 1;

Another example of using quotes is to redefine a macro. To redefine N, the
evaluation must be delayed by quoting:
define (N, 100)
define ('N’, 200)

In m4, it is often wise to quote the first argument of a macro. The following example,
forinstance, does not redefine N:
define (N, 100)
define (N, 200)
The n in the second definition is replaced by 100. The result is equivalent to the
following statement:

define (100, 200)

This statement is ignored by ma, however, because only names that begin with an
alphanumeric character can be defined.

Definingmacros ~ 4-5

4-6

changequote

If left and right single quotes are not convenient for some reason, the quote characters
can be changed with the following built-in macro:

changequote ([, 1)

The built-in changequote makes the new quote characters the left and right
brackets. The original characters can be restored by using changequote without
arguments, as follows:

changequote

undefine

The undefine macro removes the definition of some macro or built-in as follows:
undefine ('N’)

The macro removes the definition of N. Built-ins can be removed with undefine,
as follows:
undefine (‘define’)

Once removed, the definition cannot be reused.

ifdef

The built-in ifdef provides a way to determine whether a macro is currently defined.
Depending on the system, a definition appropriate for the particular machine can be
made as follows:
ifdef (‘pdpll’, ‘define(wordsize,16)’)
ifdef (‘u3b’, ‘define (wordsize,32)’)
Remember to use the quotes.
The ifdef macro actually permits three arguments. If the first argument is defined,
the value of ifdef isthe second argument. If the first argument is not defined, the
value of ifdef is the third argument. If there is no third argument, the value of

Chapter 4 m4: A Macro Processor

ifdef isnull. If the name is undefined, the value of ifdef is then the third
argument, as in

ifdef (‘unix’, on UNIX, not on UNIX)

Arguments

User-defined macros can also have arguments, so different invocations can have different
results. Within the replacement text for a macro (the second argument of its define),
any occurrence of $n isreplaced bythe nth argument when the macro is actually used.
Thus, the following macro, bump, generates code to increment its argument by 1:

define (bump, $1 = $1 + 1)

The statement
bump (x)
is equivalent to
x =x +1

A macro can have as many arguments as needed, but only the first nine are accessible
(s1 through $9) (see “Built-In Macro Summary” under shift formore information).
The macro name is $0, although that is less commonly used. Arguments that are not

supplied are replaced by null strings, so a macro can be defined that simply concatenates
its arguments like this:

define(cat, $1$2$3$4$55$6$7$8%9)
Thus,
cat (x, y, 2)
is equivalent to
Xyz
Arguments $4 through $9 are null, because no corresponding arguments are

provided. Leading unquoted blanks, tabs, or newlines that occur during argument
collection are discarded. All other white space is retained. Thus,

define(a, b c)

defines a tobe b c.

Defining macros ~ 4-7

4-8

Arguments are separated by commas; however, when commas occur within
parentheses, the argument is neither terminated nor separated. For example,

define(a, (b,c))
has only two arguments. The first argument is a. The second is literally (b, c). A bare

comma or parenthesis can be inserted by quoting it.
Three other constructions are useful in macro definitions:

S#

S*

se

During macro replacement, the construction $# is replaced by the number of arguments.
The $* construction is replaced by a list of the arguments separated by commas. The
construction s@ islike $* except that each argument is quoted (using the current
quotes). See the section “Recursive Definitions” for examples of the first two constructions.

ifelse

Arbitrary conditional testing is performed through the built-in macro ifelse.Inthe
simplest form,
ifelse(a, b, ¢, d)

compares the two strings a and b. If aand bare identical, i felse returnsthe string c.
Otherwise, string d is returned. Thus, a macrocalled compare can be defined to
compare two strings and return yes or no if they are the same or different, as follows:

define (compare, ‘ifelse($1, $2, yes, no)’)

Note the quotes, which prevent evaluation of ifelse occurring too early. If the
fourth argument is missing, it is treated as empty. Thus,
ifelse(a, b, ¢

is ¢ if a matches b, and null otherwise.
ifelse can actually have any number of arguments and provides a limited form of
multiway decision capability. In the input

ifelse(a, b, ¢, d, e, f,

if the string ais the same as the string b, the result is ¢. Otherwise, if d is the same as e,
the result is . Otherwise, the result is g If the final argument is omitted and the specified
strings don’'t match, the result is null.

Chapter 4 ma: A Macro Processor

Arithmetic built-ins

The m4 program provides three built-in functions for doing arithmetic on integers (only):
incr
decr

eval

The simplest are incr, which increments its numeric argument by 1, and decr,
which decrements by 1. Thus, to handle the common programming situation where a
variable is to be defined as “one more than n,” use the following form:

define (N, 100)
define (N1, ‘incr(N)’)

Then N1 is defined as one more than the current value of n.

The more general mechanism for arithmetic is a built-in function called eval, which
is capable of arbitrary arithmetic on integers. The operators in decreasing order of
precedence are shown in Table 4-1.

Parentheses can be used to group operations where needed. All the operands of an
expression given to eval must ultimately be numeric. The numeric value of a true
relation (like 1>0)is 1 and false is 0. The precision in eval is 32 bits under the A/UX
operating system.

Table 4-1 Arithmetic operators

Symbol Meaning

+ - Unary plus and minus
FEn Exponentiation

* /% Multiplication and division
- Binary plus and minus

== = <<= 3 5= Relational operators

! Logical negation (NOT)
& && Logical multiplication (AND)
|11 Logical addition (OR)

Arithmetic built-ins 49

As a simple example, define M tobe 2==n+1 using eval as follows:
define (N, 3)
define (M, ‘eval (2==N+1)")
First N is defined as 3; then M is defined as 0, since 2 is not equal to N+1.If M were
defined as
define (M, ‘eval (2==N-1)')

then its defined value would be 1, because the result of the comparison would be true.
The defining text for a macro should be quoted unless the text is very simple.
Quoting the defining text usually gives the desired result and is a good habit to get into.

I/0 manipulation

4-10

The ma utility provides numerous functions to handle input and output. These routines
are detailed in this section.

include and sinclude

A new file can be included in the input at any time by the built-in function include.
For example,

include (filename)

inserts the contents of filenamein place of the include command. The contents of
the file are often a set of definitions. The value of include (the replacement text of
include) is the contents of the file. If needed, the contents can be captured in
definitions, and so on. A fatal error occurs if the file named by filename cannot be
accessed. To get some control over this situation, you can use the alternate form,
sinclude, or quote the filename. The built-in sinciude (silent include) says
nothing and continues if the file named cannot be accessed.

Chapter 4 ma: A Macro Processor

divert, undivert,and divnum

The output of m4 can be diverted to temporary files during processing, and the
collected material can be generated upon command. The m4 program maintains nine of
these diversions, numbered 1 through 9. If the built-in macro

divert (n)

is used, all subsequent output is put onto the end of a temporary file referred to as n.
Diverting to this file is stopped by the divert or divert (0) command, which
resumes the normal output process.

Diverted text is normally produced all at once at the end of processing with the
diversions produced in ascending numerical order. Diversions can be brought back at
any time by appending the new diversion to the current diversion. Output diverted to a
stream other than 0 through 9 is discarded. The following code, for example, throws
away excess newlines:

divert (-1)

define (N, 100)
define(M, 200)
define(L, 300)

divert

¢ Note The newline character at the end of each define is passed to the output, as
described in the following section. e

The built-in macro undivert, with no arguments, brings back all diversions in
numerical order. With arguments, undivert brings back the selected diversions in the
order specified by the argument. undivert discards the diverted text. You can also
discard text by using a diversion number that is not between 0 and 9, inclusive.

The value of undivert is notthe diverted text, but rather the number of the
diversion to bring back into the text. Furthermore, the diverted material is not rescanned
for macros.

1/0 manipulation ~ 4-11

As an example of the interaction between divert, undivert,and current
diversion, consider the following code:
this is current diversion
divert (1)
this is diversion 1
divert (2)
this is diversion 2
divert (3)
this is diversion 3
divert
this is current diversion again
undivert
once again, current diversion

In the above trivial code there are three diversions between the two lines of current
diversion code. The use of divert atthe end of diversion 3 is needed to inform m4
that what follows is not part of diversion 3. undivert with no arguments inserts at the
current position all previous diversions, with no rescanning of any macros that might be
there. The output of the above code is

this is current diversion

this is current diversion again
this is diversion 1

this is diversion 2

this is diversion 3

once again, current diversion

412 Chapter 4 ma: A Macro Processor

Note that the diverted text is not brought hack again at the end of the output by the
normal process; the diverted text is discarded by the use of undivert. Another
example can make this clearer:
this is main diversion
divert (1)
this is diversion 1
divert (2)
this is diversion 2
divert (3)
this is diversion 3
divert
this is main diversion again
undivert (3)
once again, main diversion

undivert (2)

The ouput for the above is
this is main diversion
this is main diversion again
this is diversion 3
once again, main diversion
this is diversion 2

this is diversion 1

As you can see, only diversion 1 is brought back by the normal process, because only
diversion 1 is not undiverted and, therefore, discarded. Note also that you can change the
order of appearance of the diverted versions.

The built-in macro d@ivnum returns the number of the currently active diversion.
The current output stream is 0 during normal processing,

I/0 manipulation ~ 4-13

dnl

There is a built-in macro called dnl that deletes all characters that follow it, up to and
including the next newline. The dnl macro is useful mainly for throwing away empty
lines that otherwise tend to clutter up m4 output. Using input

define(N, 100)

define (M, 200)

define (L, 300)

results in a newline at the end of each line that is not part of the definition. The newline
is copied into the output so that each define statement is followed by a blank line. If
the built-in macro dnl is added to each of these lines, the newlines disappear.

define (N, 100)dnl
define (M, 200)dnl
define (L, 300)dnl

String manipulation

4-14

The m4 utility provides numerous functions to handle string manipulation. These
routines are detailed in this section.

len

The built-in macro 1en returns the length of the string (number of characters) that
makes up its argument. Thus,

len (abcdef)

is 6, and

len((a,b))

is 5 (the parentheses and comma are counted along with a and b).

Chapter 4 ma: A Macro Processor

substr

The built-in macro substr can be used to produce substrings of strings. The input
substr (s, i, n)

returns the substring of s that starts at the ith position (origin 0) and is z characters long.
If nis omitted, the rest of the string is returned. For example,

substr (‘now is the time’, 1)
returns the following string:
ow is the time.

If ior nis out of range, various actions occur.

index and translit

The built-in macro index returns the index (position) in one string where the first
character of another given string occurs, or -1 if it does not occur. It is written as

index (§1, $2)
where 51 is the string to be searched and s2is the string to be searched for. As with
substr, the origin for strings is 0.

The built-in macro translit performs character transliteration and has the
general form
translit (s, f, 1
which modifies s by replacing any character found in f by the corresponding character of
t. Using
translit (s, aeiou, 12345)

replaces the vowels by the corresponding digits. If ¢ is shorter than £ characters that do
not have an entry in ¢are deleted. As a limiting case, if ¢ is not present at all, characters
from fare deleted from s. So,

translit (s, aeiou)

deletes vowels from s.

String manipulation ~ 4-15

Printing

This section details the m4 routinesfor printing.

errprint

The built-in macro errprint writes its arguments out on the standard error file. An
example is

errprint (‘fatal error’)

dumpdef

The built-in macro dumpdef£ isa debugging aid that dumps the current names and
definitions of items named as arguments. If no arguments are given, then all current
names and definitions are printed. Remember to quote the names.

Executing system commands

This section describes the m4 routines that execute system commands.

syscmd and maket emp

Any program in the local operating system can be run by using the built-in macro
syscmd. For example,
syscmd (date)
on the A/UX system runs the date command. Normally, syscmd isused to create a
file for a subsequent include.

To facilitate making unique filenames, the built-in macro maketemp is provided
with specifications identical to the system function mktemp. The maketemp macro
fills in a string of xxxxx in the argument with the process ID of the current process.

4-16 Chapter 4 m4: A Macro Processor

Interactive use of m4

The input to m4 can come from a file, the standard input, or both. Thus, it is possible to
use m4 interactively, by telling it to take its input from the standard input. There are
several ways to do this. The simplest is to invoke m4 as follows:

mé4

At this point, m4 reads from the standard input.
If you have an existing set of m4 commands stored in a file, you can instruct m4 to
process those commands first by invoking it as

m4 file -

The minus sign is required here to instruct m4 toread file and then the standard input.
Alternatively, if youinvoke m4 usingjustthe m4 command with no arguments, you
cantell m4 to fetch the set of commands from fileby typing the following line:
include (file)

The effect is the same in both cases.

Recursive definitions

Since m4 rescans any text that arises from the replacement of a macro by its defining
text, it is possible to construct recursive macro definitions. That is, it is perfectly legal to
define a macro in terms of itself. As with any well-constructed recursive definition,
however, you must take care that the definition has a well-defined stopping point.
Generally, this is easy to do withthe ifelse command.

For instance, suppose that you need a macro that returns its last argument and
discards the rest. You might write the following definition:

define(last,
‘ifelse ($#,1,$1, ‘last (shift ($*))’) ")

When there are multiple arguments, last drops the first argument and then calls
itself to look for the last argument in the remaining argument list. This definition is well
behaved because when there is only one argument, it alone is returned.

Recursive definitions ~ 4-17

A more interesting example is the following definition of the factorial function:

define(fact,

‘ifelse($1,1,1, *eval ($S1*fact (decr($1)))’") ")
If you give m4 the following input,

The factorial of 1 is fact(1l).
The factorial of 2 is fact(2).
The factorial of is fact (3).
The factorial of is fact(4).
The factorial of is fact (6).

is fact (7).

3
4

The factorial of 5 is fact(5).
6
The factorial of 7
8

The factorial of is fact (8).

you get the following output:

The factorial of 1 is 1.

The factorial of 2 is 2.

is 6.

is 24.

is 120.
is 720.
The factorial of is 5040.
The factorial of 8 is 40320.

The factorial of
The factorial of
The factorial of

The factorial of

~N o bW

Finally, you might want to define a recursive macro with two arguments. The
standard power function serves nicely:
define (pow,
‘ifelse($2,1,$1, ‘eval ($1*pow($1,decr($2)))")")
If you then give m4 the following input,
to power 1 is pow(3,1).
to power 2 is pow(3,2).
to power is pow (3, 3).

to power is pow(3,4).

w w w w w w

3
4

to power 5 is pow(3,5).
6

to power is pow(3,6).

4-18 Chapter 4 ma: A Macro Processor

3 to power

3 to power 8

you get

to power
to power
to power
to power
to power
to power

to power

w w w w w w w w

to power

o J o0 U W NN

is pow(3,7).
is pow(3,8).

is 3.

is 9.

is 27.
is 81.
is 243.
is 729.
is 2187.
is 6561.

Built-in macro summary

The following items are m4 built-in macros:

changecom

changequote

decr
define
defn
divert
divnum
dnl

dumpdef

errprint

eval

Changes left and right comment markers from the default # and
newline. With no arguments, the comment mechanism is disabled.
Comment markers can be up to five characters long.

Changes quoting symbols to the first and second arguments. The
symbols can be up to five characters long. With no arguments, this
macro restores the original quote characters.

Returns the value of its argument decremented by 1.

Defines new macros.

Returns the quoted definition of its arguments.

Diverts output to one of ten diversions (named 0 through 9).
Returns the number of the currently active diversion.

Reads and discards characters up to and including the next newline.

Dumps the current names and definitions of items named as arguments.
With no arguments, definitions of all current macros are dumped.

Prints its arguments on the standard error file.

Performs arbitrary arithmetic on integers.

Built-in macro summary ~ 4-19

4-20

ifdef
ifelse

include

LACE

index

lén
mdexit
miwrap
maketemp

popdef

pushdef
shift

sinclude

substr
syscmd
sysval
traceoff
traceon
translit
undefine
undivert

unix

Determines whether a macro is currently defined.
Performs arbitrary conditional testing.

Returns the contents of the file named in the argument. A fatal error
occurs if the file named cannot be accessed.

Returns the value of its argument incremented by 1.

Returns the position where the second argument begins in the first
argument.

Returns the number of characters that make up its argument.
Causes immediate exit from m4.

Pushes the exit code back at final end-of-file (EOF).
Facilitates making unique filenames.

Removes the current definition of its arguments, exposing any
previous definitions.

Defines new macros but saves any previous definition.
Returns all arguments except the first argument.

Returns the contents of the file named in the arguments. The macro
remains silent and continues if the file is inaccessible.

Produces substrings of strings.

Executes the A/UX system command given in the first argument.
Gives the exit value of the most recent system command.

Turns the macro trace off.

Turns the macro trace on.

Performs character transliteration.

Removes user-defined or built-in macro definitions.

Discards the diverted text.

Null; indicates that the underlying system is derived from the UNIX
operating system.

Chapter 4 ma: A Macro Processor

5 lex: A Lexical Analyzer

Overview of lex usage / 5-3
lex and yacc / 54
Program syntax / 5-6
Character set / 5-7

Definitions / 5-10

Rules / 5-12

Actions / 5-19

Compilation / 5-27

Examples / 5-27

Summary / 5-29

lex isa program generator that produces a program in a general-purpose language that
recognizes regular expressions. It is designed for lexical processing of character input

streams. It accepts high-level, problem-oriented specifications for character string matching.

Input to 1lex isa table of regular expressions and corresponding program fragments.
The table is translated to a program that reads an input stream, copies the input stream to
an output stream, and partitions the input into strings that match the given expressions.

As each such string is recognized, the corresponding program fragment is executed.

The recognition of the regular expressions is performed by a deterministic finite
automaton generated by 1ex. The program fragments are executed in the order in

which the corresponding regular expressions occur in the input stream.

The code written by 1ex is not itself a complete language, but rather a generator
representing a new language feature that can be added to different programming
languages, called host languages. For example, one high-level language can be used for

recognizing patterns, while a more general-purpose language is used for action statements.

The 1lex program generator can be used alone for simple transformations or for
analysis and statistics gathering on a lexical level. The 1ex generator also can be used

with a parser generator (for example, yacc) to perform the lexical analysis phase.

Just as general-purpose languages can produce code to run on different computer
hardware, lex can write code in different host languages. The host language is used
for the output code generated by lex and the program fragments that comprise the

lex source program.

Compatible run-time libraries for the different host languages are provided, making 1ex
adaptable to many environments and users. However, at present, the only supported

host language is the C language.

5-2 Chapter 5 lex: A Lexical Analyzer

Overview of 1ex usage

The program generated by 1ex iscalled yylex. The yylex programrecognizes
expressions in an input stream and performs the specified actions for each expression as
it is detected. See Figure 5-1.

For example,

oo
o°

[\t]l+s
This sample 1ex source program is all that is required to generate a program to delete

all blanks or tabs at the ends of the input lines. The %% delimiterisa l1ex convention
to mark the beginning of the rules, the pattern-matching expressions. The rule itself,

[\t]l+$

matches one or more instances of the characters blank and tab. The brackets enclose the
character class consisting of blank and tab; the + indicates “one or more instance of the
previous characters or character class” and the $ indicates end-of-line. No action is
specified, so the yylex () program (generated by 1ex)ignoresthese characters.
Everything else is copied.

I:> lex C> vylex

Seurce

::) yylex C>

Input Output

Figure 5-1 Overview of lex

Overview of lex Usage 5-3

Consider this next example:

o°
o°

[\t]l+$
[\t]+ printf (" ");

The coded instructions in yylex scan for both rules at once. Once a string of blanks or
tabs is recognized, yylex determines whether the string is followed by a newline
character. If it is, then the first rule has been matched so that the corresponding action is
performed; yylex does not copy the string to output. The second rule matches strings
of one or more blanks and tabs not already satisfying the first rule, and causes yy1lex
to replace a string of one or more blanks and tabs with a single space.

In yylex, the program generated by lex, theactions to be performed as each
regular expression is found are gathered as cases of a switch. The automaton interpreter
directs the control flow. It is possible to insert either declarations or additional statements
in the routine containing the actions and to add subroutines outside this action routine,
should you need to do so.

The 1ex program generator is not limited to one-character look-ahead. For
example, if there are two rules, one looking for ab and another for abcdefg, and the
input streamis abcdefh, lex recognizes ab and leaves the input pointer just
before cdefh.

lex and yacc

5

4

Itis particularly easy touse lex and yacc together. The lex program recognizes
only regular expressions; yacc writes parsers that accept a large class of context-free
grammars but requires a lower level analyzer to recognize input tokens. Thus, a
combination of lex and yacc isoften appropriate. When used as a preprocessor for
a later parser generator, lex is used to partition the input stream; the parser generator
assigns structure to the resulting pieces. The flow of control in such a case is shown in
Figure 5-2. Additional programs, written by other generators or by hand, can be added
easily to programs written by 1ex. The name “yylex” is what yacc expects its
lexical analyzer to be named. If 1ex uses this name, it simplifies interfacing.

Chapter 5 lex: A Lexical Analyzer

Grammar
rules

C> vylex [:> yyparse I::>

Input Output
Figure 5-2 lex with yacc

Touse lex with yacc, observe that 1ex writes a function named yylex,
which is the name required by yacc forits analyzer. Normally, the default main
programon the lex library calls the yylex routine, butif yacc isloaded and its
main program is used, yacc calls yylex.Inthis case, each 1ex rule ends with
return (token) ;

where the appropriate token value is returned. An easy way to gain access to the names
for tokens in yacc isto compile the lex outputfile as part of the yacc output file
hy placing the line

#include "lex.yy.c"

in the last section of the yacc input. If the grammar is to be named good and the
lexical rules are to he named better, the command sequence could he
yacc good
lex better
cc y.tab.c -1y -11
The yacc library (-1y) should be loaded before the 1ex library to obtain a main

program that invokes the yacc parser. The generations of lex and yacc programs
can be done in either order.

lex and yacc 5-5

Program syntax

5-6

The general format of 1ex input is

{ definitions }

oo
oo

rules }

~

oo

%
(user subroutines }

where the definitions and the user subroutines are often omitted. The first $% is
required to mark the beginning of the rules, but the second %% is optional. The
absolute minimum lex program is

o

%
This 1ex source generates a program that copies the input to output unchanged.

Inthe 1ex program format just shown, the rules consist of two parts:

= 2 left column with regular expressions

= 2 right column with actions and program fragments to be executed when the
expressions in the left column are recognized

For example,
integer printf ("found keyword INT");

The sample rule mentioned earlier gives the instructions to look for the string integer
and, when found, produces the statement

found keyword INT

In this example, because the host procedural language is C, the C language library
function printf is used to print the string.

The end of the expression is indicated by the first blank or tab character. If the action
is a single C language expression, it can just be given in the right column, as illustrated in
the example. If the action is compound or requires more than one line, it should be
enclosed in braces. Consider the following example:
colour printf ("color") ;
mechanise printf ("mechanize") ;

petrol printf ("gas");

Chapter 5 1ex: A Lexical Analyzer

This 1ex source segment could be used to generate a program to change a number of
words from British to American spelling. It should be noted, however, that these rules
would have to be changed somewhat to he really useful. For example, if the word
petroleum appeared in the input stream, the program generated by this segment
would change itto gaseum.

Character set

Internally, a character is represented as a small integer. If the standard library is used, the
value of a character is equal to the integer value of the bit pattern representing the
character on the host computer. For example, the character A has the value V101 (octal)
in ASCIL

Of course, you need not use the integer value of a character to access the value. The
character a is represented in the same form as the character constant a . If this
interpretation is changed hy providing I/O routines that translate the characters, 1ex
must be given a translation table that is in the definitions section of the source, and this
translation table must be bracketed hy lines containing only %T. The translation table,
then, contains lines of the form

o°

T
{ integer } { character string }
T

[

which indicate the value associated with each character.

Character classes

Classes of characters can be specified using the operator pair [and].Forexample,
the construction [abc] matches a single character, which canbe a, b, or c.
Within brackets, most operator meanings are ignored. Only three characters are special:

Character set 5-7

The - character indicates a range. For example,
[a-z0-9<>_]
specifies the character class containing all the lowercase letters (a to z), digits (0
through 9), angle brackets (< and >), and the underline character ().

Using - betweenany pair of characters that are not both uppercase letters, both
lowercase letters, or both digits is sometimes acceptable to 1ex, but this is
implementation-dependent. (It works on A/UX, but it might not be portable to other
systems.) Therefore, if such a range is declared, 1ex issuesa warning message. One
reason for this is that [0-z] matches many more characters in ASCII than in EBCDIC.

If it is necessary to include the character - in a character class, it should either be
first or last within the brackets. For example,

[-+0-9]
matches all digits (0 through 9) and the two symbols - and +.
The \ character acts as an escape character within class brackets. For example,
[a-z*]
matches all lowercase letters (a to z) and the character *.

Ifthe ~ operator appears as the first character after the left bracket, 1ex ignores
the characters within the brackets, therefore matching all characters except those within
the designated character class range. If an operation is to be performed on recognition of

a string expressed using this construction, it is done on strings other than those within
the brackets. For example,

[~abc]

matches all characters except a, b, or c, including all special and control characters.
Also,

["a-zA-2Z]
matches any character that is not a letter (neither in the range a through z nor in the
range A through 2z).

5-8 Chapter 5 1ex: A Lexical Analyzer

Arbitrary characters

There are several other ways to specify charactersto 1ex. The period operator (.)
instructs lex to match any character except a newline. The meaning of the period does
not change within brackets.

Also, all characters and ranges can be designated using the octal representations of
those characters. This method, however, is difficult to read and most likely not portable.
Nonetheless, the character class range

[\40-\176]

can be used to match all printable ASCII characters from octal 40 (blank) to octal 176
(tilde:~).

Operators

The operator characters are
"Nl r-2 e () S/ {0 % <>

If these are to be used as text characters, an appropriate “escape” should be used. For
example, to get the character \, you must escape its significance as an operator. You can
do so easily with another backslash: \\. For more information on escaping, refer to
A/UX Shells and Shell Programming.

The quotation mark operator () indicates that whatever characters follow, up to a
second " character, are to be taken as text characters without any “magic” meaning or
operator significance. The quotation mark, then, is another way to escape the special
meaning of a character. For example,

Xyz"++"

matches the string xyz++ wherever it appears. Of course, it is unnecessary, though
harmless, to quote an ordinary text character. Consequently, the expression

"Xyz++"

is equivalent to the one that quoted only the ++. However, by quoting every character
being used as a text character, you can avoid remembering the list of current operator
characters, and avoid problems should further extensions to 1ex lengthen the list.

Another use of the quoting mechanism is for forcing a blank into an expression.
Normally, as explained earlier, blanks or tabs end a rule. Any blank character not
contained within brackets mustbe quoted.

Character set 5-9

Definitions

5-10

There is also a third way to match the literal value of these operators, using the \
escape character. You could specify the string discussed earlier as

xyz\+\+

Several C language escapes using \ are recognized:
\n newline

\t tab

\b backspace
\\ backslash

Since newline is illegal in an expression, \n must be used.

Recall that the basic formatof a 1ex source is
{ definitions }

[
s

oo

rules)

—~

oo
o°

{ user subroutines }

In addition to the rules (discussed later), lex includes options to define variables.
Variables can occur either in the definitions section or in the rules section.

Remember, 1ex is generating the rules into a program, and any source not
intercepted by 1ex is copied into the generated program. Also,

= Any line not partof a 1ex rule or action and that begins with a blank or tab is
copied into the 1ex generated program.

= Any line not part of a 1ex rule or action that begins with a blank or tab and is
found prior to the first %% delimiter is “external” to any function in the code.

= Any line not partof a 1ex rule or action that begins with a blank or tab and is
found immediately after the first %% appears in an appropriate place for declarations
in the function written by lex that contains the actions. This material must look like
program fragments and should precede the first 1ex rule.

Chapter 5 1ex: A Lexical Analyzer

N

= Lines that begin with a blank or tab, and that contain a comment, are passed
through to the generated program. This can be used to include comments in either
the 1ex source or the generated code. The comments should follow the host
language convention.

= Anything included between lines containing only %{ and %) is copied to output. The
delimiters are discarded. This format permits entering text-like preprocessor statements
that must begin in column 1, or copying lines that do not look like programs.

® Anything after the third %% delimiter, regardless of formats, and so on, is copied to
output afterthe 1ex output.

Definitions intended for 1ex are given before the first %% delimiter. Any line in
this section not contained hetween %{ and %} and beginning in column 1 is assumed
todefine lex substitution strings. The format of such lines is
name translation

This facility enables the string given as translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and the name

must begin with a letter. The translation can be called by the {name} syntaxinarule.
Using {D} forthedigitsand {E} foran exponent field, you might have

D [0-9]

E [DEde] [-+]12{D}+
%%

{D}+ printf("integer") ;
{D}+"."{D}* ({E})? |
{D}*"."{D}+({E})? I

{D}+{E} printf("real");

This example abbreviates rules to recognize numbers. The first two rules for real
numbers both require a decimal point and contain an optional exponent field. The first
requires at least one digit before the decimal point ({D}+". " {D}* ({E}) ?), and the
second requires at least one digit after the decimal point ({D}* . “{D}+ ({E}) ?). TO
correctly handle the Fortran expression 35.EQ. I, which does not contain a real
number, a context-sensitive rule such as

[0-9]+/"."EQ printf("integer");

could be used, in addition to the normal rule for integers (see “Context Sensitivity”).

Definitions ~ 5-11

Rules

5-12

The definitions section also can contain other commands, including the selection of a
host language, a character set table, a list of start conditions, or adjustments to the default
size of arrays within 1ex itselffor larger source programs.

Repetitions and definitions

The operators { and } specify either

= repetitions (if they enclose numbers)

= definition expansion (if they enclose a name)

For example,
{digit}
looks for a predefined string named digit and inserts it at that point in the

expression. The definitions are given in the first part of the 1ex input, before the rules.
On the other hand, the expression

a{l,5}
looks for one to five occurrences of a.

Aninitial % isnotan ordinary character, but has a special meaningto lex asthe
separator for source program segments.

Regular expressions

The regular expressions in 1ex function just as do those in the A/UX text editors vi,
ed, and so on. A regular expression specifies a set of strings to be matched. It contains
“text characters,” which match characters in the input stream, and “operator characters,”
which, together with those “text characters,” express a string that is to be recognized
before the action in the right column takes place.

Chapter 5 1ex: A Lexical Analyzer

Letters of the alphabet and digits are always text characters. For example,
integer
matchesthestring integer wherever it appears, and the expression
a57D

looks for the string a57D.

Optional expressions

The question mark (?) operator indicates that what immediately precedes it is an
optional element of an expression. Thus,

ab?c

matches either ac or abc.

Repeated expressions

Repetitions of classcs are indicated by the operators * and +. The expression
a*

matches zero or more consecutive a characters. The expression

a+

matches one or more instances of a characters. The expression

la-z]+

matches all strings of lowercase letters. The expression

[A-Za-z]) [A-Za-2z0-9]*

matches all alphanumeric strings that have a leading alphabetic character. This is a typical

expression for recognizing identifiers in computer languages.

Rules

5-13

5-14

Alternation and grouping

The operator | indicates alternation. For example,
(ablcd)

matches either ab or cd. The parentheses are used here for grouping only. They are
not required in such a simple and clear-cut example, but are often used for clarity or to
force correct interpretation of more complex expressions. For example,

(ablcd+)? (ef)*

matches such strings as

abefef
efefef
cdef
cddd

hut not

abc
abcd
abcdef

Context sensitivity

The 1ex program recognizes a small amount of surrounding context. The two simplest
operators forthisare ~ and s.

As in the A/UX text editors, if the first character of an expression is ~, the expression
is matched only if found at the beginning of a line, either after a newline character or at
the beginning of the input stream. Do not confuse this with the use of the ~ operator
within brackets, which instructs 1ex to match any character except those in the
designated character class range. If you want to use 1ex to find occurrences of a
particular range of characters, but only if they occur as the first character on a line, you
must use the ~ operator on the outside of the brackets. For example, the expression

~[0-9]

matches lines whose first character is a digit, 0 through 9. The expression
~ [~ 0 = 9]

matches lines whose first character is not a digit 0 through 9.

Chapter 5 1ex: A Lexical Analyzer

The operator $ is matched only at the end of a line, immediately followed by
newline. This operator is a special case of the / operator character, which indicates
“trailing context.” The expression

ab/cd

matches the string ab only if followed by cd. Therefore, the expression
ab$

can also be expressed

ab/\n

That is, the use of the $ operator can be interpreted as an instruction to match the
characters only when followed by a newline.

Left context is handled in 1ex by “start conditions.” If a rule is only to be executed
when the lex automaton interpreter is in start condition x, the rule should be
enclosed within the angle-bracket operator characters:

<X>

If “being at the beginning of a line” is considered to be start condition ONE, then the ~
operator is equivalent to

<ONE>

See the sections entitled “Left Context Sensitivity,” “Examples,” and “Summary” for
further explanation and illustration of start conditions.

Left context sensitivity

Sometimes it is desirable to have several sets of lexical rules applied at different times in
the input. For example, a compiler preprocessor might distinguish preprocessor
statements and analyze them differently from ordinary statements. This requires
“sensitivity” to prior context. There are several ways of handling such occurrences. For
example, the ~ operator is a “prior context operator” because it must recognize the
immediately preceding left context to discern whether a character appears at the
beginning of a line, justasthe $ operator must recognize the immediately following
right context to discern whether a character appears at the end of a line.

Adjacent left context can be extended to produce a facility similar to that for adjacent
right context. This is likely to be less useful, however, since often the relevant left
context, such as the beginning of a line, appeared some time earlier.

Rules 5-15

There are three hasic ways of dealing with different environments so as to achieve a
lexical analysis with a greater degree of context sensitivity.

= The use of flags. This is most useful when only a few rules change from one
environment to another.
= The use of start conditions on rules.

= The possibility of making multiple lexical analyzers all run together. If the sets of rules
for the different environments are very dissimilar, clarity might best be achieved hy
writing several distinct lexical analyzers and switching from one to another, as necessary.

In each case, there are rules that recognize the need to change the environment in
which the following input text is analyzed and a parameter is set to reflect the change.
The remainder of this section describes in greater detail the first two ways of dealing with
different environments.

Flags

The simplest way of changing the environment in which input is analyzed is by use of a
flag explicitly tested by the user’s action code. If done in this way, 1ex isnot involved
atall.

To illustrate, consider the following program requirements:

= Copy the input to the output.

= Change the word magic to first onevery line that begins with the letter a.
= Change magic to second on every line that begins with the letter b.

s Change magic to third onevery line that begins with the letter c.

All other words and all other lines are left unchanged. These rules are so simple that the
easiest way to do this job is with a flag. For example,

int flag.
~a {flag = 'a’; ECHO;}
b {flag = 'b’; ECHO;}
~c {flag = 'c’; ECHO;}
\n {flag = 0 ; ECHO;}

5-16 Chapter 5 1ex: A Lexical Analyzer

magic {
switch (flag)
{
case 'a’': printf("first"); break;
case 'b’: printf("second"); break;
case 'c’: printf("third"); break;

default: ECHO; break;

Start conditions

It might be more convenient to have 1ex ‘remember” the flags as start conditions on
the rules. Any rule can be associated with a start condition. That rule, then, is recognized
only when 1lex isin that start condition. The current start condition can be changed at
any time. To handle the same problem using start conditions, begin by introducing each
start condition to 1ex in the definitions section with a line reading

$Start namel nameZ2 ...

where the conditions (namel, name2, and so on) can be named in any order. The
word Start can be abbreviatedto s or s. Then, to reference the conditions, use
angle brackets:

<namels> expression

The rule illustrated earlier is recognized onlywhen 1ex is in the start condition
namel. To enter that start condition, execute the following action statement:

BEGIN namel;
The action statement
BEGIN 0;

resets the initial condition of the 1ex automaton interpreter.
A rule can be active in several start conditions. For example,

<namel, name2, name3> expression

is a legal expression. Any rule not beginning with the < prefix operator is always active.

Rules 5-17

5-18

The following example illustrates the use of start conditions:

%START AA BB CC

o°
o°

>

Q

{ECHO; BEGIN AA;}

“b {ECHO; BEGIN BB;}

c {ECHO; BEGIN CC;}

\n {ECHO; BEGIN O0;}

<AA>magic printf("first");

<BB>magic printf("second");

<CC>magic printf("third");

Obviously, this example is a rewrite of the previous example; the problem-solving logic
is exactly the same. However, in this case 1ex was instructed to do the work instead of
the host language code.

Ambiguous rules

The 1ex program can handle ambiguous specifications. When more than one
expression can match the current input, the longest match is preferred, among rules that
matched the same number of characters, the rule given first is preferred. For example,
using the rules

integer keyword-action ;

la-z]+ identifier-action ;

(if the input were integers), lex interprets the input asan identifier because
la-z]+ matches all eight characters (including the final s), while integer matches
only seven characters.

If the input were integer, both rules would match the seven characters. In that
case, lex selects the keyword rule because it was given first. If the input were anything
shorter (for example, int), the input would not match the expression integer. It
would, however, match the [a-z]+ expression, so the identifier interpretation would
be used.

Chapter 5 1ex: A Lexical Analyzer

Actions

The principle of preferring the longest match makes rules containing expressions like
.* dangerous. For example,

ok

appears to instruct lex to find a match for a string in single quotes. However, it is an
instruction for the program to read far ahead looking for a distant single quote. For
example, if the above expression were given the following input:

'first’ quoted string here, ‘second’ here
the expression would match almost the entire input line:
"first’ quoted string here, ‘second’

which is most likely not the desired result. A better rule for matching strings within single
quotes might be

F[~A\n]*
which, given the sume input, matches - £irst . The consequences of errors like this
are greatly lessened by the fact that the period (.) operator does not match newline.
Expressions like . * stop on the current line.

¢ Note Do not try to defeat the protection of . not matching the newline character
with expressions such as [.\n]+ oran equivalent, because the program generated by
lex then tries to read the entire input file, causing internal buffer overflows. &

When an expression written as the previous one is matched, yylex executes the
corresponding action. The default action for yylex isto copy input to output, and is
performed on all strings not otherwise matched. Therefore, a rule that merely copies can
he omitted. If you want to absorb the entire input without producing any output, you
must provide rules to match everything. (When yylex is being used with yacc, this
is the normal situation.) In other words, hy default, a character combination in input that
was omitted from the rules is printed on the output.

Actions 5-19

5-20

The null statement

One of the simplest things that can be done is to ignore the input. To accomplish this, use
a semicolon (;) as the action (a semicolon is the C language “null statement”). The rule

[\t\n] ;

causes the spacing characters (that is, blank, tab, and newline) to be ignored because it
gives the null statement as its associated action.

The repetition character

The vertical bar character (|) represents the instruction to use the action designated for
the next rule for the current rule as well. For example,

e |
"\n" S

This example instructs yylex toignore the spacing characters, as did the previous
example. The first line gives the rule “match blank characters” and instructs the program
to perform the action indicated for the next rule. Then, the second line gives the rule
‘match \t characters” and instructs the program to perform the action indicated for the
next rule. Finally, the third line gives the rule “match \n characters,” and gives the
action ;, the null statement. Therefore, the action for all three rules is the null statement.

printf and ECHO

In more complex actions, you might often want to know the actual text that matched a
regular expression. The yylex program Jeaves this text in an external character array,
named yytext. Consider the following example:

[a-z]+ printf("%s", yytext);

This example illustrates a way of accessing the characters matching a regular expression.
Using this example, the rule given is to find the strings matching the regular expression
[a-z]1+ and the action is to print those strings in the character array yytext using
the Clanguage function printf.

Chapter 5 lex: A Lexical Analyzer

The printf function accepts a format argument and data to he printed. Still using
this example, the formatis %s (printstring). The % character indicates data
conversion, and s indicates data type string, in this case the character array yytext.
This places the matched string on the output.

The action of printing the strings matching the regular expressions is so common that
it can be written simply as ECHO. For example,

[a-z]+ ECHO;

This example accomplishes the same action as the previous one using the printf
statement.

Even though the default action is to copy input to output, the EcHO facility is
included explicitly to provide a more discriminating copy function. For example, a rule
that matches read normally matches all instances of read, even those contained in
other words (bread, treadmill,andso on). To avoid this, a rule of the form
la-z1+ isneeded. This is explained further in the following section.

vyleng

Sometimes itis necessary to know what isat the end of a matched pattern. To facilitate
this, 1ex provides a count of the number of characters matched, yyleng. To count
hoth the number of words in the input and the number of characters in those words, you
might write

[a-zA-Z]+ {words++; chars += yyleng;}

This instruction takes the strings that match the regular expression [a-zA-z]+ and
accumulates the number of characters in these strings in chars. Then, the action
instruction

yytext [yyleng-1]

can be used to access the last character in the string matched.

Actions 5-21

5-22

yymore and yyless

Occasionally,a 1ex action might decide that a rule did not recognize the correct span
of characters. Two routines are provided to aid with this situation:

yymore () This routine instructs yylex to tack the next input expression
recognized on to the end of this input. Normally, the next input string
overwrites the current entry in yytext.

vyless () This routine instructs yylex toretainin yytext only n(a
number) of those characters resulting from the current expression.
Further characters previously matched are returned to the input. This
provides the same sort of look-ahead offered by the / operator,
though in a very different form.

Consider a language that defines a string as a set of characters between quotation
marks (), and requires that the " character he preceded by a \ to be included in a
string. The regular expression which matches that is somewhat confusing, so it might be
preferable to write the following segment:

\"[Amx
if (yytext([yyleng-1] == "\\’)
yymore () ;
else
...normal user processing
}

The previous lex segment, when it finds the string
“abc\"def"

first matches the five characters "abc\ and then calls the yymore routine, which
causes the next part of the string, "def, to be tacked on the end of the input. Note that
the final quote terminating the string should he picked up in the code labeled normal
user processing.

The function yyless might be used to reprocess text in various circumstances.
Consider, for example, the problem of disambiguating a C language statement such as

S=-a

Chapter 5 lex: A Lexical Analyzer

One way to parse this statement treats the - as part of the operator:
=-[la-zA-2Z] {
printf ("Operator (=-) ambiguous\n");
yyless(yyleng-1) ;
action for =-
}
This 1ex segment prints a message, treats the operator as =-, and returns the letter
found after the operator to the input stream. However, you might want to treat this syntax
as = -a.In that case,
=-[a-2A-Z] {
printf ("Operator (=-) ambiguous\n");
yyless(yyleng-2);
action for =
}
prints a message, treats the operator as =, and returns -a to the input stream.

It is possible to avoid the misinterpretation of operators by rewriting the regular
expression. To indicate that the operator is =-, using the same example, use the
following rule:
=-/[A-Za-2]

To indicate that the operator is =, use the following rule:
=/-[A-Za-z]

No backup is required in the rule action. It is not necessary to recognize the whole
identifier to observe the ambiguity. However, the possibility of =-3 makes
=-/[" \t\n]

a still better rule.

lex input and output routines

The programs generated by 1ex handle character 1/O only through the routines
input, output,and unput. The character representation provided in these routines
isaccepted by 1ex and used toreturnvaluesin yytext. Theseare providedas 1ex
macro definitions, as shown in the following list.

Actions 5-23

5-24

input () returns the next input character

output (¢) writes the character c on the output
unput () pushes the character ¢ back onto the input stream to be read later by
input

(As shown previously, youcanuse printf to generate error messages.) These
routines are provided by default, but you can override them by providing your own
versions. To redefine or override a 1ex routine, include your own version in the user
subroutines section. These routines must be standard C and be named according to the
lex routine you want to replace. However, because these routines define the
relationship between external files and internal characters, they must all be retained
and/or modified consistently.

These routines can be redefined to cause input or output to be transmitted to or from
other programs or internal memory. The character set used must be consistent in all
routines and a value of 0 returned by input must mean end-of-file.

The relationship between unput and input must be retained or the 1ex look-
ahead does not work. The 1ex program does not look ahead at all if it does not have
to; rules ending in +, *, 2,or $,orthose containinga /, however, force look-ahead.
Look-ahead is necessary to match an expression that is a prefix of another expression.
The standard 1ex library imposes a 100-character limit on backup.

YVywrap

Another lex library routine that you might sometimes want to redefine is yywrap. To
redefine or override a lex routine, include your own version in the user subroutines
section. These routines must be standard C and be named according to the 1ex routine
you want to replace. This routine is called whenever 1ex reaches an end-offile. If
yywrap returns a 1, which it does by default, 1ex continues with the normal wrap-up
on end of input.

It is sometimes convenient to arrange for input to continue from a new source. In
this case, yywrap can be redefined to arrange for new input and return 0. This then
instructs lex to continue processing.

Chapter 5 1ex: A Lexical Analyzer

This routine provides a convenient way to print tables, summaries, and so on, at the
end of a program. It is not possible to write a normal rule that recognizes end-of-file. The
only access to this condition is through yywrap. In fact, unless a private version of
input is supplied, a file containing nulls cannot be handled because a value of 0
returned by input is taken to be end-of-file by yywrap.

RE T ECT

Note that 1ex is normally partitioning the input stream, not searching for all possible
matches of each expression. This means that each character is accounted for once and
only once. Consider the following example:

she S++;
he h++;
\n |

The first rule matches all occurrences of the string she and the action increments s
for each one found. The second matches all occurrences of the string he and its action
increments h for each one found. The last two rules match newline and everything else
and take the action of ignoring them. Normally, 1ex would not recognize the instances
of he included in she, because once it passed a she, those characters are gone. To
override this default, the action REJECT can be used to instruct lex to go to the next
alternative. REJECT causes the rule gfferthe current rule to be executed. The position
of the input pointer is adjusted accordingly.

Suppose you want to count the instances of he included in she. To do that, use
the following rules:

she {s++; REJECT;}

he {h++; REJECT;}

\n |

In this example, after counting each expression, the expression is “rejected” (whenever
appropriate), and the other expression is evaluated. In this example, because he does
not include she, the REJECT actionon he can be eliminated. In other cases, it is
not possible to state which input characters are in both classes.

Actions 5-25

5-26

Consider the following two rules:
albcl+ { .. ; REJECT;}
alcdl+ { ... ; REJECT;}

= Ifthe input to the rules above were ab, only the first rule would match.
= If the input to these same rules were ad, only the second would match.

= [f the input were accb, the first rule would match four characters and the second
rule would match three characters.

= Ifthe input were accd, however, the second rule would match four characters and
the first rule would match three characters.

In general, REJECT is useful whenever the purpose of 1ex is to detect all examples
of some items in the input for which the instances of these items might overlap or include
one another, instead of the usual purpose of 1ex of partitioning the input stream.

Suppose you want a diagram of some input. Normally, the digrams overlap, that is,
the word the is considered to contain both th and he. Assuminga two-
dimensional array named digram[] to be incremented, an appropriate 1ex
procedure is

oe
oe

[a-z][a-2z] {digraml[yytext[0]] [yytext[1]]++; REJECT;}
|
\n ;

In this example, REJECT is used to pick up a letter pair beginning at every
character, rather than at every other character.

The action REJECT does not rescan the input. Instead, it “remembers” the results of
the previous scan. Therefore, if yylex isinstructed to find a rule with trailing context
and execute REJECT, unput cannot have been called to change the characters
forthcoming from the input stream. This is the only restriction on the user’s ability to
manipulate the not-yet-processed input.

Chapter 5 lex: A Lexical Analyzer

Compilation

Examples

The following steps are involved in compilinga lex source file:

1. The lex source must be transformed into a program in the host general-purpose

language. The generated program is put into a file named lex.yy.c.

2. That program must then be compiled and loaded, usually with a library of 1ex

subroutines. The I/O library is defined in terms of the C language standard library. On
the A/UX operating system, the library is accessed by the loader flag -11. In this

case, an appropriate set of commands is

lex inputfile

cc lex.yy.c -11

The resulting program is placed in the file a.out for later execution.

Although the default 1ex 1/0 routines use the C language standard library, lex

routines such as input, output,and unput do not. Therefore, if your own
versions of these routines are given, the library is avoided.

For the sake of example, consider copying an input file while adding three to every
positive number divisible by 7. A suitable 1ex source program follows:

3%

int k;
[0-9]+ {
k = atoi (yytext) ;
if (k%7 == 0)
printf ("%d", k+3);
else
printf ("%d", k);
}

Examples

5-27

Therule [0-91+ recognizes strings of digits, 0 through 9; atoi converts the
digits to binary and stores the result in k. The operator % (remainder) is used to check
whether k is divisible by seven; if it is, k is incremented by 3 as it is written out. It
might be objected that this program alters such input items as 49.63 or x7.
Furthermore, it increments the absolute value of all negative numbers divisible by 7. To
avoid this, add a few more rules after the active one. For example,

o°
o°

int k;
-2[0-91+ {
k = atoi(yytext);
printf("%d", k%7 == 0 2 k+3 : k);
}
-?2[0-9.1+ ECHO;

[A-Za-z] [A-Za-z0-9]+ ECHO;

Numeric strings containing a period (.), or preceded by a letter, are picked up by one
of the last two rules and not changed. The if-else isreplaced by a Clanguage
conditional expression to save space. The expression a ? b : ¢ isevaluated as “if a
then belse ¢

The following is an example using 1ex for gathering statistics. This program reports
how many words of various lengths there are. (A word is defined here as a string of letters.)

int lengs([100];
%%
l[a-z]+ lengs(yyleng] ++;
|

\n 2

yywrap()
{
int i;
printf("Length No. words\n");
for(i=0; i1<100; i++)
if (lengs(i] > 0)
printf ("%$5d%10d\n", i, lengs[i]);

5-28 Chapter 5 1ex: A Lexical Analyzer

Summary

return(l);
}

In the preceding example, the data is accumulated but no output is generated until, at
the end of the input, the table is printed. The final statement, return (1) ;, indicates
that 1ex isto perform wrap-up. If yywrap returns 0 (false), it implies that further
input is available and the program is to continue reading and processing. Remember,
providing a yywrap that never returns true causes an infinite loop.

The general formof a 1ex source file is

definitions }

e~
o°

{ rules }

%

oo

{ user subroutines }

The definitions section contains a combination of the following items:
= Definitions in the form

name translation
= Included code in the form

code

where a space (or tab) must precede code.
= Included code in the form

% {

code

%}
= Start conditions given in the form

%S namel nameZ2 ...

Summary 5-29

s Character set tables in the form
3T
number character-string

3T
= Changes to internal array sizes in the form
%X nnn

where nnn is a decimal integer representing an array sizeand x selects the
parameter as follows:

Letter Parameter

p positions

n states

e tree nodes

a transitions

k packed character classes
o output array size

Lines in the rules section have the form
expression action

where the action can be continued on succeeding lines by using braces to delimit it.
Regular expressions in lex use the operators shown in Table 5-1.

5-30 Chapter 5 1ex: A Lexical Analyzer

Table 5-1 Regular expression operators

Expression Meaning

X The character x

(b2l An x, even if it is an operator
\x An x, even if it is an operator
[xy]) The character x or y
[x-2] The characters %, y,or z
[~x] Any character but x

Any character but newline

~x An x at the beginning of a line

<y>X An x when lex isinstart condition y
x$ An x atthe end of a line

x? An optional x

X* 0 or more instances of x

X+ 1 or more instances of x

x|y An x ora y

(x) An x

x/y An x, but only if followed by y

{xx} Expandsto xx definitionin lex definition section
x{m, n} m through n occurrences of x

Summary 5-31

Part 2 File Manipulation Tools

The A/UX tools detailed in this section help you perform file-related tasks such as
finding a file size or location, determining the differences hetween two files, and
obtaining the version number of a program. Additionally, A/UX provides tools to control
the file versions to ensure that they are the most recent and provides a way of updating

and maintaining groups of files.

The chapter “File Attribute Tools” describes the tools to
= compare source files: diff and comm
= find files: find

determine file characteristics: size

find the version number of a file: version

maintain portable archives: ar

The following chapters in this section describe the file maintenance tools to
= maintain and keep track of related program files: make
= manage versions of source code: SCCS

m process and parse files: awk

N’

6 File Attribute Tools

Comparing source files / 6-2

Finding files: find / 6-2

Printing the section sizes of COFF files: size / 6-2
Finding the version number of a file: version / 6-3

Maintaining portable archives and libraries: ar / 6-3

The A/UX tools detailed in this section help you perform file-related tasks such as finding
a file size or location, determining the differences hetween two files, and obtaining the

version number of a program.

Comparing source files

A/UX includes a number of programs that compare files, including

bdiff

diff
diff3

diffmk

diffdir

comm

Finding files: £ind

Used similarly to diff; its purpose is to allow processing of files that
are too large for diff.

A differential file comparator. It tells what lines differ in two files.

A three-way differential file comparator, which works only on files less
than or equal to 64K bytes. It compares three versions of a file and
publishes disagreeing ranges of text, flagged with special codes.

Marks the differences between files. It compares two versions of a file
and creates a third file that includes “change mark” commandsfor the
nroff and troff formatters.

Compares the differences in two directories of files.

Selects or rejects lines common to two sorted files.

find isa powerful utility that performs a depth-first recursive search for files of a given
characteristic such as name, group, owner name, time of last modification or access, and
soon. See f£ind(1)in A/UX Command Reference for more information.

Printing the section sizes of COFF files:

=5 Ze

The size command produces size information for common object format files (COFF).
See size(1) in A/UX Command Reference for more information.

6-2 Chapter 6 File Attribute Tools

Finding the version number of a file:
version

version is useful for determining which version of a program you are running,
version takesa list of files and reports the version number for each. If the file is not a
hinary, it reports that. If a version number is not associated with the file, the program
reports that fact. version also reports the object file format of each file—that is, either
Coff object file format, or 0ld a.out object file format.

The user can associate a version number with a file by defining a string constant at
the top of the source code. The string must have the form

{Apple version RELEASE.LEVEL YY/MM/DD HH:MM:SS}"

In this string, the words Apple version must appear followed by the values for the release
number, level number, year, month, day, hour, minute, and second. For example
char *_Version_ = \

"(c) Copyright 1986 {Apple version 2.1 86/09/12 18:05:24}"

See version(l) in A/UX Command Referencefor more details.

Maintaining portable archives and libraries:
ar

You can use the archive command ar to combine several files into one archive. An
archive consists of a collection of files, plus a table of contents. Archives are used mainly
as libraries to be searched by the link editor 14. A library (or libraryarchive) is an
archive that contains object files (plus a table of contents). Putting together your own
library allows you to use locally produced functions (instead of limiting you to the
functions supplied in standard libraries).

ar also provides the facility to append files to and delete files from the archive.
Because the order of files is so important to the efficient operation of 1d, you can also
move files around within the archive, as well as extract them, print them, and produce a
table of contents. See ar(1) in A/UX Command Reference for more information.

Maintaining portable archives and libraries: ar 6-3

7 make: A File Production Tool

Using make / 7-3

The description file / 7-8
Suffixes and rules / 7-20
Operation / 7-28
Advanced topics / 7-44

The make program automates the production of related sets of files. It simplifies the
task of administering libraries, functions, related source and object files, and many other
administration tasks that must reflect a change when you update one file in the set.
Although make is normally used to maintain program code, it can also be used for
other batch data-processing activities. (For example, make is often used to produce

technical manuals with troff.)

7.2

The make program keeps track of file dependencies; when you change one part of a

program, make recompiles related files with a minimum amount of effort. The required
information is maintained by the make program itself (which has built-in “rules” for N~
recompilation), by using certain system information, such as the time stamp of the files,

and by the description of operations kept in a file called the description file or makefile.

Once you set up a makefile for a large project, make keeps track of your dependencies

foryou and frees you to concentrate on programming or other tasks.

Chapter 7 make: A File Production Tool

Using make

The simplest use of make is
make filel

where a file named filel.c resides in the current directory. The file filel.c can
use information from other files by using #include statements. This command causes
make tofind filel.c in the local directory and issue the proper command to
compile itinto filel.

¢ Note If filel.c hasthe same filename prefix (the same filename without the . c
suffix) as another file, make might compile that file instead. If, for example, there is a
more recent filel.1 file, it is compiled instead, and filel.c isoverwritten in the

process. If these files are not different incarnations of the same program, losing the .c
file could be quite troublesome.

As long as only one file is involved and only a standard compilation is required, you
do not need to create a makefile to make your files.

If, however, your program is spread over multiple files, you do need to create a
makefile, which is a control file containing the filenames, a description of their
interrelations, and actions to be performed on them. When it does not have enough to go
on, make looks in the current directory for a file named makefile (or Makefile)
that contains the necessary administrative information. In general, you must put an entry
in the makefile for any file that has a nonstandard compilation procedure.

Writing a makefile

To write a makefile, you must determine the following elements:
= the target filename

= filenames of related compilation units (files)

= file dependencies

= related libraries

= the command that produces the target (including options for the programs to be run)

Using make 7-3

Targets are filenames, or placeholders for filenames, that are meant to be compiled.
The make program defines a dependency as follows: filel depends on file2 only if
fileI needs to be recompiled whenever file2 is changed. For example, if file x.c
contains the line
#include "defs.h"

the object file x.o dependson defs.h.If defs.h ischanged, the x.o filemust .
be remade by compiling x.c. Note thatthe x.c (source) file does not depend on
defs . h, because it does not need to be re-created when defs.h changes.
For example, a file named zeke dependson zeke.o and uses library functions
from 1ibm.a Torelink zeke, you enter

cc -1lm zeke.o -o zeke

cc passes the two options, -1m and -o,to 1d.

m -Im causes library 1ibm.a to be searched.

= -o renames the compiled binary file zeke (instead of the default a.out).

The example requires the following makefile:

zeke: zeke.o

(TAB) cc -1lm zeke.o -o zeke

The first line states the dependency (that zeke dependson zeke.o). The second line is
the command line describing the action that must take place whenever zeke.o changes.
The command line must begin with a tab (represented by (rag) in the examples).

In a more complicated example, a file named xavier depends on three files
named yancy.o, quincy.o,and wally.o,all of which depend on defs.h and
use the library 1ibm.a. The command to link xavier is
cc -0 xavier yancy.o quincy.o wally.o -1m
The makefile for xavier follows:

xXavier: yancy.o quincy.o wally.o
(TAB) cc yancy.o quincy.o wally.o -o xavier -1m
yancy.o quincy.o wally.o: defs.h

When makefiles become more complicated, you can use macros and other features
described in the sections that follow.

7-4 Chapter 7 make: A File Production Tool

When you have included the interfile dependencies and command sequences in a
makefile, the command

make

upcdlates the appropriate files, regardless of how many files you edited since the last time
you executed make. The make utility uses the date and time that a file was last
modified to find files that are out of date with respect to their targets.

make command syntax

make uses the following command syntax:

make (option ...|macro=def.||-£ filenamel |target ..]

make interprets these arguments in the following order:

1. First, make analyzes the macro definitionarguments (arguments with embedded
equal signs) and the assignments made. Command-line macros override
corresponding definitions found in the description files. See “Macro Definitions” for
more information.

2. Next, make examines the options. See “Options” for details.

3. Finally, make assumes the remaining arguments to be the names of targets to he
made, and these are made in the order in which they appear on the command line. If
there are no remaining arguments, the first target in the description file is made.

¢ Note make finds the first target by scanning the description file for a target that
does not represent an internal file transformation rule (see “Transformation Rules”).
These “built-in” rules are of the form

.n[.m]:

Where n and m are suffixes, any rule begins with a period and contains no slashes (as
a full pathname might). Thus, the first target is the first name in the description file that
does not begin with a period or begins with a period but contains a slash. e

Using make 7-5

76

Options

make accepts the following options:

-d digits

=S

-f filename

Update all targets. This option is useful for completely rebuilding all files.
Use compatibility mode for old makefiles. This mode is on hy default.
Turn off compatability mode.

Debug mode. If specified without digits, full debug mode is invoked. If
specified with digits, a particular level of debugging is invoked. Debug
levels 0, 1, and 2 tell you increasing levels of information about the
make operation. Level 4 shows you how the macros are expanded.
Level 9 displays actual flag names. The -d option also can be
invoked by sending the signal USR1 to make.

Cause environment variables to override macro definitions.

Use a different description file. filename is the name of a description
file. A filename of hyphen (-) denotes the standard input. If there are
no -f arguments, make reads the file named makefile or
Makefile inthe current directory in the order stated. Failing these,
s.makefile or s.Makefile issoughtinthe SCCS directory, if
such a directory exists. If a description file is present, its contents
override the default rules.

Turn on capabilites to automatically check out SCCS files. See “SCCS
File Handling.”

Enable the Dynamic Include File Dependency Generation (DIFDG).
The DIFDG also can be enabled hy defining the variable
MAKEDIFDGSUFFIXES asa list of legal suffixes for the source files
to be searched.

Ignore error codes that might be returned by a shell command. This
mode can he entered if the target name . IGNORE: appears in the
description file. See “Built-in Targets.”

If a shell command returns a nonzero status, abandon work on the
current target but continue to process other targets that do not depend
upon the abandoned target. (Targets are described under “Makefile
Entries,” and branches are discussed in “The make Predecessor Tree.”)

Chapter 7 make: A File Production Tool

Turnoffthe -k option. The -k optionisonby default. The -x
option is most often used in a descripton file that invokes make, that
is a member of a multilevel make hierarchy, and that is invoked by a
top-level make with the -k option.

Store the dependency map for all object files in a file. The default
name for this file is ._Make_State. (You can change the default
name hy changing the value in the MAKEDEPFTLE variable to the
desired name.) This option also can be enabled by defining the
variable MAKEDEPFILE as the name of the file in which you want to
store the map.

No-execute mode. Print the commands in the description file as they
would be executed, but do not actually execute them. Even lines
heginning with an @ (at) sign are printed. However, if a command
line has the string $ (MAKE) in it, the line is always executed.

Print out the built-in rules of make including a complete set of
macro definitions.

Searchfor pRE and posT files in the directory /usr/1ib. For
example, for a description file named x.mk, make searches for and
reads /usr/lib/x.mkpPre and /usr/lib/x.mkPost.

Question mode. The make command returns a zero or nonzero
status code, depending on whether the target file is up to date.

Do not use the built-in rules of make. To do any useful work, this
option must be accompanied by an appropriate description file.

Silent mode. Do not print command lines before executing them. This
mode is entered if the built-in target name . STLENT: appears
anywhere in the description file.

Update the target files using the touch command without executing
any commands in the target files.

Look for makecomm and Makecomm files in the user’s home
directory, as specified by the $HOME environment variable, and in
the current directory. The search order is $HOME/makecomm,
$HOME/Makecomm, ./makecomm and ./Makecomm. At most,
make rcads one file from each directory. These files are read hefore
any description files and can be used to define macros and rules.

Display current version of make.

Using make 7-7

Using make on individual files

Individual files mentioned in the makefile also can be used as arguments on the
command line, if you want to compile only a single file. For example, with the makefile
from the previous example

xavier: yancy.o quincy.o wally.o

(TAB) cc vyancy.o quincy.o wally.o -o xavier -1lm

yancy.o quincy.o wally.o: defs.h

and the command line

make yancy.o

make remakesonly yancy .o, including defs.h inthe process. To make hoth
yancy.o and wally.o, you type

make yancy.o wally.o

and both files are remade properly.

The description file

7-8

The description file (often called the makefile) defines the target file and its
dependencies. A description file can contain the following elements:

= makefile entries, consisting of dependency statements and commands or command
sequences

= comments

® include lines

s macro definitions

¢ Note If you do not supply a description file, make uses its default rules to produce
the file named on the command line. See the section “The Default Rules,” later in this
chapter. If you name your description file something other than makefile or
Makefile, you must use the -f optiononthe make command line. See the section
“Options,” later in this chapter, for details. o

Chapter 7 make: A File Production Tool

Makefile entries

A makefile entry defines the relationship between a target and its dependents and
usually stipulates the command as well. A description file often contains multiple entries.
The general form of a makefile entry is

targetl (target2..] :[:]ldependentl..][; commands [#comment]
[(TaB) commands[4 ...
[(TaB) commands|(#..)

where (TaB) represents a tab character. Shell metacharacters such as * and 2 are
expanded only in the command sequence. For example,

zeke: zeke.o

(TAB) cc zeke.o -o zeke -1m

¢ Note Even though the tables generated hy the makefiles are dynamically allocated,
there are certain limits for the length of a line and the number of targets per line. If you
run into problems with these limits, you can use the adb debugger to increase the
max_GPBuffer_size for line length and max_lefts_entries forthe number
of targets per line. For more information on the adb debugger, see A/UX Programming
Languages and Tools, Volume 1. o

Targets versus rules

Within a description file, user-defined rules can replace the built-in rules of make. User-
defined rules can appear in the makefile entry anywhere a target name can he given,
Youalso cancreatea /usr/lib/MakeRules file that overrides the built-in rules.
This allows site-specific rules. In either case, make still observes the -r option.
Some aspects of rule syntax are similar to target syntax. A target can be differentiated
froma rule by the following criteria:

= A target name can begin with or without a period, and it contains slashes.

= A rule begins with a period and does not contain slashes. (See “Transformation Rules”
for more information.)

The description file ~ 7-9

7-10

Built-in targets

Not all targets correspond to files. make has defined certain built-in targets (targets to
which no files correspond) to modify the behavior of make. These targets are passed to
make in the description file. Because make reads the entire description file hefore
heginning to process dependency statements, the built-ins, which must appear at the
heginning of a line, are processed first, whether they appear at the beginning, middle, or
end of the description file. Examples of built-in targets are as follows:

.DEFAULT:

.IGNORE:

.PRECIOUS:

.MAKESTOP [exil-code] :

.SILENT:

Chapter 7 make: A File Production Tool

If a file must be made but there are no explicit shell
commands or relevant built-in rules, make uses
the shell commands listed under .DEFAULT:.

If present, .IGNORE has the same effect as the
-i option, which is to ignore nonzero return codes
from commands.

The default behavior of make is to remove a target
and its dependents when a quit or interrupt signal is
received while processing the commands that
update the target. Because the actions of make
depend in large part on the mere existence of a file,
removal of potentially incomplete files helps ensure
that the proper files are regenerated each time.
Removal can be avoided by making specific files
dependent on . PRECIOUS:.

If present, .MAKESTOP: causes make to exit.
.MAKESTOP: isuseful in a multilevel directory
and description file hierarchy to quickly bypass a
make inone particular directory or in several
directories. exit-code is optional and defaults to
zero if not specified. If exit-code is not specified or
if the specified exit code is zero, make exits
silently. If a nonzero exit code is specified, make
prints a warning message.

If present, .SILENT: has the same effectas the
-s option.

Dependency statements

A dependency statement in a makefile asserts the logical relation between a target and
its dependents. The syntax for a dependency statement is

target1 [target2 ...) :(:]ldependenti..][; commands) [#comment

A sample dependency statement is

dancing: music.o

A more complex dependency statement with an associated command sequence is
yvancy .o wally.o: defs.h ;

(TAB) echo "defs.h has been changed"

A dependency statement can contain either a single colon or a double colon.

¢ Note A target name can appear in more than one dependency statement, but each of
those statements must have the same number of colons (either one or (wo). e

Usually, dependency statements contain only a single colon. In this case, a command
sequence can be associated with, at most, one dependency line; that is, a target cannot
appear in more than one dependency line if there is a command sequence associated
with more than one of them. For example, the fragment
yvancy.o wally.o: defs.h
yancy.o quincy.o: menus.h
works hecause there is no command sequence associated with the dependencies in
which yancy.o appears.

The following fragment is also correct, because there is only one command sequence
associated with the dependencies in which yancy .o appears:
vancy.o wally.o: defs.h
(TAB) echo "defs.h has been changed"
yancy.o quincy.o: menus.h

If the target is out of date with respect to any of the dependents on any of the lines,
and a command sequence is specified (even a null one following a semicolon or tab),
that command sequence is executed. Otherwise (if a command sequence is not
specified), default rules can be invoked.

The description file ~ 7-11

7-12

The following fragment uses incorrect syntax; it uses only a single colon, but a target
appears in two dependency lines, each of which is associated with a command:

yancy.o wally.o: defs.h

(TAB) echo "defs.h has been changed"
yancy.o quincy.o: menus.h

(TAB) echo "menus.h has been changed"

In a dependency statement using two columns, a command sequence can he
associated with each dependency line. For example:
yvancy.o wally.o:: defs.h
(TAB) echo "defs.h has been changed"
yancy.o quincy.o:: menus.h
(TAB) echo "menus.h has been changed"

If the target is out of date with respect to any of the files on a particular line, make
executes the associated commands, possibly in addition to default rules. If a target must
be created, make executes the entire sequence of commands. This detailed form is of
particular value in updating archive-type files.

If you have a single-colon and double-colon version of the same target, such as

L 4E

make issues a warning and continues. make executes the rules of the double-colon
statement first and then the rules of the single-colon statement. If the double-colon rules
have commands, make does not execute the commands associated with the single-
colon rules. If this is the case, you receive a warning statement informing you that the
commands are being ignored.

Commands

A command is usually the command line required for producing the targets from the
dependents. Syntactically, a command is any string of characters, not including a number
sign (#) (except when the # is in quotes) and not including a newline.

& Note When a command appears on a line separate from a dependency statement, it
must be preceded by a tab. If not preceded by a tab, the command usually results in the
message Make: must be a separator on rules line X. Stop. &

Chapter 7 make: A File Production Tool

Comments

Comments are lines beginning with a number sign (#) and ending with a newline.
make ignoresthese lines. make alsoignores blank lines.

include lines

The C syntax for include lines
#include include_file

cannot be used in description files, because comments begin with a number sign. Therefore,
the following policy was adopted for include linesin make description files.

If the string include appears as the first seven letters of a line in a makefile and is
followed by a blank or a tab, make assumes the string following to be a filename that is
to be read by the current invocation of make. Thus, a makefile might contain the
following line:

include macro_defs #reads in file macro_defs

In this example, macro_defs isa file containing make macro definitions. No more
than 16 levels of nested include statements are supported.

Macro definitions

Macros are definedin make command-line arguments or in the makefile. In the
makefile, a macro definition is a line containing an equal sign, and the line must not
begin with a colon or a tab. For example:

OBJECTS = Xx.0 y.0 2.0
The syntax for macro substitution is
$ (name)

or

S {name}

The description file ~ 7-13

7-14

The name of the macro is either a single character after the dollar sign or a name
inside parentheses or braces. Macro names longer than one character must be put inside
parentheses or braces. For example, the following macro invocations are valid:
$ (CFLAGS)
$2
$ixy}
$Z
$(2)

The last two invocations listed are functionally identical. Note that two dollar signs
() can also be used to denote a dollar sign. The following fragment illustrates the
assignment and use of some macros:

OBJECTS = Xx.0 y.0 z.0

LIBS = -1m

prog: $(OBJECTS)

(TAB) cc $(OBJECTS) -o prog $(LIBS)

In this example, make loads the three object files with the math library. The command line
make "LIBES = -11 -1m"

loads them with both the lex (-11) and the math (- 1m) libraries.

Macro definitions on the command line override definitions in the description file,
which, in turn, override the default macros.

For example, if you defined macros in your maketile, you can redefine the library on
the command line for a single run of make, without changing the meaning of the
macros defined in the makefile. For example, the command

make "LIBES = -1lg"

redefines the LIBES macro for this run.
To see a listing of the default macros, you can consult the Macros part of the
listing produced by the command

make -np

Chapter 7 make: A File Production Tool

Internal macros

The following macros are internal and change values during the execution of a
description file. These internal macros are useful generic terms for current targets and
out-of-date dependents. make sets these internal macros as follows:

se Current target. The $@ macro is set to the full target name of the
current target. This macro is evaluated only for explicitly named
dependencies. For example, in the following makefile, the current
targetis zeke, so $@ istranslated as zeke:
zeke: zeke.o
(TAB) cc zeke.o -o $@

$? Out of date relative to target. The $2 macroisset to the string of
names that were found to be younger than the target. This macro is
evaluated when explicit rules from the makefile are evaluated. For
example, the following makefile prints all files younger than
springtime
springtime: lp $°?

$< Related file causing action. If the command was generated by a default
rule, the $< macro expands tothe name of the related dependent
that caused the action. For example, the following makefile establishes
an implicit rule to create targets from “. o” files:

(O) 5
(TAB) cc $< -o s@
$* Shared prefix, current, and dependent files. 1f the command was

generated by a default rule, the $* macro is given the value of the
filename prefix shared by the current and dependent filenames. For
example, the following makefile sets the prefix $* to zeke and
links zeke.o:

zeke: zeke.o

(TAB) cc $*.0 -o $*

In the following additions, the D refers to the directory part of the single-letter
macro, and the F refers to the filename part of the single-letter macro. These are useful
when building hierarchical makefiles.

$ (@D) current target directory
$ (@F) current target filename
$ (*D) shared directory prefix

The description file ~ 7-15

4(*R) shared filename prefix
$ (<D) related dependent directory

$ (<F) related dependent filename

For example, the following instruction uses the D to gain access to directory names to
use the cd command:

cd $(<D); $(MAKE) $(<F)

Dynamic dependency parameters

The following parameters have meaning on/y within a dependency statement in a makefile.

sse The current item to the left of the colon. The double dollar signs
denote a metalevel macro—that is, a macro referring to another macro.
Thus, $$@ isa macrovariable for whatevertarget is current, and $e
is a macro for the current target. If the target is static, $@ can be used
instead of $s@;however, $s@ allowsforuse of a dynamictarget, a
macro defined to denote many files, each of which is processed in
turn. This is useful for building a large number of executable files, each
of which has only one source file.

For example, the following makefile defines cMDs as the stipulated
subset of single-file programs in the A/UX software command
directory. Each of the programs (or cMDS) is compiled correctly in
turn using this syntax.

CMDS = cat dd echo date cc cmp comm ar 1ld chown

$ (CMDS) : s$$@.c
(TAB) $(cc) -0 $? -o se
(See “The Default Macro Settings” for more information on $ (cC) .)

The dependency statement for the first item in the list of cMDs is
translated as follows:

1. The targetis setto cat.
2. The dependentissetto cat.c (the current target plus .c).

3. The cc command (optimized using -0) runs on the dependent
(cat.c) if it is younger than the target.

4. The results are linked into the target file (cat).

7-16 Chapter 7 make: A File Production Tool

¢ Note This syntax cannot be used for multiple-file programs. To deal with multiple-
file programs, you usually allocate a separate directory and write a separate makefile.
Then, a specific makefile entry is made for files requiring nonstandard compilation. &

S(@QF)

Another form of $se, representing just the filename part of $se.
This parameter is also evaluated at execution time. For example, the
following makefile maintains the /usr/include directory froma
makefile in another directory:

INCDIR = /usr/include

INCLUDES = \

(TAB) $ (INCDIR) /stdio.h \
(TAB) $ (INCDIR) /pwd.h \
(TAB) $ (INCDIR) /dir.h \
(TAB) $ (INCDIR)/a.out.h

$ (INCLUDES) : $$(@QF)
(TAB) cp $? s@
(TAB) chmod 0444 s$@

The $$(er) macro represents the filename prefix part of the current
target $@. Because the target is also a macro, its value is equal to each
of the four files named in turn. On the run of the first file,

1. Thetargetis stdio.h.
2. The macro $$(@F) is stdio (the target filename prefix).

3. The next line copies the younger file ($ 2), if it exists, into the
target file.

4. The last line changes the mode of the new target file (s @) (in this
case, stdio.h)to read-only.

This pattern is repeated for the other three files stated.

The description file ~ 7-17

7-18

Options

Suppressing printing of commands

Normally, when make processes a description file, each command is printed and then
passed to a separate invocation of the shell after make substitutes for macros. The
printing is suppressed in the silent mode (make -s), or if the special name . SILENT
appears on a line by itself as a target in the makefile, or if the command line begins with
an @ sign. For example,

@size make /usr/bin/make

If the command line ahove were in a description file, the printing of the command
line itself would be suppressed by the @ sign, but the output of the command would
he printed.

Ignoring errors

The make program normally stops if any command signals an error by returning a
nonzero exit status. The make program ignores errors if any of the following options
are used:

s The -i flagonthe make command line (where the scope is global)

» The built-in target name . IGNORE in the description file (where the scope is the
description file)

= A hyphen beginning the command string in the description file (where the scope is
the command following the hyphen)

Thus, if you use the -i option, the targetis file.o, and the compilation is
unsuccessful, make effectively pretends that it worked. When file.o isfound to be
a dependent of some other files, make tries, for instance, to load all the object files
together, and fails with an error message when one (£1i1e. o) is found to be missing, For
all subsequent accesses (within this make), make treats file.o asthough it existed
and as though it were up to date. You should be aware of this possible consequence of
the -i option.

Some commands return with nonzero status even though they worked correctly. For
example, diff returns 1 to indicate the presence of differences in the compared files,
and rm returns a nonzero status if the file you remove is already nonexistent. It is safer

Chapter 7 make: A File Production Tool

to use a leading hyphen for commands that might return a nonzero exit status without
indicating an error, s0 make can continue processing.

Combining commands

As stated previously, when make processes a description file, each command or
individual command line is printed and then passed to a separate invocation of the shell
after substituting for macros. Because the shell to which make passes each command
line is a completely new invocation, you must be careful with certain commands (for
example, cd and shell control commands) that have meaning only within a single shell
process. If special means are not taken, the results of these commands are lost hefore the
next line is executed.

One way to avoid this is to combine two or more shell commands on one line, thus
keeping the same shell active on each. This can he done in one of two ways. If both
commands are kept on one physical line, a semicolon (;) can be inserted between the
commands. If the commands are put on separate physical lines but form one logical line,
a semicolon (;) and a hackslash (\) are supposed to be the first commands. In the latter
case, the semicolon separates the commands and the backslash escapes the newline.
Examples of these two methods follow:

with ; both commands can be on the same line
cd ..; cCc -C X.0y.0 z.0

with ; and \ before <CR>, this is read as one line

cd ..;\

cCC -C X.0 y.0O 2.0

Default commands

If you need to run make ona file, prog forexample, but there are no explicit
commands given or relevant rules to apply, make looks for commands dependent on the
target .DEFAULT to use. If thereisno .DEFAULT target, make printsa message,

Don’t know how to make prog. Stop

and stops. Thus, .DEFAULT can be set up by the user to specify default-case
treatments for files not covered by the built-in rules of make. (For a listing of the types
of file compilations covered by these rules, see the “Transformation Rules” section.)

The description file ~ 7-19

Saving files

If a file or files are assigned as dependent to . PRECIOUS, those files are not removed,
regardless of any command to the contrary. This is especially helpful to avoid the
removal of targets when make receives an interrupt or quit.

Use of selected options

-n The -n option is useful to discover what commands make would execute.
This option instructs make to print out the commands it would issue, without
actually executing them.

-t The -t (touch) option updates the modification times on the affected files
without changing anything else, and thereby can avoid a large number of
superfluous recompilations. Be careful when using this option.

-d The -a (debug) option prints out a detailed description of what it is doing,
including the file times. The output is verbose. Attaching a single digit to the -d
option scales the output. If you wish to control the output, select a digit from 0
to 9. (Level 0 is minimal output, but is very clear; level 9 shows everything
including flag names.)

Suffixes and rules

7-20

The make program uses a table of significant suffixes and a set of transformation rules
to supply default dependency information and implied commands. All of this information
is stored in an internal table (the default rules) that has the form of a description file. (If
the -r option is specified, this internal table is not used.)

Suffixes

The list of suffixes is actually the dependency list for the built-in target . SUFFIXES in
the description file. The make program searches for a file withany of the suffixes on
the list. If such a file exists and there is a transformation rule for that combination, make
transforms a file with one suffix into a file with another suffix.

Chapter 7 make: A File Production Tool

The order of the suffix list is significant because the list is scanned from left to
right. The first name formed that is associated with both a file (in the directory) and a
rule (in the makefile or default rules) is made, and no others. The default suffix list is
shown in Table 7-1.

¢ Note You should know the order of the default suffix list if you are not specifying a
command in the makefile. Otherwise, you might make an unexpected file. &

Table 7-1 Default suffix list

Suffix File type

.0 Object file

i C source file

.e EFL source file

.r ratfor source file

S Fortran source file

.s Assembler (as(1)) source file
Y yacc-C source grammar

yr yacc-ratfor source grammar
.ye yacc-EFL source grammar
1 lex source grammar

Transformation rules

make has an internal table of transformation rules that perform certain default
commands if there is no command specified in the makefile. Note that the default rules
also are known as the implicit rules. There are two types of transformation rules, double
suffix rules and single suffix rules. In double suffix rules, make discemns the stage of
compilation from the suffix (for example, x.c isa source file and x.o is an object
file). These rules are phrased in terms of transformations from one type of suffix to
another. make forms the names of these rules by concatenating the two filename
suffixes; for example, the name of the rule to transforma .r filetoa .o fileis .r.o.

Suffixes andrules ~ 7-21

7-22

Single suffix rules describe the transformation of a file with a given suffix into one
with no suffixes or a null suffix.

If a rule is listed in the internal table and there is no command sequence given in the
description file, make uses the rule. Thus, standard transformations (from one type of
file to another; for example, from a source file to an object file) do not call for a makefile
entry unless nonstandard treatment is required.

If a rule is used (that is, if a default command is generated), the $* macro is given
the value of the filename prefix of the file to be maintained. Then, the $< macro is the
name of the dependent that caused the command.

make has all the required information for compiling programs written in languages
supported by A/UX. For example, after the command
make x.o
where x.o isaC language object file, make searches for a file called x.c (aC
language source file) in the local directory. If it finds x.c, make consults its default
rules for compilation. make findsthe rule .c.o, which states the default command
cc -0 -c x.c
which make then issues to produce x.o.

make uses the default suffix list (see “Suffixes”) to decide when to invoke which
rules. This list tells the order in which to search for certain suffixes.

Within the make default rules file, the name of the rule to follow appears in the
place of the target filename. Thus, the .c.o rule is represented by
o (G ©
(TAB) cc -0 -c [filenamel.c

The contents of the current default rules file used by make can be directed to
standard output with the command
make -np

Any error messages produced at the end of this output should be ignored. The

example shown in Listing 7-1 is a representative file, giving one version of the default
rulesused by make.

Chapter 7 make: A File Production Tool

Listing 7-1 Sample listing of default rules file

LIST OF SUFFIXES

.SUFFIXES: .0 .c .c~ .y .y~ .1 .1~
.$.s~ .sh .sh~ .h .h-~

PRESET VARIABLES

MAKE=make
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LD=1d
LDFLAGS=
CC=cc
CFLAGS=-0
AS=as
ASFLAGS=
GET=get
GFLAGS=

SINGLE SUFFIX RULES

G 3

$(CC) -n -0 $< -o s@

G

$(GET) S$(GFLAGS) -p $< > $*.c
$(CC) -n -0 $*.c -0 S$*

-rm -f $*.c

.sh:

cp $< sa

(continued jm

Suffixes and rules ~ 7-23

.sh~:

$(GET) &(GFLAGS) -p $< > .sh
cp $* .sh $*

-rm -f $* .sh

DOUBLE SUFFIX RULES

HEFIOK

$(CC) $(CFLAGS) -c $<

3 CE=. O
$(GET) $(CFLAGS) -p $< > $*.c
$(cC) $(CFLAGS) -c $*.c

-rm -f $*.c

SCERICE

$(GET) $(GFLAGS) -p $< >$*.cC

. S.01

$(AS) $(ASFLAGS) -o0 $@ $<

.S~.0:
$(GET) $(GFLAGS) -p S$< > S$*.s
$(AS) $(ASFLAGS) -0 $*.0 S$*.s

-rm -f $*.s

.y.O:
$(YACC) $(YFLAGS) $<

$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.oS@

.Yy~.0:
$(GET) $(GFLAG) -p S$< > S$*.y
$(YACC) $(YFLAGS) S$*.y

$(CC) $(CFLAG) -c y.tab.c

rm -f y.tab $*.y

mv y.tab.o $*.0

7-24 Chapter 7 make: A File Production Tool

. 1 .07

$ (LEX) $(LFLAGS) $<

$(CC) $(CFLAGS) -c lex.yy.cC
rm lex.yy.cC

mv lex.yy.o $@

.1~.0:

$(GET) $(GFLAGS) -p $< > $*.1
$(LEX) S$(LFLAGS) $*.1

$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.1

mv lex.yy.o $*.o

J0..c.
$(YACC) S$(YFLAGS) S$<
mv y.tab.c $@

.Yy~.C:
$(GET) $(GFLAGS) -p $< > S$*.y
S (YACC) S$(YFLAGS) S$*.y

mv -f $*.c

-rm -f $*.y
Ll ek
S (LEX) $<

mv lex.yy.cs@

4G ak
$(CC) -c $(FLAGS) $<

ar rv $@ $*.o

rm -f $*.0

.C~.a:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -c S(CFLAGS) $*.c

ar rv s$@ $*.o

(continued >

Suffixes and rules ~ 7-25

7-26

.S~.ad:

$(GET) $(GFLAGS) -p $< > S$*.s
$(AS) $(ASFLAGS) -0 $*.0 $*.s
ar rv $@ $*.o

-rm -f $*.[so]

.h~.h
$(GET) $(GFLAGS) -p $< > $*.h

If two paths in the rules connecting a pair of suffixes exist, make uses the longer
one only if the intermediate file exists or if it is named in the description file. The
following examples show how this works:

1. Ifan x.o fileis needed and a file called x.c is found in the current directory or
specified in the description file, the x.o file is compiled using x.c.Ifan x.1
also exists and is out of date with respectto x. c, that file is processed through 1ex
before compiling the result. This is a case of the longer path (x.1 to x.c to x.0)
being used since the intermediate file (x . c) exists.

2. Ifthefile x.o isneededand x.1 butnot x.c isfound, make discardsthe

intermediate C language file (in this case, x.yy.c) and uses the shorter path (x . 1
to x.0).

The default macro settings

If you know the macro names that make uses, you can change the names of some of
the compilers used in the default rules, or the flag arguments with which they are
invoked. These macro names, the default compilers they denote, and their associated
flags are shown in Table 7-2.

These macros can be used as arguments on the command line to change defaults for
one run of make. For example, the command

make CC=newcc ...

causes the newcc compiler to be used instead of the usual C language compiler. An
example of the use of flags follows:

make "CFLAGS=-0"

passes the -0 flag to the C compiler, cc, causing the C language optimizer to be used.

Chapter 7 make: A File Production Tool

Table 7-2 Macro names and default compilers

Compiler Macro Flag
make command MAKE MAKEFLAGS
Assembler (as) AS -

C compiler (cc) cc CFLAGS
ratfor compiler RC RFLAGS
EFL compiler EC EFLAGS
yacc-C compiler YACC YFLAGS
yacc-ratfor compiler YACCR YFLAGS
yacc-EFL compiler YACCE YFLAGS
lex compiler LEX LFLAGS
get command GET GFLAGS

Sometimes it is possible to use macro redefinition instead of stating a local version of

the default rule. Of course, this change is temporary because it takes place on the

command line and must be restated, whenever desired, every time the file is remade. To

change the .c.o ruleyou can say

make "CFLAGS=-V" thorax.o

and the option -v replaces the default setting for cFLAGS for this one run.

Changing default suffixes and rules

This section describes several ways you can modify the defaults in a makefile.

The default suffix list

You can add suffixes to the end of the default suffix list, change the order of the list, or

change the contents of the list.

If you append new names to the suffix list, an entry can be included for
.SUFFIXES in the description file. The dependentsto .SUFFIXES are then added

to the end of the default list.

Suffixes and rules

7-27

Operation

7-28

To change the order or contents of the list, you must be aware thata . SUFFIXES line
without any dependents deletes the current list of suffixes. Therefore, you must clear the
current list to change the order of names. Thus, to install a new list, include lines such as

.SUFFIXES : # removes old list
.SUFFIXES : .n .n~ .1 .1~ # installs new list

The default rules

You can modify or replace a default rule in a makefile. For example, if you define a
.c.o rule in a makefile, your definition overrides the default one. For example,
Listing 7-2 defines a new .c.o rule.

Listing 7-2 Replacing a default rule

.c.0: cc -V -c S$< #Rule, not target
stomach.c: stomach.l #First target

stomach.l: defs.h

This invokes the -v optionof cc everytimea .o file is linked, printing the
version of the assembler that was used.

This section describes many aspects of make operation, including variables, macros,
precedence, and SCCS.

Environment variables

The make program reads environment variables from the shell and considers them in
processing makefiles. These variables include PATH, HOME, TERM, SHELL, TERMCAP,
and LoGNAME (see A/UX Shells and Shell Programming for more information on
environment variables). Thus, a reference to $ (HOME) , otherwise undefined in a
makefile, is translated correctly into the full pathname for the user’s home directory.

Chapter 7 make: A File Production Tool

¢ Note The value of the SHELL variable determines which shell is used to execute
commands in the makefile (by default, your login shell). If you want to include shell
scripts that require a different shell (for example, a Bourne shell script when your login
shell is the C shell), you must specify the new shell either on the command line

make [options) SHELL=/bin/sh

or you can doit by including the following line at the beginning of your description file:

SHELL=/bin/sh e

To see which environment variables make recognizes in the present directory
(directed to standard output), give the command

make -np | head -50 | more

The first part of the output of this command prints the environment variables.

Macros

A macro is a variable whose value is set in a description file and can be overridden from the
make command line. The entity that make terms a macro is very similar to environment
variables in the shell Although make and the shell use these entities in nearly identical
ways, there are differences, which are described in the following paragraphs.

The following sample shell script
NAME=Joe
echo NAME
echo $NAME

produces the following result:

NAME

Joe

The difference between the first and second echo commands is that the first simply
requests that the string NaME he echoed, while the second, through the dollar sign ($)
requests that the contents of NAME he echoed. Such a request is called expansion.

Operation ~ 7-29

7-30

Expansion is handled differently in make. The following example description file

NAME=joe

all:
echo NAME
echo $SNAME

produces the following resul:

NAME
AME

This is because make requires that macro names longer than one character be
enclosed in parentheses or braces for expansion to occur. In this case, make sees the
$ and attempts to expand a variable named N. No such variable is set, so nothing is
echoed and the echo command finishes by echoing the string AME. The following
description file produces the desired result:

NAME=joe

all:
echo NAME
echo $(NAME)

The use of braces is equivalent to the use of parentheses, so that ${NaME} is
equivalentto $ (NAME).

Each time make evaluates a macro, it strips one dollar sign ($) from it. Therefore,
an extra dollar sign should be added before any macro that is part of a shell command
line. When make is invoked, it reads the user’s environment and makes all the variables
found there available for modification by the description file.

Environment variables are processed before any description file and after the built-in
rules; macro definitions in a description file override environment variables of the same
name. The -e flag option causes environment variables to override macro definitions
of the same name in a description file.

The formal definition of a macro is shown here:

macro-name = string2
By convention, macro-names are uppercase. macro-nameis an alphanumeric string that

cannot contain a colon or a semicolon. The equal sign can be surrounded by spaces or tabs.
string2is defined as all characters up to a comment character or an unescaped newline.

Chapter 7 make: A File Production Tool

make provides several built-in macros. They include the following;

MAKECDIR

MAKEFLAGS

MAKELEVEL

MAKEBDIR

MAKEGOALS

MAKECDIR i a read-only macro that expands into the full pathname
of the current directory.

If not present in the environment, make createsthe MAKEFLAGS
macro and assigns to it the options with which make was invoked.
MAKEFLAGS is processed by make as containing any legal input
option (except -f, -p, -P, -r,and -u). Thus, MAKEFLAGS
always contains the current input options. This proves very useful for
large make commands. In fact, as noted above, when the -n
option is used, the command $ (MAKE) is executed anyway; hence,
one can perform a make -n recursively on a whole software system
to see what would have heen executed. This is because the -n is put
in MAKEFLAGS and passed to further invocations of $ (MAKE). This
is one way of debugging all of the description files for a sottware
project without actually causing the execution of update commands.

If not present in the environment, make creates the MAKELEVEL
macro, assigns an initial value of zero, and exports it. If the
MAKELEVEL macro is already present in the environment, make
increments its value by one. In this way, each subordinate invocation
of make canknow its level in a multilevel make hierarchy. This
macro is read-only and cannot be modified by the description file.

If not present in the environment, make creates the MAKEBDIR
macro and assigns to it the absolute pathname of the current directory.
If the MAKEBDIR macro is already present in the environment, the
value is not changed. MAKEBDIR provides a way for each
subordindate invocation of make to obtain the pathname of the top-
level make.

For every invocation of make, make createsthe MAKEGOALS
macro and assigns to it the targets that are specified on the command
line. For the command line

$ make clean all clobber

MAKEGOALS issetto clean all clobber. If the current
invocation of make invokes make, the invocation can he made as
shown in the following example:

MAKE=make
cd dir; $(MAKE) $(MAKEGOALS)

In this way, the same command-line arguments can he passed to
subordinate invocations of make.

Operation ~ 7-31

7-32

VPATH This version of make supports special processing of the macro
VPATH, if set. VPATH is useful for processing files that are located in
a directory other than the current directory. In the following example,
main.c islocated in the current directory. funcl.c islocated in
../common, and func2.c islocated in ../incl. make
searches the directories specified by the vPaTH variable for any
dependencies that are not in the current directory.

VPATH=../common: ../incl
main: main.o funcl.o func2.o
cc -o $@ $>

In this example, $@ (described later) expands to the target name and
$> (described later) expands to the list of dependencies on the
current target. If main.c, funcl.c,or func2.c are not present
in the current directory, make uses its built-in rules to search for
SCCS versions of the files in the current directory (see “SCCS File
Handling,” later). If SCCS versions of the files are not found, make
searches the pathnames specified by vPATH.

The following built-in macros define values for common software generation
programs or options to those programs. Description files can replace or supplement the
values of these macros to change the way in which the built-in rules work:

AR This macro is defined as ar.

- This macrois defined as as.

SFLAGS This macro is defined as null and is provided as an argument
to the assembler.

cc This macro is defined as cc.

CFLAGS This macrois defined as -0 and is provided as an argument
to the C compiler.

HMOD This macro is defined as chmod.

CP This macro is defined as cp.

F77 This macrois definedas £77.

F77FLAGS This macro is defined as null and is provided as an argument

to the Fortran compiler.

Chapter 7 make: A File Production Tool

FORTRAN

FORTRANFLAGS

GET

GFLAGS

LD

LDFLAGS

LEX

LFLAGS

MAKE

MV

PASCAL
PASCALFLAGS

PC

PCFLAGS

RM
YACC
YFLAGS

This macro is defined as Fortran.

This macro is defined as null and is provided as an argument
to the Fortran compiler.

This macro is defined as get and is used to get SCCS
versions of files.

This macro is defined as null and is provided as an argument
0 get.

This macro is defined as 1d.

This macro is defined as null and is provided as an argument
to 1d.

This macro is defined as 1lex.

This macro is defined as null and is provided as an argument
o lex.

This macro is defined as make.
This macro is defined as mv.
This macro is defined as pascal.

This macro is defined as null and is provided asan argument
{0 pascal.

This macro is defined as pc.

This macro is defined as null and is provided as an argument
fo pc.

This macro is defined as rm.
This macro is defined as yacc.

This macro is defined as null and is provided as an argument
to yacc.

The following six built-in macros have special expansion capabilities that are useful
for writing shell commands:

* The * macro stands for the filename part of the current dependent with the suffix
deleted. It is evaluated only for built-in rules.

@ The @ macro stands for the full target name of the current target. It is evaluated only
for explicitly named dependencies.

Operation 7-33

7-34

< The < macro is evaluated only for built-in rules or the .DEFAULT rule. It is the
module that is out of date with respect to the target (for example, the “manufactured”
dependent filename). Thus, inthe .c.o rule, the < macro evaluatestothe .c
file. An example for making optimized .o filesfrom .c filesis
0(&oO)8
ec -¢ -0. §*.e
or

CR©:
cc -c -0 $<
2 The » macro is evaluated when explicit rules from the description file are evaluated.

It is the list of prerequisites that are out of date with respect to the target; essentially,
those modules that must be rebuilt.

% The % macro is only evaluated when the target is an archive library member of the
form 1ib(file.o).Inthiscase, @ evaluatesto 1ib and % evaluates to the
library member, file.o.

> The > macro is expanded to list all the dependencies on the current rule.

These six macros can have alternative forms. When an uppercase D or F is
appended to any of the six macros, the meaning is changed to “directory part” for D and
‘file part” for F. Thus, $(@D) refersto the directory part of the string @. If there is no
directory part, / is generated.

The following description file demonstrates the use of the » and > macros in their
standard and alternative forms:

pgm:
@echo "? = §2"
@echo "?D = $(?D)"
@echo "?F = $(?F)"
@echo "> = $>"

@echo ">D = $(>D)"
@echo ">F = S$(>F)"

pgm: dir/a.o dir/b.o dir/c.o

Chapter 7 make: A File Production Tool

When a.o isthe only object that is newer than the pgm, make produces the
following output:

? = dir/a.o

2D = JAFE

2F = alo

> = dir/a.o dir/b.o dir/c.o
SD = "dir dir 'dir

>F = a.o b.o c.o
Precedence

Each time make executes, make readsenvironment variables and adds them to the
macro definitions. Precedence is a prime consideration in doing this properly. The
following list is the default precedence of assignments:

command line
makefiles
environment

default macros

When executed, make assigns macro definitions in the order stated by doing the

following tasks:

Reading the MAKEFLAGS environment variable. Each letter in MAKEFLAGS is
processed as an input flag argument, unless the letteris -£, -p,or -r. These
options give directions to make involving overall processing, as follows:

-f Precedes the makefile filename
-r Leaves out the built-in rules
-p Prints out all macro definitions and target descriptions

If the MAKEFLAGS variable is null or is not present, MAKEFLAGS is set to the null
string. This pass establishes the debug mode if the -d flag is set.

Reading and setting the input flags from the command line. The command line adds
to the previous settings in the MAKEFLAGS environment variable.

Operation ~ 7-35

7-36

= Reading macro definitions from the command line. Any macro definitions set from the

command line cannot be reset. Further assignments to these macro names are ignored.

Reading the internal list of macro definitions. make reads its default rules file,
which contains the internal list of macro definitions. For example, if the command
make -r ..

is given, and a makefile already includes all of the rules that are found inthe make
default rules file (for instance, by means of an include line;see “include
Lines,” earlier in this chapter), the -r option does not have the stated effect of
‘ruling out” the rules. It does not go to its default rules itself, but it cannot undo an
include line in a makefile. In fact, the effect is identical to that occurring if both
the -r optionandthe include line in the makefile were excluded, since they
cancel each other out.

Reading the environment settings in the shell. The environment variables are treated
as macro definitions and marked as exported.

& Note Because MAKEFLAGS isnot a variable in the make default rules file,
this step has the effect of doing the same assignment twice. (The exception to this is
when MAKEFLAGS is assigned on the command line.) o

The MAKEFLAGS variable is read and set again.

Reading the makefiles. Assignments in the makefiles override the environment unless
the -e flagis used. The command line option -e instructs make to override the
makefile assignments with the environment settings.

If assigned, the MAKEFLAGS variable overrides the environment. This is useful for
further invocations of make from the current makefile. There is no way to override
command-line assignments. For example, if the command

make -e ..

is given, the variables in the environment override the definitions in the makefile and
reset the precedence of assignments to the following order:

1. command line

2. environment
3. makefiles

4. default macros

Chapter 7 make: A File Production Tool

This has the effect of giving the environment priority over the makefile, as opposed to
the reverse in the default case.

Macro testing

make supports the testing of macros, where the format is:

$ (macro-name: test-operator)

The macro-name can be set or unset and with or without an assigned value. The test-

operator can be one of the following operations:

L

The macro is expanded to the length of its contents. An empty or null value expands
to zero. This test operator is useful for determining whether to examine the contents
of a macro.

If the macro is set and has a non-null value, the macro is expanded to null; otherwise,
the macro is expanded to #. This test can be used to control the execution of
command lines as shown here:

$ (macro-name:v) conditional-command

If the macro is not set, the macro is expanded to #, which causes make to evaluate
the line as a comment. As a result, conditional-command is not executed.

If the macro is set and has a non-null value, the macro is expanded to #; otherwise,
the macro is expanded to null. This is the opposite of the v test operator described
earlier, although it is used in the same way as the v test operator.

If the macro is set, the macro expands to null; otherwise, the macro is expanded to 4.
If the macro is not set, the macro expands to null; otherwise, the macro is expanded
to #.

For example, assume you want to have a target called clean if the macro

$CLNFILES is set. The dependency statement removes the files expanded from this
macro. Here is how the dependency statement would look:

S (CLNFILES:V)clean:

S(CLNFILES:V) @echo "Removing: $(CLNFILES) ";\
rm -f $(CLNFILES)

Operation 7-37

Ifthe $CLNFILES macro is set and contains a non-null value, the
$ (CLNFILES:V) macro becomes null when make reads the description file, and the
line is processed just as if the description file contained

clean:
@echo "Removing: $(CLNFILES) ";\
rm -f $(CLNFILES)

The $(CLNFILES) macrois expanded just before the command line is executed.
Macros that have test operators are expanded during the parsing of the command line.
This means that the order of macros that have test operators is significant, which is unlike
the normal behavior of macros that do not have test operators. Normal macros are
expanded after all description files are read and command-line execution has begun.
Expansion of macros that have test operators can be delayed by preceding additional $
characters, just as can he done with normal macros.

In the example ahove, notice that $ (CLNFILES:V) does not appear in front of
each line. This is because a single command line was used, and that command line was
spread over two lines, with the newline escaped by the backslash (\) character. If there
had heen multiple command lines, each command line would have to have heen
preceded by a $ (CLNFILES:V) macro.

Attributes

make understands attributes, which can be placed hefore or after the dependents in a
dependency list, as shown:

target: [attributes) [dependents] [attributes)

Attributes can be any of the following:

.CURTIME This attribute causes make to use the current time rather than the
most recent modification time of the target, even if the target does not
exist. This attribute is used with the . FAKE attribute to prevent the
associated dependency statement from heing invoked unless the
dependents were updated with a newer time.

.FAKE If the target exists and has no dependents, the normal hehavior of
make forsingle-colon dependency statements is to do nothing. The
addition of the . Fake attribute to the dependency statement
requires make to treat the target is if it does not exist. This, in turn,
forces make to execute the associated commands.

7-38 Chapter 7 make: A File Production Tool

. IDEBUGH:

.IGNORE :

.MAIN

.PRE

.POST

.KEEPTIME

.OLDTIME

.NOMESS

.NOVPATH

.PRECIOUS:

.SILENT:

If present, .DEBUGH tells make not to display debugging
information about this target at the desired debugging level. The
variable 7 is set to a debugging level from 0 through 9. For example, to
prevent this target from showing up in your debugging sections at
levels 0 and 1, use .IDEBUGO and .IDEBUGI.

This attribute causes errors from any command of the target to be
ignored.

The normal behavior of make when invoked without a target name
on the command line is to search the description file for the first target,
process the target, and then terminate. The addition of MAIN toa
dependency statement causes make to treat the associated
dependency statement as if it were the first dependency statement in
the description file.

This attribute informs make that the associated target is to be made
before any others, including .MAIN. Hence, this attribute can be used
to place initialization commands. Because the entire description file is
read before the targets are processed, the placement of this attribute is
position-independent within the description file.

This attribute informs make that the associated target is to be
processed after all others. Hence, this attribute can be used to place
cleanup commands.

This attribute causes make to maintain the original modification time
of the target, even after the target is regenerated.

This attribute causes make to ignore the modification time of the
target and apply a modification time of 0 for the purpose of
determining whether the target should be updated. After the target is
regenerated, make sets the correct modification time.

If present, .NOMESsS: causes make nottoecho commands or
issue any warning or error messages from commands. This is useful in
PRE and POST files where you might not want the user to see
messages from these files.

This attribute causes make to ignore the $vPATH macro for the
associated target.

With this attribute, the document is considered “precious.”

With this attribute, the commands of this target are not echoed
before execution.

Operation ~ 7-39

7-40

If targets that have .MAIN, .PRE,and .POST attributes are dependents of
other targets, the targets are made in the order dictated by the dependencies and not by
the attributes.

Attributes on dependency statements with two colons apply to all of them as a unit.

Archive libraries

A .a suffix rule builds libraries. (There is no actual .a suffix appended to the
filename, however; see below for how to recognize candidates for this rule.) For
example, the .c.a ruleis the rule forthe following;

= compiling a C language source file
= adding a C language source file to the library

= removing the .o version of the C language source file

The .y.a rule is the rule for performing the same functions ona yacc file; the
.s.a rule, foran assembler file; and the .1.a rule, fora 1ex file.

The current archive rules defined internally are .c.a, .c~.aand .s~.a (See
the section on “SCCS Filename Prefixes” for an explanation of the tilde (~) syntax.)

Programmers might choose to define additional rules in the makefiles.

A library is then maintained with the following makefile:

lib: lib(ctime.o)
(TAB) @echo 1lib up-to-date

¢ Note The first parenthesis in the filename identifies the target suffix rule, not an
explicit .a suffix. &

For example, the actual rule .c.a is defined as follows:

.c.a:

(TAB) $(CC) -c $(CFLAGS) S<
(TAB) ar rv $@ $*.o

(TAB) rm -f $*.0o

Chapter 7 make: A File Production Tool

Inthe .c.a rule:
se This macro is the .a target. (Using the library example, this macro is
definedas 1ib.)

$<and $* These macros are set to the out-of-date C language file, and the
filename without the suffix, respectively. Using the previous example,
these macros are definedas ctime.c and ctime. Using this
example, the $< macro could have been changedto $*.c.

When make seesthe 1ib(ctime.o) instruction in the makefile (assuming the
object in the library is out of date with respectto ctime.c, andthereisno ctime.o
file), it translates that construct into the following sequence of operations:

1. make lib.

2. To make 1ib, make each dependentof1ib.

3. make lib(ctime.o).

4. To make lib(ctime.o), make eachdependentof 1ib(ctime.o).(Thereare
none in this example.) The following syntax allows ctime.o tohave dependencies:
lib(ctime.o): $(INCDIR)/stdio.h

Thus, explicit references to .o files are unnecessary.

¢ Note There is also a macro for referencing the archive member name when this
form is used. The $% macrois evaluated eachtime se is evaluated. If there is no
current archive member, $¢ is null. If an archive member exists, then $%
evaluates to the expression between the parentheses.

5. Use default rules to try to build 1ib(ctime.o). (There is no explicit rule.)

¢ Note It is the first parenthesis in the name 1ib(ctime.o) that identifies the
(. a) target suffix. This is the key. There is no explicit .a attheend ofthe 1ib
library name. The parenthesis forces the .a suffix. In this sense, the suffix is hard-
wired into make.

6. Break the name lib(ctime.o) into 1ib and ctime.o. Define two macros,
s@ (=1ib)and $* (=ctime).

Operation ~ 7-41

7-42

7. Look forarule .x.a andafile $*.x Thefirst .X (inthe .SUFFIXES listin
the default rules file) that fulfills these conditions is . c, sothe ruleis .c.a andthe
fileis ctime.c.

8. Set $< to ctime.c and execute the rule. Infact, make must then make
ctime. c. The search of the current directory yields no other candidates, however,
and the search ends.

9. The library is updated. Perform the next instruction associated with the 1ib:
dependency. Therefore, make echos

lib up-to-date

SCCS files

make can be used on SCCSfilesand can run get on them, if required, before
otherwise processing them. Those unfamiliar with SCCS (Source Code Control System)
should refer to Chapter 8, “SCCS Reference.”

SCCS filename prefixes

make syntax does not allow for direct prefix references except with SCCS files.

SCCS filenames are preceded by an s . prefix. make uses a tilde (~) appended to
the suffix to identify SCCS files. The expression .c~.o refers to the rule that transforms
an SCCS C language source file into an object file.

The following example shows a transformation from an SCCS filename to a name with
a suffix already fixed for make: the SCCS filename s.filel.c into the non-SCCS,
make-ready filename filel.c~. This file is then assembled using the command

p @=L O

(TAB) $(GET) S$(GFLAGS) -p $< > $*.c
(TAB) $(CC) $(CFLAGS) -c S$*.c

(TAB) -rm -f $*.c

The tilde appended to any suffix transforms the file search into a search for an SCCS
filename with the actual suffix named by the dotand all characters up to (but not
including) the tilde (~)

Chapter 7 make: A File Production Tool

SCCS filename suffixes

The following SCCS suffixes are internally defined:

.C~ .y~ .S~ .sh~ .h ~

SCCS transformation rules

The following rules involving SCCS transformations are internally defined:

.C~: .1~.0: .sh~: .y~.c: .c~.0:

.C~.a: .S8~.0: .S~.a: .y~.0: .h~.h:

These rules transform SCCS files into non-SCCS format and perform the compilations
indicated by the letter combinations in the rule names. (See “Transformation Rules” for
how to translate rule names into the rules they designate.)

Other rules and suffixes that might prove useful can he defined using the tilde asa
handle on the SCCS filename format.

SCCS makefiles

SCCS makefiles are “invisible” to make in that if you give the command
make

and only a makefile named s.makefile resides in the current directory, make will
get, read, and remove the file. get creates a file called makefile thatremains in
the directory (in addition to the p-file, p.makefile).Ifthe -f optionisused, make
will get, read, and remove the specified makefile (as well as include files), creating
a non-SCCS makefile named the same as the old SCCS version, except that the s .

prefix is removed.

Operation ~ 7-43

Advanced topics

7-44

This section details additional capabilities of make. The topics include maneuvering
through directories, using shell scripts with make, and dynamic include file
dependency generation.

Walking the directory tree

Itis possible to get make to walk the directory tree, either by guiding it explicitly or by
including a shell script that discovers, implicitly, what directories exist, so that it can visit
them. While make is in each directory, it can make the files specified in the directory
makefile. This allows you to bring whole systems up to date by having make follow
directions in one local (meta-)makefile instead of you having to change directories yourself.
The explicit route is, by far, the easiest. If you know the structure of your tree and the
names of all the directories you need to use, you can include commands in a makefile in
the directory at the top of your tree. If, below your current directory, you have directories
named io, os,and others, you can include lines like the following ones in your makefile:

all:
(TAB) cd io; make -f io.mk; \
(TAB) cd ../os; make -f os.mk;

The backslash (\) at the end of command lines is necessary if you want to keep the
same invocation of the shell active for a group of commands. If a different shell is
invoked, the directory information is lost.

If, for example, no backslash terminates the first command line, and so a different
shell was invoked on the second line, the second cd would be executed from the
parent directory for io and os instead of fromthe io directory. In this case, to
keep the same effect, the line should read

(TAB) cd os; make -f os.mk;

As this shows, it is possible to write a script that does invoke a new shell with each
line and still travels the directory tree. This just changes the mode of travel: With the one-
shell-per-journey method, you state explicit directions for going to each directory from
where you are relative to that directory and for going back to the originating directory
afterward. With the one-shell-per-command method, you state explicit directions (that is,

Chapter 7 make: A File Production Tool

a full pathname) for going to the directory, and the return trip is done for you when the
shell you are using quits.

To travel a tree of unknown structure but with fairly standard makefile names (like
dirname. mk, where dirname stands for the name of the directory where the file is
located), you could use a fragment like the following one in your makefile:

subdirs:
(TAB)
(TAB)
(TAB)
(TAB)
(TAB)
(TAB)
(TAB)
(TAB)

for i in ’'find /pathname -type d -print’; \
do \
if test -f $$i/$$i.mk; \

then \
cd Si; \
$(MAKE) -f Si.mk; \
i N
done

¢ Note The code section above is a Bourne shell script, and it works only if your
login shell is /bin/sh oryour SHELL environment variableissetto /bin/sh.
See “Environment Variables” for more information on using different shells to execute

a makefile. o

The make

predecessor tree

The $! macro represents the current predecessor tree. A make predecessor tree
contains the series of files linked through the dependency relation for one run of make.
Forexample, usingthe makefile

all: cat
(TAB)
cat: cat.c

(TAB)

@echo cat up-to-date

echo $!

when the command echo $! is executed, the variable $! evaluates to

cat.c cat all

Advanced topics ~ 7-45

7-46

which is the current predecessor tree of this run of make, read from left to right (leaf to
root, respectively). The connection constituting branches is the “is depended on hy”
relation: The left-most file is depended on hy the next file to the right, and so on. Thus,
the nodes are dependents of their right neighbors and are targets of their left neighbors
(except for the leaf). The predecessor tree can be useful as a debugging tool for make
itself, if what it has done does not make sense. Examination of the tree can reveal why
certain files were updated, or which files were touched in this run of make.

Another means of debugging must be found if make prints the following message:

$! nulled, predecessor circle

If the predecessors of a file are circular, they cannot form a tree, and one will not be
printed. The actual evaluation of the $! macro is terminated, and the macro value is set
to null.

The makefile as shell script

If a target cannot be found in the local or specified directory, make attempts to create
it. When make discovers the absence of the file corresponding to target, it considers
targetto be out of date and so executes the specified command sequence. If the results
do not include creating the target, this leaves the directory in question in the same state,
ready for the same scenario to take place whenever the make command is invoked.

This allows a makefile to function more like a shell script, with each absent target
causing make to try to create it, using the command sequence specified.

Unintended targets

make considers missing files to be out of date and processes them. Conversely, existing
files might be mistakenly deemed up to date (because of user error) and skipped for
processing by make. This might happen in the situation described in “The Makefile as
Shell Script” if one of the targets was

print:

(TAB) lp foo bazz fizz

Chapter 7 make: A File Production Tool

Here, the command sequence creates no file called print, so the same description
file can be used over and over for maintenance, each time executing this line. If,
however, you inadvertently name a program in that directory print, this latter file's
modification information is checked to determine whether print needs to be remade.
make Wwill probably find print to be up to date, and tell you so on the screen. Failure
to note this might cause a bug that is hard to trace in the working of the shell script
description file, even though the entry for print is correct.

Mnemonic targets

A useful method of using make is to include targets with mnemonic names and
commands that do not actually produce a file with the same name as the label in the shell
script. These entries can take advantage of the ability in make to generate files and
substitute macros. For example, save might be included to copy a certain set of files,
oranentry cleanup might be used to throw away unneeded intermediate files. It is
also possible to maintain a zero-length file purely to keep track of the time at which
certain commands were performed. For example,

print: $(FILES)
(TAaB) pr $? | 1p
(TAB) touch print

The print entry prints only the files changed since the last make print
command. A zero-length file print is maintained to keep track of the time of the
printing, the time since the file print was last touched. The $2 macro in the
command sequence then picks up only the names of those files changed since print
was touched. The touch command creates this zero-length file if no file called
print exists in this directory.

Macro translation

To supplement macro definition and substitution, make also provides a macro
translation facility. As a macro is evaluated, the translation takes place within the set of
names of items to which the macro refers. (Such item names are probably filenames; in
any case, they are considered as strings, where a string is delimited by blanks or tabs.)
Thus, the macro translation facility allows for more refined and narrow macro definitions
and for more concise code in description file command sequences.

Advanced topics 7-47

7-48

The formats for macro translation follow:
$ (macro-name: string1=string2)

This tells make to substitute string2 for string1 everywhere among the item names
produced on evaluation of macro-name. The make utility attempts to assume that
these substitution strings are suffixes; however, a substitute sequence can he any number
of the trailing characters of string1. For example:

SAMPLE=/a/b/file.test

all:
@echo "1 $(SAMPLE:file=FILE)"
@echo "2 $(SAMPLE:test=TEST)"
@echo "3 $(SAMPLE:a/=A/)"
@echo "4 $(SAMPLE:b/file.test=K)"
@echo "5 $(SAMPLE:a=A)

has the following output

1 /a/b/file.test
2 /a/b/file.TEST
3 /a/b/file.test
4 /a/K
5 /a/b/file.test
Inthe preceding example, only the second and fourth examples are successful. The other
examples fail because they do not substitute the trailing characters of the expanded macro.
The following example demonstrates the usefulness of string substitution:
all: /u/test/a.o
cc -§ $(?:a=.c)
mv $(?:.0=.s8) .tmp
sed "s/text/data/" > $(?:.0=.8) < .tmp
as -o $@ $(?:.0=.s)

rm .tmp

Chapter 7 make: A File Production Tool

The preceding example uses the @ (expand to the full target name of the current target)
and the 2 (expand to the list of out-of-date dependencies) macros to produce the
assembly language file for each dependent of the al1 target, change each occurrence
of textto data using sed, and assemble each resulting .s file.
Substitution can even work on macros that are part of shell command lines. This
version of make supports substitutions of macros that are part of dependency lists.
Another form of macro expansion similar in style to ed(1) substitution is
$ (name: / regular_expression/ replacement_text/)
First, the name variable is expanded and every occurrence of regular_expression is
substituted with the replacement_text. For example, if you have the following makefile:
VAR = %filel %file2
all:
@echo "test 1: $(VAR:/%//)"
@echo "test 2: $(VAR:/%/&/)"
@echo "test 3: $(VAR:/%/X&/)"

running the make command produces

test 1: filel file2

test 2: %filel %file2

test 3: X%filel X%file2

Another form of macro expansion involves pattern-matching. The expansionis in
the form

$ (variable: =pattern)

The variableis expanded into words separated by white space and all of the words that
do not match the pattern are removed. Using this macro translation on the makefile

WORDS= One Two Three Four Five
all:

@echo "Words with ‘o’ in them: ${WORDS:=*o0*}"
produces this output

Words with ‘o’ in them: Two Four

Advanced topics 7-49

7-50

The final form of macro expansion is
$ (name: : default)

The name variable is expanded and if this variable is undefined or NULL, the default
value is returned. Otherwise the value of name is used. For example, the makefile

FLG=${CFLAGS::-0}
all:
@echo "FLG: S${FLG}"

produces the following output when just the make command is used
FLG: -0

and produces the following output when the make commandis used with the
ZlI'ngI'I]CIl[CFLAGS=

make CFLAGS=
FLG: -0

and produces the following when the make command is used with the argument
CFLAGS=-F

make CFLAGS=-F
FLG: -F

Dynamic Include File Dependency Generation

The make utility includes the ability to examine selected source files for the
#include directives. These include files are added to the target dependency list. This
feature relieves you from having to set up and create the include file dependency list.

The only disadvantage to having make create the dependency list is that some
include files might be placed on the target dependency list that would normally be left out
during compilation because of an #1 fde £. However, this does not cause any problems;
the target is still updated properly. The make utility does not add an include file to the
target dependency list unless that include file really exists, so no damage can result.

The Dynamic Include File Dependency Generation (DIFDG) is enabled by defining
the _MAKE_DIFDG_SUFFIXES variable with a list of source file suffixes to be
searched, as in this example, or by use of the -G (generate) option to make:

_MAKE_DIFDG_SUFFIXES= .c .s .f .p .1 .y

Chapter 7 make: A File Production Tool

The _MAKE_DIFDG_SUFFIXES variable must contain at least one suffix to enable
DIFDG. An empty variable here does not have added meaning. The suffixes that are
ignored are .o, .h,and .a.

The list of directories to search for these include files can he specified with the
_MAKE_DIFDG_INCDIRS variable. The order is important because make searches
each directory for include files until the files are found. Just like cpp(1), make looks
for include files of the form header.h first in the same directory as the source file (not
always the current directory), then in the directories listed in the
_MAKE_DIFDG_SUFFIXES variable. If the include file has the foom <header.hs,
the only directories searched are those listed in the variable. If this variable is defined but
not assigned a value, the only directory that is searched is the source file directory. This
means <header.h> forms always fail because there is not a directory to search. If this
variable isn't defined, make uses the default /usr/include directory.

A prefix can be added to each include file dependent whose full pathname starts with
/usr/include, by use of the _MAKE_DIFDG_PREFIX variable. This is only used
when the user requested that the include file dependencies be written using the -M
(map) option. There is no default. An example is
_MAKE_DIFDG_PREFIX= $$(SGS_INCDIR)

An alternate way of creating include file dependency files is with the C preprocessor,
cpp. This method is much slower than make. The last variable for DIFDG,
_MAKE_DIFDG_CPPFLAGS, is defined with the flags to be passedto cpp . The mere
defining of this variable enables the cpp method of finding include files. Otherwise,
the faster version is used. When you assign a value to this variable, keep in mind that
only words that start with a hyphen are passed to cpp, as in this example (it is assumed
that DEFINES isa variable that contains -D style macros):
_MAKE_DIFDG_CPPFLAGS= -Y $(DEFINES)

Ifthe _MAKE_DIFDG_FILE variable is set and non-null, and DIFDG is enabled,
the DIFDG include file dependencies are written to it when make exits.

Ifthe -G option is used, the defaults are
_MAKE_DIFDG_SUFFIXES= .c .l .y
_MAKE_DIFDG_INCDIRS= /usr/include
_MAKE_DIFDG_CPPFLAGS=
_MAKE_DIFDG_PREFIX=

Advanced topics ~ 7-51

A warning for system administrators

If the system setting for date is wrong (especially if it is very far behind the actual
date), make issues a warning message. (Dates are automatically considered incorrect if
they are before 1970.) Since make works by comparing previous dates with the current
one, it is important to make sure that the current system date is accurate. To ensure
proper functioning of make, the accuracy of date should be checked frequently. Also
check the accuracy of the system clock in the Control Panel. If necessary, reset this clock
as well, to reflect the correct date.

7-52 Chapter 7 make: A File Production Tool

8 SCCS Reference

SCCS for beginners / 8-3
SCCS files / 87
SCCS command conventions / 8-16

SCCS command summary / 8-22

The Source Code Control System (SCCS) is a collection of A/UX commands that controls
and reports on changes to files of text. SCCS is a valuable tool for version management of
program source code or ordinary text files. In large group projects, SCCS prevents
multiple, inconsistent versions of files from accumulating in several places. For a single
user, multiple versions of a file can be stored without using a lot of disk space, previous
versions can be easily reconstructed, and versions can be tracked with a simple,

consistent numbering scheme. SCCS provides facilities for

efficient storage of multiple versions of files
= retrieving earlier versions of files

= controlling update privileges to files

= identifying the version of a retrieved file

= recording when, where, why, and by whom each change was made to a file

8-2

SCCS stores the original file on disk. Whenever changes are made to the file, SCCS stores
only the changes. Each set of changes is called a delta. When you retrieve a particular
version of the file (the default is the most recent version), SCCS applies the appropriate

deltas to the original file to reconstruct that version.

This chapter provides an introduction and a general reference guide to SCCS. The

following topics are covered here:

m SCCS for beginners A step-by-step guide to creating SCCS files, updating them, and
retrieving a version of a file.

= SCCS files A description of the protection mechanisms, format, auditing, and delta
numbering of SCCS files. The differences between individual SCCS use and group or
project SCCS use are discussed, and the role of the SCCS administrator in a group

project is introduced.

m SCCS command conventions A description of the conventions that generally apply to

SCCS commands and the temporary files created by SCCS commands.

m SCCS command summary A summary of SCCS commands and their arguments.

In addition to the programs described in this chapter, the sccs command provides a
front end to SCCS functionality. Basically, the sccs front end runs the SCCS commands
documented in the “SCCS Command Summary” as well as several commands that are
equivalent but easier to use than the most frequently used SCCS commands. See

sccs(1) in A/UX Command Referencefor more information on the sccs front end.

Chapter 8 SCCS Reference

SCCS for beginners

Creating an SCCS file

Using a text editor, create an ordinary textfile named lang thatcontains a list of some
programming languages:

C

PL/I

FORTRAN

COBOL

ALGOL

To bring the tools of SCCS into play, you need to create a (different) file that
various SCCS conunands can read and modify. You can clo this with the admin
command, as follows:

admin -ilang s.lang

The admin command with the -i keyletter (andits value, 1ang) creates a new
SCCS file and initializes it with the contents of the file named 1ang. An initial SCCS delta
is created by applying a set of changes (the contents of 1ang) to a new (null) SCCS file
(s.lang).

Al SCCS files must have names that begin with “s . ”. This effectively limits SCCS
filenames to 12 characters.

Each delta is assigned a name called the SCCS identification string, or SID. The SID is
normally composed of two components (the release number and the level number)
separated by a period. For example, the initial version of a file is delta 1.1 (that is, release
1, level 1). SCCS keeps track of subsequent versions of a file by incrementing the level
number whenever you create a new delta. The release number can also be changed
(allowing, for example, deltas 2.1, 3.1, and so on) to indicate a major change to the file

The admin command returns a warning message (which also can be issued by
other SCCS commands):

No id keywords (cm7)

SCCS for beginners 83

8-4

The absence of keywords is not a fatal error under most conditions, and this warning
message does not affect the SCCS file you have created. In the following examples, this
warning message is not shown, although it might actually be issued by the commands.

You should now remove the 1ang file from your directory:

rm lang

Retrieving a file and storing a new version

Toreconstructthe lang file you just deleted, use the SCCS get command:

get s.lang

This retrieves the most recent version of file s.1lang and prints the messages

1.1

5 lines

(the SID of the version retrieved, and the length of the retrieved text). The retrieved text

is placed in another file called the g-file. The name of the g-file is formed by deleting the

s. prefixfrom the name of the SCCS file. Hence, the file 1ang is reconstructed.
When you use the get command with no keyletters (in the format above) the

lang file is created with read-only mode (mode 440), and no information about the

SCCS file is retained. If you want to be able to change an SCCS file and create a new

version, use the -e (edit) keyletter on the get command line:

get -e s.lang

The -e keyletter causes get tocreate lang with read-write permission and
places certain information about the SCCS file in another file called the p-file, which is
read by the delta command when the time comes to create a new delta. The same
messages are displayed, as well as the SID of the next delta (to be created). For example:

get -e s.lang
produces

i, il

new delta 1.2
5 lines

After this command, you can edit the lang file and make changes. For example,
suppose that you use vi to create the following new version of the file:

Chapter 8 SCCS Reference

@
PL/I
FORTRAN
COBOL
ALGOL
ADA
PASCAL
The command
delta s.lang

records the changes you made tothe 1ang file within the SCCS file. SCCS prints the
message

comments?
Your response should be a description of why the changes were made. For example:
comments? added more languages

The delta command then reads the p-fileand determines what changes were
made to the file 1ang. When this process is complete, the changesto 1ang are stored
in s.lang,and delta displays

1.2

2 inserted
0 deleted

5 unchanged

The number 1.2 is the SID of the new delta, and the next three lines refer to the changes
recordedinthe s.1lang file.

Retrieving versions
The -r keyletter allows you to retrieve a particular delta by specifying its SID on the get
command line. For the previous example, the following commands are all equivalent:

get s.lang
get -rl s.lang
get -rl.2 s.lang

The numbers following the -r keyletter are SIDs.

SCCS for beginners ~ 8-5

8-6

The first command retrieves the most recent version of the SCCS file, because no SID
is specified. When you omit the level number of the SID (as in the second command),
SCCS retrieves the most recent level number in that release (in the previous example, the
latest version in release 1, namely 1.2). The third command explicitly requests the
retrieval of a particular version (in this case, also 1.2).

Whenever a major change is made to a file, the significance of that change is usually
indicated by changing the release number (the first component of the SID) of the delta
being made. Because normal automatic numbering of deltas proceeds by incrementing
the level number (the second component of the SID), you must explicitly change the
release number as follows:

get -e -r2 s.lang
Because release 2 does notyet exist, get retrieves the latest version hefore release 2
and changes the release number of the next delta to 2, naming it 2.1 rather than 1.3. This

information is stored in the p-file so the next execution of the delta command
produces a delta with the new release number. The get command then produces

1.2
new delta 2.1

7 lines

which indicates that version 1.2 is retrieved and that 2.1 is the version delta creates.
Subsequent versions of the file are created in release 2 (deltas 2.2, 2.3, and so on).

On-line information

The help command is useful wheneverthere is any doubt about the meaning of an
SCCS message. Detailed explanations of almost all SCCS messages can be found using the
help command and the code printed in parentheses after the message.

If you give the command
get abc
SCCS prints the message

ERROR [abc]: not an SCCS file (col)

Chapter 8 SCCS Reference

SCCS files

The string col is a code that can be used to obtain a fuller explanation of that
message using the help command. The command

help col
produces

CoOulE
"not an SCCS file"
A file that you think is an SCCS file

does not begin with the characters "s."

This section discusses the protection mechanisms used by SCCS, the format of SCCS files,
recommended procedures for auditing SCCS files, and how deltas are numbered.

Standard A/UX protection

In addition to the special SCCS flags and keyletters described in the next section, “SCCS
Protection Mechanisms,” SCCS uses standard A/UX protection mechanisms to prevent
you from making changes to SCCS files using non-SCCS commands. The following
precautions are automatically taken by SCCS:

= When you create an SCCS file (using admin), it is automatically given mode 444
(read-only) if your umask is less than or equal to 333. If your umask is 334, the
SCCS file is created with mode 440 (no read permission for others). If your umask
is 344, the SCCS file is created with mode 400 (read permission for the owner only). If
your umask is 444 or higher, the SCCS file is created with no permissions across the
hoard, and a lock file, also called a z-file, is created. The preferred mode for an SCCS
file is 444; this protects against modifying SCCS files using non-SCCS commands and
should not be changed.

= [fyou make a hard link from an SCCS file to another file, SCCS commands do not
process the SCCS file. SCCS commands produce an error message rather than process
a file that has been linked. The reason for this is the same: Protection is provided
against using non-SCCS commands to modify SCCS files.

SCCS files 8-7

8-8

SCCS protection mechanisms

SCCS provides the following protection features directly: three SCCS file flags (release
ceiling, release floor, and release lock) and a user list for SCCS files.

The SCCS file flags are set using the -f keyletter with the admin command. This
keyletter specifies a flag and possibly a value for the flag, to be placed in the SCCS file.
Several -f keyletters can be supplied on a single admin command line (see “SCCS
Flags” under “Create SCCS Files: admin” later in this chapter).

The flags used for file protection are

c ceiling The highest release (ceiling) that can be retrieved by a get
command for editing. ceiling is a number less than or equal to 9999. If
this flag is not used, the default value for ceiling is 9999, which allows
all releases up to and including 9999 to be retrieved for editing.

£ floor The lowest release (floor) that can be retrievedby a get command
for editing. flooris a number less than 9999 and greater than 0. If this
flag is not used, the default value for flooris 1, which allows the first
release to be retrieved for editing.

1 list A list of locked releases to which deltas can no longer be made. (See
admin(1) in A/UX Command Referencefor the complete syntax of this
list) The get -e command fails if you attempt to retrieve one of
these locked releases for editing. The character a in /istcan be
specified to protect all releases for the named SCCS file.

SCCS files can also contain a user list of login names and/or group IDs of users who
are or are not allowed to create deltas of that file. This list is empty by default, which
means that anyone can create deltas. To add names to the list (either to allow permission
ortodeny it) the -a keyletter is used with the admin command. The argument to
the -a keyletter can be

login-name A login name or numerical group ID can be specified; a group ID is
equivalent to specifying all login names common to that ID.

tlogin-name If alogin or group ID is preceded by an exclamation character (1), it is
denied permission to make deltas.

These features are described in more detail under the admin command.

Chapter 8 SCCS Reference

Administering SCCS

If you are using SCCS to manage personal files, the protection mechanisms described in
the previous section should be used to keep certain releases from being modified, or to
prevent you from accidentally modifying your files without using SCCS.

Aside from these protections, you can simply use SCCS directly. See “Delta Numbering”
later in this chapter for information on storing and retrieving different releases.

Group project administration

If you are using SCCS to manage and protect files in a large project with several users
having access to the same files, a single user should own the SCCS files and directories.
This single user is the only one to administer the SCCS files.

The following precautions are recommended:

= Directories containing SCCS files should be mode 755. This allows only the owner of
the directory to modify its contents.

= SCCS files should be kept in directories that contain only SCCS files (and any
temporary files created by SCCS commands). This simplifies protection and auditing
of SCCS files. The contents of directories should correspond to convenient logical
groupings—for example, subsystems of a large project.

= No SCCS users other than the SCCS administrator should be able to use those
commands that require write permission in the directory containing the SCCS files.
Instead, a project-dependent program should be written to provide an interface to
certain SCCS commands, usually the get, delta, and, if desired, rmdel and
cdc commands.

This last precaution requires that you write an interface program (usually specific to
the project) that invokes the desired SCCS command and gives other users (who are not
the owners of the SCCS files) the permissions they need to modify specific SCCS files,
using only those commands that are linked to the interface program.

¢ Note If you are not using the sccs frontend (see sccs(1) in A/UX Command
Reference), you might need to write an interface program such as the sample program
shown in Listing 8-1 to handle special file permissions for a particular project. &

SCCS files 89

8-10

The sample program in Listing 8-1 causes the invoked command to inherit the
privileges of the interface program for the duration of the execution of that command.
Users whose login names or group IDs are in the user list for that file (but who are not
the owner), and who have the path to the executable interface program in their PATH
variable, are given the necessary permissions only for the duration of the execution of the
interface program. They can modify the SCCS files only through the use of those
commands that are linked to the interface program.

Listing 8-1 Sample interface program for group projects
main (argc, argv)
int argc;
char *argvl[];
{
register int 1i;

char cmdstr [BUFSIZ];

/* Process file arguments

(those that don’t begin with ’'-') */
for (1 = 1; 1 < argc; 1 ++)

if (argv [i]({0] != 7-7)

argv([i] = filearg (argv[i]);

/* Get ‘simple name’ of name
used to invoke program
(strip off directory prefix, if any) */

argv[0] = sname (argv[0]);

/* Invoke actual SCCS command,
passing arguments */
sprintf (cmdstr, "/usr/bin/%s", argv[0]);

execv(cmdstr,argv);

Chapter 8 SCCS Reference

This sample interface program is an example only; the functions sname and
filearg are notstandard functions. You should write these and any other functions
required by your project.

Such an interface program must be owned by the SCCS administrator, must be
executable by the new owner, and must have the setuid (set user ID on execution) bit
on (see setuid(2)).

Links can then be created between the executable interface program and the
command names. For example, if the path to the file is
/sccs/interface.c

then the commands

cd /sccs
cc interface.c -o inter
compile the program into the executable module inter. At this point, the command
chmod 4755 inter
sets the proper mode and setuid hit. You can then create links from any directory
with the commands
1ln /sccs/inter get
In /sccs/inter delta
In /sccs/inter rmdel
In /sccs/inter cdc

The full pathname of the directory containing the links must then be included prior to
the /usr/bin directory inthe PATH variable (inthe .profile or .login files
of all SCCS users who need to use the desired SCCS commands). For example,
PATH=(.:/usr/new:/bin:/sccs:/usr/bin)

Depending on the type of interface program you wrote, the names of the links can be
arbitrary (if the program can determine from them the names of the commands to be

invoked), the pathname to your project can be supplied, and so on. If the pathname to
your project is supplied in the interface program, the user can use the syntax

get -e s.abc

regardless of where the user is currently located in the file system.

SCCSfiles 8-11

8-12

SCCS file formats

SCCS files are composed of ASCII text arranged in six parts, as follows:

checksum This part of the file contains the sum of the ASCII values of all
characters in the file (not including the checksum itself). The SCCS
checksum is described in “SCCS File Auditing.”

delta table This part contains information about each delta, such as type, SID, date
and time of creation, and commentary.

user list This is a list of login names and/or group IDs of users who are allowed
to modify the file by adding or removing deltas. The user list is
described under “SCCS Protection Mechanisms.”

flags This part contains indicators that control certain actions of SCCS
commands. Flags are discussed under “Create SCCS Files: admin.”

descriptive text This is arbitrary text provided by the user, usually comments that
provide a summary of the contents and purpose of the file. Descriptive
text is discussed under “Create SCCS Files: admin.”

body This is the actual text of the ASCII file being administered by SCCS,
intermixed with internal SCCS control lines.

For information regarding the physical layout of SCCS files, see sccsfile(4) in
A/UX Command Reference.

& Note Because SCCS files are ASCII files, they can be processed by other A/UX
commands such as vi, grep, and cat. This can be convenient when an SCCS file
must be modified manually or when you simply want to look at the file. However, it is
extremely important to be careful about introducing changes that affect future deltas. It is
wise to make a backup copy first. &

SCCS file auditing

On rare occasions (such as a system crash), an SCCS file might be destroyed or corrupted
(that is, one or more blocks of it might be destroyed). If the entire SCCS file has been
trashed, the SCCS commands issue an error message when you attempt to process that
file. In this case, you need to restore the file from your most recent backup copy.

Chapter 8 SCCS Reference

If one or more blocks of an SCCS file are trashed by a system crash, the SCCS
commands recognize this through an inconsistent checksum. In this case, the only SCCS
command that processes the file is the admin command with the -h or -z keyletter:

admin -h s.filel s.file2 ..

[tis a good idea to use these commands routinely to audit your SCCS files to detect
any inconsistent checksums (indicating file corruptions). If the new checksum of any file
is not equal to the checksum in the first line of that file, SCCS prints the message

corrupted file (co6)

This process continues until all the files are examined. The admin -h command
also can be applied to directories:

admin -h directoryl directory2 ...

This prints an error message for any corrupted files, but does not automatically report
missing SCCS files. To determine whether any of your SCCS files are missing, list the
contents of each directory (1s).

If you have an SCCS file that is extensively corrupted, the best solution is to restore
the file from your most recent backup copy. If there is only minor damage, you might be
able to repair it using a text editor. In this case, after you repair the file, use the command

admin -z s.file
This recomputes the checksum of the file so that it agrees with the file contents. After

you use admin -z, any corruption that existed in the file is no longer detectable by the
admin -h command.

Delta numbering

SCCS deltas are changes applied to an original (null) file to produce different versions
and releases of your file.

SCCS names deltas with an SCCS identification string (a SID). SIDs have exactly two
components (the release number and the /eve/ number) separated by a period:

release . level

SCCS names the initial delta 1.1. This is considered a set of changes applied to the
null file. Subsequent deltas are named by incrementing the level number (1.2, 1.3, and so
on) when the delta is created. If you make a major change to the file, you might want to

SCCSfiles 8-13

8-14

specify a new release number when you create the new delta. In this case, SCCS assigns a
new release number (2.1) and subsequent deltas are incremented as in release 1. This is
shown in Figure 8-1.

e)

11 12 13 14

Release 1 Release 2

Figure 8-1 A linear progression of versions

In this simplest case, the deltas progress linearly; that is, any delta is dependent on all
preceding deltas. When SCCS reconstructs a particular version of your SCCS file, it applies
all deltas up to and including the number you specify. In most cases, this is all you need
to know about SCCS delta numbering.

Branch deltas

The linear progression of file versions shown above is sometimes called the trunk of the

~ SCCS tree for that file. Under special conditions, you may need to use a branch in the

tree: an independent progression of deltas that does not depend on all previous deltas for
that file.

For example, suppose you have a program at version 1.3 that is being used in a
production environment. You are developing a new release (release 2) of the program,
and already have several deltas of that release. This situation uses the simple linear
organization shown above.

Now suppose that a user reports a problem in version 1.3 which requires changes
only to version 1.3 but does not affect subsequent deltas. This requires a branch from the
previous linear ordering. The new (branch) delta name consists of exactly four
components: release and level numbers (as in the trunk delta) plus a branch number and
sequence number, all separated by periods:

release. level. branch . sequence

Thus, a branch delta can always be identified as such from its name.
Once you create a branch delta, SCCS increments subsequent deltas on that branch

by incrementing the sequence number. This is shown in Figure 8-2.

Chapter 8 SCCS Reference

Branch 1

Figure 8-2 A branching SCCS tree

While SCCS increments the sequence number on each branch, it increments the
branch number according to when you create the branch. If you need to complicate your
SCCS branch structure, consider this carefully. While the trunk delta (the initial linear
progression) can always be identified by the branch delta name (by the release and level
numbers), it is not possible to determine the entire path leading from the trunk delta to
the particular branch delta you might have retrieved.

Forexample, if delta 1.3 hasone branch, all deltas on that branch are named 1.3.1.x.
If a delta on this branch (for example, delta 1.3.1.1) has a branch, all deltas on the new
branchare named 1.3.2.7. This is shown in Figure 8-3.

(=L =

1.1 1.2 1.5 1.4 2.1 22

13.1.2

Figure 8-3 A complicated branch structure

If you retrieve version 1.3.2.2, you know that (chronologically) it is the second delta
on the second branch from delta 1.3. You are not able to deduce how many deltas there
are between version 1.3.2.2 and version 1.3. Thus, although the branching capability is
provided for managing files under certain special conditions, it is much easier to manage
your files if you keep the SCCS organization as linear and simple as possible.

SCCSfiles 8-15

SCCS command conventions

8-16

This section discusses the conventions and rules thatapply to SCCS commands. Except
where noted, these conventions apply to all SCCS commands. A list of the temporary files
generated by various commands (and referred to in the “SCCS Command Summary”) is
also provided.

SCCS command arguments

SCCS commands accept two types of arguments: keyletters and file arguments.
Keyletters consist of a2 minus sign followed by a lowercase character, which might
be followed by a value. For example, -a is a keyletter. Keyletters control the execution
of the command to which they are supplied. All keyletters specified for a given command

apply to all file arguments of that command. Keyletters are processed before any file
arguments, with the result that the placement of keyletters is arbitrary (that is, keyletters
can be interspersed with file arguments). Somewhat different argument conventions
apply to the help, what, sccsdiff,and val commands.

¢ Note Keyletters are command-line options equivalent to A/UX flag options. Do not
confuse keyletters with SCCS flags, discussed in “SCCS Flags.” o

File arguments (names of files and/or directories) specify the files to be processed
by the given SCCS command. Naming a directory is equivalent to naming all the SCCS
files within the directory. Non-SCCS files in the named directories are silently ignored. In
general, file arguments cannot begin with a minus sign, but if the name - (a single
minus sign) is specified as an argument to a command, the command reads the standard
input (until end-of-file) and takes each line as the name of an SCCS file to be processed.
This feature is often used in pipelines. File arguments are processed left to right.

Chapter 8 SCCS Reference

Flags

Certain actions of SCCS commands can be controlled by flags, which appear in SCCS
files. These flags are discussed in “SCCS Flags” later in this chapter.

Diagnostics

SCCS commands produce diagnostics (on the standard error output) that use this format:
ERROR [filename] : message text (code)

The code in parentheses can be used as an argument to the help command to obtain a
further explanation of the diagnostic message. Detection of a fatal error during the
processing of a file causes the SCCS command to stop processing that file and to proceed
with the next file, in order, if more than one file is named.

Certain SCCS commands check both the real and effective user IDs (see passwd(1)
in A/UX Command Reference). If you are using SCCS to manage your personal files, these
two IDs are the same; if you are working in a group project, see “SCCS Protection
Mechanisms” earlier in this chapter.

Temporary files

Several SCCS commands generate temporary files and file copies during the process of
creating, retrieving, and updating SCCS files.

The temporary files are normally named by stripping off the s. prefix of the SCCS
filename and replacing it with another single alphabetic character.

The g-file is named by simply deletingthe s. prefix. Thus, if the SCCS file is named
s.abc the g-fileis named abc. The p-fileis named p.abc.

Figure 8-4 demonstrates the relationships of the temporary files.

SCCS command conventions ~ 8-17

8-18

zfile
lock file
for s.abc

xfile:
buffer file
for s.abc

ifile dfile

table copy of 1

of deltas g file j

: afile
: text file '
: ¢ ile: pile :
. huffer file data on :
: for p-file user, ec. '

Created by get

Figure 8-4 Relationships among temporary files

These temporary files are as follows:

d-file

gfile

Chapter 8 SCCS Reference

When you invoke a get command, SCCS creates its own temporary
copy of the g-fileby performing an internal get at the SID specified
in the p-file entry. This temporary copy is called the d-file.

When you record your changes in a new version, the delta
command compares the d-fileto to the g-file (using the diff
command). The differences between the g-file and the d-file are the
changes that constitute the delta.

This is the text file created by a get command. It contains a
particular version of an SCCS file, and its name is formed by stripping
offthe s. prefix from the SCCS file.

The g-fileis created in the current directory and is owned by the real
user. The mode assigned to the g-file depends on how the get
command is invoked. The version it contains also depends on how the
get command is invoked. The default version is the most recent
trunk delta (that is, excluding branches).

I-file

pfile

gHile

x-file

z-file

The get -1 command creates an /file containing a table showing
the deltas used in constructing a particular version of the SCCS file.
This file is created in the current directory with mode 444 (read-only)
and is owned by the real user.

When the get -e command creates a g-file with read-write
permission (so you can edit it), it places certain information about the
SCCS file (that is, the SID of the retrieved version, the SID to be given
to the new delta when it is created, and the login name of the user
executing get) in another new file called the p-file

When you record your changes in a new version, the delta
command reads the p-file for the SID and the login name of the user
creating the new delta.

When the new delta is made, the p-file is updated by removing the
relevant entry. If there is only a single entry in the p-file, then the p-file
itself is removed.

Updates to the p-file are made to a temporary copy, the g-file, whose
use is similar to the use of the x-file.

All SCCS commands that modify an SCCS file do so by writing a
temporary copy, called the x-file (to ensure that the SCCS file is not
damaged if processing terminates abnormally). When processing is
complete, the old SCCS file is removed and the x-file is renamed (with
the s. prefix) to be the SCCS file.

The x-file is created in the directory containing the SCCS file, given the
same mode as the SCCS file, and owned by the effective user.

To prevent simultaneous updates to an SCCS file, commands that
modify SCCS files create a “lock file” called the z-file. This file exists
only for the duration of the execution of the command that creates it.
The z-file contains the process number of the command that creates it.
While the z-file exists, it indicates to other commands that the SCCS file
is being updated. SCCS commands that modify SCCS files do not
process a file if the corresponding z-file exists.

The z-file is created with read-only mode (mode 444, possibly
modified by the user's umask) in the directory containing the SCCS
file. It is owned by the effective user.

In general, users can ignore most of these temporary files, although they can be
useful in the event of system crashes or similar situations.

SCCS command conventions ~ 8-19

8-20

SCCS ID keywords

When you retrieve an SCCS file to compile it, it is useful to record the date and time of
creation, the version retrieved, the module name, and so forth, within the g-file. This
information appears in a load module when one is eventually created.

SCCS uses ID keywords for recording such information about deltas automatically.
ID keywords can appear anywhere in the generated file and are replaced by
appropriate values.

The format of an ID keyword is an uppercase letter enclosed by percent signs (%).
When these appear in the generated SCCS file, they are replaced by the values defined
for that keyword. For example,

oo

A

oo

is replaced by the SID of the retrieved version of a file. Similarly,

TH%

is replaced by the current date (in the form mm/dd/yy). When no ID keywords are
substituted by get, the following message is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, unless the i flagis present
in the SCCS file (see “SCCS Flags” later in this chapter).
Table 8-1 shows a complete list of the ID keywords.

Chapter 8 SCCS Reference

Table 8-1 SCCS ID keywords

Keyword Value

M Module name: either the value of the m flag in the file (see admin(1)), or the name
of the SCCS file with the leading s. removed

%1% SCCS identification (SID) ($R% . L% . $B% . $5%) of the retrieved text

%R% Release

$L% Level

$B% Branch

%S% Sequence

$D% Current date (yy/mm/dd)

SHS Current date (mm/dd/yy)

3T Current time (hh:mm:ss)

3ES Date newest applied delta was created (yy/mm/dd)

%G% Date newest applied delta was created (mm/dd/yy)

$U% Time newest applied delta was created (hh:mm:ss)

%Y% Module type: the value of the t flag in the SCCS file (see admin(1))

SF% SCCS file name

2P% Fully qualified SCCS filename

0% Value of the g flag in the file (see admin(1))

%C% Current line number. This keyword is intended for identifying messages sent by the
program. It is not intended to be used on every line to provide sequence numbers.

%2% Four-characterstring @ (#) recognizable by what

WS Shorthand notation for constructing what strings for A/UX system program files.

WS = $2%3M%~I1%I% (where ~I is the tah character)

A% Another shorthand notation for constructing what strings for non-A/UX system
program files. $A% = $Z%3YSIMISISZS

SCCS command conventions ~ 8-21

SCCS command summary

8-22

This section describes the features of all the SCCS commands. The SCCS commands are

as follows:
admin
cdc

comb

delta

get

unget

help
prs

rmdel

sact
sccsdiff
val

what

Creates SCCS files and applies changes to characteristics of SCCS files.
Changes the commentary associated with a delta.

Combines two or more consecutive deltas of an SCCS file into a single
delta; often reduces the size of the SCCS file.

Applies changes (deltas) to the text of SCCS files—that is, creates
new versions.

Retrieves versions of SCCS files.

“Undoes”a get -e command, if invoked before the new delta is
created.

Prints explanations of diagnostic messages.
Prints portions of an SCCS file in user-specified format.

Removes a delta from an SCCS file; allows the removal of deltas that
were created by mistake.

Accounts for SCCS files in the process of being changed.
Shows the differences between any two versions of an SCCS file.
Validates an SCCS file.

Searches any A/UX system files for all occurrences of a special pattern
and prints out what follows it; what is useful in finding identifying
information inserted by the get command.

Create SCCS files: admin

admin creates new SCCS files or changes characteristics of existing ones. You can
create an SCCS file with the command

admin -ifilename s. filename

where filename is a file from which the text of the initial delta of the SCCS file
s. filename is to be taken.

Chapter 8 SCCS Reference

¢ Note There is no space hetween the -i keyletter and the filename argument. &

SCCS files are created in read-only mode (444) and are owned by the effective user
(see passwd(l) in A/UX Command Reference). Only a user with write permission in a
directory containing SCCS files can use the admin command on a file in that directory.

If you omit the value of the -i keyletter, admin reads the standard input for the
text of the initial delta. Thus, the command

admin -is.filename < filename

is also valid. Only one SCCS file can be created at a time using the -i keyletter.
If the text of the initial delta does not contain ID keywords, the message

No id keywords (cm7)

is issued as a warning. See “SCCS ID Keywords” earlier in this chapter for more information.

Ifyou setthe i flagin the SCCSfile (using the -£ keyletter with the admin
command,; see the next section, “SCCS Flags”), the above message is treated as a fatal
error and the SCCS file is not created.

The first delta of an SCCS file is normally 1.1. The -r keyletter to the admin
command is used to specify a different release number for the initial delta. Because it is
only meaningful in creating the first delta (with admin), its use is permitted only with
the -i keyletter. The command

admin -ifilename -r3 s.filename

specifies that the first delta should be named 3.1 rather than 1.1.

SCCS flags

SCCS file flags are used to direct certain actions of SCCS commands.

The flags of an SCCS file are initialized or changed using the -£ keyletter, and
deleted using the -d keyletter. When you create an SCCS file, flags are either initialized
bythe -f keyletter on the command line or assigned default values. For example, the
following command sets the i flag and the m (module name) flag:

admin -ifilename -£i -fmmodname s . filename

The i flag specifies that a warning message stating that there are no ID keywords
contained in the SCCS file should be treated as a fatal error.

SCCS command summary ~ 8-23

8-24

The value modname specified for the m flag is the value that the get command
uses to replace the sccs ID keyword. (In the absence of the m flag, the name of the
gileis used as the replacement for the sccs ID keyword.)

Note that several -£ keyletters canbe supplied on the admin command line and
that -£ keyletters can be supplied whether the command is creating a new SCCS file or
processing an existing one.

The -a keyletter is used to delete a flag from an SCCS file and can be specified only
when processing an existing file. For example, the following command removes the m
flag from the SCCS file:

admin -dm s.filename

Several -d keyletters can be supplied on a single invocation of admin and can be
intermixed with - £ keyletters.

A user list of login names and/or group IDs of users who are allowed to create deltas
of that file is checked by several SCCS commands to ensure that the delta is authorized.
This list is empty by default, which means that anyone can create deltas. The -a
keyletter is used to specify users who are given permission or denied permission to
create deltas. You can use the -a keyletter whether admin is creating a new SCCS
file or processing an existing one, and it can appear several times on a command line.

Forexample, the command

admin -avz -aram -al234 s.filename

gives permission to create deltas to the loginnames vz and ram and the group ID
1234. The command

admin -a!vz s.filename

denies permission to create deltas to the login name vz. Similarly, the -e keyletter is
used to remove (erase) login names or group IDs from the list. For example:

admin -evz s.filename

removes the login name vz from the userlist of s . filename.

Comments and MR numbers

When an SCCS file is created, you can insert comments stating your reasons for creating
the file. In a controlled environment, it is expected that deltas are created only as a result
of some trouble report, change request, trouble ticket, and so forth, all of which are
collectively called MRs (for modification request).

Chapter 8 SCCS Reference

The creation of an SCCS file might sometimes be the direct result of an MR. MRs can
be recorded by number in a deltathroughthe -m keyletter, which can be supplied on
the admin (or delta)command line.

The -y keyletter can also be used to supply comments on the command line rather
than through the standard input. If comments (-y keyletter) are omitted, a comment line
of the form

date and time created YYMM/DD hh:mm:ss by logname

is automatically generated.
If you want to supply an MR number (using the -m keyletter), the v flag must also
be set (using the -f£ keyletter described below), as in the command

admin -ifilename -nmrlist -fv s. filename
The v flag causesthe delta command to prompt for MR numbers as the reason

for creating a delta. (See sccsfile(4) in A/UX Programmer’s Reference.) Note that the
-y and -m keyletters are effective only if @ new SCCS [ile is being created.

Descriptive text

The portion of the SCCS file reserved for descriptive text can be initialized or changed
using the -t keyletter. Descriptive text is intended as a summary of the contents and
purpose of the SCCS file.

To insert descriptive text in a file you are creating, the -t keyletter is followed by
the name of a file from which the descriptive text is to be taken. For example, when a
new SCCS file is being created, the following command takes descriptive text from
description-file:
admin -ifilename -tdescription-file s .filename

When processing an existing SCCS file, the -t keyletter specifies that textfound in
description-file should overwrite current descriptive text (if any). If you omit the file
nameafterthe -t keyletter, as in

admin -t s.filename

the descriptive text currently in the SCCS file is removed.

SCCS command summary ~ 8-25

8-26

Change comments in an SCCS file: cdc

cdc changes the comments or MR numbers that were supplied when a delta was
created. It is invoked as follows:

cdc -r3.4 s.filename

This specifies that you want to change the comments of delta 3.4 of s . filename. You
canalso use cdc to delete selected MR numbers by preceding the selected MR
numbers by the exclamation character (1).

cdc prompts for MR numbers and new comments:
cdc -r3.4 s.filename
MRs? mrlist! mrlist
comments? deleted wrong MR number and inserted\
correct MR number

The new MR numbers in the first mr1ist are inserted, and the old MR numbers
(preceded by the exclamation character) are deleted. The old comments are kept and
preceded by a line, indicating that they are changed. The inserted comment line records
the login name of the user executing cdc and the time of its execution.

Combine deltas to save space: comb

The comb command generates a shell script (see sh(1) in 4/UX Command Reference)
that is written to standard output. When executed, the script attempts to save space by
discarding deltas that are no longer useful and combining other specified deltas.

¢ Note comb should be used only a few times in the life of an SCCS file. Before any
actual reconstructions, comb should be run with the -s keyletter (in addition to any
other keyletters desired). &

In the absence of any keyletters, comb preserves only the most recent deltas and
the minimum number of “ancestor” deltas necessary to preserve the SCCS file tree. The
effect of this is to eliminate middle deltas on the trunk and on all branches of the tree.

Chapter 8 SCCS Reference

Some of the comb keyletters are as follows:

-p Specifies the oldest delta that is to be preserved in the reconstruction. All older
deltas are discarded.

-c Specifies a list of deltas to be preserved (see get(1) in AUX Command
Referencefor the syntax of this list). All other deltas are discarded.

-s Causes the generation of a shell script that, when run, produces only a report
summarizing the percentage space (if any) to be saved by reconstructing each
named SCCS file. You should run comb with this keyletter (in addition to any
others desired) hefore any actual reconstructions.

Note that the shell script generated by comb is not guaranteed to save space. In
fact, it is possible for the reconstructed file to be larger than the original. Note, too, that
the shape of the SCCS file tree might be altered by the reconstruction process.

Store a new SCCS file version: delta

delta creates a new delta by recording the changes made to a g-file. The differences
hetween the g-fileand the d-file are the changes that constitute the delta. These changes
are normally stored as a delta; they can also he printed on the standard output by using
the -p keyletter. The format of this output is similar to that produced by ai ££.

Required temporary files

All temporary files used by the de1ta command are described in the previous section,
“Temporary Files.” There must he a p-fileand a d-filefor delta to work.

delta looks in the p-filefor the user’s login name and a valid SID for the next delta.
There should be just one entry for the user (created when the user does a
get -e)and it should he the same user who is trying to create a delta. Otherwise,
delta printsan error message and stops. If the user’s login name appears in more than
one entry in the p-file, the same user executed more than one get -e on the SCCS
file. In this case, the -r keyletter must then be used with delta to specify the SID
that uniquely identifies the p-file entry. This entry is the one used to obtain the SID of the
delta to be created.

SCCS command summary ~ 8-27

8-28

The delta command also performs the same permission checks performed by
get -e.lIfall checksare successful, delta performs a di ££ on the g-fileand the d-file
and records the changes as a new delta.

Comments and MR numbers

In practice, the most common use of delta is
delta s.filename

which prompts

comments?

on the screen. Your response can be up to 512 characters long if you escape all newlines
with a backslash (\). The response is terminated by a newline character.

In a controlled environment, deltas are usually created only as a result of some
trouble report, change request, trouble ticket, and the like. These are collectively called
MRs (modification requests) and can be recorded in each delta. If the SCCS file hasa v
flag set, delta first prompts with
MRs?
on the screen. The standard input is then read for MR numbers, separated by blanks
and/or tabs. Your response can be up to 512 characters long if you escape all newlines
with a backslash (\). The response is terminated by a newline character.

The -y and/or -m keyletters on the delta command line can also be used to
supply comments and MR numbers, respectively, instead of supplying these through the
standard input. The format of the delta command is then

delta -ydescriptive comment -mmrlist s . filename

The -m keyletter is allowed only if the SCCS file hasa v flag. These keyletters are
useful when delta isexecuted from within a shell script (see sh(1) in 4/UX
Command Reference).

The -s keyletter suppresses all output that is normally directed to the standard
output except for the prompts comments? and MRs?. Use of the -s keyletter
together with the -y keyletter (and possibly the -m keyletter) causes delta to
neither read standard input nor write to standard output.

Chapter 8 SCCS Reference

The comments and/or MR numbers are recorded as part of the entry for the delta
being created and apply to all SCCS files processed by the same invocation of delta.If
delta isinvoked with more than one file argument and the first file named has a v
flag, all files named must have the v flag. Similarly, if the first file named does not have
this flag, then none of the files named can have it. Any file that does not conform to these
rules is not processed.

When processing is complete, the SID of the created delta (obtained from the p-file
entry) and the counts of lines inserted, deleted, and left unchanged by the delta are
written to the standard output. Thus, a typical output might be

1.4

14 inserted

7 deleted

345 unchanged

& Note The counts of lines reported as inserted, deleted, or unchanged by delta
might not agree with your perception of the changes applied to the g-file. There are
usually several ways to describe a set of changes, especially if lines are moved around in
the g-file, and delta is likely to find a description that differs from your perception.
However, the total number of lines of the new delta (the number inserted plus the
number left unchanged) should agree with the number of lines in the edited g-file. &

Keywords

If delta finds no ID keywords in the edited g-file, it prints the message
No id keywords (cm7)

after it prompts for comments, but before any other output. This indicates that any ID
keywords that might have existed in the SCCS file have been replaced by their values or
deleted during the editing process. This can be caused by

= creating a delta from a g-file that was created by a get command without the -e
keyletter (ID keywords are replaced by get in that case)

= accidentally deleting or changing the ID keywords while you are editing the g-file

= the file not having any ID keywords to begin with

SCCS command summary ~ 8-29

8-30

In any case, it is left up to the user to determine what to do about it. The delta is
created whether or not ID keywords are present, unless there isan i flag in the SCCS
file indicating that this should be treated as a fatal error. In this last case, the delta is not
created until the ID keywords are inserted in the g-fileand the delta command is
executed again.

See “SCCS ID Keywords” earlier in this chapter for more information.

Removal of temporary files

When processing of an SCCS file is complete, the corresponding p-file entry is removed
from the p-file. All updates to the p-file are made to a temporary copy called the g-file. If
there is only one entry in the p-file, then the p-file itself is removed.

When processing of the corresponding SCCS file is complete, delta also removes
the edited g-fileunless the -n keyletter is specified. The command

delta -n s.filename

keeps the g-file upon completion of processing.

Retrieve an SCCS file version: get e

get creates a text file containing a particular version of an SCCS file. The get command
applies deltas to the initial version of the file to obtain the version you specify or the most
recent version (excluding branch versions, which must be retrieved specifically).

The resulting text file is called the g-file (see “Temporary Files” earlier in this chapter).
The mode of the g-file depends on how the get command is invoked. For example,
the command

get s.filename
produces
1.3

67 lines
No id keywords (cm7)
on the standard output. This indicates that version 1.3 (the most recent delta) was —

retrieved, that there are 67 lines of text in this version, and that no ID keywords were
substituted in the file.

Chapter 8 SCCS Reference

The generated g-file is assigned mode 444 (read-only), which does not allow you to
modify the file, although you can read the file or compile it, and so on. The file is not
intended for editing (that is, for making deltas).

If you specify several file arguments (or directory-name arguments) on the get
command line, similar information is displayed for each file processed, preceded by the
SCCS filename. For example, the command
get s.abc s.def
produces
s.abc:

13
67 lines

No id keywords (cm7)

s.def:
Ay
85 lines

No id keywords (cm7)

See “SCCS ID Keywords” earlier in this chapter.

Retrieving different versions

By default, the get command retrieves the most recent delta of the highest-numbered
release on the basic trunk of the SCCS file tree (exclusive of branches). To change this
default, you can

= Setthe 4 flagin the SCCS file. Then, the SID specified as the value of this flag is
used as a default.

= Usethe -r keyletter onthe get command line to specify which SID you want to
retrieve. (If the version you specify does not exist, an error message results.) For
example:

get -rl.3 s.filename
In this case, the a flag (if any) is ignored. A branch delta can be retrieved similarly:
get -rl1.5.2.3 s.filename

SCCS command summary ~ 8-31

8-32

If you omit the level number
get -r3 s.filename

the highest-level number (most recent delta) within the given release will be

retrieved. If the given release does not exist, get retrieves the most recent trunk

delta (not in a branch) with the highest-level number within the highest-numbered

existing release that is lower than the release you specify.)
s Usethe -t keyletter to retrieve the most recent (top) version in a particular release

(whenno -r keyletter is supplied or when its value is simply a release number).

Most recent is independent of location in the SCCS tree (see “Delta Numbering”

earlier in this chapter). For example, if the most recent delta in release 3 is 3.5,

get -r3 -t s.filename

might produce

3.5

59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the

same command might produce

3:2.2.5
46 lines

Retrieving a file to create a new delta

When you specify the -e keyletterto get, the retrieved file has read-write permission
and can be edited to make a new delta. For example, the command

get -e s.filename

produces

i.8

new delta 1.4

67 lines

onthe standard output. The use of get -e isrestricted (because a new delta can be
created), causing a check of the SCCS protection mechanisms (user list and protection
flags; see “SCCS Protection Mechanisms” earlier in this chapter). SCCS also checks for

permission to make concurrent edits (specified by the j flag in the SCCS file; see
“Concurrent Edits of Same SID”).

Chapter 8 SCCS Reference

If the permission checks succeed, get -e creates a g-file with mode 644
(readable by everyone, writable only by the owner) in the current directory. This mode
can be modified by the user’'s umask.

If a writable g-file already exists, get -e terminates with an error. This is to
prevent inadvertent destruction of a g-file that already exists and is being edited for the
purpose of making a delta.

ID keywords appearing in the g-file are not substituted by get -e because the
generated g-file is subsequently used to create another delta. Replacement of ID
keywords causes them to be permanently changed within the SCCS file.

The following keyletters can be used with get -e:

-r Used to specify a particular version to be retrieved for editing. If the number
specifiedto -r does not exist, it is assigned to the new delta.

-t Specifies the most recent version in a given release be retrieved for editing.

-1 Used to specify a list of deltas to be included by get. Including a delta means

forcing the changes that constitute the particular delta to be included in the
retrieved version. This is useful if you want to apply the same changes to more
than one version of the SCCS file. When a delta is included, get checks for
possible interference between those deltas and deltas that are normally used in
retrieving the particular version of the SCCS file. Two deltas can interfere, for
example, when each one changes the same line of the retrieved g-file. Any
interference is indicated by a warning that shows the range of lines within the
retrieved g-file in which the problem might exist. The user is expected to
examine the g-file to determine whether a problem actually exists and to do
whatever is necessary (for example, edit the file). The -i keyletter should be
used with extreme care.

-X Used to specify a list of deltas to he excluded by get. Excluding a delta means
forcing it not to be applied. This can be used to undo (in the version of the SCCS
file to be created) the effects of a previous delta. Whenever deltas are excluded,
get checks for possible interference hetween those deltas and deltas that are
normally used in retrieving the particular version of the SCCS file. (See the
explanation under -i.) The -x keyletter should he used with extreme care.

-k Facilitates regeneration of a g-file that might have been accidentally removed or
ruined aftera get -e command, or the simple generation of a g-file in
which the replacement of ID keywords has been suppressed. A g-file generated
hythe -k keyletter is identical to one produced by get -e, exceptthat
no processing related to the p-filetakes place (see “Temporary Files” earlier in
this chapter).

SCCS command summary ~ 8-33

8-34

Concurrent edits of different versions

There is a possibility (in a group project) that several get -e commands might be
executed at the same time on the same file. However, unless concurrent edits are
explicitly allowed (see the next section “Concurrent Edits of Same SID”), no two

get -e executions can retrieve the same version of an SCCS file. This protection uses
information from the p-file (see “Temporary Files”).

The first execution of get -e causes the creation of the p-file for the
corresponding SCCS file. Subsequent executions only update the p-file with a line
containing the above information. Before updating, however, get checks to ensure
that no entry (already in the p-file) specifies that the SID (of the version to be retrieved) is
already retrieved, unless multiple concurrent edits are allowed. (See the next section,
“Concurrent Edits of Same SID.”)

If both checks succeed, the user is informed that other deltas are in progress and
processing continues. If either check fails, an error message results. It is important to note
that the various executions of get should be carried out from different directories.
Otherwise, only the first execution succeeds because subsequent executions attempt to
overwrite a writable g-file, which is an SCCS error condition. In practice, such multiple
executions are performed by different users so that this problem does not arise (each
user normally has a different working directory). (See the section “SCCS Protection
Mechanisms” earlier in this chapter for a discussion about how different users are
permitted to use SCCS commands on the same files.)

Table 8-2 shows a sample SCCS file retrieved by get -e and the SID of the version
that is subsequently created by delta, as a function of the SID specified to get.

In Table 8-2,R,L,B,and § are release, level, branch, and sequence components of
the SID. The letter “m” means “maximum.” Thus, for example, R.mL means “the
maximum level number within release R”; R.L.(mB+1).1 means “the first sequence
number on the (maximum branch number plus 1) of level L within release R.”

Also note that if the SID specified is of the form RL, RL.B, or R.L.B.S, each of the
specified components must exist.

The -b keyletter is effective only if the b flag is present in the file (see
admin(1)). In this state, anentryof -i means “irrelevant.”

Chapter 8 SCCS Reference

Table 8-2 Determination of a new SID

SID Keyletter SID SID of delta
specified used Other conditions retrieved to be created
none* no R default to mR mR.mL mR.(mL+1)
none” yes R default to mR mR.mL mR.mL.(mB+1)
R no R >mR mR.mL RAf
R no ==mR mR.mL mR.(mL+1)
R yes R>mR mR.mL mR.mL.(mB+1).1
R yes R==mR mR.mL mR.mL.(mB+1).1
R - R< mR and does not exist hRmL ¥ hR.mL.(mB+1).1
R - Trunk successor in RmL R.mL.(mB+1).1
release >R and R exists
RL no No trunk successor RL R.(L+1)
R.L. yes No trunk successor RL R.L(mB+1).1
R.L - Trunk in release >=R R.L R.L.(mB+1).1
RLB no No branch successor R.L.B.mS R.L.B.(mS+1)
RLB yes No branch successor R.LB.mS R.L.(mB+1).1
RLBS no No branch successor RLBS R.LB.(S+1)
RLBS no No branch successor R.LB.S R.L(mB+1).1
RLB.S - Branch successor RLBS R.L(mB+1).1

* Applies ifthe d (default SID) flag is not present in the file. Ifthe & flag is present in the file,
the SID obtained fromthe d flag is interrupted as if it had been specified on the command line.
Thus, one of the other cases in this table applies.

T Used toforce the creation of the first delta in the new release.

YR is the highest existing release that is lower than the specified, nonexisting, release R.

SCCS command summary ~ 8-35

8-36

Concurrent edits of the same SID

Unless the j flagis set in the SCCS file (see “SCCS Flags” earlier in this chapter),

get -e commands are not permitted to occur concurrently on the same SID. That is,
delta must be executed before another get -e isexecuted on the same SID. If the
j flagis set in the SCCS file, two or more successive executions of get -e on the
same SID are allowed. The command

admin -fj s.filename

setsthe j flag. Then, the command

get -e s.filename

might produce

1.1

new delta 1.2

5 lines

which might be immediately followed by the commands

nv filename new-filename
get -e s.filename
The second edit request without an intervening execution of delta causesa
warning to be generated:
1.1
WARNING: being edited: ‘1.1 1.2 username date-stamp’ (gel8)
new delta 1.1.1.1
5 lines
In this case, a delta command corresponding tothe first get produces delta 1.2,
assuming 1.11s the latest (most recent) delta, and the delta command corresponding
to the second get produces delta 1.1.1.1.

Chapter 8 SCCS Reference

Keyletters that affect output

The following keyletters affect output:

-b

The retrieved text is written on standard output rather than on a g-file. In this
case, all output normally directed to the standard output (such as the SID of the
version retrieved and the number of lines retrieved) is directed instead to the
standard error output. The -p keyletter is used, for example, to create g-files
with arbitrary names:

get -p s.filename > filename

Suppresses all output that is normally directed to the standard output (the SID of
the retrieved version, the number of lines retrieved, and so forth, are not
written). This does not affect messages to the standard error output. This
keyletter is used to prevent nondiagnostic messages from appearing on the
user’s terminal, and is often used in conjunction with the -p keyletter to pipe
the output of get. For example:

get -p -s s../%'lename | nroff

Suppresses the actual retrieval of the text of a version of the SCCS file. This can
be used in a number of ways; for example, to verify the existence of a particular
SID in an SCCS file:

get -g -rd4.3 s.ﬂlename

This prints the given SID if it exists in the SCCS file or generates an error
message if it does not exist. The -g keyletter is also used to regenerate a p-file
that was accidentally destroyed. For example:

get -e -g s.filename

Creates an file named by replacing the s. of the SCCS file name with 1. See
“Temporary Files” earlier in this chapter. For example, the command

get -r2.3 -1 s.filename

generates an /-file that shows the deltas applied to retrieve version 2.3 of the
SCCS file. Specifying a value of p withthe -1 keyletter

get -lp -r2.3 s.filename

causes the generated output to be written to the standard output rather than to

the /file. You can use the -g keyletter with the -1 keyletter to suppress the
actual retrieval of the text.

SCCS command summary ~ 8-37

8-38

-

Identifies the changes applied to an SCCS file, line by line. When you specify
thiskeyletterto the get command, each line of the generated g-fileis
preceded by the SID of the delta that caused that line to be inserted. The SID is
separated from the text of the line by a tab character.

Causes each line of the generated g-fileto be preceded by the value of the ¥M%
ID keyword (the module name) and a tab character. The -n keyletter is most
often used in a pipeline with the grep command. For example:

get -p -n -s directory | grep pattern

searches the latest version of each SCCS file in a directory for all lines that
match a given pattern. If both the -m and -n keyletters are specified, each
line of the generated g-file is preceded by the value of the sccs ID keyword
and a tab (caused by the -n keyletter) and shown in the format produced by
the -m keyletter.

Because the contents of the g-file are modified when you use the -m and/or
-n keyletters, this g-file cannot be used for creating a delta, and neither -m
nor -n canbe used with the -e keyletter.

Restore a version unchanged: unget

If invoked beforea delta, unget undoesa get -e command. The following
keyletters can be used with unget:

-rSID

Uniquely identifies the delta that is no longer intended (the SID for the
new delta is included in the p-file). This is necessary only if two or
more get -e commands of the same SCCS file are in progress.

Suppresses the display of the intended SID of the delta on standard
output.

Retains the g-filein the current directory instead of removing it.

For example, the command

get -e s.filename

followed by

unget s. filename

causes the last version to be unchanged.

Chapter 8 SCCS Reference

On-line explanations: help

The help command prints explanations of SCCS commands and the messages printed
by some of these commands. If you use help without an argument, it prompts for one.
Valid arguments are names of SCCS commands or the code numbers that appear in
parentheses after SCCS messages. Keyletter arguments or file arguments are not valid
arguments to help.

Explanatory information related to a command is a synopsis of the command. For
example, the command

help ge5 rmdel

produces

geb5:

‘nonexistent sid’

The specified sid does not exist in the
given file.

Check for typos.

rmdel :

rmdel -rSID name

This is printed on standard output by default. If no information is found, help
prints an error message. Note that help processes each argument independently, and
an error resulting from one argument will not terminate the processing of the other
arguments on the command line.

Print parts of an SCCS file: prs

The prs command is used to print on the standard output all or parts of an SCCS file in
a format you specify. The format is called the output data specification. It is a string
consisting of SCCS file data keywords (not to be confused with get ID keywords),
supplied using the -d keyletteronthe prs command line. These keywords can
(optionally) be interspersed with text.

Data keywords specify which parts of an SCCS file are to be retrieved and produced.
All parts of an SCCS file (see sccsfile(4)) have an associated data keyword. Data

SCCS command summary 8-39

8-40

keywords are an uppercase character, two uppercase characters, or an uppercase and a
lowercase character, enclosed by colons. For example,

:1:

is the keyword replaced by the SID of a specified delta. Similarly,

513

is the keyword replaced by the SCCS filename currently being processed, and

3k

is replaced by the comment line associated with a specified delta. For a complete list of
the data keywords, see prs(1) in 4/UX Command Reference.

There is no limit to the number of times a data keyword can appear in a data
specification. For example, the command

prs -d":I: this is the top delta for :F: :I:" s.fz’lename
might produce on the standard output (for example)
2.1 this is the top delta for s.filename 2.1

Information can be obtained from a single delta by specifying the SID of that delta
using the -r keyletter. For example:

prs -d":F:: :I: comment line is: :C:" -rl.4 s.filename
might produce the following output:
s.filename: 1.4 comment line is: THIS IS A COMMENT

Ifthe -r keyletteris not specified, the value of the SID defaults to the most recently
created delta.

Information can be obtained from a range of deltas by specifying the -e or -1
keyletters. The -e keyletter substitutes data keywords for the SID designated by the -
r keyletter and all earlier deltas.
prs -d :I: -rl.4 -e s.filename
might produce
.4

e e

8
2
32
1

Chapter 8 SCCS Reference

The -1 keyletter substitutes data keywords for the SID designated by the -r
keyletter and all later deltas.

prs -d :I: -rl.4 -1 s.filename
might produce
.8

3
3
3
2.
2
2
1

I L S ST oV

Substitution of data keywords for all deltas of the SCCS file can be obtained by specifying
boththe -e and -1 keyletters.

Remove a specific delta: rmae1 -r

rmdel removes a delta from an SCCS file. Normally, you should use it only if incorrect
global changes were incorporated in a delta.
The -r keyletter is required to specify the complete SID of the delta to be removed.
The delta to be removed must be the most recent delta on its branch or on the trunk
of the SCCS file tree. In Figure 8-5, only deltas 1.3.1.2,1.3.2.2, and 2.2 can be removed;
once they are removed, then deltas 1.3.2.1 and 2.1 can be removed.

O—O0—C—0O0—C—0O
11 1.2 L3

Figure 8-5 Removing a delta

SCCS command summary ~ 8-41

8-42

The command
rmdel -r2.2 s.filename

specifies that delta 2.2 of the SCCS file should be removed. Before removing it, rmdel
checks that the release number (R) of the given SID satisfies the relation

floor <= R <= ceiling

and that the SID specified is not a version that is being changed (for whicha get -e
has been executed and whose associated delta has not yet been made).

The A/UX and SCCS protection mechanisms are also checked. If the checks are not
successful, processing is terminated and the delta is not removed.

If the checks are successful, the delta is removed and its type indicator in the delta
table of the SCCS file is changed from D (delta) to R (removed).

Account for open SCCS files: sact

The sact command reports any impending deltas toan SCCS file. An impending delta
is a change that has not yet been incorporated into the SCCS file with the delta
command. This would occurifa get -e hasbeen executed but an associated
delta has not yet been made.

sact reports five fields for each named file:

field 1 The SID of the existing SCCS file being changed

field 2 The SID of the new delta to be created

field 3 The login name of the user who executed the get -e command
field 4 The date the get -e command was executed

field 5 The time the get -e command was executed

The command

sact s.filename

produces a display such as

1.2 1.3 john 85/06/20 16:15:15

Chapter 8 SCCS Reference

Compare two SCCS files: sccsdiff

sccsdiff compares two specified versions of one or more SCCS files and prints the
differences on standard output. The versions to be compared are specified using the -r
keyletter in the same format used for the get command. For example,

sccsdiff -r3.4 -r5.6 s.filename

The two versions must be specified as the first two arguments to this command in the
order in which they were created (the older version is specified first). Any following
keyletters are interpreted as arguments to the pr command (which prints the
differences on standard output in @i ££ format) and must appear before any filenames.

The SCCS files to be processed are named last. Directory names and a name of a
single minus sign (-) are not acceptable to sccsdiff.

Check SCCS file characteristics: va1

val isused to determine whether a file is an SCCS file meeting the characteristics
specified by an optional list of keyletter arguments. Any characteristics not met are
considered errors.

The val command checks for the existence of a particular delta when the SID for
that delta is explicitly specified through the -r keyletter. The string following the -y
or -m keyletter is used to check the value setby the t or m flag, respectively (see
admin(1) in A/UX Command Referencefor a description of the flags).

The val command treats the special argument - differently from other SCCS
commands. This argument allows val to read the argument list from the standard input
as opposed to obtaining it from the command line. The standard input is read until an
end-of -file.

This capability allows for one invocation of val with different values for the
keyletter and file arguments. For example:

val -~

-yc -mabc s.filename
-mxyz -ypll s.xyz
(EOF)

first checks whether the s . filename file has avalue c for its type flag and value
Sfilenamefor the module name flag. Once processing of the first file is completed, val

SCCS command summary ~ 8-43

8-44

then processes the remaining files, in this case s . xyz, to determine whether they meet
the characteristics specified by the keyletter arguments associated with them.

The val command returns an 8-bit code; each bit set indicates the occurrence of a
specific error (see val(1) for a description of possible errors and the codes). The
appropriate diagnostic is also printed unless suppressed by the -s keyletter. A return
code of zero indicates all named files met the characteristics specified.

Find identifying information: what

what is used to find identifying information within any A/UX system file whose name is
given as an argument to what. Directory names and a name of - (a single minus sign)
are not treated specially as they are by other SCCS commands, and no keyletters are
accepted by the command.

The what command searches the given files for all occurrences of the string @ (#)
(which is the replacement for the @ (#) ID keyword) and prints (on the standard
output) the balance following that string until the first double quote (), greater than (>),
backslash (\), newline, or (nonprinting) null character. For example, if the SCCS file
s.prog.c (aClanguage program) contains the following line,
char id[] = "@(#)%2Z%3M%:3I%";
the command
get -r3.4 s.prog.c

is executed, and the resulting g-fileis compiled to produce prog.o and a.out. Then
the command

what prog.c prog.o a.out
produces
prog.c:
prog.c:3.4
prog.o:
prog.c:3.4
a.out:
prog.c:3.4
The string searched for by what does not need to be inserted in the SCCS file
through an ID keyword of get; it can be inserted in any convenient way.

Chapter 8 SCCS Reference

9 awk Programming Language

awk operation / 9-3
Comments / 9-5
Command-line options / 9-6
Invocation modes / 9-7
Interactions with the shell / 9-9
Text input processing / 9-11
Patterns / 9-14

Actions / 9-20

Data structures / 9-35
Expressions / 9-41

Lexical conventions / 9-50
Primary expressions / 9-55
Terms / 9-58

Expressions / 9-60

awk is a special-purpose language for processing text in terms of input records and

fields. The awk language can be used to

= generate reports

= match patterns

s tabulate, summarize, and format information
s validate data

m filter data for transmission

Another guide to the awk programing language is The AWK Programming Language
by A.V. Aho, B.W. Kernigan, and P.]. Weinberger (Addison-Wesley, 1988). In addition to

its other merits, this book offers fully functional programs for you to use and inspect.

9-2 Chapter 9 awk Programming Language

N

awk operation

An awk program is a sequence of instructions of the form
pattern ! action |
pattern | action |

These pattern-action instructions specify text scanning and text manipulation functions.
Sometimes these instructions merely establish settings that affect text processing that is
undertaken by awk as part of its standard operation.

The standard operation of awk is to scaneach input file once and look for matches
between each input record and any of a set of patterns you supply. An action associated
with a pattern is taken while processing each input record that contains text that matches the
pattern. So that text patterns can be sought in specific positions in an input record, awk
automatically splits the input record into fields when it encounters field-separator characters.

After awk splits each input record into fields, each field is assigned to a field
variable, such as $1, $2, $3,and so forth. These variables can be used to reference
input fields either in the pattern or action portions of an instruction. Although $0 looks
like a field reference, it refers to the entire input record with field delimiters unstripped.

When an input record satisfies the pattern criteria, the text of that input record can be
accessed through references to the variables $1, $2, $3,and soon(as well as $0, the
entire input record). For example, to print only those input records containing the string
Mac, you can use

/Mac/ { print $0 }

A pattern in front of an action acts as a selector that determines whether that action
is performed. After awk compares all the patterns to the current input record, it looks
at the next input record and repeats the process starting with the first pattern in the
awk program.

When you want to specify two or more actions for the same pattern, a semicolon or
newline character must separate each action. For example, if you want the number 5
printed, you can create the following program:

{ x =5 ; print x }

awk operation 9-3

9.4

When several actions are performed for a given pattern, they can also be denoted as
one action block. So
pattern { action [; action 1... }
and
pattern { block }
denote the same thing.
Newline characters can also be used to separate actions in an action block:

pattern {
action

Occasionally, action blocks are nested inside other action blocks. In such cases, each
nested block is delimited with a pair of opening and closing braces:

pattern {
main-block

{
sub-block

Typically, sub-blocks occur within execution loops or branches, also known as
control-flow structures.

Inan awk program, either the pattern or the action can be omitted, but not both. If
there is no action for a pattern, the matching record is simply printed. If there is no pattern
for an action, then the action is performed for every input record. (An empty awk
program does nothing.) Because both patterns and actions are optional, you must enclose
actions in braces to distinguish them from patterns. For example, the awk program

/x/ { print }
prints every input record that has the letter x in it, as does

/x/

Chapter 9 awk Programming Language

Some of the possible replacements for action are the following statements. Each is
discussed later in this chapter. As can be seen, awk provides a complete set of flow
control constructs.

if (condition) { blockl } [else { block2 })
while (condition) { block }
for (expression ; condition ; expression) { block }
break
continue
next
exit
Some of the possible replacements for pattern are regular expressions such as /x/,
and the special patterns, BEGIN and END. The regular expression syntax is the same
as that used by the line editor ed as well as other A/UX tools, such as grep. The

section “Patterns,” later in this chapter, describes the pattern possibilities in greater detail.
The BEGIN pattern introduces an initialization section that is run before awk reads

any input records. Likewise, the END pattern introduces a finalization section that is run
after awk exhausts all the input streams. If awk encounters exit asone of the
actions for a pattern, the END section is run prematurely and no further input data is read.
You can create variables and assign them values in either the initialization or
finalization sections of an awk program as well as in the main body. You can assign
values from the awk command line using parameters (see the upcoming section
“Command-line Options”). When you assign the same variable a value in the BEGIN
section and through parameters on the command line, the command-line assignments are
the ones that remain in effect within the main body. The reason for this is that awk
executes the initialization section before establishing any of the command-line parameters.

Comments

Although comments are neither patterns nor actions, you can include them inside awk
programs. Comments begin with the character # and end with the end-of-line
character, as in

this is a comment line

/xyz/ { print "xyz" # this is a comment inside the action}

Comments 9-5

Command-line options

9-6

You can use the following arguments for awk whenyouwant awk program linesto
appear in the command line itself:

awk [-Ffield-separator | ' pattern-action... [parameter)... input-file...

You may use the following arguments for awk when you maintain the awk
program lines in a separate file:

awk [-Ffield-separator 1 -£ progfile [parameter]... input-file...

If you d o not specify input files, awk reads from the standard input. Alternatively, awk
reads from the standard input where you specity hyphen (-) as a filename. The command
awk ’‘program’ filel - file2
first reads from f£1i1lel, then from the standard input, and finally from file2.

Variables that are initialized on the command line are parameters. Passing shell-
maintained values to awk is a form of parameter passing. The format of these
assignments is similar to variable assignments, except that unescaped spaces cannot be
used on either side of the equal sign. (Spaces are treated as argument delimiters, while the
entire awk parameter must be able to hang together as one command-line argument.)

awk -f awkfile datafile variablel=x variable2=yy

Often, parameters are used inside a shell script that contains a reference to awk.
When invoking a shell script and supplying arguments along with its filename, you can
pass the argument strings to awk. You can reference these arguments from within script
command linesas $1, $2, and so forth, as described in the documentation for each of
the shells. In such a case, the awk portion of the script might be
awk -f awkfile variablel=$1 variable2=$2 datafile

Normally, you cannot assign values to variables in the BEGIN section in this way
because the initialization section is evaluated before any command-line parameters are
supplied. By using the -v option in front of an assignment parameter, however, you
can make the assigned value available in the BEGIN section.

The following example illustrates how x can be initialized on the command line as
an awk parameter.
awk ’'{ print x }’ x=5 chapl

prints 5 on the standard output once for each input record obtained from the file chap1.

Chapter 9 awk Programming Language

To change the field separator, you can use a parameter that makes an assignment
directly to the field separator variable Fs. For example,

awk -f awk_program FS=: chapl
changes the field separator to a colon. This affects the field-parsing operations of awk.
(See the section, “awk Operation,” earlier in this chapter.)

Another way to establish the character to be used as the field separator for field-
parsing purposes is to use the -F flag option followed by an explicit field-separator
character. For example:
awk -F: -f awk_program chapl
also changes the field separator to the colon character.

The -F option can also be followed by a regular expression that specifies one or
more characters to be used as field separators. For example:
awk -F[:,;] -f awk.program chapl
sets the field separator to be any of the three characters comma, semicolon, or colon.

Note that if you specifically set the field separator to a tab (that is, with the -F
option or by making a direct assignment to Fs) then awk does not recognize blanks as
separating fields. If, however, you specifically set the field separator to a blank, tabs are
still recognized as separating fields. Certain characters must be escaped to protect them
from interpretation by the shell (for example, blank, tab, asterisk, and so forth).

Invocation modes

There are three other ways to invoke awk from the command line (brackets appear
around optional items).

1. If the program is short, about one or two lines, it is often easiest to specify it directly
on the command line:
awk [flag-options] *program' [options] . . .

where program is your awk program.

[nvocation modes 9-7

9-8

Note that there are single quotes around the contents of the program to prevent the
shell from trying to interpret and alter the program. For example, you might enter
awk ‘/findme/’ chapl

torunthe awk program consisting of /findme/ onthe inputfile chapi,and
obtain a report of all lines containing the string findme.

. Often, it is more convenient to put the program into a separate file, say awkprog,

andthentotell awk to find it from there. To do so, usethe -£ flagoption with the
awk command, as follows:
awk -f awkprog [otherflag-options) ... [options] . ..
For example, suppose that you put the following text into a file called awkprog:
BEGIN {

print "hello, world"

exit

}
Then you can give the command
awk -f awkprog
to the shell, producing
hello, world
Recall that the word BEGIN is a special pattern indicating that the action following

in braces is run before any data is read. print and exit are bothdiscussed in
later sections, but their effects here are obvious.

. Finally, the awk program can be put into a file together with the awk invocation

foruse as a shell script of the format

script-name [script-options) . . .

This becomes handy when the textual input to awk needs to be transformed in
some static way by other A/UX utilities suchas sort or m4.Sometimes the
required preprocessing can also be performed by a first-pass awk program, in
which case you can stack two calls to awk in the same script.

Chapter 9 awk Programming Language

This manner of invocation also allows you to pass command-line arguments to awk.
After inserting
awk '
BEGIN {
print "hello, ‘$1' "
exit
} o
inafile called greet and establishing execute permission, you can invoke the new
shell script from the command line with

greet Jim

and the output is
hello, Jim

The next section provides more detailed information about possible interactions with

the shell when you present awk programs inside of command lines.

Interactions with the shell

Since this is a rather involved topic that has as much to do with shell behavior as with
awk, you might wish to skip this section. As described in the preceding section, awk
can be invoked in several ways. You can avoid any possibility of shell interaction with
awk instructions by using the -£ flag option as an alternative to presenting an awk
program inside a command line. This does not prevent you from placing references to
the awk command in a shell script. However, it does require that a file other than the
shell script itself be used to hold the awk program instructions.

Sometimes, an awk program is contained in a shell script (the -£ flag option is
not used) or is entered interactively within a command line. In either case, the awk
instructions themselves become subject to processing by the shell, as in

awk ‘/~\.H/ {print "level " $2 " head" }’' chapl

Interactions with the shell 9-9

9-10

awk interprets many of the same reserved characters as the shell (such as $ and
the double quotation marks in the preceding example). The awk program instructions
are usually enclosed inside single quotation marks to help ensure that these characters,
suchas $2 inthe example, are not interpreted by the shell instead of by awk. In this
way, the shell can be made to pass the awk program instructions intact.

Sometimes you might want your awk program to interact with the shell, so you
deliberately place awk instructions inside a shell script, and perhaps alter the manner of
escape (from single quotation marks to double quotation marks, for example) to allow
the shell to interpret the awk instructions. This can become complicated because of the
similarity of variable names built into the shell and into awk. It might take some work to
get parameters passed from the shell into awk program lines.

Suppose you want to write an awk program to print lines containing the text specified
as an argument to the script. That is, you want a program called search so that

search Macintosh chapl
runs the awk program
awk ’/Macintosh/ { print }' chapl
How does the value Macintosh get from the command line into the awk program?
There are several ways to do this. One is to define search as a shell script, as follows:
search: print each record containing the
string specified in the first argument
inside the file that is the second argument
awk /'$1'/ { print }’' $2

¢ Note These are not nested quotes. o

When the shell parses this script, it does not interpret anything contained within the first
pair of single quotes (* / /), but passes it as input to awk. Because it is outside of the
pretective quotes, $1 isacted upon by the shell, which replaces it with the first argument
given on the command line. The shell then passes the remaining portion of the awk
program without attempting to interpret any of it, since it is enclosed in single quotes.

Chapter 9 awk Programming Language

Note that the string passed in the first argument to the script must not contain a
space character (which is a little unusual because unescaped spaces are commonly used
to delimit arguments). If you did use an escaped space in the first argument, awk
would “see” an incomplete program and it would also “see” the last part of the program
as if it were a discrete input file argument—causing it to try to open a nonexistent file.
To avoid this problem, consider using double quotation marks around the first argument
($1). For example:

’ / ' " s l " ’ / :
In general, the escape character used to set off the awk instructions from the rest of the
command line becomes more difficult, if not impossible, to use inside the program.

Text input processing

The default behavior of awk isforthe awk instructions in your programs to have a
chance to execute once for each input record read. This section describes the default
behavior of awk in greater detail and tells you how to alter it.

The way awk determines that it has read sufficient characters from the input source
to obtain one complete record is by scanning the input for one or more record-separator
characters. By default, the end-of-record character is a newline. So, an input record
normally corresponds to a single line from the input source. However, if the end-of-file
character is reached without an immediately preceding end-of-record character, then the
end-of-file character is treated as if it were also an end-of-record character.

Accordingly, a record is a sequence of characters from the input ending with a
newline character or with an end-of -file character. You can change the character that
indicates the end of a record by assignihg a new character to the special variable RS
(the record separator variable).

Once awk reads a record, it splits the record into fields, determined through
occurrences of one or more field-separator characters. By default, the end-of-field
character is a space or tab character. Accordingly, a field is a sequence of characters
derived from the input record that does not contain blanks or tabs. You can change the
field-separator character by assigning a new character to the special variable s (the
field separatorvariable).

Text input processing ~ 9-11

To help explain the text input processing that awk normally performs, the precise
composition of a sample file is described next, and many examples throughout the
remainder of this chapter show what happens to this sample file after processing by an
awk program.
For explanatory purposes, assume that a file named countries has been created
and that it contains information about the ten largest countries in the world, including the
area in thousands of square miles, the population in millions, and the continent. (Figures D7
are from 1978; Russia isplaced in Asia.) The countries file looks like this
before it is processed:

Russia 8650 262 Asia

Canada 3852 24 N. America

China 3692 866 Asia

Usa 3615 2849 N. America

Brazil 3286 116 S. America

Australia 2968 14 Australia

India 1269 637 Asia

Argentina 1072 26 S. America

Sudan 968 19 Africa

Algeria 920 18 Africa

The wide spaces are tabs in the original input, while a single blank separates n. and -
s. from America. This sample file is used as the input for many of the awk sample
programs in this guide because it is typical of the kind of material that awk is best at
processing (a mixture of words and numbers separated into fields or columns separated
by blanks and tabs).

Each of the lines in the sample file has either four or five fields if the default field
separators are not altered. So, using the default settings, the first record of the countries
file that awk parses is
Russia 8650 262 Asia

Once parsed, this text (less the newline) is assigned to the variable $0. If you want
to refer to the full text of an input record that awk is processing, use the variable $0.
For example, the following action:

{ PFImE S0) e

prints the entire record.

9-12 Chapter 9 awk Programming Language

Once parsed, the fields within an input record are stored in the variables $1, $2,
$3, and so forth. Use $1 to refer to the first field, $2 to refer to the second field, $3
to refer to the third field, and so forth. If you refer to a field number that is higher than
the field that was last parsed, you reference an empty string.

Once records and fields are parsed, awk also sets certain variables that provide
additional information about the current state. These are the built-in variables that are
used to maintain record and field counts:

NF the number of fields parsed from the current input record
NR the total number of records fetched so far
FNR the number of input lines fetched with respect to the current input file

The variable FILENAME is set to the name of the current source of input. Thus,
while awk processes the firstrecord of the file countries, $1 is equal to the string
Russia, $2 isequaltothestring 8650, NF isequalto4, FILENAME isequal to
countries, NR isequalto 1, and FNR isequal to 1.

The following examples show different ways to take advantage of the default text
input processing of awk.

To print the number of fields, followed by the continent, the name of the country,
and the country’s population, run the following awk program:
awk ’‘{ print NF, $4, $5, $1, $3 }’' countries
to produce

Asia Russia 262

N. America Canada 24
Asia China 866

N. America USA 219

S. America Brazil 116

Asia India 637
S. America Argentina 26

4

5

4

5

5

4 Australia Australia 14
4

5

4 Africa Sudan 19

4

Africa Algeria 18

Note that values referenced by $4 and $5 together comprise the continent name
because N. America and S. America contain an embedded space.

Textinput processing ~ 9-13

To produce a numbered list of the values in the first field in the file countries, you
can enter

awk '{ print NR, S$1 }’' countries
which prints the following line numbers and names of countries:

Russia
Canada
China

USA

i

2

3

4

5 Brazil
6 Australia
7 India

8 Argentina
9 Sudan

1

0 Algeria

Patterns

9-14

A pattern in front of an action acts as a selector that determines whether the action is to
be executed. Several types of expressions can be used as patterns:

» the special patterns BEGIN and END
= isolated regular expressions

= expressions that evaluate to true or false

An isolated regular expression also evaluates to true or false, so the second and third
pattern cases are essentially the same. (Only the second case does not qualify as a
syntactially complete expression, since it lacks an operator.)

Expressions are used more frequently as patterns than are the BEGIN and END
patterns.

Chapter 9 awk Programming Language

Using expressions for patterns

The pattern portion of an awk instruction is equivalent to a conditional expression,
since it must produce only a true or false result that gates an action. See the section
“Expressions” later in this chapter for a lengthier explanation regarding expressions,
including conditional expressions.

By using the operators ~ or !~, you can create patterns that return true when the
value of a field or variable is sought by a regular expression, or when its value is not
sought by a regular expression. This form of operation is either called a matching
operation or a pattern-seeking operation. In general, the format of this type of operation
is as follows:
string ~/ pattern/

Such an expression returns true if the string given in place of string contains a
substring that is sought by the regular expression pattern. For example:
$0 ~ /Total/
evaluates to true if the current input record contains the string Total. With the input
file countries ashefore, the program
$1 ~ /ia$/ {print $1}
prints all countries (field 1 items) whose names endin ia (The $ symbol represents
the end of a string. An explanation of the symhol can be found in the next section):
Russia
Australia
India
Algeria

As it turns out, the following two patterns are equivalent:

$0 ~ /Total/
/Total/

So, whenever an isolated regular expression is specified, awk performs this pattern-
seeking operation, yielding a true result whenever awk finds at least one string sought
by the regular expression somewhere within the current input record.

To be able to construct a regular expression that can seek many different substrings,
refer to the next section, “Regular Expression Syntax,” for more detailed information.

Patterns 9-15

9-16

To construct a pattern that returns true for a contiguous set of input records starting
from the first record that matches pattern1 and ending with the first record that matches
pattern2, specify two regular expressions separated by a comma:
pattern1, pattern2

Any expression that returns true or false upon evaluation is suitable for use as a
pattern. So, expressions consisting of comparisons between strings of characters or
numbers can be an awk pattern. For example, if you want to print only countries with
more than 100 million population, use
s3 > 100
This tiny awk program is a pattern without an action, so it prints each line whose third
field is greater than 100, as follows:

Russia 8650 262 Asia

China 3692 866 Asia

USA 3615 219 N. America
Brazil 3286 116 S. America
India 1269 637 Asia

To print the names of the countries that are in Asia, type
$4 == "Asia" {print $1}
which produces

Russia

China

India

A comparison expression is one that makes use of a comparison operator, such as

Chapter 9 awk Programming Language

In such comparisons, if both operands are numeric, a numeric comparison is made.
Otherwise, the operands are compared as strings. Thus,

Sl =g “se
selects lines that begin with s, T, U, and so forth, which in this case is
USA 3615 219 N. America
Sudan 968 19 Africa
In the absence of other information, fields are treated as strings, so the program
$1 == $4
compares the first and fourth fields as strings of characters and prints the single line
Australia 2968 14 Australia

If the variables for two fields contain numbers, comparisons involving two such field
variables are performed numerically.

Regular expression syntax

These additional search capabilities make use of regular expressions. The simplest
regular expression is a literal string of characters enclosed in slashes.

/Asia/

This is a complete awk program that prints all lines that contain any occurrence of the
string Asia. Ifaline contains Asia as partof alarger word like Asiatic, the larger
word is also printed (but there are no such words in the countries file).

awk regular expressions are often like those found in the texteditor ed and the
pattern finder egrep, in which certain characters have special meanings. For example,
you can print all lines that begin with A by using

/"A/

orall lines that begin with a, B,or c by using
/™ [ABC]/

or all lines that end with ia by using

/ias/

Patterns 9-17

9-18

The circumflex (~) means “match the beginning of a line.” The dollar sign ($) means
“match the end of the line,” and enclosing characters in brackets ([and 1) means
“match any of the characters enclosed.” In addition, awk allows parentheses for
grouping, the vertical bar (|) for alternatives, the plus sign (+) for “one or more”
occurrences, and the question mark () for “zero or one” occurrences. For example:

/xly/ { print }
prints all records that contain either an x ora y.And
/ax+b/ { print }

prints all records that contain an a followed by one or more x characters followed by
a b. For example: axb, Paxxxxxxxb, QaxxbR.
/ax?b/ {print}
prints all records that contain an a followed by zero or one x followed by a b. For
exmnme ab, axb, yaxbPPP, CabD.

Thetwo characters . and * have the same meaning as they have in ed or
grep: namely, . matchesany characterand * matches zero or more occurrences of
the character preceding it. For example:

/a.b/

matches any record that contains the letter a followed by any character followed by the
letter b. That is, the record must containan a anda b separated by exactly one
character. For example, /a.b/ matches axb, aPb,and xxxxaxbxx, butnot ab
or axxb.

/ab*c/
matches a record that contains an a followed by zero or more b characters followed
bya c. Forexample, it matches ac, abc, and pgrabbbbbbbbbbc901.

It is possible to turn off the special meaning of metacharacters such as ~ and * by
preceding these characters with a backslash. An example of this is the pattern
/NSNS

which matches any string of characters enclosed in slashes.

Chapter 9 awk Programming Language

BEGIN and END

The awk program executes the action corresponding to the special pattern BEGIN
hefore the input is read. The action corresponding to the special pattern END is
executed after all the input is processed. Thus, BEGIN provides a way to gain control
hefore processing for initialization and END helps you wrap up after processing.
You can use BEGIN to put column headings on the output. For example, if you put

the following awk programin the file awkprog:
BEGIN
{ print "Country",

"Area",

"Population",

"Continent"

}

{ print }
and invoke awk with the command line
awk -f awkprog countries
The output is
Country Area Population Continent
Russia 8650 262 Asia
Canada 3852 24 N. America
China 3692 866 Asia
USA 3615 219 N. America
Brazil 3286 116 S. America
Australia 2986 14 Australia
India 1269 637 Asia
Argentina 1072 26 South Africa
Sudan 968 19 Africa
Algeria 920 18 Africa

¢ Note Formatting is obviously not very good here; print £ does a hetter job and is
usually mandatory if you really care ahout appearance (see the section “print £” for
more information). &

Patterns 9-19

Actions

Recallalsothatthe BEGIN section is a good place to establish settings for special
variables, suchas Fs or RS, that affect the record-parsing and field-parsing activity
about to occur. For example,

BEGIN
{ BS = " s #tab
print "Country",
"Area",
"Population",
"Continent"
}
{ print }

END { print "The number of records is", NR }

contains an initialization section that assigns a tabto Fs for use as the field separator.
As a result, all records (in the file countries) have exactly four fields.

The most common type of action is the evaluation of an expression. The operators and
functions that help form expressions perform most of your computational work.
However, expressions are allowable only in certain action and control-flow contexts.
This section explains where expressions can occur within the larger context of actions.
“Expressions,” a separate section later in this chapter, covers the specification of text-
manipulating and number-computing expressions in detail.

The simplest actions are probably those that print a constant string or a number value
such as

{ print "Hello world" }

Other output and input functions that are available are
print
printf

getline

9-20 Chapter 9 awk Programming Language

Actions that assign discrete values to a variable or an array are about as simple as
printing statements. Note that there is no need to declare the name of a variable or its
data type in advance of its use:

variable = value

More detailed information about variables and arrays is provided in the “Data
Structures” section later in this chapter.

Two topics that should also be considered along with input and output functions are
the redirection of input and the redirection of output. Because these are more advanced
topics, they are discussed last.

Components of awk programs

Input, output, and assignment actions can be placed nearly anywhere inside the action
portion of a pattern-action instruction.

Other action statements must be placed at appropriate locations. For example, certain
flow-control actions, such as break and continue, make sense only inside a
looping construct.

Precisely speaking, the action placeholder represents one or more action statements.

Control-flow structures require introductory keywords, such as while and if,
and require a particular ordering of these and other elements:

if (condition) { blockl } [else { block2 }]
while (condition) { block }
for (expression ; condition ; expression) { block }

An expression is a sequence of values (or subexpressions that evaluate to values)
interspersed with the operations that are performed on them. Refer to “Expressions”
later in this chapter for more detailed information concerning expressions. Refer to

“Flow of Control” later in this chapter for a more detailed explanation of each of the
control-flow structures.

Actions 9-21

9-22

Operator symbols such as

can appear throughout long expressions. These can be categorized as binary operators
since they act upon values (or subexpression results) to their left and their right:
left-value binary-operator right-value

To help denote nested subexpressions in the following listing, binary-expression
represents the binary operation structure. It can appear inside of an enclosing binary
expression as the left operand, the right operand, or both operands:

binary-expression binary-operator right-value
left-value binary-operator binary-expression
binary-expression binary-expression binary-operator

Parentheses can be used to establish the order of evaluation when the default
operator precedence is not desired.

Other basic ways to transform a value involve functions. Each function affects a
particular number of input values (individual function syntax formats are about to be
supplied), and evaluates a single string or number result based upon them. The overall
format for a function is

Sfunction-name (value (value-sep value) . . .)

Wherever a value placeholder appears in the function or binary-operation syntax,
either an expression (even a function-containing one) or a function can be supplied:
function-name (expression (value-sep expression] . . .)
Sfunction (values) binary-operator function (values)
A condition is any expression that evaluates to either true or false. Comparison
operators can be used as binary operators inside of expressions to obtain a true or false
result. In such a case, the left or right value for the comparison operator can also be a
subexpression or function. In the following example, the left operand for the greater-than "

operation is an expression, the result of which is compared to a variable named max:

$1 % 9 > max

Chapter 9 awk Programming Language

Certain flow-control constructs, such as if and while structures, require
conditions. Such structures are designed to cause certain actions to be skipped when the
result of a condition is false. The pattern portion of an awk must evaluate to true or
false to select the associated action or actions. So a pattern is really one form of a
condition expression, and can even be technically considered a flow-control construct.

Although it can be done, using a variable assignment as the left or right operand for a
comparison makes little sense. The value “returned” by an assignment is a boolean value
(always equal to “true”). So, composing a condition based on an assignment really makes
the performance of the associated action static rather than conditional.

Flow of control

Besides the flow control established through the associations between patterns and
actions, more traditional flow-control constructs are available in the action component.
The control structures for the awk language are

B jif-else
8 while

8 for

They are used to establish the flow of evaluation of actions based on the value
resulting from a conditional expression. For looping constructs, the condition is
evaluated repeatedly until a loop-terminating value is reached.

The conditional expression can include subexpressions, as long as the result finally
evaluated is a true or false condition. For example, it can include regular expressions that
are specified along with one of the “pattern-seeking” (~ and ! ~) operators. To test
multiple true and false conditions, use the logical operators as well. (See “Combining true-
or-false expressions” later in this chapter.) Finally, it can include parentheses for grouping.

A more complete treatment of these structures is given throughout the remainder of
this section. In general, the syntax formats for these structures closely follow the
corresponding control structures of the C language.

For the looping constructs, the flow-altering functions break and continue are
available. Use break to terminate further loop iterations and to skip past any
remaining code in the current loop iteration. Use continue to skip past any
remaining code in the current loop iteration, then continue with the next iteration.

Actions 9-23

9-24

In addition to the control-flow structures, there are the flow-establishing statements
next and exit.

The next statement skips past any remaining lines of awk instructions for the
current input record, finds the next input record, and resumes processing from the
beginning of the awk program. (Note the difference between next and getline.
getline does notskiptothe top ofthe awk program.)

An exit statementinthe BEGIN sectionofan awk program stops further
program execution so even the END section (if there is one) is not executed. An exit
statement in the main body of the awk program stops execution of the main body of the
awk program. No more input records are reviewed, but the END section is executed. An
exit statementinthe END section causes execution to terminate at that point.

The remainder of this section provides the syntax description for the three major
control structures.

The if statement is used as follows:
if (condition) { blockl } [else { block2 }]

The condition is evaluated; if it is true, block] is executed. Otherwise, block2 is executed.
The else partisoptional. Inthe contextofan if construct, any number of actions
enclosed in braces ({ }) are either evaluated or skipped as a block, depending on the
value resulting from condition. One way to determine the country with the maximum
population using an if construct is

{
if (maxpop < $3)
{
maxpop = $3

country = $1

}

END { print country, maxpop }
The while loop syntax is:
while (condition) block

The condition is evaluated; if it is true, the blockis executed. The condition is evaluated
again, and if true, the blockis executed. The cycle repeats as long as the condition is true.
For example, the following action prints all input fields one per line:

Chapter 9 awk Programming Language

He ~

= 1
while (i <= NF)
{
print $i
1++

Another example is the Euclidean algorithm for finding the greatest common divisor
of two values:
{ print "the greatest common divisor of"
print $1 " and " $2 " is "
while ($1 != $2)

{
if ($1 > $2) 81 = $1k - $2

else $2 = $2 - S1
}
print S$1

The for loop syntax is similar to that of C.
for (expression] ; condition ; expression2) block
This has the same effect as

expression]
while (condition)

{
statement

expression2
}

Actions 9-25

9-26

So,
{ for (i=1 ; i1 <= NF; i++) print $i }
is another awk program that prints all input fields one per line. Note that multiple
initializations are not permitted, as in
for (i=1,3=2; .\I.\I.; .\NI.\I.)

The alternative form of the for loop is suitable for accessing the elements of an array:
for (wvar in array) block
performs block once for each element in the array after assigning the subscript used to
access the element to the variable var. The subscripts are accessed in no predictable
order. Chaos ensues if the variable varis altered or if any new elements for array are
assigned within the loop.

You can use this form of the for loop to print each input record preceded by its
record number (NR):

{ x[NR] = $0 }

END { for(i in x) { print i, x[i] } }

A more practical example is the following use of strings to index arrays to add the
populations of countries by continents:
BEGIN { FS="\t" }

{ population[$4] += $3 }

END {
for (i in population)
print i, population(i]
}
In this program, the hody of the for loop is executed for i equal to the string Asia,
thenfor i equal to the string N. America, and so forth, until all the possible values
of i are exhausted; that is, the program is repeated until all the strings of names of
continents are used. Note, however, that the order in which the loops are executed is not

specified. If the iteration associated with N. America is executed before the iteration
associated with the string Asia, such a program might produce the following:

Chapter 9 awk Programming Language

S. BAmerica 142
Africa 37

N. America 243
Asia 1765
Australia 14

Report generation

The flow-of-control statements in the last section are especially useful when awk is
used as a report generator. awk is useful for tabulating, summarizing, and formatting
information. The last section shows an example of awk tabulating populations.
Following is another example of this. Suppose you have a file, prog.usage, that
contains lines of three fields: name, program, and usage. For example:
Smith draw 3
Brown egn 1
Jones nroff 4
Smith nroff 1
Jones spell 5
Brown spell 9
Smith draw 6

The first line indicates that smith used the draw program three times. If you
want to create a program that has the names in alphabetical order and then shows the
total usage, use the following program, called 1ist.a:
{ use[$1 "\t" $2] += $3 }
END {
for (np in use)
print np "\t" usel[np] | "sort +0 +2nr"

}

Actions 9-27

9-28

This program produces the following output when used on the input file prog.usage:

Brown egn 1

Brown spell 9

Jones nroff 4

Jones spell 5

Smith draw 9

Smith nroff 1

If you want to format the previous output so that each name is printed only once,

pipe the output of the previous awk program into the following program, called

format.a:

{

if ($1 != prev)

{
print $1 ":"
prev = $1

}

print "\t" $2 "\t" $3

}

The variable prev prints the unique values of the first field. The command
awk -f list.a prog.usage | awk -f format.a
gives the output
Brown:
eqn 1
spell 9
Jones:
nroff 4
spell 5
Smith:
draw 9
nroff 1l

It is often useful to combine different awk scripts and other shell commands, such
as sort,aswasdoneinthe list.a scripton the preceding page.

Chapter 9 awk Programming Language

Reading input: getline

The getline function instructs awk to read the next input record, despite the fact
that many pattern-actions might not get a chance to execute for the preceding input
record. Furthermore, control is left at exactly the same spot in the awk program, rather
than resuming at the start of the program, as with next (see “Flow of Control” earlier
in this chapter).

Whether the field-parsing functions previously discussed (see “Text Input
Processing”) are performed, depends on whether getline is specified with a variable
name as an argument. If a variable reference is present they are skipped, leaving it up to
you to specify a particular field-parsing function (see the description of the split in “Built-
in String Functions”).

Here are the forms you can use:

getline
getline <file
getline variable

getline variable <file

For the first form, field-referencing variables such as $0, $1, and so on, are all set,
as well as the field and record-counting variables NR and FNR and NF. The second
form does not increment the record-counting variables but it does set the field-counting
variable (NF).

The third and fourth forms shown do not parse the input line into fields, butthey do
read it into the named variable. These forms of the command also do not set any of the
field-referencing variables and do not set the field-counting variable. The third form
increments the record-counting variables, but the fourth form does not. In short, the
fourth form affects none of the built-in variables.

Two forms of the command involve input redirection: The files named as sources
of input on the command line are ignored. Instead, the file to be read from is the one
that is supplied as an argument following the < redirection symbol within the
getline statement. In these cases, the getline function returns 0 for the end-of-file
character and 1 for a normal record. A handy use for these forms of the getline
statement is the initialization of array elements in the BEGIN section of a program,
as in the following example.

Actions 9-29

9-30

BEGIN {
count = 1
while (getline array[count] <"table" > 0)

{ count = count + 1 }

A similar example follows. It uses the first field of each record as the subscript for
an array element and the second field as the value to be assigned to the subscripted
array element.

BEGIN {

count = 1

while (getline <"table" > 0)
{ array[$1] = $2 }

Note that there is an upper limit to the number of files that can be read this way.
However, through use of the close function, you can work with an indefinite number
of files as long as you don't try to keep them all open at once. The syntax for close is

close (file)

For related discussions, see “Directing Output to Other Programs” later in this chapter.

Printing output: print and printf

The output functions include two forms of print statements, including one that resembles
the C function used for printing. Either one can be used, but the C-like printf
function is capable of formatting its arguments however you want, such as in a dollars-
and-cents format.

The print statements normally guide data to the standard output, but both forms of
the print command also allow redirection into a file named within awk statements:

print-command [expression-list] [>file]

Chapter 9 awk Programming Language

If the redirection symbol > is replaced by >>, output is appended to the file rather
than overwriting it.

Use quotation marks around file if file is not a string constant. Without quotation
marks, the filenames are likely to be treated as variables that, upon reference, are
initialized to empty strings.

So, besides redirecting all output on the command line used to invoke awk, you
have the option within your program to write individual items of data into specific files.

Using the previous example, with the input file countries, you might want to print all the
data from countries in Asia inafile called asta, all the data from countries in Africa
ina file called arFrIca,andsoforth. To do so, use the following awk program:

$4 ~ "Asia" { print > "ASIA" }

$4 ~ "Europe" { print > "EUROPE" }

$4 ~ "North" { print > "N_AMERICA" }

$4 ~ "South" { print > "S_AMERICA" }

$4 ~ "Australia" { print > "AUSTRALIA" }
$4 ~ "Africa" { print > "AFRICA" }

Note that there is an upper limit to the number of files that are written in this way.
However, through use of the close function, you can work with an indefinite number
of files as long as you don't try to keep them all open at once.

In general, you can direct output into a file aftera print ora printf statement
by using a statement of the form
print > " filer
where file is the name of the file receiving the data, and the print statement can have any
of its allowable arguments.

print
The overall format for the print command is
print [expression] ... [>file]

One of the simplest actions is to print each line of the input to the output, which can
he performed by using print without a specified pattern. An action might not have a
pattern, and in this case awk executes the action for all of the lines and prints the entire
input record.

{ print }

Actions 9-31

9-32

To print an empty line, use
print ""

To print one or more fields in the current input record, replace expression with
references to field variables. For instance, when using the previously described file
countries for data input, the command line
awk ‘{ print $1, $3 }’ countries
prints the names of the countries and their populations:

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

There are two special variables that affect the print command, oFs and Ors.

Items (expressions) that are separated by commas within the print statement are
regarded as fields, sothe print statement inserts the character that is established as
the output field separator between them. By default, the output field separator is a space.
The output field separator (OFS) is a variable.

The value stored in ORs s the output record separator, which awk places at the
end of any (evaluated) expressions. By default, the output record separator is the
newline character. The output field separator (ORS) is a variable.

In the following example,

{ x="hello"; y="world"; print x, y ; print y x }

the default field separator (blank) is used in the first print statement, but not the
second, producing

hello world

worldhello

Chapter 9 awk Programming Language

To place a comma within the output, you can either insert it in the print statement, as
in this case:

{ x="hello"; y="world" ; print x "," vy }
oryou can change OFs inthe BEGIN section, as in
BEGIN { OFs=", "}

{ x="hello"; y="world" ; print x, y }
Both of these last two programs yield
hello, world

printf

For more demanding printing problems, awk also provides a C-like printf
statement. Before printing, printf formats strings or numbers in accordance with
Sformat-siring, as the following syntax description shows:

printf format-string, expr [, expr 1...

The format-string format specifier is exactly like the one used with printf inthe
C library, except that the formatting symbol * is not supported. For example,

{ printf "%10s %6d %6d\n", $1, $2, $3 }

prints $1 as a string of ten characters (right-justified). The second and third fields (six-
digit numbers) make a neatly columned table:

Russia 8650 262
Canada 3852 244
China 3692 866
USA 3615 219
Brazil 3286 116
Australia 2968 14
India 1269 637
Argentina 1072 26
Sudan 968 19
Algeria 920 18

With printf, no output separators or newlines are produced automatically. You
must add them, as in this example. As in the C library version of printf, the escape
characters \n (newline) and \t (tab) are valid with printf.

Actions 9-33

9-34

The system command

The system() commandallows you to run another program, in fact, any UNIX
command, from inside an awk script. The command has the format

system (expression)

where expression is a string. The system command executes the command in
expression. For example:

system("cat " $1)

runs the cat command on the file whose name is in the first field of the input line.
The command

system("date")

runs the date command.
Output can be created by using the system () command, if the command used as
expression creates the output.

Directing output to other programs

It is also possible to direct printing into a pipe instead of a file. For example:

{ 1f ($2 == "XX") print | "mail harry" }

(where harry isa login name), any record with the second field equal to xx is sent
to the user harry as mail But instead of passing each such record across the pipe to

mail individually, awk waits until the entire print input is processed before passing its
output on to mail. Also,

{ print $1 | "sort" }

takes the first field of each input record, accumulates them until the input to print is
exhausted, and then passes the entire list to sort, which then generates the sorted list. The
command in double quotation marks can be any A/UX command.

Only one output pipe is permitted in an awk program at one time.

However, through use of the close function, you can work with an indefinite
number of pipes as long as you don't try to keep them all open at once. If you want to
write a file and then read it later, you must close it in between.

In all output statements involving redirection of output, the files or pipes are
identified by their names, but they are created and opened only once in the entire run.

Chapter 9 awk Programming Language

Data structures

This section describes the different types of variables, arrays, and operators that are
available with awk.

Variables

awk provides the ability to store the results of arithmetic and string expressions in
variables for later use in the program. Referring to the previous example, consider
printing the population density for each country in the file countries:

{ print $1, (1000000 * $3)/($2 * 1000) }

(Recall that in this file the population is in millions and the area is in thousands of square
miles.) The result provides the number of people per square mile:

Russia 30.289

Canada 6.23053

China 234.561

Usa 60.5809

Brazil 35.3013

Australia 4.71698

India 501.97

Argentina 24.2537

Sudan 19.6281

Algeria 19.5652

To improve the formatting, use printf as follows:

{printf "%10s %6.1f", $1,
(1000000 * $3)/($2 * 1000) }

produces

Russia 308
Canada 6.2
China 234.6
usa 60.6
Brazil 35.3

Data structures ~ 9-35

9

36

Australia 4.7
India 502.0
Argentina 24.3
Sudan 19.6
Algeria 19.6

awk performs arithmetic internally in floating point. The arithmetic operators are +,
-, * /,and % (moduloorremainder).

To compute the total population and number of countries from asia, you can write
/Asia/ { pop = pop + $3; n =n + 1 }
END { print "total population of", n,

"Asian countries is", pop }

which produces
total population of 3 Asian countries is 1765

Besides writing
{ pop = pop + $3; n=n + 1 }
you can write
{ pop += $3; ++n }

The operators ++, --, -=, /=, *=, +=and %= function the same in awk as
the corresponding operations in C. The statement
X += Yy
has the same effect as
X =X +Y
but += isshorterand runs slightly faster. The same is true of the ++ operator; it adds one

to the value of a variable. The increment and decrement operators ++ and -- (asin C)
can be used as prefix or as postfix operators. These operators are also used in expressions.

Chapter 9 awk Programming Language

Initialization of variables

In the previous example, neither pop nor n was initialized, yet everything worked
properly. This is because (by default) variables are initialized to the null string, which has
a numeric value of 0. This eliminates the need for most initialization of variables in
BEGIN sections.
You can use references to variables in the pattern, as in
maxpop < $3 {
maxpop = $3
country = $1
}
END { print country, maxpop }
which finds the country with the largest population:
China 866

Assignment operators

As described in the preceding section, “Initialization of Variables,” variables can be
created by virtue of an assignment operation. Other assignment operators are also
available besides equal (=). Like equal, these assignment operators can be used to store a
value into a variable or an element of an array (see the section that follows for more
about arrays). The operators are ++, --, -=, /=, *=, +=,and %=.They perform
the same function in awk as the corresponding operations in C. The statement
X += Yy
has the same effect as
X =X +Yy

Most of the assignment operators are binary operators that require a variable name,
followed by the operator and the value or value-producing expression, as follows:

variable-name assign-op expression

Data structures ~ 9-37

9-38

However, the ++ and -- assignment operators are unary operators used to
increment or decrement the value that was previously stored in the variable. The format
they take is either a prefix or postfix format (with no space between the operator and the
variable name):

unary-assign-op variable-name
variable-name unary-assign-op

So you can change

{ pop = pop + $3; n=mn + 1}
to the following line

{ pop += $3; ++n }

which uses the prefix increment operator to obtain the same processing.

Arrays

awk provides one-dimensional arrays as well as ordinary variables, although a name can
not be both a variable and an array.

Array elements are not declared; they spring into existence when the program first
encounters them. Subscripts can have any non-null value, including alphanumeric
strings. As an example of a conventional numeric subscript, the statement
x[NR] = $0

assigns the current input line to the Nrth element of the array x.Infact, it is possible in
principle (though perhaps slow) to process the entire input in arbitrary order with the
following awk program:

{ x[NR] = $0 }
END { action }

The first line of this program reads each input line into the array x.

Chapter 9 awk Programming Language

When run on the file countries, the program
{ x[NR] = $1 }

produces an array of elements with

x[1] = "Russia"
x[2] = "Canada"
x[3] = "China"

and so forth. Arrays can also be indexed by non-numeric values, thus giving awk a
capability rather like the associative memory of Snobol tables. For example, you can write
/Asia/ { pop["Asia"] += $3 }
/Africa/ { popl["Africa"] += $3 }
END { print "Asia=" pop["Asia"],
"Africa=" popl["Africa"] }
which produces
Asia=1765 Africa=37

Notice the concatenation. Also, any expression can be used as a subscript in an array
reference. Thus,
area[$l] = $2
uses the first field of a line (as a string) to index the array area.

Although awk does not support multidimensional arrays as such, you can simulate
them using one-dimensional arrays. For example,
for (1 =1; 1 <= 10; 1i++)
om (| § = 1; J &= I0; J++)
mult(i,Jj] = .\I.\Il.
creates an array whose subscripts have the apparentform i, 3 (thatis, 1,1; 1,2;and
so forth) and thus simulates a two-dimensional array.

Internally, these subscript strings are transformed so that the comma separator is
converted into the value of the variable suBsep, which, by default, is the ASCII
character for code 28. Since this character does not normally appear in input text,
variables can be used as subscripts, even when such variables are assigned comma-
containing strings.

Data structures ~ 9-39

A special form of the for loop is available to iterate once through the elements of
an array. You can even use it along with SUBSEP to reproduce the original array
subscripts used with each element assignment through the following program:

BEGIN ({
array(["one"] = "1"
array|["two, three", "four"] = "2comma3, 4"
for (j in array) {
split(j,x,SUBSEP)

printf "arrayl["

sep = ""
for (k in x) {
printf sep "\"" k "\""
sep = ", "
h
printf "J]\n"
}

exit
}

This program produces the following output:
array["2","1"]

array ["1"]

Built-in variables and arrays
The following list shows all of the variables maintained by awk :

ARGC Number of command-line arguments.

ARGV Array containing ARGC elements, one for each of the arguments that
appeared on the awk command line.

FILENAME The name of the input file currently being read. This is useful because
awk commands can accept multiple input files, as in

awk [flag-options)... filel file2 file3
FNR Input record number counting from the first line of the current input file.

9-40 Chapter 9 awk Programming Language

FS Input field separator; by default it is set to a blank or a tab.

NF Number of fields in the current record.

NR Number of command-line arguments.

OFS Output-field separator; by default it is set to a blank.

ORS Output-record separator; by default it is set to the newline character.

OFMT The format for printing numbers; with the print statement, by default it
IS %.6g.

RLENGTH Length of the string matched through the use of the match function.

RSTART Beginning position of string matched through the use of the match
function.

RS Input record separator; by default it is set to the newline character.

SUBSEP Separator for array subscripts.

$0 The current input record complete with unstripped field separators.

$digit These variables reference fields in the current input record where $1

contains field one, $2 contains field two, and so on up through to
the final field parsed. If only one field is found, the value of $1 is the
same as $0.

Expressions

Expressions are allowable wherever awk normally expects a value. Conditionals (or
conditional expressions) can be used wherever a true or false value is expected. For
more information about conditionals, see “Components of awk Programs,” earlier in
this chapter.

Arithmetic expressions can occur wherever awk expects a number value. Likewise,
string values can occur wherever awk expects a string value. In cases where you
supply an expression that evaluates to a value of the wrong type for a given context, the
result is automatically converted into the appropriate data type as described in
“Determination of Data Type” later in this section.

To manipulate numeric values, the arithmetic operators can be used. awk performs
arithmetic internally in floating point. The operators are outlined in Table 9-1.

Expressions ~ 9-41

Table 9-1 Arithmetic operators

Symbol Description

+ Unary and binary plus
- Unary and binary minus
* Multiplication

/ Division

% Modulus

(...) Grouping

Xy Exponential operator

Variable assignments can be requested along with each of these arithmetic operations
by using the hybrid operators for both arithmetic and assignment (see “Assignment
Operators” earlier in this chapter). Table 9-2 outlines these operators.

Table 9-2 Assignment operators

Symbol Description

= Assign right side value to left side
+= Increment left side by value of right side

—= Decrementleft side by value of right side

*= Multiply left side by value of right side

= Divide left side by value of right side

%= Take modulus of left side by value of right side

++ Increment operand by one hefore/after taking current value

o Decrement operand hy one before/after taking current value

Conditional expressions (also known as relational expressions) can be used to
generate true or false results. These operators are shown in Table 9-3.

9-42 Chapter 9 awk Programming Language

Table 9-3 Relational operators

Symbol Description

< Less than

<= Less than or equal
== Equal

e Not equal

> Greater than

>= Greater than or equal

All but two of the operators listed thus far are binary operators, requiring a left-side
component and a right-side component:

left-component binary-operator right-component

The left component, the right component, or both, can be replaced by other
expressions, as follows:

left-component binary-operator binary-expression
expression binary-operator right-component
expression binary-operator expression

The left or right components can be references to variable names, number or string
literals, calls to functions, other subexpressions, or any combination of these. Parentheses
can be used to establish the order of evaluation when the default operator precedence is
not desired.

The ++ (increment)and -- (decrement) operators are unary operators, requiring
either a left component or a right component, but not both:

left-component unary-op
unary-op right-component

(Note that there is no space between these unary operations and the component they
affect, yielding count++ and ++count to increment the variable count either
after or before use.)

The left component or right component is often a variable name, but it can also be a
number literal, a function call, or any subexpression enclosed in parentheses.

Expressions ~ 9-43

9-44

By nesting expressions as the right component or left component of either binary or
unary operator expressions, computations can be created to any level of complexity.

You can also use logical operators and pattern-matching operators for regular
expressions, as shown in Tables 9-4 and 9-5.

Table 9-4 Logical operators

Symbol Description

Il OR

&& AND

! NOT

?: If-then-else contruct.

For example, x?y:z vyields y if x istrue, else yields z.

Table 9-5 Regular expression pattern-matching operators

Symbol Description

~ Matches

1~ Does not match

The nesting of expressions is also possible for expressions using the relational
operators, with an added restriction: the operator at the uppermost level should be the
AND (&&) or OR (| I) binary operators or the unary NOT (1) operator. For more detailed
information, see the next section, “Combining True-or-False Expressions.”

If you create an expression without any operators, the expression must be a reference
to a variable or array, a literal string or number value, or a function. See the sections
“Variables” and “Arrays” earlier in this chapter for more information. See “Numeric
Constants” and “String Constants” later in this chapter for more information about literal
values. See “Built-in String Functions,” “Built-in Numeric Functions,” and “User-Defined
Functions” later in this chapter for information regarding functions.

Chapter 9 awk Programming Language

Combining true-or-false expressions

Whether you are specifying the contents of a pattern or an action, expressions that return
true or false can be combined using the logical operations |1 (OR), && (AND), !
(NOT), and parentheses. Using the countries example, the program

$2 >= 3000 && $3 >= 100

selects lines where both area and population are large:

Russia 8650 262 Asia

China 3692 866 Asia

USA 3615 219 N. America
Brazil 3286 116 S. America

The program

$4 == "Asia" || $4 == "Africa"

selects lines with asia or Africa asthe fourth field. An alternate way to write this
last expression is with a regular expression:

$4 ~/AsialAfrica/

The operators && and || guarantee that their operands are evaluated from left to
right; evaluation stops as soon as truth or falsehood is determined.

Implied concatenation operations

Although none of the lists showing awk operation symbols includes a symbol that
represents string concatenation, this operation is nevertheless invoked regularly
within expressions.

When separated by a space, string or number expressions are concatenated into one
string with no intervening spaces. If number expressions are used, they are evaluated
arithmetically and converted into strings before concatenation is performed. The second
of the three following action statements performs a concatenation:

{

x = "hello"

x = x ", world"
print x

}

Expressions ~ 9-45

9-46

This prints the usual:

hello, world

With input from the file countries, the program

/S {s =8 $1 " "}

END { print s }

prints s

Australia Argentina Algeria

Determination of data type

Variables (and fields) take on numeric or string values according to context. For example, in
pop += $3

pop is presumably a number, while in

country = $1

country isastring. In

maxpop < $3

the type of maxpop depends on the data found in $3. It is determined when the ~—
program is run. In general, each variable and field is potentially a string or a number or
both at any time. When a variable is set by the assignment

var = expression

its type is set to that of expression. (Assignment also includes +=, ++, -=,andso
forth.) An arithmetic expression is of the type number; a concatenation of strings is of the
type string.

In comparisons, if both operands are numeric, awk makes the comparison
numerically. Otherwise, operands are coerced to strings, if necessary, and the
comparison is made on strings.

The type of any expression can be coerced to numeric by maneuvers such as

expression + 0
and to string by

expression " "

Chapter 9 awk Programming Language

This last expression is a string concatenated with the null string. If a string cannot be
converted to a number without errors, awk converts it to zero.

Built-in string functions

The length function computes the length of a string of characters and the usage
format is as follows:

length (String)
For example, with input taken from the file countries, the following awk program
prints the longest country name:
length($1) > max { max=length($1l); name=$1 }
END { print name }

If you don't include a parenthetical argument, length returns the length of the
current input record. The following program prints each record preceded by its length:
{ print length, $0 }

In this case length isequivalentto length($0).
The function

split (string, array [,sepl)
assigns the fields of string to successive elements of the array array. When sep is missing,
the separator used is that given by the built-in variable Fs. For example:
split ("Now is the time", w)
assigns the value Now to w[1], is to w(2], the to w[3],and time to
w[4]. All other elements of the array w, if any, are set to the null string.

When awk evaluatesa split function, it returns the number of array elements
created. Accordingly,

count = split (String, array, sep)

assigns the number of elements initialized in array to the variable count. Use
assignments of this form when you must know how many elements a string is split into.

Expressions ~ 9-47

9-48

When sepis present, it must be a single character enclosed in double quotation marks
but only its first character is used as the field separator. For instance, if you use the
following three lines (\t is the tab character),

{split ("Now is+the time", w, "+")}
{split ("This~is~not~the~end", x , "~")}
{print w([1],x[3],w[2] }

the output is

Now is not the time

The substring function
substr (string, position, length)
produces the substring of string that begins at column position and is, at most, length
characters long. If the Jength is omitted, the returned substring extends to the end of
string. For example, you can abbreviate the country names in the file countries by
running the awk program
{ $1 = substr($1l, 1, 3); print }
which produces

Rus 8650 262 Asia

Can 3852 24 N. America

Chi 3692 866 Asia

USA 3615 219 N. America

Bra 3286 116 S. America

Aus 2968 14 Australia

Ind 1269 637 Asia

Arg 1072 26 S. America

Sud 968 19 Africa

Alg 920 18 Africa
If stringis a number, substr uses its string representation; for example,

substr (123456789,3,4) is 3456.
The function

index (String, lookup-string)

returns the left-most position where lookup-string occurs inside string, or zero if string
does not contain lookup-string.

Chapter 9 awk Programming Language

A variant on the index functionis match, the format of which is
match (string, pattern)
which returns the left-most position where a substring of string is matched by the regular
expression pattern, or zero if no match is found.
The functions gsub and sub
[g] sub (pattern, new-string, string)

replace occurrences of substrings within string that are sought by the regular expression
pattern with new-string. To replace only the first substring sought by the regular
expression, use sub. To replace all nonoverlapping substrings sought by the regular
expression, use the global-substitute function gsub.

The function
sprintf (format-string, expr [, expr]...)
formats expressions as the printf statement does, but assigns the resulting expression
to a variable instead of sending the results to the standard output. For example:
X = sprintf("%10s %64 ", S$1, $2)

sets x to the string produced by formatting the values of $1 and $2. The x can then
be used in subsequent computations.

Built-in numeric functions

awk also provides the following mathematical functions:

atan2 (number)

cos (radians)

exp (number)

int (number)

log (number)

rand ()

srand (seed-number)
sin (radians)

sqrt (number)

Expressions ~ 9-49

For the most part, these functions are the same as those of the C library, returning the
same errors as those in 1ibc. (See “C Special Libraries” in A/UX Programming
Languages and Tools, Volume 1.) The result returned by the random number function is
a value greater than 0 and less than or equal to 1. The int corresponds to the C library
floor function because of the way it handles negative numbers.

Lexical conventions

9-50

All awk programs are made up of lexical units called tokens. awk uses eight types
of tokens:

® numeric constants

® string constants

= keywords and built-in variables
= identifiers

= operators

= record and field tokens

= comments (discussed previously)

® separators

Precise specifications of each token are given in the following sections.

Numeric constants

A numeric constant is either a decimal constant or a floating constant. A decimal constant
is a non-null sequence of digits containing, at most, one decimal point, as in

12

12.

1.2

12

Chapter 9 awk Programming Language

A floating constant is a decimal constant followed by e or E followed by an
optional + or - sign followed by a non-null sequence of digits, as in

12e3
1.2e3
1.2e-3
1.2E+3

String constants

A string constant is a sequence of zero or more characters surrounded by double
quotation marks, as in

"armadillo"

g

vab®

wpge

A double quotation mark can be put into a string by preceding it with the backslash (\),
asin

"He said, \"Sit!\""

A newline is put in a string by using \n in its place. No other characters need to be
escaped except \ itself. Strings can be (almost) any length.

Predefined variables, reserved keywords, and reserved

function names

Table 9-6 lists certain character strings that have special meaning to awk. There are three
types of these character strings:

1. Predefined variables are variables defined by awk that have special meanings.
The meaning of these variables is explained in “Special Variables.”

2. Reserved keywords are a special set of character strings used in awk statements.
Reserved keywords cannot be used as variables.

Lexical conventions ~ 9-51

9-52

3. Reserved function names are a special set of character strings used to invoke
built-in awk functions. These functions are discussed in “Built-in Functions” earlier

in this chapter.

Table 9-6 Reserved strings

Predefined Reserved Reserved
variables keywords function name
BEGIN break exp

END close getline
FILENAME continue index
FS exit int

NF for length
NR in flog
OFS next split
ORS number sprintf
OFMT print sqgrt

RS printf substr
S0 string

Si while

Identifiers

Identifiers in awk serve to denote variables and arrays. An identifier is a sequence of
letters, digits, and underscores beginning with a letter or an underscore. Uppercase and

lowercase letters are different.

Record and field tokens

$0 is a special variable whose value is the current input record. $1, $2,and so on, are
special variables whose values are the first field, the second field, and so on, respectively,
of the current input record. The keyword NF (number of fields) is a special variable
whose value is the number of fields in the current input record. Thus, $NF has as its

Chapter 9 awk Programming Language

value the value of the last field of the current input record. Notice that the first field of
each record is numbered 1 and that the number of fields can vary from record to record.
None of these variables is defined in the action associated witha BEGIN or END
pattern, where there is no current input record.

The keyword NRrR (number of records) is a variable whose value is the number of
input records read so far. The first input record read is 1. At END it contains the total
number of input lines.

Separators

The awk language provides two data-separator variables to assist in parsing
information, the record-separator and field-separator variables.

Record separators

The keyword Rs (record separator) is a variable whose value is the current record
separator. The value of Rs is initially set to newline, indicating that adjacent input
records are separated by a newline. Keyword RS is changed to any character ¢ by
including the assignment statement

RS = "¢"

in an action.

Field separator

The keyword rs (field separator) is a variable indicating the current field separator.
Initially, the value of Fs isa blank, indicating that fields are separated by white space—
that is, any sequence of blanks and tabs. Keyword Fs can be changed to any single
character ¢ by including the assignment statement

FS = "en

in an action or by using the flag option -Fc. Two values of ¢, space and \t, have
special meaning. The assignment statement

FS = "

makes white space (blank spaces or tabs) the field separator; on the command line,
-F"\t" makesa tab the field separator.

Lexical conventions ~ 9-53

9-54

If the field separator is not a blank, there is a field in the record on each side of the
separator. For instance, if the field separator is 1, the record 1xxx1 has three fields.
The first and last are null, and the value of the second is xxx. If the field separator is
blank, fields are separated by white space, and none of the Nr fields are null; that is,
record 1xxx1 has one field, not three, as in the previous case.

Multiline records

The assignment
RS = nn

as part of the action associated with a BEGIN pattern makes an empty line the record
separator. It also makes a sequence of blanks, tabs, and possibly a newline, the field
separator. With this setting, none of the first fields of any record is null, as discussed earlier.

Output record and field separators

The value of ors (output field separator) is the character or string separating output
fields. It is put between fields by print. The value of Ors (output record separator) is
put after each record by print. Initially, ORs is set to a newline and OFs to a space.
These values can be changed to any string by assignments such as the following two:

ORS = "abc"
OFS = "xyz"

Separators and braces

Tokens in awk are usually separated by non-null sequences of blanks, tabs, and
newlines, or by other punctuation symbols, such as commas and semicolons. Braces

({) surround actions, slashes (/ /) surround regular expression patterns, and double
quotation marks (" ") surround strings. Braces also can be used to group statements
within actions.

Chapter 9 awk Programming Language

Primary expressions

In awk, patterns and actions are made up of expressions. The basic building blocks of
expressions are the following primary expressions:

® numeric constants

® string constants

= variables

= functions

Each expression has both a numeric and a string value, and defaults to one or the other,
depending on context. The rules for determining the default value of an expression are
explained in the following sections.

Numeric constants

A numeric constant is simply a number. The format of a numeric constant was previously
defined in the section “Lexical Conventions.” The value of a numeric constant is always
its numeric value in decimal unless it is coerced to type string. Table 9-7 shows the result
of coercing various numeric constants to type string, Coercion of a numeric constant can
occur explicitly as defined in “Type” or implicitly within the context of an expression.

Table 9-7 Values for sample numeric constants

Numeric Numeric

constant value String value
0 0 0

1 1 1

.5 0.5 5

. 5e2 50 50

Primary expressions

9-55

String constants

A string constant is simply a series of characters enclosed in double quotation marks. The
format of a string constant was defined in “Lexical Conventions” earlier in this chapter.

The value of a string constant is the contents of the string itself unless it has been
coerced to type numeric. The numeric value of a string coerced to type numeric depends
on the contents of the string: If the string is composed entirely of numbers (either
decimal or floating-point format), its numeric value is the number contained in the string.
If the string does not contain a recognizable decimal or floating-point number, its
numeric value is zero. Table 9-8 shows the result of coercing various string constants to
type numeric. Coercion of a string constant can occur explicitly as defined in “Type” or
implicitly within the context of an expression.

Table 9-8 Values for sample string constants

String Numeric

constant value String value
i 0 null string
"o 0 space

"a" 0 a

"XYZ" 0 XYZ

"o 0 0

“ln 1 H

Sl 05 5
".5e2" 50 .5e2
Variables

A variable or var is in one of the following forms:
identifier

identifier[expression]

Sterm

9-56 Chapter 9 awk Programming Language

The numeric value of any uninitialized variable is 0, and the string value is the empty
string. An identifier by itself is a simple variable. A variable of the form

identifier(expression]

represents an element of an associative array named by identifier.

The string value of expression is used as the index into the array. The default value of
identifier or identifierlexpression/ is determined by context.

The variable $0 refers to the current input record. Its string and numeric values are
those of the current input record. If the current input record represents a number, the
numeric value of $0 is the number and the string value is the literal string. The default
value of $0 is string unless the current input record is a number. $0 cannot be
changed by assignment.

The variables $1 and $2 refertofields 1 and 2 of the current input record. The
string and numeric values of $i for 1<=i<=NF are those of the ith field of the current
input record. As with $0, if the ith field represents a number, the numeric value of $iis
the number and the string value is the literal string. The default value of $i isa string
unless the ih field is a number. The $7 can be changed by assignment. The value of
$0 is then changed accordingly, but the results might not be apparent unless NF is
changed to at least i.

In general, $term refers to the input record if term has the numeric value 0 and to
field if the greatest integer in the numeric value of term is 4. If i<0 or if =100, then
accessing $1 causes awk to produce an error diagnostic. If NF<i<=100, then $i
behaves like an uninitialized variable. Accessing $ifor i>NF does not change the
value of NF.

Functions

The awk language has a number of built- in functions that perform common arithmetic
and string operations.

exp [(expression)]

int [(expression)]

log [(expression)]

sqrt [(expression)]

Primary expressions ~ 9-57

Terms

These functions (exp, int, log,and sqrt)compute the exponential, integer
part, natural logarithm, and square root, respectively, of the numeric value of expression.
The (expression) can be omitted; then the function is applied to $0. The default value of
an arithmetic function is numeric.
getline
index (expressionl, expression2)
length [(expression)]
split (expression, identifier [, “separator'])
sprintf [("format", expressionl [,expression2 ...1)]
substr (expressionl, expression2 [, expression3])

These functions (getline, index, length, split, sprintf, and
substr) perform string operations. See “Built-in String Functions” earlier in this
chapter for more details.

Various arithmetic operators are applied to primary expressions to produce larger
syntactic units called terms. All arithmetic is done in floating point. A term has one of the
following forms:

primary expression

term1 binop term2

unop term

incremented var

(term)

Binary terms

In a term of the form
term1 binop term2

binop can be one of the five binary arithmetic operators + (addition), - (subtraction),
* (multiplication), / (division), or % (modulus). The binary operator is applied to the

9-58 Chapter 9 awk Programming Language

numeric value of the operands term? and term2, and the result is the usual numeric
value. This numeric value is the default value, but it can be interpreted as a string value
(see “Numeric Constants” earlier in this chapter). The operators *, /,and % have
higher precedence than + and -. All operators are left associative.

Unary terms

In a term of the form
unop term

unop can be unary + or -. The unary operator is applied to the numeric value of term,
and the resulting numeric value is the default value. However, it can be interpreted as a
string value. Unary + and - have higher precedence than *, /,and %.

Incremented variables

An incremented variable has one of the following forms:

++var
--var
var+ +
var--

That is, it can be either pre- or post-incremented.
The form ++var has the effect of the assignment

var=var + 1

and so has the value var+1 before it is further evaluated or assigned. Similarly, the form
—-var has the effect of the assignment

var=var - 1

and so has the value var-1 before it is further evaluated or assigned.
Theform wvar++ has the same value as varbefore it is evaluated or assigned, and
after that it has the effect of the assignment

var=var + 1

Terms 9-59

Similarly, the form var-- has the same value as varbefore it is evaluated or
assigned, and after that it has the effect of the assignment

var=var - 1

The default value of an incremented varis numeric. You shouldn't use the ++ or
-— operators where the incremented variable is used more than once (such as a =
b++ * b),since the results are indeterminate.

Terms with parentheses

Parentheses are used to group terms in the usual manner.

Expressions

9-60

An awk expression is one of the following;
term

terml1 term2 ...

var asgnop expression

Concatenation of terms

In an expression of the form term 1 term2, the string values of the terms are concatenated.
If the terms are numeric expressions, they are first evaluated and then also treated as
strings; that is, the default value of the resulting expression is a string value that can be
interpreted as a numeric value. Concatenation of terms has lower precedence than binary
+ and -. For example, the expression

1+2 3+4

has the string (and numeric) value 37.

Chapter 9 awk Programming Language

Assignment expressions

An assignment expression is one of the form
var asgnop expression
where asgnop is one of the six assignment operators (=, +=, -=, *=, /=, %=, ++, --)
(see “Operators” earlier in this chapter).
The default value of varis the same as that of expression.
In an expression of the form

var = expression

the numeric and string values of var become those of expression.
An expression of the form

var op = expression
is equivalent to
var = var op expression

where op is one of the arithmetic operators (see “Operators” earlier in this chapter),
The asgnops are right associative and have the lowest precedence of any operator.
Thus, the assignment

a += b *=c - 2

is interpreted as

= (B %= ((§=2]))

which is equivalent to the sequence of assignments
b=Db* (c - 2)

a=a+ b

Expressions 9-61

Part 3 Math Tools

A/UX provides two specialized tools for handling arbitrary precision arithmetic, dc and
be. The dc program is an interactive desk calculator program. It has provisions for
manipulating scaled fixed-point numbers and for input and output in bases other than
decimal. bc isa specialized language and compiler for handling arbitrary precision

arithmetic using the dc program. The following two chapters describe these tools.

10 ac: A Desk Calculator

Using dc / 10-2

Programming dc / 10-9

dc isan interactive desk calculator program for handling arbitrary-precision integer
arithmetic. It has provisions for manipulating scaled fixed-point numbers and for input

and output in bases other than decimal.

The dc programworks like a stacking calculator using reverse Polish notation.
Ordinarily, dc operates on decimal integers; however, the input base, output base, and
scale can be set according to user specifications. Because dc is based on a dynamic

storage allocator, number size is limited only by available core storage.

dc canalso be used in conjunction with bc, a high-level language and compiler
designed specifically as a front end for dc. Complex functions can be defined and saved
in a file for later execution through bc. When a program is executed, bc compiles the
input and automatically pipes it to the dc interpreter, which produces the final result.

See the next chapter, “bc: A Basic Calculator,” in this manual for more information.

Using dc

To begin using dc, simply type its name to the shell:
dc

Anything you then enter is interpreted as dc input, up to an end-of-file (CONTROL-D).
You also can exit from dc by using the g command, discussed later.

For very complex computations, you might find it more efficient to place the instructions
intoa file. You can then pass the filename as an argument to the dc command:

dc filename

dc reads and executes the contents of the filename argument before accepting
further commands from the keyboard.

dc operates like a stacking calculator using reverse Polish notation. Initially, the
value of a number is pushed onto the stack. The top two values on the stack can then be
added (+), subtracted (-), multiplied (*), divided (/), remaindered (%), or exponentiated
(~), according to the current operator. The two entries are popped off the stack, and the
result is pushed on the stack in their place.

Similarly, the top value on the stack can be duplicated, removed, stored in a register,
and so forth. For the full list of operations, see the following section.

Command syntax

You can have any number of commands on a line. Blanks and newline characters are
ignored, except when used to delineate numbers and in places where a register name is
expected. Tabs are not allowed.

A number is an unbroken string of digits 0 through 9 and uppercase letters A through
F (treated as digits with values 10 through 15, respectively). A negative number can be
indicated by preceding a number with an underscore (_). Numbers also can contain
decimal points.

To perform simple operations, you can use the following format:

24.2 56.2 + p

10-2 Chapter 10 ac: A Desk Calculator

The p command instructs dc to print the result of the computation (in this case, an
addition). Here is an example of a more complex problem, using a variety of commands:

[lal+dsa*plall>y]sy
Osa
lyx

This example prints the first ten values of the factorial function (that is, 1! through 101). To
fully understand how it does so, please see “Programming dc” later in this chapter.

Operators

Table 10-1 shows the operators that can be used in dc expressions:

Table 10-1 dc operators

Operator Function

~ Exponentiation

e Multiplication

% Remaindering modulus (integer result truncated toward zero)
/ Division

+ Addition

- Subtraction

v Square root

Relational operators

dc allows the following relational operators (also referred to as testing commands):
<X >X =X l<x !>x l=x

These cause the top two elements of the stack to be popped and compared. Register x
is executed if the top two elements of the stack satisfy the stated relation. The
exclamation point indicates negation.

Using ac 10-3

de command set

The following sections describe the dc commands in detail, categorized by subject. At
the end of the categorized sections is a quick-reference list of all dc commands, with
brief descriptions of each.

Input/output format and base

The input and output bases affect only the interpretation of numbers on input and
output. They have no effect on internal arithmetic computations.

Large numbers are generated with 70 characters per line; a backslash (\) indicates a
continued line. All choices of input and output bases work correctly, although not all are
useful. A particularly useful output base is 100000, which has the effect of grouping digits
in fives. Bases of 8 and 16 are used for decimal-octal or decimal-hexadecimal conversions.

Input conversion and base

Numbers are converted to their internal representation as they are read into dc.

Negative numbers are indicated by preceding the number with an underscore ().

i The i command canbe used to change the base of the input numbers. This
command pops the stack, truncates the resulting number to an integer, and uses
it as the input base for all further input. The default for input base (ibase) is 10
(decimal) but can, for example, be changed to 8 or 16 for octal-to-decimal or
hexadecimal-to-decimal conversions.

i The 1 command pushes the value of the input base on the stack.

No mechanism is provided for the input of arbitrary numbers in bases less than 1 or
greater than 16. The hexadecimal digits A through F correspond to the numbers 10
through 15, regardless of input base.

10-4 Chapter 10 dc: A Desk Calculator

Output commands

D The p command causes the top of the stack to be printed. It does not remove
the top of the stack. '

£ The £ command prints the contents of all of the stack registers.

o The o command is used to change the output base (obase). This command

uses the top of the stack truncated to an integer as the base for all further
output. The default output base is 10 (decimal).

0 The o command pushes the value of the output base on the stack.

Scale

dc can accommodate scales up to 99 decimal places. The default scale is 0.

k The k command sets the scale to the number on the top of the stack, truncated
to an integer.

K The x command can be used to push the value of scale on the stack. The
value of scale mustbe greater than or equal to 0 and less than 100.

The rules governing how the scale of a result is resolved for the different operations

are as follows:

Operator

A

Scale

The scale of the result is the sum of the scales of the two operands. If
this exceeds the value of scale, it is truncated to that value.

The scale of the result is the sum of the scales of the two operands. If
this exceeds the value of scale, it is truncated to that value.

The scale of the remainder is the maximum of the dividend scale and
quotient scale, plus the divisor scale.

The scale of the result is the value of scale. You must specify a
scale value forany scale to occur.

The scale of the result is the larger scale of the two operands.
The scale of the result is the smaller scale of the two operands.

The scale of the result is given the scale of the operand or the value of
scale, whichever is larger.

Using ac 10-5

Stack commands

& The ¢ command clears the stack.

d The & command pushes a duplicate of the top number onto the stack.

z The z command pushes the stack size onto the stack.

X The x command replaces the number on the top of the stack with its scale factor.
4 The z command replaces the top of the stack with its length.

Subroutine definitions and calls

[] Enclosing a string in brackets pushes the ASCII string onto the stack.

q The g command quits or (when executing a string) pops the recursion level
by two.

Internal registers

Numbers or strings can be stored in internal registers or loaded on the stack from
registers with the commands s and 1:

sX The sx command pops the top of the stack and stores the result in register .
The x can be any character; even a blank or newline is considered a valid
register name.

% The 1x command puts the contents of register xon the top of the stack. The x

can be any character; even a blank or newline is considered a valid register name.

¢ Note The 1 command has no effect on the contents of register x. The s
command, however, is destructive. &

10-6 Chapter 10 &c: A Desk Calculator

Pushdown registers and arrays

¢ Note The following commands are intended for use by a compiler, rather than for
direct use by programmers. o

dc can be thought of as having individual stacks for each register. These registers are
operated on by the commands s and L:

Sx sx pushes the top value of the main stack onto the stack for the
register x.

Lx Lx pops the stack for register x and puts the result on the main stack.

s and 1 The s and 1 commands also work on registers, but not as

pushdown stacks. The 1 command does not affect the top of the
register stack, but s destroys what was there hefore.

The commands that work on arraysare : and ;.

1 The :x command pops the stack and uses this value as an index into the array
x. The next element on the stack is stored at this index in x. An index must be
greater than or equal to 0 and less than 2048,

¥ The ; xcommand loads the main stack from the array x. The value on the top
of the stack is the index into the array x of the value to be loaded.

Miscellaneous commands

! The ' command interprets the rest of the line as an A/UX system command
and passes it to the operating system to execute.

Q The © command uses the top of the stack as the number of levels of recursion
to skip.

Using dc 10-7

10-8

dc command quick reference

The following list is a quick reference to dc command characters and their functions:

=

iand 1

k and K

1x and Lx

o and o

p
g and @

sx and sx

Puts the bracketed character string on top of the stack.

Interprets the rest of the line as an A/UX system command. Control
returns to dc when the command terminates.

Takes a line of input from the input source (usually the console) and
executes it.

Pops all values on the stack; the stack becomes empty.
Duplicates the top value on the stack.
Prints all values on the stack and in registers.

Pops the top value on the stack and uses it as the number radix for
further input. The command 1 pushes the value of the input base on
the stack.

Pops the top of the stack and uses that value as a scale factor that
determines the maximum number of decimal places that are maintained
during multiplication, division, and exponentiation. The scale factor
must be greater than or equal to zero and less than 100. The
command can be used to push the value of scale on the stack.

The 1 command puts the contents of register x on top of the stack.
The initial value of a new register is treated as a zero by the command
1, but treated as an error by the command L. The Lx command
pops the stack for register x and puts the result on the main stack.

The top value on the stack is popped and used as the number radix for
further output. The command o pushes the value of the output base
on the stack.

The top value on the stack is printed. The top value remains unchanged.

Exits from the program. If executing a string, the recursion level is
popped by two. If @ is used, the top value on the stack is popped,
and the string execution level is popped by that value.

The top of the main stack is popped and stored in a register named x
(where x can be any character). The value of register x is pushed onto
the stack. Register x is not altered. sx pushes the top value of the
main stack onto the stack for the register x.

Chapter 10 dc: A Desk Calculator

v Replaces the top element on the stack by its square root. The square
root of an integer is truncated to an integer.

x and x The x command assumes the top of the stack is a string of dc
commands, removes it from the stack, and executes it. The x command
replaces the number on the top of the stack with its scale factor.

z and 2 The value of the stack level is pushed onto the stack. The z
command replaces the top of the stack with its length.

Programming dc

By combining a few of the available constructs, such as the load, store, execute, and print
commands (1, s, x, p),the [1 construct to store strings, and the testing commands
(relational operators), it is possible to program dc. For example, the following
expressions instruct dc to print the numbers 0 through 9:

[lipl+sililO>alsa
Osi

lax
Consider the first expression in this example:
[lipl+sililO>alsa

This first instruction makes use of the [1 construct for storing strings. The entire
expression is stored as a character string on top of the stack. Reading from left to right,
this character array holds the following commands:

= Load the contents of register i on top of the stack, and print it.
¢ Note Using the print command does not remove the top of the stack. &

= Add (+) 1to the value found on top of the stack, and place the result on top of the stack.

= Store the value currently found on top of the stack in register i.

Programming ac 10-9

s Load the contents of register i on top of the stack, then load the number 10 onto
the stack. Use the testing operator > on these top two stack elements to see whether
10 is greater than the number that was loaded from register i.If 10 is greater,
execute register a. This is the “control element” in this example, because it stops the
processing of the expressions as soon as the value in register i is equal to 10.

= Store the character array in register a. The second and third lines of the example
contain the expressions
0 si

la x

s The 0 si instruction clears register i by storing 0 in that register, thereby
removing any previous value it may have had.

» The 1la and x instructions load the contents of register a on top of the stack and
execute it.

¢ Note The size of numbers in dc is limited only by the size of available memory. &

10-10 Chapter 10 dc: A Desk Calculator

be: A Basic Calculator

Using bc / 11-3
Programsyntax / 11-5

be is a specialized language and compiler for handling arbitrary-precision arithmetic.
be callsthe dc calculator program to perform any actual computations. In fact, bc
was designed specifically to augment dc routines for manipulating infinitely large

numbers, scaled up to 99 decimal places.

Because bc isbased on a dynamic storage allocator, overflow does not occur until all
available core storage is exhausted. bc has a complete control structure, and can be
used either in immediate mode (direct immediate input/output to and from bc) or as an
interactive processor for bc programs. Consequently, complex functions can be
defined and saved in a file for later execution. A small library of predefined functions is
also available, among which are the sine, cosine, arctangent, logarithmic, exponential,

and Bessel functions of integer order.

bc contains scaling provisions that permit the use of decimal-point notation, as well as
input and output in bases other than base 10. Numbers can be converted from decimal to
octal simply by setting the output base to 8. The limit on the number of digits that can be

manipulated depends only on the amount of core storage available.

While bc is not intended as a complete programming language, it can be used

effectively to do a number of specific tasks, most notably the following ones:

= compile large integers
= compute accurately to many decimal places

m convert numbers from one base to another base

11-2 Chapter 11 bc: A Basic Calculator

Using bc

In this chapter, the term “bc command” refers to the command you type from the shell
command line, and the term “bc program” refers to the set of calculations to be
performed by the bc command. These calculations can residein a be program file.

bc command syntax
The bc command has the following syntax:
be [-c] [-1] [filel

The -c compile-only option directs bc to output that it would normally pass as
input to dc. The output is instructive but complicated.
The -1 (library) option calls the set of math library functions in bc:

Function syntax Operation

s (X) Sine

c(x) Cosine

a(x) Arctangent

1(x) Natural logarithm

e (x) Exponential

j(n,x) Bessel function integer order

The library option initially sets the scale (number of available decimal places after
the decimal point) to 20, but this can be reset using the scale function call. See the
section “scale” later in this chapter.

The fileis an optional bc program file from which be can read calculations.

Using bc 113

11-4

Entering a program at the terminal

For the immediate evaluation of simple arithmetic expressions that do not involve
standard be library functions or any user-defined functions, simply enter the bc
program at the terminal. For example, to perform a simple operation, first invoke bc
and then enter the calculation to be performed:

Bbe -
142857 + 285714
be then responds immediately with the result

428571

Program files

For more complicated calculations, you might find it more efficient to define the
functions or procedures in a program file. You would then pass the filename as an
argument to the bc command:

bc filename

be then reads and executes the contents of the named file before accepting further
commands from the keyboard.

Exiting from bc

To exitfrom bc, even when using a command file, you must issuea quit oran end-
offile character (see stty(1) in A/UX Command Reference for more information).
Unless you use the syntax bc < filename, bc does not quit when it reaches the end
of the program file. If no quit statement is given, bc simply waits for further
instructions, and your shell prompt is not returned.

To exit, you can either place a quit statement at the end of your file or enter
quit or your end-of-file character directly when bc completes the file. Your end-
of-file character can still be used as an interrupt and terminate signal while the file is
being processed.

The quit statement is not treated as an executable statement, and so cannot be
used in a function definition orinan if, for,or while statement.

Chapter 11 vc: A Basic Calculator

Program syntax

The syntax of a bc program is very similar to that of a C-language program. In general,
statements and control structures are identical in bc and in C. A good example of this
similarity is the manner in whicha bc function is defined. The following program
defines a function that computes the approximate value of the exponential function and
prints the result for the first ten integers. The pieces of this example are discussed in
individual sections that follow.

scale = 10

define e(x) {

auto a,b,c,i,s

a =1
b =1
S =

for(i=1; 1==1; 1i++) {

a = a*x
b = "b*i
c = a/b
if (¢ == 0) return(s)
S = s+cC

I

for(i=1; i<=10; i++) e(1)

Comments

The characters / and * introduce a comment that terminates with the characters
* and /. Anything between the asterisks is ignored by the bc compiler.

Programsyntax ~ 11-5

11-6

Constants

Constants are primitive expressions and consist of arbitrarily long numbers with an
optional decimal point. The hexadecimal digits A through F are also recognized as digits
with values 10 through 15, respectively.

Keywords

The following terms are reserved as bc keywords, and cannot be used other than for
their predefined purposes:

auto for length return while
break ibase obase scale

define if quit sqrt

Identifiers

In bc,anidentifier is a character, or sequence of characters, that names an expression.
The identifier is the “place” where the value of that expression is stored. Therefore,
identifiers are legal on the left side of an assignment statement.

be has three kinds of identifiers:
= simple identifiers

= function calls
m array, or subscripted, variables
All three types should be indicated with single lowercase letters. Identifier names do

not conflict;a bc program can have a simple variable identifier named x, an array
named x, and a function named x, all of which are separate and distinct.

Chapter 11 bc: A Basic Calculator

Defining functions

Functions are specified by a single lowercase letter, followed immediately by a set of
parentheses:

af()

Since function names are permitted to coincide with simple variable names, the
parentheses indicate the difference between a function and a variable, and provide a
means of passing arguments to the function. Twenty-six different defined functions are
permitted in addition to the 26 variable names.

A function is defined in the following manner:

define a(x) {
defining statements
return
}

Theword define initiates the function definition; a (x) names the function and
indicates that the function requires one argument; the left brace opens the body of the
definition and must occur on the same line as the define keyword; return returns
control to the calling function; and the right brace closes the definition. The body of the
definition must contain one or more statements, and must begin and close with a left and
right brace, respectively.

Function calls and function arguments

A function call consists of the function name followed by parentheses, which in turn
should contain any required arguments to be passed to the function. Individual
arguments should each be separated by commas. Functions with no arguments are called
and defined using empty parentheses. If a function is called with the wrong number of
arguments, the result is unpredictable.

All function arguments are passed by value, and as a result the values remain discrete,
local to the called function. Therefore, changes made to the argument values within the
called function do not alter the original parameters outside the function.

Program syntax ~ 11-7

11-8

The return statement

Return of control from a function occurs whena return statement is executed, or
when the end of the function is reached. The return statement can take either of the
following two forms:

return

return (X)

In the first case, the value returned from the function is 0; in the second, the value
returned from the function is the expression in parentheses.

Automatic variables

Automatic variables are allocated space and initialized to zero on entry to the function,
and thrown away on return (exit). The values of any similarly named variables outside
the function are not disturbed. Functions can be called recursively and the automatic
variables at each level of call are protected.

It should be noted, however, that automatic variables in bc do not work exactly the
same way as they do in the C language. On entry to a function, the old values of
automatic variables or parameters named previously are pushed onto a stack. Until return
is made from the function, reference to these names refers only to the new values.

Variables used in a function can be declared as automatic by a statement of the form

auto x,vy,z

There can be only one such auto statement in a function, and it must be the first
statement in the definition.
The following example is a function definition that uses an automatic variable:
define a(x,y) {
auto z
zZ = XY

return(z)

Chapter 11 be: A Basic Calculator

N—

When called, the value of this function a is the product of its two arguments, x and
y. Consequently, the input

2178 1ds)

sends the result, 21.98, to the standard output. Using this same function, the input

z = ala(3,4),5)

sends the result, 60, to the standard output.

Global variables

There are only two storage classes in bc: automatic variables and global variables.
Unlike automatic variables, global variables retain their values between function calls,
and are available to all functions. However, both types have initial values of zero.

Arrays or subscripted variables

An array, also referred to as a subscripted variable, is indicated with a single lowercase
letter (the array name) followed by an expression in brackets (the subscript). For example,

f [expression)

The names of arrays can coincide with simple variable names or function names
without conflicting. The subscript values must be greater than or equal to 0 and less than
or equal to 2047; any fractional part of a subscript is discarded before use. Only one-
dimensional arrays are permitted.

Subscripted variables can be used in expressions, function calls, and return
statements. An array name can be used as an argument to a function or can be declared
as automatic in a function definition by the use of empty brackets. For example:
f(all)
define f(al])
auto afl]

When an array name is declared automatic, the entire contents of the array is copied
for the use of the function and thrown away on exit from the function. Such array names,

used with empty brackets and referring to whole arrays, cannot be used in any context
other than that just shown.

Program syntax ~ 11-9

Statements

A statement is any direct instruction. Statements can be grouped together by surrounding
them with braces, as in the body of a function definition:

define a(x) {
Statement
Statement ; Statement
return

}

When statements are grouped, each individual statement must end with a semicolon
or a newline to distinguish it from the next. Except where altered by control statements
(suchasa while loop), execution of grouped statements is sequential.

When a statement is an expression, the value of the expression is printed, followed
by a newline character, unless the main operator is an assignment operator.

The following is a basic dictionary of bc predefined statements.

" string”
The quote statement prints the string contained within the quotation marks.

break
The break statement causes termination ofa for or while statement.

auto identifier(, identifier]

The auto statement causes the values of one or more identifiers to be pushed down
on the stack. The identifiers can be ordinary identifiers or array identifiers. Array
identifiers are specified by following the array name with empty brackets. The auto
statement must be the first statement in a function definition.

define function-name |parameter, parameten .)) {statements}

The define statement defines a function. The parameters can be ordinary identifiers
or array names. Array names must be followed by empty brackets.

11-10 Chapter 11 bc: A Basic Calculator

return
return (expression)
The return statement causes the following actions:

= Termination of a function.
» Popping of the auto variables on the stack.

= Specifying the results of the function. The first form is equivalent to return(0).
The result of the function is the result of the expression in parentheses.

quit

The quit statement stops execution of a bc program and returns control to the
A/UX system software when it is first encountered. Because it is not treated as an
executable statement, it cannot be used in a function definition orinan if, for,or
while Statement.

sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value
of scale, whichever is larger.

length (expression)
The result is the total number of significant decimal digits in the expression. The scale of

the result is 0.

scale (expression)
The result is the number of the decimal point in the expression. The scale of the result is 0.

Program syntax 11-11

Assignment statements

bc assignment statements work in exactly the same manner as they do in the C
programming language. Table 11-1 lists the assignment statement constructs.

Table 11-1 Assignment statements

X=y=2 Is the same as x=(y=2)

X =ty Is the same as X = X+y

X =-y Is the same as X = X-y

X = -y [s the same as X = -y

X =ty Is the same as X = X*y

x =/y Is the same as X = X/y

X =%y Is the same as X = X%¥y

x ="y Is the same as X = Xy
X+ Is the same as (x=x+1) -1
X—— Is the same as (x=x-1)+1
+4+X Is the same as X = x+1
X Is the same as x = x-1

¢ Note In some of these constructs, spaces are significant. There is an important
difference between x=-y and x= -y. Thefirstreplaces x by x-y and the second
replaces x by -y.

All assignment operators are interpreted from right to left. The variables in an
assignment statement should have single lowercase letter names. Ordinary variables are
used as internal storage registers to hold integer values, and have an initial value of zero.
The statement

X=X+3

has the effect of increasing by three the value of the contents of register x. In this case,
although the increase in value is performed, that value is not printed. To print the value
of x after the assignment, either explicitly call x, as in the following example:

11-12 Chapter 11 btc: A Basic Calculator

X=X+3

X

or surround the assignment with parentheses. The latter instructs bc to treat the
statement as the value of the result of the operation. The assignment can then be used
anywhere an expression can be used. For example:

(x=x+3)

In this example, the value of x is incremented and the resulting value is printed.
The value of an assignment statement can be used even when it is not placed within
parentheses. For example,

x=al[i=1+1]
instructs bc to increment i before using it as a subscript and then assign the resulting

value to x.

Since each variable register name must be a unique, single lowercase letter, there can
be only 26.

Control statements

The if, while,and for control statements are available in bc to alter the flow
within programs or to cause iteration. They can be used individually as a simple
statement or grouped to form a compound statement. A compound statement consists of
a collection of statements enclosed in braces, as in a function definition.

Relational operators

Unlike all other operators, the bc relational operators are valid only as the object of an
if or while statementorinsidea for statement. Similarly, all control structures
rely at least in part on the evaluation of a relational statement or expression. Table 11-2
illustrates the six relational operators and their definitions.

Program syntax 11-13

Table 11-2 Relational operators

Operator Definition

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equalto

I= Not equal to

¢ Note Donotuse = insteadof == asa relational operator. Both of these are legal,
so there is no diagnostic message, but = does not do a comparison. The = operator is
an assignment operator. &

The if statement

The if statement is a conditional statement that causes execution of its instruction if
and only if the relation is true. Then, control passes to the next statement in sequence.
The following is the standard formatforan if statementin bc:

if (relation) statement

The while statement

while causes repeated execution of its instruction as long as the relation tests as true.
The relation is tested before each execution of its range; if the result is true, the body of
the while statement is executed, and the loop continues. If the relation is false, control
passes to the next statement beyond the range of the while statement. The following
format is standard for the while statementin bc:

while (relation) {
statement
statement

11-14 Chapter 11 vc: A Basic Calculator

The for statement

The typical use of a for statement is for controlled iteration. For example:

for (expressionl; relation; expression2) statements

The for statement begins by executing expressionl. Then the relation is tested. If the
relation is true, the statements in the body of the for are executed. Then expression2 is
executed. The relation is then tested, and so forth, until the relational test fails.

The following example (in immediate mode) shows the proper use of the for
statement. In this example, the function returns the factorial of the integer given as input:
define f (n) {
auto i, x
x=1
for(i=1; i<=n; i=i+1) x=x*i
return(x)

}
£(5)
120
£(3)
6

Expressions

The simplest bc expression is a single digit. An expression can consist of any number
of operators and operands, provided that they represent a value.

The following points are important to remember when using expressions in bc:

= Any term in an expression can be preceded by a minus sign to indicate that it is a
negative (the unary minus sign).

= The value of an expression is printed unless the main operator is an assignment.

= Division by zero produces an error comment.

Table 11-3 shows the operators that can be used in bc expressions, in order of
precedence. Operators with the same precedence are grouped together.

Program syntax 11-15

Table 11-3 Operators and their precedence

Operator Function

A

Exponentiation

& Multiplication

% Remaindering (integer result truncated toward 0)
/ Division

+ Addition

- Subtraction

= Assignment

Contents of parentheses are evaluated before items outside the parentheses.
Exponentiations are performed from right to left, while the other operations are
performed from left to right.
® a“b~c and a”(b”c) areequivalent
® a-b*c isthesameas a-(b*c)

® a/b*c isequivalentto (a/b)*c because the expression is evaluated from left
to right.

Brief descriptions of the various types of expressions recognized by bc are as follows :

- expression The result is the negative of the expression.

++expression The expression is incremented by one. The result is the value
of the expression after incrementing,

- -expression The expression is decremented by one. The result is the value
of the expression after decrementing.

expression + + The expression is incremented by one. The result is the value
of the expression before incrementing.

expression - - The expression is decremented by one. The result is the value
of the expression before decrementing.

expression~expression The result is the first expression raised to the power of the
second expression. The second expression must be an integer.
If ais the scale of the left expression and b is the absolute
value of the right expression, the scale of the result is

min(a*b, max(scale, d))

11-16 Chapter 11 vc: A Basic Calculator

expression* expression

expression/ expression

expressions expression

expression+expression

expression- expression

The result is the product of the two expression values. If @ and
b are the scales of the two expressions, the scale of the result is

min (a*b,max (scale,a,b))

The result is the quotient of the two expression values. The
scale of the result is the value of scale.

The % (modulus) operator produces the remainder of the
division of the two expression values. More precisely, asb has
the same value as a-((a/ b)* b).

The scale of the result is the sum of the scales of the quotient
and the divisor.

The additive operators bind left to right.

The result is the sum of the two expression values. The scale of
the result is the maximum of the scales of the expression values.

The result is the difference of the two expression values. The
scale of the result is the maximum of the scales of the
expression values.

Input and output bases: ibase and obase

bc possesses a scaling provision that enables it to work in bases other than decimal. In
addition, input and output can be set to different bases, for automatic conversion from
one base to another. ibase handles the conversion for input, and obase for output.
ibase and obase have no effect on the course of internal computation or on the
evaluation of expressions. They affect only input and output conversions, respectively.

1base

The setting for ibase determines the base used for interpreting input, and is initially
set to 10 (decimal). To set ibase toanotherbase, use the = assignment operator. For
example, the following assignment sets the input base to base 8:

ibase = 8

Program syntax 11-17

Assuming that the output base is set to decimal, with the ibase now set to octal,
the input
11
automatically produces the following output:
9

If, at this point, you want to change the input base back to decimal, you must
compensate for the fact that input is now being interpreted as octal. So, in setting the new
hase, you must use the correct octal value:
ibase = 12

Because the ibase isstill set to octal, it interprets the 12 as an octal 10, and resets
the base to decimal. Until reset again, ibase interprets all input in decimal.

For handling hexadecimal notation, the characters A through F are permitted in
numbers (regardless of what base is in effect) and are interpreted as digits having values
10 through 15, respectively. The statement

ibase = A
changes the base to decimal regardless of the current input base.
ibase can handle base settings from 1 to 16. If larger or smaller settings are

attempted, ibase disregards them. There is no error message to this effect and the last
valid setting remains intact.

obase
The setting for obase is used for interpreting the output base and is initially set to 10

(decimal). Assuming that ibase issetto 10,

obase = 16

1000
produces the following output:
3ES8

thus providing a simple decimal-to-hexadecimal conversion facility.

11-18 Chapter 11 be: A Basic Calculator

Very large output bases are permitted and are sometimes useful, for example, large
numbers can be generated in groups of five digits by setting obase to 100000. Very
large numbers are split across lines with 70 characters per line. To force the continuation
of a line, end it with a backslash (\).

Decimal output conversion is practically instantaneous, but output of very large
numbers (that is, more than 100 digits) with other bases is rather slow. Nondecimal
output conversion of a 100-digit number takes about 3 seconds.

scale

The number of digits after the decimal point of a number is referred to as its scale. bc
can handle numbers possessing up to 99 decimal places. The initial default setting for

scale is 0. When the library option is invoked, however, the default is automatically
setto 20. To set scale to aspecific value, use the following statement:

scale = n

where 7 equals the new value of the scale setting. The contents of scale must be
no greater than 99 and no less than its initial value of 0. However, appropriate scaling can
be arranged when more than 99 fraction digits are required.

When two scaled numbers are combined by means of an arithmetic operation, the
scale of the result is determined by the following rules:

Addition and The scale of the result is the larger of the scales of the two operands. In

subigsigion this case, there is never any truncation of the result.

Multiplication The scale of the result is never less than the maximum of the two
scales of the operands and never more than the sum of the scales of
the operands. Subject to those two restrictions, the scale of the result is
set equal to the contents of the internal quantity scale.

Division The scale of a quotient is the contents of the internal quantity scale.

The scale of a remainder is the sum of the scales of the quotient and
the divisor.

Program syntax 11-19

Exponentiation The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an integer.

Square root The scale of a square root is set to the maximum of the scale of the
argument and the contents of scale.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation
(not rounding) is performed.

The value held in scale can be used in expressions just like other variables.
The expression

scale = scale + 1
increases the value of scale by 1, and the statement
scale

causes the current value of scale tobe printed.
It should be noted that, regardless of the ibase or obase settings,the scale
setting is always interpreted in decimal base.

11-20 Chapter 11 be: A Basic Calculator

Part 4 Screen-Oriented Tools

A/UX also provides tools to control screen functions and to use dialog boxes for input

and output.

You can use the curses package to write screen-oriented programs. curses
provides a terminal-independent method of screen-oriented input and output. Itincludes
facilities for taking input from the terminal, sending output to a terminal, creating and
manipulating windows on the screen, and performing screen updates in an optimal
fashion. A program using the curses routines and functions generally needs to know
nothing about the capabilities of any particular terminal; these characteristics are
determined at execution time and guide the program in taking input and producing
output. Thus, programs using this package can interact with a large variety of terminals

and terminal types.

The Commando tool is useful for screen-oriented input and output on Macintosh
computers. Commando lets you create CommandShell command lines by selecting
controls within Macintosh dialog boxes. Controls direct the placement of options on the
command line. When the user selects a particular control, Commando places a specific
option on the command line. Once they are constructed, the command lines are either

placed in a CommandShell window for execution or executed in a subshell.

The following chapters detail these tools.

12 curses: Terminal-Independent
Screen I/0

Overview of curses usage / 12-3
List of curses routines / 12-18

Operation details / 12-39

Example program: scatter / 12-47
Example program: show / 12-49
Example program: highlight / 12-51
Example program: window / 12-53
Example program: two / 12-55
Example program: termhl / 12-59

Example program: editor / 12-62

The curses package provides a terminal-independent method of providing screen-
oriented input and output. It includes facilities for taking input from the terminal, sending
output to a terminal, creating and manipulating windows on the screen, and performing
screen updates in an optimal fashion. A program using the curses routines and
functions generally needs to know nothing about the capabilities of any particular
terminal; these characteristics are determined at execution time and guide the program in
taking input and producing output. Thus, programs using this package can interact with a

large variety of terminals and terminal types.

This chapter is an introduction to the curses and terminfo packages for writing
screen-oriented programs. This chapter documents each curses function and

discusses several sample programs. The sample programs are at the end of this chapter.

For older programs, termcap is provided for backward compatibility; new programs

should use terminfo.

12-2 Chapter 12 curses: Terminal-Independent Screen I/0

Overview of curses usage

For curses tobeableto produce the proper output, it must know what kind of
terminal you have. curses usesthe standard A/UX system convention for this; the
name of the terminal is stored in the environment variable TERM.

A program using curses always starts by calling initscr (see Listing 12-1).
Other modes can then be set as needed by the program. Possible modes include
cbreak and idlok(stdscr, TRUE).These modes are explained later.

A curses program follows the framework shown in Listing 12-1.

Listing 12-1 Framework ofa curses program

#include <curses.h>

main()

{

initscr(); /* Initialization */

cbreak () ; /* Various optional mode settings */
nonl () ;

noecho () ;

while (!done) { /* Main body of program */

/* Sample calls to draw on screen */
move (row, col);
addch (ch) ;

printw("Formatted print with value %d\n", value);

endwin () ; /* Clean up */

exit (0) ;

Overview of curses usage 12-3

12-4

Output

During the execution of the program, output to the screen is done with routines such as
addch (ch)

and

printw (fmt, args)

which behave just like putchar and printf except that they go through
curses. The cursor can be moved with the call

move (row, col)

These routines generate output only to a data structure called a window, not to the
actual screen. A window is a representation of a CRT screen, containing such things as an
array of characters to be displayed on the screen, a cursor, a current set of video
attributes, and various modes and options. Unless you use more than one of them, you
don't need to worry ahout windows except to realize that a window is buffering your
requests for output to the screen. For further information about windows, see the section
“Multiple Windows” later in this chapter.

To send all accumulated output, you must call

refresh()
Finally, before the program terminates, it should call
endwin()

which restores all terminal settings and positions the cursor at the bottom of the screen.
See the sample program scatter atthe end of this chapter. This program reads a

file and displays it in a random order on the screen. Some programs assume all screens

are 24 lines by 80 columns. It is important to understand that many are not. The variables

LINES
and
COLS

are defined by initscr with the current screen size. Programs should use them
instead of assuming a 24 by 80 screen.

No output to the terminal actually happens until refresh is called. Instead,
routines such as move and addch draw on a window data structure called stdscr
(standard screen). curses always keeps track of what is on the physical screen, as

wellas whatisin stdscr.

Chapter 12 curses: Terminal-Independent Screen /0

When refresh iscalled, curses compares the two screen images and sends a
stream of characters to the terminal that turns the current screen into what is desired.
curses considers many different ways to do this, taking into account the various
capabilities of the terminal and similarities between what is on the screen and what is
desired. It usually produces as few characters as is possible. This function is called cursor
optimization and is the source of the name of the curses package.

¢ Note Because of the hardware scrolling of terminals, writing to the lower-right
character position is impossible. &

Input

curses functionsare also provided for input from the keyboard. The primary function is
getch ()

which is like getchar except that it goes through curses. This function waits for
the user to type a character on the keyboard and then returns that character. Its use is
recommended for programs using the options

cbreak ()
or
noecho ()

because several terminal-dependent or system-dependent options become available that
are not possible with getchar.

Options that you can use with getch include
keypad
which allows extra keys such as arrow keys, function keys, and other special keys that
transmit escape sequences to be treated just as any other key. (The values returned for
these keys are listed later; these values are over octal 400, so they should be stored in a
variable larger thana char.)

The
nodelay

option causes the value -1 to be returned if there is no input waiting. Normally, getch
waits until a character is typed.

Overview of curses usage 12-5

Finally, the routine
getstr (Str)

can be called, allowing input of an entire line, up to a newline. This routine handles
echoing and the erase and kill characters of the user.

Examples of the use of these options are in later sample programs.

The following function keys might be returned by getch, if keypad isenabled.
Note that not all of these can be supported by a particular terminal/keyboard, because the
key doesn’t exist or the terminal is not transmitting a unique code when the key is pressed.

Name Value Key name

KEY_BREAK 0401 Break key (unreliable)

KEY_DOWN 0402 The four arrow keys...

KEY_UP 0403

KEY_LEFT 0404

KEY_RIGHT 0405

KEY_HOME 0406 Home key (upward + left arrow)

KEY_BACKSPACE 0407 Backspace (unreliable)

KEY_FO 0410 Function keys; space for 64 keys is
reserved (only KFO0 through KF10 are
currently supported)

KEY_F (n) (KEY_FO+(n)) Formulafor fn

KEY_DL 0510 Delete line

KEY_IL 0511 Insert line

KEY_DC 0512 Delete character

KEY_IC 0513 Insert character or enter insert mode

KEY_EIC 0514 Exit from insert character mode

KEY_CLEAR 0515 Clear screen

KEY_EOS 0516 Clear to end of screen

KEY_EOL 0517 Clear to end of line

12-6 Chapter 12 curses: Terminal-Independent Screen 1/O

KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT

KEY_LL

0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

Scroll one line forward

Scroll one line backward (reverse)
Next page

Previous page

Set tab

Clear tab

Clearall tabs

Enter or send (unreliable)

Soft (partial) reset (unreliable)
Reset or hard reset (unreliable)
Print or copy

Home down or bottom (lower left)

The following keys are not currently supported on the Macintosh [I: KEY_BREAK,
KEY_ENTER, KEY_SRESET, KEY_RESET,and KEY_PRINT.

See the sample program show at the end of this chapter for an example of the use
of getch.The show program pages through a file, showing one full screen each time
the user presses the space bar. By creating an input file for show made up of 12-line
pages, each segment varying slightly from the previous page, nearly any exercise for
curses can be created. Such input files are called show scripts.

The following activities take place in the sample show program:

m cbreak is called so that you can press the space bar without having to press RETURN.

® noecho is called to prevent the space from echoing in the middle of a refresh,
messing up the screen.

= nonl is called to enable more screen optimization.

m idlok is called to allow insert and delete lines, because many show scripts are
constructed to duplicate bugs caused by that feature.

m clrtoeol clearsfrom the cursor to the end of the line.

m clrtobot clearsfrom the cursor to the end of the screen.

Overview of curses usage 12-7

12-8

Highlighting

The function addch alwaysdraws two things on a window. In addition to the
character itself, it draws a set of “attributes” associated with the character. These attributes
cover various forms of highlighting of the character. For example, the character can be
put in reverse video, bold, or underline. You can think of the attributes as the color of the
ink used to draw the character.

A window always has a set of current attributes associated with it. The current
attributes are associated with each character as it is written to the window. The current
attributes can be changed with a call to
attrset (atrs)

(Think of this as dipping the window’s pen in a particular color of ink.) The names of the
attributes are

A_STANDOUT

A_REVERSE

A_BOLD

A_DIM

A_INVIS

A_UNDERLINE

Forexample, to put the word holdface in bold, you might use the following code:

printw("A word in ");
attrset (A_BOLD) ;
printw("boldface") ;
attrset (0);

printw(" really stands out.\n");

refresh();

Not all terminals are capable of displaying all attributes. If a particular terminal cannot
display a requested attribute, curses attempts to find a substitute attribute. If none is
possible, the attribute is ignored.

Chapter 12 curses: Terminal-Independent Screen /O

The a_stanNpouT attribute is used to make text attract the attention of the user.
The particular hardware attribute used for A_sTaNDOUT varies from terminal to
terminal, and is chosen to be the most visually pleasing attribute the terminal has.
A_STANDOUT is typically implemented as reverse video or bold. Many programs don't
really need a specific attribute, such as bold or inverse video, but instead just need to
highlight some text. For such applications, the A_STANDOUT attribute is
recommended. Two convenient functions,

standout ()

standend ()

turn this attribute on and off.
Attributes can be turned on in combination. For example, to turn on blinking bold
text, use

attrset (A_BLINKI|A_BOLD)

Individual attributes can be turned on and off with attron and tirorr without
affecting other attributes.

For a sample program using attributes, see the highlight program at the end of
this chapter. The highlight program takes a text file as input and allows embedded
escape sequences to control attributes. In this sample program,

\U turns on underlining
\B turns on bold
\N restores normal text

Note the initial call to scrol1ok. This allows the terminal to scroll if the file is
longer than one screen. When an attempt is made to draw past the bottom of the screen,
curses automatically scrolls the terminal up a line and calls refresh.

The highlight program comes as close to heing a filter as is possible with
curses. Itis not a true filter, because curses must “take over” the CRT screen. To
determine how to update the screen, it must know what is on the screen at all times. This
requires curses to clear the screen in the first call to refresh and to know the
cursor position and screen contents at all times.

Overview of curses usage 12-9

Multiple windows

A window is a data structure representing all or part of the CRT screen. It has room for a
two-dimensional array of characters, attributes for each character (a total of 16 bits per
character: 7 for text and 9 for attributes), a cursor, a set of current attributes, and a
number of flags.

curses provides a full screen window, called

stdscr
and a set of functions that use stdscr. Another window is provided called
curscr

representing the physical screen.

It is important to understand that a window is only a data structure. Use of more than
one window does not imply use of more than one terminal, and it does not involve more
than one process. A window is merely an object that can be copied to all or part of the
terminal screen. The current implementation of curses does not allow windows that
are bigger than the screen.

You can create additional windows with the function

newwin (lines, cols, begin-row, begin-col)

which returns a pointer to a newly created window. The window is Jines by cols, and the
upper-left corner of the window is at screen position (begin-row, begin-col).

All operations that affect stdscr have corresponding functions that affect an
arbitrarily named window. Generally, these functions have names formed by puttinga w
onthe front of the stdscr function and adding the window name as the first
parameter. Thus,

waddch (mywin, c)

writes the character ¢ to window mywin. The wrefresh function is used to flush
the contents of a window to the screen.

Windows are useful for maintaining several different screen images, among which
you can alternate. Also, you can subdivide the screen into several windows, refreshing
each of them as desired. When windows overlap, the contents of the screen will be
copied from the more recently refreshed window.

12-10 Chapter 12 curses: Terminal-Independent Screen I/O

In all cases, the non-w version of the function calls the w version of the function,
using stdscr as the additional argument. Thus, a call to

addch(c)
results in a call to
waddch (stdscr, c)

The sample program window at the end of this chapter shows the use of multiple
windows. The main display is keptin stdscr. When the user temporarily wants to put
something else on the screen, a new window is created covering part of the screen. A call
to wrefresh on that window causes the window to be written over stdscr on the
screen. Calling refresh on stdscr causes the original window to be redrawn on
the screen.

In the sample window program, note the calls to

touchwin

before an overlapping window is written out. These are necessary to defeat an
optimizationin curses. If you have trouble refreshing a new window that overlaps an
old window, it might be necessary to call touchwin on the new window to get it
completely written out.

For convenience, a set of move functions are also provided for most of the common
functions, which resultin a call to move before the other function. For example:
mvaddch (row, col, c)
is the same as
move (row, col); addch (c)

Combinations also exist; for example,

mvwaddch (row, col, win, c)

Multiple terminals

curses can produce output on more than one terminal at once. This is useful for
single-process programs that access a common database, such as multiplayer games.
Output to multiple terminals is a difficult business, and curses does not solve all the
problems for the programmer. The program itself must determine the filename of each
terminal line and what kind of terminal is on each of those lines.

Overview of curses usage 12-11

The standard method (checking $TERM in the environment) does not work
because each process can examine only its own environment. Another problem that must
be solved is that of multiple programs reading from one line. This situation produces a
race condition and should be avoided. Nonetheless, a program wanting to take over
another terminal cannot just shut off whatever program is currently running on that line.
(Usually, security considerations also make this inappropriate. However, for some
applications, such as an interterminal communication program or a program that takes
over unused TTY lines, it is appropriate.)

A typical solution requires that the user logged in on each line run a program that
notifies the master program that the user is interested in joining the master program, telling
it the notification program process ID, the name of the TTY line, and the type of terminal
being used. Then the program goes to sleep until the master program finishes. When
done, the master program wakes up the notification program, and all programs exit.

curses handles multiple terminals by always having a “current terminal.” All function
calls always affect the current terminal. The master program should set up each terminal,
saving a reference to the terminals in its own variables. When it wishes to affect a terminal,
it should set the current terminal as desired, and then call ordinary curses routines.

References to terminals have type struct screen *.

A new terminal is initialized by calling
newterm (#ype, fd)
newterm returns a screen reference to the terminal being set up; type is a character
string, naming the kind of terminal being used; and fdisa stdio file descriptor to be
used for input and output to the terminal. (If only output is needed, the file can be open

for output only.)
This call replaces the normal callto initscr, which calls

newterm(getenv ("TERM") , stdout)
To change the current terminal, call
set_term($P)

where sp is the screen reference to be made current. set_term returns a reference to
the previous terminal.

Itis important to realize that each terminal has its own set of windows and options.
Each terminal must be initialized separately with newterm. Options suchas cbreak
and noecho must be set separately for each terminal. The functions endwin and
refresh must be called separately for each terminal. See Figure 12-2 fora typical
scenario to send a message to each terminal.

12-12 Chapter 12 curses: Terminal-Independent Screen I/O

Listing 12-2 Sending a message to several terminals

for (i=0; i<nterm; i++) {
set_term(terms(i]);
mvaddstr (0, 0, "Important message");

refresh();

See the sample program two at the end of this chapter for a full illustration. The
two program pages through a file, showing one page to the first terminal and the next
page to the second terminal. It then waits for a space to be typed on either terminal, and
shows the next page to the terminal typing the space. Each terminal must be separately
putinto nodelay mode. Itis necessary to busy-wait or call sleep (see sleep(3C)
in A/UX Programmer’s Reference) hetween each check for keyboard input, or use the
multiplexor select(2). This program sleeps fora second between checks.

The two program is just a simple example of two-terminal curses. It does not
handle notification, as described earlier; instead, it requires the name and type of the
second terminal on the command line. As written, the command

sleep 100000

must be typed on the second terminal to put it to sleep while the program runs, and the
first user must have both read and write permission on the second terminal.

Low-level terminfo usage

Some programs need to use lower-level primitives than those offered by curses. For
such programs, the terminfo-level interface is offered.

The terminfo-level interface does not manage your CRT screen, but rather gives you
access to strings and capabilities that you can use to manipulate the terminal. curses
takes care of all the glitches and odd features present in physical terminals, butat the
terminfo level you must deal with them yourself. Whenever possible, the higher-level
curses routines should be used. This makes your program more portable to other A/UX
systems and to a wider class of terminals. Also, it cannot be guaranteed that this part of the
interface does not change or is upwardly compatible with previous releases.

Overview of curses usage 12-13

There are two circumstances in which you should use terminfo. The first is when
you are writing a special-purpose tool that sends a special-purpose string to the terminal,
such as programming a function key, setting tab stops, sending output to a printer port,
or dealing with the status line. The second situation is when you are writing a filter. A
typical filter does one transformation on the input stream without clearing the screen or
addressing the cursor. If this transformation is terminal-dependent and clearing the
screen is inappropriate, use terminfo.

A program written at the terminfo level uses the framework shown in Figure 12-3.

Initialization is done by calling setupterm.

Passing the values 0, 1, 0 invokes reasonable defaults. If setupterm cannot figure
out what kind of terminal you are on, it prints an error message and quits. Your program
should call reset_shell_mode before it exits. Global variables with names like
clear_screen and cursor_address are initialized by the call to setupterm.
They can be produced using putp or tputs (which allows the programmer more
control). These strings should not be directly sent to the terminal using printf,
because they contain padding information. A program that directly generates strings fails
on terminals that require padding or that use the xon/xoff flow-control protocol.

Inthe terminfo level, the higher-level routines described previously are not
available. It is up to the programmer to generate whatever is needed. For a list of
capabilities and a description of what they do, see terminfo(4).

Listing 12-3 terminfo-level framework

#include <curses.h>

#include <term.h>
setupterm(0, 1, 0);
putp(clear_screen) ;

reset_shell mode () ;

exit (0) ;

12-14 Chapter 12 curses: Terminal-Independent Screen I/0

The termhl sample program at the end of this chapter shows a simple use of
terminfo. Itisaversion of the highlight sample programthatuses terminfo
instead of curses. This version can be used as a filter. The strings to enter bold and
underline mode, and to turn off all attributes, are used.

This program is more complex than it has to be to illustrate some properties of
terminfo. The routine vidattr could havebeen used instead of directly generating

enter bold_mode
enter underline_mode

exit_attribute_mode

In fact, the program would he more robust if it did so, since there are several ways to
change video attribute modes. However, this program was written to illustrate typical use
of terminfo.

The function

tputs (cap, affcnt, outc)

applies padding information. Some capabhilities contain strings like $<20>. This meansto
pad for 20 milliseconds. tputs generates enough pad characters to delay for the
appropriate time. The first parameter is the string capability to be generated. The second is
the number of lines affected by the capability. Some capabilities might require padding
that depends on the number of lines affected. For example, insert_line might have
to copy all lines below the current line, and might require time proportional to the number
of lines copied. By convention, affcntis 1 if no lines are affected. For safety, the value 1 is
used rather than 0 (affcnt is multiplied by the amount of time per item, and anything
multiplied by 0 is 0). The third parameter is a routine to he called with each character.

For many simple programs, affcnt is always 1 and outc always just calls putchar.
For these programs, the routine putp (cap) is a convenient abbreviation. The
termhl sample program can be simplified by using putp.

Note also in this example the special check for the capability underline_char.
Some terminals, rather than having a code to start underlining and a code to stop
underlining, have a code to underline the current character. The termhl program
keeps track of the current mode, and if the current character is supposed to be
underlined, outputs underline_char if necessary.

Low-level details such as this are precisely why the curses level is recommended
overthe terminfo level curses takes care of terminals with different methods of
underlining and other CRT functions. Programs at the terminfo level must handle
such details themselves.

Overview of curses usage 12-15

A larger example

For a final example, see the editor sample program at the end of this chapter.

The editor program illustrates how touse curses to write a screen editor
patterned after the vi editor. This editor keeps the bufferin stdscr to keep the
program simple; a real screen editor keeps a separate data structure. Many simplifications
have been made here. No provision is made for files of any length other than the size of the e,
screen, for lines longer than the width of the screen, or for control characters in the file.

Several points about this program are worth noting. The routine to write out the file
illustrates the use of the mvinch function, which returns the character in a window at a
given position. The data structure used here does not have a provision for keeping track
of the number of characters in a line, or the number of lines in the file, so trailing blanks
are eliminated when the file is written out.

The program uses these built-in curses functions:

insch
delch
insertln
deleteln

These functions behave much as the similar functions on intelligent terminals behave,
inserting and deleting a character or a line. ~—

The command interpreter accepts not only ASCII characters, but also special keys.
(Some editors are “modeless,” using nonprinting characters for commands. This is largely
a matter of taste; the point being made here is that both arrow keys and ordinary ASCII
characters should be handled.)

Inthe editor sample program, note the call to mvaddstr in the input routine.
addstr isroughly like the C fputs function, which writes out a string of characters.
Like fputs, addstr doesnot add a trailing newline. It is the same as a series of calls
to addch using the characters in the string. mvaddstr isthe mv version of
addstr, which moves to the given location in the window before writing.

The ConTROL-L command illustrates a feature that most programs using curses
should add. Often some program beyond the control of curses has written something
to the screen, or some line noise has messed up the screen beyond what curses can
keep track of. In this case, the user types ConTROL-L, causing the screen to be cleared and
redrawn. This is done with the call to

clearok(curscr)

12-16 Chapter 12 curses: Terminal-Independent Screen 1/0

which sets a flag causing the next refresh to first clear the screen. Then refresh
is called to force the redraw.
Note also the call to

flash()

which flashes the screen, if possible, and otherwise rings the bell. Flashing the screen is
intended as a bell replacement, and is particularly useful if the bell bothers someone
within earshot of the user. The routine

beep ()

can be called when a real beep is desired. (If, for some reason, the terminal is unable to
beep but able to flash, a call to beep flashes the screen.)

Another important point is that the input command is terminated by ConTroL-D, not
Escape. It is very tempting to use Escar as a command, because Escape is one of the few
special keys that is available on most keyboards. (RETURN and Break are among the
others.) However, using EScAPE as a separate key introduces an ambiguity. Most terminals
use sequences of characters beginning with Escare (escape sequences) to control the
terminal, and have special keys that send escape sequences to the computer. If the
computer recognizes an Escape coming from the terminal, it cannot determine whether
the user pressed the Escare key, or whether a special key was pressed. curses
handles the ambiguity by waiting for up to 1 second. If another character is received
during this second, and if that character might be the beginning of a special key, more
input is read (waiting for up to 1 second for each character) until either (1) a full special
key is read, (2) 1 second passes, or (3) a character is received that cannot have been
generated by a special key.

While this strategy works most of the time, it is not foolproof. It is possible for the
user to press Escap, then to type another key quickly, which causes curses to think a
special key has been pressed. Also, there is a 1-second pause until the escape can be
passed to the user program, resulting in slower response to the Escape key.

Many existing programs use EscapE as a fundamental command, so it cannot be
changed without infuriating a large class of users. Such programs cannot make use of
special keys without dealing with this ambiguity, and at best must resort to a timeout
solution. The message is clear: When designing your program, avoid the Escare key.

Overview of curses usage 12-17

List of curses routines

This section describes all the routines available to the programmer in the curses
package. The routines are organized by function. For an alphabetical list, see
curses(3X).

Structure

All programs using curses should include the file <curses.h>. This file defines
several curses functions as macros, and defines several global variables and the
datatype winpow. References to windows are always of type wINDow *.

curses also defines certain windows as constants:

stdscr the standard screen, used as a default to routines expecting a window
curscr the current screen, used only for certain low-level operations like
clearing and redrawing a garhaged screen

Integer variables are declared, containing the size of the screen:

LINES number of lines on the screen

COLS number of columns on the screen

Boolean constants are defined as follows with values 1 and 0:
#define TRUE(1)

#define FALSE(O)

#define ERR(-1)

#define OK(O0)

Additional constants are values returned from most curses functions:

ERR returned if there was some error, such as moving the cursor outside
a window
OK returned if the function was properly completed

12-18 Chapter 12 curses: Terminal-Independent Screen I/O

The include file <curses.h> automatically includes <stdio.h> andan
appropriate TTY driver interface file, currently either <sgtty.h> or <termio.h>.

& Note The driver interface <sgtty.h> isa TTY driver interface used in other
versions of the UNIX system. e

Including <stdio.h> again is harmless but wasteful; including <sgtty .h>
again usually results in a fatal error.
A program using curses should include the loader option

-lcurses

in the makefile. This is true both for the terminfo level and the curses level.
The compilation flag

-DMINICURSES

can be included if you restrict your program to a small subset of curses concerned
primarily with screen output and optimization. The routines possible with mini-
curses are listed in the section “mini-curses” later in this chapter.

[nitialization

The following functions are called when initializing a program:

initscr()

The first function called should always be initscr. This determines the terminal type
and initializes curses data structures. initscr also arranges that the first call to
refresh clears the screen.

endwin ()

A program should always call endwin before terminating. This function restores TTY
modes, moves the cursor to the lower-left corner of the screen, resets the terminal into
the proper nonvisual mode, and tears down all appropriate data structures.

List of curses routines 12-19

newterm (fype, fd)

A program that generates output to more than one terminal should use newterm
instead of initscr. newterm should be called once for each terminal. It returns a
variable of type SCREEN * which should be saved as a reference to that terminal. The
arguments are the type of the terminal (a string) anda stdio file descriptor

(FILE *) for output to the terminal. The file descriptor should be open for both
reading and writing if input from the terminal is desired. The program should also call
endwin for each terminal being used (see set_term). If an error occurs, the value
NULL is returned.

set__term(new)

This function is used to switch to a different terminal. The screen reference newbecomes
the new current terminal. The previous terminal is returned by the function. All other
calls affect only the current terminal.

longname ()
This function returns a pointer to a static area containing a verbose description of the
current terminal. It is defined only after a callto initscr, newterm, or

setupterm.

Option setting

The functions described here set options within curses. In each case, win is the
window affected, and bfis a Boolean flag with value TRUE or FALSE (indicating
whether to enable or disable the option). All options are initially FALSE. It is not
necessary to turn these options off before calling endwin.

clearok (win, bf)

If set, the next call to wrefresh with this window clears the screen and redraws the
entire screen. If winis curscr, the next callto wrefresh with any window causes
the screen to be cleared. This is useful when the contents of the screen are uncertain, or
in some cases for a more pleasing visual effect.

12-20 Chapter 12 curses: Terminal-Independent Screen1/O

idlok (win, bf

If this feature is enabled, curses considers using the hardware insert/delete line
feature of terminals so equipped. If disabled, curses never uses this feature. The
insert/delete character feature is always considered. Enable this option only if your
application needs insert/delete line, for example, for a screen editor. It is disabled by
default because insert/delete line tends to be visually annoying when used in
applications where it is not really needed. If insert/delete line cannot be used, curses
redraws the changed portions of all lines that do not match the desired line.

keypad (win, bf)

This option enables the keypad of the user’s terminal. If enabled, the user can press a
function key (such as an arrow key) and getch returns a single value representing the
function key. If keypad isdisabled, curses does not treat function keys specially.
If the keypad in the terminal can be turned on (made to transmit) and off (made to work
locally), turning on this option turns on the terminal keypad.

leaveok (win, bf)

Normally, the hardware cursor is left at the location of the window cursor being
refreshed. This option allows the cursor to be left wherever the update happens to leave
it. It is useful for applications where the cursor is not used hecause it reduces the need
for cursor motions. If possible, the cursor is made invisible when this option is enabled.

meta (win, bf)
If enabled, characters returned by getch are transmitted with all 8 hits, instead of
stripping the highest bit. The value OK is returned if the request succeeded; the value
ERR is returned if the terminal or system is not capable of 8-bit input.

meta mode is useful for extending the nontext command set in applications where
the terminal has a meta shift key. curses takes whatever measures are necessary to
arrange for 8-bit input. On other versions of UNIX systems, raw mode is used. On
A/UX systems, the character size is set to 8, parity checking disabled, and stripping of the
eighth bit turned off.

Note that 8-bit input is a fragile mode. Many programs and networks pass only 7 bits.
If any link in the chain from the terminal to the application program strips the eighth bit,
8-bit input is impossible.

Listof curses routines 12-21

nodelay (win, bf)
This option causes getch to be a nonblocking call. If no input is ready, getch
returns -1. If disabled, getch hangs until a key is pressed.

intrflush (win, bf)

If this option is enabled when an interrupt key is pressed on the keyboard (interrupt,

quit, suspend), all output in the TTY driver queue is flushed, giving the effect of faster et
response to the interrupt but causing curses to have the wrong idea of what is on the

screen. Disabling the option prevents the flush. The default is for the option to be

enabled. This option depends on support in the underlying teletype driver.

typeahead (fd)

Sets the file descriptor for typeahead check. fd should be an integer returned from open
or fileno. Setting typeahead to -1 disables typeahead check. By default, file
descriptor 0 (stdin) is used. typeahead is checked independently for each screen,
and for multiple interactive terminals it should probably be set to the appropriate input
foreach screen. A callto typeahead always affects only the current screen.

scrollok (win, bf)

This option controls what happens when the cursor of a window is moved off the edge -
of the window, either from a newline on the bottom line or because the last character of

the last line was typed. If disabled, the cursor is left on the bottom line. If enabled,

wrefresh is called on the window, and then the physical terminal and window are

scrolled up one line. Note that to get the physical scrolling effect on the terminal, it is also

necessary to call idlok.

setscrreg(t, b)

wsetscrreg (wing, t, by

These two functions allow the user to set a software scrolling region in a window win or
stdscr. tand bare the line numbers of the top and bottom margins of the scrolling
region. (Line 0 is the top line of the window.) If this option and scrollok are
enabled, an attempt to move off the bottom margin line causes all lines in the scrolling
region to scroll up one line. Note that this has nothing to do with use of a physical
scrolling region capability in the terminal, like that in the VT100. Only the text of the
window is scrolled. If id1ok is enabled and the terminal has either a scrolling region
or insert/delete-line capability, they are probably used by the output routines.

12-22 Chapter 12 curses: Terminal-Independent Screen I/0

Terminal mode setting

The functions described here are used to set modes in the TTY driver. The initial mode
usually depends on the setting when the program is called; the initial modes documented
here represent the normal situation.

cbreak ()

nocbreak ()

These two functions put the terminal into and out of CBREAK mode. In this mode,
characters typed by the user are immediately available to the program. When out of this
mode, the teletype driver buffers characters typed until newline is typed. Interrupt and
flow-control characters are unaffected by this mode. Initially the terminal is not in
CBREAK mode. Most interactive programs using curses set this mode.

echo ()

noecho ()

These functions control whether characters typed by the user are echoed as typed.
Initially, characters typed are echoed by the teletype driver. Authors of many interactive
programs prefer to do their own echoing in a controlled area of the screen, or not to echo
at all, so they disable echoing.

nl ()

nonl ()

These functions control whether newline is translated into carriage return and line feed
on output, and whether return is translated into newline on input. Initially, the
translations do occur. By disabling these translations, curses is able to make better
use of the line-feed capability, resulting in faster cursor motion.

raw ()

noraw ()

The terminal is placed into or out of raw mode. raw mode is similarto cbreak
mode in that characters typed are immediately passed through to the user program. The
differences are that in raw mode, the interrupt, quit, and suspend characters are passed
through uninterpreted instead of generating a signal. raw mode also causes 8-bit input
and output. The behavior of the Break key might be different on different systems.

List of curses routines 12-23

resetty ()

savetty ()

These functions save and restore the state of the TTY modes. savetty saves the current
state in a buffer; resetty restores the state to what it was at the last callto savetty.

Window manipulation

newwin (num-lines, num-cols, beg-row, beg-col)

Creates a new window with the given number of lines and columns. The upper-left
corner of the window is at line beg-row column beg-col. If either num-lines or num-cols
is 0, they default to LINES-beg-rowand coLS-beg-col. A new full-screen window is
created by calling newwin (0,0,0,0).

newpad (num-lines, num-cols)

Creates a new pad data structure. A pad is like a window, except that it is not restricted
by the screen size and is not associated with a particular part of the screen. Pads can be
used when a large window is needed, and only a part of the window is on the screen at
one time. Automatic refreshes of pads (for example, from scrolling or echoing of input)
do not occur. It is not legal to call refresh witha pad as an argument; the routines
prefresh or pnoutrefresh should be called instead. Note that these routines
require additional parameters to specify the part of the pad to be displayed and the
location on the screen to be used for display.

subwin (orig, num-lines, num-cols, begy, begx)

Creates a new window with the given number of lines and columns. The window is at
position (begy, begx) on the screen. (It is relative to the screen, not orig.) The window is
made in the middle of the window orig, so that changes made to one window affect both
windows. When using this function, it is often necessary to call touchwin before
calling wrefresh.

12-24 Chapter 12 curses: Terminal-Independent Screen I/0

delwin (win)
Deletes the named window, freeing all memory associated with it. In the case of
overlapping windows, subwindows should be deleted before the main window.

mvwin (win, br, bo)
Moves the window so that the upper-left corner is at position (br, bc). If the move would
cause the window to be off the screen, it is an error and the window is not moved.

touchwin (win)

Throws away all optimization information about which parts of the window have been
touched, by pretending the entire window has been drawn on. This is sometimes
necessary when using overlapping windows, because a change to one window affects
the other window, but the records of which lines have been changed in the other
window does not reflect the change.

overlay (winl, win2)

overwrite(winl, win2)

These functions overlay winI on top of win2; that is, all text in winl is copied into win2.
The difference is that overlay is nondestructive (blanks are not copied) and
overwrite is destructive.

Causing output to the terminal

refresh()

wrefresh (Win)

These functions must be called to get any output on the terminal, as other routines
merely manipulate data structures. wrefresh copies the named window to the
physical terminal screen, taking into account what is already there to do optimizations.
refresh isthe same, using stdscr asa default screen. Unless leaveok is
enabled, the physical cursor of the terminal is left at the location of the window cursor.

Listof curses routines 12-25

doupdate ()

wnoutrefresh (win)

These two functions allow multiple updates with more efficiency than wrefresh. To
use them, it is important to understand how curses works. In addition to all the
window structures, curses keeps two data structures representing the terminal
screen: a “physical” screen, describing what is actually on the screen, and a “virtual”
screen, describing what the programmer wants to have on the screen. wrefresh
works by first copying the named window to the virtual screen (wnoutrefresh), and
then calling the routine to update the screen (doupdate). If the programmer wishes to
produce several windows at once, a series of calls to wrefresh results in alternating
callsto wnoutrefresh and doupdate, causing several bursts of output to the
screen. By calling wnoutrefresh foreach window, it is then possible to call
doupdate once, resulting in only one burst of output, with probably fewer total
characters transmitted.

prefresh (pad, pminrow, pmincol

sminrow, smincol

smaxrow, smaxcol)
prnoutrefresh (pad, pminrow, pmincol

sminrow, smincol

smaxrow, smaxcol)
These routines are analogous to wrefresh and wnoutrefresh except that pads,
instead of windows, are involved. The additional parameters are needed to indicate what
part of the pad and screen are involved. pminrow and pmincol specify the upper-left
corner, in the pad, of the rectangle to be displayed. sminrow, smincol, smaxrow, and
smaxcol specify the edges, on the screen, of the rectangle to be displayed. The lower-
right corner in the pad of the rectangle to be displayed is calculated from the screen
coordinates, because the rectangles must be the same size. Both rectangles must be
entirely contained within their respective structures.

12-26 Chapter 12 curses: Terminal-Independent Screen 1/O

Writing on window structures

The routines described here are used to “draw” text on windows. In all cases, a missing
winis takentobe stdscr. yand xare the row and column, respectively. The upper-
left corner is always (0,0), not (1,1). The mv functions imply a call to move before the
call to the other function.

Moving the cursor

move (), X)

wmove (Win, y, X)

The cursor associated with the window is moved to the given location. This does not
move the physical cursor of the terminal until refresh iscalled. The position
specified is relative to the upper-left corner of the window. The position specified is
relative to the screen, not to the individual window. Thus, if you have a window that is
not in the upper-left corner of the screen, moving to the upper-left corner of the window
would require the screen coordinates of that corner of the window rather than (0,0) to be
passed to move.

Writing one character

addch (ch)

waddch (win, ch)

mvaddch (), X, ch)

mvwaddch (win, y, x, ch)

The character c/ is put in the window at the current cursor position of the window. If ch
is a tab, newline, or backspace, the cursor is moved appropriately in the window. If ¢/ is
a different control character, it is drawn in the ~X notation. The position of the window
cursor is advanced. At the right margin, an automatic newline is performed. At the
bottom of the scrolling region, if scrollok isenabled, the scrolling region is scrolled
up one line.

The ch parameter is actually an integer, not a character. Video attributes can be
combined with a character by ORing them into the parameter. This results in these
attributes also being set. (The intent here is that text, including attributes, can be copied
from one place to another with inch and addch.)

List of curses routines 12-27

Writing a string

addstr (Str)

waddstr (win, str)

mvaddstr (), X, Sir)

mvwaddstr (Win, Y, X, Str)

These functions write all the characters of the null terminated character string stron the
given window. They are identical to a series of callsto addch.

Clearing areas of the screen

erase ()
werase (Win)
These functions copy blanks to every position in the window.

clear ()

wclear (win)

These functions are like erase and werase butthey also call clearok, arranging
that the screen is cleared on the next call to refresh for that window.

clrtobot ()

wclrtobot (win)

Alllines below the cursor in this window are erased. Also, the current line to the right of
the cursor is erased.

clrtoeol ()

wclrtoeol (Win)
The current line to the right of the cursor is erased.

12-28 Chapter 12 curses: Terminal-Independent Screen I/O

Inserting and deleting text

delch ()
wdelch (win)
mvdelch (), X)

mvwdelch (win, y, X)

The character under the cursor in the window is deleted. All characters to the right on the
same line are moved to the left one position. This does not imply use of the hardware
delete-character feature.

deleteln()

wdeleteln (Win)

The line under the cursor in the window is deleted. All lines below the current line are
moved up one line. The bottom line of the window is cleared. This does not imply use of
the hardware delete-line feature.

insch ()

winsch (win, ¢)

mvinsch(y, X, C)

mvwinsch (win, y, x, ¢)

The character cis inserted before the character under the cursor. All characters to the
right are moved one space to the right, possibly losing the right-most character on the
line. This does not imply use of the hardware insert-character feature.

insertln()

winsertln (win)

A blank line is inserted above the current line. The bottom line is lost. This does not
imply use of the hardware insert-line feature.

List of curses routines 12-29

Formatted output

printw (fmt, args)

wprintw (win, fmt, args)

mvprintw(y,x, fmt, args)

mvwprintw (win, y, x, fmt, args)

These functions correspond to print£. The characters that would be produced by
printf are instead produced using waddch on the given window.

Miscellaneous

box (win, vert, hor)
A box is drawn around the edge of the window. vert and hor are the characters with
which the box is to be drawn.

scroll (win)

The window is scrolled up one line. This involves moving the lines in the window data
structure. As an optimization, if the window is stdscr and the scrolling region is the
entire window, the physical screen is scrolled at the same time.

Input from a window

getyx (win, y, X)
The cursor position of the window is placed in the two integer variables y and x. Since
this is a macro, no & is necessary for xor .

inch ()

winch (win)

mvinch (), X)

mvwinch (win,y, x)

The character at the current position in the named window is returned. If any attributes
are set for that position, their values are ORed into the value returned. The predefined
constants A_ATTRIBUTES and A_CHARTEXT can be used with the & operator to
extract the character or attributes alone. For example:

12-30 Chapter 12 curses: Terminal-Independent Screen I/O

#include <curses.h>
char c;

¢ = inch() & A_CHARTEXT;

Input from the terminal

getch()

wgetch (win)

mvgetch (), X)

mvwgetch (Win, Y, X)

A character is read from the terminal associated with the window. In nodelay mode,
if there is no input waiting, the value -1 is returned. In delay mode, the program
hangs until the system passes text through to the program. Depending on the setting of
cbreak, this is after one character, or after the first newline.

If keypad mode is enabled, and a function key is pressed, the code for that
function key is returned instead of the raw characters. Possible function keys are defined
with integers beginning with 0401, whose names hegin with Key_. These are listed in
the section “Input” earlier in this chapter. If a character is received that might be the
beginning of a function key (such as Escape), curses setsa 1-second timer. If the
remainder of the sequence does not come within 1 second, the character is passed
through; otherwise the function key value is returned. For this reason, on many terminals
there is a 1-second delay after a user presses the Escare key. (Using the Escape key for a
single character function is discouraged.)

getstr (Str)

wgetstr (win, Str)

mvgetstr (Y, X, Sir)

mvwgetstr (win,), x, Sir)

A series of callsto getch is made, until a newline is received. The resulting value is
placed in the area pointed at by the character pointer str. The user’s erase and kill
characters are interpreted.

List of curses routines 12-31

scanw (fmt, args)

wscanw (Win, fmt, args)

mvscanw (Y, X, fmt, args)

mvwscanw (Win, y, X, fmt, args)

This function corresponds to scanf. wgetstr is called on the window, and the
resulting line is used as input for the scan.

Video attributes

attroff (at)

wattroff (win, airs)

attron (af)

wattron (win, attrs)

attrset (at)

wattrset (win, aitrs)

standout ()

standend ()

wstandout (Win)

wstandend (Win)

These functions set the current attributes of the named window. These attributes can be
any combination of A_STANDOUT, A_REVERSE, A_BOLD, A_DIM, A_BLINK,and
A_UNDERLINE. These constants are defined in <curses.h> and can be combined

with the C language OR operator (|).

The current attributes of a window are applied to all characters that are written into
the window with waddch. Attributes are a property of the character and move with the
character through any scrolling and insert/delete line/character operations. To the extent
possible on the particular terminal, they are displayed as the graphic rendition of
characters put on the screen.

attrset (af)
sets the current attributes of the given window to at.
attroff (at)

turns off the named attributes without affecting any other attributes.

12-32 Chapter 12 curses: Terminal-Independent Screen I/O

attron (af)

turns on the named attributes without affecting any others.
standout

is the same as attron (A_STANDOUT).

standend

is the same as attrset (0);thatis, it turns off all attributes.

Bells and flashing lights

beep ()

flash()

These functions are used to signal the user. beep sounds the audible alarm on the
terminal, if possible: if not, it flashes the screen (visible bell), if that is possible. flash
flashes the screen or, if that is not possible, sounds the audible signal. If neither signal is
possible, nothing happens. Nearly all terminals have an audible signal (a bell or beep)
but only some can flash the screen.

Portability functions

The functions described here do not directly involve terminal-dependent character
output hut tend to be needed by programs that use curses. Unfortunately, their
implementation varies from one version of UNIX to another. They are included here to
enhance the portability of programs using curses.

baudrate ()
baudrate returns the output speed of the terminal. The number returned is the integer
baud rate—for example, 9600, rather than a table index such as B9600.

erasechar ()

The erase character chosen by the user is returned. This is the character typed by the user
to erase the character just typed.

Listof curses routines 12-33

killchar ()
The line-kill character chosen by the user is returned. This is the character typed by the
user to abort the entire line being typed.

flushinp()
This function throws away any typeahead that was typed by the user but not yet read by
the program.

Delays

The functions described here are highly unportable, but are often needed by programs
thatuse curses, especially real-time response programs. Some of these functions
require a particular operating system or a modification to the operating system to work.
In all cases, the routine compiles and returns an error status if the requested action is not
possible. It is recommended that you avoid use of these functions if possible.

draino (msS)
The program is suspended until the output queue has drained enough to complete in ms
additional milliseconds. Thus,

draino (50)

at 1200 baud pauses until there are no more than six characters in the output queue,
because it takes 50 milliseconds to output the additional six characters. The purpose of
this routine is to keep the program (and thus the keyboard) from getting ahead of the
screen. If the operating system does not support the ioctls needed to implement
draino, the value ERR is returned; otherwise, OK is returned.

napms (ms)

This function suspends the program for ms milliseconds. Itis similarto sleep except
with higher resolution. The resolution actually provided varies with the facilities available
in the operating system, and often a change to the operating system is necessary to
produce good results. If resolution of at least .1 second is not possible, the routine rounds
to the next higher second, calls sleep, and returns ERR. Otherwise, the value Ok is
returned. Often the resolution provided is 1/60th second.

12-34 Chapter 12 curses: Terminal-Independent Screen I/0

Lower-level functions

The functions described here are provided for programs not needing the screen
optimization capabilities of curses. Programs are discouraged from working at this
level, because they must handle various glitches in certain terminals. However, a
program can be smaller if it only brings in the low-level routines.

Cursor motion

mvcur (oldrow, oldcol, newrow, newcol)

This routine optimally moves the cursor from (oldrow, oldcol) to (newrow, newcol). The
user program is expected to keep track of the current cursor position. Note that unless a
full screen image is kept, curses must make pessimistic assumptions, sometimes
resulting in less than optimal cursor motion. For example, moving the cursor a few
spaces to the right can be done by transmitting the characters being moved over, but if
curses doesnothave access to the screen image, it does not know what these
characters are.

terminfo level

These routines are called by low-level programs that need access to specific capabilities
of terminfo. A program working at this level should include both <curses.h>
and <term.hs,inthat order. After a callto setupterm, the capabilities are available
with macro names defined in <term.h>. See terminfo(4)fora detailed description
of the capabilities.

Boolean-valued capabilities have the value 1 if the capability is present and 0 if it is
not. Numeric capabilities have the value -1 if the capability is missing, and a value at
least 0 if it is present. String capabilities (both those with and those without parameters)
have the value NULL if the capability is missing, and otherwise have type

char *

and point to a character string containing the capability. The special character codes
involving the \ and ~ characters (suchas \r for RETURN, or ~2 for CONTROL-A) are
translated into the appropriate ASCII characters. Padding information (of the form
$<time>) and parameter information (beginning with %) are left uninterpreted at this

List of curses routines 12-35

stage. The routine tputs interprets padding information, and tparm interprets
parameter information.

If the program needs to handle only one terminal, the definition -DSINGLE can be
passed to the C compiler, resulting in static references to capabilities instead of dynamic
references. This can result in smaller code, but prevents use of more than one terminal at
a time. Veryfew programs use more than one terminal, so almost all programs can use
this flag,

setupterm (term, filenum, errret)

This routine is called to initialize a terminal. term is the character string representing the
name of the terminal being used. filenum is the A/UX file descriptor of the terminal being
used for output. errret is a pointer to an integer, in which a success or failure indication is
returned. The values returned can be 1 (all is well), 0 (no such terminal), or -1 (some
problem locating the terminfo data base).

The value of term can be given as 0, which causes the value of TERM in the
environment to be used. The errret pointer also can be given as 0, meaning no error code
is wanted. If errret is the default, and something goes wrong, setupterm prints an
appropriate error message and quits, rather than returning. Thus, a simple program can
call setupterm(0,1,0) and not worry about initialization errors.

If the variable TERMINFO is set in the environment to a pathname, setupterm
checks fora compiled terminfo description of the terminal under that path, before
checking /usr/lib/terminfo. Otherwise, only /usr/lib/terminfo ischecked.

setupterm checks the TTY driver mode bits, using filenum, and changes any that
might prevent the correct operation of other low-level routines. Currently, the mode that
expands tabs into spaces is disabled, because the tab character is sometimes used for
different functions by different terminals. (Some terminals use it to move right one space.
Others use it to address the cursor to row or column 9.) If the system is expanding tabs,
setupterm removes the definition of the tab and backtab functions, making
the assumption that because the user is not using hardware tabs, they might not be
properly set in the terminal. Other system-dependent changes, such as disabling a virtual
terminal driver, can be made here.

As aside effect, setupterm initializes the global variable ttytype, which is an
array of characters, to the value of the list of names for the terminal. This list comes from
the beginning of the terminfo description.

12-36 Chapter 12 curses: Terminal-Independent Screen/O

Afterthe call to setupterm, the global variable cur_term is set to point to the
current structure of terminal capabilities. By calling setupterm for each terminal, and
saving and restoring cur_term, it is possible for a program to use two or more
terminals at once.

The mode that turns newlines into “carriage return-line feed” on output is not
disabled. Programs that use cursor_down or scroll_forward should avoid
these capabilities if their value is line feed, unless they disable this mode. setupterm
calls reset_prog_mode after any changes it makes.

def_prog_mode ()
def_shell mode ()
reset_prog_mode ()
reset_shell_mode ()
These routines can be used to change the TTY modes between the two states: shell (the
maode they were in before the program was started) and program (the mode needed by
the program). def_prog_mode saves the current terminal mode as program mode.
setupterm and initscr call def_shell_mode automatically.
reset_prog_mode puts the terminal into program mode, and
reset_shell_mode puts the terminal into normal mode. A typical calling sequence
is fora programto call initscr (or setupterm ifa terminfo-level program),
then to set the desired program mode by calling routines such as cbreak and
noecho, and then to call def_prog_mode to save the current state. Before a shell
escape or CONTROL-Z suspension, the program should call reset_shell_mode, to
restore normal mode for the shell. Then, when the program resumes, it should call
reset_prog_mode. Also, all programs must call reset_shell _mode before they
quit. (The higher-level routine endwin automatically calls reset_prog_mode.)
Normal mode is stored in

cur_term->0Ottyb,
and program mode is in

cur_term->Nttyb

List of curses routines 12-37

These structures are both of type sGTTYB (which varies depending on the system).
Currently the possible types are

struct sgttyb
(on some other systems) and
struct termio

(on this version of the A/UX system). def_prog_mode should be called to save the
currentstate in Nttyb.

vidputs (newmode, putc)

newmode is any combination of attributes, defined in <curses.h>. putc isa
putchar-like function. The proper string to put the terminal in the given video mode
is generated. The previous mode is remembered by this routine. The result characters are
passed through putc.

vidattr (newmode)
The proper stringto put the terminal in the given video mode is output to stdout.

tparm (instring, p1, p2, p3, p4, p5. p6, p7. p8, p9

tparm isused to instantiate a parameterized string. The character string returned has
the given parameters applied, and is suitable for tputs. Up to nine parameters can be
passed, in addition to the parameterized string,

tputs (¢p, affcnt, outc)

A string capability, possibly containing padding information, is processed. Enough
padding characters to delay for the specified time replace the padding specification, and
the resulting string is passed, one character at a time, to the routine outc, which should
expect one character parameter. (This routine often just calls putchar.) ¢pis the
capability string. affcnt is the number of units affected by the capability, which varies
with the particular capability. (For example, the affcntfor insert_line isthe
number of lines below the inserted line on the screen—that is, the number of lines that
must be moved by the terminal.) affcntis used by the padding information of some
terminals as a multiplication factor. If the capability does not have a factor, the value 1
should be passed.

12-38 Chapter 12 curses: Terminal-Independent Screen 1/0

putp (Sir)

This is a convenient function to output a capability with no affcnt. The string is output to
putchar with an affcnt of 1. It can be used in simple applications that do not need to
process the output of tputs.

delay_output (ms)

A delay is inserted into the output stream for the given number of milliseconds. The
current implementation inserts sufficient pad characters for the delay. This should not be
used in place of a high-resolution sleep, but rather for delay effects in the output. Due to
buffering in the system, it is unlikely that this call results in the process actually sleeping.
Because large numbers of pad characters can be generated, it is recommended that ms
not exceed 500.

Operation details

These paragraphs describe many of the details of how the curses and terminfo
package operates.

Insert and delete line and character

The algorithmused by curses takes into account insert and delete line and character
functions, if available, in the terminal. Calling the routine

idlok (stdscr, TRUE);

enables insert/delete line. By default, curses does not use insert/delete line. This was
omitted for performance reasons, because there is no speed penalty involved. Rather,
experience shows that some programs do not need this facility, and that if curses
uses insert/delete line, the result on the screen can be visually annoying. Many simple
programs using curses do not need this, so the default is to avoid insert/delete line.
Insert/delete character is always considered.

Operation details 12-39

Additional terminals

curses workseven if absolute cursor addressing is not possible, as long as the cursor
can be moved from any location to any other location. It considers local motions,
parameterized motions, home, and carriage return.

curses isaimed at full-duplex, alphanumeric, video terminals. No attempt is made
to handle half-duplex, synchronous, hard copy, or bit-mapped terminals. Bit-mapped
terminals can be handled by programming the bit-mapped terminal to emulate an
ordinary alphanumeric terminal. This does not take advantage of the hit-map capabilities,
but it is the fundamental nature of curses to deal with alphanumeric terminals.

The curses package handles terminals with the “magic-cookie glitch” in their
video attributes. The term magic cookie means that a change in video attributes is
implemented by storing a magic cookie in a location on the screen. This cookie takes up
a space, preventing an exact implementation of what the programmer wanted. curses
takes the extra space into account and moves part of the line to the right, as necessary.
Advantage is taken of existing spaces, but in some cases this unavoidably results in losing
text from the right edge of the screen.

Multiple terminals

Some applications need to display text on more than one terminal, controlled by the
same process. Even if the terminals are of different types, curses canhandle this. All
information about the current terminal is kept in a global variable

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler accepts
declarations of variables that are pointers. The user program should declare one screen
pointer variable for each terminal it wants to handle. The routine

struct screen *newterm (#)pe, fd)

sets up a new terminal of the given terminal type, which does output on file descriptor
fd Acalto initscr is essentially

newterm(getenv ("TERM") , stdout)

12-40 Chapter 12 curses: Terminal-Independent Screen /0

A program wanting to use more than one terminal should use newterm for each
terminal and save the value returned as a reference to that terminal.
To switch to a different terminal, call

set_term(lerm)

The old value of sp is returned. The programmer should not assign directly to sp
hecause certain other global variables must also be changed.

All curses routines always affect the current terminal. To handle several terminals,
switch to each one in turn with set_term, and then access it. Each terminal must be
set up with newterm, and closed down with endwin.

Video attributes

Video attributes can be displayed in any combination on terminals with this capability.
They are treated as an extension of the standout capability, which is still present.

Each character position on the screen has 16 bits of information associated with it.
Seven of these bits are the character to be displayed, leaving separate bits for nine video
attributes. These bits are used for standout, underline, reverse video, blink, dim, bold,
blank, protect, and alternate character set. Standout is taken to be whatever highlighting
works best on the terminal, and should he used hy any program that does not need
specific or combined attributes. Underlining, reverse video, blink, dim, and hold are the
usual video attributes. Blank means that the character is displayed as a space, for security
reasons. Protect and alternate character set depend on the particular terminal. The use of
these last three bits is subject to change and not recommended. Note also that not all
terminals implement all attributes—in particular, no current terminal implements both
dim and hold.

The routines to use these attributes include

attrset (attrs) wattrset (win, atrs)
at tron (allrs) wattron (win, atrs)
attroff (attrs) wattroff (win, aitrs)
standout () wstandout (win)
standend() wstandend (win)

Operation details 12-41

Attributes, if given, can be any combination of

A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD
A_INVIS
A_PROTECT
A_ALTCHARSET
These constants, defined in curses . h, can be combined with the C language OR
operator (1) to get multiple attributes.

attrset (atrs) Sets the current attributes to the given attrs

attron (attrs) Turns on the given attrs in addition to any attributes that are
already on

attroff (attrs) Turns off the given attrs, without affecting any others

standout () Equivalent to

standend () attron (A_STANDOUT)

attrset (A_NORMAL)

If the particular terminal does not have the particular attribute or combination
requested, curses attempts to use some other attribute in its place. If the terminal has
no highlighting at all, all attributes are ignored.

Special keys

Many terminals have special keys, such as arrow keys, to erase the screen or insert or
delete text, and keys intended for user functions. The particular sequences these
terminals send differ from terminal to terminal. curses allows the programmer to
handle these keys.

A program using special keys should turn on the keypad by calling

keypad (stdscr, TRUE)

12-42 Chapter 12 curses: Terminal-Independent Screen 1/O

at initialization. This causes special characters to be passed through to the program by the
function getch. These keys have constants that are listed in the section “Input” earlier
in this chapter. They have values starting at 0401, so they should not be stored in a

char variable, as significant bits will be lost.

A program using special keys should avoid using the Escape key, because most
sequences start with escape, creating an ambiguity. curses setsa l-second alarm to
deal with this ambiguity, which causes delayed response to the Escape key. It is a good
idea to avoid escape in any case, since there is eventually pressure for nearly any screen-
oriented program to accept arrow-key input.

Scrolling region

There is a programmer-accessible scrolling region. Normally, the scrolling region is set to
the cntire window, but the calls

setscrreg (fop, bot)
wsetscrreg (win, lop, bot)

set the scrolling region for stdscr or the given window to any combination of top
and bottom margins. When scrolling past the bottom margin of the scrolling region, the
lines in the region move up one line, destroying the top line of the region. If scrolling is
enabled with scrollok, scrolling takes place only within that window. Note that the
scrolling region is a software feature and only causes a window data structure to scroll.
This might or might not translate to use of the hardware scrolling-region feature of a
terminal or of insert/delete line; some “intelligent” terminals perform these operations
rather than being controlled directly by the software.

mini-curses

curses copies from the current window to an internal screen image for every call to
refresh. If the programmer is interested only in screen-output optimization and does
not want the windowing or input functions, an interface to the lower-level routines is
available. This makes the program somewhat smaller and faster. The interface is a subset
of full curses, so that conversion between the levels is not necessary to switch from

mini-curses tofull curses.

Operation details 12-43

The following functions of curses and terminfo are available to the user of

mini-curses:

addch (ch) addstr (St attroff (attrs)
attron (attrs) ttrset (af) clear ()
erase() initscr move (), X)
mvaddch (Y, X, ch) mvaddstr (), X, Sit) newterm
refresh() standend () standout ()

The following functions of curses and terminfo are not available to the user

of mini-curses:

box clrtobot clrtoeol
delch deleteln delwin
getch getstrs inch
insch insertln longname
makenew mvdelch mvgetch
mvgetstr mvinch mvinsch
mvprintw mvscanw mvwaddch
mvwaddstr mvwdelch mvwgetch
mvwgetstr mvwin mvwinch
mvwinsch mvwprintw mvwscanw
newwin overlay overwrite
printw putp scanw
scFold setscrreg subwin
touchwin vidattr waddch
waddstr wclear wclrtobot
wclrtoeol wdelch wdeleteln
werase wgetch wgetstr
winsch winsertln wmove
wprintw wrefresh wscanw
wsetscrreg

The subset mainly requires the programmer to avoid use of more than the one-
window stdscr. Thus, all functions beginning with w are generally undefined.
Certain high-level functions thatare convenient but not essential are also not available,
including printw and scanw. Also, the input routine getch cannot be used with

12-44 Chapter 12 curses: Terminal-Independent Screen 1/0

mini-curses. Features implemented at a low level, such as use of hardware
insert/delete line and video attributes, are available in both versions. Also, mode-setting
routines such as crmode and noecho are allowed.

Toaccess mini-curses,add -DMINICURSES tothe CFLAGS in the makefile.
Ifroutines are requested that are not in the subset, the loader prints error messages such as

Undefined:
m_getch
m_waddch

totell you thatthe routines getch and waddch were used butare not available in the
subset. Because the preprocessor is involved in the implementation of mini-curses,
the entire program must be recompiled when changing from one version to the other.

TTY-mode functions

In addition to the save/restore routines savetty and resetty, standard routines are
available for going into and out of normal TTY mode. These routines are resetterm,
which puts the terminal back in the mode it was in when curses was started,

f ixterm, which undoes the effects of resetterm—that is, restores the “current
curses mode”;and saveterm, which saves the current state to be used by
fixterm endwin automatically calls resetterm,and the routine to handle
ConTRrOL-Z (on other systems that have process control) also uses resetterm and
fixterm. Programmers should use these routines before and after shell escapes, and
also if they write their own routine to handle ControL-Z. These routines are also available
atthe terminfo level

Typeahead check

If the user types something during an update, the update stops, pending a future update.
This is useful when the user hits several keys, each of which causes a good deal of
output. For example, in a screen editor, if the user presses the “forward screen” key,
which draws the next screenful of text, several times rapidly, rather than drawing several
screens of text, the updates are cut short, and only the last screenful is actually displayed.
This feature is automatic and cannot be disabled.

Operation details ~ 12-45

getstr

No matter what the setting of the stty echois, strings typed in here are echoed at the
current cursor location. The user’s erase and kill characters are understood and handled.
This makes it unnecessary for an interactive program to deal with erase, kill, and echoing
when the user is typing a line of text.

longname

The 1ongname function does not need any arguments. It returns a pointer to a static
area containing the actual long name of the terminal.

nodelay mode

The call
nodelay (stdscr, TRUE)

puts the terminal in nodelay mode. While in this mode, any callto getch returns -1
if there is nothing waiting to be read immediately. This is useful for writing programs
requiring “real-time” behavior, where the users watch action on the screen and press a key
when they want something to happen. For example, the cursor can be moving across the
screen, in real time. When it reaches a certain point, the user can press an arrow key to
change direction at that point.

Portability

Several useful routines are provided to improve portability. The implementation of these
routines is different from system to system, and the differences can be isolated from the
user program by including them in curses.

erasechar () Returns the character that erases one character.

killchar() Returnsthe character that kills the entire input line.

12-46 Chapter 12 curses: Terminal-Independent Screen /0O

baudrate () Returns the current baud rate as an integer. (For example, at 9600

baud, the integer 9600 is returned, not the value B9600 from
<sgtty.h>.)

flushinp() Causes all typeahead to be thrown away.

Example program: scatter

/*
*
*
*

*

*/

scatter: this program takes the first
screenful of lines from the standard
input and displays them on the

VDU screen, in a random manner.

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES] [MAXCOLS] ; /* Screen array */

main()

{

register int row,col;
register char c;

int char_count=0;
long t;

char buf [BUFSIZ];

initscr();
for (row=0; row<MAXLINES; row++)
for(col=0;col<MAXCOLS;col++)

s[row] [coll=" ’;

(continued >

Example program: scatter 12-47

row = 0;
/* Read screen in */

while((c=getchar()) != EOF && row < LINES) {
itR(e 'z “\n?) {
/* Place char in screen array */
s[row] [col++] = c;
d N
ifi(ew = ¢ 1)

char_count++;
} else {
col=0;

YOwW++;

}
time (&t) ;
srand((int) (t&0177777L)) ;

/* Seed random number generator */

while(char_count) {

row=rand() % LINES;
col=(rand()>>2) % COLS;

if(s[row] [col) = ' ") b
£
move (row, col);
addch(s[row] [col]) ;
s[row] [col] =EOQF;
char_count--;
refresh();
}
}
endwin () ;
exit (0);
}

12-48 Chapter 12 curses: Terminal-Independent Screen /0

Example program: show

/*

* The show program pages through

* a file, showing one full screen each
* time the user presses the space bar
*/
#include <curses.h>

#include <signal.h>

main(argc, argv)
int argc;
char *argvl];
{
FILE *fp;
char linebuf [BUFSIZ];
int line;
void done (), perror(), exit();
if (argc !'= 2)
{
fprintf (stderr, "usage: %s file\n", argv([0]);
exit (1);
}
if((fp=fopen(argv(1l],"r")) == NULL)
{
perror(argv(1l]);
exit(2);
}
signal (SIGINT, done) ;

initscr();
noecho () ;
cbreak () ;
nonl () ;

idlok(stdscr, TRUE); (continued -

Example program: show 12-49

while (1)

{
move (0,0) ;
for(line=0; line<LINES; line++)
{
if(fgets(linebuf, sizeof linebuf, fp) == NULL)
{
clrtobot ();
done () ;
}
move (line, O0);
print (“%$s”, linebuf) ;
}
refresh();
if(getch() == 'q’)
done () ;
}
}
void
done ()
.
move (LINES-1, 0);
clrtoeol();
refresh() ;
endwin () ;
}

12-50 Chapter 12 curses: Terminal-Independent Screen 1/0

Example program: highlight

/*

* highlight: a program to turn \U,
* \N sequences into highlighted
* output, allowing words to be

* displayed underlined or in bold.

/1
#include <curses.h>
main(argc, argv)
char **argv;
{
FILE *fp;

int &, &2k

\B, and

fprintf (stderr, "Usage: highlight file\n");

if (argc = 2) |
exit(1l);
}
fp = fopen(argvI[l], "r");

if (fp == NULL) {
perror (argv(l]);
exit(2);

}

initscr();

scrollok(stdscr, TRUE) ;

(continued >

Example program: highlight 12-51

for (;;) {
c = getc(fp);

if (e 3= EOF)
break;
iff (e /=== "\\’) {

c2 = getc(fp);
switch (c2) {
case 'B’:
attrset (A_BOLD) ;
continue;
case 'U’:

attrset (A_UNDERLINE) ;

continue;
case 'N’:
attrset (0);
continue;
}
addch(c) ;
addch(c2) ;
}
else
addch(c) ;
}
fclose(fp);
refresh();
endwin () ;
exit (0);

12-52 Chapter 12 curses: Terminal-Independent Screen I/O

Example program: window

/*

* This program shows the use of multiple windows.
* The main display 1is kept in stdscr.

* When the user temporarily wants to put

* something else on the screen,

* a new window is created covering

* part of the screen.

&/
#include <curses.h>

WINDOW *cmdwin;

main()

{
Rt i, &
char buf[120];
initscr();
nonl () ;
noecho () ;
cbreak () ;
/* top 3 lines */
cmdwin = newwin(3, COLS, 0, 0);
for (i=0; i<LINES; 1i++)

mvprintw(i, 0, "This is line %d of stdscr", 1i);

(continued ym

Example program: window 12-53

for (;;) {

refresh();

c = getch{();

switch (c) {

case ‘c’: /* Enter command from keyboard */
werase (cmdwin) ;
wprintw(cmdwin, "Enter command:");
wmove (cmdwin, 2, 0);
for (i=0; i<COLS; i++)
waddch (cmdwin, ‘-');
wmove (cmdwin, 1, 0);
touchwin (cmdwin) ;
wrefresh (cmdwin) ;
wgetstr (cmdwin, buf);
touchwin (stdscr) ;
/*
* The command is now in buf.
* It should be processed here.
&/
break;

case 'q’:
endwin () ;
exit (0);

}

12-54 Chapter 12 curses: Terminal-Independent Screen I/0

Example program: two

/%
* The two program pages through a file,

* showing one page to the first terminal and
* the next page to the second terminal.

* It then waits for a space to be typed on

* either terminal, and shows the next

* page to the terminal typing the space.

27
#include <curses.h>

#include <signal.h>

struct screen *me, *you;

struct screen *set_term();
FILE *fp, *fpyou;
char linebuf[512];
main(argc, argv)
char **argv;
{
int done();
int c;
if (argc !'= 4) {
fprintf (stderr,
"Usage: two othertty otherttytype inputfile\n");
exit (1) ;

3

fp = fopen(argv[3], "r");
fpyou = fopen(argv[1l], "w+");
signal (SIGINT, done) ;

/* die gracefully */

(continued

Example program: two 12-55

me = newterm(getenv("TERM"), stdout);
/* initialize my tty */
you = newterm(argv(2], fpyou);

/* Initialize his terminal */

/* Set modes for my terminal */

set_term(me) ;

noecho () ; /* turn off tty echo */
cbreak() ; /* enter cbreak mode */
nonl(); /* Allow linefeed */
nodelay (stdscr, TRUE); /* No hang on input */

/* Set modes for other terminal */;
set_term(you)

noecho () ;

cbreak () ;

nonl () ;

nodelay (stdscr, TRUE) ;

/* Dump first screenful on my terminal */

dump_page (me) ;

/* Dump second screenful on his terminal */
dump_page (you) ;
/* for each screenful */
Eew (%) |
set_term(me) ;
c = getch();
/* wait for user to read it */)
IE e == gy
done () ;
dsE lei ==8) i)

dump_page (me) ;

12-56 Chapter 12 curses: Terminal-Independent Screen 1/0

set_term(you) ;

c = getch();

/* wait for user to read it */
if (¢ == 'q")

done () ;

if (¢ == " ")

dump_page (you) ;

sleep(1l);

}
dump_page (term)
struct screen *term;
{
int line;
set_term(term) ;
move (0, 0);
for (line=0; line<LINES-1; line++) {
if (fgets(linebuf, sizeof linebuf, fd) == NULL)
{
clrtobot () ;
done () ;
}
mvprintw(line, 0, "%s", linebuf);
}
standout () ;
mvprintw(LINES-1, 0, "--More--");
standend () ;
refresh () ; /* sync screen */

(continued Jm

Example program: two 12-57

/*
* Clean up and exit.
28/

done ()

{

/* Clean up first terminal */

set_term(you) ;

move (LINES-1,0) ; /* to lower left corner
clrtoeol(); /* clear bottom line */
refresh(); /* flush out everything
endwin() ; /* curses cleanup */

/* Clean up second terminal */

set_term(me) ;

move (LINES-1,0) ; /* to lower left corner
clrtoeol(); /* clear bottom line */
refresh () ; /* flush out everything
endwin () ; /* curses cleanup */
exit (0);

12-58 Chapter 12 curses: Terminal-Independent Screen 1/O

¥/,

*/

*/

¥/

Example program: termhl

/*

* A terminfo-level version of highlight.

*/
#include <curses.h>
#include <term.h>
int ulmode = 0;
main(argc, argv)
char **argv;
{
FILE *fp;
SRt e, CB;
int outch();
if (argc > 2) {
fprintf (stderr,
exit(1l);

if (argc == 2) {

fp = fopen(argv(l],

if (fp == NULL)

perror(argv(l]);

exit (2);

}
} else {

fp = stdin;
}

setupterm(0, 1, 0);

/* Currently underlining */

[file]\n");

(continued >

Example program: termhl 12-59

Eor (5:) |
c = getc(fp);

if (c == EOF)
break;
if i€ == "\\‘') {

c2 = getc(fp);

switch (c2) {

case 'B’':
tputs(enter_bold_mode, 1, outch);
continue;

case 'U’:
tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;

case 'N’:
tputs (exit_attribute_mode, 1, outch);

ulmode = 0;

continue;
}
Puteh(c) ;
putch(c2);
}
else
putch(c) ;
}
fclose(fp) ;
fflush(stdout) ;
resetterm() ;
exit (0);

12-60 Chapter 12 curses: Terminal-Independent Screen /0

/*
* This function is 1like putchar,
* but it checks for underlining.
&/
putch(c)
int ‘e;
{
outch(c) ;
if (ulmode && underline_char) {
outch("\b") ;

tputs (underline_char, 1, outch);

* OQutchar is a function version
* of putchar that can be passed to
* tputs as a routine to call.
*/
outch(c)
int e;
{

putchar(c) ;

Example program: termhl 12-61

Example program: editor

/

*

*

*

*

*

A/

editor:

A screen-oriented editor.

The user

interface is similar to a subset of vi.

The buffer is kept in stdscr itself to simplify

the program.

#include <curses.h>

#define CTRL(c)

main (argc,

(ICI

argv)

int argc;

char **argv;

{

inE iy, n, 1F
int c;

FILE *fp;

if

1=

2) A
fprintf (stderr,

(argc

exit(1);
}

fp =
if (fp == NULL) {

perror (argv([1l]);

exit(2);
}

initscr();
cbreak () ;
nonl ();
noecho () ;
idlok(stdscr,

keypad (stdscr,

fopen(argv(1l],

& 037)

"Usage: edit file\n");

uru);

TRUE) ;
TRUE) ;

12-62 Chapter 12 curses: Terminal-Independent Screen 1/0

/* Read in the file */

while ((c = getc(fp)) != EOF)
addch (c) ;

fclose(fp) ;

move (0,0) ;

refresh() ;

edit () ;

/* Write out the file */
fp = fopen(argv[1l], "w");
for (1=0; 1<23; 1++) {
n = len(l);
for (i=0; i<n; i++)
putc (mvinch(l, i), fp);
putc(‘\n’, fp);
}
fclose(fp);

endwin() ;
exit(0);
}
len (lineno)

int lineno;

{
int linelen = COLS-1;
while (linelen >=0
&& mvinch(lineno,linelen) == ‘' ') linelen--;
return linelen + 1;
¥

/* Global value of current cursor position */

int row, col;

edit ()
{

int ¢;
(continued >

Example program: editor 12-63

for (;;) {
move (row, col);
refresh();
c = getch();
switch (c) { /* Editor commands */
/* hjkl and arrow keys: move cursor */
/* in direction indicated */
case 'h’:
case KEY_LEFT:
if (col > 0)
col==s;
break;
case ‘j’':
case KEY_DOWN :
if (row < LINES-1)
TOW++;
break;
case 'k’:
case KEY_UP:
if (row > 0)
row--;
break;
case '1’:
case KEY_RIGHT:
if (col < COLS-1)
col++;
break;
/* i: enter input mode */
case KEY_IC:
case ‘i’:
input () ;
break;

12-64 Chapter 12 curses: Terminal-Independent Screen I/O

/* x: delete current character */
case KEY_DC:

case 'X':

delch();

break;

/* o: open up a new line and enter input mode */
case KEY_TIL:

case 'o’':

move (++row, col=0);
insertln();

anpuk () ;

break;

/* d: delete current line */
case KEY_DL:

case ’'d’:

deleteln() ;

break;

/* "L: redraw screen */
case KEY_CLEAR:

case CTRL(L) :
clearok(curscr) ;
refresh () ;

break;

/* w: write and quit */
case ‘'w’:

return;

(continued ym

Example program: editor 12-65

/* g: quit without writing */
case 'q’:

endwin () ;

exit (1) ;

default:

flash();

break;

}

}
/*
* Insert mode: accept characters and insert them.
* End with "D or EIC
*/
input ()
{
int c;
standout () ;
mvaddstr (LINES-1, COLS-20, "INPUT MODE") ;
standend() ;
move (row, col);
refresh();
for (;;) {
c = getch();
if (e == CGTRL(D) || ¢ == KEY_EIC)
break;
insch(c) ;
move (row, ++col);

refresh() ;

12-66 Chapter 12 curses: Terminal-Independent Screen I/0

move (LINES-1, COLS-20);
clrtoeol () ;
move (row, col);

refresh();

Example program: editor 12-67

15

Commando

Introduction / 13-2

The Commando script language / 13-5
Creating Commando dialogs / 13-30
Dialog design guidelines / 13-32

This chapter explains how you can write Commando dialog scripts to provide a

Macintosh front end for your UNIX applications.

Commando lets you create CommandShell command lines by selecting controls within
Macintosh dialog boxes. Controls direct the placement of options on the command line.
By selecting a particular control, a specific option can be placed on the command line.
The command lines thus constructed are placed in a CommandShell window for

execution or are optionally executed in a subshell.

This chapter begins with a general discussion of dialog boxes; readers who are familiar

with this subject might want to turn directly to the section “Commando Dialog Boxes.”

Introduction

13-2

The Macintosh computer provides you with visual cues when you communicate with an
application, among them the controls used in dialog boxes. Controls allow you to
change the way an application functions; when a particular control is used it can place a
specific option on the command line. The use of dialog boxes provides a consistency of
interface across applications that decreases learning times for new applications and
increases retention times for completed tasks. By implementing this interface on UNIX
applications already running on A/UX, programmers and developers can increase the
effectiveness of users working with the application.

Users who are relatively new to command-line interfaces often do not take the time
necessary to learn all the intricacies needed to make full use of the features of a program.
Further, they are often frustrated in their attempts to use applications because it is not
obvious what options are available, or what the application does if they enter a given
option. This is where Commando can help. Because Commando translates between
visual controls and command-line options, users can see at a glance what an application
can do and know what options are available. Further, Commando includes a context-
sensitive help feature, so users receive an explanation of the effect of each control as they
click it. Programmers can save time because they do not have to explain the workings of
the application time and time again.

Commando lets you create command lines using the controls within Macintosh dialog
boxes. This makes invocation of even complex commands much easier, since users have
feedback on what the command can do before they execute it. This also benefits
occasional users of UNIX, because it frees them from having to memorize the options or
arguments associated with various commands. Even UNIX experts appreciate this feature,
since few have learned all the options of the more than 500 UNIX commands.

The contents of Commando dialog boxes are specified in dialog scripts written
according to the Commando script language, which is discussed in detail later in this
chapter. Much of the work of laying out the dialog boxes, including automatic vertical
spacing, is done for you. This leaves you free to concentrate on the logical presentation
order of the controls.

Chapter 13 Commando

The steps you typically follow to create a Commando dialog are quite simple:
1. Copy a Commando dialog script from an existing command having similar controls.
Scripts for all the Commando dialogs are kept in directories in /mac /1ib/cmdo.
2. Modify the script to reflect the controls for your application or utility.
3. Testand debug the script.
4. Make sure the script has read-only permission.
S.

Move the script to the appropriate directory in /mac/1ib/cmdo.

These steps are described in detail later in this chapter.

Macintosh dialog boxes

Dialog boxes provide the user with several visual cues (sce Figure 13-1). The use of
dialog boxes is governed by several conventions:

= Checkboxes allow users to select an option individually; these are the default controls
in Commando.

= Radio buttons allow users to select mutually exclusive options.

= Text boxes allow (or require) users to enter additional information.

= Buttons either allow users to select files or lead to further dialog boxes.
= Controls that cannot be selected are dimmed.

[J checkbo# (unselected)
[K checkbox (selected)

™ checkbos {dimmedd

@ radio button (selected)
(O radio button (unselected)

[button | [default button)]

Figure 13-1 Schematic dialog box

Introduction 13-3

13-4

Commando dialog boxes

All Commando dialog boxes have similar structures, though the controls for the

command they represent are different. Figure 13-2 shows a representative dialog box for

a UNIX command. Each dialog shows the current command line being built, a box of

Help information, and buttons to send or cancel the command. Each screen also has an

area to select among the various options of the command. Each dialog box can have —
multiple controls, allowing command lines to be arbitrarily complex. Further, each

command can have several nested dialog boxes; in Figure 13-2, the “File type,” “Fonts,”

and “More options” buttons each lead to a nested subdialog.

—lpr Options

] Printer to print to:

[] Format files using pr |
[J use symbolic links FEHH
[]Suppress burst page
[J Remowve file when done
[JPrint control characters
[J Send mail on completion
Number of copies:

:I [File tgpe] Funts] [Mure options]

—~Command Line

pr N

—Help
ancel
Send requests to a line printer. Lse a speoling daemon te print the named

files.

(Choose file(s) to print

Page widin

Ipr

Figure 13-2 Commando dialog box for the UNIX command 1pr

Controls can be set up to enable other controls. In Figure 13-2, the title and page
width controls are disabled because they are used only when the option “Format files
using pr” is selected. Since this control hasn't been selected, the title and page width
controls are inaccessible. Examples of this enabling feature are shown later in this
chapter in the section “Commando Script Language.”
Figure 13-3 shows another dialog box, this one forthe tar command. The
Operation controls, which control whether the program reads from or writes to the
backup media, are mutually exclusive and thus are implemented as radio buttons. The —
buttons giving access to dialog boxes containing further controls are enabled only when
their corresponding radio button has been selected.

Chapter 13 Commando

—tar Options
-0peration : Output
(@ Write to archive
i O Extract from archive ;

i O List archive contents i Error

S

[Write options | [Estract aptions | [List aptions

—Command Line
tar

—Help : : = : Cancel
File archive. Save and restore files on magnetic tape, floppy disks, or in an

archive file. Note: This dialog provides only a subset of the available
features for tar. Alse see the manual entry fer tar(1),

tar

Figure 13-3 Commando dialog box for the UNIX command tar

The Commando script language

The Commando script language helps you to create well-designed Commando dialog
boxes quickly. Commando scripts allow users to start an application by double-clicking
an icon or by invoking the application dialog script from the command line. The resulting
dialog boxes allow the user to select various flags and options, then pass the command
line to CommandShell for execution. By using dialog boxes developed through
Commando, you can give your applications the front end of a Macintosh application
without changing the code of your UNIX application.

Dialog box layout

All Commando dialogs have several aspects of their layout in common: All have labeled
Options, Command Line, and Help boxes (see Figure 13-4). All have button controls in
the lower-right corner of the box, allowing you to cancel the displayed dialog box or (by
default) complete your selections and send the command line to CommandShell.

The Option box of the dialog is laid out in rows and columns. There can be several
rows within a given box. You can have multiple columns within a row, and multiple
rows within a column.

The Commando script language ~ 13-5

Within a column or row are various command controls. Buttons, checkboxes, text
boxes, and radio huttons define how the command line is huilt. Additional outline hoxes
can be added to group similar functions visually. Optional definitions might require or
enable controls. Buttons leading to other dialog boxes can be included.

Figure 13-4 shows an Option box layout having two rows, a and b, enclosed within
column 1, and the two columns, 1 and 2, enclosed within one large row, A. The various
rows and columns are indicated by rectangles and names (in operation, Commando does
notdraw these rectangles or insert the names unless you specifically direct it to). In this
simple layout example, no programmer-defined controls are shown.

Just as all Commando dialogs have some structures in common, all scripts have some
structures in common. The beginning of the script always defines the name of the
command, in this case “sample,” by using the keyword command name. The name of
the command appears in the default invocation button, in the Command Line box, and at
the top left of the Option box (see Figure 13-4). Next, the keyword help defines the
message shown in the Help box when you are not clicking a specific control. The
maximum length of a help message varies with the length of the command name, but
roughly 200 characters can be included.

— sample Options

row A

column 1 column 2

row a

row b

— Command Line
sarnple

—H_elp Cancel
this is sample help.
ﬂ sample ﬂ

Figure 13-4 Dialog box layout example

13-6 Chapter 13 Commando

The remainder of the script defines rows and columns of controls. Scripts reflect the
structure displayed. If you want multiple columns within a row, column definitions are
nested within the row definition. Each definition for a particular row or column is
enclosed by braces. Row definitions begin with the keyword row, and column
definitions with the keyword column. The braces might enclose other layout or control
keywords, further affecting the appearance of the dialog box. (Commando automatically
adjusts the vertical size to include the defined controls.) Each keyword begins on its own
line in a dialog script. (A complete list of keywords is given in the section “Keywords.”)

The script shown in Listing 13-1 reflects the structure displayed in Figure 13-4.
Definitions for the innermost rows, a and b, are nested within column 1. The definitions
for columns 1 and 2 are nested within row A. This simple example does not include any
control specifiers; they would be enclosed by the braces between the beginning and end
of the definition of a column or row.

¢ Note Both within “real” dialog scripts and in the following examples comments are
bracketed by slashes and asterisks: /* this is a comment */.Comments are
used in the following examples to point out specific features of dialog scripts. Comments
can be only one line long. &

Listing 13-1 Dialog box layout example script

command name "sample"

help "this is sample help."

row { /* this begins row A */
column { /* this begins column 1 */
row { /* this begins row a */
} /* this ends row a */
row { /* this begins row b */
} /* this ends row b */
} /* this ends column 1 */
column { /* this begins column 2 */
} /* this ends column 2 */
} /* this ends row A */

The Commando script language ~ 13-7

13-8

Layout examples

This section contains examples of the layout of controls. The controls themselves are not
discussed in depth; they are discussed later in the chapter in the section “Control Examples.”

Single-row example

Figure 13-5 shows a trivial example containing only two programmer-defined controls. In
this example they are both checkboxes. The dialog script that produced this dialog is

shown in Listing 13-2.

¢ Note In the following examples a sample Commando dialog box is shown first, and

the dialog script that produced it is shown next. &

—picker Options

[OPick a card [Pick a name
—Command Line
picker
This line contains information on the nature of the command. Cancel

I picker I

Figure 13-5 Single-row dialog hox

Listing 13-2 Single-row dialog script
command name "picker" (gt
help "This line contains information " /*
"on the nature of the command."
row { /*
option name "Pick a card" /*

prefix "-p"

help "[-p] randomly pick a card."

option name "Pick a name" i

Chapter 13 Commando

command name */

help message */

begin only row */

first control */

second control */

prefix "-n"

help "[-n] randomly pick a name."

} /* end of row */

A line-by-line dissection of this script shows several general points worth noting:

s Thefirstline,
command name "picker"
defines the command name. As mentioned previously, it is automatically put on the
command line being built (in the Command Line box of Figure 13-5), in the
command button (at the lower right of Figure 13-5), and in the Options label at the
top of the dialog box.

m The second and third lines,

help "This line contains information "

"on the nature of the command."

define the help message for the command displayed in the bottom Help box. The
message can span several lines, which are concatenated when the dialog is
constructed. The help message for the command is displayed whenever the mouse
button is up.

s The fourth line,
row {
specifies construction of a row. Controls between this point and the closing brace (on
the last line) are all placed on the same row.

= On thefifth line,
option name "Pick a card"
the option name for the first control defines how the control is to be labeled.

» On the sixth line,
prefix "-p"
the prefix line defines what characters are placed on the command line being
built when this control is selected.

= On the seventh line,
help "[-p] randomly pick a card."
the help linefollowingan option name keyword defines whatappears in the
Help box when the pointer is positioned over this control and the mouse button is down.

The Commando script language ~ 13-9

= The eighth through tenth lines,
option name "Pick a name"
prefix "-n"

help "[-n] randomly pick a name."

specify another control; each control consists of at least the option name, prefix, and
a help message.

» The eleventh line,
}

has the closing brace for the first row.

Commando automatically divides a row into columns to space the controls. In
Figure 13-7 there are two controls, so two columns are used for spacing. This spacing can
affect the length you choose for control names.

Multiple-row example

Figure 13-6 shows a dialog box with different rows having different numbers of controls.
The first row contains the three controls: “Pick a card,” “Pick a name,” and “Pick a spot.”
The second row contains the two pop-up menus Output and Error.

This example shows what the dialog box looks like if the pointer is positioned on the
“Pick a card” option and the mouse hutton is down. The control shows that it is selected
(there is an X in the checkbox), the -p prefix shows in the Command Line box, and the
Help box displays the message associated with that option. When the mouse hutton is
released, the control remains selected and the prefix remains in the command line being
huilt, but the help message reverts to the message for the command itself.

—picker Options
QPick a card [JPick a name [JPick a spot
Output Error

| lia——

—Command Line
picker -p

—Help - - =) Cancel
This now has information on the option [-p] randemly pick a card.
[picker I

Figure 13-6 Multiple-row dialog box

13-10 Chapter 13 Commando

Figure 13-6 and Listing 13-3 show a new point: The type of control displayed in the
dialog changes when the keyword within an option name section is changed. Note
that the options within the bold area of Listing 13-3 use the keywords outpopup and
errpopup. These keywords create different kinds of controls from those created by the
default checkbox. The various types of controls are covered in depth in the section
“Control Examples.” These examples again demonstrate the automatic building of
columns within rows. The first row has three controls and is displayed in three columns,
while the second row has two controls and is displayed in two columns. The vertical
spacing is again adjusted automatically to allow room for the controls.

Listing 13-3 Multiple-row dialog script
command name "picker" /* command name */

help "This line contains information /* help message */
"on the nature of the command."
row { /* start first row */
option name "Pick a card" /* first control */
prefix "-p"
help "This now has information on the option "
"[-p] randomly pick a card."
option name "Pick a name" /* second control */
prefix "-n"
help ""This now has information on the option "
"[-n] randomly pick a name."
option name "Pick a spot" /* third control */
prefix "-s"
help ""This now has information on the option "

"[-s] randomly pick a spot.

} /* end first row */
row { /* start second row */
option name "output" /* first control */
outpopup
option name "error" /* second control */
errpopup
} /* end second row */

The Commando script language 13-11

Column example

The following examples (Figure 13-7 and Listing 13-4) demonstrate the explicit definition
of a column. Multiple columns can be defined within a row, with the horizontal spacing
divided equally by the defined number of columns. Multiple columns containing different
numbers of controls can be contained within the same row. Commando automatically
adjusts the vertical height of the dialog box based on the number of controls in a
particular column (within limits, of course).

—picker Options

[Pick a card Pick a street

Pick a name Pick a city

[Pick a spot [Pick a state
[Pick a country

Output Error

—Comr d Line
picker -n -st -ct

ancel
This example demonstrates columns.
I picker Im

Figure 13-7 Multiple-column dialog box

In the first bold area of Listing 13-4 the keyword column is used within the first
row to put all three controls in the same column. The plain area between the bold areas
contains a dummy column, one with nothing between its braces; it is used to create the
blank column. The lower bold area starts another column specification, this time putting
four controls in the column. Commando again takes care of adjusting the vertical spacing
of the dialog box.

Listing 13-4 Multiple-column dialog script

command name "picker" /* command name */

help "This example demonstrates columns." /* help message */

row { /* start first row */ i
column { /* start first column */

13-12 Chapter 13 Commando

option name "Pick a card"

prefix "-p"

/* first control */

help "[-p] randomly pick a card."

option name "Pick a name"

prefix "-n"

/* second control */

help "[-n] randomly pick a name."

option name "Pick a spot"

prefix "-s"

/* third control */

help "[-s] randomly pick a spot."

}
column {}

column {
option name "Pick a street"
prefix "-st"
help "[-s] randomly pick
option name "Pick a city"
prefix "-ct"
help "[-n] randomly pick
option name "Pick a state"
prefix "-sta"
help "[{-n] randomly pick
option name "Pick a country"
prefix "-c"

help "[-s] randomly pick

}
}
row {
option name "output"
outpopup
option name "error"

errpopup

/* end first column */

/* dummy second column for spacing */

/* start third column */

/* first control */

street."

/* second control */

city."
/* third control */

state."”

/* fourth control */

country."

/* end third column */
/* end first row */
/* start second row */
/* first control */

/* second control */

/* end second row */

The Commando script language

13-13

Nested dialog box example

Figure 13-8 shows the next step in changing the structure, the addition of a button
leading to a further dialog box (nested dialog boxes are also referred to as subdialogs).
Here, a new dialog named Redirection was added to the first dialog box. Clicking the
Redirection button leads to the subdialog, shown as the second dialog of Figure 13-8.
Note that the second dialog box (the lower box shown in Figure 13-8) has a Continue
button that returns the user to the first dialog box. Multiple nested dialog boxes can be
specified (see Figure 13-2, “Commando Dialog Box for the UNIX Command 1pr”).

—picker Options
[Pick a card
[Pick a name
[Pick a spot

] Redirection |

—Command Line
picker -5

This example demonstrates columns. Cancel
Iﬂ picker I

~Redirection
Output Error

—Command Line
picker -s

—Help— : Cancel
This subdi.log allows you to redirect the sorarnand output
I Continue I

Figure 13-8 Further dialog example

13-14 Chapter 13 Commando

The bold area of Listing 13-5 shows the addition of the button named Redirection,
which leads to a further dialog box. Buttons to access further dialogs are automatically
sized to hold the button name.

Listing 13-5 Further dialog script

command name "picker" /* command name */
help "This example demonstrates columns." /* help message */
row { /* start first row */
column { /* start first column */

option name "Pick a card"

prefix "-p"

help "[-p] randomly pick a card."
option name "Pick a name"

prefix "-n"

help "[-n] randomly pick a name."

option name "Pick a spot"

prefix "-s"
help "[-s] randomly pick a spot."
} /* end first column */
} /* end first row */
dialog name "redirection" /* start second dialog */
help "This subdialog allows you to " /* help message */

"redirect the command output."
row { /* start first row */
option name "output"
outpopup
option name "error"

errpopup
} /* end first row */

The Commando script language 13-15

Control examples

Places in a dialog where the user can make a choice are called controls. These include
checkboxes, radio buttons, text boxes, and buttons. Keyword specifiers define all
controls available from the dialog box. The type of control is usually specified (a
checkbox is the default). In addition, enabling and requirement dependencies can be
defined (see the section “Dependencies”). An enabling dependency makes access to a
particular control dependent on the state of some other control. A requirement
dependency forces the user to select a control before the command line can be sent to
the shell. The various types of controls are discussed in the following sections.

Checkbox

The checkbox is the default control type; it is a square box that the user selects or
deselects by clicking it. The user selects each checkbox individually. Figure 13-9 shows
examples of this type of control.

—picker Options

[Pick a card [Pick a name [Pick a spot
—Command Line
picker
help
This example dernenstrates checkboxeas.

ﬂ picker I

Figure 13-9 Checkbox dialog example

Listing 13-6 shows the script that produced the checkbox dialog example; the bold
area contains a representative checkbox definition. You define the option name,
prefix,and help specifiers for every checkbox. Place the text following each of
these keywords between double quotation marks. The maximum number of checkboxes
in a column is ten.

Listing 13-6 Checkbox example script

command name "picker"

help "This example demonstrates "

"checkboxes. "

13-16 Chapter 13 Commando

row {

option name "Pick a card"
prefix "-p"

help "[-p] randomly pick a card."”

option name "Pick a name"

prefix "-n"

help "[-n] randomly pick a name."
option name "Pick a spot"

prefix "-s"

help "[-s] randomly pick a spot."

Radio buttons

Radio buttons are similar to checkboxes but provide users with mutually exclusive
controls; an example is shown in Figure 13-10. Users see associated radio buttons aligned
in columns; a box, referred to as a named hox, usually surrounds radio buttons to
visually indicate that they are related. Commando automatically selects the first radio
button in a set for the user.

Due to an intentional layout error in the example, one of the labels in Figure 13-10 is
too long and has extended outside the named box. This example demonstrates that you
must choose control labels that fit within their column.

—picker Options
~Pick one of these: -

. @ Pick a card

—Command Line
plskost —p

—Help) Cancel
Thizs example demonstrates radio buttons
I picker “

Figure 13-10 Radio button dialog example

The Commando script language 13-17

The bold area of Listing 13-7 shows a definition for a set of radio buttons. The
definition starts with the keyword radio buttons and encloses the set of individual
controls in braces. Specify the keywords option name, prefix,and help for
each button. Use a box to visually indicate the grouping of the radio buttons. To do this,
use the keyword name or the keyword box within the radio button definition. The
keyword name gives you a labeled box (as shown in Figure 13-10 and Listing 13-7); the
keyword box creates a simple outline box. Commando automatically aligns radio
buttons into columns. A maximum of seven radio buttons can be grouped in a set. By
default, Commando selects the first radio button in a set, so make the first control the one

that the user most often chooses.

Listing 13-7 Radio button example script

command name "picker"

help "This example demonstrates
"radio buttons."
row {

column {}

radio buttons {
name "Pick one of these:"
option name "Pick a card"

prefix "-p"

/* dummy column for spacing */

/* specify a set of radio buttons */

/* create a named grouping box */

help "[-p] randomly pick a card."

option name "Pick a name"

prefix "-n"

help "[-n] randomly pick a name."

option name "Pick a spot on the map"

prefix "-s"

help "[-s] randomly pick a spot."

}

column {}

}

13-18 Chapter 13 Commando

/* dummy column for spacing */

Text boxes

A text box allows the user to enter text to be used in the command arguments. Text
boxes are the width of the current column. Figure 13-11 shows an example of the use of
these text input types. Note that when an input string contains blanks, Commando
automatically encloses the string in single quotation marks to avoid confusing the shell.
(For example, see the name Wally Eldridge shown in the Command Line box.)

—gamefinder Options
Before you play, the GameMaster needs to know:

Your name: Your age: Games desired:

wally Eldridge | 17 NerdCity >
Teenage Mutants

—Command Line
gametinder -MN "Wally Eldridge’ -#17 ~TMerdCity ~T Teenage Mutants’

e o
This example deronstrates text baxes. Cancel
I gamefinder ﬂ

Figure 13-11 Text box dialog example

Listing 13-8 shows the script used to create the dialog in Figure 13-11. As with a
checkbox, specify the keywords option name, prefix,and help foreach text
box. Use one of the keywords string or stringlist to indicate the type of data
to be input by the user. The keyword string allows entry of a single line of text,
while stringlist allows entry of several lines, each of which is prefaced on the
command line with the defined prefix. Text boxes are the width of the current
column. You can put a maximum of three string controls ortwo stringlist
controls in a column.

As mentioned previously, when an input string contains blanks, Commando
automatically encloses the string in single quotation marks to avoid confusing the shell.
Putting the keyword dontquote on the next line after the keyword command
name turns off this quoting feature for the entire dialog (this variant is not shown).

The Commando script language 13-19

¢ Note Some UNIX commands insist that no spaces come between an option and its
argument on 2 command line. In these cases, you must include control characters in the
prefix definition to remove the spaces normally inserted. This is indicated in the listings
hy a circumflex (~) before a character. For example, ~v indicates CONTROL-Y, and is
placed just after an option to remove the space hetween the option and its argument. &

Important Control characters do not normally print well; consequently, printouts of
your dialog scripts might not show all the characters that are actually there. A circumflex
followed by a letter is not a substitute for a control character.

Listing 13-8 shows various ways that text input is translated to the command line. The
code in the top bold area of the listing formats input text on the command line with a
space hetween the input text and the prefix. The code in the plain area between the hold
areas defines a control having no space between the prefix and the text because of the
ConTroL-Y at the end of the prefix. You also can remove the space hefore a prefix by
using a ConTroL-H hefore the letter of the option. Each of these control characters can he
used only once per option, though both can be used on a single option. The code in the
hottom bold area of the listing shows how you can put several arguments having the same
prefix on the command line, using the keyword stringlist ratherthan string.

Listing 13-8 Text hox example script
command name "gamefinder"

help "This example demonstrates text boxes."

row {

option name "Before you play, the GameMaster needs to know:"

text /* first control */
}
row {} /* dummy row for spacing */
row {
option name "Your name:" /* second control */

prefix "-N"

13-20 Chapter 13 Commando

help "[-N] This enters your name."

string
option name "Your age:" /* third ontrol #*¢/
prefix "-#~y" /* use Control-Y for spacing */

help "[-#] Your age determines the play level."

string
option name "Games desired:" /* fourth control */
prefix "-TAY" /* use Control-Y for spacing */

help "[-T] Specify all the games you want to try."

stringlist

Text

Listing 13-8 also shows the use of the keyword text on the line labeled “first control.”
This control does not allow input, but simply places text in the dialog. Unlike controls
that allow input, you don't specify the keywords prefix or help.

Buttons
With dialog buttons the user can

= open additional windows that allow access to files on which to operate and
directories in which to save files

= open a nested dialog box, allowing choices of additional options

Dialog buttons are different from radio buttons, which select between mutually
exclusive actions. Because dialog buttons have a different function, they are a different
shape. Figure 13-12 shows examples of hoth types of dialog buttons; their names indicate
their purpose. If the user clicks the Save a File button, a second dialog box appears (see
Figure 13-13) and shows the standard Macintosh file dialog box for selecting a new
filename. After the user selects a file, the original dialog box reappears (see Figure 13-14;
note the filename in the Command Line box). If the user clicks the Redirection button,
the dialog shown in Figure 13-15 comes up, allowing a choice of redirection options.

The Commandoscript language 13-21

—saver Options

EmRequired-
[SsaveafFite |

—Command Line
saver
This example demonstrates beth types of buttons. Cancel

I Sapay l

Figure 13-12 Button example: Initial dialog box

Y Basename

Save a file:

|modem.test

Figure 13-13 Button example: Save a File dialog box

—saver Options

g--Hequire.j
L Save a File

Redirection

—Command Line

saver -s /bin/modem.test

This example demonstrates both types of buttons.

Iﬁ saver im

Figure 13-14 Button example: Save a File control was selected

13-22 Chapter 13 Commando

—Redirection
OQutput Error

—Command Line
saver -s /bin/modem.test

IM Continue I

Figure 13-15 Button example: Redirection subdialog box

With dialog buttons you can call file dialogs or call a subdialog. With dialog buttons
you don't have to use the keyword prefix, butitis good practice to always use the
keyword help with them, though it is not required. You create file dialog buttons by
putting one of the following keywords after the keyword opt ion name:

file dirlist
filelist dirsandfiles
newfile filesanddirs
directory

The purpose of each keyword is listed in Table 13-1. (A complete list of keywords
can be found in the section “Keywords.”)

Table 13-1 File dialog keywords

Keyword Description

file Presents the single file choice menu

filelist Presents the file list choice menu

newfile Presents the new file creation menu

directory Presents the single directory choice menu

dirlist Presents the directory list choice menu

dirsandfiles Presents the file/directory choice menu; same as filesanddirs
filesanddirs Presents the file/directory choice menu; same as dirsandfiles
outpopup Presents the standard output pop-up menu

errpopup Presents the standard error pop-up menu

The Commando script language 13-23

To redirect either the standard or error output, use the keywords outpopup and
errpopup. You can use outpopup alone; however, to use errpopup, you must
also use outpopup.

To create dialog buttons that open a subdialog box, use the keyword dialog
name. You must place this keyword after the close of a row definition (as is shown in the
lower hold area of Listing 13-9). Define the name of the button with a text string
(hetween double quotation marks) following the keyword. You can put a maximum of
six buttons in a column.

Listing 13-9 shows the script that produced the dialogs in Figures 13-12 through 13-15.
The first button in the script (in the upper bold area of the listing) calls a file dialog, in this
case to create a new file. The first button control is followed by two dummy columns to
ensure that the button does not extend the entire width of the dialog. The second button
(in the lower hold area of the listing) opens a subdialog whose only components are the
redirection pop-up menus.

These figures also illustrate the effects of a new keyword, required, found within
the first control. The keyword required has the effect of disabling the command
button until a file is selected (note the difference in the appearance of the button named
saverbetween Figures 13-12 and 13-14). The keyword required can be used only in
the first dialog of a script. The keyword name is used to place a hox around the
required control to notify the user to complete this control (see Listing 13-7). These
keywords are discussed further in the next section, “Dependencies.”

Listing 13-9 Button example script
command name "saver"

help "This example demonstrates both types of buttons.”

row f{
column {
name "Required" /* let user know about this */
option name "Save a file:" /* first button */

prefix "-sg"
help "[-s] Saves to chosen name."
newfile /* get a new file */

required /* HAVE to get a new file */

13-24 Chapter 13 Commando

}
column {}
column {}

}

dialog name "Redirection™"
row {
option name "output"
outpopup
option name "error"

errpopup

Dependencies

/* dummy column for spacing */

/* dummy column for spacing */

/* second button */

Controls can he selectively enabled, depending on the selection state of some other
control. Controls that are disabled appear in gray (and are said to be dimmed), once the
enabling dependency is satisfied, the control appears in black. Users can also be required

to select an option.

Figures 13-16 and 13-17 show a control dependency example. In Figure 13-16, the
“Pick a card” control is selected (it is the default) so the “Card name” control is enabled,
while the “Suit” controls are disabled. In Figure 13-17, this order is reversed the “Suit”
control is now enabled, while the “Card name” control is disabled.

® Pick a card
Pick a suit

—cardfinder Dptions
~Pick one of these: ... (ard name:

Command Line
I‘cardfinder -p

—Help

This example demonstr-ates enathng.

I cardfinder iﬂ

Figure 13-16 Dependencies example: First control selected

The Commando script language 13-25

—cardfinder Options

~Pick one of these: FSUILS o
: O Pick a card i @ Black

| @ Pick a suit . @ Red

—Command Line
cardfinder -n -b

i o
This example demonstrates enabling. Cancel
ﬂ cardfinder l

Figure 13-17 Dependencies example: Second control selected

Controls without dependencies are enabled by default; controls with dependencies
are disabled by default. To disable a control, simply make its enabling dependent on
another control by using the keyword enables. You can enable controls in two ways:

= Specify the prefix that must be in effect (showing in the Command Line box). The
prefix must be identical to that used in the control specification, including any control
characters within the prefix.

= Specify the control option name (the quoted text following the keywords option
name or name). Forexample, radio buttons are enabled as a set by enclosing them
in a named box and putting the name of the box in double quotation marks after the
keyword enables.

For enabling dependencies to work, all dependent controls must be in the same
dialog box. If necessary, place dependent controls together in a subdialog and enable a
button that allows the user access to that subdialog.

You can require that users select an option by using the keyword required. The
keyword required can be used only on the first dialog of a script. It is helpful to the
user to enclose any required controls in a box named Required (see the examples in
Figures 13-12 and 13-14).

Listing 13-10 shows the script used to created the dialogs shown in Figures 13-16 and
13-17. The first control enables the third control (see the first and third bold areas of the
listing), while the second enables the grouped fourth and fifth controls (see the second
and fourth bold areas of the listing). The first control enables a single control by prefix;
you can use this method for all kinds of controls. The second control enables the
grouped controls by name. Use this method for specifying a set of radio buttons, for
individual buttons, and for controls with blank prefixes.

13-26 Chapter 13 Commando

Listing 13-10 Dependencies example script

command name "cardfinder"

help "This example demonstrates enabling."
row {

column {

name "Pick one of these:

radio buttons {

option name "Pick a card" /* first control */
prefix "-p"
help "[-p] This allows selection of a card."
enables "-cAY" /* enable a single control */
option name "Pick a suit" /* second control */

prefix "-n"

help "[-n] Select a suit."
enables "Suits" /* enable a group of controls */
}
}
option name "Card name:" /* third control */

prefix "-cAY"

help "[-c] This enters the card name."
string
radio buttons { /* set up a group of controls */

name "Suits"

option name "Black:" /* fourth control */
prefix "-b"
help "[-b] Select from black suits."

option name "Red:" /A fiifthl contRed */

prefix "-r"

help "[-r] Select from red suits."

B

The Commando script language

13-27

The order that options appear on the command line can be specified, in reverse
order, by using the keywords 1ast1, last2, and so on. An option with the keyword
lastl appears last on the command line. An option with the keyword 1ast2
appears next to last, and so on. This feature can be used within a dialog hox, and is
nested across dialog boxes. For example, the 1ast1 specification of an option in the
first dialog box is put on the command line after an option with the last1
specification in any subdialog boxes.

Boxes

Outline boxes can he defined hy using the keywords box or name. Each draws a hox
around a control or group of controls; the keyword name inserts a name at the top left
of the box to identify its contents. The name can be as long as you like. However, if it is
longer than the box, it overwrites the next column. Named hoxes can he usedto enable a
group of radio huttons (see Figures 13-16 and 13-17, and Listing 13-10). The width of the
hoxes is the same as that of the current column. You can often make a dialog look hetter
by inserting blank columns to reduce the width of the hoxes (see Figures 13-7 and 13-10).

Leniencies

Commando is fairly forgiving when it comes to specifying column definitions. It is good
ahout automatically creating columns, and usually the first column specification in a
multiple column set does not need to be explicit. Radio buttons are automatically put into
their own column. Commando is also reasonably well behaved as long as you don't try to
put more than seven controls in a column (explicit or implicit).

Keywords

Table 13-2 alphabetically lists the keywords used in Commando.

13-28 Chapter 13 Commando

Table 13-2 Commando keyword reference

Keyword

Description

box

column { }

command name " ndme"

dialog name " name"

directory
dirlist
dirsandfiles
disabled
dontquote

enables "specifier

errpopup
file

filelist
filesanddirs
help “help shing”

lastl..n

name
newfile

number

option name " ndame"

outpopup

prefix " prefix string"

radio buttons { }

required
row { }

string

stringlist

text

Puts an outline box around a control or group of controls.

Contains the contents of i column.,

Sets the name of the command in the invocation button.

Sets the name for a nested dialog box and the button to access it.
Presents the single directory choice menu.

Presents the directory list choice menu.

Presents the file/directory choice menu. Same as filesanddirs.
Obsolete keyword.

Turns off the quoting mechanism for text input. Affects all text fields in a
didlog script.

Enables other controls to be used. The control to be enabled is specified
by its prefix.

Presents the standard error redirection menu,

Presents the single lile choice menu.

Presents the file list choice menu.

Presents the file/directory choice menu. Sumeas dirsandfiles.
Sets the help message for this section.

Used to specify the order of controls, 1ast 1 indicates the last option on
the command line. last2 is the next-to-last, and so on.

Puts 1 named outline box around a control or group of controls.

Presents the new file creation menu.

Obsolete keyword.

Sets the name of checkboxes and/or buttons. Required for each control.
Presents the standard output redirection menu. Required it errpopup
is used.

Adds prefix string to the command line.

Defines a setof radio buttons. The braces enclose the set of controls.
One of the controls referenced by this keyword must be selected.
Contains the contents of a row.

Allows string input. The input box string width is the width of the
current column,

Allows severdl string inputs. The input box string widthis the width of the
current column.

Displays the control name as text.

The Commando script language 13-29

Creating Commando dialogs

Creating new Commando dialogs is a three-step process. First, you write a new script.
This usually involves copying a script that has controls similar to the ones you want to
use, then modifying it to fit your application. Second, you test and, if necessary, debug
the script. Third, you make the script read-only and move it to one or more places so it
can be invoked by all the users on the system. If necessary, you can compile the script
into a resource.

As an introduction to the process of creating dialogs, the following section examines
how dialogs are invoked.

Invoking Commando dialogs

To invoke Commando from CommandShell, you can use two methods. Enter
cmdo commandname

on the command line, or type

commandname

on the command line and choose Commando from the Edit menu. The keyboard
shortcut for this second method is

commandname COMMAND-K

When Commando starts, it first searches the path listed in the variable $cMDODIR
for resources, then for dialog scripts. After that, Commando searches for resources, then
dialog scripts, in the directory in /mac/1ib/cmdo that have the same first letter as the
command name you are invoking. (For example, if the invoked command is 1pr,
Commando searches the directory /mac/1ib/cmdo/ 1.) Finally, Commando searches
your $PATH variable for resources (this might result in a long search if $PATH
includes many directories).

Make sure that the commands on the command line created by your dialog script are
locatable by the shell. The normal command search path is contained in the $pATH shell
variable. By default, this variable is set to /bin: /usr/bin: /usr/ucb: /mac/bin:,
though this might be changed by system initialization files (suchas .profile or

.login).

13-30 Chapter 13 Commando

Commando is also invoked when you double-click a UNIX application, utility, or
shell script icon. This method is not efficient when you are testing dialog scripts.

Writing Commando dialogs

Although the Commando script language is reasonably straightforward, it is not
foolproof. The Commando scripts that reside on each A/UX system (in
/mac/1lib/cmdo/ */*) have all been debugged and tested. Consequently, you can
save time if you simply modify a script that already exists instead of trying to write your
own script from scratch. This is especially true because some scripts use nonprinting
control characters to enable controls, and such scripts are sometimes difficult to debug
from printouts.

Testing Commando dialogs

Commando dialogs are easy to test, even when the script file is still open. When
Commando is searching for script files, it searches the directories listed in the section
“Invoking Commando Dialogs.” Therefore, once you have written your script, simply
place it in the directory within /mac/1lib/cmdo that has the same first letter as the
name of your script. The file should have read permission for your users. If you've copied
and modified a file that already existed, you probably don’t need to change the
permissions. To set the permissions so that the file is readable by everyone, use the
command line

chmod 444 scriptname

If you are using TextEditor to edit a Commando file, simply save the file (you don't
have to close it) in the appropriate directory within /mac/1ib/cmdo. Commando
interprets and runs the last saved version of your script. If it doesn't perform or look quite
right, simply edit the file, save it again, and reinvoke the script using one of the command
lines discussed earlier in this chapter.

Creating Commando dialogs 13-31

Compiling Commando dialogs

Compiling a script into a resource file allows you to customize its appearance. Various
attributes, such as the size of dialog boxes and the shape of controls, can be modified
using the Commando resource editor available in MPW.

To create a Commando resource, use the command line

cmdo Scriptname -r -n -o outputfile

This creates a resource file with the name outputfile. Move the file into a directory
common to all users’ $PATH variable, such as /usr/bin, so that all users can access
it. After the file is moved, it must be renamed to scriptname so that Commando can locate
the source dialog.

The command, the script, and the compiled resource must all have the same name
(the resource file has a leading %).

Dialog design guidelines

This section offers general guidelines to assist you in planning your Commando dialogs.
[t is not meant to be authoritative, but does present what has been found to work best. If
the needs of your applications demand it, you are free to do anything you want; but keep
in mind that one of the things that makes the Macintosh so easy to use is its consistency
of interface. Your design goal is to help users find choices where they expect to find
them, instead of having to hunt for them. You can find many helpful hints in Human
Interface Guidelines: The Apple Desktop Interface.

Dialog layout guidelines

Generally, it should be easy for the user to see what information is required before a
command can be run and what controls are currently selected.

When a script calls for nested dialog hoxes, all required arguments, as well as the
most frequent or useful arguments, should be in the first dialog box. In general, try to
reduce the number of dialogs to a minimum. Ideally, the user should be able to see
everything in one dialog, so that it is immediately clear from the dialog box which
controls have been chosen.

13-32 Chapter 13 Commando

The layout of controls within a dialog should correspond to the direction people
normally read. Required arguments, if any, should be distinguished from optional
arguments and presented in the first part of the first dialog page. The most important or
frequently used arguments should follow after the required arguments. For example, in
France people usually read left to right and top to bottom, so the layout of the dialog and
controls should follow this pattern.

Use boxes to group similar items. Boxes can separate columns, portions of columns,
or clusters of buttons. Boxes do not have to be labeled, though labels are often useful.

Buttons to select files or directories (or both) should be placed on the first dialog page
when possible. Use the keywords 1astl, last2,and soonto permit this arrangement.

Normally, each dialog item corresponds to a single control or argument. In some
cases, however, a command can have one or more commonly used group of controls. In
these cases, some of the dialog items might correspond to control clusters. Note that the
user should still be able to select all controls individually.

Use the keyword string if the possible values are infinite. If the number of values
is a small, finite number, try to use radio buttons.

There are several standards for subdialog names:

= Subdialogs containing only Output and Error pop-up menus should be labeled
“Output & Error.”

» [fadialog contains only one subdialog of unrelated options, that subdialog should be
labeled “More options.” If the options are closely related, that relationship can be
used to name the subclialog.

= [fadialog contains several subdialogs containing unrelated options, these subdialogs
should he named “Options 1,” “Options 2," and so on.

Dialog aesthetics

Try to avoid mixing control types (checkboxes, radio buttons, text boxes, and buttons).
Try to make the dialog page look balanced. With few exceptions, dialog boxes look best
with two columns per row. Use empty columns for spacing to prevent a column from
appearing too wide.

Don't juxtapose unrelated sets of radio buttons. Remember that the first radio button
in a cluster is turned on by default. Take care to choose a default that is reasonable. It is
often a good idea to add a button to a cluster of controls to represent the default action,

Dialog design guidelines 13-33

Descriptive information

The labels associated with a dialog item should be understandable by the UNIX-naive
user whenever possible. Options should be described in terms of the results that the user
will see, rather than in terms of the underlying UNIX concepts.

Filename arguments should be specified by their function or role. For example, use
“Files to be searched” rather than “Input.”

Always try to show the effects of defaults. One example is to label the pop-up menus
for output files “Output to” so that the default behavior is displayed on the screen.

Put useful information on the screen if it doesn't lead to clutter. For example, the
UNIX command date takes as an argument a string formatted mmddhhmm [yy]. This
format is small, useful, and easy to forget. It can be placed just above the text box where
the user can refer to the format when entering the date. Examples of more extended
information should be placed in the help message.

The help messages should expand on the text in the upper portion of the dialog box
to provide information and, where possible, examples. Don't simply repeat the control
text for the help message. If you can't think of anything else to add, rephrase the control
text in case the user didn’t understand the original text. When the user has to type in
something, give examples of common usages.

13-34 Chapter 13 Commando

Index

$nonassoc keyword 3-24
sprec keyword 3-25

sright keyword 3-24

stype keyword 3-37, 3-38
.DEFAULT target 7-10

. IGNORE target 7-10
.MAKESTOP target 7-10
.PRECIOUS target 7-10
.SILENT target 7-10
/usr/lib/MakeRules file 7-9

A
accept action 3-14
addch function 12-8
addch routine 12-4, 12-28
addstr routine 12-16, 12-28
admin command 8-3, 8-22
alphabetic keyword reference 13-29
ar command 6-3
archive 6-3
attroff routine 12-32
attron routine 12-32
attrset routine 12-8,12-32
auto statement 11-10
awk 9-11t09-61

action 9-5

action block 9-4

actions 9-20to 9-34

arrays 9-38

special for loop 9-40
assignment operators 9-37
BEGIN pattern 9-5,9-19
braces 9-54
built-in

functions 9-47

numerics 9-49

variables 9-11, 9-40

comments 9-5
conditions 9-22

expressions 9-22
data structures 9-35 to 9-41
data type determination 9-46
directing output 9-34
END pattern 9-5,9-19
expressions 9-21, 9-41 t0 9-50, 9-60

assignment 9-61
field separator 9-6
flow of control 9-23
functions 9-22,9-57
identifiers 9-52
input processing 9-11
invocation 9-7
lexical conventions 9-50
looping constructs 9-23
matching operation 9-15
numeric constants 9-50 to 9-51, 9-55
operation 9-3

operators
arithmetic 9-42
assignment 9-42
logical 9-44
pattern-matching 9-44
relational 9-43
symbols 9-22
options 9-6
pattern 9-5
pattern-seeking operation 9-15
patterns 9-14 to 9-20
expressions 9-15
predefined variables 9-51
primary expressions 9-55
printing
output 9-30,9-31t0 9-34
variables 9-32
program components 9-21
reading input 9-29
records 9-54
regular expression 9-17
report generation 9-27
reserved function names 9-51
reserved keywords 9-51
separators 9-53, 9-54
field 9-53
record 9-53
shell interactions 9-9
shell scripts 99

In-1

awk (continued)
special characters 9-17
string constants 9-51, 956
system command 9-34
terms 9-58 t0 9-00
hinary 9-58
unary 9-59
tokens 9-50
variable initialization 9-37
variables 9-35, 9-56 to 9-57
incremented 9-59

B
hackslash escape 5-9, 5-10
hackspace escape 5-9, 5-10
baudrate function 12-33, 12-47
be program 11-1t0 11-20
arrays 11-9
assignment statements 11-12
automatic variables 11-8
comments 11-5
constants 11-6
control statements 11-13
defining functions 11-7
exiting 11-4
expressions 11-15to 11-17
function calls 11-7
global variables 119
/0 hase 11-17 o 11-19
identifiers 11-6
keywords 11-6
operators 11-16
program files 11-4
program syntax 11-5
relational operators 11-14
scale 11-19 1o 11-20
statements 11-10to 11-11
syntax 11-3
usage 11-3
bdiff command 0-2
beep routine 12-17, 12-33
BEGIN pattern 9-5
box keyword 13-28,13-29

In-2 Index

box routine 12-30
hoxes 13-19, 13-28
break statement 9-23, 11-10

C

Cflowgraph, cflow 2-2
C-language, escapes 59
C preprocessor, cpp 2-3
calling dialogs 98
cb 2-2
CBREAK mode 12-23
cbreak routine 12-3,12-5, 12-23
cdc command 8-26
cflow command 2-2
changequote micro 4-4
checkbox 13-16
clear routine 12-28
clearok routine 12-16, 12-20
close function 9-30
clrtobot routine 12-28
clrtoeol routine 12-28
cmdo command 13-3()
COFF symhol table 2-5
colunn keyword 13-7,13-29
comb command 8-26
comm command 6-2
command name 13-0, 13-9
command name keyword 13-29
Commando

dialoghoxes 13-4

keyword reference alphabetic 13-29

script language 13-5
comments 13-7

awk 9-5

bc 11-5

make 7-12

yacc 3-0
compiling dialogs 13-32
condition 9-22
continue statement 9-23
control

characters 13-20

dependencies 13-25

examples 13-16

cpp. with make 7-51
cpp language 2-3
creating Commando dialogs 13-30
ctags command 2-4
curses 12-11to 12-67
additional terminals 12-40
CBREAK mode 12-23
constants 12-18
curses.h file 12-19
delays 12-34
examples 12-47 to 12-67
function keys 12-6
highlighting 12-8
initialization 12-19
input 12-5
terminal 12-31
terminating 12-17
lower-level functions 12-35
mini-curses 12-43
multiple terminals 12-11, 12-40
operation 12-39 to 12-47
options 12-20
output 12-4, 12-25
portability 12-46
functions 12-33
routines 12-18
scrolling 12-43
special keys 12-42
structure 12-18
terminal mode 12-23
terminfo 12-35
terminfo usage 12-13
TTY-mode functions 12-15
typeahead check 12-45
usage 12-3
variables 12-18
video attributes 12-32, 12-41
windows
attributes 12-8to 12-9
manipulation 12-24
multiple 12-10
writing 12-27
curses.h filc 12-19

D

dc program 10-1to 10-10

arrays 10-7

hase numbering 10-4

commands 10-4

input conversion 10-4

operators 10-3

output commands 10-5

programming 10-9 to 10-10

reference 10-8

registers 10-7

registers, internal 10-6

scale 10-5

scale rules 10-5

stack commands 10-6

subroutine definitions 10-6

syntax 10-2

usage 10-2
decr function 4-9
define function 4-3, 11-10
delay_output routine 12-39
delch function 12-16
delch routine 12-29
deleteln function 12-16, 12-29
delta command 8-5, 8-28
delwin routine 12-25
dependency 7-4
description file (see makefile) 7-13
dialog hoxes 13-4

aesthetics 13-33

design 13-32

invoking 13-30

layout 13-3,13-32

textin 13-33

dialog name keyword 13-23,13-29

diff command 6-2

diff3 command 06-2

diffdir command 6-2

diffmk command 6-2
directory keyword 13-23,13-29
dirlist keyword 13-23,13-29

dirsandfiles keyword 13-23, 13-29

disabled keyword 13-29
disambiguating rule 3-20

divert function 4-11

divnum function 4-13

dnl macro 4-14

dontquote keyword 13-19, 13-29
doupdate routine 12-26
draino routine 12-34

dummy column 13-12

dumpdef micro 4-16

E

ECHO function 5-20
echo routine 12-23
enables 13-260

keyword 13-29
enabling

by name 13-27

by prefix 13-27
END pattern 9-5
end-marker token 3-8, 3-13
endwin routine 12-4, 12-19
erase routine 12-28
erasechar function 12-33,12-46
error

action 3-14, 3-16

redirection 13-23

token 3-13, 3-27
errpopup keyword 13-23,13-29
errprint macro 4-160
eval function 4-9
exit statement 9-24
exp function 9-38

F
filelist keyword 13-23,13-29
files
COFF sections (-2
comparing (-2
dialog keywords 13-23
finding 6-2
keyword 13-23,13-29
manipulation tools 6-1
version 0-3

filesanddirs keyword 13-23, 13-29

find command 0-2

flash routine 12-17
floating-point constants, in lexical

analysis 3-47

flushinp routine 12-34, 12-47
for loop 9-25,9-40

for statement 11-13

be 11-12
function, finding definition 2-4

G

get command 8-0, 8-30
getch routine 12-0, 12-31
getline command 9-24,9-3()
getstr routine 12-6,12-32, 12-46
getyx routine 12-30
goto action 3-15
grammar rules 3-3

left recursive 3-31

right recursive 3-32
gsub function 9-49

H

help 13-6, 139

help command 8-6, 8-39

help keyword 13-29

help messages 13-34
length 139

L]
ibase function 11-17
idlok routine 12-3,12-20
if statement 9-24

bc 11-12
ifdef macro 4-6
ifelse macro 4-8
inch routine 12-30)
include function 4-10
incr function 4-9
index function 9-52
index macro 4-15
initscr routine 12-3,12-19

Index In-3

input routine 5-23
insch function 12-16,12-29

insertln function 12-16, 12-29

int function 9-57
intrflush routine 12-22
invoking dialogs 13-30
iodlk routine 12-39

K

keypad routine 12-6, 12-21, 12-42
keyword
box 13-18, 13-28, 13-29
column 13-7
command name 13-6,13-9
dialog name 13-23
directory 13-23
dirlist 13-23
dirsandfiles 13-23
dontquote 13-19
enables 13-26
errpopup 13-23
file 13-23
filelist 13-23
filesanddirs 13-23
help 13-6,13-9
lastl 13-28
name 13-18,13-28, 13-29
newfile 13-23
outpopup 13-23
prefix 13-10
required 13-24, 13-26, 13-29
row 13-7
string 13-20
stringlist 13-20
text 13-21
killchar routine 12-34,12-46

L
lastl 13-28

keyword 13-29
leaveok routine 12-21
left association 3-19
len macro 4-14

In-4 Index

length function 9-48, 11-10
lex 5-1t05-31
actions 5-9to 5-26
alternation 5-14
ambiguous rules 5-18to 5-19
arbitrary characters 5-9
character classes 5-7
character set 5-7
compilation 5-27
context sensitivity 5-14
definition expansion 5-12
definitions 5-10
examples 5-27to 5-29
expressions
operators 5-31
optional 5-13
regular 5-12
repeated 5-13
flags 5-16
I/0 routines 5-23
null statement 5-20
operators 5-9
repetition character 5-20
repetitions 5-12
rules 5-12
start conditions 5-17
substitution strings 5-11
summary 5-29
syntax 5-0
usage 5-3
variables 5-10
yacc usage 5-4
library 6-3
log function 9-57
longname routine 12-20, 12-44
look-ahead token 3-14

M

m4 macro processor 4-1to 4-20
arguments 4-7
arithmetic
functions 4-9
operators 4-9
/0 4-10

invocation 4-3
macro
definition 4-3
summary 4-19
printing 4-16
quoting 4-5
recursive definitions 4-17
string manipulation 4-14
system commands 4-16
Macintosh dialog hoxes 13-3
macro
arguments 4-7
definition 4-3
replacement 4-7

make

archive libraries 7-40 to 7-42
attributes 7-38 to 7-39
built-in macros 7-31
built-in targets 7-10
colons 7-11
combining commands 7-19
command syntax 7-5
commands 7-12
comments 7-13
default commands 7-19
default rules 7-28
dependency 7-4
dependency statement 7-11
description file 7-8. See also makefile
dynamic dependency parameters 7-16
Dynamic Include File Dependency
Generation (DIFDG) 7-50
environment variables 7-28
errors 7-18
include directives 7-51
include lines 7-13
internal macros 7-15
macros 7-29
definitions 7-13
expansion 7-30
expansion characters 7-33 to 7-34
setting defaults 7-26
testing 7-37
translation 7-48

makefile 7-3, 7-20
entries 7-9

mnemonic targets 7-47

operation 7-28

options 7-6, 7-18

precedence 7-35

predecessor trees 7-45

printing command names 7-18

rules 7-21

user defined 7-9

SCCS files 7-42 to 7-43

special characters 7-33 to 7-34

suffix list default 7-27

suffixes 7-20

target 7-4

transformation rules 7-21 to 7-27

usage 7-3

walking directory trees 7-44
make program 7-8to 7-52
MAKEBDIR macro 7-31
MAKECDIR macro 7-31
makefile 7-3,7-20

writing 7-3
MAKEFLAGS environment variahle 7-35
MAKEFLAGS macro 7-31
MAKEGOALS macro 7-31
MAKELEVEL macro 7-31
match function 9-49 °
meta routine 12-21
mini-curses 12-43
move routine 12-3, 12-27
mvcur routine 12-35
mvinch function 12-16
mvwin routine 12-25

N

name 13-18

name keyword 13-28, 13-29
napms routine 12-34
newfile keyword 13-23,13-29
newline escape 5-10

newpad routine 12-24
newterm routine 12-12,12-20
newwin routine 12-10, 12-24

next statement 9-24

nl routine 12-23

nm command 2-5

node function 3-11

nodelay routine 12-5, 12-21, 12-46
noecho routine 12-5

nonterminal symbol 3-3, 3-6, 3-7

null statement 5-20

number keyword 13-29

O

obase function 11-17,11-18
octaldump 2-5
od command 2-5
option
dependencies 13-25
leniencies 13-28
name 13-9
name keyword 13-29
order 13-28
type
checkboxes 13-16
radio huttons 13-17
text 13-20to 13-21
texthox 13-19

P

outpopup keyword 13-23, 13-29

output redirection 13-23

output routine 5-23

overlay routine 12-25

parse trees 3-11

parser 3-3

prefix keyword 13-10, 13-29

prefresh routine 12-26

print command 9-30, 9-31 to 9-32
variables 9-32

printf command 5-20, 9-31,

9-33,9-35

printw routine 12-4,12-30

prof command 2-2

profile data, prof 2-2

program structure, cb 2-2

prs command 8-39
putp routine 12-39

Q

quit statement 11-11
quotes, macros 4-5

R

radio buttons keyword 13-18,
13-29

raw routine 12-23

reduce action 3-14to 3-15

refresh mode 12-25

refresh routine 12-4

REJECT action 5-25

repetition character 5-20

required keyword 13-24;13-26,13-29

resetty routine 12-24

return statement 11-8, 11-11

right association 3-19

rmdel command 8-41

row keyword 13-7, 13-29

S

sact command 8-42
scalars 3-46 to 3-47
scale function 11-3,11-11
SCCS 8-1to08-44
administering 8-9
arguments 8-16
hranch deltas 8-14
change comments 8-26
command summary 8-22
commands 8-16
comments 8-24 to 8-25, 8-28 to 8-29
delta
combination 8-26
numbering 8-13
removal 8-41
descriptive text 8-25
diagnostics 8-17
ERROR 8-17

Index In-5

SCCS (continued)
files 8-7t0 815
accounts 8-42
arguments 8-16
auditing 8-12
check characteristics 8-43
comparison 8-43
corrupt 8-13
creating 8-3, 8-22
format 8-12
temporary 8-17, 8-27
flags 8-17, 8-23
group projects 8-9
ID keywords 8-20
identification string 8-3
keyletters 8-10, 8-37
keywords 8-29
modification request (MR) numbers
8-24, 8-28
new versions 8-27
on-line explanations 8-39
on-line information 8-6
printing 8-39
protection 8-7
restoring version 8-38
retrieving versions 8-5, 8-30, 8-31
SID determination 8-35
sccsdiff command 843
screen I/0, see curses 12-1
script structure 13-6, 13-8
scroll routine 12-30
scrollok routine 12-22
set_term routine 12-20
setscrreg routine 12-22, 12-43
setuid bit 8-11
setupterm routine 12-14, 12-36
SHELL variable 7-29
shift action 3-14
shift/reduce conflict 3-20
SID. See SCCS, identification string
sinclude function 4-10

size command 6-2
sort command 9-28

split function 9-47
sprintf function 9-49

In-6 Index

sagrt function 9-57, 11-10
standend routine 12-32
standout routine 12-32
stdscr routine 12-10
string keyword 13-19, 13-29
stringlist keyword 13-19, 13-29
strings

quoting 4-5

sharing 2-4
substr macro 4-15
substring function 9-48
subwin routine 12-24
syscmd macro 4-16
system command 9-34

T
tab escape 5-10
target 7-4
termcap database 12-2
terminal symbol 3-3
terminfo

database 12-2, 12-33

usage 12-13
terms 9-58
testing dialogs 13-31
text box keyword 13-19 to 13-20
text keyword 13-21,13-29
tokens 3-3, 9-50

error 3-27

look-ahead 3-14

names 3-13

number 3-12, 3-13
touch command 7-47
touchwin routine 12-25
tparm routine 12-38
tputs function 12-15, 12-38
typeahead routine 12-22

U

undefine macro 4-6
undivert function 4-11
unget command 8-38
unput routine 5-23

v

val command 8-43
version command 06-3
vidattr routine 12-38
viputs routine 12-38
VPATH macro 7-23

W

what command 8-43
while loop 9-24

be 11-12
window structure 12-4
wrefresh routine 12-10
writing dialogs 13-31

X

xstr command 2-4

Y, Z
y.output file 3-16, 3-26
yvacc 3-1103-56
actions 3-81t0 3-11, 3-34
ambiguity 3-19
arithemetic expressions 3-23
comments 3-6
conflict resolution 3-26
conflicts 3-19
declarations 3-11, 3-13
environment 3-29
error handling 3-4, 3-27
escapes 3-7
examples 3-38 10 3-55
floating-point constants 3-46
grammar rules 3-6
hints 3-31
input 3-31
lex usage 5-3
lexical
analysis 3-121t0 3-13
considerations 3-32
library 3-30
literal characters 3-4

null character 3-7
parser
operation 3-14 to 3-18
steps 3-14
precedence 3-23t0 3-26
rules 3-25
recursion 3-31 to 3-32
reserved words 3-34
specifications 3-6 to 3-8
files 3-4

tokens 3-12, 3-13

type checking 3-37

union 3-36

usage 3-3

values 3-36
YYACCEPT macro 3-34
yychar variable 3-30
yyclearin statement 3-29
yydebug variahle 3-30
yyerror function 3-30

YYERROR macro 3-34
yyerrorok statement 3-28
yyleng count 5-21
vyless routine 5-22
yylex function 3-12
yymore routine 5-22
yyparse function 3-29
yywrap routine 5-24

Index

In-7

The Apple Publishing System

A/UX Programming Languages and Tools, Volume 2,
was written, edited, and composed on a desktop
publishing system using Apple Macintosh computers, an
AppleTalk network system, Microsoft Word, and
QuarkXPress. Line art was created with Adobe Illustrator.
Proof pages were printed on Apple LaserWriter printers.
Final pages were output directly to 70-mm film on an
Electrocomp 2000 Electron Beam Recorder. PostScript,
the LaserWriter page-description language, was
developed by Adobe Systems Incorporated.

Text and display type are Apple’s corporate font, a
condensed version of ITC Garamond®. Bullets are ITC
Zapf Dingbats®. Some elements, such as program
listings, are set in Apple Courier, a fixed-width font.

Writer: J. Eric Akin

Developmental Editor: Scott Smith
Design Director: Lisa Mirski

Art Director: Tamara Whiteside
Production Editor: Debbie McDaniel

Special thanks to Jeannette Allen, Tom Berry, Vicki
Brown, Gene Garbutt, Michael Hinkson, Kristi
Fredrickson, John Morley, John Sovereign, Earl Wallace,
Kathy Wallace, Kristen Webster, Laura Wirth, and Chris
Wozniak.

030-1789-A
Printed in U.S.A.

